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ABSTRACT 

This thesis investigates orbitally-paced variations in the extent of East Antarctic Ice Sheet 

(EAIS), and the “downstream” influence of these ice sheet variations on ocean circulation 

and sea level variability during the Pliocene and Early Pleistocene  - a time period 

characterised by a major global cooling step that culminated in the development of a bipolar 

glaciated world. Three unique records are examined from (1) the Antarctic margin, (2) the 

southwest Pacific Ocean, and (3) shallow-marine sedimentary strata exposed in Wangnaui 

Basin, New Zealand.  

 

The Integrated Ocean Drilling Program (IODP) Site U1361 recovered a continuous 

sedimentary Early Pliocene to Early Pleistocene (4.3 to 2.0 Ma) record from the lowermost 

continental rise on the Wilkes Land margin offshore of the EAIS. A facies model and 

stratigraphic framework were developed that allowed for the identification of glacial 

advances (massive and laminated mudstones) and retreats (diatom-rich mudstones) across 

the continental shelf, with evidence for prolonged retreats spanning several glacial to 

interglacial cycles throughout the Pliocene. These cycles are followed by an extensive Early 

Pleistocene interval (~2.6 Ma) of diatom-rich mudstone with evidence for reworking by 

bottom currents, interpreted to be the consequence of downslope density currents associated 

with increased sea ice production after 2.6 Ma. Frequency analysis on Iceberg Rafted Debris 

(IBRD) from Site U1361 reveals that under an Early Pliocene warm climate state (4.3 to 3.3 

Ma), that ice discharge off the EAIS occurred in response to climate change paced by the 40-

kyr cycles of obliquity. Whereas, the colder climate state of Late Pliocene to Early 

Pleistocene (3.3 to 2.0 Ma) resulted in a transferral of orbital variance to 20-kyr-duration, 

precession-dominated variability in IBRD preceding the development of a more stable 

marine-based margin of the EAIS at ~2.6 Ma, which is hypothesized to reflect the declining 

influence of oceanic forcing as the high-latitude Southern Ocean cooled thereby increasing 

the seasonal duration and extent of sea-ice. The precession-paced influence on IBRD and ice 

volume variability of the EAIS was strongly modulated by 100-kyr-eccentricity, which is 

expressed lithologically in cycles of two alternating lithofacies 1) diatom-rich mudstones and 

2) massive and laminted mudstones in  the Site U1361 record. 

 

A compilation of benthic stable isotope records from Ocean Drilling Program (ODP) Site 

1123 in the southwest Pacific Ocean was also developed. The δ
18

O record identified a 40-kyr 
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obliquity pacing, consistent with other benthic δ
18

O records globally for this time period, thus 

allowing for an orbitally-tuned timescale to be developed for this site. Long-term trends in 

both the δ
18

O and δ
13

C records at ODP Site 1123 coincide with major developments of the 

Antarctic Ice Sheet and Northern Hemisphere glaciation at 3.33 Ma and ~2.6 Ma 

respectively. A gradual reduction in the deep water δ
13

C gradient between the southwest 

Pacific (ODP Site 1123) and equatorial Pacific (ODP Site 849) between 3.33 and 2.6 Ma 

coincides with expansion of the Antarctic Ice Sheet, enhanced Antarctic Bottom Water 

(AABW) production, invigorated atmospheric zonal circulation in the southern hemisphere 

mid-latitudes, and increased meridional sea surface temperature (SST) gradients in the 

Pacific Ocean.   

 

Finally, a shallow-marine, continental margin stratigraphic section from the Turakina River 

Valley in the Wanganui Basin, New Zealand, was used to record local sea-level changes, 

dominated by orbitally-driven, global glacio-eustasy, during the mid-Pliocene interval (3.2 to 

3.0 Ma). This interval was selected as it precedes the build-up of significant Northern 

Hemisphere Ice Sheet, thus allowing for an independent assessment of the orbtial-scale 

variability of Antarctic Ice Sheet volume. Grain size based proxy of percent mud was 

employed to reconstruct paleobathymetric changes, which displayed 100-kyr cycles 

consistent with ~20 m variations in local water depths during the mid-Pliocene. Combined 

with IBRD record from Site U1361, this reconstruction suggests that the marine margins of 

East Antarctica varied at orbital timescale, and provided a significant contribution to global 

eustatic sea-level variations during the mid Pliocene (consistent with global mean sea-level 

estimates of up to ~+20 m above present from related studies).  
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INTRODUCTION 

 

Geological records of Southern Hemisphere ice sheet and paleoceanograhpic changes through 

the global climatic transition associated with the onset of the bipolar glaciated world at 2.7 

Ma, are investigated in this thesis in order to better understand Earth system feedbacks. This 

transition has been the focus of intensive prior study, through both proxy records and 

modelling experiments – although detailed Southern Ocean and Antarctic records remain 

under sampled. However, the recent ANDRILL-1B record indicates that important climatic 

transition occurred in southern high latitudes with increased extent and duration of Antarctic 

sea ice, with  the marine-based sectors of the West Antarctic Ice Sheet (WAIS) becoming a 

more permanent feature (post-marine isotope event M2 at ~3.3 Ma; McKay et al., 2012) prior 

to the onset of major Northern Hemisphere glaciation (~2.7 Ma; Shackleton and Opdyke, 

1973; Ravelo et al., 2004).  

 

The Early to mid-Pliocene (5.3 to ~3 Ma) is heavily studied as a potential analogue for 

Earth’s future climate conditions near the end of the century and beyond (e.g., Hansen et al., 

2006; Bonham et al., 2008; Dwyer and Chandler, 2008; Salzmann et al., 2008; Dowsett et al., 

2012; Masson-Delmotte et al., 2013). Geological proxies indicate that this is the last time in 

Earth’s history that atmospheric CO2 concentrations were similar to present-day level (~400 

ppm; Pagani et al., 2010; Seki et al., 2010; Bartoli et al., 2011) and globally averaged surface 

temperatures were 2-3C warmer than present day, with amplified warming at the high 

latitudes (Figure 1) (Chandler et al., 1994; Sloan et al., 1996; Dowsett et al., 2012; Haywood 

et al., 2013).  

 

The Pliocene is ideal for studying climate system questions in a fully-equilibrated state as 

boundary conditions such as land-sea (i.e., tectonic) configuration, ocean bathymetry, fauna 

and flora, and polar ice sheet configuration were effectively the same as present (e.g., 

Salzmann et al., 2008; Salzmann et al., 2011).  Furthermore, geological evidence from paleo-

shorelines suggest eustatic sea levels were very likely (95% confidence) up to ~2010 m  

higher, a value that is more or less consistent with ice volume changes inferred from deep sea 

oxygen isotope records (Dowsett and Cronin, 1990; Cronin et al., 1994; Lisiecki and Raymo, 

2005; Naish and Wilson, 2009; Miller et al., 2012) and reconstructions of polar ice sheets 

from models (Lunt et al., 2009; Pollard and DeConto, 2009; Hill et al., 2010; Dolan et al., 
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2011; Raymo et al., 2011). The Pliocene offers the most accessible recent period in Earth’s 

history during which to assess the response of fast feedbacks such as sea ice extent, ocean 

heat transport, and the carbon cycle, as well as slow feedbacks such as polar ice sheets 

variability, under scenarios of global surface temperatures and sea-level predictions in the 

next 100 years and beyond. While many boundary conditions were similar to modern, a 

caveat is that the natural variability of the Pliocene ice age cycles appears to respond to 40-

kyr cycles related to obliquity, with less influence from  ~20-kyr cycles of precession and its 

100-kyr modulating effect of eccentricity which has driven the climate system for the last 

800,000 years (e.g., Raymo and Huybers, 2008). However, this observation is based largely 

on globally integrated records of ice sheet variability (e.g. sea level and oxygen isotope 

records), and the exact response of ice sheets in either hemisphere to orbital-paced variations 

in solar insolation remains unconstrained.  

 

The over-arching aim of this thesis is to investigate the response of the East Antarctic Ice 

Sheet (EAIS) to orbital pacing as the world transitioned from a unipolar to bipolar world at 

2.7 Ma.  
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Figure 1. Reconstruction of mid-Pliocene (3.3 to 3.0 Ma) (a) Sea Surface Temperature 

anomalies with zonal averages and (b) land Surface Air Temperature anomalies with zonal 

averages for both global (green) and land (grey) (from Masson-Delmotte et al., 2013).  

 

To achive this overarching aim, the approach in this thesis is three objectives: 

1. Interpret the sedimentological processes operating at the oceanic margin of the 

largest marine-based sector (i.e. Wilkes Land subglacial basin) of the EAIS during the 

Pliocene. Iceberg rafting, turbidity current activity and changes in biological 

productivity are investigated to assess EAIS variability at orbital timescale from  a 

marine sediment core recovered by the Integrated Ocean Drilling Program (IODP) 

Expedition 318 (Site U1361). 

 

2. Assess the variation in cold dense bottom water entering the southwest Pacific Ocean 

and how this relates to direct records of Antarctic ice volume variability observed 

along the Wilkes Land margin (i.e. objective 1) and the Ross Sea from previous 

drilling (e.g. ANDRILL records). To achieved this, stable isotope and 

sedimentological analyses are conducted on a marine sediment core recovered by 

Ocean Drilling Program (ODP) Leg 181 Site 1123. 

 

3. Examine a high-resolution record of local sea-level change exposed in mid-Pliocene 

(3.2 to 3.0 Ma) shallow-marine sedimentary strata in Wanganui Basin, New Zealand 

that will enable the eventual assessment of eustatic sea-level change. Furthermore, 

this objective will offer the ability to assess, at orbital resolution, how the variability 

of Antarctic ice volume is expressed in sea-level records, prior to the development of 

significant Northern Hemisphere ice sheets. 

This thesis is organized into six chapters in which Chapters 2-5 are written as quasi papers. 

Due to this structuring there may be some unavoidable repetitiveness between these chapters. 

Chapter 1 provides an overview on orbital scale variability of the climate system and a 

discussion of paleoclimatic/oceanographic records through key climatic events of the past 

~5.3 Ma, specifically the warmer-than-present Early Pliocene, high-latitude Southern 

Hemisphere cooling following Marine Oxygen Isotope Stage (MIS) M2 (3.3. Ma), and the 

onset of Northern Hemisphere glaciation at ~2.7 Ma. 
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Chapter 2 develops a sedimentary model for the Early Pliocene-Early Pleistocene record of 

Site U1361. Sedimentary lithofacies are defined on the basis of previously established models 

from deep-sea low- and high-latitude margins and are used to identify glacial to interglacial 

sedimentary processes in a stratigraphic framework. I performed all grain size analysis and 

semi-quantitatively developed a biogenic opal weight percent curve as an independent proxy 

for productivity. This chapter builds on the facies scheme developed in the initial 

sedimentological report (including visual core descriptions) by the shipboard 

sedimentological team members from IODP Exp. 318 (Escutia et al., 2011). I characterised 

the high-resoultion facies distribution throughout the Site U1361 core (this was conducted by 

Escutia et al., 2011). Francisco Jiménez-Espejo provided XRF Ba/Al data, which are used as 

an additional productivity indicator. Seismic data sets are included in the overall sediment 

model interpretations, and these data are supplied by Carlota Escutia (Co-Chief Scientist 

IODP Exp. 318), who assisted me in integrating these data into the sedimentation model. The 

majority of this Chapter (~90%) has been applied to the supplementary information of a 

recent publication accepted by Nature Geoscience.       

 

Chapter 3 further develops the sedimentary model from Chapter 2 and evaluates it within a 

cyclo-chronostratigraphic framework. The Ice-Berg Rafted Debris Mass Accumulation Rate 

(IBRD MAR) and biogenic opal weight percent records developed in Chapter 2 were 

analysed using spectral analysis to determine the orbital (frequency) response of a marine 

based sector of the EAIS. Findings from this chapter demonstrate a shift in orbital forcing 

(via the IBRD MAR) of the EAIS from obliquity during the warm Early Pliocene to 

precession-dominated forcing during the Late Pliocene-Early Pleistocene cooling. The results 

of this Chapter highlight the importance the overall climate state has in determining the 

orbital variability of ice sheets. I have carried out the frequency analysis presented in this 

thesis, but have subsequently also consulted a time series analyis expert (Steven Meyers (co-

author on Patterson et al., Nature Geoscience accepted) to run more advanced statistical 

analysis and testing which confirms the results of this chapter. Additional co-authors 

associated with the publication based on the chapter currently accepted by Nature Geoscience 

include Rob McKay and Tim Naish (my PhD supervisors), Carlota Escutia (seismic data and 

co-chief scientist on IODP Expedition 318), Francisco Jiménez-Espejo (XRF data), Maureen 

Raymo (advice on orbital theory of the ice ages), Lisa Tauxe (Paleomagnetic age model), and 

Henk Brinkhuis (co-chief scientist on IODP Expedition 318). I estimate that 90% of this 

chapter represents my primary data set and intellectual input, with the additional, but 
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subordinate, data sets represent the combined efforts of many of the Expedition 318 scientific 

party.  

 

Chapter 4 assesses the paleooceanographic response to major phase of Antarctic Ice Sheet 

development documented in Chater 3. This chapter provides a compilation of benthic δ
18

O 

and δ
13

C stable isotope data from ODP Site 1123 extending from the Early Pliocene (~4.6 Ma) 

to the Early Pleistocene (1.24 Ma). Stable isotope data from ODP Site 1123 are compared to 

previously established records from the North Atlantic (ODP Site 607), South Atlantic (ODP 

Site 704/1090), equatorial Pacific (ODP Site 849) and the South Pacific (MV0502-AJC). 

Grain size data for the Early to mid Pliocene is used as a proxy for paleocurrent intensity. A 

new age model for ODP Site 1123 is employed (personal communications G. Wilson, 

University of Otago). This chapter will comprise the basis of a paper that will focus on the 

role that the Antarctic Ice Sheet and Southern Ocean have played in pre-conditioning the 

onset of major Northern Hemisphere glaciation. I developed the benthic δ
18

O and δ
13

C record 

from ODP Site 1123 extending from 4.6 to 3.0 Ma. 20% of the work towards the stable 

isotope data set was carried out by lab assistents whereas I carried out 80%. This record was 

combined with stable isotope data of Harris (2002) from 3.0 to 1.24 Ma in which I applied 

the new age model. Additionally, I analysed 529 sampled intervals for grain size data from 

ODP Site 1123 in this thesis. When considering sample preperations, I contributed up to 70% 

of the lab work that aided in the development of the stable isotope data extending from 4.3 to 

3.0 Ma and all the grain size data presented in this chapter. 

 

Chapter 5 provides initial sedimentological and cyclostratigraphic interpretation of a mid-

Pliocene shallow marine sediment record from Wanganui Basin, New Zealand that has a 

local expression of sea level changes in response to global sea-level variability. Percent mud 

highlights cyclical paleo-water depth cycles extending from an inner to out-shelf setting. 

Magnetostratigraphy developed by Turner et al., (2005) is used to constrain paleo-water 

depth cycles and access cycles in an orbital context. I participated in field work, sampling, 

described out crop exposures and performed grain size analysis. Benthic foraminifera 

analysis will serve as an additional proxy for paleo-water depth but is currently being carried 

out by Hugh Morgans (GNS Science). A more detailed assessment of the 

magentrostratigraphy, aimed at improving the stratigraphic precision of key paleomagnetic 

transitions,  is currently being carried out by Gillian Turner.        
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Chapter 6 summarizes the main results of this thesis while incorporating other geological 

records in order to assess and discuss climate system feedbacks in relation to major 

reorganisiations  (3.3 Ma and ~2.5 Ma) in Antarctic ice volume, deep ocean circulation, 

Southern Ocean ventilation and atmospheric CO2 concentrations.  
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CHAPTER 1 

 

ORBITAL CLIMATE FORCING AND THE PLIOCENE-EARLY PLEISTOCENE 

 

1.1. ORBITALLY DRIVEN CLIMATE FORCING 

1.1.1. Introduction 

Earth’s orbital configuration on time scales over tens of thousands of years has been central 

to pacing of glacial to interglacial variability, in particular the influence cyclic changes in the 

orbits have on the amount and seasonal timing of radiation received by the sun at a given 

latitude (e.g., Croll, 1867; Milanković, 1941; Hays et al., 1976; Raymo and Huybers, 2008; 

Palliard, 2010). Orbital parameters such as eccentricity, precession and obliquity effect the 

distribution of incoming solar radiation (insolation), which directly influence Earth’s climate 

in several ways (Figure 1.1). Eccentricity (e) defines the size parameter of Earth’s elliptical 

orbit and is defined by the ratio between the center of the ellipse (c) with respect to the semi-

major axis (a) (Figure 1.2), 

    e = c/a 

    Where, 

    c = distance between focus and center of ellipse 

    a = semi-major axis   

 

Directly, the 100-kyr, 400-kyr and 2-myr cycles of eccentricity have a minor effect on the 

climate system, as maxima in eccentricity provide only a 0.18% increase in energy received 

by the Sun relative to the minima states (Paillard, 2010). However, as discussed below, 

eccentricity modulates the precession of the equinoxes (herein termed “precession”) which 

exerts a strong control on changes in seasonality.  

 

Precessional changes of Earth’s orbit influence the timing of the year in which Earth reaches 

perihelion (when Earth is closest to the Sun) and is defined by, 

    precession = e sin ω 

The vernal point (defined by the location of the sun at the March equinox; NH spring) and 

location of seasons on the Earth orbit moves with precession of equinoxes, the time of the 

year defined by the intersection of the equatorial plane and the orbital plane (days and nights 

of equal length). Since the orbit is elliptic, seasons also occur depending on their position 

relative to perihelion (nearest to the Sun) and aphelion (farthest from the Sun) which is in 
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opposite motion to that of the precession of equinoxes (Figure 1.2; ω). The combined yet 

opposing motions of the positioning of the vernal point (precession of equinoxes) moving 

around the sky at 25,700 years cycles and perihelion at 112,000 year frequencies combine 

into a mean climatic precessional cycle of 21,000 years (Paillard, 2010). The larger the 

eccentricity, the climatic effects associated with precession are stronger and vice versa. 

However, the periodicity of precession detected in oceanic and paleoclimatic records is often 

associated with the 23-kyr and 19-kyr, as they have a mean of 21,000 years (Paillard, 2010). 

The effect of climatic precession amplifies or decreases the local seasonal variance and is 

out-of-phase between hemispheres.  

 

 

Figure 1.1. Time series of eccentricity, precession (summer insolation) and obliquity for the 

last million years. 

 

Obliquity (є) is the tilt of Earth’s axis compared to the ecliptic or orbital plane. The effects of 

obliquity include the latitudinal location of the tropics and polar circles, as well as meridional 

distribution of heat with greatest effect in high latitudes. Today, obliquity is є = 23.44° but 

can vary from 21.9° and 24.5° at a periodicity of 40-kyr (Figure 1.2).  
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Figure 1.2. Schematic diagram of Earth’s orbital configuration used in the calculation of 

parameters (eccentricity/green = c/a; obliquity/blue = ε; precession/red = ω) (after Paillard, 

2010).  

 

For more than 150 years, Earth scientists have used orbital parameters to explain the 

periodicities of glaciations. Joseph Adhémar proposed in 1842 that glaciations occur when 

winters align with aphelion, making them relatively longer in duration. However, in 1860 

James Croll argued that glaciations occurred when winters coincided with aphelion (farthest 

point from the sun) not because they are longer in duration but rather the intensity of 

insolation is weaker (Imbrie and Imbrie, 1980; Raymo and Huybers, 2008). Following Croll, 

Milutin Milankovitch in the 1930’s theorized that summers experiencing weak insolation 

intensity at high Northern latitudes result in glaciation (Milanković, 1941; Imbrie and Imbrie, 

1980). More specifically, glaciation occurs when Earth’s spin axis is tilted at a low angle 

relative to the orbital plane (low obliquity) and when Northern Hemisphere summer occurs 

during aphelion allowing for snow and ice to persist through the melting season. Based on 

geological evidence, Milankovitch’s theory has become adopted in order to explain the 

pacing of ice ages (e.g., Hays et al., 1976 and others). 

 

Although long-term, high-resolution geological records are often complicated by 

sedimentation rates, erosional events and bioturbation, the study of Hays et al., (1976) 

directly linked for the first time the orbital pacing in  geological records to glacial-interglacial 

variability. Evidence of such forcing in paleoclimate records is widespread and includes (1) 

ice core records that provide evidence for atmospheric gas composition changes (Jouzel et al., 
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2007; WAIS Divide Project Members, 2013); (2) continental dust record that imply changes 

in atmospheric circulation (Tiedemann et al., 1994; Ding et al., 2002; Martínez-Garcia et al., 

2011; Naafs et al., 2012); (3) deep sea proxies recording variability in ocean circulation and 

temperature (Dwyer et al., 1995; Hall et al., 2001; Crundwell et al., 2008; Lisiecki et al., 2008; 

Lisiecki, 2010; Lourens et al., 2010; Meyers and Hinnov, 2010); (4) sediment records 

recovered from the Antarctic margin and North Atlantic records demonstrating ice sheet 

variability and sensitivity (Shackleton et al., 1984; Naish et al., 2009); (5) shallow-marine 

continental margin records inferring sea level fluctuations (Dowsett and Cronin, 1990; Cronin 

et al., 1994; Naish, 2007; Naish and Wilson, 2009); and (6) lake deposits from high Northern 

latitudes (Melles et al., 2012; Bringham-Grette et al., 2013). A significant feature of 

Quaternary climate is the transition in the orbital pacing of glacial cycles (i.e., The mid-

Pleistocene Transition (MPT)) at ~800-kyr ago which marks a switch from 40-kyr obliquity 

pacing to the most recent 100-kyr eccentricity modulated but precession-paced glacial cycles 

(Figure 1.3).  
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Figure 1.3. Orbital parameters, the deep sea benthic δ
18

O stack (Lisiecki and Raymo, 2005) 

recording ice volume changes for the last 4 million years, and Gaussian band-pass filters 

isolating the variance associated with 100-kyr (blue) and 40-kyr (orange) cycles in the 

benthic δ
18

O stack. The 100-kyr filter has a central frequency = 0.01 and bandwidth = 0.002; 

the 40-kyr central frequency = 0.025 and bandwidth = 0.003. Filters demonstrate a switch 

from 40-kyr to 100-kyr dominance after 600,000 Ka.  
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1.1.2. Identifying the 100,000 year ice age cycles since the Mid-Pleistocene Transition 

(MPT) (~800,000 years ago) 

Although previous studies had suggested a relationship between ice ages and orbital cycles 

(e.g. Emiliani, 1966), Hays et al., (1976) provided the first compelling spectral analysis of 

geological evidence to test Milankovitch’s orbital hypothesis. They used two deep-sea 

sediment cores recording the variability of δ
18

O in planktonic foraminifera to estimate 

summer (SST) of the last 500 kyr in order to demonstrate the frequency of glacial to 

interglacial variability. While the 40-kyr and 20-kyr years cycles of obliquity and precession 

pacing were identified in their spectral analysis, an unexpected result was the dominance of 

the 100-kyr long eccentricity-paced cycles, indicating a strong non-linearity of the climate 

system response to eccentricity forcing (Figure 1.4). Hays et al. (1976) reasoned that because 

of the non-linear nature of the ice sheet growth (90 kyr) and decay (10 kyr) and the small 

effect that eccentricity has on insolation, they recognized the 100-kyr signal in the geological 

record is related to the 23- and 19-kyr cycles of precession as a result of the modulating effect 

of eccentricity on precession. However, studies have called into question the assumption in 

which Earth’s climate responds to direct linkages between seasonality (eccentricity 

modulated changes in precession) and ice-sheet size with consequences at lower latitude 

climate (e.g., Broecker and Denton, 1989). Broecker and Denton (1989) used a generalized 

ocean circulation model to suggest that the 100-kyr glacial variability is not a direct 

consequence of eccentricity, but rather involves a massive reorganization in a non-linear 

manner to self-sustained internal oscillations between the oceans and atmosphere. 

 

The Vostok ice core record of the EAIS spanning the last 420 kyr highlights the role 

greenhouse gases (i.e., CH4 and CO2) and the carbon cycle (Petit et al., 1999; Shackleton, 

2000) have in amplifying orbital forcing. This is highlighted by termination events of each 

100-kyr-paced glaciation, which are characterised by a systematic sequence, whereby an 

increase in temperature (initiated by the orbital influence on insolation) is followed by a 

decrease in dust input, and rapid increase of both CH4 and CO2. Such a sequence is a 

consequence of the role deep-ocean circulation and Southern Ocean sea ice extent have on 

deep ocean ventilation and dust input over East Antarctica (e.g., Martin, 1990). This is then 

followed by an additional increase in CH4 and decrease in δ
18

O(atm) which are thought to be 

the consequence of Northern Hemisphere deglaciation (Petit et al., 1999). The European 

Project for Ice Coring (EPICA) recovered an ice core from the EAIS spanning the last 800 
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kyr, including eight glacial cycles back to MIS 20. This record infers long-term changes as a 

result from interplay between Northern Hemisphere insolation and obliquity cycles, whereas 

millennial scale changes within the climate system are induced by variability in the 

production of NADW potentially through the thermal bipolar sea-saw (Jouzel et al., 2007). 

 

Southern Hemisphere climate proxy records imply a near in-phase relationship between 

Antarctic ice volume and Northern Hemisphere insolation (Masson et al., 2000; Jouzel et al., 

2007; Kawamura et al., 2007), using atmospheric temperature anomaly estimates and δO2/N2 

from Dome F (high plateau of the EAIS) for the last 350 kyr. Huybers and Denton (2008) 

modelled an Antarctic response to Southern Hemisphere insolation. Their findings support a 

hypothesis in which interhemispheric changes during the Late Pleistocene depended on 

Northern Hemisphere climate responding primarily to summer intensity (Northern 

Hemisphere insolation) and Southern Hemisphere climate responded primarily to the duration 

of summer and winter seasons. Such a situation  promotes long Antarctic summers (Southern 

Hemisphere summer solstice coinciding with aphelion), thereby inferred to decrease the 

extent of sea ice, and promoting the outgassing of CO2 from the Southern Ocean. When 

combined with the combination of short intense Northern Hemisphere summers and large 

unstable Northern Hemisphere ice sheets, this is hypthosized to have led to the collapse of 

Northern Hemisphere ice sheets (Huybers and Denton, 2008). The recent West Antarctic Ice 

Sheet (WAIS) Divide ice core documents that during the last deglaciation, marine based 

sectors warmed 2000 years prior to the Antarctic interior regions (18,000 years ago). This 

was inferred to be the consequence of changes in local insolation for reasons hypothesized by 

Huybers and Denton (2008), rather than Northern Hemisphere summer insolation intensity 

(WAIS Divide Project Members; 2013). 

 

While understanding internal mechanisms and feedbacks within the overall climate system 

(e.g., oceans and atmosphere) is essential, much has been discussed on the role of orbital 

configurations responsible for triggering and or pacing such internal oscillations during the 

Late Pleistocene (e.g., Huybers, 2007; Lisiecki, 2010; Huybers, 2011; Rial et al., 2013).  

Using non-orbitally tuned age models from 17 marine sediment cores, Huybers (2007) 

provided statistical evidence, based on δ
18

O records, in which for the last 2 Ma the Early 

Pleistocene deglaciation events occurred every 40-kyr obliquity cycle in which obliquity was 

largest (high degree of tilt). However, the Late Pleistocene deglaciations may be the 

consequece of a glacial cycle skipped one or two obliquity beats, - i.e. they correspond to 80 
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or 120 Ka cycle, which average out to 100 ka. Thus, in that study, it was  inferred that the 

orbital pacing of glacial-interglacial cycles could be simplified to obliquity beat skipping, 

rather than long-period variability of the 100-kyr eccentricity cycle modulating ~20-kyr 

precession cycles (Raymo, 1997b; Huybers, 2007).  

 

Huybers (2011) subsequently used statistical modelling techniques to test whether 

anomalously large combinations of precession and obliquity forcing combine to determine 

the pacing of Late Pleistocene deglaciations. By correlating the timing of terminations using a 

composite δ
18

O record independent of orbital tuning to that of an insolation forcing function 

derived from equal amounts of obliquity and climatic precession. Huybers (2011) 

demonstrated that while precession determines the precise timing of deglaciation events 

obliquity fundamentally governs the time between deglaciations. However, more recently 

using spectral analyses aided by a numerical modelling Rial et al., (2013) demonstrated the 

100-kyr cycles arising since the MPT can be explained by the synchronization of nonlinear 

transfer from long-period 400-kyr eccentricity, which is apparent since 3.6 Ma (Rial et al., 

2013; Figure 4), to the 100-kyr component starting at about 1.2 Ma. According to Rial et al., 

(2013), synchronization allowed energy from the sun to be transferred in and out of the 

climate system at the same time as internal ocean and atmosphere feedbacks were warming 

and cooling the climate. Thus, synchronization between the overriding orbital influence 

controlling insolation variability with that of internal climate system feedbacks allowed for 

large fluctuations in the climate system transferring power to the 100-kyr Late Pleistocene 

cycles. Such a scenario supports previous studies that favour the hypothesis that internally 

driven climate feedbacks are the source of the 100-kyr climate variation for the last 5 myr 

(Nie et al., 2008; Lisiecki et al., 2010; Meyers and Hinnov, 2010). Elderfield et al., (2012) 

recently suggested the rise of the 100-kyr glacial cycles was initiated by an abrupt increase in 

Antarctic ice volume. By separating the effects of temperature and global ice volume from 

oxygen isotope records, Elderfield et al., (2012) examined sea-level fluctuations across the 

MPT. They argued an abrupt increase in continental ice volume, coinciding with anomalously 

low Southern Hemisphere summer insolation, suppressed ice sheet melting and allowed 

larger ice-sheet growth in Antarctica and promoted the first prolonged 100-ky glacial cycle.  

 

Because the 100-kyr cycles since the MPT are influenced by numerous and complex internal 

climate system feedbacks, researchers have been looking towards understanding the shorter, 

lower amplitude 40-kyr cycles of the Pliocene and Early Pleistocene. This time interval offers 
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advantages when considering ice sheet response to orbitally-driven climate forcing, as well as 

the changing climatic response through the transition into a bipolar glacial world after 2.7 Ma.  

 

 

Figure 1.4. Power spectra analysis using the Multi-Taper Method (MTM) of the LR04 

benthic δ
18

O stack (a) and insolation at 65°N (b) for the last 800,000 years. Statistical 

significance of spectral peaks was tested to a null hypothesis of a red noise background (Ghil 

et al., 2002) with green = 90%, blue = 95% and red = 99% confidence. (a) Highlights the 

dominance of the 100-kyr cycles of eccentricity over ice volume changes, while (b) 

demonstrates the lack of eccentricity power (100-kyr) and the significance of the 23-kyr and 

40-kyr cycles of precession and obliquity, respectively.   

 

1.1.3. The Pliocene and Early Pleistocene 40,000 year debate 

If the ice ages of the last ~800-kyr follow Milankovitch’s hypothesis that weak insolation 

forcing at high Northern latitudes (65°N) is driven by precession, than why do the 40-kyr 

cycles of obliquity, which is in phase between hemispheres, dominate the Pliocene and Early 

Pleistocene records? Geological records prior to ~800 kyr ago are dominated by strong 40-

kyr variability and near absence to weak ~20-kyr precession variability (e.g., Shackleton et 

al., 1984; Ding et al., 2002; Naish, 2007; Naish et al., 2009; Naafs et al., 2012), whereas, 

modelling experiments have struggled to reproduce growth and decay of ice sheets without a 

significant precessional influence (e.g., Berger et al., 1999). 

 

Recent debate has surrounded the role local summer insolation has on the Antarctic Ice Sheet. 

Raymo et al., (2006) used a non-dimensional ice sheet-climate model with the assumption 

that surface ablation is dependent on summer insolation intensity in both hemispheres. Such a 

model requires a dynamic Antarctic Ice Sheet with a terrestrial-based (i.e. surface) ablation 

margin in order to infer precession-based insolation forcing for ice growth and decay in both 

a) b) 
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hemispheres. They suggested the out-of-phase relationship of precession between 

hemispheres results in the 23- and 19-kyr changes of ice volume in each hemisphere 

cancelling each other out in the globally integrated proxies such as benthic foraminiferal δ
18

O 

and eustatic sea level records. This, results in leaving behind the residual obliquity 

component of insolation, which is in-phase globally, to dominate these records. They 

reasoned, due to the differences in the oxygen isotopic ratios between Northern and Southern 

hemisphere ice sheets, a relatively small change in the isotopically lighter EAIS could 

effectively cancel out the volumetrically larger and the isotopically-heavier Northern 

hemisphere changes (Raymo et al., 2006). Scherer et al., (2008) used geological records 

recovered from the Antarctic continental margin and Southern Ocean to demonstrate that a 

retreat of the marine-based WAIS occurred during Southern Hemisphere insolation maximum 

surrounding the MIS-31, supporting the notion that local insolation (including the precession 

component) influences Antarctic Ice Sheet volume, at least during periods of very high 

precession values.  

 

However, Huybers (2006) provided an alternative hypothesis where the direct influence of 

precession on ice sheet mass balance is negligible under certain boundary conditions. To 

explain his hypothesis, Kepler’s second law of planetary motion is invoked, such that when 

the Earth is at perihelion it is traveling faster than when it is at aphelion. This results in 

intense short summers being inversely balanced out by longer cold winters (Figure 1.5). Thus, 

ice sheets become more sensitive to the overall duration of the summer melt season via mean 

annual insolation which is controlled by obliquity. Huybers (2006) infers that given a certain 

melt threshold of ice sheets, the duration of the summer melt season becomes more sensitive 

to either obliquity or precession forcing. For example, in a higher CO2 world (~400 ppm) 

during the Pliocene (Pagani et al., 2009; Seki et al., 2010; Bartoli et al., 2011) the insolation 

threshold required to achieve positive degree days at high latitudes would have been lower 

than today (e.g., Figure 1.5; W/m
2
 = 200) due to enhanced radiative forcing. This scenario 

would extend the melt season and leave obliquity to dominate the total integrated summer 

insolation at latitudes greater than 60°, as the influence of Northern Hemisphere summer 

insolation would have been counter balanced by long cold winters. However, as a melt 

thresholds increase through time, as the world cools (Figure 1.5; W/m2 = 400), the influence 

of precession becomes the dominant control on the duration of the summer melt season 

(Figure 1.5).  
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Expanding on the hypothesis of Huybers (2006), Huybers and Tziperman (2008) used a 

coupled ice-sheet/energy-balance model to simulate glacial response to obliquity under set 

boundary conditions. They found that when relatively thin ice sheets reside northward of 

60°N, their model generated almost exclusively obliquity period glacial variability (Huybers 

and Tziperman, 2008). An additional boundary condition is that the ablation season must be 

long enough for precession’s opposing influences on summer and fall insolation intensity to 

counterbalance one another (Huybers and Tziperman, 2008). However, these assumptions are 

contradicted by several tills deposited by the North American Laurentide Ice Sheet prior to 

1.97 Ma. These tills indicate that while the ice sheet was volumetrically one half to two thirds 

as large as Late Pleistocene ice sheets, it’s southern boundary extended much farther south 

(~40°N) than during the Last Glacial Maximum (LGM) (Clark and Pollard, 1998; Balco and 

Rovey, 2010).   

 

 

Figure 1.5. The seasonal cycle as represented by daily average intensity at 65°N in which 

perihelion occurs during Northern Hemisphere winter solstice (solid line) and summer 

solstice (dotted line). The switch between obliquity and precession driven variability occurs 

at a threshold around 350 W/m
2
. For a lower threshold (i.e., 200 W/m

2
), the duration of 

summer is longer, and thus  summer melt season (i.e. area integrated under the curves above 

W/m
2
 = 200) is more influenced by the mean annual insolation signal – i.e. these latitudes 

receive majority of annual insolation during summer months (due to greatly reduced daylight 

hours in winter). However, at higher threshold (i.e., 400 W/m
2
), Northern Hemisphere 

summer when the Earth is at perihelion causes an increase the intensity of insolation yet a 

significant decrease in the summer melt season  (sum of positive degree days), and thus the 

influence of peak summer insolation  controlled by precession has more of an influence (after 

Huybers and Tziperman, 2008) 

 

Summer energy 

Sensitive to precession 

(i.e., Northern Hemisphere glaciation) 

Summer energy 

Sensitive to obliquity 

(i.e., warm early Pliocene) 
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1.2 THE ONSET OF LATE PLIOCENE GLOBAL COOLING AND NORTHERN 

HEMISPHERE GLACIATION 

 

1.2.1. Small scale Northern Hemisphere glaciations prior to the Early Pliocene  

While the onset of “major” Northern Hemisphere glaciation did not take place until the Late 

Pliocene (~3.0 to 2.5 Ma) (i.e., Shackleton et al., 1984; Raymo, 1994; Jansen et al., 1996; 

Zachos et al., 2001; Ravelo and Wara., 2004; Haug et al., 2005), small scale glaciations are 

believed to have occurred in Northern high latitudes since the late Miocene (~7.3 to 6.0 Ma) 

and onset as far back as the middle Eocene (44.5 to 44.7 Ma) (Fronval and Jansen, 1996; St. 

John, 2008). Although Ice Rafted Debris (IRD) (IRD - detrial material transported by ice 

sheets, ice shelves and or sea ice) records from Miocene and older records are low in 

resolution, and limited spatially compared to the Late Pleistocene, drill cores from the 

Norwegian-Greenland Sea suggest glaciers reached sea level as early as ~7.3 Ma (Figure 1.6) 

(Larsen et al., 1994; St. John and Krissek, 2002). The gradual intensification of Northern 

Hemisphere glaciation starting in the Miocene is also recorded in ice-born deposits from the 

VØring Plateau near Iceland (Fronval and Jansen, 1996), as well as the IRD records 

recovered from the central Arctic Ocean (St. John, 2008). Furthermore, based on a rapid 

increase of terrigenous material into the Gulf of Alaska, alpine glaciation in southeastern 

Alaska is suggested to have started in the late Miocene between 5.91 and 5.50 Ma and 

continued into the Pliocene (Rea and Snoeckx, 1995; Rea et al., 1998). IRD Mass 

Accumulation Rates (MAR) records, as well as massive amounts of glaciomarine diamictites 

from the northern Pacific Ocean indicates the presence of tidewater glaciers as early as ~6 to 

4.2 Ma (Krissek, 1995; Lagoe and Zellers, 1996). Glacial advance across the Greenland shelf 

has been recorded in sediment cores (ODP Site 918) recovered off southeastern Greenland 

since ~7 Ma (Solheim et al., 1998). Finally, while the record of sea ice recovered from the 

central Arctic Ocean extends back to the relatively warmer Eocene and middle Miocene (St. 

John, 2008; Stickley et al., 2009), the spatial extent of sea ice since this time until the 

Pliocene is debated (Cronin et al., 1993; Butt et al., 2002; Dowsett, 2007; Darby, 2008; Haley 

et al., 2008; Krylov et al., 2008; St. John, 2008). 
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Figure 1.6. Ice-rafted debris mass accumulation rate record from the Integrated Ocean IODP 

Site 302 in the central Arctic (after St. John, 2008). 

 

1.2.2. Amplified warming in the Northern high latitudes during the Pliocene 

The United States Geological Survey’s Pliocene Interpretation and Synoptic Mapping 

(PRISM) Sea Surface Temperatures (SST) reconstruction PRISM3 based on a large data set 

of temperature proxy estimates displays little differences in low latitude SST compared to 

present day (Figure 1) (Dowsett et al., 2011; Dowsett et al., 2012). However, temperature 

anomalies appear to increase with latitude (Dowsett et al., 2011; Dowsett et al., 2012; Naish 

and Zwartz; 2012). Amplification in temperature during the Pliocene, based on SST 

reconstructions (PRISM3), is supported by a similar trend in the distribution of land plants 

(Ballantyne et al., 2010; Salzmann et al., 2011; Brigham-Grette et al., 2013). 

 

Multi-proxy SST and terrestrial paleotemperature data sets from the Canadian high Arctic 

demonstrate good agreement and estimate land temperatures were warmer than modern 

during the Pliocene with a perennially ice-free Arctic Ocean (Ballantyne et al., 2010; Dowsett 

et al., 2012; Ballantyne et al., 2013). The zonal distribution of vegetation in the Arctic and 

sub-Arctic latitudes demonstrates one of the most prominent responses to mid-Pliocene  
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warmth (Salzmann et al., 2011). The modern tundra vegetation that dominates the Northern 

high latitudes at present was replaced by taiga forests dominated by Picea and Pinus inferring 

temperatures approximately 19°C warmer than modern (Salzmann et al., 2011). A 30% 

reduction in the Greenland Ice Sheet (GIS) (Dolan et al., 2011) allowed for taiga forest to 

reach as far north as 82°N during the Late Pliocene (3.6-2.58 Ma) (Salzmann et al., 2011). 

Furthmore, pollen and biogenic silica records from Lake El’gygytgyn in northeastern Arctic 

Russia suggest summer temperatures were ~8°C warmer and ~400mm/year wetter with 

greater seasonal productivity  from 3.6 to 3.4 myr ago compared to modern (Figure 1.7) 

(Brigham-Grette et al., 2013). 

 

Figure 1.7. Lake El’gygytgyn biogenic silica accumulation rate (BSi acc. rate), 

reconstructions of mean temperature of the warmest month (MTWM) and annual 
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precipitation (PANN) based on pollen data (Brigham-Grette et al., 2013). Peak warmth is 

highlighted in grey/brown.  

 

1.2.3. North Atlantic Ocean circulation  

The Arctic and high Northern Hemisphere oceans are considered to play a critical role in the 

global climate system evolution of the Pliocene-Pleistocene. Large-scale overturning ocean 

circulation in the North Atlantic during the Pliocene is considered to have been similar to 

modern, although several key tectonic and sea level shifts are suggested to have important 

consequences for ocean circulation and moisture transport (Matthiesen et al., 2008). The 

initial opening of the Bering Strait during the late Miocene (5.5 to 5.4 Ma), partial closing of 

the Indonesian Seaway (~5.2 to 3.8 Ma) and shallowing of the Central American Seaway 

(CAS) (~4.6 Ma) all potentially impacted the heat and salinity gradients between the Pacific, 

Atlantic and Arctic Ocean Basins. This would have impacted water mass transport from the 

equatorial Atlantic into the North Atlantic potentially enhancing the formation of Northern 

Component Water (NCW), the precursor to NADW (Srinivasan and Sinha, 1998; Haug and 

Tiedemann, 1998; Cane and Monlar, 2001; Haug et al., 2001; Gladenkov, 2006; Steph et al., 

2010).   

 

According to ice volume reconstructions (Lisiecki and Raymo, 2005), sea level during the 

Early Pliocene was higher than modern, negating some of the changing physical bathymetric 

barriers for water mass exchange between the Arctic Ocean Basin and the North Atlantic 

(Poore et al., 2006; Haley et al., 2008; Matthiessen et al., 2009). However, the bathymetry 

along the Greenland-Scotland Ridge during the Pliocene has been estimated to be several 

hundreds of meters lower than its modern elevation due to isostatic effects related to mantle 

dynamics, specifically in relationship to temperatures associated with the Icelandic hotspot 

(Wright and Miller, 1996; Poore et al., 2006; Robinson et al., 2011). Combined with sea level 

highstands, a deeper bathymetry along the Greenland-Scotland Ridge would allow for greater 

deep water overflow from the Nordic Seas into the North Atlantic, consequently increasing 

NADW formation rates (ie. Enhanced North Atlantic overturing) and more northward 

penetration of warm saline North Atlantic surface waters to deliver moisture into the Arctic 

Ocean. This process in turn would have enhanced heat flow and ultimately moisture supply to 

the area (Henrich et al., 1989; Poore et al., 2006; Haley et al., 2008). Additional deepening of 

the Iceland-Faroe Ridge resulted in an increase in the strength and northward extension of 
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surface currents bringing warm surface water into the Arctic Ocean as well as increasing the 

production in addition to the export of warmer deep water (Robinson et al., 2011).    

 

The North Atlantic benthic oxygen isotope record recovered from VØring Plateau, while 

discontinuous, reflects distinct glacial excursions in the past 6.5 Ma indicating large ice 

volume fluxes and/or variation in bottom water temperatures (Fronval and Jansen, 1996). 

Continuous and strong outflow of NADW is documented to have taken place prior to 3.0 Ma 

from both benthic δ
13

C records (i.e., Billups et al., 1997; Kwiek and Ravelo, 1999; Ravelo 

and Andreasen, 2000), Nd and Pb isotopes in ferromanganese nodule records (Frank et al., 

2002), and percent CaCO3 inferring a significant lowering of the calcite-lyscocline in the 

western equatorial Atlantic (Figure 1.7a) (King et al., 1997). A reduction of outflow and shift 

to shallower depths are suggested to have taken place after 3.0 Ma, in particular at 2.7 Ma, 

coinciding with the build-up of the Northern Hemipshere ice sheets as a result of enhanced 

production of the analogous Glacial North Atlantic Intermediate Water (GNAIW) (Figure 

1.8b) (Boyle and Keigwin, 1987; de Menocal et al., 1993; Oppo and Lehman, 1995; Billups 

et al., 1997; Oppo et al., 1997; Marchitto et al., 1998; Oppo and Horowitz, 2000; Ravelo and 

Andreasen, 2000; Frank et al., 2002).  
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Figure 1.8.  Contours demonstrating enhanced NADW export during the Pliocene compared 

to modern. The distribution of modern δ
13

CDIC and interglacial values of δ
13

CCALCITE for the 

last 0.5 Ma (a) as well as contours of discrete average δ
13

CCALCITE values for the Early 

Pliocene (b) (from Ravelo and Andreasen, 2000). ABW = Antarctic Bottom Water, PBW = 

Pacific Bottom Water and RF = return flow a mixture of PBW and ventilated North Pacific 

Intermediate Waters.       
 

1.2.4. The equatorial Pacific warm pool and proposed mechanisms 

While the global climate during the Pliocene was relatively warmer than today, it was also 

wetter, and is reflected in the vegetation of Australia and Africa during that time (Salzmann 

et al., 2011; Zhang et al., 2013). Areas currently occupying deserts today consisted of 

expanded temperate and boreal zones as well as tropical forest and savannas (Salzmann et al., 

2011) Global circulation models predict an enhanced hydrological cycle with implications for 

monsoon systems (i.e., East Asian Summer Monsoon) (Haywood et al., 2013). However, 

these models contain reasonable large inter-model variability (Haywood et al., 2013). A shift 

to more arid conditions similar to modern day (i.e., Australia and Africa) is thought to be 

associated with the evolution of oceanic-atmospheric circulation during the Pliocene 

(Salzman et al., 2011; Fedorov et al., 2010; 2013).   

 

Fedorov et al., (2013) used SST proxies (Mg/Ca and the alkenones; U
K

37) to infer the Atlantic, 

Pacific and Indian tropical ocean temperatures were similar to modern at ~29°C. However, 

these data also point towards two prominent differences of Early Pliocene climate relative to 

today: 1) a reduced equator-to-pole temperature gradient; and 2) a reduced zonal (east-west) 

SST gradient along the equator (~1°C or less) (Figure 1.9) (Fedorov et al., 2013), both in the 

eastern Atlantic (Dekens et al., 2007; Marlow et al., 2000), and Pacific oceans (Wara et al., 

2005; Robinson et al., 2011). The reduced zonal SST gradient of the Pacific has been referred 

to as a “permanent El Niño like” state (Wara et al., 2005). Understanding the mechanisms 

driving such a situation is imperative as it has implications for meridional heat transport as 

well as for testing climate sensitivity in a higher atmospheric CO2 world (Fedorov et al., 

2013).  However, debate has ensued mostly on mechanisms driving such a scenario (Fedorov 

et al., 2013). Proposed mechanisms for the Pacific warm pool as well as the transition into the 

modern eastern equatorial cold pool setting with a shallow thermocline includes tectonic 

configurations, atmospheric CO2 concentrations, atmospheric circulation as well as ocean 

circulating and mixing (i.e., Raymo, 1994; Crowley, 1996; Monler, 2008; Steph et al., 2010; 

Fedorov et al., 2010).  
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The North American Cordillera, South American Andes and Tibetan Plateau had developed 

into their near modern state by the Early Pliocene (Harrison et al., 1992; Molnar et al., 1993; 

Cane and Molnar, 2001; Hartley, 2003; Dickinson, 2004; Dowsett et al., 2011). The 

establishment of these topographic highs, particularly the Tibetan Plateau, is important as 

they have roles in regional climate systems such as, influencing atmospheric circulation 

patterns and differential heating between the ocean and atmosphere. These regional climate 

systems have a strong effect locally and far field (i.e., Asian Monsoon). However, since these 

topographic highs had already achieved their basic modern configuration by the start of the 

Pliocene, they alone cannot account for the large-scale stable trends observed in the 

equatorial Pacific. That said, two prominent tectonic events, that occurred during the Pliocene 

and suggested to have influenced the climate system through re-routing ocean-atmosphere 

circulation, were the closures of the CAS (4.7 to 4.2 Ma) and constriction of the Indonesian 

seaway (4.0 to 3.0 Ma) (Haug et al., 2001; Cane and Monler, 2001; Steph et al., 2010).  

 

Molnar (2008) summarized evidence surrounding the exact timing of the closing of the CAS 

in order to assess its role in enabling continental ice sheets to develop over North America 

and Fennoscandia. While geological evidence of crustal thickening infers deep water 

circulation between the Caribbean and Pacific Oceans vanished by ~7 Ma, the “Great 

American Exchange” commonly used to constrain the timing of final closure, did not occur 

until 2.7 to 2.6 Ma. However, Molnar (2008) argues that climate change enabled this 

migration with expansion of North Hemisphere ice sheets being a requirement as aridification 

of Central America and episodes of lower sea level allowed for savannah-dwelling 

vertebrates to pass through that region. Furthermore, paleoclimatic evidence from benthic and 

planktonic fossil assemblages as well as isotope (δ
18

O and δ
13

C) data infer cooling before 2.7 

Ma. Thus, while the exact timing of the closure of the CAS is not defined, all 

paleoenvironmental change can be attributed to climatic events rather than the closure itself 

(Molnar, 2008).  

 

Steph et al., (2010) interpreted from planktonic foraminiferal δ
18

O and Mg/Ca-derived 

temperatures, alkenone SSTs estimates, opal accumulation rates, and benthic foraminiferal 

δ
18

O, that closure of the CAS initiated an increase in meridional overturning circulation as a 

result of increased production of warm saline waters in the Caribbean with shoaling of the 

thermocline in the eastern tropical Pacific between 4.8 to 4.0 Ma, i.e. more than a million 

years prior to the intensification of North American glaciation. Additional feedbacks 



26 
 

involving orbital nodes (i.e., low astronomical forcing) have been proposed to help maintain 

shoaling of the thermocline until reaching the modern persistent appearance of the eastern 

equatorial cold tongue (Maslin et al., 1998; Steph et al., 2010). This age estimate is in good 

agreement with previous studies inferring the Caribbean and eastern tropical Pacific became 

sensitive to an obstructed seaway prior to 2.7 Ma (e.g., Keigwin, 1978, 1982; Keller et al., 

1989; Haug and Tiedemann, 1998; Marlow et al., 2000; Mudelsee and Raymo, 2005; Wara et 

al., 2005; Groeneveld et al., 2006; Dekens et al., 2007; Lawrence et al., 2006; Steph et al., 

2006).  

 

The restriction of the Indonesian seaway, with a northward shift of New Guinea, may have 

switched the source of flow through the seaway from warm south Pacific to relatively cold 

north Pacific waters (Cane and Monlar, 2001). Such a situation is considered to have led to 

the aridity of east Africa through a decrease in SST in the equatorial Pacific acting to reduce 

meridional atmospheric heat transport and fuelling global cooling (Cane and Monlar, 2001).  

 

Investigating the relative importance of tectonic, oceanographic and atmospheric forcing, 

Lunt et al., (2009) highlight that declining atmospheric CO2 concentration was the primary 

forcing for Late Pliocene cooling and initiating growth of the GIS. To simulate mechanisms 

for the warm Pliocene state, Lunt et al., (2010) used a coupled atmosphere-ocean general 

circulation model with a prescribed 400 ppm atmospheric CO2 concentrations using PRISM3 

land surface boundary conditions. While output displayed a change in global mean 

temperatures around 3°C, approximately half of the warming was driven by CO2, with lower 

orography (i.e., North American Cordillera) and reduced land albedo (i.e., a smaller GIS) 

accounting for the rest. Notably, their model did not reproduce the permanent El Niño 

concept for the equatorial pacific region.  

 

Through positive feedbacks relating to tropical cyclones vigorously mixing the upper ocean, 

modelling experiments demonstrate how such a mechanism could result in permanent El 

Niño-like conditions (Fedorov et al., 2010). A polaward expansion of the equatoral warm 

pool is inferred to have enhanced hurricane activity throughout the subtropical Pacific 

(Fedorov et al., 2010).  Tropical storms can suppress the ocean mixed layer to as deep as 120-

200 meters (Jacobs et al., 2000; D’Asaro, 2003; Korty et al., 2008). Such strong vertical 

mixing leads to further warming of the eastern equatorial Pacific and deepening of the 

tropical thermocline which only invigorates the process more (Fedorov et al., 2010). Earth 
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system model experiments, Fedorov et al., (2013) highlighted not only the importance of 

feedbacks related to ocean mixing, but also extratropical processes such as the distribution of 

less reflective (low cloud albedo) low lying clouds (e.g., Barreiro and Philander, 2008) to be 

integrated into any explanation of Pliocene warmth.  

 

Extratropical processes through oceanic and atmospheric circulation are also suggested to 

have had a strong influence on the equatorial Pacific warm pool and the emergence of the 

modern cold tongue (Chiang and Bitz 2005; Lee and Poulsen, 2006; Barreiro and Philander, 

2008; Martínez-Garcia et al., 2010; McKay et al., 2012). It has been proposed a reduction in 

cloud cover south of 35°S can reduce albebo and promote local deepening of the thermocline 

(Barreiro and Philander, 2008). In other words, the increase in short wave energy due to a 

reduced albedo decreases the heat loss in the high latitudes by decreasing the loss of sensible 

heat flux from the ocean. The equatorial thermocline deepens in order to recover and balance 

the heat budget (Barreiro and Philander, 2008). Southern Hemisphere cooling with the 

development of extended sea ice fields lasting longer seasonally, and the role this process has 

on the formation of dense cold bottom and deep water (i.e., AABW) as well as atmospheric 

circulation, such as the displacement of the Intertropical Convergence Zone (ITCZ), near the 

end of the Pliocene has been suggested to help drive the equatorial pacific into the emergence 

of the modern cold tongue (Chiang and Bitz, 2005; Lee and Poulse, 2006; Barreiro and 

Philander, 2008; Martínez-Garcia et al., 2010; McKay et al., 2012).      

 

 

Figure 1.9. Proxy records inferring reduced meridional and zonal Sea Surface Temperatures 

gradients in the equatorial Pacific during the mid-Pliocene (Fedorov et al., 2013). ODP sites 

846 (3°S 90°W) and 847 (0° 95°W) located in the eastern equatorial Pacific Ocean; ODP Site 
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1012 (32°N 118°W), off the western coast of North America; and ODP Site 806 (0°N 159°E), 

western equatorial Pacific Ocean.  

 

1.2.5. East Antarctica and the Southern Ocean during the warm Pliocene (5.332 to 3.330 

Ma) 

While the benthic oxygen isotope-based ice volume record suggests rapid cooling and 

expansion in the form of permanent ice sheets since the earliest Oligocene, an increase of ~1‰ 

during the Miocene at ~14 Ma is associated with the transition of a more stable EAIS (Zachos 

et al., 2001; Miller et al., 2005). The expansion of the EAIS and growth of marine based ice 

sheets to a more persistent state at ~14 Ma is supported in Southern Ocean surface 

temperatures proxies indicating a 7°C cooling (Shevenell et al., 2004). However, the extent of 

the EAIS during the Early to mid-Pliocene (5.3 to 3.0 Ma) has been heavily debated for over 

three decades. Whatever the exact extent was, interglacials of the warm Pliocene likely 

contained a marine-based ice sheet margin that was farther south than modern with a reduced 

sea ice field (Hambrey and Mckelvey, 2000, Whitehead et al., 2005 Quilty et al., 2000). 

Whereas during glacial periods, the ice sheet margin extended northward although it remains 

uncertain if any of these advances approached LGM ice volume.    

 

The existence of a trans-Antarctic seaway extending through the Wilkes and Pensacola basins, 

now covered by the EAIS,  was argued due to the presence of reworked Pliocene aged open-

marine diatom assemblages in the Sirius Formation (presently referred to as the Sirius Group; 

McKelvey et al., 1981) that crop out in the Transantarctic Mountains (TAM) (Figure 1.10a) 

(Harwood, 1983; Webb et al., 1984). These diatoms were hypothesized to have been 

deposited initially in an open marine environment. Subsequent ice sheet expansion during 

Pliocene eroded and transported these diatoms into glacial sediments deposited at high 

elevations within the TAM (Webb et al., 1984). According to the original hypothesis of 

Webb et al., (1984), such a reduction of the Antarctic ice sheet is consistent with Shackleton 

and Cita (1979)’s benthic oxygen isotope record from Deep Sea Drilling Project (DSDP) Site 

397 inferring deep ocean temperatures were 1°C warmer than modern as a result of ice sheet 

reduction up to at least half of its modern size. The presence of fossilized wood and leaves of 

Nothofagus beardmorensis (Figure 1.10b) with a prostrate shrub habit within the Sirius 

Group is indicative of summer growing season temperatures in the range of 5°C, but with a 

mean annual temperature in the range of -12°C (Francis and Hill, 1996). Glaciolacustrine as 

well as glaciomarine sediments recovered from low lying margins of the EAIS in the Western 
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Ross Sea and in the Prydz Bay region highlight episodes of deglaciation with marine 

incursions into fjords, indicating that at the very least, there was some retreat of the marine-

based margins of the EAIS relative to the present day (Barrett and Hambrey, 1992; Ishman 

and Reick, 1992; Hambrey and McKelvey, 2000).  

 

A widespread deglaciation of the EAIS inferred by the Sirius Group interpretations of Webb 

et al. (1984) is contradicted by separate studies of terrestrial glacial deposits and 

geomorphology studies conducted in TAM, and by far-field proxy data. Oxygen and carbon 

isotope data recovered from the Subantarctic region by Kennett and Hodell (1993) challenge 

Shackleton and Cita (1979)’s record by indicating seasurface temperature during the warmest 

interval of the Pliocene increased by no more than ~3°C in which sea-level high stands were 

no more than 25 m above present. Landscape evolution of surficial sediment infers there was 

no EAIS overriding of the Dry Valley glacier system during the Pliocene as required by the 

Webb et al., (1984) mechanism to emplace marine diatoms in high elevated areas in which 

the Sirius Group crops out (Denton et al., 1993). Additionally, TAM geological outcrops 

indicate a permanent transition from wet-based to dry-based glacial deposition (Lewis et al., 

2007), the extinction of the Antarctic tundra in the Transantarctic Mountains (Lewis et al., 

2008), and the development of a hyperarid polar environment at this time (Marchant et al., 

1996). However, while there is no evidence of large subglacial meltwater outburst floods at 

high elevation in the Transantarctic Mountains after 14 Ma (Lewis et al., 2006), late Miocene 

sedimentary sequences in Ross Sea drill cores (McKay et al. 2009), and outcrops in Prydz 

Bay contain glacimarine facies that indicate that significant discharge of sediment-laden 

subglacial meltwater from the low-elevation, marine termini of EAIS outlet glaciers persisted 

well into the late Miocene (11.6 to 5.3 Ma; Hambrey and Mckelvey 2000). Following work 

done by Stroeven et al., (1996), McKay et al., (2008) demonstrated the ability of katabatic 

winds to deposit diatoms through atmospheric transport as a potential mechanism of 

deposition for the Sirius Group diatoms, and thus can not be used as biostratigrahpic 

constraints. Furthermore, modelling exercises constrained by geological records do not 

support a largely deglaciated EAIS (Figure 1.10c) (Hill et al., 2007; Pollard and DeConto, 

2009).          
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Figure 1.10. (a) Original map from Webb et al., (1984) showing topography of Antarctica 

with all ice removed and subsequent isostatic uplift (shaded areas indicate 1000 meters above 

and below present sea level) (after Drewry, 1983). The source of sediment for the Sirius 

Formation was inferred to lie within the Wilkes and Pensacola basins. Locations of Sirius 

Formation sediment: 1 = Wisconsin Plateau, Metavolcanic Mountain, Tillite Spur, quartz 

Hills, Reedy Glacier; 2 = Beardmore Glacier, Plunket Point, Dominion Range; 3 = Mt. Sirius; 

4 = Mt. Feather, Table Mountain, Ferrar Glacier. (b) Fossil Nothofagus from the Sirius Group 

at Beardmore Glacier indicating a summer growing season in the range of 5°C (after Francis 

and Hill, 1996). Black scale bar equals 1 cm. (c) Range of ice sheet configurations over the 

last 5 million years using a coupled atmosphere-ice sheet model (from Pollard and DeConto, 

2009). Black dot indicated the location of the ANDRILL AND-1B drill core site. 

 

While the relative stability of the EAIS is still debated (summarized in Barrett, 2013), 

shipboard and shorebased drilling around the margin is helping to constrain the extent of the 

ice sheet as well as oceangraphic variations in the Southern Ocean. Phytoplankton records of 

silicoflagellate genera Dictyocha and Distephanus from ODP holes 748B and 751A on the 

southern Kerguelen Plateau suggest the Polar Front Zone (PFZ) was 900 km south of its 

present location with surface water warming of at least 4°C (Bohaty and Harwood, 1998). 

However, it should be noted that the complex bathymetry surrounding the Kerguelen Plateau 

potentially exaggerates the extent of latitudinal migrations of Southern Ocean frontal systems 
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compared to other sectors of the Southern Ocean. Sediment records from ODP sites 1165 and 

1166 from the Prydz Bay margin suggest latitudinal migrations of frontal systmes was 

associated with a 45% reduction in sea ice extent during the Early Pliocene and SST up to 

5.5°C (Figure 1.11) (Whitehead and Bohaty, 2003; Whitehead et al., 2005). In the Wilkes 

Land sector of the East Antarctic margin, Escutia et al., (2009) indicated that relatively warm 

oceanic conditions prevailed to about 3.5 Ma. This inference is based on the increase in 

terrigenous sediment supply and silicoflagellate data that suggest warmer SSTs in the range 

of >5.6°C to 2.5°C reflecting reduced or no summer sea-ice with a retreated ice sheet margin 

during interglacials (Escutia et al., 2009).  

 

 

Figure 1.11. Provenence and productivity records inferring ice sheet retreats hundreds of 

kilometres inland (Cook et al., 2013) and the Dictyocha percent (unicellular marine 

phytoplankton) from Site 1165 in the Prydz Bay region of Antarctica (Whitehead and Bohaty, 

2003) with interpreted sea surface temperature estimates based on Ciesielski and Weaver 

(1974).   

 

Geochemical provenance data derived from IRD recovered at IODP Site U1361 highlights 

the potential for a dynamic response of the EAIS under varying Pliocene climatic conditions 

(Cook et al., 2013). Using radiogenic isotope compositions of neodymium and (
143

Nd/
144

Nd) 

and strontium (
87

Sr/
86

Sr), both of which vary compositionally in continental rocks on the 

basis of age and lithology, Cook et al., (2013) identified provenance signatures of two 

Pliocene sedimentary types. Sediments deposited within diatom-rich and highly productive 

intervals (warm intervals) resembled a compositional make-up associated with abundant 

Jurassic to Cretaceous intrusive sills (the Ferrar Large Igneous Province; FLIP). This 

provenance data, in conjunction with aerogeophysical data, infer the central portion of the 
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Wilkes Land Basin contains unconsolidated sediments of similar compositional make-up, 

suggesting sediment was sourced during multiple erosional events in which the current ice 

margin retreated, potentially 100’s of kilometres inland (Figure 1.11) (Ferraccioli et al., 2009; 

Cook et al., 2013).    

 

1.2.6. West Antarctic and Ross Sea variability during the Pliocene 

The Antarctic Geological DRILLing program (ANDRILL) recovered a sediment core, AND-

1B, in the western Ross Sea region of the McMurdo Sound. The core has a climate and 

glacial/marine history of the last 13 Ma  that is paced by obliquity (40-kyr cycles) (Naish et 

al., 2009). The late Miocene and Early Pliocene glacial cycles of AND-1B contain subglacial 

diamictities interstratified with terrigenous-rich glacimarine mudstones, that pass upsection 

into an Early Pliocene sequence of diamictites alternating with open-marine diatomites with a 

progressively decreasing terrigenous component into the Late Pliocene. This decreasing 

terrigenous composition of interglacial sediment was interpreted by McKay et al., (2009) as 

representing a gradual cooling from a subpolar glacial regime (i.e. ablation dominated by 

meltwater processes) to a sediment-starved polar glacial regime (i.e. ablation dominated 

iceberg claving) (McKay et al., 2009). A 60-m thick diatomite deposited during the mid-

Pliocene (3.6 to 3.4 Ma) contains reduced sea ice associated diatoms with a coevel occurance 

of subantarctic-subtropical diatoms. Additioanlly, sea surface temperature reconstructions 

based on TEX86 (tetraether index of lipids consisting of 86 carbon atoms) from this diatomite 

implies warmer oceanic and atmospheric conditions compared to modern during the Early 

Pliocene with a much reduced WAIS and coastal sea ice for multiple glacial to interglacial 

cycles paced by obliquity (Naish et al., 2009; McKay et al., 2012). 

 

Foraminifera assemblages identified by the Dry Valley Drilling Project (DVDP) -10 and -11 

indicate the Taylor Valley was at times an open marine fjord ranging from 300-900 meters 

water depth (Ishman and Reick, 1992). Lithofacies consisting of mudstone, sandy mudstone, 

fine sandstone, pebble conglomerate and minor diamictit suggest a glacial-marine 

environment distal to the grounding line (Powell, 1981; McKelvey, 1982). Furthermore, 

sedimentological evidence suggests Taylor Glacier did not advance to the mouth of Taylor 

Valley and sedimentation was influenced by local alpine glaciers during glacial minima 

(Levy et al., 2012). However, ice sheet advance across the Ross Sea in Taylor Valley 

occurred during peak glacial periods (McKelvey, 1982; Levy et al., 2012). Webb (1974) 

identified the Prospect Mesa Gravels in Wright Valley to contain abundant calcareous 



33 
 

foraminifera and the extinct pectinid Chlamys tuftensis suggesting a fjord environment with 

bottom water temperatures between -2 to 5°C. From a sea-ice platform near the middle of 

Ferrar Fjord, the Cenozoic Investigation in the Western Ross Sea-2 (CIROS-2) drillcore 

recovered mudstone sediments rich with in situ diatoms indicating open marine conditions 

(Barrett and Hambrey, 1992). These sediments are overlain by glacier till with provenance 

indicating glacier flow from the Ross Sea suggesting expansion of marine based ice sheets in 

the Ross Sea occurred during glacial maximum in the Pleistocene (Barrett and Hambrey, 

1992; Sandroni and Talarico, 2006). 

 

Similar to the Prydz Bay and Ross Sea records, ODP Site 1095 from the Antarctic Peninsula 

region identifies warm episodes during the Early to mid-Pliocene (4 to 3.5 Ma) containing 

high concentration of siliceous microfossils with assemblages indicative of reduced sea ice 

field compared to modern (Escutia et al., 2009). While cold glacier periods are identified 

from laminated and structureless muds with silt mottles. The absence of bioturbation and the 

presence of undisturbed continous lateral laminations highlights the lack of benthic activity 

during these glacial periods. Additionally, structureless muds which lack of laminations 

indicates little to no shear stress at the sea floor bottom by either little influence gravity flows 

triggered by ice sheet advances across the shelf or weak bottom currents (e.g., weak AABW 

production) (Escutia et al., 2009). Overall, these glacial sediments are suggested to be 

warmer in character compared to late Quaternary sedimentary sequences identified by Pudsey 

and Camerlenghi (1998), Pudsey (2000), Lucchi et al., (2002), and Lucchi and Rebesco 

(2007). Furthermore, siliceous microfossil assemblages which indicate biogeographic 

constraints in Weddell Sea cores, is associated with widespread upwelling with reduced and 

less well developed local latitudinal gradient than those of today (Abelman et al., 1990).  

 

Reconstructions of Pliocene sea-level based on far-field geological evidence suggest mean 

sea-level was up to 22+/-10 m higher than present (Miller et al., 2012) during the warmest 

interglacial highstands. Studies accounting for some degree of glacio-hydro isostatic 

contamination suggest polar region sea level estimates range between +5-25 m (Raymo et al., 

2011) and imply not only a deglaciated GIS (Dolan et al., 2011) and WAIS (Naish et al., 

2009; Pollard and DeConto, 2009), but also a significant meltwater contribution from the 

EAIS. Under the warmest Pliocene conditions this would consist of a GIS contribution of +7 

m sea level-equivalent (SLE), a WAIS +3 m SLE and between +2-15 m SLE from the marine 

margins of the EAIS (Miller et al., 2012; Cook et al., 2013).  
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1.2.7. Expansion of the Antarctic Ice Sheet and Northern Hemisphere ice sheets during 

the Late Pliocene to Early Pleistocene cooling (~3.33 to ~2.0 Ma) 

Sediment cores recovered around the Antarctic margin and Southern Ocean show a distinct 

step wise climatic and oceanographic shift that coincides with MIS M2 at ~3.33 Ma, and at 

~2.7 Ma during the onset of Northern Hemisphere glaciation (Figure 1.12) (Lisiecki and 

Raymo, 2005). This step appears to be assoicted with a shift in the seismic stratigraphic 

architecture  from the Antarctic Peninsula, Prydz Bay, Wilkes Land, Weddell Sea, Eastern 

and Western Ross Sea interpreted to reflect the coeval erosional events followed by 

progradation of the continental shelf and the development of sedimentary wedges at the 

mouth of ice troughs (Rebesco and Camerlenghi, 2008), although the age control on many of 

the cores used to constrain this event remains insufficient to determine if this event was truly 

coeval around the margin (e.g., Larter and Barker 2009). Various sediment cores highlight 

both a diachronous and gradual decrease in biogenic silica between 3.3 and 2.3 Ma as a result 

of an expansion of winter sea ice fields around the margin (Figure 1.12b) (Hillenbrand and 

Cortese, 2006). Modelling experiments demonstrate the need of a stable grounded ice sheet 

prior to development of sea ice (DeConto et al., 2007).   

 

Sediment drift deposits on the continental rise at ODP sites 1101, 1096 and 1095 record 

glacial to interglacial cyclicity on the western Antarctic Peninsula. This suggests of small 

polythermal glaciers with calving of debris rich icebergs, abundant supraglacial debris, and 

melt water plumes occupied the margin between 3.1-2.2 Ma (Hepp et al., 2006; Cowan et al., 

2008; Smellie et al., 2009). A significant change in sedimentation rates occurs after 3.0 Ma 

with higher Early Pliocene values of ~180 m/Ma reducing to ~80 m/Ma in the Late Pliocene 

and Pleistocene increasing sediment starvation in a cooling glacial environment (Hepp et al., 

2006). Furthermore, a large mass wasting event, continental shelf erosion and the onset of a 

downlap surface at the base of the continental slope corresponding to the base of a seismic 

unit has been used to infer a regime shift with reduced subglacial meltwater discharge after 

3.0 Ma (Rebesco and Camerlenghi, 2008). Sedimentological evidence suggests localized 

glacial advances to the shelf edge did not occur until 2.2 Ma (Cowan et al., 2008). However, 

it was not until 1.35 Ma in which glacials persistently reached the shelf edge which coincided 

with extended sea ice coverage (Cowan et al., 2008). Siliceous microfossils recovered from 
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ODP sites 1101, 1096 and 1095 further highlight the latitudinal expansion of the sea-ice field 

between 3.1 and 1.8 Ma (Hillenbrand and Futterer, 2002).    

 

In the Weddell Sea, the prograding sedimentary wedge of the Crary Trough-Mouth Fan 

overlies a major seismic unconformity, that is overlain by downlapping strata at the base of 

the continental slope (Bart et al., 1999; Rebesco and Camerlenghi, 2008), and is believed to 

be associated with periodic glacial advance to the shelf edge in the Weddell Sea region 

(Rebesco and Camerlenghi, 2008). Large mass wasting events from slope failures as a result 

of glacial advances across the shelf, decreases in regional sedimentation rates as the 

depocenter for sedimention migrates towards the inner shelf due to the reverse slope shelf 

geometry formed in response to glacial advances,  as well as in diatom abundance derived 

from ODP Site 693 coolectively suggests the onset of polar-style ice sheet expansion to the 

shelf edge at about 3.0 Ma (Kennett and Barker, 1990; Bart et al., 1999; Rebesco and 

Camerlenghi, 2008). Siliceous microfossils from sediment cores recovered along a north – 

south transect between Atlantic sector of the Agulhas Basin and the Antarctic continent as 

well as widespread disconformitites indicate drastic changes in ocean circulation patterns in 

response to Late Pliocene cooling at ~2.6 Ma (Abelmann et al., 1990). Responses to cooling 

include the steepening of latitudinal gradients and the formation of oceanic frontal systems 

(Abelmann et al., 1990). 

 

Coincident with Southern Ocean cooling at ~3.6 to 3.3 Ma were ice advances in the Lambert 

Glacier-Amery Ice stream system resulting in the Prydz Channel Trough-Mouth Fan, as 

recorded from Prydz Bay ODP Site 1165 (Whitehead and Bohaty, 2003; Cooper and O’Brien, 

2004; Rebesco and Camerlenghi, 2008; Passchier et al., 2011). During the Late Pliocene-

Early Pleistocene, the Lambert Graben-Prydz Bay transitioned from an environment with 

marine glaciers (lacking ice shelves) with ice cliff termini and high release of terrigenous 

sediment into the marine environment (3.86 cm/kyr), into a similar ice shelf configuration as 

present day with a lower rate of terrigenous deposition (1.28 cm/kyr). Currently, the Lambert 

Graben is fully covered by the Amery Ice Shelf, which is fed by numerious tributary glaciers 

draining 13% of the EAIS (Whitehead et al., 2006; Rebesco and Camerlenghi, 2008; 

Passchier, 2011). Ice advances to the shelf edge and progressive deepening of the inner shelf 

continued into the middle to Late Pleistocene (Hambrey et al., 1991; Theissen et al., 2003; 

O’Brien et al., 2007). 
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Drilling in the McMurdo Sound region of the Ross Sea also highlights a significant 

environmental change at ~3.4 Ma in the Ross Embayment (Levy et al., 2012). Based on the 

chronology of glacier moraines (Staiger et al., 2006) and provenance data in CIROS-2 

(Sandroni and Talarico, 2006), Levy et al., (2012) suggest outlet glaciers from the EAIS did 

not flow down Ferrar Valley until 3.4 Ma as a result of climatic cooling and ice sheet 

expansion. A lithofacies change in DVDP -10 and -11 cores at 3.4 Ma infers a shift in 

depositional environments (McKelvey, 1981; Powell, 1981). Prior to 3.4 Ma, lithofacies 

contain sandy mud, pebble gravel and breccia inferring distal glacial conditions with icebergs 

and floating tongues (McKelvey, 1981; Powell, 1981). Whereas, after 3.4 Ma, lithofacies 

consists of coarse clastic facies with pebble diamicitie, interbedded pebble gravel and breccia 

suggesting a proximal glacial setting with periodic grounded ice over the drill site (McKelvey, 

1981; Powell, 1981). Furthermore, a shift in foraminifera faunal asssemblages indicates a 

shallowing in water depth during the Late Pliocene (Ishman and Reick, 1992). The deeper 

water, offshore record of AND-1B from the McMurdo Sound region, contains a transition in 

facies successions that suggest a distinct change in glacial regime after the M2 glaciation at 

3.33 Ma (McKay et al., 2009). The progressive up-section thinning of outwash facies 

marking the transition between subglacial to open-marine conditions suggests a decrease in 

meltwater influence as a result of a transition towards an increasinlgy sediment-starved polar 

glacial thermal regime, that by ~2.6 Ma ultimately culminating in extensive summerl sea ice, 

and after ~1.0 Ma the Ross Ice shelf persisting through most interglacial periods (Figure 

1.12a) (McKay et al., 2009; McKay 2012b).   

 

Antarctic ice sheet growth and Southern Ocean cooling during the Late Pliocene is suggested 

to play an important role in the development of the bipolar world (McKay et al., 2012). Major 

cooling in the Ross Sea at ~3.3 Ma (McKay et al., 2009; Naish et al., 2009; Levy et al., 2012) 

also coincides with oceanic cooling and glacial expansion in the Prydz Bay, Antarctic 

Peninsula and Weddell Sea regions (i.e., Abelmann et al., 1990; Rebesco and Camerlenghi, 

2008; Escutia et al., 2009). This coeval cooling of the ice sheet and a stepwise expansion of 

the sea ice field around the margin to enhance AABW formation from 3.3 to 2.5 Ma 

(Hillenbrand and Cortese, 2006; McKay et al., 2012), has been postulated to increase the 

upwelling of colder waters in lower latitudes (i.e., eastern equatorial Pacific) and reduce heat 

transport to the Northern Hemipshere (Lawrence et al., 2006; McKay et al., 2012). Stable 

isotope records (δ
13

C, δ
18

O) from the Ceara Rise ODP sites 925 and 929 are interpreted to 

represent a reduction in the formation of warm saline NCW and extension of colder Southern 
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Component Water (SCW) (AABW precursor) after ~3.4 Ma (Billups et al., 1997). 

Convergence of Southern Ocean interbasinal δ
13

C gradients to more enriched values 

(negative) (Figure 1.12c), coinciding with increased sea ice cover around the margin (Figure 

1.12b), acting to lower preformed δ
13

C values in the Ross Sea due to less exposure time at the 

surface is consistent with polynya style mixing and the formation of AABW (McKay et al., 

2012) at ~2.7 Ma. This  infers enhanced surface water stratification in response to sea ice 

formation around the margin acts to decrease upwelling and ventilation of deep waters in the 

Southern Ocean (Hodell and Venz-Curtis, 2006). Ultimately this scenario would have acted 

as a positive feedback in reducing atmospheric CO2 concentrations and heat transport 

preconditioning the high Northern latitudes for the onset of major glaciation at ~2.7 (Raymo, 

1994; Haug et al., 2005; Hodell and Venz-Curtis, 2006; Lawrence et al., 2006; McKay et al., 

2012).  

 

Expansion of the Northern Hemisphere ice sheets at ~2.7 Ma is reflected in the widespread 

appearance of IRD in the North Atlantic/Baltic Sea (Figure 1.12d) (Jansen et al., 1996; 

Kleiven et al., 2002; Knies et al., 2009), significant cooling of the subarctic Pacific Ocean 

(Haug et al., 2005), IRD sourced from Northeast America (after 2.64 Ma) (Bailey et al., 

2013), and glacial outwash plains in North America (Naafs et al., 2012). Sediment records 

from northeastern Russian Arctic demonstrate a step wise cooling with the first cold “glacial” 

facies at ~2.6 Ma with perennial summer lake ice becoming common after 2.3 Ma (Brigham-

Grette et al., 2013).  
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Figure 1.12. Step wise Late Pliocene cooling into the Early Pleistocene bi-polar world. (a) 

Thermal regime of the WAIS as inferred from the AND-1B sediment record (McKay et al., 

2012). (b) Opal MAR from the Antarctic Peninsula region (Hillenbrand and Cortese, 2006). 

(c) Interbasinal δ
13

C gradients (Hodell and Venz-Curtis, 2006; Waddell et al., 2009). (d) 

North Atlantic (Jansen et al., 1996) and North Pacific (Haug et al., 2005) IRD records. 
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CHAPTER 2 

 

PLIOCENE-EARLY PLEISTOCENE SEDIMENTATION PROCESSES AND 

STRATIGRAPHY FOR IODP SITE U1361 DRILL CORE RECOVERED OFF THE 

WILKES LAND MARGIN, EAST ANTARCTICA 

 

 This chapter presents a sedimentation model for the Pliocene to Early Pleistocene (4.3 to 

~2.0 Ma ) interval of a continental rise drill core (Site U1361) that was recovered off the 

Wilkes Land margin of the East Antarctic Ice Sheet during IODP Expedition 318. The 

Pliocene record contains 14 lithological cycles consisting of interbeds of two lithofacies: 1) 

diatom-rich/bearing mudstones; and 2) massive and laminated mudstones. These lithofacies 

are consistent with pre-existing sedimentation models in distal channel-levee systems and 

infer glacial advances and retreat across the continental shelf occurring over multiple glacial 

to interglacial cycles throughout the Pliocene. Glacial minima are associated with diatom- 

rich/bearing mudstones that are the result of increased productivity over the drill site with a 

homogenization of sediment texture due to the interplay of bioturbation and downslope 

currents. Massive and laminated mudstones infer glacial maxima events in which non-erosive 

low-density turbidites are deposited as a result of slope failures triggered from over steepend 

foreset strata on the continental shelf during glacial advances. Early Pleistocene lithological 

cycles become difficult to distinguish and generally consist of diatom-rich/bearing mudstones 

with reduced iceberg rafted debris compared to underlying strata, while silt lenses and 

mottles are more discontinuous suggesting enhanced bottom current reworking associated 

with ice sheet stabilization and increased delivery of highly oxygenated waters formed in the 

Mertz Polynya. 

 

2.1. INTRODUCTION 

Due to Antarctica’s extended ice cover for the last 34 Ma, much of the late Cenozoic ice 

volume history is poorly understood. However, the integration of benthic δ
18

O global ice 

volume records (e.g., Zachos et al., 2001; Lisiecki and Raymo, 2005) with seismic data 

profiles (e.g., Rebesco and Camerlenghi, 2008) in addition to land-based and ship-based 

geological drilling recovering sediment cores along the margin (e.g., Levy et al., 2012) have 

provided direct evidence of ice sheet development and oscillations in response to long-term 

trends in global climate occurring over millions of years (Zachos et al., 2001) as well as 
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orbital timescales (Naish et al., 2001; Naish et al., 2009; McKay et al., 2012). However, 

direct records of Neogene and Quaternary Antarctic ice sheet variablity are sparse. Semi-

continous drill core records are largely confined to the McMurdo Sound region in the Ross 

Sea (e.g., Barrett, 1989; McKay et al., 2009; Levy et al., 2012), Prydz Bay (e.g., Shipboard 

Scientific Party, 2001) and the Antarctic Peninsula (e.g., Barker and Camerlenghi, 2002; 

Cowan et al., 2008) leaving many unanswered questions concerning the relative stability of 

the marine-based sectors of EAIS during Pliocene (summarized in Barrett, 2013 and in 

Chapter 1 of this thesis).  

 

At present, the EAIS is considered stable in terms of mass balance (Rignot et al., 2013), 

however, new bedrock topography data (Pritchard et al., 2012: Fretwell et al., 2012) reveal 

extensive margins grounded below sea level with landward deepening reverse slope troughs, 

which may be vulnerable to processes similar to that of the largely marine-based WAIS 

(Scherer et al., 2008; Naish et al., 2009; Pollard and Deconto, 2009; Pritchard et al., 2012; 

Rignot et al., 2013). While debate still surrounds the stability of the EAIS during the Pliocene, 

recent geochemical provenance of detrital material recovered off-shore of the Wilkes Land 

margin (IODP Site U1361), suggests the EAIS may have retreated several hundred 

kilometres inland between ~70°-74°S during the warmest Early Pliocene episodes between 

5.3 to 3.3 Ma (Cook et al., 2013). Furthermore, proximal sedimentary records from the Ross 

Sea region show a periodic deglaciated WAIS paced by the 40-kyr cycles of obliquity (Naish 

et al., 2009).  Far-field geological evidence suggests that during the warmest interglacial 

highstands mean sea level was ~20 m higher than present (Miller et al., 2012) and while 

containing some degree of glacio-isostatic contamination (Raymo et al., 2011), global mean 

sea-level estimates imply not only deglaciated Greenland Ice Sheet (GIS) and WAIS but also 

a significant meltwater contribution from the EAIS.  

 

The Wilkes Land Subglacial Basin has been identified from airborne geophysical data 

(Pritchard et al., 2012) as well as through ice sheet simulations (Pollard and DeConto, 2009) 

to be sensitive to processes such as ocean induced warming, as it is grounded below sea level 

with a landward dipping reverse slope behind the present grounding line (Ross et al., 2012), 

and sea-level potential associated with marine-based sectors of the EAIS as a whole totals 

19.2m  (Fretwell et al., 2012). The IODP Expedition 318 to the Wilkes Land margin of the 

EAIS recovered a well-dated continuous continental rise sediment record spanning the 

Pliocene-Early Pleistocene from Site U1361. This record provides an opportunity to assess 
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ice sheet sensitivity during the last time in Earth’s history when atmospheric CO2 

concentrations were in the range of modern values (Jansen et al., 2007: Pagani et al., 2009; 

Seki et al., 2010). Furthermore, this time also experienced a relatively small increase in 

average global surface temperatures(+2-3°C) followed by global cooling and onset of 

Northern Hemisphere glaciation. Lithofacies associations and stratigraphy with proxy data 

time series have been used to reconstruct fluctuations during the Early Pliocene (~4.3 Ma) 

through the Early Pleistocene (~2.0 Ma). By integrating these data sets, interpretations have 

been made in regards to (1) a depositional model demonstrating extended periods of ice sheet 

retreat and advance across the shelf that highlight Southern Ocean boundary front migrations 

related to processing ice extent etc. (i.e., winds), and (2) provide evidence for a EAIS regime 

shift during Late Pliocene-Early Pleistocene cooling trend coincident with a 100 ppm 

drawdown in atmospheric CO2 and 5°C cooling in the southern high latitudes (Pagani et al., 

2009; Seki et al., 2010; McKay et al., 2012).   

 

2.1.1. Setting and general depositional processes 

IODP Site U1361 (64°24.5°S 143°53.1°E) is located on the lowermost continental rise of the 

Wilkes Land margin of East Antarctica and positioned on the east levee of the Jussieau 

submarine channel (Figure 2.1). The modern-day Wilkes Land margin of the EAIS is 

characterised by 20-30 m high marine-terminating ice cliffs and two major EAIS outlet 

glaciers, the Mertz and Ninnis. Sparse outcrop exposures along the coast reveal Precambrian 

igneous and metamorphic, and Mesozoic sedimentary, as well as intrusive rocks of Beacon 

(Devonian to Jurassic) and Ferrar (Jurassic) Groups (Anderson et al., 1980; Domack, 1982; 

Drewry 1983; Peucat et al., 1999; Escutia et al., 2011). At present Site U1361 sits ~2° of 

latitude (over 200 kms) south of the Antarctic Circumpolar Current (ACC) southern boundary, 

where Upper Circumpolar Deep Water (UCDW) upwells to the surface creating a zone of 

highly productive surface waters around the Antarctic margin (Bindoff et al., 2000). While 

under the influence of the westward flowing Antarctic Slope current, Site U1361 also lies 

immediately north of the Mertz Polynya, a region where the formation of up to 24% of the 

total Antarctic Bottom Water (AABW) around Antarctica occurs (Orsi et al., 1999; Bindoff et 

al., 2000; Williams and Bindoff, 2003; McCartney and Donohue, 2007; Williams et al., 2008). 

Brine rejection from sea ice growth in the Mertz Polynya results in the formation of High 

Salinity Shelf Water (HSSW), which ultimately passes down the continental slope in the form 

of plumes of cold and dense water over Site U1361, to form AABW, albeit with some mixing 
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with overlying Modified Circumpolar Deep Water (MCDW) (Rintoul 1998). This process is 

discussed in detail in section 2.1.2. 

 

Figure 2.1. Location and bathymetry of the Wilkes Land margin (a) as well as Site U1361 

(A-B). Also shown is the location of ANDRILL’s Miocene-Pleistocene AND-1B core in the 

northwestern corner of the Ross ice shelf and the southern boundary of the ACC (a). The 

Mertz glacier tongue (prior to break up in 2009) and drainage path extending from the shelf 

to rise (B). Seismic reflection profile path 2A and 2B are represented with black solid line (B). 

 

An integration of seismic surveys (1981-2000) and sediment cores (1975-2003) collected 

from the Wilkes Land margin has provided a foundation of Cenozoic ice sheet and 

sedimentation history (Figure 2.2) (Hayes and Frakes, 1975; Payne and Conolly, 1972; 

Domack, 1982; Eittreim et al., 1995; Escutia et al., 2000; De Santis et al., 2003; Donda et al., 

2003; Escutia et al., 2003; Escutia et al., 2005; Caburlotto et al., 2010). These findings 

highlight continental shelf and rise linkages that consist of an interplay between downslope 

failures of mass wasting events (e.g., turbidity currents), downslope bottom current 

influences (deep water discharge) and  Coriolis forcing (Escutia et al., 2005). Continental 

slope canyons act as the main conduit for turbidity currents transporting sediment from the 

outer shelf and slope to the continental rise, resulting in a complex network of tributary like 

channels (Eittreim et al., 1995; Escutia et al., 2000; Donda et al., 2003; Escutia et al., 2005). 

The fine-grained component of turbidity flow gets entrained by the westward flowing coastal 

current (or slope current) and deposits sediment on the eastern gentle slope of the ridges.   
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The position of Site U1361 on the east levee of the Jussieau submarine channel and on the 

lowermost continental rise allows for the preservation of low-density turbidite deposition, as 

the fine-grained material creates a non-erosive hemipelagic drape from inter and overflow 

processes, as erosion occurs mostly within the canyon system itself, as well as within and on 

ridges that are in higher reaches of this canyon (continental slope and upper continental rise) 

(Escutia et al., 2005; Escutia et al., 2011).  

 

   

 

Figure 2.2. Seismic reflection profiles of the Wilkes Land continental shelf (A) and rise (B). 

Seismic unconformity WL-U8 is marked in red with IODP Exp. 318 shelf Site U1358 

highlighted in red and rise Site U1361 highlighted in blue (after Escutia et al., 2011). See Fig. 

2.1 for profile locations. 

 

2.1.2. Adelie Land Bottom Water (ALBW) formation along the Wilkes Land margin, 

Antarctica  

Site U1361 (64°24.5°S 143°53.1°E) at present sits south (~2° Latitudinally) of the southern 

boundary of the ACC where CDW upwells to the surface creating highly productive areas 

around the Antarctic margin (Bindoff et al., 2000). While under the influence of the westward 

Antarctic Slope current, Site U1361 lies north of the Adélie depression which is one of three 

major locations (Ross Sea and Weddell Sea) around Antarctica where AABW forms (Orsi et 

al., 1999; Bindoff et al., 2000; Williams and Bindoff, 2003; McCartney and Donohue, 2007; 

Williams et al., 2008). Adélie Land Bottom Water (ALBW) as well as the other two subsets 

of AABW, Ross Sea Bottom Water (RSBW) and Weddell Sea Bottom Water (WSBW), 

forms from atmospheric cooling, brine rejection from sea ice growth (i.e., polynyas), and 

ocean/ice shelf interactions. The cold high salinity density flows from the formation ALBW 

is significant in that they have potential to triger turbidity currents and post depositional 

processes such as sediment winnowing at Site U1361 (i.e, Baines and Condie, 1998).  
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In general, within the Adélie Depression is a broad clockwise circulation of Modified 

Circumpolar Deep Water (MCDW) flowing southward (144° E) along the Mertz Glacier 

Tongue and continues with a return westward flow along the coast with shelf waters exiting 

through the sill (143° E). The relatively warmer and fresher MCDW intrudes into the Adélie 

Depression in two places, the western section of the shelf break and to a lesser extent around 

the grounded icebergs north of the Mertz Glacier Tongue (Williams and Bindoff, 2003). 

Brine rejection occurs beneath the Mertz Glacier Polynya along the Mertz Glacier Tongue 

and in the coastal bays (e.g., Commonwealth, Watt and Buchanan) polynya regions. Due to 

brine rejection from sea ice growth (most dominant during April-September) in the polynyas, 

salinity and density increases (manily as a function of temperature) and erodes the MCDW 

signature in Adélie Depression (Bindoff et al., 2000; Williams et al., 2008). Through this 

process the formation of HSSW occurs. The contact of the densest HSSW with the base of 

the Mertz Glacier Tongue produces Ice Shelf Water (ISW) that ascends and provides a cold, 

freshwater signal in the upper shelf waters. Shelf waters (ISW and HSSW) at intermediate 

depths flow out of the Adélie Depression through the Adélie Sill. Williams et al., (2008) 

recorded the densest waters observed over the sill region and related it to the influence of 

additional brine rejection in the Commonwealth Bay polynya. This shelf water export results 

in the downslope transport of cold high salinity water masses resulting in bottom water 

production of AABW which as it flows westward along the Antarctic Slope Current, erodes 

the RSBW signal (Williams et al., 2008). The motion of high salinity density currents down 

the slope is suggested to be linked to an irregular motion and turbulence of bottom water 

resulting in a nepheloid layer with a maximum thickness of about 600m and 100km across in 

water depths of 3100 m (i.e., the continental rise) (Escutia et al., 2005).  

 

The production of ALBW, while important to the understanding of the depositional processes 

at Site U1361, also has the potential to have a downstream affect related to the intensity and 

variability of AABW inflow into the southwest Pacific. ALBW flows along with the 

Antarctic Slope Current until it reaches the Kerguelen Plateau, it either continues westward, 

south of the Plateau, or flows north along the eastern margin. In the latter case, ALBW joins 

the path of the Australian-Antarctic Basin’s cyclonic gyre, which is referred to as the Wilkes 

Land Gyre. After the ALBW merges with the Wilkes Land Gyre, the northern limb flows 

eastward, in which case in merges with the ACC (Figure 2.3). The ACC is responsible for 

delivery of AABW into the southwest Pacific Basin via the lateral mixing of water masses 
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(i.e., AABW and LCDW) (Orsi et al., 1999; McCartney and Donohue, 2007; Williams et al., 

2008). 

 

Figure 2.3. Adélie Land depression ocean circulation and the processes involved in the 

formation, as well as transportation of ALBW down the Antarctic slope (from Williams et al., 

2008 Figure 3). Important to note the presence of the Mertz glacier tongue in this figure, as it 

has since broken away from the margin. 1 = inflow of MCDW into the Adélie Land 

depression, 2 = super cooling of MCDWand brine rejection of sea ice, 4 = formation of 

HSSW as a result of super cooling below the ice shelf and brine rection, 5 = formation of 

ISW, 3 = outflow ALBW over the sill and 6 = ALBW entrained into the Antarctic Slope 

Current and mixing/replacing RSBW.   

 

2.1.3. IODP Site U1361 Chronology 

The age model for the Site U1361 record was developed through an integration of 

biostratigraphic indicators (diatom, radiolarian, calcareous nannofossils and dinoflagellate 

cysts and magnetostratigraphy, and allowed the Gradstein et al., (2004) geological time scale 

(Table 2.1)
 
(Tauxe et al., 2012). The age model of Site U1361 also highlights the continuous 

nature of the Plio-Pleistocene interval in Site U1361 (Figure 2.4) with long term 

sedimentation rates of ~30 m/m.y., and no major gaps. However, a single condensed interval 

is identified centred on 3.3 Ma. The Early Pliocene at ~4.2 Ma to Early Pleistocene at ~2.0 

Ma contains no major core disturbances with only one major core gap extending between 

~3.6 to ~3.33 Ma. The continuous and uniform nature of the Plio-Pleistocene sedimentation 

rates at Site U1361, combined with the detailed grain size analysis discussed in this chapter 

(see section 2.2.4) indicates that winnowing is not a major influence on sedimentation at this 
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site. While many Antarctic records, even the more distal sites, are hindered by hiatuses and 

variable sedimentation rates, the continuous nature of Site U1361’s age model is 

unprecedented when considering Antarctic marginal records and is more comparable to that 

of the orbitally-tuned bench mark studies from the equatorial Pacific records of ODP sites 

846 and 849, than those from the Antarctic margin (e.g. Figure 2.4; Shackleton et al., 1995; 

Shackleton et al., 1995b, Florindo et al., 2003). 

 

Table 2.1. Age model from Tauxe et al., (2012) based on magnetic polarity stratigraphy and 

is constrained by first (FO) and last (LO) occurrence of biostratigraphic indicators (diatoms, 

radiolarian, calcareous nannofossils and dinoflagellate cyst). 

LO/FO Event 

Average 

Age 

(Ma) 

GTS 

2004 

Upper 

Depth 

(mbsf) 

Lower 

Depth 

(mbsf) 

Median 

Depth 

(mbsf) 

Depth 

uncertainity 

(m) 

  C2n  (o) 1.945 34.85 34.85 34.85 0.00 

  C2An.1n (y) 2.581 49.70 49.75 49.73 0.02 

LO Thalassiosira insigna 2.475 47.42 56.72 52.07 4.65 

LO Thalassiosira inura 2.54 47.42 56.72 52.07 4.65 

FO Thalassiosira vulnifica 3.15 65.02 66.15 65.59 0.57 

FO Thalassiosira insigna 3.25 64.52 66.15 65.34 0.82 

LO Fragilariopsis weaveri 2.49 56.72 64.04 60.38 3.66 

  C2An.1n (o) 3.032 64.55 64.60 64.58 0.02 

  C2An.2n (y) 3.116 66.70 66.70 66.70 0.00 

FO Fragilariopsis weaveri 3.53 72.54 75.12 73.83 1.29 

  C2An.2n (o) 3.207 71.67 71.72 71.70 0.02 

  C2An.3n (y) 3.33 74.52 75.90 75.21 0.69 

  C2An.3n (o) 3.596 77.45 77.50 77.48 0.02 

LO 
Eucyrtidium 

pseudoninflatum 
4.2 94.99 104.26 99.63 4.64 

  C3n.1n (y) 4.187 99.99 99.99 99.99 0.00 

  C3n.2n (o) 4.631 109.68 109.68 109.68 0.00 
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Figure. 2.4. Site U1361 magnetostratigraphic tie points, with error bars, following Tauxe et 

al., (2012), demonstrate the near continuous sedimentation for the Pliocene and Pleistocene 

Site U1361 record (blue). A condensed interval around ~3.3 Ma is highlighted. Core recovery 

and drilling disturbance are also displayed. The age model for Site U1361 is compared to 

other distal Antarctic records, with ODP Site 1165 used an example as it is generally 

considered to have the best Neogene record from the Antarctic Margin prior to drilling of Site 

U1361 (grey), as well as bench mark sites 846 (green) and 849 (purple).    

 

2.1.4. Previous high latitude deep-sea channel levee/ridge depositional models  

The interpretations of past glacial extent made in this chapter are established from sediment 

characteristics based on low-latitude model of deep-water fine-grained sediment facies types 

as well as previously published model of high latitude deep-sea glacimarine sediment models. 

Seismic survey studies along the Wilkes Land margin highlight sediment deposition under 

the influence of pelagic settling, turbidity and bottom currents (e.g., Escutia et al., 2005). In 

high latitudes, processes occurring on the continental shelf as a direct result of glacial to 
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interglacial cycles (e.g., glacial extent) are responsible for sediment deposition on the more 

distal continental rise (e.g., Gilbert et al., 1998; Lucchi et al., 2002; Cowan et al., 2008). Thus, 

examining sediment characteristics in a stratigraphic framework allows for interpretations to 

be made in regards to both glacial and oceanographic processes at the time of deposition.  

 

The main depositional processes reflected in deep-water continental margin settings are 

summarized by Stow and Piper (1984) and represent a continuum between turbidity currents, 

bottom currents and pelagic/hemipelagic settling. While there is a continuum between these 

processes, Stow and Piper (1984) defined three main facies depositional models (turbidites, 

contourites and pelagites/hemipelagites) that can be identified on the basis of distinct 

characteristic sedimentary structures, textures and composition that then allow for the 

interpretation of past depositional environments. Fine grainded  turbidites are difficult to 

identify in the field and are commonly identified as mudstones with very thin mm-scale 

(laminae) to thick cm-scale (beds) that are a result of re-sedimentation events. However, 

Stow and Piper (1984) identify several distinct facies models, consisting of silt turbidites, 

mud turbidites, biogenic turbidites and disorganized turbidites. Each of these models are 

distinct from other facies assemblages as they consist of: (1) a regular vertical sequence of 

sedimentary structures commonly associated with a positive grading; (2) the presence of 

sedimentary structures indicating rapid deposition with bioturbation restricted to the tops of 

beds; and (3) compositional, textural or other features which show they are exotic to their 

depositional environment (Stow and Piper, 1984). While an idealised turbidite sequence 

consists of an up-sequence succession from graded laminated turbidite mud, graded turbidite 

mud, ungraded turbidite mud, and pelagite/hemipelagite the complete set of divisions is 

rarely preserved. In that case only tops middles, and bottoms of sequences occur in the 

sediment record (Figure 2.5a) (Stow and Piper, 1984). 

 

Contourites are the result of deposition controlled by the reworking of sediments by bottom 

currents that flow parallel to bathymetric contours (e.g. alongslope, contour or boundary 

currents), although similar/identical deposits could be form by other bottom currents (e.g. 

downslope) that are persistent through time (Stow and Piper et al., 1984) and herein the term 

“bottom current deposit” is used to described such deposits. Bottom current deposits are 

distinguishable by (1) an irregular vertical arrangement of facies types and structures with 

both negative and positive grading, but no regular structural sequence; (2) evidence for more 

or less continuous bioturbation that has kept pace with deposition, but with the relic of 
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current-induced structures remaining; and (3) compositional, textural or other features that 

indicate a combined in situ and exotic origin (Stow and Piper, 1984). Bottom current deposits 

commonly occur in areas of higher velocity current flow, particularly along western margins 

of basins, restricted passageways as well as occurring as isolated mounds parallel to the 

continental rise (Stow and Piper, 1984). Pelagite and hemipelagite sediments primarily are 

deposited by slow settling through the water column and not under the influence of any 

significant bottom current reworking (Stow and Piper, 1984). Pelagite/hemipelagite 

lithological characterisitics are (1) evidence for low-energy, low-sedimentation rates and 

continuous bioturbation; (2) a lack of primary sediment structures or other evidence of 

current controlled deposition; (3) uniform composition within any one succession that are 

often interbedded to a varying degree to reflect changes in climate state; and (4) variable 

biogenic component mainly of planktonic tests (pelagic) that is often associated with a 

terrigenous component (hemipelagic) and significant authigenic component. Pelagites are 

mostly restricted to some of the deepest parts of the ocean basin with carbonate pelagites 

being restricted to depths shallower than the carbonate compensation depth (~4500 meters 

below sea leve), whereas, hemipelagites occur more near the continental margin (Stow and 

Piper, 1984).       

 

While not considered within the Stow and Piper (1984) lithofacies scheme, in high latitudes 

turbid surface plumes supplied from meltwater result in sedimentary sequences referred to as 

“plumites”. Such events, in addition to mass flows (e.g., turbidity currents), are responsible 

for the delivery of terrigenous sediment to the more distal continental slope along glacimarine 

margins through the suspension settling of inter and overflow fine grained sediment (Hesse et 

al., 1997). Hesse et al., (1997) identified plumite sedimentary sequences along the Labrador 

slope that consist of 1 to 2-cm-thick repeated alternations of fine sandy silt/coarse silt 

interlayerd with laminated and burrowed clayey silt and silty clay. Hesse et al., (1997) note 

the seaward limit of plumite deposition is restricted to tens of kilometres from the ice front.            

 

Caburlotto et al., (2010) recovered four sediment cores spanning the mid-Late Pleistocene 

from the WEGA channel along the Wilkes Land margin of Antarctica. Their findings suggest 

distinct depositional processes occur at crest ridges versus the channel and along the western 

gentle sloping side of ridges. Proximal to the crest, settling from sediment-laden water 

plumes and ice-rafted debris is reflected in bioturbated iceberg-rafted debris (IBRD) rich 

sediments. In areas distal to ridge crests, the interplay of turbidity currents, along slope and 
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downslope bottom currents are reflected in the sediment architecture. The authors associated 

higher energy depositional process with turbidite sequences displaying no bioturbation, thick 

and well defined laminations, no IBRD with sharp to irregular bases. While erosion within 

the channel thalweg is interpreted to be the result of these turbidity current events, low 

density cm-thick fine-grained laminated turbidites suggest depositional processes dominated 

over erosion processes in the more distal channel setting (Figure 2.5b). Following mass flow 

events (e.g., turbidites) along-slope and down-slope bottom currents may rework fine-grain 

sediments and are distinguishable by their pervasive weak laminations, bioturbation and 

scattered IRD. Downslope currents, in response to plumes of cold dense HSSW flowing 

downslope, contribute to suspended sediment loads to the bottom nepheloid layer within the 

channel system.  

 

Similar depositional processes identified by Caburlotto et al., (2010) have also been noted 

from other continental slope and rise cores recovered around the Antarctic Peninsula (Gilbert 

et al.,1998; Pudsey and Camerlenghi, 1998; Pudsey, 2000; Lucchi et al., 2002; Hepp et al., 

2006; Lucchi and Rebesco, 2007; Cowan et al., 2008). Sedimentary facies analysis of cores 

collected along the Antarctic Peninsular margin led Lucchi et al. (2002) to place these 

glacimarine sedimentary processes in context to glacial and interglacial climate states that 

reflect one of several depositional processes occurring. They defined four sediment types 

associated with glacial advance, glacial maxima, deglacation and interglacial processes. 

 

Glacial advance sediments are represented by massive muds with rare to sparse IRD and low 

biogenic content, with sedimentation inferred to be the result of sediment-laden meltwater 

turbid plumes eminating from the margin of an advancing ice sheet, with wind/ice-rafted 

debris and pelagic sedimentation restricted to polynyas. However, these glacial mud facies 

are interpreted as being the probable result of various processes, and  contain a number of 

subfacies; (1) laminated mud with silty layers, laminae and lenses, (2) cross stratified mud, (3) 

laminated mud including IRD layers, (4) slump deposits of graded gravel and sand forming 

elongated deep sea fans and (5) sand and gravelly-grained turbidites. While continuous 

intervals of well-defined, finely-laminated muds containing IRD suggest bottom-current 

deposition, mass flow deposits are characterised by more traditional turbidite facies models. 

These turbidites facies models are interperted as being the result of an expanded ice sheet 

margin delivering large amounts of glacially derived unconsolidated sediment to the 

continental shelf with turbid meltwater plumes restricted to topographic highs. Turbidity 
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current spillout onto the channel levees is reflected through silty layers, laminae and lenses. 

An important caveat to Lucchi et al., (2002) glacial facies is the distinct differences between 

glacial bottom current deposits observed around the Antarctic margin. In areas in where 

polynyas are present, glacial bottom current deposits do not necessarily have a well-

laminated appearance. This is potentially due to the delivery of highly oxygenated water 

down slope, promoting productivity and bioturbation, therefore, reworking primary sediment 

features and aiding in sediment remobilization by currents (Caburlotto et al., 2010). Thus, 

such glacial bottom currents can actually serve as a proxy to define temporal and spatial 

extension of Antarctic sea-ice (Lucchi and Rebesco, 2007). However, Weber et al., (2011) 

suggest that while glacial maxima polynya style deposition is consistent with broad 

continental slope channels transporting voluminous flows of highly oxygenated water, their 

model differs from that of Lucchi and Rebesco (2007). Lucchi and Rebesco (2007) suggest 

that sediment gets rapidly deposited adjacent to contourite ridges (drift deposits) as fine grain 

siliciclastic varves when the polynyas are most active. When inactive bioturbated 

hemipelagic mud deposits prevail.  

 

Deglaciation events with a disintegrating and retreating ice sheet are characterized by 

hemipelagic bioturbated structureless muds with distinct IRD layers. Highly productive 

interglacial periods are reflected in strongly bioturbated mud with a high biogenic content, 

sparse IRD and abundant aeolian sediment input (Lucchi et al., 2002). Table 2.2 summarizes 

lithofacies characteristics with glacimarine sedimentary processes based on previous high 

latitude studies in reference to climate state that are used in this study.   

 

The lithofacies scheme and depositional model defined in this study will help further enhance 

stratigraphic models recovered from continental rise settings around the Antarctic margin. 

While much focus has been on creating depositional models for processes occurring in high-

latitude continental shelf settings, these records are commonly hindered by hiatuses from 

glacial erosion (e.g. Naish et al., 2001; 2009). Drilling of continental rise sediments provides 

the opportunity to access more complete records at orbital resolution to allow for a 

cyclostratigraphic framework of late Cenozoic ice sheet responses to climate system 

feedbacks. As discussed above, the lithofacies associations are likely to represent a 

continuum of processes related to glacial extent and oceanography along the Wilkes Land 

margin. The lithofacies assembalges thus highlights extended periods of time consisting of 
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both ice advance and retreat, in addition to, regional controls that sea ice development has on 

the intensity of bottom water circulation and ice sheet stability.    
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Figure 2.5. Schematic diagram of turbidite facies sequences (a) and depositional setting (b) 

(from Stow and Pipers, 1984). 

 

Table 2.2. Continental slope and rise lithofacies characteristics and glacimarine sedimentary 

processes related to climate state (Hesse et al., 1997; Gilbert et al., 1998; Pudsey and 

Camerlenghi, 1998; Pudsey, 2000; Lucchi et al., 2002; Busetti et al., 2003; Hepp et al., 2006; 

Lucchi and Rebesco, 2007; Caburlotto et al., 2010). 

 

 

2.2. METHODS 

The Pliocene-Early Plesitocene record of Site U1361 was recovered using the advanced 

piston coring system aboard the JOIDES Resolution with 103% core recovery. Initial 

lithofacies descriptions, which included the evaluation of smear slides, was carried out on 

board the JOIDES Resolution. Initial scientific results can be found in Escutia et al., (2011).    

 

IRD can be deposited via processes associated with (1) ice shelves, (2) icebergs and (3) sea 

ice. Powell (1984) suggested using the general term IRD when there was uncertainty in the 

source of rafted material. However, if the style of rafting can be inferred it is best to specify 
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the form of rafting by using terms such as ice shelf-rafted debris (ISRD), iceberg-rafted 

debris (IBRD) and sea ice-rafted debris (SIRD). Therefore, when referring to this study the 

term IBRD will be used while IRD will be used when referring to previous studies.  

 

2.2.1. Iceberg Rafted Debris Mass Accumulation Rate calculation 

On the basis of other Arctic and Antarctic studies, the 250 µm to 2 mm fraction of coarse 

sand was used to indicate IBRD (e.g., Krissek, 1995; Cowan et al., 2008). The calculation of 

an IBRD Mass Accumulation Rate (MAR) followed the methodology used by Krissek (1995). 

However, on the basis of Krissek’s (1995) discussion concerning IRD MAR and following 

the examination of the dried coarse fraction after wet sieving at 150 µm under binocular 

microscope, the >150 µm fraction was dissolved of biogenics using NaOH. This step was 

used to remove “diatomaceous fuzz” in diatom-rich/bearing sediments that appeared to trap 

finer grains into the coarse sand fraction, further biasing sample weights, particularly if the 

percent of biogenics was greater than 10% (based on visual estimation). Dissolution of 

biogenic components also corrected for an underestimate of the mass contribution from IBRD 

(Krissek, 1995), a quantity that has been visually estimated in previous studies. After 

biogenic opal was dissolved, samples were then dry sieved at 250 µm to 2 mm grain-size. 

Each sample was then examined under binocular microscope for volcanic ash residue as well 

as authigenic material, which would also result in an overestimation of the IBRD MAR 

component. Only one sample was observed to have either of these and was excluded from the 

data set. The MAR of the coarse sand fraction was then estimated using the following 

equation: 

 

IBRD MAR = CS% * DBD * LSR  

 

where IBRD MAR is the mass accumulation rate (g/cm
2
/k.y.), CS% is the coarse-sand weight 

percent, DBD is the dry-bulk density of the nearest value (g/cm
3
) and LSR is the interval 

average linear sedimentation rate (cm/k.y.). Although the orignal Krissek (1995) equation 

requires an estimation of IRD volume percent, this is redundant in this study, as biogenic 

material was dissolved, and authigenic or volcanic material was absent in all but one sample, 

thus the entire CS% in these data is interpreted as being IBRD. Appendix A provides the 

values for each of these variables.    

 

2.2.2. Grain size distribution of the fine grain (<150 um) material 
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The fine grain fraction was recovered by wet sieving at 150 µm followed by the removal of 

organic material using 27% H2O2 and biogenic opal using 2M NaOH. Biogenic opal weight 

percent was obtained from dried weights before and after NaOH treatments. Sampled 

intervals were analysed for grain size fractions using a LS 13 320 Laser Diffraction Particle 

Size Analyzer. While caution was exercised in controlling sediment cohesiveness (Calgon, 

sonication and stirring), it is acknowledged the Laser method under estimates mud 

percentages in highly cohesive sediments (i.e., Sperazza et al., 2004; McCave et al.,, 2006). 

In this study, while the traditional boundary for clay-silt is 4 µm our output data may actually 

reflect clay percentages up to 8 µm due to the variation in grain size absorption values (i.e., 

Sperazza et al., 2004). Finally, the medium sand fraction (150 to 250 µm) was obtained 

following wet sieving at 150 µm and dry sieving at 250 µm with biogenic components 

removed. Statistical analysis of fine grain material was carried out with GRADISTAT (Blott 

and Pye, 2001). See Appendix A for results. 

 

2.2.3. Productivity indicators 

Biogenic opal weight percent (Appendix A) was obtained from dried weights before and after 

NaOH dissolution. This method of opal wt% data carries a high degree of analytical 

uncertainty, as the alkali treatment may also leach clay minerals and volcanic glass. However, 

comparison to the facies (based on smear slides) and to low-resolution quantitative opal data 

(Cook et al., 2013) show identical G/I cyclicity, albeit with an overestimation (10-20%). 

However, there is strong covariance between the opal wt% and the Ba/Al, with any scatter or 

outliers potentially due to some of opal being the deposited in the turbidites (some of the silt 

laminae were diatom-rich (Escutia et al., 2011) rather than a pure pelagic component). 

 

Unpublished XRF data of Ba/Al composition was carried out by Francisco Jimenez-Espejo 

(JAMSTEC), and is incorporated into this thesis to demonstrate reliability in the biogenic 

opal weight percent data. The bulk major element composition was measured through-out 

cores Site U1361A-6H to 11H using an Aavatech TMX-ray fluorescence (XRF-Scanner) core 

scanner at the IODP-Core Respository/A&T Texas University laboratories (USA). Non-

destructive XRF core-scanning measurements were performed at 10 kV in order to measure 

the relative content of elements ranging from aluminum (Al) to barium (Ba). Measurements 

were acquired every 5cm. Therefore, Ba and Al were obtained by X-Ray Fluorescence (XRF) 

using pressed pellets prepared by pressing about 5 g of ground, bulk sediment into a briquet 

with boric acid backing. The quality of the analysis was monitored with reference materials 
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showing high precision with 1 sigma 1.0e3.4% on 16 data-sets at the 95% confidence level. 

For XRF 42 samples were selected in a 20 mts representative interval (47 to 67 mbsf) each 

40-60 cms. Compared Ba and Al trends using both techniques are virtually identical and 

indicate that obtained XRF-Scanner data are robust and reliable. 

 

2.2.4. Identification of Iceberg rafted debris versus lag deposits 

In order to make the distinction between enrichments in the %CS due to current winnowing 

of the fine fraction, the sorting parameter defined by Folk and Ward (1957) was determined 

on fine grain terrigenous sediment (i.e., biogenic component removed), following the 

methodology of previous studies recovered from sediment drifts on the continental rise 

around the Antarctic margin (see Appendix A) (Passchier et al., 2011). IBRD peaks 

coinciding with well sorted terrigenous material are likely to be a concentration of coarse 

material following winnowing of fine-grained sediments by higher energy bottom currents. 

Whereas, IBRD peaks correlating with poorly to very poorly sorted material reflect actual 

IBRD events superimposed onto the background hemipelagic sedimentation. Furthermore, 

peaks of well-sorted terrigenous material also serve to identify potential hiatuses between the 

chronostratigraphic tiepoints (i.e., magnetic reversals) in our record related to current 

winnowing. There is a complete absence of well-sorted material in all samples anaylsed, 

further supporting the assumption of no major hiatuses in our studied interval. All IBRD 

peaks coincide with poorly to very-poorly sorted sediment, indicating IBRD events are not 

the product of lag deposits and the lack of  moderately- to well-sorted terrigenous sediment 

indicates bottom current energy was never high enough energy for erosion to dominate over 

deposition (Figure 2.6). Along-slope or contour currents are also unlikely to have been a 

major erosive control, as mean modern-day bottom currents flow eastward across the drill site 

at a velocity of 1.8 to 6.6 cms
-1

 (Bindoff et al., 2000), which is well-below the current 

strength required for the onset of selective deposition (10-12cms
-1

) or extensive winnowing 

of the fine fraction (>20cm s
-1

)
 
(McCave and Hall 2006). Downslope currents, resulting from 

HSSW passing down the continental rise, are also inferred to have been low-energy 

throughout the Pliocene-Plesitocene in these distal levee environments along the Wilkesland 

margin (Escutia et al., 2005; Caburlotto et al., 2010). 
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Figure 2.6. Site U1361 IBRD MAR compared to sorting of fine grained (<150 µm) 

terrigenous material. Sorting measurements follow parameters defined by (Folk and Ward, 

1957). All samples are classified as being very poorly (2-4 σ) sorted. Grey/brown bar 

indicates core break.  

 

2.2.5. Distribution of laminae 

The distribution of every sub-mm to cm- scale silt and sand laminae in the Site U1361 core 

was determined using high-resolution, line-scan images of the split core face. The thickness 

and stratigraphic depth of each laminae was accurately mapped through the use of a purpose 

built image analysis script in Matlab©. In some cases, laminae may have been discontinuous 

and had been obscured by bioturbation and these were included in this analysis as they 

provide insight into initial processes of sediment delivery to the drill site. 
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2.3. RESULTS 

The Site U1361 lithofacies scheme follows that of the shipboard scientific party (Escutia et 

al., 2011), with each facies representing specific environments of deposition. Two primary 

lithofacies are identified. (1) Massive mudstones containing intervals with packages of mm- 

to cm-scale silt/sand laminations, and (2) bioturbated diatom-rich/bearing mudstone. The 

grainsize data collected in this study (see Appendix A) confirm the initial sediment texture 

and lithological descriptions (Figure 2.7) as well as highlighting a dramatic decrease in IBRD 

coinciding with an overall increasing trend of silt during the Early Pleistocene (Figure 2.8c). 

The interbedding of these two facies form repetitive lithological cycles at the m-scale 

throughout the Pliocene, but become less obvious in Early Pleistocene sediments. IBRD 

MAR demonstrates a cyclical characteristic in which Early Pliocene sediments consists of 

peak events of equal amplitude and variability between lithofacies, while peak IBRD events 

in Late Pliocene sediments occur more regularly at lithofacies boundaries.  

 

Figure 2.7. Ternary diagram displaying textural variability between Massive and Laminated 

Mudstone facies and Diatom-Rich/Bearing Mudstone facies (Graham and Midgley, 2000). 
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2.3.1. Lithofacies 

The diatom-rich/bearing mudstone lithofacies is directly equivalent to Facies D from the 

initial report volume of IODP Exp. 318 Site U1361 (Escutia et al., 2011) (Figure 2.8 and 

2.9a). This facies is light greenish grey in colour, contains >25 wt% biogenic opal (>25% 

diatoms in smear slides from lithological descriptions) and is strong to moderate bioturbation 

that obscures any primary sedimentary structures. IBRD is common throughout, and this 

facies is characterized by high Ba/Al values, a surface productivity indicator (Figure 2.10) 

(Dymond et al., 1992). Above 48 mbsf, this facies is coarser (silty) in texture (negative 

grading) (Figure 2.9c), IBRD MAR is lower, and silt mottles and lenses (rather than 

continuous laminae) are common with an irregular horizontal alignment. Variation in diatom 

content and grainsize occur in this interval, but this bedding is characterised by 

gradational/indistinct contacts relative to the facies contacts in underlying sections (Figure 

2.8).      

 

The massive and laminated mudstone lithofacies is equivalent to Facies E from the initial 

report volume of IODP Exp. 318 Site U1361 (Escutia et al., 2011) (Figure 2.9c). This facies 

appears olive grey in colour and is characterised by mudstone with packages of mm- and cm-

scale silt and fine sand laminae/beds, that grade up into massive mudstones with variable 

degrees of bioturbation (absent to common). Of the 305 identified laminations, only 13 (4%) 

exceeded 1 cm (i.e., a bed rather a lamina) in thickness. These packages of laminae are 

generally characterised by mm- to cm-scale couplets of mud and silt, with  thicker silt 

laminae at the base of the package, gradually passing up into thinner laminae and eventually 

into discontinuous mm-size silt lenses, and then massive/bioturbated mudstone (Figure 2.9). 

The silt laminae/beds are internally massive, have sharp bases and range from 1.3 mm to 2.5 

cm in thickness, but the mean thickness is 4.5 mm and those exceeding 1 cm in thickness are 

rare. Diatom content is relatively poor throughout (<25wt% biogenic opal) and contains low 

Ba/Al values (Figure 2.10). IBRD is common throughout. 
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Figure. 2.8. Representative photo highlighting distinct sediment characteristics of Early 

Pleistocene diatom-rich/bearing Mudstone lithofacies (a). Black scale bar represents 3 cm. 

Grain size frequencies of representative samples are displayed with sampled intervals (b). 

Draw down in Early Pleistocene IBRD coinciding with an overall increase in silt content (c). 

 

 
Figure 2.9. Representative photo highlighting distinct sediment characteristics of diatom- 

rich/bearing Mudstone (a) and the Massive and Laminated Mudstone (c) lithofacies for the 

Pliocene. Black scale bar represents 3 cm. Grain size frequencies demonstrate textural 

variability between lithofacies (b and c). 
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Figure 2.10. Cross plot of Site U1361 biogenic opal wt. % and Ba/Al. Linear interpolated at 

3 kyr resolution of biogenic opal wt. % and Ba/Al with r = 0.65 and p value of 0.00. 

 

 

2.4. DISCUSSION 

2.4.1. Facies interpretation 

The facies assemblages in the Pliocene-Early Pleistocene of Site U1361 are consistent with 

pre-existing facies models of sedimentation in distal channel-leeve systems on the lower 

continental rise from other regions globally (Stow and Piper, 1984) and from the Antarctic 

margin (Table 2.2) (Gilbert et al., 1998; Pudsey and Camerlenghi, 1998; Pudsey, 2000; 

Lucchi et al., 2002; Busetti et al., 2003; Hepp et al., 2006; Lucchi and Rebesco, 2007; 

Caburlotto et al., 2010). The presence of normally graded well sorted mm-scale silt laminae 

to lenses in otherwise massive mudstones, with sharp bases but no internal structures or 

IBRD is consistent with deposition by non-erosive spill-over of low density turbidites 

deposits onto a channel leeve in a distal lower continental rise setting (Figure 2.5b) (e.g. Stow 

and Piper 1984; Lucchi et al., 2002; Caburlotto et al., 2010). The laminae themselves lack 

IBRD and bioturbation, indicating relatively rapid deposition. Thus, the characteristics of 

these laminae argue against a traction current origin of deposition (Stow and Piper 1984; 

Lucchi et al., 2002; Caburlotto et al., 2010). It is also noted that the relationship between 

these laminaeted intervals of mudstones are identical in nature to the mud turbidite facies “T3” 

to “T7” beds of Stow and Piper (1984), representing base-cut-out sequences and deposition 

by or from low-density turbidity current by overflow on the distal levee setting –i.e. a non-

erosional depositional setting compared to more proximal settings (Stow and Piper, 1984; 

Caburlotto et al., 2010). The presence of IBRD and bioturbation within intervals of the 
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massive mudstone facies, suggests that turbidite intervals were deposited by numerous events 

over a relatively prolonged period, rather than a single event. 

 

A lull or reduction in persistent turbidity current activity is represented by the bioturbated 

diatom-rich/bearing mudstone, consistent with the Pelagite/Hemipelagite “F” beds (Stow and 

Piper 1984). Grain size analysis reveals that the bioturbated diatom-rich/bearing mudstone 

facies are coarser (i.e. silty clays) than the massive mudstone intervals (clays; n.b. distinct silt 

laminae were excluded from analysis). The coarse nature of the bioturbated diatom- 

rich/bearing facies deposits suggest that pre-exisiting turbidites (Escutia et al., 2005) (i.e. silts 

laminae and clays) have been reworked and homogenized to a silty clay texture as a result of 

sediment reworking from bioturbation and moderate bottom current processes during a 

relative lull in turbidite activity. The lack of erosional surfaces or coarse sands/gravel layers 

(i.e. lag surfaces) suggests that although low-energy bottom currents or bioturbation acted to 

remobilize fine-grained sediment, depositional processes dominated over erosional events.  

 

However, in the Early Pleistocene (e.g. above 48 mbsf) the bioturbated diatom-rich 

mudstones are distinguished from Pliocene intervals by an overall decrease in IBRD, and an 

increase in overall silt abundance displaying a gradual coarsing upwards (i.e. negative 

grading) at the m-scale (Figure 2.8c). There is also a slight decrease in the long-term 

sedimentation rate (~2.33 cm/k.y.) as compared to the Pliocene section (~3.10 cm/k.y.). 

Furthermore, although distinct continuous laminae are lacking, silt lenses and silt mottles are 

common and often display an irregular alignment (Figure 2.8a). Combined, the textural 

characteristics, negative grading, and the sedimentary structures are comparable to silty-

sandy contourite facies (Stow and Piper 1984 Figure 9). In areas influenced by active 

polynyas, glacial contourites are highly bioturbated with irregularly aligned silt lenses and 

mottles in which boundaries between different sediment layers become difficult to distinguish 

(Lucchi and Rebesco, 2007). This is interpreted to be consequence of the low-energy 

downslope delivery of highly oxygenated and nutrient-rich waters formed off the margin 

within active polynya systems resulting in sediments containing high biogenic content and 

benthic activity. Such a situation is in contrast to other regions in Antarctica not influenced 

by an active polynya system, where anoxic conditions result in glacial bottom currents are 

characterised by hemipelagic grey muds with well-defined laminae that are rhythmic in 

nature, continuous, lack bioturbation, contain low biogenic content, and contain sparse IBRD 

or pebbly layers (Lucchi and Rebesco, 2007; Carbolotto et al., 2010). Thus, negative grading 
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above ~48 mbsf, sparse IBRD, highly bioturbated sediment with irregular alignment of silt 

lenses and mottles suggest distinctly colder glacial conditions in which sediment-laden 

iceberg discharge becomes rare and downslope currents are enhanced. The latter process is 

the possible consequence of enhanced polynya mixing off the Wilkes Land margin increasing 

the delivery of oxygenated nutrient-rich water to the lower continental rise, increasing both 

bioturbation and bottom current strength (Lucchi and Rebesco, 2007; Carbulotto et al, 2010).  

 

Seismic stratigraphic interpretation of existing multichannel reflection seismic profiles 

crossing Site U1361 (Figure 2.2) provide further evidence that the dominant sedimentary 

processes building these low-relief, distal levees (i.e. lowermost continental rise) are turbidity 

flows traveling through the channel (where erosion occurs) and from inter- and over-flow 

depositing sediment as a hemipelagic drapes. Although, sediment waves are observed locally 

in seismic lines from the lower rise that are perpendicular to the margin (downslope 

processes), these are within the overbank deposits and are smooth (i.e., very low-relief) 

indicating that bottom-currents are not a dominant process at this distal site. In contrast, 

sediment waves are well-developed in older sequences (i.e., phase 2 of Escutia et al., (1997), 

of upper Oligocene-Miocence age (Escutia et al., 2011) on the lower continental rise and in 

more proximal continental rise areas (i.e., where Site U1359 is located) and suggest 

deposition by mixed turbidite and bottom-current deposition (Escutia et al., 1997; 2002; 

Donda et al., 2003). The change from mixed turbidite and bottom-current deposition (Phase 2) 

to turbidite and hemipelagic dominated deposition (section containing sediments considered 

in this study) coincides with a shift in sedimentary depocenters from the continental rise to 

the continetal shelf (Escutia et al., 2002). Instead of large levee deposits, low-relief overbank 

deposits spilling from the channels are commonly observed on-lapping the previous levees 

and ridges during Pliocene sequences (Escutia et al., 1997; Escutia et al., 2002). 

 

2.4.2. Identification of glacial to interglacial sedimentation processes 

Massive/laminated mudstone facies are interpreted as being predominately deposited during 

periods of glacial maxima (Figure 2.11a), during which large volumes of unconsolidated 

sediment were being delivered to the continental shelf edge either through the deposition of 

till deltas or via bedload rich turbid glacial melt water plumes as glaciers advance (Eittreim et 

al., 1995; Hesse et al., 1997; Lucchi et al., 2002; Escutia et al., 2005; Beaman et al., 2011) 

with turbidity current initiation due to slope failures on oversteepen foreset strata potentially 

from a mixture of processes related to extended ice sheets (i.e., sediment-rich melt water 
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plumes and or from hypersaline density flows). This interpretation is supported by seismic 

profiles that indicate glacial advances occurred regularly since the Early Pliocene, as 

evidenced by the onset of steeply dipping foresets and the development of the modern 

progradational wedge above seismic unconformity WL-U8 which can be traced from the 

continental shelf to rise and dated at 4.2 Ma (~100 mbsf) in Site U1361 (Figure 2.2) (Escutia 

et al., 2005; Tauxe et al., 2012). Steeply dipping foresets are commonly found around the 

margin of the Antarctic and are interpreted as being deposited in a proglacial setting at the 

grounding line of ice streams, and are therefore a direct result of glacial advances to the shelf 

edge (Cooper et al., 1991; Eittreim et al., 1995; Anderson 1999; Rebesco and Camerlenghi, 

2008). Major deglaciation events (Figure 2.11b) are associated with peaks in IBRD as a 

consequence of accelerated calving during glacial termination from marine terminating outlet 

glaciers along the Wilkes Land coastline as well as a contribution from EAIS outlet glaciers 

entering the western Ross Sea. This interpretation is consistent with both lithofacies models 

from the Antarctic (Table 2.2) as well as model simulations and paleo-observations, which 

imply the most rapid mass loss of the EAIS marine margin during the last glacial termination 

occurred between 12-7 ka, and was primarily the consequence of oceanic warming
 

(Mackintosh et al., 2011).    

 

Diatom-rich/bearing mudstone facies with IBRD and pervasive bioturbation throughout are 

interpreted to be predominately deposited during glacial minima (Figure 2.11c). This 

interpretation is supported by recent isotopic Nd and Sr provenance studies of the fine-

grained fraction in the Pliocene interval of Site U1361 which indicate that the eroding margin 

of the EAIS had receded up to several 100 kms inland to the central portion of the Wilkes 

Subglacial Basin (Cook et al., 2013). The interplay of bioturbation and downslope currents 

results in an overall increase in the silt component, most likely due to homogenization of 

sediment texture and removal of primary sedimentary structures (i.e., silt laminae) within 

these intervals. Turbidity currents and slope failures may have still been delivering sediment 

during these intervals, perhaps as the consequence of isostatic adjustments during postglacial 

retreats (Escutia et al., 2005) or initiated by hypersaline density flows of high salinity shelf 

waters passing down the continental rise. However, the homogenization of these sediments 

suggests that turbidity current activity may have been less frequent. Reduced turbidity current 

activity does not explain these facies alone, as changes in biogenic opal weight percent 

covary with Ba/Al measurements within these diatom-rich intervals (Figure 2.10). Thus, we 

interpret these intervals as representing intervals of enhanced biogenic activity in the surface 
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waters above the drill site, accompanied by a reduction in turbidity current activity. We also 

note that during the Holocene, most fine grained sediment is advected towards the inner 

continental shelf in the Mertz-Ninnis tough rather than towards the shelf edge
 
(Presti et al., 

2003), due to the reverse slope morphology of the continental shelf that began to developed 

in the Early Pliocene (i.e. above WL-U8) (Figure 2.2), and thus it is likely this was also the 

situation for Late Pliocene-Pleistocene glacial minima.  

 

The modern day position of the Southern Boundary of the ACC is ~200 km to the north of 

Site U1361 (Orsi et al., 1995), and is the location of the Antarctic Divergence where 

relatively warm UCDW currently upwells and biological productivity is high. Sea surface 

temperature (SST) reconstructions indicate that the Southern Ocean was up to +4°C warmer 

(Dowsett et al., 2012) with a significantly reduced sea ice field during the warmest Pliocene 

in the Ross Sea (McKay et al., 2012), Prydz Bay (Whitehead and Bohaty, 2003) and 

Antarctic Peninsula (Hillenbrand and Cortese, 2006) regions. A number of studies outline 

cyrosphere connections between zonal shifts in the intensity or location of southern westerlies 

influence on ocean fronts (e.g., Toggweiler and Russell, 2008; Anderson et al., 2009; 

Martinez-Garcia et al., 2011). Such changes in turn may regulate incursions of CDW (or 

modified CDW when mixing with Antarctic waters has occurred) onto the continental shelves 

around Antarctica and thus leading to melting of the marine margins of the ice sheets 

(Toggweiler et al., 2006; Anderson et al., 2009; Naish et al., 2009; Denton et al., 2010; 

McKay et al., 2012; Pritchard et al., 2012). The main dynamical barrier for CDW (or MCDW) 

in Wilkes Land is the Antarctic Slope Front (at the shelf break/upper continental rise) which 

creates a “V-shaped” isopycnal that extends into intermediate water depths and restricts 

CDW incursions onto the continental shelf (Bindoff et al., 2000). Thus, changes in the 

location, intensity or vigour of this current, related to the strength or location of the zonal 

polar winds (i.e., polar easterlies and the subpolar westerlies), directly regulates CDW 

incursion, more so than a direct bathymetric control (Williams et al. 2008).   

 

Early Pleistocene diatom-rich/bearing intervals above ~48 mbsf, while containing similarities 

to Pliocene intervals, are distinctively different in IBRD content, arrangement of silt lenses 

and mottles, and an apparent overall negative grading as displayed in the grain size data 

(Figure 2.12). The Early Pleistocene intervals reflecting some reworking by bottom currents 

in which enhanced delivery of oxygenated and nutrient rich waters formed in the Mertz 

Polynya promoting productivity and bioturbation. Silt lenses and mottles appear more 
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irregularly aligned suggesting more highly energised bottom current remobilization of fine 

grain clay sediments. Sparse IBRD suggests lulls in iceberg calving as disintegration events 

become less frequent as the ice sheet stabilised and begain to fluctuate at the same extent as 

the Late Pleistocene glacial cycles. These bottom currents appear to be related to low energy 

downslope (rather than alongslope currents), due to seismic data and modern oceanographic 

current data (discussed earlier). Continental rise channels (like the Jussieu channel) act as 

conduits for the delivery of cascading HSSW to the rise, however, these currents remain at 

low-energy and appear non-erosived in this distal low-relief levee setting (William and 

Bindoff, 2003; Carbulotto et al., 2010).  
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Figure 2.11. Schematic diagram displaying our interpreted climate stages influence on 

sedimentation at Site U1361. The red dotted line is an interpreted representation of the 

modern shelf edge. The Antarctic Coastal Current is represented by the black “x” with a flow 

direction into the diagram, while the ACC is represented by the black dot with a flow 
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direction coming out of the diagram. Adélie Land sourced AABW is distinguished by the 

blue to white arrow. 

 

2.4.3. Stratigraphic Framework 

The Pliocene-Early Pleistocene record of Site U1361 contains 18 lithological cycles. 

Individual cycles are identified by a single interbedding of biotubated diatom-rich mudstone 

facies and massive/laminated mudstones. However, lithological cycles for the Early 

Pleistocene (cycles 1-4) are based on diatom richness observed in visual observations and 

constrained by opal weight percent values. However, it is worth noting boundaries between 

these “more” diatom-rich/bearing to “less” diatom-rich/bearing intervals become more 

difficult to distinguish compared to cycles 5-18. While facies appear to have lasted for 

extended glacial-interglacial periods, glacial maxima are represented by massive and 

laminated mudstones, with peaks in IBRD associated with ice sheet disintegration events 

whereas diatom-rich/bearing mudstones are associated with a retreated ice sheet margin 

(Figure 2.12).  
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Figure. 2.12. Stratigraphic log with lithology, facies, bioturbation, lithostratigraphic cycles 

and grain size data. Diatom abundance is based on initial scientific results (Escutia et al., 

2011) as well as quantitative estimates of biogenic opal (opal weight % and Ba/Al). Age 

intervals are based on magnetostratigraphy from Tauxe et al., (2012). Glacial extent (I = 

interglacial, D = deglaciation, G = glaciation) and sequence are based on lithofacies 

associations.   

 

2.4.4. Diatom-rich/bearing mudstone during Late Pliocene-Early Pleistocene cooling 

(3.3 to 2.0 Ma) 

While the Early Pleistocene diatom-rich/bearing mudstones are structurally and textural 

similar to those deposted in the Pliocene, there are some subtle but important differences. 

After 2.8 Ma, silt laminae become less frequent and when present are disturbed by 

bioturbation. Additionally, IBRD substantially decreases in comparison with the entire 

Pliocene record, coinciding with the lower sedimentation rates than the Pliocene, as well as a 

gradual overall increase in silt content. Furthermore, lithological cycles become less obvious 

to visually distinguish (Figure 2.12).    

 

Sedimentologic and seismic records recovered around the Antarctic margin document a 

period of major ice sheet expansion from 3.0 to 2.0 Ma (Kennett and Barker, 1990; Barrett 

and Hambrey, 1992; De Santis et al., 2003; Escutia et al., 2005; Whitehead et al., 2006; 

Rebesco and Camerlenghi, 2008; Cowan et al., 2008; Escutia et al., 2009; Naish et al., 2009; 

Levy et al., 2012; Passchier, 2011; McKay et al., 2012). This cooling trend has also been 

associated with extended sea ice cover in Antarctica’s coastal regions (i.e., Antarctic 

Peninsula, Ross Sea and Prydz Bay) (Hillenbrand and Cortese, 2006; Whitehead et al., 2006; 

Cowan et al., 2008; Escutia et al., 2009; Naish et al., 2009; McKay et al., 2012). Coupled 

atmosphere-ocean general circulation models have demonstrated the important role that ice 

sheet growth and stability has on the development of sea ice, with the latter being a 

requirement in the development of the extended Antarctic sea ice field (DeConto et al., 2007). 

Ice sheet and sea ice growth along the margin coincide with a drawdown in atmospheric CO2 

to pre-industrial levels (Seki et al., 2010), as well as a decline in the relative flux of NADW, 

or its precursor, into the Atlantic (Billups et al., 1997; Hodell and Venz-Curtis, 2006), and an 

associated decrease in Southern Ocean ventilation (Hodell and Venz-Curtis, 2006). The 

expansion of the sea ice field and inherent 5°C cooling of Southern Ocean SST between 3.3 

and 2.5 Ma have been suggested to cause the expansion of the westerly winds and promote a 

northward migration of ocean fronts, which restricts upwelling of CDW along the Antarctic 
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margin (McKay et al., 2012). Such a situation would promote a reduction in ocean induced 

melting of marine-based ice.  

 

Of particular importance is the increase in polynya style activity in the Ross Sea region as 

indicated by sea ice diatom assemblages and bulk sediment stable isotopes between 3.3 and 

2.5 Ma (McKay et al., 2012). Polynyas around the Antarctic margin are regions where the 

rate of sea-ice formation may be up to 10 times greater than in the surrounding sea-ice zone, 

allowing for enhanced brine rejection, an important process in the formation of AABW 

(Bindoff et al., 2000). Polynya activity in the Ross Sea during this time is important as Site 

U1361 is bathed by AABW sourced from the Ross Sea via the alongslope, Antarctic Slope 

Current, as well as AABW sourced from within the Adélie depression along the Wilkes Land 

margin, which also interacts with the drill site through downslope currents (Williams et al., 

2008; Escutia et al., 2011). Enhanced delivery of bottom water across Site U1361 has two 

consequences; (1) an increase in oxygenated water allowing for an increase in benthic 

productivity, and (2) enhanced current winnowing of sediment. The overall increasing trend 

in silt content and lack of primary sediment features (i.e., lamina) after 2.6 Ma potentially 

highlight the enhanced interaction between the reworking of turbidites by bioturbation as well 

as both downslope and alongslope bottom current winnowing. This assumption is based on 

the observation that AABW/ALBW is currently forming in the Adélie depression during the 

present interglacial, and that interglacial stages after ~2.8 Ma reach Holocene benthic δ
18

O 

values suggesting similar ice volume configurations to the modern interglacial (Lisiecki and 

Raymo, 2005; Escutia et al., 2005; Pollard and DeConto, 2009). Cyclicity within the percent 

silt data and reverse grading infers the processes explained above including increased 

bioturbation and current winnowing becomes enhanced through time as the overall climate 

cools and ice sheet developes to Late Pleistocene extent. Furthermore, glacial erosion and 

over deepening of the continental shelf during the larger ice volume fluctuations of the Late 

Pliocene-Early Pleistocene, provided accommodation space in which the depocenter of 

terrigenous material moved southward instead of extending to the shelf edge, resulting in less 

terrigenous sediment delivery to the rise. This is reflected in both a relative decrease in 

packages of silt lamina compared to the Early Pliocene record of Site U1361, and lower 

sedimentation rates during the Early Pleistocene, in addition to seismic data (Eittriem et al., 

1995; Presti et al., 2003; Escutia et al., 2005; Escutia et al., 2011; Tauxe et al., 2012). The 

increase in silt content is accompanied by a dramatic decrease in IBRD MAR. The decrease 

in IBRD deposition is potentially related to a number of factors concerning Late Pliocene-
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Early Pleistocene cooling. (1) Reduced rates of ice calving along the margin as a result of 

changes in the thermal glacier regime (i.e., less direct ice sheet/ocean interaction via sea ice 

production), (2) changes in the melt rate of bergs as a function cooler SST, and (3) ice-bergs 

start to become grounded along the shelf edge allowing for most basal debris to melt out 

before reaching the continental rise.  

 

2.5. CONCLUSIONS 

The Pliocene-Early Pleistocene record of Site U1361 consists of two dominant lithofacies 

that are consistent with times of peak glacial extent as well as prolonged warming with a 

retreated ice sheet margin. Although there are some site-specific considerations, sediment 

deposition at Site U1361 closely aligns with established models of non-erosive overbank 

turbidite depositional model in a lower continental rise “distal” levee setting from the 

Antarctic margin  (i.e., Lucchi et al., 2002). Massive and laminated mudstones are interpreted 

as periods of extended ice sheet advances across the continental shelf even during peak 

Pliocene warmth. Peaks in IBRD are interpreted as major deglaciation events. Diatom-

rich/bearing mudstones highlight periods of enhanced ocean upwelling over the core site 

during times of a reduced sea ice field during interglacial maxima. A major change occurs 

during the Early Pleistocene cooling (2.7 to 2.0 Ma) and is reflected in diatom-rich/bearing 

mudstones that show distinct differences (i.e., decrease in IBRD and increase in silt content) 

compared to the Pliocene. Such differences in lithological characteristics infer enhanced 

delivery of highly oxygenated shelf waters by downslope currents as a result of an increased 

in polynya-style mixing along the Wilkes Land margin as sea ice became more extensive and 

the continental shelf continued to become over steepened from Pleistocene glaciations.   
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CHAPTER 3 

 

ORBITAL RESPONSE OF THE EAST ANTARCTIC ICE SHEET DURING THE 

PLIOCENE-EARLY PLEISTOCENE: IMPLICATIONS FOR GLOBAL SEA LEVEL 

CHANGES 

 

Geological reconstructions of global ice volume (Lisiecki and Raymo, 2005)
 
and sea-level 

(Miller et al., 2012) during the Pliocene and Early Pleistocene (5 to 2 Ma) display regular 

glacial-interglacial cycles occurring every 40-kyr, paced by variations in Earth’s axial tilt 

(obliquity). The absence of a strong ~20-kyr precession signal challenges our fundamental 

understanding of how ice sheets respond to orbital forcing because precession should impart 

the greatest influence on high-latitude summer insolation intensity, and therefore polar ice 

volume (Milanković, 1941; Raymo et al., 2006). While a number of hypotheses have been 

proposed (Raymo et al., 2006; Raymo and Huybers, 2008; Huybersand Tziperman, 2008), 

reconciliation of this conundrum remains hampered by a lack of observational evidence from 

the Antarctic ice sheet. Here, we present an orbital-scale time-series of ice-berg rafted debris 

and continental rise sedimentation from a well-dated sediment core (Integrated Ocean 

Drilling Program Site U1361) adjacent to the Wilkes Land margin of the East Antarctic Ice 

Sheet (EAIS). Our data reveal ~40-kyr cyclic variations in the extent of the EAIS paced by 

obliquity between 4.3 to 3.3 Ma during the warmer-than-present climate of the Pliocene, as 

has previously been demonstrated for the West Antarctic Ice Sheet (WAIS) (Naish et al., 2009; 

Pollard and DeConto, 2009). Under a warmer climate state, mean annual insolation (paced 

by obliquity) had more influence on Antarctic ice volume, than insolation intensity modulated 

by precession (Huybers and Tziperman, 2008). However, a transition to 20-kyr precession 

cycle dominance at 3.3 Ma preceded the development of a more stable EAIS marine margin 

at ~ 2.5 Ma, reflecting the declining influence of oceanic forcing as the high latitude 

Southern Ocean cooled and a perennial summer sea-ice field developed (McKay et al., 2012). 

Our data shows that precession-paced EAIS variability occurs during cold climate states, 

even when the obliquity signal dominates globally-integrated proxy records. 

 

3.1. INTRODUCTION 

The dominance of the 41-kyr variability during the Pliocene-Early Pleistocene is evident in 

sea-level reconstructions (Miller et al., 2012), sea surface temperature reconstructions based 

on proxy records (Dowsett et al., 2012), WAIS sediment records (Naish et al., 2009), as well 
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as Southern Ocean and Northern Hemisphere mineral dust aerosol records (Martínez-Garcia 

et al., 2011; Naafs et al., 2012). This suggests a close coupling in the climate system between 

ice volume/sea-level, temperature, and atmospheric circulation in response to obliquity 

forcing. The absence of a strong precession influence on ice volume has been explained by 

two different hypotheses. Raymo et al. (2006) using a non-dimensional ice sheet-climate 

model, demonstrated that (10-30 m sea level equivalent) changes in the Antarctic ice volume 

driven by local insolation could counter balance Northern Hemisphere ice volume changes 

also paced by local insolation, as precession is out-of-phase between hemispheres. Such a 

scenario would enhance the 40-kyr obliquity component reflected in the benthic δ
18

O ice 

volume record. However, this hypothesis does not account for the lack of a strong precession 

signal prior to the onset of Northern Hemisphere glaciation at ~3.3 Ma (e.g., Lisiecki and 

Raymo, 2005; Naish et al., 2009; Martínez-Garcia et al., 2011; Naafs et al., 2012). An 

alternative hypothesis that suggests long term variations in mean annual insolation controlled 

by obliquity may have more influence on polar temperatures than peak seasonal insolation 

modulated by precession, provided the surface temperature remains above 0°C for a 

significant part of the summer season (Huybers, 2006). In this case, integrated summer 

insolation (summer energy) has been shown in one model to control the melting of Northern 

Hemisphere ice sheets at the obliquity period during the Early Pleistocene (Huybers and 

Tziperman, 2008). Although this condition is not currently met by the Antarctic Ice Sheet, its 

summer melt threshold may have been exceeded during the Early and mid-Pliocene (5-3 Ma)
 

(Naish et al., 2009; Pollard and DeConto, 2009) when atmospheric CO2 was ~400 ppm (Seki 

et al., 2010)
 
and global surface temperature was 2-3°C warmer (Haywood et al., 2013).  

 

Sub-ice bedrock topography reveals extensive regions where the EAIS is grounded below sea 

level (Fretwell et al., 2012), and may be vulnerable to the same process of ocean induced 

melt that caused retreat of WAIS during the Pliocene (Naish et al., 2009; Pollard and 

DeConto, 2009), and indeed, is influencing its present mass loss (Pritchard et al., 2012). 

Recent geophysical surveys along the Wilkes Land continental margin of the EAIS show the 

presence of landward deepening reverse slope troughs that can be traced southward where 

they reach depths of up 2 km below sea-level in the Wilkes subglacial basin (Fretwell et al., 

2012). Such bed geometries heighten the vulnerability of this sector of the EAIS to marine ice 

sheet instability. Reconstructions of Pliocene sea-level (~3.6-3.0 Ma) based on far-field 

geological evidence suggest global mean sea-level was up to +20 m higher than present 

during the warmest 41-kyr, interglacial high stands (Miller et al., 2012), requiring
 
near 
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deglaciation of West Antarctica (+4 m) and Greenland (+7 m), as well as a significant 

contribution from the low elevation marine margins of the EAIS.  

 

The marine sediment core Site U1361, recovered by IODP from ~3000 m water depth on the 

continental rise adjacent to the Wilkes Land sector of Antarctica, provides a well-dated and 

continuous geological archive of Pliocene and Early Pleistocene orbital scale variability of 

the marine margin of the EAIS. Sediment deposition at this site is controlled by the interplay 

between: (i) downslope marine sediment gravity flows triggered by the buildup of sediment 

on the edge of the continental shelf during glacial advance; (ii) the rainout of biogenic 

detritus from surface water plankton; and (iii) iceberg rafting of terrigenous sediments (see 

Chapter 2 for detailed discussion). 

 

3.2. METHODS 

Methodology concerning grain size (i.e., IBRD MAR) and productivity indicators are 

described in Chapter 2 (section 2.2). This section will focus on the methodology of spectra 

analysis as it is unique to this chapter in regards to the Site U1361 data being presented.   

 

3.2.1. Frequency analysis 

Using the age model of Tauxe et al. (2012; Table 2.1 and Figure 2.4), evolutionary spectral 

analysis was performed in Matlab© using a spectrogram function developed by Peter 

Huybers and is available at his website (http://www.people.fas.harvard.edu/~phuybers/). This 

allows for the detection of non-stationary spectra variability within the time series. Power 

spectral analysis using the SSA-MTM toolkit for the Multi-Taper method (MTM) analysis 

(Ghil et al., 2002) with five data tapers for the untuned IBRD MAR and biogenic opal weight 

percent time series at 3 kyr resolution for the Early Pliocene and 4 kyr resolution for the Late 

Pliocene-Early Pleistocene. Equal time spacing was achieved by linear interpolation based on 

average temporal sample spacing of time series segments as there is a gap in our data 

exceeding 100 kyr that predates 3.33 Ma. The statistical significance of spectral peaks was 

tested relative to the null hypothesis of a robust red noise background, AR(1) modelling of 

median smoothing, at a confidence level of 90% and 95% (Mann and Lees, 1996). We have 

also applied a Raw (AR1) model, and with a harmonic reshape set to a 90% threshold to test 

the comparative variance in obliquity versus precession.  
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Tuning of the IBRD MAR record and bandpass filtering were conducted in Analyseries 

(Paillard et al., 1996), with filters for obliquity (central frequency of 0.25, bandwidth of 0.03) 

and precession (central frequency of 0.45, bandwidth of 0.05) being applied. Tuning, power 

spectra was carried out using the same parameters with the SSA-MTM toolkit as the untuned 

data.  

 

3.2.2. Theoretical background to frequency analysis 

While cyclostratigraphy is the study of interpreting observational data obtained from a 

stratigraphic record and placing it into the context of environmental cycles (e.g., orbital 

cycles). Spectral analysis allows for the identification of cyclicity within a given time series 

using Fast Fourier Transforms. Fourier’s theorem suggests that any time series can be 

recreated by adding together sine and consine waves having the correct wavelength and 

amplitude (Weedon, 2003). Power spectra analysis assesses the frequency (1/period) in which 

periodic and quasi-periodic (regular to near regular) oscillations in a given time series occur 

which get reflected through peaks in periodograms.  

 

In order to access for statistical significance of spectral peaks, time series need to be tested 

against an appropriate background “noise” (null hypothesis) that considers the natural 

physical variability within the climate system and depositional system dynamics. Time series 

commonly used in paleoclimate studies, produce spectra that drop off towards high 

frequencies (e.g., 23 and 19-kyr) suggesting there is a red noise component embedded into 

the data set, as red light is dominated by low frequency (Weedon, 2003). Commonly used 

autoregressive “red noise” models (e.g., AR1) are mathematically defined (Gilman et al., 

1963; Mann and Lees, 1996), where n=1, …, N is the time increment, rn is the red noise 

sequence, 0 ≤ ρ < 1 is the lag-1 autocorrelation coefficient , and ωn is a Gaussian white noise 

sequence.  In summary, these models account for simple stochastic process that occur in the 

physical climate system as well as in depositional systems and white noise (e.g., weather) 

component integrated with a slower response time represented in the Earth System (e.g., 

oceans) (Meyers, 2012). 

 

Another important consideration for spectra analysis is that time series data stops abruptly at 

either side which produces discontinuities during Fourier transformation that introduces 

additional power in the spectrum. This produces a bias in that power spectra as it is weakens 

the significance of real peaks while raising the power elsewhere. Spectral leakage, as it is 
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referred to, is reduced through data tapering and allows for the detection of small-amplitude 

high frequency events. Tapering is described by Weedon (2003) as “… multiplying the time 

series by a series of values, window weights, that start at one in the centre of the data (i.e., no 

tapering) and drop to zero at the edges.”  

 

The MTM method used for spectral estimation is non-parametric as it does not use an a priori 

parameter dependent model (Thomson, 1982; Ghil et al., 2002). A series of special data 

windows are used to taper (number of tapers is usually 4 to 8) the time series and suppress 

spectral leakage. The tapers allow for different weighting for different sections of the data 

providing well-suppressed side lobes (small bias), good smoothing and high frequency 

resolution (Ghil et al., 2002; Weedon et al., 2003).  

 

3.3. RESULTS 

Spectra analysis on our IBRD MAR and biogenic opal time-series data sets highlight 

significant Milankovitch style frequency events at obliquity and precession frequencies 

suggesting lithofacies cycles, discussed in Chapter 2, last for multiple glacial to interglacial 

cycles (Figure 3.1 - 3.3). The IBRD MAR record is dominated by 40-kyr-duration cycles 

related to obliquity during the Early Pliocene while the Late Pliocene-Early Pleistocene is 

dominated by the 23 and 19-kyr-duration cycles related to precession (Figure 3.1b). While 

not significant at 90%, spectrogram analysis highlights strong 100-kyr eccentricity during the 

Late Pliocene-Early Pleistocene. Early Pliocene biogenic opal is significant at 90% for both 

obliquity and precession frequencies while the Late Pliocene-Early Pleistocene is significant 

at 95% for both frequencies. Evolutionary spectra analysis highlights a strong onset 40-kyr 

cyclicity of biogenic silica around ~2.8 Ma (Figure 3.1c).   

 

Due to the strong orbital signature in our IBRD MAR record we have tuned the IBRD MAR 

data to obliquity and the precession influenced local insolation at 65°S based on visual 

correlations made from peak events (Figure 3.3) and applied band-pass filters at obliquity and 

precession frequencies. This demonstrates that long-term minima in IBRD MAR are 

associated with (eccentricity-modulated) nodes in precession after 3.3 Ma, and the obliquity 

node at 4.1 Ma (Figure 3.4).    
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Figure 3.1. Evolutionary and power spectra of time steps for LR04 (Lisiecki and Raymo, 

2005) (a), and Site U1361 IBRD MAR (untuned) (b) and Site U1361 opal weight percent 

(untuned) (c). Bandwidth is indicated by black horizontal line in the top right of individual 

periodograms (BW). 
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Figure 3.2. Power spectra using Robust and Raw AR(1) red noise background. Raw data 

output is represented in black lines, while harmonic reshaping data output set to a 90% 

threshold is represented with green lines in which red lines highlight harmonics. Statistical 

significance is noted at 90% (solid black line) and 95% (dashed black line).   
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Figure 3.3. Depth series developed for IODP Site U1361 sediment core between 4.4-2.2 Ma 

of  (a) opal percent, (b) IBRD MAR correlated with time series of (c) January insolation and 

total integrated summer energy (where melt threshold [t]=400GJm
-2

) , (d) mean annual 

insolation and  total integrated summer energy (where melt threshold [t]=250GJm
-2

), (e) 

eccentricity, and (f) the stacked benthic δ
18

O record (Lisiecki and Raymo, 2005). Also shown 

is the down core distribution of lithofacies, lithological cycles and magnetic polarity 

stratigraphy (Tauxe et al., 2012). Maxima in productivity estimates of biogenic opal weight 

percent and Ba/Al covary with bioturbated/diatom-rich mudstone facies. Grey shaded elipse 

denotes alignment between a 1.2 Ma node in (d) obliquity modulated mean annual insolation 

and (e) a 400-kyr minimum in eccentricity which favours polar ice sheet growth and 

corresponds to  (f) a 1‰ glacial δ
18

O excursion culminating with MIS M2 (arrow). A 

significant increase in (f) δ
18

O glacial values from 2.7 Ma (arrow) corresponds with a marked 

decline in the amplitude of (a)  IBRD and a 100ppm decrease in (g) reconstructed 

atmospheric CO2 concentration (Seki et al., 2010; Pagani et al., 2010; Bartoli et al., 2011). An 

(h) evolutive spectrogram of  IBRD MAR time series and frequency spectra of (i) late 

Pliocene to Early Pleistocene (3.3-2.2Ma) and (j) Early Pliocene  (4.3-3.4Ma) IBRD MAR 

time series show transferral of spectral power from ~40-kyr frequency dominance prior to 3.3 

Ma to the 100-kyr and 23-19-kyr frequency bands after 3.3 Ma. 

 

 

Figure 3.4. Tuned IBRD MAR time series for Site U1361 record with output from band-pass 

filters at precession (20-kyr) as well as obliquity (40-kyr) frequencies. Grey shading 

represents a time gap missing from the Site U1361 record followed by IBRD minima at ~3.3 

Ma associated with a 1.2 Ma node in obliquity and 400-kyr eccentricity-modulated node in 

precession.  
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Figure 3.5. Power spectra using the IBRD MAR tuned age model. Early Pliocene IBRD 

MAR and mean annual insolation display strong 40-kyr cycles of obliquity while biogenic 

opal does not display Milankovitch frequencies. Late Pliocene-Early Pleistocene IBRD MAR  

and summer insolation display strong 23- and 19-kyr cycles of precession while biogenic 

opal wt. % only contains less distinct precession frequencies with 40-kyr obliquity 

significance. Statistical significance is noted at 90% (solid black line) and 95% (dashed black 

line).   

 

3.4 DISCUSSION 

3.4.1. Iceberg rafted debris as a proxy 

As the Antarctic Ice Sheets lose 50-80% of their mass from iceberg calving (Depoorter et al., 

2013), IBRD records (i.e., IBRD MAR) provide direct physical evidence of ice sheet calving 

events along the marine margins of the ice sheets. These calving events are related to the 

release of ice from fast-flowing ice outlets (outlet glaciers), major deglacial events, and or ice 

sheet collapse. While the exact physical understanding of calving events is complex, ice 

sheets and glaciers in contact with the ocean and grounded below sea level are susceptible to 

rapid iceberg discharge (Bassis and Jacobs, 2013). Distal glacimarine sediment records offer 

the opportunity to measure such variability of iceberg discharge without being hindered by 

hiatuses from Neogene and Quaternary ice grounding events that continental shelf sites are 

subject to. That said, IBRD records need to be interpreted with caution as calving can occur 

during both glacial and interglacial maximums as well as being heavily influenced by the 

glacial regime at the time (e.g., Anderson, 1999; Williams et al., 2010). For instance, the 

thermal regime of Antarctica’s small ice shelves, as well as ice tongues, are more favourable 

to basal freezing, when compared to larger ice shelves that lack basal debris and in which 

subglacial debris is deposited before major calving events through basal melting (i.e., Ross 

Ice Shelf). As a result, small ice shelves and ice tongues source sediment-laden icebergs 



85 
 

containing abundant basal debris layers (Anderson, 1999). Furthermore, iceberg drift patterns 

are complex and are under the influence of sea ice conditions, ocean currents and wind 

around the Antarctic margin (Anderson, 1999).  

 

At present, icebergs get entrained in the westward flowing Antarctic coastal current as well as 

local gyres and as they flow northward are then influenced by the eastward flowing Antarctic 

Circumpolar Current (ACC) (Stuart and Long, 2011). The location of Site U1361, south of 

the ACC boundary front results in IBRD sourced from ice calving along the Ross Sea region 

as well as the Wilkes Land margin and highlights the advantage of using IBRD records to 

understand broad geographical scale periodicities in ice calving events along the margin. 

However, according to geochemical provenance analysis, the majority of modern IBRD is 

deposited adjacent to its source region (Roy et al., 2007). 

 

Changes in surface ocean currents are unlikely to influence iceberg drift patterns at Site 

U1361. The dominant westerly flow over the site (Antarctic Coastal Current and its 

associated front - Antarctic Slope Front) is unlikely to have changed direction, due to 

bathymetric (i.e., the continental rise/shelf break) and geostrophic considerations, as 

demonstrated under the scenarios of a greatly reduced EAIS
 
(DeConto et al., 2007). IBRD 

peaks from the Southern Ocean (e.g., Polar Front) may represent glacial maxima as icebergs 

can survive for longer time periods in the colder glacial period waters. However, Site U1361 

is proximal enough to outlet glaciers of the Antarctic margin for smaller “dirty” icebergs 

derived from these sources to survive moderate levels of SST warming (as inferred for the 

Pliocene) (Williams et al., 2010; Cook et al., 2013), but not so close as to be influenced by a 

single outlet glacier, or a single iceberg dumping (Stuart and Long, 2011). The 3500 m water 

depth and open ocean location of Site U1361 (with only seasonal winter sea) means icebergs 

would never be “locked in” place over the drill site, and would pass over the drill site very 

rapidly (i.e., minutes as they do today). 

 

While previous Pliocene and Quaternary IBRD records recovered from the Antarctic margin 

display similar characteristics between glacial to interglacial stages (e.g., Ó’Cofaigh et al., 

2001; Lucchi et al., 2002; Williams et al., 2010; Passchier, 2011), changes in local 

sedimentation rates and current winnowing can falsify the magnitude of IBRD events. It is 

unlikely that changes in sedimentation rates amplifies IBRD events in Site U1361 for the 

following reasons. Firstly, the peak amplitude of IBRD in the Early Pliocene record is similar 
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between facies. Geochemical provenance studies spanning the Early Pliocene highlight the 

release of icebergs sourced from the Wilkes Land margin during both sustained warm and 

cold intervals (Williams et al., 2010; Cook et al., 2013). Secondly, during the Late Pliocene 

portion of the record the greatest amplitude in change occurs largely at facies transitions. 

While there is the exception within lithological cycle 8 when obliquity is high and 

atmospheric CO2 concentrations straddle levels higher than pre-industrial levels, suggesting 

the potential for obliquity to have a greater role in iceberg discharge during this time, similar 

to the Early Pliocene record. Lastly, IBRD during the Early Pleistocene begins to decrease 

after ~2.5 to the top of the core at ~2.0 Ma (Figure 3.3) suggesting that neither a reduction in 

background sedimentation rate nor current winnowing have an amplifying affect. This is 

significant as the Early Pleistocene, based on lithofacies characteristics, is the time most 

likely to have had the greatest interactions with bottom currents (see Chapter 2). Furthermore, 

sorting of terrigenous material suggest no such correlation between bottom current 

winnowing and IBRD to suggest the presence of lag deposits (see Chapter 2 Figure 2.6). 

Thus, an alternative explanation for the decrease in IBRD MAR after 2.5 Ma, or during nodes 

in precession and obliquity, may be due to the increased persistence or duration of large 

fringing ice shelf (and thus “cleaner” icebergs) during these colder intervals, which in turn 

lead to reduced dynamical ice discharge. Finally, the overall characteristics driving iceberg 

discharge and calving events appear to change more with major transitions in Southern 

Hemisphere climate occurring at ~3.3 Ma and ~2.6 to 2.5 Ma (e.g., McKay et al., 2012).      

 

Moreover, it has been demonstrated that the untuned IBRD data contain a statistically 

significant signal at orbital periodicities throughout our record (Figure 3.1 and 3.2), which 

suggests iceberg calving is not a random process. Orbital pacing has been also subjectively 

demonstrated by previous studies along the EAIS margin, but these studies could not 

statistically identify the frequencies of this pacing as well as the relative power between the 

40-kyr and 20-kyr cycles (Escutia et al., 2009; Passchier, 2011). 

 

3.4.2. Cyclostratigraphy framework 

The core consists of eighteen sedimentary cycles spanning 4.3 to 2.0 Ma, and comprising 

alternating terrigenous massive to laminated clay and diatom-rich/bearing silty clay units 

(cycles 1-18 Figure 3.3). As discussed in Chapter 2, the muds contain packages of well-

defined laminae and are consistent with well-established models of non-erosive overbank 

hemipelagic deposition onto a channel levee setting via mass debris flow (i.e., turbidity 
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currents) on the lowermost Antarctic continental rise (Lucchi et al., 2002). The turbidite units 

are associated with periods of glacial advance to the Wilkes Land continental shelf edge, 

whereas bioturbated, diatom-rich/bearing facies represent warm interglacial periods of 

relatively ice-free ocean and increased primary productivity when the grounding line had 

migrated landward away from the shelf edge. Increased productivity during interglacial 

warmth may be associated with enhanced upwelling of nutrient-rich CDW (Anderson et al., 

2009), which has been linked to southward expansion of the westerly wind field in response 

to a reduced pole-equator temperature gradient during past warm periods (Toggweiler et al., 

2006; Anderson et al., 2009). Presently this relatively warm, nutrient-rich CDW upwells to 

the surface north of the Southern Boundary Front of the ACC and is marked by areas of 

enhanced productivity (the Antarctic Divergence) immediately to the north of Site U1361.  

 

In general, the highest intensity of IBRD occurs during transitions from glacial terrigenous 

clay facies to interglacial diatom-rich/beraing sediments up-core until ~47 mbsf, with most 

IBRD peaks immediately preceding opal peaks (Figure 3.3). Isotopic Nd and Sr provenance 

indicators suggest that these diatom-rich/bearing intervals are associated with periods of 

deglacial retreat of the ice margin across the continental shelf and into the central portion of 

the Wilkes Land subglacial basin (Cook et al., 2013)
 
during the Early Pliocene. As the 

Antarctic Ice Sheet loses the majority of its mass via icebergs (Depoorter et al., 2013), it is 

interpreted that maximum in IBRD MAR are the consequence of accelerated calving during 

glacial termination from marine terminating outlet glaciers along the Wilkes Land coastline 

as well as a contribution from EAIS outlet glaciers entering the western Ross Sea (Naish et 

al., 2009; Williams et al., 2010; Cook et al., 2013). This interpretation is consistent with 

models and paleo-observations, which imply the most rapid mass loss of the EAIS marine 

margin during the last glacial termination occurred between 12 to 7 ka, and was primarily the 

consequence of oceanic warming (Mackintosh et al., 2011).   

 

The top of the Early Pliocene ~40-kyr-dominated interval is marked by a ~300 to 100-kyr-

long condensed section between ~3.6 to 3.3 Ma, and corresponds to a +1‰ glacial δ
18

O 

excursion spanning Marine Isotope Stage (MIS) MG9 and MIS M2. Indeed, this glacial 

excursion has also been associated with southern high-latitude climate cooling and the re-

establishment of grounded ice on middle to outer continental shelf in the Ross Sea following 

a ~200-kyr period of warm open ocean conditions (Naish et al., 2009; McKay et al., 2012). 

Previous studies of older Oligocene and Miocene δ
18

O glacial excursions have proposed a 
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relationship between intervals of increased glacial amplitude in the δ
18

O record with a 

coincidence of 1.2 Ma nodes in obliquity and 400-kyr minima in long period eccentricity 

(Zachos et al., 2001; Pälike et al., 2006). This orbital configuration, which favours extended 

periods of cold summers and low seasonality, is considered optimal for Antarctic ice sheet 

expansion, and occurs at ~3.3 Ma - the time of the transition from ~40-yr to ~20-kyr 

dominance in the IBRD MAR times series from Site U1361 (Figure 3.3).   

 

Observed ~20-kyr-duration IBRD cycles are correlated with summer insolation calculated for 

65°S for the interval of the core between 3.3 to 2.2 Ma (Figure 3.3). This orbital-tuning 

strategy is based on the strong orbital signal in our un-tuned IBRD MAR record, and clear 

link between peaks and trough in austral summer insolation and opal content which are 

synchronous across the top and bottom Kaena Subchron paleomagnetic reversals, 

respectively. Band-pass filters at obliquity and precession frequencies applied to the IBRD 

MAR confirm visual observations that long-term minima are associated with (eccentricity-

modulated) nodes in precession after 3.3 Ma, and the obliquity node at 4.1 Ma (Figure 3.4). 

Furthermore while these IBRD cycles are embedded within longer period 100-kyr IBRD 

cycles (Figure 3.3e), broad peaks of IBRD maxima are clearly associated with transitions 

between laminated mudstones to diatom-rich/bearing mudstones. Although this lithological 

variability is also evident in frequency spectra of opal percentage, it is not significant at 90% 

(Figure 3.1 and 3.5), which is the likely consequence of a lower signal-to-noise ratio in the 

opal data. A dramatic decrease in the amplitude of ~20-kyr IBRD peaks, and a change to 

lithofacies associated with non-erosive low-energy bottom currents in the core from ~2.5 Ma 

is broadly coincident with the intensification of global high-latitude cooling and onset of 

major Northern Hemisphere glaciations (Kleiven et al., 2002; McKay et al., 2012).  This is 

attributed to the progressive reduction in calving intensity to cooling and a relative 

stabilization of the EAIS ice margin. Homogenization of the turbidite sediments during 

glacial maxima by enhanced bioturbation and bottom current activity is most likely due to the 

observed increase of Antarctic sea ice and polynya-style mixing at this time (McKay et al., 

2012) producing cold high salinity shelf water, in which oxygenated waters may be 

transferred downslope over Site U1361 to form AABW(Williams et al., 2008).   

 

In summary, correlation of variations in IBRD and opal content with the benthic δ
18

O stack 

and orbital parameters identify up to sixteen ~40-kyr-duration cycles within six major 

lithological cycles during the Early Pliocene (4.3 to 3.3 Ma) (cycles 13-18 Figure 3.3). This is 
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followed by forty-two ~20-kyr-duration cycles, within twelve longer-duration lithological 

cycles (cycles 1-12 Figure 3.3).  

 

3.4.3. Implications for an East Antarctic contribution to sea level during the warm 

Early Pliocene 

Diatom-rich mud deposition at Site U1361 typically occurs during Early Pliocene 

interglacials when benthic δ
18

O values are at or below Holocene levels. Moreover, prolonged 

intervals of diatom-rich mud deposition combined with a lack of turbidity current activity 

correlate with successive isotopically-depleted 40-kyr cycles of low amplitude variance in 

benthic δ
18

O values, representing extended periods of reduced EAIS volume, associated with 

global mean sea-level >+10 m above Holocene.  Such an interpretation is supported by 

geochemical provenance analysis of detrital material from Site U1361 (Cook et al., 2013), 

geological reconstructions of Pliocene ice volume and global sea-level based on 

backstripping of shallow-marine sedimentary sequences in New Zealand and Virginia (Miller 

et al., 2012) as well as a calibration of the benthic δ
18

O record (Naish and Wilson, 2009), that 

estimate global mean sea-levels were up to ~+20 m with amplitudes of 5-10 m during the 

warmest and least variable glacial-interglacial δ
18

O cycles between 4.3 to 3.2 Ma.  Given, (1) 

geochemical provenance of detrital material along the Wilkes Land margin documenting 

retreats several hundred kilometres inland with the release of ice-berg armadas (Williams et 

al., 2010; Cook et al., 2013), (2) the AND-1B sediment core indicates SST of ~4°C and an ice 

free Ross-Sea
 
(Naish et al., 2009) with significantly reduced WAIS (i.e. <3 m sea-level 

equivalent (Pollard and DeConto, 2009), (3) a lack of geologic evidence for major continental 

glaciation in the Northern Hemisphere (Jansen et al., 1996; Haug et al., 1999; Brigham-Grette 

et al., 2013), and (4) that models imply Greenland deglaciation (i.e. <7 m sea-level equivalent)
 

(Dolan et al., 2011), this thesis data support orbitally-induced oscillations in the EAIS 

contributed up to +10 m sea-level equivalent ice volume during the Pliocene. 

 

3.4.4. Significance of the Site U1361 iceberg rafted debris orbital signature 

Although, the marine sediment core recovered by the ANDRILL Program from the Ross Sea 

region provided the first direct evidence that the WAIS periodically advanced and retreated 

across the continental shelf was paced by obliquity during the Pliocene prior to ~3 Ma (Naish 

et al., 2009), sub-glacial erosion surfaces in the ANDRILL core associated with ice advance 

have raised the possibility of missing cycles, particularly after 3.1 Ma. The continuous Site 

U1361 record presented here confirms the dynamic response, not only of the WAIS but also 
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the marine margins of the EAIS, to obliquity forcing during the warm Pliocene prior to the 

onset of southern high-latitude cooling at 3.3 Ma.  

 

Geological records (Naish et al., 2009; McKay et al., 2012; Cook et al., 2013)
 
and model 

simulations (Pollard and DeConto, 2009) of recent and past warm climates highlight the 

sensitivity of the marine-based portions of the Antarctic ice sheets to ocean warming. 

However, the mechanism by which the coastal ocean warms and destabilises marine 

grounding lines in response to obliquity forcing remains elusive. It has been proposed that 

changes in the intensity and the meridional distribution of mean annual insolation controlled 

by obliquity may have a profound influence on the position and strength of the Southern 

Hemisphere zonal westerly winds (Naish et al., 2009). Indeed, an aerosolic dust record from 

the Southern Ocean is dominated by ~40-kyr cycles in iron and leaf-wax biomarkers prior to 

~0.8 Ma (Martínez-Garcia, et al. 2011). Moreover, prior to ~3.3 Ma the southward expansion of 

the westerly wind-field over the Antarctic circumpolar convergence zone under a reduced 

meriodional temperature gradient, has been associated with a reduced sea-ice field (McKay et 

al., 2012), and the upwelling of warm, CO2-rich CDW (Toggweiler et al., 2006; Martinson et 

al., 2008) onto the continental shelf with consequences for the stability of marine grounding-

lines (Pritchard et al., 2012). The dominance of precession-paced variability and the 

corresponding reduction in obliquity influence revealed by IBRD data after ~3.3 Ma is 

interpreted to reflect a declining influence of oceanic forcing on EAIS stability and extent, as 

the southern high latitudes cooled. Both model and geological reconstructions imply that past 

Antarctic Ice Sheet expansion is closely linked with development of the sea-ice field 

(DeConto et al., 2007)
 
potentially resulting in northward migration of westerly winds and 

Southern Ocean fronts (McKay et al., 2012). In addition, sea ice expansion after 3.3 Ma 

likely restricted upwelling and ventilation of warm CO2 rich CDW at the Antarctic margin 

acting to further enhance climate cooling, which has been linked in models to a change in 

frequency of the orbital response of polar ice sheets (Huybers and Denton, 2008). Under such 

a scenario, a warmer climate state during the Early to mid-Pliocene with higher atmospheric 

CO2 concentration (Seki et al., 2010), required less insolation to melt sea ice, thus extending 

the austral summer with its duration more strongly influenced by mean annual insolation 

controlled by obliquity (Figure 3.3d and 3.3.1.5), rather than seasonal insolation intensity 

controlled by precession (Huybers and Tziperman, 2008).   Late Pliocene cooling raised the 

melt threshold such that the duration of the melt season was restricted to times of austral 

summer insolation maxima controlled by precession (Figure. 3.3c and 3.5), with extensive 
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sea-ice cover for much of the summer season limiting the influence of CDW on marine 

grounding line instability. This supports the notion that the length of the summer melt season 

is controlled by the overall climate state, and is the primary influence on the frequency 

response of the EAIS to orbital forcing (Naish et al., 2009).  

 

The precession and eccentricity signal observed in the IBRD data is consistent with a 

reduction of obliquity variance in the benthic δ
18

O LR04 stack at ~3.5 Ma (Meyers and 

Hinnov, 2010 Figure 1.C), which coincides with an obliquity node in the astronomical 

solution (Meyers and Hinnov, 2010 Figure 1.D). This is followed by a gradual reemergence 

of a 40-kyr signal at ~3.0 Ma in the benthic δ
18

O LR04 stack, which most likely reflects a 

similar re-emergence of strong obliquity forcing in the orbital records and possibly also a 

direct response of the developing Northern Hemisphere continental ice sheets to obliquity 

forcing. Thus, it is possible that precession-driven, anti-phase oscillations in both hemispheric 

ice volumes may have cancelled out in globally integrated proxy records after 3.3-2.8 Ma 

(e.g., Raymo et al., 2006). However, the mechanistic argument of Raymo et al., (2006) that 

the intensity of summer insolation was a direct control on surface melt of a dynamic EAIS 

with a terrestrial ablation margin, is not supported by this study. The geometry of strata on 

the Wilkes Land continental shelf indicate that the EAIS periodically expanded towards the 

continental shelf edge during glacial maxima in the Pliocene (Eittreim et al., 1995)
 
and 

suggests most Antarctic ice volume variance at this time was growth and retreat of the 

marine-based ice sheets. Indeed, iceberg calving appears to be associated with sea-ice melt as 

evidenced by the covariance of IBRD peaks with facies transitions going from relatively 

colder glacial maxima conditions to warmer interglacial minima conditions as implied by 

open ocean primary productivity (opal) in our data. This is particularly true for the Late 

Pliocene from 3.3 to 2.5 Ma, but during the Early Pliocene, when the sea ice field was 

reduced and the ice sheet was in more direct contact with oceanic influences, (1) iceberg 

calving occurred more regularly within both glacial and interglacial facies. Based on the 

significant decrease in IBRD after 2.5 Ma (Figure 3.3 and 3.4) and (2) Southern Ocean 

records inferring colder SSTs (Escutia et al., 2009; McKay et al., 2012), it is also inferred that 

the EAIS started to stabilize and became less sensitive to ocean induced melting compared to 

the WAIS (Pritchard et al., 2012). Furthermore, the fully-glaciated East Antarctic ice volume 

potentially fluctuating by a similar magnitude to that of Late Pleistocene glacial cycles (e.g. 

15-20 m ice volume equivalent sea level) (Pollard and DeConto, 2009).  
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Notwithstanding this relative stability of the EAIS, model results suggest that ~20-kyr-

duration fluctuations in the total Antarctic ice volume (i.e., including WAIS) may have 

contributed up to 15 m of the total amplitude during Late Pleistocene glacial-interglacial 

cycles
 
(Pollard and DeConto, 2009). Given the 

18
O composition of Antarctic ice, that 

contribution could have offset a larger out-of-phase precessional change in Northern 

Hemisphere ice volume (e.g. 20-40m) resulting in an enhanced obliquity signal in the 

globally integrated sea-level and ice volume proxy records after 3.0-2.8 Ma (e.g., Raymo et 

al., 2006). Alternatively, direct obliquity forcing of the Northern Hemisphere ice sheet is 

supported by proxy evidence including ice rafted debris records (Martínez-Garcia et al., 2011)
 

and a recent dust flux record (Naafs et al., 2012), suggesting that Northern Hemisphere ice 

sheet variability (marine-based margins) and climate primarily responded to obliquity under a 

relatively warm Northern Hemisphere climate state. Northern Hemisphere cooling and ice 

sheet growth across the mid-Pleistocene transition ~0.8 Ma has been implicated in a similar 

switch to precession and eccentricity-paced glaciations, albeit by different mass balance 

forcing mechanisms (Huybers, 2008). In contrast, our results imply that Southern Ocean sea-

ice feedbacks caused a fundamentally different response of the marine-based sectors of the 

EAIS under a cooler Late Pliocene/Early Pleistocene climate state, characterized by a 

dominance of precession-paced variability.  

 

3.5. CONCLUSIONS  

In summary, the data presented in this chapter reveals ~40-kyr cyclic variations in the extent 

of the EAIS paced by obliquity during the warmer-than-present climate of the Pliocene 

between 4.3 to 3.3 Ma. However, after 3.3 Ma a transition to 20-kyr precession cyclicity 

dominates the EAIS. Stabilization of the marine-based margin of the EAIS between 2.8 and 

2.5 Ma suggests a declining influence of oceanic forcing as the high latitude Southern Ocean 

cooled and a perennial summer sea-ice field developed to limiting basal melting of the 

marine-based margins of the EAIS.   

 

With atmospheric CO2 concentrations and global surface temperatures projected to remain 

above 400 ppm and >+2°C beyond 2100 (Meinshausen et al., 2009), the results suggest that 

the marine margins of EAIS ice sheet, as well as the marine-based WAIS, will become 

increasingly susceptible to ocean-forced melting providing the potential for widespread mass 

loss raising sea-level by meters over the coming centuries. 
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CHAPTER 4 

 

BOTTOM WATER INFLOW INTO THE SOUTHWEST PACIFIC OCEAN DURING 

THE PLIOCENE-EARLY PLEISTOCENE  

 

Benthic stable isotope (oxygen, carbon) and grain size (sortable silt) records spanning the 

Pliocene to Early Pleistocene from Ocean Drilling Program (ODP) Site 1123, located in the 

southwest Pacific Ocean, are presented in this chapter. The benthic δ
18

O and δ
13

C records 

display similar long-term transitions at 3.33 Ma and 2.6 Ma that coincide with the major 

climate transition in both the Southern and Northern Hemispheres. Site 1123 benthic δ
18

O 

record is consistent with the globally integrated stack, LR04, but also demonstrates a 

temperature component which is consistent with previously established stable isotope records 

recovered from other Southern Ocean sites. Size sorting of silt (sortable silt) implies a 

potential increase in deep water inflow into the Pacific after 3.3 Ma as a consequence of sea 

ice development around the Antarctic margin that is characterised by relatively low δ
13

C 

composition, reflecting the enhanced contribution of Circumpolar Deepwater (CDW) with a 

relatively stronger southern sourced signature. This coincides with invigorated zonal 

circulation patterns in mid latitudes suggesting enhanced interaction of the westerly winds 

over the northern limb of the Antarctic Circumpolar Current (ACC). After 2.6 Ma benthic 

δ
13

C was lowest (0.044‰) with deep water gradients between the equatorial and southwest 

Pacific reduced, and together with sortable silt values imply an overall decrease in Southern 

Ocean ventilation. This decrease in Southern Ocean ventilation coincides with a decrease in 

atmospheric CO2 levels to consistently reaching pre-industrial values, and with associated 

climate feedbacks driven from the southern high-latitudes potentially pre-conditioned the 

onset of major Northern Hemisphere glaciation.         

   

4.1. INTRODUCTION 

Deep ocean circulation of waters originating in high latitudes has important consequences for 

Earth’s meridional distribution and transport of heat, salt, gases and nutrients. Integral to this 

circulation system are deep western boundary currents (DWBC) that transport water formed 

in high latitudes towards the equator. Ocean Drilling Program (ODP) Site 1123 sits in the 

path of the southwest Pacific DWBC through which deep water enters the Pacific Ocean 

Basin from the Southern Ocean. It serves as the largest inflow of deep Antarctic sourced 

bottom water into the global ocean. The intensity of inflow into the southwest Pacific has 
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been demonstrated to conicinde with glacial-interglacial cycles, inferred to be in response to 

changing AABW production and ice sheet expansion during the Miocene and Late 

Pleistocene (Hall et al., 2001; Hall et al., 2003). A prominent feature of global climate during 

the warm Early Pliocene from ~4.4 to 3.0 Ma is a reduced Equator-to-pole surface 

temperature gradient in both the Pacific and Atlantic Ocean basins, which was significantly 

smaller than present day (Pliocene Pacific, <10°, Atlantic, ~5°; modern Pacific, 16°, Atlantic, 

8-10°) (Chandler et al., 1994; Crowley, 1996; Fedorov et al., 2013). North Atlantic records 

imply a close coupling between deep ocean changes and SST during this time (Ballantyne et 

al., 2010). Therefore, observing changes in the flow regime entering the southwest Pacific 

across ODP Site 1123 may provide insights concerning the role that high latitude/Antarctic 

climate forcing has on mid to low-latitude climate.          

 

In the Southern Ocean today, upwelling of Circumpolar Deep Water (CDW) along the 

Antarctic divergence ventilates the deep ocean by releasing dissolved CO2 from depth to the 

atmosphere (Jacobs, 1991). Ventilation of the deep ocean also requires the production of 

oxygen-rich, cold saline bottom waters from around the Antarctic margin and the Arctic 

associated with sea-ice fields and polynya formation. During glacial periods, extended sea ice 

cover is thought to promote the formation of dense, cold water, that enhances stratification of 

the surface ocean and decreases upwelling and ventilation of the deep ocean (Jacobs, 1991; 

Bostock et al., 2013). While such processes have been demonstrated to have occurred on 

glacial-interglacial time scales (e.g., Anderson et al., 2009; Skinner et al., 2010), long-term 

changes in Antarctic surface conditions in regards to its icescape (configuration of ice sheets, 

ice shelves, sea ice, etc.) have potentially played an important role in the global trend of Late 

Pliocene-Early Pleistocene cooling by altering oceanic circulation and ventilation and setting 

the stage of large-scale Northern Hemisphere glaciation during the Late Pleistocene (McKay 

et al., 2012).     

 

In this chapter, benthic foraminiferal stable isotope records (δ
18

O and δ
13

C) and sedimentary 

data from ODP Site 1123 (Figure 4.2a) are investigated to help identify if changes in 

Antarctic ice volume (such as the discussed in Chapter 3 of this thesis) had implications for 

Southern Ocean ventilation and deep water inflow into the Pacific Ocean basin during the 

Early Pliocene to Early Pleistocene.  

 

4.1.1. ODP Site 1123 and bottom water inflow into the southwest Pacific Ocean 
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In the southwest Pacific Ocean, the Campbell Plateau and the Chatham Rise serve as 

important topographic control on the positioning of two major surface ocean boundary fronts, 

the Subantarctic Front (SAF) and the Subtroptical Front (STF) (Figure 4.1a). The STF is 

commonly defined as the northern boundary of the Southern Ocean as it acts as the boundary 

between (1) Subtropical Surface Waters to the north that are characterized as warm, salty, and 

nutrient-poor and (2) cool, relatively less salty, nutrient-rich Subantarctic Surface Waters to 

the south (Deacon, 1937; Orsi et al., 1995; Belkin and Gordon, 1996; Nodder and Northcote, 

2001). The SAF marks the northern boundary of the eastward flowing (ACC) and is 

constrained by the southwest margin of the Campbell Plataeu (Orsi et al., 1995). Flowing 

along and around south eastern margin of New Zealand, the “cold” Southland Current (SC) is 

separated from the “warm” East Cape Current (ECC), east of New Zealand by the Chatham 

Rise east at which of which point they merge to form the South Pacific Current (SPC) 

(Stramma et al., 1995). It is this flow pattern North and South of the Chatham Rise that 

constrains the STF to the rise crest. There, seasonal movement of  the STF are only up to 2° 

latitude, whereas, in the open ocean seasonal migrations of up to 6° of latitude are observed  

(Chriswell, 1994; Kawahata, 2002; McCave et al., 2008).  Minimal latitudinal variability of 

the STF in the Chatham Rise region appears to also hold true over longer-term climate cycles 

(Fenner et al., 1992; Nelson et al., 1993; Weaver et al., 1998; McCave et al., 2008).     

   

 

Figure 4.1. Location of Site 1123 on the North Chatham drift and in the path of the DWBC 

(a) (after Hall et al., 2001). The orange dotted line infers the general location of the 
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Subtropical Front (STF). Other notable sediment transport and depositional features are the 

Solander Channel/Fan complex (SC), the Bounty Channel/Fan complex (BC) and Hikurangi 

Plateau (HP) and Chennel (HC). Hydrographic profile from the Valerie Passage (station 

R631, 41°S, 167°W) showing features of the main water masses including Antarctic 

Intermediate Water (AAIW), North Pacific Deep Water/Upper Circumpolar Deep Water 

(NPDW/UCDW), Lower Circumpolar Deep Water (LCDW) with the salinity maximum a 

signature of North Atlantic Deep Water (NADW) and oxygen maximum a signature of 

Antarctic Bottom Water (AABW) (b) (after McCave et al., 2008). 

 

Site 1123 at 3290 m water depth is located just north of the Chatham Rise in the path of the 

DWBC (Figure 4.1a). Since the early Miocene, near continuous deposition has occurred as 

the DWBC has been re-depositing sediment as drifts derived from the Solander Fan/Complex, 

eastern side of the Campbell Plateau, Bounty Fan,  and southern Chatham Rise along the 

eastern and northern side of the Rise (Carter et al., 2004). Comparisons of sediment flux 

between the Bounty Fan (ODP Site 1122) and Site 1123 suggests that the shallower depth of 

Site 1123 prevents a direct sediment pathway connection with the Bounty Fan (Carter et al., 

1999). A significant volume of sediment from the North Island is suggested to be transported 

via the subtropical inflow of the ECC with additional aeolian input from westerly winds 

depositing dust derived from New Zealand and Australia (Hall et al., 2001). It is along the 

pathway of the southwest Pacific DWBC and at depth between 1200 m to 4800 m, 35-40% of 

cold bottom water formed in high latitudes enters the Pacific Ocean (Warren, 1973; Schmitz, 

1995), making this the largest volume transport of bottom water into any of the three ocean 

basins (Warren, 1973; Orsi et al., 1995; Carter et al., 1996; Rintoul et al., 2001). Site 1123 is 

currently situated at a depth shallow enough to not undergo erosive current winnowing by 

intense bottom current flow (KE are < 1 to 2 cm
2 

s
-2

) while also above the critical threshold of 

bed sheer stress threshold (KE 0.32 cm
2 

s
-2

) for deposition of particle sizes >10µm (McCave 

and Hall, 2006), and positioned well northward of the high eddy turbulence associated with 

the modern ACC in this region (KE up to 80 cm
2 

s
-2

) (Carter and Wilkin, 1999).  

 

Due to lateral mixing in the water column, the abyssal current entering the southwest Pacific 

is a hybrid of AABW and LCDW, a variety of CDW (Kroopnick, 1985; Carter et al., 2004b: 

McCave et al., 2008). The signature of LCDW is a salinity maximum (34.70-34.75 psu) (Orsi 

et al., 1999; Carter et al., 2009) reflecting the NADW component that enters the Southern 

Ocean in the Atlantic sector. The hybrid AABW component of bottom water entering the 

Pacific Ocean via the DWBC is sourced from a mixture of Ross Sea Bottom Water (RSBW) 

and Adélie Land Bottom Water (ALBW) (Orsi et al., 1999; McCartney and Donohue, 2007; 
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McCave et al., 2008; Williams et al., 2008) (Figure 4.1b). This delivery of bottom water into 

the Pacific Ocean is mainly through the transport of CDW by the wind-driven and 

bathymetrically steered ACC (Orsi et al., 1995; Rintoul et al., 2001). North of the Chatham 

Rise, extending south of the Equator and at shallower depths (~140-2900 m), low-

oxygen/high-nutrient waters that originate in the North Pacific (PDW) mix with southern-

sourced CDW. UCDW, in part, is created along this southward flow path from the mixing of 

PDW and CDW (Callahan, 1972; Rintoul and Bullister, 1999; Bostock et al., 2011). Site 

1123 presently sits at 3290 m water depth, near the base of UCDW/PDW water masses, 

straddling the upper boundary of the deeper LCDW (McCave et al., 2008).   

 

In general, benthic isotopic depth profiles spanning the last 160 kyr years demonstrate 

oxygen and carbon isotopic values have retained a constant structure of LCDW-

UCDW/NPDW-Antarctic Intermediate Water (AAIW) (Figure 4.1b) (McCave et al., 2008). 

Modern and Holocene values of benthic 
13

C at Site 1123 (~0.8‰) reflect nutrient-depleted 

UCDW/PDW whereas, relatively low 
13

C LGM (-0.6‰) values are more nutrient-enriched 

Southern Ocean sourced and reflect CDW values (McCave et al., 2008).  

 

4.1.2. Using stable carbon isotopes to identify changes in deepwater circulation 

Stable isotopes derived from benthic foraminifera are widely used to reconstruct global ice 

volume and deep sea temperatures using δ
18

O, while circulation of deep water masses can be 

traced using δ
13

C values. The carbon isotopic distribution through the modern ocean has been 

largely identified through the GEOSECS program (Kroopnick, 1985). Three main factors 

control the δ
13

C of dissolved inorganic carbon (DIC) in deep water. Firstly, the preformed 

δ
13

C value in the source region is determined by the mixed layer properties in high-latitude 

surface waters, i.e., the main deep water production regions, which are influenced by 

numerous processes include upwelling, surface water productivity (e.g., sea ice cover), ocean 

and atmospheric gas exchange, and mixing of intermediate and deep water (Broecker et al., 

1982; Charles and Fairbanks, 1990; Hodell and Venz-Curtis, 2006).  

 

Secondly, organic matter is remineralized (oxidized) by respiration along its flow path 

(accumulating 
12

C) resulting in a decrease in δ
13

C (nutrient enriched) value compared to the 

preformed δ
13

C. This ageing processes is considered to be much more important for the 

Pacific Ocean than compared to the Atlantic and Indian oceans (Raymo et al., 1997) as the 

North Pacific contains the most depleted values anywhere in the world oceans (Kroopnick, 
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1985). The low δ
13

C water (nutrient enriched) of the North Pacific is due to nutrient trapping 

of southern sourced Lower Circumpolar Deep Water (LCDW) upwelling at mid-depth (2000 

to 4000 m) where it warms and freshens while returning southward as Pacific Deep Water 

(PDW), at which point, it continues to accumulate nutrients along it flow path (Schmitz, 1996; 

Matsumoto et al., 2002). Thirdly, δ
13

C values can be affected by mixing with other water 

masses (e.g., Oppo and Fairbanks, 1987). For example, as PDW continues to flow southward 

towards the equator, whereby it mixes with LCDW, providing the oxygen minimum, nutrient, 

and CO2 maximum signature of UCDW (Figure 4.1.b) (Callahan, 1972; Rintoul and Bullister, 

1999).  

 

Additional influences on δ
13

C are known to occur in areas with high productivity in surface 

waters which can lower the δ
13

C through the decomposition of 
13

C-depleted organic matter in 

phytodetritus layer (Mackensen et al., 2001). This situation has been associated with 

epifaunal benthic foraminifera (i.e., Cibicidoides wuellerstorfi and Planulina wuellerstorfi) in 

the South Atlantic sector of the Antarctic Polar Front (Mackensen et al., 1993, 2001).  

 

In general, the highly saline and nutrient-depleted bottom waters that largely form around the 

Labrador and Greenland seas, North Atlantic Deep Water (NADW), contain relatively high 

δ
13

C values due to long exposure time in surface waters prior to sinking. Whereas, nutrient-

enriched Antarctic bottom waters (AABW) sourced around the Antarctic margin, AABW, 

largely formed in the Weddell and Ross Seas as well as in the Adélie depression along the 

Wilkes Land margin, and have relatively low δ
13

C values (e.g., Hodell and Venz-Curtis, 

2006). The lower values for AABW are generally related to the recirculation of old deep 

water (i.e., NADW) and limited equilibration with the atmospheric due to processes related to 

sea ice cover and ice sheets – i.e., reduced ventilation in the Southern Ocean (Hodell and 

Venz-Curtis, 2006). 

   

4.1.3. Southern Ocean ventilation and the G-I cycle 

The ocean is the world’s largest carbon reservoir and plays an integral role in determining 

atmospheric CO2 content (Sharp, 2007). Simplistically, the deep ocean becomes enriched in 

CO2 through the respiration of organic matter. Upwelling of these CO2 rich deep waters in the 

Southern Ocean along the southern boundary of the ACC allows for ventilation of CO2 into 

the atmosphere.  Ventilation of the Southern Ocean can best be described through a series of 

positive feedbacks involving the mid-latitude westerly winds, atmospheric temperatures and 
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overturning of CO2 rich deep water in the Southern Ocean. Such feedbacks are commonly 

suggested to explain the lead of Antarctic temperatures over CO2 at terminations (Petit et al., 

1999; Jouzel et al., 2007) and shifts to δ
13

C minimum in the deep ocean (Toggweiler et al., 

2006).  

 

The pathway of ACC is strongly coupled to the ocean’s bathymetry and constrained at its 

northern limit by the tip of South America (56°S) and Campbell Plateau (56°S). However, the 

Southern Hemisphere westerly winds, which can shift due to changes in the thermal contrast 

in the middle of the atmosphere, drive the ACC vigour and thus influences Southern Ocean 

overturning. During glacial periods lower atmospheric CO2 levels (Petit et al., 1999; Jouzel et 

al., 2007) allow for contrast between the upper troposphere (pocket of warm air near the 

surface) and the cold air of the stratosphere to be relatively smaller when compared to 

interglacial times containing higher atmospheric CO2 and increasing the temperature gradient 

(Toggweiler et al., 2006). The lower contrast in temperature (during glacials) between the 

upper troposphere and stratosphere results in a weakened wind field. Therefore, the strongest 

westerly winds in the Southern Hemisphere are hypothesized to have been located in a more 

northward position (7-10°) during glacials, and thus interacting less directly over the ACC, 

which is effectively locked in placed by bathymetric constraints, potentially resulting in less 

overturning in circulation of CO2 rich deep water (Toggweiler et al., 2006; Toggweiler and 

Russell, 2008). Such a situation of less overturning may allow for more sequestering of CO2 

as upwelling in the Southern Ocean reduces and the intensity of NADW slows as the 

Northern Hemisphere cools. In the high latitudes, the production of sea ice is also considered 

to have acted as a physical cap reducing ventilation (Figure 4.1a) (Stephens and Keeling, 

2000; Toggweiler et al., 2006; Hodell and Venz-Curtis, 2006). 
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Figure 4.2. Schematic diagrams of deep ocean ventilation in the Pacific sector of the 

Southern Ocean during (a) glacial and (b) interglacial periods (after Toggweiler and Russel1, 

2008; Bostock et al., 2013).   

 

Conversely, higher CO2 during interglacial periods increases the temperature gradient 

between the upper troposphere and stratosphere. In which case, the westerlies intensify and 

the wind field migrates southerwards into the latitudes of the ACC displacing ocean fronts 

polaward as well as enhancing circulation and overturning of CO2 rich deep waters. This 

situation, in addition to enhanced production of relatively warm saline NADW and reduced 

sea ice fields, amplifies the warming by ventilating the deep ocean (Figure 4.1b) (Toggweiler 

et al., 2006; Toggweiler and Russell, 2008). Geological evidence from deep sea sediment 

records since the LGM from both the Southern Ocean and around the Antarctica margin 

supports increased Southern Ocean ventilation during termination events (Anderson et al., 

2009; Skinner et al., 2010; Bostock et al., 2013). The recent WAIS Divide ice core infers a 

close coupling of a warming WAIS during times of increased wind stress over the Southern 

Ocean and ventilation as the sea ice field was reduced during austral summer warming 

(WAIS Divide Project Members, 2013). Furthermore, a decrease in benthic δ
13

C in marine 

sediment cores spanning the past 9 myr associates the overall reduction of Northern 

Component Waters (NCW) (NADW precursor) on longer term time scales (multiple glacial 

and interglacial periods) with reduced ventilation of the Southern Ocean and acting as a 

positive feedback to drive a gradual cooling climate trend reflected in the benthic δ
18

O ice 

volume record (Hodell and Venz-Curtis, 2006). However, it is worth noting the complexity 

and limited undertstanding of these systems as some studies employing sensitivity 

experiemnets using an Earth system model with a fully coupled marine carbon cycle model 
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demonstrate shifts in both the position and intensity of the Southern Hemisphere westerlies 

only account for a minor compoenent of the large scale glacial to interglacial variations in 

atmospheric CO2 (Menziel et al., 2008). These studies suggest changes in terrestrial 

vegetation may play a stronger role in the large scale variations in atmospheric CO2 on glacial 

to interglacial time scales (Menziel et al., 2008).          

 

4.1.4. LITHOSTRATIGRAPHY 

Pliocene-Pleistocene age sediments presented in this study (~157.6 to 98.4 mbsf) correspond 

to Unit 1A and consist of successive alternations of light greenish grey to greenish grey and 

white clayey nannofossil oozes with tephra layers at 124.03 mbsf (4 cm thick), 117.15 mbsf 

(6 cm thick), and 104.7 mbsf (3 cm thick) (Carter et al., 1999). Lithological beds (1-1.5 m 

thick) are distinguishable by colour but contain minimal terrigenous compositional 

differences with gradational contacts. Tephras have sharp bases with normal grading and 

below ~90 mbsf are darker in colour due to increased diagenetic pyrite (Carter et al., 1999). 

Down core measurements of color reflectance have also been demonstrated to be a reliable 

proxy for carbonate percentage (Carter et al., 1999; Millwood et al., 2002).              

 

4.2. METHODS 

The gradual cooling trend extending from the warm Early Pliocene at 4.3 Ma through the 

reestablishment of major Antarctic ice sheet expansion during the MIS M2 glaciation (3.3 Ma) 

(e.g., Zachos et al., 2001; Naish et al., 2009; Escutia et al., 2009; McKay et al., 2009; Chapter 

3 of this thesis) and into the Late Pliocene cooling after 3.33 Ma is the time interval that has 

been the focus of the sampling strategy from Site 1123 Hole B. Sediment samples were taken 

for every 5-10 cm between 142 to 98.40 mbsf (~4.3 to 3.0 Ma) giving a temporal resolution 

between 3-4 kyr (unpublished age model of Wilson et al., personal communications). 

Whereas, a coarser resolution of sampling with an average temporal spacing of ~6 kyr was 

included from 157.6 to 142 mbsf in order to extend the grain size record further back in time. 

Due to time constraints isotope data has not yet been obtained from 157.6 to 142 mbsf. Grain 

size analysis of the sortable silt fraction was carried out on sediment samples in order to 

understand variability of paleocurrent intensity across the core site and extends from ~4.7 to 

3.0 Ma (e.g., Hall et al., 2001; Hall et al., 2003; McCave et al, 2008). The carbonate fraction 

was derived from a colour reflectance regression against carbonate measurement on discrete 

samples (Carter et al., 1999; Millwood et al., 2002). 
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Benthic foraminifera Uvigerina spp. and Cibicides spp. were recovered when possible in 

order to construct a benthic stable isotope stratigraphy from 142 to 98.40 mbsf. However, 

there are two intervals in where neither species were recoverable (and or other calcareous 

species) are between 112.00 to 111.60 mbsf and 111.60 to 110.60 mbsf lasting ~12-kyr and 

~30-kyr respectively. The benthic stable isotope records (oxygen and carbon) obtained in this 

study temporally extend previously published, younger data set from Site 1123, that  extends 

from 3.0 to present day (Hall et al., 2001; Harris, 2002). This expanded time series allows for 

the assessment of orbital-scale and longer-term trends in ice volume as well as Pacific Ocean 

and interbasinal δ
13

C gradients extending from the warm Early Pliocene (4.3 Ma) into the 

bipolar Pleistocene (~1.24 Ma), in particular the mid-Pliocene cooling of the EAIS (Chapter 

3) and the WAIS (Naish et al., 2009; McKay et al., 2012)    

 

4.2.1. Age model 

The age model used in this study comes from revised unpublished magnetostratigraphic 

interpretations summarized in Table 4.1 (Wilson et al., unpublished data), with additional 

tuning of the benthic δ
18

O stratigraphy from Site 1123 to the LR04 δ
18

O benthic stack with 

Analyseries software (Paillard et al., 1996; Lisiecki and Raymo, 2005). The revised metres 

composite depth scale of Hall et al., (2001) and Harris (2002) was employed. Visual 

comparison between the benthic δ
18

O record from Site 1123 to the LR04 stack infers that the 

oxygen isotope record at Site 1123 is in good agreement with other Pacific Ocean records, 

ODP sites 677, 846 and 849, sites that served as three of the seven high-resolution initial 

alignment targets during compilation of LR04. Magnetostratgiraphy, according to the rMCD 

depth scale, suggests near-continuous deposition and relatively uniform depositional rate with 

an average sedimentation rate of 3.47 cm/k.y (Figure 4.3; Table 4.1).  
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Table 4.1. Unpublished age/depth tie points from magnetostratigraphic interpretations for 

Site 1123 (courtesy of Gary Wilson) and following rMCD corrections by Hall (2002). 

Magnetic polarity reversal ages of Lisiecki and Raymo (2005) (i.e., LR04) are provided with 

linear sedimentation rate (LSR) (∆rMCD/∆Ma). 

Chron (base) Core 
Core/Secton/ 

Depth (cm) 

MBSF 

(m) 

MCD 

(m) 

rMCD 

(m) 

Age 

(Ma) 

LR04 

LSR 

(cm/k.y.) 

C1r.1r (MATUYAMA) U1123C 1123C-5H3-145 41.95 44.85 47.57 1.075  

C2n (Olduvai) u1123B 1123B-8H4102 71.52 74.62 77.34 1.968 3.334 

C2r.2r (MATUYAMA) u1123B 1123B-10H 4-112 85.02 89.84 92.56 2.608 2.378 

C2An.1n (GAUSS) u1123B 1123B-12H 4-0 102.90 109.84 112.56 3.045 4.577 

C2An.1r (Kaena) u1123B 1123B-12H 4-120 104.10 111.04 113.76 3.127 1.463 

C2An.2n (GAUSS) s1123B 1123B-13H 1-118 109.08 116.24 118.96 3.210 6.265 

C2An.2r (Mammoth) s1123B 1123B-13H 4-38 112.78 119.94 122.66 3.319 3.394 

C2An.3n (GAUSS) s1123B 1123B-14H 3-59 120.99 129.59 132.31 3.588 3.587 

C2Ar (GILBERT) s1123Bs 1123B-16H 2-59 138.49 150.51 153.23 4.174 3.570 

C3n.1n (Cochiti) s1123Bs 1123B-16H 4-65 141.55 153.57 156.29 4.306 2.318 

C3n.1r (GILBERT) s1123Bs 1123B-17H 5-32 152.22 164.16 166.88 4.478 6.157 

C3n.2n (Nunivak) s1123Bs 1123B-17H7-35 155.25 167.19 169.91 4.642 1.848 

C3n.2r (GILBERT) S1123Bs 1123B-18x3-144 159.84 171.78 174.50 4.807 2.782 

* Metres Below Sea Floor (MBSF) 

*Metres Composite Depth (MCD)  

*revised Metres Composite Depth (rMCD) 
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Figure 4.3. Age-depth plot and magnetostratigraphy tie points from unpublished age model 

(Table 4.1) and the previously published age model of Harris (2002). 

 

4.2.2. Stable isotopes  

Approximately 20g of samples from 394 intervals were processed for stable isotope analysis 

on benthic foraminifera. Data was collected at Stanford University’s Stable Isotope 

Biogeochemistry Lab using a Thermo Finnigan Kiel III Carbonate Device with a typical 

precision of measurement <0.05‰ for oxygen and <0.03‰ for carbon. Foraminifera were 

hand-picked from the >63 µm size fraction, brushed clean and manually crushed. Primary 

calibration to PDB standard was obtained through NBS-19, assuming δ
18

O = -2.20‰ and 

δ
13

C = +1.95‰.  

 

Previous oxygen and carbon stable isotope analyses from Site 1123 were obtained 

predominantly on the shallow infaunal Uvigerina in addition to epifaunal Cibicides (Hall et 

al., 2001; Harris, 2002; Hall et al., 2003; Russon et al., 2009; Elderfield et al., 2010). 

Cibicides does not appear continuously through our sampled intervals while Uvigerina does, 

providing a more complete isotope stratigraphy record. However, some authors have 

suggested the potential for Cibicides to form its tests closer to the oxygen isotopic 

equilibrium compared to Uvigerina. In order to determine if there is an isotopic difference 

between species from the same sampled interval, 125 samples were analysed in which 

isotopes for both species were measured.  
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Figure 4.4. Isotopic offsets between paired analyses of Cibicides and Uvigerina at Site 1123. 

(a) Histogram of Δδ
13

C Cibicides-Uvigerina (mean = 0.92‰ ± 0.27‰). (b) Histogram of 

Δδ
18

O Cibicides-Uvigerina (mean = -0.71‰ ± 0.21‰). (c) Scatter plot of individual paired 

analysis of Δδ
13

C Cibicides-Uvigerina vs. Δδ
18

O Cibicides-Uvigerina, showing that 

variations in the carbon and oxygen isotopic offsets between species are not related to each 

other. 

 

The mean isotopic differences (Cibicides – Uvigerina) are -0.71‰ ± 0.21‰ for δ
18

O and 

0.92‰ ± 0.27 for δ
13

C (Figure 4.4a and b). Precision of Uvigerina samples is ± 0.075‰ for 

δ
18

O and ± 0.12‰ for δ
13

C (n = 42). Precision of Cibicides samples is ± 0.075‰ for δ
18

O and 

± 0.19‰ for δ
13

C (n = 17). Therefore, most of this scatter in between species offsets is the 

result of analytical error with additional error from a combination of true variability in the 

isotopic difference between species, as well as individual specimen, impurities within the test 

and the possibility of bioturbation having mixed together specimens from different times. 

However, cross plots indicate that there is no evidence for a systematic relationship of 

oxygen and carbon isotopic offsets between species (Figure 4.4c). The constants -0.64‰ was 

added to the δ
18

O and 0.90‰ for δ
13

C data as these values are consistent with those 

previously used widely in paleoceanographic studies (e.g., Shackleton, 1974; Duplessy et al., 

1984; Mix et al., 1995; Elderfield et al., 2012) and with measured offsets (Figure 4.4). Figure 

4.4 displays a crossplot of the data that fits the equation Uvigerina δ
13

C = Cibicides δ
13

C-0.86 

(r
2
 = 0.56) which is consistent with an offset of 0.90‰ between species (green), and where 

0.90‰ added to Cibicides δ
13

C acts in agreement with Uvigerina δ
13

C = Cibicides δ
13

C + 
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0.04 (r
2
 = 0.56) (blue). In keeping with previously published data sets (e.g., Mix et al., 1995; 

Harris, 2002) δ
18

O is expressed in Uvigerina equivalent while the δ
13

C is expressed to 

approximate values from Cibicides. Furthermore, all replicated samples have been averaged. 

 

4.2.3. Comparison to pre-existing stable isotope records 

This newly compiled benthic stable isotope records obtained from Site 1123 in this study can 

be compared to pre-existing benthic stable isotope records in order to observe interbasinal 

changes in benthic δ
13

C. Several sites exist that have continuous records extending from the 

warm Early Pliocene and into the Early Pleistocene (4.3 to 1.24 Ma). These include records 

recovered from the North Atlantic (ODP Site 607), South Atlantic (ODP sites 704 and 1090), 

South Pacific (MV0502-AJC), and equatorial Pacific (ODP Site 849). Stable isotope values 

from all sites are interpolated/smoothed to an equal time step of 10-kyr, consistent with 

previously published compilations of Hodell and Venz-Curtis (2006) and Waddell et al., 

(2009).   

 

The geographic location of isotope records discussed in this chapter are shown in Figure 4.5. 

North Atlantic Site 607 is located on the western flank of the Mid-Atlantic Ridge and is 

bathed by lower NADW (Raymo et al., 1990). South Atlantic ODP sites 704 and 1090 were 

combined to create a single record inferring change in the CDW composition. ODP Site 704 

is located on the Meteor Rise while ODP Site 1090 is on the Agulhas Ridge (Hodell and 

Venz, 1992; Venz and Hodell, 2002). Bathed by PDW, equatorial Pacific ODP Site 849 is 

located on the eastern flank of the East Pacific Rise (Mix et al., 1995). Core MV0502-4JC 

was recovered from the southern edge of the southwest Pacific Basin near the Eltanin 

Fracture Zone within the subantartic at depth in which lower CDW contains an AABW 

signature (Waddell et al., 2009). Core site locations, depths and dominant water masses at 

each site are summarized in Table 4.2.      
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Figure 4.5. Map showing the locations of existing benthic isotope records that are compared 

to Site 1123.  

 

Table 4.2. Location, water depth and water mass association of stable isotope records 

discussed in this study.  

Site/Core Location 
Water 

Depth 
Water Mass Reference 

ODP 607 
41°00'N, 33°37'W         

(North Atlantic) 
3427 m lower NADW Raymo et al., (1990) 

ODP 704 
46°53'S, 7°25'E            

(South Atlantic) 
2532 m CDW Hodell and Venz (1992) 

ODP 1090 
42°55'S, 8°54'E           

(South Atlantic) 
3702 m lower CDW Venz and Hodell (2002) 

ODP 1123 
41°47.2'S, 171°29.9'W 

(Southwest Pacific) 
3290 m upper CDW 

Harris (2002) (2.0 to 2.9 Ma)  

this study (2.9 to 4.3 Ma) 

ODP 849 
0°11'N, 110°31'W 

(equatorial Pacific) 
3850 m PDW Mix et al., (1995) 

MV0502-AJC 
50°20'S, 148°08'W  

(South Pacific) 
4286 m  lower CDW Waddell et al., (2009) 

 

4.2.4. Sortable silt analysis  

The percentage of terrigenous mean grain size between 10-63 µm from 529 samples is used 

as a proxy for near-bottom paleocurrent activity and referred to as sortable silt (McCave et al., 

1995). Silt coarser than 10 µm has been shown to display size sorting in response to 

hydrodynamic processes, while terrigenous silt <10 µm acts in a cohesive behaviour 
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(McCave et al., 1995). Miocene and Pleistocene age sediments from Site 1123 have 

demonstrated that increases in sortable silt covary with glacial periods, and has been 

interpreted as representing increases in paleocurrent intensity during glacial maxima (Hall et 

al., 2001; Hall et al., 2003).  

 

Following the methodology of McCave et al., (1995) and Bianchi et al., (1999) sample 

preparation consisted of the removal of carbonate material (CaCO3) with a diluted acetic acid 

(1M) while organic matter was removed with 10% H2O2. Microscopic examination by smear 

slide demonstrated biogenic silica to be an insignificant component consisting of only a few 

percent. Samples were analysed for particle size using the Coulter Counter Multisizer
tm

3 at 

Victoria University of Wellington. A representative ~0.01 g of subsamples was diluted with 

20 mL of calgon solution (1%), stirred and sonicated for 10 minutes. Using a pipette, samples 

were diluted into a particle-free electrolyte (NaCl) to concentrations low enough to minimize 

coincidence in the aperture tube. A 100 µm aperture tube was used obtaining data in the 

range of 1.87-62.9 µm. Each sample was run three times at a preset of 90 second intervals 

and with a precision of the sortable silt fraction of 0.93%. While data output is reflected in 

volume percent, Bianchi et al., (1999) considered it to be identical to the diameter of a sphere. 

However, in order to correct for an over estimation of coarse grain particles sizes, all three 

runs per sample were averaged to give a single representative grain size distribution. The data 

were than smoothed using the rloess (a robust version of local regression) function in 

MATLAB©. The calculation of mean particle size for the 10-63 µm fraction was carried out 

in GRADISTAT according to Folk and Ward (1957) (Blott and Pye, 2001).                      

 

4.2.5. Frequency analysis  

All data was detrended and interpolated to a 4-kyr equal time step in order to carry out 

frequency analysis. Evolutionary spectral analysis was performed in Matlab© (using a 

spectrogram function developed by Peter Huybers and available at his website 

http://www.people.fas.harvard.edu/~phuybers/Mfiles/index.html) for isotope data using a 300 ka 

moving window with a 10 ka increment . This was followed by power spectral analysis using 

the SSA-MTM toolkit for the Multi-Taper method (MTM) analysis (Ghil et al., 2002). Five 

data tapers were used for oxygen and carbon isotope data sets. All data were detrended and a 

linear interpolation at 4-kyr resolution was applied in order to achieve equal time spacing. 

The statistical significance of spectral peaks was tested relative to the null hypothesis of a 

http://www.people.fas.harvard.edu/~phuybers/Mfiles/index.html


110 
 

robust red noise background, AR (1) model, with a harmonic reshape set to a 90% threshold 

to test the comparative variance in Milankovitch frequencies. This method is consistent with 

frequency analysis on benthic isotopes spanning the Pleistocene from Site 1123 (Hall et al., 

2001). Coherency and phasing of ODP Site 1123 δ
18

O and δ
13

C was carried out using the 

Arand software package (Howell et al., 2006). 

 

4.3. RESULTS 

The revised unpublished magnetostratigraphy is presented in Figure 4.6 with down core 

measurements of colour reflectance used as a carbonate proxy (Carter et al., 1999; Millwood 

et al., 2002) presented with new raw data of grain size (sortable silt and silt/clay) and stable 

isotopes (carbon and oxygen) for Site 1123 Hole B. Grain size data extends from within the 

reversed polarity event, Chron C3n.2r (Gilbert) at 157.60 mbsf to within normal polarity 

event, Chron C2An.1n (Gauss) at 98.50 mbsf, whereas stable isotope data only extends from 

reversed polarity event, Chron C3n.1r (Gilbert) at 142.00 mbsf to within normal polarity 

event, Chron C2An.1n (Gauss). The establishment of this new benthic oxygen and carbon 

isotope record for Site 1123, extending from the warm Early Pliocene (4.3 Ma) to the Late 

Pliocene (2.9 Ma), allows for the assessment of changes in δ
13

C from the Pacific Ocean as 

well as longer term trends of interbasinal δ
13

C gradients during the Pliocene and into the 

Pleistocene (4.3 to 2.0 Ma), with an emphasis on investigating far-field oceanographic 

response to Late Pliocene cooling in the Antarctic and Southern Ocean (Hodell and Venz-

Curtis, 2006; Naish et al., 2009; Waddell et al., 2009; McKay et al., 2012; Chapter 3). 

Sortable silt analysis is used here in conjunction with stable isotope analysis to assess if 

southern high latitude cooling during the Late Pliocene affected the vigor in which bottom 

water entered the southwest Pacific Ocean via the ACC and the DWBC.  
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Figure 4.6. Comparison of linear sedimentation rates (LSR) according to 

magnetostratigraphy tie points, colour reflectance-based carbonate (%) (Millwood et al., 

2002), sortable silt, silt/clay, benthic δ
13

C, benthic δ
18

O and orbital parameters of obliquity, 

insolation and 100-kyr eccentricity for Site 1123.  
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4.3.1. Stable isotopes 

The new benthic δ
18

O record was tuned to the global composite LR04 benthic δ
18

O stack 

(Lisiecki and Raymo, 2005) using the Analyseries software (Paillard et al., 1996). Orbital 

frequencies in the untuned Early Pliocene (4.3 to 3.0 Ma) benthic δ
18

O record are relatively 

subdued and are just significant at 90% (Figure 4.6b) and is potentially due to a combination 

of factors. Firstly, the LR04 stack has a significant eccentricity component between 3.5 and 

3.0 Ma (Meyers and Hinnov, 2010; Chapter 3), which is also recognized in the Site 1123, 

δ
18

O (Figure 4.13a). Secondly, because I wanted to minimise any potential splicing errors 

(Lisiecki and Herbet, 2007) in this study my sampling was exclusively from Hole 1123B, and 

this appears to contain three stratigraphic gaps of ~40-kyr, relative to the splice record, 

potentially introducing some bias towards lower frequency events and reducing spectral 

significance at higher frequencies (i.e., 40-kyr). Future sampling of Hole C will target these 

intervals, based on the spliced composite depth, but with some overlap between the 1123B 

data points. Finally, the Early Pliocene is a time of low amplitude obliquity cycles in the 

LR04, and consequently there is a lower signal to noise ratio during this part of the time 

series. To assess these influences, I have run spectra for each discrete section of core where 

there is continuous stratigraphy (4.4-4.2 Ma, 4.2-3.8 Ma, 3.8-3.1 Ma) (Figure 4.8). The power 

spectra indicates a significant 40-kyr component that is within band width error at 95% for 

the younger splices, 4.2-3.8 Ma and 3.8-3.1 Ma (Figure 4.8a and b), while also highlighting 

the significant 100-kyr component between 3.8-3.1 also observed in the LR04 stack (Meyers 

and Hinnov, 2010). The oldest section which consists of lowest amplitude and least amount 

of time is only significant at 90% while containing a strong white noise background (Figure 

4.8c). Comparison of δ
18

O to δ
13

C demonstrates coherency at 40-kyr with a near in-phase 

relationship in which δ
18

O slightly leads δ
13

C by 2-5 kyr.     
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Figure 4.7. Power spectra for untuned stable isotopes for new data presented in this thesis 

from 4.3 to 3.0 Ma (b,c), and previously published data spanning 3.0 to 1.24 Ma (Harris, 

2002) (e,f). The LR04 benthic stack is provided for comparision (a,d). Grey shaded areas 

highlights the 100-kyr eccentricity (E), 40-kyr obliquity (O) and 20-kyr precession (P) 

frequencies. 

 

 

 

Figure 4.8. Power spectra for untuned splice sections for Hole 1123B. 
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Figure 4.9. (a) Spectral density, (b) coherency, and (c) phase of untuned Site 1123 δ
18

O and 

δ
13

C. 

 

Using paleomagnetic reversals as absolute tie points during tuning, there are obvious 

correlations in the amplitude and over all shape of the LR04 and Site 1123 δ
18

O cycles 

(Figure 4.10). Additionally, the overlying trends in the data are also highly consistent with 

LR04 and other benthic δ
18

O records globally, with three major transitions apparent between 

3.33 Ma and 2.5 Ma. In general, Site 1123 benthic δ
18

O values are heavier (0.16‰) compared 

to the LR04 stack, which is a similar offset to that between other Southern Ocean sites (e.g., 

ODP sites 704/1090) (0.15‰) and North Atlantic sites (e.g., ODP Site 607) (-0.11‰), which 

is likely due to temperature and salinity differences in the water masses feeding these sites, 
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suggesting a Southern Ocean influence. Tuning to the LR04 stack enhances the 40-kyr signal 

in the Site 1123 δ
18

O and δ
13

C records for both time steps (Figure 4.11).  

 

 

Figure 4.10. Tuned Site 1123 benthic oxygen isotopes (black line with red smoothed line) to 

LR04 (blue dotted line). Red line is a smoothed 12-kyr Gaussian filter at 4-kyr resolution of 

Site 1123 benthic oxygen isotopes. Also displayed is the sedimentation rate based on tuning. 

 

Figure 4.11. Power spectra for tuned stable isotopes for new data presented in this thesis 

from 4.3 to 3.0 Ma (a,b), and previously published data spanning 3.0 to 1.24 Ma (Harris, 

2002) (c,d).  
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Benthic δ
18

O values at Site 1123 during the Early Pliocene (4.3 to 3.33 Ma) are the lowest 

and least variable over all, averaging 3.30‰ (maximum, 3.69‰; minimum, 2.87‰). The 

prominent positive excursion associated with the M2 glaciation at 3.33 Ma marks the onset of 

more enriched benthic δ
18

O values than for any other time prior. Average δ
18

O values 

between 3.33 to 2.5 Ma is 3.64‰ (maximum, 4.61‰; minimum, 3.00‰), while interglacial 

δ
18

O values after 3.33 Ma are still within the range of the more depleted Early Pliocene 

values. After 2.5 Ma, both interglacial and glacial values become gradually more enriched 

over time with interglacial δ
18

O values never as depleted as the Early Pliocene values. After 

2.5 Ma benthic δ
18

O values average 4.06‰ (maximum, 4.96‰; minimum, 3.43‰) (Figure 

4.12). While power spectra analysis highlights the significance of the 40-kyr frequency 

component within the tuned data, evolutionary spectra analysis demonstrates that the 40-kyr 

frequency is subdued prior to 3.0 Ma ago (Figure 4.13). Gaussian band-pass filtering applied 

to isolate variance associated with the lower frequency 400- and 100-kyr eccentricity cycles 

demonstrates increased variance of the 100-kyr frequency from 3.5 to 2.7 Ma (Figure 4.12).     

 

Benthic δ
13

C values from Site 1123 also demonstrate a significant 40-kyr glacial to 

interglacial pacing (Figure 4.13), in which glacial periods are associated with lower values 

towards more LGM equivalent (-0.60‰). They also demonstrate extended periods of time 

reflecting higher values towards Holocene equivalent values (0.80‰). The glacial to 

interglacial cyclicity helps rule out the existence of a significant surface water productivity 

overprint that would possible result in a negative offset in δ
13

C values (Mackensen et al., 

2001; Ninnemann and Charles, 2002). Similarly to the δ
18

O record, transitions in long-term 

trends of the δ
13

C record occur at 3.33 Ma and 2.5 Ma. From 4.3 to 3.33 Ma δ
13

C values are 

high averaging 0.29‰ (maximum, 0.82‰; minimum, -0.26‰). A shift to lower values 

occurs during the M2 glaciation at 3.33 Ma with values averaging 0.21‰ (maximum, 0.73‰; 

minimum, -0.69‰) between 3.33 and 2.5 Ma. After 2.5 Ma the amplitude of variance in the 

δ
13

C values increases (prior to 2.5 Ma, 0.068‰; after 2.5 Ma, 0.091‰) as well as an overall 

decrease in values (averaging 0.044‰) reaching LGM equivalent values (Figure 4.12). This 

long-term trend is punctuated by 400-kyr long period eccentricity pacing that is evident in 

both evolutionary spectra analysis (Figure 4.13). Furthermore, power spectra analysis 

demonstrates the significance of the 400-kyr frequency at 95% (Figure 4.13). 
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Figure 4.12. Long period (400-kyr) and short period (100-kyr) orbital eccentricity compared 

to Site 1123 benthic δ
18

O and δ
13

C records with overlain red lines showing a smoothed 12-

kyr Gaussian filter at 4-kyr resolution. Dashed lines are stable isotope averages for time steps 

at 4.3 to 3.33 Ma (green), 3.33 to 2.5 Ma (light blue), and 2.5 to 1.24 Ma (dark blue). 

Holocene (0.8‰) and LGM (-0.6‰) equivalent benthic δ
13

C values at Site 1123 are plotted 

following McCave et al., (2008). Gaussian band-pass filters are used to isolated variance 

associated with the 400- and 100-kyr eccentricity cycles for both δ
18

O and δ
13

C records. The 

400-kyr filter has a central frequency = 0.0025 and a bandwidth = 0.0002; the 100-kyr central 

frequency = 0.01 and bandwidth = 0.002.  
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Figure 4.13. Evolutionary and power spectra analysis of tuned Site 1123 stable isotopes 

compared to the LR04 stack.   

 

4.3.2. Interbasinal stable isotope gradients 

The benthic δ
18

O record from Site 1123 appears to be most similar to the South Atlantic 

(ODP sites 704/1090) records and is on average heavier when compared to North Atlantic 

(ODP Site 607) and equatorial Pacific (ODP Site 849) records. During the Early Pliocene to 

Late Pliocene (4.3 to 3.33 Ma), Site 1123 δ
18

O values (3.29‰) resemble those of the South 

Atlantic (ODP sites 704/1090) (3.33‰). However, the two records diverge at 3.33 to 2.8 Ma 

with an increasing gradient between the two sites with the South Atlantic (ODP sites 

704/1090) records attaining heavier values than those from Site 1123 (Figure 4.14). This is 

followed by a re-convergence of the two records after 2.8 Ma, albeit with Site 1123 overall 

reflecting slightly heavier values. After 2.8 Ma, Site 1123 becomes on average heavier 

(4.02‰) than South Atlantic sites (ODP sites 704/1090) (3.86‰) but it never gets as heavy as 

the South Pacific (MV0502-AJC) (4.48‰) (Figure 4.14).    
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Benthic δ
13

C values at Sites 1123 are more negative compared to the North Atlantic (ODP 

Site 607) values that are generally more positive. Whereas, benthic δ
13

C values at Site 1123 

are never as low as those observed in the equatorial Pacific (ODP Site 849) and South Pacific 

(MV0502-AJC) records. A major shift in δ
13

C gradients between the South Atlantic (ODP 

Sites 704/1090) and Site 1123 occur at two time steps at 3.6 Ma and 2.8 Ma. From 4.3 to 3.6 

Ma the gradient difference between the South Atlantic sites (ODP sites 704/1090) and Site 

1123 is minimal, averaging 0.35‰ and 0.36‰, respectively. At 3.6 Ma this gradient 

increases with the South Atlantic sites (ODP sites 704/1090) displaying higher values and 

Site 1123 reflecting lower values (3.6 to 2.8 Ma ODP sites 704/1090, 0.60‰; Site 1123, 

0.23‰). A re-convergence between δ
13

C values for South Atlantic sites (ODP sites 704/1090) 

and Site 1123 occurs after 2.8 Ma, albeit with average values for the South Atlantic becoming 

slightly lower than at Site 1123 (ODP sites 704/1090, -0.13‰; Site 1123, 0.08‰) (Figure 

4.14).       

 

In general, the δ
13

C gradient between the equatorial Pacific (ODP Site 849) and Site 1123 

increased when the δ
13

C values at Site 1123 are higher (i.e., more nutrient depleted) and 

“Holocene like”, whereas negative gradients correlate to extended periods of time when Site 

1123 δ
13

C values are lower (Figure 4.14d). An exception is the interval spanning 3.319 to 

3.210 Ma (the Mammoth Subchron). Both Sites 1123 and 849 contain more nutrient depleted 

(high) δ
13

C values. While the gradient between the southwest Pacific and equatorial Pacific 

reached modern values in the Early Pliocene, two noticeable trends are apparent: 1) From 4.3 

to 1.24 Ma the gradient decreases over time while more consistently reaching modern values 

as ice volume increases (Figure 4.14): and 2) nodes in long period (400-kyr) eccentricity 

coincide with times in which the gradient increases (Figure 4.14d and e).  
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Figure 4.14. Comparison of Site 1123 (red) benthic δ
18

O (a) and δ
13

C (b) records spanning 

4.31 to 1.24 Ma to records from the North Atlantic (dark green), South Atlantic (light green), 

equatorial Pacific (dark blue), and South Pacific (light blue). Dotted lines expresses data as 

smooth 10-kyr equivalent presented in Waddell et al., (2009; Figure 5) with thick dark lines 

representing a 5 pt. moving average. c) Scatter plot of the ∆ δ
13

C from Sites 1123 to 849 

against the benthic δ
18

O from Site 1123. (d) Gradient between Site 1123 and 849 with the 

modern gradient value represented by the red dashed line. (e) The 100-kyr eccentricity cycles 

with the band-passed filtered long period 400-kyr eccentricity signal in red.  
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4.3.3. Sedimentological parameters 

The sedimentological parameters shown against depth (rMCD) (Figure 4.6) and age (Figure. 

4.15) display both long-term gradual changes as well as some high-frequency variability. The 

carbonate fraction demonstrates an inverse relationship to magnetic susceptibility (Figure 

4.15; note axes scales), with higher values in the latter reflecting increased terrestrial material 

(Carter et al., 1999). Spectra analysis using the tuned aged model infers a complete lack of 

Milankovitch pacing within the sortable silt and sily/clay records. However, carbonate 

fraction of the sediment demonstrates a 40-kyr variability significant at 95% (Figure 4.16). 

An additional peak at 30-kyr is observed that is also significant at 95% in the carbonate 

spectra. This frequency is commonly observed in paleo-oceanographic timeseries (e.g., Mix 

et al., 1995) and is considered a consequence of weakly non-linear interactions between 

obliquity and other orbital frequencies – in particular eccentricity (Huybers and Wunsch, 

2004).    

 

A noticeable aspect to the grain size data is that during the oldest part of the record prior to 

4.7 to 4.35 Ma, both sortable silt and silt/clay values display distinct coarse grained values 

inferring an overall increase in silt abundance compared to the younger part of the record. 

This increase in coarse grained silt content coincides with an increasing trend of magnetic 

susceptibility and the lowest carbonate values. Furthermore, linear sedimentation rates 

calculated from paleomagentic reversals indicates this portion of the record contains elevated 

sedimentation (6.157 cm/kyr) during the late part of this interval. After ~4.35 Ma, 

background values for both sortable silt and silt/clay decreases significantly, but quasi-

periodic short-duration/high frequency excursions back to the elevated values are seen prior 

(i.e., pre-4.3 Ma) (Figure 4.15). Magnetic susceptibility also decreases after ~4.35 Ma with 

carbonate increasing. At ~3.75 Ma, around MIS Gi8, both sortable silt and silt/clay gradually 

increase while magnetic susceptibility generally decreases and carbonate increases. An 

exception to this long-term trend is centered on the MIS M2 glacial excursion in the δ
18

O 

data, where magnetic susceptibility increases and carbonate decreases (Figure 4.15).         
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Figure 4.15. Sedimentological data for Site 1123 versus age. Displayed is the LR04 benthic 

δ
18

O stack (Lisiecki and Raymo, 2005) (light blue), sortable silt (black), silt/clay (orange), 

downcore magnetic susceptibility measurements (Carter et al., 1999) and carbonate fraction 

as determined from color reflectance with a 50 pt. moving average (Millwood et al., 2002).  
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Figure 4.16. Power spectra analysis of sortable silt, silt/clay and carbonate (a-c). d-f is power 

spectra applied following a pre-whitening data processing step (Weedon, 2003) to test 

whether higher frequency events surround the ~20-kyr precessional (p) frequency were 

significant.   

 

4.4. DISCUSSION 

4.4.1. The deposition of terrigenous material and the vigor of Pacific abyssal in-flow 

during the warm Early to mid-Pliocene 

The apparent lack of significant Milankovitch frequencies within sedimentological data could 

be the consequence of large-scale changes in sediment delivery to Site 1123 – i.e., the 

deposition and size sorting of terrigenous material did not solely respond to processes related 

to Southern Ocean circulation regulated by ice volume variability. On the basis of coherency 

and phase testing of the sortable silt proxy with δ
18

O and δ
13

C, Hall et al., (2001) 

demonstrated that Pleistocene age sediments from Site 1123 were deposited as a result of 

changes in in-flow controlled by increased production of bottom water during glacial periods. 

Similar orbital variability in the deep water circulation patterns have also been inferred to 

have occurred with the development of the EAIS during the middle Miocene (~15.5 to 12.5 

myr), by Hall et al., (2003) although they were more speculative as they did not have an 

independently tuned age scale (i.e., δ
18

O) to constrain the frequencies at which sortable silt 

varied. However, the lack of any significant Milankovitch pacing in the sortable silt data in 

this thesis, particularly the 40-kyr obliquity signal, implies that either no orbital signal is 

present, or that it is potentially masked by other processes influencing sediment supply. A 
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visual examination of these data between 4.0 to 3.0 Ma suggest that large peaks in the 

silt/clay and sortable silt data occur in quasi-100 kyr cycles (Figure 4.17). Power spectra 

estimation using the multi-taper method at 3 tapers displays sortable silt and silt/clay to be 

significant at 90% while also demonstrating significance of the 50-kyr harmonic (quasi 

periodic frequency) of the 100-kyr frequency and the 23-kyr signal of precession. Greater 

smoothing (higher degrees of freedom) results from using five tapers and displays both 

sortable silt and silt/clay to not be significant at 90%. 

 

 

Figure 4.17. Quasi 100-kyr cycles in sortable silt and silt/clay between 4.0 to 3.0 Ma. Power 

spectra using the multi-taper method using 3 (b and c) and 5 (d and e) tapers.  

 

Major changes in topographic development and regional shifts in New Zealand climate took 

place during the Early Pliocene (e.g., Chamberlain et al., 1999; Salzmann et al., 2008). Such 

events potentially had a major influence on the influx of terrigenous material delivered to the 

deep ocean. Traditionally, the established sedimentary model of the Eastern New Zealand 

Oceanic Sedimentary System (ENZOSS) infers the terrigenous flux to the deep ocean varies 

with eustatic sea level and terrestrial New Zealand glaciation on orbital timescales (Carter et 

al., 2004), whereby sea level lowstands during periods of Southern Alps glaciation are 

associated with an increase in the terrigenous flux to the continental margin and adjacent 

ocean basins due to increased erosion of a denuded landscape and river discharge occurring 
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closer to the continental shelf edge (Carter et al., 2004). However, this is complicated by 

more recent studies suggesting that during interglacial highstands, surface waters become less 

mixed and rising temperatures are accompanied by increased precipitation rates, increasing 

the influx of terrigenous material delivered to the deep ocean via high fluvial discharge rates 

(Carter and Manighetti, 2006). Such a scenario could potentially allow for a significant 

volume of sediment from the North Island to be transported  in suspended load via the south 

and then eastward subtropical inflow of the ECC to the Chatham Rise towards ODP Site 

1123 (Hall et al., 2001; Carter and Manighetti, 2006). ODP Site 1124 located just north of 

ODP Site 1123 on the Rekohu sediment drift also demonstrates increased terrigenous input 

from the North Island during the late Neogene (after 9 Ma.) (Joseph et al., 2004). 

Additionally, orbitally paced 100-kyr and 20-kyr (eccentricity and precession) aeolian input 

from westerly winds are suggested to deposit dust derived from New Zealand and Australia 

based on the presence of North Island Pollen (Mildenhall et al., 2004; Sniderman et al., 2007).   

 

During the warm Early Pliocene, sea level highstands were up to 20+/-10 m higher than 

today (e.g., Miller et al., 2012), surface-land temperatures were 2-3°C warmer globally, there 

was increased precipitation rates, with warm-temperate vegetation and forests systems greatly 

expanded (Sniderman et al., 2007; Salzmann et al., 2008; Dowsett et al., 2012). Furthermore, 

a warm moist climate system prevailed along the eastern portion of New Zealand’s South 

Island, and this is suggested to have persisted through the Early Pliocene (Salzmann et al., 

2008; Salzmann et al., 2011). This regional climate was likely significantly altered by 

increased rates of convergence across the Pacific Australia plate boundary intensifying rock 

uplift and denudation rates in the Southern Alps (after ~6 Ma) and the resultant rain shadow 

effect it currently has on the east coast of the South Island, while ultimately effecting 

sediment input along the continental shelf and to the deep ocean (Walcott, 1985; Chamberlain 

et al., 1999; Carter et al., 2004).  

 

A notable long-term decrease in the baseline terrigenous silt/clay ratio and sortable silt values 

at Site 1123 occurs at 4.35 Ma, and is associated with an increase in carbonate percentage and 

MAR which also coincides with some of the highest linear sedimentation rates in the Plio-

Plesitocene (6.157 cm/k.y.). Mica tracer work of Carter and Mitchell (1987) suggest that at 

least part of the terrigenous component of the North Chatham drift was derived from 

sediments transported in suspended load from the Bounty Fan region via the DWBC. 

However, terrigenous sediment did not reach the head of the Bounty Fan region until the 
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Early Pliocene around ~4.0 Ma, with a marked increase after 2.5 Ma (Carter et al., 2004). 

Sediment records from ODP Site 1122 infer a ~5 myr hiatus separating the middle Miocene 

from the Early Pliocene potentially related to injection of sediment input from enhanced 

uplift and erosion of the Southern Alps (Carter et al., 1999), while the Solander Channel/Fan 

complex is suggested to have grown at least 700 km south of the New Zealand continental 

margin during the late Miocene to Pleistocene (Schuur et al., 1998). While the increase in 

terrigenous material observed at Site 1123 predates the eastward extension of the Bounty Fan 

into the path of the DWBC at 3.5 Ma, the increase in terrigenous material may have been 

sourced from a mixture of sediment sourced from older deposits along the continental apron 

at the base of the Campbell Plateau (ODP Site 1121) or southern flank of the Chatham Rise 

(Shuur et al., 1998; Carter et al., 2004). Thus, the higher amount of terrigenous silt deposition 

prior to 4.35 Ma may reflect increased sediment delivery during the earliest onset of rapid 

Southern Alps uplift, when the resultant rain shadow effect was still weak and a warm wet 

climate added in erosion. Alternatively, the increased silt component of the fine fraction may 

reflect a prolonged period of winnowing of clays via an enhanced ACC, although 

determining the exact cause for either scenario is difficult within the scope of this thesis.   

 

Regardless of the exact mechanistic cause, after 4.35 Ma there is a major change in sediment 

delivery and/or erosion to Site 1123. Silt/clay ratio and linear sedimentation rate decrease 

until around 4.0 Ma (Figure 4.17). Although the spikey nature, and background/baseline 

shifts in the grain size data compromises the ability to easily identify Milankovitch 

frequencies in frequency analysis, after 4.0 Ma there appears to be an enhanced correlation 

between the LR04 benthic δ
18

O stack, sortable silt and silt/clay ratio after 4.0 Ma. Such a 

relationship infers long-term (i.e., >100 kyr) increases in grain size coincide with periods of 

larger variance in greater values of δ
18

O in the LR04 stack (Figure 4.17). The increase of 

coherency also coincides with the eastward expansion of the Bounty Fan system as the 

Southern Alps continue to develop and erode material off the continent (Carter et al., 2004). 

An exception to this relationship is the large M2 glacial excursion in the δ
18

O (Lisiecki and 

Raymo, 2006). The Marine Isotope Stage (MIS) M2 glacial is the first large glacial excursion 

of the Pliocene and has been documented from Antarctic records to represent a major cooling 

trend that initiated at 3.5 Ma, characterised by a 0.7‰ enrichment δ
18

O between MIS Mg6 

(~3.5 Ma) and M2 (3.3 Ma; Figure 4.17). This cooling would have resulted in a ~20-30 m 

lowering of sea level (Miller et al., 2012) and is the first major sea level lowstand of the 

Pliocene (Naish and Wilson 2009; Miller et al., 2012). The silt/clay and sortable silt increases 
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in tandem with the enrichment of δ
18

O during the first part of this cooling (Mg6 to Mg2), but 

this trend reverses abruptly during the M2 event. The cause of such a departure from the 

generally coherent pattern of increased silt abundance and size during glacial periods is 

difficult to explain, except to say that this first rapid and large sea level drop may have 

perturbed the standard mode of sediment delivery during this glacial cycle. Such a 

perturbation is reflected in the magnetic susceptibility data and may be more consistent with 

the traditional ENZOSS deposition model in which exposure of the continental shelf during 

sea level lowstands (glacial periods) allows for the increased input of terrigenous material to 

the deep ocean via the ECC (Figure 4.15). However, despite this complication, the general 

pattern of higher silt/clay ratios and sortable silt values during δ
18

O enrichments (i.e., glacial 

periods is consistent with Late Pleistocene records inferring enhanced bottom currents 

associated with an invigorated ACC, and thereby enhanced inflow related to an increase in 

bottom water formation during glacial periods in response to ice sheet development (e.g., 

Hall et al., 2001; Hall et al., 2003).   

 

4.4.2. Pliocene-Early Pleistocene orbital forcing of ice volume and the carbon cycle 

As expected from a globally integrated proxy data set, the benthic δ
18

O record at Site 1123 

displays the signature 40-kyr variability associated with Pliocene and Early Pleistocene 

glacial to interglacial cycles reflected in the globally integrated benthic LR04 stack. Meyers 

and Hinnov (2010) identified non-linear climate dynamics during the Late Pliocene and Early 

Pleistocene in which long (400-kyr) and short (100-kyr) period eccentricity dominate the 

globally integrated signal of the LR04 stack rather than the 40-kyr obliquity signal from ~3.5 

to 2.7 myr. Evolutionary spectra analysis carried out in this study on both the LR04 stack and 

Site 1123 δ
18

O record exhibit the emergence of a 400-kyr signal and lack of strong obliquity 

pacing from ~3.5 to 2.7 myr. After ~3.0 and 2.7 Ma, and similar to the LR04 Site 1123 δ
18

O 

record displays the strong 40-kyr pacing and long period eccentricity is replaced by the 

shorter 100-kyr signal until about 2.0 Ma when the 100-kyr signal begins to disappear (Figure 

4.13). While the 40-kyr and 100-kyr pacing after ~2.7 Ma is also evident in the benthic δ
18

O 

record of Site 1123, so is the long period 400-kyr eccentricity signal. Power spectra analysis 

infers the long period eccentricity is significant at almost 95% throughout 4.3 to 1.24 myr 

(Figure 4.13) and band-pass filtering of the 100-kyr frequency on the Site 1123 δ
18

O record 

highlights strong 100-kyr influence between ~3.5 and 2.7 myr (Figure 4.12).   
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Of the 57 records included in the benthic stack less than a 1/4 comes from the Pacific Ocean. 

As stated earlier, LCDW entering the Pacific Ocean Basin across Site 1123 is sourced from 

the Ross Sea and Wilkes Land margin of Antarctica. When compared to South Atlantic sites 

1090/704, South Pacific Site MV0502-AJC and Site 1123 benthic δ
18

O values are on average 

heavier (Figure 4.14), implying deep bottom water entering the Pacific Ocean sector carries 

more of a abyssal Southern Ocean sourced temperature and salinity signature signature 

compared to South Atlantic sites where there is more mixing with NCW (Hodell and Venz-

Curtis, 2006; Waddell et al., 2009). A major change in the glacial regime in the Antarctic Ice 

Sheet occurs between 3.33 Ma and ~2.7 Ma (McKay et al., 2012; Chapter 3 this thesis). 

During this time, there is inferred to have been a step wise transition into more persistent cold 

polar ice sheet over West Antarctica with enhanced polynya style mixing in the Ross Sea 

(McKay et al., 2012) and potentially along the Wilkes Land margin with the EAIS 

responding to the 400 and 100-kyr eccentricity modulated changes in precession (Chapter 2 

and 3 of this thesis). The higher δ
18

O values observed in South Pacific sites (Site 1123 and 

MV0502-AJC) and the significant long period (400-kyr) eccentricity signal persistent within 

the Site 1123 benthic δ
18

O is potentially a temperature signal associated with AABW/LCDW 

formation, and may have been regulated by the long term response of the Antarctic Ice Sheet 

and Southern Ocean sea-ice belt after ~3.5 to 3.33 myr to precessional forcing.         

 

The benthic δ
13

C record of Site 1123 displays the strong 400-kyr frequency significant at 95% 

while the 40-kyr obliquity signal becomes more persistent after ~2.7 Ma (Figure 4.13). Band-

pass filtering at long period 400-kyr eccentricity and power spectra analysis demonstrates the 

relationship between the benthic δ
13

C record at Site 1123 and the long period 400-kyr 

eccentricity cycle. This is also demonstrated in the ∆δ
13

C gradient from Site 1123 to ODP 

Site 849 in the equatorial Pacific, whereby a lower gradient is associated with minima in the 

400-kyr eccentricity cycle (Figure 4.13d). Such a strong signal of the 400-eccentricity cycle 

is consistent with the box modelling study of Palike et al., (2006) demonstrating the 

interaction between the carbon cycle, solar forcing and Antarctic ice volume modulated 

changes in deep ocean acidity as well as the production and burial of biomass.  

 

4.4.3. Southern Ocean ventilation during the Late Pliocene cooling and the onset of the 

bipolar world 

Hodell and Venz-Curtis (2006) compiled benthic foraminifera δ
13

C records (e.g., ODP sites 

607, 704/1090 and 849) in order to trace the ventilation history of intermediate and deep 
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water masses for the last 9 myr. That study highlighted the influence of surface water 

processes in the Southern Ocean on deep water ventilation during major transitions in Earth’s 

climate system. Waddell et al., (2009) added to this compilation with stable isotope records 

from the Pacific sector of the Southern Ocean (subantarctic Pacific). The addition of the 

South Pacific records provided a circum-Antarctic perspective for carbon isotopic shifts 

during the late Miocene carbon shift (~7 Ma) and the stepwise Late Pliocene cooling (3.1, 2.7, 

2.6 and 2.4 Ma). However, the record of Waddell et al., (2009) does not contain data 

spanning the Early to mid-Pliocene (4.3 to 3.0 Ma). Therefore, when combining the data sets 

presented in those two studies, no South Pacific record is represented during the transition 

from the warm Early Pliocene into the Late Pliocene cooling. The newly developed δ
13

C 

record from Site 1123 provides a South Pacific representation during this important transition 

in southern high latitude climate. 

 

Currently, deep water in the Southern Ocean is well mixed between high δ
13

C North Atlantic 

values and low δ
13

C Pacific “like” with an average δ
13

C of 0.4‰ (Hodell and Venz-Curtis, 

2006). However, records from the Atlantic and Pacific sectors spanning 4.3 to 12.4 myr infer 

homogeneity did not always exist (Hodell and Venz-Curtis, 2006). During the Early Pliocene 

from 4.3 to ~3.6 myr, South Atlantic δ
13

C values closely match those of Site 1123 (Figure 

4.14). Continuous and strong outflow of Northern Component Water (NCW), including 

NADW, is inferred to have taken place during this time based on higher values in benthic 

δ
13

C records, Nd and Pb isotopes in ferromanganese records inferring source region of 

bottom water, and lowering of the calcite-lysocline in the equatorial western Atlantic from 

CaCO3 records (Billups et al., 1997; King et al., 1997; Kwiek and Ravelo, 1999; Ravelo and 

Andreasen, 2000; Frank et al., 2002).  

 

The preformed δ
13

C values in high southern latitudes are largely controlled by surface water 

productivity, and ocean-atmosphere gas exchange – e.g., wind mixing (Villinski et al., 2000; 

Hodell and Venz Curtis, 2006). During the Early Pliocene, both of the source regions of 

AABW/LCDW (Ross Sea and Wilkes Land margin) that ultimately feed the deep Pacific 

inflow at Site 1123, are characterised by minimal summer sea ice extent with periods in 

which the winter sea ice margin was much farther south than today (McCartney and Donohue, 

2007; Williams et al., 2008; McKay et al., 2012; Cook et al., 2013; Chapter 2 and 3 of this 

thesis). Consequently there must have been much larger areas of highly-productive seasonally 

open marine conditions (see Naish et al., 2009) on the continental shelves in these two 
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regions, and this would result in a high preformed δ
13

C, compared to times in the Late 

Pliocene and more recent ice sheets/shelves and perennial sea ice restricted productivity on 

the continental shelves, and expanded sea ice covered in the Southern Ocean restricted 

ventilation of upwelling deep waters.  

 

The mixture of higher-preformed values of δ
13

C NADW entering the Southern Ocean, and 

higher-preformed δ
13

C sourced from the Southern Ocean would cause bottom waters in both 

the South Atlantic and South Pacific sectors to have a higher benthic δ
13

C value. In the South 

Pacific, the water mass feeding Site 1123 is a hybrid of Southern (AABW) and Northern 

component deep water with a NADW signature. The highest δ
13

C values in the core occur 

between 4.3 to 3.5 Ma (averaging 0.29‰). Stratigraphic and geochemical evidence from the 

ANDRILL-1B core in the Ross Sea indicates that this time interval coincides with a largely 

deglaciated WAIS throughout much of this time, reduced extent and duration of summer sea 

ice, and sea surface temperatures in the Ross Sea 4-6°C warmer than present (McKay et al., 

2012). Between 3.5 and 2.5 Ma, the benthic δ
13

C values at Site 1123 decreased to an average 

value of 0.21‰, coinciding with more regular obliquity paced readvances of the WAIS, 

increasing the duration and extent of summer sea ice, cooling sea surface temperatures in the 

Ross Sea (Naish et al., 2009; McKay et al., 2012), and a major shift in the glacial dynamics 

of the EAIS inferred to represent a major cooling event (Chapter 3 of this thesis). After 2.5 

Ma, there is another stepped decrease in the average δ
13

C value (0.04‰), coinciding with a 

stepped increase in Ross Sea sea ice extent, and greatly reduced IBRD at the Wilkes Land 

IODP Site U1361 interpreted as a stabilisation of the marine margin of the EAIS (Figure 4.18) 

(Chapter 3). 

 

The deep water δ
13

C gradient in the Pacific Ocean (∆δ
13

C(1123-849)) is a measure of the aging 

of water masses as they pass through the Pacific. The Site 1123 δ
13

C record highlights that 

this gradient was consistently increased during the Pliocene when compared to modern 

(Figure 4.18). Hall et al., (2001) noted that for the Late Pleistocene, a higher δ
13

C(1123-849) 

values occur during interglacial conditions (or warm intervals) was a consequence of 

substantial input of high δ
13

C NADW entering the Southern Ocean when sortable silt values 

indicate a slowdown of the DWBC when compared to glacial periods. The high Pacific 

carbon gradient (∆δ
13

C(1123-849)) during the Pliocene (4.3 to 2.7 Ma; Figure 4.18) thus can be 

explained by the enhanced outflow of NADW and reaching deeper depths during a stronger 

period of Atlantic Meriodal Overturning Circulation (AMOC), until ~2.7 Ma, which 



131 
 

coincided with the build-up of the Northern Hemisphere ice sheet and enhanced production 

of Glacial North Atlantic Intermediate Water (GNAIW) (Boyle and Keigwin, 1987; de 

Menocal et al., 1993; Oppo and Lehman, 1995; Billups et al., 1997; Oppo et al., 1997; 

Marchitto et al., 1998; Oppo and Horowitz, 2000; Ravelo and Andreasen, 2000; Frank et al., 

2002). This coincided with a more diminished pole to equator temperature gradient leading to 

reduced zonal circulation (Brieley et al., 2009), and ultimately reduced ACC vigor which 

drives the DWBC along the Campbell Plateau (e.g., Hall et al., 2001). This interpretation for 

the Pliocene is consistent with a reduced meridonal temperature gradient in the Pacific at this 

time until ~2.7 Ma (Figure 4.18h) (Federov et al., 2013), reduced dust MARs in the South 

Atlantic (Figure 4.18e) (Martínez-Garcia et al., 2010), and reduced Antarctic ice sheet and 

sea ice extent (Figure 4.18b) (McKay et al., 2012). Model simulations indicate ice sheet and 

sea ice expansion can have a significant effect on the global Hadley circulation potentially 

resulting in latitudinal shifts in the positioning of the Intertropical Convergence Zone, trade 

winds and southern mid-latitude westerlies (Chian and Bitz, 2005). Such an effect on 

atmospheric circulation would have a consequence on wind driven upwelling of cold deep 

waters sourced from high latitudes as well as the latitudinal position of ocean fronts. While 

the mid-Pliocene, ~3.6 to ~2.8 Ma, zonal equatorial Pacific SST gradients barely differ to that 

of the Early Pliocene’s “permanent El Niño like state”, meridional SST gradients gradually 

increase during this time of increased Southern Hemisphere ice volume and southern sourced 

water entering the Pacific Ocean (Figure 4.18h). However, shifts in the Southern Hemisphere 

westerlies as a mechanism to explain deep ocean ventilation and large scale changes in 

atmospheric CO2 is of debate (e.g., Bonining et al., 2008; Menviel et al., 2008), and 

hightlights the complexity of Earth’s climate system feedbacks and uncertaintity of the 

proposed mechanism of Toggweiler and Russell (2008). 

 

After ~2.5 Ma, there is a baseline shift in the ∆δ
13

C(1123-849) reflecting a more reduced gradient 

as well as over all lower δ
13

C values at Site 1123. This coincides with the expansion of ice 

sheet/sea ice around the Antarctic margin (McKay et al., 2012; Chapter 2 and 3 of this thesis), 

thus promoting the formation of AABW and reduced deep ocean ventilation in the Southern 

Ocean ventilation while most likely further enhancing the delivery of cold southern sourced 

AABW/LCDW into the Pacific Ocean. This is also supported by reeduced opal MAR from 

the Antarctic Peninsula region during this time due to restricted light availability or nutrient 

upwelling on account of increased summer sea ice cover (Hillenbrand and Cortese, 2006).    
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While the benthic δ
18

O records from the North Atlantic, South Atlantic, South Pacific and 

equatorial Pacific were almost equal in value during the Early Pliocene, after ~3.6 Ma North 

Atlantic records become much lighter in comparison to Southern Ocean sites (South Atlantic 

and South Pacific). This marked increase in Southern Ocean benthic δ
18

O records coincides 

with a decrease in atmospheric CO2 concentrations and transition of the EAIS into a more 

“cold climate state” in which the Southern Hemisphere ice sheet becomes more sensitive to 

precessional forcing and summer sea ice extent begins to develop along the margin providing 

a stabilising effect (Chapter 3 this thesis). Southern Hemisphere cooling during this time 

coincides with a marked increased in the zonal gradient between the South Atlantic and South 

Pacific δ
13

C records as well as a slight increase in mid-latitude Southern Hemisphere dust 

records inferring stronger atmospheric circulation. The increase in the benthic δ
13

C gradient 

between the South Atlantic and South Pacific probably reflects the enhanced delivery of 

NADW with higher preformed δ
13

C into the Atlantic sector of the Southern Ocean until ~3.0 

Ma and in particular until 2.7 Ma (Boyle and Keigwin, 1987; de Menocal et al., 1993; Oppo 

and Lehman, 1995; Billups et al., 1997; Oppo et al., 1997; Marchitto et al., 1998; Oppo and 

Horowitz, 2000; Ravelo and Andreasen, 2000; Frank et al., 2002).  

 

During the Late Pliocene to Early Pleistocene (~2.8 to ~2.6 myr) atmospheric CO2 

dramatically decreases and more consistently reaches pre-industrial values (~200 ppm) while 

interbasinal benthic δ
18

O records converge to similar values with the exception of the South 

Pacific site (MV0502-AJC) which is significantly heavier (Figure 4.18). This persistent 

cooling trend is evident in the Wilkes Land sector of the EAIS by a dramatic decrease in 

iceberg discharging from the EAIS margin, and with the inferred the increased duration and 

extent of summer sea ice along the margin provides a stabilising effect on the ice sheet 

(DeConto et al., 2007; Chapter 2 and 3 of this thesis). Such a transition to a more persistent 

and extended summer sea ice extent is also inferred from lower bulk sediment δ
13

C values in 

the Ross Sea Embayment reflecting enhanced polynya-style, deep water mixing of the 

surface similar to modern values (McKay et al., 2012) and a dramatic drop in opal production 

in the Antarctic Peninsula region (Hillenbrand and Cortese, 2006).  
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Figure 4.18. Southern and Northern Hemisphere climate transition based on proxy evidence 

concerning climate system feedbacks between 4.3 to 1.24 Ma. Transitions occur after 3.5 Ma 

and ~2.6 Ma and are noted by grey dashed lines. a) Wilkes Land IBRD MAR record from 

Site (U1361) (g/cm
2
/k.y.) (Chapter 3 of this thesis). b) Summary of ocean, sea ice, and ice 

sheet evolution in the Ross Sea Embayment based on the AND-1B record (McKay et al., 

2012). c) Opal MAR from ODP Site 1096 (g/cm
2
/k.y.) (Hillenbrand and Cortese, 2006). d) 

post-industrial 

pre-industrial 
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Interbasinal δ
18

O gradients (‰) (Hodell and Venz-Curtis, 2006; Waddell et al., 2009). e)   

Southern mid-latitude dust record inferring wind strength (g/m/k.y) (Martínez-Garcia et al., 

2010). f) Interbasinal δ
13

C gradients (‰) (Hodell and Venz-Curtis, 2006; Waddell et al., 

2009). g) Benthic δ
13

C gradient between Site 1123 and Site 849 (‰). h) Meridional and zonal 

SST from the Pacific Ocean (°C) (Fedorov et al., 2013). i) IRD records (Mag. Susc.) from the 

North Pacific (Haug et al., 2005) and North Atlantic (Jansen et al., 1996). j) Atmospheric 

CO2 (ppm) with pre-indsutrial (blue) and post-industrial (red) values noted with dashed lines 

(IPCC, 2014).       

 

4.5. SUMMARY  

In summary, a new stable isotope (δ
18

O and δ
13

C) stratigraphy for ODP Site 1123 allows for 

astronomically tuned timescale for this site to extend back to 4.3 Ma. The benthic δ
18

O record 

from Site 1123 compares well to the globally integrated LR04 stack, and the major Marine 

Isotope Stages can be easily identified even during the lower amplitude glacial-interglacial 

cycles of the Early Pliocene. The benthic δ
13

C record from Site 1123 contains the significant 

long period eccentricity signal, potentially highlighting the role of the Antarctic Ice Sheet and 

Southern Ocean has on the global carbon cycle, and has implications for the ventilation of the 

abyssal ocean as the world transitioned from the warm Early Pliocene into the bipolar Early 

Pleistocene world. 

 

The intensification of southern sourced bottom water inflow into the southwest Pacific Ocean 

can be reconstructed by the benthic δ
13

C gradient in the Pacific (∆δ
13

C(1123-849)), with higher 

benthic δ
13

C at ODP Site 1123 and increased ∆δ
13

C(1123-849) indicating increased NADW input 

into the southwest Pacific during the Pliocene. This is interpreted to be a consequence of 

enhanced circulation or Southern Ocean ventilationg during an enhanced ACC, potentially as 

the westerlies wind field was most likely positioned at a more southern latitude at this time. A 

Decrease in Southern Ocean ventilation occurs in conjunction with ice sheet/sea ice 

development around the Atlantic margin between 3.5 to 3.33 myr. The intensification of 

southern sourced bottom water inflow into the southwest Pacific after this time coincides 

with a decrease in preformed values of δ
13

C, interpreted to be the consequence of increased 

productiong of AABW in the two main formation regions in the Ross Sea and Wilkes Land 

margin due to ice sheet and sea ice expansion in the Southern Ocean. Thus, this led to a 

reduction in the ocean-gas exchange of upwelling deep waters at the southern margin of the 

ACC, and a shift of the major productivity zone to more northerly regions in the ACC, (i.e., 

north of the major AABW formation zones). However, invigorated zonal circulation also 

occurred at this time (Martínez-Garcia et al., 2010), and this study indicates this resulted in an 
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increase in deep water inflow into the Pacific Ocean, as the ∆δ
13

C(1123-849)  gradient decreased,  

which occurred in tandem with proxy evidence for the expansion of the marine margins of 

the Antarctic Ice Sheet, Southern Ocean sea ice (Hillenbrand and Cortese, 2006; McKay et al., 

2012; Chapter 3 of this thesis) and enhanced westerly wind over the ACC (Martínez-Garcia 

et al., 2011). Thus changes in the extent of Southern Hemisphere Ice Sheets and sea ice lead 

to reduced ventilation of the abyssal ocean, and may have played a role in decreasing 

atmospheric CO2 concentrations over this major climatic transition (Pagani et al., 2010), that 

ultimately led to the initiation of large scale glaciations in the Northern Hemisphere (Lunt et 

al., 2009).   
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CHAPTER 5 

 

IDENTIFYING ORBTIAL PACING OF ANTARCTIC ICE VOLME VARIATIONS 

FROM MID-PLIOCENE SEA LEVEL FLUCTUATIONS RECORDED IN A FAR-

FIELD SHALLOW-MARINE CONTINENTAL MARGIN SEDIMENT RECORD: 

THE WANGANUI BASIN, NEW ZEALAND 

 

Eleven outcrop exposures along the Turakina River in Wanganui Basin, North Island, New 

Zealand, just west of Taihape, have been described and sampled in order to assess the role of  

orbital pacing as well as the frequency variability of mid-Pliocene sea level changes. 

Sedimentary exposures consist of blue-grey concretionary sandy to fine sandy mudstones of 

the Utiku Subgroup. Detailed paleomagnetic studies, previously carried out along this river 

section, provide time constraints for two ~100-kyr sedimentary cycles extending from ~3.2 to 

3.0 Ma. Detailed grain size analyses highlight changes in percent mud that range from up to 

55% during lowstands to 90% during highstands. By employing modern analogue studies 

carried out along the Manawatu coast, changes in grain size reflect bathymetric changes of 

up to ~20 m amplitude. While higher frequency events are also observed, these ~100-kyr-

duration sequences occur during a time in which the Laskar et al., (2004) orbital solution 

demonstrates low-amplitude obliquity (40-kyr) and eccentricity (100-kyr-duration) 

modulated high-amplitude precession (20-kyr) cycles. Although these changes of ~20 m in 

local water depth contain tectonic contributions, they are in good agreement with global 

eustatic sea-level estimates for peak interglacial periods of ~22 m higher than present with a 

deglaciated Greenland Ice Sheet up to (+7 m sea level equivalent) and West Antarctic Ice 

Sheet (+3 m sea level equivalent) as well as a significant contribution between +2-15 m from 

the East Antarctic Ice Sheet. As described elsewhere in this thesis (Chapter 3), geological 

evidence from the EAIS margin infer ice marginal retreats during this time extended several 

100’s km inland and provided a ~10 m contribution with the greatest amount of ice volume 

loss paced by the 100-kyr eccentricity modulations of precession.                     

 

5.1. INTRODUCTION 

Over eighty years after the orbital theory of the ice ages was first proposed by Milankovitch 

(Milanković, 1936), the mechanistic link between variations in polar ice sheet volume and 

orbital forcing is still not well understood (e.g., Huybers, 2006; Raymo et al., 2006; Raymo 

and Huybers, 2008). While the 100-kyr cycles that pace Late Pleistocene global ice volume 
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are consistent with a non-linear response to strong influence of Northern Hemisphere 

influence on local insolation (i.e., precession), the 40-kyr cycles of the Pliocene to Early 

Pleistocene (5.3 to 0.8 myr) challenge the classical understanding of Milankovitch’s theory, 

in that there is an apparent lack of significant precessional power in the globally integrated 

proxy records of ice volume (i.e. δ
18

O) (Lisiecki and Raymo, 2005) and sequence 

stratigraphic sea level records (Naish, 1997; Naish and Wilson, 2009; Miller et al., 2012).  

 

This apparent lack of precession has sparked several models that explain how orbital forcing 

mechanisms may drive ice volume changes during the Late Pliocene and Early Pleistocene. 

Raymo et al., (2006) suggest that because the influence of precession on seasonal insolation 

is out-of-phase between hemispheres, ice volume variance at precessional frequencies (23 

and 18-kyr) is cancelled out in global integrated proxy records, leaving the residual obliquity 

(40-kyr) signal to dominate (i.e., benthic δ
18

O and sea level records). While Raymo’s 

hypothesis implies an explicit response of ice sheet variance to precessional forcing, Huybers 

(2006) argues that under certain climate states, precession may have minimal influence. This 

is due to Kepler’s Second Law of Planetary Motion, whereby the Earth travels fastest when it 

is closest to the sun (in perihelion), resulting in intense, but short, Northern Hemisphere 

summers and longer cooler Northern Hemisphere winter, when situated at aphelion. Thus, 

because the mass balance of Northern Hemisphere  ice sheets is controlled by surface melt, 

and therefore the number of positive degree days, the threshold at which ice sheets melt is 

forced by the duration or total amount of summer insolation, and consequently the overall 

climate state. During the warmer climate state of the Early Pliocene to Early Pleistocene, the 

enhanced radiative forcing due to elevated atmospheric CO2 concentrations lowered the 

insolation threshold required to initiate surface ice sheet melt, and thus increasing the melt 

season. The implication is that increasing the duration of the summer melt season results in 

enhanced obliquity (40-kyr) control on ice sheet ablation. As polar regions receive no 

sunlight in winter, increasing the duration of the “summer melt season” skews the total 

summer insolation towards the mean annual insolation value - which is directly modulated by 

obliquity as the influence of precession on insolation always cancels out seasonally. 

Conversely, as climate cooled during the Late Pleistocene, the insolation threshold for ice 

sheet melt increased and the summer melt season became more sensitive to precession (23 

and 18-kyr), with internal mass balance feedback (e.g. height mass balance, albedo) 

potentially allowing for the ice sheets to build up over multiple forcing cycles (i.e. the 100-

kyr cycle of eccentricity modulation of precession). 
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Raised coastal terraces and Pacific atolls provide independent evidence that mid-Pliocene 

sea-level was globally higher (Dowsett and Cronin, 1990; Wardlaw and Quinn, 1991). 

Sequence stratigraphic reconstructions of Pliocene global mean sea-level have been used to 

calibrate the benthic foraminiferal δ
18

O record in order to demonstrate that eustatic sea level 

may have been ~22 higher than present, with sea level variance having amplitudes of 5-10 m 

during the warmest and least variable glacial-interglacial δ
18

O cycles between 4.3 and 3.2 

myr (Naish, 1997; Naish and Wilson, 2009; Miller et al., 2012). Shallow marine cyclothems 

apparent in outcrop exposures from Wanganui Basin, New Zealand, have demonstrated that 

these variations occurred at a 40-kyr pacing through most of this interval (Naish et al, 1998). 

 

The Wanganui Basin in New Zealand contains one of the best-dated Neogene shallow-marine 

sedimentary strata exposures in the world recording unconformity-bound sequences 

(cyclotherms) of glacio-eustatic changes in sea level. Previous studies, using grain size 

texture and microfossil assemblages have been able to link the sea level cycles identified in 

these cyclothems to the glacial-interglacial cycles in the benthic oxygen isotope record, with 

up to 60 cyclotherms identified since 3.6 Ma (Journeaux et al., 1996; Naish, 1997; Kamp et 

al., 1998; Naish et al., 1998; Naish et al., 2005; Naish and Wilson, 2009). These studies have 

also identified higher frequency water depth and facies cycles within individual cyclothems, 

but were unable to identify if they correspond to precessional forcing or autocycles. 

Moreover, in the pre-Pleistocene part of the Wanganui succession, where independent age-

control from tephra and paleomagnetic stratigraphy is less frequent, the frequency of orbital-

pacing of the Wanganui cyclothems is more ambiguous. Of particular interest is the Pliocene 

orbital record between 3.15 to 3.05 myr (Kaena Subchron) characterised by high-amplitude 

precession and low-amplitude  obliquity (e.g. a 1.2 Ma node) (Laskar, 2004), implying that 

global sea-level change should be controlled either by: (1) out of phase precessional and 

weak obliquity forcing of the Antarctic and a small Northern Hemisphere ice sheet, or (2) 

local precessional forcing and weak obliquity forcing of the Antarctic ice sheet preceding the 

development of a Northern Hemisphere ice sheet (Figure 5.1) (c.f. Raymo et al., 2006). In the 

case of the former eccentricity may also be significant in driving global sea-level variability 

as obliquity is extremely weak and the precession signal should cancel out, which in the case 

of the latter precession and/or eccentricity should dominate global sea-level change over 

weak obliquity forcing. The well-dated mid-Pliocene shallow-marine strata exposed in 

Wanganui Basin provide an opportunity to reconstruct high-resolution (sampling interval of 
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1-2 kyr) water depth changes controlled by orbitally-forced, glacio-eustatic sea-level changes 

through this time interval. Previous studies have described the tectonic evolution of the 

Wanganui Basin during the Pliocene (Saul et al., 1999), which is characterized by linear 

long-term flexural subsidence due to plate boundary processes (e.g. Stern et al. 1992; Fig. 2). 

Changes in subsidence rate due to more localised active faulting cycles are on the order of 

0.5-1.0 Ma. Therefore, while there is a tectonic imprint on the stratigraphic architecture of the 

Wanganui Basin succession (Saul et al., 1999), the primary frequency of sedimentary 

cyclicity is on the order of 10
4
-10

5
 years, and most likely, orbital in origin. 

 

High resolution paleomagnetic studies (i.e., McGuire, 1989; Turner et al., 2005) have laid a 

foundation to accurately date strata belonging to the Utiku Group exposed along the Turakina 

River spanning the Kaena Subchron (3.116 to 3.032 myr). The mid-Pliocene Turakina River 

Section is ideal, from a sedimentological perspective to capture water depth variations of 

~+20 m above present (Miller et al., 2012), with glacial-interglacial amplitudes of up to 30 m 

(Naish and Wilson, 2009) due to global sea level changes. This is because  deposition 

occurred on shallower inner-mid shelf  (McGuire, 1989) water-depths, which are sensitive to 

depth-related sediment grain-size variability (Dunbar and Barrett, 2005) and depth-related 

changes in benthic foraminiferal assemblages (i.e., Naish and Kamp, 1995), yet deep enough 

not to have been subaerially exposed or eroded during sea-level lowstands.  

 

This study develops a well-dated, high resolution (~2 kyr sample distribution) grain size 

record that enables correlation of local changes in sea level to a global ice volume record (i.e. 

deep sea benthic δ
18

O records) and orbital parameters in order to assess the role orbital-

forcing has on the frequency of water-depth changes during this key interval. It is important 

to note that the amplitude of these water-depth changes reflects the combined influence of 

eustatic sea-level, tectonic overprint, long term subsidence, compaction and sediment supply. 

Therefore, while this study aims to capture the frequency of eustatic change, it will not 

resolve the absolute magnitude. That is the aim of a recently funded Marsden project, led by 

Professor Tim Naish (VUW), which will employ 2-dimensional backstripping for 2 drill 

holes to extract the eustatic amplitudes. Additionally, the benthic foraminiferal assemblage 

analysis is currently been undertaken by Hugh Morgan (GNS Science) in order to provide an 

additional supporting data set for the result in this chapter – in particular to better constrain 

the paleowater water depth estimates from the stand-alone grain size results in this chapter. 

 



140 
 

 

 

Figure 5.1. Records of benthic δ
18

O (Lisiecki and Raymo, 2005), modeled sea level relative 

to today (Raymo et al., 2006), high-latitude southern insolation, eccentricity, and obliquity 

with potential precession-paced ice volume changes (Raymo et al., 2006) highlighted in grey, 

within the target interval for this is study based on outcrop exposures in Wanganui Basin, 

New Zealand. 
 

5.1.1. Geological Setting and Paleogeography 

The Wanganui Basin of New Zealand’s North Island is an sedimentary basin (200 x 200 km) 

that formed in response to subduction along the Australian and Pacific plate boundary (Figure 

2) (Stern et al., 1992; 2006). Eastward of the North Island along the Hikurangi Trough, the 

Pacific Plate subducts under the overriding Australian Plate and continues westward resulting 

in lithospheric loading and compressional downwarping for back-arc basin formation (Figure 

5.2) (Stern et al., 1992; 2006). A southward migration of the depocentre and uplift associated 

with the axial ranges to the east during the Early Pleistocene have resulted in on-land 

exposure of Pliocene and Pleistocene shallow marine sedimentary sequences (Pillans, 1983; 

Stern et al., 1992; Abbott and Carter, 1994; Naish and Kemp, 1995; Journeaux et al., 1996).  
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Figure 5.2. Location of Wanganui Basin, North Island, New Zealand and tectonic setting of 

North Island proposed by Stern et al., (1992) (from Naish et al., 1998).  

 

Palaeogeographic reconstruction of New Zealand does not contain a major seaway through 

the North and South islands during the Early Pliocene ~4-3 myr (Trewick and Bland, 2012). 

However, a narrow and shallow connection across the modern Kaweka Range (“Manawatu 

Strait” in Figure 5.3) is thought to have existed from rapid subsidence in the Wanganui and 

Manawatu area at ~3 Ma that caused local sea level rise (or regional subsidence) of up to 600 

m over ~200 Ka (Figure 5.3) (Browne, 2004; Kamp et al., 2004; Bland et al., 2008; Trewick 

and Bland, 2012). Subsidence in the back-arc Wanganui basin resulted in an arcuate 

westward facing shoreline defined as a broad embayment from south Taranaki to northern 

Marlborough. While the modern axial ranges were generally at or above sea level at 3 Ma, 

the region that includes Wanganui City and south Taranaki were 200-400 m water-depth 

below sea level  with the Manawatu area occupying shelfal water depths (0-200 m) (Trewick 

and Bland, 2012). By ~2 Ma, the Wanganui basin depocentre moved south east with 

sediment supply largely the consequence of drainage by river systems. The Wanganui and 

Manawatu regions occupied shelf to marginal marine settings (Trewick and Bland, 2012). By 

1 Ma subsidence in the Wanganui area ceased and uplift began, resulting in on land 

exposures of marine terraces that are preserved in the Wanganui and south Taranaki regions 
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(Pillans, 1983; Trewick and Bland, 2012). Today, the north-east and south-west orientated 

river valleys and coastal cliffs provide well exposed outcrops of sediment successions which 

are part of a regional monocline with strata dipping to the south and south-west at 3-4° 

(Kamp et al., 2004; Turner et al., 2005). 

 

 

Figure 5.3. Paleogeographic map of the Wanganui Basin area 3 Ma years ago (from Trewick 

and Bland, 2012), relative to modern New Zealand (grey outline) deep marine environments 

(>200 meters) = dark blue, shelfal water depths (< 200 m) = light blue, coastal land = light 

yellow, with land areas = green and mountainous areas > 1000 m = white. Red circle infers 

the location of the stratigraphic sections presented in this study. 

 

5.1.2. Pliocene-Pleistocene sea level records and cyclostratigraphy from Wanganui 

Basin, New Zealand 

Outcrop exposures of shallow-marine sedimentary cycles from Wanganui Basin, New 

Zealand contain one of the most complete Pliocene-Pleistocene stratigraphic records in the 

world recording sea level fluctuations in response to glacio-eustasy (i.e., Kamp, 1978; Beu 

and Edwards, 1984; Naish and Kemp, 1995; Naish et al., 1998; Naish et al., 2005; Turner et 

al., 2005; Naish and Wilson, 2009). These exposures are unique as most Quaternary 

continental margins remain flooded (i.e., Gulf of Mexico). Early work in the 1950’s by Sir 
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Charles Fleming recognised that depositional cycles were related to sea level changes 

(Fleming, 1953). However, his observations predated the orbital theory of ice ages, deep 

ocean climate proxies (i.e., benthic δ
18

O) and modern geochronologic techniques (i.e., 

magnetostratigraphy and radiometric ash dating). Therefore, Fleming explained the 

occurrence of depositional cycles as a result of tectonic influence by local crustal movements 

(Fleming, 1953). Approximately forty years later, these Pliocene-Pleistocene sedimentary 

cycles were correlated to glaciations reflected in the deep-sea ice volume records (i.e., Kamp, 

1978; Pillans, 1983; Beu and Edwards, 1984; Naish and Kamp, 1995; Naish et al., 2005; 

Naish and Wilson, 2009). 

 

Kamp (1978) was one of the first to correlate Pleistocene outcrop exposures at Cape 

Kidnappers to oxygen isotope stages. Pillans (1983) dated 12 Quaternary marine terraces in 

the South Taranaki region representing marine transgression events between 680 and 60 kyr.  

Beu and Edwards (1984) demonstrated Pleistocene (~2.2 to 0.1 myr) glacio-eustatic sea-level 

cycles represented in terrestrial stratigraphic sections described by Fleming (1953), Vella 

(1963), Vella and Briggs (1971) and Lillie (1953) (Castlecliff Section, Mangaopari Stream 

Section and Hawkes Bay Nukumaruan Section) exposed on land could be correlated to 

Pillans’ (1983) marine terraces as well as the oxygen isotope stages identified from the 

marine-based records of Shackleton and Opdyke (1976) and Gardner (1982).  

 

Following the original descriptive sedimentological work of Fleming (1953), detailed 

sequence stratigraphy was carried out along the southern Taranaki coast, southern Wanganui 

coast and within Rangitikei River valley by numerous workers (Abbott and Carter., 1994; 

Naish and Kamp, 1997; Journeaux et al., 1996; Naish et al., 2005). The substantial number of 

silicic tephra from North Island arc volcanoes deposited during the Plio-Pleistocene, has 

provided a precise chronostratigraphy also constrained by magnestratigraphy (Naish et al., 

2005b; Pillans et al., 2005). The preservation of tephra deposits within the basin, as well as 

those recorded in ODP Leg 181 (includes Site 1123) off eastern New Zealand, from single 

eruptive events have provided direct chronostratigraphic ties between the Wanganui 

cyclothems and the δ
18

O ice volume record (i.e., Naish, 1997; Carter et al., 2003; Lisiecki and 

Raymo, 2005; Alloway et al., 2005; Naish and Wilson, 2009).       

 

The ability to integrate the sedimentological record with accurately constrained 

chronostratigraphy has resulted in the identification of sedimentary cyclothems representing 
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transgressive and regressive cycles responding at Milankovitch-frequency for the last 3.6 myr 

(Abbott and Carter., 1994; Naish and Kamp, 1997; Naish et al., 1998; Journeaux et al., 1996; 

Naish et al., 2005). Chronostratigraphy of these cyclothemic records has allowed for one-to-

one correlation to single Milankovitch driven events responding to 40-kyr and 100-kyr cycles 

related to glacio-eustatice sea-level changes (Abbott and Carter, 1994; Naish, 1997; Kamp et 

al., 1998; Naish et al., 2005b). By reconstructing water depth changes using extant benthic 

formainiferal depth associations, and placing first-order constraints on total subsidence and 

sediment decompaction, Naish (1997) and Naish and Wilson (2009) were able to estimate 

changes in the amplitude of eustatic sea-level inferred from Wanganui cyclothemic  records. 

By mapping these chronologically constrained, eustatic changes to global benthic δ
18

O 

records Naish and Wilson (2009) were able to independently calibrate the ice volume/sea-

level component of the δ
18

O records.  Their estimates inferred from the Wanganui 

cyclothems are consistent with (1) ice volume changes implied by the δ
18

O records (Lisiecki 

and Raymo, 2005), and (2) numerical ice sheet models suggesting near-complete deglaciation 

of Greenland (+7 m sea-level rise) (e.g Hill et al., 2010; Dolan et al., 2011), with the WAIS 

contributing +3 m (Pollard and DeConto, 2009), and <+10 m from the EAIS (Pollard and 

DeConto, 2009; Hill et al., 2010). Other estimates based on uplifted shorelines and 

backstripping from far-field sites suggest global mean sea level was ~+20 m during peak 

Pliocene interglacial (Miller et al., 2012). However, large uncertainties in these estimates are 

a result of glacio-hydro isostatic adjustment, resulting in regionally-uneven sea-level changes 

ranging from 5 to 30 m (Raymo et al., 2011).         

  

5.1.3. The Turakina River Section of Wanganui Basin 

The Turakina River valley section is located in the central part of the Wanganui Basin where 

Pliocene-Pleistocene sediments are finer grained reflecting deep water (mid-shelf) compared 

to the thicker corresponding stratigraphic units further to the east in the basin such as the 

Rangitikei River Section which consists of shelf to coastal plain setting (Figure 5.2) 

(McGuire, 1989; Turner et al., 2005; Naish and Wilson, 2009). Following the work done by 

Superior Oil workers, McGuire (1989) identified five formations within the Waitotaran New 

Zealand Superstage (mid-Pliocene) exposed along the Turakina River that span the Tangahoe 

Mudstone to the base of the Nukumaruan strata (Figure 5.4), which McGuire (1989) refers to 

as; Reef-Bearing Sands Formation, Taihape Mudstone, Utiku Sandstone, Mangaweka 

Mudstone and the lower portion of the Nukumaruan Formation (Figure 5.5). 
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Following the work of McGuire (1989), Turner et al., (2005) defined the base of the Turakina 

Section, to consist of the Tangahoe Mudstone (760 m), a mid-Pliocene continental slope 

succession, that is overlain by Late Pliocene-Pleistocene shelf successions (Okiwa Group and 

younger units). The Utiku Subgroup (200 m) directly overlies the Tangahoe Mudstone and is 

characterized by a blue-grey fine grained, concretionary sandstones and sandy siltstones. 

According to McGuire (1989), the Utiku Sand is not mappable to the west. The Utiku 

Subgroup passes upwards into the Mangaweka Mudstone (840 m), which is predominantly a 

massive-blue-grey mudstone with occasional concretionary bands that increase in abundance 

at the top of the section (Figure 5.4) (McGuire, 1989; Turner et al., 2005). The Utiku 

Subgroup strata have a simple post-depositional structure with a strike of 110° and dip 6 to 4° 

towards the south.   
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Figure 5.4. Geological map of the Wanganui Basin showing the location of the Turakina 

River. 

 

An estimated sediment accumulation rate for the Turakina River Section is 1.5 m/k.y. (Turner 

et al., 2005). Detailed sampling used to erect a magnetostratigraphy for this river section was 

carried out by McGuire (1989) and Turner et al., (2005), which is constrained by 

tephrochronology and biostratigraphy (Turner et al., 2005). This study employs stratigraphic 

dating from Turner et al., (2005) of the lower and upper boundaries of the Kaena Subchron in 

order to make correlations between the local expression of eustatic (global) sea level 
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oscillations observed in the  Turakina River Section to that of MISs reflected in the benthic 

δ
18

O record (Lisiecki and Raymo, 2005).   

 

 

 

Figure 5.5. Stratigraphic column of Pliocene sediments exposed along the Turakina River as 

described by McGuire (1989). Note stratigraphic thickness of sections differs from that of 

Turner et al., (2005) measurements (paragraph 2; section 5.1.3). Note the Reef-Bearing Sands, 

Taihape Mudstone, and Utiku Sandstone are displayed on the geological map Figure 5.4 as 

the Tangahoe Group. 
 

5.2. METHODOLOGY 

Seventy nine samples were obtained from 11 outcrop sections along the Turakina River, in 

the vicinity of Siberia Station for grain size and benthic foraminiferal assemblage analysis 

extending from ~3.2 to 3.0 Ma, spanning the Kaena Subchron (Figure 5.6). In this study 

detailed lithological descriptions are made for individual sections and compiled into a 
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composite stratigraphic section based on careful elevation and position measurements (by 

GPS and barometric altimeter), geological mapping and dip projections. Grain size analysis 

of sampled intervals at ~1.5 to 2-kyr resolution (1.5 to 2 meter intervals), has been carried out 

to estimate water-depth variations. The eleven outcrops display a regional strike of 110° and 

dip of 5° to the southwest, which is consistent with both McGuire (1989) and Turner et al., 

(2005). These structural measurements, in addition to altimeter measurements, allowed for 

construction of a geological cross section (Figure 5.7) and the ability to correlate individual 

sections into a single composite stratigraphic section. 

 

The grain size-based proxy used for paleobathmetric reconstructions is based on modern 

analogue studies along the Manawatu coast, New Zealand, that have subsequently been 

applied to mid-Pliocene cyclothems exposed in Wanganui records (Figure 5.8) (Dunbar and 

Barrett, 2005). Assuming a depositional setting of a wave-graded coast system (shelf and 

shoreline) in hydrodynamic equilibrium with an analogous wave climate, the percent mud of 

the sea-floor sediments is a function of the shear stress imparted on the sea-bed by the 

contemporary wave climate, which is in turn a function of water depth. For sedimentary strata 

deposited near fair-weather wave base and below fair-weather wave base on the inner to mid- 

shelf (20-100 m) the grain-size proxy may provide higher fidelity water depth estimates  (+/- 

5 m error) than other methods (e.g., foraminifera) (Dunbar and Barrett, 2005).  
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Figure 5.6. Base map of measured sections within the Turakina River Valley near Siberia 

Station adjacent to the Turakina Valley Road and just south of Papanui Junction (NZMS 260 

grid reference) (after Turner et al., 2005). Exposures along the river bed are noted; BS = Base 

of Section, DC = Dead Cow Section, ML = Missing Link Section, BF = Big Face Section, 

DMS = Dutch Man’s Stairs Section, NB = North Bridge Section, SBB = South Bridge 

Section (below tephra), SBA = South Bridge Section and individual samples obtained from 

river bed (above tephra), RF = Rob’s Face Section (note: SBA8 is recovered at the base of 

Rob’s Face Section), WF = Gillian’s Waterfall Section =, and FT = Falling Tim Section. 
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Figure 5.7. Cross section of measured sections along the Turakina River using bedding dip to 

demonstrate how each section is projected into the next. Also included are the 

magnetostratigraphic reversal constraints for the bottom (lower; TU213 [last normal] and 

upper; TU219 [first reversed]) and top (lower; 52T [last reverse] and upper; 53T [first 

normal]) of the Kaena Subchron. 

 

Grain size sample preparations included gentle physical disaggregation of a (~0.25g) 

representative sub-sample with wooden spatula, followed by the removal of both organic and 

carbonate material. Organic material was removed with H2O2 (hydrogen peroxide), followed 

by digestion in 10% HCl (Hydrogen chloride) to dissolve carbonate material. Samples were 

washed three times in between treatments. Prior to analysis, sub-samples were diluted with 

0.1g/l Calgon solution (1%), and sonicated with a stirrer for ~30 minutes. This allowed for 

optimal concentrations for grain size measurements using a LS 13 320 Laser Diffraction 

Particle Size Analyzer with a precision of 2.52% for the calculated percentage of mud (<63 

µm).                      
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Figure 5.8. Interpolated fourth-order polynomial curve relating percent mud to water depth 

from various transects off the Manawatu coast and used in this study to derive 

paleobathymetric trends (from Dunbar and Barrett, 2005).  
 

 

5.3. RESULTS/DISCUSSION 

5.3.1. Lithostratigraphy 

Exact locations of outcrop exposures and sampled locations are provided in Appendix C. 

Similar to that observed by McGuire (1989) and Turner et al., (2005), lithologic sections 

characteristically comprised of massive-blue-grey mudstones. However, textural variability 

ranged from sandy mudstone to mudstone. Detailed grain size analysis results are provided in 

Appendix C. Obvious concretionary layers punctuate textural boundary layers between fine 

to coarser grain sediment. Overall, the sequences are sparsely fossiliferous, and where present 

consist of in-situ articulated and disarticulated thin walled bivalves, gastropods and shell 

fragments. The sediment is moderately to intensely bioturbated with occasional moderate to 

weak horizontal stratification.  A 1 m-thick reworked silicic tephra, Siberia Tephra (after 

McGuire et al., 1989) was observed (Figure 5.6; 5.7; 5.17).  

 

Individual stratigraphic sections were compiled using standard field mapping and measuring 

techniques. Each section was measured using a barometric altimeter for accurate elevation 
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readings and normalized to the the river bed, with individual sections measured from the base 

of each section to the top. Altimeter measurements were calibrated by re-occupying a base-

station of known height several times a day and at South Siberia Bridge (Figure 5.6) to 

account for barometric pressure changes throughout the day. A meter stick and tape measure 

were used to accurately measure sample spacing of 1.5 to 2 m.  

 

The base of the composite section consists of the sandiest (almost 50 %) interval in which 

three well defined concretionary layers are observed. Above the concretionary layers the 

strata fines upwards into siltstone between 12 and 36 m, before coarsening again upwards to 

fine sandy siltstone by 40 m. A second larger fining-coarsening cycle occurs between 40 and 

69 m above which more concretionary layers appear and highlight an extended interval of 

fine sandy siltstone with almost 40% sand (~60% mud) up to ~85 m. Above this, the 

succession progressively fines up into siltstone at 135 m. The Siberia Tephra occurs at ~96 m. 

The tephra layer is characterized by massive to mm-scale lamination and bedding with a 

combination cross- and planar-stratification, possibly from reworking by tidal currents or 

emplacement as a sediment gravity flow onto the shelf. Above this tephra layer sediment 

continues to fine upward into almost 90% mud. 

 

Outcrop exposures are individually named: Base of Section, Dead Cow Section, Missing 

Link Section, Big Face Section, Dutch Man’s Stairs Section, North Bridge Section, South 

Bridge Section-below tephra, South Bridge Section-above tephra, Rob’s Face Section, 

Gillian’s Waterfall Section, Falling Tim Section. Descriptions are organized starting from the 

base of the river section (Base of Section) to the top (Falling Tim Section) (Figures 5.9 to 

5.20). A composite stratigraphic section is defined for the Turakina River Section (Figure 

5.21) based on structural and height measurements of individual sections.   
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Figure 5.9. Outcrop description key following those of Andrews (1982). 

 

 

Figure 5.10. Outcrop description of Base of Section. 
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Figure 5.11. Outcrop description of Dead Cow Section. 

 

Figure 5.12. Outcrop description of Missing Link Section. 
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Figure 5.13. Outcrop description of Big Face Section. 

 

 

Figure 5.14. Outcrop description of Dutch Man’s Stairs Section. 
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Figure 5.15. Outcrop description of North Bridge Section. 

 

 

Figure 5.16. Outcrop description of South Bridge Section (below tephra). 
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Figure 5.17. Outcrop description of South Bridge Section (above tephra). Compiled from 

strata exposed along the river bed.  

 

 

Figure 5.18. Outcrop description of Rob’s Face Section. 

 

 

Figure 5.19. Outcrop description of Gillian’s Waterfall Section. 
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Figure 5.20. Outcrop description of Falling Tim Section.  
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Figure 5.21. Individual measured sections and correlation into composite section.   
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5.3.2. Cyclostratigraphy 

Using the base and top of the 82-kyr-duration Kaena Subchron (Lisecki and Raymo 2005; 

Turner et al., 2005) as absolute age tie points, there is one broad 60 m thick cycle in the sand 

to mud ratio (cycle 1). Immediately below the Kaena/Gauss boundary there is a peak of ~ 90% 

mud before passing up into ~70% by the middle of the Kaena Subchron, before grading 

normally to 80% mud just above the top of the Kaena Subchron (cycle 2) (Figure 5.22).   

 

Within the uncertainties constraining the paleomagnetic boundaries in this sequence, these 

cycles exceed 80-kyr in duration and are consistent with a 100-kyr duration cycle of 

eccentricity. This interpretation is supported by the high mud values, which appear to 

correspond directly to maxima in eccentricity, while the increased sand abundance in the 

middle of the Kaena corresponds with a mimima in eccentricity (Figure 5.22). Using the 

Dunbar and Barrett (2005) grainsize-water depth calibration in Figure 5.8, the variations in 

percent mud are consistent with local water-depth variation of 20-15 m (+/-5 m) associated 

with these ~100 cycles, with the sea level highstands (i.e., high mud percentage) being 

associated with a maximum in eccentricity forcing. Paleobathymetric estimates during these 

cycles ranged from inner (~39+/-5 meters below sea level) to mid-shelf (56+/-5 meters below 

sea level) depths, although the forthcoming benthic foraminifera census will help to refine 

this estimate. 

 

Superimposed on these long duration (~100-kyr) cycles are thinner (~10 m thick), lower 

amplitude variations (5-10%) in the mud abundance. Below the uncertaintiy of the base of the 

Kaena Subchron three distinct low amplitude events, in which there are excursions in grain 

size data associated with  peaks in mud abundance occur at 24-33, 45 and 61 m, whereas 

within the Kaena Subchron, there are peaks at ~80, 91, and 100 m. As peaks within the 

Kaena Subchron are situated well within the zones that span the paleolmagnetic reversals, 

and within the 82-kyr duration of the Kaena Subchron itself, the frequency of these cycles 

must be less than 27 kyr. When the higher amplitude peaks at 61 and 116 m are included, it 

implies at least 5 cycles of relatively smaller scale sea level variations over the duration of the 

lower frequency “~100-kyr eccentricity” (top of cycle 1 to cycle 2), implying that a 

precession component is present in the grain size-based sea level proxies. Furthermore, the 

higher amplitude peak at ~61 m lies within the uncertainty of the base of the Kaena Subchron. 

Thus, if the base of the Kaena Subchron falls stratigraphically within the lower estimate of 
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the paleomagentic reversal, than the peak in percent mud would correlate to a peak in 

Southern Hemisphere insolation. 

 

 
Figure 5.22. Stratigraphic column and percent mud of the mid-Pliocene Turakina River 

Section correlated to benthic δ
18

O LR04 stack (‰) (Lisiecki and Raymo, 2005) and orbital 

parameters with polarity reversal stratigraphy constrained by tephrochronology and 

biostratigraphy (Turner et al., 2005). Blue diamonds in grey shading highlight sampled 

intervals for magnetostratigraphy since Turner et al., (2005) that were recovered in order to 

more tightly constrain stratigraphical polarity reversals of the top and bottom of the Kaena 

Subchron (Turner correspondence). Blue dotted line over laying eccentricity is percent mud 

interpolated using tie points within the uncertainty of paleomagnetic reversals.  
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5.3.3. Implications of the Turakina River Section cyclostratigraphy 

Figure 5.22 demonstrates the greatest amplitude of water depth variability in the studied 

interval approximately corresponding with the 100-kyr eccentricity cycle. However, this 

interpretation would be significantly strengthened by further work to constrain the 

stratigraphic position of Kaena Subchron polarity reversals, as well as the forminiferal 

paleobathymetric estimates. Therefore, the discussion below outlines a preliminary 

interpretation. 

   

Similar to what has already been demonstrated from sedimentary sequences observed in 

Wanganui Basin (Naish 1997; Naish and Wilson, 2009), this study infers sedimentary cycles 

in the Turakina River Section have formed in response to the interplay of subsidence, 

sediment supply and glacio-eustatic sea level fluctuations driven by the orbital variability of 

the ice sheets. While geological records, spanning a range of depositional processes and 

environments in both hemispheres during the Late Pliocene and Early Pleistocene, are 

dominated by obliquity (e.g., Shackleton et al., 1984; Dwyer et al., 1995; Naish, 1997; Hall et 

al., 2001; Ding et al., 2002; Kleiven et al., 2002; Lisiecki and Raymo, 2005; Crundwell et al., 

2008; Naish et al., 2009; Martínez-Garcia et al., 2011; Passchier et al., 2011; Naafs et al., 

2012), recent studies using detailed spectra analysis on the LR04 benthic δ
18

O stack inferring 

ice volume changes, demonstrate the presence of strong precessional and eccentricity (short 

100-kyr and long 400-kyr period) forcing from 3.5 to 2.5 myr (Lisiecki, 2010; Meyers and 

Hinnov, 2010).            

 

Meyers and Hinnov (2010) showed through evolutionary spectral analysis of the benthic δ
18

O 

LR04 Stack an emergence in the power of long period (400-kyr) eccentricity at ~3.5 Ma, 

which transitions into short period (100-kyr) eccentricity between ~3.3 to 3.0 Ma until ~2.6 

Ma. Furthermore, they identify the disappearance of the 40-kyr obliquity signal at 3.5 Ma and 

its slight re-emergence around 3.2 Ma with an increase in power after 3.0 Ma (Figure 1C 

Meyers and Hinnov, 2010). This coeval emergence of increased 100-kyr eccentricity and 

decline in 40-kyr obliquity power in the LR04 Stack between 3.2 to 3.0 myr provides some 

support to the notion that grain size data presented in this study demonstrates a larger scale 

variability is potentially paced by 100-ky eccentricity. Furthermore, the lack of an apparent 

40-kyr signal within the grain size data is not surprising when considering the lack of a strong 

40-kyr signal and low amplitude variance in the Laskar et al., (2004) orbital solution, 
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indicating the occurrence of a 1.2 million year node in obliquity during the mid-Pliocene 

(Meyers and Hinnov, 2010).   

 

Chapter 3 of this thesis documents a direct response of the EAIS during the Late Pliocene to 

precession that is modulated by the longer 100-kyr eccentricity cycle using an ice-berg rafted 

debris (IBRD) record. The modulation of the 100-kyr eccentricity forcing can be observed 

also in lithological cycles in which the most rapid amount of ice loss occurs during lithofacies 

transitions paced by eccentricity. Cook et al., (2013) used radiogenic isotopes from the same 

Site U1361 record to identify provenance signatures from detrital material in which highly 

productive diatom-rich intervals, representing “warm” periods, consists of sediments sourced 

from the central portion of the Wilkes Subglacial Basin and were deposited during multiple 

erosional events when the ice margin would have retreated 100’s of km inland. While the 

smallest estimates based on numerical ice sheet models imply 3 m of Pliocene glacio-eustatic 

sea level rise could have come from the EAIS (Pollard and DeConto, 2009), Cook et al., 

(2013) suggest the ice margin retreated several 100’s of km inland are in better agreement 

with the larger estimates inferring a contribution of  ~10 m (Miller et al., 2012).  

 

The ANDRILL AND-1B drill core, recovered from the Ross Sea Embayment, record 

spanning the length of the Kaena Subchron, demonstrates multiple higher frequency events (4) 

that are associated with relatively smaller retreats along the WAIS margin lasting multiple 

glacial to interglacial cycles (KM2 to G21). These smaller cycles are superimposed over a 

longer term lithological cycle where the core transitions from subglacial, at the base of the 

Kaena, into an open marine setting associated with the G21 interglacial. Assuming this open 

marine setting infers near retreat and or collapse of the WAIS, a maximum contribution of 3 

m from the WAIS (Miller et al., 2012) and ~10 m from the EAIS is in line with the 20-15 m 

of sea level change inferred from the percent mud estimates from the Turakina River Section.     

 

The results of this study are important as they provide complimentary far-field evidence of 

precession forcing via eccentricity modulation that is observed in the deep ocean records 

(Lisiecki and Raymo, 2005; Meyers and Hinnov, 2010) and from the Antarctic ice sheet 

margin (Naish et al., 2009; Cook et al., 2013; Chapter 3 this thesis) during the mid-Pliocene. 

In regards to hypotheses of orbital forcing of Pliocene-Early Pleistocene ice volume, this 

study lends support to the notion that following the 40-kyr obliquity dominance on Antarctic 

ice volume during the Early warm Pliocene (prior to 3.3 Ma) (e.g., Naish et al., 2009; Chapter 
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3 this thesis), cooling during the Late Pliocene (after 3.3 Ma) allowed the ice sheet to begin to 

stabilize and become more sensitive to eccentricity modulated changes in precession. 

Whereas, by the Early Pleistocene the Antarctic ice volume contribution identified in ice 

volume and sea level records is minimal and records become dominated by changes in the 

Northern Hemisphere ice sheets with ice volume changes paced by obliquity until the 100-

kyr cycles following the mid-Pleistocene transition between 1 Ma and 800 Ka years ago.  

 

5.3.4. Future work 

This study needs to be taken as a stepping stone in which future work is required to be done 

in order to better constrain the timing of paleobathymetic changes that can be used to infer 

changes in ice volume with an influence on local sea level and ultimately eustatic sea level. 

Four main areas of focus should be: 1.) more tightly constrained polarity reversal boundaries: 

2.) benthic foraminifera assemblage analysis: 3.) benthic oxygen isotope analysis and 4.) 

geochemical analysis of Siberia tephra layer.  

 

Constraining the stratigraphic position of polarity reversals of the Kaena Subchron and 

correlating the geochemical signature of the Siberia tephra to a deep ocean record for dating 

purposes, such as ODP Site 1123 (Chapter 4 of this thesis), will more tightly constrain the 

timing of regression and high stands with respect to orbital forcing. High resolution benthic 

foraminifera assemblage analysis would provide an additional proxy for interpreting 

paleobathymetric changes and serve as a constraint on changes in water depth inferred from 

percent mud. This technique has been proven to reveal cyclical water depth changes in 

Wanganui Basin marines Pliocene-Pleistocene deposits (e.g., Naish and Kamp, 1997). 

However, while this study only observes changes of ~20 meters (according to percent mud 

estimates), within depth limits of species, which may serve useful for changes particularly 

between inner to mid-shelf depths. Furthermore, oxygen isotope analysis should be carried 

out on benthic foraminifera in order to demonstrate whether precessional changes in grain 

size correspond to those observed in the δ
18

O record from ODP Site 1123 inferring ice 

volume and sea level.   

 

  



165 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



166 
 

CHAPTER 6 

SUMMARY AND CONCLUDING REMARKS 

 

6.1. RECONSTRCUTING SOUTHERN HIGH LATITUDE EARTH SYSTEM 

RESPONSES DURING THE WARM EARLY PLIOCENE CLIMATE (5.3 to 3.3 Ma) 

This thesis presents, a reconstruction of southern high-latitude ice-sheet and Southern Ocean 

response during the warm Early Pliocene. A time when atmospheric CO2 levels were 400 

ppm (Pagani et al., 2009; Seki et al., 2010) and globally averaged surface temperatures were 

2-3°C higher than modern (Haywood et al., 2013).  

 

Alternating lithofacies consisting of massive to laminated mudstones and diatom-rich/bearing 

mudstones are identified in IODP Site U1361, recovered from the continental rise adjacent to 

the Wilkes Land margin of the EAIS. These lithofacies are thought to represent variations in 

the extent of the marine-based margins of the EAIS. Massive mudstones with discrete 

packages of silt laminae are consistent with a base-cut-out turbidite facies model and 

combined with seismic profiles, indicate turbidite deposition occured in an non-erosive, 

overbank levee/distal continental rise setting. It is suggested these coincide with extended 

periods of time in when the ice sheet expanded to the continental shelf edge. Large volumes 

of unconsolidated sediment were delivered to the continental shelf edge either through the 

deposition of till deltas or from bedload-rich turbid glacial melt water plumes (Eittreim et al., 

1995; Hesse et al., 1997; Lucchi et al., 2002; Escutia et al., 2005; Beaman et al., 2011). 

Seismic profiles for stratigraphic packages on the continental shelf support this interpretation, 

with the onset of steeply dipping foresets and the development of the modern progradational 

wedge that commenced during the Early Pliocene around 4.2 Ma, coincident with turbidite 

deposition (Escutia et al., 2005; Tauxe et al., 2012).  

 

In contrast, diatom-rich/bearing mudstone facies represent extended periods of enhanced 

biogenic productivity over the drill site, and a corresponding lull in turbidite deposition 

(Figure 2.9) (Chapter 2). During the Early Pliocene, these lulls in turbidite deposition (5.3 to 

3.3 Ma) reflect a retreated ice sheet margin. This is supported by independent studies of these 

diatom-rich facies using Nb and Sr provenance signatures of fine grained terrigenous material, 

which indicate the margin of the EAIS was eroding sediments within the Wilkes Subglacial 

Basin with the ice sheet retreated by as much as 100 km to the south of its present margin 

(Cook et al., 2013).  
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The facies assemblages presented in Chapter 2 appear to be the consequence of marine-based 

EAIS expansions and retreats near the continental shelf edge. The IBRD MAR record from 

Site U1361 infers the orbital sensitivity in which these major advances and retreats of the ice 

sheet responded to (Chapter 3). The facies assemblages combined with the IBRD MAR data 

suggests, the greatest amount of ice discharge during this time was associated with deglacial 

phases of ice margin retreat. Spectral anaylsis indicates a highly significant pacing by 40-kyr 

obliquity cycles during between 4.2 and 3.5 Ma. Obliquity pacing has been previously 

qualitatively demonstrated for the WAIS during this time from the semi-continuous 

ANDRILL-1B record (Naish et al., 2009; Pollard and DeConto, 2009). The statistically-

significant orbital pacing within the IBRD record allows for near one-to-one correlations with 

the benthic δ
18

O LR04 stack to be made (Lisiecki and Raymo, 2005). This correlation 

indicates that the deposition of the diatom-rich/bearing mudstones typically occurs during 

multiple low amplitude cycles when interglacial δ
18

O values are consistently lower than 

Holocene levels (Figure 3.3) (Chapter 3). Thus, the facies analysis from Site U1361 confirm 

the presence of orbitally-induced oscillations in the EAIS with prolonged periods of reduced 

ice sheet extent coinciding with the warmest and least variable glacial to interglacial δ
18

O 

cycles at this time. This is consistent with inferences from the δ
18

O and sequence 

stratigraphic records of a significant (~10m) EAIS contribution to peak Pliocene eustatic sea-

levels of ~+20 m above present levels – i.e. assuming a  +3 m contribution from the marine-

based WAIS and +7 m from the Greenland ice sheet. 

 

During the Early Pliocene, SST reconstructions based on diatom assemblage proxy data in 

both the Ross Sea Embayment and Prydz Bay regions are dominated by subantarctic species 

and infer persistent open ocean conditions with a southward retraction of the winter sea ice 

limit (Whitehead et al., 2005; McKay et al., 2012). Furthermore, TEX
L

86 (tetraether index of 

lipids biomarkers consisting of 86 carbon atoms) data from the Ross Sea Embayment 

supports diatom assemblage reconstructions inferring SST estimates between 2 to 5°C during 

peak Pliocene warmth when bulk stable isotopes (δ
13

C and δ
15

N) infer polynya style mixing 

was decreased compared to modern (McKay et al., 2012). Such a reduction in sea ice extent 

is accompanied by a reduced production of AABW with a southward migration of the 

westerly winds and the Southern Boundary front (McKay et al., 2012). The reduced 

production of AABW, reduced sea ice field extent with extended seasonal duration (extended 

summers), was accompanied by enhanced supply of NADW entering the Southern Ocean 

during a stronger AMOC (Ravelo and Andreasen, 2000; Hodell and Venz-Curtis, 2006; 
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Chapter 4). This allowed for the upwelling of CDW, driven by Ekman-pumping (Toggweiler 

et al., 2006) along the margin and promoting the basal melting of marine based margins of 

the Antarctic Ice Sheet (Naish et al., 2009; McKay et al., 2012; Chapter 3; Chapter 4).    

 

6.2. SOUTHERN HIGH LATITUDE EARTH SYSTEM RESPONSES AND 

FEEDBACKS THROUGH THE GLOBAL LATE PLIOCENE COOLING EVENT (3.3 

to 2.7 Ma).  

The Site U1361 IBRD MAR record displays a transition from the 40-kyr obliquity-paced ice 

rafting events to 20-kyr precession dominated events around 3.33 Ma (Chapter 3). This 

transition coincides with the MIS M2 event, a +1‰ glacial δ
18

O excursion in which modelled 

Antarctic ice volume reaches LGM equivalent (Pollard and DeConto, 2009; Chapter 3). The 

orbital configuration surrounding the M2 glaciation is optimal for Antarctic ice sheet growth 

as it coincides with a 1.2 Ma node in obliquity and 400-kyr minima in long period (400-kyr) 

eccentricity, favouring cold summers and low seasonality (Zachos et al., 2001; Pälike et al., 

2006). The significant 20-kyr precessional pacing in the IBRD record after 3.3 Ma is 

modulated by the 100-kyr cycle of eccentricity in which the greatest amount of ice rafting 

occurs during facies transitions from massive/laminated mudstones to diatom-rich/bearing 

mudstones. Peak diatom-rich/bearing mudstones loosely coincide with peaks in 100-kyr 

eccentricity (Figure 3.3) (Chapter 3). This eccentricity modulated imprint on Antarctic ice 

volume is also evident in benthic stable isotope records from the southwest Pacific and in far 

field sea level records presented in Chapters 4 and 5 of this thesis. 

 

The M2 glacial excursion has been associated with southern high latitude cooling when 

grounded ice re-established on the middle to outer continental shelf following an extended 

warm period lasting ~200-kyr of open water conditions is observed in the ANDRILL-1B drill 

core record (Naish et al., 2009). While that record provided the first direct evidence of the 

WAIS oscillating at 40-kyr obliquity frequencies prior to 3.3 Ma (Naish et al., 2009), sub-

glacial erosion surfaces from ice sheet advances cannot rule out the possibility of missing 

cycles. Frequency analysis quantifying the deterministic orbital forcing/pacing reflected in 

the benthic δ
18

O LR04 stack (inferring ice volume) indicates the emergence of significant 

long period 400-kyr eccentricity at ~3.6 Ma, followed by a transfer in power to short period 

100-kyr eccentricity from ~3.3 to 2.5 Ma (Meyers and Hinnov, 2010; Figure 1C). Deep water 

sourced from the Southern Ocean (Ross Sea and Wilkes Land margin) entering the southwest 

Pacific Ocean during the Late Pliocene and into the Early Pleistocene also carries this orbital 
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signature with a significant and persistent long-period (400-kyr) and short-period (100-kyr) 

eccentricity signal in benthic δ
18

O and δ
13

C records from ODP Site 1123 present in Chapter 4 

(Figure 4.13). This is in contrast to the globally integrated LR04 stack in which records are 

biased toward the Atlantic sector. The eccentricity modulated precessional variability of the 

Antarctic Ice Sheet during the Late Pliocene plays an important role in long-term 

reorganisation of circulation in Southern Ocean regulating the formation of AABW and the 

ventilation of CDW with a profound impact on the global carbon cycle after ~3.6 Ma. 

Furthermore, the 100-kyr eccentricity pacing of EAIS also may be reflected in the sea level 

record from the Wanganui Basin present in Chapter 5. These mid-Pliocene (3.2 to 3.0 Ma) 

shallow marine outcrop exposures in Wanganui Basin, New Zealand infer the maximum 

amount of sea level change of up to ~20 m sea level equivalent is modulated by the 100-kyr 

eccentricity cycle (Figure 5.22). 

 

The switch from obliquity to precession-pacing in the Site U1361 IBRD MAR record after 

~3.3 Ma is interpreted to reflect a declining influence of oceanic warming via the 

development of persistent summer sea ice around the margin (Chapter 3). It is suggested that 

expanded and more persistent summer sea ice fields after 3.3 Ma, combined with a northward 

migration of the Southern Hemisphere subpolar westerlies,  reduced the upwelling of CO2 

rich CDW at the Antarctic margin. Thus, the basal melting of marine based margins  of the 

EAIS was regulated by periods of reduced sea ice extent during peaks in austral summer 

insolation maxima, which is controlled by precession (Chapter 3).  

 

In the Ross Sea, diatom assemblages and bulk stable isotope (δ
13

C and δ
15

N) data infer a shift 

to more polar open ocean/seasonal sea ice assemblages and enhanced polynya style mixing 

after ~3.3 Ma, inferred to have resulted in increase AABW formation. Chapter 4 presents size 

sorting data of terrigenous silt material for Site 1123, located in the path of the DWBC. It 

infers the initiation of enhanced bottom current winnowing in the southwest Pacific Ocean 

from an invigorated ACC as both the production of AABW increased and zonal winds in the 

Southern Ocean intensified (Martínez Garcia et al., 2012; Chapter 4). The enhanced delivery 

of bottom water with a southern-sourced deepwater signature (i.e., AABW) entering the 

Pacific Ocean basin decreases the deep water δ
13

C gradient between the southwest Pacific 

and equatorial Pacific. This shift in the Pacific deepwater gradient is interpreted to reflect 

reduced deep ocean ventilation of CDW in the Southern Ocean around Antarctic due to 
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stratification (Chapter 4), and enhanced delivery of southern sourced bottom waters with an 

overall reduction of NADW entering the Pacific basin. 

  

After ~2.6 Ma IBRD at Site U1361’s begins to dramatically decreases (Figure 3.3 Ma), 

inferring the ice sheet margin begins to fully stabilise and also the EAIS begins fluctuate by a 

similar magnitude to that of the Late Pleistocene glacial cycles (Chapter 3). Primary sediment 

features become increasing more reworked from the interplay between bioturbation and 

downslope currents delivery of highly oxygenated water, inferring enhanced polynya style 

mixing in the Adélie depression (Chapter 2). At Site 1123,  deep water δ
13

C values are lower 

than modern for the Pliocene (5.3 to 2.6 Ma) interval, and is interpreted to be a consequence 

of a decrease in preformed δ
13

C values due to decreased productivity in the main AABW 

regions and enhanced delivery of Lower Circumpolar Deep Water with a southern sourced 

signature (i.e., LCDW/AABW) rather than NADW entering the Pacific Ocean basin (McKay 

et al., 2012; Chapter 4). This maxima in ice volume and reduced deep ocean ventilation 

coincides with a draw down in atmospheric CO2 concentrations to being consistently at pre-

industrial levels  (Seki et al., 2010), a critical precondition for the development of the 

Northern Hemisphere ice sheet expansion (Lunt et al., 2008).   
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ABBREVIATION INDEX 

AABW – Antarctic Bottom Water 

ACC – Antarctic Circumpolar Current 

ALBW – Adélie Land Bottom Water 

ANDRILL – Antarctic Gelogical DRILLing program  

AMOC – Atlantic Meridional Overturning Circulation 

 

CAS – Central American Seaway 

CDW – Circumpolar Deep Water 

 

DSDP - Deep Sea Drilling Project  

DVDP – Dry Valley Drilling Project 

DWBC – Deep Western Boundary Current 

 

EAIS – East Antarctic Ice Sheet 

ECC – East Cape Current 

ENZOSS – Eastern New Zealand Oceanic Sedimentary System 

 

GIS – Greenland Ice Sheet 

GNAIW – Glacial North Atlantic Intermediate Water 

 

HSSW – High Salinity Shelf Water 

 

IBRD MAR – Ice-Berg Rafted Debris Mass Accumulation Rate 

IODP – Integrated Ocean Drilling Program 

IRD – Ice Rafted Debris 

ISRD – Ice Shelf-Rafted Debris 

ITCZ – Intertropical Convergence Zone 

 

LCDW – Lower Circumpolar Deep Water 

LGM – Last Glacial Maximum 

 

MBSF – Meters Below Sea Floor 
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MCD – Meters Composite Depth 

MCDW – Modified Circumpolar Deep Water 

MIS – Marine Isotope Stage 

 

NADW – North Atlantic Deep Water 

NCW – Northern Component Water  

 

ODP – Ocean Drilling Program 

 

PDW – Pacific Deep Water 

PFZ – Polar Front Zone 

PRISM – Pliocene Interpretation and Synoptic Mapping 

 

rMCD – revised Meters Composite Depth 

RSBW – Ross Sea  Bottom Water 

 

SAF – Subantarctic Front  

SC – Southland Current 

SCW – Southern Component Water 

SIRD – Sea Ice-Rafted Debris 

SPC – South Pacific Current 

SST – Sea Surface Temperatures 

STF – Subtropical Front 

 

UCDW – Upper Circumpolar Deep Water 

 

WAIS – West Antarctic Ice Sheet 

WSBW – Weddell Sea Bottom Water 
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APPENDIX A 

 

IODP Site U1361 IBRD MAR and biogenic opal weight percent 

Core, section, 

interval (cm) 

Depth 

(mbsf) 

Age 

(Ma) 

CS 

(wt%) 

DBD 

(g/cm3) 

LSR 

(cm/k.y.) 

IBRD 

MAR 

(g/cm2/k.y.) 

Biogenic 

opal 

(wt%) 

5H 2W 85-87 39.85 2.159 0.377 1.54 2.33 0.014 28.24 

5H 2W 95-97 39.95 2.163 0.175 1.54 2.33 0.006 33.53 

5H 2W 105-107 40.05 2.168 0.220 1.54 2.33 0.008 31.58 

5H 2W 115-117 40.15 2.172 0.232 1.54 2.33 0.008 31.58 

5H 2W 125-127 40.25 2.176 0.039 1.54 2.33 0.001 44.89 

5H 2W 135-137 40.35 2.181 0.351 1.54 2.33 0.013 44.89 

5H 3W 15-17 40.65 2.193 0.439 1.56 2.33 0.016 41.24 

5H 3W 25-27 40.75 2.198 0.108 1.56 2.33 0.004 35.71 

5H 3W 35-37 40.85 2.202 0.189 1.56 2.33 0.007 48.02 

5H 3W 55-57 41.05 2.211 0.123 1.56 2.33 0.004 38.85 

5H 3W 65-67 41.15 2.215 0.211 1.56 2.33 0.008 25.47 

5H 3W 85-87 41.35 2.223 0.052 1.56 2.33 0.002 28.14 

5H 3W 95-97 41.45 2.228 0.000 1.56 2.33 0.000 41.24 

5H 3W 105-107 41.55 2.232 0.072 1.56 2.33 0.003 35.19 

5H 3W 115-117 41.65 2.236 0.163 1.56 2.33 0.006 30.18 

5H 3W 125-127 41.75 2.241 0.102 1.56 2.33 0.004 33.54 

5H 3W 135-137 41.85 2.245 0.168 1.56 2.33 0.006 29.65 

5H 3W 145-147 41.95 2.249 0.219 1.48 2.33 0.008 34.52 

5H 4W 5-7 42.05 2.253 0.253 1.48 2.33 0.009 26.16 

5H 4W 15-17 42.15 2.258 0.091 1.48 2.33 0.003 31.41 

5H 4W 25-27 42.25 2.262 0.214 1.48 2.33 0.007 30.72 

5H 4W 35-37 42.35 2.266 0.149 1.48 2.33 0.005 29.17 

5H 4W 45-47 42.45 2.270 0.109 1.48 2.33 0.004 38.71 

5H 4W 55-57 42.55 2.275 0.111 1.48 2.33 0.004 31.14 

5H 4W 65-67 42.65 2.279 0.156 1.48 2.33 0.005 30.12 

5H 4W 85-87 42.85 2.288 0.352 1.48 2.33 0.012 24.40 

5H 4W 95-97 42.95 2.292 1.262 1.48 2.33 0.044 24.40 

5H 4W 105-107 43.05 2.296 0.206 1.48 2.33 0.007 27.98 

5H 4W 115-117 43.15 2.300 0.098 1.48 2.33 0.003 27.98 

5H 4W 125-127 43.25 2.305 0.134 1.48 2.33 0.005 31.18 

5H 4W 135-137 43.35 2.309 0.044 1.48 2.33 0.002 31.18 

5H 4W 145-147 43.45 2.313 0.124 1.48 2.33 0.004 31.10 

5H 5W 5-7 43.55 2.318 0.141 1.51 2.33 0.005 31.10 

5H 5W 15-17 43.65 2.322 0.331 1.51 2.33 0.012 44.79 

5H 5W 25-27 43.75 2.326 0.063 1.51 2.33 0.002 52.76 

5H 5W 35-37 43.85 2.330 0.236 1.51 2.33 0.008 33.97 

5H 5W 45-47 43.95 2.335 0.196 1.51 2.33 0.007 38.76 

5H 5W 55-57 44.05 2.339 0.595 1.51 2.33 0.021 38.76 

5H 5W 65-67 44.15 2.343 0.333 1.51 2.33 0.012 38.76 

5H 5W 85-87 44.35 2.352 0.122 1.51 2.33 0.004 26.49 

5H 5W 105-107 44.55 2.360 0.432 1.51 2.33 0.015 31.71 

5H 5W 115-117 44.65 2.365 0.802 1.51 2.33 0.028 32.74 

5H 5W 125-127 44.75 2.369 0.836 1.51 2.33 0.030 32.74 

5H 5W 135-137 44.85 2.373 0.038 1.51 2.33 0.001 49.40 

5H 5W 145-147 44.95 2.378 0.206 1.31 2.33 0.006 49.40 

5H 6W 5-7 45.05 2.382 0.199 1.31 2.33 0.006 37.21 
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5H 6W 15-17 45.15 2.386 0.340 1.31 2.33 0.010 42.58 

5H 6W 25-27 45.25 2.390 0.282 1.31 2.33 0.009 51.90 

5H 6W 35-37 45.35 2.395 0.314 1.31 2.33 0.010 35.09 

5H 6W 45-47 45.45 2.399 0.164 1.31 2.33 0.005 58.13 

5H 6W 55-57 45.55 2.403 0.148 1.31 2.33 0.005 58.13 

5H 6W 65-67 45.65 2.408 0.686 1.31 2.33 0.021 58.13 

5H 6W 85-87 45.85 2.416 0.477 1.31 2.33 0.015 42.01 

5H 6W 95-97 45.95 2.420 0.100 1.31 2.33 0.003 42.01 

5H 6W 105-107 46.05 2.425 0.371 1.31 2.33 0.011 25.00 

5H 6W 125-127 46.25 2.433 0.304 1.54 2.33 0.011 20.00 

5H 6W 135-137 46.35 2.438 0.239 1.54 2.33 0.009 35.54 

5H 6W 145-147 46.45 2.442 0.225 1.54 2.33 0.008 48.19 

5H 7W 15-17 46.65 2.450 0.483 1.54 2.33 0.017 42.53 

5H 7W 25-27 46.75 2.455 0.581 1.54 2.33 0.021 40.12 

5H 7W 35-37 46.85 2.459 1.105 1.54 2.33 0.040 32.08 

5H 7W 45-47 46.95 2.463 1.393 1.54 2.33 0.050 24.55 

5H 7W 55-57 47.05 2.468 0.847 1.54 2.33 0.030 29.94 

5H 7W 63-65 47.13 2.471 0.218 1.54 2.33 0.008 15.59 

6H 1W 15-17 47.15 2.472 0.446 1.54 2.33 0.016 28.85 

5H CC 5-7 47.2 2.474 1.214 1.54 2.33 0.044 30.64 

6H 1W 35-37 47.35 2.480 0.174 1.61 2.33 0.007 32.54 

6H 1W 45-47 47.45 2.485 0.526 1.61 2.33 0.020 29.22 

6H 1W 55-57 47.55 2.489 0.955 1.61 2.33 0.036 29.22 

6H 1W 65-67 47.65 2.493 0.000 1.61 2.33 0.000 29.22 

6H 1W 85-87 47.85 2.502 0.975 1.61 2.33 0.037 25.12 

6H 1W 95-97 47.95 2.506 0.615 1.61 2.33 0.023 18.42 

6H 1W 105-107 48.05 2.510 0.197 1.61 2.33 0.007 22.59 

6H 1W 115-117 48.15 2.515 0.000 1.61 2.33 0.000 24.85 

6H 1W 125-127 48.25 2.519 0.000 1.61 2.33 0.000 28.84 

6H 1W 135-137 48.35 2.523 0.186 1.61 2.33 0.007 41.25 

6H 1W 145-147 48.45 2.527 0.155 1.61 2.33 0.006 32.00 

6H 2W 5-7 48.55 2.532 0.282 1.50 2.33 0.010 34.86 

6H 2W 15-17 48.65 2.536 0.663 1.50 2.33 0.023 16.67 

6H 2W 35-37 48.85 2.545 0.321 1.50 2.33 0.011 30.43 

6H 2W 45-47 48.95 2.549 0.192 1.50 2.33 0.007 29.10 

6H 2W 55-57 49.05 2.553 0.000 1.50 2.33 0.000 27.68 

6H 2W 65-67 49.15 2.557 0.313 1.50 2.33 0.011 29.00 

6H 2W 85-87 49.35 2.566 0.682 1.50 2.33 0.024 25.15 

6H 2W 95-97 49.45 2.570 0.690 1.50 2.33 0.024 35.50 

6H 2W 105-107 49.55 2.575 0.968 1.50 2.33 0.034 24.66 

6H 2W 115-117 49.65 2.579 1.090 1.50 2.33 0.038 30.12 

6H 2W 125-127 49.75 2.583 0.386 1.50 3.29 0.019 23.38 

6H 2W 135-137 49.85 2.586 0.628 1.50 3.29 0.031 23.24 

6H 2W 145-147 49.95 2.589 0.746 1.50 3.29 0.037 23.24 

6H 3W 5-7 50.05 2.592 1.047 1.51 3.29 0.052 19.89 

6H 3W 15-17 50.15 2.595 0.487 1.51 3.29 0.024 27.75 

6H 3W 25-27 50.25 2.598 1.455 1.51 3.29 0.073 27.75 

6H 3W 35-37 50.35 2.601 0.000 1.51 3.29 0.000 29.03 

6H 3W 45-47 50.45 2.604 1.256 1.51 3.29 0.063 19.14 

6H 3W 55-57 50.55 2.607 0.718 1.51 3.29 0.036 22.78 

6H 3W 65-67 50.65 2.610 0.211 1.51 3.29 0.011 34.78 

6H 3W 85-87 50.85 2.616 0.269 1.51 3.29 0.013 28.04 

6H 3W 95-97 50.95 2.619 0.168 1.51 3.29 0.008 32.30 

6H 3W 105-107 51.05 2.622 0.877 1.51 3.29 0.044 26.06 
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6H 3W 115-117 51.15 2.625 0.572 1.51 3.29 0.029 21.43 

6H 3W 125-127 51.25 2.628 0.679 1.51 3.29 0.034 27.87 

6H 3W 135-137 51.35 2.631 0.249 1.51 3.29 0.012 25.64 

6H 3W 145-147 51.45 2.634 0.235 1.51 3.29 0.012 26.10 

6H 4W 5-7 51.55 2.637 0.358 1.51 3.29 0.018 18.86 

6H 4W 15-17 51.65 2.640 0.640 1.51 3.29 0.032 28.91 

6H 4W 25-27 51.75 2.643 0.656 1.49 3.29 0.032 28.86 

6H 4W 35-37 51.85 2.646 1.051 1.49 3.29 0.051 26.60 

6H 4W 45-47 51.95 2.649 0.792 1.49 3.29 0.039 36.30 

6H 4W 55-57 52.05 2.652 1.380 1.49 3.29 0.068 28.99 

6H 4W 65-67 52.15 2.655 0.764 1.49 3.29 0.037 28.96 

6H 4W 85-87 52.35 2.661 0.117 1.49 3.29 0.006 25.08 

6H 4W 95-97 52.45 2.665 0.111 1.49 3.29 0.005 19.34 

6H 4W 105-107 52.55 2.668 0.138 1.49 3.29 0.007 28.93 

6H 4W 115-117 52.65 2.671 0.180 1.49 3.29 0.009 33.33 

6H 4W 135-137 52.85 2.677 0.362 1.49 3.29 0.018 28.80 

6H 4W 145-147 52.95 2.680 0.807 1.49 3.29 0.039 30.11 

6H 5W 5-7 53.05 2.683 0.658 1.49 3.29 0.032 29.88 

6H 5W 15-17 53.15 2.686 1.249 1.49 3.29 0.061 35.25 

6H 5W 25-27 53.25 2.689 0.867 1.49 3.29 0.042 27.60 

6H 5W 35-37 53.35 2.692 0.924 1.55 3.29 0.047 37.13 

6H 5W 45-47 53.45 2.695 0.938 1.55 3.29 0.048 28.32 

6H 5W 55-57 53.55 2.698 1.051 1.55 3.29 0.054 26.60 

6H 5W 65-67 53.65 2.701 0.202 1.55 3.29 0.010 17.85 

6H 5W 85-87 53.85 2.707 1.260 1.55 3.29 0.064 19.33 

6H 5W 95-97 53.95 2.710 0.755 1.55 3.29 0.039 27.04 

6H 5W 105-107 54.05 2.713 0.534 1.55 3.29 0.027 26.01 

6H 5W 115-117 54.15 2.716 0.487 1.55 3.29 0.025 25.04 

6H 5W 125-127 54.25 2.719 0.380 1.55 3.29 0.019 34.13 

6H 5W 135-137 54.35 2.722 0.537 1.55 3.29 0.027 34.13 

6H 5W 145-147 54.45 2.725 0.501 1.61 3.29 0.027 35.06 

6H 6W 5-7 54.55 2.728 1.053 1.61 3.29 0.056 21.44 

6H 6W 15-17 54.65 2.731 0.586 1.61 3.29 0.031 19.16 

6H 6W 25-27 54.75 2.734 0.194 1.61 3.29 0.010 28.66 

6H 6W 35-37 54.85 2.737 0.757 1.61 3.29 0.040 21.52 

6H 6W 45-47 54.95 2.740 0.557 1.61 3.29 0.030 22.13 

6H 6W 55-57 55.05 2.743 0.305 1.61 3.29 0.016 15.99 

6H CC 5-7 56.555 2.789 1.023 1.56 3.29 0.053 24.40 

7H 1W 15-17 56.65 2.792 0.853 1.56 3.29 0.044 31.32 

6H CC 15-17 56.655 2.792 1.476 1.52 3.29 0.074 19.08 

7H 1W 25-27 56.75 2.795 1.551 1.52 3.29 0.078 35.24 

7H 1W 35-37 56.85 2.798 1.039 1.52 3.29 0.052 26.12 

7H 1W 45-47 56.95 2.801 1.677 1.52 3.29 0.084 41.40 

7H 1W 55-57 57.05 2.804 2.946 1.52 3.29 0.148 26.83 

7H 1W 65-67 57.15 2.807 1.943 1.52 3.29 0.097 33.70 

7H 1W 75-77 57.25 2.810 1.487 1.52 3.29 0.074 31.85 

7H 1W 85-87 57.35 2.813 0.594 1.52 3.29 0.030 42.77 

7H 1W 95-97 57.45 2.816 0.490 1.52 3.29 0.025 33.78 

7H 1W 105-107 57.55 2.819 0.792 1.52 3.29 0.040 34.62 

7H 1W 115-117 57.65 2.822 2.066 1.52 3.29 0.103 29.33 

7H 1W 125-127 57.75 2.825 0.993 1.52 3.29 0.050 37.22 

7H 1W 135-137 57.85 2.829 1.188 1.52 3.29 0.059 27.79 

7H 1W 145-147 57.95 2.832 0.725 1.52 3.29 0.036 39.07 

7H 2W 5-7 58.05 2.835 0.568 1.52 3.29 0.028 34.14 
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7H 2W 25-27 58.25 2.841 0.282 1.48 3.29 0.014 35.20 

7H 2W 35-37 58.35 2.844 0.262 1.48 3.29 0.013 25.55 

7H 2W 45-47 58.45 2.847 0.593 1.48 3.29 0.029 36.78 

7H 2W 55-57 58.55 2.850 0.634 1.48 3.29 0.031 35.02 

7H 2W 65-67 58.65 2.853 1.108 1.48 3.29 0.054 39.24 

7H 2W 75-77 58.75 2.856 0.848 1.48 3.29 0.041 26.62 

7H 2W 85-87 58.85 2.859 0.790 1.48 3.29 0.039 42.50 

7H 2W 95-97 58.95 2.862 0.385 1.48 3.29 0.019 32.76 

7H 2W 105-107 59.05 2.865 0.323 1.48 3.29 0.016 41.98 

7H 2W 115-117 59.15 2.868 0.259 1.48 3.29 0.013 34.19 

7H 2W 125-127 59.25 2.871 0.948 1.48 3.29 0.046 38.89 

7H 2W 135-137 59.35 2.874 0.928 1.48 3.29 0.045 27.59 

7H 2W 145-147 59.45 2.877 0.670 1.48 3.29 0.033 39.02 

7H 3W 5-7 59.55 2.880 0.400 1.48 3.29 0.019 25.74 

7H 3W 15-17 59.65 2.883 0.368 1.48 3.29 0.018 27.93 

7H 3W 25-27 59.75 2.886 0.202 1.48 3.29 0.010 21.89 

7H 3W 35-37 59.85 2.889 0.247 1.48 3.29 0.012 25.73 

7H 3W 45-47 59.95 2.892 0.316 1.48 3.29 0.015 30.13 

7H 3W 55-57 60.05 2.895 0.280 1.53 3.29 0.014 23.03 

7H 3W 65-67 60.15 2.898 0.000 1.53 3.29 0.000 23.03 

7H 3W 85-87 60.35 2.904 0.356 1.53 3.29 0.018 25.80 

7H 3W 95-97 60.45 2.907 0.478 1.53 3.29 0.024 12.20 

7H 3W 105-107 60.55 2.911 0.213 1.53 3.29 0.011 27.78 

7H 3W 115-117 60.65 2.914 0.433 1.53 3.29 0.022 27.78 

7H 3W 125-127 60.75 2.917 0.421 1.53 3.29 0.021 12.97 

7H 3W 135-137 60.85 2.920 0.178 1.53 3.29 0.009 16.88 

7H 3W 145-147 60.95 2.923 0.128 1.53 3.29 0.006 22.80 

7H 4W 5-7 61.05 2.926 0.337 1.53 3.29 0.017 20.25 

7H 4W 25-27 61.25 2.932 0.080 1.55 3.29 0.004 17.44 

7H 4W 35-37 61.35 2.935 0.087 1.55 3.29 0.004 17.44 

7H 4W 45-47 61.45 2.938 0.000 1.55 3.29 0.000 23.60 

7H 4W 55-57 61.55 2.941 0.169 1.55 3.29 0.009 45.51 

7H 4W 65-67 61.65 2.944 0.928 1.55 3.29 0.047 35.50 

7H 4W 75-77 61.75 2.947 1.182 1.55 3.29 0.060 26.22 

7H 4W 85-87 61.85 2.950 0.111 1.55 3.29 0.006 36.77 

7H 4W 95-97 61.95 2.953 0.171 1.55 3.29 0.009 30.92 

7H 4W 105-107 62.05 2.956 0.658 1.55 3.29 0.034 38.01 

7H 4W 115-117 62.15 2.959 0.452 1.55 3.29 0.023 30.83 

7H 4W 125-127 62.25 2.962 2.196 1.55 3.29 0.112 44.72 

7H 4W 135-137 62.35 2.965 2.512 1.55 3.29 0.128 31.51 

7H 4W 145-147 62.45 2.968 0.565 1.55 3.29 0.029 35.47 

7H 5W 5-7 62.55 2.971 0.311 1.59 3.29 0.016 26.58 

7H 5W 15-17 62.65 2.974 0.376 1.59 3.29 0.020 35.80 

7H 5W 25-27 62.75 2.977 0.738 1.59 3.29 0.039 33.48 

7H 5W 35-37 62.85 2.980 0.668 1.59 3.29 0.035 39.63 

7H 5W 45-47 62.95 2.983 0.187 1.59 3.29 0.010 31.59 

7H 5W 55-57 63.05 2.986 0.544 1.59 3.29 0.028 27.96 

7H 5W 65-67 63.15 2.989 0.624 1.59 3.29 0.033 27.96 

7H 5W 75-77 63.25 2.993 0.952 1.59 3.29 0.050 21.89 

7H 5W 85-87 63.35 2.996 0.750 1.59 3.29 0.039 20.80 

7H 5W 95-97 63.45 2.999 0.311 1.59 3.29 0.016 21.93 

7H 5W 105-107 63.55 3.002 0.162 1.59 3.29 0.008 21.93 

7H 5W 115-117 63.65 3.005 0.232 1.59 3.29 0.012 20.11 

7H 5W 125-127 63.75 3.008 0.126 1.59 3.29 0.007 21.99 
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7H 5W 135-137 63.85 3.011 0.140 1.59 3.29 0.007 26.28 

7H 5W 145-147 63.95 3.014 0.102 1.49 3.29 0.005 14.29 

7H 6W 5-7 64.05 3.017 0.000 1.49 3.29 0.000 18.64 

7H 6W 15-17 64.15 3.020 0.635 1.49 3.29 0.031 23.36 

7H 6W 25-27 64.25 3.023 0.053 1.49 3.29 0.003 15.89 

7H 6W 35-37 64.35 3.026 0.278 1.49 3.29 0.014 29.22 

7H 6W 45-47 64.45 3.029 0.214 1.49 3.29 0.011 33.44 

7H 6W 55-57 64.55 3.032 0.122 1.49 3.29 0.006 33.44 

7H 6W 65-67 64.65 3.034 0.610 1.49 2.56 0.023 40.91 

7H 6W 75-77 64.75 3.037 0.525 1.49 2.56 0.020 33.04 

7H 6W 85-87 64.85 3.039 0.144 1.49 2.56 0.005 36.85 

7H 6W 95-97 64.95 3.042 0.191 1.49 2.56 0.007 25.73 

7H 6W 105-107 65.05 3.044 0.403 1.52 2.56 0.016 36.59 

7H 6W 115-117 65.15 3.047 0.335 1.52 2.56 0.013 29.51 

7H 6W 125-127 65.25 3.049 0.187 1.52 2.56 0.007 32.26 

7H 6W 135-137 65.35 3.052 1.040 1.52 2.56 0.041 28.92 

7H 6W 145-147 65.45 3.054 0.896 1.52 2.56 0.035 33.91 

7H 7W 8-10 65.58 3.057 0.927 1.52 2.56 0.036 17.04 

7H 7W 15-17 65.65 3.059 0.617 1.52 2.56 0.024 29.14 

7H 7W 25-27 65.75 3.061 0.622 1.52 2.56 0.024 45.95 

7H 7W 35-37 65.85 3.064 1.092 1.52 2.56 0.043 21.98 

7H 7W 45-47 65.95 3.066 1.365 1.52 2.56 0.053 21.98 

7H 7W 55-57 66.05 3.069 1.075 1.52 2.56 0.042 26.79 

8H 1W 15-17 66.15 3.071 0.517 1.56 2.56 0.021 25.32 

8H 1W 25-27 66.25 3.074 1.021 1.56 2.56 0.041 13.95 

7H CC 20-22 66.35 3.076 0.501 1.56 2.56 0.020 13.95 

8H 1W 45-47 66.45 3.079 1.011 1.56 2.56 0.040 18.71 

8H 1W 65-67 66.65 3.084 0.110 1.56 2.56 0.004 19.88 

8H 1W 75-77 66.75 3.086 0.155 1.56 5.46 0.013 17.47 

8H 1W 85-87 66.85 3.089 0.062 1.56 5.46 0.005 20.69 

8H 1W 105-107 67.05 3.093 0.000 1.56 5.46 0.000 11.61 

8H 1W 125-127 67.25 3.098 0.131 1.59 5.46 0.011 24.34 

8h 1W 145-147 67.45 3.103 0.000 1.59 5.46 0.000 32.56 

8H 2W 5-7 67.56 3.106 0.000 1.59 5.46 0.000 21.35 

8H 2W 15-17 67.66 3.108 0.233 1.59 5.46 0.020 23.08 

8H 2W 35-37 67.86 3.113 0.168 1.59 5.46 0.015 21.43 

8H 2W 45-47 67.96 3.116 0.535 1.59 5.46 0.047 33.13 

8H 2W 55-57 68.06 3.118 0.189 1.59 5.46 0.016 34.12 

8H 2W 75-77 68.26 3.123 0.054 1.59 5.46 0.005 21.57 

8H 2W 85-87 68.36 3.126 0.112 1.59 5.46 0.010 22.10 

8H 2W 95-97 68.46 3.128 0.026 1.59 5.46 0.002 22.10 

8H 2W 115-117 68.66 3.133 0.113 1.59 5.46 0.010 39.20 

8H 2W 125-127 68.76 3.135 0.000 1.59 5.46 0.000 29.49 

8H 2W 135-137 68.86 3.138 0.104 1.47 5.46 0.008 29.49 

8H 3W 5-7 69.06 3.143 0.097 1.47 5.46 0.008 27.86 

8H 3W 15-17 69.16 3.145 0.183 1.47 5.46 0.015 15.21 

8H 3W 25-27 69.26 3.148 0.000 1.47 5.46 0.000 9.67 

8H 3W 45-47 69.46 3.153 0.322 1.47 5.46 0.026 28.61 

8H 3W 55-57 69.56 3.155 0.157 1.47 5.46 0.013 20.50 

8H 3W 65-67 69.66 3.158 0.165 1.47 5.46 0.013 22.41 

8H 3W 85-87 69.86 3.163 0.568 1.47 5.46 0.046 31.20 

8H 3W 95-97 69.96 3.165 0.563 1.47 5.46 0.045 32.92 

8H 3W 107-109 70.08 3.168 0.239 1.47 5.46 0.019 25.10 

8H 3W 115-117 70.16 3.170 0.415 1.47 5.46 0.033 28.26 
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8H 3W 125-127 70.26 3.172 0.299 1.47 5.46 0.024 26.67 

8H 3W 135-137 70.36 3.175 0.116 1.47 5.46 0.009 22.19 

8H 3W 145-147 70.46 3.177 0.332 1.55 5.46 0.028 22.19 

8H 4W 5-7 70.56 3.180 0.090 1.55 5.46 0.008 19.88 

8H 4W 15-17 70.66 3.182 0.086 1.55 5.46 0.007 19.75 

8H 4W 25-27 70.76 3.185 0.282 1.55 5.46 0.024 19.75 

8H 4W 35-37 70.86 3.187 0.000 1.55 5.46 0.000 23.26 

8H 4W 45-47 70.96 3.190 0.959 1.55 5.46 0.081 25.53 

8H 4W 55-57 71.06 3.192 0.573 1.55 5.46 0.048 15.14 

8H 4W 65-67 71.16 3.194 0.087 1.55 5.46 0.007 27.27 

8H 4W 75-77 71.26 3.197 0.388 1.55 5.46 0.033 27.27 

8H 4W 85-87 71.36 3.199 0.123 1.55 5.46 0.010 34.38 

8H 4W 95-97 71.46 3.202 0.115 1.55 5.46 0.010 27.78 

8H 4W 105-107 71.56 3.204 0.237 1.55 5.46 0.020 27.15 

8H 4W 115-117 71.66 3.207 0.000 1.55 5.46 0.000 33.55 

8H 4W 125-127 71.76 3.211 0.985 1.55 2.32 0.035 30.34 

8H 4W 135-137 71.86 3.215 0.903 1.49 2.32 0.031 33.12 

8H 4W 145-147 71.96 3.220 0.200 1.49 2.32 0.007 26.64 

8H 5W 5-7 72.06 3.224 0.027 1.49 2.32 0.001 38.10 

8H 5W 15-17 72.16 3.228 0.062 1.49 2.32 0.002 38.32 

8H 5W 25-27 72.26 3.232 0.088 1.49 2.32 0.003 32.96 

8H 5W 35-37 72.36 3.237 0.000 1.49 2.32 0.000 30.36 

8H 5W 45-47 72.46 3.241 0.408 1.49 2.32 0.014 40.88 

8H 5W 55-57 72.56 3.245 0.366 1.49 2.32 0.013 33.77 

8H 5W 65-67 72.66 3.250 0.357 1.49 2.32 0.012 37.58 

8H 5W 75-77 72.76 3.254 0.433 1.49 2.32 0.015 35.91 

8H 5W 85-87 72.86 3.258 0.462 1.49 2.32 0.016 39.47 

8H 5W 95-97 72.96 3.263 0.612 1.49 2.32 0.021 41.85 

8H 5W 105-107 73.06 3.267 0.669 1.49 2.32 0.023 29.64 

8H 5W 115-117 73.16 3.271 0.301 1.49 2.32 0.010 29.64 

8H 5W 125-127 73.26 3.276 1.091 1.49 2.32 0.038 28.59 

8H 5W 135-137 73.36 3.280 0.919 1.49 2.32 0.032 28.59 

8H 5W 145-147 73.46 3.284 1.025 1.49 2.32 0.035 33.73 

8H 6W 5-7 73.57 3.289 0.534 1.49 2.32 0.018 34.70 

8H 6W 15-17 73.67 3.293 0.656 1.49 2.32 0.023 34.32 

8H 6W 25-27 73.77 3.298 0.422 1.49 2.32 0.015 33.54 

8H 6W 35-37 73.87 3.302 0.406 1.49 2.32 0.014 35.90 

8H 6W 45-47 73.97 3.306 0.597 1.49 2.32 0.021 28.83 

8H 6W 65-67 74.17 3.315 0.076 1.49 2.32 0.003 49.02 

8H 6W 75-77 74.27 3.319 0.000 1.49 2.32 0.000 49.02 

8H 6W 85-87 74.37 3.324 1.694 1.49 2.32 0.059 23.90 

8H 6W 95-97 74.47 3.328 0.055 1.49 2.32 0.002 23.90 

8H 7W 5-7 74.58 3.335 0.789 1.49 1.10 0.013 23.03 

8H 7W 15-17 74.68 3.345 0.000 1.49 1.10 0.000 35.46 

8H 7W 25-27 74.78 3.354 0.000 1.49 1.10 0.000 34.13 

8H 7W 35-37 74.88 3.363 0.000 1.49 1.10 0.000 40.15 

8H 7W 45-47 74.98 3.372 0.380 1.49 1.10 0.006 40.15 

8H 7W 55-57 75.08 3.381 0.577 1.40 1.10 0.009 33.92 

9H 1W 15-17 75.65 3.433 0.655 1.40 1.10 0.010 26.49 

9H 1W 25-27 75.75 3.442 0.960 1.40 1.10 0.015 26.49 

9H 1W 35-37 75.85 3.451 1.207 1.40 1.10 0.019 43.42 

9H 1W 45-47 75.95 3.460 1.656 1.40 1.10 0.026 43.42 

9H 1W 55-57 76.05 3.469 0.518 1.40 1.10 0.008 47.37 

9H 1W 65-67 76.15 3.478 0.876 1.40 1.10 0.014 47.33 
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9H 1W 75-77 76.25 3.487 1.479 1.40 1.10 0.023 47.34 

9H 1W 85-87 76.35 3.496 0.559 1.40 1.10 0.009 46.45 

9H 1W 95-97 76.45 3.505 0.394 1.40 1.10 0.006 47.37 

9H 1W 105-107 76.55 3.514 0.618 1.40 1.10 0.010 47.03 

9H 1W 115-117 76.65 3.523 0.190 1.40 1.10 0.003 48.73 

9H 1W 125-127 76.75 3.532 0.104 1.40 1.10 0.002 62.21 

9H 1W 135-137 76.85 3.542 0.416 1.40 1.10 0.006 42.05 

9H 1W 145-147 76.95 3.551 1.018 1.46 1.10 0.016 42.05 

9H 2W 5-7  77.05 3.560 0.993 1.46 1.10 0.016 
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9H 5W 45-47 81.95 3.714 0.762 1.64 3.81 0.048 23.51 

9H 5W 55-57 82.05 3.717 0.501 1.64 3.81 0.031 27.17 

9H 5W 65-67 82.15 3.719 0.000 1.64 3.81 0.000 23.44 

9H 5W 75-77 82.25 3.722 0.000 1.64 3.81 0.000 42.17 

9H 5W 85-87 82.35 3.724 0.032 1.64 3.81 0.002 17.37 

9H 5W 95-97 82.45 3.727 0.141 1.64 3.81 0.009 21.59 

9H 5W 115-117 82.65 3.732 0.204 1.64 3.81 0.013 28.48 

9H 5W 125-127 82.75 3.735 0.000 1.64 3.81 0.000 19.23 

9H 5W 135-137 82.85 3.738 0.042 1.64 3.81 0.003 26.01 

9H 5W 145-147 82.95 3.740 0.061 1.64 3.81 0.004 15.34 

9H 6W 5-7 83.05 3.743 0.486 1.64 3.81 0.030 28.99 

9H 6W 15-17 83.15 3.745 0.141 1.64 3.81 0.009 21.38 

9H 6W 25-27 83.25 3.748 0.278 1.64 3.81 0.017 21.46 

9H 6W 35-37 83.35 3.751 0.217 1.64 3.81 0.014 21.46 

9H 6W 45-47 83.45 3.753 0.170 1.64 3.81 0.011 29.12 

9H 6W 55-57 83.55 3.756 3.750 1.64 3.81 0.235 29.12 

9H 6W 65-67 83.65 3.759 0.000 1.64 3.81 0.000 21.05 

9H 6W 75-77 83.75 3.761 0.073 1.64 3.81 0.005 21.05 

9H 6W 95-97  83.95 3.766 0.085 1.64 3.81 0.005 20.86 

9H 6W 105-107 84.05 3.769 0.000 1.64 3.81 0.000 20.25 

9H 6W 115-117 84.15 3.772 0.000 1.64 3.81 0.000 44.38 

9H 6W 125-127 84.25 3.774 0.150 1.64 3.81 0.009 41.88 

9H 6W 135-137 84.35 3.777 0.424 1.64 3.81 0.027 44.13 

9H 6W 145-147 84.45 3.780 0.702 1.64 3.81 0.044 32.45 

9H 7W 5-7 84.55 3.782 1.197 1.64 3.81 0.075 20.73 

9H 7W 15-17 84.65 3.785 1.054 1.63 3.81 0.066 26.92 

9H 7W 25-27 84.75 3.787 1.259 1.63 3.81 0.078 32.58 

9H 7W 55-57 85.05 3.795 0.000 1.63 3.81 0.000 21.69 

10H 1W 15-17 85.15 3.798 0.000 1.63 3.81 0.000 34.83 

10H 1W 25-27  85.25 3.801 0.000 1.63 3.81 0.000 20.77 

10H 1W 35-37 85.35 3.803 0.039 1.63 3.81 0.002 20.77 

10H 1W 45-47 85.45 3.806 0.370 1.63 3.81 0.023 27.85 

10H 1W 55-57  85.55 3.808 0.465 1.63 3.81 0.029 27.85 

10H 1W 65-67 85.65 3.811 0.163 1.63 3.81 0.010 21.51 

10H 1W 75-77 85.75 3.814 0.209 1.63 3.81 0.013 20.34 

10H 1W 85-87 85.85 3.816 0.201 1.63 3.81 0.012 14.94 

10H 1W 95-97 85.95 3.819 0.656 1.63 3.81 0.041 17.42 

10H 1W 105-107 86.05 3.821 0.414 1.63 3.81 0.026 29.14 

10H 1W 115-117 86.15 3.824 0.785 1.63 3.81 0.049 28.90 

10H 1W 125-127 86.25 3.827 0.075 1.58 3.81 0.005 18.23 

10H 1W 135-137 86.35 3.829 0.386 1.58 3.81 0.023 18.23 

10H 1W 145-147 86.45 3.832 0.092 1.58 3.81 0.006 15.56 

10H 2W 5-7 86.55 3.835 0.952 1.58 3.81 0.057 25.56 

10H 2W 15-17 86.65 3.837 0.080 1.58 3.81 0.005 22.99 

10H 2W 25-27 86.75 3.840 0.111 1.58 3.81 0.007 22.99 

10H 2W 35-37 86.85 3.842 0.103 1.58 3.81 0.006 29.48 

10H 2W 45-47 86.95 3.845 0.118 1.58 3.81 0.007 29.48 

10H 2W 55-57 87.05 3.848 0.108 1.58 3.81 0.006 17.65 

10H 2W 65-67 87.15 3.850 0.000 1.58 3.81 0.000 27.81 

10H 2W 75-77 87.25 3.853 0.000 1.58 3.81 0.000 26.04 

10H 2W 85-87 87.35 3.856 0.000 1.58 3.81 0.000 34.08 

10H 2W 95-97 87.45 3.858 0.149 1.58 3.81 0.009 18.63 

10H 2W 105-107 87.55 3.861 0.080 1.58 3.81 0.005 24.44 

10H 2W 125-127 87.75 3.866 0.000 1.61 3.81 0.000 23.33 
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10H 2W 135-137 87.85 3.869 0.222 1.61 3.81 0.014 23.46 

10H 2W 145-147 87.95 3.871 0.000 1.61 3.81 0.000 28.66 

10H 3W 5-7  88.05 3.874 0.275 1.61 3.81 0.017 32.45 

10H 3W 15-17 88.15 3.877 0.457 1.61 3.81 0.028 41.40 

10H 3W 25-27 88.25 3.879 0.740 1.61 3.81 0.045 33.33 

10H 3W 35-37 88.35 3.882 1.274 1.61 3.81 0.078 27.06 

10H 3W 45-47 88.45 3.884 0.391 1.61 3.81 0.024 26.14 

10H 3W 55-57 88.55 3.887 0.211 1.61 3.81 0.013 26.14 

10H 3W 65-67 88.65 3.890 0.717 1.61 3.81 0.044 20.96 

10H 3W 75-77 88.75 3.892 0.000 1.61 3.81 0.000 18.50 

10H 3W 85-87 88.85 3.895 0.329 1.61 3.81 0.020 28.99 

10H 3W 95-97 88.95 3.898 0.499 1.61 3.81 0.031 28.99 

10H 3W 115-117 89.15 3.903 0.045 1.61 3.81 0.003 25.58 

10H 3W 125-127 89.25 3.905 0.000 1.61 3.81 0.000 25.58 

10H 3W 135-137 89.35 3.908 0.525 1.61 3.81 0.032 48.02 

10H 3W 145-147 89.45 3.911 0.076 1.58 3.81 0.005 24.86 

10H 4W 5-7 89.55 3.913 0.000 1.58 3.81 0.000 34.57 

10H 4W 15-17 89.65 3.916 0.043 1.58 3.81 0.003 24.29 

10h 4W 25-27 89.75 3.919 0.000 1.58 3.81 0.000 37.11 

10H 4W 35-37 89.85 3.921 0.000 1.58 3.81 0.000 27.67 

10H 4W 45-47 89.95 3.924 0.000 1.58 3.81 0.000 32.08 

10H 4W 55-57 90.05 3.926 0.168 1.58 3.81 0.010 32.08 

10H 4W 65-67 90.15 3.929 0.000 1.58 3.81 0.000 27.59 

10H 4W 75-77 90.25 3.932 0.000 1.58 3.81 0.000 22.70 

10H 4W 85-87 90.35 3.934 0.000 1.58 3.81 0.000 18.93 

10H 4W 95-97 90.45 3.937 0.000 1.58 3.81 0.000 28.85 

10H 4W 105-107 90.55 3.939 0.057 1.58 3.81 0.003 28.85 

10H 4W 115-117 90.65 3.942 0.000 1.58 3.81 0.000 23.72 

10H 4W 125-127 90.75 3.945 0.149 1.58 3.81 0.009 24.20 

10H 4W 135-137 90.85 3.947 0.397 1.58 3.81 0.024 40.74 

10H 4W 145-147 90.95 3.950 0.179 1.58 3.81 0.011 44.25 

10H 5W 5-7 91.05 3.953 0.099 1.42 3.81 0.005 47.40 

10H 5W 15-17 91.15 3.955 0.259 1.42 3.81 0.014 44.97 

10H 5W 25-27 91.25 3.958 0.187 1.42 3.81 0.010 48.37 

10H 5W 35-37 91.35 3.960 0.203 1.42 3.81 0.011 47.09 

10H 5W 45-47 91.45 3.963 0.447 1.42 3.81 0.024 47.93 

10H 5W 55-57 91.55 3.966 0.233 1.42 3.81 0.013 37.28 

10H 5W 65-67 91.65 3.968 0.485 1.42 3.81 0.026 39.53 

10H 5W 75-77 91.75 3.971 0.455 1.42 3.81 0.025 43.14 

10H 5W 85-87 91.85 3.974 0.468 1.42 3.81 0.025 39.63 

10H 5W 95-97 91.95 3.976 0.916 1.42 3.81 0.050 42.17 

10H 5W 105-107 92.05 3.979 1.786 1.42 3.81 0.097 37.27 

10H 5W 115-117 92.15 3.981 0.311 1.42 3.81 0.017 40.25 

10H 5W 125-127 92.25 3.984 0.464 1.42 3.81 0.025 38.10 

10H 5W 135-137 92.35 3.987 0.368 1.42 3.81 0.020 37.21 

10H 5W 145-147 92.45 3.989 0.444 1.42 3.81 0.024 35.54 

10H 6W 5-7 92.55 3.992 0.274 1.40 3.81 0.015 35.54 

10H 6W 15-17 92.65 3.995 0.360 1.40 3.81 0.019 38.71 

10H 6W 25-27 92.75 3.997 0.113 1.40 3.81 0.006 39.66 

10H 6W 45-47 92.95 4.002 0.385 1.40 3.81 0.021 47.10 

10H 6W 55-57 93.05 4.005 0.536 1.40 3.81 0.029 45.06 

10H 6W 75-77 93.25 4.010 1.303 1.40 3.81 0.070 35.33 

10H 6W 85-87 93.35 4.013 0.572 1.40 3.81 0.031 38.04 

10H 6W 95-97 93.45 4.016 0.073 1.40 3.81 0.004 31.61 
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10H 6W 105-107 93.55 4.018 0.132 1.40 3.81 0.007 32.69 

10H 6W 125-127 93.75 4.023 0.644 1.30 3.81 0.032 43.56 

10H 6W 135-137 93.85 4.026 0.094 1.30 3.81 0.005 52.63 

10H 6W 145-147 93.95 4.029 0.176 1.30 3.81 0.009 48.81 

10H 7W 5-7 94.05 4.031 0.222 1.30 3.81 0.011 46.15 

10H 7W 15-17 94.15 4.034 0.077 1.30 3.81 0.004 49.38 

10H 7W 25-27 94.25 4.036 0.131 1.30 3.81 0.006 46.71 

10H 7W 35-37 94.35 4.039 0.196 1.30 3.81 0.010 42.77 

10H 7W 45-47 94.45 4.042 0.402 1.30 3.81 0.020 41.04 

10H 7W 55-57 94.55 4.044 0.637 1.30 3.81 0.031 31.76 

11H 1W 7-9 94.57 4.045 0.324 1.30 3.81 0.016 30.52 

11H 1W 15-17 94.65 4.047 0.204 1.30 3.81 0.010 34.71 

10H 7W 67-69 94.67 4.048 0.384 1.30 3.81 0.019 39.51 

11H 1W 25-27 94.75 4.050 0.859 1.30 3.81 0.042 24.26 

10H CC 5-7 94.8 4.051 0.306 1.70 3.81 0.020 31.49 

11H 1W 35-37 94.85 4.052 0.125 1.70 3.81 0.008 33.33 

10H CC 15-17 94.9 4.054 0.110 1.70 3.81 0.007 29.65 

11H 1W 45-47 94.95 4.055 0.634 1.70 3.81 0.041 28.30 

11H 1W 55-57 95.05 4.057 0.895 1.70 3.81 0.058 28.29 

11H 1W 65-67 95.15 4.060 0.572 1.70 3.81 0.037 22.08 

11H 1W 75-77 95.25 4.063 0.344 1.70 3.81 0.022 27.27 

11H 1W 85-87 95.35 4.065 0.128 1.70 3.81 0.008 24.85 

11H 1W 95-96 95.45 4.068 0.257 1.70 3.81 0.017 24.85 

11H 1W 105-107 95.55 4.071 0.177 1.70 3.81 0.011 20.90 

11H 1W 115-117 95.65 4.073 0.079 1.70 3.81 0.005 19.05 

11H 1W 125-127 95.75 4.076 0.027 1.70 3.81 0.002 37.13 

11H 1W 135-137 95.85 4.078 0.000 1.70 3.81 0.000 20.21 

11H 1W 145-147 95.95 4.081 0.137 1.62 3.81 0.008 20.21 

11H 2W 5-7 96.05 4.084 0.067 1.62 3.81 0.004 19.62 

11H 2W 15-17 96.15 4.086 0.304 1.62 3.81 0.019 26.22 

11H 2W 25-27 96.25 4.089 0.087 1.62 3.81 0.005 18.90 

11H 2W 35-37 96.35 4.092 0.000 1.62 3.81 0.000 24.85 

11H 2W 45-47 96.45 4.094 0.305 1.62 3.81 0.019 14.72 

11H 2W 55-57 96.55 4.097 0.218 1.62 3.81 0.013 26.70 

11H 2W 65-67 96.65 4.099 0.257 1.62 3.81 0.016 31.10 

11H 2W 75-77 96.75 4.102 0.158 1.62 3.81 0.010 28.22 

11H 2W 85-87 96.85 4.105 0.194 1.62 3.81 0.012 13.26 

11H 2W 95-97 96.95 4.107 0.157 1.62 3.81 0.010 27.53 

11H 2W 105-107 97.05 4.110 0.404 1.62 3.81 0.025 16.48 

11H 2W 115-117 97.15 4.113 0.029 1.62 3.81 0.002 24.01 

11H 2W 125-127 97.25 4.115 0.000 1.62 3.81 0.000 17.71 

11H 2W 145-147 97.45 4.120 0.118 1.66 3.81 0.007 20.00 

11H 3W 5-7 97.55 4.123 0.024 1.66 3.81 0.002 23.60 

11H 3W 15-17 97.65 4.126 0.054 1.66 3.81 0.003 18.01 

11H 3W 25-27 97.75 4.128 0.080 1.66 3.81 0.005 38.04 

11H 3W 35-37 97.85 4.131 0.051 1.66 3.81 0.003 27.90 

11H 3W 45-47 97.95 4.134 0.080 1.66 3.81 0.005 27.90 

11H 3W 55-57 98.05 4.136 0.137 1.66 3.81 0.009 14.46 

11H 3W 65-67 98.15 4.139 0.018 1.66 3.81 0.001 51.98 

11H 3W 75-77 98.25 4.141 0.388 1.66 3.81 0.025 15.38 

11H 3W 85-87 98.35 4.144 0.000 1.66 3.81 0.000 38.29 

11H 3W 95-97 98.45 4.147 1.401 1.66 3.81 0.089 21.71 

11H 3W 105-107 98.55 4.149 0.769 1.66 3.81 0.049 28.21 

11H 3W 115-117 98.65 4.152 0.527 1.66 3.81 0.033 19.21 
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11H 3W 125-127 98.75 4.154 0.297 1.66 3.81 0.019 26.83 

11H 3W 135-137 98.85 4.157 0.075 1.66 3.81 0.005 26.93 

11H 3W 145-147 98.95 4.160 0.376 1.66 3.81 0.024 23.46 

11H 4W 5-7 99.05 4.162 0.195 1.66 3.81 0.012 23.46 

11H 4W 15-17 99.15 4.165 0.086 1.64 3.81 0.005 25.54 

11H 4W 25-27 99.25 4.168 0.285 1.64 3.81 0.018 24.00 

11H 4W 35-37 99.35 4.170 0.058 1.64 3.81 0.004 31.21 

11H 4W 45-47 99.45 4.173 0.090 1.64 3.81 0.006 25.61 

11H 4W 55-57 99.55 4.175 0.149 1.64 3.81 0.009 25.18 

11H 4W 65-67 99.65 4.178 0.418 1.64 3.81 0.026 21.12 

11H 4W 75-77 99.75 4.181 0.219 1.64 3.81 0.014 28.81 

11H 4W 85-87 99.85 4.183 0.459 1.64 3.81 0.029 21.55 

11H 4W 95-97 99.95 4.186 0.547 1.64 3.81 0.034 24.15 

11H 4W 105-107 100.05 4.190 0.429 1.64 2.18 0.015 22.16 

11H 4W 115-117 100.15 4.194 0.299 1.64 2.18 0.011 31.61 

11H 4W 125-127 100.25 4.199 0.252 1.64 2.18 0.009 23.23 

11H 4W 135-137 100.35 4.203 0.998 1.64 2.18 0.036 29.58 

11H 4W 145-147 100.45 4.208 0.605 1.64 2.18 0.022 34.37 

11H 5W 5-7 100.55 4.213 1.829 1.64 2.18 0.065 35.67 

11H 5W 15-17 100.65 4.217 1.731 1.46 2.18 0.055 36.71 

11H 5W 25-27 100.75 4.222 0.355 1.46 2.18 0.011 29.86 

11H 5W 35-37 100.85 4.226 1.124 1.46 2.18 0.036 33.92 

11H 5W 45-47 100.95 4.231 1.764 1.46 2.18 0.056 40.00 

11H 5W 55-57 101.05 4.236 0.834 1.46 2.18 0.027 40.00 

11H 5W 65-67 101.15 4.240 0.653 1.46 2.18 0.021 29.61 

11H 5W 75-77 101.25 4.245 0.975 1.46 2.18 0.031 35.22 

11H 5W 85-87 101.35 4.249 0.428 1.46 2.18 0.014 33.33 

11H 5W 95-97 101.45 4.254 1.333 1.46 2.18 0.043 28.74 

11H 5W 105-107 101.55 4.258 1.229 1.46 2.18 0.039 19.85 

11H 5W 115-117 101.65 4.263 0.865 1.46 2.18 0.028 27.61 

11H 5W 125-127 101.75 4.268 0.045 1.46 2.18 0.001 27.61 

11H 5W 135-137 101.85 4.272 0.443 1.46 2.18 0.014 28.09 

11H 5W 145-147 101.95 4.277 0.144 1.46 2.18 0.005 28.09 

11H 6W 5-7 102.05 4.281 0.284 1.48 2.18 0.009 27.93 

11H 6W 15-17 102.15 4.286 0.580 1.48 2.18 0.019 30.82 

11H 6W 25-27 102.25 4.291 0.987 1.48 2.18 0.032 29.14 

11H 6W 35-37 102.35 4.295 0.638 1.48 2.18 0.021 21.43 

11H 6W 45-47 102.45 4.300 0.470 1.48 2.18 0.015 38.15 

11H 6W 55-57 102.55 4.304 0.551 1.48 2.18 0.018 38.15 

11H 6W 65-67 102.65 4.309 0.628 1.48 2.18 0.020 25.70 

11H 6W 75-77 102.75 4.313 0.457 1.48 2.18 0.015 15.86 

11H 6W 85-87 102.85 4.318 0.328 1.48 2.18 0.011 30.39 

11H 6W 95-97 102.95 4.323 0.372 1.48 2.18 0.012 31.36 

11H 6W 105-105 103.05 4.327 0.451 1.48 2.18 0.015 31.36 

11H 6W 115-117 103.15 4.332 0.330 1.48 2.18 0.011 19.35 

11H 6W 125-127 103.25 4.336 0.461 1.48 2.18 0.015 30.49 

11H 6W 135-137 103.35 4.341 0.845 1.48 2.18 0.027 28.66 

11H 6W 145-147 103.45 4.346 1.063 1.48 2.18 0.034 34.97 

11H 7W 5-7 103.55 4.350 0.684 1.48 2.18 0.022 23.66 

11H 7W 15-17 103.65 4.355 0.423 1.48 2.18 0.014 28.90 

11H 7W 28-30 103.78 4.361 0.431 1.48 2.18 0.014 36.00 

11H 7W 38-40 103.88 4.365 0.822 1.48 2.18 0.027 31.37 

11H 7W 48-50 103.98 4.370 0.394 1.48 2.18 0.013 31.84 

11H 7W 58-60 104.08 4.374 0.643 1.48 2.18 0.021 31.84 
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11H CC 2-4 104.12 4.376 0.870 1.48 2.18 0.028 34.86 

11H CC 8-10 104.18 4.379 0.823 1.48 2.18 0.027 38.36 
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Percent of fine grain material (<150μm) (see methods for silt clay μm boundary discussion), 

sorting (Folk and Ward, 1957) (very well sorted = < 1.27, well sorted = 1.27-1.41, 

moderately sorted = 1.41-2.00, poorly sorted = 2.00-4.00, very poorly sorted = 4.00-16.00), 

and lithofacies (D = diatom-rich/bearing mudstone; LC = massive to laminated mudstone) 

Core, section, 

interval (cm) 

Depth 

(mbsf) 

Age 

(Ma) 

Clay                                           

<8µm                 

(vol. %) 

Silt               

8-63µm 

(vol. %) 

Fine 

Sand 

63-

150µm 

(vol. %) 

Sorting 

σG 
Lithofacies  

5H 1W 95-97 38.45 2.099 46.88 51.71 1.41 2.603 D 

5H 1W 105-107 38.55 2.103 40.45 59.38 0.18 2.606 D 

5H 1W 125-127 38.75 2.112 50.33 49.41 0.26 2.432 D 

5H 1W 145-147 38.95 2.121 60.19 39.81 0.00 2.325 D 

5H 2W 5-7 39.05 2.125 60.65 37.98 1.37 2.330 D 

5H 2W 15-17 39.15 2.129 61.39 38.61 0.00 2.307 D 

5H 2W 45-47 39.45 2.142 42.41 55.67 1.92 2.693 D 

5H 2W 55-57 39.55 2.146 45.33 54.66 0.01 2.614 D 

5H 2W 65-67 39.65 2.151 51.63 46.37 2.00 2.575 D 

5H 2W 85-87 39.85 2.159 60.87 36.87 2.26 2.356 D 

5H 2W 95-97 39.95 2.163 57.72 40.34 1.94 2.452 D 

5H 2W 115-117 40.15 2.172 55.75 43.43 0.82 2.476 D 

5H 2W 125-127 40.25 2.176 53.16 46.73 0.11 2.553 D 

5H 2W 135-137 40.35 2.181 52.15 47.82 0.03 2.538 D 

5H 3W 25-27 40.75 2.198 61.83 38.17 0.00 2.273 D 

5H 3W 35-37 40.85 2.202 60.64 39.36 0.00 2.286 D 

5H 3W 55-57 41.05 2.211 62.56 37.44 0.00 2.263 D 

5H 3W 65-67 41.15 2.215 71.45 28.41 0.14 2.223 D 

5H 3W 85-87 41.35 2.223 66.43 33.57 0.00 2.228 D 

5H 3W 95-97 41.45 2.228 69.45 30.55 0.00 2.239 D 

5H 3W 105-107 41.55 2.232 54.55 44.26 1.19 2.429 D 

5H 3W 115-117 41.65 2.236 51.20 48.80 0.00 2.422 D 

5H 3W 125-127 41.75 2.241 47.38 51.08 1.54 2.542 D 

5H 3W 135-137 41.85 2.245 48.68 50.28 1.04 2.465 D 

5H 3W 145-147 41.95 2.249 48.30 51.70 0.00 2.498 D 

5H 4W 5-7 42.05 2.253 49.01 50.99 0.00 2.497 D 

5H 4W 15-17 42.15 2.258 51.32 48.66 0.02 2.550 D 

5H 4W 25-27 42.25 2.262 49.77 49.80 0.43 2.513 D 

5H 4W 35-37 42.35 2.266 49.83 49.52 0.65 2.586 D 

5H 4W 45-47 42.45 2.270 42.18 55.73 2.09 2.629 D 

5H 4W 55-57 42.55 2.275 44.29 55.35 0.37 2.571 D 

5H 4W 65-67 42.65 2.279 52.19 47.74 0.07 2.534 D 

5H 4W 95-97 42.95 2.292 52.26 46.65 1.09 2.561 D 

5H 4W 115-117 43.15 2.300 61.62 37.90 0.48 2.301 D 

5H 4W 135-137 43.35 2.309 61.15 38.85 0.00 2.306 D 

5H 5W 5-7 43.55 2.318 65.84 34.15 0.01 2.323 D 

5H 5W 15-17 43.65 2.322 61.81 38.04 0.15 2.606 D 

5H 5W 25-27 43.75 2.326 51.12 48.87 0.02 2.608 D 
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5H 5W 35-37 43.85 2.330 44.96 53.36 1.68 2.821 D 

5H 5W 45-47 43.95 2.335 43.45 53.99 2.56 2.986 D 

5H 5W 85-87 44.35 2.352 48.70 51.27 0.03 2.922 D 

5H 5W 105-107 44.55 2.360 51.78 47.65 0.57 2.680 D 

5H 5W 125-127 44.75 2.369 57.39 42.61 0.00 2.622 D 

5H 5W 145-147 44.95 2.378 58.52 41.48 0.00 2.359 D 

5H 6W 5-7 45.05 2.382 65.79 34.21 0.00 2.184 D 

5H 6W 15-17 45.15 2.386 61.77 38.23 0.00 2.339 D 

5H 6W 25-27 45.25 2.390 58.98 40.43 0.59 2.419 D 

5H 6W 35-37 45.35 2.395 66.98 33.02 0.00 2.299 D 

5H 6W 55-57 45.55 2.403 54.58 45.39 0.04 2.570 D 

5H 6W 95-97 45.95 2.420 60.86 38.34 0.80 2.447 D 

5H 6W 115-117 46.15 2.429 64.13 35.84 0.02 2.287 D 

5H 6W 125-127 46.25 2.433 66.32 33.24 0.44 2.360 D 

5H 6W 135-137 46.35 2.438 57.73 42.27 0.00 2.423 D 

5H 7W 15-17 46.65 2.450 49.58 49.58 0.84 2.911 D 

5H 7W 25-27 46.75 2.455 48.52 47.93 3.56 3.115 D 

5H 7W 35-37 46.85 2.459 50.44 43.15 6.41 3.302 D 

5H 7W 45-47 46.95 2.463 54.04 41.92 4.05 3.002 D 

5H 7W 55-57 47.05 2.468 58.79 39.38 1.84 2.652 D 

5H 7W 63-65 47.13 2.471 70.46 29.52 0.02 2.234 D 

6H 1W 15-17 47.15 2.472 63.48 35.97 0.55 2.749 D 

5H CC 5-7 47.2 2.474 63.72 30.78 5.50 3.068 D 

5H CC 15-17 47.3 2.478 58.14 35.15 6.71 3.182 D 

6H 1W 35-37 47.35 2.480 74.06 25.94 0.00 2.580 D 

6H 1W 45-47 47.45 2.485 76.63 23.37 0.00 2.344 D 

6H 1W 55-57 47.55 2.489 70.92 29.08 0.00 2.551 D 

6H 1W 85-87 47.85 2.502 65.88 34.12 0.00 2.477 D 

6H 1W 95-97 47.95 2.506 74.73 25.27 0.00 2.487 D 

6H 1W 105-107 48.05 2.510 72.97 27.02 0.01 2.408 D 

6H 1W 115-117 48.15 2.515 72.30 27.70 0.00 2.191 D 

6H 1W 125-127 48.25 2.519 83.77 16.23 0.00 2.183 D 

6H 1W 135-137 48.35 2.523 63.80 36.19 0.01 2.412 D 

6H 1W 145-147 48.45 2.527 63.62 36.39 0.00 2.698 D 

6H 2W 5-7 48.55 2.532 49.18 50.74 0.08 2.535 D 

6H 2W 15-17 48.65 2.536 48.63 51.01 0.35 2.925 D 

6H 2W 25-27 48.75 2.540 43.29 46.04 10.67 3.836 D 

6H 2W 35-37 48.85 2.545 50.47 49.22 0.31 3.054 D 

6H 2W 45-47 48.95 2.549 58.27 41.73 0.00 2.547 D 

6H 2W 55-57 49.05 2.553 44.64 50.44 4.92 3.319 D 

6H 2W 65-67 49.15 2.557 47.72 49.23 3.05 3.113 D 

6H 2W 85-87 49.35 2.566 47.56 50.27 2.17 2.993 D 

6H 2W 95-97 49.45 2.570 49.26 48.17 2.57 2.793 D 

6H 2W 105-107 49.55 2.575 56.28 43.64 0.08 2.874 D 

6H 2W 115-117 49.65 2.579 46.55 47.23 6.21 3.160 D 

6H 2W 125-127 49.75 2.583 66.18 33.73 0.09 2.511 D 
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6H 2W 135-137 49.85 2.586 59.12 40.88 0.00 2.427 D 

6H 2W 145-147 49.95 2.589 52.63 45.78 1.59 2.788 D 

6H 3W 5-7 50.05 2.592 64.28 31.55 4.17 3.022 LC 

6H 3W 25-27 50.25 2.598 60.76 38.30 0.94 2.551 LC 

6H 3W 35-37 50.35 2.601 66.22 33.77 0.01 2.880 LC 

6H 3W 45-47 50.45 2.604 59.20 31.13 9.67 3.230 LC 

6H 3W 55-57 50.55 2.607 75.03 24.97 0.00 2.396 LC 

6H 3W 65-67 50.65 2.610 74.62 25.38 0.00 2.495 LC 

6H 3W 85-87 50.85 2.616 74.19 25.80 0.01 2.599 LC 

6H 3W 95-97 50.95 2.619 67.27 32.73 0.00 2.387 LC 

6H 3W 105-107 51.05 2.622 69.12 30.49 0.39 2.501 LC 

6H 3W 115-117 51.15 2.625 61.93 37.97 0.10 2.263 LC 

6H 3W 125-127 51.25 2.628 74.71 25.29 0.00 2.364 LC 

6H 3W 135-137 51.35 2.631 70.56 29.44 0.00 2.353 LC 

6H 3W 145-147 51.45 2.634 76.67 23.33 0.00 2.309 LC 

6H 4W 5-7 51.55 2.637 64.07 33.28 2.65 2.638 LC 

6H 4W 15-17 51.65 2.640 53.85 46.13 0.03 2.948 LC 

6H 4W 25-27 51.75 2.643 42.51 57.35 0.13 2.776 LC 

6H 4W 35-37 51.85 2.646 54.67 45.30 0.02 2.843 LC 

6H 4W 45-47 51.95 2.649 58.74 40.54 0.71 2.421 LC 

6H 4W 55-57 52.05 2.652 68.76 31.24 0.00 2.517 LC 

6H 4W 65-67 52.15 2.655 57.71 41.31 0.98 2.370 LC 

6H 4W 85-87 52.35 2.661 72.37 27.63 0.00 2.419 LC 

6H 4W 95-97 52.45 2.665 70.08 23.36 6.56 3.212 LC 

6H 4W 105-107 52.55 2.668 74.51 25.47 0.02 2.344 LC 

6H 4W 115-117 52.65 2.671 55.77 40.80 3.43 2.867 LC 

6H 4W 125-127 52.75 2.674 49.09 50.30 0.61 2.742 LC 

6H 4W 135-137 52.85 2.677 50.55 45.89 3.56 3.071 LC 

6H 5W 5-7 53.05 2.683 54.77 44.48 0.75 2.976 D 

6H 5W 25-27 53.25 2.689 45.45 42.32 12.23 4.100 D 

6H 5W 45-47 53.45 2.695 64.25 35.33 0.42 3.052 D 

6H 5W 65-67 53.65 2.701 73.59 26.41 0.00 2.403 LC 

6H 5W 95-97 53.95 2.710 65.72 34.04 0.24 2.192 LC 

6H 5W 105-107 54.05 2.713 71.15 28.61 0.23 2.245 LC 

6H 5W 115-117 54.15 2.716 64.97 35.03 0.00 2.550 LC 

6H 5W 135-137 54.35 2.722 63.45 36.55 0.00 2.614 LC 

6H 6W 5-7 54.55 2.728 55.86 41.45 2.69 2.920 LC 

6H 6W 15-17 54.65 2.731 20.12 69.61 10.28 3.074 LC 

6H 6W 25-27 54.75 2.734 71.50 28.50 0.00 2.598 LC 

6H 6W 35-37 54.85 2.737 71.15 28.61 0.23 2.245 LC 

6H 6W 45-47 54.95 2.740 79.43 20.57 0.00 2.320 LC 

6H 6W 55-57 55.05 2.743 81.58 18.42 0.00 2.314 LC 

6H 6W 65-67 55.15 2.747 69.86 30.14 0.00 2.468 LC 

6H CC 5-7 56.555 2.789 64.09 35.58 0.33 2.395 D 

7H 1W 15-17 56.65 2.792 63.85 35.41 0.74 2.790 D 

6H CC 15-17 56.66 2.792 65.15 33.46 1.40 2.793 D 
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7H 1W 25-27 56.75 2.795 69.35 30.65 0.00 2.344 D 

7H 1W 35-37 56.85 2.798 66.73 33.14 0.14 2.668 D 

7H 1W 45-47 56.95 2.801 53.87 34.89 11.25 3.698 D 

7H 1W 55-57 57.05 2.804 66.26 31.99 1.75 2.797 D 

7H 1W 65-67 57.15 2.807 64.88 32.57 2.55 2.707 D 

7H 1W 75-77 57.25 2.810 66.67 33.33 0.00 2.464 D 

7H 1W 85-87 57.35 2.813 63.99 35.97 0.04 2.518 D 

7H 1W 95-97 57.45 2.816 61.23 37.81 0.96 2.756 D 

7H 1W 105-107 57.55 2.819 54.78 43.11 2.11 2.341 D 

7H 1W 115-117 57.65 2.822 58.48 36.37 5.15 3.223 D 

7H 1W 125-127 57.75 2.825 60.27 35.80 3.93 2.738 D 

7H 1W 135-137 57.85 2.829 64.41 32.51 3.09 2.939 D 

7H 1W 145-147 57.95 2.832 68.74 31.24 0.02 2.474 D 

7H 2W 5-7 58.05 2.835 68.57 31.40 0.02 2.596 D 

7H 2W 25-27 58.25 2.841 58.16 40.89 0.95 2.675 D 

7H 2W 35-37 58.35 2.844 67.87 32.13 0.00 2.606 D 

7H 2W 45-47 58.45 2.847 59.13 40.85 0.02 2.472 D 

7H 2W 55-57 58.55 2.850 62.76 32.80 4.44 2.851 D 

7H 2W 65-67 58.65 2.853 69.08 30.92 0.00 2.204 D 

7H 2W 75-77 58.75 2.856 65.81 30.75 3.44 2.919 D 

7H 2W 85-87 58.85 2.859 56.61 36.27 7.12 3.107 D 

7H 2W 95-97 58.95 2.862 60.39 39.61 0.00 2.572 D 

7H 2W 105-107 59.05 2.865 62.02 37.85 0.14 2.452 D 

7H 2W 115-117 59.15 2.868 58.86 41.14 0.00 2.633 D 

7H 2W 125-127 59.25 2.871 61.04 38.96 0.00 2.386 D 

7H 2W 135-137 59.35 2.874 57.73 42.15 0.12 2.527 D 

7H 2W 145-147 59.45 2.877 58.18 38.04 3.79 2.688 D 

7H 3W 5-7 59.55 2.880 55.25 44.70 0.05 2.710 D 

7H 3W 15-17 59.65 2.883 63.56 36.43 0.01 2.384 D 

7H 3W 25-27 59.75 2.886 72.30 27.70 0.00 2.446 LC 

7H 3W 35-37 59.85 2.889 73.99 26.01 0.00 2.393 LC 

7H 3W 45-47 59.95 2.892 77.47 22.53 0.00 2.297 LC 

7H 3W 55-57 60.05 2.895 73.08 26.92 0.00 2.272 LC 

7H 3W 65-67 60.15 2.898 71.37 28.52 0.12 2.603 LC 

7H 3W 75-77 60.25 2.901 74.02 23.36 2.61 2.656 LC 

7H 3W 85-87 60.35 2.904 75.34 24.66 0.00 2.194 LC 

7H 3W 95-97 60.45 2.907 78.77 20.23 1.00 2.052 LC 

7H 3W 115-117 60.65 2.914 67.08 32.92 0.00 2.311 LC 

7H 3W 125-127 60.75 2.917 75.68 24.32 0.00 2.451 LC 

7H 3W 135-137 60.85 2.920 77.85 22.15 0.00 2.407 LC 

7H 3W 145-147 60.95 2.923 71.26 28.74 0.00 2.398 LC 

7H 4W 15-17 61.15 2.929 40.28 59.72 0.00 2.100 LC 

7H 4W 35-37 61.35 2.935 67.84 32.16 0.00 2.424 LC 

7H 4W 55-57 61.55 2.941 54.59 41.97 3.44 2.858 D 

7H 4W 65-67 61.65 2.944 55.26 43.58 1.16 2.338 D 

7H 4W 75-77 61.75 2.947 70.19 29.81 0.00 2.409 D 
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7H 4W 85-87 61.85 2.950 52.58 46.86 0.57 2.690 D 

7H 4W 95-97 61.95 2.953 52.19 47.30 0.51 2.721 D 

7H 4W 105-107 62.05 2.956 59.25 40.75 0.00 2.378 D 

7H 4W 115-117 62.15 2.959 65.75 34.25 0.00 2.469 D 

7H 4W 125-127 62.25 2.962 57.76 36.32 5.93 2.902 D 

7H 4W 135-137 62.35 2.965 63.94 33.82 2.24 2.781 D 

7H 4W 145-147 62.45 2.968 64.19 35.81 0.00 2.370 D 

7H 5W 5-7 62.55 2.971 64.49 35.51 0.00 2.595 LC 

7H 5W 15-17 62.65 2.974 63.84 36.16 0.00 2.178 LC 

7H 5W 25-27 62.75 2.977 71.31 28.69 0.00 2.498 LC 

7H 5W 35-37 62.85 2.980 56.70 39.79 3.51 2.717 LC 

7H 5W 45-47 62.95 2.983 63.58 36.18 0.24 2.385 LC 

7H 5W 55-57 63.05 2.986 65.22 34.78 0.00 2.187 LC 

7H 5W 65-67 63.15 2.989 70.70 29.30 0.00 2.401 LC 

7H 5W 75-77 63.25 2.993 61.73 38.16 0.11 2.316 LC 

7H 5W 85-87 63.35 2.996 62.84 37.16 0.00 2.508 LC 

7H 5W 95-97 63.45 2.999 67.16 32.84 0.00 2.346 LC 

7H 5W 105-107 63.55 3.002 58.47 41.42 0.10 2.740 LC 

7H 5W 115-117 63.65 3.005 64.45 35.55 0.00 2.413 LC 

7H 5W 125-127 63.75 3.008 65.14 34.86 0.00 2.653 LC 

7H 5W 135-137 63.85 3.011 72.39 27.61 0.00 2.407 LC 

7H 5W 145-147 63.95 3.014 73.00 27.00 0.00 2.468 LC 

7H 6W 5-7 64.05 3.017 79.25 20.75 0.00 2.359 LC 

7H 6W 15-17 64.15 3.020 73.79 26.21 0.00 2.446 LC 

7H 6W 25-27 64.25 3.023 83.08 16.92 0.00 1.934 LC 

7H 6W 35-37 64.35 3.026 58.51 41.49 0.00 2.743 D 

7H 6W 45-47 64.45 3.029 65.89 33.99 0.12 2.402 D 

7H 6W 55-57 64.55 3.032 45.90 51.88 2.22 3.029 D 

7H 6W 65-67 64.65 3.036 42.95 55.85 1.19 2.835 D 

7H 6W 75-77 64.75 3.040 51.77 46.29 1.94 2.898 D 

7H 6W 85-87 64.85 3.044 46.33 51.82 1.85 2.707 D 

7H 6W 95-97 64.95 3.048 46.97 52.86 0.18 2.819 D 

7H 6W 105-107 65.05 3.052 46.63 50.47 2.90 2.666 D 

7H 6W 115-117 65.15 3.055 56.14 43.84 0.02 2.861 D 

7H 6W 125-127 65.25 3.059 41.57 55.74 2.69 2.808 D 

7H 6W 135-137 65.35 3.063 57.93 41.80 0.27 2.844 D 

7H 6W 145-147 65.45 3.067 46.77 47.51 5.73 3.145 D 

7H 7W 8-10 65.58 3.072 65.68 32.53 1.78 2.810 LC 

7H 7W 15-17 65.65 3.075 66.73 30.89 2.38 2.609 LC 

7H 7W 25-27 65.75 3.079 62.53 36.41 1.06 2.673 LC 

7H 7W 45-47 65.95 3.087 66.74 32.43 0.83 2.365 LC 

7H 7W 55-57 66.05 3.091 75.54 24.46 0.00 2.498 LC 

8H 1W 15-17 66.15 3.095 52.29 43.78 3.93 2.734 LC 

8H 1W 25-27 66.25 3.098 67.66 32.34 0.00 2.556 LC 

8H 1W 35-37 66.35 3.102 71.68 26.54 1.78 2.893 LC 

8H 1W 45-47 66.45 3.106 60.58 36.67 2.75 2.759 LC 
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8H 1W 65-67 66.65 3.114 57.42 39.46 3.12 2.730 LC 

8H 1W 75-77 66.75 3.117 79.16 20.84 0.00 2.461 LC 

8H 1W 85-87 66.85 3.119 83.60 16.33 0.07 2.582 LC 

8H 1W 105-107 67.05 3.122 5.44 74.22 20.34 1.784 LC 

8H 1W 115-117 67.15 3.124 71.91 27.91 0.17 2.587 LC 

8H 1W 125-127 67.25 3.126 67.10 32.90 0.00 2.703 LC 

8H 2W 5-7 67.56 3.132 41.55 57.89 0.56 2.854 LC 

8H 2W 35-37 67.86 3.137 64.31 35.69 0.00 2.726 LC 

8H 2W 45-47 67.96 3.139 55.37 42.63 2.00 2.936 LC 

8H 2W 75-77 68.26 3.145 57.17 42.83 0.00 2.459 LC 

8H 2W 95-97 68.46 3.148 63.80 36.20 0.00 2.513 LC 

8H 2W 115-117 68.66 3.152 88.31 11.69 0.00 2.108 LC 

8H 2W 125-127 68.76 3.154 84.01 15.99 0.00 2.275 LC 

8H 2W 135-137 68.86 3.156 62.02 37.98 0.00 2.525 LC 

8H 3W 5-7 69.06 3.159 59.54 40.46 0.00 2.622 LC 

8H 3W 15-17 69.16 3.161 73.16 26.84 0.00 2.015 LC 

8H 3W 25-27 69.26 3.163 79.65 20.35 0.00 2.120 LC 

8H 3W 45-47 69.46 3.167 83.18 16.82 0.00 2.295 LC 

8H 3W 55-57 69.56 3.168 60.28 39.72 0.00 2.465 LC 

8H 3W 65-67 69.66 3.170 55.73 44.24 0.03 2.809 LC 

8H 3W 75-77 69.76 3.172 43.81 54.28 1.91 2.657 LC 

8H 3W 85-87 69.86 3.174 56.42 43.58 0.00 2.461 D 

8H 3W 95-97 69.96 3.176 57.13 40.98 1.89 2.671 D 

8H 3W 107-109 70.08 3.178 54.99 43.22 1.79 2.840 D 

8H 3W 115-117 70.16 3.179 51.41 45.82 2.77 2.727 D 

8H 3W 125-127 70.26 3.181 49.51 47.97 2.52 3.012 D 

8H 3W 145-147 70.46 3.185 69.86 30.14 0.00 2.618 LC 

8H 4W 5-7 70.56 3.187 66.55 33.45 0.00 2.873 LC 

8H 4W 25-27 70.76 3.190 57.93 40.32 1.75 2.823 LC 

8H 4W 35-37 70.86 3.192 61.19 38.71 0.10 2.844 LC 

8H 4W 55-57 71.06 3.196 69.53 30.41 0.06 2.983 LC 

8H 4W 65-67 71.16 3.198 65.19 33.13 1.67 3.244 LC 

8H 4W 75-77 71.26 3.199 40.89 55.24 3.87 3.376 LC 

8H 4W 85-87 71.36 3.201 50.58 46.86 2.56 3.164 LC 

8H 4W 95-97 71.46 3.203 53.78 43.48 2.74 3.020 LC 

8H 4W 105-107 71.56 3.205 55.10 44.90 0.00 2.900 LC 

8H 4W 115-117 71.66 3.207 44.64 51.67 3.69 3.274 LC 

8H 4W 125-127 71.76 3.211 51.56 48.10 0.34 2.983 LC 

8H 4W 135-137 71.86 3.215 57.55 41.46 0.98 2.954 LC 

8H 4W 145-147 71.96 3.220 47.92 50.85 1.23 2.837 LC 

8H 5W 5-7 72.06 3.224 50.74 48.69 0.57 3.039 D 

8H 5W 15-17 72.16 3.228 61.37 38.54 0.09 2.718 D 

8H 5W 25-27 72.26 3.232 67.33 32.67 0.00 2.722 D 

8H 5W 35-37 72.36 3.237 28.30 67.52 4.18 2.892 D 

8H 5W 45-47 72.46 3.241 50.35 47.33 2.33 2.701 D 

8H 5W 55-57 72.56 3.245 56.21 42.26 1.53 2.840 D 



211 
 

8H 5W 65-67 72.66 3.250 59.49 39.97 0.54 2.401 D 

8H 5W 75-77 72.76 3.254 65.46 34.48 0.07 2.672 D 

8H 5W 85-87 72.86 3.258 54.77 42.08 3.15 2.830 D 

8H 5W 95-97 72.96 3.263 68.34 31.66 0.00 2.541 LC 

8H 5W 105-107 73.06 3.267 70.82 29.18 0.00 2.332 LC 

8H 5W 115-117 73.16 3.271 65.81 34.19 0.00 2.514 LC 

8H 5W 135-137 73.36 3.280 65.20 34.80 0.00 2.518 LC 

8H 5W 145-147 73.46 3.284 61.80 37.78 0.42 2.339 LC 

8H 6W 5-7 73.57 3.289 56.63 43.37 0.00 2.704 LC 

8H 6W 15-17 73.67 3.293 60.38 39.62 0.00 2.627 LC 

8H 6W 25-27 73.77 3.298 58.31 41.31 0.38 2.500 LC 

8H 6W 35-37 73.87 3.302 56.53 43.32 0.16 2.705 LC 

8H 6W 45-47 73.97 3.306 65.40 34.33 0.27 2.389 LC 

8H 6W 65-67 74.17 3.315 76.73 23.23 0.03 2.416 LC 

8H 6W 75-77 74.27 3.319 69.87 30.13 0.00 2.476 LC 

8H 6W 85-87 74.37 3.324 69.86 23.57 6.57 3.514 LC 

8H 7W 5-7 74.58 3.335 70.85 29.14 0.01 2.284 D 

8H 7W 15-17 74.68 3.345 78.33 21.67 0.00 2.400 D 

8H 7W 25-27 74.78 3.354 73.25 26.75 0.00 2.553 D 

8H 7W 45-47 74.98 3.372 57.63 39.69 2.68 3.262 D 

8H 7W 55-57 75.08 3.381 40.68 54.65 4.67 3.150 D 

9H 1W 15-17 75.65 3.433 68.65 31.35 0.00 2.550 D 

9H 1W 25-27 75.75 3.442 100.00 0.00 0.00 1.713 D 

9H 1W 35-37 75.85 3.451 53.57 46.43 0.00 2.736 D 

9H 1W 45-47 75.95 3.460 59.32 38.36 2.32 2.558 D 

9H 1W 55-57 76.05 3.469 50.61 46.97 2.42 2.902 D 

9H 1W 65-67 76.15 3.478 54.56 44.09 1.34 2.373 D 

9H 1W 75-77 76.25 3.487 55.01 40.54 4.45 3.134 D 

9H 1W 85-87 76.35 3.496 65.14 34.83 0.02 2.434 D 

9H 1W 95-97 76.45 3.505 58.97 39.24 1.79 2.715 D 

9H 1W 105-107 76.55 3.514 54.51 37.40 8.09 3.441 D 

9H 1W 115-117 76.65 3.523 57.35 41.04 1.60 2.694 D 

9H 1W 125-127 76.75 3.532 56.45 43.55 0.00 2.543 D 

9H 2W 5-7  77.05 3.560 52.02 47.98 0.00 2.720 D 

9H 2W 15-17 77.15 3.569 46.06 50.22 3.72 2.821 D 

9H 2W 25-27 77.25 3.578 42.26 53.97 3.77 2.949 D 

9H 2W 35-37 77.35 3.587 50.02 48.57 1.41 2.780 D 

9H 2W 45-47 77.45 3.596 49.10 48.70 2.21 2.872 D 

9H 2W 55-57 77.55 3.599 45.19 51.83 2.98 2.675 D 

9H 2W 65-67 77.65 3.601 43.48 53.63 2.89 2.812 D 

9H 2W 75-77 77.75 3.604 53.14 41.54 5.32 2.840 D 

9H 2W 85-87 77.85 3.606 51.02 48.98 0.00 2.594 D 

9H 2W 95-97 77.95 3.609 60.86 39.14 0.00 2.337 LC 

9H 2W 105-107 78.05 3.612 65.76 34.24 0.00 2.381 LC 

9H 2W 115-117 78.15 3.614 63.81 36.19 0.00 2.149 LC 

9H 2W 125-127 78.25 3.617 52.31 47.69 0.00 2.764 LC 
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9H 2W 135-137 78.35 3.620 54.46 45.54 0.00 2.329 LC 

9H 2W 145-147 78.45 3.622 69.06 30.94 0.00 2.503 LC 

9H 3W 15-17 78.65 3.627 50.67 49.33 0.00 2.606 LC 

9H 3W 25-27 78.75 3.630 77.83 22.17 0.00 2.081 LC 

9H 3W 35-37 78.85 3.633 78.40 21.60 0.00 2.223 LC 

9H 3W 55-57 79.05 3.638 80.84 19.16 0.00 2.345 LC 

9H 3W 65-67 79.15 3.641 74.19 25.74 0.07 2.599 LC 

9H 3W 75-77 79.25 3.643 43.04 56.75 0.21 2.789 LC 

9H 3W 85-87 79.35 3.646 66.31 33.69 0.00 2.232 LC 

9H 3W 95-97 79.45 3.648 60.21 39.79 0.00 2.481 LC 

9H 3W 105-107 79.55 3.651 45.67 52.73 1.60 2.565 D 

9H 3W 115-117 79.65 3.654 84.56 15.44 0.00 2.189 D 

9H 3W 12-127 79.75 3.656 38.85 59.07 2.08 2.520 D 

9H 3W 135-137 79.85 3.659 44.18 54.08 1.74 2.772 D 

9H 3W 145-147 79.95 3.662 41.92 53.48 4.60 2.855 D 

9H 4W 5-7 80.05 3.664 12.80 75.59 11.61 2.491 LC 

9H 4W 15-17 80.15 3.667 69.37 30.63 0.00 2.409 LC 

9H 4W 25-27 80.25 3.669 71.81 28.18 0.00 2.407 LC 

9H 4W 45-47 80.45 3.675 57.96 42.04 0.00 2.967 LC 

9H 4AW 55-57 80.55 3.677 75.08 24.92 0.00 2.623 LC 

9H 4W 65-67 80.65 3.680 78.20 21.80 0.00 2.404 LC 

9H 4W 75-77 80.75 3.683 41.74 57.02 1.24 2.793 LC 

9H 4W 85-87 80.85 3.685 56.20 43.78 0.03 2.621 LC 

9H 4W 105-107 81.05 3.690 60.61 39.39 0.00 2.568 LC 

9H 4W 115-117 81.15 3.693 62.42 37.58 0.00 2.269 LC 

9H 4W 125-127 81.25 3.696 60.45 39.55 0.00 2.448 LC 

9H 4W 135-137 81.35 3.698 74.54 25.46 0.00 2.139 LC 

9H 4W 145-147 81.45 3.701 77.37 22.63 0.00 2.302 LC 

9H 5W 5-7 81.55 3.704 76.28 23.72 0.00 2.105 LC 

9H 5W 25-27 81.75 3.709 75.34 24.66 0.00 2.262 LC 

9H 5W 35-37 81.85 3.711 66.42 33.58 0.00 2.569 LC 

9H 5W 45-47 81.95 3.714 71.88 28.09 0.02 2.532 LC 

9H 5W 55-57 82.05 3.717 63.73 36.27 0.00 2.654 LC 

9H 5W 65-67 82.15 3.719 79.10 20.90 0.00 2.514 LC 

9H 5W 75-77 82.25 3.722 72.10 27.90 0.00 2.552 LC 

9H 5W 85-87 82.35 3.724 45.19 54.81 0.00 2.378 LC 

9H 5W 95-97 82.45 3.727 65.69 34.31 0.00 2.578 LC 

9H 5W 105-107 82.55 3.730 57.93 41.95 0.12 2.783 LC 

9H 5W 115-117 82.65 3.732 57.02 42.98 0.00 2.624 LC 

9H 5W 125-127 82.75 3.735 79.33 20.67 0.00 2.457 LC 

9H 5W 135-137 82.85 3.738 49.61 50.39 0.00 2.312 LC 

9H 5W 145-147 82.95 3.740 74.87 25.13 0.00 2.028 LC 

9H 6W 5-7 83.05 3.743 54.21 45.79 0.00 2.608 LC 

9H 6W 25-27 83.25 3.748 68.41 31.59 0.00 2.453 LC 

9H 6W 35-37 83.35 3.751 72.54 27.44 0.01 2.384 LC 

9H 6W 45-47 83.45 3.753 52.55 47.44 0.01 2.586 LC 
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9H 6W 65-67 83.65 3.759 61.97 38.03 0.00 2.595 LC 

9H 6W 85-87 83.85 3.764 58.92 41.07 0.01 2.440 LC 

9H 6W 95-97  83.95 3.766 53.36 46.60 0.04 2.167 LC 

9H 6W 105-107 84.05 3.769 71.89 28.11 0.00 2.313 LC 

9H 6W 115-117 84.15 3.772 46.47 53.53 0.00 2.309 D 

9H 6W 125-127 84.25 3.774 37.58 58.70 3.72 2.845 D 

9H 6W 135-137 84.35 3.777 32.82 60.33 6.85 3.031 D 

9H 6W 145-147 84.45 3.780 35.01 57.56 7.43 3.250 D 

9H 7W 5-7 84.55 3.782 45.87 46.79 7.34 3.331 LC 

9H 7W 15-17 84.65 3.785 69.39 30.61 0.00 2.430 LC 

9H 7W 35-37 84.85 3.790 64.27 35.73 0.00 2.617 LC 

9H 7W 45-47 84.95 3.793 68.22 31.78 0.00 2.380 LC 

9H 7W 55-57 85.05 3.795 64.80 35.20 0.00 2.574 LC 

9H 7W 65-67 85.15 3.798 83.60 16.40 0.00 2.282 LC 

10H 1W 25-27  85.25 3.801 64.75 35.25 0.00 2.507 LC 

10H 1W 35-37 85.35 3.803 67.34 32.66 0.00 2.522 LC 

10H 1W 55-57  85.55 3.808 75.75 24.25 0.00 2.438 LC 

10H 1W 75-77 85.75 3.814 40.69 59.31 0.00 2.508 LC 

10H 1W 85-87 85.85 3.816 58.10 41.90 0.00 2.279 LC 

10H 1W 95-97 85.95 3.819 68.62 31.38 0.00 2.288 LC 

10H 1W 115-117 86.15 3.824 69.76 30.24 0.00 2.366 LC 

10H 1W 135-137 86.35 3.829 74.10 25.90 0.00 2.261 LC 

10H 1W 145-147 86.45 3.832 48.84 48.90 2.26 2.597 LC 

10H 2W 5-7 86.55 3.835 49.13 48.90 1.97 2.999 LC 

10H 2W 25-27 86.75 3.840 74.01 25.99 0.00 2.540 LC 

10H 2W 35-37 86.85 3.842 54.99 43.08 1.94 2.600 LC 

10H 2W 45-47 86.95 3.845 52.16 46.87 0.97 2.846 LC 

10H 2W 55-57 87.05 3.848 24.86 70.36 4.77 2.909 LC 

10H 2W 65-67 87.15 3.850 48.39 51.61 0.00 2.844 LC 

10H 2W 75-77 87.25 3.853 72.40 27.60 0.00 2.461 LC 

10H 2W 85-87 87.35 3.856 72.52 27.48 0.00 2.624 LC 

10H 2W 95-97 87.45 3.858 58.13 41.69 0.19 2.448 LC 

10H 2W 105-107 87.55 3.861 71.63 28.37 0.00 2.405 LC 

10H 2W 125-127 87.75 3.866 77.54 22.46 0.00 2.277 LC 

10H 2W 135-137 87.85 3.869 61.38 38.62 0.00 2.214 LC 

10H 2W 145-147 87.95 3.871 73.36 26.64 0.00 2.551 LC 

10H 3W 5-7  88.05 3.874 49.52 50.36 0.12 2.583 D 

10H 3W 15-17 88.15 3.877 47.78 51.91 0.31 2.762 D 

10H 3W 25-27 88.25 3.879 43.96 52.33 3.70 2.790 D 

10H 3W 35-37 88.35 3.882 42.97 50.84 6.19 3.395 LC 

10H 3W 55-57 88.55 3.887 76.10 23.17 0.72 2.563 LC 

10H 3W 65-67 88.65 3.890 62.24 37.76 0.00 2.603 LC 

10H 3W 75-77 88.75 3.892 60.93 39.07 0.00 2.633 LC 

10H 3W 85-87 88.85 3.895 64.56 33.14 2.30 2.435 LC 

10H 3W 95-97 88.95 3.898 53.57 44.86 1.57 2.844 LC 

10H 3W 105-107 89.05 3.900 60.92 39.08 0.00 2.362 LC 
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10H 3W 115-117 89.15 3.903 73.89 26.11 0.00 2.441 LC 

10H 3W 125-127 89.25 3.905 73.12 26.88 0.00 2.344 LC 

10H 3W 135-137 89.35 3.908 65.97 34.03 0.00 2.598 LC 

10H 3W 145-147 89.45 3.911 62.89 36.84 0.27 2.482 LC 

10H 4W 5-7 89.55 3.913 56.04 43.96 0.00 2.736 LC 

10H 4W 15-17 89.65 3.916 45.76 54.03 0.21 3.155 LC 

10h 4W 25-27 89.75 3.919 73.95 26.05 0.00 2.499 LC 

10H 4W 35-37 89.85 3.921 61.67 38.33 0.00 2.684 LC 

10H 4W 45-47 89.95 3.924 64.83 35.17 0.00 2.491 LC 

10H 4W 55-57 90.05 3.926 64.45 31.98 3.57 2.820 LC 

10H 4W 65-67 90.15 3.929 79.67 20.33 0.00 2.422 LC 

10H 4W 75-77 90.25 3.932 65.58 34.37 0.05 2.576 LC 

10H 4W 85-87 90.35 3.934 62.95 37.05 0.00 2.609 LC 

10H 4W 95-97 90.45 3.937 69.86 30.14 0.00 2.521 LC 

10H 4W 115-117 90.65 3.942 74.39 24.06 1.56 2.562 LC 

10H 4W 125-127 90.75 3.945 65.38 34.34 0.28 2.475 D 

10H 4W 135-137 90.85 3.947 51.94 47.10 0.95 2.447 D 

10H 4W 145-147 90.95 3.950 54.79 45.19 0.02 2.779 D 

10H 5W 5-7 91.05 3.953 47.74 50.74 1.52 2.749 D 

10H 5W 15-17 91.15 3.955 49.73 48.82 1.45 2.688 D 

10H 5W 25-27 91.25 3.958 51.07 45.98 2.95 2.597 D 

10H 5W 35-37 91.35 3.960 54.94 44.34 0.72 2.775 D 

10H 5W 45-47 91.45 3.963 48.97 49.72 1.31 2.641 D 

10H 5W 55-57 91.55 3.966 58.32 41.68 0.00 2.703 D 

10H 5W 65-67 91.65 3.968 51.65 46.60 1.76 2.529 D 

10H 5W 75-77 91.75 3.971 51.19 48.24 0.57 2.767 D 

10H 5W 85-87 91.85 3.974 51.11 46.45 2.44 2.961 D 

10H 5W 95-97 91.95 3.976 34.90 56.82 8.28 3.323 D 

10H 5W 105-107 92.05 3.979 56.56 41.34 2.10 2.493 D 

10H 5W 115-117 92.15 3.981 43.79 52.40 3.81 3.182 D 

10H 5W 125-127 92.25 3.984 29.99 61.00 9.01 3.174 D 

10H 5W 135-137 92.35 3.987 35.57 60.78 3.65 3.067 D 

10H 5W 145-147 92.45 3.989 54.28 44.51 1.21 2.637 D 

10H 6W 5-7 92.55 3.992 56.42 42.26 1.32 2.942 D 

10H 6W 15-17 92.65 3.995 49.59 47.09 3.33 2.698 D 

10H 6W 25-27 92.75 3.997 46.85 50.82 2.33 2.878 D 

10H 6W 45-47 92.95 4.002 49.11 49.18 1.71 2.893 D 

10H 6W 55-57 93.05 4.005 46.23 52.62 1.15 2.993 D 

10H 6W 65-67 93.15 4.008 47.45 49.86 2.69 3.011 D 

10H 6W 75-77 93.25 4.010 51.85 45.03 3.12 2.700 D 

10H 6W 85-87 93.35 4.013 42.91 54.52 2.57 2.688 D 

10H 6W 95-97 93.45 4.016 46.68 50.13 3.19 2.626 D 

10H 6W 105-107 93.55 4.018 50.63 48.75 0.61 2.576 D 

10H 6W 115-117 93.65 4.021 52.58 45.30 2.12 2.508 D 

10H 6W 125-127 93.75 4.023 47.37 48.76 3.86 3.312 D 

10H 6W 135-137 93.85 4.026 51.90 46.43 1.68 2.703 D 
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10H 6W 145-147 93.95 4.029 47.61 46.67 5.72 3.359 D 

10H 7W 5-7 94.05 4.031 49.48 48.26 2.26 2.664 D 

10H 7W 15-17 94.15 4.034 45.58 52.94 1.48 2.883 D 

10H 7W 25-27 94.25 4.036 38.65 59.34 2.01 2.713 D 

10H 7W 35-37 94.35 4.039 42.99 55.32 1.69 2.753 D 

10H 7W 45-47 94.45 4.042 50.82 48.72 0.47 2.669 D 

10H 7W 55-57 94.55 4.044 57.34 42.66 0.00 2.441 D 

11H 1W 7-9 94.57 4.045 56.75 43.25 0.00 2.339 D 

11H 1W 15-17 94.65 4.047 58.78 41.18 0.05 2.450 D 

10H 7W 67-69 94.67 4.048 45.13 51.98 2.89 2.529 D 

11H 1W 25-27 94.75 4.050 58.37 41.63 0.00 2.456 D 

10H CC 5-7 94.8 4.051 48.46 50.08 1.46 2.299 D 

11H 1W 35-37 94.85 4.052 55.10 43.59 1.31 2.615 D 

10H CC 15-17 94.9 4.054 54.91 44.66 0.43 2.365 D 

11H 1W 45-47 94.95 4.055 51.91 47.45 0.64 2.789 D 

11H 1W 55-57 95.05 4.057 58.08 39.28 2.64 2.449 D 

11H 1W 65-67 95.15 4.060 50.88 47.75 1.37 2.676 D 

11H 1W 75-77 95.25 4.063 41.32 56.06 2.62 2.788 D 

11H 1W 85-87 95.35 4.065 43.03 55.37 1.60 2.644 D 

11H 1W 105-107 95.55 4.071 37.71 58.11 4.18 3.091 D 

11H 1W 115-117 95.65 4.073 36.06 37.62 26.32 4.133 D 

11H 1W 125-127 95.75 4.076 73.44 25.52 1.04 2.525 D 

11H 1W 135-137 95.85 4.078 61.79 38.21 0.00 2.494 LC 

11H 1W 145-147 95.95 4.081 51.80 45.27 2.93 3.108 LC 

11H 2W 5-7 96.05 4.084 57.77 37.04 5.19 3.610 LC 

11H 2W 15-17 96.15 4.086 74.73 25.27 0.00 2.271 LC 

11H 2W 25-27 96.25 4.089 72.05 26.43 1.52 2.620 LC 

11H 2W 35-37 96.35 4.092 67.70 32.24 0.06 2.564 LC 

11H 2W 45-47 96.45 4.094 73.27 26.73 0.00 2.074 LC 

11H 2W 55-57 96.55 4.097 48.49 49.79 1.72 3.233 LC 

11H 2W 65-67 96.65 4.099 77.14 22.86 0.00 2.383 LC 

11H 2W 75-77 96.75 4.102 59.95 39.87 0.18 2.662 LC 

11H 2W 85-87 96.85 4.105 72.08 27.59 0.33 2.158 LC 

11H 2W 95-97 96.95 4.107 65.85 34.15 0.00 2.434 LC 

11H 2W 105-107 97.05 4.110 59.56 40.44 0.01 2.491 LC 

11H 2W 115-117 97.15 4.113 46.77 50.94 2.29 3.102 LC 

11H 2W 125-127 97.25 4.115 68.58 31.42 0.00 2.175 LC 

11H 2W 135-137 97.35 4.118 59.55 33.15 7.30 3.262 LC 

11H 2W 145-147 97.45 4.120 60.79 39.21 0.00 3.253 LC 

11H 3W 5-7 97.55 4.123 66.24 33.70 0.05 2.813 LC 

11H 3W 15-17 97.65 4.126 38.78 61.22 0.00 2.291 LC 

11H 3W 25-27 97.75 4.128 73.82 26.15 0.03 2.359 LC 

11H 3W 45-47 97.95 4.134 65.19 34.81 0.00 2.549 LC 

11H 3W 65-67 98.15 4.139 69.56 30.44 0.00 2.536 LC 

11H 3W 75-77 98.25 4.141 77.13 22.87 0.00 2.257 LC 

11H 3W 85-87 98.35 4.144 79.01 20.99 0.00 2.289 LC 
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11H 3W 95-97 98.45 4.147 48.44 44.76 6.80 3.600 LC 

11H 3W 105-107 98.55 4.149 65.43 34.55 0.02 2.907 LC 

11H 3W 115-117 98.65 4.152 42.90 52.69 4.41 3.085 LC 

11H 3W 125-127 98.75 4.154 49.07 49.82 1.11 3.179 LC 

11H 3W 145-147 98.95 4.160 61.78 38.22 0.00 2.841 LC 

11H 4W 5-7 99.05 4.162 59.71 35.52 4.78 3.289 LC 

11H 4W 15-17 99.15 4.165 70.40 29.60 0.00 2.634 LC 

11H 4W 25-27 99.25 4.168 72.39 27.60 0.02 2.740 LC 

11H 4W 35-37 99.35 4.170 60.53 39.47 0.00 2.733 LC 

11H 4W 45-47 99.45 4.173 71.45 28.10 0.45 2.809 LC 

11H 4W 55-57 99.55 4.175 60.65 39.35 0.00 2.742 LC 

11H 4W 75-77 99.75 4.181 57.75 42.06 0.19 3.045 LC 

11H 4W 85-87 99.85 4.183 50.35 46.61 3.05 3.164 LC 

11H 4W 95-97 99.95 4.186 63.00 35.79 1.21 3.035 LC 

11H 4W 105-107 100.05 4.190 70.91 29.06 0.02 2.765 LC 

11H 4W 115-117 100.15 4.194 57.68 42.32 0.00 2.663 LC 

11H 4W 125-127 100.25 4.199 65.26 34.44 0.30 2.816 LC 

11H 4W 135-137 100.35 4.203 48.61 47.14 4.25 3.143 D 

11H 5W 5-7 100.55 4.213 44.07 51.55 4.38 3.184 D 

11H 5W 25-27 100.75 4.222 51.93 45.97 2.10 2.807 D 

11H 5W 45-47 100.95 4.231 52.79 43.02 4.19 3.125 D 

11H 5W 55-57 101.05 4.236 53.29 42.76 3.95 2.779 D 

11H 5W 65-67 101.15 4.240 47.07 49.15 3.78 3.100 D 

11H 5W 85-87 101.35 4.249 46.17 52.05 1.77 2.765 D 

11H 5W 95-97 101.45 4.254 60.93 37.76 1.31 2.676 D 

11H 5W 105-107 101.55 4.258 40.99 55.37 3.64 3.054 D 

11H 5W 125-127 101.75 4.268 47.99 49.72 2.28 3.034 D 

11H 5W 135-137 101.85 4.272 42.25 54.06 3.69 2.792 D 

11H 5W 145-147 101.95 4.277 37.96 60.42 1.61 2.720 D 

11H 6W 5-7 102.05 4.281 37.36 61.31 1.33 2.565 D 

11H 6W 15-17 102.15 4.286 37.64 61.73 0.63 2.682 D 

11H 6W 25-27 102.25 4.291 52.64 47.33 0.03 2.585 D 

11H 6W 35-37 102.35 4.295 50.44 47.68 1.88 2.732 D 

11H 6W 55-57 102.55 4.304 49.39 48.16 2.45 2.944 D 

11H 6W 65-67 102.65 4.309 46.06 51.06 2.89 2.824 D 

11H 6W 75-77 102.75 4.313 46.97 48.20 4.83 3.332 D 

11H 6W 85-87 102.85 4.318 44.37 51.65 3.98 2.980 D 

11H 6W 95-97 102.95 4.323 50.48 49.40 0.12 2.741 D 

11H 6W 105-105 103.05 4.327 57.05 42.24 0.71 2.901 D 

11H 6W 115-117 103.15 4.332 62.05 37.95 0.00 2.516 D 

11H 6W 125-127 103.25 4.336 47.30 50.95 1.75 2.363 D 

11H 6W 145-147 103.45 4.346 49.11 48.75 2.15 2.538 D 

11H 7W 5-7 103.55 4.350 47.24 50.29 2.47 2.882 D 

11H 7W 15-17 103.65 4.355 27.79 65.01 7.19 2.844 D 

11H 7W 28-30 103.78 4.361 37.46 55.30 7.24 3.425 D 

11H 7W 38-40 103.88 4.365 49.33 47.14 3.53 2.743 D 
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11H 7W 58-60 104.08 4.374 49.09 48.64 2.28 2.956 D 

11H CC 2-4 104.12 4.376 35.99 58.63 5.38 2.998 D 

11H CC 8-10 104.18 4.379 42.87 51.82 5.32 3.169 D 
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APPENDIX B 

 

ODP Site 1123 stable isotope data 

Core, section, 

interval (cm) 

Depth 

(mbsf) 
rMCD 

Age 

(Ka) 
Species δ

18
OPDB δ

13
CPDB 

12H 1W 0-2 98.40 108.06 3006 Uvigerina spp. 3.820 -0.473 

12H 1W 20-22 98.50 108.16 3009 Uvigerina spp. 3.758 -0.922 

12H 1W 40-42 98.60 108.26 3011 Uvigerina spp. 3.539 -0.863 

12H 1 30-32 98.70 108.36 3014 Uvigerina spp. 3.534 -0.822 

12H 1W 40-42 98.80 108.46 3017 Uvigerina spp. 3.290 -0.642 

12H 1W 50-52 98.90 108.56 3019 Uvigerina spp. 3.468 -0.883 

12H 1W 60-62 99.00 108.66 3022 Uvigerina spp. 3.425 -0.750 

12H 1W 70-72 99.10 108.76 3025 Uvigerina spp. 3.685 -1.137 

12H 1W 90-92 99.30 108.96 3030 Uvigerina spp. 3.821 -1.049 

12H 1W 98-100 99.40 109.06 3033 Uvigerina spp. 3.850 -1.061 

12H 1W 110-112 99.50 109.16 3036 Uvigerina spp. 3.969 -1.039 

12H 1W 120-122 99.60 109.26 3038 Uvigerina spp. 3.936 -1.093 

12H 1W 130-132 99.70 109.36 3041 Uvigerina spp. 3.905 -1.587 

12H 1W 140-142 99.80 109.46 3044 Uvigerina spp. 3.758 -1.417 

12H 2W 0-2 99.90 109.56 3049 Uvigerina spp. 3.950 -1.296 

12H 2W 10-12 100.00 109.66 3056 Uvigerina spp. 3.452 -1.322 

12H 2W 20-22 100.10 109.76 3063 Uvigerina spp. 3.788 -1.012 

12H 2W 30-32 100.20 109.86 3070 Uvigerina spp. 3.346 -0.984 

12H 2W 40-42 100.30 109.96 3076 Uvigerina spp. 3.299 -1.023 

12H 2W 50-52 100.40 110.06 3083 Uvigerina spp. 3.371 -1.004 

12H 2W 70-72 100.60 110.26 3097 Uvigerina spp. 3.535 -0.724 

12H 2W 80-82 100.70 110.36 3104 Uvigerina spp. 3.472 -0.739 

12H 2W 90-92 100.80 110.46 3111 Uvigerina spp. 3.107 -0.846 

12H 2W 100-102 100.90 110.56 3117 Uvigerina spp. 3.323 -0.958 

12H 2W 110-112 101.00 110.66 3124 Uvigerina spp. 3.182 -0.901 

12H 2W 120-122 101.10 110.76 3128 Uvigerina spp. 3.288 -0.743 

12H 2W 130-132 101.20 110.86 3130 Uvigerina spp. 3.279 -1.208 

12H 2W 140-142 101.30 110.96 3131 Uvigerina spp. 3.237 -0.548 

12H 3W 0-2 101.40 111.06 3133 Uvigerina spp. 3.357 -0.711 

12H 3W 10-12 101.50 111.16 3134 Uvigerina spp. 3.541 -0.780 

12H 3W 20-22 101.60 111.26 3136 Uvigerina spp. 3.295 -0.706 

12H 3W 30-32 101.70 111.36 3138 Uvigerina spp. 3.325 -0.602 

12H 3W 40-42 101.80 111.46 3139 Uvigerina spp. 3.550 -0.827 

12H 3W 50-52 101.90 111.56 3141 Uvigerina spp. 3.577 -0.713 

12H 3W 50-52 101.9 111.56 3141 Cibicides spp. 2.887 0.376 

12H 3W 60-62 102.00 111.66 3142 Uvigerina spp. 3.303 -0.634 

12H 3W 70-72 102.10 111.76 3144 Uvigerina spp. 3.373 -0.768 

12H 3W 80-82 102.20 111.86 3146 Uvigerina spp. 3.389 -0.483 

12H 3W 90-92 102.30 111.96 3147 Uvigerina spp. 3.549 -0.729 

12H 3W 100-102 102.40 112.06 3149 Uvigerina spp. 3.509 -0.760 

12H 3W 110-112 102.50 112.16 3150 Uvigerina spp. 3.466 -0.801 

12H 3W 120-122 102.60 112.26 3152 Uvigerina spp. 3.501 -1.016 

12H 3W 130-132 102.70 112.36 3153 Uvigerina spp. 3.714 -0.677 

12H 3W 140-142 102.80 112.46 3155 Uvigerina spp. 3.688 -0.684 

12H 4W 10-12 103.00 112.66 3158 Uvigerina spp. 3.181 -0.749 

12H 4W 20-22 103.10 112.76 3160 Uvigerina spp. 3.583 -0.771 

12H 4W 30-32 103.20 112.86 3161 Uvigerina spp. 3.516 -0.669 
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12H 4W 40-42 103.30 112.96 3163 Uvigerina spp. 3.405 -0.586 

12H 4W 50-52 103.40 113.06 3165 Uvigerina spp. 3.228 -0.599 

12H 4W 60-62 103.50 113.16 3166 Uvigerina spp. 3.155 -0.297 

12H 4W 60-62 103.50 113.16 3166 Uvigerina spp. 3.080 -0.051 

12H 4W 70-72 103.60 113.26 3168 Uvigerina spp. 3.301 -0.512 

12H 4W 70-72 103.6 113.26 3168 Cibicides spp. 2.733 0.637 

12H 4W 80-82 103.70 113.36 3169 Uvigerina spp. 3.180 -0.318 

12H 4W 80-82 103.70 113.36 3169 Uvigerina spp. 3.209 -0.344 

12H 4W 100-102 103.90 113.56 3173 Uvigerina spp. 3.252 -0.622 

12H 4W 100-102 103.90 113.56 3173 Uvigerina spp. 3.277 -0.435 

12H 4W 110-112 104.00 113.66 3174 Uvigerina spp. 3.047 -0.396 

12H 4W 120-122 104.10 113.76 3176 Uvigerina spp. 3.351 -0.366 

12H 4W 120-122 104.10 113.76 3176 Uvigerina spp. 3.525 -0.272 

12H 4W 130-132 104.20 113.86 3177 Uvigerina spp. 3.307 -0.544 

12H 5W 10-12 104.50 114.16 3182 Uvigerina spp. 3.418 -0.415 

12H 5W 10-12 104.50 114.16 3182 Uvigerina spp. 3.405 -0.657 

12H 5W 20-22 104.60 114.26 3184 Uvigerina spp. 3.480 -0.503 

12H 5W 30-32 104.70 114.36 3185 Uvigerina spp. 3.309 -0.547 

12H 5W 40-42 104.80 114.46 3187 Uvigerina spp. 3.485 -0.843 

12H 5W 50-52 104.90 114.56 3189 Uvigerina spp. 3.861 -0.903 

12H 5W 60-62 105.00 114.66 3190 Uvigerina spp. 3.876 -1.229 

12H 5W 70-72 105.10 114.76 3192 Uvigerina spp. 3.844 -1.203 

12H 5W 80-82 105.20 114.86 3193 Uvigerina spp. 3.834 -1.159 

12H 5W 90-92 105.30 114.96 3195 Uvigerina spp. 4.062 -1.165 

12H 5W 130-132 105.70 115.36 3201 Uvigerina spp. 3.227 -0.600 

12H 5W 130-132 105.70 115.36 3201 Uvigerina spp. 3.220 -0.742 

12H 5W 140-142 105.80 115.46 3203 Uvigerina spp. 3.099 -0.587 

12H 6W 10-12 106.00 115.66 3206 Uvigerina spp. 2.888 -0.822 

12H 6W 20-22 106.10 115.76 3208 Uvigerina spp. 3.301 -0.751 

12H 6W 30-32 106.20 115.86 3209 Uvigerina spp. 3.108 -0.652 

12H 6W 30-32 106.20 117.52 3258 Cibicides spp. 2.709 0.611 

12H 6W 40-42 106.30 115.96 3212 Uvigerina spp. 3.550 -1.105 

12H 6W 50-52 106.40 116.06 3215 Uvigerina spp. 3.253 -0.482 

12H 6W 50-52 106.4 116.06 3215 Cibicides spp. 2.800 0.333 

12H 6W 60-62 106.50 116.16 3218 Uvigerina spp. 3.618 -0.384 

12H 6W 70-72 106.60 116.26 3221 Uvigerina spp. 3.496 -1.268 

12H 6W 80-82 106.70 116.36 3224 Uvigerina spp. 3.602 -0.593 

12H 6W 90-92 106.80 116.46 3226 Uvigerina spp. 3.613 -0.571 

12H 6W 100-102 106.90 116.56 3229 Uvigerina spp. 3.653 -0.573 

12H 6W 110-112 107.00 116.66 3232 Uvigerina spp. 3.453 -0.573 

12H 6W 110-112 107.00 116.66 3232 Cibicides spp. 2.586 0.149 

12H 6W 120-122 107.10 116.76 3235 Uvigerina spp. 3.655 -0.272 

12H 6W 120-122 107.10 116.76 3235 Cibicides spp. 2.653 0.588 

12H 7W 0-2 107.40 117.06 3244 Uvigerina spp. 3.240 -0.373 

12H 7W 10-12 107.50 117.16 3247 Uvigerina spp. 3.417 -0.474 

12H 7W 20-22 107.60 117.26 3250 Uvigerina spp. 3.384 -0.693 

12H 7W 30-32 107.70 117.36 3253 Uvigerina spp. 3.401 -0.285 

12H 7W 30-32 107.70 117.36 3253 Cibicides spp. 2.792 0.622 

12H 7W 40-42 107.80 117.46 3256 Uvigerina spp. 3.159 -0.488 

13H 1W 0-2 107.90 117.78 3265 Uvigerina spp. 3.450 -0.480 

13H 1W 0-2 107.90 117.78 3265 Cibicides spp. 2.793 0.372 

13H 1W 10-12 108.00 117.88 3268 Uvigerina spp. 3.411 -0.593 

13H 1W 20-22 108.10 117.98 3271 Uvigerina spp. 3.557 -1.059 

13H 1W 20-22 108.10 117.98 3271 Cibicides spp. 2.666 0.551 



220 
 

13H 1W 30-32 108.20 118.08 3274 Uvigerina spp. 3.766 -0.921 

13H 1W 30-32 108.20 118.08 3274 Cibicides spp. 2.568 0.220 

13H 1W 40-42 108.30 118.18 3277 Uvigerina spp. 3.566 -0.637 

13H 1W 40-42 108.30 118.18 3277 Cibicides spp. 2.708 0.312 

13H 1W 50-52 108.40 118.28 3280 Uvigerina spp. 3.637 -0.488 

13H 1W 70-72 108.60 118.48 3286 Uvigerina spp. 3.805 -0.493 

13H 1W 70-72 108.60 118.48 3286 Cibicides spp. 2.613 0.621 

13H 1W 80-82 108.70 118.58 3289 Uvigerina spp. 3.346 -0.625 

13H 1W 90-92 108.80 118.68 3292 Uvigerina spp. 3.296 -0.585 

13H 1W 90-92 108.80 118.68 3292 Cibicides spp. 2.800 0.478 

13H 1W 100-102 108.90 118.78 3295 Uvigerina spp. 3.211 -0.713 

13H 1W 100-102 108.90 118.78 3295 Uvigerina spp. 3.312 -0.668 

13H 1W 100-102 108.90 118.78 3295 Cibicides spp. 2.736 0.056 

13H 1W 100-102 108.90 118.78 3295 Cibicides spp. 2.711 0.577 

13H 1W 110-112 109.00 118.88 3298 Uvigerina spp. 3.456 -0.488 

13H 1W 120-122 109.10 118.98 3301 Uvigerina spp. 3.190 -0.632 

13H 1W 120-122 109.10 118.98 3301 Cibicides spp. 2.875 0.349 

13H 1W 120-122 109.20 119.08 3304 Uvigerina spp. 3.451 -0.665 

13H 1W 120-122 109.20 119.08 3304 Cibicides spp. 2.578 -0.268 

13H 1W 140-142 109.30 119.18 3307 Uvigerina spp. 3.484 -0.747 

13H 1W 140-142 109.30 119.18 3307 Cibicides spp. 2.930 0.309 

13H 2W 0-2 109.40 119.28 3310 Uvigerina spp. 3.730 -0.573 

13H 2W 0-2 109.40 119.28 3310 Cibicides spp. 2.849 0.370 

13H 2W 0-2 109.40 119.28 3310 Cibicides spp. 3.082 0.189 

13H 2W 10-12 109.50 119.38 3313 Uvigerina spp. 3.937 -0.677 

13H 2W 20-22 109.60 119.48 3315 Uvigerina spp. 3.651 -0.868 

13H 2W 30-32 109.70 119.58 3318 Uvigerina spp. 3.615 -0.798 

13H 2W 40-42 109.80 119.68 3321 Uvigerina spp. 3.654 -0.480 

13H 2W 40-42 109.80 119.68 3321 Cibicides spp. 2.788 0.255 

13H 2W 50-52 109.90 119.78 3324 Uvigerina spp. 3.556 -0.467 

13H 2W 50-52 109.90 119.78 3324 Cibicides spp. 2.718 0.584 

13H 2W 50-52 110.00 119.88 3327 Uvigerina spp. 3.411 -0.572 

13H 2W 70-72 110.10 119.98 3330 Uvigerina spp. 3.463 -0.509 

13H 2W 70-72 110.10 119.98 3330 Cibicides spp. 2.856 0.350 

13H 2W 80-82 110.20 120.08 3332 Uvigerina spp. 3.428 -0.629 

13H 2W 90-92 110.30 120.18 3335 Cibicides spp. 3.040 0.423 

13H 2W 100-102 110.40 120.28 3338 Cibicides spp. 2.801 0.439 

13H 2W 110-112 110.50 120.38 3341 Uvigerina spp. 3.537 -0.921 

13H 2W 120-122 110.60 120.48 3344 Uvigerina spp. 3.559 -1.046 

13H 2W 120-122 110.60 120.48 3344 Uvigerina spp. 3.514 -0.920 

13H 2W 140-142 110.80 120.68 3349 Cibicides spp. 3.359 -0.767 

13H 2W 140-142 110.80 120.68 3349 Cibicides spp. 3.435 -0.056 

13H 3W 0-2 110.90 120.78 3352 Cibicides spp. 3.290 -0.112 

13H 3W 20-22 111.10 120.98 3357 Cibicides spp. 3.448 0.102 

13H 3W 30-32 111.20 121.08 3360 Cibicides spp. 3.168 0.096 

13H 3W 40-42 111.30 121.18 3363 Cibicides spp. 3.181 0.054 

13H 3W 70-72 111.60 121.48 3371 Uvigerina spp. 3.748 -1.222 

13H 3W 110-112 112.00 121.88 3383 Uvigerina spp. 3.681 -0.645 

13H 3W 110-112 112.00 121.88 3383 Cibicides spp. 2.875 0.170 

13H 3W 120-122 112.10 121.98 3385 Uvigerina spp. 3.543 -0.385 

13H 3W 130-132 112.20 122.08 3388 Uvigerina spp. 3.263 -0.692 

13H 3W 130-132 112.20 122.08 3388 Cibicides spp. 2.823 0.368 

13H 3W 140-142 112.30 122.18 3391 Uvigerina spp. 3.358 -0.785 

13H 3W 140-142 112.30 122.18 3391 Cibicides spp. 2.797 0.401 
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13H 4W 0-2 112.40 122.28 3394 Uvigerina spp. 3.447 -0.730 

13H 4W 0-2 112.40 122.28 3394 Cibicides spp. 2.767 0.327 

13H 4W 10-12 112.50 122.38 3396 Uvigerina spp. 3.437 -0.831 

13H 4W 10-12 112.50 122.38 3396 Cibicides spp. 2.852 0.362 

13H 4W 20-22 112.60 122.48 3399 Uvigerina spp. 3.516 -1.135 

13H 4W 20-22 112.60 122.48 3399 Uvigerina spp. 3.412 -0.667 

13H 4W 20-22 112.60 122.48 3399 Cibicides spp. 2.790 0.366 

13H 4W 20-22 112.60 122.48 3399 Cibicides spp. 2.806 0.419 

13H 4W 30-32 112.70 122.58 3402 Uvigerina spp. 3.292 -0.490 

13H 4W 40-42 112.80 122.68 3405 Uvigerina spp. 3.445 -0.220 

13H 4W 40-42 112.80 122.68 3405 Cibicides spp. 2.734 0.720 

13H 4W 50-52 112.90 122.78 3408 Uvigerina spp. 3.573 -0.981 

13H 4W 60-62 113.00 122.88 3410 Uvigerina spp. 3.227 -0.672 

13H 4W 60-62 113.00 122.88 3410 Cibicides spp. 2.703 0.211 

13H 4W 70-72 113.10 122.98 3413 Uvigerina spp. 3.710 -0.949 

13H 4W 70-72 113.10 122.98 3413 Cibicides spp. 2.650 0.493 

13H 4W 80-82 113.20 123.08 3416 Uvigerina spp. 3.546 -0.689 

13H 4W 80-82 113.20 123.08 3416 Cibicides spp. 2.841 0.310 

13H 4W 80-82 113.20 123.08 3416 Cibicides spp. 2.700 0.187 

13H 4W 90-92 113.30 123.18 3419 Uvigerina spp. 3.487 -1.076 

13H 4W 100-102 113.40 123.28 3422 Uvigerina spp. 3.303 -0.343 

13H 4W 100-102 113.40 123.28 3422 Uvigerina spp. 3.440 -1.106 

13H 4W 100-102 113.40 123.28 3422 Cibicides spp. 2.727 -0.148 

13H 4W 110-112 113.50 123.38 3424 Uvigerina spp. 3.488 -0.359 

13H 4W 110-112 113.50 123.38 3424 Cibicides spp. 2.738 0.403 

13H 4W 120-122 113.60 123.48 3427 Uvigerina spp. 3.277 0.023 

13H 4W 120-122 113.60 123.48 3427 Cibicides spp. 2.633 0.605 

13H 4W 130-132 113.70 123.58 3430 Uvigerina spp. 3.522 -0.285 

13H 4W 130-132 113.70 123.58 3430 Cibicides spp. 2.683 0.650 

13H 4W 140-142 113.80 123.68 3433 Uvigerina spp. 3.373 -0.269 

13H 4W 140-142 113.80 123.68 3433 Cibicides spp. 2.663 0.707 

13H 5W 0-2 113.90 123.78 3436 Uvigerina spp. 3.603 -0.410 

13H 5W 0-2 113.90 123.78 3436 Cibicides spp. 2.678 0.291 

13H 5W 10-12 114.00 123.88 3438 Uvigerina spp. 3.502 -0.575 

13H 5W 10-12 114.00 123.88 3438 Uvigerina spp. 3.531 -0.556 

13H 5W 10-12 114.00 123.88 3438 Cibicides spp. 2.945 0.017 

13H 5W 20-22 114.10 123.98 3441 Uvigerina spp. 3.381 -0.260 

13H 5W 30-32 114.20 124.08 3444 Uvigerina spp. 3.015 -0.623 

13H 5W 30-32 114.20 124.08 3444 Uvigerina spp. 3.187 -0.914 

13H 5W 30-32 114.20 124.08 3444 Cibicides spp. 2.724 0.210 

13H 5W 30-32 114.20 124.08 3444 Cibicides spp. 2.746 -0.134 

13H 5W 40-42 114.30 124.18 3447 Cibicides spp. 3.090 -0.054 

13H 5W 50-52 114.40 124.28 3449 Uvigerina spp. 3.353 -1.095 

13H 5W 60-62 114.50 124.38 3452 Uvigerina spp. 3.590 -0.568 

13H 5W 60-62 114.50 124.38 3452 Uvigerina spp. 3.481 -0.706 

13H 5W 60-62 114.50 124.38 3452 Cibicides spp. 2.718 -0.410 

13H 5W 60-62 114.50 124.38 3452 Cibicides spp. 2.829 0.021 

13H 5W 70-72 114.60 124.48 3455 Uvigerina spp. 3.552 -0.830 

13H 5W 70-72 114.60 124.48 3455 Cibicides spp. 2.961 0.085 

13H 5W 70-72 114.60 124.48 3455 Cibicides spp. 2.989 0.172 

13H 5W 80-82 114.70 124.58 3458 Uvigerina spp. 3.660 -0.984 

13H 5W 90-92 114.80 124.68 3461 Uvigerina spp. 3.689 -1.115 

13H 5W 110-112 115.00 124.88 3466 Uvigerina spp. 3.448 -0.949 

13H 5W 120-122 115.10 124.98 3469 Uvigerina spp. 3.556 -0.409 
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13H 5W 120-122 115.10 124.98 3469 Uvigerina spp. 3.335 -0.728 

13H 5W 120-122 115.10 124.98 3469 Cibicides spp. 2.493 0.361 

13H 5W 130-132 115.20 125.08 3472 Uvigerina spp. 3.628 -0.907 

13H 5W 130-132 115.20 125.08 3472 Cibicides spp. 2.759 0.427 

13H 5W 140-142 115.30 125.18 3475 Uvigerina spp. 3.437 -0.719 

13H 6W 0-2 115.40 125.28 3477 Uvigerina spp. 3.391 -0.472 

13H 6W 0-2 115.40 125.28 3477 Cibicides spp. 2.748 0.129 

13H 6W 10-12 115.50 125.38 3480 Uvigerina spp. 3.424 -0.904 

13H 6W 10-12 115.50 125.38 3480 Cibicides spp. 2.739 0.129 

13H 6W 20-22 115.60 125.48 3483 Uvigerina spp. 3.432 -0.635 

13H 6W 30-32 115.70 125.58 3486 Uvigerina spp. 3.550 -1.005 

13H 6W 30-32 115.70 125.58 3486 Cibicides spp. 2.997 0.079 

13H 6W 40-42 115.80 125.68 3488 Uvigerina spp. 3.596 -1.032 

13H 6W 50-52 115.90 125.78 3491 Uvigerina spp. 3.551 -1.005 

13H 6W 60-62 116.00 125.88 3494 Cibicides spp. 2.763 0.081 

13H 6W 70-72 116.10 125.98 3497 Uvigerina spp. 3.525 -1.092 

13H 6W 70-72 116.10 125.98 3497 Cibicides spp. 3.005 0.046 

13H 6W 80-82 116.20 126.08 3500 Cibicides spp. 2.827 -0.006 

13H 6W 90-92 116.30 126.18 3502 Cibicides spp. 2.796 0.189 

13H 6W 100-102 116.40 126.28 3505 Uvigerina spp. 3.356 -0.918 

13H 6W 110-112 116.50 126.38 3508 Uvigerina spp. 3.449 -0.287 

13H 6W 120-122 116.60 126.48 3511 Uvigerina spp. 3.475 -0.579 

13H 6W 120-122 116.60 126.48 3511 Cibicides spp. 2.574 0.290 

13H 6W 130-132 116.70 126.58 3514 Uvigerina spp. 3.445 -1.244 

13H 6W 130-132 116.70 126.58 3514 Cibicides spp. 2.575 0.219 

13H 6W 140-142 116.80 126.68 3516 Uvigerina spp. 3.442 -0.877 

13H 6W 140-142 116.80 126.68 3516 Uvigerina spp. 3.395 -0.724 

13H 6W 140-142 116.80 126.68 3516 Cibicides spp. 2.591 0.188 

13H 7W 0-2 116.90 126.78 3519 Uvigerina spp. 3.316 -0.910 

13H 7W 0-2 116.90 126.78 3519 Cibicides spp. 2.710 0.101 

13H 7W 0-2 116.90 126.78 3519 Cibicides spp. 2.835 0.266 

13H 7W 10-12 117.00 126.88 3522 Uvigerina spp. 3.430 -0.966 

13H 7W 20-22 117.10 126.98 3525 Uvigerina spp. 3.386 -0.651 

13H 7W 20-22 117.10 126.98 3525 Cibicides spp. 2.564 -0.464 

13H 7W 30-32 117.20 127.08 3528 Uvigerina spp. 3.227 -0.644 

13H 7W 40-42 117.30 127.18 3530 Uvigerina spp. 3.311 -0.624 

13H 7W 40-42 117.30 127.18 3530 Cibicides spp. 2.527 0.413 

14H 1W 0-2 117.40 128.72 3573 Uvigerina spp. 3.252 -0.742 

13H 7W 40-42 117.40 127.28 3533 Uvigerina spp. 3.110 -0.696 

13H 7W 40-42 117.40 127.28 3533 Uvigerina spp. 3.151 -0.622 

13H 7W 40-42 117.40 127.28 3533 Cibicides spp. 2.456 0.196 

13H 7W 40-42 117.40 127.28 3533 Cibicides spp. 2.414 0.046 

13H 7W 60-62 117.50 127.38 3536 Uvigerina spp. 3.293 -0.610 

13H 7W 60-62 117.50 127.38 3536 Uvigerina spp. 3.293 -0.410 

14H IW 10-12 117.50 128.82 3576 Uvigerina spp. 3.363 -0.952 

13H 7W 60-62 117.50 127.38 3536 Cibicides spp. 2.698 0.255 

13H CC 0-2 117.57 127.45 3538 Uvigerina spp. 3.079 -0.810 

13H CC 0-2 117.57 127.45 3538 Uvigerina spp. 3.097 -0.867 

14H 1W 20-22 117.60 128.92 3579 Uvigerina spp. 3.382 -0.479 

14H 1W 20-22 117.60 128.92 3579 Uvigerina spp. 3.209 -0.548 

13H CC 10-12 117.67 127.55 3541 Uvigerina spp. 3.232 -0.923 

13H CC 10-12 117.67 127.55 3541 Uvigerina spp. 3.149 -1.029 

14H 1W 30-32 117.70 129.02 3582 Uvigerina spp. 3.313 -0.412 

14H 1W 30-32 117.70 129.02 3582 Uvigerina spp. 3.292 -0.536 
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14H 1W 40-42 117.80 129.12 3584 Uvigerina spp. 3.332 -0.357 

14H 1W 40-42 117.80 129.12 3584 Cibicides spp. 2.623 0.218 

14H 1W 50-52 117.90 129.22 3587 Uvigerina spp. 3.118 -0.035 

14H 1W 50-52 117.90 129.22 3587 Uvigerina spp. 3.111 -0.499 

14H 1W 50-52 117.90 129.22 3587 Cibicides spp. 2.246 0.030 

14H 1W 50-52 117.90 129.22 3587 Cibicides spp. 2.091 0.478 

14H 1W 60-62 118.00 129.32 3590 Uvigerina spp. 3.257 -0.328 

14H 1W 60-62 118.00 129.32 3590 Uvigerina spp. 3.318 -0.119 

14H 1W 70-72 118.10 129.42 3593 Uvigerina spp. 3.266 -0.546 

14H 1W 80-82 118.20 129.52 3596 Uvigerina spp. 3.275 -0.563 

14H 1W 90-92 118.30 129.62 3598 Uvigerina spp. 3.461 -0.249 

14H 1W 90-92 118.30 129.62 3598 Uvigerina spp. 3.183 -0.255 

14H 1W 90-92 118.30 129.62 3598 Cibicides spp. 2.533 0.032 

14H 1W 90-92 118.30 129.62 3598 Cibicides spp. 2.601 0.674 

14H 1W 100-102 118.40 129.72 3601 Uvigerina spp. 3.510 -0.404 

14H 1W 110-112 118.50 129.82 3604 Uvigerina spp. 3.556 -0.427 

14H 1W 110-112 118.50 129.82 3604 Uvigerina spp. 3.354 -0.556 

14H 1W 110-112 118.50 129.82 3604 Cibicides spp. 2.479 0.364 

14H 1W 110-112 118.50 129.82 3604 Cibicides spp. 2.738 0.266 

14H 1W 120-122 118.60 129.92 3607 Uvigerina spp. 3.560 -0.406 

14H 1W 120-122 118.60 129.92 3607 Cibicides spp. 2.715 0.470 

14H 1W 130-132 118.70 130.02 3610 Uvigerina spp. 3.208 -0.983 

14H 1W 140-142 118.80 130.12 3612 Uvigerina spp. 3.402 -0.490 

14H 1W 140-142 118.80 130.12 3612 Cibicides spp. 2.617 0.455 

14H 2W 0-2 118.90 130.22 3615 Uvigerina spp. 3.546 -0.599 

14H 2W 0-2 118.90 130.22 3615 Cibicides spp. 2.708 0.536 

14H 2W 10-12 119.00 130.32 3618 Uvigerina spp. 3.381 -0.337 

14H 2W 20-22 119.10 130.42 3621 Uvigerina spp. 3.348 -0.341 

14H 2W 20-22 119.10 130.42 3621 Cibicides spp. 2.714 0.452 

14H 2W 30-32 119.20 130.52 3624 Uvigerina spp. 3.306 -0.293 

14H 2W 30-32 119.2 130.52 3624 Cibicides spp. 2.460 0.275 

14H 2W 40-42 119.30 130.62 3626 Uvigerina spp. 3.156 -0.595 

14H 2W 40-42 119.30 130.62 3626 Cibicides spp. 2.440 0.315 

14H 2W 50-52 119.40 130.72 3629 Uvigerina spp. 3.023 -0.615 

14H 2W 60-62 119.50 130.82 3632 Uvigerina spp. 3.232 -0.417 

14H 2W 70-72 119.60 130.92 3635 Uvigerina spp. 3.311 -0.666 

14H 2W 70-72 119.60 130.92 3635 Cibicides spp. 2.488 0.221 

14H 2W 80-82 119.70 131.02 3638 Uvigerina spp. 3.479 -0.661 

14H 2W 80-82 119.70 131.02 3638 Cibicides spp. 2.903 0.353 

14H 2W 80-82 119.70 131.02 3638 Cibicides spp. 2.743 0.469 

14H 2W 90-92 119.80 131.12 3640 Uvigerina spp. 3.616 -0.478 

14H 2W 100-102 119.90 131.22 3643 Uvigerina spp. 3.565 -0.406 

14H 2W 100-102 119.90 131.22 3643 Uvigerina spp. 3.590 -0.419 

14H 2W 100-102 119.90 131.22 3643 Uvigerina spp. 3.666 -0.463 

14H 2W 100-102 119.9 131.22 3643 Cibicides spp. 2.626 0.276 

14H 2W 110-112 120.00 131.32 3646 Uvigerina spp. 3.482 -0.512 

14H 2W 110-112 120.00 131.32 3646 Uvigerina spp. 3.381 -0.680 

14H 2W 110-112 120.00 131.32 3646 Cibicides spp. 2.454 0.161 

14H 2W 110-112 120.00 131.32 3646 Cibicides spp. 2.684 0.132 

14H 2W 120-122 120.10 131.42 3649 Uvigerina spp. 3.516 -0.534 

14H 2W 130-132 120.20 131.52 3652 Uvigerina spp. 3.559 -0.386 

14H 2W 130-132 120.20 131.52 3652 Cibicides spp. 2.644 0.469 

14H 2W 1340-142 120.30 131.62 3654 Uvigerina spp. 3.451 -0.319 

14H 2W 1340-142 120.30 131.62 3654 Uvigerina spp. 3.428 -0.406 
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14H 2W 1340-142 120.30 131.62 3654 Cibicides spp. 2.638 0.441 

14H 3W 0-2 120.40 131.72 3657 Cibicides spp. 2.701 0.144 

14H 3W 10-12 120.50 131.82 3660 Uvigerina spp. 3.432 -0.443 

14H 3W 10-12 120.50 131.82 3660 Uvigerina spp. 3.300 -0.345 

14H 3W 20-22 120.60 131.92 3663 Uvigerina spp. 3.374 -0.339 

14H 3W 30-32 120.70 132.02 3666 Uvigerina spp. 3.493 -0.390 

14H 3W 40-42 120.80 132.12 3668 Uvigerina spp. 3.497 -0.372 

14H 3W 40-42 120.80 132.12 3668 Cibicides spp. 2.696 -0.152 

14H 3W 50-52 120.90 132.22 3671 Uvigerina spp. 3.640 -0.338 

14H 3W 60-62 121.00 132.32 3674 Uvigerina spp. 3.477 -0.292 

14H 3W 60-62 121.00 132.32 3674 Cibicides spp. 2.693 0.129 

14H 3W 70-72 121.10 132.42 3677 Uvigerina spp. 3.344 -0.338 

14H 3W 80-82 121.20 132.52 3680 Uvigerina spp. 3.412 -0.235 

14H 3W 90-92 121.30 132.62 3682 Uvigerina spp. 3.277 -0.054 

14H 3W 90-92 121.30 132.62 3682 Cibicides spp. 2.635 0.578 

14H 3W 100-102 121.40 132.72 3685 Uvigerina spp. 3.236 -0.224 

14H 3W 100-102 121.40 132.72 3685 Cibicides spp. 2.654 0.658 

14H 3W 110-112 121.50 132.82 3688 Uvigerina spp. 3.375 -0.087 

14H 3W 120-122 121.60 132.92 3691 Uvigerina spp. 3.584 -0.347 

14H 3W 120-122 121.60 132.92 3691 Cibicides spp. 2.583 0.704 

14H 3W 120-122 121.6 132.92 3691 Cibicides spp. 2.727 0.402 

14H 3W 130-132 121.70 133.02 3694 Uvigerina spp. 3.539 -0.590 

14H 3W 130-132 121.70 133.02 3694 Cibicides spp. 2.541 0.190 

14H 3W 140-142 121.80 133.12 3696 Uvigerina spp. 3.620 -0.349 

14H 4W 0-2 121.90 133.22 3699 Uvigerina spp. 3.451 -0.612 

14H 4W 0-2 121.90 133.22 3699 Cibicides spp. 2.673 0.103 

14H 4W 10-12 122.00 133.32 3702 Uvigerina spp. 3.444 -0.608 

14H 4W 20-22 122.10 133.42 3705 Uvigerina spp. 3.651 -0.328 

14H 4W 20-22 122.10 133.42 3705 Uvigerina spp. 3.672 -0.260 

14H 4W 20-22 122.10 133.42 3705 Cibicides spp. 2.609 0.025 

14H 4W 30-32 122.20 133.52 3708 Uvigerina spp. 3.777 -0.633 

14H 4W 30-32 122.20 133.52 3708 Uvigerina spp. 3.530 -0.746 

14H 4W 30-32 122.20 133.52 3708 Cibicides spp. 2.698 0.733 

14H 4W 40-42 122.30 133.62 3710 Uvigerina spp. 3.502 -0.206 

14H 4W 50-52 122.40 133.72 3713 Uvigerina spp. 3.361 -0.246 

14H 4W 70-72 122.60 133.92 3719 Cibicides spp. 2.429 0.263 

14H 4W 80-82 122.70 135.3 3757 Uvigerina spp. 3.239 -0.790 

14H 4W 90-92 122.80 134.12 3724 Uvigerina spp. 3.136 -0.419 

14H 4W 100-102 122.90 134.22 3727 Uvigerina spp. 3.422 -0.442 

14H 4W 100-102 122.90 134.22 3727 Uvigerina spp. 3.250 -0.606 

14H 4W 100-102 122.90 134.22 3727 Cibicides spp. 3.058 0.088 

14H 4W 110-112 123.00 134.32 3730 Uvigerina spp. 3.526 -0.723 

14H 4W 120-122 123.10 134.42 3733 Uvigerina spp. 3.600 -0.660 

14H 4W 130-132 123.20 134.52 3736 Uvigerina spp. 3.665 -0.921 

14H 4W 130-132 123.20 134.52 3736 Cibicides spp. 2.561 0.527 

14H 4W 140-142 123.30 134.62 3738 Uvigerina spp. 3.609 -1.082 

14H 4W 140-142 123.3 134.62 3738 Cibicides spp. 2.721 -0.103 

14H 5W 0-2 123.40 134.72 3741 Uvigerina spp. 3.757 -1.064 

14H 5W 0-2 123.40 134.72 3741 Cibicides spp. 2.999 0.092 

14H 5W 0-2 123.40 134.72 3741 Cibicides spp. 2.924 0.017 

14H 5W 10-12 123.50 134.82 3744 Uvigerina spp. 3.478 -0.916 

14H 5W 10-12 123.50 134.82 3744 Cibicides spp. 2.929 -0.240 

14H 5W 20-22 123.60 134.92 3747 Uvigerina spp. 3.302 -0.714 

14H 5W 20-22 123.60 134.92 3747 Uvigerina spp. 3.470 -0.830 
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14H 5W 30-32 123.70 135.02 3750 Uvigerina spp. 3.170 -0.101 

14H 5W 30-32 123.70 135.02 3750 Cibicides spp. 2.646 0.589 

14H 5W 40-42 123.80 135.12 3752 Uvigerina spp. 2.921 -0.389 

14H 5W 40-42 123.80 135.12 3752 Cibicides spp. 2.849 -0.043 

14H 5W 50-52 123.90 135.22 3755 Uvigerina spp. 3.152 -0.111 

14H 5W 60-62 124.00 135.32 3758 Cibicides spp. 2.788 0.664 

14H 5W 70-72 124.10 135.42 3761 Uvigerina spp. 3.462 -0.357 

14H 5W 70-72 124.10 135.42 3761 Uvigerina spp. 3.341 -0.433 

14H 5W 80-82 124.20 135.52 3764 Uvigerina spp. 3.357 -0.306 

14H 5W 80-82 124.20 135.52 3764 Cibicides spp. 2.644 0.635 

14H 5W 90-92 124.30 135.62 3766 Uvigerina spp. 3.387 -0.253 

14H 5W 90-92 124.30 135.62 3766 Cibicides spp. 2.419 0.344 

14H 5W 90-92 124.3 135.62 3766 Cibicides spp. 2.575 0.260 

14H 5W 100-102 124.40 135.72 3769 Uvigerina spp. 3.154 -0.504 

14H 5W 110-112 124.50 135.82 3772 Uvigerina spp. 3.194 -1.125 

14H 5W 110-112 124.50 135.82 3772 Cibicides spp. 2.460 0.287 

14H 5W 120-122 124.60 135.92 3775 Uvigerina spp. 3.390 -0.873 

14H 5W 130-132 124.70 136.02 3778 Uvigerina spp. 3.534 -0.934 

14H 5W 130-132 124.70 136.02 3778 Uvigerina spp. 3.585 -0.998 

14H 5W 130-132 124.70 136.02 3778 Cibicides spp. 2.616 0.116 

14H 5W 140-142 124.80 136.12 3780 Uvigerina spp. 3.606 -0.714 

14H 6W 0-2 124.90 136.22 3783 Uvigerina spp. 3.630 -1.027 

14H 6W 0-2 124.90 136.22 3783 Cibicides spp. 2.959 0.093 

14H 6W 10-12 125.00 136.32 3786 Uvigerina spp. 3.441 -0.690 

14H 6W 10-12 125.00 136.32 3786 Cibicides spp. 2.898 0.027 

14H 6W 20-22 125.10 136.42 3789 Uvigerina spp. 3.278 -0.571 

14H 6W 20-22 125.10 136.42 3789 Uvigerina spp. 3.038 -0.761 

14H 6W 30-32 125.20 136.52 3792 Uvigerina spp. 3.168 -0.649 

14H 6W 30-32 125.20 136.52 3792 Cibicides spp. 2.420 0.439 

14H 6W 40-42 125.30 136.62 3794 Uvigerina spp. 3.293 -0.479 

14H 6W 50-52 125.40 136.72 3797 Uvigerina spp. 3.366 -0.407 

14H 6W 50-52 125.40 136.72 3797 Cibicides spp. 2.384 0.215 

14H 6W 60-62 125.50 136.82 3800 Uvigerina spp. 3.231 -0.437 

14H 6W 60-62 125.50 136.82 3800 Cibicides spp. 2.403 0.488 

14H 6W 70-72 125.60 136.92 3803 Uvigerina spp. 3.324 -0.543 

14H 6W 70-72 125.60 136.92 3803 Cibicides spp. 2.693 0.568 

14H 6W 80-82 125.70 137.02 3806 Uvigerina spp. 3.413 -0.546 

14H 6W 90-92 125.80 137.12 3808 Uvigerina spp. 3.501 -0.709 

14H 6W 100-102 125.90 137.22 3811 Uvigerina spp. 3.548 -0.879 

14H 6W 100-102 125.90 137.22 3811 Cibicides spp. 2.761 0.297 

14H 6W 110-112 126.00 137.32 3814 Uvigerina spp. 3.489 -0.906 

14H 6W 120-122 126.10 137.42 3817 Uvigerina spp. 3.391 -0.931 

14H 6W 130-132 126.20 137.52 3820 Cibicides spp. 2.844 0.344 

14H 6W 140-142 126.30 137.62 3822 Uvigerina spp. 3.320 -0.728 

14H 7W 0-2 126.40 137.72 3825 Uvigerina spp. 3.455 -0.971 

14H 7W 0-2 126.4 137.72 3825 Cibicides spp. 2.796 0.377 

14H 7W 10-12 126.50 137.82 3828 Uvigerina spp. 3.628 -0.903 

14H 7W 20-22 126.60 137.92 3831 Uvigerina spp. 3.279 -0.456 

14H 7W 20-22 126.60 137.92 3831 Uvigerina spp. 3.166 -0.599 

14H 7W 20-22 126.60 137.92 3831 Uvigerina spp. 3.005 -0.804 

14H 7W 20-22 126.60 137.92 3831 Cibicides spp. 2.424 0.456 

14H 7W 30-32 126.70 138.02 3834 Uvigerina spp. 3.390 -0.709 

14H 7W 30-32 126.70 138.02 3834 Cibicides spp. 2.722 0.458 

14H 7W 40-42 126.80 139.4 3872 Uvigerina spp. 2.986 -0.367 
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15H 1W 0-2 126.90 139.5 3875 Uvigerina spp. 3.053 -0.531 

15H 1W 10-12 127.00 139.6 3878 Uvigerina spp. 3.225 -0.765 

15H 1W 20-22 127.10 139.7 3881 Uvigerina spp. 3.307 -0.792 

15H 1W 30-32 127.20 139.8 3884 Uvigerina spp. 3.353 -0.383 

15H 1W 30-32 127.20 139.8 3884 Cibicides spp. 2.828 0.375 

15H 1W 40-42 127.30 139.9 3886 Uvigerina spp. 3.212 -0.822 

15H 1W 40-42 127.30 139.9 3886 Cibicides spp. 2.693 0.206 

15H 1W 50-52 127.40 140 3889 Uvigerina spp. 3.062 -0.950 

15H 1W 60-62 127.50 140.1 3892 Uvigerina spp. 3.126 -0.945 

15H 1W 60-62 127.50 140.1 3892 Cibicides spp. 2.422 0.081 

15H 1W 70-72 127.60 140.2 3895 Uvigerina spp. 3.094 -0.952 

15H 1W 80-82 127.70 140.3 3898 Uvigerina spp. 3.604 -1.134 

15H 1W 80-82 127.70 140.3 3898 Cibicides spp. 2.405 0.038 

15H 1W 90-92 127.80 140.4 3900 Uvigerina spp. 3.539 -0.880 

15H 1W 100-102 127.90 140.5 3903 Uvigerina spp. 3.240 -0.520 

15H 1W 110-112 128.00 140.6 3906 Uvigerina spp. 3.239 -0.555 

15H 1W 120-122 128.10 140.7 3909 Uvigerina spp. 3.205 -0.497 

15H 1W 120-122 128.10 140.7 3909 Cibicides spp. 2.670 0.404 

15H 1W 130-132 128.20 140.8 3912 Uvigerina spp. 2.937 -0.699 

15H 1W 140-142 128.30 140.9 3914 Uvigerina spp. 3.084 -0.544 

15H 2W 0-2 128.40 141 3917 Uvigerina spp. 3.259 -0.817 

15H 2W 10-12 128.50 141.1 3920 Uvigerina spp. 3.254 -0.913 

15H 2W 20-22 128.60 141.2 3923 Uvigerina spp. 3.071 -0.579 

15H 2W 30-32 128.70 141.3 3926 Uvigerina spp. 3.240 -0.552 

15H 2W 30-32 128.70 141.3 3926 Cibicides spp. 2.450 0.120 

15H 2W 40-42 128.80 141.4 3928 Uvigerina spp. 3.277 -0.888 

15H 2W 40-42 128.80 141.4 3928 Cibicides spp. 2.613 0.315 

15H 2W 50-52 128.90 141.5 3931 Uvigerina spp. 3.241 -1.118 

15H 2W 60-62 129.00 141.6 3934 Uvigerina spp. 3.560 -1.091 

15H 2W 70-72 129.10 141.7 3937 Uvigerina spp. 3.277 -1.113 

15H 2W 70-72 129.10 141.7 3937 Cibicides spp. 3.001 0.202 

15H 2W 80-82 129.20 141.8 3940 Uvigerina spp. 3.556 -0.912 

15H 2W 90-92 129.30 141.9 3942 Uvigerina spp. 3.439 -0.836 

15H 2W 100-102 129.40 142 3945 Uvigerina spp. 3.324 -0.836 

15H 2W 110-112 129.50 142.1 3948 Uvigerina spp. 3.257 -0.898 

15H 2W 110-112 129.50 142.1 3948 Cibicides spp. 2.684 0.358 

15H 2W 120-122 129.60 142.2 3951 Uvigerina spp. 3.205 -0.676 

15H 2W 120-122 129.60 142.2 3951 Cibicides spp. 2.588 0.355 

15H 2W 130-132 129.70 142.3 3954 Uvigerina spp. 3.152 -0.939 

15H 2W 140-142 129.80 142.4 3956 Uvigerina spp. 3.112 -0.771 

15H 2W 140-142 129.80 142.4 3956 Cibicides spp. 2.555 0.416 

15H 3W 0-2 129.90 142.5 3959 Uvigerina spp. 2.988 -0.461 

15H 3W 10-12 130.00 142.6 3962 Uvigerina spp. 3.236 -0.388 

15H 3W 20-22 130.10 142.7 3965 Uvigerina spp. 3.134 -0.523 

15H 3W 20-22 130.10 142.7 3965 Cibicides spp. 2.541 0.547 

15H 3W 30-32 130.20 142.8 3968 Uvigerina spp. 3.309 -0.413 

15H 3W 30-32 130.20 142.8 3968 Cibicides spp. 2.663 0.318 

15H 3W 40-42 130.30 142.9 3970 Uvigerina spp. 2.924 -0.704 

15H 3W 40-42 130.30 142.9 3970 Cibicides spp. 2.575 0.323 

15H 3W 50-52 130.40 143 3973 Uvigerina spp. 3.150 -1.157 

15H 3W 60-62 130.50 143.1 3976 Uvigerina spp. 3.278 -1.098 

15H 3W 70-72 130.60 143.2 3979 Uvigerina spp. 3.131 -1.261 

15H 3W 70-72 130.60 143.2 3979 Cibicides spp. 2.499 0.115 

15H 3W 80-82 130.70 143.3 3982 Uvigerina spp. 3.227 -1.353 
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15H 3W 80-82 130.70 143.3 3982 Cibicides spp. 2.640 0.037 

15H 3W 90-92 130.80 143.4 3984 Uvigerina spp. 3.264 -0.971 

15H 3W 90-92 130.80 143.4 3984 Cibicides spp. 2.725 0.068 

15H 3W 100-102 130.90 143.5 3987 Uvigerina spp. 3.201 -0.767 

15H 3W 110-122 131.00 143.6 3990 Uvigerina spp. 3.056 -0.727 

15H 3W 110-122 131.00 143.6 3990 Cibicides spp. 2.668 0.377 

15H 3W 120-122 131.10 143.7 3993 Uvigerina spp. 3.121 -0.401 

15H 3W 120-122 131.10 143.7 3993 Cibicides spp. 2.686 0.268 

15H 3W 130-132 131.20 143.8 3996 Uvigerina spp. 3.082 -0.836 

15H 3W 130-132 131.20 143.8 3996 Cibicides spp. 2.541 0.171 

15H 3W 140-142 131.30 143.9 3998 Uvigerina spp. 2.969 -0.841 

15H 3W 140-142 131.30 143.9 3998 Cibicides spp. 2.517 0.233 

15H 4W 0-2 131.43 144.03 4002 Uvigerina spp. 3.289 -0.726 

15H 4W 10-12 131.53 144.13 4005 Uvigerina spp. 3.152 -0.722 

15H 4W 20-22 131.63 144.23 4008 Uvigerina spp. 2.865 -0.496 

15H 4W 30-32 131.73 144.33 4010 Uvigerina spp. 2.883 -0.718 

15H 4W 30-32 131.73 144.33 4010 Cibicides spp. 2.792 0.426 

15H 4W 40-42 131.83 144.43 4013 Uvigerina spp. 3.004 -0.535 

15H 4W 50-52 131.93 144.53 4016 Uvigerina spp. 3.343 -0.540 

15H 4W 60-62 132.03 144.63 4019 Uvigerina spp. 3.238 -0.514 

15H 4W 70-72 132.13 144.73 4022 Uvigerina spp. 3.355 -0.487 

15H 4W 70-72 132.13 144.73 4022 Cibicides spp. 2.629 0.437 

15H 4W 80-82 132.23 144.83 4024 Uvigerina spp. 3.236 -0.719 

15H 4W 90-92 132.33 144.93 4027 Uvigerina spp. 2.891 -0.429 

15H 4W 90-92 132.33 144.93 4027 Cibicides spp. 3.047 0.508 

15H 4W 100-102 132.43 145.03 4030 Uvigerina spp. 3.458 -0.439 

15H 4W 110-112 132.53 145.13 4033 Uvigerina spp. 3.251 -0.725 

15H 4W 120-122 132.63 145.23 4036 Uvigerina spp. 3.531 -0.725 

15H 4W 130-132 132.73 145.33 4038 Uvigerina spp. 3.421 -0.455 

15H 4W 130-132 132.73 145.33 4038 Cibicides spp. 2.816 0.316 

15H 4W 140-142 132.83 145.43 4041 Uvigerina spp. 3.399 -0.901 

15H 4W 140-142 132.83 145.43 4041 Cibicides spp. 2.762 0.132 

15H 5W 0-2 132.96 145.56 4045 Uvigerina spp. 3.145 -0.287 

15H 5W 10-12 133.06 145.66 4048 Uvigerina spp. 3.355 -0.379 

15H 5W 20-22 133.16 145.76 4050 Uvigerina spp. 3.142 -0.867 

15H 5W 30-32 133.26 145.86 4053 Uvigerina spp. 3.077 -0.515 

15H 5W 40-42 133.36 145.96 4056 Uvigerina spp. 3.175 -0.501 

15H 5W 50-52 133.46 146.06 4059 Uvigerina spp. 3.175 -0.636 

15H 5W 60-62 133.56 146.16 4062 Uvigerina spp. 2.903 -0.431 

15H 5W 60-62 133.56 146.16 4062 Uvigerina spp. 2.921 -0.633 

15H 5W 70-72 133.66 146.26 4064 Uvigerina spp. 3.528 -0.803 

15H 5W 80-82 133.76 146.36 4067 Uvigerina spp. 3.311 -0.709 

15H 5W 80-82 133.76 146.36 4067 Cibicides spp. 2.714 0.126 

15H 5 90-92 133.86 146.46 4070 Uvigerina spp. 3.382 -0.655 

15H 5W 100-102 133.96 146.56 4073 Uvigerina spp. 3.202 -0.764 

15H 5W 110-112 134.06 146.66 4076 Uvigerina spp. 3.247 -0.516 

15H 5W 120-122 134.16 146.76 4078 Uvigerina spp. 3.026 -0.691 

15H 5W 130-132 134.26 146.86 4081 Uvigerina spp. 3.107 -0.533 

15H 5W 140-142 134.36 146.96 4084 Uvigerina spp. 3.049 -0.464 

15H 5W 140-142 134.36 146.96 4084 Cibicides spp. 2.434 0.338 

15H 6W 0-2 134.46 147.06 4087 Uvigerina spp. 3.087 -0.492 

15H 6W 10-12 134.56 147.16 4090 Uvigerina spp. 3.078 -0.439 

15H 6W 20-22 134.66 147.26 4092 Uvigerina spp. 3.249 -0.562 

15H 6W 30-32 134.76 147.36 4095 Uvigerina spp. 3.229 -0.460 
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15H 6W 40-42 134.86 147.46 4098 Uvigerina spp. 3.157 -0.602 

15H 6W 50-52 134.96 147.56 4101 Uvigerina spp. 3.326 -0.583 

15H 6W 60-62 135.06 147.66 4104 Uvigerina spp. 3.408 -0.951 

15H 6W 70-72 135.16 147.76 4106 Uvigerina spp. 3.406 -1.000 

15H 6W 80-82 135.26 147.86 4109 Uvigerina spp. 3.485 -0.828 

15H 6W 80-82 135.26 147.86 4109 Cibicides spp. 2.620 0.098 

15H 6W 90-92 135.36 147.96 4112 Uvigerina spp. 3.459 -0.874 

15H 6W 100-102 135.46 148.06 4115 Uvigerina spp. 3.068 -0.076 

15H 6W 100-102 135.56 148.16 4118 Uvigerina spp. 3.040 -0.401 

15H 6W 120-122 135.66 148.26 4120 Uvigerina spp. 3.265 -0.156 

15H 6W 130-132 135.76 148.36 4123 Uvigerina spp. 3.424 -0.456 

15H 6W 140-142 135.86 148.46 4126 Uvigerina spp. 3.018 -0.317 

15H 7W 0-2 135.96 148.56 4129 Uvigerina spp. 3.271 -0.523 

15H 7W 10-12 136.06 148.66 4132 Uvigerina spp. 3.321 -0.414 

15H 7W 20-22 136.16 148.76 4135 Uvigerina spp. 3.296 -0.251 

15H 7W 30-32 136.26 148.86 4137 Uvigerina spp. 3.307 -0.188 

15H 7W 40-42 136.36 148.96 4140 Uvigerina spp. 3.186 -0.159 

16H 1W 0-2 136.40 151.14 4216 Uvigerina spp. 3.443 -0.132 

16H 1W 10-12 136.50 151.24 4220 Uvigerina spp. 3.382 -0.386 

16H 1W 10-12 136.50 151.24 4220 Cibicides spp. 2.675 0.391 

16H 1W 20-22 136.60 151.34 4224 Uvigerina spp. 3.373 -0.096 

15H CC 10-12 136.68 151.42 4228 Uvigerina spp. 3.311 -0.285 

16H 1W 30-32 136.70 151.44 4229 Uvigerina spp. 3.278 -0.150 

16H 1W 40-42 136.80 151.54 4233 Uvigerina spp. 3.277 -0.582 

16H 1W 50-52 136.90 151.64 4237 Uvigerina spp. 3.101 -0.391 

16H 1W 50-52 136.90 151.64 4237 Uvigerina spp. 3.202 -0.321 

16H 1W 60-62 137.00 151.74 4242 Uvigerina spp. 3.199 -0.177 

16H 1W 70-72 137.10 151.84 4246 Uvigerina spp. 3.166 -0.145 

16H 1W 80-82 137.20 151.94 4250 Uvigerina spp. 3.268 -0.408 

16H 1W 90-92 137.30 152.04 4255 Uvigerina spp. 3.366 -0.281 

16H 1W 90-92 137.30 152.04 4255 Cibicides spp. 2.487 0.460 

16H 1W 100-102 137.40 152.14 4259 Uvigerina spp. 2.879 -0.274 

16H 1W 110-112 137.50 152.24 4263 Uvigerina spp. 2.953 -0.383 

16H 1W 130-132 137.70 152.44 4272 Uvigerina spp. 3.315 -0.225 

16H 1W 130-132 137.70 152.44 4272 Uvigerina spp. 3.085 -0.118 

16H 1W 140-142 137.80 152.54 4276 Uvigerina spp. 3.368 -0.430 

16H 2W 0-2 137.90 152.64 4281 Uvigerina spp. 3.113 -0.286 

16H 2W 10-12 138.00 152.74 4285 Uvigerina spp. 3.172 -0.483 

16H 2W 20-22 138.10 152.84 4289 Uvigerina spp. 3.174 -0.886 

16H 2W 30-32 138.20 152.94 4293 Uvigerina spp. 3.181 -0.848 

16H 2W 40-42 138.30 153.04 4298 Uvigerina spp. 3.440 -0.755 

16H 2W 50-52 138.40 153.14 4302 Uvigerina spp. 3.306 -0.570 

16H 2W 60-62 138.50 153.24 4306 Uvigerina spp. 3.326 -0.357 

16H 2W 80-82 138.70 153.44 4309 Uvigerina spp. 2.932 -0.897 

16H 2W 90-92 138.80 153.54 4311 Uvigerina spp. 3.051 -0.616 

16H 2W 100-102 138.90 153.64 4313 Uvigerina spp. 3.150 -0.489 

16H 2W 110-112 139.00 153.74 4314 Uvigerina spp. 3.251 -0.824 

16H 2W 120-122 139.10 153.84 4316 Uvigerina spp. 3.349 -0.600 

16H 2W 130-132 139.20 153.94 4318 Uvigerina spp. 3.247 -0.707 

16H 2W 130-132 139.20 153.94 4318 Uvigerina spp. 3.074 -0.287 

16H 2W 140-142 139.30 154.04 4319 Uvigerina spp. 3.236 -0.505 

16H 1W 110-112 139.50 154.24 4322 Uvigerina spp. 3.516 -0.634 

16H 3W 20-22 139.60 154.34 4324 Uvigerina spp. 3.102 -1.050 

16H 3W 30-32 139.70 154.44 4326 Uvigerina spp. 3.570 -0.694 
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16H 3W 40-42 139.80 154.54 4327 Uvigerina spp. 3.593 -0.762 

16H 3W 50-52 139.90 154.64 4329 Uvigerina spp. 3.438 -0.573 

16H 3W 60-62 140.00 154.74 4331 Uvigerina spp. 3.344 -0.292 

16H 3W 70-72 140.10 154.84 4332 Uvigerina spp. 3.108 -0.677 

16H 3W 90-92 140.30 155.04 4335 Uvigerina spp. 3.118 -0.395 

16H 3W 90-92 140.30 155.04 4335 Uvigerina spp. 3.263 -0.525 

16H 3W 100-102 140.40 155.14 4337 Uvigerina spp. 3.216 -0.616 

16H 3W 110-112 140.50 155.24 4339 Uvigerina spp. 3.327 -0.539 

16H 3W 120-122 140.60 155.34 4340 Uvigerina spp. 2.954 -0.547 

16H 3W 140-142 140.80 155.54 4344 Uvigerina spp. 3.211 -0.387 

16H 4W 0-2 140.90 155.64 4345 Uvigerina spp. 3.025 -0.462 

16H 4W 10-12 141.00 155.74 4347 Uvigerina spp. 3.070 -0.407 

16H 4W 20-22 141.10 155.84 4348 Uvigerina spp. 2.976 -0.455 

16H 4W 30-32 141.20 155.94 4350 Uvigerina spp. 3.203 -0.129 

16H 4W 60-62 141.50 156.24 4355 Uvigerina spp. 3.426 -0.539 

16H 4W 70-72 141.60 156.34 4357 Uvigerina spp. 2.978 -0.568 

16H 4W 80-82 141.70 156.44 4358 Uvigerina spp. 3.083 -0.548 

16H 4W 100-102 141.90 156.64 4361 Uvigerina spp. 2.865 -0.504 

16H 4W 110-112 142.00 156.74 4363 Uvigerina spp. 3.075 -0.529 
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ODP Site 1123 frequency percent of grain size analysis 

Core, section, 

interval (cm) 

Depth 

(mbsf) 
rMCD 

Age 

(Ka) 

Clay 

(%) 

(<4μm) 

Silt (%) 

(4-

63μm) 

Silt/Clay 

Sortable 

Silt  

(10-63μm) 

12H 1W 10-12 98.50 108.16 3009 29.89 69.94 2.34 19.36 

12H 1 30-32 98.70 108.36 3014 30.87 68.49 2.22 15.75 

12H 1W 50-52 98.90 108.56 3019 32.98 65.27 1.98 15.35 

12H 1W 90-92 99.30 108.96 3030 34.24 65.10 1.90 15.27 

12H 1W 110-112 99.50 109.16 3036 30.98 67.30 2.17 15.27 

12H 1W 130-132 99.70 109.36 3041 35.35 63.72 1.80 14.61 

12H 2W 0-2 99.90 109.56 3049 31.73 67.44 2.13 16.62 

12H 2W 20-22 100.10 109.76 3063 34.59 63.64 1.84 15.34 

12H 2W 40-42 100.30 109.96 3076 33.92 65.28 1.92 15.31 

12H 2W 60-62 100.50 110.16 3090 34.31 65.39 1.91 14.95 

12H 2W 80-82 100.70 110.36 3104 36.81 61.46 1.67 17.39 

12H 2W 100-102 100.90 110.56 3117 16.94 86.08 5.08 22.02 

12H 2W 120-122 101.10 110.76 3128 20.32 79.53 3.91 17.42 

12H 2W 140-142 101.30 110.96 3131 20.01 79.39 3.97 17.30 

12H 3W 10-12 101.50 111.16 3134 21.31 76.72 3.60 17.42 

12H 3W 30-32 101.70 111.36 3138 22.14 75.64 3.42 17.28 

12H 3W 50-52 101.90 111.56 3141 25.65 74.38 2.90 18.16 

12H 3W 70-72 102.10 111.76 3144 15.84 85.57 5.40 20.31 

12H 3W 90-92 102.30 111.96 3147 17.56 82.08 4.67 18.94 

12H 3W 110-112 102.50 112.16 3150 16.42 85.76 5.22 19.87 

12H 3W 130-132 102.70 112.36 3153 44.03 54.60 1.24 15.87 

12H 4W 0-2 102.90 112.56 3157 36.67 61.85 1.69 15.81 

12H 4W 20-22 103.10 112.76 3160 34.29 65.10 1.90 14.87 

12H 4W 40-42 103.30 112.96 3163 35.10 64.29 1.83 15.18 

12H 4W 60-62 103.50 113.16 3166 35.46 63.93 1.80 14.67 

12H 4W 80-82 103.70 113.36 3169 34.41 65.52 1.90 16.04 

12H 4W 100-102 103.90 113.56 3173 34.17 64.27 1.88 15.91 

12H 4W 110-112 104.00 113.66 3174 30.27 69.08 2.28 16.92 

12H 4W 120-122 104.10 113.76 3176 37.69 60.91 1.62 14.92 

12H 4W 140-142 104.30 113.96 3179 19.08 83.99 4.40 19.63 

12H 5W 10-12 104.50 114.16 3182 32.66 65.45 2.00 14.61 

12H 5W 20-22 104.60 114.26 3184 30.17 69.62 2.31 16.48 

12H 5W 30-32 104.70 114.36 3185 40.04 58.86 1.47 14.77 

12H 5W 40-42 104.80 114.46 3187 31.96 67.00 2.10 15.15 

12H 5W 50-52 104.90 114.56 3189 31.47 67.70 2.15 14.98 

12H 5W 60-62 105.00 114.66 3190 27.42 72.43 2.64 14.94 

12H 5W 70-72 105.10 114.76 3192 28.26 70.22 2.48 15.08 

12H 5W 80-82 105.20 114.86 3193 30.23 68.91 2.28 16.20 

12H 5W 90-92 105.30 114.96 3195 31.82 67.52 2.12 15.50 

12H 5W 100-102 105.40 115.06 3197 37.37 62.20 1.66 14.38 

12H 5W 110-113 105.60 115.26 3200 32.35 66.49 2.06 16.03 

12H 5W 130-132 105.70 115.36 3201 35.17 64.70 1.84 16.10 

12H 5W 140-142 105.80 115.46 3203 20.97 80.17 3.82 14.88 

12H 6W 0-2 105.90 115.56 3205 30.36 67.74 2.23 15.33 

12H 6W 10-12 106.00 115.66 3206 26.30 72.58 2.76 14.02 

12H 6W 30-32 106.20 115.86 3209 30.57 68.27 2.23 14.40 

12H 6W 40-42 106.30 115.96 3212 35.98 62.77 1.74 14.63 

12H 6W 50-52 106.40 116.06 3215 30.62 69.33 2.26 14.72 

12H 6W 60-62 106.50 116.16 3218 33.11 65.92 1.99 15.69 

12H 6W 70-72 106.60 116.26 3221 28.05 71.04 2.53 14.17 
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12H 6W 80-82 106.70 116.36 3224 34.38 64.33 1.87 15.01 

12H 6W 90-92 106.80 116.46 3226 32.01 67.00 2.09 15.57 

12H 6W 110-112 107.00 116.66 3232 28.82 70.52 2.45 15.24 

12H 6W 120-122 107.10 116.76 3235 32.12 65.41 2.04 15.29 

12H 6W 130-132 107.20 116.86 3238 30.34 68.56 2.26 15.36 

12H 6W 140-142 107.30 116.96 3241 30.26 68.40 2.26 15.87 

12H 7W 0-2 107.40 117.06 3244 30.85 67.69 2.19 15.34 

12H 7W 10-12 107.50 117.16 3247 34.10 65.21 1.91 15.46 

12H 7W 20-22 107.60 117.26 3250 28.74 69.28 2.41 15.02 

12H 7W 30-32 107.70 117.36 3253 30.37 68.34 2.25 15.40 

12H 7W 40-42 107.80 117.46 3256 31.30 67.57 2.16 15.02 

13H 1W 0-2 107.90 117.56 3259 30.01 68.66 2.29 15.28 

13H 1W 10-12 108.00 117.66 3262 28.32 71.03 2.51 15.57 

13H 1W 20-22 108.10 117.76 3265 31.34 66.73 2.13 15.15 

13H 1W 30-32 108.20 117.86 3268 28.47 69.03 2.42 15.34 

13H 1W 40-42 108.30 117.96 3271 28.20 70.92 2.51 15.80 

13H 1W 50-52 108.40 118.06 3274 25.36 74.60 2.94 15.67 

13H 1W 60-62 108.50 118.16 3277 29.48 68.69 2.33 15.27 

13H 1W 70-72 108.60 118.26 3280 25.23 72.35 2.87 15.76 

13H 1W 80-82 108.70 118.36 3282 30.13 68.59 2.28 15.47 

13H 1W 90-92 108.80 118.46 3285 28.96 69.89 2.41 15.42 

13H 1W 100-102 108.90 118.56 3288 28.48 70.39 2.47 16.03 

13H 1W 110-112 109.00 118.66 3291 25.35 73.83 2.91 15.06 

13H 1W 120-122 109.10 118.76 3294 27.28 70.61 2.59 16.31 

13H 1W 120-122 109.20 118.86 3297 24.25 74.80 3.09 16.30 

13H 1W 140-142 109.30 118.96 3300 23.36 75.89 3.25 17.24 

13H 2W 0-2 109.40 119.06 3303 24.52 74.32 3.03 16.79 

13H 2W 10-12 109.50 120.82 3353 14.45 87.74 6.07 19.52 

13H 2W 20-22 109.60 119.26 3309 16.38 83.73 5.11 17.44 

13H 2W 30-32 109.70 119.36 3312 31.83 65.95 2.07 15.28 

13H 2W 40-42 109.80 119.46 3315 29.68 69.52 2.34 15.46 

13H 2W 50-52 109.90 119.56 3318 33.22 65.82 1.98 14.67 

13H 2W 50-52 110.00 119.66 3321 30.09 69.27 2.30 14.23 

13H 2W 70-72 110.10 119.76 3323 31.32 66.56 2.12 15.41 

13H 2W 80-82 110.20 119.86 3326 30.03 69.59 2.32 14.11 

13H 2W 90-92 110.30 119.96 3329 32.53 67.00 2.06 14.68 

13H 2W 100-102 110.40 120.06 3332 25.54 74.57 2.92 14.74 

13H 2W 110-112 110.50 120.16 3335 29.81 69.36 2.33 14.83 

13H 2W 120-122 110.60 120.26 3337 26.25 73.40 2.80 15.00 

13H 2W 130-132 110.70 120.36 3340 28.94 69.95 2.42 14.83 

13H 2W 140-142 110.80 120.46 3343 26.83 72.63 2.71 14.74 

13H 3W 0-2 110.90 120.56 3346 31.95 65.70 2.06 15.21 

13H 3W 10-12 111.00 120.66 3349 30.60 68.72 2.25 14.82 

13H 3W 20-22 111.10 120.76 3351 33.93 65.59 1.93 15.25 

13H 3W 30-32 111.20 120.86 3354 29.51 69.82 2.37 14.71 

13H 3W 40-42 111.30 120.96 3357 33.51 65.75 1.96 15.80 

13H 3W 50 -52 111.40 121.28 3366 26.61 72.45 2.72 15.98 

13H 3W 60-62 111.50 121.38 3369 24.93 73.67 2.96 15.83 

13H 3W 80-82 111.70 121.58 3374 29.56 70.54 2.39 15.42 

13H 3W 90-92 111.80 121.68 3377 28.91 69.48 2.40 16.07 

13H 3W 100-102 111.90 121.78 3380 26.50 75.00 2.83 20.46 

13H 3W 110-112 112.00 121.88 3383 23.06 74.51 3.23 16.52 

13H 3W 120-122 112.10 121.98 3385 10.95 86.41 7.89 23.83 

13H 3W 130-132 112.20 122.08 3388 25.27 73.50 2.91 16.56 
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13H 3W 140-142 112.30 122.18 3391 24.88 74.50 2.99 16.02 

13H 4W 0-2 112.40 122.28 3394 27.74 73.10 2.64 15.51 

13H 4W 10-12 112.50 122.38 3396 26.11 72.63 2.78 16.10 

13H 4W 20-22 112.60 122.48 3399 26.92 72.55 2.69 14.97 

13H 4W 30-32 112.70 122.58 3402 27.09 72.67 2.68 16.14 

13H 4W 40-42 112.80 122.68 3405 27.54 71.56 2.60 15.50 

13H 4W 50-52 112.90 122.78 3408 26.91 72.38 2.69 15.34 

13H 4W 60-62 113.00 122.88 3410 25.86 72.31 2.80 17.35 

13H 4W 70-72 113.10 122.98 3413 34.21 64.76 1.89 15.09 

13H 4W 80-82 113.20 123.08 3416 25.54 72.95 2.86 15.73 

13H 4W 90-92 113.30 123.18 3419 38.35 59.80 1.56 14.84 

13H 4W 100-102 113.40 123.28 3422 24.31 73.33 3.02 17.18 

13H 4W 110-112 113.50 123.38 3424 26.67 71.84 2.69 16.58 

13H 4W 120-122 113.60 123.48 3427 26.48 73.13 2.76 15.19 

13H 4W 130-132 113.70 123.58 3430 30.89 67.52 2.19 15.35 

13H 4W 140-142 113.80 123.68 3433 23.10 76.13 3.30 17.35 

13H 5W 0-2 113.90 123.78 3436 32.07 67.55 2.11 15.45 

13H 5W 10-12 114.00 123.88 3438 26.80 73.05 2.73 17.96 

13H 5W 20-22 114.10 123.98 3441 27.79 70.03 2.52 16.57 

13H 5W 30-32 114.20 124.08 3444 23.29 75.20 3.23 16.10 

13H 5W 40-42 114.30 124.18 3447 28.52 71.15 2.49 15.39 

13H 5W 60-62 114.50 124.38 3452 26.63 72.30 2.72 15.29 

13H 5W 70-72 114.60 124.48 3455 23.34 76.91 3.30 15.59 

13H 5W 80-82 114.70 124.58 3458 27.58 71.82 2.60 15.25 

13H 5W 90-92 114.80 124.68 3461 29.92 68.72 2.30 14.82 

13H 5W 110-112 115.00 124.88 3466 26.51 71.37 2.69 15.47 

13H 5W 120-122 115.10 124.98 3469 31.63 67.24 2.13 15.29 

13H 5W 130-132 115.20 125.08 3472 26.97 71.95 2.67 15.88 

13H 5W 140-142 115.30 125.18 3475 26.88 71.88 2.67 15.35 

13H 6W 0-2 115.40 125.28 3477 24.64 75.15 3.05 14.95 

13H 6W 10-12 115.50 125.38 3480 29.05 69.88 2.41 15.12 

13H 6W 20-22 115.60 125.48 3483 27.30 72.13 2.64 14.86 

13H 6W 30-32 115.70 125.58 3486 30.11 68.59 2.28 14.96 

13H 6W 40-42 115.80 125.68 3488 29.61 69.23 2.34 14.69 

13H 6W 60-62 116.00 125.88 3494 27.79 70.95 2.55 15.43 

13H 6W 70-72 116.10 125.98 3497 34.11 63.82 1.87 17.05 

13H 6W 80-82 116.20 126.08 3500 18.56 82.75 4.46 22.33 

13H 6W 90-92 116.30 126.18 3502 30.58 68.07 2.23 15.06 

13H 6W 100-102 116.40 126.28 3505 28.07 71.08 2.53 14.28 

13H 6W 110-112 116.50 126.38 3508 25.92 73.12 2.82 15.42 

13H 6W 120-122 116.60 126.48 3511 28.14 70.62 2.51 15.56 

13H 6W 130-132 116.70 126.58 3514 31.76 67.42 2.12 15.32 

13H 6W 140-142 116.80 126.68 3516 27.83 71.97 2.59 15.15 

13H 7W 0-2 116.90 126.78 3519 33.16 64.96 1.96 14.28 

13H 7W 10-12 117.00 126.88 3522 32.05 67.38 2.10 14.01 

13H 7W 20-22 117.10 126.98 3525 39.43 59.61 1.51 14.16 

13H 7W 30-32 117.20 127.08 3528 35.38 63.88 1.81 14.06 

13H 7W 40-42 117.30 127.18 3530 36.84 62.60 1.70 15.28 

14H 1W 0-2 117.40 127.28 3533 28.39 71.15 2.51 14.91 

13H 7W 50-52 117.40 127.28 3533 33.93 65.22 1.92 15.50 

13H 7W 60-62 117.50 127.38 3536 28.57 70.39 2.46 14.68 

14H IW 10-12 117.50 127.38 3536 35.81 62.99 1.76 14.31 

14H 1W 20-22 117.60 127.48 3539 36.71 62.32 1.70 14.74 

14H 1W 30-32 117.70 127.58 3541 33.13 66.54 2.01 14.54 
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14H 1W 40-42 117.80 127.68 3544 30.33 68.37 2.25 15.17 

14H 1W 50-52 117.90 127.78 3547 28.81 69.91 2.43 15.68 

14H 1W 60-62 118.00 127.88 3550 31.21 68.34 2.19 17.36 

14H 1W 70-72 118.10 127.98 3553 16.99 82.35 4.85 22.03 

14H 1W 80-82 118.20 128.08 3555 27.31 70.68 2.59 16.29 

14H 1W 90-92 118.30 128.18 3558 29.39 67.01 2.28 17.52 

14H 1W 100-102 118.40 128.28 3561 32.65 66.27 2.03 14.10 

14H 1W 110-112 118.50 128.38 3564 37.22 62.00 1.67 14.85 

14H 1W 120-122 118.60 128.48 3567 31.40 67.78 2.16 14.69 

14H 1W 130-132 118.70 128.58 3569 33.72 65.90 1.95 14.69 

14H 1W 140-142 118.80 128.68 3572 28.97 69.77 2.41 15.13 

14H 2W 0-2 118.90 128.78 3575 23.32 74.22 3.18 22.21 

14H 2W 10-12 119.00 128.88 3578 30.77 67.32 2.19 15.16 

14H 2W 20-22 119.10 128.98 3580 37.25 60.96 1.64 15.02 

14H 2W 30-32 119.20 129.08 3583 32.86 66.73 2.03 14.26 

14H 2W 40-42 119.30 129.18 3586 33.83 65.40 1.93 14.35 

14H 2W 50-52 119.40 129.28 3589 28.83 70.37 2.44 14.45 

14H 2W 60-62 119.50 129.38 3592 34.77 65.65 1.89 14.55 

14H 2W 70-72 119.60 129.48 3594 29.93 69.27 2.31 14.53 

14H 2W 80-82 119.70 129.58 3597 35.77 63.96 1.79 15.05 

14H 2W 90-92 119.80 129.68 3600 30.69 68.27 2.22 15.21 

14H 2W 100-102 119.90 129.78 3603 34.00 65.37 1.92 14.83 

14H 2W 110-112 120.00 129.88 3606 24.54 74.56 3.04 16.40 

14H 2W 120-122 120.10 129.98 3608 33.75 65.88 1.95 14.75 

14H 2W 130-132 120.20 130.08 3611 31.63 66.76 2.11 14.22 

14H 2W 1340-

142 
120.30 130.18 3614 34.86 64.57 1.85 14.47 

14H 3W 0-2 120.40 130.28 3617 31.77 67.51 2.13 14.27 

14H 3W 10-12 120.50 130.38 3620 35.94 63.58 1.77 14.25 

14H 3W 20-22 120.60 130.48 3622 29.91 69.19 2.31 14.30 

14H 3W 30-32 120.70 130.58 3625 31.82 67.87 2.13 14.27 

14H 3W 40-42 120.80 130.68 3628 32.26 66.30 2.05 13.92 

14H 3W 50-52 120.90 130.78 3631 37.57 61.94 1.65 13.94 

14H 3W 60-62 121.00 130.88 3634 32.00 67.23 2.10 14.57 

14H 3W 70-72 121.10 130.98 3636 34.14 65.63 1.92 13.92 

14H 3W 80-82 121.20 131.08 3639 34.70 64.79 1.87 14.54 

14H 3W 100-102 121.40 131.28 3645 32.20 67.77 2.10 14.38 

14H 3W 110-112 121.50 131.38 3648 35.33 64.22 1.82 14.66 

14H 3W 120-122 121.60 131.48 3650 28.39 68.30 2.41 15.84 

14H 3W 140-142 121.80 131.68 3656 20.49 80.38 3.92 24.63 

14H 4W 0-2 121.90 131.78 3659 35.13 63.49 1.81 15.56 

14H 4W 10-12 122.00 131.88 3662 30.28 68.30 2.26 14.41 

14H 4W 20-22 122.10 131.98 3664 39.40 60.08 1.53 14.33 

14H 4W 30-32 122.20 132.08 3667 33.16 65.90 1.99 14.71 

14H 4W 50-52 122.40 132.28 3673 35.28 64.17 1.82 14.67 

14H 4W 60-62 122.50 132.38 3676 32.51 67.27 2.07 14.54 

14H 4W 70-72 122.60 132.48 3678 27.52 72.61 2.64 14.40 

14H 4W 80-82 122.70 132.58 3681 28.09 71.32 2.54 15.03 

14H 4W 90-92 122.80 132.68 3684 35.31 64.29 1.82 13.86 

14H 4W 100-102 122.90 132.78 3687 35.02 63.91 1.82 14.36 

14H 4W 120-122 123.10 132.98 3692 35.02 63.85 1.82 14.69 

14H 4W 130-132 123.20 133.08 3695 35.63 62.67 1.76 14.87 

14H 4W 140-142 123.30 133.18 3698 32.93 64.72 1.97 16.22 

14H 5W 0-2 123.40 133.28 3701 37.66 61.18 1.62 15.52 
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14H 5W 10-12 123.50 133.38 3704 30.00 66.99 2.23 18.79 

14H 5W 20-22 123.60 133.48 3706 29.65 67.43 2.27 17.40 

14H 5W 30-32 123.70 133.58 3709 28.66 70.60 2.46 16.41 

14H 5W 40-42 123.80 133.68 3712 32.12 65.94 2.05 15.27 

14H 5W 50-52 123.90 133.78 3715 8.64 86.49 10.01 22.95 

14H 5W 60-62 124.00 133.88 3718 13.14 85.68 6.52 23.03 

14H 5W 70-72 124.10 133.98 3720 36.79 62.47 1.70 14.22 

14H 5W 80-82 124.20 134.08 3723 33.48 64.85 1.94 15.81 

14H 5W 90-92 124.30 134.18 3726 30.91 67.39 2.18 14.90 

14H 5W 100-102 124.40 134.28 3729 34.98 64.37 1.84 14.93 

14H 5W 110-112 124.50 134.38 3732 32.14 66.29 2.06 14.68 

14H 5W 120-122 124.60 134.48 3735 35.15 63.95 1.82 15.16 

14H 5W 130-132 124.70 134.58 3737 34.34 64.79 1.89 15.37 

14H 5W 140-142 124.80 134.68 3740 31.91 66.74 2.09 19.53 

14H 6W 0-2 124.90 134.78 3743 34.78 65.59 1.89 17.49 

14H 6W 10-12 125.00 134.88 3746 36.25 63.05 1.74 15.57 

14H 6W 20-22 125.10 134.98 3749 26.06 74.92 2.87 23.10 

14H 6W 30-32 125.20 135.08 3751 29.12 66.95 2.30 17.42 

14H 6W 40-42 125.30 135.18 3754 34.20 65.01 1.90 14.42 

14H 6W 50-52 125.40 135.28 3757 38.39 60.39 1.57 15.22 

14H 6W 60-62 125.50 135.38 3760 35.05 63.44 1.81 14.31 

14H 6W 70-72 125.60 135.48 3763 38.06 60.83 1.60 14.21 

14H 6W 80-82 125.70 135.58 3765 22.93 80.53 3.51 21.18 

14H 6W 90-92 125.80 135.68 3768 33.40 65.98 1.98 14.59 

14H 6W 100-102 125.90 135.78 3771 32.31 67.02 2.07 15.84 

14H 6W 110-112 126.00 135.88 3774 31.26 67.14 2.15 14.99 

14H 6W 120-122 126.10 135.98 3777 34.90 64.08 1.84 14.85 

14H 6W 130-132 126.20 136.08 3779 36.56 62.56 1.71 14.90 

14H 6W 140-142 126.30 136.18 3782 38.77 60.12 1.55 14.58 

14H 7W 0-2 126.40 136.28 3785 37.11 61.49 1.66 14.97 

14H 7W 10-12 126.50 136.38 3788 35.79 63.10 1.76 14.83 

14H 7W 20-22 126.60 136.48 3791 36.84 61.48 1.67 15.11 

14H 7W 30-32 126.70 136.58 3793 35.66 64.24 1.80 14.64 

14H 7W 40-42 126.80 136.68 3796 31.43 62.97 2.00 15.23 

15H 1W 0-2 126.90 136.78 3799 31.11 68.45 2.20 14.40 

15H 1W 10-12 127.00 138.32 3842 43.20 55.26 1.28 14.91 

15H 1W 20-22 127.10 136.98 3805 38.22 60.56 1.58 14.16 

15H 1W 30-32 127.20 137.08 3807 35.55 62.83 1.77 15.11 

15H 1W 40-42 127.30 137.18 3810 28.24 70.86 2.51 13.93 

15H 1W 50-52 127.40 137.28 3813 32.79 65.60 2.00 14.58 

15H 1W 60-62 127.50 137.38 3816 33.63 65.82 1.96 14.77 

15H 1W 70-72 127.60 137.48 3819 32.74 67.00 2.05 14.70 

15H 1W 80-82 127.70 139.02 3862 32.53 66.94 2.06 13.86 

15H 1W 90-92 127.80 137.68 3824 38.60 59.99 1.55 15.42 

15H 1W 100-102 127.90 137.78 3827 31.21 67.43 2.16 13.39 

15H 1W 110-112 128.00 137.88 3830 35.05 62.16 1.77 14.98 

15H 1W 120-122 128.10 139.42 3873 31.72 66.08 2.08 18.32 

15H 1W 130-132 128.20 139.52 3876 35.07 63.94 1.82 14.64 

15H 1W 140-142 128.30 138.18 3838 19.85 82.14 4.14 22.65 

15H 2W 0-2 128.40 138.28 3841 37.14 62.46 1.68 14.53 

15H 2W 10-12 128.50 139.82 3884 36.35 62.13 1.71 14.72 

15H 2W 20-22 128.60 139.92 3887 37.09 61.52 1.66 14.66 

15H 2W 40-42 128.80 140.12 3892 28.18 70.82 2.51 15.09 

15H 2W 50-52 128.90 140.22 3895 29.68 69.81 2.35 15.42 
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15H 2W 70-72 129.10 140.42 3901 34.67 64.58 1.86 14.24 

15H 2W 80-82 129.20 140.52 3904 37.20 62.06 1.67 13.98 

15H 2W 90-92 129.30 140.62 3906 35.35 63.28 1.79 14.99 

15H 2W 100-102 129.40 140.72 3909 33.53 64.67 1.93 14.85 

15H 2W 110-112 129.50 140.82 3912 34.16 63.44 1.86 14.64 

15H 2W 120-122 129.60 140.92 3915 31.39 66.74 2.13 14.87 

15H 2W 130-132 129.70 141.02 3918 33.58 65.24 1.94 15.04 

15H 2W 140-142 129.80 141.12 3920 32.36 66.21 2.05 14.90 

15H 3W 0-2 129.90 141.22 3923 31.05 67.82 2.18 14.84 

15H 3W 10-12 130.00 141.32 3926 33.24 66.25 1.99 14.94 

15H 3W 20-22 130.10 141.42 3929 40.59 58.03 1.43 13.73 

15H 3W 30-32 130.20 141.52 3932 36.55 61.79 1.69 15.85 

15H 3W 40-42 130.30 141.62 3935 33.78 65.17 1.93 18.73 

15H 3W 50-52 130.40 141.72 3937 33.22 65.51 1.97 16.66 

15H 3W 60-62 130.50 141.82 3940 33.50 64.03 1.91 17.60 

15H 3W 70-72 130.60 141.92 3943 31.43 67.40 2.14 15.59 

15H 3W 80-82 130.70 142.02 3946 34.81 64.36 1.85 15.27 

15H 3W 90-92 130.80 142.12 3949 33.67 65.47 1.94 17.41 

15H 3W 100-102 130.90 142.22 3951 36.50 61.94 1.70 15.50 

15H 3W 110-122 131.00 142.32 3954 24.39 74.30 3.05 18.87 

15H 3W 120-122 131.10 142.42 3957 28.87 72.62 2.52 22.04 

15H 3W 130-132 131.20 142.52 3960 21.56 77.28 3.58 19.69 

15H 3W 140-142 131.30 142.62 3963 31.99 66.22 2.07 15.25 

15H 4W 0-2 131.43 142.75 3966 24.36 75.52 3.10 22.95 

15H 4W 10-12 131.53 142.85 3969 35.67 63.48 1.78 14.45 

15H 4W 20-22 131.63 142.95 3972 29.42 68.50 2.33 16.20 

15H 4W 30-32 131.73 143.05 3975 30.88 68.03 2.20 14.53 

15H 4W 40-42 131.83 143.15 3977 32.80 66.26 2.02 14.65 

15H 4W 50-52 131.93 143.25 3980 32.92 66.26 2.01 14.39 

15H 4W 60-62 132.03 143.35 3983 34.97 63.52 1.82 14.07 

15H 4W 70-72 132.13 143.45 3986 30.83 67.64 2.19 15.60 

15H 4W 80-82 132.23 143.55 3989 18.00 82.22 4.57 21.55 

15H 4W 90-92 132.33 143.65 3991 27.77 70.66 2.54 15.29 

15H 4W 100-102 132.43 143.75 3994 29.53 70.59 2.39 15.09 

15H 4W 110-112 132.53 143.85 3997 28.49 69.55 2.44 15.27 

15H 4W 120-122 132.63 143.95 4000 32.08 66.70 2.08 15.55 

15H 4W 130-132 132.73 144.05 4003 28.01 69.73 2.49 15.88 

15H 4W 140-142 132.83 144.15 4005 25.93 72.90 2.81 18.88 

15H 5W 0-2 132.96 144.28 4009 27.19 71.19 2.62 18.82 

15H 5W 10-12 133.06 144.38 4012 27.11 71.70 2.64 16.55 

15H 5W 20-22 133.16 144.48 4015 27.06 71.65 2.65 15.59 

15H 5W 30-32 133.26 144.58 4017 10.91 86.62 7.94 22.57 

15H 5W 40-42 133.36 144.68 4020 23.31 77.17 3.31 19.45 

15H 5W 50-52 133.46 144.78 4023 13.71 86.14 6.28 22.75 

15H 5W 60-62 133.56 144.88 4026 28.88 70.75 2.45 15.72 

15H 5W 70-72 133.66 144.98 4029 32.01 66.80 2.09 14.94 

15H 5W 80-82 133.76 145.08 4031 38.83 60.89 1.57 13.44 

15H 5 90-92 133.86 145.18 4034 33.66 65.19 1.94 14.43 

15H 5W 100-102 133.96 145.28 4037 34.16 65.05 1.90 14.48 

15H 5W 110-112 134.06 145.38 4040 29.54 69.84 2.36 15.00 

15H 5W 120-122 134.16 145.48 4043 31.87 66.76 2.09 15.23 

15H 5W 130-132 134.26 145.58 4045 29.89 69.70 2.33 15.43 

15H 5W 140-142 134.36 145.68 4048 29.74 69.34 2.33 14.71 

15H 6W 0-2 134.46 145.78 4051 29.91 69.36 2.32 14.65 
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15H 6W 10-12 134.56 145.88 4054 34.61 63.70 1.84 14.60 

15H 6W 20-22 134.66 145.98 4057 32.34 66.36 2.05 16.39 

15H 6W 30-32 134.76 146.08 4059 33.14 65.98 1.99 15.82 

15H 6W 40-42 134.86 146.18 4062 37.55 60.50 1.61 15.77 

15H 6W 50-52 134.96 146.28 4065 33.46 65.34 1.95 14.57 

15H 6W 60-62 135.06 146.38 4068 32.01 66.62 2.08 15.55 

15H 6W 70-72 135.16 146.48 4071 34.21 65.13 1.90 14.66 

15H 6W 90-92 135.36 146.68 4076 34.81 63.79 1.83 15.26 

15H 6W 100-102 135.46 146.78 4079 32.70 66.44 2.03 15.26 

15H 6W 100-102 135.56 146.88 4082 28.32 67.66 2.39 17.55 

15H 6W 120-122 135.66 146.98 4085 20.08 77.32 3.85 23.70 

15H 6W 130-132 135.76 147.08 4087 26.30 73.54 2.80 20.12 

15H 6W 140-142 135.86 147.18 4090 31.40 67.48 2.15 15.50 

15H 7W 0-2 135.96 147.28 4093 31.90 67.10 2.10 14.92 

15H 7W 10-12 136.06 147.38 4096 31.51 67.67 2.15 14.95 

15H 7W 20-22 136.16 147.48 4099 25.64 71.32 2.78 17.07 

15H 7W 30-32 136.26 147.58 4101 30.65 68.36 2.23 14.84 

15H 7W 40-42 136.36 147.68 4104 30.25 69.23 2.29 15.13 

16H 1W 0-2 136.40 147.72 4105 30.13 68.68 2.28 14.95 

16H 1W 10-12 136.50 147.82 4108 36.13 62.28 1.72 14.53 

16H 1W 20-22 136.60 147.92 4111 31.76 67.68 2.13 14.47 

15H CC 10-12 136.68 148 4113 31.44 67.26 2.14 14.73 

16H 1W 30-32 136.70 148.02 4114 35.41 63.36 1.79 14.92 

16H 1W 40-42 136.80 148.12 4117 35.76 63.47 1.77 14.60 

16H 1W 50-52 136.90 148.22 4119 34.51 64.20 1.86 14.52 

16H 1W 60-62 137.00 148.32 4122 35.28 63.48 1.80 14.03 

16H 1W 70-72 137.10 148.42 4125 33.24 65.75 1.98 15.06 

16H 1W 80-82 137.20 148.52 4128 32.61 65.70 2.01 15.15 

16H 1W 100-102 137.40 148.72 4133 31.77 67.61 2.13 14.80 

16H 1W 110-112 137.50 148.82 4136 32.68 66.20 2.03 14.99 

16H 1W 120-122 137.60 148.92 4139 36.36 63.18 1.74 13.92 

16H 1W 130-132 137.70 149.02 4142 32.81 64.82 1.98 15.28 

16H 1W 140-142 137.80 149.12 4145 33.13 66.34 2.00 14.74 

16H 2W 0-2 137.90 149.22 4147 24.84 73.15 2.94 18.92 

16H 2W 10-12 138.00 150.6 4193 30.24 68.93 2.28 14.77 

16H 2W 20-22 138.10 149.42 4153 29.34 69.36 2.36 15.51 

16H 2W 30-32 138.20 149.52 4156 30.38 68.59 2.26 14.24 

16H 2W 40-42 138.30 149.62 4159 33.84 65.10 1.92 15.34 

16H 2W 50-52 138.40 149.72 4161 32.87 66.65 2.03 14.83 

16H 2W 60-62 138.50 149.82 4164 29.89 70.03 2.34 14.67 

16H 2W 70-72 138.60 149.92 4167 29.20 70.06 2.40 14.58 

16H 2W 80-82 138.70 150.02 4170 30.25 68.78 2.27 14.84 

16H 2W 90-92 138.80 150.12 4173 29.41 68.75 2.34 15.20 

16H 2W 100-102 138.90 150.22 4176 27.61 72.52 2.63 15.32 

16H 2W 110-112 139.00 150.32 4180 31.62 67.45 2.13 14.73 

16H 2W 120-122 139.10 150.42 4185 31.05 68.32 2.20 15.16 

16H 2W 130-132 139.20 150.52 4189 27.39 72.19 2.64 14.91 

16H 2W 140-142 139.30 150.62 4193 27.15 72.80 2.68 15.23 

16H 3W 0-2 139.40 150.72 4198 28.20 69.96 2.48 14.59 

16H 3W 20-22 139.60 150.92 4206 34.43 65.21 1.89 14.49 

16H 3W 30-32 139.70 151.02 4211 37.17 61.93 1.67 14.02 

16H 3W 40-42 139.80 151.12 4215 36.23 63.68 1.76 14.18 

16H 3W 50-52 139.90 151.22 4219 32.43 66.74 2.06 14.59 

16H 3W 60-62 140.00 151.32 4224 29.75 69.09 2.32 15.31 
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16H 3W 70-72 140.10 151.42 4228 30.11 69.08 2.29 14.52 

16H 3W 80-82 140.20 151.52 4232 31.80 67.05 2.11 14.47 

16H 3W 90-92 140.30 151.62 4237 29.48 69.37 2.35 15.09 

16H 3W 100-102 140.40 151.72 4241 32.83 66.12 2.01 14.45 

16H 3W 110-112 140.50 151.82 4245 36.32 63.04 1.74 14.23 

16H 3W 120-122 140.60 151.92 4249 34.02 66.18 1.95 14.32 

16H 3W 130-132 140.70 152.02 4254 35.66 63.02 1.77 14.04 

16H 3W 140-142 140.80 152.12 4258 32.72 65.73 2.01 14.33 

16H 4W 0-2 140.90 152.22 4262 30.79 67.18 2.18 14.49 

16H 4W 10-12 141.00 152.32 4267 34.96 64.11 1.83 14.40 

16H 4W 20-22 141.10 152.42 4271 31.44 67.47 2.15 14.69 

16H 4W 30-32 141.20 152.52 4275 36.86 62.54 1.70 14.16 

16H 4W 40-42 141.30 152.62 4280 38.42 60.66 1.58 14.11 

16H 4W 50-52 141.40 152.72 4284 33.88 65.38 1.93 14.96 

16H 4W 60-62 141.50 152.82 4288 31.84 67.19 2.11 14.58 

16H 4W 70-72 141.60 152.92 4293 30.95 68.62 2.22 14.59 

16H 4W 80-82 141.70 153.02 4297 31.34 67.95 2.17 14.92 

16H 4W 90-92 141.80 153.12 4301 31.29 68.13 2.18 15.10 

16H 4W 100-102 141.90 153.22 4306 33.29 66.05 1.98 14.41 

16H 4W 110-112 142.00 153.32 4307 32.63 67.19 2.06 14.38 

16H 4W 120-122 142.10 153.42 4309 37.34 61.26 1.64 14.76 

16H 4W 130-132 142.20 153.52 4311 35.65 63.37 1.78 15.19 

16H 4W 140-142 142.30 153.62 4312 33.04 65.75 1.99 15.00 

16H 5W 0-2 142.40 153.72 4314 31.97 67.15 2.10 15.61 

16H 5W 10-12 142.50 153.82 4316 29.31 70.09 2.39 15.49 

16H 5W 20-22 142.60 153.92 4317 28.82 70.46 2.45 15.56 

16H 5W 30-32 142.70 154.02 4319 29.75 68.03 2.29 14.88 

16H 5W 40-42 142.80 154.12 4320 31.48 68.51 2.18 15.31 

16H 5W 50-52 142.90 154.22 4322 37.45 62.24 1.66 14.62 

16H 5W 60-62 143.00 154.32 4324 36.56 62.78 1.72 14.36 

16H 5W 70-72 143.10 154.42 4325 35.16 63.49 1.81 15.21 

16H 5W 80-82 143.20 154.52 4327 32.56 67.03 2.06 15.09 

16H 5W 90-92 143.30 154.62 4329 32.62 66.28 2.03 15.89 

16H 5W 110-112 143.50 154.82 4332 33.65 65.38 1.94 15.33 

16H 5W 120-122 143.60 154.92 4333 29.28 70.03 2.39 15.65 

16H 5W 130-132 143.70 155.02 4335 36.01 62.64 1.74 15.22 

16H 5W 140-142 143.80 155.12 4337 32.63 66.43 2.04 14.26 

16H 6W 0-2 143.90 155.22 4338 36.22 63.29 1.75 14.97 

16H 6W 10-12 144.00 155.32 4340 33.79 65.77 1.95 14.20 

16H 6W 30-32 144.20 155.52 4343 31.94 68.05 2.13 15.22 

16H 6W 40-42 144.30 155.62 4345 29.75 69.08 2.32 15.26 

16H 6W 50-52 144.40 155.72 4346 31.84 67.06 2.11 14.80 

16H 6W 60-62 144.50 155.82 4348 33.33 64.74 1.94 14.87 

16H 6W 70-72 144.60 155.92 4350 32.97 66.90 2.03 14.66 

16H 6W 80-82 144.70 156.02 4351 35.01 63.65 1.82 14.73 

16H 6W 90-92 144.80 156.12 4353 32.32 67.20 2.08 15.24 

16H 6W 100-102 144.90 156.22 4355 33.04 65.86 1.99 15.46 

16H 6W 110-112 145.00 156.32 4356 32.76 66.94 2.04 14.92 

16H 6W 120-122 145.10 156.42 4358 34.07 65.37 1.92 14.99 

16H 6W 130-132 145.20 156.52 4359 31.19 67.70 2.17 15.02 

16H 6W 140-142 145.30 156.62 4361 31.20 67.87 2.18 14.98 

16H 7W 0-2 145.40 158 4383 30.42 67.91 2.23 14.81 

16H 7W 10-12 145.50 158.1 4385 30.89 67.96 2.20 14.63 

16H 7W 20-22 145.60 158.2 4387 31.19 68.49 2.20 14.75 
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16H 7W 30-32 145.70 158.3 4388 30.45 69.27 2.27 16.54 

17H 1W 0-2 145.90 158.5 4392 21.01 78.71 3.75 16.85 

17H 1W 10-12 146.00 158.6 4393 23.22 75.09 3.23 15.47 

17H 1W 20-22 146.10 158.7 4395 24.68 73.90 2.99 15.85 

17H 1W 30-32 146.20 158.8 4396 28.88 69.61 2.41 15.27 

17H 1W 40-42 146.30 158.9 4398 30.02 68.46 2.28 15.49 

17H 1W 50-52 146.40 159 4400 27.05 69.59 2.57 16.22 

17H 1W 60-62 146.50 159.1 4401 21.60 78.27 3.62 19.02 

17H 1W 70-72 146.60 159.2 4403 24.90 74.63 3.00 17.40 

17H 1W 80-82 146.70 159.3 4405 18.52 83.60 4.51 21.36 

17H 1W 90-92 146.80 159.4 4406 23.08 76.53 3.32 20.44 

17H 1W 100-102 146.90 159.5 4408 13.98 85.93 6.15 22.07 

17H 1W 110-112 147.00 159.6 4409 17.85 81.47 4.57 17.95 

17H 1W 120-122 147.10 159.7 4411 18.92 79.47 4.20 17.69 

17H 1W 130-132 147.20 159.8 4413 18.15 80.36 4.43 18.54 

17H 1W 140-142 147.30 159.9 4414 11.66 86.01 7.37 23.66 

17H 2W 0-2 147.40 160 4416 16.86 82.20 4.88 18.54 

17H 2W 10-12 147.50 160.1 4418 18.86 80.36 4.26 18.13 

17H 2W 20-22 147.60 160.2 4419 19.58 82.82 4.23 19.25 

17H 2W 30-32 147.70 160.3 4421 19.34 80.50 4.16 18.72 

17H 2W 40-42 147.80 160.4 4422 20.37 79.22 3.89 17.89 

17H 2W 50-52 147.90 160.5 4424 22.09 75.71 3.43 17.75 

17H 2W 60-62 148.00 160.6 4426 23.89 75.14 3.15 16.67 

17H 2W 70-72 148.10 160.7 4427 22.65 75.69 3.34 16.99 

17H 2W 80-82 148.20 160.8 4429 14.54 91.53 6.30 21.03 

17H 2W 90-92 148.30 160.9 4431 15.70 84.78 5.40 20.24 

17H 2W 100-102 148.40 161 4432 17.04 85.15 5.00 21.00 

17H 2W 110-112 148.50 161.1 4434 17.66 82.41 4.67 19.16 

17H 2W 120-122 148.60 161.2 4435 14.79 85.77 5.80 19.61 

17H 2W 130-132 148.70 161.3 4437 18.22 84.21 4.62 19.12 

17H 2W 140-142 148.80 161.4 4439 26.35 71.80 2.72 16.48 

17H 3W 0-2 148.90 161.5 4440 21.10 77.18 3.66 16.38 

17H 3W 10-12 149.00 161.6 4442 23.94 74.12 3.10 15.92 

17H 3W 20-22 149.10 161.7 4444 18.66 78.26 4.19 17.83 

17H 3W 30-32 149.20 161.8 4445 23.28 75.73 3.25 17.24 

17H 3W 40-42 149.30 161.9 4447 19.16 77.64 4.05 17.38 

17H 3W 50-52 149.40 162 4448 16.35 80.91 4.95 17.89 

17H 3W 60-62 149.50 162.1 4450 18.59 80.24 4.32 18.28 

17H 3W 80-82 149.70 162.3 4453 22.34 77.67 3.48 16.21 

17H 3W 90-92 149.80 162.4 4455 24.36 75.70 3.11 16.22 

17H 3W 100-102 149.90 162.5 4457 28.21 70.49 2.50 15.20 

17H 3W 110-112 150.00 162.6 4458 30.03 68.47 2.28 15.33 

17H 3W 120-122 150.10 162.7 4460 26.81 73.08 2.73 17.16 

17H 3W 130-132 150.20 162.8 4461 18.17 84.19 4.63 20.79 

17H 3W 140-142 150.30 162.9 4463 21.78 76.93 3.53 17.65 

17H 4W 0-2 150.40 163 4465 20.47 79.15 3.87 17.31 

17H 4W 10-12 150.50 163.1 4466 23.09 74.75 3.24 16.50 

17H 4W 20-22 150.60 163.2 4468 20.00 79.05 3.95 17.00 

17H 4W 30-32 150.70 163.3 4470 25.55 73.54 2.88 16.07 

17H 4W 40-42 150.80 163.4 4471 25.51 73.88 2.90 15.72 

17H 4W 50-52 150.90 163.5 4473 29.29 69.90 2.39 15.98 

17H 4W 60-62 151.00 163.6 4474 24.19 75.06 3.10 17.28 

17H 4W 70-72 151.10 163.7 4476 22.82 77.76 3.41 17.32 

17H 4W 80-82 151.20 163.8 4478 26.25 73.49 2.80 17.26 
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17H 4W 90-92 151.30 163.9 4482 20.59 78.84 3.83 17.99 

17H 4W 100-102 151.40 164 4488 15.85 87.66 5.53 21.17 

17H 4W 110-112 151.50 164.1 4493 17.31 89.33 5.16 20.85 

17H 4W 120-122 151.60 164.2 4499 17.69 79.86 4.51 19.43 

17H 4W 130-132 151.70 164.3 4504 19.18 81.91 4.27 19.74 

17H 4W 140-142 151.80 164.4 4509 11.72 89.01 7.59 21.41 

17H 4W 0-2 151.90 164.5 4515 15.10 87.26 5.78 21.78 

17H 5W 10-12 152.00 164.6 4520 18.98 79.62 4.20 18.25 

17H 5W 10-12 152.10 164.7 4526 21.92 78.87 3.60 17.77 

17H 5W 30-32 152.20 164.8 4531 18.54 79.48 4.29 16.29 

17H 5W 40-42 152.30 164.9 4536 19.53 79.48 4.07 19.24 

17H 5W 50-52 152.40 165 4542 15.92 86.62 5.44 20.02 

17H 5W 60-62 152.50 165.1 4547 17.04 85.03 4.99 20.79 

17H 5W 70-72 152.60 165.2 4553 18.33 79.29 4.32 16.97 

17H 5W 80-82 152.70 165.3 4558 21.14 77.12 3.65 16.60 

17H 5W 90-92 152.80 165.4 4564 25.04 75.20 3.00 16.02 

17H 5W 100-102 152.90 165.5 4569 22.86 75.13 3.29 16.45 

17H 5W 110-112 153.00 165.6 4574 19.78 78.88 3.99 18.03 

17H 5W 120-122 153.10 165.7 4580 11.19 89.30 7.98 21.24 

17H 5W 130-132 153.20 165.8 4585 19.76 78.48 3.97 17.81 

17H 5W 140-142 153.30 165.9 4591 20.70 79.52 3.84 19.28 

17H 6W 10-12 153.50 166.1 4601 24.81 75.18 3.03 18.72 

17H 6W 30-32 153.70 166.3 4612 28.60 71.12 2.49 15.86 

17H 6W 50-52 153.90 166.5 4623 23.45 75.15 3.20 17.07 

17H 6W 70-72 154.10 166.7 4634 23.92 77.72 3.25 19.05 

17H 6W 90-92 154.30 166.9 4644 19.26 82.11 4.26 19.49 

17H 6W 110-112 154.50 167.1 4651 15.47 87.39 5.65 21.17 

17H 6W 130-132 154.70 167.3 4658 19.85 79.40 4.00 17.73 

17H 7W 0-2 154.90 167.5 4665 19.67 78.61 4.00 18.27 

17H 7W 20-22 155.10 167.7 4673 21.67 76.64 3.54 17.56 

17H CC 0-2 155.28 167.88 4679 21.29 77.35 3.63 17.56 

18X 1W 0-2 155.40 168 4683 23.64 76.08 3.22 17.75 

18X 1W 10-12 155.50 168.1 4687 20.11 83.25 4.14 21.51 

18X 1W 30-32 155.70 168.3 4694 24.28 74.69 3.08 16.92 

18X 1W 50-52 155.90 168.5 4701 19.95 77.84 3.90 19.08 

18X 1W 70-72 156.10 168.7 4709 24.01 73.72 3.07 17.28 

18X 1W 90-92 156.30 168.9 4716 16.51 85.68 5.19 21.06 

18X 1W 110-112 156.50 169.1 4723 21.81 76.49 3.51 18.60 

18X 1W 130-132 156.70 169.3 4730 20.76 80.36 3.87 20.13 

18X 2W 0-2 156.90 169.5 4737 24.39 74.67 3.06 16.42 

18X 2W 20-22 157.10 169.7 4744 17.77 81.32 4.58 21.20 

18X 2W 40-42 157.30 169.9 4752 20.76 81.56 3.93 19.84 

18X 2W 60-62 157.50 170.1 4759 16.83 86.94 5.17 21.20 
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APPENDIX C 

 

Detailed section and sample locations 

Sections 
Samples 

*Description 
Altitude 

GPS  

coordinates 

(Deg) 

NZ Map Grid 

coordinates 

(Northing, 

Easting) 

Base of BS1 – BS6 

 

*Located on the true left 

bank of river at bend with 

exposure facing SW. 

266 m (river/base) 

277 m (top) 

S 39.68837 

E 175.52861 

(base of 

section) 

6165459.2, 

2726865.6 

Dead Cow DC1 – DC7 

 

*Located on the true right 

bank of the river. 

265 m (river/base) 

282 m (top) 

S 39.68888 

E 175.5277 

(base of 

section) 

6165399.6, 

2726792.4 

Missing Link ML1 – ML7 

 

*Located on the true left 

bank of the river with 

exposure facing SW. 

264 m (river) 

274 m (base) 

285 m (top) 

S 39.68969 

E 175.52759 

(base of 

section) 

6165307.8, 

2726765.9 

Big Face BF1 – BF11 

 

*Located on the true left 

bank of the river with 

exposure facing NE. 

264 m (river) 

271 m (base) 

311 m (top) 

S 39.68997 

E 175.52625 

(base of 

section) 

6165279.7, 

2726669.8 

Dutch Man’s 

Stairs 

WTF 2, 

DMS1 – DMS2 

 

*Located along the true 

right bank of the river with 

exposure facing into the 

river (SE). 

 

*WTF2 taken next to 

paleomag. samples 

10 m (horizontal) upstream 

from section along river 

bed . 

259 m (river/base) 

273 m (top) 

S 39.69322 

E 175.52301 

(base of 

section) 

6164918.0, 

2726373.5 

North Bridge NB1 – NB7 

 

*Located on the true left 

bank of the river with 

exposure facing into the 

river (NW). 

258 m (river/base) 

273 m (top) 

S 39.69425 

E 175.52151 

(base of 

section) 

6164829.6, 

2726227.9 

South Bridge 

(below tephra) 

SBB1 – SBB8 

 

*Located on the true right 

bank of the river with 

exposure facing into the 

river (SE) and below the 

road. 

 

*Top of section is tephra 

layer along the road 

255 m (river/base) 

262 m 

(top) 

S 39.69576 

E 175.52099 

(base of 

section) 

6164645.4, 

2726198.8 

South Bridge 

(above tephra) 

SBA1 – SBA8 

 

SBA1 = 273.5 m 

SBA2 = 275.5 m 

S 39.69566 

E 175.52074 

6164676.9, 

2726175.9 
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*Tephra is exposed along 

road cut. 

 

*SBA1 and SBA2 were 

taken along the road above 

tephra. 

 

*SBA3 – SBA8 were taken 

along the river (starting 2 m 

HIS above SBA2) on the 

true right bank of the river. 

 

*SBA8 is located at the 

base of the Rob’s Face 

section. 

 

 

 

   SBA3 = 2 m HIS 

 

 

SBA4 = 2 m HIS 

 

 

SBA5 = 2 m HIS 

 

 

SBA6 = 2 m HIS 

 

 

SBA7 = 2 m HIS 

 

 

SBA8 = 2 m HIS 

(SBA1 – 

SBA2) 

 

S 39.69769 

E 175.51959 

 

S 39. 69777 

E 175.51953 

 

S 39.69793 

E 175.51956 

 

S 39.69808 

E 175.51963 

 

S 39.69827 

E 175.51964 

 

S 39.69449 

E 175.51965 

 

 

 

6164433.0, 

2726073.6 

 

6164433.7, 

2726049.8 

 

6164402.9, 

2726048.9 

 

6164402.2, 

2726072.7 

 

6164371.4, 

2726071.9 

 

6164802.9, 

2726084.2 

Rob’s Face RF1 – RF5 

 

*Located on the true right 

bank of the river with 

exposure facing into the 

river (SE). 

 

*RF1 is 2 m above SBA8. 

263 m (river/base) 

273 m (top) 

S 39.69849 

E 175.51965 

(base of 

section) 

6164802.9, 

2726084.2 

Gillian’s 

Waterfall 

WF1 – WF4 

 

*Located on the true right 

bank of the river in which 

there is a stream entering 

the river. 

 

*WF 4 taken 1.5 m 

(horizontal) 

downstream from base of 

section 

267 m (river) 

268 m (base) 

274 m (top) 

 

265 m (WF 4) 

S 39.6952 

E 175.51927 

(base of 

section) 

6164711.8, 

2726033.9 

Falling Tim FT1 – FT7 

 

*Located on the true right 

bank of the river with 

exposure facing into the 

river (SE). 

258 m (river) 

259 m (base) 

271 m (top) 

S 39.70030 

E 175.51892 

(base of 

section) 

6163880.2, 

2725986.4 
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Grain size frequency data with Phi ɸ scale for Turakina River Section  

Sample FT7 FT6 FT5 FT4 FT3 FT2 FT1 WF4 RF5 WF3 

Height 134.5 132.5 130.5 128.5 126.5 124.5 122.5 119.5 118 118 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.059 0.254 0.396 0.220 0.017 0.132 0.023 0.287 0.224 0.149 

2.5 0.858 1.321 2.114 1.691 0.669 1.126 0.536 1.192 1.015 0.465 

3 2.526 3.021 5.680 4.711 1.944 3.335 1.469 3.058 3.575 1.872 

3.5 3.731 6.636 9.037 7.747 3.071 4.902 2.164 6.091 5.401 2.441 

4 3.461 5.200 9.068 5.673 3.317 4.332 2.536 3.312 3.524 2.502 

4.5 5.819 8.312 13.237 8.147 5.336 6.633 4.154 5.810 5.870 5.042 

5 7.894 9.442 9.747 8.284 7.035 8.029 6.419 6.893 6.584 7.322 

5.5 10.707 12.220 9.901 10.239 9.934 10.470 9.521 10.058 9.642 11.811 

6 10.100 10.360 8.064 9.029 10.284 9.508 9.848 9.580 9.559 11.524 

6.5 14.132 12.508 9.283 11.275 14.866 12.738 14.935 13.214 13.675 15.527 

7 13.519 10.764 7.958 10.063 14.293 12.017 14.994 12.623 13.150 14.007 

7.5 8.982 6.844 5.162 6.782 9.575 8.233 10.392 8.602 8.871 9.080 

8 10.196 7.537 5.874 8.194 10.931 9.866 12.305 10.244 10.348 10.170 

8.5 6.753 4.770 3.844 6.100 7.265 7.052 8.664 7.336 7.104 6.695 

9 1.263 0.812 0.634 1.826 1.460 1.623 2.036 1.696 1.456 1.391 

9.5 0.001 0.001 0.000 0.019 0.002 0.003 0.004 0.003 0.002 0.002 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued   

Sample RF4 WF2 RF3 WF1 RF2 SBA8 RF1 SBA7 SBA6 SBA5 

Height 116 116 114.1 114.1 112.6 111.1 110.6 109.1 107.1 105.1 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.216 0.094 0.269 0.259 0.176 0.470 0.266 0.460 0.356 0.349 

2.5 0.642 0.829 1.255 0.850 1.063 2.796 2.934 2.378 1.916 2.740 

3 2.199 1.034 3.090 1.406 3.980 8.354 8.424 5.737 5.482 7.135 

3.5 4.613 3.374 6.043 4.351 5.276 9.278 9.225 8.582 8.241 7.732 

4 3.506 2.765 3.798 2.700 4.013 4.872 5.074 4.652 4.833 4.771 

4.5 6.500 4.370 6.215 5.096 6.540 6.610 6.069 5.904 7.248 5.746 

5 7.417 6.491 7.457 6.551 7.444 6.131 6.396 6.175 8.884 7.437 

5.5 10.420 9.830 11.636 10.232 9.900 8.620 8.541 8.547 12.049 11.917 

6 9.897 10.172 10.913 10.331 9.192 8.376 8.000 8.201 9.698 10.310 

6.5 13.708 15.104 13.968 14.656 12.719 11.457 10.762 11.527 11.403 12.283 

7 12.961 15.053 12.292 14.081 12.244 10.653 10.199 11.328 9.857 10.395 

7.5 8.744 10.207 7.833 9.482 8.437 7.087 7.043 7.927 6.455 6.567 

8 10.298 11.654 8.665 10.981 10.109 8.291 8.698 9.652 7.474 7.274 

8.5 7.248 7.643 5.575 7.480 7.225 5.789 6.593 7.077 5.084 4.625 

9 1.628 1.379 0.990 1.543 1.679 1.214 1.765 1.845 1.019 0.718 

9.5 0.003 0.001 0.001 0.002 0.003 0.002 0.011 0.010 0.001 0.000 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued   

Sample SBA4 SBA3 SBA2 SBA1 SBB9 SBB8 SBB7 SBB6 SBB5 SBB4 

Height 103.1 101.1 99.12 97.13 94.15 92.15 90.16 88.17 86.18 84.18 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 

2 0.225 0.246 0.165 0.621 0.397 0.513 0.745 0.774 1.428 1.502 

2.5 2.300 1.686 1.109 2.807 2.638 2.216 3.123 5.002 6.384 7.811 

3 6.888 4.646 4.447 8.112 8.241 6.029 7.999 9.922 13.209 14.642 

3.5 8.881 8.031 6.509 11.877 8.565 8.665 7.466 8.093 11.951 10.915 

4 5.632 4.894 5.042 8.510 5.019 5.017 4.507 4.688 5.819 4.900 

4.5 6.233 5.991 6.580 10.999 6.488 7.267 6.196 5.712 6.591 6.035 

5 5.976 6.041 5.946 7.537 5.367 6.098 5.515 5.672 5.413 5.457 

5.5 8.167 8.830 7.826 8.435 7.208 7.950 7.238 7.322 6.982 7.684 

6 8.241 8.821 7.971 6.989 7.356 7.247 7.227 7.147 6.167 7.064 

6.5 11.476 12.257 12.169 8.391 10.817 9.633 10.917 10.335 7.861 9.027 

7 10.890 11.736 12.547 7.652 10.796 9.505 11.312 10.446 7.556 8.152 

7.5 7.470 8.112 8.921 5.350 7.693 7.253 8.166 7.383 5.477 5.356 

8 9.099 9.732 10.936 6.567 9.732 10.118 10.213 9.119 7.182 6.234 

8.5 6.749 7.017 7.982 4.811 7.517 8.762 7.592 6.793 5.873 4.343 

9 1.765 1.945 1.846 1.332 2.147 3.572 1.780 1.590 2.061 0.878 

9.5 0.010 0.016 0.003 0.010 0.018 0.155 0.003 0.003 0.047 0.001 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued   

Sample SBB3 NB8-7 SBB2 NB6 SBB1 NB5 NB4 DMS6 NB3 DMS5 

Height 82.19 80.7 80.7 78.7 78.7 76.71 74.72 73.72 72.73 71.73 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.003 0.000 0.002 0.000 0.002 0.002 0.003 0.000 0.000 0.000 

2 2.288 1.105 2.045 1.184 2.327 1.979 2.708 0.629 1.295 0.684 

2.5 8.290 5.534 8.101 5.982 9.526 7.790 10.376 3.997 7.275 4.065 

3 13.284 10.995 13.463 11.055 15.479 12.277 17.217 9.069 13.576 9.719 

3.5 8.106 10.066 8.779 9.475 8.912 8.383 10.048 9.479 10.751 9.229 

4 4.165 5.125 4.957 4.207 4.798 4.729 4.839 5.545 5.991 4.371 

4.5 5.993 6.465 6.545 6.304 6.996 5.900 6.457 8.134 8.493 6.326 

5 5.713 5.896 6.170 6.110 5.832 7.258 5.383 7.635 7.275 6.335 

5.5 7.415 7.912 7.722 8.016 7.108 10.550 7.340 9.132 8.317 8.572 

6 6.726 7.366 6.730 7.002 6.337 8.633 6.693 7.461 6.617 7.608 

6.5 9.134 9.856 8.421 9.279 8.472 9.879 8.368 9.194 7.501 9.868 

7 8.720 9.351 7.586 9.262 7.933 8.039 7.153 8.655 6.438 9.309 

7.5 6.030 6.391 5.279 6.655 5.237 4.995 4.513 6.168 4.448 6.622 

8 7.359 7.517 6.821 8.242 6.046 5.431 4.979 7.637 5.643 8.351 

8.5 5.425 5.227 5.527 5.954 4.170 3.451 3.250 5.630 4.515 6.501 

9 1.345 1.191 1.828 1.272 0.826 0.702 0.673 1.620 1.787 2.365 

9.5 0.005 0.002 0.023 0.002 0.001 0.001 0.001 0.015 0.077 0.076 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued  

Sample NB2 DMS4 NB1 DMS3 DMS2 DMS1 WTF2 BF11 BF12 BF13 

Height 70.73 69.74 68.74 67.75 65.75 63.76 62.77 60.27 57.29 54.3 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.002 0.000 0.000 0.000 0.000 0.000 0.009 0.001 0.000 0.000 

2 2.354 0.536 0.969 0.676 0.688 0.151 0.419 0.406 0.123 0.602 

2.5 9.819 3.569 5.601 3.778 3.800 1.389 1.328 1.485 0.725 2.924 

3 15.933 8.399 11.065 9.239 8.999 3.046 3.836 3.297 2.364 7.613 

3.5 9.036 9.154 9.617 9.262 10.368 5.682 3.845 4.955 3.598 8.593 

4 4.530 5.209 5.087 5.009 5.328 3.937 4.053 4.724 3.619 5.890 

4.5 6.197 7.543 8.370 6.882 6.656 6.425 6.094 7.109 6.542 11.179 

5 5.998 7.512 9.940 7.813 6.025 7.612 6.880 7.838 7.288 11.228 

5.5 8.395 9.387 11.532 11.559 7.926 9.882 9.150 9.962 9.505 11.182 

6 7.253 7.788 8.375 9.458 7.293 8.684 9.546 8.932 8.791 8.262 

6.5 8.787 9.475 9.100 10.890 9.838 11.627 14.261 11.514 12.308 9.329 

7 7.491 8.752 7.376 8.947 9.546 11.684 13.735 10.660 12.494 7.864 

7.5 4.779 6.282 4.606 5.620 6.774 8.604 8.953 7.652 9.206 5.109 

8 5.291 8.021 4.897 6.125 8.417 10.858 10.075 9.998 11.880 5.721 

8.5 3.422 6.233 2.929 3.893 6.362 8.089 6.672 8.144 9.129 3.701 

9 0.713 2.103 0.535 0.848 1.959 2.310 1.146 3.193 2.416 0.802 

9.5 0.001 0.039 0.001 0.002 0.022 0.020 0.001 0.131 0.014 0.001 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued   

Sample BF9 BF10 BF8 BF7 BF6 BF5 BF4 BF3 ML7 BF2 

Height 50.31 47.32 44.34 42.34 40.35 38.36 36.37 34.37 32.38 31.88 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

2 0.679 0.483 0.801 0.639 0.681 1.878 0.231 0.417 0.286 0.616 

2.5 3.867 2.945 4.780 3.693 4.008 8.519 2.601 3.070 1.975 3.296 

3 9.451 7.016 10.223 8.794 8.515 16.681 6.203 6.446 4.111 6.247 

3.5 10.220 6.740 9.514 8.055 10.535 11.700 7.225 6.710 4.203 6.565 

4 7.937 4.733 4.279 5.433 9.314 6.560 4.672 4.677 3.231 3.793 

4.5 12.108 10.046 5.388 11.340 12.511 9.146 6.014 6.919 5.927 5.897 

5 9.503 12.684 5.576 11.404 8.896 6.717 6.489 9.724 10.236 7.930 

5.5 9.970 12.837 8.454 11.064 9.407 7.702 8.542 12.977 14.854 12.435 

6 7.614 8.900 8.088 8.127 7.429 6.229 8.263 10.021 11.828 10.774 

6.5 8.511 9.822 10.757 9.162 8.353 7.090 11.708 11.524 13.541 12.839 

7 7.056 8.177 10.037 7.698 7.046 5.931 11.451 9.622 10.996 10.627 

7.5 4.504 5.266 6.850 4.962 4.556 3.869 7.969 6.104 6.715 6.578 

8 4.920 5.826 8.105 5.471 5.050 4.394 9.675 6.662 7.103 7.054 

8.5 3.056 3.714 5.706 3.447 3.150 2.913 7.090 4.217 4.289 4.430 

9 0.604 0.809 1.437 0.708 0.548 0.668 1.856 0.909 0.704 0.918 

9.5 0.001 0.002 0.007 0.001 0.000 0.001 0.011 0.002 0.000 0.002 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued   

Sample BF1 ML6 ML5 ML4 ML3 DC7 ML2 ML1 DC6 DC5 

Height 30.39 30.39 28.4 26.4 24.41 22.17 21.92 19.93 19.68 18.18 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.001 0.005 0.004 

2 0.695 0.772 2.097 0.529 0.445 1.950 0.749 1.732 3.233 3.045 

2.5 3.923 4.382 7.946 3.203 2.581 6.611 3.935 6.476 9.512 9.000 

3 7.518 7.608 12.028 6.006 6.063 9.522 7.624 10.048 11.575 10.828 

3.5 6.230 6.068 7.433 5.964 5.814 7.395 6.870 6.164 7.352 7.588 

4 3.440 3.670 5.073 3.057 3.766 3.883 3.264 3.133 3.904 4.232 

4.5 5.229 5.380 9.133 4.567 5.608 5.496 5.061 5.130 5.043 6.031 

5 6.426 7.769 9.188 6.005 8.343 6.544 6.758 5.671 7.496 6.260 

5.5 9.343 11.705 10.220 9.152 12.333 10.246 11.085 8.000 10.435 7.990 

6 9.176 10.102 7.883 9.258 10.480 9.125 10.068 7.717 8.365 7.059 

6.5 12.578 12.310 8.938 13.192 12.882 11.203 12.595 11.006 9.754 8.799 

7 11.555 10.462 7.355 12.701 11.057 9.643 10.934 10.713 8.205 7.966 

7.5 7.599 6.624 4.568 8.566 7.016 6.169 7.004 7.387 5.196 5.603 

8 8.772 7.312 4.830 9.792 7.658 6.839 7.824 8.901 5.663 7.218 

8.5 6.116 4.784 2.853 6.561 4.895 4.440 5.154 6.436 3.558 5.892 

9 1.397 1.050 0.451 1.443 1.056 0.930 1.073 1.485 0.700 2.379 

9.5 0.003 0.002 0.000 0.003 0.002 0.002 0.002 0.003 0.001 0.106 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued   

Sample DC4 DC3 DC2 BS6 DC1 BS5 BS4 BS3 BS2 BS1 

Height 16.19 14.2 12.21 10.96 10.21 8.966 6.973 4.483 2.49 0.498 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.061 0.058 0.025 0.002 0.141 0.005 0.002 0.001 0.002 0.000 

2 6.556 8.874 6.959 2.969 11.786 4.281 2.666 1.727 1.882 0.757 

2.5 12.246 19.864 16.102 10.995 19.114 14.362 10.197 7.660 8.134 4.332 

3 11.729 17.776 14.476 14.890 13.111 18.423 16.011 16.119 16.785 10.924 

3.5 6.668 6.776 8.047 8.537 5.579 10.228 9.640 11.952 12.043 10.726 

4 3.137 3.986 4.645 4.068 3.242 5.118 4.075 5.339 6.030 4.913 

4.5 5.270 4.685 6.362 5.343 4.136 6.894 5.781 6.507 7.466 6.475 

5 6.420 4.536 5.852 5.630 4.893 5.951 5.240 5.365 6.294 6.457 

5.5 9.249 5.375 6.959 7.647 6.313 6.865 7.313 7.076 7.415 8.665 

6 7.720 4.770 5.702 6.761 5.670 5.383 6.426 6.175 6.005 7.521 

6.5 9.237 5.914 6.638 8.478 6.976 6.001 8.002 7.659 6.967 9.414 

7 7.822 5.149 5.633 7.566 5.891 4.960 7.002 6.765 5.931 8.574 

7.5 4.902 3.462 3.714 5.078 3.808 3.283 4.718 4.631 4.031 5.977 

8 5.233 4.268 4.414 6.135 4.556 3.978 5.957 5.895 5.089 7.474 

8.5 3.179 3.316 3.288 4.575 3.501 3.053 4.887 4.868 4.120 5.774 

9 0.572 1.161 1.152 1.313 1.248 1.169 1.993 2.113 1.719 1.974 

9.5 0.001 0.028 0.032 0.012 0.035 0.048 0.090 0.147 0.086 0.042 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Grain size frequency data with Phi ɸ scale for Turakina River Section continued   

Sample BS3.2 BS3 DC1.2 DC1 ML4.2 ML4 BF10.2 BF10 NB1.2 NB1 SBB9.2 SBB9 SBA1.2 SBA1 FT1.2 FT1 

Height 4.483 4.483 10.21 10.21 26.4 26.4 47.32 47.32 68.74 68.74 94.15 94.15 97.13 97.13 122.5 122.5 

-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1.5 0.001 0.000 0.141 0.182 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 1.727 1.357 11.786 14.849 0.529 0.573 0.483 0.657 0.679 0.969 0.357 0.397 0.352 0.621 0.082 0.023 

2.5 7.660 8.695 19.114 23.020 3.203 3.324 2.945 3.266 3.845 5.601 2.883 2.638 1.966 2.807 0.893 0.536 

3 16.119 18.629 13.111 15.715 6.006 6.465 7.016 6.838 8.624 11.065 8.934 8.241 6.015 8.112 1.323 1.469 

3.5 11.952 12.130 5.579 6.294 5.964 5.999 6.740 7.465 9.267 9.617 9.182 8.565 9.565 11.877 3.155 2.164 

4 5.339 5.684 3.242 3.310 3.057 3.119 4.733 3.498 5.601 5.087 5.349 5.019 5.947 8.510 2.797 2.536 

4.5 6.507 6.316 4.136 4.443 4.567 4.443 10.046 5.671 8.352 8.370 6.330 6.488 8.812 10.999 4.154 4.154 

5 5.365 5.025 4.893 4.237 6.005 5.768 12.684 6.373 7.588 9.940 5.505 5.367 9.729 7.537 6.426 6.419 

5.5 7.076 6.412 6.313 5.355 9.152 8.947 12.837 10.105 9.326 11.532 7.713 7.208 10.933 8.435 9.363 9.521 

6 6.175 5.717 5.670 4.408 9.258 9.210 8.900 9.490 7.728 8.375 7.655 7.356 8.291 6.989 9.502 9.848 

6.5 7.659 7.223 6.976 5.176 13.192 13.287 9.822 12.261 9.115 9.100 10.688 10.817 9.775 8.391 14.381 14.935 

7 6.765 6.409 5.891 4.303 12.701 12.757 8.177 11.035 8.058 7.376 10.333 10.796 8.819 7.652 14.735 14.994 

7.5 4.631 4.382 3.808 2.744 8.566 8.510 5.266 7.334 5.706 4.606 7.266 7.693 6.089 5.350 10.316 10.392 

8 5.895 5.573 4.556 3.108 9.792 9.708 5.826 8.585 7.425 4.897 9.093 9.732 7.281 6.567 12.304 12.305 

8.5 4.868 4.553 3.501 2.171 6.561 6.525 3.714 6.022 6.080 2.929 6.891 7.517 5.118 4.811 8.664 8.664 

9 2.113 1.816 1.248 0.676 1.443 1.366 0.809 1.399 2.489 0.535 1.813 2.147 1.303 1.332 1.902 2.036 

9.5 0.147 0.078 0.035 0.008 0.003 0.002 0.002 0.003 0.117 0.001 0.010 0.018 0.007 0.010 0.003 0.004 

rest  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Falling Tim Section grainsize statistics. (m) Method of Moments. (FW) Folk and Ward Method. (D) cumulative percentiles 

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

FT7 134.475 6.60 4.31 6.59 8.31 6.45 1.47 -0.42 2.55 6.49 1.52 -0.14 0.97 0.00 7.40 91.60 1.00 
poorly 
sorted 

med. silt mud 

FT6 132.482 6.07 3.89 6.14 8.09 6.06 1.53 -0.16 2.27 6.06 1.60 -0.07 0.90 0.00 11.50 87.80 0.70 
poorly 

sorted 

very fine 

sandy 

med.silt 

sandy 

mud 

FT5 130.490 4.585 3.57 5.50 7.91 5.60 1.61 0.19 2.10 5.62 1.67 0.10 0.85 0.00 17.70 81.80 0.50 
poorly  
sorted 

v. f. sandy 

very 

coarse silt  

sandy 
mud 

FT4 128.497 6.07 3.69 6.14 8.28 6.05 1.67 -0.12 2.07 6.04 1.76 -0.07 0.83 0.00 14.7 83.70 1.60 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

FT3 126.505 6.60 4.50 6.71 8.35 6.57 1.43 -0.48 2.67 6.60 1.47 -0.14 1.00 0.00 5.90 92.90 1.20 
poorly 

sorted 
med. silt mud 

FT2 124.513 6.33 4.03 6.47 8.34 6.33 1.57 -0.33 2.31 6.35 1.64 -0.13 0.91 0.00 9.70 89.00 1.30 
poorly 
sorted 

med. sit mud 

FT1 122.52 6.87 4.83 6.88 8.46 6.75 1.38 -0.56 2.89 6.81 1.40 -0.14 1.00 0.00 4.30 94.00 1.70 
poorly 

sorted 
fine silt mud 

 

Gillian’s Waterfall Section grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method  

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

WF4 119.531 6.60 3.92 6.55 8.37 6.38 1.58 -0.41 2.39 6.40 1.65 -0.16 0.94 0.00 10.80 87.80 1.40 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

WF3 118.037 6.33 4.68 6.64 8.31 6.56 1.37 -0.44 2.84 6.61 1.40 -0.08 1.03 0.00 5.00 93.90 1.10 
poorly 

sorted 
med. silt mud 

WF2  116.045 6.87 4.66 6.80 8.37 6.65 1.40 -0.56 2.86 6.70 1.43 -0.16 1.03 0.00 5.50 93.40 1.10 
poorly  
sorted 

med. silt mud 

WF1 114.052 6.60 4.44 6.70 8.37 6.56 1.46 -0.51 2.725 6.60 1.50 -0.15 1.02 0.00 7.00 91.70 1.30 
poorly 

sorted 
med. silt mud 
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Rob’s Face Section grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method  

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

RF5 118.037 6.60 3.96 6.58 8.34 6.39 1.57 -0.44 2.41 6.41 1.64 -0.18 0.95 0.00 10.40 88.40 1.20 
poorly  
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

RF4 116.044 6.60 4.26 6.58 8.36 6.45 1.50 -0.38 2.45 6.47 1.57 -0.13 0.95 0.00 7.80 90.90 1.30 
poorly 

sorted 
med. silt mud 

RF3 114.052 6.33 3.92 6.38 8.19 6.24 1.53 -0.35 2.43 6.25 1.59 -0.13 0.97 0.00 10.90 88.30 0.80 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

RF2 112.558 6.60 3.93 6.50 8.36 6.34 1.60 -0.36 2.29 6.35 1.68 -0.15 0.91 0.00 10.70 87.9 1.40 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

RF1 110.565 6.60 3.35 6.16 8.32 5.95 1.81 -0.15 1.87 5.93 1.92 -0.13 0.74 0.00 21.10 77.40 1.50 
poorly  
sorted 

v. f. sandy 
med. silt 

sandy  
mud 

 

South Bridge Section above tephra grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method  

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

SBA8 111.075 6.60 3.35 6.14 8.22 5.90 1.78 -0.17 1.90 5.88 1.88 -0.15 0.75 0.00 21.20 77.8 1.00 
poorly  

sorted 

v. f. sandy 

med. silt 

sandy  

mud 

SBA7 109.082 6.87 3.53 6.37 8.36 6.13 1.76 -0.28 2.01 6.10 1.87 -0.18 0.79 0.00 17.40 81.00 1.60 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy  
mud 

SBA6 107.090 6.07 3.59 6.04 8.13 5.94 1.63 -0.14 2.14 5.91 1.74 -0.08 0.97 0.00 16.30 82.90 0.80 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

SBA5 105.098 6.07 3.43 6.08 8.06 5.90 1.66 -0.22 2.12 5.86 1.77 -0.15 0.86 0.00 18.20 81.20 0.60 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

SBA4 103.105 6.60 3.48 6.28 8.33 6.05 1.77 -0.21 1.92 6.03 1.87 -0.16 0.75 0.00 18.6 79.90 1.50 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

SBA3 101.113 6.60 3.68 6.44 8.36 6.22 1.70 -0.31 2.09 6.18 1.80 -0.18 0.82 0.00 14.6 83.40 1.70 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

SBA2 99.120 7.28 3.80 6.60 8.41 6.34 1.67 -0.38 2.12 6.33 1.77 -0.21 0.82 0.00 12.5 86.00 1.50 
poorly 

sorted 

v. f. sandy  

fine silt 

sandy 

mud 

SBA1 97.128 3.64 3.36 5.42 8.10 5.56 1.76 0.22 1.94 5.57 1.83 0.12 0.77 0.00 23.90 75.00 1.10 
poorly 

sorted 

v. f. sandy  
v. coarse 

silt 

sandy 

mud 
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South Bridge Section below tephra grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method  

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

SBB9 94.145 6.87 3.37 6.33 8.40 6.05 1.84 -0.22 1.85 6.04 1.95 -0.18 0.73 0.00 20.10 78.1 1.80 
poorly 
sorted 

v. f. sandy 
fine silt 

sandy 
mud 

SBB8 92.153 8.35 3.52 6.35 8.55 6.17 1.85 -0.19 1.89 6.15 1.95 -0.13 0.74 0.00 17.70 79.00 3.33 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

SBB7 90.160 7.28 3.33 6.40 8.39 6.08 1.85 -0.30 1.91 6.06 1.95 -0.22 0.75 0.00 19.60 78.90 1.50 
poorly 
sorted 

v. f. sandy 
fine silt 

sandy 
mud 

SBB6 88.168 6.87 3.13 6.16 8.32 5.88 1.91 -0.18 1.79 5.86 2.01 -0.17 0.70 0.00 24.10 74.60 1.30 
poorly 

sorted 

v. f. sandy 

fine silt 

sandy 

mud 

SBB5 86.175 3.373 3.00 5.38 8.27 5.46 1.98 0.19 1.73 5.48 2.04 0.09 0.68 0.00 33.30 64.90 1.80 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

SBB4 84.183 3.10 2.93 5.34 8.00 5.33 1.91 0.17 1.73 5.34 1.97 0.043 0.68 0.00 35.2 64.10 0.70 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

SBB3 82.191 2.97 2.88 5.64 8.18 5.48 1.98 0.04 1.69 5.50 2.06 -0.05 0.66 0.00 32.20 66.70 1.10 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

SBB2 80.696 2.97 2.90 5.45 8.21 5.43 1.98 0.14 1.75 5.44 2.06 0.03 0.68 0.00 32.70 65.70 1.60 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

SBB1 78.704 2.97 2.84 5.09 7.97 5.23 1.94 0.21 1.74 5.21 1.99 0.12 0.67 0.00 36.50 62.80 0.70 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

 

North Bridge Section grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method  

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

NB7 80.696 3.37 3.07 5.81 8.15 5.63 1.89 -0.01 1.76 5.64 1.96 -0.08 0.69 0.00 28.00 71.00 1.00 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

NB6 78.704 6.07 3.05 5.86 8.23 5.67 1.92 -0.04 1.74 5.68 2.01 -0.09 0.68 0.00 27.90 71.10 1.00 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

NB5 76.712 2.97 2.91 5.56 7.85 5.37 1.83 0.05 0.05 5.36 1.91 -0.08 0.73 0.00 30.70 68.70 0.60 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

NB4 74.719 3.10 2.80 4.78 7.78 5.05 1.90 0.32 1.81 5.01 1.93 0.20 0.69 0.00 40.60 58.80 0.60 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

NB3 72.727 3.10 2.96 5.10 8.07 5.29 1.89 0.30 1.93 5.27 1.96 0.15 0.74 0.00 33.20 65.20 1.60 
poorly 
sorted 

v. f. sandy 

v. coarse 
silt 

sandy 
mud 

NB2 70.734 2.97 2.83 5.12 7.83 5.16 1.90 0.22 1.78 5.16 1.94 0.08 0.68 0.00 37.40 62.00 0.60 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

NB1 68.742 5.93 3.07 5.43 7.73 5.37 1.70 0.11 2.02 5.34 1.79 -0.01 0.79 0.00 27.50 72.10 0.40 
poorly 

sorted 

v. f. sandy 
v. coarse 

silt 

sandy 

mud 
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 Dutch Man’s Stairs Section grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method 

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

DMS6 73.723 6.07 3.24 5.80 8.22 5.73 1.82 0.01 1.87 5.72 1.92 -0.03 0.74 0.00 23.50 75.10 1.40 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

DMS5 71.731 3.37 3.12 6.04 8.35 5.85 1.89 -0.09 1.83 5.84 1.99 -0.10 0.71 0.00 23.90 74.00 2.10 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

DMS4 69.738 6.07 3.30 5.93 8.31 5.83 1.83 -0.04 1.89 5.83 1.93 -0.06 0.76 0.00 21.90 76.30 1.80 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

DMS3 67.746 6.07 3.25 5.82 7.95 5.66 1.72 -0.05 2.00 5.63 1.82 -0.10 0.79 0.00 23.20 76.10 0.70 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

DMS2 65.754 3.64 3.26 6.01 8.31 5.83 1.87 -0.07 1.80 5.83 1.96 -0.10 0.70 0.00 24.20 74.10 1.7 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

DMS1 63.761 7.28 3.96 6.55 8.44 6.39 1.63 -0.35 2.26 6.42 1.69 -0.14 0.87 0.00 10.50 87.50 2.00 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

WTF2 62.765 6.74 4.04 6.59 8.29 6.37 1.56 -0.49 2.52 6.39 1.64 -0.20 0.97 0.00 9.60 89.50 0.90 
poorly 
sorted 

med. silt mud 
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Big Face Section grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method  

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

BF11 60.274 6.33 3.97 6.46 8.50 6.35 1.67 -0.28 2.34 6.37 1.74 -0.10 0.87 0.00 10.40 86.70 2.90 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

BF12 57.286 7.28 4.34 6.73 8.50 6.57 1.55 -0.42 2.40 6.60 1.61 -0.15 0.90 0.00 7.00 91.00 2.00 
poorly 

sorted 
f. silt mud 

BF13 54.297 4.85 3.37 5.56 7.90 5.60 1.64 0.11 2.14 5.57 1.73 0.03 0.88 0.00 20.00 79.30 0.70 
poorly 
sorted 

v. f. sandy 
coarse silt 

sandy 
mud 

BF9  50.312 4.59 3.23 5.23 7.75 5.37 1.65 0.24 2.11 5.34 1.73 0.11 0.84 0.00 24.60 74.90 0.50 
poorly 

sorted 

v. f. sandy 

v. coarse 
silt 

sandy 

mud 

BF10 47.323 5.80 3.41 5.69 7.91 5.70 1.60 0.01 2.24 5.67 1.70 -0.00 0.96 0.00 17.40 81.90 0.70 
poorly 

sorted 

v. f. sandy 

coarse silt 

sandy 

mud 

BF8 44.335 6.33 3.15 6.05 8.22 5.79 1.87 -0.13 1.81 5.78 1.96 -0.15 0.70 0.00 25.60 73.20 1.20 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

BF7 42.342 4.85 3.26 5.49 7.85 5.53 1.65 0.11 2.13 5.49 1.76 0.03 0.88 0.00 21.40 78.00 0.60 
poorly 

sorted 

v. f. sandy 

coarse silt 

sandy 

mud 

BF6 40.350 4.45 3.25 5.17 7.76 5.37 1.66 0.27 2.11 5.34 1.73 0.15 0.85 0.00 24.20 75.40 0.40 
poorly 

sorted 

v. f. sandy 
v. coarse 

silt 

sandy 

mud 

BF5  38.358 3.10 2.89 4.65 7.66 4.98 1.80 0.45 2.05 4.94 1.84 0.26 0.75 0.00 39.10 60.30 0.60 
poorly 

sorted 

v. f. sandy 

v. coarse 
silt 

sandy 

mud 

BF4 36.365 6.74 3.52 6.39 8.36 6.15 1.75 -0.30 2.04 6.12 1.86 -0.19 0.82 0.00 16.50 81.90 1.60 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

BF3 34.373 5.93 3.45 5.96 8.02 5.86 1.63 -0.16 2.21 5.83 1.74 -0.10 0.93 0.00 16.90 82.30 0.80 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

BF2 31.882 6.07 3.43 6.12 8.05 5.94 1.65 -0.28 2.26 5.89 1.76 -0.16 0.95 0.00 16.90 82.30 0.80 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

BF1 30.388 6.60 3.28 6.32 8.26 6.05 1.77 -0.35 2.11 5.99 1.90 -0.22 08.64 0.00 18.60 80.20 1.20 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 
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Missing Link Section grain size stastics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method  

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

ML7 32.380 6.07 3.91 6.17 8.03 6.10 1.48 -0.32 2.63 6.14 1.54 -0.08 1.09 0.00 10.70 88.70 0.60 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

ML6 30.387 6.07 3.23 6.10 8.10 5.90 1.72 -0.28 2.15 5.84 1.85 -0.17 0.90 0.00 19.0 80.10 0.90 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

ML5 28.395 2.97 2.90 5.29 7.71 5.27 1.77 0.12 1.96 5.22 1.86 0.00 0.76 0.00 29.80 69.80 0.40 
poorly 
sorted 

v. f. sandy 
coarse silt 

sandy 
mud 

ML4 26.402 6.60 3.46 6.50 8.30 6.22 1.72 -0.47 2.28 6.16 1.84 -0.25 0.93 0.00 15.90 82.9 1.20 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

ML3 24.410 6.07 3.52 6.20 8.12 6.04 1.63 -0.31 2.31 6.01 1.73 -0.15 0.97 0.00 15.10 84.00 0.90 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

ML2 21.920 6.20 3.28 6.18 8.15 5.95 1.73 -0.31 2.13 5.88 1.86 -0.19 0.88 0.00 19.40 79.70 0.90 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

ML1 19.927 6.74 2.99 6.19 8.29 5.86 1.93 -0.25 1.84 5.81 2.05 -0.21 0.71 0.00 24.60 74.20 1.20 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

 

Dead Cow Section grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method 

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

DC7 22.168 6.07 2.98 5.92 8.05 5.65 1.84 -0.15 1.90 5.62 1.95 -0.16 0.75 0.00 25.70 73.50 0.80 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

DC6 19.678 2.84 2.80 5.57 7.88 5.35 1.88 0.01 1.82 5.34 1.97 -0.10 0.70 0.00 31.90 67.50 0.60 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

DC5 18.184 2.84 2.82 5.69 8.30 5.54 2.02 0.04 1.76 5.54 2.12 -0.05 0.69 0.00 30.70 69.30 2.20 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

DC4 16.191 2.70 2.62 5.30 7.79 5.13 1.96 0.11 1.73 5.14 2.02 -0.04 0.67 0.00 37.40 62.10 0.50 
v. poorly 

sorted 

f. sandy 

med. silt 

sandy 

mud 

DC3 14.199 2.84 2.52 3.68 7.73 4.55 2.03 0.67 2.09 4.47 2.01 0.55 0.71 0.00 53.60 45.40 1.00 
v. poorly 

sorted 
med. silty 

f. sand 
muddy  
sand 

DC2 12.206 2.70 2.58 4.36 7.76 4.78 1.98 0.48 1.97 4.75 2.00 0.31 0.71 0.00 45.90 53.10 1.00 
v. poorly 

sorted 

f. sandy 

med. silt 

sandy 

mud 

DC1 10.214 2.70 2.45 4.01 7.81 4.68 2.09 0.49 1.85 4.60 2.08 0.41 0.67 0.00 49.90 49.00 1.10 
v. poorly 

sorted 
f. sandy 
med. silt 

sandy 
mud 
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Base of Section grainsize statistics. (D) Cumulative percentiles. (m) Method of Moments. (FW) Folk and Ward Method 

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

BS6 10.958 2.97 2.78 5.23 8.06 5.24 2.00 0.20 1.72 5.25 2.05 0.06 0.67 0.00 37.60 61.30 1.10 
v. poorly 

sorted 
v. f. sandy 
med. silt 

sandy 
mud 

BS5 8.966 2.84 2.68 4.19 7.66 4.73 1.90 0.61 2.17 4.67 1.92 0.39 0.76 0.00 47.60 53.30 1.10 
poorly 

sorted 

v. f. sandy 

v. coarse 

silt 

sandy 

mud 

BS4 6.973 2.97 2.81 5.08 8.14 5.23 2.02 0.27 1.76 5.23 2.06 0.14 0.68 0.00 38.70 59.50 1.80 
v. poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

BS3 4.483 3.24 2.92 4.99 8.16 5.26 1.98 0.33 1.83 5.25 2.02 0.20 0.70 0.00 37.80 60.20 2.00 
v. poorly 

sorted 
v. f. sandy 
med. silt 

sandy 
mud 

BS2 2.490 3.10 2.90 4.75 7.99 5.10 1.91 0.44 1.98 5.08 1.96 0.26 0.74 0.00 39.20 59.20 1.60 
poorly 
sorted 

v. f. sandy 

v. coarse 

silt 

sandy 
mud 

BS1 0.498 3.51 3.17 5.82 8.26 5.68 1.88 0.03 1.80 5.70 1.97 -0.05 0.70 0.00 27.00 71.30 1.70 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 
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Repeat sample grainsize statistics. (D) Cumulative percentiles. (M) Method of Moments. (FW) Folk and Ward Method. (R) Repeat sample 

Sample 
Height 

(m) 
Mode D10 D50 D90 

(M) 

Mean 

(M) 

Sort 

(M) 

Skew 

(M) 

Kurt 

(FW) 

Mean 

(FW) 

Sort 

(FW) 

Skew 

(FW) 

Kurt 
Gr. Sd. St. Cl. 

Sample 

type 

Sed. 

name 

Text. 

group 

FT1 122.52 6.87 4.83 6.88 8.46 6.75 1.38 -0.56 2.89 6.81 1.40 -0.14 1.00 0.00 4.30 94.00 1.70 
v. poorly 

sorted 
v. f. sandy 
med. silt 

mud 

FT1(R) 122.52 7.01 4.65 6.86 8.45 6.70 1.43 -0.58 2.84 6.76 1.46 -0.17 1.01 0.00 5.60 92.80 1.60 
v. poorly 

sorted 

v. f. sandy 

med. silt 
mud 

SBA1 97.128 3.64 3.36 5.42 8.10 5.56 1.76 0.22 1.94 5.57 1.83 0.12 0.77 0.00 23.90 75.00 1.10 
poorly 

sorted 

v. f. sandy 
v. coarse 

silt 

sandy 

mud 

SBA(R) 97.128 5.93 3.54 5.84 8.15 5.83 1.68 0.02 2.03 5.81 1.77 -0.01 0.81 0.00 18.20 80.70 1.10 
poorly 
sorted 

v. f. sandy 
coarse silt 

sandy 
mud 

SBB9 94.145 6.87 3.37 6.33 8.40 6.05 1.84 -0.22 1.85 6.04 1.95 -0.18 0.73 0.00 20.10 78.10 1.80 
poorly 

sorted 

v. f. sandy 

f. silt 

sandy 

mud 

SBB9(R) 94.145 6.60 3.33 6.20 8.34 5.95 1.84 -0.16 1.82 5.95 1.94 -0.15 0.71 0.00 21.70 76.80 1.50 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

NB1 68.742 5.93 3.07 5.43 7.73 5.37 1.70 0.11 2.02 5.34 1.79 -0.01 0.79 0.00 27.50 72.10 0.40 
poorly 

sorted 

v. f. sandy 

coarse silt 

sandy 

mud 

NB1(R) 68.742 6.07 3.26 5.83 8.32 5.77 1.84 0.04 1.91 5.77 1.95 -0.02 0.77 0.00 22.70 75.00 2.30 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

BF10 47.323 6.33 3.39 6.26 8.25 6.03 1.74 -0.30 2.10 5.98 1.87 -0.19 0.86 0.00 18.40 80.40 1.20 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

BF10(R) 47.323 5.80 3.41 5.69 7.91 5.69 1.60 0.01 2.24 5.67 1.70 -0.00 0.96 0.00 17.40 81.90 0.70 
poorly 
sorted 

v. f. sandy 
coarse silt 

sandy 
mud 

ML4 26.402 6.74 3.41 6.49 8.29 6.19 1.73 -0.47 2.25 6.13 1.86 -0.26 0.94 0.00 16.50 82.40 1.10 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

ML4(R) 26.402 6.60 3.46 6.50 8.30 6.21 1.72 -0.47 2.28 6.16 1.84 -0.25 0.93 0.00 15.90 82.90 1.20 
poorly 
sorted 

v. f. sandy 
med. silt 

sandy 
mud 

DC1 10.214 2.70 2.40 3.25 7.31 4.21 1.93 0.87 2.44 4.13 1.90 0.65 0.76 0.00 60.20 39.20 0.60 
poorly 

sorted 

med. silty 

f. sand 

muddy 

sand 

DC1(R) 10.214 2.70 2.45 4.01 7.81 4.68 2.09 0.49 1.85 4.60 2.08 0.41 0.67 0.00 49.9 48.80 1.10 
v. poorly 

sorted 
f. sandy 
med. silt 

sandy 
mud 

BS3 4.483 3.10 2.90 4.67 8.08 5.12 1.97 0.42 1.86 5.09 2.00 0.31 0.70 0.00 41.10 57.20 1.70 
poorly 

sorted 

v. f. sandy 

med. silt 

sandy 

mud 

BS3(R) 4.483 3.24 2.92 4.99 8.16 5.26 1.98 0.33 1.83 5.25 2.02 0.20 0.70 0.00 37.80 60.20 2.00 
v. poorly 

sorted 
v. f. sandy 
med. silt 

sandy 
mud 
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