
Graceful Language
Extensions and Interfaces

by

Michael Homer

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy

Victoria University of Wellington
2014

Abstract

Grace is a programming language under development aimed at ed-
ucation. Grace is object-oriented, imperative, and block-structured, and
intended for use in first- and second-year object-oriented programming
courses. We present a number of language features we have designed
for Grace and implemented in our self-hosted compiler. We describe the
design of a pattern-matching system with object-oriented structure and
minimal extension to the language. We give a design for an object-based
module system, which we use to build dialects, a means of extending and
restricting the language available to the programmer, and of implementing
domain-specific languages. We show a visual programming interface that
melds visual editing (à la Scratch) with textual editing, and that uses our
dialect system, and we give the results of a user experiment we performed
to evaluate the usability of our interface.

ii

ii

Acknowledgments

The author wishes to acknowledge:

• James Noble and David Pearce, his supervisors;

• Andrew P. Black and Kim B. Bruce, the other designers of Grace;

• Timothy Jones, a coauthor on a paper forming part of this thesis and
contributor to Minigrace;

• Amy Ruskin, Richard Yannow, and Jameson McCowan, coauthors on
other papers;

• Daniel Gibbs, Jan Larres, Scott Weston, Bart Jacobs, Charlie Paucard,
and Alex Sandilands, other contributors to Minigrace;

• Gilad Bracha, Matthias Felleisen, and the other (anonymous) review-
ers of papers forming part of this thesis;

• the participants in his user study;

• David Streader, John Grundy, and Laurence Tratt, examiners of the
thesis;

• and Alexandra Donnison, Amy Chard, Juanri Barnard, Roma Kla-
paukh, and Timothy Jones, for providing feedback on drafts of this
thesis.

iii

Contents

1 Introduction 1

2 Related Work 5
2.1 Programming language education 5

2.1.1 Educational psychology 6
2.1.2 Programming pedagogy 8
2.1.3 Educational languages 11

2.2 Pattern matching . 15
2.2.1 Scala . 17
2.2.2 Newspeak . 19
2.2.3 Other object-oriented languages 21
2.2.4 Functional languages 23

2.3 Modules . 27
2.3.1 Classes and objects as modules 27
2.3.2 Packages . 30
2.3.3 Foreign objects . 33

2.4 Dialects and domain-specific languages 34
2.4.1 Racket . 35
2.4.2 Scala . 37
2.4.3 Ruby . 38
2.4.4 Haskell . 40
2.4.5 Cedalion . 41
2.4.6 Converge . 41
2.4.7 Wyvern . 42

iv

CONTENTS v

2.4.8 Protean operators . 43

2.4.9 External domain-specific languages 43

2.4.10 Pluggable checkers. 46

2.5 Visual interfaces for novices 46

2.5.1 Scratch . 47

2.5.2 Blockly . 48

2.5.3 Codemancer . 49

2.5.4 Lego Mindstorms . 49

2.5.5 Calico . 50

2.5.6 Alice . 51

2.5.7 Greenfoot . 52

2.5.8 TouchDevelop . 52

2.5.9 Droplet . 54

2.5.10 Graphical overlays on programs 54

3 The Grace Language 57
3.1 Goals of Grace . 57

3.2 Variables and literals . 58

3.3 Objects in Grace are closer than they appear 60

3.4 Methods . 61

3.4.1 Operators . 61

3.4.2 Field accesses . 63

3.4.3 Multi-part method names 63

3.4.4 Visibility . 64

3.5 Blocks . 65

3.6 Classes . 67

3.7 Inheritance . 67

3.7.1 Chained inheritance 68

3.8 Types . 69

3.8.1 Generic types . 71

3.9 Pattern matching . 72

v

vi CONTENTS

3.10 Modules . 72

3.11 Dialects . 72

4 Patterns as Objects 73
4.1 Introduction . 73

4.2 Conceptual model . 75

4.3 Graceful patterns . 76

4.3.1 match()case()...case . 76

4.3.2 Matching blocks . 77

4.3.3 Literal patterns . 78

4.3.4 Type patterns . 78

4.3.5 Variable patterns . 78

4.3.6 Wildcard pattern . 79

4.3.7 Combinators . 79

4.3.8 Destructuring . 80

4.3.9 Predicates . 81

4.3.10 Using arbitrary expressions to obtain patterns 82

4.4 Patterns as objects . 83

4.4.1 Patterns as an object framework 83

4.4.2 Irrefutable patterns . 84

4.4.3 Combinators . 87

4.4.4 Types . 89

4.4.5 Autozygotic patterns 90

4.4.6 Destructuring patterns 91

4.4.7 Destructuring types . 94

4.4.8 Lambda patterns and match...case 96

4.5 Types and patterns . 97

4.5.1 Pattern and MatchResult 98

4.5.2 Destructuring . 99

4.5.3 Combinators . 100

4.5.4 Exhaustive matching 101

vi

CONTENTS vii

4.6 Generalising patterns . 102

4.7 Discussion and comparison with related work 103

4.7.1 Scala . 105

4.7.2 Newspeak . 108

4.7.3 Racket . 112

4.7.4 Gradual and optional typing 113

4.7.5 Matching as monads 114

4.7.6 Future work . 114

4.7.7 Alternative approaches 115

4.7.8 Application . 121

4.8 Conclusion . 122

5 Modules as Gradually-Typed Objects 123
5.1 Introduction . 123

5.1.1 What is a module? . 124

5.2 Modules as objects . 125

5.2.1 Importing modules . 126

5.2.2 Gradual typing of modules 127

5.2.3 Recursive module imports 130

5.3 Design rationale . 131

5.4 Package management . 132

5.4.1 Identifying packages 132

5.4.2 Finding packages . 134

5.4.3 Installing packages . 134

5.4.4 Publishing packages 134

5.5 Extensions and future work 135

5.5.1 Foreign objects . 136

5.5.2 External data . 138

5.5.3 Resource imports . 138

5.6 Comparison with related work 141

5.6.1 Python . 142

vii

viii CONTENTS

5.6.2 Newspeak . 144

5.6.3 Go . 145

5.7 Conclusion . 147

6 Dialects 149
6.1 What is a dialect? . 151

6.1.1 Structure . 151

6.1.2 Pluggable checkers . 153

6.1.3 Run-time protocol . 154

6.2 Case studies of dialects . 155

6.2.1 Logo-like turtle graphics 155

6.2.2 Design by contract . 158

6.2.3 Dialect for writing dialects 160

6.2.4 Requiring type annotations 163

6.2.5 Literal blocks . 166

6.2.6 Ownership types . 167

6.2.7 Type checking . 173

6.2.8 Relations . 175

6.2.9 Finite state machines 176

6.2.10 GrAPL . 177

6.2.11 GPGPU parallelism . 178

6.3 Discussion . 181

6.3.1 Inheritance . 181

6.3.2 Delegation . 183

6.3.3 Macros . 184

6.3.4 Local dialects . 186

6.3.5 Default methods . 187

6.4 Implementation . 188

6.4.1 Lexical scoping . 188

6.4.2 Executing checkers statically 189

6.4.3 Side effects . 191

viii

CONTENTS ix

6.4.4 Security concerns . 192

6.5 Comparison with related work 192

6.5.1 Racket . 192

6.5.2 Scala . 195

6.5.3 Ruby . 195

6.5.4 Wyvern . 196

6.5.5 Cedalion . 196

6.5.6 Haskell . 197

6.5.7 Xtext . 198

6.6 Conclusion . 201

7 Tiled Grace 203
7.1 Tiled Grace . 204

7.1.1 Implementation . 207

7.2 Motivation . 210

7.3 Functionality . 212

7.3.1 Handling errors . 213

7.3.2 Overlays . 215

7.3.3 Dialects . 216

7.3.4 Type checking . 219

7.3.5 Hints . 221

7.4 Experiment . 222

7.4.1 Research questions . 223

7.4.2 Participation . 224

7.4.3 Instruments . 224

7.4.4 Protocol . 224

7.4.5 Data collection . 227

7.5 Results . 236

7.5.1 Demographics . 236

7.5.2 Programming experience 237

7.5.3 Technologies used . 239

ix

x CONTENTS

7.5.4 Engagement . 241

7.5.5 Error handling . 247

7.5.6 View switching . 247

7.5.7 Freeform responses . 259

7.5.8 Threats to validity . 271

7.5.9 Summary . 272

7.6 Comparison with related work 273

7.6.1 Scratch . 273

7.6.2 Blockly . 275

7.6.3 Alice . 275

7.6.4 Droplet . 276

7.6.5 Calico Jigsaw . 277

7.7 Future work . 278

7.8 Conclusion . 279

8 Implementation 281
8.1 Overview . 281

8.1.1 Extensions and limitations 282

8.2 Architecture . 283

8.2.1 Lexer . 284

8.2.2 Parser . 285

8.2.3 Identifier resolution . 286

8.2.4 Code generation: C . 288

8.2.5 Code generation: ECMAScript 290

8.3 History . 292

8.3.1 Parrot to LLVM . 292

8.3.2 Self-hosting with LLVM 293

8.3.3 Unicode . 295

8.3.4 Generating ECMAScript 296

8.3.5 Generating C . 297

8.3.6 Garbage collection . 297

x

CONTENTS xi

8.4 External libraries . 298
8.4.1 Grace-GTK . 298
8.4.2 Grace-CUDA . 300

8.5 Outside contributions . 301

9 Conclusions 303
9.1 Future work . 305

A Auxiliary data 309

B Extended examples 311
B.1 Scala matching . 312
B.2 F] matching . 313

C Package Manager Example 315

D Tiled Grace Experiment 317

E Tiled Grace Tour Script 337

xi

xii CONTENTS

xii

Chapter 1

Introduction

Grace is an object-oriented imperative programming language in develop-
ment intended for education. Grace aims to be used in introductory com-
puter science courses and to incorporate accumulated knowledge about
teaching while avoiding pitfalls found in contemporary languages com-
monly used for these courses.

In this thesis we investigate extensions to the Grace language allowing
the programmer to express their intentions in a manner suitable to their
understanding of the task at hand. For novice programmers complex
ideas can be presented simply and departures from the expected actions
restricted. For more experienced programmers these extensions provide
power within a concise structure. We do not focus on Grace’s educational
claims, but instead aim to design features of general utility that meet the
goals of the language.

The contributions of this thesis are:

• An object-oriented pattern-matching system embedded into the lan-
guage with minimal syntactic and semantic change. This system
includes both a concise and readable syntax for writing pattern-
matching expressions and a fully object-oriented design for patterns
themselves, incorporating both those patterns built into the language

1

2 CHAPTER 1. INTRODUCTION

and user-defined patterns. This contribution was published in the
2012 Dynamic Language Symposium [74].

• A module system based on objects, providing the desirable attributes
of modules by building on existing common language semantics. This
contribution was published in a paper presented at DYLA 2013 [70].

• A system of dialects, language variants able to provide extensions and
restrictions of the base language to the user, built using our module
system and pattern matching. We show how this system supports
both pedagogical sublanguages and powerful domain-specific lan-
guages within a single language, and present case studies to evaluate
its breadth and power. This contribution was published in a paper at
ECOOP 2014 [71].

• A novel editing environment integrating both drag-and-drop visual
editing and conventional textual editing of code in one, with bidi-
rectional transition between the two and supporting multiple user-
defined dialects. We present the results of a user experiment evaluat-
ing our design. This contribution was published in VISSOFT 2013 [72]
and 2014 [73].

While the papers cited above have additional authors, the principal
work and authorship was by the author of this thesis.

The structure of this thesis is as follows. The next chapter describes
related work in all of the contribution areas and programming pedagogy
generally. Chapter 3 introduces the Grace language overall. Chapter 4
describes our pattern-matching system and Chapter 5 our module design.
Chapter 6 presents our dialect design and a variety of case studies to
evaluate it. Chapter 7 shows our visual-textual editing environment and
the results of our experiment evaluating the system. Chapter 8 describes
Minigrace, our self-hosted compiler for Grace, and Chapter 9 concludes.
Within each of the contribution chapters separate sections (Sect. 4.7, Sect. 5.6,

2

3

Sect. 6.5, and Sect. 7.6) explicitly contrast and position our work among
related work.

For ease of reference the author will use the royal pronouns throughout
this thesis.

3

4 CHAPTER 1. INTRODUCTION

4

Chapter 2

Related Work

In this chapter we describe other work related to the contributions of this
thesis. This chapter will provide an overview of the related work; each
contribution chapter includes a section explicitly contrasting our work with
others’. The next section gives an overview of programming education
research generally, and the following sections address work in the areas
of our contributions. Section 2.2 discusses pattern-matching systems, Sec-
tion 2.3 describes module systems, Section 2.4 notes research on language
variants and domain-specific languages, and Section 2.5 presents other
visual programming interfaces.

2.1 Programming language education

Although we do not make claims about Grace’s educational suitability,
we must be mindful of the nature of the language in our contributions,
and place them in the corect context. Here we summarise relevant educa-
tional literature and describe past educational programming languages. A
broader overview of work on programming languages or tools for novices
in general is given in the work of Pears et al. [148], while Robins, Rountree,
and Rountree provide an overview of work on learning programming [166]
and Carter et al. [23] summarise work on programming students’ motiva-

5

6 CHAPTER 2. RELATED WORK

tion and programme structure.

The most common report of research on teaching programming to
novices is that they perform unusually poorly compared to other pro-
grammes in the university, often in combination with an unusually high
rate of top grades in the same course (a bimodal distribution) [107, 165].
The second most common is that the authors have found a miracle cure
by using/not using static types, objects, classes, graphics, arithmetic, Java,
Python, C++, their new language, or their new tool, and that everyone
should immediately switch to this approach; this part of the literature is
backed up by anecdotes and limited quantitative studies.

The remainder of this section is broken into three parts: the next ad-
dresses research in educational psychology with relevance to programming
education, while Section 2.1.2 describes pedagogical approaches, and Sec-
tion 2.1.3 educational programming languages.

2.1.1 Educational psychology

Educational psychology studies human learning and cognition. Much work
has been done in the area with children and undergraduate students in
particular, although relatively little on programming language education
in itself. Much research in the area has application to teaching in general,
including teaching programming, but some concepts in particular stand
out as important for programming education: transfer of learning is the
application of skill learnt in one area to learning another related skill [150,
164], while the distinction between expert and novice problem-solvers is
also instructive.

Transfer can be divided along multiple lines [164]. A key division is the
distance of transfer: near transfer applies learning about one domain to a
domain whose essential stimuli are similar to the first, and far or distant
transfer applies concepts to a domain much different than the original.
In the context of programming education, moving from one language to

6

2.1. PROGRAMMING LANGUAGE EDUCATION 7

another is likely to be near transfer [142], but the division is contextual.
Another division is between low road transfer, where skills are applied in
the new domain without effort because the skill has been developed to a
very high level, and high road transfer where explicit connections must be
made between concepts [150].

An expert in a domain has substantial experience in that area and is
able to conceptualise it at a high level, while a novice does not have this
experience, and is likely to view problems in the domain at a low level,
with many small problems they must solve individually. An expert is
able to achieve low-road near transfer, and high-road distant transfer; a
novice struggles to achieve any transfer at all. Becoming a genuine expert is
thought to require thousands of hours of experience, but other plateaus are
thought to exist, and in particular novices can reach the point of competence
and begin to achieve easy near transfer with several hundred hours of
experience with careful teaching [35, 150]. Early in learning, however, a
novice will experience no transfer at all, and sees no benefit from having
learnt even a closely related skill to a low level.

For learners to achieve transfer they must be taught the concepts in a
fashion that facilitates transfer [150]. Without such teaching the knowledge
tends to be inert: it can be applied within its original context, but learners
will not generalise from that context to apply their knowledge elsewhere.
Perkins and Martin found that students learning to program would learn
language constructs inertly, and so had difficulty applying their knowledge
to the act of programming, notwithstanding that the distance of transfer
is minimal in this case [149], while Dyck and Mayer found that without
transfer-focused teaching learners of BASIC would master the syntax of the
language, but struggle more with semantics than those taught with trans-
fer [41]. An assumption in much teaching is that (near) transfer will occur
automatically by the low road, but research has not borne this assumption
out in practice [150], instead finding that instruction must be tailored to
assist high-road transfer; in the literature, this tailoring to target high-road

7

8 CHAPTER 2. RELATED WORK

transfer is called bridging [41].

In the context of teaching programming, the first domain may be a single
programming language and the second a different language; they may also
be different ways of working within the same language, or even the syntax
and semantics of a single language. To transfer their skills from one domain
to the other students will need a combination of sufficient experience and
bridging instruction, or else there will be no transfer and the second domain
will need to be taught essentially from scratch. This finding has implications
for the design of educational languages: because an educational language
explicitly expects learners to move on to other languages afterwards, the
language must support the learner for long enough to allow them to build
sufficient competence that they can successfully transfer their skills to
another language.

2.1.2 Programming pedagogy

Papert [143] proposed a discovery learning format for teaching program-
ming based on Piaget’s theory of cognitive development [153, 154, 155, 156].
In Papert’s model, students learn a programming language in a similar
conceptual fashion to how children learn natural languages. In the dis-
covery format learning is almost entirely self-directed and learners are
provided with an interactive system (the Logo language and environment)
to work with where changes can be readily perceived. A student learns by
experimentation, gradually forming a mental model of the programming
environment based on their observations of the effects of their actions;
proponents claim that this approach leads to both programming compe-
tence and general problem-solving ability that can be applied to other
domains (including non-programming domains and mathematics). Exper-
imental teaching did not show the results predicted by Papert [101, 35],
although some contemporary work found that an approach with more
explicit bridging showed more success [38, 27]. After much work on teach-

8

2.1. PROGRAMMING LANGUAGE EDUCATION 9

ing mathematics with Logo failed to bear results, interest waned in the
late 1980s. Little work on programming education with a true educational
psychology focus has occurred since; the computer science education litera-
ture of the 1990s and 2000s to date has largely been filled with designers,
authors, and fans proposing that their language or approach is best, and
experience reports that do not account for confounding factors [187, 108,
any SIGCSE proceedings]. Nonetheless, some interesting results have been
presented in recent years, and we will discuss these now before moving
into discussion of proposed educational languages.

Garner et al. [57] report on the prevalence of different errors in novice
code in Java. The most common error in their categorisation was “basic
mechanics” (largely typographical in nature – omitted brackets, misnamed
variables or classes, and similar). The next most common problems all dealt
with high-level understanding of the task at hand, and misunderstandings
and misapplications of procedural constructs followed. Mechanical errors
dominated for students at all levels. The authors suggest targeted interven-
tions aimed at the common errors and using the distribution of errors to
guide the length of instruction on particular topics.

Cardell-Oliver [21] suggests using automated metrics to diagnose stu-
dent code, and to report results and suggestions from those metrics to
students as formative feedback to help them improve. Well-known metrics
can measure program size, efficiency, correctness, and style automatically,
and outlying results can be reported to the student with guidance on how
they might improve their programs. The same metrics can guide course
design by determining where students are actually having problems, which
may differ from the instructor’s supposition. The author also identifies
limitations in past studies using single quantitative measures of perfor-
mance, and of grading models in common use that may cause the bimodal
distribution sometimes found in programming courses; in both cases, the
author proposes the use of objective software metrics instead.

Robins [165] proposes a model of student attainment in which a chain

9

10 CHAPTER 2. RELATED WORK

of dependent concepts in computer science causes student performance to
diverge: either the student understands early concepts, and continues to
perform, or encounters difficulty at some point and is unable to catch up;
the author proposes that the dense dependency chain of learning program-
ming concepts is unique. This learning edge momentum is a rich-get-richer
model: a student who is performing well at a given point in the course will
likely attain competence at the next concept introduced, while one who
has not understood the last concept will likely not understand the next.
This effect compounds during the course, leading to a bimodal distribution.
Robins proposes this model as an explanation for the high rate of high
grades that often accompanies the high failure rate, and provides citations
from other educational work to substantiate the model as a reasonable
explanation of observed facts, as well as to counter the alternative explana-
tion that there are distinct populations a priori able or unable to program.
The author notes that the model suggests an especial effort and focus be
applied at the start of a programming course to put as many students as
possible on the positive path.

Murphy and Thomas [129] note implications of psychological research
on self-conception of intelligence for computer science education: in partic-
ular, views on whether applied intelligence is fixed or malleable and able
to grow. The authors note that experimental results in psychology may in
particular provide partial explanations for the tendency of some students to
stop completely when faced with difficulty, as well as the observed gender
disparity in the field, and suggest an approach for changing students’ views
so that all have a growth mindset to achieve more effective instruction. They
also note that the views of the instructor may also have an effect.

Caspersen and Bennedsen [24] propose a design for an introductory
object-oriented programming course based on educational theory. Their
approach is based on explicitly forming patterns for programming activities
through structured repetition, using worked examples in particular as a
focus of the course content. The authors note providing multiple such

10

2.1. PROGRAMMING LANGUAGE EDUCATION 11

examples as beneficial, along with varying the surface structure of the
examples and having students describe the programs to themselves. The
authors report success in running the course they describe, but have only
anecdotal evidence for that success at this point.

The ACM and IEEE have collaborated on curriculum guidelines for
computer science, programming, and software engineering programs since
1968 [2]. The latest edition, CS2013 [88], requires that students be prepared
to work in multiple paradigms and multiple disciplines, and provides
specific guidance for introductory courses. The guidelines note explicitly
that “it is important that students do not perceive computer science as only
learning the specifics of particular programming languages” [88, p41]: stu-
dents must learn the base concepts through programming, and be prepared
to apply those concepts in other languages or contexts. The report also
notes the explicit trade-off that must be made for an introductory language:

The use of a language or environment designed for intro-
ductory pedagogy can facilitate student learning, but may be
of limited use beyond CS1. Conversely, a language or environ-
ment commonly used professionally may expose students to
too much complexity too soon.

A language or tool designed for introductory courses will need to tread
this line carefully, supporting learners to the point that they are able to use
their knowledge in other contexts.

2.1.3 Educational languages

Many educational programming languages and systems have been de-
signed, and some have achieved wide currency for a time. BASIC [93]
was a language originally designed for beginners, but not necessarily for
programming education; the designers’ goal was to open up programming
to users in non-computing fields. BASIC was originally unstructured, but

11

12 CHAPTER 2. RELATED WORK

later gained procedures, and was widely used in various forms for teaching
for many decades. Early versions of the language included only GOTO-
based control flow and two-letter variable names. BASIC in particular was
often scorned as a poor choice of introductory language despite its popu-
larity, with claims that its use led to poor programmers. Many different
implementations with slightly different syntax, semantics, and features
became widespread with the rise in minicomputers, and Microsoft’s Visual
Basic is still a popular language for real-world programming today [180].

Pascal [195, 87] was one of the most successful educational languages,
in widespread use for teaching from the 1970s through 2000s. Pascal is
an imperative, statically-typed, procedural programming language, with
one of the key goals being to teach structured programming, a then-recent
development. The original working Pascal compiler was written in Pascal
itself, and the needs of that compiler also influenced the language design.
While Pascal was explicitly intended for education, it also gained use
outside of teaching. This use was controversial both with the designer
and others, who found the simplifying limitations of Pascal unsuitable for
real-world programming [94].

SP/k [67] is a family of languages designed to teach structured pro-
gramming: there are several subset languages SP/1 through SP/8, each of
which introduces new constructs building on the previous subset. SP/k
was designed as a subset of PL/I and achieved some use in the 1970s and
1980s.

Lisp [121] was not built as an educational language, but rather simply
as a practical notation for writing programs for limited machines. Lisp is
an impure functional language, with all control flow by prefix function
calls. Lisp is a homoiconic language: its representation of data structures
and code are the same, built of s-expressions written in parentheses; this ho-
moiconicity led to advanced macro systems that manipulate program code.
Many variants of Lisp have existed and continue in use today. Lisp has
been proposed for educational use because of its syntactic simplicity [49]:

12

2.1. PROGRAMMING LANGUAGE EDUCATION 13

there is only one syntactic form, only one kind of bracketing construct, and
only one kind of control flow. The argument is that by having only one
form to learn students are less confused and make fewer errors, freeing
them to focus on the essential components of learning.

Logo [143] is a Lisp derivative explicitly aimed at education. Logo’s
design has roots in mathematics and psychology research, and pioneered
in particular the “turtle graphics” paradigm, where an on-screen image or
tangible robot follows instructions to move around the world, leaving a
trail behind itself. Logo is one of the few proposed educational languages
with genuine educational research behind it, which was discussed earlier.

Racket [49, 182] is another Lisp derivative explicitly proposed for teach-
ing. Racket is integrated with DrRacket, a specialised integrated develop-
ment environment for teaching. DrRacket includes a number of features to
help novices, including a stepping debugger, various metadata overlays,
and educational language variants. Racket supports a system of language
variants that allow giving students at different stages of learning access
to different functionality and different error messages, and includes a pro-
posed sequence of variants to use for teaching.

Scratch [162] is a visual language for teaching aimed at children. All
editing in Scratch is by drag-and-drop: the programmer drags a jigsaw-
piece tile out of the toolbox and puts it onto the work area or into a space
in an existing tile. The language is integrated with the editor and a persis-
tent microworld where different sprites can be placed and given code to
control their movements, dimensions, and actions. Scratch is an impera-
tive language with some structured components, and inherently supports
concurrency. Research has shown some success in drawing children to en-
gage with computers [53, 17, 115], but has also seen difficulties in learners
moving on to other languages [123, 124].

Alice [36] is another visual language for teaching, aimed at a slightly
older audience than Scratch. Alice includes a graphical microworld filled
with three-dimensional sprites, which can be manipulated and moved in a

13

14 CHAPTER 2. RELATED WORK

three-dimensional space. As in Scratch, code editing is by drag-and-drop,
although with a larger number of menus than Scratch. Alice is primarily an
event-driven programming system, where code executes in response to a
condition being true within the microworld, but it includes most common
structured-programming features as well.

SOLA [120, 119] is a simplistic objects-first prototype-based imperative
programming language intended to teach the concepts of object orientation
to novices, drawing from principles set out by McIver and Conway [130]
for their GRAIL language. SOLA is a textual language fully integrated with
an editor, and is structured so that a user can interrogate the structure of
their objects at any time. The authors propose that by limiting learners
to only the basics of object orientation they will be forced to learn those
concepts well without being distracted by accidental complexities of the
language, and present a small study [119] to support this claim; this study
separates out reading, writing, and modifying code, which has not been
commonly done in the recent literature.

Stefik and Siebert [173] describe Quorum, an “empirically-designed”
introductory language, and perform empirical studies to compare novice
accuracy in their language, a “randomly-generated” language called Ran-
domo of their own design, and several other languages. The authors study
keywords and constructs for “intuitiveness” with novices, and select the
most intuitive terms to incorporate into Quorum. Randomo replaces the
keywords of Quorum with random non-alphanumeric symbols from the
ASCII table. The authors also investigated readability of larger program
constructs, finding that Quorum performed best at this task. Finally, they
conducted an experiment where they presented students with the same
programs in Quorum, Perl, Randomo, Java, Python, and Ruby, along with
a textual description, in order that participants would learn the syntax and
semantics of the language; they then asked participants to produce pro-
grams performing particular tasks in that language. The authors reported
that users in Java and Perl performed no better than in the randomly-

14

2.2. PATTERN MATCHING 15

generated language, while users of Quorum, Ruby, and Python performed
comparably and better than random. These studies did not involve any
structured instruction of participants and so are not directly comparable
to real teaching, rather representing untrained readability with targeted
reproduction.

2.2 Pattern matching

A pattern matching system is a structured way of categorising at runtime
data entities in a program based on some characteristic, and branching on
the basis of that category [181]. In an object-oriented language, that entity
being matched will be an object, but pattern matching is most common
in functional languages where some combination of records, types, and
primitive values can be involved in matching. The syntax, semantics, and
role of pattern matching differ significantly between languages.

Matching is the basis of entire models of program organisation [85].
Where in object-oriented code dynamic dispatch on the receiver allows
executing different code for different kinds of data by placing the code
in the object, a language with strong pattern-matching facilities allows
the program to be structured in the opposite manner: code dealing with
different types of data is placed outside the entity in question, after the
fact, and potentially with all the related cases together. These different
models of organisation are usually found in different languages; our work
(in Chapter 4) is on permitting both models within a single (object-oriented)
language, so we will discuss both functional and object-oriented related
work here with a particular focus on how they enable (or hinder) these
models.

We define two broad approaches to pattern matching that influence
both the syntax and semantics of the resulting system: matching can be
what we will term inherent, meaning that patterns are a special built-in
construct functioning in predetermined ways, or exherent, meaning that the

15

16 CHAPTER 2. RELATED WORK

precise behaviour of matching is user-defined, with the language providing
a structure.

In an inherent matching system, such as in Scala [46], OCaml [102], or
Haskell [117], specfic matching syntax can be provided that expresses the
full range of possible patterns. These patterns are embedded deeply in
the language. The semantics of matching is generally determined by what
leads to (perceived) good syntax that appears naturally in the language.
Patterns are not first-class entities in themselves.

In an exherent matching system, such as in Newspeak [58], OMeta [192],
and F# [176], patterns are first-class entities and can have arbitrarily com-
plex behaviour. As a result of this flexibility, however, a fully-integrated
syntax is more complex or impossible. The semantics of patterns align with
the rest of the language.

In an exherent matching system the programmer can write code that
is polymorphic in patterns, such as a method or function that accepts
patterns and retains them to be applied later. With an inherent system
this polymorphism is not generally possible, as patterns are not first-class
entities. The programmer can, however, often build a first-class object or
function that simulates this behaviour, in effect building an exherent system
on top of the inherent system of the language. The reverse behaviour,
building an inherent system on top of an exherent one, is not generally
possible as inherent systems innately depend on language syntax support.
In this way an inherent system has some additional flexibility that an
exherent system does not, albeit the flexibility to simulate an exherent
system.

Languages using both inherent and exherent approaches exist, although
inherent matching is more common and precedes exherent techniques,
existing in very early functional languages. Some languages integrate
aspects of both approaches.

Pattern-matching systems often draw from mathematics the concepts
of partial and piecewise functions, particularly in functional languages. A

16

2.2. PATTERN MATCHING 17

partial function is a function that is defined only for some inputs; the set
of inputs for which the function is defined is called its domain. A piecewise
function is one with different bodies (implementations) defined for different
sub-domains. Piecewise functions can be seen as combinations of multiple
partial functions, one for each constituent domain. In mathematics, the
domain is a set, but in programming languages how a domain is defined,
what it means, and how it affects the program varies dramatically.

Our pattern-matching design draws from Scala [46] (principally an
inherent matching system) and Newspeak [58] (principally an exherent
matching system), so we first focus particularly on these languages. We
outline the design of these and other pattern-matching systems here, and
contrast them with our approach in Section 4.7.

2.2.1 Scala

Scala includes a powerful inherent pattern-matching system, with explicit
syntactic extensions supporting it [46]. The syntax of patterns is a distin-
guished sub-language, designed to make for concise patterns.

Scala matching is primarily based around the match-case construct:1

x match {
case 1 => "one"

case "two" => 2
case y : Int => "scala.Int"

case (a, b, c) => "A triple: " + a + "," + b + "," + c
}

The match-case construct defines a series of partial functions, combin-
ing them into a piecewise function. Each instance of the case keyword
introduces a partial function definition with the domain determined by
the constraints that immediately follow: “1”, “y : Int”, etc; the behaviour of

1As with many Scala programs, the typechecking of this example is perhaps-
unexpectedly context-dependent. A complete program incorporating the example verba-
tim is included in Appendix B.1.

17

18 CHAPTER 2. RELATED WORK

each pattern is built into the language. These definitions are valid within
the match block only, which is a special parsing context. A block of cases
returning values can also be provided to methods taking single-argument
(first-class) functions as arguments; these cases must cover every possible
input. The matching syntax also permits “guards”: additional boolean tests
that must pass for a case to succeed. Guards are written after if and before
the => of the case block.

Scala supports user-defined “case classes” with additional matching
functionality. A case class is an ordinary class whose parameters are re-
tained and publicly-available. Case classes are explicitly declared as such
and can be both instantiated and used in pattern matching:

case class Point(x, y)
...
x match {
case Point(0, y) => "On the y axis at " + y
case Point(x, 0) => "On the x axis at " + x
case Point(x, y) => "On neither axis at " + x + "," + y

}

The constructor parameters of case class instances can be decomposed,
matched against, and accessed during pattern matching. Like other classes,
case classes can inherit, and instances of case classes can have additional
methods and fields. Case classes as patterns are distinguished by always
having parentheses after their names; if there are no constructor parameters
to match, the case name is followed by empty parentheses: case Nil() => "

nil".

“Extractor objects” are a generalisation of case classes, allowing any
object to permit matching and decomposition. Extractor objects are first-
class objects and allow some exherent matching behaviour. An extractor
object has a method “unapply” which returns either a list of decomposed
values from a successful match, or a Boolean indicating success or failure
with no decomposed values. Extractor objects can have arbitrary semantics

18

2.2. PATTERN MATCHING 19

for determining whether to match or not, and what values to extract; they
have no fixed relationship to other extractor objects. Using an extractor
object has the same syntax as a case class, including parentheses.

We contrast our design with Scala explicitly in Section 4.7.1.

2.2.2 Newspeak

Newspeak [58] includes an object-oriented pattern-matching system de-
signed around message passing (also known as method calls). In contrast
with Scala, Newspeak’s is a fully exherent matching system: patterns and
classes are objects, and matching does not involve distinguished syntax
or altered semantics but rather ordinary method invocation. All patterns
implement doesMatch:else: and all matchable objects case:otherwise:2.

To perform a match the programmer sends a case:otherwise: message to
the target object they wish to match. The first argument to case:otherwise:
is a pattern object, and the second is a block of code to execute if the
match fails. The target object double-dispatches to the pattern object’s
doesMatch:else: method, passing itself and that same block.

In the ordinary case the pattern then asks the target to match: the
pattern, and the target responds by sending a type-specific message back
with some state that it wishes to be recognised by; for example, a point
could respond by sending the x:y: message, while a string would simply
send itself in the string: message. A pattern implements the messages
sent by the objects it wishes to match, or handles all messages through the
default doesNotUnderstand: protocol. Any unhandled message causes a
“not understood” exception, which is interpreted as a failure. The matching
protocol is shown in Figure 2.1.

At any of these points either a target object or a pattern can deviate from
the protocol. An object that does not wish to be matched at all can reject the
initial case:otherwise: message and opt out of pattern-matching altogether.

2In Newspeak, method names can have multiple parts; these are written using colons.

19

20 CHAPTER 2. RELATED WORK

Client Pattern Target

case:otherwise:

doesMatch:else:

match:

obj:data:here:

doesNotUnderstand:

Figure 2.1: Matching sequence in Newspeak. The obj:data:here: message is
target-type-dependent, while doesNotUnderstand: is optional.

Complex patterns are built using object composition, including nested
decomposition of object state. A pattern with any desired semantics can
be written by implementing a suitable doesMatch:else: method, but a
library of suitable combinators and pattern components is included in
the system. There is no distinguished syntax for patterns; as an exherent
system, Newspeak relies on its (relatively flexible) syntax for building
pattern objects, and method invocation for performing the match. As a
result, some patterns in Newspeak are more verbose than they might be in
an inherent matching system such as Scala’s. The compensation is that the
full power of Newspeak’s language is available for defining what should
and should not match, and that patterns can be used in any of the ways
that other first-class objects can.

We contrast our design with Newspeak explicitly in Section 4.7.2.

20

2.2. PATTERN MATCHING 21

2.2.3 Other object-oriented languages

Inherent matching

Thorn [11, 12] makes heavy use of pattern matching, with extensive inher-
ent syntax supporting matches as part of many of the language constructs,
including the control structures and clausal function definitions. Thorn
offers a wide array of built in data types, each with corresponding matching
destructors, and a set of algebraic pattern combinators. A Thorn class’s
formal parameters are used to initialise instance objects, and they can also
be extracted if an object is matched against. Thorn includes special patterns
(and syntax) for matching with regular expressions, arrays, bitpatterns, and
XML.

Fortress [170], another large and flexible language, has a relatively
modest range of pattern matching features, including destructuring of
objects and tuples. Fortress matching is also primarily inherent, although
patterns may be lifted to objects. Like Thorn, patterns in Fortress may be
used freely in definitions, rather than solely in matching constructs.

OCaml includes an inherent pattern-matching system through special
syntax [102]. The programmer can match against any object, but the only
available patterns are algebraic data types. Matching is based on the imple-
mentation site of the target object: matching is a slight generalisation of a
standard instance-of check supported in many languages.

Machete [66] (a forerunner to Thorn) is an extension to Java introducing
pattern matching in a conventional inherent way: adding a match statement,
a rich library of built-in patterns, and a separate type of “deconstructor”
declaration for objects that extract values when matching. While Machete
is primarily an inherent system, and pattern semantics are embedded in the
language, as part of its embedding into Java it does permit limited exherent
extensions through these deconstructors. As in Thorn, Machete includes
special patterns for matching XML, regular expressions, and arrays.

OOMatch [163] is a more radical language design that fully integrates

21

22 CHAPTER 2. RELATED WORK

pattern matching inherently into Java, providing clausal function defini-
tions and multi-methods. OOMatch semantics are a dramatic departure
from those of Java, although most Java programs are upwardly compatible.

Exherent matching

OMeta [192] is an object-oriented language for pattern matching based
on Parsing Expression Grammars (PEGs) [51]. PEGs by nature are an
exherent approach to pattern matching; pattern elements are first-class and
are combined together to build larger patterns, including through aliasing
and nesting. A program in OMeta is a PEG that recognises a given class
of inputs and optionally decomposes an input into a structured result, or
rejects the input. OMeta models grammars as traditional object-oriented
classes and productions as methods. A particular goal of the language is
to permit extending existing grammars in a structured fashion. OMeta
extends PEGs to support matching arbitrary data, but many of its features
remain aimed at conventional text parsing.

Lua includes an exherent text pattern-matching library with composi-
tional first-class patterns built on PEGs [81]. Patterns can be sequenced,
combined, disjoined, and negated through object composition. The library
requires no additional syntactic support, but is geared specifically towards
matching text, not arbitrary objects.

MatchO [189] is another extension to Java that provides a flexible pattern
library but does not need (or provide) any specialised syntax above that of
Java — although syntax can be supplied by invoking a generated parser
inline. MatchO is an exherent system, but is able to obtain some benefits of
an inherent system through this parsing approach, albeit with a very stark
delineation between code in the base language and in a pattern. In MatchO,
patterns are necessarily first-class, given that they are implemented as a
normal Java library, but MatchO does not generalise patterns to pattern
combinators.

22

2.2. PATTERN MATCHING 23

2.2.4 Functional languages

Many if not most functional languages include substantial pattern-matching
functionality, and are often based around matching as a mechanism for
program organisation [85]. In most cases matching is principally on the
type (or implementation) of an entity, and may be in the form of partial
function definitions.

Most commonly, functional languages support inherent matching. These
languages frequently borrow from mathematics the concept of partial func-
tions and use that as the basis of the language. Haskell is a representative
example of this approach which we discuss in the next subsection.

Some functional languages support exherent matching, either in addi-
tion or instead of inherent matching. We will discuss F#’s and Racket’s
interesting approaches to leveraging the existing nature of functional lan-
guages to support first-class patterns and matching below.

Haskell

Haskell, in common with most other functional languages, provides ex-
cellent syntactic and semantic support for patterns [117]. This pattern
matching follows an inherent approach and is built in to the language:
patterns are not first-class elements that can be operated on. Patterns are
either embedded deeply into the language, like the historical n + k patterns,
or correspond exactly to matching data type definitions.

All functions in Haskell can be partial or defined piecewise using pattern
matching:

fib :: Int −> Int
fib 0 = 1
fib 1 = 1
fib (n + 1) = (fib (n − 1)) + fib n
−− Alternatively:
fib n = (fib (n − 1)) + (fib (n − 2))

23

24 CHAPTER 2. RELATED WORK

This function returns an element of the Fibonacci sequence [157]: 1 if the
argument is 0 or 1, and for any other argument the sum of the previous
two elements.

Numeric patterns are built in to the language, but user-defined data
types can also be matched against:

data List a = Nil | Cons a (List a)
length :: List a −> Int
length Nil = 0
length (Cons x xs) = 1 + (length xs)

This function computes the length of a linked list recursively, with Nil as
the terminator. Matching here is exactly on the definition site of the target:
only a Cons arising from this definition will be matched.

Special cases for some common data constructors are built in, like the “:”
constructor for the built-in list type and “()” for tuples. The syntax is quite
concise and allows specifying, in particular, recursive function definitions
easily. Recursive functions are a very common occurrence in Haskell code,
so the pattern matching system optimises for them.

Piecewise function definitions are in fact syntactic sugar for a single
function containing a use of the built-in case...of syntax, which performs
pattern matching in exactly the same way. In either case, the pattern speci-
fies which values or types should be matched and optionally destructures
them, and finally a value must be returned. A pattern cannot be passed as
an argument to another function or stored in a variable.

Proposals to add reified patterns to Haskell have come from both
Tullsen [184] and Reinke [161]. Tullsen represents patterns as reified partial
functions, and then pattern combinators are function combinators; larger
structures such as case statements and clausal function definitions are
then built on top of these. Reinke’s “lambda-match” proposal extends
this approach to combine individual cases into whole match statements
with combinators. Wadler proposed “Views” [191] as a way to support
programmer-defined matching and destructuring of abstract types in func-

24

2.2. PATTERN MATCHING 25

tional languages, which Peyton Jones made more concrete in proposing
view patterns for Haskell [152]. A view pattern is a function that matches an
abstract value and returns a concrete data type that can be further matched-
against [152]. None of these proposals became part of the overall Haskell
language.

F#

The F# language supports exherent matching against abstract structures
via active patterns [176], as well as the conventional inherent matching
common to functional languages. An active pattern is a function with a
structured name where that name indicates one or more alternative cases.
Active patterns support first class patterns in this way, as F# has first-
class functions. The language also provides a range of pattern combinators,
which in this case are specialised function combinators. F# builds in support
for the common cases most functional languages include in their inherent
matching systems.

Although they can support partial matching, active patterns support
exhaustive matching particularly well, because a single succinct pattern
function matches and destructures every alternative, returning a result
indicating which case of the pattern is matched. In contrast, Scala and
Newspeak require individual matching and extract functions for each case.
An example total pattern match (adapted from the cited paper) is:

let (|Cons|Nil|) l =
if nonempty l then Cons(hd l, tl l)
else Nil

This function definition defines two patterns Cons and Nil. When matching
against one of F#’s built-in lists and suitable definitions, these patterns are
total, with the matching behaviour defined by the code in the body of the
definition and what it returns. These patterns could be used to compute
the length of a list recursively:

25

26 CHAPTER 2. RELATED WORK

let rec length l =
match l with

| Cons(x, xs) −>
1 + length xs

| Nil −>
0

This definition follows the example given for Haskell above exactly, but the
patterns are defined by user code and are first-class entities. A complete
program incorporating these definitions is given in Appendix B.2.

Racket

The Racket Scheme dialect also includes an extensible exherent pattern-
matching facility [181]. Uniquely amongst all the designs presented here,
Racket’s powerful macros enable the language to be extended without any
changes to its core implementation.

Also uniquely amongst the functional languages we have discussed,
Racket makes full use of its functional nature in its pattern system. Patterns
are represented entirely by ordinary functions that examine and classify
their arguments, and these functions are addressed using the ordinary
mechanisms of the language for accessing its first-class functions. Most
patterns desugar to application of a single function with surrounding boil-
erplate code. Syntax for user-defined patterns is written in the same macro
format as built-in patterns, so even these built-in patterns are not privi-
leged in any way. Racket’s system is thus fully exherent, in contrast to other
functional languages.

We discuss Racket further and contrast its system with ours in Sec-
tion 4.7.3.

26

2.3. MODULES 27

2.3 Modules

A module system provides a way of organising code at a high level, where
different modules have a degree of conceptual independence from each
other. For example, different modules may have their own namespaces, be
in separate files, or represent a barrier against access to code.

While most languages support some sort of module system, they vary
dramatically in how they do so. In particular, some languages represent
modules as first-class entities of the language, while in others they are a
grouping of components that are less than first class. We term the latter
“packages”; packages provide less power than first-class modules, as a
package cannot (for example) be aliased at run time, but are more common.
In most cases module systems are something of an afterthought in the
design of a language, and so are often special cases with behaviour different
than other aspects of the language, and semantics that must be learned
separately.

Our module design in Chapter 5 is inspired particularly by aspects of
Python’s and Go’s module systems [159, 60]. We outline the design of these
and other module systems here, and contrast them with our approach in
Section 5.6. We will first examine systems where modules equate in some
fashion to first-class objects, and then look at package systems. Finally, we
give a brief overview of work on obtaining access to other systems through
a module system.

2.3.1 Classes and objects as modules

Python

Python [159] supports modules with separate compilation, which become
objects at run time. All top-level definitions in a source file are attributes
of the module object. Python’s import statement includes the qualified
name of the module as a sequence of dot-separated identifiers, which are

27

28 CHAPTER 2. RELATED WORK

mapped onto a filesystem path: import x.y.z resolves to a file z.py inside
the directory x/y. The source file is loaded at runtime and the resulting
singleton object is bound to the imported name. This is the only way that
a Python object can be created without a class. The import statement may
include an optional as clause, which gives a local name to the imported
module.

When the qualified name of a module includes multiple levels, as above,
each intermediate layer is itself a module. The module x is defined in
the file x/__init__.py. When a module’s qualified name includes a dot all
modules along the chain are imported from left to right, and the leftmost
component of the name is by default bound in the local scope so that the
same qualified name used to import the module can be used to access it. To
make that name available, each intermediate module has a new field added
referring to the next in the chain: after import x.y.z x has a y field, and x.y

has a z field; these changes are globally visible. This mutation is necessary
for the design to work, and possible because Python objects are mutable by
default. The module object is a real object that can be aliased and passed to
other code.

As Python is dynamically typed, there is no type information present
in Python modules. Python only enforces encapsulation by metaprogram-
ming.

We contrast Python’s approach with ours in more detail in Section 5.6.1,
including discussion of some drawbacks of this approach we seek to avoid.

Newspeak

Bracha et al. [15] describe modules as classes in Newspeak. In this language
a module definition is a top-level class, whose instances are termed “mod-
ules” and are immutable. Classes can be nested, and the code in a class can
access external state in three ways: lexically, from an outer scope; from an
argument provided at instantiation-time, or from a superclass. A module
definition has no lexically-surrounding class and so must be passed all

28

2.3. MODULES 29

modules it will use encapsulated in a “platform” object, or else obtain them
through inheritance.

Dependencies are not bound statically in the module source; instead,
the dependencies of a module can depend on instantiation-time arguments,
so a module may be provided a different implementation of a dependency
in different programs, or in different parts of the same program. A module
can pass on the dependency mapping it was given, or create its own. Every
module can have multiple instances and can be inherited from. We contrast
Newspeak’s approach with ours in more detail in Section 5.6.2.

Explicit module construction

Ungar and Smith [186] describe how the Self language can support modular
behaviour by prototype-based object inheritance. Self does not include
a distinguished “module” concept; rather, everything is an object and
some objects may be used as modules. Like other objects, these module
objects must be accessed by sending a message to another object or by
creating them locally. Any object may both inherit and be inherited from,
and inheritance of environment objects subsumes the role of lexical scope,
allowing an object to present a customised picture of the world to code
defined within. The Self system as a whole works in terms of “worlds”,
where objects are created and continue to exist in the world until destroyed,
even persisting when the program or programs are not running. There
is no inbuilt concept of a module. To move (or copy) objects between
these worlds, a “transporter” [185] is used. The transporter does have a
concept of a module, which it uses to produce the correct behaviour. The
programmer annotates individual slots (fields or methods) with the module
they belong to, and potentially with instructions for how each should be
treated. An entire module, spanning many living objects, may then be
moved to another world to be used there, permitting code reuse. Any
object can be used as the basis for module.

In AmbientTalk [37, 188] modules are written as explicit objects and

29

30 CHAPTER 2. RELATED WORK

loaded by asking a “namespace object” for them, which maps directly onto
the filesystem according to a configuration set up earlier. Module import
implicitly creates delegation methods when required, allowing modules
to be imported into a local scope belonging to any object in the system.
Importing a module can occur at any point in the code by calling a method
on the namespace object.

Kang and Ryu [90] formally describe a proposed module system for
JavaScript. JavaScript itself does not have any support for modules, but
they are often simulated by objects or functions in the global scope, which
can lead to naming conflicts. Kang and Ryu’s module system extends the
language with an explicit module declaration, creating a new namespace
and binding a reference to it, which may be traversed to obtain explicitly-
exported properties defined in the module. They show that their system
safely isolates private state, but allows both nesting and mutual recursion.
The view of a module presented to the outside is an object, although the im-
plementation of the “module” declaration desugars to multiple objects and
closures to give effect to encapsulation rules. The semantics are complicated
by JavaScript’s idiosyncratic scoping and visibility rules.

2.3.2 Packages

In contrast to the above languages, in which modules are first-class and
have a run-time existence, we now look at some designs that provide what
we call “packages”: grouping of components that are less than first-class
or which do not exist at runtime at all. We present Go in particular as
a package system we will draw on in our design, and then present the
development of important package systems chronologically.

In the Go language [60], a package may comprise several files, all of
which explicitly declare themselves part of the same package. The defi-
nitions in these files are combined and may be accessed by clients using
Go’s import statement. Once imported, the module’s public interface is

30

2.3. MODULES 31

available through a dotted name, as in Python, but the module itself has
no run-time existence. Go’s import syntax uses opaque strings, which in
practice are interpreted as filesystem paths. Associated tools are able to
interpret import paths as URLs and use them to fetch and install modules
from remote locations when required. Our approach draws from Go in
some respects, and we contrast Go’s approach with ours in more detail in
Section 5.6.3.

Alphard [197] incorporates an early explicit module system aimed at
enabling program verification. Implementation and interface are separated,
so that verification needs only to confirm that the implementation behaves
in accordance with the specification.

CLU [106] includes modules that encapsulate the implementation of a
desired behaviour. These modules may interact with each other through
public interfaces, which fully characterise the module. A module may be
replaced by another implementation with the same abstract interface. A
language construct permits collecting operations together into an abstract
interface.

Standard ML [114] includes a module system built around functors. ML
modules make heavy use of static types to achieve their goals. Modules
bind environments, types, and functions together, and may have multiple
different instantiations. A module gives a single name to a combination of
behaviours and state. The module system is powerful but includes many
constructs with subtle interactions. In particular, modules can have almost
arbitrary type-dependent behaviour giving different effects at different
points where the module is used.

The BETA language itself does not include a module system, instead sup-
porting modularisation through an integrated programming system [96].
Programmers can split their programs however they wish, because sub-
trees of the abstract syntax tree can be maintained and compiled separately,
and then combined. Modules are not first-class entities in BETA, but the
modularisation of any arbitrarily complex component is possible.

31

32 CHAPTER 2. RELATED WORK

Modules in Modular Smalltalk manage the visibility and accessibility of
names [194]. Modules are not objects and do not exist at runtime. Instead
they define a set of bindings between names and objects. They can be used
to group collaborating classes, and provide a local namespace for their own
code to refer to while making only the module itself globally accessible.

Modula-3 [22] includes both “interfaces” and “modules”. An interface
is a group of declarations without bodies; a module may export implemen-
tations of part of an interface, and may import an interface to gain access
to its elements. A module may provide definitions of some, all, or none of
the elements of the interfaces it exports, but will have unqualified access to
definitions made elsewhere. A single interface may have its implementa-
tion spread across multiple separate modules. Only the interface needs to
be referenced or understood by other code.

Scala [138] includes the concept of “packages”, which can contain
classes, traits, and objects, but not any other definitions, and are imported
by their qualified name. Scala also has “package objects”, which are spe-
cialised objects that can be declared inside a package to augment it with
other definitions, such as methods. Definitions from another package can
be imported directly into a scope or be accessed through a qualified name.

Java also includes “packages”, which are weaker than those in Scala;
they serve to subdivide the namespace of classes, as well as providing a
level of visibility between public and private. Strniša et al. [174] propose
and formally describe a module system for Java in which a module is an
encapsulation boundary outside these namespace packages. A module is
able to define the interface available to the outside world and to import
other modules into scope with their interfaces. These modules also allow
combining otherwise-incompatible components in separate areas of the
program by enforcing a hierarchy on access.

Racket [182] supports packaging multiple functions into a single unit,
which it calls a module. Racket modules are imported using the require
function, which takes a string as input (generally interpreted as a relative

32

2.3. MODULES 33

file path). Modules are defined either explicitly using the module form or
implicitly by the variant of the language a file is written in. Typed Racket
includes a require/typed function, which assigns local types to the functions
and structures imported from the module. These types are enforced as
contracts. The module itself does not have any run-time existence; instead
require simply makes its contents available to the importing code.

Szyperski [177] argues that both modules and classes are essential com-
ponents for structuring object-oriented programs. He defines a module as
a “statically-instantiated singleton capsule containing definitions of other
items (objects, methods, types, classes) in the language, capable of exposing
some, all, or none of its contents to the outside and providing unrestricted
access to the contents internally”. A class is a template for constructing
objects, which may inherit from other classes and have many instances.
While class instances (objects) exist at run-time, a module is a purely static
abstraction serving to separate code. One module may import another,
obtaining access to the public contents of the other module through a qual-
ified name. This mechanism is separate from both the inheritance and
instantiation mechanisms supported by classes, but accurately reflects the
intention of the programmers of both modules. Because modules have no
run-time existence, however, it is not possible to parameterise code with
them, and an additional language mechanism is required to define and
import them. Szyperski argues that modules as he describes them are bene-
ficial for program design because they enhance encapsulation and structure,
and for programming practice because they allow separate compilation.

2.3.3 Foreign objects

One role that module systems sometimes play is mediating access to outside
resources, such as code written in other languages. The module system
in that case provides a barrier beyond which lies the “outside” world
where the language semantics may not hold entirely, as well as a way of

33

34 CHAPTER 2. RELATED WORK

representing what from the outside should be accessed. We will aim to
enable some of these behaviours, and so present relevant related work here.

F# accesses external data sources with “type providers” [175]. A type
provider defines a way of accessing a data source outside the program —
like a database or web service — and integrating it with the program as
though it were an integral part of the system. Type providers are fully
integrated with the IDE: when accessing a web service, for example, auto-
complete menus will appear with the different actions or sub-fields avail-
able from that service in that particular context. The F# compiler statically
generates binding code according to the definitions in the type provider
and what is obtained from the external source, and ensures that type infor-
mation from the remote source is fully propagated into the program.

Newspeak’s foreign function interface defines “alien” objects [127],
which come from outside Newspeak code but appear to their clients exactly
like ordinary Newspeak objects. The implementation of an alien object is
unknown and undefined, but it understands and responds to messages
sent to it, and knows how to use its own representation to implement its
own behaviour. These alien objects are not necessarily obtained through
the module system.

Major dynamic languages, such as Python [159], Ruby [168], Perl [151],
and Lua [82], allow dynamically-loaded code using the implementation’s
internal API to provide methods or objects. The foreign function inter-
faces of some statically-typed languages permit accessing code written in
other languages, such as with the Java Native Interface [105] and Haskell’s
FFI [117].

2.4 Dialects and domain-specific languages

Dialects are extensions or restrictions of the language available to a pro-
grammer. A dialect may be a domain-specific language, a subset of a larger
language, or a modification of the behaviour of particular program source.

34

2.4. DIALECTS AND DOMAIN-SPECIFIC LANGUAGES 35

Domain-specific languages (DSLs) are special-purpose languages using
the vocabulary of a particular application domain to represent logic or
data from that domain. Domain-specific languages can be contrasted with
general-purpose languages, which intend to allow working in any domain.

Domain-specific languages can themselves be divided into internal
domain-specific languages, which are embedded in a host language to
some extent, and external domain-specific languages, which are indepen-
dent of other languages [112]. An external DSL is completely unrestricted
in the syntax and semantics it can admit, while an internal DSL must com-
promise with the host language. Internal DSLs, however, get some degree
of interoperability with general-purpose code for no or little cost. These
characterisations are not absolute, and some systems blur the distinction
between the two. Our focus is on internal DSLs, but we will also describe
notable external DSL systems (Section 2.4.9).

The dialect design we present in Chapter 6 builds on our module design
and shares goals with Racket. We outline the design of Racket and other
systems for language subsets and domain-specific languages here, and
contrast them with our approach in Section 6.5.

2.4.1 Racket

Tobin-Hochstadt et al. [182] describe “languages as libraries” in Racket.
Racket supports multiple language definitions through the use of the lan-
guage’s “Advanced Macrology” [33] to translate the input source text down
to core Racket, adding new functionality, or even replacing the language
syntax and semantics along the way. These language variations can be used
in the manner of a library.

Racket (then DrScheme) reintroduced the concept of using multiple
“language levels” for teaching [50], which was originally from SP/k [67].
Racket’s levels are intended to be moved through in sequence with grad-
ually increasing power: earlier levels restrict functionality that novices

35

36 CHAPTER 2. RELATED WORK

will not need to use, and provide more informative error messages and
suggestions based on their knowledge of what the programmer can write,
preventing them from stumbling too far from what they know. While
Racket languages have broad power, the defined language levels form a
sequence building up to an unrestricted language.

Racket supports variant languages in two ways: through Lisp-style
macros, and by replacing or augmenting the parser. In the first approach,
the language (re)defines macros to be used by the programmer, who obtains
them by declaring the language they will be using. Racket macros are very
powerful and able to integrate closely with the IDE, such as by telling the
IDE to provide visual indicators that certain identifiers represent the same
actual variable. As is common in Lisp-like macros, a macro can prevent,
repeat, or reorder the evaluation of terms, and manipulate them to have
different meanings altogether. As a Scheme derivative, Racket has hygienic
macros, which are guaranteed not to interfere with any identifiers in scope
where the macro is used, but they are free to treat their arguments in any
fashion they please.

Racket also supports variant languages by replacing the “reader”, the
code turning input text into S-expressions. With a language defined in
this way there is no need for the source code to resemble base Racket at
all; the Racket distribution includes an implementation of Algol-60 by
this mechanism [178]. When replacing the reader the language author
essentially writes a parser and code generator from scratch, and uses only
the Racket IDE and any available libraries they wish to bind to in the
language.

We discuss Racket in more detail, and contrast its approach with our
design, in Section 6.5.1.

36

2.4. DIALECTS AND DOMAIN-SPECIFIC LANGUAGES 37

2.4.2 Scala

Scala [138, 167] includes several features supporting domain-specific lan-
guages. The language syntax permits methods acting like built-in struc-
tures and operators with many levels of precedence and associativity. Scala
implicit parameters allow an argument to be passed without naming it,
determined by the type. A method parameter can be labelled as implicit,
and if that parameter is omitted the compiler will search the local scope for
a definition with the correct type to pass to the method. Scala also supports
implicit conversions lifting expressions to user-defined types. The follow-
ing code uses both implicit features to allow strings to “say” themselves in
a toy DSL:

import scala.language.implicitConversions
import scala.language.postfixOps
abstract class Speaker {

def act(s : String)
}
implicit object TerminalSpeaker extends Speaker {

def act(s : String) = println(s)
}
class MagicString(val s : String) {

def say(implicit f : Speaker) =
f.act(s)

}
implicit def makeMagicString(s : String) = new MagicString(s)
// Now the programmer can write:
"Hello" say
// and the program will print "Hello"

The implicit def defines a function that can be called automatically by
the compiler when it would otherwise report a type error. In this case
the function lifts a String to a MagicString, with an additional method say.
The say method has an implicit parameter with type Speaker: when the

37

38 CHAPTER 2. RELATED WORK

programmer calls say and does not provide the parameter, the compiler
finds TerminalSpeaker in scope and passes it implicitly. With both of those
defined, “"Hello" say” will print “Hello” to the terminal. In combination
these features allow domain-specific languages that are aware of the con-
text in which they are used. Scala’s treatment of syntax and semantics is
determined by the static type information it has available.

Scala also includes powerful macro features [47, 18] integrating the com-
piler and runtime. There is no formal “dialect” system in Scala, although
similar functionality can be built using other constructs of the language.
Scala mirrors have the ability to perform both run-time and compile-time
reflection, and these can be used to implement domain-specific languages
with similar ability to those in Racket, including the ability to defer some
processing until run time, although with the same fundamental syntax.

We contrast our design with Scala in Section 6.5.2.

2.4.3 Ruby

Internal domain-specific languages (DSLs) are common in Ruby, supported
by particular language features [52]. Two common strategies for Ruby
DSLs involve using the language’s open classes, and using per-instance
dynamically-bound evaluation.

Open classes permit modifying third-party classes — including built-in
objects — to add new methods, enabling users of the DSL to write, for exam-
ple, 3.years.ago to represent a time. These modifications are globally visible,
and work only so long as they don’t conflict with other modifications.

The second strategy depends on dynamically-bound block evaluation
using the method instance_eval, which is defined on all objects. This method
allows one to execute a block of code inside the context of another object
as though the block were written inside the object’s definition, and thus
with access to methods defined in the object. Any identifiers used inside
the block will be found dynamically inside the object, so the author can

38

2.4. DIALECTS AND DOMAIN-SPECIFIC LANGUAGES 39

class Greeter
def initialize

@greeting = "Hello"
end
def say(s)

puts s
end

end

TheGreeter = Greeter.new()
def greetingdsl(&block)

TheGreeter.instance_eval(&block)
end

greetingdsl do
say @greeting
say "World"

end

Figure 2.2: A trivial DSL using instance_eval in Ruby.

create a suitable DSL simply by creating an object with methods they want
to expose and (optionally) a top-level method as the interface to the DSL.

Figure 2.2 shows a simple Ruby DSL. The Greeter class defines a method
say and an instance variable @greeting. The greetingdsl method accepts a
block as an argument, and evaluates that block inside an instance of the
Greeter class (the ampersand converts the block to and from a first-class
value). The programmer enters the DSL by calling the greetingdsl method
and passing in a do...end block: the block can access both the method and
the instance variable inside the Greeter instance, and so is inside the trivial
DSL the class defines. The language syntax permits reasonably fluid code
to be written in this way. Different DSLs may be used at different points by
evaluating code inside different objects.

We contrast our design with Ruby in Section 6.5.3.

39

40 CHAPTER 2. RELATED WORK

2.4.4 Haskell

Haskell is also used to define domain specific languages [3, 89]. These
DSLs typically use Haskell’s type classes to embed themselves in the lan-
guage. Existing functions and operators become part of the DSL by defining
type-class instances for the language representation — whether that repre-
sentation is the data the DSL consumes, or a reflexive representation of the
program itself. Static type information directs which functions are actually
executed for a particular expression, often based upon the calling context
(i.e. the expected return type). A programmer can temporarily enter the
domain of a DSL simply by declaring the return type of their function.

DSLs can also be embedded in Haskell using the language’s do notation
(which provides quasi-imperative syntax for writing code inside a monad).
This syntax can be used for DSLs in two ways. In the simplest form, the
user writes code inside a do block that simply calls the functions of the
DSL to perform computation. Another form, known as the free monad plus
interpreter pattern, instead builds up a syntax or operation tree, which will
then be executed by another function. Again, the static type information
dictates which functions are run for which part of the program. The DSL
may look natural in use. For example, code using a simple “turtle graphics”
language might look like this:

prog :: LogoProgram ()
prog = do

forward 100
turnRight 45
color red
forward 100
...

Static type information is crucial to the semantics of Haskell DSLs (as it
is in Haskell programs generally). We contrast our design with Haskell in
Section 6.5.6.

40

2.4. DIALECTS AND DOMAIN-SPECIFIC LANGUAGES 41

2.4.5 Cedalion

Cedalion [112] is a language for defining domain-specific languages. Cedalion
aims to promote “language-oriented programming”, a programming style
in which many DSLs are used in combination, with a new language de-
fined for each subdomain spanned by the program. Lorenz and Rosenan,
Cedalion’s designers, define four kinds of language-oriented programming
system: internal DSLs, where a DSL is implemented within a host language
(as in our design), external DSLs, where the DSL is a separate language
with its own compiler or interpreter (as in Xtext, Section 2.4.9), language
workbenches, which combine tools and an IDE to present external DSLs
as though they were internal (as in Spoofax, Section 2.4.9) and language-
oriented programming languages, like Cedalion, which they claim permit
the most useful range of languages. We classify Cedalion as an internal
DSL system, as there is a single semantic model in use.

All Cedalion languages are interoperable because they share the same
host language. Many languages may exist simultaneously in the program,
supported by a special “projectional editor” [190]: the abstract syntax tree
is edited, rather than textual source, following the tradition of Gandalf [62]
and Mentor [39]. A Cedalion language defines a display grammar for that
syntax tree, rather than a parsing grammar for text. These languages may
exactly resemble the notation used by domain experts with few constraints.

We contrast our design with Cedalion in Section 6.5.5.

2.4.6 Converge

Converge [183] supports embedding domain-specific languages through
a compile-time metaprogramming facility. Converge supports both the
equivalent of a straightforward macro system, where code is generated
from a quasi-quoted block of source, and embedding whole blocks of an
arbitrary language within the program. These DSL blocks or quoted DSL
phrases are parsed at compile time according to a user-defined grammar,

41

42 CHAPTER 2. RELATED WORK

and translated into an abstract syntax tree of the base language by more
user code, also executed statically. The generated AST is treated as though
the corresponding code were written at that point. Because the generated
code is inserted at the point of writing, a DSL can permit references to
existing entities in scope, while being hygienic and avoiding any name
conflicts by default. The DSL to use for a given block is identified by a
preceding tag in the source identifying the applicable translation function.

The execution semantics of a Converge DSL are always those of the un-
derlying Converge language. Multiple DSLs can exist in a single program
and their outputs can interact in the same way that other Converge code
can. There is no built-in support for embedding passages of one DSL in an-
other, although a language providing that effect can be defined. Converge
fits near to the language-oriented programming paradigm, but does not
require a special editor as Cedalion does.

2.4.7 Wyvern

Wyvern [131] supports nested domain-specific languages within Wyvern
code [139, 140]. A DSL block is identified by indentation or predefined
quoting, and parsing is type-directed: which language a DSL block is
written in is determined by the type to which its result is assigned.

Within top-level Wyvern code a block of DSL code can be embedded
within paired quoting characters. Alternatively, a special identifier “~”
indicates that a DSL block follows, and the next line begins the DSL block,
which must be indented relative to its predecessor; the DSL continues as
far as the indented block. The result of the DSL code is inserted at the site
of the quoted expression or “~”; the DSL block will be parsed according
to the type required at that point, and corresponding base Wyvern code
generated. Wyvern expressions can be embedded within a DSL block to
allow accessing outside state or methods.

We contrast our design with Wyvern in Section 6.5.4.

42

2.4. DIALECTS AND DOMAIN-SPECIFIC LANGUAGES 43

2.4.8 Protean operators

Ichikawa and Chiba [78] propose protean operators, a system of operators
for type-directed parsing of internal domain-specific languages, and de-
scribe ProteaJ, their system embedded in Java. With protean operators the
expected type in a given context is used to determine the parsing rules,
as in Wyvern, but unlike Wyvern the code to be parsed under different
rules is written inline and without any visible indicator that it is a different
language. The authors achieve this by permitting the definition of families
of operators returning a particular type, including the empty operator “”
(juxtaposition). Each character in a context where a protean operator type
is expected is treated as a separate token, and user-defined code executes
for each operator to build up a result of the correct type. These DSLs
can only be used where the expected type of an expression is statically
unambiguous.

2.4.9 External domain-specific languages

The related work above deals with internal domain-specific languages,
those that are embedded within a host language. An alternative approach is
external domain-specific languages: those that live outside a host language
and have outside tooling to make them work. Some systems, notably
Cedalion above, blur the line between the two. Our work is on internal
language variants, but we will describe some major external systems briefly
here.

Xtext

Xtext [48, 43] is a toolkit for building domain-specific languages, integrated
into the Eclipse IDE. In Xtext, a new language is defined by first specifying
the grammar of the language and then separately the behaviours that
should be attached.

43

44 CHAPTER 2. RELATED WORK

To define an Xtext language the author must define the syntax in Xtext’s
declarative grammar language, and then write an “inferrer” in imperative
code to translate the language defined in the grammar to an implemen-
tation language (typically Java). The inferrer can process the syntax tree
in any way it chooses and generate arbitrarily complex code; optionally,
the language can allow embedded Java expressions and types. Because
Xtext is integrated with Eclipse, defining a language also creates syntax
highlighting and code completion support for the language.

We contrast Xtext with our design, and show an example Xtext language,
in Section 6.5.7.

TXL

TXL [32] is a source-to-source preprocessing transformation system where
passages of one or more languages can be embedded in a single file, and
then all transformed into a target language. The target language is not
necessarily the language of any of the input, although the intent is that
passages of a domain-specific language are embedded in a program in
a general-purpose language. Each embedded language is entirely sepa-
rate, but — with careful design — multiple languages may interact safely.
Because TXL languages are processed entirely outside the host language
they have no innate knowledge of, or access to, the surrounding program,
and the language author must account for any features of the target lan-
guage that may affect correct behaviour of the program, possibly including
parsing and computing scope relationships, or else accept that some em-
beddings may be incorrect or unsafe.

Stratego/XT

Stratego/XT [16] is a program transformation tool intended to take input
source code and produce modified source. The Stratego language expresses
rules for rewriting syntax and other rules for specifying when and how

44

2.4. DIALECTS AND DOMAIN-SPECIFIC LANGUAGES 45

particular rewritings should be applied, either by static rules or through
dynamic context-sensitive evaluation. The accompanying toolset runs
Stratego programs over input source and includes specialised tools and
languages for advanced transformations. A single overarching transfor-
mation may involve code in several different domain-specific languages.
Stratego/XT is intended to work on a single transformation of the input,
rather than on embedded passages as in TXL, but a language could be
defined with either effect.

Kats and Visser [91] describe the creation of domain-specific languages
using the Spoofax workbench, which incorporates Stratego/XT. A pro-
grammer may describe the constructs of their language and their intended
behaviours, and then write their application logic within the program do-
main using a customised IDE with autocompletion and syntax checking as
they type. A Spoofax DSL definition includes an ordinary grammar and
transformation description, with additional information for further IDE
integration of the created DSL itself.

Perl

Perl [151] “source filters” [118] allow arbitrary rewriting of the source code
of a Perl program when it is executed. These filters are written as Perl
code in another module, accessed with use name::of::filter. The filter code is
given the entire remaining text of the program, and is able to transform it
programmatically before execution. This functionality is a built-in feature
for Perl programs at runtime.

Source filters are aided by various other modules that assist in trans-
forming by providing parsing and other functionalities. Source filters can
provide very different languages, ranging from simple replacements of key-
words with words from other languages [171, 29] to embedding passages of
entirely different languages [193, 172] or supporting different programming
models, up to and including Shakespeare [64]. Alternatively, rather than
changing the language a filter can provide checking for common errors [28]

45

46 CHAPTER 2. RELATED WORK

or instrumentation [30]. By doing total textual substitution, source filters
can have unrestricted effects, as in Racket dialects. An unusual feature
is that some source filters will rewrite the source code in place to correct
perceived errors or provide a different representation.

2.4.10 Pluggable checkers.

As well as extending the language a dialect or DSL author may want to
check for additional errors or report existing errors differently. Frameworks
for adding additional, optional error detection are called pluggable checkers.
We briefly mention relevant work in this area here.

JavaCOP [116] is a framework for implementing pluggable type systems
in Java. This framework provides a declarative language for specifying
new type rules and a system for enforcing those rules during compilation.
JavaCOP rules may enforce, for example, that a parameter must not be null,
or that a field is transitively read-only. A dialect can enforce these rules as
well, but is also able to enforce broader constraints by extending or limiting
the constructs available to the user of the dialect.

The Checker Framework [144] is a mature library that provides similar
functionality to JavaCOP, with better support for overloading and some
other Java language features, in part by using an only-partially-declarative
syntax. Imperative rules provide more power to the Checker Framework
than JavaCOP at the expense of concision.

2.5 Visual interfaces for novices

Several visual programming systems for novices or non-programmers
have been developed, with varying approaches. In this section we present
related work in this area, and we will contrast them with our approach in
Section 7.6.

46

2.5. VISUAL INTERFACES FOR NOVICES 47

Figure 2.3: Screenshot of a simple program running in the Scratch interface.

2.5.1 Scratch

Scratch [162] is a wholly visual drag-and-drop programming environment
with jigsaw puzzle–style pieces, aimed at novices and children. A simple
program in the Scratch interface is shown in Figure 2.3. Scratch programs
manipulate a persistent microworld; the Scratch environment also includes
a persistent graphical area which may contain multiple “sprites”, each of
which has its own independent code associated with it and may move, draw,
or display messages from itself. The Scratch language follows a concurrent
event-driven model, where many pieces of code may be executing at once,
in the same or different sprites.

Scratch takes full advantage of its purely-graphical nature; the shape
of each tile maps exactly to where it is syntactically valid, and some tiles

47

48 CHAPTER 2. RELATED WORK

Figure 2.4: Screenshot of a simple program running in the Blockly interface.

combine what would be multiple concepts in most languages into a single
element. Consequently, Scratch code does not have a textual form and
cannot be “written”. Scratch has been found useful for motivating new
programmers to begin exploring the ideas of programming, and inspired
our work.

2.5.2 Blockly

Blockly [10] is very similar in ethos to Scratch, but incorporates multiple
variant languages which can be extended with JavaScript code, and lacks
the persistent world of Scratch. Blockly runs entirely in a web browser. A
simple program in the “turtle graphics” variant is shown in Figure 2.4.

The user can export their Blockly program to JavaScript or Python code
that has essentially the same behaviour as the original Blockly program.

48

2.5. VISUAL INTERFACES FOR NOVICES 49

There is no way to reimport exported code back into Blockly.
Blockly supports extending the language with new tiles, and its in-

cluded demonstrations use this ability. The Blockly interface is embedded
in a host application (within a web page), and the host can define additional
tiles along with how they should behave. Both the tiles and the behaviours
are defined in JavaScript, the language of the host environment.

2.5.3 Codemancer

Codemancer [111] is a game designed to teach programming concepts.
Within the game, programs are treated as magic spells, and the player
assembles the correct spell to solve a problem out of “runes” (tiles) which
they drag into place in the desired sequence to write a procedural program
solving a task. A sample program in the interface is shown in Figure 2.5.
Runes primarily move the player character around the game world or
perform in-world actions, but also include control-flow constructs such as
conditionals and loops. In each level the user makes one program that has
a single flow of control and a linear definition.

2.5.4 Lego Mindstorms

Lego Mindstorms [99] is a combination software and hardware system for
building and controlling small robots built out of specialised Lego bricks.
The main environment used for Mindstorms programming uses a drag-and-
drop (in some versions, point-and-click) interface. The language focuses on
specifying sequences of responses to sensor stimuli, and includes explicit
control-flow constructs which are shown through physical layout.

Lego Mindstorms takes its name from Papert’s book [143] in which he
proposed microworld-based learning. Lego Mindstorms contrasts with the
other microworld languages and environments we discuss in that it controls
a physical robot in the real (macro) world. The robot has interchangeable
components chosen by the user that can vary dramatically in capability.

49

50 CHAPTER 2. RELATED WORK

Figure 2.5: Screenshot of a program in Codemancer from a video demon-
stration of the software: http://youtu.be/590fFcwIcms?t=2m50s.

2.5.5 Calico

Calico [9, 20] is a multi-language IDE for introductory programming built
on top of Microsoft’s Dynamic Language Runtime. A visual language
called Jigsaw has been built especially for this environment. Jigsaw uses
puzzle pieces and drag-and-drop similar to Scratch. A key part of the
Calico environment is that code written in one of the supported languages
can be accessed from another; as a consequence, a Jigsaw program can run
code written in (for example) Python, Ruby, or Scheme as a library function.
Jigsaw’s execution model is based on translation to Python, and a Jigsaw
program can be exported to Python code. Some Python programs can also
be converted into Jigsaw code. The Jigsaw syntax does not match Python’s,
instead using tiles like “repeat n times” for a looping construct and “let” for
variable assignments, but the language does map onto Python code. The
authors intend to allow Jigsaw code to be translated automatically into (but
not from) several textual languages [9]; only Python support appears to be

50

http://youtu.be/590fFcwIcms?t=2m50s

2.5. VISUAL INTERFACES FOR NOVICES 51

Figure 2.6: Screenshot of a simple program in the Alice interface.

implemented at present. Calico provides several graphical, microworld,
and real-world robotics libraries that can be accessed from any supported
language, including Jigsaw.

2.5.6 Alice

Alice [31] is a 3D microworld language manipulated by drag-and-drop.
The Alice IDE allows users to drop 3D models into the world and associate
logic with them. Each object in the world is also an object in the object
orientation sense, and can respond to outside events and messages. All
code is strongly statically typed. Code editing is by drag-and-drop and
menu selection; there is no concrete text, although recent versions of Alice
can also export code to Java. Some code is shown in the Alice interface in
Figure 2.6.

51

52 CHAPTER 2. RELATED WORK

Figure 2.7: Screenshot of code and microworld in Greenfoot.

2.5.7 Greenfoot

Greenfoot [95] is an IDE for a subset of Java, presenting a graphical mi-
croworld based on the Actor model. The Greenfoot tutorial program is
shown in Figure 2.7. Users write textual source code, but many high-level
concepts are available as built-in methods of the world, or are predefined
for all actors. Code is written and accessed only with textual Java syntax,
which users must learn assisted by common IDE features.

2.5.8 TouchDevelop

TouchDevelop [75] integrates an essentially textual language with an IDE
aimed at touch-screen usage. The IDE avoids most use of textual input by

52

2.5. VISUAL INTERFACES FOR NOVICES 53

Figure 2.8: Screenshot of code editor in TouchDevelop.

having the user manipulate the syntax tree itself: the user touches where
they want to change and the IDE presents them with a list of options they
can put there. When the programmer adds a new element the system will
prompt them to fill in any required arguments, like the condition of a loop.
A simple “turtle graphics” program is shown being edited in Figure 2.8.

The syntax is reasonably conventional, although symbols are used to
mark method calls and some aspects, such as comments, are shown only
by typographic features. Programs are always shown textually with light
visual annotation, and editing always corresponds essentially to a textual
insertion or deletion.

The interface is designed to be used on tablets and mobile phones, as
are the resulting programs, but they may also be used without a touch
screen.

53

54 CHAPTER 2. RELATED WORK

2.5.9 Droplet

Droplet [40] is a combined visual-textual editor that treats block-oriented
visual display as “syntax highlighting” for text, and can transition between
the two displays. Droplet supports multiple languages through writing
CoffeeScript or JavaScript code defining blocks and a parser. Droplet aims
to be useful both for transition from visual to textual languages and as a
general editor on mobile devices.

2.5.10 Graphical overlays on programs

Our work will incorporate some graphical overlays showing relationships
between different parts of a program, so we also briefly present related
work on that topic.

Spreadsheets represent a common form of dataflow programming per-
formed primarily by non-programmers. Frequently, spreadsheet applica-
tions can present information on dependencies between cells by overlaying
graphical indicators (such as arrows and cell highlights) on top of the base
spreadsheet display. Grigoreanu et al. [61] investigated the efficacy of these
overlays in aiding end users to find errors, finding that they were useful
but that users often did not deploy them. Igarashi et al. [83] proposed addi-
tional transient views involving animation and other features to help users
gain more information from these overlays. Burnett and others [19, 4] have
applied techniques from specialised visual languages to spreadsheet over-
lays, with particular focus on displaying smaller subsets of the available
information to help users follow along.

DrRacket [182] is an IDE for the Racket language, a dialect of Scheme
aimed at education. The editor is purely textual, but includes an overlay
system linking definitions with their usages with arrows when the mouse
is hovered over a term in the editor.

Omar et al. [141] describe “active code completion”, where pop-up
“autocomplete” menus are augmented with additional behaviour. For

54

2.5. VISUAL INTERFACES FOR NOVICES 55

example, in a context where a colour expression is known to be required,
the popup can present a colour picker and generate code corresponding to
the chosen colour; in another context, the popup can indicate expressions
on values available in scope that correspond to the correct type, and show
where these values are found. All completions in their system are type-
directed.

55

56 CHAPTER 2. RELATED WORK

56

Chapter 3

The Grace Language

Grace [7, 8] is a new imperative object-oriented programming language
aimed at education, with the goal of permitting a variety of teaching styles
within a single language. This chapter provides an introduction to the
Grace language and its features.

3.1 Goals of Grace

Grace is intended to be used for introductory programming courses. Con-
sequently, it aims to look familiar to instructors who know other object-
oriented languages, while supporting the individual teaching styles and
sequences that instructors have. In Grace it is possible to write statically-
typed code, dynamically-typed code, or a mixture of the two, and move
from one to the other. A course could begin with objects, classes, functions,
or procedural code, and move from one approach to another while staying
within the same language.

To satisfy these goals each part of the language must be designed so it
does not interfere with all the other parts. Grace does not include a large
number of new features, or a new paradigm for programming: instead,
existing features that have shown themselves useful in existing languages
are brought together and integrated. The following sections describe the

57

58 CHAPTER 3. THE GRACE LANGUAGE

features of the language, with a focus on those necessary to understand
the work in this thesis, and with examples of parallel functionality in other
languages.

One particular goal of the language is to eliminate incantations. An
incantation is a piece of code present to satisfy the requirements of the
language, but which does not have any particular role in meeting the
programmer’s intention for their program. A common example of an
incantation is Java’s:

public static void main(String[] args) {

which must appear in every runnable program (and inside a class declara-
tion, another incantation). Calling these incantations is not to imply that
they are meaningless: to the contrary, every part of the above incantation is
meaningful. In fact, that single line includes six distinct and meaningful
concepts: public, static, void, main, String, and []. Changing any one of these
will cause the program not to run, but explaining to a novice seeing their
first program the meaning of a static method is nontrivial, particularly
when they have never seen any other kind of method before. The tempta-
tion then is simply to tell the student to ignore the incantation; this choice
may even be worse, because then the student really does learn to treat it
as an incantation. Grace aims to avoid all of these pieces of boilerplate
code in order to allow users to focus on the essential complexity of their
program, and instructors to introduce concepts in the order they desire
when students are ready for them; Grace’s syntactic and semantic choices
derive from that goal.

3.2 Variables and literals

Grace includes two kinds of variable declaration: a mutable variable de-
clared with var, whose binding may change during the program, and an
immutable definition declared with def, whose binding is fixed. Local
variables can be declared and used like this:

58

3.2. VARIABLES AND LITERALS 59

var x := 1
def y = 2
var z
x := x + y
z := x * y

After this code, x has the value 3, and z is 6. Attempting to update the
value of y would cause an error. Note that var declarations and assignment
statements use :=, while the def declaration uses =. In Grace, all assignments
to things that may change use :=, and all fixed definitions use =, because the
language designers feel it is important to emphasise that these are different.
A var declaration need not initialise the variable immediately, but it will be
a fatal error to read from an uninitialised variable. Variable names must
start with a letter and can contain letters, numbers, and the apostrophe
character. The same variable name cannot be declared again within the
scope of an existing definition; this restriction is the “no shadowing rule”.

In the example above we used literal numbers in the source code. Grace
permits both number and string literals as special syntactic forms:

def ten = 10
def half = 0.5
def binary = 2x110110
def hex = 0xfacade
def message = "Hello, world!"

Numeric literals are in decimal by default, and may include a fractional
part. Literals in non-decimal bases from 2 to 36 are written with the base
(in decimal) before an x and the digits in that base thereafter. The base 0 is
a synonym for 16. String literals are enclosed in double quotation marks.
Strings can also include interpolated code, which is evaluated and its value
inserted at the point of the interpolation:

def half10 = "Half of ten is {ten * half}"

// half10 is now "Half of ten is 5"

Strings can be concatenated together with the ++ operator.

59

60 CHAPTER 3. THE GRACE LANGUAGE

3.3 Objects in Grace are closer than they appear

In Grace, everything is an object, by which we mean a combination of
identity, state, and behaviour: there are no “primitives” or variables that
do not refer to objects. The number 1 is an object, and the numeric literal 1

refers to that object.

As well as the objects constructed by numeric and string literals, a
programmer can construct their own objects with an object constructor (or
object literal):

object {
def x = 1
var y := 2
method increment(by) {

y := y + by
return y

}
}

Mutable and immutable fields are declared with exactly the same syntax
as local variables, using var and def. The initialisation expressions of fields
are executed inside the object when it is constructed.

Methods are declared using the method keyword. Methods accept
parameters and return the value of the last expression in their body, or the
value explicitly returned with a return statement. Parameter names may
not shadow any other variable in scope. Any parameter can be silently
discarded by naming it “_”.

An object constructor creates a new object every time it executes, and
returns a reference to that object which can be saved, returned, or passed
as a parameter, just as any object reference can be. Inside an object, the
self keyword is always a reference to itself. Objects can be nested, and the
surrounding object obtained through the outer keyword.

60

3.4. METHODS 61

3.4 Methods

To access a method of an object we use a method request, which is a method
call; we will be using these terms interchangeably in this thesis. The usual
form of a method request is to write a reference to the object, a dot, the
method name, and the argument list:

pt.setCoordinates(x, y)

Some common cases are optimised. When the method is on the current
object or a surrounding object, the receiver (the part before the dot) can be
omitted, as can the dot. When there are no arguments, the argument list can
be omitted. When there is exactly one argument and it is “self-delimiting”,
like a string, the parentheses can be omitted.

print(1 + 2)
window.show
greeter.greet "World"

The term “method request” is used because the language designers feel
it is important to stress that the agency of determining what to execute
belongs to the receiver object, and that the more common “call” indicates
that the caller has chosen what to do; they avoid “message send” to avoid
confusion with network messages.

There are some other special kinds of method request: operators and
field accesses.

3.4.1 Operators

In Grace, operators (like the +, *, ++ used earlier) are also methods, and
accessed by method requests. An operator method is simply a method
whose name is entirely operator characters1. An operator method defines

1Exactly which characters these are is not defined: our implementation (Chapter 8) sup-
ports the ASCII “keyboard operator” characters and members of the Unicode categories
“Symbol, Mathematical” and “Symbol, Other”.

61

62 CHAPTER 3. THE GRACE LANGUAGE

an infix binary operator. A request for an operator method is written
between its receiver on the left and its argument on the right:

2 * 3
"Hello" ++ "World"

def x = object {
method !@^*(other) {

print "Hello, {other}."

}
}
x !@^* "world"

The four standard arithmetic operators +, −, *, and / have their stan-
dard precedence and associativity. There are no precedence rules for non-
arithmetic operators: it is a syntax error to mix different operators without
explicitly parenthesising to disambiguate them. All operators are left-
associative with themselves: their left-hand side is fully evaluated first, and
they are given the single minimal expression immediately to their right as
their argument.

Grace also supports unary prefix operators, such as boolean negation !.
A prefix operator is a method defined with the name prefixX, where X is a
valid operator name. The method defining the prefix operator ! is called
prefix!:

def a = object {
method prefix! {
return "Hello"

}
}
print(!a) // −> "Hello"

Prefix operators bind more tightly than other operators but less tightly
than other method requests.

Grace supports only prefix unary operators and infix binary operators
in order to avoid building in any detailed concept of operator syntax and

62

3.4. METHODS 63

precedence. With these choices the operators can always be differentiated
solely by where they are found in the source: when seen immediately after
a term they must be a binary infix operator, and when not immediately
following a term they must be a unary prefix operator.

3.4.2 Field accesses

Reading a public field from an object uses exactly the same syntax as a
zero-argument method call: x.y. Writing to a public mutable field uses
Grace’s standard assignment syntax:

x.y := 4

In both cases, real methods can be defined to behave in this way, or to
override an existing field. A reader method is simply a zero-parameter
(nullary) method of that name, while a writer method is one with := on the
end of its name:

method y:=(value) {
validate(value)
realY := value

}

3.4.3 Multi-part method names

Method names in Grace can include multiple parts with separate argument
lists in between. Multi-part methods are defined in exactly that way:

method check(x)between(min)and(max) {
(x >= min) && (x <= max)

}

This method name has three parts, “check”, “between”, and “and”. Each
part has its own parameter list. This method could be called in the same
way:

check (5) between (3) and (7)

63

64 CHAPTER 3. THE GRACE LANGUAGE

As for single-part names, self-delimiting single arguments do not require
parentheses, but all other argument lists do.

When a method name is long it may be convenient to split the request
over multiple lines. The programmer can do so provided that they indent
the second and subsequent lines of the request to indicate that the line is a
continuation of the previous, or have the next part immediately follow the
end of the argument list for the previous part:

check(5)
between(

3
) and(7)

3.4.4 Visibility

Grace allows setting the visibility of fields and methods with annotations.
Annotations use the syntax is annotationName(arguments). The annotations
for visibility are public and confidential.

A method in an object is public by default, but can be made confidential
so that it is only available within the object and inheritors:

def x = object {
method foo(a) is confidential { ... }
method bar { foo(5) }

}
x.bar // OK
x.foo(5) // Error − 'foo' is not accessible

Confidential methods cannot be accessed on any other object but self.

A field in an object is confidential by default, and can be made public so
that it is accessible from the outside:

64

3.5. BLOCKS 65

def x = object {
def a is public = 1
var b := 2

}
print(x.a) // OK
print(x.b) // Error − 'b' is not accessible

The term “confidential”, rather than the more common “private”, was
chosen because the language designers feel that novice programming lan-
guage learners would otherwise be confused by the slightly different mean-
ing of “private” between Grace and Java.

In the case of a mutable field the programmer may want to allow reading
of the field, but not writing; in this case they can annotate the field readable:

def x = object {
var b is readable := 2

}
print(x.b) // OK
x.b := 2 // Error − 'b:=' is not accessible

Other user-defined annotations are possible; an annotation is syntacti-
cally a method request to any method that is in scope.

3.5 Blocks

A key construct of Grace is the block, also known as a lambda or first-class
function. A block is written in braces and constructs an object representing
a piece of code that may be executed in the future. A block can have
parameters and is executed using its apply method.

def block = { print "Hello" }
block.apply // Prints "Hello"
def greeter = { name −> print "Hello, {name}" }
greeter.apply "world" // Prints "Hello, world"

65

66 CHAPTER 3. THE GRACE LANGUAGE

The code in a block is nested inside the surrounding lexical scope and
can access any methods or variables defined there, including whatever self

is in that scope.

A block may be executed zero, one, or many times. This fact is key
to defining some of Grace’s basic control structures. In combination with
multi-part method names, Grace avoids having any built-in control struc-
tures at all. Instead, if()then()else, for()do, and while()do are methods.

if (x < 0) then { print "Negative" } else { print "Non−negative" }
for (1..10) do { i −>

print "I can count to {i}!"

}
while { x > 0 } do {

print "I can count down to {x}"

x := x − 1
}

if()then()else accepts a Boolean as the condition and two blocks: one to
apply if the condition is true, and another to apply if the condition is false.
The condition expression is evaluated only once, and only one of the other
blocks is applied.

for()do accepts an iterable object and a unary block, and applies the block
once for each element in the iterable, passing the element in as an argument
each time. The iterable expression is evaluated once, and will be asked for
each item in turn; the block is applied many times.

while()do is the most unusual-looking of these methods. Unlike in most
languages that use braces, the condition of the loop is written in braces as
well as the body: because the condition of a while loop is evaluated many
times, it must be a block, as blocks are what provide deferred and repeated
execution. The method accepts two arguments, both of which are blocks,
and applies them alternately until the condition block returns false.

66

3.6. CLASSES 67

3.6 Classes

Grace classes are syntactic sugar for nested object and method declarations:
they are objects just like any other, and they do not represent types. A class
declaration is written:

class foo.bar(x, y) {
method sum { x + y }

}

This declaration is exactly equivalent to the unrolled form:

def foo = object {
method bar(x, y) {

object {
method sum { x + y }

}
}

}

Class declarations exist to allow teaching about classes, and to make
some kinds of code shorter. It is never necessary to use a class, as objects
and methods are exactly equivalent, and types (Section 3.8) are not coupled
to classes.

3.7 Inheritance

Any object constructor in Grace can inherit using the inherits keyword.
Following the keyword must be an expression resolving to the construction
of a fresh object; a class instantiation is one such expression, but any request
of a method that always returns an object constructor suffices. Because the
object constructor must be tail-returned it is always clear locally when an
object can be inherited from:

67

68 CHAPTER 3. THE GRACE LANGUAGE

method superobj(x') {
// This method always returns an object
// constructor as its final action, so
// the method can be inherited from.
return object {
method x { x' }

}
}
def a = object {

inherits superobj(5)
}
a.x // 5

An inherited method can be overridden in the sub-object. All requests
for that method will then execute the overriding method. To access a
method from the parent object that has been overridden the programmer
can use the super.x syntax inside the object. super is only valid as a receiver,
and cannot be used in any other context.

During inheritance, all methods are defined in their final forms in the
object. Any initialisation code in field declarations and ordinary code in the
body of an object in the inheritance chain is executed from top to bottom
in the super-most object first, and so on through to the final sub-object. If
any of that code requests a method on self, the final overridden version
will be executed. self always refers to the same object identity throughout
the process, as in most object-oriented languages; it is never possible to
observe a parent object directly or to see methods being defined.

3.7.1 Chained inheritance

To define a method that calls another method with different parameters,
but which can still be inherited from, an additional degenerate object can
simply be inserted in the intermediate method:

68

3.8. TYPES 69

method midobj(n) {
object {

inherits superobj(n / 2)
}

}
def a = object {

inherits midobj(10)
}
a.x // 5 again

This device allows more complex inheritance chains while still making
clear locally what can and cannot be inherited from.

3.8 Types

Types in Grace are optional, gradual, and structural. They are optional
because they can be omitted; they are gradual because they can be partially
present, checked at run time when not enough is known statically; and they
are structural because they depend only on the interface of an object and
not its implementation.

Grace supports two kinds of type annotation. A variable, field, or
parameter can be annotated with a type after a “:”, and the return type of a
method can be given after a “−>”, written immediately after the parameter
list.

def s : String = ""

method add(x : Number, y: Number) −> Number { x + y }

A type is declared using the type keyword:

type Greeter = {
greet(n : String) −> Done

}

The above declares a type called Greeter, which requires that any object
that belongs to it have a method called greet accepting a single argument,

69

70 CHAPTER 3. THE GRACE LANGUAGE

which is a String, and returning Done. Done is the type of a statement or
action that has no meaningful return value; all objects belong to the Done

type, but it has no useful methods. The name Done was chosen, rather than
the more common Void because the designers wished to stress that the type
was not in fact uninhabited. As with all types in Grace, Done can be omitted
from the declaration to use purely dynamic typing. An anonymous type is
written with the type keyword and braces:

method halfsqrt(x : type { sqrt −> Number }) { x.sqrt / 2 }

There is no “cast” operation in Grace: when an object needs to be
treated as a different type than it is currently known to be, and simple
subtyping does not suffice, the programmer must either pass the object
through dynamically-typed code or explicitly use the pattern matching we
designed and present in Chapter 4.

Grace follows the standard co- and contra-variance rules for subtyp-
ing: in order for B to be a subtype of A, the corresponding methods in B

must return subtypes2 of the return types of the methods in A, and their
parameters must be supertypes of the parameter types in A.

As Grace is gradually typed there is another type, Unknown, represent-
ing a type which is not known statically. The unknown type is statically
compatible with any type: a value of type Unknown can be assigned to a
variable of any type and this assignment will be permitted statically, but
may cause an error at run time.

Both when defining a type and when writing a type annotation the
programmer may use type operators to construct a type out of existing
types. The available operators are &, |, and +.

The & operator is type intersection: A & B contains those objects that
belong to both A and B. The objects in this intersection must have all the
methods from both types with compatible signatures.

The | operator gives the untagged variant type: A | B contains those objects
that belong to either A or B (or both). Given a reference of type A | B, only

2As usual, types are regarded as subtypes and supertypes of themselves.

70

3.8. TYPES 71

those methods in both A and B with mutually-compatible signatures can
be called. An object with only these methods does not belong to the type,
however; to belong to A | B the object must belong to at least one of the
types on their own.

The + operator is method intersection: A + B is the type with all the
methods common to both types. A + B is a supertype of A | B, but an object
that belongs to A + B is not necessarily either an A or a B. While practical
need for + is rare, it is included for completeness.

3.8.1 Generic types

Grace types can have generic parameters written in <>:

type List<T> = {
add(e : T) −> Done
get(n : Number) −> T

}
var listOfStrings : List<String>

Methods can also have generic parameters, also written in <>:

method greet<T>(x : T) { ... }
greet<String>(name)

A method may have multiple generic parameters. In a multi-part
method name the generic parameter list is always written on the first
part. Generic parameters are reified and retained at run time.

To permit gradual typing, generic type arguments may be omitted from
a method request. In this case, they are populated with Unknown at run
time. Either all generic arguments must be provided or none, but any or all
can be explicitly given as Unknown if desired.

71

72 CHAPTER 3. THE GRACE LANGUAGE

3.9 Pattern matching

Grace supports an object-oriented pattern-matching system. We present
this system in Chapter 4.

3.10 Modules

All Grace code is written inside a module. Grace modules are objects, so
methods and fields can be defined at the top level. Modules can import
other modules to allow splitting a program into multiple parts. We present
the module system of Grace in Chapter 5.

3.11 Dialects

Grace supports a system of language variants called dialects. Dialects
allow extending or restricting the language available to users, principally to
support different teaching styles and stages of progress. A module declares
the dialect it is written in using a dialect declaration on the first line. We
present the dialect system of Grace in Chapter 6.

72

Chapter 4

Patterns as Objects1

4.1 Introduction

While Grace is an imperative, object-oriented language, an important aim
of the design has been to give instructors the freedom to choose their
own teaching sequence, by reducing dependencies between features in
the language and its libraries. The language supports many different
approaches within the object-oriented paradigm, but the ACM CS2013 cur-
riculum regards both object-oriented and function-oriented programming
as core topics, and requires computer science programmes to cover both
dynamic dispatch and pattern matching [88]. To support teaching in this
function-oriented approach Grace must support programs organised in a
more “inductive” style: as collections of functions or procedures that make
decisions based on the types or values of their arguments.

In this chapter we present our design of an object-oriented pattern-
matching system for Grace. Our system is fully object-oriented, but em-
bedded naturally into the language. We seek to minimise the language
support required to integrate patterns, but to present an interface as typical
as possible. We want users and instructors to be able to define their own

1 This chapter expands upon a paper [74] published in the 2012 Dynamic Language
Symposium.

73

74 CHAPTER 4. PATTERNS AS OBJECTS

patterns and use them equally with patterns we define, but without need-
ing to understand a complex protocol. It is balancing these conflicting goals
that makes the contribution of this chapter, and we believe we have found
the design that sits best within these constraints. While our motivation is to
include this functionality in Grace, the system we present could be applied
in similar languages.

This chapter explains how we solved the problem gracefully. Our ap-
proach draws on well-known techniques: modelling patterns and cases as
partial functions, reifying those functions as first-class objects, and then
building-up more complex patterns from simpler ones using pattern com-
binators. This results in flexible pattern-matching and case statements that
incorporate a programmer-extensible range of pattern matches, including
matching against constants, matching against an object’s type (that is, its
method interface), and also binding a variable of the new type, matching
against the value of a variable or expression, and “destructuring” an object
to extract its components, which requires the cooperation of the object in
determining what those components should be.

All of this is presented in a conventional pattern-matching syntax and
implemented using two localised language extensions: treating blocks
(lambda expressions) as partial functions, and binding variables in nested
patterns. In terms of the vocabulary we set out in Section 2.2, we have
designed an exherent system, where patterns are first-class entities, but with
the syntactic simplicity of an inherent system, bridging these approaches
with the minimum intrusion onto the language.

Our design for pattern matching was inspired by, and significantly
based upon, the pattern-matching designs in Scala [46] and in Newspeak [58].
The “look” of our match-case construct is derived from Scala, while the un-
derlying framework draws from Newspeak, although there are significant
departures from both in order to form a coherent matching system.

This chapter presents three elements of the design of this pattern-
matching feature: Section 4.2 briefly describes our conceptual model of

74

4.2. CONCEPTUAL MODEL 75

patterns and matching; Section 4.3 describes how we have embedded
pattern-matching syntax into the language, using only a single localised
extension to the syntax of blocks; and Section 4.4 presents the reification of
the conceptual model as objects supporting that syntax, based on unifying
partial function objects, pattern objects, and pattern combinator methods.
Section 4.5 shows the integration of pattern-matching with Grace’s type
system, necessary for the system to be integrated into the language itself.

Section 4.6 describes a generalisation of pattern-matching to all type
annotations in the language. In Section 4.7 we discuss the particular design
decisions we made, the roads that we did not take, and how our choices
compare to those made in other languages (notably Scala and Newspeak).

4.2 Conceptual model

In common with Newspeak, we treat a case statement as a combination
of partial functions — functions that are defined on a restricted domain of
inputs, as described in Section 2.2. A request to apply a partial function
must supply an argument. If the argument is in the domain of the function
then the function executes using that argument and returns a result, but if
the argument is outside the domain, the function fails and is not executed.

We represent both the partial function itself and its domain as objects.
Because Grace already has a representation of total functions as objects
(blocks), we extend these to partial functions. A series of method requests
ascertains whether the argument is in the domain, applies the function, and
returns the result. This representation of partial functions allows pattern
matching to be added with minimal disruption to the language.

As Grace is gradually typed, even without pattern matching it is possi-
ble to write a type on a block parameter and to attempt to apply the block
to an argument of a different type. If such an application occurred at run-
time, the program would report a type error and terminate. To add partial
functions we extend blocks with a match method to also allow for a non-fatal

75

76 CHAPTER 4. PATTERNS AS OBJECTS

indication of a type mismatch. The match method returns either a result
indicating that the argument was outside the domain of the function, or
the result of the function encapsulated in an object indicating a successful
match.

To permit matching on values, such as numbers and strings, we gener-
alise the annotation of a parameter’s type to a pattern: all types are patterns,
but patterns can also represent individual objects or values, sets or ranges
of values, bit patterns, or any other criteria that can be defined in code. We
represent patterns as a nested composite object structure, using the same
match method as for blocks.

Patterns are permitted as annotation only on the single argument of a
partial function block. A destructuring pattern written there can extract val-
ues from an object, declaring additional patterns that the components must
match, and potentially binding the extracted values to names. These are
the only language-level impacts that pattern matching and case statements
place on Grace: the extension of type annotations into pattern annota-
tions, and the ability of patterns to bind additional parameters. Unlike in
other languages, there are no macros, no rewriting, no additional control
structures, and nothing special about destructuring.

4.3 Graceful patterns

This section describes how patterns appear to the Grace programmer. The
syntax is explicitly conventional, familiar to programmers of Scala, F#,
Haskell, and other languages, and involved only minor extensions to Grace.

4.3.1 match()case()...case

The programmer’s interface to pattern matching is the set of match()case()

. . . case methods, with the same form as other Grace control structures. The

76

4.3. GRACEFUL PATTERNS 77

method takes as its first argument the target of the match, and as succeeding
arguments some number of matching blocks. These matching blocks are
ordinary Grace blocks that have been extended to incorporate a pattern
literal as the parameter list; the body of the block contains the code to
be executed when the pattern matches. This is best explained using an
example, which we will use through the next sections:

match(expr)
case { 0 −> "zero" }
case { n : Number −> "Number less than {n+1}" }
case { s : String −> "String \"{s}\"" }
case { x −> error "Unexpected value {x}" }

This match expression first evaluates expr to obtain an object obj, and
then attempts to match the patterns in sequence, executing the first case
block whose pattern matches obj. The whole match...case returns the return
value of the executed block, and no further matches are attempted. We
designed this syntax carefully in order both to fit into the existing language
and to be “obvious” in meaning in the simple cases, particularly to a reader
familiar with pattern-matching in other languages.

4.3.2 Matching blocks

A matching block has the syntax of an ordinary block literal, enclosed in {},
but also incorporates a pattern literal before the −>, where the parameter
list would be.

The syntax for patterns is a strict superset of that for the parameter
list of a single-parameter block: all single-parameter blocks are matching
blocks. In fact, a matching block satisfies both the interface of a block (with
apply) and of a pattern (with match). The model of execution for matching
blocks is described in Section 4.4.8; for now, they simply encapsulate both
a pattern and some corresponding code.

77

78 CHAPTER 4. PATTERNS AS OBJECTS

4.3.3 Literal patterns

In the example above, the first pattern is the literal 0, which matches the
number object 0. All numeric and string literals can be used as patterns,
and match themselves (they are what we term autozygotic).

If expr evaluates to 0, including as the result of some calculation, the
pattern will match and the match expression will return "zero".

4.3.4 Type patterns

The second pattern n : Number matches when obj has type Number, but also
has the effect of binding n to obj within the body of the block. This syntax
is identical to that for declaring a block with a single parameter of type
Number, a deliberate choice to present a consistent syntax that may be
understood by readers who do not know the pattern-matching system.
Within the body of the matching block n will have type Number, exactly as
when applying a block outside of matching.

The third pattern is similar, but matches when obj has type String. Be-
cause Grace is gradually typed, static types like these may be used in code
that is otherwise dynamically typed. Because Grace types are structural,
when used as patterns they match whenever all of the methods in the type
are found in the object with appropriate signatures. An anonymous type
can be used to check for only a particular method:

case { x : type { asString −> String } −> x.asString }

In fact, any piece of pattern or type syntax can appear after the : here;
a type expression simply means a pattern matching exactly the members
of that type. This behaviour will be described in detail in Section 4.4.

4.3.5 Variable patterns

The final pattern introduces a new parameter named x; the pattern always
matches (it is irrefutable) and has the effect of binding x to obj. Again, this has

78

4.3. GRACEFUL PATTERNS 79

the same syntax and behaviour as a block with a single untyped parameter.

The syntax for a variable pattern is simply any identifier in “left-hand-
side” context: either before a “:” as in type patterns, or on its own as a
default case as in the example. Variable patterns can also be used inside a
destructuring pattern (Section 4.3.8). An identifier written in this context is
always a variable pattern, and never refers to any variable in the surround-
ing scope that might already exist. We address referring to preexisting
variables in Section 4.3.10.

4.3.6 Wildcard pattern

To write a pattern that always matches but does not bind a parameter, the
wildcard identifier _ may be used:

case { _ −> error "Unexpected value"}

The wildcard pattern is useful in situations where an irrefutable pattern
is necessary, but binding the target of the match to a new variable name
is not required. The _ explicitly indicates that the value is intended to be
accepted, but discarded, just as it can be used as a name for superfluous
parameters to methods or blocks. _ is useful not only as a “default” catch-
all case, but to perform a type match without saving the result, or as part
of destructuring (Section 4.3.8).

4.3.7 Combinators

Patterns can be combined using the pattern combinators & and |. The
pattern a & b matches when patterns a and b both match:

type X = { x } // the type with method x
type Y = { y } // the type with method y
match (val)

case { o : X & Y −> "Point ({o.x}, {o.y})" }

while a | b matches when either pattern a or pattern b matches:

79

80 CHAPTER 4. PATTERNS AS OBJECTS

match (val)
case { _ : Number | String | Boolean −>
"A value of a built−in type"

}

This syntax again corresponds exactly to an existing Grace feature: &

and | are used to construct intersection and union types, respectively, and
where both branches refer to types the semantics are identical. In our X & Y

example, o must both be matched by the patterns X and Y and conform to
the type X & Y (which is type { x ; y } — having both an x and a y method).
Within the body of the block, o has the corresponding type X & Y.

4.3.8 Destructuring

Patterns can also extract data from the matched object for binding or further
matching. We call this use a destructuring match; it requires that the matched
object cooperate by providing a method that exposes the necessary data
(this method is not visible in the syntax).

match (astNode)
case { nd : ASTString("") −> "Empty string" }
case { nd : ASTNumber(n) −> "The number {n}" }
case { nd : Operator("+", ASTNumber(0), y) −> "Just {y}" }
case { nd : Operator("+",

m : ASTMember(name : String,
Identifier("self"), y))

−> "self.{name} + {y}" }
case { nd : Operator("+", x, y) −> "Adding {x} and {y}" }

Destructuring matches can be nested arbitrarily deeply. Each sub-
pattern can use the full pattern syntax, including literal patterns and com-
binators, variable and type patterns, or other destructuring matches. The
same variable name may not be bound at different points in the match. In-
stead, repeated bindings will be a static error under Grace’s “no shadowing”

80

4.3. GRACEFUL PATTERNS 81

rule (Section 3.2).

In this example we see matching against the literal patterns "", "+",
"self", and 0, the variable patterns n, y, m, and x, the type pattern name :

String, and general destructuring patterns ASTString, ASTNumber, Operator,
ASTMember, and Identifier. Every kind of pattern appears directly inside a
destructuring match at some point.

The pattern as a whole will only match if the outer pattern matches, and
the values the object destructures to under that pattern also match the inner
patterns. If an outer pattern matches but some of the inner patterns do
not, the entire match fails and the next matching block will be tried. This
simplifies code over the non-destructuring version. Without destructuring,
nested match...case or if statements would require some combination of
repeated code, many methods each dealing with some part of the matching
tree, and non-local returns to achieve the same behaviour, compared to
largely-declarative and shorter code using destructuring matches. Because
of this, we consider the added syntactic and conceptual complexity of
destructuring itself to be worth the cost.

4.3.9 Predicates

While a programmer can define a custom pattern with any semantics they
want, a common case will be to perform some test and either succeed or
fail on the basis of its result. We can aid this case by providing a simple
way of creating a pattern with these semantics from a predicate.

We define a prefix ? method on blocks to lift them to patterns in this way.
If b is a block implementing a predicate (that is, having a single parameter
and returning a Boolean), ?b is a pattern that matches exactly when that
predicate is true. These predicate patterns can either be used inline in a match
or saved as pattern definitions:

81

82 CHAPTER 4. PATTERNS AS OBJECTS

def OddNumber = ?{ x : Number −> (x % 2) == 1 }
match(n)

case { _ : ?{ x : Number −> (x % 2) == 0 } −> print "{n} is even!" }
case { _ : OddNumber −> print "{n} is odd!" }

The prefix ? method has essentially this definition:

method prefix? {
object {
inherits BasePattern.new
method match(o) {

def matchResult = outer.match(o)
if (!matchResult) then { return FailedMatch.new(o) }
if (!matchResult.result) then { return FailedMatch.new(o) }
return SuccessfulMatch.new(o)

}
}

}

The block is first matched, and then the result tested to determine
the success of the predicate. Consequently, blocks used as predicates can
themselves be partial functions, as in the example above.

4.3.10 Using arbitrary expressions to obtain patterns

There is a potential ambiguity in this pattern syntax. If a bare identifier such
as d is used as a pattern, in a context where the identifier d is already bound,
does it indicate a variable match (which always succeeds and binds d to the
object being matched), or does it indicate that the object already bound to d

should be used as a pattern? We avoid this ambiguity by requiring that the
latter case be written with parentheses: (d).

Similarly, matching against the result of a method request with parame-
ters would look similar to a destructuring match: both consist of a name
and then some expressions in parentheses. The syntax treats this as a de-

82

4.4. PATTERNS AS OBJECTS 83

structuring pattern. To obtain a match against the return value of a method,
it may similarly be enclosed in parentheses:

case { t : (sum(values)) −> "The correct total, {t}." }

Where the result of an operator expression, such as a + b, is to be used as a
pattern to match against, again we parenthesise it to avoid conflicts with
the pattern syntax. For the same reason, matching against a type requires a
: in the pattern, rather than simply the type name.

We chose this arrangement, essentially requiring the ordinary syntax to
be offset in a pattern context rather than offsetting the pattern syntax at all
times, because the overwhelmingly more common case will be to match
against fixed patterns rather than the results of expressions. We were also
able to preserve compatibility with the ordinary block parameter syntax
and semantics, which already have their own context

4.4 Patterns as objects

As mentioned in the introduction to this chapter, our aim was to provide
the — in most ways quite conventional — facilities described in the previous
section by leveraging the existing features of the language, making only
minimal extensions. In this section we describe the way that we reified
our conceptual model as Grace objects in the implementation, and how we
represented the different syntactic and conceptual elements in an object-
oriented fashion.

4.4.1 Patterns as an object framework

Here we describe how we implemented the conceptual model as an object-
oriented framework. Most Grace programmers will not need to know about
this implementation, needing only to deal with the surface syntax, but an
author who wants to create new kinds of pattern will be able to do so by
understanding the implementation.

83

84 CHAPTER 4. PATTERNS AS OBJECTS

A pattern object is an object that has a match method: match takes as an
argument the target of the match and returns an object of type MatchResult.
MatchResult is implemented by two classes: SuccessfulMatch, which inherits
from true, and FailedMatch, which inherits from false. Because MatchResult

objects inherit from the Booleans, the match method of a pattern may be
used as a condition:

if (pattern.match(obj)) then { ... }

MatchResult objects have two methods, in addition to those of Booleans.
The result method returns the object that was matched. In a simple pattern
the result of a SuccessfulMatch will be the original target of the match, but
in a user-defined pattern it may be more specific. The bindings method
returns a list of values that are bound to the variables of the pattern as an
effect of a successful match; the bindings of a FailedMatch are always empty.
These classes are instantiated with SuccessfulMatch.new(target, bindings) or
FailedMatch.new(target), with the effect of associating the relevant parameter
with the corresponding field. The matching protocol is shown in Figure 4.1.

Pattern objects are used to represent patterns at run-time. These objects
are related by the inheritance hierarchy shown in Figure 4.2. Because
patterns are objects they are first-class elements of the language; they can
be named, passed around, copied, and composed, and the matching model
functions on that basis.

4.4.2 Irrefutable patterns

An irrefutable pattern is one that always matches any object, that is, it cannot
fail. Irrefutable patterns are supported in our model, in which the first step
is to ask the pattern to match an object. In this respect we make a conscious
departure from Newspeak’s approach: because Newspeak does what in
some respects is the “correct” object-oriented thing to do by first asking the
object if it wishes to be matched, Newspeak supports only unmatchable
objects (objects that cannot be matched by any pattern), and not irrefutable

84

4.4. PATTERNS AS OBJECTS 85

Client p:Pattern o:Target

p.match(o)

o.extract

MatchResult

bindings

Figure 4.1: Matching sequence in Grace. Extraction is performed only for
destructuring matches.

Pattern

match(o) : MatchResult

Autozygotic TypePattern LambdaPattern

Combinator LiteralPattern Wildcard VariablePattern

OrPattern AndPattern DestructuringMatchPattern

*

items

pattern

right

left

Figure 4.2: Hierarchy of built-in pattern objects.

85

86 CHAPTER 4. PATTERNS AS OBJECTS

patterns. By definition, it is only possible to permit one of these in the same
system: either there is a pattern that matches any object, or an object that is
never matched by any pattern, but never both.

We made a deliberate decision to support irrefutable patterns. We
did not find a use case for unmatchable objects on the user level; rather,
we found it more useful to permit explicitly matching and discarding, or
matching and binding, any object given.

Wildcard pattern

The simplest pattern is the wildcard pattern, which corresponds to “_” in
the pattern syntax. The wildcard pattern always matches, and does not
bind anything: the matched value is simply discarded. The match method
immediately returns a successful match.

def wildcardPattern = object {
method match(o) {

SuccessfulMatch.new(o, aTuple.new)
}

}

The wildcard pattern creates no bindings and does not modify the target,
and so returns a SuccessfulMatch with an empty tuple of bindings and with
the target of the match passed on unchanged.

Variable pattern

The variable pattern also always matches, but includes a single binding:
the given target of the match. It applies no tests and no transformations
to the object, immediately returning a successful match with the correct
binding.

86

4.4. PATTERNS AS OBJECTS 87

class VariablePattern.new(name) {
method match(target) {

SuccessfulMatch.new(target, aTuple.new(target))
}

}

The variable pattern corresponds to a variable name in the pattern syntax: {

a −> a * 2 } constructs the pattern object VariablePattern.new("a"). The target
of the match is passed on unchanged, but unlike in the wildcard pattern is
also used as the single binding to create from this pattern.

4.4.3 Combinators

Pattern combinators are represented by pattern objects that hold the ar-
gument patterns, and use them somehow to establish their own match
result.

& Combinator

The & combinator is represented by an AndPattern object. An AndPattern

conjoins two patterns, ensuring that they both match.

AndPattern is an instance of the Composite structural design pattern [56,
p.163], so it is itself a Pattern. An AndPattern contains other patterns as
components and uses the components recursively for matching, without
knowing anything about what they are:

87

88 CHAPTER 4. PATTERNS AS OBJECTS

class AndPattern.new(pattern1, pattern2) {
method match(target) {

def match1 = pattern1.match(target)
if (!match1) then {

return match1
}
def match2 = pattern2.match(target)
if (!match2) then {

return match2
}
def b = match1.bindings ++ match2.bindings
SuccessfulMatch.new(target, b)

}
}

Here, the component patterns are both applied to the target of the
match: if either fails, the AndPattern immediately returns the failure. When
both component patterns successfully match, the AndPattern returns a
SuccessfulMatch whose bindings are the concatenation of the bindings of
the component matches. The job of actually inspecting the target object
or extracting bindings is left to the subsidiary patterns, and the AndPattern

needs not even look at the object it has been given.

| combinator

The other obvious combinator on patterns is disjunction, represented in the
syntax by | and as an object by the OrPattern, which combines two patterns,
and succeeds if either one of them succeeds:

88

4.4. PATTERNS AS OBJECTS 89

class OrPattern.new(pattern1, pattern2) {
method match(o) {

if (pattern1.match(o)) then {
return SuccessfulMatch.new(o, aTuple.new)

}
if (pattern2.match(o)) then {

return SuccessfulMatch.new(o, aTuple.new)
}
FailedMatch.new(o)

}
}

The OrPattern has a dual structure to the AndPattern and is also a com-
posite, leaving the task of inspecting the target object to the component
patterns, this time short-circuiting to success when a pattern matches and
failing otherwise.

Unlike the AndPattern, however, the OrPattern cannot return bindings.
This is because the caller cannot know which of the component patterns
succeeded, and hence does not know which variables will be bound. We
considered returning the intersection of the bindings from the two com-
ponents, but the transformation ceases to be fully syntax-directed at that
point: knowledge of the entire scope of the pattern in use is required to
know what to do with each binding. We also found relatively few use
cases where this was helpful, and these cases can be covered by a custom
pattern if required. Providing no bindings gives a simpler implementation
and explanation, and is consistent with the rule that identifiers may not be
repeated in parameter lists.

4.4.4 Types

We represent Grace types by objects with a method match(o) that returns a
SuccessfulMatch if the argument o has a conforming type, and a FailedMatch

89

90 CHAPTER 4. PATTERNS AS OBJECTS

otherwise. In both cases, bindings is empty. Thus, types are also patterns.
In the next example we use a type as a pattern to ensure that o has a value

method, and then request it.

type Valuable = { value −> Number }
if (Valuable.match(o)) then {

total := total + o.value
}

As a consequence, types can be used as patterns in match-case expres-
sions. A pattern like z : Valuable combines a type-match with a variable
pattern that binds a value. This is represented using the AndPattern, so a
case of the form:

case { z : Valuable −> ... z.value ... }

results in the construction of the pattern

AndPattern.new(VariablePattern.new("z"), Valuable)

This pattern will succeed when the target of the match has the methods
defined in the Valuable type, and will result in the variable z being bound
to the target in the body of the block.

4.4.5 Autozygotic patterns

Numbers and Strings are patterns that match themselves, or more precisely
match those objects to which they are equal: they are autozygotic, as defined
in Section 4.3.3. This means that numeric and string literals within the
pattern syntax have exactly their ordinary meaning: they refer to the corre-
sponding Number and String objects. These objects have a match method
of the form:

90

4.4. PATTERNS AS OBJECTS 91

method match(o) {
if (self == o) then {

return SuccessfulMatch.new(o, aTuple.new)
}
return FailedMatch.new(o)

}

User-defined objects can have the same method to make themselves
autozygotic. An autozygotic object can be useful for representing a signal
or enumeration value, which can then be matched against directly.

4.4.6 Destructuring patterns

A destructuring pattern extracts some of the (conceptual) state of the object
it matches, and attempts to match it against other patterns. The destructur-
ing pattern written in the syntax as:

Point(x, 0)

is translated into the DestructuringMatchPattern object:

DestructuringMatchPattern.new(Point,
aTuple.new(VariablePattern.new "x", 0))

This pattern combines another pattern (here, Point) which must match
the object as a whole, and a tuple of other subpatterns which must match
the destructured values in order for the whole pattern to match.

We will work through the implementation of this, the most complicated
built-in pattern of the system, below, but the basic structure of the match is
simple: first, attempt to match the target against the top-level pattern. Then
obtain the destructured values from the target through its extract method,
and attempt to match them with the subpatterns pairwise. If any match
fails, the overall match fails; otherwise, the match succeeds with all the
accumulated bindings.

How does this proceed? The match method of DestructuringMatchPattern

is:

91

92 CHAPTER 4. PATTERNS AS OBJECTS

class DestructuringMatchPattern.new(pat, componentPatterns) {
method match(o) {

def m = pat.match(o)
if (!m) then {

return m
}
var bindings := aTuple.new
for (componentPatterns) and (m.bindings) do { cPat, bindObj −>

def inner = cPat.match(bindObj)
if (!inner) then {

return FailedMatch.new(o)
}
bindings := bindings ++ inner.bindings

}
SuccessfulMatch.new(o, bindings)

}
}

We will go over this code in pieces.

class DestructuringMatchPattern.new(pat, componentPatterns) {
method match(o) {

Our DestructuringMatchPattern constructor has two parameters: pat, the
“top-level” pattern expected to match the entire object, and componentPatterns,
a tuple of other patterns to match against components. Like all patterns,
DestructuringMatchPattern has a match method with a single parameter.

method match(o) {
def m = pat.match(o)
if (!m) then {

return m
}

First we attempt to match the target, o, using the pattern we were given.
We save that result into m to be used later, and then test whether it is true

(a SuccessfulMatch) or false (a FailedMatch). If it is not successful then the

92

4.4. PATTERNS AS OBJECTS 93

destructuring pattern cannot succeed, so we immediately return the failure.

def m = pat.match(o)
...
var bindings := aTuple.new
for (componentPatterns) and (m.bindings) do { cPat, bindObj −>

def inner = cPat.match(bindObj)
if (!inner) then {

return FailedMatch.new(o)
}

Having successfully matched the top-level pattern we continue on to
examine the sub-patterns. We declare a variable to hold a tuple of bindings
to return, which is initially empty.

Next we want to look over two things at once: the list of sub-patterns
we were given (componentPatterns) and the bindings returned from the
top-level match (m.bindings). The top-level pattern determines what the
extracted values from the object are, and returns them as its bindings. The
pattern may examine the object directly, ask the object to provide its con-
tents, or simply fabricate some values for a particular purpose.

For each component pattern and extracted value, we try to match the
pattern (cPat) against the extracted value object (bindObj). If this match fails,
the entire destructuring match also fails, so we short-circuit out and return
a FailedMatch.

for (componentPatterns) and (m.bindings) do { cPat, bindObj −>
def inner = cPat.match(bindObj)
...
bindings := bindings ++ inner.bindings

}
SuccessfulMatch.new(o, bindings)

Having successfully matched the component pattern, we move on to
accumulating any bindings from it. Bindings occur most commonly from
variable patterns and other destructuring patterns; in our example, the

93

94 CHAPTER 4. PATTERNS AS OBJECTS

VariablePattern for x will create one binding. On the other hand, a type or
autozygotic pattern creates no bindings — “0” will return success when
matched against itself, but will not try to bind any variables. We concatenate
all our accrued bindings together to be returned.

After examining all the component patterns, if we did not already return
a failure then the match as a whole succeeds. We return a successful match
on the given object, including the bindings we accumulated. There can
be arbitrarily many bindings, depending on how many variables are used
in the pattern and sub-patterns, or there can be none at all if particular
components were matched directly.

Nested destructuring patterns

Destructuring patterns can be nested in the surface syntax, and exactly
the same nesting manifests in the object hierarchy. Each layer of nesting
constructs a new DestructuringMatchPattern, and is treated in the same way
as other patterns. If a nested pattern binds many variables, these will be
carried through to the result of the outermost destructuring match. The
following pattern syntax:

Pair(Pair(x : Number, 1.0), p : Pair(y : String, z))

thus results in a SuccessfulMatch object having four bindings, one for each
variable named, in the left-to-right order they appear in the syntax.

4.4.7 Destructuring types

To simplify a common case we provide an extension to type patterns allow-
ing them to destructure almost automatically. A type containing an extract

method returning a tuple implicitly supports destructuring matching. The
run-time type pattern object will implement destructuring, with the object
itself being asked to provide the destructured values. Because the object
conforms to the type, the extract method is known statically to exist.

94

4.4. PATTERNS AS OBJECTS 95

For example, given some Point objects, a programmer may want to
match those with a subset of coordinates, or extract and bind the coordi-
nates. The programmer could write a pattern themselves to do so, but such
a pattern would be largely repeated boilerplate. Instead they can arrange
their types and objects so that it happens for them. For example, given the
type:

type Point = {
x −> Number
y −> Number
extract −> Tuple<Number,Number>

}

and the class:

class aCartesianPoint.at(x' : Number, y' : Number) {
def x = x'
def y = y'
method extract { aTuple.new(x, y) }

}

we can perform a destructuring match using the Point type pattern:

match (pt)
case { p : Point(x, 0) −> "The point ({x}, 0)" }

to match all points on the x axis.

To support this behaviour the DestructuringMatchPattern adds an addi-
tional protocol step: in the case where the pattern itself does not provide
bindings in its MatchResult, it will examine the object for an extract method
and substitute the return value of this method for the bindings given by
the pattern. This step is necessary because type patterns in general produce
no bindings — p : Pair is also a valid pattern, and it should not try to bind
the internal state of the Pair object in question.

95

96 CHAPTER 4. PATTERNS AS OBJECTS

4.4.8 Lambda patterns and match...case

All of the patterns expressible in the pattern syntax described in Section 4.3
are represented as objects. Programmers can also construct pattern objects
directly, and mix them with the pattern objects generated from the pattern
syntax.

Having shown how patterns are represented as objects, we can explain
how match...case is implemented. The case parameters are LambdaPatterns,
which combine a pattern, representing the domain of the function, with a
“plain” block of executable code, representing the body. The match method
of a LambdaPattern first attempts to match the pattern. Only if the match
succeeds does it attempt to execute the block with the accrued bindings.
The return value of the block is used as the result of the SuccessfulMatch.

class LambdaPattern.new(pattern, block) {
method match(obj) {

def result = pattern.match(obj)
if (!result) then {

return FailedMatch.new(obj)
}
def returnValue = block.applyWithArguments(result.bindings)
SuccessfulMatch.new(returnValue, aTuple.new)

}
}

A lambda pattern may also be used as a sub-pattern when side effects
are desirable during matching, or when a simple way of computing the
result of a match is required. As mentioned earlier, we extended Grace so
that all single-parameter blocks were implicitly matching blocks; now we
see what that means. A matching block is a special kind of Lambda pattern
which implements both the interface of a block (with apply) and the match

method shown here.

The match-case method tries to match each LambdaPattern in turn until
one succeeds. This behavior is equivalent to that of the | combinator — try

96

4.5. TYPES AND PATTERNS 97

to match each pattern in turn, returning the first success. The two-clause
match()case()case method would look like this:

method match(val) case(b1) case(b2) {
(b1 | b2 | { _ −> error "match−case was not exhaustive" })

.match(val).result }

In practice, our implementation does not work this way for reasons of
efficiency and simplicity, but the fact that it could demonstrates the basic
compositionality of the Pattern design.

4.5 Types and patterns

How does pattern-matching mesh with Grace’s optional, gradual type
system? All of the patterns seen so far should be able to be statically typed.
Most importantly, whenever a variable is bound in a match, either at the
top level or via destructuring, we should be able to give it a static type.
A condition required for the matching system to be integrated into the
overall design of the Grace language was that the matching process should
not need to descend into dynamically-typed code when the surrounding
context was statically-typed; this restriction ruled out some approaches.

In this section we sketch how our approach permits types to be given
to objects during matching; we will not attempt to prove correctness and
we do not claim that the types assigned will be the most precise possible,
simply that they are good enough to be useful, and that the type given
to a variable matched by a type pattern is that type. Because these types
are applied only within eventual variable bindings, it is only the ability to
derive a valid static type which is important: having already matched at
run-time, they are guaranteed to pass any dynamic check for the type they
were given afterwards. Static type-checking in Grace is the responsibility
of the dialect in use, and can be customised; we attempt only to show how
sensible typings may be derived within the default structural system of the
base language.

97

98 CHAPTER 4. PATTERNS AS OBJECTS

In particular, in this section we will give the types of pattern objects
and the MatchResults returned from their match method. We will also show
how combinators affect typing, the role of destructuring matches, and
show where static typing and variant types can guarantee that matches are
exhaustive.

The semantics and syntax of pattern matching are independent of static
types, and we seek only to provide an overview for the curious reader.
A reader who is not interested in how pattern objects may be typed can
proceed to Section 4.6 on page 102.

4.5.1 Pattern and MatchResult

The Pattern and MatchResult types are generic, parameterised over the types
of the result and the bindings:

type Pattern<R,T> = {
match(o : Object) −> MatchResult<R,T>

}
type MatchResult<R,T> = {

result −> R
bindings −> T

}

In untyped code, these parameters are instantiated with type Unknown,
but patterns may also declare types for themselves.

The simplest pattern that assigns a type is a type pattern itself. A
variable associated with a type pattern has the corresponding type, so the
variable n in the pattern n : Number is given type Number. The pattern object
would instantiate the type parameter R to Number in this case.

In the case:

case { p : Pair −> "Pair ({p.left}, {p.right})" }

the new variable p has static type Pair, making the operations p.left and
p.right statically type safe. The pattern object for Pair would have the type:

98

4.5. TYPES AND PATTERNS 99

type PairPattern = {
match(target : Object) −>

MatchResult<Pair,Tuple<>>
}

The second type parameter to MatchResult is the empty tuple because
this pattern binds no variables.

Similarly, user-defined patterns define their match method to return a
result value of a particular type. This type must be correct, or the pattern
code itself would have caused a type error. The result type R can then be
given to the variable in question just as for a type pattern.

4.5.2 Destructuring

Destructuring matches may bind new variables, which are given types
from the tuple type returned by the bindings method. These types in
turn are derived from the types of the internal patterns written in the
source, which are passed as generic type parameters to the constructor of
DestructuringMatchPattern: in essence, the destructuring itself can be ignored
as far as typing goes, and it behaves exactly like any other pattern match
once transformed into objects. For example, given the case:

case { p : Pair(x : String, y : Number) −> ... }

the pattern generated is a variable pattern p and a DestructuringMatchPattern

representing the Pair(...). The MatchResult returned from that pattern has
type:

type Example = {
result −> Pair<String, Number>
bindings −> Tuple<String, Number>

}
def pat = ... // The DestructuringMatchPattern given above
def mr : Example = pat.match(p)

99

100 CHAPTER 4. PATTERNS AS OBJECTS

The result type of the destructuring match, and so the type given to p inside
the body of the block above, is Pair<String, Number>. x and y will be a String

and a Number respectively, as expected; the bindings method will return a
tuple containing the values of these types to assign. The Example type is a
subtype of MatchResult:

def mr' : MatchResult<Pair<String, Number>, Tuple<String, Number>> = mr

and the destructuring pattern itself has type:

def pat' : Pattern<Pair<String, Number>, Tuple<String, Number>>

At all times a valid type can be given to every value in use: the only place
where “casting” occurs is inside the implementation of type patterns String,
Number, Pair, which are built in and inherently check the types of their
targets. In this case the pair’s generic parameter types match those of the
bindings tuple, but in general they can differ arbitrarily.

If a type is given to a variable inside a destructuring match, that type
holds outside the destructuring pattern as well. The only point where a
new type is assigned is where a pattern is given on the right-hand-side of a
: character.

4.5.3 Combinators

When combinators are used, the types of variables become more complex.
The & combinator gives the variable the types from both patterns. In the
following example, o conforms to both X and Y, so both x and y methods
may be requested:

type X = { x } // type with x method
type Y = { y } // type with y method
match (val)

case { o : X & Y −> "Point ({o.x}, {o.y})" }

Grace’s type system uses the notation X & Y for the type that conforms to
both X and Y, so this is consistent with the base behaviour of a block, and

100

4.5. TYPES AND PATTERNS 101

we can say that o has type X & Y. If X and Y are not types but instead general
patterns, it is the intersection of their result types (R) that is important.

By contrast, the pattern X | Y matches when either X or Y does. In this
case, only methods that are common to objects matching either X or Y may
be requested in statically type-safe code. The type of such an object is the
untagged variant type, also written X | Y. All objects that have type X and
all objects that have type Y will also have the untagged variant type X | Y;
these are exactly the objects that the pattern X | Y will match. Again, where
X or Y is not a type itself, it is the result type R which is unioned.

4.5.4 Exhaustive matching

Untagged variant types also serve another role. A match-case expression
can be statically determined to be exhaustive when the target of the match
has a variant type, and all branches of the variant have associated cases. A
warning can be given both for non-exhaustive matches, which may have
unintended behavior, and for unreachable branches of the match:

var x : Number | String | Boolean := ...
match (x)

case { n : Number −> ... } // Doesn't execute anything
case { b : Boolean −> ... } // if x is a String.

match (x)
case { n : Number | Boolean −> ... }
case { s : String −> ... }
case { _ −> ... } // Unreachable!

Particularly in student code, it can be useful to report errors for missed
or impossible cases. The ability to do so is a natural consequence of the
structure of pattern objects, when used with variant types. An instructor
who wants more stringent static checking could construct a dialect that
provides it, using the dialect system described in Chapter 6.

101

102 CHAPTER 4. PATTERNS AS OBJECTS

4.6 Generalising patterns

The pattern-matching design described so far is largely discrete, fully im-
plemented, and incorporated into the main Grace language. This section
discusses a further generalisation of patterns to encompass all types in the
language.

Because Grace is gradually-typed, types must be checked at runtime
when dynamically- and statically-typed code mix. This mixing can only
happen at method boundaries and when assigning to variables. These
checks are equivalent under pattern-matching to requesting the match

method on the type pattern, and in fact this is what we implemented
in our compiler Minigrace (Chapter 8) to avoid redundant copies of the
type-checking algorithm. We can extend this usage: by permitting any pat-
tern to be used in type position, and enforcing at runtime that the pattern
matches, an arbitrarily powerful user-defined type system can be enforced
by the language.

For example, a square-root method might wish to ensure that its argu-
ment was always positive. We can define a pattern to represent this, as
shown in Figure 4.3. The pattern has the same form as a pattern for use
within the ordinary pattern-matching context.

More complicated features, such as full (dynamically-checked) depen-
dent types, can be implemented in the same way using custom pattern
objects (static checking can be implemented using our dialect system
described in Chapter 6; these features complement one another). This
PositiveNumber pattern is in fact built in through the unary prefix > operator
on numbers, so the sqrt method could be defined as:

method sqrt(n : >0) { ... }

While this kind of test could be written in manually when required,
abstracting the implementation away inside a pattern leads to a more
declarative reading of the code, and avoids errors that may occur from
repeating the tests. This approach is also in line with how such types are

102

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 103

def PositiveNumber = object {
inherits basicPattern.methods
method match(o) {

if (!Number.match(o)) then {
return FailedMatch.new(o)

}
if (o > 0) then {

return SuccessfulMatch.new(o, aTuple.new)
} else {

return FailedMatch.new(o)
}

}
}
method sqrt(n : PositiveNumber) {

n ^ 0.5
}

sqrt(−1) // Produces a runtime type error

Figure 4.3: Example of a pattern used as a (dependent) type.

generally written in languages which have them built in [122, 133, 147],
while having arbitrary computational power.

This generalisation is under consideration to be used as the underlying
semantics of the language, with the previously-explained gradual structural
typing as the system presented to users and generalised types forbidden
by the standard dialects. Minigrace supports these uses of patterns as an
extension.

4.7 Discussion and comparison with related work

In this section we will compare our design to those used in other languages,
discuss alternative approaches we considered, and further motivate the
inclusion of pattern matching in Grace.

While object orientation and pattern matching are often contrasted, even

103

104 CHAPTER 4. PATTERNS AS OBJECTS

in purely object-oriented code there are times when a programmer needs
to know the type of an object, such as when operating on elements of a
heterogeneous collection. This is one reason why Java has an instanceof

operator, and even Smalltalk programmers sometimes ask an object if it
accepts a particular message. Unfortunately such a construct is awkward
to use, often requiring type casts and redundant checks. Odersky argues
that pattern-matching is simpler and clearer in many circumstances that
would otherwise require the overhead of the Visitor pattern [46, 135]. He
also argues that pattern matching is a natural way to handle different
kinds of exceptions [136]. For these reasons, and also because instructors
and students should be able to compare programs that achieve the same
goals using pattern matching and polymorphic dispatch, we designed a
pattern-matching framework for Grace.

In our conceptual model, a case statement is a series of partial functions,
represented by a block, and a pattern is an object with a match method,
which might use other patterns in a composite fashion. To arrive at this
model of matching we needed to eliminate a great many conceivable mod-
els with superficial attraction, which turned out to be flawed after deeper
consideration; we will discuss some of these rejected approaches in Sec-
tion 4.7.7. Many approaches that can work in a purely dynamically-typed
language do not have a viable static typing, for example, while some that
work with pure static typing cannot work for dynamically-typed code, but
any approach in gradually-typed Grace needed to support both. Other
approaches lead to matching protocols that are difficult to follow or un-
derstand, such as those relying on nested blocks. We designed and even
implemented some of these models before we were able to eliminate them.
The final model, of reified partial functions, addresses the shortcomings of
the alternatives while being readily embeddable into the language.

Grace’s pattern matching was inspired by, and significantly based upon,
the designs for pattern matching in Scala [46] and in Newspeak [58]. The
“look” of our match-case construct is derived from Scala (an inherent system,

104

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 105

within the terminology we set out in Section 2.2), while the underlying
framework draws from Newspeak (an exherent system), although there
are significant departures from both in order to form a coherent matching
system.

4.7.1 Scala

Scala includes a built-in pattern matching syntax with which an object may
be matched against several patterns:2

x match {
case 1 => "one"

case "two" => 2
case y: Int => "scala.Int"

}

x match is Scala’s syntax for calling a method match on the object re-
ferred to by x. The block in braces defines multiple partial functions, one
for each case keyword, and is a special case in the syntax (in fact, match is
not a real method call at all).

In our design, however, each case is an independent block, both syntacti-
cally and semantically, and encodes a single partial function. match()...case

is a real method request, and no special syntactic form is required. Many
patterns, including all of those above, look identical in both Scala and Grace,
although the semantics is drastically different; given this similarity we view
our design as at least no worse than Scala from the perspective of an end
user of matching. Scala also includes further special-case patterns, such as
a :: as for list decomposition, which we do not define syntax for.

Patterns in Scala are mostly special cases with their own treatment:
Scala’s is an inherent matching system, meaning a pattern is not a first-class
entity and has special semantics defined by the language. In contrast, our
system defines all patterns as first-class objects, and matching occurs by

2An extended version of this example is presented in Appendix B.1.

105

106 CHAPTER 4. PATTERNS AS OBJECTS

requesting the match method on that object, all preexisting concepts within
Grace. Our patterns are thus a smaller extension to the language, despite
sharing a similar syntax, which we believe makes our design superior to
Scala’s from the perspective of the language designer and implementor.

In Scala, different types of pattern are statically transformed to different
checks and there is no single consistent behaviour. Matching on numbers
and strings is essentially syntactic sugar for the corresponding if-then-
else conditionals, while other patterns have their own entirely different
behaviour.

For user objects Scala’s pattern matching is geared around “case classes”:
classes that export their constructor parameters, generally representing data
types. Case classes are analogous to our type destructuring patterns, but
rather than magically expose parameters for a special kind of class we
included an explicit extract method that will be part of the matched object
itself, so that the object chooses what it exposes, and may even change what
it exposes over time, while a Scala case class is fixed at construction time.

Because the extract method is part of the type, all objects conforming to
the type are known to contain it. As Grace is structurally typed, multiple
implementations of the same type are possible, and they may choose to
expose different values while still conforming to the same interface and
matching the same type. In Scala, only instances of the same case class
can be matched in this way. Constructor parameters are not automatically
exposed in our design: the object may expose all of the parameters, some
of them, or none, and they are not automatically made public fields as they
are in Scala.

Scala also supports “extractor objects”, which expose some values pro-
grammatically through an unapply method. Extractor objects correspond
approximately to custom pattern objects in our design, and behave like a
generalisation of case classes. The unapply method of the extractor object
returns the list of bindings the extractor object should create, or a Boolean if
there should be no bindings, wrapped in an Option monad. In either case,

106

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 107

the reference to the extractor object must be written with parentheses. In
our design, a pattern is free to return bindings or not, and a Grace program-
mer can build explicit patterns with whatever combination of tests and
bindings they wish. In defining a custom pattern our system has at least the
power of Scala, and more in certain respects because all patterns are first-
class; consequently, we view our design as superior from the perspective of
a pattern author as well.

Scala has a typical inherent matching system, with some object-oriented
extensions. The semantics of matching are inconsistent with the rest of the
language, being a collection of special cases. Our design allows a reader
to apply their knowledge about the rest of the language to the semantics
of matching without surprises, as well as to define their own patterns and
extensions that can be used exactly on a par with the built-in constructs.
Because Scala’s patterns are not first-class they must always be written
directly into source code, within one of the delimited areas where the
pattern language is accepted. In our system, arbitrarily complex patterns
can be built up using combinators and pattern expressions over time: for
example, a pattern could be constructed that matched any element of a
given list simply with a loop and the | combinator:

def l : List<Number> = ...
...
var pat := l.first
for (l) do { element −>

pat := pat | element
}
...
match (o)

case { el : pat −> ... }

Such a construction is not possible in Scala, nor in any other inherent
matching system, because in these systems patterns cannot be named and
retained as they can be in our design. Despite this additional power, the

107

108 CHAPTER 4. PATTERNS AS OBJECTS

system we have designed allows common patterns to be expressed with
the same syntactic directness as Scala.

4.7.2 Newspeak

Our notions of first-class pattern and pattern combinator were developed
from Newspeak’s design for pattern-matching [58], illustrated in Figure 4.4.
Newspeak arguably does the “right” thing (or at least the pure object-
oriented thing) in that the target of the match is always in control of the
protocol: Newspeak’s initial matching message “case:otherwise:” is sent
to the target of the match, passing the pattern as an argument. This is the
reverse of our design, in which the target is passed as argument to the match

method requested on a pattern. In Newspeak, the default response to that
initial message is to double-dispatch back, i.e., to send a “doesMatch:else:”
message to the pattern asking that it match itself against the target. In
theory, this gives the target complete control of the matching process. In
practice, when we looked at the use-cases for matching, we noted this
default method was rarely overridden: almost every object proceeded
directly to the double dispatch.

This led us to a deliberate choice where we differ from Newspeak. While
Newspeak permits objects to determine whether they can be matched or not,
this power comes at the expense of the ability to define patterns that always
match (what we called irrefutable patterns earlier (Section 4.4.2)). Any
pattern-matching system can support at most one of irrefutable patterns
and unmatchable objects: a system with both would run into difficulty
when the two meet. We found irrefutable patterns to be significantly more
useful. In particular, our wildcard pattern (written _) is not possible in
Newspeak.

As well as wishing to support irrefutable patterns, we found Newspeak’s
matching protocol overly complicated. Comparing the Newspeak pro-
tocol in Figure 4.4 and our protocol in Figure 4.5 we see significantly

108

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 109

Client Pattern Target

case:otherwise:

doesMatch:else:

match:

obj:data:here:

doesNotUnderstand:

Figure 4.4: Matching sequence in Newspeak

Client p:Pattern o:Target

p.match(o)

o.extract

MatchResult

bindings

Figure 4.5: Matching sequence in our design.

109

110 CHAPTER 4. PATTERNS AS OBJECTS

fewer method calls in our design, including no double-dispatch bounc-
ing between objects, without losing any more expressive power than the
irrefutable-unmatchable tradeoff just mentioned. We view this simplicity as
an advantage for anyone attempting to understand or debug the matching
system.

The centre of Newspeak’s protocol is the doesMatch:else: message:
this supports composite patterns and pattern combinators similarly to our
match method. As its name implies, doesMatch:else: takes a block that
is evaluated when a match fails. In contrast, our match returns either a
SuccessfulMatch or a FailedMatch object; this is similar to the way in which
Scala uses an Option monad. Because our MatchResult objects inherit from
Booleans, the match method can even be used directly in the existing if-
then-else construct of the language:

if (pattern.match(obj)) then {
...

} else {
...

}

In this way control flow is always clear and consistent, even in the presence
of matching.

At the bottom of the Newspeak pattern-matching protocol, abstract
type tests and destructuring are supported by a second double-dispatched
message. To support matching, essentially all Newspeak objects must
respond to “match: pat” messages by sending a message characterising
the object and its state back to the “pat” parameter: a point might send the
two-parameter message “x:y:”, passing its coordinates as the arguments to
the message, whereas a string may simply send itself as the sole argument
to a one-parameter message “string:”. Patterns then implement the message
that will be sent by objects that they match — other messages raise a “does
not understand” exception, which is interpreted as a failed match. This
design is similar to Blume et al.’s proposal for matching based on first class

110

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 111

cases, rather than first class patterns [13].
Compared with Newspeak, all levels of our matching are carried out

via the same match method, which is uniformly implemented by all kinds
of patterns, from self-matching literals and reified types to pattern combina-
tors and blocks representing whole cases. Both our design and Newspeak’s
need syntactic extensions to support patterns and variable binding: our
design also needs the primitive reified types (the “type pattern” objects) to
be supplied by the runtime system, rather than using doesNotUnderstand:.3

In spite of this disadvantage, we consider our pattern matching proto-
col, shown earlier in Figure 4.5 more straightforward than Newspeak’s
protocol.

One of our goals was to allow users and instructors to define their own
patterns with relative ease. We believe our system does so to a much greater
extent than Newspeak: the author of an ordinary object to be matched need
not interact with the matching system at all, while the author of a pattern
need implement only one method which returns a value after linear flow of
control. The pattern author does not need to understand double dispatch,
nor implement multiple methods, nor handle method-not-found errors. We
view our system as an improvement over Newspeak’s for pattern authors.

Newspeak patterns are not fully integrated into the surface syntax in
the way ours are. By combining a suitable syntax with a model of reified
partial functions, connected by a purely syntax-directed transformation,
we constructed a novel system with both visual and conceptual elegance.
Through supporting this “inherent matching”-style syntax our design eases
the burden on an end user of matching compared to Newspeak, despite the
underlying system having all the power of Newspeak’s exherent design.

For the reasons given above, we claim that our system improves on
Newspeak’s syntax and Scala’s semantics, and so successfully bridges the
inherent and exherent matching divide, while including new features and

3Type patterns could alternatively have been implemented via reflection, but this was
both unsupported at the time and an unhelpful abdication of responsibility — delegating
to reflection is simply pretending to avoid a language extension.

111

112 CHAPTER 4. PATTERNS AS OBJECTS

(a)

(match e_1
[(and (? number?) x) e_2]
[_ e_3])

; Becomes
(let ([tmp e_1]

[f (λ () e_3])
(if (number? tmp)

(let ([x tmp]) e_2)
(f))))

(b)

match (e_1)
case { x : Number −> e_2 }
case { _ −> e_3 }

Figure 4.6: (a) A simple Racket pattern-match invocation and its macro
expansion [181]. e_N are arbitrary Racket expressions. (b) The equivalent
Grace match for semantic comparison.

consideration of the target audience of Grace.

4.7.3 Racket

The Racket Scheme dialect also includes an extensible pattern-matching
facility [181]. Uniquely amongst all the designs presented here, Racket’s
powerful macros enable the language to be extended without any changes
to its core implementation. While our design requires semantic support for
partial functions and reified types, and syntactic support for destructuring,
the remainder of our design avoids reflection, unlike Racket, and uses
straightforward, object-oriented design techniques.

Figure 4.6 shows a simple use of Racket’s match, and what the macro
expands to for that use; the pattern match is exactly equivalent to some
temporary bindings and an if statement, and produces these as the code that
will be executed. For more complex matching the analysis and generated
code is more complicated, but the pattern match is always translated to
equivalent imperative code. The “?” form allows using an arbitrary boolean
function as a pattern predicate, similar to (and inspiring) our predicate

112

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 113

patterns that lift blocks to patterns.

Racket’s approach is fully within the Lisp tradition, and may well be
the ideal design within that tradition, while Grace is a pure object-oriented
language with different needs. We view the semantics of our macroless
design as simpler to understand. Our pattern syntax fits into Grace at
least as well as Racket’s matching fits into its syntax. Overall, Racket and
Grace have similar goals but occupy different language niches, and their
matching systems reflect that difference; we believe our system is most
suitable to the constraints of the Grace language.

4.7.4 Gradual and optional typing

As well as being in an object-oriented language, our design differs from
most pattern-matching designs in that Grace is gradually and optionally
typed, while most languages with pattern matching are strongly statically
typed, typically via some mix of inference and explicit declarations. (The
outliers here we have already discussed: Racket, which is also optionally
typed, and Newspeak, which is purely dynamic). These languages’ pattern-
matching facilities are generally tied tightly into their type systems. In
fact, this is as true for Racket as it is for Scala: objects are matched and de-
structured based on their defining class. This is true even in OCaml, which
also has a structurally-typed object system, but which supports pattern
matching only on algebraic data types, not on objects [102]. In contrast,
our design matches according to the semantics of Grace types, and hence
only on the publicly visible interface of an object — its “duck type” if you
will — which is completely decoupled from that object’s implementation.
This behaviour is necessary for matching behaviour to be semantically con-
sistent in a structurally-typed language; as our goal was to have matching
fit into the underlying semantics of Grace, we needed to design in this
behaviour, which we achieved through the reified (structural) type pattern
objects we described.

113

114 CHAPTER 4. PATTERNS AS OBJECTS

4.7.5 Matching as monads

In essence, our design uses an object-oriented implementation of the ex-
ception monad: a pattern may either match, and return a value, or fail and
prevent subsequent computation from being attempted within that branch.
In either case a MatchResult object encapsulates the result. Both success
and failure can be detected, and a result extracted, or ignored — a failure
is “soft”, but in itself prevents subsequent execution within the monad
unless the failure is caught and recovered from. The | combinator, for ex-
ample, continues calculation after a match failure, while the & combinator
returns the error. Patterns are composable and can be sequenced. Custom
patterns can have arbitrary behaviour, providing the “programmable semi-
colon” effect of a monad. To this extent, we have defined an imperative,
object-oriented syntactic form and semantics for a particular monad.

4.7.6 Future work

We have considered a number of further extensions to our pattern-matching
design. One relatively straightforward extension is to support matching
against regular expressions. The simplest implementation would make use
of an external regular expression library such as Perl-compatible regular
expressions (PCRE) [65]. In the absence of regular expression literals, we
can define an operator to convert a String into a RegExp object. To fit into the
pattern-matching framework, all the RegExp object need do is to support
the protocol described by the Pattern type.

Another possible extension is to allow patterns to be used anywhere
there is a type annotation, which we discussed in Section 4.6.

A more ambitious extension is to incorporate matching and destructur-
ing of sequences, as in combinator parsers. From one perspective, parsers,
especially combinator parsers [100], are rather similar to matching: parsers
either complete successfully and return a representation of the parsed input,
or they fail. In other words, parsers are partial functions. The key difference

114

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 115

between patterns and parsers is that while patterns match against whole
objects, parsers typically parse an input sequence, and a successful parse may
consume some, all, or none of the remaining input. To support parsing, we
extend MatchResult to maintain the representation of the unparsed input:
the sequence parser combinator ∼ starts the right-hand parser when the
left-hand parser finishes. What is interesting about this embedding is that
alternation and parallel parser combinators correspond exactly to the “and”
and “or” pattern combinators. The resulting language is similar in many
ways to OMeta [192] — an object-oriented language for parsing — because
the parsers are integrated into the matching facility, rather than simply
being a stand-alone library. Lua’s text pattern-matching library is built
on Parsing Expression Grammars in a similar style, without any syntactic
support, but Lua matches only against text, not arbitrary objects [81].

4.7.7 Alternative approaches

We considered a number of alternative approaches before arriving at the
design presented here. All of them had some conceptual flaw that made
them unsuitable for Grace or in general, but some took a substantial amount
of consideration before that became apparent, and a few even made it as
far as preliminary implementation. We present some of these designs in
brief here, and explain why they were not chosen.

Nested function unrolling

This approach reached almost total implementation in Minigrace, more than
any other alternative we considered. It used essentially the same syntax as
we have described, but relied on nested blocks performing different stages
of the match.

The fundamental construct was a method on patterns:

matchObject(target)matchesBinding(successBlock)else(failureBlock)

115

116 CHAPTER 4. PATTERNS AS OBJECTS

If the pattern matched the target object, it would apply the successBlock,
passing in any bindings that should be accrued from the match. If the
pattern did not match, it would apply the failureBlock. In either case the
method would return the value returned by the block it applied. By pass-
ing blocks like this the approach has commonality with Newspeak. In
Newspeak, however, failure is indicated by an unsuccessful message send
(i.e., a method lookup error), which is interpreted by the matching infras-
tructure; we did not like this repurposing nor the fact that it was badly-
typed, and so introduced a failure block instead.

A top-level matching block would be translated into an ordinary block
accepting a single parameter, whose body constructed all the nested blocks
required for the match (including one for the actual body of the matching
block) and began the process. Each layer of block would handle one step of
the overall match; a single simple pattern would generally unroll to three
or four layers of block.

Let us consider a very simple case. Given a match-case statement like
this:

match(x)
case { 1 | 2 −> print "Small number" }

the unrolling transformation would create nested blocks like these:

{ target −>
1.matchObject(target)

matchesBinding { print "Small number" }
else {

2.matchObject(target)
matchesBinding { print "Small number" }
else { FailedMatch.raise }

}
}

This pattern binds no variables; if it did, each of them would be given
as a parameter of the block given as matchesBinding. The else block in the

116

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 117

first layer contains the right-hand side of the alternation, as it is only used
when the left-hand side did not match, and the else block inside that raises
an error indicating that the overall match fell off the end.

Note that the body of the initial matching block is repeated in both
branches; in this particular case the block could have been pre-allocated,
as it does not depend on any state, but in general the body will rely on
variables bound during the match, and so must be lexically inside the scope
of those variables. With a more complicated pattern like

{ a : Pair(x : Number | String, y : 1 | 2) −> print "{x},{y}" }

the unrolling must repeat not only the body, but the entire match process
after Number | — the tests for 1 | 2 and the bindings of a and y — on both
sides in order to have the correct variables bound at the end. Notwithstand-
ing the repeated code, this transformation is simple to implement in the
compiler, which need only alias or copy the AST nodes.

We implemented this design and it substantively worked. There were
two significant issues that ultimately led us to move on to the design
presented in this chapter. The first was simply one of comprehensibility:
the nesting quickly became intractably deep, and the repetition of branches
made the expansion very hard to follow. The other was one of typing:
giving correct static types to all of the intermediate variables involved in
the expansion, and ensuring that they were assigned values of the correct
type, was a challenge.

The combinatorial explosion of blocks was not a problem for the com-
piler, although it was inefficient, but it was a significant burden to anybody
trying to understand the matching process. We aimed, as a minor goal, to
make the system simple for the language designer and implementer, but
would be prepared to trade that off for better experience for end users and
pattern authors, so this flaw was not in itself fatal. End users would see
no effect from this approach, so they were not an obstacle; pattern authors,
however, would also need some understanding of the unrolling, both to
aid in debugging their pattern and in some cases to implement it correctly.

117

118 CHAPTER 4. PATTERNS AS OBJECTS

We felt that the unrolling was potentially too complex for that purpose.
Blocks would be nested very deeply, and in the case of combinators would
even be repeated in different branches of the match. A relatively simple
destructuring match with two arguments, one of which was another de-
structuring match, required over 60 blocks in total. An optimising compiler
could remove many of the nested blocks to reduce the inefficiency, but the
semantic model was less simple in execution than it had seemed in the
abstract.

Typing was more of a concern. While Grace is gradually-typed, and
dynamically-typed code is both possible and acceptable, we did not want
our expansion to discard type information when it was present. At some
points it became necessary to drop into dynamically-typed code to allow
the system to proceed: for example, during destructuring we would need
to bind (and even use) temporary variables before knowing their types
and construct blocks with parameters that might not be satisfied; as a con-
sequence, these internal variables needed to be given the dynamic type
Unknown. We considered discarding type information in this fashion unde-
sirable, and descending into dynamically-typed code to perform matching
within otherwise statically-typed code was a bar to integrating matching
into the core Grace language.

A further issue was simply that the act of implementing the method
matchObject()matchesBinding()else was a chore: an author of a custom pat-
tern needed to understand how the expansion worked, which was complex,
and was relied upon to implement the actual behaviour of the matching
correctly by applying one or other block and returning the correct result.
While in itself that was not enough to render the system unworkable, it
was a factor in combination with the other issues. We wished to minimise
the burden of understanding on pattern authors as far as possible, and
requiring that they implement the correct execution of blocks, rather than
simply linear control flow, was an obstacle to that goal, as well as potentially
leading to mistakes that they would have difficulty tracking.

118

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 119

One advantage the unrolling approach has over our eventual design
is that variable bindings simply fall out correctly: our design does not
permit binding variables on either side of an Or combinator, but unrolling
automatically permits the variables bound in every branch of the pattern to
be used in the body, and would raise an error if any variable not universally
defined were used, entirely by the ordinary semantics of the language
(admittedly, this error would be within the generated code, and some care
would be required to ensure a useful error message was produced). We
considered this as a point in favour of unrolling, but eventually determined
that it was an uncommon use case that could be manually compensated for
where required.

This design is plausible and functions correctly, with a transformation
directly into ordinary code, but it was not suitable for the overall environ-
ment of Grace. Nonetheless, it may be appropriate in another language
with different constraints.

Dedicated pattern language

Early on, we considered an approach where pattern-matching was an
innate concept of the language, and a dedicated sublanguage with its own
semantics implemented matching. match()...case was a keyword construct
in this scenario, and the case blocks were not ordinary blocks in any way.
In this the approach is similar to Scala’s.

Within the pattern language certain concepts had a known meaning,
such as numeric and string literals and type names. The compiler would
simply know what it meant to match against a number and perform that
directly. From the user’s perspective, matching would always “do the right
thing” as far as their intentions went: all branches would be checked and
the correct variables bound, particular syntax could support special cases
like tuples or list construction, and all the common cases would be covered.

As well as Scala this approach is taken by many, if not most, languages
integrating some sort of pattern matching, so it was certainly worth con-

119

120 CHAPTER 4. PATTERNS AS OBJECTS

sidering. The fundamental objection we have to it is precisely that it is a
special case of the language, and no part of it is first class in any sense.
User-defined patterns, if they exist at all, are definitively “less good” than
their built-in counterparts, and the patterns themselves are not first-class in
an object-oriented sense: we cannot name them, pass them around, or copy
them, at least not without further special casing in the system. Polymorphic
applications of patterns are not possible or are unnaturally difficult. In
addition, another keyword construct must be added to the language, which
the user cannot mimic and which is another piece of semantic and syntactic
baggage to learn.

Piecewise functions everywhere

In many functional languages pattern-matching is an integrated part of
the function dispatch system, behaving analogously to the multimethods
of some object-oriented languages and systems [1, 14, 25]. In Haskell, for
example, one can define a function in pieces, with different bodies for
different arguments, or with destructuring, which will be pattern-matched
when the function is called:

fib 0 = 1
fib 1 = 1
fib n = (fib (n − 1)) + (fib (n − 2))

In Haskell this is syntactic sugar for a single definition using the case...

of construct, but to the user it appears as a piecewise function definition,
as might be used to define a Fibonacci sequence function in mathematics.
Other definitions allow defining cases for each member of an abstract
data type (approximately, method overloading on parameter types). We
considered allowing this either for all methods or only for blocks, with a
special syntax. In this way pattern matching would devolve entirely onto
method application.

While piecewise function definition can be useful, it would have been
a substantial addition to the semantics of Grace, and likely to be difficult

120

4.7. DISCUSSION AND COMPARISON WITH RELATED WORK 121

to explain to novice programmers. A programmer can obtain this effect in
our approach by writing a pattern match immediately inside the body.

Performance

Our pattern-matching system involves the construction of many objects,
particularly matching blocks and match results. Where matching occurs
inside a tight loop and there are very many branches to the match, the
construction of these objects and the resulting garbage collection is likely
to have a performance impact not found in other designs. Efficiency is
explicitly not a goal of Grace, so we do not consider this impact to be
significant in general. The allocation of blocks is an equal problem for
if()then()else statements, and considered a reasonable price for the flexibility
the overall approach to control structures brings.

In specific cases where matching is to be used in this way the pro-
gram can be structured carefully to avoid excess allocation, such as by
pre-generating matching blocks outside the loop. An optimising compiler
could detect uses of matching and optimise the code without affecting
the semantics, by performing that restructuring automatically or trans-
forming patterns with well-known semantics (such as strings, numbers,
and combinators) into other constructs. Our compiler does not attempt
this optimisation, but we have experimented with various optimisations
with promising results. The introduction of matching has no performance
impact on code that does not use matching.

4.7.8 Application

Pattern matching is used heavily in the dialect for writing dialects described
in Section 6.2.3 and the dialects using that dialect. Patterns allow identifying
the nodes of large trees that interest the programmer concisely and clearly,
which would otherwise require more complex manual inspection, and most
importantly allow exposing a simple pattern-based interface to the dialect’s
end users.

121

122 CHAPTER 4. PATTERNS AS OBJECTS

4.8 Conclusion

Pattern matching is no longer the preserve of advanced functional lan-
guages and regular-expression-based scripting languages. Mainstream
programming languages incorporate pattern-matching functionality, and
the ACM Computer Science curriculum requires students to understand
pattern matching as a mechanism for program organisation. Consequently,
Grace should incorporate a pattern-matching system.

This chapter describes how we incorporated pattern matching into
Grace, without disrupting (and even while leveraging) the language’s dy-
namic object-oriented nature. We applied well-known principles — reified
partial functions, patterns modelled as first-class objects, and complex
structures constructed through pattern combinators and the Composite
pattern — to add comprehensive pattern-matching functionality with mini-
mal extension to the language. While our design is for Grace, the approach
we took relies only on common features that are also applicable in other
object-oriented languages that want to incorporate pattern matching.

122

Chapter 5

Modules as Gradually-Typed
Objects1

5.1 Introduction

In object-oriented languages, objects and the classes that generate them are
the primary unit of reuse — but objects and classes are typically too small a
unit for software maintenance and distribution. Many languages therefore
include some kind of package or module construct, which provides a
namespace for the components that it contains, and a unit from which
independently-written software components can obtain the components
they wish to use.

Grace needs a module system, but the language should not be compli-
cated any further than necessary in introducing that system. In this chapter
we present a module system built entirely from preexisting concepts and
constructs of the language. We also show how our system satisfies many
desirable attributes of a module system in general.

1This chapter expands upon a paper presented at DYLA 2013 [70].

123

124 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

5.1.1 What is a module?

As an educational language, Grace does not need as elaborate a module
system as might be required in an industrial-strength language, but it does
need a module system of some kind. The module system must support
the different applications of modules that students may need to learn, and
permit programs to be organised in a useful way for students, instructors,
and other programmers. We were influenced by the criteria set out by
Szyperski [177] on the role of modules and classes. As well, we noted
the work of Littman et al. [109] showing that novice users find debugging
multiple-module programs difficult when they do not understand the
dependencies of the modules. We also wanted to use the module system,
or a variant of it, to implement the dialects described in Chapter 6.

From these general ideas we set out these specific requirements for a
module system for Grace:

R1. Separate compilation: each module can be compiled separately.

R2. Foreign implementation: it should be possible to view packages im-
plemented in other languages through the façade of a Grace module;
the client code should not need to know that the implementation is
foreign.

R3. Namespaces: each module should create its own namespace, so main-
tainers of a module need not be concerned with name clashes.

R4. Sharing: clients should be able to share the objects provided by a
module.

R5. Type-independent: because Grace is gradually typed, the module
system cannot depend on the type system, but the module system
should support programmers who wish to use types.

R6. Controlled export: some mechanism should be available to hide the
internal details of a module’s implementation.

124

5.2. MODULES AS OBJECTS 125

R7. Multiple implementations: it should be possible to replace one module
by another that provides a similar interface, while making minimal
changes to the client.

R8. Explicit dependencies: code that uses a module depends on that module:
these dependencies should be explicit so that a reader may follow the
dependency chain and flow of execution.

Many of these requirements will hold for other languages as well; only
R5 is especially particular to Grace, although industrial languages may well
have additional requirements.

Grace meets these requirements by representing modules as objects.
Combining these module objects with Grace’s gradual structural typing
provides a wide range of functionality. This approach to the design of
module systems has been influenced by Python and Newspeak. The next
section describes the design of our system, and Section 5.3 shows how the
design meets the requirements above. Section 5.4 describes how our system
extends to support package management functionality appropriate to the
needs of Grace. Section 5.5 outlines extensions to the system and potential
future work, and Section 5.7 concludes.

5.2 Modules as objects

A Grace module is a piece of code that constructs an object. This module
object behaves like any other object; in particular, it may have types and
methods as attributes, and can have state. A module corresponds to a
source file: the module object is created as if the entire file were inside an
object {...} constructor. Here is a complete, if simple, module:

def person = "reader"

method greet(name) {
print "Hello, {name}!"

}
greet(person)

125

126 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

Executing this module will print “Hello, reader!” and construct a module
object with the greet method in it.

That module object has ordinary Grace object semantics, meaning that a
module can also bundle classes or object constructors, as well as methods:

class Greeter.new(greeting) {
method greet(name) {

print "{greeting}, {name}!"

}
}
def standardGreeter = object {

method greet(name) {
print "Hello, {name}!"

}
}

A module can contain many methods, objects, classes, fields, and types, or
none.

The effect of this is similar to modules in Python [159] (discussed in
Section 2.3.1), but uses existing language features instead of adding a new
concept that must be explained and has its own idiosyncratic behaviours.
We will contrast our approach with Python’s explicitly in Section 5.6.1.

Making modules objects, rather than introducing a new feature, inter-
acts constructively with other aspects of the language, such as gradual
typing.

5.2.1 Importing modules

To access another module, the programmer uses an import statement:

import "examples/greeter" as doorman

The string that follows the import keyword must be a literal; it identifies the
module to be imported. From the perspective of the language this string
is opaque; our current implementation treats it as a relative file path. The
identifier following as is a local name that is bound to the module object

126

5.2. MODULES AS OBJECTS 127

created by executing that file. If we assume that "examples/greeter"
refers to the first simple module shown above, then a name doorman is
introduced in the local scope, bound to an object with a greet method.

In a given program, a module is executed only once. Every import of
the same path within a program will access the same module object. A
module can maintain state, and that same state will be used by every client
of the module.

To take advantage of static type checking, a variant of the import state-
ment allows the programmer to specify the type that the imported module
should meet:

import "examples/greeter" as doorman : BasicGreeter

As types in Grace specify an interface, not an implementation, this asserts
that the imported module object must satisfy the interface defined by the
BasicGreeter type; if it does not, an error occurs. This error occurs either
at compile time or at bind time, depending on the implementation, but
always before any of the code of the importing module runs. The type
could be imported from another module, or be defined by the client:

type BasicGreeter = {
greet(n : String) −> Done

}

import "examples/greeter" as doorman : BasicGreeter

An alternative implementation of the same type may be chosen by changing
the import path string. When no type is specified in the import statement,
the type of the module is inferred from its implementation.

5.2.2 Gradual typing of modules

Through careful use of modules, imports, and type specifications, a sys-
tem can be configured in a range of different ways covering many of the
common purposes of modules.

127

128 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

Inferring module types

We can import a module with its original types, whatever those may be,
using:

import "x" as x

Parameters and return values with the Unknown type in "x" will also be
Unknown in the importing module, while uses of statically-typed parameters
and return values will be statically checked in the importing module.

Discarding module types

We can ignore any type information specified in the module "x" using:

import "x" as x : Unknown

In this case, providing an argument to a method of x that does not match
the declared type of a parameter, or requesting a method that is not defined,
will not be reported as a static error, and will not prevent the importing
code from being compiled and run. Grace’s gradual typing means that
such errors will be caught dynamically, if and when the offending code is
executed.

Specification conformance

We can define the interface that we want a module to support separately, in
another module, which allows for multiple implementations of the same
interface. We can also check that a module provides the features that we
expect:

import "xSpec" as xSpec
import "xImpl" as x : xSpec.T

Here, "xSpec" is a module defining the type T, like a Modula-2 defi-
nition module [196]. The type of the implementation module "xImpl" is
required to conform to the type xSpec.T. A different implementation of
xSpec.T can be selected by changing just the second import statement.

128

5.2. MODULES AS OBJECTS 129

Asserting local conformance

A module that is intended to satisfy a type defined elsewhere can assert its
own compliance with that type. Suppose a module intends to satisfy the
type T defined in "xSpec". It can enforce that type conformance itself:

import "xSpec" as spec
assertType<spec.T>(self)

Using the library method assertType<T>(o) causes the compiler to stati-
cally check that o has type T, so this code asserts that the current module
object has the type T imported from spec.

assertType itself has a simple definition:

method assertType<T>(_ : T) {}

By declaring a type parameter T, and taking a parameter of that type,
assertType forces the typechecker to establish the conformance of the given
object to the given type. self refers to the module object itself at the top
level of a module, so the programmer can cause as many checks as they
like to occur against different types they wish to implement.

Type ascription

A module can perform “type ascription” when importing other code:

type ExpectedType = { ... }
import "somemodule" as x : ExpectedType

Here the module imports "somemodule", but is explicit about the type
it assumes that module will satisfy — which will often be a supertype of the
type of the object actually supplied by the outside module. Future changes
to the module "x" that invalidate that assumption will yield an error at the
import site; this puts the “blame” in the right place.

Type ascription also imposes the constraint x : ExpectedType on code
that uses x in the importing module. If any code in the importing module
tries to use x in a way that conflicts with that constraint, it will receive
a static error. This is true even if the implementation module "x" uses

129

130 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

dynamic typing, and some or all parameters and return types are Unknown;
a programmer may develop a module gradually starting from dynamic
code and either moving to static or not, while using a consistent target
interface in client code.

5.2.3 Recursive module imports

Module imports cannot be recursive: A module A cannot import a module
that directly or transitively imports A.

This restriction is a deliberate choice. For Grace’s target audience —
novice programmers — we believe that cyclic or recursive imports are most
likely to indicate a program structuring problem.

This choice also means that we can fully create and initialise all imported
modules before the importing module. In this way we avoid problems
caused by partially-initialised modules, which novices are likely to have
difficulty understanding. By the time a piece of code has access to a refer-
ence to a module, that module has executed in full, any side effects have
occurred, and all its fields are set.

While cyclic imports are prohibited, modules may recursively use one
another, just like any other pair of objects. This mutual usage can be accom-
plished by the programmer explicitly providing one of the modules with
a reference to the other as an ordinary method parameter. The program-
mer can ensure that initialisation is completed appropriately, by whatever
means are appropriate to their program (such as setting a field).

Our module design keeps its thumb firmly on the scales to push users
towards the “right” choices to make, given the nature of the language, but
takes care not to exclude users from taking a different path if they wish. In
particular, because an imported module is just an object, any other object
can be substituted and given the same local name without changing any
other part of the importing module.

130

5.3. DESIGN RATIONALE 131

5.3 Design rationale

In Section 5.1.1, we laid out the requirements for modules in Grace. Grace
objects already satisfy many of these requirements. Top-level objects cannot
capture variables or outside state, so they can be compiled separately (re-
quirement R1); they create a namespace accessible through “dot” notation
(R3); the same object may be referred to by many other objects (R4); they
are gradually typed (R5); and they provide controlled export to clients
(R6). Through careful design of the import mechanism and our existing
gradual structural typing we were able to achieve the ability to use foreign
implementations (R2), and to substitute one implementation for another
(R7), while the import construct itself ensures that dependencies are ex-
plicit (R8). Using objects as modules avoids introducing another concept
into the language, supporting Grace’s design principle of building a small
language.

We considered an alternative design in which modules were classes, as
they are in Newspeak [15]. Using classes would offer some advantages:
modules would be instantiable and could be parameterised over objects and
types. In the style of Newspeak, we could have omitted the import construct
in favour of providing the module with an explicit platform parameter
containing its dependencies. We eventually rejected this approach because
we wished to make dependencies as explicit as possible in the code using
them, because we wanted to avoid formulaic incantations, and because
Grace is primarily based on objects (with classes derived from objects),
rather than on classes (instantiating objects), as is Newspeak.

We also considered a variant of the current design in which a file contain-
ing a single top-level declaration of an object, type, or class was a module,
while a file with multiple declarations was an object with the attributes thus
declared. We rejected this option because of the extra complexity, the lack
of uniformity, and the need for special-case behaviour, all of which would
need to be explained to students.

131

132 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

5.4 Package management

Many modern languages include a package manager and repository built
into their distribution; examples include Perl’s CPAN [179], RubyGems [169],
and LuaRocks [128]. A user can install new libraries for the language using
these tools. “Package manager” is the standard term for such tools, but the
term “package” is unconnected to the concept of packages in languages
like Java or of the sort we discussed in Section 2.3.2: instead, a package is
a discrete library that can be installed. Within this section we will use the
term exclusively with this meaning. We can leverage our module system,
and in particular the flexible import paths, to construct a suitable package
management system.

Grace has a unique set of constraints for such a system. Most end-users
of the language will be students, who have little need for complex pack-
aging, but the most important audience is course instructors. Instructors
frequently have their own libraries they wish students to use, and in Grace
may well have customised dialects as well. Instructors are busy and may
not have the time or inclination to follow instructions for packaging up
their library code.

It is important that both installing libraries is easy (for students), and
that making a library accessible through the system is easy (for instructors),
and so the barrier to entry in both directions must be very low. A particular
instructor’s library may only be used for a single course, or even a part of a
single course, at a single institution, and may be of no use to other users.

5.4.1 Identifying packages

Most existing systems define their own global namespace of package names,
which library authors register on a first-in-first-served basis. This approach
makes for short and memorable names to begin with, but raises some issues
in the long term. Most “good” names will be taken early on, forcing later
authors into more and more creative names. Abandoned libraries continue

132

5.4. PACKAGE MANAGEMENT 133

to “squat” on their name forever; while these libraries may be determined
and deleted somehow, doing so leads to a repetition of the first problem
while also creating confusion in which package is actually referred to by
the recycled name. In addition, given the user base of the language, many
low-quality packages may have their names registered by students who
then move on from the language.

A suitable package management system for Grace, then, must have a
very low barrier for publishing, and must ensure that a particular package
can be readily identified while not requiring a new global namespace
of package names. It must nonetheless be possible to retrieve a known
package to install easily. The combination of ready publishing, globally-
unique names and ready retrieval led us towards using URLs to identify
packages.

A URL in a well-known protocol like HTTP can be dereferenced to
retrieve a file. Publishing such a file is generally a mere matter of copying
the file into place on a web server. URLs are guaranteed to be globally
unique by the existing domain registration and DNS systems, and by the
simple fact that it is possible to retrieve a particular file from them.

We can reinterpret some import paths as describing URLs, and then
provide a tool to retrieve and install libraries from the internet. Minigrace
includes these behaviours as an extension, and it is proposed for adoption
into the language specification.

This approach does have some limitations compared to other systems
because of the trade-offs we made in the context of Grace. Many package
managers have some support for versioning of packages, which this ap-
proach does not. Where referring to a particular version may be necessary,
however, a version number can be placed in the URL itself, along with
any other desired conventions. URLs are also not necessarily permanent:
domain names can expire, or the files can be changed, but these problems
are no greater than for any other system that retrieves packages from the
origin server. There is also no explicit support for signing or verifying

133

134 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

distributed packages. For the target audiences of Grace, however, these
limitations are less important than for an industrial language.

5.4.2 Finding packages

The key choice here is to reinterpret an import path as a URL, simultaneous
with the interpretation already given by the implementation. Minigrace
already maps the string onto a local path: for example,

import "x/y" as y

will look for a file ~/.local/lib/grace/modules/x/y.grace (among other loca-
tions determined by the installation configuration). While maintaining this
interpretation, the package manager can also interpret the import path as a
URL, and attempt to retrieve it when requested. The compiler need have
no knowledge of this interpretation: the package manager can retrieve the
relevant file and store it in the same place the compiler will look for it. The
package manager determines whether the import path is a candidate to
be mapped to a URL, and if so constructs the appropriate HTTPS URL
corresponding to the import path.

5.4.3 Installing packages

We have implemented this system into a tool called gracepm, which is
included in the Minigrace distribution. The package manager supports
two major modes: install, which retrieves and installs a particular module
and its dependencies, and satisfy, which ensures that all dependencies of a
given Grace source file are met. A worked example in more detail is given
in Appendix C.

5.4.4 Publishing packages

Earlier we also said it must also be easy for a package author to publish
their library, and from here we see how they can do this: they simply put

134

5.5. EXTENSIONS AND FUTURE WORK 135

their source code on the web, and it is immediately accessible to all users,
without any packaging or registration step. We consider this to be as simple
as it is reasonably possible for publishing a package to be, and in line with
the target audience of Grace.

Because dependencies are already manifest in the source code, no ad-
ditional configuration or metadata is required from the publisher, and
the famous “don’t repeat yourself” principle [76] is fully satisfied. The
package manager can examine code for import statements to determine
which dependencies are required. The source code and metadata can never
become desynchronised because they are one and the same, eliminating a
common class of errors in existing systems. In particular, the author can
never accidentally add a code dependency without adding it as a packaging
dependency as well. This result flows from our design requirement that
dependencies be explicit (R8).

Delegating package names to the URL system resolves both the unique-
ness problem and accessibility. By incorporating a domain name, unique-
ness is delegated onto the domain-name registration system and then the
owner of the domain (just as Java uses reverse-DNS names for packages by
convention, and for the same reasons). Interpreting the path as an HTTPS
URL maps it onto an already-defined access mechanism. Webspace is easy
to come by, particularly for instructors at institutions, and web access is
ubiquitous. It is worth noting that only published libraries need use this
URL format for their imports: local code can continue to use local-only
names, or any names supported by the user’s implementation.

5.5 Extensions and future work

The module system design that we have presented is open to a number
of extensions. In particular, it is possible to interpret the import string
in various ways, without affecting the rest of the language. Moreover,
because a module presents itself as an object, its internal implementation

135

136 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

and behaviour are hidden. In this section we present some preliminary
experiments and discuss future extensions that exploit these features.

5.5.1 Foreign objects

We can access code written in other languages, or behaving in unusual ways,
by compiling it appropriately and then importing it in the ordinary way.
This functionality is found in various forms in many dynamic languages.

Objects that have been imported from a source outside the universe
of Grace code are called “foreign objects”. From the perspective of client
code, there is no difference between an import that returns a foreign object
and an import that returns an ordinary module object. Internally, a foreign
object may construct new objects or classes “on the fly” to represent the
resources it provides, and it may access other libraries available on the
implementation platform.

Because these foreign objects present themselves as ordinary objects
to Grace code, all of the ordinary facilities of objects and modules are
available for use with them, including type specification and ascription
during import (as described in Section 5.2.2), aliasing, and using them as
parameters. A foreign (perhaps optimised) module may be substituted for
a Grace implementation used with a type specification in exactly the same
way that another Grace implementation could be so substituted.

The implementation of the foreign object itself is tied to the ABI of
the language implementation: it must present objects in the format the
run-time system requires and accept method requests using the protocol
the run time uses. The code may need to marshal and unmarshal these.
Errors in foreign code can have arbitrary effects and break invariants of the
language. Because objects are an encapsulation boundary, however, from
the perspective of the Grace client the foreign module is indistinguishable
from a Grace module.

We have written a fairly complete Grace binding to the GTK+ widget

136

5.5. EXTENSIONS AND FUTURE WORK 137

library [69], described in more detail in Section 8.4.1, that demonstrates
foreign objects. A Grace program can use this module as follows:

import "gtk" as gtk
def window = gtk.window(gtk.GTK_WINDOW_TOPLEVEL)
def button = gtk.button
button.label := "Hello, world!"

button.on "clicked" do { gtk.main_quit }
window.show_all
gtk.main

This code creates a window with a “Hello, world!” button that termi-
nates the program, using a Grace transliteration of the underlying GTK+
interfaces. GTK+ is an object-oriented library, and its object features are
mapped directly to Grace objects. Here, notwithstanding that the "gtk"

module is not Grace, to the client code this is an ordinary module import.
Because object implementations are always opaque the module object is
indistinguishable from one defined in Grace code. Our prototype compiler
understands how to find and load a module including these bindings,
along with any metadata needed for compilation.

How these objects are constructed may vary. In the case of our GTK+
module, the GTK+ API has been pre-processed to generate wrappers con-
forming to the runtime’s object format. In the similar module wrapping the
HTML Document Object Model for the ECMAScript backend, the foreign
system’s native reflection is used at runtime. In the next section we discuss
a speculative use of foreign objects to access external data sources.

Because these foreign objects appear as ordinary Grace objects, all of
the gradual typing functionality discussed in Section 5.2.2 will work un-
changed. While the actual implementation is unknown, the public interface
of the object is subject to the same strictures as any other object. In the
case where the interface of the foreign module or other objects returned
from its methods is unknown or subject to addition at runtime, the gradual
enforcement can be based on the information currently available.

137

138 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

5.5.2 External data

Because the source of an import is a string whose interpretation is left to
the implementation, we can give certain strings special interpretations.
In particular, we can interpret some strings as references to external data
sources like web services, databases, and local metadata, to be reified as
foreign objects. The overall effect is similar to F#’s “type providers” [175].
These foreign objects can be implemented either dynamically (as in the
GTK bindings) or by code generation, as in F#. Minigrace supports both
approaches by providing a general hook in the import system, but much
future work remains to build useful bindings to external data sources,
determine how they should be integrated into the import system, and
answer questions about typing.

The idea behind this feature was uncovered serendipitously as we
developed the import facility for objects-as-modules, showing the power of
a simple mechanism used consistently. We hope to extend our prototypes to
support a wider range of external data sources and investigate dynamically-
provided types further in the future.

5.5.3 Resource imports

As described so far, it is possible to write

import "path/to/module" as mod

to get a Grace object containing the top-level definitions from the given
module, bound to the name "mod". Given that this is “just” an object,
there is no reason it necessarily has to arise from Grace source code. We
have already described the ability to import native code conforming to the
appropriate ABI, for example, in Section 5.5.1.

Given this existing mechanism, it would also be useful to access other
resources through it. In Grace, everything is an object, so the representation
of, say, an image, is naturally an object. Because the implementation of
objects is opaque, we cannot know what is in it or where it came from

138

5.5. EXTENSIONS AND FUTURE WORK 139

unless we wrote the object constructor ourselves. We could access these
through the import mechanism.

We can again interpret the import path in a new way, as referring to
a piece of data in some known file format, which can be presented as an
object. Such data might include help text, which would be represented as a
string, or a PNG image to be used as an icon, which would be represented
as an image object; we call these outside pieces of data resources. Resources
are not part of the source code directly, but are imported from the outside.

To do so we need to know three things: that what we are importing is
a resource, what kind of resource it is, and how to find it. We can resolve
the last through the ordinary import lookup (and the package manager
described in Section 5.4). The others are more complex.

There are two conventional and widely-deployed2 methods for deter-
mining a file type: by the file name, especially a particular part called an
extension, and by “magic number”3 inspection of the file contents. We
considered both of these approaches.

Magic number inspection is fraught and prone to failure, as well as
requiring incorporating a database of identifying features into the compiler.
We considered this undesirable, particularly when we wanted to work
across varying platforms.

Using the file extension ties the interpretation of the string to a particular
filename layout, and requires we map these extensions onto file handlers
somehow. We found this less objectionable, but worked to eliminate the
rough edges where possible.

Our ultimate design draws from the “extension” mechanism. As import
strings are (overall) uninterpreted, we must define what we consider an
extension to be. We did not wish to eliminate already-working import

2We dismiss out-of-band metadata such as Macintosh OSTypes and Apple UTIs for
this reason, as well as HTTP’s and MIME’s Content-Type header, as they are not available
on all platforms.

3A “magic number” is a specific sequence of bytes known to be at a particular location
in a file of a given type. The term originally referred to the first two bytes of a file on Unix
systems, but now has the broader meaning given.

139

140 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

statements from continuing to function.
To do so, we instate a syntactic restriction on the import paths of Grace

modules: the given import path may not contain a “.” character (the
Unicode character U+002e FULL STOP) after the final occurrence of “/”
(U+002f SOLIDUS). Remember that, when importing a module, we do not
include ".grace" in the name; this restriction only prohibits importing from
a path implying a source file name like “foo.bar.grace”.

If such a character does appear, this import statement is a resource import.
A resource import still binds the given name to an object identified by the
given import path; the difference is that the meaning of the import path
may be interpreted by other code.

What code is that? It is determined by the part of the name following
the “.”: in essence, the file extension determines an import handler to be
used. If a module contains the import statement:

import "my/tool/logo.png" as logo

then the "png" import handler is handed the path "my/tool/logo.png",
as a string, and returns an object to be bound to logo. This object can be
anything the handler likes, but is probably some representation of an image
in this case. If instead the module contains

import "my/tool/licence.txt" as licence

then licence is likely to be a String.
How are these extensions mapped to handlers? A per-program registry

is defined, and user code can add entries to it. When using the “gtk” mod-
ule, for example, it may extend the registry with an entry mapping the
“png” extension to something creating a GTK+ image object. Other mod-
ules may provide their own definitions. The system may predefine some
handlers, like “txt” as a String mapping, but these could be overridden.

What if we assume a Smalltalk-style programming interface, with a
closed world, and no “files”? Again, as the interpretation of the path is
defined in user code, it can be mapped according to whatever approach
makes sense in that system. The extensions are simply to identify an

140

5.6. COMPARISON WITH RELATED WORK 141

interpretation in that case.

What advantages does this have? We can access resources, like images,
documentation, or sound files through a single consistent interface. It fits
entirely within the existing semantics of the language, and also provides a
logical location to store relevant resources adjacent to the code that requires
them, and even to distribute them in the same way as code through the
package manager described in Section 5.4. We extended our package
manager to support resource imports, which it treats simply as opaque
files to retrieve and place in the correct directory structure for the ordinary
import mechanism to handle. The meaning of import "logo.png" as logo

is likely to be clear to the reader, even if they are unfamiliar with other
code. The disadvantage is that there is an added point of complexity in the
import system, and that a class of otherwise-valid filenames is excluded
from use as a module name.

There are some drawbacks to this design: firstly, we have introduced
a global registry, which inherently creates the potential for side effects
at a distance and the potential of conflicts. Secondly, typing is an issue;
because resource imports are handled at runtime we may not be able to
typecheck them statically. Gradual typing addresses many of the typing
issues. Finally, we have given an undesirable semantic importance to file
extensions; the “morally correct” way to represent file types is probably by
MIME type (now Internet Media Type [55]), but doing so is challenging on
most platforms, and some file extensions may correspond to multiple types.
The latter problem can be mitigated by defining “false” extensions, which
do correspond directly to a type and mangle the import path appropriately.

5.6 Comparison with related work

In this section we contrast our design with the module systems of Python,
Newspeak, and Go.

141

142 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

5.6.1 Python

Python’s module system also constructs objects containing the top-level
declarations of a source file and makes them available to other code through
an import ... as ... statement. Python’s system is the most similar to our
design, although there are several important differences.

In order to support namespaced modules, Python relies on the meta-
mutability of its objects: new fields can be added to an existing object at
runtime. In the case of the statement:

import x.y

the module x is first imported, with its source code found in x/__init__.py.
The object representing this module is bound to x in the local scope; if x
had already been imported elsewhere, the existing object would be aliased.
In either case, y is then loaded, from either x/y.py or x/y/__init__.py. The
object representing y is stored as the value of a new field y on the x object,
so that the module can be accessed as x.y, just as it was imported. This
addition of a field to an existing object is observable, because the module
may have been imported elsewhere and so be aliased.

Grace objects are not meta-mutable in this way, and such modification
breaks multiple of our system requirements: in particular, we required
that all dependencies be explicitly manifest in the source code of a module.
Python’s approach permits latent dependencies that are invisible and may
be unrealised by the programmer: if their module imports x, and another
module imports x.y, the programmer will be able to use x.y.z without ever
importing x.y themselves. If the other module ceases to be imported, the
programmer’s code will break mysteriously. In our system a module is
never modified by importing another module.

As well, the creation of new fields causes potential name clashes, vio-
lating our namespace rule. If module x already contains a field y, its value
will be destroyed by importing x.y and replaced by the imported module
object. The author of x does not necessarily know of the existence of x.y, as

142

5.6. COMPARISON WITH RELATED WORK 143

modules can be installed into other namespaces since they are represented
simply by directory structure; there is no way for the author of x to avoid
these potential clashes with its local definitions. This behaviour can be
observed in the following example:

x/__init__.py

y = 1
print("In loading x, y is {}".format(y))
def test():

print("Now in x, y is {}".format(y))

x/y.py

print("Now loading y")

test.py

import x.y
x.test()

Running test.py will output:

In loading x, y is 1

Now loading y

Now in x, y is <module ’x.y’ from ’x/y.py’>

The value of x.y has visibly changed, even inside the module itself.
We considered this behaviour highly undesirable, and have experienced
real code where both field overwriting and implicit dependencies have
caused problems. We avoided both of these issues in our module design by
identifying modules through strings instead of base syntactic forms, and
ensuring that every module object was entirely separate from any other.

Our modules are treated consistently with the rest of the language,
simply treating the file as though it were enclosed in object { ... }; in Python,
modules are a sui generis construct, and the only way that an object can
ever be created without writing its body in a class. While in Grace the
same rules apply to all object definitions including modules, in Python

143

144 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

there are slight differences between the two in initialisation and scoping.
Because Grace objects include typing and encapsulation, so do modules in
our system.

5.6.2 Newspeak

Bracha et al. [15] describe modules as classes in Newspeak. In this language
a module definition is a top-level class, whose instances are termed “mod-
ules”. Classes can be nested, and the code in a class can access external state
in three ways: lexically, from an outer scope; from an argument provided
at instantiation time; or from a superclass.

The most obvious difference is that in our design, modules are objects,
rather than classes. There is always at most one instance of any module
object in a Grace program; if a programmer wishes to permit multiple
instances of some object, they are free to define a class themselves. Because
Grace classes are simply syntactic sugar for objects anyway, our system
provides the flexibility of using either approach, with the module able to
act as a class if desired.

Because Newspeak module definitions are always at the top level, with
no surrounding class, they must be given all other modules they will use by
one of the other means. Most commonly, the class is parameterised with a
“platform” object exposing references to all the module objects the class will
use, but it is also possible to inherit access from a superclass. In the case
of a “platform” object dependencies are not present in the module source
at all; instead, dependencies are known or determined in the outside and
injected in. Given only a module’s source it is not generally possible to
know what other modules the module relies upon.

Passing in dependencies dynamically has some advantages: notably, as
modules are parameterised over dependencies, the same module can be
used multiple times with different dependencies. Dependencies may even
be determined at run time. The downside, however, is that given a piece

144

5.6. COMPARISON WITH RELATED WORK 145

of code one cannot track what is happening without knowing where it fits
into a particular running system. We considered explicit dependencies to
be important, especially for the audience of Grace, and so ensured that they
were always manifest in the source code.

Further, we felt that setting up or even passing along such an object is
another point of complexity for novice programmers that will seem to be
a magic incantation. Through this incantation certain unknown modules
come into view, but which they are may change. In contrast, our practice of
binding modules using import statements makes clear both which modules
are being used, and how they are named.

5.6.3 Go

In the Go language [60], a package may comprise several files, all of which
declare themselves part of the same package. All of these files will be in
a single directory, and are all combined together to present a single flat
interface; the ordering of different files in a package is undefined. Our
design does not include this multiple-file approach to a module, although
we strictly do not prohibit it either, as the interpretation of an import path
is up to the implementation. Nonetheless, we believe that file-per-module
is the more suitable approach, particularly as Grace wishes to support
top-level executable code for both programs and modules; in Go, at most
one main function can be defined, which will be the entry point to the
program, while many init functions can execute initialisation on a per-file
basis with undefined ordering. Our design executes a module, whether the
program’s entry point or not, linearly from top to bottom, which we find
more straightforward.

A package may be accessed by clients using Go’s import statement.
As in our design, import takes a string literal as argument to identify the
package to access. The string is formally defined to be opaque, but in
practice maps onto a filesystem path in some implementation-defined way,

145

146 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

exactly as in our design.

Associated tools are able to interpret import paths as URLs and use
them to fetch and install modules from version control systems at remote
locations when required. These tools have special support for some code-
hosting sites, as well as explicitly annotating an import path with version-
control information, and for finding the source repository by parsing HTML
found at a web location. By contrast, our package-management design
(Section 5.4) depends only on literal HTTP requests that retrieve the code to
be used, combined with manifest dependencies; we consider our approach
more suitable to the needs of Grace, as it depends only on access to web
space and needs no external tools that instructors or students would need
to learn to use in order to publish code. As the source code already includes
imports for all dependencies, modules are single files, and the import paths
can be transformed directly into HTTPS URLs, there is no need to repeat
any information. Nonetheless, we were influenced by Go in permitting a
URL interpretation of import paths.

Once imported, the module’s public interface is available through a
dotted name, but the module itself has no run-time existence. The static
appearance of modules is similar in Grace and Go, using dotted qualified-
name notation and a similar import statement, but our modules beget real
objects: while math.Sin(x) is a valid method access from a module in both
Go and our design, in ours math is a real object and this is a real method
request; in Go the expression is a special case in the parsing with static
dispatch. Go also permits an unqualified import that brings all definitions
into the local scope; we considered this a bad practice in general and do not
support it at all. For some uses of such imports the dialect system described
in Chapter 6 may suffice.

146

5.7. CONCLUSION 147

5.7 Conclusion

Grace requires a module system in order to express non-trivial programs.
We have presented a design based on reifying source files as objects, con-
ceptually by embedding the source code directly inside an object literal.
Our design leverages existing features of the Grace language to build a
semantically consistent model of modules that could be applied in similar
languages.

We derived a set of requirements a module system should meet: names-
pacing, sharing of objects, type independence, controlled export, explicit
dependencies, interchanging multiple implementations, separate compi-
lation, and allowing foreign implementations. We showed how modules-
as-objects meets each of these requirements. We also showed how careful
design of the functioning of our import statement permitted a range of
functionality within the same semantic model, including room for easy
extensions like package management and resource imports.

We will use our module system as a key component of building dialects
in the next chapter. Modules-as-objects provides the consistent semantic
model for dialects. We also use it extensively in our Minigrace compiler
(Chapter 8), which is composed of many modules.

147

148 CHAPTER 5. MODULES AS GRADUALLY-TYPED OBJECTS

148

Chapter 6

Dialects1

Grace is intended to support a variety of approaches to teaching program-
ming, including objects-early, objects-late, graphics-early, and functional-
first curricula. Similarly, it should be possible to teach courses using dy-
namic types or static types, to start with dynamic typing and then gradually
move to static typing, or to do the reverse, without having to change to a
different syntax, IDE, and libraries.

To support these different approaches not only must the language con-
tain the material features (gradual typing, first-class functions, object liter-
als) but it must provide support for structuring a program and a course in
these ways. For this reason the language has always intended to support
dialects: language variants supporting different approaches.

This chapter describes how we have designed a coherent system for
dialects, permitting not only pedagogical dialects but a variety of domain-
specific languages. Our design builds on well-understood features found in
many languages, combining them in a novel way to allow both the addition
and the removal of features from the language, while permitting interaction
between code in different dialects and retaining the fundamentals of the
underlying language intact.

Our design is mindful of the intended audience of Grace — namely

1This chapter expands on a paper published in ECOOP 2014 [71].

149

150 CHAPTER 6. DIALECTS

students and instructors — and takes care to limit the burden placed on
these users. At the same time, the dialect system is powerful enough to
create languages with very different appearance, purpose, and behaviour,
to permit experimenting with novel type systems or other restrictions, and
to allow languages aimed at domain experts who are not programmers so
that they can specify the logic in terms they understand.

The research questions we were forced to confront were how

• to “close the gap” between core functionality and library functionality,
so that programmers using facilities provided by a library don’t see
them as being “second class”;

• to devise a dialect mechanism that can be used to restrict the language,
as well as augment it; and

• to do both of the above as simply as possible.

The contribution of this chapter is to show how a novel combination
of a few carefully-selected features — lexical nesting, concise syntax for
lambda-expressions, multipart names for methods, optional typing, and
pluggable checkers — gives support for quite a wide range of dialects. We
illustrate the power of the dialect mechanism by presenting several case
studies, including:

• a domain-specific graphical micro-world,

• a dialect for writing dialects,

• a dialect giving an extended static type system.

The next section presents our design for dialects, explaining how di-
alects build on key features of the Grace programming language. Section 6.2
then validates our contribution by presenting case studies of dialects de-
fined in our system. Section 6.3 discusses alternatives and extensions to
our design. Section 6.4 briefly describes our implementation. Section 6.5

150

6.1. WHAT IS A DIALECT? 151

contrasts our approach with a range of related work, and Section 6.6 con-
cludes.

6.1 What is a dialect?

Dialects are modules that provide supersets or subsets of the standard
Grace language. Dialects can not only make extra definitions available to
their users; they can also restrict the language by defining and reporting
new kinds of errors, and can change the way in which existing errors are
reported. Dialects support the definition of language subsets to aid novice
programmers, and of domain-specific languages.

An extensional dialect provides new definitions to its clients; a restric-
tive dialect prohibits certain programs that would otherwise have been
acceptable. A single dialect may be both extensional and restrictive.

6.1.1 Structure

A module declares the dialect in which it is written with a dialect declara-
tion as its first line:

dialect "beginner"

Where no dialect is specified, the module is in the standard language. A
dialect declaration loads the module identified by the string, just as if it
were imported (see Section 5.2.1). Unlike an import statement, however, the
dialect declaration does not bind the imported object to a name: instead, the
dialect object is installed as the lexically-surrounding scope of the module
that uses it, as shown in Figure 6.1 on the next page.

Any request inside the client module for a method defined in that outer
scope — most likely a receiverless request — will access a method of the
dialect. This resolution rule is the same as that used for any other receiver-
less request, such as one from inside an object literal out to a surrounding

151

152 CHAPTER 6. DIALECTS

SomeDialect

ModuleC

dialect "SomeDialect"
...

diaMeth
...

DialectDialect

SomeDialect

dialect "DialectDialect"
method diaMeth {

...
}

Figure 6.1: Object nesting structure with dialects. Notice that dialect use
is not transitive: ModuleC is inside SomeDialect, and SomeDialect is inside
DialectDialect, but ModuleC is not in DialectDialect.

object. As a Grace module is an object (Chapter 5), this is in fact exactly
what is happening.

In Figure 6.1, ModuleC is written in SomeDialect, indicated by the
dialect "SomeDialect" line. As a result, the ModuleC scope is placed
directly inside SomeDialect. A receiverless request for a method not defined
locally, such as that to diaMeth, is dispatched to SomeDialect.

A module that defines a dialect may itself be written in a dialect. This
exposes a difference between dialectical nesting and other kinds of lexical
nesting: the current dialect is always the outermost lexical scope. Dialect
nesting is not transitive, which is a deliberate design decision. As special-
purpose dialects, particuluarly those defining educational subsets, will
often be less powerful than the language as a whole, the dialect itself will
likely be written in a dialect (or the unrestricted language) that provides
features which should not be exposed to clients.

In Figure 6.1, SomeDialect is itself written in the DialectDialect, and so
is treated as lexically inside it. ModuleC is written in SomeDialect, but it
is not inside DialectDialect, either directly or transitively. A receiverless
request inside ModuleC to a method not found in SomeDialect will not
reach DialectDialect, although the SomeDialect object and scope are the

152

6.1. WHAT IS A DIALECT? 153

same in both cases.

Standard Prelude

When no dialect is specified, the module is assumed to be written in the
full Grace language described in Chapter 3. As in many languages, a
standard prelude of built-in definitions is provided by default in Grace,
including standard control structures and utility methods. The dialect
method provides a coherent explanation for how this standard prelude
works: a program with no dialect declaration generates a module object
nested inside the standard prelude object, and so in the prelude’s dialect.

Because a dialect replaces the default nesting, the author of a dialect can
choose whether or not to expose the standard prelude’s methods to clients.
If they wish to do so, they can inherit all the methods of the standard
prelude into their module with:

inherits StandardPrelude.methods

A dialect author who wishes to restrict or replace the default definitions
needs do nothing to leave them out.

6.1.2 Pluggable checkers

As well as providing new definitions, dialects may restrict access to particu-
lar features of the language, or offer additional and more specific error and
warning messages. The latter are particularly useful in the context of Grace
because novice students can benefit from error messages that are tailored
to the more restricted things that they are trying to do, compared to more
advanced programmers.

Restrictions and new error messages are implemented by the dialect
module defining a checker method, which is executed when modules written
in the dialect are compiled. The checker method is passed the abstract
syntax tree of the client module to inspect. The checker cannot modify the
tree, but can check any properties the dialect needs, and indicate to the

153

154 CHAPTER 6. DIALECTS

compiler whether it should proceed or terminate with an error, and what
that error should be.

Checkers have the same ability to find and report errors as the compiler
itself. They can perform any analysis they require: for example, a dialect
may wish to perform a flow analysis to ensure that method parameters are
used. In fact, Grace’s static type checking is itself implemented in a checker.
If an error is found, the checker can report that error to the user, including
whatever information the dialect author thinks is relevant, and either carry
on to find more errors or stop at that point. Several modules that provide
varied degrees of checking can be used within the same overall program, so
a student’s code can be subjected to strict constraints, while still being able
to use a module provided by their instructor written in a more powerful
dialect.

While a checker can examine the code of its client module using any
technique the programmer wishes, we provide two mechanisms to make
dialect-creation easier. The most basic is support for the Visitor pattern [56]
on the AST nodes, which we show in use in Section 6.2.4; the other is
a dialect to support largely-declarative definitions of checkers, which is
presented in Section 6.2.3.

6.1.3 Run-time protocol

A dialect may wish to run code immediately before or after a module using
it, perhaps for logging, initialising data structures, or launching a user
interface. To enable this, the dialect protocol includes two further methods
the dialect can define: atModuleStart and atModuleEnd.

atModuleStart

atModuleStart is requested, if it exists, immediately before the module writ-
ten in the dialect is executed. The method receives a single argument: a
string containing the import path of the client module. In Figure 6.1, the

154

6.2. CASE STUDIES OF DIALECTS 155

string "ModuleC" would be provided to SomeDialect.
The dialect object is always fully initialised at this point. Other modules

may have executed code and may be partially or fully initialised, but none
of the body of the client module has run yet (in fact, the module object does
not even exist at this point).

atModuleEnd

atModuleEnd is requested immediately after the body of the client module
completes. This method also receives a single argument, this time a refer-
ence to the client module object itself. The entire body of the client module
has executed at this point, as have any modules it imports, and it is fully
initialised.

Multiple modules in the same dialect may be imported in such a way
that these two methods are interleaved. In this case, it is always guaranteed
that modules are processed in “stack” or FILO order: after atModuleStart is
given the import path, an equal number of atModuleStart and atModuleEnd

requests (possibly zero) have been made to the dialect module before the
corresponding atModuleEnd request for the first module.

6.2 Case studies of dialects

To explain and illustrate the power of our design, this section presents case
studies of dialects and their implementations. All case studies are fully
implemented and included in our source repository.

6.2.1 Logo-like turtle graphics

Our first case study is a simple dialect that supports procedural turtle
graphics, like Logo. This dialect is designed to be used by early students to
learn geometry and basic control structures with as little overhead as possi-
ble — in particular without the syntactic and semantic overhead of a more

155

156 CHAPTER 6. DIALECTS

dialect "logo"
begin
def length = 150
def diagonal = length * 1.414
lineWidth := 2
square(length)
turnRight(45)
lineColor := blue
forward(diagonal)
turnLeft(90)
lineColor := red
forward(diagonal / 2)
turnLeft(90)
forward(diagonal / 2)
turnLeft(90)
lineColor := blue
forward(diagonal)
end
method square(length) {

repeat 4 times {
forward(length)
turnRight(90)

}
}

Figure 6.2: A simple program in our Logo-like dialect and its output. This
example parallels one on the Xtext web site [43].

object-oriented style. We define a dialect giving access to simple movement
primitives and presenting what amounts to a procedural language, demon-
strating the basic behaviours of extensional dialects. Figure 6.2 shows a
simple program in this dialect, and its output.

This dialect is straightforward to implement, and is shown in Figure 6.3.
It defines methods for each instruction to be given to the turtle (turnLeft,
forward, etc). The bodies of these methods perform the relevant task, in this
case by delegating to an existing turtle graphics library.

More interestingly, the dialect defines variables holding pieces of state,

156

6.2. CASE STUDIES OF DIALECTS 157

import "turtle" as turtle
import "StandardPrelude" as StandardPrelude
inherits StandardPrelude.new

def red = turtle.red
def green = turtle.green
def blue = turtle.blue
def black = turtle.black

var lineWidth := 1
var lineColor := black

method forward(dist) {
turtle.move(dist, lineColor, lineWidth)

}
method turnRight(ang) {

turtle.turnRight(ang)
}
method turnLeft(ang) {

turtle.turnLeft(ang)
}
method penUp {

turtle.penUp
}
method penDown {

turtle.penDown
}
method repeat (n) times (blk) {
var counter := 1
while {counter <= n} do {

blk.apply
counter := counter + 1

}
}

method atModuleEnd(mod) {
turtle.start

}

Figure 6.3: The complete Logo-like dialect. The turtle module performs the
platform-specific drawing operations.

157

158 CHAPTER 6. DIALECTS

such as the lineColor variable used in Figure 6.2. These variables are in
scope in the client code, and so can be assigned directly: lineColor := red,
exactly like any other variable assignment (potentially, introducing the
concept to the student). The dialect could alternatively define accessor
methods lineColor and lineColor:= to add customised behaviour to accesses.
A number of colour constants (red, blue, etc) are also defined in the dialect,
available to the client.

Finally, the dialect uses the atModuleEnd method defined as part of the
runtime protocol (see Section 6.1.3) to launch the platform-specific visual
display when the client code has completed.

Because Grace includes first-class blocks and multi-part method names,
we can also implement new control structures as methods that take blocks
as arguments. The dialect can provide a Logo-style repeat loop as a method
that declares a counter variable and delegates to an ordinary while loop.

6.2.2 Design by contract

Courses taking a formal approach to software engineering may wish to
teach programming disciplines such as Design by Contract, using pre- and
post-conditions, and loop variants and invariants, as in Eiffel [125]. A di-
alect can provide these facilities in Grace. Our approach here is reminiscent
of Scala, but based on dialects rather than traits [137].

The simplest support is for assertions — for example, asserting that the
array used to store keys in a hash table has the same size as the array used
to store the hash table’s values.

assert {hashTable.keyArray.size == hashTable.valueArray.size)}

This assert “statement” is defined in a dialect as a method that accepts a
Predicate (a parameterless block that returns a Boolean when evaluated). If
the value of the predicate is false, the assertion has failed, so we raise an
appropriate exception:

158

6.2. CASE STUDIES OF DIALECTS 159

method assert(condition : Predicate) {
if (! condition.apply) then { InvariantFailure.raise }

}

We can extend this technique to support pre- and post-conditions on
methods, inspired by Eiffel’s “require”, “do”, and “ensure ”clauses:

method setHours (hours' : Number) {
require { (0 <= hours') && (hours' <= 23) }

do { hours := hours'; hours }
ensure { result −> (result == hours') && (hours == hours') }

}

The identifier result in the ensure clause refers to the value returned by
the method.

This construct can be written straightforwardly, based on Grace’s multi-
part method names. As in Eiffel, pre- and post- conditions are checked
dynamically.

method require(precondition : Predicate)
do (body : Block)
ensure (postcondition : Predicate) {

if (! precondition.apply)
then { InvariantFailure.raise "Precondition Failure" }

var result
catch { result := body.apply }

case { _ −> InvariantFailure.raise "Unexpected Exception" }
finally {

if (! postcondition.apply(result))
then { InvariantFailure.raise "Postcondition Failure" }

}
return result

}

Going still further towards Eiffel, we can add support for specifying and
checking loop variants and invariants in programs written in the dialect:

159

160 CHAPTER 6. DIALECTS

loop {
print(letters[i])
i := i+1

}
invariant { i <= (letters.size + 1) }
until { i > letters.size }
variant { letters.size − i + 1 }

Once again, expressions defining variants and invariants (as well as the
code for the loop body) are supplied as blocks, which are evaluated as
required by the implementation of the loop()invariant(). . . method.

6.2.3 Dialect for writing dialects

Programmers writing different dialects will have similar needs. In particu-
lar, writing checkers requires inspecting the user’s code and determining
whether or not it is acceptable; the form of this inspection will be the same
in many dialects. We have abstracted these repeated tasks into a dialect of
their own. Our dialect dialect makes it possible to declare rules to test dif-
ferent parts of the source code and to report errors; these rules are used in
the static dialect in Section 6.2.4. The dialect dialect can also maintain state;
we demonstrate the use of this for type checking in Sections 6.2.6 and 6.2.7.
The dialect dialect hides the details of the checking process and allows
programmers to write largely declarative dialect definitions.

Fundamentally, Grace checkers are methods that examine the nodes of
the program’s abstract syntax tree at compile time. A checker either accepts
a node, or raises an exception to report an error. The AST nodes support
the Visitor Pattern to assist in this examination. Although quite efficient,
this kind of code is too low-level to be written by many instructors, who
may nevertheless need to write dialects for use in their teaching.

The dialect for writing dialects simplifies the process by implementing
a generic visitor that applies higher-level rules. These higher-level rules are
specified by a combination of declarative and imperative code, leveraging

160

6.2. CASE STUDIES OF DIALECTS 161

the pattern-matching functionality described in Chapter 4.
The dialect maintains a list of rules specified by the dialect client, stored

in the rules field of the dialect module. The client declares rules by request-
ing the rule method.

method rule(block) {
rules.push(block)

}

The block argument is expected to implement a partial function (see
Section 4.4.8), which the dialect will attempt to match against each node.
For example, if the dialect client declares a rule:

rule {v : VarDec −> fail "Var declarations are not permitted." }

then the rule will be applied to all nodes in the AST; if any are matched by
the VarDec pattern, the body of the rule will execute, and it will report an
error.

The dialect maintains a list of rules to apply in a module-level object
rules. The rule method takes as an argument a single-argument block that
accepts an AST node, and adds it to the list of rules.

Rules can be more declarative still. One useful more complex rule is
when()error(), which reports a given error when a test is satisfied.

The first argument is again a partial function, now returning a Boolean
indicating whether to report an error or not. The second argument is the
message to give when the test is true. A dialect could ban the variable name
x by declaring a rule:

when { v : VarDec −> v.name.value == "x" } error "x is a bad name"

This rule combines three parts: a pattern match (or partial function
application) applying only to VarDec nodes, a Boolean test of a property of
that node, and an error message to report when the other two are satisfied.
The dialect author does not need to consider the structure of the AST or
manually write logic generating errors; everything happens automatically
once they describe what they want. Nonetheless, they can write arbitrarily
complicated tests or errors if they wish to do so.

161

162 CHAPTER 6. DIALECTS

These more advanced rules are defined in terms of the basic rule method:

method when(pred : UnaryPredicate) error(msg : String) {
rule { node −>

def matches = pred.match(node)
if (matches.andAlso {matches.result}) then { fail(msg) }

}
}

Here rule is given what is in fact a total function — one with no constraints
on its domain — that always runs, and then tries to apply its own partial
function condition. When the partial function runs and returns true, the
method reports a failure with the provided message.

The dialect dialect defines a single visitor over the AST that runs all the
rules over every node:

method visitDefDec(node) −> Boolean {
runRules(node)

}

method visitVarDec(node) −> Boolean {
runRules(node)

}
// And so on.

Matching rules will be executed until either the entire client module has
been examined or an immediately fatal error is triggered.

Sometimes it is useful to examine some nodes from a perspective that is
different from the way that the AST is defined. For example, parameters ap-
pear within method, block, and class definition nodes, but the dialect-writer
may wish to treat them all in the same way. To simplify the matching of all
parameters, regardless of location in the tree, the dialect constructs special
parameter nodes to run the rules against.The dialect also defines a pattern
Parameter to match these nodes. This pattern allows the dialect author
to write a rule against all parameters wherever they appear, rather than

162

6.2. CASE STUDIES OF DIALECTS 163

having to write separate rules to deal with each place in which a parameter
may appear. The pattern-matching infrastructure is flexible enough to
permit these departures from the basic system simply by defining a custom
match method. The static dialect in Section 6.2.4 uses this pattern to ensure
that all parameters are annotated with types. Similarly, specialised patterns
While and For match while and for loops, common cases that a dialect may
want to examine. A dialect author can easily create similar patterns for their
own constructs using the aRequestPattern.forName(...) method provided by
the dialect dialect.

The pattern-matching approach trades off some efficiency for ease of
programming, but efficiency is not a primary goal of Grace. Moreover, we
expect most programs, especially in beginner dialects (which are likely to
have the most additional checks) to be quite small. A declarative approach
allows checkers to be expressed concisely, and to be understood without a
deep understanding of the whole of the implementation.

6.2.4 Requiring type annotations

An instructor can require that, for all or part of a course, all student code is
fully annotated with types, so that no dynamically-typed code is permitted.
The static dialect allows access to all of the ordinary language features,
while reporting compile-time errors to students who omit the types on their
declarations. If the student’s type annotations are wrong, typechecking
will catch the error separately. The definition of this dialect is relatively
straightforward. We can use a visitor, as shown in Figure 6.4, or the dialect-
writing dialect to express it more concisely:

163

164 CHAPTER 6. DIALECTS

dialect "dialect"
inherits StandardPrelude.methods
when { d : Def | Var −> d.decType == UnknownType }

error "declarations must have a static type"

when { m : Method −> m.returnType == UnknownType }
error "methods must have a static return type"

when { p : Parameter −> p.decType == UnknownType }
error "parameters must have a static type"

method checker(code : Code) {
// The checker method here delegates all the processing
// to a method provided by the dialect dialect, which will
// apply the rules defined above.
check(code)

}

The first two rules provide a particular error message to display, specify
what kind of node they care about — var, def, and method declarations —
and what should trigger the error message. Here, the error appears when
the declaration type is Unknown (which is the type of an un-annotated
declaration). The last when()error clause matches against the Parameter

pattern from the dialect dialect, which was described in Section 6.2.3. The
checker method in the static dialect delegates to check from the dialect
dialect; check applies all of the declarative rules we have given.

The Visitor implementation shown in Figure 6.4 defines a Visitor object
that examines the nodes the dialect needs to check. The object inherits from
ast.baseVisitor, which defines default behaviour for every kind of node, so
the dialect need only override the methods for nodes it wishes to examine
specially. The first two methods examine var and def declarations, testing
whether the declared type is Unknown and raising an exception (to be caught
by the dialect infrastructure in the compiler, with the given message and
location of the node) if so. The third and fourth address parameters in
blocks and method declarations, which must now be examined separately.

164

6.2. CASE STUDIES OF DIALECTS 165

import "ast" as ast
import "StandardPrelude" as StandardPrelude
inherits StandardPrelude.methods
def CheckerFailure = Exception.refine "CheckerFailure"
def staticVisitor = object {

inherits ast.baseVisitor
method visitDefDec(v) {

if (v.decType == UnknownType) then {
CheckerFailure.raiseWith("no type given to declaration of '{v.name.
value}'", v.name)

}
}
method visitVarDec(v) {

if (v.decType == UnknownType) then {
CheckerFailure.raiseWith("no type given to declaration of '{v.name.
value}'", v.name)

}
}
method visitMethod(v) {

for (v.signature) do {s−>
for (s.params) do {p−>

if (p.decType == UnknownType) then {
CheckerFailure.raiseWith("no type given to declaration of '{p.
value}'", p)
}

}
}
if (v.returnType == UnknownType) then {

CheckerFailure.raiseWith("no return type given to declaration of
'{v.value.value}'", v.value)

}
}
method visitBlock(v) {

for (s.params) do {p−>
if (p.decType == UnknownType) then {

CheckerFailure.raiseWith("no type given to declaration of '{p.
value}'", p)

}
}

}
}
method checker(values) {

for (values) do {v−>
v.accept(staticVisitor)

}
}

Figure 6.4: Requiring static types implemented as a Visitor
165

166 CHAPTER 6. DIALECTS

The checker method loops over the AST it is given and has each node accept
the Visitor.

In both cases the dialect is quite short and an instructor teaching Grace
should be able to implement at least one of them without difficulty. Other
context-free checks — prohibiting mutable variables, enforcing particular
method or variable names, requiring object literals over classes, and so on
— can be implemented in exactly the same form, as can those requiring only
local context, such as enforcing that all parameters are used. Dialects requir-
ing further context can either track it in the appropriate way themselves, or
use further features of the dialect dialect described in Section 6.2.6.

6.2.5 Literal blocks

Because the basic control structures of Grace are designed as methods
with multi-part names, they admit syntax that may be confusing for those
familiar with other languages. In particular, the condition of a while−do

loop is written in braces, because it is a block with deferred and repeated
execution; it is perfectly valid, however, to use parentheses and suppply
an expression evaluating to a block as the first argument instead, as with
any other method. A programmer familiar with languages using different
syntax may accidentally provide a different argument than they expect:

while (x > 0) do { x := x − 1 }

The expression x > 0 will be evaluated immediately and a Boolean passed
to the method. The programmer will receive a type error, but we could
provide a more specific message using a restrictive dialect for new or
transitioning programmers.

This dialect ensures that the condition of a while loop is written in
braces, as a literal block, and will not permit passing a reference to a block
defined elsewhere2. It uses the compiler’s “suggestions” infrastructure to

2The dialect could alternatively check the type of the given expression, and permit those
referring to blocks; the principle of the dialect is the same but we elide this complexity
here.

166

6.2. CASE STUDIES OF DIALECTS 167

literal_test.grace[4:7-14]: Syntax error: The
condition of a while loop must be written in {}.

3: var x := 0
4: while (x < 10) do {

-----------^^^^^^^^
5: print "Counted to {x}."

Did you mean:
4: while {x < 10} do {

Figure 6.5: The output of the literalblock dialect when an error is found.

show a potential corrected code line to the user, which the user interface
presents as an actionable suggestion. The complete source of the dialect is
in Figure 6.6.

The dialect dialect exposes methods generating the appropriate checker
failures, which the compiler will report to the user. In this case, the error
is reported as ranging from the first parenthesis to the last, and the user
will be prompted as shown in Figure 6.5. A user interface can present this
suggestion as an action to be taken, as the web-based IDE does.

6.2.6 Ownership types

Ownership types [26] are a way of enforcing structure on the heap. This
case study implements a rudimentary ownership system using the dialect
dialect, maintaining state to remember the ownership status of fields.

In this dialect, a field can be annotated is owned to enforce that it not be
aliased. An owned field can only be initialised or assigned a freshly-created
object, and its value cannot be assigned to another field of any object. This
is a drastic simplification of real ownership systems, but suffices for the
example. In the following program, we would expect an error on the
assignment to y, as it aliases the owned field a in a field on the module
object:

167

168 CHAPTER 6. DIALECTS

// This dialect enforces that the condition of a while loop must
// be a literal block written inline in the source code, to avoid
// any potential confusion with (). It offers a suggestion to the
// user when they write the condition in parentheses.
dialect "dialect"
import "StandardPrelude" as StandardPrelude
inherits StandardPrelude.methods

// The dialect dialect provides a shortcut While pattern which
// matches while()do requests and destructures the AST node into
// the condition and the body.
rule { req : While(cond, _) −>

if (cond.kind != "block") then {
reportWhile(req)

}
}

method reportWhile(req) {
// Get a reference to the entire condition 'part' of the request.
// We will use this to generate the suggestion of replacing the
// parentheses with braces, if applicable.
def badPart = req.with[1]
// Ignore certain degenerate cases where there is no condition, and
// situations where the condition spanned multiple lines since they
// are likely to be a different kind of mistake. In all of these
// cases the source line length of the part's argument list will be
// reported as zero.
if (badPart.lineLength > 0) then {

// We will suggest replacing the () used in the condition with {}.
// The suggestions system allows modifying the code the user

Figure 6.6: Source code of the literalblock dialect.

168

6.2. CASE STUDIES OF DIALECTS 169

// wrote to something that they may have meant, and then printing
// out the suggestion with "Did you mean?".
def suggestion = createSuggestion
// These replacements are made right to left, so that
// offsets in parts accessed later on are still valid.
suggestion.replaceChar(badPart.linePos + badPart.lineLength)

with("}")
onLine(badPart.line)

suggestion.replaceChar(badPart.linePos)
with("\{")
onLine(badPart.line)

// Report an error to the user, highlighting the part of
// the code that is incorrect, and including our suggestion.
fail "The condition of a while loop must be written in \{}"

from(badPart.linePos)to(badPart.linePos + badPart.lineLength)
suggest(suggestion)

}
// Report an error to the user, highlighting the part of the
// code that is incorrect.
fail "The condition of a while loop must be written in \{}."

from(badPart.linePos) to(badPart.linePos + badPart.lineLength)
}

method checker(code) {
check(code)

}

Figure 6.6: continued.

169

170 CHAPTER 6. DIALECTS

dialect "ownership"
var y
def x = object {

var a is owned := object {}
y := a

}

The dialect dialect (see Section 6.2.3) provides support for tracking state
through an analysis of the program. The rule declarations can optionally
return a value representing the “type” of the given node in the tree, and
the dialect also supports tracking and accessing different scopes.

To declare that all numeric and string literals will always be considered
freshly-created objects, we can write a rule:

rule { _ : NumberLiteral | StringLiteral −>
"fresh"

}

This rule means that when the dialect asks for the typeOf a number or string
node the string "fresh" will be returned. The dialect can choose to return
an arbitrary object here; for our purposes, a simple string is adequate.

What about variables? There are two considerations for variables: the
declarations, which may be annotated is owned, and references to them,
which must be connected to the declaration. We will deal with the declara-
tions first. The dialect dialect allows storing state associated with particular
variables, so we define that when encountering a var or def declaration, we
store whether it should be considered “owned” or “normal”:

rule { v : Var | Def −>
if (isOwned(v)) then {

scope.variables.at(v.name.value)put("owned")
} else {

scope.variables.at(v.name.value)put("normal")
}

}

170

6.2. CASE STUDIES OF DIALECTS 171

Next we handle looking up identifiers:

rule { ident : Identifier −>
scope.variables.find(ident.value) butIfMissing { "normal" }

}

This rule states that, on encountering an identifier and being asked for
its type information, find it in scope and return the associated value, or
"normal" if it is not found (identifier resolution errors will be handled
elsewhere).

Our sample program includes an object literal, which we address with
the following rule:

rule { obj : ObjectLiteral −>
scope.enter {

for (obj.value) do { node −>
checkTypes(node)

}
}
"fresh"

}

Object literals create a new scope for their fields, and instruct the dialect
dialect to apply the declared rules against their body inside that scope. An
object literal is also a freshly-created object, of course, so we return "fresh"

here as well.

To find our error we will have to examine variable assignment (“bind”)
statements:

171

172 CHAPTER 6. DIALECTS

rule { bind : Bind −>
def dest = bind.dest
def dType = typeOf(dest)
def value = bind.value
def vType = typeOf(value)
if ((dType == "owned") && (vType != "fresh")) then {

OwnershipError.raiseWith(
"An owned field can only be assigned a fresh object",
dest)

}
if ((dType == "normal") && (vType == "owned")) then {

OwnershipError.raiseWith(
"Only 'normal' and 'fresh' values can be assigned "

++ "to normal variables, not '{vType}'",
value)

}
}

This rule ties together all the information we have put into the system so
far. First we find the type of the declaration, dType, which we will find by
looking up the identifier, which will in turn find the value stored by our
variable declaration rule. We then find the type of the assigned value, vType,
by applying the matching rule we defined earlier (numeric or string literal,
identifier, object literal).

With both of these pieces of information in hand, an OwnershipError

is raised when the ownership types do not match up appropriately. The
second check will match our error, and the compiler will report:

172

6.2. CASE STUDIES OF DIALECTS 173

ownership_test.grace[5:(10)]: OwnershipError: Only

’normal’ and ’fresh’ values can be assigned to normal

variables, not ’owned’.

4: var a is owned := object {}

5: y := a

--------------^

6: }

As presented here, this dialect enforces only a very simple ownership
system. A more complex system is possible with the same overall structure,
by applying the algorithms enforcing the rules of well-known ownership
systems; that is out of scope for this project.

6.2.7 Type checking

Because dialects can perform arbitrary checks over the whole of a module,
various kinds of check can be moved from the compiler into a dialect,
among them typechecking. The basic type system of Grace is structural.
The typechecker for this system is to be implemented in a dialect as a static
checker; Jones [71] has built a preliminary structural typechecking dialect
using the dialect dialect. We present a brief overview of the dialect here;
the system was presented in full in the paper at ECOOP 2014 [71].

The Minigrace compiler does not perform any compile-time type check-
ing, instead deferring type checks until runtime. If, however, a module is
written in the structural dialect, the dialect will perform structural subtyping
checks before the compiler generates code for the module.

The dialect is implemented in the dialect dialect, using its scoping and
state tracking. Type rules are written to map expressions to their types
and object scopes are retained, including method declarations. Rules both
ensure that the type of a node is correct and optionally return the type that
node should have.

173

174 CHAPTER 6. DIALECTS

rule { req : Request −>
match(typeOf(req.in).getMethod(req.name))

case { _ : NoSuchMethod −> fail "no such method" }
case { mt : MethodType −>
for (mt.signature) and(req.with) do { s, w −>

for (s.params) and(w.args) do { p, a −>
if (!typeOf(a).isSubtypeOf(p.decType)) then {

fail "argument does not satify parameter type" }
}

}
mt.returnType // A request for typeOf(req) will receive this value

}
}

Figure 6.7: An example method request rule from the structural dialect.

An example structural rule is in Figure 6.7. The dialect contains several
classes for representing types and uses these for the types of objects, rather
than the simple strings used in the ownership dialect in Section 6.2.6.

The dialect provides full structural typechecking for Grace without
generics in 1,300 lines of code, including the structural subtyping algorithm
and definitions of data structures. There are 18 rules, one for each case that
either introduces or may violate a type constraint. This dialect is nontrivial,
but could nonetheless be implemented by a programmer knowing both
Grace and the type system in question in only a few days (and was).

The typechecking dialect is compatible with other checkers. To complete
the implementation of a fully static variant of Grace, the structural and static

dialects can be combined:

import "static" as static
import "structural" as structural
inherits StandardPrelude.methods
method checker(code : Code) {

static.checker(code)
structural.checker(code)

}

174

6.2. CASE STUDIES OF DIALECTS 175

Simply invoking the checkers from each dialect suffices to enforce the
constraints enforced by both. We envisage the structural, static, ownership,
and other dialects both restrictive and extensional being composed together
in this way.

6.2.8 Relations

Relations, or associations, are representations of the semantic connections
between entities in the program’s model. UML supports the concept of
relations, but Grace does not support them primitively, so relations must
usually be put into a more concrete form in a Grace implementation. This
has the disadvantage of losing some of the information in the model. A
dialect could provide the “objects as associations” [132] design.

dialect "object−associations"
def Attends = Relationship<Student, Course>
def Teaches = Relationship<Course, Faculty>
def Prerequisites = ReflexiveRelationship<Course>
// Set up or obtain our data objects
def james = student(...)
...
Attends.add(james, cs102)
...
for (Attends.to(cs102)) do { each −> ... }

The dialect allows the programmer to manipulate relationships directly
in a natural way, and without obscuring the purpose of the code. The
dialect user can write code that is similar to what they might write in a
relationship-based language.

Relationship and ReflexiveRelationship here are simply ordinary (generic)
methods: they return objects that will track relationships they are told
about, and are parameterised by the types involved in the relationship.
Relationship objects, like Attends above, maintain a mapping or mappings
of objects and expose add, to, from, and other methods to the user.

175

176 CHAPTER 6. DIALECTS

As a dialect, the dialect can also check code to ensure it uses the ex-
posed objects appropriately. The dialect could even, although we have not
implemented this, examine the code and suggest other locations where rela-
tionships might be used; a variant similar to the static dialect in Section 6.2.4
could require they be used in place of ordinary fields where appropriate.
Where these features are not required, however, and where relationships
will be rare, this dialect can also be used as a library; because dialects are
simply modules and modules are simply objects, they can be designed with
multiple disparate usage patterns in mind.

6.2.9 Finite state machines

We can define a dialect for expressing finite state machines, and for process-
ing and computation on these machines. The dialect allows the machine to
be described declaratively, and results in a module object that encapsulates
the machine:

dialect "fsm"
// Define our states and an action to associate with them
def startState = state { print "Starting" }
def runState = state { print "Running" }
def endState = state { print "Done" }
// Define transitions for various inputs from each state
in(startState) on("A") goto(runState)
in(runState)

on("A") goto(runState)
on("B") goto(endState)

method process(symbol : String) {
// This method delegates processing of state transitions to
// the transition method, which is defined in the dialect.
transition(symbol)

}

176

6.2. CASE STUDIES OF DIALECTS 177

This module performs the computation of a particular finite state ma-
chine, and could be imported and used by client code that needs to use that
machine. The author of the client code does not need to understand the ma-
chine, only its interface (the process method), and the author of the machine
does not need to understand the client code. All of the complexity of setting
up the machine has been abstracted into the dialect; the goal is for the de-
scription of the machine to be intelligible to domain experts (or engineering
students!) who do not know Grace. Using a domain-specific language
embedded in Grace code allows other code to use the machine directly,
without any additional tooling. The user’s process method delegates the
responsibility for handling state transitions to the dialect-provided transition

method, which takes an input symbol (here "A" or "B") and performs the
appropriate state transition.

6.2.10 GrAPL

Using dialects and Grace’s operator methods we can define a dialect remi-
niscent of APL. Sample code written in the dialect is shown in Figure 6.8.

The grapl dialect defines objects mimicking APL vectors and having
many common operators. Programs performing these kind of mathematical
operations can be written quite concisely in this dialect, but are likely not to
be as readable as those written in more traditional style. Nonetheless, this
program has an ordinary Grace parse: |� must be a prefix operator, because
it has no receiver before it, while ← must be an infix operator because
it is between two terms. The GrAPL versions of these programs require
additional parentheses over the original APL versions, because Grace does
not include complex operator precedence rules and instead requires the
programmer to disambiguate when multiple non-arithmetic operators are
used together, simplifying the parse.

While we do not endorse using the dialect system to build languages
of this sort, the ability to do so (with a remarkable degree of fidelity to the

177

178 CHAPTER 6. DIALECTS

dialect "grapl"

N← [1, 2, 3, 4]
print(N) // Prints [1, 2, 3, 4]
print(N + 2) // Prints [3, 4, 5, 6]
print(+/N) // Prints 10

// Standard Lotto example, written exactly as in APL.
print(L[|�(L← (n 6 ? 40))])
// Calculate primes up to 20 − note that the / function has its parameters
// reversed here, because of Grace's evaluation order.
print((P← (n 1 ↓ ι20))/~(P∈(P◦·*P)))

Figure 6.8: Sample GrAPL code. The “Lotto” example generates six non-
repeating numbers drawn from the range 1− 40, sorted in ascending order;
the prime calculator selects all those numbers in the range 2− 20 that are
not the product of any two numbers in that range.

original language) shows the flexibility of the dialect system. Conceivably
this dialect could be used as a bridge between existing APL code and newer
Grace code; because all dialects share the same underlying semantic model,
this dialect can interoperate with others.

6.2.11 GPGPU parallelism

Grace-CUDA [68] is a library providing access to NVIDIA’s CUDA [134]
system for their GPUs, allowing the programmer to run certain data-
parallel numeric workloads substantially faster. We describe our imple-
mentation of this library in Section 8.4.2; at this point we simply treat it as
an external library.

The library provides several methods for accessing the system, in each
case taking at least one block of Grace code to execute and some collection
to process, and also includes a compiler plugin for Minigrace. The plugin
has two roles: it translates the blocks of Grace code to be run on the GPU
into CUDA’s extended C format and compiles them, and it rewrites the

178

6.2. CASE STUDIES OF DIALECTS 179

method requests to pass in additional information required at runtime. In
particular, the runtime needs to be passed the values of variables captured
by the block explicitly and also needs to know the inferred types they have.

A dialect’s checker is permitted only to examine the abstract syntax
tree, and not to modify it. A dialect consequently cannot perform the
transformation that Grace-CUDA’s compiler plugin does. Nonetheless, we
can build a dialect providing some of the functionality without using a
compiler plugin, which illustrates both the power and the limitations of
the dialect design.

Through the combination of runtime support and static analysis that
dialects can provide, we can create a sublanguage supporting data-parallel
computation on suitable graphics processing units, within the Grace lan-
guage.

We will use the code generation library from the compiler plugin to
translate the Grace source into CUDA code. The code generator can turn
some explicitly-typed Grace code into equivalent CUDA code, and also
infer the types in some circumstances. We will use the library solely from
the dialect, without plugging into the compiler itself.

For illustration, our dialect defines its own for()do and for()map methods
which run their bodies on the GPU when possible. When the code cannot
be run on the GPU, these methods execute native Grace equivalents in the
main thread. The source is shown in Figure 6.9.

Our dialect is written using the dialect dialect from Section 6.2.3. We use
the checker functionality to run Grace-CUDA’s static analysis and CUDA
code generation over all of the blocks in the program. Many blocks will be
unsuitable, such as those using arbitrary objects or side effects, and these
will not be compiled into CUDA. Those that are found suitable will be built
in a way that the runtime library knows how to connect back to the source
block.

We define our own for()do and for()map loop methods here, while pro-
viding the standard language otherwise. If Grace-CUDA knows how to

179

180 CHAPTER 6. DIALECTS

dialect "dialect"
import "cuda" as cuda
import "cudap" as cudaplugin
import "minigrace/collections" as collections
import "StandardPrelude" as StandardPrelude

inherits StandardPrelude.methods

method for(iterable) do (blk) {
if (cuda.isFloatArray(iterable)) then {

if (cuda.existsCompiledSource(blk)) then {
return cuda.using(iterable)do(blk)

}
}
return StandardPrelude.for(iterable)do(blk)

}
method for(iterable) map (blk) {

if (cuda.isFloatArray(iterable)) then {
if (cuda.existsCompiledSource(blk)) then {

return cuda.over(iterable)map(blk)
}

}
def returnValue = collections.list.new
for (iterable) do {value−>

returnValue.push(blk.apply(value))
}
return returnValue

}

do { b : Block −>
cudaplugin.tryInferredCompile(b)

}

method checker(ast) {
check(l)

}

Figure 6.9: The source of the CUDA dialect.

180

6.3. DISCUSSION 181

translate the provided iterable object onto the GPU, and the static analyser
managed to generate CUDA code for the block, we will ask the library to
run that code across the given data. If either of these conditions are not
met, we run the standard “for” loop with the real Grace block.

Other high-level languages have been compiled to CUDA [34, 63], most
notably X10, which has a nearly full implementation. These have usually
required either compiler plugins or whole new compiler backends, but
have been able to compile a much wider range of programs than this dialect
or even Grace-CUDA as a whole can support. With this dialect, we can
transform only some of the low-hanging fruit — individual blocks in loops
— with a sensible fallback at runtime.

The dialect functionality, combining both static analysis and runtime
support at once, allows us to cover many common cases without using a
compiler plugin to modify the generated code. The user of this dialect need
not notice a difference: the code they write is exactly Grace code, and the
semantics are preserved. This application goes further than the goal of our
design was to support, but demonstrates the flexibility of this combination.
A more complete version of this dialect is included in the Grace-CUDA
repository.

6.3 Discussion

We considered three major alternative approaches to dialects: inheritance,
delegation, and special-purpose macros. We rejected all of these in favour
of the approach described here, each for a different reason.

6.3.1 Inheritance

With an inheritance-based approach, the module using a dialect inherits
from the dialect, and dialect methods can be invoked using a receiverless
request, since they would be available on self in the module scope, and

181

182 CHAPTER 6. DIALECTS

through outer in any nested scopes. The dialect’s methods could also be
defined as confidential if required.

This approach was inspired by SIMULA, and envisaged in the early
descriptions of Grace. As the language developed, several problems with
this approach revealed themselves. Most of these problems arise because
inheritance in Grace (as in most other languages) is transitive, so dialects
implemented via inheritance would also be transitive.

Transitive dialects have some unwelcome behaviours: in particular,
they mean that a module that inherits from (i.e., is written in) a dialect will
have all of the dialect’s methods available on the module object itself. For
example, if a dialect were itself defined by a dialect (as in 6.2.3) then all
the features of the dialect-defining dialect would also be included in any
module that uses that dialect. Constructing a dialect that was also usable
as a module would be impossible without contaminating the interface of
all the dialect’s users with its methods.

When using a dialect-defining dialect the client may wish to redefine
methods provided by the outer dialect, such as control structures. This
redefinition is not in itself a problem, but inheritance makes it so; any uses
of these methods in the outer dialect will now refer to the redefined version,
by the ordinary behaviour of self-calls under inheritance. The redefined
method may have drastically different semantics or simply be unsuitable
for use outside the client dialect (perhaps because it relies on initialisation
performed by the client dialect). This opportunity to cause “spooky action
at a distance” breakages is undesirable and could lead to errors that even
the instructors defining the dialects find difficult to deal with.

As well as these issues of transitivity, we were intrigued by the idea
of dialects scoped to smaller lexical ranges, which would not be easily
possible in an inheritance-based system. While our design presented here
does not include such dialects, we discuss future possibilities for permitting
them in Section 6.3.4.

For these reasons we discounted the inheritance approach.

182

6.3. DISCUSSION 183

6.3.2 Delegation

We also considered supporting dialects by delegation. In particular, we
considered translating a dialect statement into an import statement for
the dialect module, along with a set of local (re)declarations of methods,
one for each of the public methods of the dialect. Each of these local
methods would forward to the corresponding method of the dialect. In this
way, encapsulation of the dialect module is preserved; the effect is similar
to unqualified imports in other languages. For example, given a dialect
module containing:

method for(i)do(b) is public { ... }
method helper is confidential { ... }

and a module using it, the dialect keyword would be translated into:

import "someDialect" as secret
method for(a1)do(a2) is confidential {

secret.for(a1) do(a2)
}

Only public dialect methods would get local forwarding methods, so local
definitions of the dialect would be hidden. The local forwarding meth-
ods would be marked confidential, so that they would not be available to
clients of the module. This approach would again make the dialect methods
available as requests on self in the module scope.

Many of the issues with the inheritance approach do not arise here.
The dialect object is used compositionally, but new methods are defined in
the client module. The concept of exposing only public methods seemed
attractive, but did not allow for a method to be exposed to a client written
in the dialect without also exposing that method to all other code. While
this exposure might seem unimportant, because dialects can examine code
written in them they can enforce properties of how their methods are used;
exposing methods to import clients may impact safety or use as capabilities.

There were two reasons why we rejected this design. The first is that
it added another mechanism — delegation — into the language. Grace

183

184 CHAPTER 6. DIALECTS

already has three relationships between objects: simple references, inheri-
tance, and lexical nesting: delegation would add a fourth.

The second reason is that the proposed semantics for delegation were
very similar to the existing semantics for lexical nesting. Nesting makes
outer objects’ methods available to the objects nested inside them, but not to
those objects’ clients; those methods can be involved via implicit requests,
or explicitly via outer (rather than self); self-requests in the outer object
go to that object, not back to the original self. Given these similarities, it
seemed simpler overall to extend nesting to encompass dialects, rather than
introduce another separate mechanism.

6.3.3 Macros

The third option was to add macros, an additional language mechanism,
allowing a dialect to define their own syntax and semantics from scratch.
This is the approach taken in Racket [182], discussed in more detail in
Section 6.5 below. Macros provide vastly more power than Grace’s dialects:
they may reorder or prevent the evaluation of arguments, introduce new
bindings not mentioned in the source code, or transform the program in
arbitrary ways.

For example, an SQL-style select macro in Racket could share an itera-
tion variable across several expressions:

(for n (numbers)
(where (< n 5))
(select (* 3 n)))

In contrast, an equivalent form in Grace would make the sub-expressions
(arguments to where and select clauses) blocks, with the value of the current
number being provided as an argument to each block in turn:

for (numbers)
where { n −> n < 5 }
select { n −> n * 3 }

184

6.3. DISCUSSION 185

(C#’s lambdas have the same limitations as Grace’s blocks, which is why
C# has a built-in “macro” that re-writes its select statement into expression
using multiple lambdas. [6]).

There are a number of reasons why we chose not to use macros to
implement dialects in Grace. The first is that, without macros, dialects
cannot introduce new syntactic forms; this means that code written in
a dialect remains readable without knowledge of the dialect it is using.
Thus, the parse of a Grace program does not depend on dialects, types, or
operator definitions: syntactically, there are only method requests. A novice
can understand that control passes to a given method on a given receiver,
with the arguments written in the source, without needing to understand
what that method does or how it does it. A macro-driven approach does
not permit that, and the relevant macros must be understood to know what
the effect of a piece of code is. We did not like the disconnect between
source and semantics that macros give: what the code says, and what it
does, become decoupled.

The second reason is that, without macros, Grace code that implements
a dialect uses essentially the same language features as code that uses a
dialect. Instructors do not have to learn a powerful new feature (macros) to
write dialects, and do not have to understand a new feature to be able to
debug code using dialects.

The final reason is that macros are an additional feature that have not
(so far) been required in Grace. Because Grace aims to be minimal, and
hopefully easy to learn and easy to use, we did not want to add complex
and powerful additional features unless we could not find any simpler
alternatives.

Mutating dialects

Dialects are able to check, but not modify, the AST of the module they apply
to, because mutating the AST can lead to code written in the dialect not
being syntactically meaningful without the dialect. This was the problem

185

186 CHAPTER 6. DIALECTS

we wanted to avoid by leaving out macros. At times, however, it may be
worthwhile to allow limited modifications of the user’s code, for example,
to implement new syntactic sugar, or to make use of or pass on information
that is discarded before run-time. A possible future extension of the system
could allow these modifications — particularly decorations of the tree — in
a structured way.

Such a “mutating dialect” could implement the single transformation
to blocks required to support Grace’s pattern-matching facilities, which
was instead included in the compiler (described in Chapter 4). Similar
modifications could be made experimentally using a mutating dialect and
later incorporated into the language if they proved useful. Developing
a structured way of laying out the transformations that would not lead
to the issues that macro systems often face would be key to a workable
implementation of this extension.

6.3.4 Local dialects

In the current design, dialects are chosen for the whole of a module. Because
dialects rely on lexical scope, an obvious extension is to permit dialects
to be applied to smaller “local” lexical scopes, perhaps for the extent of a
block, an object constructor, or a class. For example, we could shift into
the turtle graphics dialect in the middle of a for loop to draw the bars of a
histogram.

def histogram = source.getData
for (histogram) do { datum −>
dialect "turtle" do {
forward(datum * 10)
right(90); forward(10); right(90)
forward(datum * 10)
left(90); forward(10); left(90)

}
}

186

6.3. DISCUSSION 187

We have not pursued this extension for several reasons. Local dialects
do not seem to be necessary to support teaching — the primary purpose
of Grace dialects. Local lexically scoped dialects may indeed be useful
for domain specific languages used to support modelling, such as the
relationship and finite state machine dialects described earlier (6.2.8 and
6.2.9), but for pedagogical purposes, students will typically write a single
module in a single dialect.

The interaction of dialect scoping and ordinary lexical scoping needs
careful thought. In many cases, code in the new dialect may well want to
access identifiers from elsewhere in the module, but not from the outer
dialect, while in other cases programmers may want to augment the existing
dialect on a temporary basis.

Pragmatically, we can generally do without lexical dialects at the cost
of extra modules. The above code example could be refactored so that the
body of the for loop becomes a method in a separate module that is written
in the turtle dialect; the loop would then request that method from the
other module.

Nonetheless, there are reasonable use cases for nested dialects, and we
took care at least not to preclude them in our design. It is unclear which
approach to combining them to take, and requires further study. It may be
possible to define an algebra of combining dialects that permits selecting
the relevant behaviours for each particular use case, but we do not attempt
to do so in this thesis.

6.3.5 Default methods

Some dialects, like the finite state machine dialect described in Section 6.2.9,
will have simple methods that are very often defined in the modules using
the dialect in order to provide access to a feature of the dialect itself. These
methods usually forward to a method defined by the dialect. It might
be helpful if a dialect could provide these methods itself and have them

187

188 CHAPTER 6. DIALECTS

automatically included in the interface of the modules that use it (unless
disabled), or to have the end programmer be able to “opt in” to them
individually or collectively.

Such methods could be marked by an annotation in the dialect and
recognised by the compiler. They could also be included using a mutating-
dialect feature as described above, but direct support would be significantly
easier to use for most dialect authors.

In the case where the client module has no need to inherit from any other
code, default methods can be provided through inheritance. The dialect can
provide a class or other suitable inheritance source, and clients that wish to
opt in to those methods can do so. Where the client already inherits from
something else, however, this route is not possible in a language without
multiple inheritance.

6.4 Implementation

The dialect system described here is implemented in Minigrace, our proto-
type compiler for the Grace language. The Minigrace distribution includes
the case study dialects shown in Section 6.2.

We encountered certain implementation issues in integrating dialects
into Minigrace, which we will discuss here, including solutions and possi-
ble alternatives.

6.4.1 Lexical scoping

Integrating our dialects system into a language implementation requires
decoupling lexical lookup at the point of name resolution from true physical
nesting. A name in an outer scope is no longer required to have been
defined locally (nor predefined), and so both knowing it is present statically
and accessing it dynamically require an extension to the language.

Minigrace tracks lexical scoping in a straightforward way, using a stack

188

6.4. IMPLEMENTATION 189

of “scope” objects representing each level of nesting and containing details
of each name local to that scope. Minigrace conceives of two varieties
of scope: an object scope used for both object and class literals as well
as module bodies, which may contain methods; and a local scope used
for method and block bodies, which contain only local variables. This
distinction is because resolution of the two is different: a local variable is
always accessed either directly or through a closure environment, while
object fields are accessed by method requests on their containing object. An
identifier resolution pass of the compiler rewrites all unqualified method
requests to incorporate explicit receivers: either self or some number of
outers uniquely identifying an object surrounding the request site.

To incorporate dialects we added a third variety of scope, a dialect scope.
A dialect scope has two additional properties: it is always treated as the
outermost scope (that is, identifier resolution never proceeds further); and
accesses to the dialect scope are resolved to direct requests with a special
identifier dialect as receiver (instead of to a chain of outers as long as the
level of lexical nesting). The dialect identifier cannot be accessed from user
code because it conflicts with the dialect keyword, and so is only used
for implicit dialect requests; it behaves like a local variable that cannot be
typed by the user and through which method requests are treated as having
lexical visibility. The dialect module object is bound to this identifier at run
time, and all dialect methods are accessed through it. This special identifier
is not strictly necessary, as outer at the top level of a module also refers to
the dialect, but allows the produced AST and generated code to be simpler
and permits dialect requests to be identified easily in other phases of the
compiler (including in a dialect’s checkers).

6.4.2 Executing checkers statically

Grace does not define a strict compile-time/run-time phase distinction, but
Minigrace is broadly speaking a typical compiler with a notion of com-

189

190 CHAPTER 6. DIALECTS

pilation time producing a program that can be run subsequently. Dialect
checkers must execute at this compile time, or at least before any of the
main body of the program executes.

There are two obvious ways to perform this compile-time execution:
one is to interpret the checker code, and the other is to dynamically load
the dialect module and run the checker method in the ordinary way. We
chose dynamic loading for Minigrace, as it reduced development effort by
reusing behaviour provided by the operating system.

We originally implemented Minigrace on Linux-based systems, and at-
tempted to have it function on other Unix-like platforms as well. On these
systems it is possible to load any dynamic library using the dlopen(3)
function [79] and then access symbols from it by name, while any unre-
solved symbols (such as standard library elements and the Minigrace ABI
functions) can be found in the host executable. Thus we needed only to
permit generating dynamic modules (shared objects or dynamic libraries),
which are obtained primarily by flags given to the platform linker and
underlying C compiler, and to support dynamically loading them later.

We added a --dynamic-module flag to the compiler instructing it to
use the appropriate system-specific compilation flags to create a dynamic
module instead of an executable or static object file. No significant changes
were required to code generation to achieve this extension. We extended our
mirrors module to include a loadDynamicModule method wrapping dlopen,
loading the module’s initialisation code, executing that code, and returning
the resulting module object to the requestor. With these two extensions,
executing the checker method requires only loading the dynamic module,
requesting the checker method (passing in the AST of the client module),
and being prepared to trap both method-not-found errors (when there is
no checker) and checker failures.

This approach works for POSIX-compatible systems, but causes prob-
lems under some other operating systems, notably Windows. Cygwin [160]
provides an environment supporting many tools including GCC in a

190

6.4. IMPLEMENTATION 191

broadly Unix-like environment, and it is possible to use Minigrace within
this environment. Cygwin uses the Microsoft Portable Executable for-
mat [126] for its executables, the native format of Windows, and this format
does not permit dynamic resolution of arbitrary symbols in the same way
that the Linux and BSD systems do, instead requiring these symbols to be
specified in advance. As a result, dialects do not function under Cygwin.
We believe it is possible to extend the compiler to allow dynamic modules
on Windows, but did not do so as this platform was not our primary focus.

ECMAScript

Minigrace also targets ECMAScript to run in a web browser. To support
dialects on this target we followed the same approach as our native code
backend. As all modules are in essence dynamic on this platform, repre-
sented as ECMAScript functions returning Grace objects, special dynamic
modules were not required, but we did implement the identical mirror
interface for the platform, simply constructing the string of the function
name and retrieving it from the global namespace. No special behaviour is
required when generating a module to be used in this way. The code for
executing checkers is exactly the same as in the native code target.

6.4.3 Side effects

Because a dialect module is loaded statically to run its checkers, any side
effects from the body of the module will occur in the compiler. Sometimes
these effects are benign, but on other occasions they will be unsuitable for
execution statically (for example, opening a graphical window). A dialect
can avoid side-effecting code in its main body by using the atModuleStart

and atModuleEnd methods described in Section 6.1.3. This ability is one of
the principal reasons we included atModuleStart in the design.

We also encountered issue on the ECMAScript frontend when code in
the dialect body assumed it was running in the main page context, such as

191

192 CHAPTER 6. DIALECTS

by accessing DOM elements. These dialects caused errors when the client
module was compiled in a background thread, as our user interface does
to prevent lengthy pauses. Again, this processing can be deferred until tun
time using atModuleStart and atModuleEnd.

6.4.4 Security concerns

Since dialect code executes statically, when the user may not be intending
to execute their program (at least in Minigrace, which has a phase dis-
tinction), the dialect has the opportunity to execute code when the user
is not expecting such behaviour. For this reason dialects must be trusted
slightly more than other code. In the common case, the user will intend
to run their program anyway, and so any security concern is no larger
than without dialects. Where the program is not to be run immediately,
however, or is to be run in a different context than it is to be compiled
in, security concerns may require taking care around which dialects are
permitted for use. Implementors should ensure that any such system either
restricts the set of dialects available to use to those known to be trusted
(including any dependencies they might have), or that statically-executed
code is sandboxed.

6.5 Comparison with related work

In this section we contrast our approach with those taken in Racket particu-
larly, and Scala, Ruby, Wyvern, and Cedalion.

6.5.1 Racket

Racket combines a Scheme-based language and an accompanying IDE de-
signed for teaching. Racket includes “language levels” by way of advanced
macro systems; Racket’s language levels inspired Grace’s desire for dialects
to permit language subsets.

192

6.5. COMPARISON WITH RELATED WORK 193

Racket supports variant languages in two ways: through basic Lisp-
style macros, and by replacing or augmenting the parser. Both of these
make different trade-offs than each other and than our design. Racket
languages are strictly more powerful than our dialects, but this power
comes at a cost.

The basic language levels of Racket are defined through macros; the user
includes both ordinary functions and macro definitions into their program
with their language declaration and these together provide the desired
behaviours. Macros are strictly more powerful than our dialects; they can
change the meaning of parts of the program, reorder, delay, or prevent exe-
cution, and introduce new code that was not present in the programmer’s
source. With this power comes a trade-off common to all macro systems: it
is not possible to understand the flow of execution without understanding
the macros in use, or making a lucky guess at them. An argument to a
function may never be evaluated, may be evaluated multiple times, may be
evaluated in a different scope, or may be transformed to mean something
entirely different.

In this aspect Racket’s behaviour is entirely unlike our design. It is
always possible to parse and to follow the control flow in a Grace di-
alect, without any knowledge of the dialect itself. Our GrAPL dialect
(Section 6.2.10) has the same parsing and execution rules as any other Grace
program; a reader can follow the chain of method requests without any
understanding of APL or the dialect, but at the same time we were forced
to deviate semantically from the system we were impersonating because
we could not prevent the evaluation of arguments. Our system trades away
the flexibility of macros for consistent semantics: what appears to be a
method request will always in fact be a method request, and what appears
to be an argument to that request will always be evaluated at that point.

Racket also permits further deviations from the basic language by al-
lowing the total replacement of the “reader” which turns input text into
S-expressions. By replacing the reader a language can be defined entirely

193

194 CHAPTER 6. DIALECTS

from scratch, with no syntax in common with Racket itself. The Racket
distribution includes an implementation of Algol-60, and a programmer
needs only declare #lang algol60 in order for the rest of the source to
be treated as Algol.

Our system does not support this degree of departure from the un-
derlying language; while a dialect may, by the combination of multi-part
methods, operators, and pre-defined objects, present a language with a
similar feel to another, programs written in that dialect must still conform
to the overarching Grace syntax. This limitation is both a blessing and a
curse: a programmer who already knows the other language may not be
immediately at home, but working within a single consistent syntax allows
integrating code from different paradigms and gradually moving from one
to another.

Compared with Racket, the author of a Grace dialect does not need
to embark upon full-scale metaprogramming (nor do they have the op-
portunity). To define a dialect without a checker, programmers define the
methods, classes, variables, and types they want to have available to users
exactly as they would in any other program. To provide dialect checkers,
programmers need to understand the visitor pattern, or use the “dialect”
dialect to write a largely declarative specification of a visitor (or examine
the abstract syntax tree manually), entirely within Grace’s standard syntax
and semantics.

All Grace dialects have the same semantics as any other Grace program
— method requests with arguments passed by value. Grace’s parse depends
only upon syntax, not on types or other implicit operations, so program-
mers can always determine the flow of execution from a program’s surface
syntax. By avoiding macros we avoid code that does not do what it ap-
pears to do: arguments are always evaluated before methods are requested,
new bindings are never introduced implicitly, and parse or type errors
can stem only from what was actually written in the input source code. A
macro-based system cannot guarantee any of these points.

194

6.5. COMPARISON WITH RELATED WORK 195

6.5.2 Scala

Scala [138, 167] includes several features supporting domain-specific lan-
guages. These features build on Scala’s static type system (for example,
implicit parameters are determined by type). Scala’s treatment of syntax
and semantics is determined by the static type information it has available.

By contrast, Grace programs have the same semantics with or without
type definitions, and Grace’s syntax, while flexible, does not admit ambigu-
ities that need to be resolved by static types. Our dialect design is entirely
type-independent: types are neither required nor used, and in fact dialects
are able to define their own meaning for types.

Scala also includes powerful macro features [47, 18] integrating the
compiler and runtime. These have similar power and problem to Racket
macros, and contrast with our design in the same way.

6.5.3 Ruby

Domain-specific languages are built in Ruby in two ways: by leveraging
the language’s open classes, and through dynamic binding. Both of these
differ sharply from our approach.

Through open classes, a Ruby programmer can add methods to existing
objects and to new instances of existing classes. The programmer can extend
the built-in Numeric class to let a user write “3.years.ago” to represent a time.
Grace classes are not open in this way; furthermore, Grace is constructed
around objects, not classes, so extending a class is a dubious concept to
begin with. Nonetheless, it may be useful for a dialect to provide additional
functionality on built-in objects like numbers and strings. Our design does
not include provision for such extension; integrating some means to do so
within the overall structure of Grace would be interesting future work.

The second strategy uses dynamic binding to execute a block of code in
the context of an existing object, including access to any methods defined
in that object. Different DSLs may be used at different points by evaluating

195

196 CHAPTER 6. DIALECTS

code in different contexts. As in our design, these do not extend the lan-
guage syntax itself; as Ruby’s syntax is less flexible than Grace’s, the DSLs
do not have quite the same freedom. Our design does not involve any dy-
namic metaprogramming; it is always possible to determine statically the
exact scope a piece of code will run in, and the binding of an identifier. We
believe this makes a program in an arbitrary dialect easier to understand
than one using an arbitrary Ruby DSL.

6.5.4 Wyvern

Wyvern [131] supports nested domain-specific languages within Wyvern
code [139]. A DSL block is identified by indentation or certain paired
quoting characters.

Wyvern’s approach is entirely type-directed. Each type can have at most
one DSL associated with it, and anywhere that a DSL is used where that
type was expected the parser and translator associated with that language
will be invoked.

As Grace code is not required to be statically-typed, such a type-directed
approach is unsuitable. Because each Wyvern DSL defines its own grammar
entirely, the syntax can depart radically from the surrounding language,
and not be comprehensible to a reader who is unfamiliar with the DSL in
use, or who does not know which type was expected in this context. In our
design we sought to avoid such situations by confining dialects to working
within the underlying Grace syntax.

Wyvern allows embedding multiple language variants within a single
file, which our system does not permit, although we discuss possibilities
and associated challenges in Section 6.4.1.

6.5.5 Cedalion

Cedalion [112] is a “language-oriented programming” language: the idea
is to define a new domain-specific language for each problem domain

196

6.5. COMPARISON WITH RELATED WORK 197

spanned by a program. All Cedalion languages may interoperate within a
single program, because they all share the same host language. In this re-
spect they resemble Grace dialects: within the same fundamental semantics,
many different variants may coexist simultaneously.

To support many languages at once, however, Cedalion uses a “projec-
tional editor” [190] to edit code. Rather than editing raw program text, as in
Grace and most other languages, the programmer instead edits the abstract
syntax tree directly. In fact, a Cedalion language defines a display grammar
for that syntax tree, rather than a parsing grammar for text or semantics for
methods. In effect, all code in all language variants uses exactly the same
language, but the programmer looks at some parts of it differently than
other parts.

This approach contrasts with ours, where the same surface syntax per-
sists in every dialect, but where the syntax itself is quite flexible. A reader
of one Cedalion language has no more benefit in understanding another
than an outsider, while an author in the language needs not conform to any
other overriding syntax. In both cases, Cedalion takes the opposite position
to our design. In particular, we do not believe that mandating a special
editor disconnected from the underlying syntax is appropriate for either an
educational or a general-purpose language, as it inhibits the exchange and
discussion of code in other media, such as textbooks and email.

6.5.6 Haskell

Haskell domain-specific languages use typeclasses and do notation to em-
bed themselves in the language. In both cases, static type information
determines the semantics of the code and which functions to execute.

A semantics relying on static types is undesirable for a gradually-typed
language like Grace. Haskell’s available syntax is more constrained than
Grace’s dialects, and the scope for extension is more constrained by what
already exists in the language. A Haskell DSL will have difficulty relying

197

198 CHAPTER 6. DIALECTS

grammar org.xtext.tortoiseshell.TortoiseShell
with org.eclipse.xtext.xbase.Xbase
import "http://www.eclipse.org/xtext/xbase/Xbase"
generate tortoiseShell "http://www.xtext.org/tortoiseshell/

TortoiseShell"
Program :

body=Body
subPrograms+=SubProgram*;

SubProgram:
'sub' name=ValidID
(parameters += FullJvmFormalParameter)*
body=Body;

Body returns XBlockExpression:
{XBlockExpression}
'begin'
(expressions+=XExpressionInsideBlock ';'?)*
'end';

Executable:
Program | SubProgram;

Figure 6.10: Logo grammar definition for Xtext, adapted from the Xtext
web site [42].

on some subset of the functions or operators from a Haskell type class,
while Grace dialects may define exactly the methods and operators they
need.

6.5.7 Xtext

Xtext [48] is an external domain-specific language system. In Xtext, a
language author defines both a grammar for the language and an “inferrer”,
which is essentially a code generator. In this way syntax and semantics
are separated. This approach is common to external DSL systems, so we
present a basic example of how such a language works, adapted from one
on the Xtext web site [42]. This DSL is for a “turtle graphics” language, like
Logo.

198

6.5. COMPARISON WITH RELATED WORK 199

class TortoiseShellJvmModelInferrer extends AbstractModelInferrer {
public static val INFERRED_CLASS_NAME = 'MyTortoiseProgram'
@Inject extension JvmTypesBuilder
def dispatch void infer(Program program,

IJvmDeclaredTypeAcceptor acceptor,
boolean isPreIndexingPhase) {

acceptor.accept(program.toClass(INFERRED_CLASS_NAME)).
initializeLater [
superTypes += program.newTypeRef(typeof(Tortoise))
if(program.body != null)
members += program.toMethod("main",

program.newTypeRef(Void::TYPE)) [
body = program.body

]
for(subProgram: program.subPrograms)

members += subProgram.toMethod(subProgram.name,
program.newTypeRef(Void::TYPE)) [

for(functionParameter: subProgram.parameters)
parameters += functionParameter.toParameter(

functionParameter.name, functionParameter.parameterType)
body = subProgram.body

]
]

}
}

Figure 6.11: Xtext “inferrer” for Logo, adapted from the Xtext web site [42].
This generates a new class containing code generated from the user’s code,
extending an existing turtle graphics class.

199

200 CHAPTER 6. DIALECTS

For Xtext, we first define the grammar as shown in Figure 6.10. This is a
very simple grammar, delegating most of the language details to the Xbase
language (a basic language definition included with Xtext). The grammar
defines the “sub”, “begin”, and “end” keywords, which bound programs
and subprograms. Each program body consists of Xbase statements.

Xtext then requires an “inferrer” to translate the language defined in the
grammar to an implementation language, typically Java. The Logo sample
“inferrer”, shown in Figure 6.11, translates each Logo program to a Java
class which subclasses an existing turtle graphics class to gain access to the
various drawing methods and fields. Logo commands are translated to
self-calls on the class.

Comparing the Xtext Logo to our Grace Logo dialect from in Sec-
tion 6.2.1, the first clear difference is that in our system we define the
dialect’s behaviour and syntax together. The dialect is much shorter than
the Xtext version, with the same syntax and semantic model as the rest
of the language. By piggy-backing on the existing Grace language, and
taking advantage of its flexibility, we avoid defining separate grammars
and translations: by defining both in one place, the relationship between
the two is immediately clear, and the author does not need to understand
how to write a grammar or any additional rules.

Of course, in doing so our design trades off overall flexibility to gain
brevity and simplicity. Unlike our dialects, Xtext can define a wholly new
grammar, defining a language resembling the original Logo as closely as
desired. Xtext languages can define entirely new syntax, or mix different
syntaxes together. We consider the trade-off in our system worthwhile. A
dialect is simpler to implement than a corresponding Xtext language, and
offers an obvious progression into the full, unrestricted Grace language.

200

6.6. CONCLUSION 201

6.6 Conclusion

We have described how a novel combination of language features — lexically
nested objects, syntax for blocks and multipart methods, optional typing,
and pluggable checkers — supports dialects. Because our dialects are based
on these standard language features, programmers can write dialects much
as they write any other Grace program — by defining objects and meth-
ods — without having to learn additional macro systems, define lexers,
parsers, and semantic rules, or use metaprogramming to modify class def-
initions on the fly. To illustrate the power of this dialect mechanism, we
have presented several case studies of dialects of varying complexity.

Dialects allow multiple sublanguages to be defined within one over-
arching language, either to restrict or to extend what is available to the
programmer. Different parts of the same program may use different dialects,
including the dialects themselves, without affecting other code. Dialects
are similar to modules, except that they surround the code written using the
dialect, rather than being included by it. Dialects can both add language
features by defining methods, and remove language features, or enhance
error reporting, using checkers. Dialects enable Grace to support both
multiple teaching languages for novices and domain specific languages for
advanced students.

Dialects by lexical scope mean that the same semantic model applies
to all programs, with or without a dialect. With careful choice of the
underlying language syntax many of the specialised features supported
by advanced DSL systems, or tailored teaching languages, may also be
achieved in our system, without any additional language features.

201

202 CHAPTER 6. DIALECTS

202

Chapter 7

Tiled Grace1

Visual programming environments like Scratch [162] present a program as
a combination of nested “jigsaw piece” tiles manipulated by drag-and-drop,
and have been used successfully with new programmers [53, 17, 124, 115].
These environments present a limited language with a restricted expressive
domain, meaning that eventually programmers must move on to a “real”
textual programming language and, in many cases, learn to program over
again [158, 146]. Tiled Grace is a programming environment for Grace
bridging these two worlds: programs may be edited using a drag-and-drop
tile interface, but with tiles that map exactly to the concrete text syntax. In
Tiled Grace, users can switch to a conventional textual view at any time,
and can edit that text before switching back to the tile view, making the
correspondence between tiles and source code clear.

This chapter is structured as follows. In the next section we describe
Tiled Grace and explain the design choices we made in it. Section 7.2
motivates the existence of Tiled Grace. Section 7.3 describes the additional
functionalities we implemented on top of the base system. Section 7.4
describes the user experiment we ran using Tiled Grace , and Section 7.5
the results we obtained. Section 7.6 positions Tiled Grace among related
work, while Section 7.7 discusses future work. Section 7.8 concludes.

1This chapter expands upon papers published in VISSOFT 2013 [72] and 2014 [73].

203

204 CHAPTER 7. TILED GRACE

7.1 Tiled Grace

Tiled Grace presents an editing environment for Grace programs based
on drag-and-drop tiles. A tile represents a single syntactic unit in the
program, such as a string literal, variable assignment, or method request.
For example, tiles for a string “Hello!” and variable “x” are depicted as:

Some tiles, like the string tile above, have text input fields for the user
to enter a value.

Some tiles have holes in them, where another tile may be placed. For
example, a variable assignment tile has two holes: one for the variable to
be assigned to, and one for the value to be assigned:

The holes are the empty grey rounded-rectangular areas. Other tiles
with holes include operators such as + and *, method requests, and print
statements. The user can place a tile inside a hole to build up their program.

To assign the string “Hello!” to the variable “x”, the user combines these
three tiles:

To put a tile into a hole, the user can drag the tile they want to use over
the hole, which will be highlighted when they are over it, and then drop it
there. The hole will expand to fit its new contents.

Tiles can be connected together in sequence as well. To create a variable
and print its value, a var tile and a print tile can be joined together.

204

7.1. TILED GRACE 205

The user can join tiles together in this way by dragging so that the top
of the tile they want to join on is near to the bottom of the tile they want
to join onto, and dropping the tile there. The tile being joined onto will be
highlighted:

Some holes can hold multiple tiles, such as the holes in the body of a
loop. The first tile can simply be dropped in as for any other hole, and then
other tiles can be joined onto the bottom of it. The following code prints
“Hello!” and “World!” ten times each in alternation:

A complete program and its output is shown in the Tiled Grace in-
terface in Figure 7.1. The interface is divided into three main areas: a
large workspace area on the left, a toolbox of available tiles, and text and
graphical output areas on the right.

Tiles may be dropped anywhere in the workspace pane, and the user
can construct different sub-programs in different parts of the area. Different
categories of tile can be selected from a pop-up menu that appears when
using the toolbox. At the bottom of Figure 7.1 the dialect selector, run
button, and other interface controls are displayed.

Different kinds of tile are shown in different colours. Closely related
concepts, such as variable declaration, reference, and assignment, have
similar colouring.2

2In the present prototype, these colours are simply assigned in sequence around the
colour wheel.

205

206 CHAPTER 7. TILED GRACE

Figure 7.1: Tiled Grace editing a small program in the “turtle graphics”
dialect.

The feel of Tiled Grace is similar to Scratch [162], which inspired this
work. Tiled Grace differs in that it is backed by a genuine textual language:
the tiles themselves correspond to the syntax of the Grace language, in or-
der to support students when they eventually move out of Tiled Grace and
begin writing textual programs. Tiled Grace goes a step further still: be-
cause the tiled representation maps exactly onto the textual representation
the user can switch to a standard syntax-highlighted textual view at any
time.

The transition from tiled to textual view is shown through a smooth
animation. Each tile and block of code has a continuous visual identity
throughout the transition.

First the tiles fade out to blocks of the corresponding textual code, then
the blocks glide into place in a linear textual program, and finally the
display switches to editable text. The entire transition takes just under two
seconds. When the user chooses to switch back to tiles, the same behaviour

206

7.1. TILED GRACE 207

occurs in reverse.

Figure 7.2 shows this transition in progress: while editing the same
program as shown in Figure 7.1, the user has switched to a textual view.
First the tiles fade out to blocks of the corresponding syntax-highlighted
textual code, while remaining in the same physical location (frame (b)). The
code blocks then glide into place (frame (c)), finishing in a linear textual
ordering. Finally, the tiles become fully editable ordinary text, as shown in
frame (d). In this way, the relationship between tiles and the corresponding
part of the textual program is clearly visible.

Each separate group of connected tiles is regarded as an independent
part of the program. The ordering between them in the textual display is
arbitrary, but consistent across the lifetime of the program. The displayed
text is editable if the user wishes: they may change the source code, includ-
ing adding and removing whole lines or blocks, and then transition back to
the tiled view.

7.1.1 Implementation

Tiled Grace is built on Minigrace’s ECMAScript backend (Chapter 8), with a
new front-end interface. Tiled Grace runs in a web browser without installa-
tion, and can be accessed at http://michael.homer.nz/minigrace/
tiled/. Tiled Grace runs in at least recent versions of Firefox, Chrome,
and Internet Explorer3 at the time of writing.

Tiled Grace presents a user interface where tiles can be dragged around,
and represents the program as a tree of those tiles (mapping closely onto the
Document Object Model [98] tree of web browsers). The structure of this
tree differs from the abstract syntax tree of the language in several ways;
notably, empty holes are possible in Tiled Grace and can be represented
fully in the tree, but they are not part of the concrete syntax. Tiled Grace
also presents requests for dialect methods differently than for user methods,

3Because of technical limitations, some features are restricted in Internet Explorer.

207

http://michael.homer.nz/minigrace/tiled/
http://michael.homer.nz/minigrace/tiled/

208 CHAPTER 7. TILED GRACE

(a)

(b)

Figure 7.2: Frames of the animated transition from tiled to textual view.
Transitioning from textual to tiled view shows the same intermediate states
in reverse. The transition from tiles to code, and the movement of code, is
smoothly animated. (continues on facing page)

208

7.1. TILED GRACE 209

(c)

(d)

Figure 7.2: continued.

209

210 CHAPTER 7. TILED GRACE

as specialised tiles are constructed for dialect methods and listed in the
toolbox directly.

To execute the code, Tiled Grace generates textual Grace code from
the program tree, which is then compiled by Minigrace into ECMAScript,
which is then executed.

7.2 Motivation

Why build Tiled Grace when Scratch, Alice, and similar systems already
exist? Our design goal for Tiled Grace is to avoid some pitfalls and prob-
lems that have been encountered with these existing systems. Pedagogical
evaluations of the system are future work, but we performed a user evalua-
tion of the usability of our tool, described in Section 7.4. In this section we
describe the issues with other systems that motivated the different design
choices we made in Tiled Grace .

One issue that has been encountered in introductory visual languages
is that learners do not consider them “real” programming languages [103,
104]. Lewis et al found that more students rated a picture of random green-
on-black symbols from the film The Matrix as “definitely” or “somewhat
like” programming than an image of the Lego Mindstorms programming
environment (a colourful drag-and-drop system), even though those stu-
dents had been learning Scratch.

Similarly, Powers, Ecott, and Hirshfield found that students learning
Alice and a textual language in the same course frequently felt that Alice
was not a “real” language [158]. Students who struggled with the textual-
language part of the course felt that what they had been doing in Alice
“didn’t count” or was “too easy”, that textual code was “real programming”
and were inclined towards believing that they were not actually capable of
programming; this inclination is harmful in itself.

In Tiled Grace we aim to avoid or ameliorate this perception by pre-
senting the textual and visual representation of code coequally, and clearly

210

7.2. MOTIVATION 211

the same language on both sides. The textual-tiled combination was our
original grounding conception for Tiled Grace .

Another reported problem with moving on from visual to textual lan-
guages [158], and moving between languages early in learning in general,
is that learners find it difficult to connect analogous concepts in one lan-
guage to the other. Our animated transition between visual and textual
representation aims to demonstrate the exact parallel between the two.

In particular, it is known from both educational psychology in general
and computer science education specifically that transitioning between
languages early in learning is unhelpful [142]. A course structure pred-
icated on such a transition will likely run into trouble, but introductory
tertiary courses in Scratch and Alice move on to “real” languages early,
often within the first course, as programs become too complex for such
languages. Permitting both views should avoid this transition, so that
learners can begin in (Tiled) Grace, move gradually into (textual) Grace,
and continue in that full-strength language as long as required.

One issue with language transitions is that they are essentially “one-
way” processes: the learner must apply what they know about the earlier
language to the later, but movement in the other direction is restricted.
Tiled Grace has a deliberately permeable barrier: a user can use the visual
language, the textual language, and the visual language again, even within
the same program if desired. Allowing movement in both directions neces-
sitates some trade-offs (particularly that the programmer can only switch
views when there are no static errors in their program), but we consider it
appropriate to the goal of the language.

The initial conception of Tiled Grace came after working with Scratch.
We had previously used Scratch as part of outreach programmes from the
university and in the early phases of our work on Grace, and were invited
to teach Scratch to a class at a local intermediate school (pupils aged 10-12).
In all of these cases we noted that users were very (and readily) engaged
with the tool, much more so than we had observed with new programmers

211

212 CHAPTER 7. TILED GRACE

using Java or Python. We also knew from experience, however, that as
we had come to know the system better we had found the drag-and-drop
interface of Scratch increasingly tiresome to use and felt its restrictions
more and more, particularly as we had known how to program when we
began. We wanted a system that combined the engagement of Scratch with
the power of a “real” language and the ability to move on smoothly to more
flexible programming styles. With this in mind we conceived the idea of
switching between two views of the same code, which was the basis of Tiled
Grace. Although Tiled Grace is somewhat weaker both as a textual interface
and as a visual interface than special-purpose programming systems, the
combination of the two is powerful and we wished to experiment with it.

Another key motivation was our dialect system, which has no real
parallel in the other visual language systems. Scratch, Greenfoot, and Alice
all expose different degrees of complexity appropriate to different levels
of development, but each only exposes a single level. Advanced users of
Scratch find the limitations frustrating (as we did), but permitting more
flexibility for early learners can hinder them. A key decision in the design
of Tiled Grace was that it would support dialects from the ground up, so
that learners could move into less restrictive language variants as they
went, while staying in the same language and same interface. Again, that
integration involves some trade off, but we consider it worthwhile to allow
a user to remain within the same fundamental language as long as possible.

7.3 Functionality

On top of the basic functioning of Tiled Grace described in Section 7.1,
the tiled view and its duality with the textual representation offer new
possibilities for system behaviour. In this section we describe the design and
implementation of functionality for handling errors, showing information
about definitions, dealing with language variants, and type checking.

212

7.3. FUNCTIONALITY 213

7.3.1 Handling errors

The very duality of view Tiled Grace is built around creates new opportu-
nities for error. As well as the common errors of textual editing that are
possible in the text view, tiles permit other forms of error that are unlikely
to occur in text. The interface between the two forms must prevent errors
spreading from one to the other.

While the tiled view prevents most syntax errors, the user may still
omit to fill in required components — for example, not specifying a variable
name or leaving the hole on one side of an operator empty — or invalidate
the program in other ways by moving a reference to a variable outside its
scope or filling in an unsuitable value. In each case, the textual represen-
tation of the program would be incorrect or misleading. To combat that,
the user can only switch views when the program is valid: when there
are unfilled holes or other errors when the user attempts to change view,
the error sites will be highlighted and the view unchanged. A graphical
indicator shows whether the program is currently valid at all times; when
the indicator is red the user may hover over it to highlight all existing errors,
which are labelled with their cause (for example, an empty hole may have
the message “Something needs to go in here”). These error sites are shown
by desaturating all of the code area except the error sites, and overlaying
an associated error message at the site. An example is shown in Figure 7.3
where the user has hovered over the red square indicating an error, which
was green for the unmodified version of the program in Figure 7.1.

In the text view, as in any textual editor, the user is unrestricted in the
kinds of error they can produce. The code is continually compiled in the
background and errors marked where they occur, with the user able to
access a standard compiler error by hovering their mouse pointer over the
error marker on the offending line. If the user tries to switch to the tiled
view while the program does not compile, they will be presented with
the error and asked whether they want to revert to the last-known-good
version.

213

214 CHAPTER 7. TILED GRACE

Figure 7.3: Errors displayed in a modified version of the turtle graphics
example.

214

7.3. FUNCTIONALITY 215

Design alternatives

Alternative indications of error sites are possible; as well as desaturation,
we have experimented with overlaid arrows, as well as borders, anima-
tions, and combinations of these. We found desaturation to be the clearest
indicator of those we tried in experimental implementations, although we
intend to investigate combining it with small animations.

By ensuring the program is valid when changing views, errors are not
propagated any further than necessary and no additional long-term errors
are created by changing views. This was a difficult choice, as some errors
would be easier to solve if the user could look at the program in two ways.

While some erroneous code would be difficult to represent on one side
or the other — an empty hole would presumably be nothing at all in the
textual view, while basic syntax errors in the textual view will not have
corresponding tiles — other kinds of error, such as variables used out of
scope and type errors, affect both views in much the same way and have
straightforward representations in each. Scoping errors in particular are
shown very clearly with tiles. We discuss future possibilities in Section 7.7.
For the moment we have chosen to ensure that the program is always valid
immediately after a transition.

7.3.2 Overlays

As well as visualising the code itself as tiles, Tiled Grace can visualise
relationships between parts of the code (see Figure 7.4). When a user
hovers their mouse pointer over a variable reference, the code view will be
overlaid with a line from that reference to the variable’s definition site, as
well as to any assignments to the variable in scope. Hovering over a variable
declaration produces an overlay that indicates all the uses of that variable in
scope. Similarly, hovering over a method definition identifies any requests
of that method in the program, while hovering over a request (including a
request of a method that came from the dialect) highlights the definition

215

216 CHAPTER 7. TILED GRACE

Figure 7.4: Composite image of multiple overlays at once. All blue lines
run between a use and the definition of a variable or method. The red line
indicates a reassignment of a variable; the green indicates a method from
the dialect, pointing at the dialect selector. Only one of these overlays can
be shown at one time.

of the method. In this way the programmer can easily read the program
in execution order, rather than top-to-bottom, which has been found to
be helpful for novices [86]. If applicable, multiple overlays may appear
at once. These overlays are similar to those found in spreadsheets [61] to
illustrate the dependencies of a formula.

In the textual view the user may hover their mouse pointer over a
variable or method to see an overlay showing the definition or use sites. In
this view, the overlay is very like the similar overlay in DrRacket [182].

7.3.3 Dialects

Grace dialects can extend the methods available to the programmer (as in
the turtle graphics dialect in Figure 7.1) as well as restrict features of the lan-
guage or create new errors, as described in Chapter 6. Tiled Grace supports
both of these components.

When the user selects a dialect to use, Tiled Grace creates tiles for
all of the provided methods, based on a description of the dialect. This

216

7.3. FUNCTIONALITY 217

description can be automatically generated from the dialect itself, but many
dialects will benefit from manual annotations to reflect the intention of
the dialect better. A simple example of when this may be desirable is
when building control structures: the while()do method takes two blocks
as arguments, one as the condition (which is a block because it may be
executed more than once), and one as the body of the loop. Although both
parameters are blocks, the intention is different. The body is expected to
contain many statements, while the condition will likely be a single brief
expression. The dialect description can make this intention clear, as well as
expressing other limitations.

The default control structures in Tiled Grace show this distinction: the
condition of a loop is (while still shown as a block) a one-line, single-
expression field, while the body is a multi-line block that accepts many
statements. Additional control structures defined in other dialects can have
the same (or different) behaviour if they wish.

Our support of dialects is an important generalisation of Blockly’s (Sec-
tion 2.5.2) ability to choose an extended sub-language to use. Because these
dialects persist in textual form, and even originate in it, the user retains the
ability to use and understand them even outside Tiled Grace itself. Our
dialects may also define and report new classes of error, shown in the same
way as all other errors.

Defining dialects

Dialects are described for Tiled Grace’s purposes by ECMAScript objects
giving the set of operator tiles and methods available in the dialect. A
method definition can be as simple as a name, but various metadata can
also be included. The definition of the while()do method in the standard
dialect looks like this:

217

218 CHAPTER 7. TILED GRACE

"while()do": {
name: "while()do",
parts: [

{
name: 'while',
args: [

{type: 'Block', returns: 'Boolean', multiline: false,
description: "Condition."}

],
},
{

name: 'do',
args: [

{type: 'Block', returns: 'Any', multiline: true,
description: "Something to do."}

],
}

],
category: "Control",
returns: "Done",
description: "While a condition is true, do something.",
multiline: true,

}

This method’s tile will be located under “Control” in the toolbox and
returns Done, the no-result type. Attempting to place this tile in a hole that
expects a value of some other type will trigger an error. A tooltip is defined
to describe to the user what the tile does, and similar tooltips given for the
two argument holes the tile includes.

The argument lists are the most interesting part: as alluded to earlier,
control structures may wish to indicate how their holes should be rendered.
The condition parameter is defined as a Block returning a Boolean; attempt-
ing to place a non-boolean expression in the hole will cause an error. The

218

7.3. FUNCTIONALITY 219

body is also a Block, this time returning Any, the top type. The interesting
difference is in the multiline field: the condition is not a multiline block, and
so is shown within a single line and accepts a single tile, while the body is
defined as multiline and so will accept multiple tiles and display vertically.

The full variety of available features in the dialect description for Tiled
Grace is explored in the sample dialects included with the implementation.

7.3.4 Type checking

Type checking in a drag-and-drop interface raises additional obstacles
versus conventional static type checking. While we can run a standard
algorithm over the code and display the results, given the way the user
interacts with the system we would prefer to show errors at the time they
are made, or even to prevent their occurrence altogether.

We chose to use a variant on our overlay approach to report errors as
the user tries to perform the action that would cause an error, while also
preventing the user from doing so. Any hole, including both those within
built-in tiles and those from dialects, can be annotated with the types it will
accept. Any tile can be similarly annotated with the type of the object it
represents. As Tiled Grace variable declarations do not include static type
annotations, all type annotations are currently built in (either to the tool
directly or as part of dialect definitions), but the underlying system would
need no change to extend to other types were they added.

For example, a string tile is annotated with the type “String”, and both
holes in a + tile are annotated as accepting only “Number”. When the
programmer tries to place one into the other, as in Figure 7.5, the hole is
marked in pink and an error message displayed nearby: the user will not
be able to drop the tile into the hole. In this way, the type error is prevented
from being introduced into the program in the first place, removing the
need for a typechecking pass. Nonetheless, some classes of type error could
be introduced within textual code and not be caught there, and then make

219

220 CHAPTER 7. TILED GRACE

Figure 7.5: The display of a simple type error the user is making, where
they try to place a string tile somewhere that only numbers are permitted.

it through the transition to the tiled view. As a result, the error-handling
step described in Section 7.3.1 also checks that all holes and their contents
are well-typed, and any errors that are found are reported in the same way.

Discussion

Our type-checking system provides some guidance to programmers, and
does avoid many kinds of type error. Preventing the introduction of errors,
and presenting a simple explanation at the point of the attempt, stops the
user digging themselves into a deeper hole before realising that something
is wrong. Our system does not prevent the user exploring the system and
testing out what can and cannot be done.

We thought it would be helpful to indicate to users the appropriate
placement of tiles before they move them. Scratch partially achieves this
effect through its “jigsaw puzzle” pieces: holes and tiles of different types
have different physical shapes, so a boolean constant or expression will
not fit into a numeric expression. While immediately understandable, the
approach has flaws, notably that there is a limited range of sensible shapes
that can be readily distinguished and consequential limit on the number
of types that can be in the system. As well, “multi-type” holes are very
difficult: in Scratch it is not possible to have an array of booleans, only of
its combined string-number type. These constrictions make this approach
problematic to implement in Grace, as it is a language with many types,
and several places that can hold variables of any type (for example, variable
declarations and equality tests).

We considered colour-coding types, such that our any-type holes would

220

7.3. FUNCTIONALITY 221

Figure 7.6: Two hints showing a colour selector (top) and an image preview
(bottom). The menu allows changing between known images, and will here
update the remote def foo.

be a neutral colour, while strings, numbers, booleans, other objects, and
dialect definitions would have their own colours which could be matched
on both tile and hole. The tile colours already approximate such a system,
so it was attractive. Tiled Grace allows user-defined objects, however,
which have novel types of their own determined by the methods within
them. It became clear that colour-coding based on types would not be
practical, particularly when considering how subtyping relationships could
be represented.

7.3.5 Hints

One advantage of a non-textual display of code, such as our tiled view, is
the flexibility to render additional “out-of-band” information within the
program display for the benefit of the programmer. In Tiled Grace we call
these “hints” and a dialect may define them for its tiles. The dialect we
built for graphical programs includes two hints, both showing a graphical

221

222 CHAPTER 7. TILED GRACE

representation of some text the programmer wrote.

The first hint is on a tile for defining colours using the hue-saturation-
lightness scale. A small block of colour appears on the tile, updated in real
time as the programmer edits the values or definitions leading to them.
The second involves images: the dialect provides the ability to construct
“image” objects, which render an image at run time. The image used is
determined by the name assigned to the url field of the object. The hint
catches these assignments, shows a preview of the image referred to, and
offers a drop-down menu for the user to select from known images. If
the user chooses a new image, the code is updated, even if the original
definition site is remote from the code at hand. Both of these are depicted
in Figure 7.6.

Implementation

By nature, these hints are tied closely to the implementation of Tiled Grace.
A hint is defined in ECMAScript within the dialect definition: within the
description of a tile a function can be defined which will be run each time
source code is regenerated (principally, after any change to the code). This
function will be passed a reference to the tile concerned. The function can
inspect the code around the tile and display relevant information, as well
as accessing Tiled Grace’s API functions, such as that to find the definition
site of a variable referred to in code. While the dialect implementor must
know the internal structure of Tiled Grace and the browser environment
in some detail in order to add a hint, the end user receives additional help
with little or no effort on their part.

7.4 Experiment

We ran a user experiment trialling Tiled Grace with 34 participants, primar-
ily students enrolled in undergraduate courses in the School of Engineering

222

7.4. EXPERIMENT 223

and Computer Science at Victoria University of Wellington. The exper-
iment took place in March–April 2014. Participants were asked to use
Tiled Grace to write, modify, correct, and describe programs, while we
measured their use of different features of the system. Participants also
completed questionnaires about themselves and their use of the system.
This experiment was approved by the Human Ethics Committee of Vic-
toria University of Wellington. Our ethics application and the approval
document is given in Appendix D.

7.4.1 Research questions

Our experimental design was guided by key questions we wished to answer
(as well as by practical considerations, particularly timing).

Tiled Grace was motivated by the idea of presenting both tiled and
textual views of code coequally. One question was therefore: Do users
find the ability to transition between views useful?. A particular novelty
of our approach is that we transition code visually in such a way that
each piece of code has a continuous visual identity throughout, so the user
knows which text corresponds to which tile. To that end we asked: Do
users appreciate explicitly animating the conversion to and from text?

We designed and implemented a novel error reporting system for Tiled
Grace that has no analogue in the existing drag-and-drop languages. The
functioning of this system was guided by intuition and discussion, but we
wished to measure it as well: Do users find the error reporting of Tiled
Grace useful?

Finally, given that Tiled Grace is intended to be used as an introduction
for novice programmers, one of the key issues is simply engagement: a
tool that users do not enjoy will not be used. Visual interfaces are generally
assumed in the literature to be engaging, and that assumption conformed
with our experience, but we needed to measure that for Tiled Grace as well:
What degree of engagement do users exhibit with Tiled Grace?

223

224 CHAPTER 7. TILED GRACE

7.4.2 Participation

Participants were recruited by announcements in lectures, forum posts,
word of mouth, and direct recruitement, and invited to make an appoint-
ment to perform the experiment. These are the standard techniques used
for experiments in the department. Participants were able to attend in pairs
if they wished, with each person performing the experiment simultane-
ously yet independently. Two enticements to participate were provided:
each participant could opt into entry in a random draw to win one of three
$50 gift vouchers, and a bowl of assorted confectionery that was available
during the experiment and during some in-person recruiting sessions.

7.4.3 Instruments

The experiment was conducted in a room provided by the School of Engi-
neering and Computer Science of Victoria University of Wellington set up
for this purpose. The experimental room had two ordinary workstation
computers set up, as shown in Figure 7.7. Each machine had an ordinary
keyboard, mouse, and screen, and was running Windows 7. All recorded
information, including questionnaires, occurred within a web browser. The
same browser, Google Chrome 33, was installed on each machine. The
experimentor sat at a distance positioned to see both (if applicable) screens
and observed participants during the experiment.

7.4.4 Protocol

On arriving at the experimental room each participant was given an in-
formation sheet and a consent form. Participants had time to read the
information sheet and ask questions before signing the form. Participants
under 18 years of age required parental consent to perform the experiment,
but no such participants volunteered for the study. The information sheets
and consent forms are reproduced in Appendix D.

224

7.4. EXPERIMENT 225

Figure 7.7: A photograph of the room used for experimental trials. The
two experimental computers are on the far left and right edges of the
picture, with up to one participant on each machine. The experimentor was
positioned approximately where the camera is during trials.

After the completion of the consent form each participant was led to a
workstation with the initial questionnaire open and was invited to fill it in.
The survey responses were recorded electronically. The complete contents
of the initial questionnaire is given in Appendix D.

Our experiment involved a tutorial guided by the experimentor and
five tasks, all of which involved being presented with a program along
with instructions on what to do with it. We selected the tasks with the goal
of having users interact with all different parts of the system in mind, while
also wishing to have the entire experiment complete within a reasonable
time span (about 30 minutes).

225

226 CHAPTER 7. TILED GRACE

Figure 7.8: The tutorial program used in the experiment.

Tutorial

Following the completion of the initial questionnaire participants were
given a scripted tour of the experimental system. Where multiple partic-
ipants attended at once, both participants received the tour at the same
time on a single machine, but were separated on different machines for the
experiment itself. In either case participants used a freshly-loaded version
of the intrumented interface that had not previously had any interaction for
the body of the experiment. The tour used the tutorial program depicted in
Figure 7.8, with the extended layout shown in Figure 7.9.

The script for the tour is given in Appendix E. We provided no intro-
duction to the Grace language or to any other features of the system not
mentioned in the transcript. If participants had questions at this point,
we repeated portions of the speech if relevant, and otherwise declined to
answer.

After setting participants up in this way we retired to a distant part of the
room and left participants to proceed as they wished. One participant did
not move on from the tutorial program after 20 minutes and we intervened
to suggest that they do so at that point.

226

7.4. EXPERIMENT 227

Figure 7.9: The layout of Tiled Grace used for the experiment. An additional
column on the right-hand side contains the task descriptions, a button for
moving to the next task, and (for some tasks) an input text area.

7.4.5 Data collection

While participants used the experimental system their on-screen interaction
was recorded by the tool. Every drag, variable selection, text modification,
switch of views, or attempt to run the program was noted, and a snapshot
of the program was taken after every change. These logs were automatically
saved to the server while the participant used the system. No audio or
video recording was used in the experiment.

Task 1

The first real task in the experiment was a small program printing the
first ten Fibonacci numbers [157]. Participants were asked to modify the
program to print twelve factorial numbers instead. Participants were given
five minutes on this task. The initial program and the task description are
shown in Figure 7.10.

Our intended solution was:

227

228 CHAPTER 7. TILED GRACE

This program computes the
first ten Fibonacci numbers
and prints them onto the
screen. The first two Fibonacci
numbers are both 1, and each
number after that is the previ-
ous two added together: 1 1
2 3 5 8 The program will
print these out now.
Modify this program so it
prints the first twelve factorial
numbers instead. The first fac-
torial number is 1, and each
number after that is the pre-
vious number multiplied by
how far through the sequence
you are: 1, 1 * 2 = 2, 2 * 3 = 6, 6
* 4 = 24, Make the program
print these instead.

Figure 7.10: The first task in the Tiled Grace experiment.

228

7.4. EXPERIMENT 229

This program should draw an
envelope shape with a circle
around it, but it is broken and
has some errors at the mo-
ment. Fix the program so that
it draws an envelope.
The program uses a "turtle
graphics" system, where your
instructions tell a drawing
robot where to move: forward
10, turn left 90 degrees, for-
ward 10 more, and so on, with
the robot leaving a trail be-
hind itself.

Figure 7.11: The second task in the Tiled Grace experiment.

• To change the “10” to “12” in the loop bounds.

• To change the “tmp + y” tile to multiplication.

We selected this task as it could be represented by a single linear block
of tiles, without involving any additional spatial confusion that might occur
from having multiple different blocks. Of all the task programs, this one is
the closest to the simple conventional textual programs participants may
have encountered in introductory programming courses. We also wished
to have a task involving updating variable assignments, but did not wish
for that task to be very complicated. We were concerned that the task might
be overly mathematical and so included explicit descriptions of the two
sequences. This was the simplest task we could find where the solution
involved multiple steps.

229

230 CHAPTER 7. TILED GRACE

Task 2

The second task in the experiment used the turtle graphics dialect described
in Section 6.2.1. The initial program given contained several errors prevent-
ing the program from compiling, and participants were asked to correct
the errors as well as making the program draw a circled envelope shape.
Participants were given five minutes on this task. The initial program and
the task description are shown in Figure 7.11. The errors are shown in
Figure 7.12. The intended solution was:

• To swap the erroneous l and diagonal variable tiles marked in Fig-
ure 7.12.

• To move the (now) diagonal / 2 tile into the empty hole.

• To correct the spelling of circle in the method request tile.

This task tests our error-reporting feature. We took an existing demon-
stration program and introduced errors by moving tiles out of place and
changing text. We wished to ensure that all participants used the error
reporting in the same context at least once.

Task 3

The third task used the graphical dialect used in the tutorial program. The
initial program included a circle which bounced randomly in the window
and a face that followed the mouse pointer. Participants were asked to
swap the behaviours of these two items: make the face bounce around and
the circle jump to the mouse pointer. A second prompt suggested trying to
change the colour of the ball, and to make it bigger. Participants were given
five minutes on this task. The initial program and the task description are
shown in Figure 7.13.

The intended solution for the first part of the task was simply to swap
the behavioural content of the two objects: to move the always tile from

230

7.4. EXPERIMENT 231

Figure 7.12: The program used in Task 2 of the Tiled Grace experiment,
with the included errors highlighted.

231

232 CHAPTER 7. TILED GRACE

This program has a ball bounc-
ing around the screen, and
an image that follows your
mouse around. Make the ball
follow the mouse and the im-
age bounce around instead.
Try to make the ball a differ-
ent colour, then try to make it
bigger.
When you run your program
a small red square will appear
in the top-right corner, which
you can click to stop the pro-
gram before you run it again.

Figure 7.13: The third task in the Tiled Grace experiment.

the face into the circle, and everything from face(randomPoint) downwards
from the circle into the face object. This could be accomplished either with
tiles or by copy-and-paste in the text view.

Participants could change the colour of the circle by changing any
one or more of the numbers in the hue(120) saturation(50) lightness(30) tile.
Changing the radius was intentionally more complicated: participants
would need to add a new variable assignment tile, choose the radius variable
to assign to from the pop-up list of variables in scope, and set it to a number.
Participants could discover the existence of radius from the drop-down list
in the existing colour assignment.

We selected this task for two reasons. The solution to the first part is
very simple, but offers two paths (moving the tiles and copy-and-paste of
text), while also seeking to see how much understanding the user has of
the task when they can modify the code. The second part requires users to
explore the system further and to make use of variables other than those
given to them already. As with all our experimental tasks, this one could
be completed either with tiles or using the textual editor, and we were
interested to see which one users would pick.

232

7.4. EXPERIMENT 233

Task 4

The fourth task prompted participants to describe the behaviour of a pro-
gram, rather than modify it. They were presented a program written in
the graphical dialect used in Task 3 and the tutorial. The users were then
asked to type a description of its behaviour, without running it. The “Run”
button was disabled for this task. The program was initially presented in
the text view, but participants could switch to the tiled view and back at
any time. The program source is in Figure 7.14.

A reasonable description of the program behaviour would be:

Creates a purple square and an orange square. Both squares
constantly move forward and bounce off the walls when they
hit. They start out pointing at right angles to each other.

A circle always moves slowly towards one of the squares.
When it touches the square it’s following it changes target to
follow the other square instead.

Partipants were prompted to move on after four minutes for this task,
to allow time to complete filling in their description after the prompt while
remaining within a small window.

The purpose of this task was to see which interface users preferred
when asked only to comprehend a program, rather than modify it. The
program was presented in the textual view first both to remind participants
who may have forgotten about view switching and to allow them to show
whether they had gained any knowledge of the text from their use of tiles.

Task 5

The fifth task was the end of the experiment. A program was presented,
but no task was assigned. The task description said:

You’re done! You can play with the system here. Move on to
the final questionnaire when you’re ready

233

234 CHAPTER 7. TILED GRACE

dialect "sniff"
object {

inherits rectangle
width := 50
colour := "orange"
whenever {touchingEdge} do {

bounce
}
always {

forward (2)
}

}
def orange = above

object {
inherits circle
var target := orange
always {

face (target)
forward (1)

}
whenever {touching (target)} do {

if (target == orange) then {
target := purple

} else {
target := orange

}
}

}

object {
inherits rectangle
width := 50
turn (90)
colour := "purple"
whenever {touchingEdge} do {

bounce
}
always {

forward (2)
}

}
def purple = above

Figure 7.14: The source code presented in Task 4 of the Tiled Grace experi-
ment.

234

7.4. EXPERIMENT 235

The program implemented a crude orbital simulator in the graphical
dialect, incorporating the Earth orbiting the Sun and the Moon orbiting the
Earth. A mars object was defined, but had no behaviour.

The intention of this task was to provide a chance to measure free ex-
perimentation by users and to see whether they would continue to use the
system by choice; this measure of engagement is similar to Kelleher et al.’s
use of “sneak time” [92]. The task serves primarily to measure implicit en-
gagement in this way and was not designed with any particular interaction
feature in mind. No time limit was placed on this task, although we would
suggest participants begin the final questionnaire ten minutes before the
next experiment was due to begin.

Final questionnaire

The final questionnaire was administered in the same manner as the initial
questionnaire. This questionnaire was longer than the initial questionnaire,
and asked participants about their interactions with the system and what
they preferred. Three free-text entry fields were provided with prompts for
the participant to say what they liked or disliked about the system, and to
include any other comments they had. The complete questionnaire is given
in Appendix D.

Following completion of the questionnaire participants could leave. A
bowl of assorted confectionery was in the room and attendees were invited
to take from it at any time. Most did so at the conclusion of their trial.

In the questionnaire we sought to measure what participants found
difficult or easy in the experiment, how engaged they were, which features
they had used (particularly the ability to switch views), and what they
liked or disliked about the system. Questions primarily asked participants
for such information directly and gave them a seven-point Likert item to
answer on. Some questions sought to gauge participant perceptions of
information that we had measurable data on; to that end, we asked about
which view of code they used most and how often they switched views.

235

236 CHAPTER 7. TILED GRACE

0

5

10

15

20

Female Male

Gender

c
o
u
n
t

0

2

4

6

8

18 19 20−22 23−29 30−39 40+

Ages of participants

c
o
u
n
t

Figure 7.15: Basic sample demographics of our experiment.

7.5 Results

In this section we present the results of our experiment.

In total there were 34 participants in the experiment. Participants were
able to withdraw at any time during the experiment and for two weeks
afterwards. Participants were not required to provide a reason for with-
drawing. One participant chose to withdraw and is excluded from the
sample, leaving a final sample size of 33 participants.

Anonymised data and tooling from this experiment is available in the
auxiliary data included with the thesis (see Appendix A).

7.5.1 Demographics

Participants were primarily drawn from students in the School of Engi-
neering and Computer Science at Victoria University of Wellington and so
represent at best the demographics of the source. 23 (70%) of participants
were male while 10 (30%) were female. The median age of participants

236

7.5. RESULTS 237

0

5

10

15

Never 2014 2013 2009−12 2000−08 1990−99 Earlier

I first tried to program

c
o
u
n
t

Figure 7.16: Bar chart of when participants first tried to program a computer.
The experiment took place in March–April 2014.

was 20 and the most common age was 18. There are progressively fewer
participants in older age bands. A full breakdown of these demographics
is shown in Figure 7.15.

Both of these fields were free text entry. We case-folded responses for
gender, but made no other modifications to that data. One participant
stated his age as “40’s” (sic). For statistical purposes we assigned this
participant an age of 45.

7.5.2 Programming experience

Three questions spoke to a participant’s past programming experience.

We asked when they first tried to program a computer. We chose this
phrasing to try to level out participants’ views of what “counts” as pro-
gramming. Potential answers were presented on a seven-point Likert item
with options “Never”, “2014”, “2013”, “2009-2012”, “2000-2008”, “1990-
1999”, and “Earlier”. Responses are shown in Figure 7.16. The modal and

237

238 CHAPTER 7. TILED GRACE

0

5

10

Never Once Rarely Monthly Weekly Daily Always

How often do you program in your own time?

c
o
u
n
t

Figure 7.17: Bar chart of how often participants program in their own time.

median response was 2000-2008, with a sharp drop off for earlier dates, to
be expected given the age distribution of participants.

We asked how often participants program in their own time. By this
phrasing we attempt to exclude classwork. Five participants enquired
at this question whether this meant “for fun” and we indicated in the
affirmative; it is unclear whether other participants interpreted homework
as being done “in their own time”. Potential answers were presented in a
standard frequency seven-point Likert item with options “Never”, “Once”,
“Rarely”, “Monthly”, “Weekly”, “Daily”, and “Always”. 14 participants
(42%) answered “Weekly” while 13 (39%) answered “Daily”. All other
answers received no more than 2 responses (6%). Responses are shown in
Figure 7.17.

We also presented a list of 72 technologies (mostly programming lan-
guages, but also IDEs and other tools) and asked participants to indicate
any they had used before. Several participants asked what “used” meant,
and we indicated that it meant used in any capacity and degree. While we
are interested in certain technologies in particular, which we will look at in

238

7.5. RESULTS 239

0.0

2.5

5.0

7.5

0 − 2 3 − 5 6 − 8 9 − 11 12 − 14 15 − 17 18 − 20 21 − 23 24 − 26

Total number of technologies used

c
o
u
n
t

Figure 7.18: Bar chart of how many technologies participants claimed to
have used.

the next subsection, here we simply count how many technologies partici-
pants claimed to have used, as shown in Figure 7.18. The total number of
technologies ranged from 1 to 25. The median was 10.

7.5.3 Technologies used

Figure 7.19 shows which technologies participants claimed to have used.
The most popular technologies were Java and Eclipse, both of which are
used in undergraduate courses in the school. Both Java and Eclipse had
been used by 26 participants (79%). Also particularly popular were Python,
with 25 participants (76%), and HTML, with 24 (73%).

One participant had encountered Grace previously. It is unclear to what
extent he had used the language, but we do not believe it can have been
substantial.

Four participants had previously used Scratch, the system most similar
to our drag-and-drop interface, while six had used Alice, another intro-

239

240 CHAPTER 7. TILED GRACE

Xystus
XCode
Whiley

Visual Studio
Visual Basic

VHDL
Verilog

Subversion
Squeak

SQL
Spreadsheet

Smalltalk
Shell

Scratch
Scala

S+
Rust
Ruby

Racket
R

Python
Prolog

Processing
PL/I
Piet

PHP
Perl

Pascal
Octave

Objective C
Object orientation

NetBeans
ML

Mercurial
MATLAB

Maple
Lua

Logo
Lisp

LaTeX
LabVIEW

JavaScript
Java

Io
INTERCAL

IntelliJ
HTML

Haskell
Groovy

Greenfoot
Grace

Go
Git

FORTRAN
Forth

F#
Erlang

Eiffel
Eclipse
Delphi

D
COBOL
Clojure

C++
C#
C

BlueJ
Befunge

Basic
APL
Alloy
Alice

0 10 20

count

T
e

c
h
n

o
lo

g
y

Figure 7.19: Which technologies participants had used in the past.

240

7.5. RESULTS 241

0

5

10

15

20

25

Agree 1−3 Neutral 4 Disagree 5−7

The system was fun to use

c
o
u
n
t

The system was fun to use

1 Agree

2

3

4 Neutral

5

6

7 Disagree

Figure 7.20: Participant responses to the statement “The system was fun to
use”. All three responses on each of the agreement and disagreement sides
are stacked together.

ductory programming language. No participants named Xystus, a false
technology we inserted to detect any participants who checked every box
indiscriminately.

7.5.4 Engagement

A key measure of this system is user engagement. We attempted to measure
engagement in multiple ways. In the simplest, we asked participants in the
final questionnaire whether the system was fun to use. Responses were on
a seven-point Likert item and shown in Figure 7.20. Responses 1, 4, and 7
were labelled “Agree”, “Neutral”, and “Disagree”.

The most common response was 2, with nine participants (27%), while
1 (“Agree”) and 3 were chosen eight times (24%) each. 25 participants in
total (76%) chose one of the responses on the Agree side. One participant
chose 5, a light disagreement, while seven (21%) were neutral. The median

241

242 CHAPTER 7. TILED GRACE

0.0

2.5

5.0

7.5

10.0

1
Agree

2 3 4
Neutral

5 6 7
Disagree

I would use this system again

c
o
u
n
t

I would use this system again

1 Agree

2

3

4 Neutral

5

6

7 Disagree

Figure 7.21: Participant responses to the statement “I would use this system
again”.

response was 2, a medium agreement.

In the final questionnaire we also asked participants whether they
would use the system again. Responses were on a seven-point Likert
item and shown in Figure 7.21. Responses 1, 4, and 7 were labelled “Agree”,
“Neutral”, and “Disagree”.

The most common response was 3, with ten participants (30%), while 1
(“Agree”) was chosen eight times (24%) and 2 seven times (21%). Again
25 participants in total (76%) chose one of the responses on the Agree side.
2 participants (6%) chose 5, a light disagreement, while six (18%) were
neutral. The median response was 3, a light agreement.

The fifth task of our experiment included a program but no actual task,
instead informing participants that they were finished, that they could
continue to use the system if they wished, and to move on to the final
questionnaire when they were ready. By this we intended to measure
implicit engagement: would participants use the system unprompted?
Figure 7.22 shows whether participants interacted with the system for

242

7.5. RESULTS 243

0

5

10

15

20

Did not use Did use

Used system unprompted for 45s or more at Q5

c
o
u
n
t

Figure 7.22: Participant engagement with Task 5.

45 seconds or more. We chose this threshold conservatively, allowing 30
seconds for participants to read the task description, look at the program,
and potentially run it before moving on to the questionnaire, and adding
a 15 second buffer. 23 participants (70%) used the system for at least 45
seconds at this point, while 10 (30%) moved directly on to the questionnaire.

Figure 7.23 shows how long participants spent on Task 5. We measured
time from the point a participant arrived at a question until the last event
(drag, run, edit, and so on) recorded from them. Some participants returned
to the task after completing the final questionnaire; in order not to count
the time spent filling in the questionnaire, any gap between adjacent events
of more than 60 seconds caused the clock to pause at the first event and
resume at the second. In this way we may have undercounted some time
that the participant was in fact using the system, but we are reasonably
confident that we have not overcounted. The longest time a participant
spent on the task was 13 minutes and the minimum was 0 seconds. The
median time was 1:43 and the mean 3:10.

We take from these results that participants were reasonably engaged

243

244 CHAPTER 7. TILED GRACE

0:15

0:30

0:45

1:00

1:30

2:00

2:30

3:00

3:30

4:00

4:30

5:00

6:00

7:00

8:00

9:00

10:00

11:00

12:00

13:00

14:00

0 10 20 30

count

T
im

e
 s

p
e
n
t
u
n
p
ro

m
p
te

d
 o

n
 T

a
s
k
 5

 (
m

in
u
te

s
)

More or less

time than this

Less

More

Figure 7.23: Time spent unprompted on Task 5. Note that the y axis is
nonlinear in time. The black horizontal line marks the median time; the
blue vertical line indicates the median participant.

244

7.5. RESULTS 245

0%

10%

20%

30%

40%

1
Agree

2 3 4
Neutral

5 6 7
Disagree

The system was fun to use

P
e
rc

e
n
ta

g
e
 c

h
o
o
s
in

g
 e

a
c
h
 o

p
ti
o
n

How many technologies used

Ten or fewer

More than ten

Figure 7.24: Participants’ agreement with “The system was fun to use” split
by how many technologies they had used.

with the system. Large majorities in every case indicated some degree of
engagement, including both when explicitly asked and through revealed
preferences.

Not all participants were as enthusiastic, and we note one trend shown
in Figure 7.24 in particular. If we recall the list of technologies we asked
participants about their use of, we can divide participants into two groups:
those who have used more than the median number of technologies (16
participants, or 48%), and those who have not (17 participants, or 52%).
We can then examine the proportions in each group giving each response
to the statement “The system was fun to use”. On doing so we see that
participants with less experience are substantially more positive than those
with more. Fully 41% of less-experienced participants fully agreed with

245

246 CHAPTER 7. TILED GRACE

the statement, while only 6% of more-experienced participants did so.
Similarly, 31% of more-experienced participants were neutral, while only
12% of less-experienced participants were. We considered this trend worth
examining more closely.

Figure 7.25 plots the number of technologies used against the partici-
pant’s view of how fun the system was. The blue line is a linear regression
model for the data, showing a trend correlating technologies with disagree-
ment. We can attempt to determine how significant this trend is. Figure 7.26
gives a number of analyses of the model, while Table 7.1 shows the model
represents a meaningful trend significant at the 99% level.

Table 7.1

Dependent variable:

The.system.was.fun.to.use

TotalUsedTechnologies 0.087∗∗∗

(0.027)

Constant 1.498∗∗∗

(0.361)

Observations 33
R2 0.254
Adjusted R2 0.230
Residual Std. Error 1.032 (df = 31)
F Statistic 10.534∗∗∗ (df = 1; 31)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

While the correlation coefficient is moderate, indicating that other fac-
tors are in play, it appears that all other things being the same a more
experienced user will enjoy the system less. This result is consistent with
our and others’ experience with Scratch, and not a significant issue for a
tool designed for introductory programming. Similar results occur with
our other methods of measuring programmer experience, but as these

246

7.5. RESULTS 247

measures are much coarser the impact is reduced.

7.5.5 Error handling

The tiled interface both prevents some kinds of error from occurring at all
and provides the opportunity for entirely new kinds of error. Tiled Grace in-
cludes novel error reporting for such code, as described in Section 7.3.1.
We asked participants whether finding errors in the code was easy, and
also whether fixing them was easy. The results are shown in Figure 7.27.
Responses were on a seven-point Likert item with responses 1, 4, and 7
labelled “Agree”, “Neutral”, and “Disagree”.

Most participants agreed that finding errors was easy. The modal an-
swer was 1 (“Agree”), with 13 participants (39%), while 26 in total (79%)
gave an answer on the Agree side. The median answer was 2, a moderate
agreement. Responses were much more varied on the question of fixing
errors, with every response from 1 to 5 being chosen by between five and
seven participants. Fixing errors in an unfamiliar system, language, and
codebase under time pressure would not generally be expected to be easy,
so this result is not surprising.

We also asked participants whether they found the syntax difficult to
deal with. While the interpretation of this question was up to the partici-
pant, it might indicate what about fixing errors participants found difficult.
The results of combining the two questions are shown in Figure 7.28; we
see no particular trend between the two.

7.5.6 View switching

Tiled Grace permits switching between tiled and textual views of code at
any time. We measured participants’ use of this feature and asked them
several questions about it.

One particular focus of the tiled interface was the elimination of ba-
sic syntax errors like mismatched brackets or using the wrong symbol.

247

248 CHAPTER 7. TILED GRACE

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

0 5 10 15 20 25

Total used technologies

T
h
e
 s

y
s
te

m
 w

a
s
 f
u
n
 t
o
 u

s
e

Figure 7.25: Total used technologies versus how fun participants rated
the system. The blue line is a linear regression model. Points are jittered
slightly on the vertical axis to avoid overlap.

248

7.5. RESULTS 249

2.0 2.5 3.0 3.5

−
2

0
1

2

Fitted values

R
e

s
id

u
a

ls

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Residuals vs Fitted

27

31

33

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

0
1

2

Theoretical Quantiles

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

Normal Q−Q

27

31

33

2.0 2.5 3.0 3.5

0
.0

0
.5

1
.0

1
.5

Fitted values

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Scale−Location
27 31

33

0.00 0.05 0.10 0.15

−
2

0
1

2

Leverage

S
ta

n
d

a
rd

iz
e

d
 r

e
s
id

u
a

ls

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Cook's distance
0.5

0.5

Residuals vs Leverage

27

31

33

Figure 7.26: Significance plots for the regression model shown in Figure 7.25

249

250 CHAPTER 7. TILED GRACE

0

5

10

1
Agree

2 3 4
Neutral

5 6 7
Disagree

Finding errors in the code was easy

c
o
u
n
t

Finding errors in
the code was easy

1 Agree

2

3

4 Neutral

5

6

7 Disagree

0

2

4

6

1
Agree

2 3 4
Neutral

5 6 7
Disagree

Fixing errors in the code was easy

c
o
u
n
t

Fixing errors in
the code was easy

1 Agree

2

3

4 Neutral

5

6

7 Disagree

Figure 7.27: Participant agreement that finding and fixing errors was easy.

250

7.5. RESULTS 251

0.0

2.5

5.0

7.5

10.0

1
Agree

2 3 4
Neutral

5 6 7
Disagree

I found the syntax difficult to deal with

c
o
u
n
t

Fixing errors in
the code was easy

1 Agree

2

3

4 Neutral

5

6

7 Disagree

Figure 7.28: Participant agreement that syntax was difficult, broken up by
agreement that fixing errors was easy.

0

2

4

6

1
Agree

2 3 4
Neutral

5 6 7
Disagree

It was easier to deal with syntax in the tiled view

c
o
u
n
t

It was easier to deal with
syntax in the tiled view

1 Agree

2

3

4 Neutral

5

6

7 Disagree

Figure 7.29: Participant agreement that dealing with syntax was easier in
the tiled view.

251

252 CHAPTER 7. TILED GRACE

0.0

2.5

5.0

7.5

1
Always textually

2 3 4
Evenly split

5 6 7
Always tiled

I edited my code

c
o
u
n
t

Figure 7.30: How participants felt they had edited their code.

We asked participants whether they found the syntax of the unfamiliar
language easier to deal with in the tiled view, with the results shown in Fig-
ure 7.29. Most participants (18, or 55%) chose an answer on the Agree side
and answers were steadily less common moving towards Disagree. The
exception was a spike in “Neutral”. This spike may represent participants
who felt unqualified to answer this question as they had principally used
one view or the other.

We asked participants how they had edited their code. Most participants
felt that they had used the tiled view a substantial portion of the time, with
16 (48%) indicating they used it most of the time and a further nine (27%)
indicating they had split their time evenly. Five participants (15%) said they
used the textual view exclusively. These results are shown in Figure 7.30.
Responses were on a seven-point Likert item with 1, 4, and 7 labelled
“Always textually”, “Evenly split”, and “Always tiled”.

We can check whether participants’ recollections of their usage are
accurate or not. The version of Tiled Grace used in the experiment was
instrumented to record all interaction and we can compute the proportion

252

7.5. RESULTS 253

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
Always textually

2

3

4
Evenly split

5

6

7
Always tiled

0% 20% 40% 60%

Proportion of time spent in text mode

I
e
d
it
e
d
 m

y
 c

o
d
e

Figure 7.31: How participants felt they had edited their code versus how
they actually did so. This includes time spent on Task 2, which could not
be switched to the text view until the basic errors had been resolved.

253

254 CHAPTER 7. TILED GRACE

Statistic Task 1 Task 2 Task 3 Task 4 Task 5 Total

Proportion
of time in
text view

Min. 0% 0% 0% 3% 0% 1%
1Q 0% 0% 0% 65% 0% 24%

Med. 17% 53% 8% 100% 0% 33%
3Q 50% 84% 32% 100% 17% 52%

Max. 83% 94% 76% 100% 83% 78%

Number
of
switches
of view

Min. 0 0 0 0 0 0
1Q 0 0 0 0 0 4

Med. 1 1 1 0 0 6
3Q 3 3 3 1 2 11

Max. 8 8 8 5 14 22

Table 7.2: Summary and distribution statistics for the usage of different
views per Task and overall.

of time each participant spent in each view. These proportions are plotted
against responses to the previous question in Figure 7.31. The general trend
evident in the figure is that participants were reasonably accurate, although
no participant actually spent more than 78% of their time in text view.
There are some notable outliers, however, particularly one participant who
indicated they were evenly split between tiled and text views but in fact
never used the text view at all. Nonetheless, participants appear to be quite
accurate in their recollection of this fact overall.

We counted how many times participants switched views during the
experiment. The median number of switches is six, the first quartile is
four, and the third quartile is eleven. These are shown on a boxplot and
histogram in Figure 7.32. Participants varied quite significantly in their use
of the view-switching feature, using it between zero and 22 times.

We can also look at switches and time spent in text view on a per-task
basis. Summary and distribution statistics of time spent in each mode and
view switches broken down by task are in Table 7.2. Most participants used
the tiled view the majority of the time, but most also used the text view
a nontrivial amount of the time on each of the first three tasks. We plot
these measurements against each other in Figure 7.33. This plot shows a

254

7.5. RESULTS 255

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

T
im

e
s
 p

a
rt

ic
ip

a
n
t
s
w

it
c
h
e
d
 v

ie
w

s

0

2

4

6

0 5 10 15 20

Total number of switches of view

c
o
u
n
t

Figure 7.32: How often participants switched views

255

256 CHAPTER 7. TILED GRACE

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●●

●

● ●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

Number of switches during question

P
ro

p
o
rt

io
n
 o

f
ti
m

e
 s

p
e
n
t
in

 t
e
x
t
m

o
d
e

Task

●●●●

●●●●

●●●●

●●●●

1

2

3

4

Figure 7.33: How often participants switched views versus the proportion
of time they spent in text mode for each task.

256

7.5. RESULTS 257

1 2

3 4

0

5

10

15

0

5

10

15

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Switches per question

c
o
u
n
t

Figure 7.34: How many switches of view participants made for each task.
Each task is plotted separately.

257

258 CHAPTER 7. TILED GRACE

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0%

25%

50%

75%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Total technologies used

P
ro

p
o
rt

io
n
 o

f
ti
m

e
 s

p
e
n
t
in

 t
e
x
t
m

o
d
e

Figure 7.35: Use of text view versus by number of technologies used.

spread of both switches and time spent in text view across all questions.
Similarly, we can look at how many switches were made on each task,
shown in Figure 7.34. These are reasonably consistent across tasks, with
one notable surprising exception: the majority of participants (18, or 55%)
did not switch out of the text view for Task 4, which asked participants to
describe a program first presented in the text view. This was the only task
for which the majority of participants did not switch views at all. It may
be that participants simply did not think to switch views; an alternative
possibility is that they find text more useful for comprehension, but the
tiled view more helpful for editing code. We will examine these possibilities
more closely when analysing the freeform text responses from participants.

We wondered whether more-experienced participants would use the
text view more than less-experienced participants, particularly in light
of the results we found regarding engagement earlier. Figure 7.35 plots
total technologies used against time spent in text view. We do not see any

258

7.5. RESULTS 259

significant trend in this data, suggesting that experience is not a strong
predictor of use.

7.5.7 Freeform responses

We gave three prompts to participants at the end of the questionnaire, with
text areas for their responses. We asked:

• What did you like about this system?

• What did you dislike about this system?

• If you have any other comments to make, please write them here.

These questions were taken directly from model questionnaires avail-
able in the department.

Participants could write arbitrary text in response to these questions, or
nothing at all. Most participants elected to fill in the first two fields, and
many wrote comments in the third. We coded participants’ responses to
the like and dislike questions and show the distribution in Figures 7.36 and
7.37.

Figure 7.36 shows the distribution of coded responses to “What did
you like about this system?”. Participants could mention multiple topics
and be coded for each of them. Any mention of the relevant terms or
synonyms was coded into that category. The figure shows all topics that
were mentioned more than once. The meaning and raw count of the codes
are:

• Appearance (3): some participants described the system as “looking
nice” and similar terms.

• Colour (4): participants said they liked the colours and colour-coding.

• Errors (11): participants mentioned error reporting in the tiled view.

259

260 CHAPTER 7. TILED GRACE

Appearance

Colour

Errors

Overview

Revert

Switching

Syntax

Toolbox

Var list

0 3 6 9

count

W
h
a
t
d
id

 y
o
u
 l
ik

e
 a

b
o
u
t
th

is
 s

y
s
te

m
?
 (

c
o
d
e
d
)

Figure 7.36: Coded participant responses to “What did you like about this
system?” Any point with more than one mention is included.

260

7.5. RESULTS 261

• Overview (4): participants noted that they felt the tiled view gave a
good overview of the code.

• Revert (2): participants liked the offer to revert textual code to the
last-known-good version when there was an error and they tried to
switch views.

• Switching (6): participants said they liked the ability to switch be-
tween the views.

• Syntax (8): participants noted the tiled view as helping to deal with
syntax.

• Toolbox (2): participants identified the toolbox of available tiles as
helpful.

• Var list (3): participants mentioned the list of variables in scope given
when clicking the arrow on a variable tile.

The most common response was that participants liked the error report-
ing described in Section 7.3.1 and found it helpful. Sentences coded in this
category were:

• Clearly shows where the problems are when you click run. The red
highlighting is good

• It could identify the error and it also gave specific detail about the
error

• Error finding and handling looks great, is very easy and straightfor-
ward.

• It points out the error pretty quickly

• Easy to find errors and like being able to move the tiles.

261

262 CHAPTER 7. TILED GRACE

• it is extremely easy to check your syntax when using the tiled view
as well being extremely useful for bug testing as the program would
accurately highlight each incorrect variable.

• Makes obvious errors even more obvious.

• the thing i likes about the system was it made it very easy to find and
fix errors.

• Also the flashing errors were among the biggest help as it reduced
time in searching for the errors.

• Can easily find out where the errors are.

• The way of showing errors was amazingly helpful.

The most interesting response for this experiment was whether partic-
ipants liked switching views, which six participants identified explicitly.
Comments included:

• Text and tile view switching was great.

• the tiled view is useful in that it allows you to do quite a lot with just
a mouse, provides a nice graphical display of the textual. switching
between textual and tiled is useful.

• I liked that the tiled view was in some ways similar to the code view.

• I think it could be useful if you have ’scroll blindness’ to change your
view.

All quoted responses are unedited.
“Scroll blindness”, an inability to notice details of code through having

been looking at it for too long, was an aspect we had not considered
that might support integrating similar functionality into editors for more

262

7.5. RESULTS 263

Button placement

Change op

Dataflow unclear

Dislike GUIs

Drag from
middle

Dragging hard

Multiple runs

New language

No default
in holes

No switch
with error

Unfamiliar

0.0 2.5 5.0 7.5 10.0

count

W
h
a
t
d
id

 y
o
u

 d
is

lik
e
 a

b
o
u
t
th

is
 s

y
s
te

m
?
 (

c
o
d
e
d
)

Figure 7.37: Coded participant responses to “What did you dislike about
this system?” Any point with more than one mention is included.

263

264 CHAPTER 7. TILED GRACE

advanced programmers as well. Further experimentation will be required
to investigate this possibility.

Figure 7.37 shows the distribution of coded responses to “What did you
dislike about this system?”. Again, participants could mention multiple
topics and be coded for each of them, and any mention of the relevant terms
or synonyms was coded into that category. The figure shows all topics that
were mentioned more than once. The meaning and raw count of the codes
are:

• Button placement (2): participants said they did not like the place-
ment of user interface buttons or found the placement unnatural.

• Change op (3): participants said they found changing the operator
on an operator tile overly difficult.

• Dataflow unclear (2): participants were uncertain what the flow of
data or execution was in the tiled view (where multiple blocks had
no particular ordering).

• Dislike GUIs (3): participants said they disliked GUIs or graphical
interfaces in general.

• Drag from middle (6): participants mentioned annoyance when they
tried to drag a single tile out of the middle of a stack of tiles.

• Dragging hard (9): participants said they found the drag-and-drop
too sensitive, or that tiles did not go where they wanted.

• Multiple runs (2): participants ran graphical dialect samples again
without terminating the previous run, causing flickering.

• New language (2): participants disliked aspects relating to using a
new language, or wished to have received further instruction on it
before the experiment.

264

7.5. RESULTS 265

• No default in holes (3): participants wanted there to be a default
value in holes inside newly-created tiles. Participants mentioned both
numbers and variables as suitable defaults.

• No switch with error (2): participants disliked being unable to switch
views while there was an error in the code.

• Unfamiliar (5): participants identified the interface (not the language)
as unfamiliar to them.

The most common dislike was that the drag-and-drop was too sensitive
or insensitive or did not do what participants wanted. Responses in this
category were:

• Drag n drop was interesting but I wouldn’t like to do it regularly.

• Also when selecting segments of code in the tiled version there feels
like there is a frustrating lack of precision to it.

• difficulty in moving things in the tiled view

• Moving blocks around was difficult/frustrating

• The tiled version was a bit fiddly to bring out a variable or something.
[participant included in “other comments”: Once I found out you
could remove one thing by dragging the one below it and then drag-
ging the one away, then joining the two parts again. I guess I might
have missed that in the explaination.]

• have to be very precise with the mouse movement

• Moving the tiles around seems pretty confusing sometimes, when
I tried to move a number into a tile, it just went above it instead of
inside the tile.

• The interface was not well explained, it was hard to understand how
to drag things out of a block. Once figured out it was far easier.

265

266 CHAPTER 7. TILED GRACE

• Dragging new objects such as variables into sections was not easy,
sometimes it was not clear on what to change in order for a new
variable x to be. This required me to go into the code view and do it
manually.

All quoted responses are unedited.
A common note here that we also observed during the experiment was

that some participants found it difficult to drag a tile into a hole. The
system required the mouse pointer to be inside the borders of the hole to
consider the drag to be over the hole, and not just a portion of the dragged
tile; the hole would be highlighted (yellow) when the pointer was over it
and a tile was being dragged. We considered this standard behaviour for
drag-and-drop and did not give it any significant design thought before
the experiment. Our preliminary trials did not show this issue.

We have confirmed subsequently that the default behaviour of the
standard interface widgets on Windows, Mac OS X, KDE, and GNOME
conforms to this expectation; nevertheless, multiple participants had re-
peated difficulty with this action. It may be that this convention is in fact
unintuitive and users need to learn it separately for each tool they use. Past
human-computer interaction research [84, 59, 113] has found that point-and-
click interfaces may involve fewer errors and be faster than drag-and-drop,
although recent research with children [5] has shown that they may both
expect and prefer drag-and-drop interfaces. Further work may be required;
it may be interesting to adapt this tool to a purely point-and-click interface
and perform the experiment again. We examined the user interaction data
we collected in more detail to try to discover any trends in the data.

We analysed the actions participants took during the experiment to
count these “mis-drag” events. We defined a misdrag as a drag and drop
onto the background followed immediately by picking up the same tile in
a subsequent drag event, without interacting with the system in any other
way in between. We defined a “hole misdrag” as a misdrag where the tile
was eventually placed into a hole. We defined an “unrealised misdrag” as

266

7.5. RESULTS 267

0

2

4

6

0 10 20 30 40

Raw number of hole misdrags

c
o
u
n
t

Figure 7.38: Distribution of the raw counts of hole misdrags.

0

1

2

3

4

5

0% 50% 100% 150%

Ratio of misdrags into holes to successful drags into holes

c
o
u
n
t

Figure 7.39: Distribution of the ratios of hole misdrags to non-misdrags.

267

268 CHAPTER 7. TILED GRACE

0

10

20

0 4 8

Raw number of unrealised misdrags

c
o
u
n
t

Figure 7.40: Distribution of unrealised misdrags.

one where the participant either tried to run the program or viewed the
error overlay immediately after the misdrag, and so could be assumed not
to have realised that the tile was not where they wanted. We also counted
the total number of drags and the number of drops into holes that were not
part of misdrags.

These numbers are by necessity approximate: participants’ finger may
have slipped, causing them to release a drag early, or they may have
dropped the tile in a way that we did not count as a misdrag. It is likely
that these counts overstate the true rate of misdrags; in our observation
of participants most had no particular difficulty with dragging into holes
or otherwise, and dropped elsewhere intentionally. With our metrics, the
median number of hole misdrags is 10, which from observation we consider
somewhat too high, but we believe that the overall metrics are a reasonable
approximation of the phenomenon in relative terms. Figure 7.38 shows the
distribution of hole misdrags. The minimum was 1, the first quartile 6, the
third quartile 21, and the maximum 36.

268

7.5. RESULTS 269

0

50

100

150

200

250

0 2 4 6

Length of hole misdrag

N
u
m

b
e
r

o
f
o
c
c
u
rr

e
n
c
e
s

Figure 7.41: Distribution of the lengths of hole misdrags.

Figure 7.38 shows a long tail of participants having significant difficulty.
This tail is illustrated more strongly in Figure 7.39 which shows the ratio of
hole misdrags to drags into holes that are not misdrags. Five participants
had more hole misdrags than successful hole drags, indicating substantial
problems. If we look only at unrealised misdrags (Figure 7.40) we see
that the substantial majority of participants (85%) had no such misdrags,
while again about 15% had difficulty. One participant had ten unrealised
misdrags, while four others had between two and four.

Figure 7.41 shows the number of misdrags before successfully placing a
tile into a hole. The overwhelming majority of hole misdrags were resolved
within two drags, with over half consisting of only a single misplaced drop.
Again, a small number of participants took up to five steps to resolve the
problem.

We asked participants how often they used a computer with a keyboard
and mouse in an attempt to be able to control for past experience with these
kinds of user interfaces. One participant indicated “Weekly” and all others
either “Daily” or “Always”, so there was no ready correlation here. The

269

270 CHAPTER 7. TILED GRACE

(a) A stack of three tiles. (b) Dragging two tiles off
the bottom of a stack of
three.

(c) Dragging a single tile
from the middle of a
stack of three.

Figure 7.42: Screenshots of various operations with a stack of three tiles.

fact that most participants had at least 10 hole misdrags, and that some
participants had debilitating difficulty, suggests that drag-and-drop may
be a problematic paradigm for programming. We discuss this issue further
in Section 7.7.

Six participants explicitly noted difficulty dragging tiles from the middle
of a stack. The issue identified is that, given a stack of three tiles as shown
in Figure 7.42a, dragging the middle (colour := "red") tile will take the
bottom (radius := 10) tile with it, as shown in Figure 7.42b (the “Solitaire”
behaviour). Participants instead wished to remove only the colour := "red"

tile to move elsewhere.

Our system does support this “drag from the middle” behaviour, as it
was a frustration we similarly had in Scratch, but it is moderated by use
of the Shift key: a shift-drag will move and remove only the immediately-
selected tile, and not any attached tiles below, as shown in Figure 7.42c.
We did not introduce this function to participants during the introductory
tour of the system. The default behaviour is that a drag on a tile separates
it from any neighbour above, but makes a new block of tiles including all
those attached below the tile.

We believe this behaviour is generally sensible, as it ensures consistent
behaviour in the system: if dragging never took the tiles below it would not
be possible to move stacks of tiles at all, as can presently be done simply

270

7.5. RESULTS 271

by dragging the topmost tile of the stack. One participant discovered the
shift-drag behaviour unprompted during the experiment and made use
of it. While we continue to believe this default is correct, it is possible we
should have introduced the shift-drag operation in the tutorial to mitigate
these complaints. We preferred to leave out any topics that were not central
to the tasks at hand to avoid overburdening participants with information,
which may have been an error in this case.

7.5.8 Threats to validity

This study has the attendant threats to internal, external, and construct
validity accompanying its size, sampling, and population. The overall
results are suggestive of future research avenues, but not indicative more
broadly.

In particular, we note the following threats:

• Our sample is drawn primarily from volunteer undergraduate stu-
dents in the School of Engineering and Computer Science at Victoria
University of Wellington, and may be both unrepresentative and
likely to respond to the study more favourably than others.

• Most participants had meaningful past programming experience,
and so are not the true novices that Grace aims to support. The
experimental design did not seek to measure or impart learning, but
relied on that past experience.

• The coding of freeform responses was performed solely by the exper-
imentor.

• Both the pre- and post-questionnaires were completed in the experi-
mental room with the experimentor present, although not watching
their responses. Participants may have been influenced by this situa-
tion to rate their experiences more favourably than otherwise.

271

272 CHAPTER 7. TILED GRACE

• When participants came in pairs they may have been influenced to
hurry if they observed the other participant completing before them,
which may affect their performance or responses.

• The timing limitations on tasks we imposed to make the experiment
practical to run may have resulted in participants feeling pressured
for time and making mistakes they would not otherwise have made.

• Many results rely on participants’ self-reporting, which may be inac-
curate, inconsistent, or false, in structured or unstructured ways.

7.5.9 Summary

Our experiment showed that participants generally (76%) enjoyed using our
system and that other measures of engagement were high, supporting the
use of similar features in development tools. We also found that enjoyment
was lower for more experienced users, suggesting that Tiled Grace and
similar interfaces may be most appropriate within the novice-user market
that Grace aims for. Participants rated the system as less fun in direct
correlation to the number of technologies they reported having used, but
there was no meaningful trend in use of the different views.

The error reporting in the tiled view, described in Section 7.3.1, was
very well received and participants found the overlay drawing attention to
error sites helpful. 79% agreed that finding errors in the code was easy, and
freeform feedback included remarks that the interface aided speed finding
errors. This overlay does not entirely require a tiled view of code, and it
would be interesting to investigate a similar interface for other editors.

The ability to switch views was well-received, though participants
varied widely in their use of it. Several participants commented that they
found having two equivalent views of their code to be helpful in itself, even
if they did most of their editing in one view or the other.

We showed in the experiment that participants found having a more
conventional textual view of code available to be helpful, even if they liked

272

7.6. COMPARISON WITH RELATED WORK 273

to edit the graphical version, and that they liked to have the graphical
version available for an “overview” even when they were editing textually.
Some also commented that they found the direct equivalence between the
two views of the code to be helpful.

Participants also noted features afforded by the tiled view, such as colour
coding, a toolbox of available methods, lists of variables in scope, and direct
indicators of the definition or usage sites of variables and methods to be
helpful. Several of these features could be incorporated into conventional
editors.

7.6 Comparison with related work

7.6.1 Scratch

Scratch [162] is a wholly visual drag-and-drop programming environment
with jigsaw puzzle–style pieces, aimed at novices and children. Scratch
is purely visual: there is no textual representation of Scratch code at all,
and some tiles in the system take advantage of layout tricks that could
have no corresponding textual version. A Scratch program is able to talk
exactly about the graphical microworld the system presents, and no more,
so eventually a student must move on and use a “real” language when
their programs become more complicated.

Tiled Grace avoids this immediate need by allowing arbitrarily com-
plex programs and always providing an equivalent (and coequal) textual
representation for a program. A student may gradually use the textual
editor more and more until they are confident in moving to a more stan-
dard environment, or even continue to use Tiled Grace indefinitely without
expressive penalty.

In our experiment we found that participants appreciated having a
conventional textual view available, even when they preferred to edit
graphically. We believe from these results that including a bijective textual

273

274 CHAPTER 7. TILED GRACE

representation of code is helpful in visual editors and that Scratch and
others should consider incorporating such a representation.

A number of aspects participants in our experiment disliked were com-
mon across most tile-based editors including Scratch, notably finding drag-
ging to be a chore, which conformed with our own experience in Scratch.
We noted in Section 7.5.7 that some human-computer interaction research
has found drag-and-drop to be a suboptimal interface paradigm, and that
point-and-click may be superior. We discuss this issue further in relation to
both Scratch and Tiled Grace in Section 7.7.

Scratch includes one notable feature that our system does not: when
a Scratch program is running, each tile is highlighted in turn as it is ex-
ecuted. The idea behind this highlighting is to make the flow of control
clear, particularly the fact that multiple threads of control flow are execut-
ing simultaneously in a Scratch program. Our system does not include
such highlighting; primarily, this omission is a technical limitation of the
ECMAScript environment and the generated ECMAScript code from Min-
igrace. Because Minigrace generated ECMAScript code, and browsers
execute ECMAScript in a single-threaded and blocking fashion, we could
not provide any visual update from a program until it completed. Alterna-
tive code generation techniques allow solving this problem, but we did not
implement these in Minigrace.

Meerbaum-Salant, Armoni, and Ben-Ari [123] found that Scratch pro-
grammers may learn “bad habits” from tile-based programming: notably, a
very fine-grained and bottom-up style, counter to what is generally seen as
good practice. The authors observed that students would begin to build
a program by dragging tiles they thought they might use out onto the
workspace, and then try to put them together, and would often have un-
necessarily many partial solutions to a task joined together awkwardly. In
designing our tool we hoped to ameliorate these problems with the parallel
textual view, and with the ability to move forward in the same language.
Our experiment showed that most participants did use and appreciate both

274

7.6. COMPARISON WITH RELATED WORK 275

views, but a pedagogical study is required to determine whether these “bad
habits” persist with our approach.

7.6.2 Blockly

Blockly [10] is very similar in ethos to Scratch. Blockly runs in a web
browser and incorporates language variants (what we call extensional di-
alects), but in mimicking Scratch also has no editable textual format. The
same limitations apply to Blockly and Scratch.

Our experiment found that a bijective textual representation of source
code was helpful to users. Blockly supports exporting code to a number
of languages, but these exports are not bijective: Blockly code exported
to Python behaves similarly to the original Blockly code, but cannot be
modified and reintroduced into Blockly, and there is no explicit indication
of which parts of the visual representation correspond to which parts of
the textual representation. Tiled Grace makes this connection clear through
animation, and participants indicated that they liked and understood the
correspondence. We believe that making the connection between the two
formats explicit is important for participants transitioning from visual to
textual programming.

7.6.3 Alice

Alice [31] is a 3D microworld language manipulated by drag-and-drop.
Alice uses drag-and-drop both for putting 3D models into the microworld
and for editing logic; there is no interaction with concrete textual syntax.
Our system does not include a persistent microworld and does not permit
manipulating the worlds it does present (through dialects) other than
programmatically. Alice programs can only interact with this microworld
and cannot express tasks outside of it.

Event handlers on Alice’s in-world objects are put in place through
drag-and-drop in a similar way to our tiled view, but there is no other

275

276 CHAPTER 7. TILED GRACE

means of modifying them. One notable difference in the way the drag-and-
drop logic behaves compared to ours is that Alice code is forced to omit
even temporary syntax errors: when placing an “if-then” into the code,
the programmer cannot move on to any other task before they fill in the
condition. Leaving an empty space for any length of time is not permitted.
We consider such a prohibition to be a reasonable option, but note that it
obstructs other idioms. In particular, one way of programming with both
Tiled Grace and Scratch is to drag multiple tiles from the toolbox onto the
workspace when knowing that they will be needed and then assembling
them once all are available, avoiding back-and-forth trips to the toolbox.
We are unsure which approach is best, but a future experiment could use
both.

Powers, Ecott, and Hirshfield experimented with transitioning from
Alice to Java (with BlueJ) in an introductory programming course [158].
They observed that many students

were intimidated by the textual language and syntax, and
seemed to have a difficult time seeing how the Java code and
the Alice code related

even when working with exactly corresponding Alice and Java code. The
authors identify this problem as a potential issue for visual programming
languages for novices in general. Our system aims to ease this transition
to conventional syntax by explicitly showing how tiled and textual code
relate. In addition, Tiled Grace was explicitly designed with a permeable
barrier in mind: a user is not forced to move entirely into the textual world
at once, but can move back and forth and acclimatise gradually.

7.6.4 Droplet

Droplet [40] is a combined visual-textual editor that treats block-oriented
visual display as “syntax highlighting” for text, and can transition between

276

7.6. COMPARISON WITH RELATED WORK 277

the two displays. Droplet postdates our work, and has both limitations and
extensions relative to Tiled Grace. Droplet uses the same kind of jigsaw-
puzzle pieces as Scratch, with the same rules about compatible shapes, and
so the same limitations around type compatibility that we encountered.
Droplet allows laying out a tiled program only as an exact match to the
textual code, but potentially supports multiple entirely different languages,
a more general range than the Grace dialects supported in our system, but
with the attendant complexities discussed in relation to dialects in general
in Chapter 6.

7.6.5 Calico Jigsaw

Calico Jigsaw [9] is a drag-and-drop visual language for the multi-language
Calico development environment. Execution of Jigsaw code is based on
translation to Python, and Jigsaw programs can be exported to Python
code, while some Python programs can be imported into Jigsaw code; the
Jigsaw syntax is not itself similar to Python’s, however. Unlike Tiled Grace,
Jigsaw’s code export is to a complete textual program and does not provide
a direct user-visible mapping to and from the corresponding tiles. The
transition is intended to be one-way and one-time.

Our experiment found that users appreciated the direct connection be-
tween equivalent pieces of code given by our visual transition and the
ability to switch to a different view of the code and back within a single
editing session. Calico and Jigsaw do not attempt to provide such a transi-
tion or ability; instead, the authors intend to permit translation to multiple
textual languages for comparison (although no others are supported at
present), rather than having users remain in a single language as Tiled
Grace aims to enable.

277

278 CHAPTER 7. TILED GRACE

7.7 Future work

While Tiled Grace includes simple type checking to prevent common errors,
we would also like, if possible, to signal these errors and others in advance
by some feature of the tiles themselves. Scratch and Blockly use a “jigsaw
puzzle” approach, where only tiles that “fit” can be placed in any given po-
sition, but this is not complete; some tiles may be the correct shape but still
not allowed (in Blockly) or not sensible (in Scratch) in a particular location.
We plan to investigate variations of shape, colour, and other attributes to
indicate these restrictions in advance of a user trying to perform the task in
the program.

The graphical design of the tool would benefit from further consid-
eration. The current colouring of tiles is essentially arbitrary, while the
overlays are functional but may sometimes obscure important areas of the
program. The colours used in the interface are not ideal for conveying
semantic meaning and should only be used in addition to other indicators.
We intend to create a more consistent design and investigate variations to
the overlay displays such as transparency and alternative pathfinding.

At present our view-switching system only allows programs with no
current errors to be switched to the other view. In part this is for technical
and representational reasons: some erroneous code has no clear representa-
tion in one view or the other. Some errors, however, could be seen on both
sides of the divide, and users may benefit from being able to look at them
in two different ways. In future we may allow at least some classes of error
to pass through the barrier between the two views, but establishing which
errors are suitable, both technically and in terms of not creating additional
confusion for the user, is design work remaining to be performed.

In Section 7.4 we outlined experimental results that suggest modifica-
tions to the system and new avenues of investigation. In particular, we
noted that some participants had substantial difficulty with drag-and-drop,
and many noted some degree of difficulty, suggesting that drag-and-drop

278

7.8. CONCLUSION 279

may not be the most suitable interface paradigm for programming. After
the experiment we examined the human-computer interaction literature
and we discussed in Section 7.5.7 that some human-computer interaction
research has suggested that drag-and-drop is a problematic interaction
mechanism in general, and that a point-and-click arrangement is less error-
prone. Further research is required to determine the impact of this issue
in relation to visual programming; in particular, given the target markets
of Scratch and, to a lesser extent, Grace, and the recent work of Baren-
dregt [5] on children’s interaction with various interfaces, more structured
classroom-style experimentation using child participants may be in order.

Another interesting piece of future work is the interaction of this sort of
system with touch-screen devices; drag-and-drop is naturally a common
paradigm on such devices. TouchDevelop was designed for use on touch-
screen devices but primarily uses a point-and-click interface, and it would
be interesting to see whether our results on the difficulty some users had
with drag-and-drop programming hold on such devices.

Our experiment showed that users did appreciate and find useful the
combination of tiled and textual views. Grace is an object-oriented language
and code in the experiment was primarily either OO or procedural, with
our focus on use in the area of introductory programming where Grace
and Scratch sit. It would be interesting to explore similar interfaces in
other paradigms or areas where users may have syntactic difficulty, such
as mathematics, logic, formal methods, and type theory.

7.8 Conclusion

Tiled Grace is a graphical editing environment for Grace, inspired by visual
program editors such as Scratch. Tiled Grace visualises code as nested “tiles”
that can be manipulated by drag-and-drop, eliminating many syntax errors.
Tiled Grace’s tiles always correspond exactly to Grace’s textual syntax, so
that users become familiar with the textual syntax while dragging and

279

280 CHAPTER 7. TILED GRACE

dropping tiles. The user can switch between the tiled and textual view,
with the program editable in both forms. Tiled Grace can also visualise
relationships between definitions and uses of variables and methods.

We conducted an experiment to measure user engagement with Tiled
Grace, and how people would use the tiled view, view-switching and
error-reporting provided by the tool. We found that engagement was high,
although lower in more experienced users, and that in particular the error
reporting we designed for the tiled view was very well received and used.
Participants varied dramatically in their use of the tiled and textual views,
but many found the ability to switch between them helpful, suggesting
that it is beneficial in itself.

280

Chapter 8

Implementation

This chapter discusses Minigrace, our prototype compiler for Grace, and
the accompanying external libraries we wrote; it provides context, historical
information, and reflections only, including implementation details. The
chapter will be structured as follows: the next section provides an overview
of Minigrace, then Section 8.2 presents the architecture and implementation
of the compiler. Section 8.3 gives and reflects upon the development history
of Minigrace at a high level, chronologically from the earliest experiment
onwards, with a particular focus on self-hosting a compiler for a developing
language. Section 8.4 describes the external libraries we built to work with
Minigrace. Finally, Section 8.5 notes the contributions of other developers
to Minigrace.

8.1 Overview

Minigrace is a compiler for Grace, supporting most of the specified lan-
guage. Minigrace is written in Grace itself and has been developed in a
self-hosting fashion from a very early stage. The compiler targets both
native code (via C) and ECMAScript (JavaScript) and is able to compile
itself to either target.

Minigrace comprises 14KLOC of Grace, 6KLOC of C, and 2.6KLOC of

281

282 CHAPTER 8. IMPLEMENTATION

ECMAScript. The revision history includes over 2,000 commits, primarily
ours but over 200 by other authors, which contributions are described in
Section 8.5.

The source code of Minigrace is freely available from https://github.

com/mwh/minigrace. Minigrace is distributed under the GNU GPL ver-
sion 3 [54] or any later version. We developed Minigrace on Linux-based
systems, but it has been known to work on other POSIX-compatible sys-
tems including NetBSD and Mac OS X. Build and installation instructions
are included with the source.

The Minigrace executable by default generates C code from the given
Grace code, compiles and links that code, and executes the resulting pro-
gram. To generate ECMAScript code instead (saved to modulename.js),
the user can give the --target ecmascript option. To refrain from
executing the program, they can give the --make option.

Because Minigrace can generate ECMAScript from Grace code, and
because Minigrace is itself written in Grace, the compiler can be compiled
into ECMAScript and executed in a web browser. We discuss this backend
further in Section 8.2.5. The web interface is available at http://michael.
homer.nz/minigrace/js/, and supports exactly the same code that the
native backend does, although some platform-specific libraries exist on
both target platforms.

The complete revision history of Minigrace is included in the auxiliary
data included with the thesis (see Appendix A).

8.1.1 Extensions and limitations

Minigrace supports most of the specified Grace language described in
Chapter 3, but has some limitations and extensions.

• Minigrace includes syntax for list collection literals written [1, 2, 3].

• Minigrace supports “elseif” clauses in conditional requests. The con-
ditions of these clauses are written in braces because they are not

282

https://github.com/mwh/minigrace
https://github.com/mwh/minigrace
http://michael.homer.nz/minigrace/js/
http://michael.homer.nz/minigrace/js/

8.2. ARCHITECTURE 283

necessarily evaluated. (Earlier versions of Minigrace used parenthe-
ses instead, which was semantically incorrect.)

• Minigrace permits an extension flag to set the default visibility of ob-
ject fields for an entire module, using either -XDefaultVisibility
=public on the command line or #pragma DefaultVisibility=public at
the top of the module. The Minigrace source code uses this feature to
cope with changes to visibility rules made during development.

• Code interpolated into strings cannot contain a “}” character. The
reasons for this limitation are given in Section 8.2.1.

• Numeric literals in non-decimal bases may only be integral.

• Inheritance across module boundaries works only for top-level classes
and methods.

• Run-time type checks are rudimentary and use only method names,
where present at all.

• The if()then()else method cannot be overridden, and no method name
can have a first part of “if”.

These extensions exist primarily for historical reasons touched on in
Section 8.3, while the limitations are unimplemented functionality.

8.2 Architecture

Minigrace follows a conventional compiler architecture: first program text
is lexed into tokens, then tokens are parsed into a(n abstract) syntax tree,
additional processing such as identifier resolution occurs on that tree, and
finally executable code for the target platform is generated. This section
gives an overview of each phase of the compiler and any interesting aspects
of them.

283

284 CHAPTER 8. IMPLEMENTATION

8.2.1 Lexer

Minigrace reads source code into a string and then iterates over the char-
acters to build up tokens. Each character is examined to determine what
kind of token it may be a part of, given the existing state of the lexer, accu-
mulated until the end of the token, and then stored in sequence annotated
with the kind of token, the corresponding source text, and the location in
the input. This phase is known as lexing or tokenisation.

The lexer examines each character using to determine its Unicode char-
acter class, and maintains a mode recording which kind of token is in
progress. When a character that cannot appear as part of the current mode
occurs, either the current token ends and a new token begins or a lexical
error is reported. Some modes, notably the mode for a string literal, ac-
cept all characters until the closing quote. Escape characters are replaced
with their final values during lexing, so all subsequent phases see the final
representation of strings.

The lexer, as the first piece of self-hosting code written, has a large
amount of legacy detritus. Early versions of the system supported only
if()then, with no else, and the lexer included code with the form

var done := false
if (condition ...) then {

...
done := true

}
if (done.not) then { ... }

for a long time. The lexer was also by far the slowest phase of the com-
piler, primarily because it examined every character with multiple method
calls each. To ameliorate this issue to some extent we implemented spe-
cial patterns in platform-specific native code within the Unicode module
(Section 8.3.3), that could test the character against multiple classes or
characters at once.

284

8.2. ARCHITECTURE 285

Limitations

The Minigrace lexer is incorrect with respect to interpolated strings. When
interpolations were added to the language we incorporated support for
simple interpolations: when a “{” character appears inside a string literal,
we immediately end the string token and insert an opening parenthesis
token before it, and then insert a “++” (string concatenation operator)
token and another opening parenthesis. The body of the interpolation
is then tokenised as usual until a “}” character appears, whereupon the
interpolation ends and tokens for “) ++ "” are inserted. This approach
works for many interpolations, and in particular for the common cases
where only a variable name is interpolated, but fails for more complex
code.

An interpolation ends at the first “}” character seen, meaning that the
interpolated code cannot contain that character anywhere without causing
bad tokenisation; it is not possible to interpolate an if-then-else, for example.
This limitation has a significant architectural component: in order to know
when a “}” ends the interpolation, and when it is a part of the interpolated
code, the lexing and parsing phases must be interleaved to some extent.
The early Minigrace architecture in the initial Parrot-based versions did not
support this sort of interleaving, and adding that behaviour would require
a substantial rewrite of both phases, if not a major architectural change.

8.2.2 Parser

The Minigrace parser is a reasonably standard recursive-descent parser,
with additional global state dealing with Grace’s indentation rules. The
parser is the largest module in Minigrace, primarily because of the large
volume of code for reporting syntax errors.

285

286 CHAPTER 8. IMPLEMENTATION

Abstract syntax tree

The parser returns a list of nodes defined in the ast module. The AST in
fact sits somewhere between a concrete parse tree and a true abstract syntax
tree.

The available nodes are defined as classes in the ast.grace file; each
object contains at least a kind field, indicating which node it is, and a value

field containing the primary contents of the node (which varies by node).
All also support an accept(visitor : ASTVisitor) method, implementing the
Visitor pattern; a map(block)before(beforeBlock)after(afterBlock) method, im-
plementing a tree map with the given setup/teardown code; a pretty(depth

: Number) method returning a textual representation of the AST starting
from that node; and a toGrace method returning Grace source code corre-
sponding to that node. Some nodes have other fields or methods specific to
their role.

8.2.3 Identifier resolution

The identifier resolution pass turns all bare identifiers into fully-qualified
expressions: x may become self.x, outer.x, outer.outer.x (and so on), or may
remain as x if it refers to a local variable. In this way the code generation
passes need only deal with method requests having explicit receivers and
with local variables. To aid these later passes further, dialect methods are
resolved to a special receiver dialect that the code generators can treat
differently than other receivers.

Identifier resolution rebuilds the syntax tree, replacing identifier nodes
with fully-qualified expressions, and replacing their parent nodes with
new nodes containing the replacement, up to the top of the tree. This
entirely-new syntax tree is what subsequent passes receive, and the old
tree from the parser is discarded. The map(block)before(beforeBlock)after(

afterBlock) method mentioned in Section 8.2.2 performs the rebuilding, with
a block of code to modify each node and blocks to set up and tear down

286

8.2. ARCHITECTURE 287

scoping rules.

In order to determine where an identifier should be resolved this phase
needs to track the nesting of scopes. For code within the module being
compiled this tracking is simply a stack of maps from method and variables
names to metadata about them. The metadata includes what kind of bind-
ing this name is (def, var, method, etc.), as well as information necessary
for inheritance.

For identifiers obtained from other modules the task is more compli-
cated. Outside code becomes involved in two ways: by inheriting from an
object defined in another module, and from the dialect. Both are handled
by loading in compilation metadata cached earlier, which is inserted into
the correct parts of the scope hierarchy.

When Minigrace compiles a module it generates an additional file
modulename.gct. These .gct files list the methods and classes defined
in the module, and the methods available in any object that can be inherited.
All dialect methods are added to the outermost scope at the beginning of
the module. Any imported module has its import name bound to all of the
imported metadata, so that inheriting from a method inside that module
is resolved correctly. When inheriting, either from a method in another
module or not, all methods of the inherited object are inserted into the local
object’s scope.

The .gct file includes further metadata about the module itself, and in
particular the list of imported modules and the path used when compiling
the module are both necessary for importing. In the ECMAScript backend,
accesses of a .gct file are transparently redirected to a local cache of the
contents in a ECMAScript object called gctCache, as ECMAScript does
not provide filesystem access in web browsers.

The identifier resolution pass also performs another task: finding any
matching blocks (Chapter 4) — that is, blocks with a single parameter —
and replacing the node with one remembering the pattern separately, and
possibly now including multiple parameters. This task occurs during

287

288 CHAPTER 8. IMPLEMENTATION

identifier resolution as this pass is already rebuilding the entire syntax tree;
adding an additional check and replacing a node has a very low additional
cost at this point. Any new parameters bound must be known before
examining code inside the block so that scoping errors can be reported
correctly, so matching blocks are replaced before they are first examined
for identifier resolution.

8.2.4 Code generation: C

Code generation to C is primarily syntax-directed: each node generates
some C code representing itself, and somewhere asks any child nodes
to generate code for themselves. All of this generation occurs in the
genc.grace module, driven by the compilenode method, which delegates
behaviour to various compileX methods for different nodes.

Some points, notably object and method definitions, require additional
passes to arrange storage space or scoping details in advance, or to arrange
circular references correctly. Other than these exceptions, most nodes cause
between two and ten lines of C code to be generated for themselves and
simply request the same for their children.

All compiled modules include a function representing the module en-
try point called Object module_modulename_init(). This function returns a
pointer to the module object, and contains all top-level code of the mod-
ule. When a module is compiled as the program entry point a standard
C int main(int argc, char **argv) entry point function is generated as well.
This function sets up internal structures that the runtime requires and
meta-information about the compilation such as module search paths, and
executes the module’s init function. To permit both executing and im-
porting the same module without recompiling in between, this function
is declared with #pragma weak main so that only the correct version exists
in the final executable. #pragma weak main gives the main function weak
linkage, meaning that only the first definition of main found during linking

288

8.2. ARCHITECTURE 289

will be included in the executable. This pragma directive is non-standard
and limits the portability of the generated C code.

When importing a module there are two cases: the module to be im-
ported is an ordinary (static) module, or it is a dynamic module like the
Unicode module we describe in Section 8.3.3. In either case a weak symbol
Object module_modulename is declared, which will hold the module object
once imported; this symbol is used as a guard to ensure that each module
is imported at most once. In the case of a static module, an import simply
resolves to calling the module’s init function; a dynamic module must be
dlopen(3)ed [79] and the init function symbol retrieved. In both cases, the
result of calling the function is saved into the global symbol, and the body
of the C code implementing the module is identical. Whether a module
is to be imported statically or dynamically is determined at compile time
by which of a .gso (dynamic), .gcn, or .grace (both static) file is found
first.

The generated C code is aided by a library gracelib.c, which is
statically linked into every program. The library includes helper functions
for setting up objects and methods, structure declarations, the garbage
collector, and implementations of built-in objects like numbers and strings.
The most important part of this library is the callmethod function, which
implements method lookup and execution. Each object has a pointer to
its “class”, which contains an array of method structures; calling a method
requires finding the method of the correct name, obtaining the function
pointer, and calling that function with the given arguments. A function
implementing a method accepts five parameters: the receiver, the number
of parts in the request for this method, a pointer to an array of the number
of arguments in each part, the arguments given, and a set of flags indicating
certain special behaviours. Both library methods and generated code use
this same format for their method functions, as do native-code libraries.

Local variables in generated C code are declared as pointers to locations
in reified stack frames. Each scope has its own stack frame object that

289

290 CHAPTER 8. IMPLEMENTATION

contains an array of slots for every variable that will be used in that scope;
at the top of the scope’s C code local C-level variables are declared aliasing
those slots. The reified stack frames are necessary to support Grace’s closure
semantics: a block or object may continue to access a local variable in a
surrounding scope after the scope has terminated, and multiple objects
may access the same variable. Frames are garbage collected.

Local variables in a scope are aliased to slots in a stack frame at the
beginning of the scope:

Object *var_x = &(stackframe−>slots[3]);

Variables in surrounding scopes are obtained from the closure environment
passed to the method:

Object *var_x = getfromclosure(env, 1);

In this way, generated code inside the body of the scope need not know
where a variable came from: every variable is accessed the same way, with

*var_x to dereference the pointer. A pointer to the closure environment
is stored inside the object the method belongs to at the time it is created
(solely to preserve the scope from garbage collection while the closure is
alive). The environment holds a pointer to the surrounding stack frame as
well as an array of pointers to slots in that frame (or surrounding frames)
belonging to variables used in the inner scope.

8.2.5 Code generation: ECMAScript

Code generation for ECMAScript follows the same basic approach as for
C: each node generates some ECMAScript for itself and has code for its
children generated as well. Because ECMAScript has closures, first-class
functions, objects, and string-keyed maps built in, the implementation and
generated code is simpler.

Although ECMAScript includes objects, Minigrace uses native objects
only for storage and identity. Method lookup in Grace has different se-
mantics than in ECMAScript and some extra behaviours are possible, like

290

8.2. ARCHITECTURE 291

super calls; as a result, the implementation of an object includes a mapping
of method names to functions, of field names to data, and of the object to
its inherited part-object. A gracelib.js file contains the implementa-
tions of built-in objects again, as well as the helper functions used for code
generation.

All method calls are directed through a callmethod function, just as in C.
The function looks up the appropriate function to invoke and executes it in
the context of the receiver object. All functions accept at least one argument,
an array of the number of arguments in each part of a request, and can ac-
cept others for its actual arguments. Javascript has full support for variadic
arguments and indirectly invoking any function, so this representation is
much simpler than in C.

Modules are again represented by functions named after the module,
but the object is pre-allocated by the import mechanism and the function
invoked in its context. Because ECMAScript programs are running inter-
preted in the web browser all imports are transacted dynamically simply
by calling the function if the module has not already been imported. This
behaviour is different than when executing the compiler as native code: if
an import path does not correspond to an existing module there will be
a static error when running natively, but when running the compiler in
ECMAScript no error will occur, and the compiled program will give an
error at run time.

Because ECMAScript supports closures natively, local variables in Grace
code are always translated directly into local variables in the generated
ECMAScript code. Any blocks or methods lexically inside a scope will be
inside the ECMAScript scope as well, and so be able to access the variables
directly. To avoid name conflicts all variable names are prefixed with var_.

291

292 CHAPTER 8. IMPLEMENTATION

8.3 History

This section gives a chronological history of Minigrace, and some reflections
on self-hosting a compiler for a new language.

8.3.1 Parrot to LLVM

We began developing a Grace compiler in April 2011. We were interested
in leveraging existing tooling if possible, in particular the Parrot Compiler
Toolkit [145] or LLVM [110, 97]. We chose to begin with Parrot for our first
prototype in order to use its built-in support for defining grammars and
accompanying code generation rules. We intended to implement a minimal
subset of the language suitable for (potentially) building a further compiler,
and termed this minimal implementation “minigrace”.

We were rapidly able to implement a small but expressive subset of
Grace. We began implementing a lexer and parser for Grace in Grace, and
extended our Parrot language as we encountered new needs. After a few
weeks we had produced a parser in Grace capable of parsing itself correctly,
and needed to make a choice whether to continue with Parrot or not. We
chose to move on to LLVM at this point as we had had some difficulties
integrating the Parrot virtual machine’s object model with Grace’s, and
because we were at that time considering optimisation work as a focus
for this thesis. We wrote further Grace code that generated textual LLVM
bitcode from the syntax tree our parser produced. “Bitcode” is what LLVM
calls its intermediate representation; we generated textual bitcode, rather
than using the preferred API, because from Parrot we could only work with
text input and output. Approximately a month after the first steps with our
compiler we had produced a self-hosted compiler targetting native code by
way of LLVM.

The implemented language at this point was very small: variable, object,
and method definitions, with special-cased loops but no real lexical scoping.
Identifiers could consist only of lower-case letters, and there was no access

292

8.3. HISTORY 293

to files: only reading standard input and writing to standard output was
supported. Some of these restrictions continued longer than intended, and
code from this era still exists in current versions of Minigrace. We made no
attempt to optimise either time or space usage of the compiler at this point,
and it was both slow and memory intensive.

8.3.2 Self-hosting with LLVM

The compiler at this point consisted of a single Grace file (around 1850
lines) and a library of helper functions and structures written in C, which
could be compiled with LLVM and linked with the generated code. The
C library was around 600 lines when the compiler reached a self-hosting
state.

The compiler had very heavy memory usage because we had made
no attempt to optimise anything; in particular, every string literal in the
program created a separate object every time that line executed, with these
objects persisting indefinitely, and similarly for numbers. Our first task
with this early version was to reduce memory usage, which was already
impractical; we managed to reduce usage by 95% when compiling the
compiler itself through interning strings, numbers, and method structures.

Because Minigrace was self-hosting we required a “known-good” ver-
sion of the compiler to use for building new versions. At first this version
was the Parrot-based implementation, and then a native-code version gen-
erated from the first self-hosting version. Maintaining these versions was
sometimes a challenge, particularly when introducing breaking changes
to the language. The first versions of the compiler had no conception of
string escape sequences: a backslash in a string literal meant a backslash,
while quotation marks needed to be alternated to produce a quoted quote.
The Grace language required escape sequences, and we would find them
very useful for writing a compiler, but introducing support for them would
break our existing code that used backslashes for their literal presence. To

293

294 CHAPTER 8. IMPLEMENTATION

introduce the new feature required a careful dance: first we needed to add
support for a backslash inserting the following character (but not itself)
literally, increment the known-good version, double all existing backslashes
in the compiler, and increment the known-good version again immediately
after. This case was the first of many where we would encounter difficulty
self-hosting a developing language.

To aid in future updates to this known-good version we added in-
frastructure to build them automatically: our Makefile would specify the
version we required as a version-control hash, and depend on an executable
of that name being available. A script would check out a given old version
of the compiler and generate those executables on demand. This approach
was less fragile than maintaining these versions manually, as we had been
doing to date, but also caused us other problems in future.

A further issue we had from self-hosting in this way was that we would
at times introduce an error we did not detect: the compiler would build cor-
rectly using the known-good version, and the version so generated would
itself compile the compiler, but this final version would have incorrect
behaviour because of a non-fatal bug in an earlier version. To combat this
issue we introduced a three-layer compilation: when we built the compiler
we would first build the compiler using the known-good version, then
with the version we had just built, and then again with the most recent
version built. With no bugs, the last two versions would be identical, but
code generation bugs could cause misbehaviour with any fewer number of
passes. This approach made building the compiler drastically slower, but
improved correctness.

Another difficulty we faced during this stage of development was the
language itself: because the language definition was changing, at times
the language the compiler implemented would be obsoleted overnight.
Integrating the changes was sometimes a challenge, particularly when they
altered the semantics of existing code that we had included in the compiler.
This situation was an especial problem because of our multi-phase build:

294

8.3. HISTORY 295

code we wrote in the compiler must function on both the older known-good
version and the version described by the compiler itself. At times we could
make code work on both versions simply by supporting both for a time,
but for semantic changes to existing concepts we could not. To that end we
introduced a further hack: a method runonnew()else that ran one block of
code on a “new” version, and another on an “old” version, determined by
the version control hash contained in the executable. We would then only
need to support both syntactic forms of any change for a time, until we had
flushed the old version out of use.

8.3.3 Unicode

The Grace language specification has always included the phrase “Grace
programs are written in Unicode”, without further detail. We interpreted
this statement to mean that identifiers could use non-ASCII Unicode char-
acters; enquiries as to what exactly “written in Unicode” meant in concrete
terms did not lead anywhere. We elected to support program source
encoded in UTF-8 and to allow Unicode letters and numbers as part of
identifiers.

To support Unicode identifiers our compiler needed to know whether
each character it looked at was a letter, number, or something else. There are
existing libraries providing advanced Unicode support, notably ICU [77].
We chose not to rely on any external libraries for mandatory features of Min-
igrace, however, because the majority of our existing user base would have
significant difficulty following instructions to install outside dependencies.

Instead, we implemented a simple module wrapping the important
details from the UnicodeData.txt file provided by the Unicode Con-
sortium first in a C header and then in a C module implementing the
linker-level interface of a Grace module with methods. Our module sup-
ported only the necessary details for our purposes, namely querying the
character class of a codepoint, but could be shipped directly with the source

295

296 CHAPTER 8. IMPLEMENTATION

code of Minigrace.

Because the Unicode Character Database is quite large, linking our
Unicode module into every program was time-consuming (particularly
with LLVM, whose linker is very slow). We extended the compiler to
support dynamically-linked modules, so that the Unicode module could
be built once with the compiler and then dynamically loaded without
recompilation or relinking until changed. This module and experience
influenced our thoughts on module system design, which we addressed in
Chapter 5.

8.3.4 Generating ECMAScript

While waiting for a specification update we began experimenting with
ECMAScript1 code generation, and were able to write a module as close
to a direct port of the existing LLVM code generator, as well as the library
code.

Because Minigrace is written in Grace, producing a compiler that ran
in a web browser required only writing a compiler backend that would
generate ECMAScript. We could then run the existing compiler through
this backend and produce an in-browser compiler. Reaching this point took
approximately a week’s work: we consider that a good rate for porting to
an entirely new platform, and an advantage for self-hosting the compiler.
Many subsequent changes to the compiler, such as those to syntax and
identifier resolution, required no platform-specific modifications at all,
while for standard library changes and new structures or semantics we now
had to maintain two different backends. We did not find that an overly

1ECMAScript [44] is the standardised version of the language commonly called
JavaScript; the name JavaScript refers to Mozilla’s (formerly Netscape’s) proprietary
version that includes additional extensions. Minigrace targets ECMAScript version 3, the
common subset of Mozilla’s JavaScript, Microsoft’s JScript, and Adobe’s ActionScript, and
we use the name ECMAScript exclusively to be clear that we are not using any JavaScript-
specific extensions. We also do not use any new ECMAScript 5 [45] features, but target the
common language [45, Annex D & E] between the two versions.

296

8.3. HISTORY 297

onerous burden, particularly as ECMAScript was quite easy to add new
features for because it had built-in objects and first-class functions.

8.3.5 Generating C

From the early stages of our LLVM code generation backend we had had
a small C library providing helper functions. Our intention had been to
move the majority this code into Grace eventually. Over time this library
had grown substantially, however, and we were increasingly writing larger
helper functions to avoid complexities of LLVM.

We had found textual LLVM bitcode to be difficult to work with, in
particular when debugging code generation, and would often write a small
C helper for what we would early on have generated bitcode for. We
decided to implement an all-C backend that avoided LLVM entirely; we
chose C at this point in order to be able to reuse the existing library code,
which was approximately 2100 lines at this point.

The C backend reached parity with the LLVM code generator in October
2011, and for a time we maintained both in parallel. Within a month we
switched the default backend to C, while continuing to update LLVM, but
ultimately permitted LLVM to atrophy until its removal several months
later. We found generated C code substantially easier to debug, in particular
because we could insert code inline to correct or log state at the points we
thought could be problems. As we were no longer planning to explore
optimisation questions, we had no particular need for LLVM by this point.

8.3.6 Garbage collection

Memory usage had been an issue in Minigrace from the beginning, but
we had been able to paper over the problems by reducing our allocations
and interning objects. As the compiler grew, however, the memory used in
compiling itself grew as well, and we were reaching the point of running
out of memory on our development machine. We had earlier tried to

297

298 CHAPTER 8. IMPLEMENTATION

incorporate the Boehm conservative garbage collector, but found it not
to work well out of the box with LLVM. At this point we simply wrote a
basic mark-and-sweep collector of our own; while not very efficient, the
collector reduced memory usage substantially and permitted the compiler
to continue growing.

The collector maintains a list of all currently-existing objects, updated
on every object allocation, a second list of GC roots, and a “shadow stack”
of pointers to local references to objects. Garbage collection can be triggered
at any attempted object allocation, and first clears a “visited” flag on every
object before proceeding through the GC roots and instructing them to mark
themselves and all objects reachable from them recursively. Finally, the
collector examines all the live objects and frees any that were not reachable
from any root. This approach is essentially the standard mark-and-sweep
technique.

Writing the garbage collector exposed a number of existing bugs in our
library and code generation, mostly involving buffer overruns. We were
able to improve the quality of the compiler as a whole accordingly.

8.4 External libraries

We wrote some additional libraries to be used with Minigrace, but not part
of the compiler itself. In this section we briefly describe those libraries and
their interesting aspects.

8.4.1 Grace-GTK

Grace-GTK [69] wraps the GTK+ widget system in Grace modules. Grace-
GTK consists of a Python script to parse the header files of GTK+ and its
associated libraries GDK and Cairo, and then generate C code wrapping all
GTK+ objects in Grace objects and GTK+ methods in C code conforming to
the ABI for Grace methods. These modules can then be imported exactly

298

8.4. EXTERNAL LIBRARIES 299

as any other dynamic module. A complete, albeit simple, program is:

import "gtk" as gtk

def window = gtk.window(gtk.GTK_WINDOW_TOPLEVEL)
window.title := "Hi!"

def button = gtk.button
button.label := "Hello, world!"

button.on "clicked" do { gtk.main_quit }
window.add(button)
window.on "destroy" do { gtk.main_quit }

window.show_all

gtk.main

This program displays a window with a single button saying “Hello,
world!” and terminates when the button is clicked. To the programmer
this code looks like any other Grace code, with field accesses and method
requests on objects exactly as usual. The names and overall structure match
the underlying object-oriented design of GTK+.

Grace-GTK supports a large but eclectic subset of the complete GTK+
interface. Methods and classes are generated when the Python script
understands how to coerce a type in the header file into a Grace repre-
sentation and back; if any argument or return type is not understood,
the method is omitted. The library is primarily a proof of concept of
our foreign objects design (Section 5.5.1), and its implementation was
discussed further in that section. Grace-GTK is available from https:

//github.com/mwh/grace-gtk.

299

https://github.com/mwh/grace-gtk
https://github.com/mwh/grace-gtk

300 CHAPTER 8. IMPLEMENTATION

8.4.2 Grace-CUDA

Grace-CUDA [68] connects Grace code to NVIDIA’s CUDA general-purpose
graphics programming unit library [134]. The library consists primarily of a
compiler plugin to Minigrace that rewrites part of the source code to access
a runtime CUDA library, and code for generating NVIDIA’s restricted C
subset that runs on its graphics cards. Graphics cards execute the same
code on many processors simultaneously in lockstep, greatly speeding up
data-parallel computations.

With the plugin loaded any requests for methods like cuda.over(...)map,
which accepts a block of code to run on the GPU, are intercepted. The
loop body is translated to CUDA’s C variant and the method request
rewritten to pass along an identifier for that generated code to run time.
When the program runs, the Grace-CUDA run-time library will load the
provided data onto the GPU and execute the code. The loop body appears
as essentially standard Grace code to the programmer.

A simple program to multiply some numbers together would be:

import "cuda" as cuda
def size = 1000000
print "Starting population..."

var x := cuda.floatArray(size)
var y := cuda.floatArray(size)
var z := cuda.floatArray(size)
for (0..(size−1)) do {i−>

x.at(i)put(i)
y.at(i)put(i)
z.at(i)put(i)

}
print "Starting CUDA..."

def res = cuda.over(x, y, z) map {a, b, c−>
a * b * c

}
print "1000^3: {res.at 1000}"

300

8.5. OUTSIDE CONTRIBUTIONS 301

print "93397^3: {res.at 93397}"

This program multiplies the elements of three arrays elementwise. A
cuda.floatArray is an array of numbers backed by floats, which CUDA prefers
to use. More complicated programs are possible with Grace-CUDA using
other methods and special type annotations. Samples for matrix multiplica-
tion and mass computation of exponentiations and quotients are included
in the distribution. The method design reflects in part the underlying
CUDA structures for executing code on and passing data to the graphics
card, meshed with Grace’s existing philosophy of control structures as
methods dictating the use of blocks. Specialised data types are required
because CUDA arrays have different semantics to collections of Grace
numbers.

We described a dialect using part of the Grace-CUDA library without
the plugin in Section 6.2.11. Grace-CUDA is available from https://

github.com/mwh/grace-cuda.

8.5 Outside contributions

Although we were the primary author of Minigrace, other authors have
contributed fixes or components of the software. In this section we outline
those contributions.

Daniel Gibbs worked on error messages as part of his honours project,
and implemented many new syntax error reports. He also implemented
the “suggestions” infrastructure for showing users what they may have
meant to write.

Timothy Jones implemented a Java backend to the compiler (since de-
funct) as a summer research assistant and contributed many bug fixes and
work on annotations as a PhD student.

Jan Larres implemented pretty-printing the syntax tree into Grace and
an interactive interpreter and read-eval-print loop as a research assistant.
He also implemented the visitor pattern available in AST nodes.

301

https://github.com/mwh/grace-cuda
https://github.com/mwh/grace-cuda

302 CHAPTER 8. IMPLEMENTATION

Scott Weston implemented better path searching for imported mod-
ules and configurable install paths for the compiler as a summer research
assistant.

Miscellaneous bug fixes and platform extensions were submitted by
Alex Sandilands, Andrew P. Black, Charlie Paucard, and Bart Jacobs.

302

Chapter 9

Conclusions

In this thesis we investigated extensions to the Grace language allowing
programmers to express their intentions in a manner suitable to the task
at hand and their understanding of it. Our extensions not only satisfy
the goals of Grace but are general in purpose and application such that
they could be incorporated in other object-oriented languages. They are
designed to support both experienced and novice programmers within the
same language and using the same features, giving each what is required
without obstruction from the other. We presented case studies and a user
experiment to validate our designs.

The contributions of this thesis are:

• An object-oriented pattern-matching design with syntax and seman-
tics integrated with the language.

• A system of modules constructed with objects.

• The design of a system of language extensions and restrictions through
dialects.

• A novel interface integrating visual and textual editing of the same
code.

303

304 CHAPTER 9. CONCLUSIONS

Pattern matching. We have shown that an object-oriented design for
pattern matching can be fully integrated into a language with minimal
changes to the language. Both built-in and user-defined patterns can follow
the same object framework and semantics, and through a system of combi-
nators many complex patterns can be built up without the user needing to
understand the implementation of patterns at all. We fully implemented
such a system into a working compiler and justified our design against
alternative approaches. We used our patterns in practice as part of imple-
menting dialects.

Modules as Objects. We presented an object-based module system,
building the desirable attributes of modules without introducing significant
new concepts into the language. Our module system provides namespac-
ing, sharing, controlled export, and explicit dependencies, while permitting
multiple and foreign implementations transparently. We showed how a
flexible construction of module import, in combination with modules as
objects, allows accessing both ordinary code and external resources through
the same interface, and a simple package management system with the
bare minimum of overhead for instructors or library publishers. We used
our modules in practice as part of implementing dialects.

Dialects. We gave the design of our system of dialects, which permit
variant languages to be embedded within a base language. Dialects build
on our module system, and through the module system many dialects may
coexist within a single overarching program. A dialect can both extend the
language, providing new constructs or definitions to the user, and restrict
the language available, preventing the user from using a feature or provid-
ing different errors or feedback when they do. Dialects are defined entirely
within the base language, without any macros or meta-functionality, mean-
ing an author does not need to learn any other languages or tools. We
demonstrated the power of this design through a series of case studies,
ranging from a graphical microworld through to typechecking and engi-
neering domain-specific languages, along with a dialect for building other

304

9.1. FUTURE WORK 305

dialects and one presenting a radically different language model, all within
the same language.

Tiled Grace. We showed a novel interface for editing programs com-
bining both visual and textual representations of a program. This interface
allows a user to look at their code in two different ways, with the connec-
tion between representations made clear through animation, and permits
modifying the code in either view. The interface is fully integrated with
our dialect system, allowing programs in multiple dialects without further
modification. We gave the results of a user experiment we performed where
33 participants used our tool, showing that they found it engaging, valued
the feedback for errors available in the tiled interface, and appreciated the
ability to access their code in two different ways. We also found that a
proportion of participants had substantial trouble using drag-and-drop for
programming, suggesting that the drag-and-drop paradigm may not be
ideal for this use, although the large majority of participants had no such
difficulty.

Finally, we described Minigrace, our compiler for Grace. Minigrace is
written in Grace itself and fully self-hosted, supporting almost all of the
Grace language, and able to target both native code and ECMAScript. We
implemented all of our language features in Minigrace and reflected on
our experience in doing so, as well as in developing a self-hosting compiler
for a language under design. Minigrace, as well as associated tools and
libraries we built to use with it, is fully open-source code and publicly
available.

9.1 Future work

There is more work that would be interesting to follow up on from the
results of this thesis. This section will briefly explore interesting follow-on
studies by topic, and direct the reader to the future-work sections within
each chapter.

305

306 CHAPTER 9. CONCLUSIONS

Pattern Matching. Our pattern-matching system permits examining
objects with a concise syntax, but there are existing specialised matching
syntaxes, such as regular expressions and parsing expression grammars.
Future work could explore how to integrate these systems within the frame-
work we presented. We discuss this work in more detail in Section 4.7.6.
Another extension would be to permit patterns to be used in place of types,
giving arbitrarily powerful checking; we implemented this extension in
Minigrace, but further exploration of the implications and limitations, and
the best way to design patterns for this use, remains to be done. We discuss
this generalisation in Section 4.6.

Modules as Objects. Accessing external data sources through the mod-
ule import system should be possible, but we implemented no significant
data sources in this way. Future work can explore how such sources should
be exposed and the correct way to integrate gradual type checking. We
discuss these and other extensions in Section 5.5.

Dialects. Our dialect system operates at the module level, but at times
it would be useful to use a different dialect for only part of a module. In
doing so, questions arise around access to other scopes: does code in an
inner dialect have access to the outer dialect’s methods? The outer scope’s
variables? The correct answers to these questions are not obvious, and may
vary in different circumstances; future work should explore how best to
integrate localised dialects into the system. At times it might be useful for
dialects to make minor syntactic extensions, or decorations of the syntax
tree, which our system avoids. We discuss these items of future work in
more detail in Section 6.3.

Tiled Grace. Our system does not permit users to change between views
while there is a static error in their program. While some errors in programs
have no sensible representation in one of the tiled or textual views, others
could reasonably cross the barrier and allow the user to look at their code
two different ways, and future work could establish which errors should be
permitted and how to represent them. Our system does not tell users where

306

9.1. FUTURE WORK 307

they may place a tile before they pick it up, as Scratch does, but it would be
useful to indicate to the user what they may do as early as possible.

Our experiment in Sections 7.4 and 7.5 suggested that drag-and-drop
may not be the most helpful interface paradigm for all users, and we sug-
gested that repeating the experiment with a point-and-click interface could
be instructive. In a similar vein, touch-screen devices are another visual
paradigm where drag-and-drop is common, and results may differ on such
a device. We also noted other factors that bear further investigation, partic-
ularly our finding that enjoyment of the system was inversely correlated to
past programming experience. We also believe that other languages would
see similar benefits from a bijective visual interface and that these interfaces
should be considered. We noted in particular potential application in other
paradigms such as type theory and formal methods. We discuss all of these
issues in Section 7.7.

307

308 CHAPTER 9. CONCLUSIONS

308

Appendix A

Auxiliary data

This thesis is accompanied by additional auxiliary data for the benefit of
future researchers. We will briefly describe each of the included elements:

Minigrace The source code of Minigrace, our Grace compiler, its complete
revision history as a Git repository, and pregenerated tarballs suitable
for bootstrapping.

Grace web IDE Our web interface to Minigrace’s ECMAScript backend.

Tiled Grace The source code of Tiled Grace, our combined graphical-
textual interface described in Chapter 7, and its complete revision
history as a Git repository.

Experimental data Anonymised data from the Tiled Grace experiment
described in Chapter 7, including survey responses, instrumentation
data, analysis scripts, survey systems, and the instrumented interface
used in the experiment.

Grace-GTK The source code of the Minigrace bindings to the GTK+ widget
library described in Section 8.4.1.

Grace-CUDA The source code of the Minigrace plugin and runtime library
for GPU programming described in Section 8.4.2.

309

310 APPENDIX A. AUXILIARY DATA

The data can be obtained:

• on the CD accompanying the deposit copy of the thesis;

• in ResearchArchive–Te Puna Rangahau, the public-facing repository
for research outputs from Victoria University of Wellington, New
Zealand, accessible online at http://researcharchive.vuw.ac.
nz/, alongside the thesis itself;

• from the author’s personal web site at http://michael.homer.
nz/phd.

310

http://researcharchive.vuw.ac.nz/
http://researcharchive.vuw.ac.nz/
http://michael.homer.nz/phd
http://michael.homer.nz/phd

Appendix B

Extended examples

Some pieces of example code in this thesis were truncated to focus on
essential elements. In this appendix we present extended versions of some
of these incorporating additional code that would be required in real use.

311

312 APPENDIX B. EXTENDED EXAMPLES

B.1 Scala matching

This example incorporates the first matching example from Section 2.2.1
verbatim, with surrounding code creating a viable typing environment.

class StringOrIntOrTriple[T]
object StringOrIntOrTriple {
implicit object StringWitness extends StringOrIntOrTriple[String]
implicit object IntWitness extends StringOrIntOrTriple[Int]
implicit object TripleWitness extends StringOrIntOrTriple[Tuple3[Int,Int,Int]]

}

object Bar {
def test[T : StringOrIntOrTriple](x : T) =

x match {
case 1 => "one"

case "two" => 2
case y : Int => "scala.Int"

case (a, b, c) => "A triple: " + a + ", " + b + ", " + c
}

}

object test {
def main(args : Array[String]) {

println(Bar.test(1))
println(Bar.test("two"))
println(Bar.test(3))
println(Bar.test((1,2,3)))

}
}

312

B.2. F] MATCHING 313

B.2 F] matching

This example incorporates the F] matching example from Section 2.2.4
verbatim, with surrounding code creating a runnable program.

let hd(l : _ list) = l.Head
let tl(l : _ list) = l.Tail
let nonempty(l : _ list) = not l.IsEmpty

let (|Cons|Nil|) l =
if nonempty l then Cons(hd l, tl l)
else Nil

let rec length l =
match l with

|Cons(x, xs) −>
1 + length xs

|Nil −>
0

[<EntryPoint>]
let main argv =

let mylist = [1 ; 2 ; 3 ; 4]
printfn "1234 list: %i" (length mylist)
printfn "argv list: %i" (length (List.ofArray argv))
System.Console.ReadLine() |> ignore
0

This program outputs the length of the fixed list 1;2;3;4 and the number
of command-line arguments given to the program.

313

314 APPENDIX B. EXTENDED EXAMPLES

314

Appendix C

Package Manager Example

We have implemented our package management system into a tool called
gracepm, which is included in the Minigrace distribution. An early proto-
type of the concept was built by a summer research assistant in 2013-2014;
the model was ours and we implemented gracepm independently. The
package manager supports two major modes: install, which retrieves and
installs a particular module and its dependencies, and satisfy, which en-
sures that all dependencies of a given Grace source file are met. A worked
example in more detail is given in Appendix C. We will explain these
definitions through an example.

Suppose a user has been told to install a particular module for a course.
They will be given a path to give to the package manager, such as ecs
.victoria.ac.nz/~mwh/test. They will run:

gracepm install ecs.victoria.ac.nz/~mwh/test

gracepm will fetch
https://ecs.victoria.ac.nz/~mwh/test.grace and store it in
~/.local/lib/grace/modules/ecs.victoria.ac.nz/~mwh/test.grace. This location
is exactly where an import of this path will look for the file. The package
manager will inspect the file it has retrieved and also install any of its
dependencies recursively.

315

https://ecs.victoria.ac.nz/~mwh/test.grace

316 APPENDIX C. PACKAGE MANAGER EXAMPLE

After installing the library above, given the module:

import "ecs.victoria.ac.nz/~mwh/test" as t
t.greet "reader"

the import will succeed, and the program will successfully greet the reader.
What if the user already has a file (perhaps a template), and simply

wishes to make it work? If the module above is called greet.grace, they can
run:

gracepm satisfy greet.grace

and the package manager will find the import, install it and its dependen-
cies, and return.

From the end user’s perspective, they have simply applied an opaque
string and the module they wanted worked from then on.

316

Appendix D

Tiled Grace Experiment

This appendix contains the consent form, information sheets, question-
naires, human ethics application, and human ethics approval for our exper-
iment on Tiled Grace described in Chapter 7.

317

Participant Consent Form

Principal Investigator Investigator Investigator
Michael Homer Prof. James Noble Dr. David Pearce
PhD Student Professor of Computer Science Senior Lecturer
mwh@ecs.vuw.ac.nz kjx@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 234 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

Please tick and sign

I have read the information sheet supplied and the researchers have satisfactorily answered any ques-
tions I may have had.

I consent to taking part in this study and understand that I have the right to withdraw from this
experiment within two weeks of data collection by emailing the researchers accordingly.

I consent to the researchers using mouse movement, selection, and keyboard input data and answers
from my participation in a non-identifiable way in a PhD thesis and related conference / journal
papers and corresponding anonymised public dataset.

I would like to be emailed a soft copy of the report.

I would like to be entered in the random prize draw.

You can provide an email address that will be used to contact you if you win one of the prizes, and
to send you a soft copy of the report if requested. If you do not wish to participate in either of these
you do not need to provide an address.

Email address: .

Signed: .

Signed (parent or guardian if under 18): .

Date : .

318 APPENDIX D. TILED GRACE EXPERIMENT

318

Participant Information Sheet

Principal Investigator Investigator Investigator
Michael Homer Prof. James Noble Dr. David Pearce
PhD Student Professor of Computer Science Senior Lecturer
mwh@ecs.vuw.ac.nz kjx@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 234 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

This experiment is being undertaken towards Michael Homer’s PhD in the Software Engineering
group at Victoria University of Wellington. The Victoria University Human Ethics Committee has
granted ethics approval for this experiment. The research looks at editing source code using a
combination of tiled drag-and-drop editing and conventional textual editing. Participants will be
asked to edit a number of programs and to write small programs completing a particular task.

Any person above 14 years of age is free to participate in the study, but any participants below 18
years of age will require parental consent. Participants will be asked to fill out a pre- and post-test
questionnaire as well as carrying out the experimental tasks. Participants are able to refuse to answer
any given question, and are able to withdraw from the study without question within a fortnight of
the data collection.

While the experiment will be recording the user interaction, only the on-screen interaction will
be recorded. There will be no video or audio recording of the participants. Participants will be
observed and the information gathered will be assessed for accuracy, but your completed data will
only be reported in aggregate form. The final dataset will also be made available in an anonymised
form for other researchers. The entire process should take approximately thirty to forty minutes.

Voucher prizes will be awarded to randomly-selected participants after data collection is complete.
Participating in the draw is optional, and requires providing an email address. The provided address
will be used only for the purposes of this experiment and record of it will be destroyed afterwards.

If you have any questions or would like to receive further information about the project, please
contact us via the details supplied above.

Thank you for your participation in the study.

319

319

Initial Questionnaire

Principal Investigator Investigator Investigator
Michael Homer Prof. James Noble Dr. David Pearce
PhD Student Professor of Computer Science Senior Lecturer
mwh@ecs.vuw.ac.nz kjx@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 234 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

Age: .

Gender: .

Please tick the appropriate circle:

How often do you use a computer with a keyboard and mouse:

1 4 7

Never Once Rarely Monthly Weekly Daily Always

How often do you program in your own time:

1 4 7

Never Once Rarely Monthly Weekly Daily Always

I enjoy programming:

1 4 7

Agree Neutral Disagree

I first tried to program:

1 4 7

Never 2014 2013 2009-2012 2000-2008 1990-1999 Earlier

320 APPENDIX D. TILED GRACE EXPERIMENT

320

Circle any of the following you have used before:

Go Visual Basic Spreadsheet

Whiley COBOL Forth

Alice Scratch Scala

Alloy BlueJ Octave

Clojure C Lua

S+ INTERCAL LabVIEW

Racket Git Eclipse

Grace Shell XCode

Object orientation Greenfoot Mercurial

SQL Prolog Io

HTML Logo Basic

LATEX Delphi Python

C] D Java

Pascal R Haskell

Erlang Befunge Ruby

Piet ML HTML

Eiffel Maple APL

Perl PL/I MATLAB

IntelliJ Subversion Squeak

Rust FORTRAN Lisp

Visual Studio NetBeans Groovy

C++ Verilog JavaScript

F] Objective-C Processing

VHDL Smalltalk PHP

321

321

Final Questionnaire

Principal Investigator Investigator Investigator
Michael Homer Prof. James Noble Dr. David Pearce
PhD Student Professor of Computer Science Senior Lecturer
mwh@ecs.vuw.ac.nz kjx@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 234 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

For each pair circle which of the two options was the biggest problem:

• Effort / Getting it right • Time / Frustration

• Time / Effort • Physical demand / Frustration

• Getting it right / Frustration • Physical Demand / Time

• Physical Demand / Getting it right • Time / Mental Demand

• Frustration / Effort • Getting it right / Mental Demand

• Getting it right / Time • Mental Demand / Effort

• Mental Demand / Physical Demand • Effort / Physical demand

• Frustration / Mental Demand

Please tick the appropriate circle:

How mentally demanding was the task:

1 4 7

Low Medium High

322 APPENDIX D. TILED GRACE EXPERIMENT

322

How physically demanding was the task:

1 4 7

Low Medium High

Rate the time stress:

1 4 7

Low Medium High

How would you rate your performance:

1 4 7

Poor Medium Good

How much total effort did this require:

1 4 7

Low Medium High

How frustrating did you find the task:

1 4 7

Low Medium High

323

323

The system was fun to use:

1 4 7

Disagree Neutral Agree

The system was novel to use:

1 4 7

Disagree Neutral Agree

I enjoy programming:

1 4 7

Disagree Neutral Agree

I preferred the tiled view of my code:

1 4 7

Disagree Neutral Agree

I changed between the tiled and textual views of my code a lot:

1 4 7

Disagree Neutral Agree

324 APPENDIX D. TILED GRACE EXPERIMENT

324

I found the syntax difficult to deal with:

1 4 7

Disagree Neutral Agree

The system did what I wanted:

1 4 7

Disagree Neutral Agree

I preferred the textual view of my code:

1 4 7

Disagree Neutral Agree

Fixing errors in the code was easy:

1 4 7

Disagree Neutral Agree

Finding errors in the code was easy:

1 4 7

Disagree Neutral Agree

325

325

I edited my code:

1 4 7

Always textually Evenly split Always tiled

It was easier to deal with syntax in the tiled view:

1 4 7

Disagree Neutral Agree

I would use this system again:

1 4 7

Disagree Neutral Agree

What did you like about this system?

What did you dislike about this system?

326 APPENDIX D. TILED GRACE EXPERIMENT

326

If you have any other comments you wish to make, please write them here:

327

327

ResearchMaster

Human Ethics Application

Application ID : 0000020573
Application Title : Evaluating a drag­and­drop interface for Grace
Date of Submission : 24/01/2014
Primary Investigator : Michael Homer
Other Investigators : Prof Dale Carnegie

Dr David Pearce
Prof James Noble

29/05/2014 Page 1 / 8

328 APPENDIX D. TILED GRACE EXPERIMENT

328

Research Form

Information

Christmas closedown: The end­of­year deadline for applications to the Human
Ethics Committee and subcommittees (apart from the School of Information
Management Sub­committee) is 30 November 2013. Applications that are
received before 1 December will be reviewed and applicants notified before the
Christmas break. Applications received after this will not be reviewed until 3
February 2014.

Welcome to the Human Ethics Application Form
The following advice will assist you in completing this process:

Help contact

For information about Human Ethics, go to the Human Ethics web page.

For help, please email the Ethics Administrator.

Policy

You must read the Human Ethics Policy before beginning your application. The Policy includes a link to a sample consent form, information sheet, and transcribing confidentiality
form which may be useful (see last page).

Health research may require HDEC approval. To find out if your research requires this, read the HDEC Guidelines or contact the chairperson of your committee for clarification.

Student research

If you are a student, check with your supervisor before filling in this form. You may need to complete School requirements before applying for ethical approval.

Student applications will be automatically forwarded to supervisor(s) and then Head of School/Delegate for approval when the form is submitted. Once the Head of School has
approved it, the form will be automatically forwarded for committee review.

Technical

This online system works best on Internet Explorer and Safari. It may not work on your iPad or tablet.

A guide to using this online form, which includes a workflow showing how the approval process works, can be downloaded here.

If your application involves other researchers, you can use the Comments function of this form to communicate about the application with each other. Click on the Application
Comments or Page Comments icon on the top right of the screen to view and add comments. Comments left on the form once it is submitted will be visible to your Head of
School and committee reviewers, so remember to delete any private comments before submitting the form.

Process

All applications will be automatically forwarded to the Head of School for review when the application is submitted. Once the Head of School has approved it, the form will be
automatically forwarded for committee review.

You will normally receive an outcome of the review of your application within three weeks, unless you apply during an advertised close­down period (for instance, applications may
not be reviewed in December and January). NO part of the research requiring ethical approval may commence prior to approval being given.

To apply for an amendment or extension to an approved application, open the approved form and click on Apply for amendment/extension. You will then be able to complete the
Amendment/Extension page and resubmit the form.

Application Details
1. Ethics category code*

Human

Clearance Purpose code

Research Only

2. Application ID

0000020573

29/05/2014 Page 2 / 8

329

329

3. Please select 'Human Ethics Committee', 'Education Faculty Ethics Committee', or 'Pipitea Ethics Committee' below (online application is not yet available for other committees)

Human Ethics Committee

4. Title of project*

Evaluating a drag­and­drop interface for Grace

5. School or research centre*

Engineering and Computer Science

6. Please list all personnel involved in this project. Ensure that all are listed with the correct role. If you are a student, do not add your supervisor here: you will be asked
to add this information on the next page.

Please ensure that only one person is listed as Principal Investigator.

To add a person, search for their Victoria ID if known, otherwise either their first or last name (whichever is the most unusual). Click on the magnifying glass to search for results.

Press the green tick at the bottom right corner to save the person record.

Add anybody who is involved in this project as:

Associate Investigator
Other Researcher
PhD Student
Masters Student
Research Assistant

Click on the help button if you are having difficulty adding people to the list.*

1 Given Name David

Surname Pearce

Full Name Dr David Pearce

AOU SECS

Position Associate Investigator

Primary? No

2 Given Name Michael

Surname Homer

Full Name Michael Homer

AOU SECS

Position Principal Investigator

Primary? Yes

7. Are any of the researchers from outside Victoria?*

Yes

No

8. Is the principal investigator a student?*

Yes

No

Next time you save this form or move to a new page, a Student Research page will appear after this one. Please complete the two questions on the Student
Research page.

Student Research
7a. What is your course code (e.g. ANTH 690)?*

COMP690

7b. Please add your primary supervisor (the supervisor who should review this application).

If your supervisor is also the Head of School or the school ethics officer, you will need to discuss with your School who should approve this application as Head of School or
delegate. The supervisor and Head of School or delegate must not be the same person.

To add your supervisor, search for their Victoria ID if known, otherwise either their first or last name (whichever is the most unusual).

Press the green tick at the bottom right corner to save the person record. *

1 Given Name Robert

Surname Noble

Full Name Prof James Noble

29/05/2014 Page 3 / 8

330 APPENDIX D. TILED GRACE EXPERIMENT

330

AOU SECS

Position Supervisor

If your supervisor is also the Head of School, you will need to assign a different person to the Head of School or Delegate role on the Signoff page.

7c. What is your email address? (this is needed in case the committee needs to contact you about this application)*

mwh@ecs.vuw.ac.nz

Note that system­generated emails (eg approval notifications) will not necessarily come to this address. System­generated emails will come to the email address stored for you in
Student Records. To change the record in Student Records, log into My Victoria, and click on Student Records. You will be able to update your email address from there.

Project Details
9. Describe the objectives of the project*

The objectives are to see whether users can use the new drag­and­drop interface we created, to see if and how they make use of the ability to
transition between tiled and textual display of their source code, and to measure how much they enjoyed using the system.

10. Describe the benefits and scientific value of the project*

We will find out how users interact with drag­and­drop displays of source code and whether such displays, in combination with the ability to
transition back and forth with textual display, are useful.

11. Describe the method of data collection. Note that later in this form, in the Documents section, you will need to upload any relevant documentation such as interview schedule,
survey, questionnaires, focus group rules, observation protocols etc. Delays are likely if the interview questions are missing from the Documents section. *

We will present each participant with the included the pre­ and post­questionnaires and a web browser running our Tiled Grace tool. The tool
will record screen contents and user interactions. There will be no video or audio recording, but we will observe and take notes. They will be
asked to produce a number of small programs using the tool, some beginning from partially­completed programs, and to describe programs and
what they have done, after a period of being shown the mechanics of the system.

12. Does your research have more than one phase?*

Yes

No

Key Dates
If approved, this application will cover this research project from the date of approval

13. Proposed end date for data collection*

30/06/2014

14. Proposed end date for research project as a whole*

31/12/2014

Proposed source of funding and other ethical considerations
15. Indicate any sources of funding, including self­funding (self­funding means that you are paying for research costs such as travel, postage etc. from your own funds) (tick all that

apply)

Internally funded

Externally funded

Self­funded

15a. Describe the source of funding*

Royal Society Marsden Fund Grant of James Noble

15b. Indicate any ethical issues or conflicts of interest that may arise because of sources of funding e.g. restrictions on publication of results*

None.

16. Is any professional code of ethics to be followed?*

Yes

No

16a. Name the professional code(s) of ethics *

Association for Computing Machinery Code of Ethics

29/05/2014 Page 4 / 8

331

331

17. Is ethical approval required from any other body?*

Yes

No

18 Depending on the characteristics of your participants or location of the research, you may need to arrange permission from another body or group before proceeding. If this is
the case, explain and describe how you are addressing this*

I will use computer laboratory resources from the School of Engineering and Computer Science and will schedule access through their procedures
and booking system.

Treaty of Waitangi
19. How does your research conform to the University's Treaty of Waitangi Statute? (you can access the statute from Victoria's Treaty of Waitangi page)*

This research conforms to the Treaty of Waitangi Statute and does not raise any relevant issues under it.

Information about participants
20. How many participants will be involved in your research? If you are using records (e.g. historical), please estimate the number of records*

20­40

21. What are the characteristics of the people you will be recruiting?*

Engineering or computer science students, in particular those taking COMP102/COMP112/ENGR101

22. Are you specifically recruiting any of the following groups?

Māori
Pasifika
Children/youth
Students
People who are offenders and/or victims of crime
People with disabilities
People in residential care
People who are refugees

Please indicate below.*

Yes

No

22a. Which of these groups will you be recruiting? (tick all that apply)*

Mā;ori

Pasifika

Children/youth

Students

People who are offenders and/or victims of crime

People with disabilities

People in residential care

People who are refugees

23. Have you undertaken any consultation with the groups from which you will be recruiting?*

No.

24. Provide details of consultation you have undertaken or are planning*

None.

25. Outline the method(s) of recruitment you will use for participants in your study*

Speaking at lectures of relevant courses, advertising posters in laboratories, online forums and lists associated with ECS courses, and word of
mouth.

26. Will your participants receive any gifts/koha in return for participating?*

Yes

No

26a. Describe the gifts/koha and the rationale*

There will be 2­3 prizes of gift vouchers amounting to no more than $50 per person to random participants, and there may be confectionery for
participants.

27. Will your participants receive any other assistance (for instance, meals, transport, release time or reimbursements)?*

Yes

29/05/2014 Page 5 / 8

332 APPENDIX D. TILED GRACE EXPERIMENT

332

No

28. Will your participants experience any special hazard/risk including deception and/or inconvenience as a result of the research?*

Yes

No

28a. Give details and indicate how you will manage this*

I am not exposing participants to any special hazard or risk.

29. Is any other party likely to experience any special hazard/risk including breach of privacy or release of commercially sensitive information?*

Yes

No

30. Do you have any professional, personal, or financial relationship with prospective research participants?*

Yes

No

31. What opportunity will participants have to review the information they provide? (tick all that apply)*

They will be given a transcript of their interview

They will be given a summary of their interview

Other

They will not have an opportunity to review the information they provide

31a. Explain how participants will be able to review the information they provide*

They can review the questionnaires before submitting them.

Informed consent
32. Will participation be anonymous? 'Anonymous' means that the identity of the research participant is not known to anyone involved in the research, including

researchers themselves. It is not possible for the researchers to identify whether the person took part in the research, or to subsequently identify people who took part
(e.g., by recognising them in different settings by their appearance, or being able to identify them retrospectively by their appearance, or because of the distinctiveness of the
information they were asked to provide).*

Yes

No

33. Will contributions of participants be confidential? Confidential means that those involved in the research are able to identify the participants but will not reveal their identity to
anyone outside the research team. Researchers will also take reasonable precautions to ensure that participants¿ identities cannot be linked to their responses in the future.*

Yes

No

33a. How will confidentiality be maintained in terms of access to the research data? (tick all that apply)*

Access to the research will be restricted to the investigator

Access to the research will be restricted to the investigator and their supervisor (student research

Focus groups will have confidentiality ground rules

Transcribers will sign confidentiality forms

Other

33b. How will confidentiality be maintained in terms of reporting of the data? (tick all that apply)*

Pseudonyms will be used

Participants will be named only in a list of interviewees

Data will be aggregated and so not reported at an individual level

Participants will be referred to by role or association with an organisation rather than by name

Names will be confidential, but other identifying characteristics may be published with consent

Other

34. How will informed consent be obtained? (tick all that apply to all phases of the research you are describing in this application)*

Informed consent will be implied through voluntary participation (anonymous research only)

Informed consent will be obtained through a signed consent form

Informed consent will be obtained by some other method

Access, storage, use, and disposal of data
35. What procedures will be in place for the storage of, access to and disposal of data, both during and at the conclusion of the research? (tick all that apply)*

All written material will be kept in a locked file; access restricted to investigator(s)

All electronic information will be password­protected; access restricted to the investigator(s)

29/05/2014 Page 6 / 8

333

333

All questionnaires, interview notes and similar materials will be destroyed

Any audio or video recording will be returned to participants and/or electronically wiped

Other procedures

35a. Describe the procedures for the storage of and access to the data*

Original electronic data will be stored with access restricted to the investigators. We will later remove all personally identifiable information and
allow other scientists to access this anonymised version of the data to comply with publishing requirements of computer science.

35b. Will the data be destroyed at the conclusion of the research?*

Yes

No

35c. How many years after the conclusion of the research will the materials be destroyed?*

999.00

36. If data and material are not to be destroyed, indicate why and the procedures envisaged for ongoing storage and security

The physical copies that have personally identifiable tags will be destroyed at the proposed date of completion of the project as a whole. Only
anonymised electronic copies will remain.

Dissemination
37 How will you provide feedback to participants?*

Participants will have the option to provide an email address to receive the results of the research after completion.

38. How will results be reported and published? Indicate which of the following are appropriate. The proposed form of publications should be indicated on the information sheet
and/or consent form*

Publication in academic or professional journals

Dissemination at academic or professional conferences

Availability of the research paper or thesis in the University Library and Institutional Repository

Other

38a. Describe how the results will be disseminated*

An anonymised version of the data set will be made public.

39. Is it likely that this research will generate commercialisable intellectual property? (check the help text for more information about IP)*

Yes

No

Documents
40. Please upload any documents relating to this application. Ensure that your files are small enough to upload easily, and in formats which reviewers can easily download and

review*

Description Reference Soft copy Hard copy

Participant information sheet(s) informationSheet.pdf

Participant consent form(s) consentForm.pdf

Questionnaire or survey pretest.pdf

Post­questionnaire posttest.pdf

Getting feedback on your application
You can seek feedback on your draft application, for instance from a mentor or a school Ethics representative before submitting it for review.

There are two ways of doing this:

1. Emailing your application to someone

You can email your application and any associated documents to another person at Victoria. To do this:

1. Click on the Action tab (on the left of the screen)
2. Click on Email application
3. Search for the person using either their first name or their last name (whichever is the most unusual)
4. Select the documents to include from the Document list (eg the Application PDF)
5. Click on Send or Zip and send

29/05/2014 Page 7 / 8

334 APPENDIX D. TILED GRACE EXPERIMENT

334

If you wish to send your application to someone outside Victoria, one option is emailing the application to yourself and then forwarding it.

2. Assigning a peer reviewer

You can add someone to the form as 'peer reviewer'. This means that they will be able to access your form by logging onto ResearchMaster. They will also be able to comment on
your form online. If you are a student, don't add your supervisor to the form as a peer reviewer ­ to get supervisor feedback, submit the form. Your supervisor
may then make comments on it and ask you to review it further before it goes to the committee for review. To do this:

1. Click on the Review tab on the left of the screen
2. Click on 'Peer reviewers'
3. Search for the person using their person code if known, or either their first name or their last name (whichever is the most unusual)
4. Click on the person's name
5. You may then also want to send the peer reviewer a notification, by clicking on Notify Peer Reviewer on the Actions tab

Signoff
41. Use this section to record signoff by all other researchers involved in this project (except for the principal investigator. Principal investigators do not need to sign off).

Principal Investigators may sign off on the behalf of researchers external to Victoria University who may be unable to access this site. In these cases, please upload evidence of
the researchers' signoff (eg, a scanned email) on the Documents page.

To sign off:

1. Click on the pencil icon on the far right of the line with your name on it
2. Click on I Accept
3. Add the date
4. Click on the green tick icon on the bottom of the signoff window
5. Go to the Actions tab and click on 'Notify lead researcher that signoff is complete'

1 Full Name Dr David Pearce

Position Associate Investigator

Declaration Signed? Yes

Signoff Date 14/01/2014

42. Please add the Head of School (or delegate. e.g. school ethics officer) who should approve this application. This will be your own Head of School, or the person in your School
responsible for approving Ethics applications. The form will be forwarded to this person automatically once it is submitted. Please check with your School administration
team if you are unclear who should be assigned this role. Adding the wrong person could lead to delays in processing your application.

If you are a student, the Head of School or delegate must not be the same person as your supervisor.

Once you've searched for your Head of School/delegate, click on the green tick to add them, and then also save the application before submitting.

Heads of School or delegates should process this form by clicking on the Actions tab and either approve it, or return it to the researcher for further changes. *

1 Given Name Dale

Surname Carnegie

Full Name Prof Dale Carnegie

AOU SECS

Position Head of School (or delegate)

Please ensure that you save your application before submitting it. Once you have saved your application, to submit it, click on 'Actions' on the left hand side of the screen
and then 'Submit for review'.

If you are a student, your application will go to your supervisor and then Head of School for approval once you submit it. If you are a staff member, your
application will go straight to the Head of School for approval once you submit it.

If you have any feedback about this online form, please email it to ethicsadmin@vuw.ac.nz

Amendment or extension request (available only for approved applications)
43. Are you applying for an extension, an amendment, or both?*

Extension

Amendment

Both an extension and an amendment
This question is not answered.

Please check that you have answered all mandatory questions and have saved the application before submitting your form. To submit your form, click on the Action tab and then
click on Submit for review

29/05/2014 Page 8 / 8

335

335

Phone 0-4-463 5676

Fax 0-4-463 5209

Email Allison.kirkman@vuw.ac.nz

TO Michael Homer

COPY TO David Pearce
James Noble

FROM Dr Allison Kirkman, Convener, Human Ethics Committee

DATE 1 March 2014

PAGES 1

SUBJECT Ethics Approval: 20573
Evaluating a drag-and-drop interface for Grace

Thank you for your application for ethical approval, which has now been considered by
the Standing Committee of the Human Ethics Committee.

Your application has been approved from the above date and this approval continues
until 31 December 2014. If your data collection is not completed by this date you should
apply to the Human Ethics Committee for an extension to this approval.

 Best wishes with the research.

 Allison Kirkman
 Human Ethics Committee

336 APPENDIX D. TILED GRACE EXPERIMENT

336

Appendix E

Tiled Grace Tour Script

Speech Action
This is a system for editing
programs graphically. There
are blocks of tiles you can
drag around.

We would drag one block of
tiles around the page at this
point.

You can drag them into things,
and you can drag them out of
things.

Here we would drag one
group into the body of the ob-
ject literal in the other group.

Over here you can choose
from different sets of tile you
might want to use.

We indicated the toolbox and
changed between groups here

Suppose we want to make five
plus two. Plus. Five. Two.

We constructed the expression
5 + 2 out of tiles.

Five divided by two. We changed the expression to
5 / 2 to indicate how to change
operators.

To delete something, drag it
over here; it goes red, you let
go, it’s gone.

We deleted the 5 / 2 we had
made.

337

338 APPENDIX E. TILED GRACE TOUR SCRIPT

Let’s run this program. It’s go-
ing to make us an artwork.

We ran the program.

Another thing we can do here
is switch to a textual view of
our code at any time.

We switched to the textual
view.

This is real editable text; you
can do anything you’d do
with text here.

We would select text with the
mouse at random here

Let’s make the program move
a little faster — ten units each
time.

We changed the distance
given to forward each step
here.

And run. We ran the program

And it’s faster. Now we can
switch back,

We switched back to the tiled
view.

and you see that our 10 has
come across with us too.

Through the experiment
you’ll be working with differ-
ent variants of the language.
The effect of that will be
that different tiles become
available from the sidebar.
This program is in a graphical
dialect with shapes and
movement.

We indicated the groups in the
toolbox again.

There’s this stop button in the
corner to stop the programs
running when you need to.

We indicated the stop button
in the corner.

338

339

Now let’s suppose there’s an
error in my program. Let’s
change this 10 to say “blah”.

We changed the 10 we had in-
serted into the forward() tile to
“blah”. We chose this error to
introduce as it is not one de-
liberately included as a part of
any experimental task.

Now if I try to run it, I can’t,
and it flashes at me; if I try to
switch views, I can’t, and it
flashes at me.

We clicked the “Run” and
“Code View” buttons.

If I hover over this red square We hovered the mouse
pointer over the error indica-
tor.

it fades out everything in the
program except what it thinks
is wrong, and it tries to tell us
what the problem is. Here it
says “’blah’ is not a valid num-
ber.”, which is fair enough, so
let’s change that back

We reverted “blah” to “10”.

— the square’s gone green,
and we can run again, and it
works.

What about if we had an error
in the text view?

We switched views to the text
view.

Let’s make the same change
here,

Here we changed the same 10

to blah.

339

340 APPENDIX E. TILED GRACE TOUR SCRIPT

and we get a red square again,
and a little marker in the mar-
gin. If we hover over that
marker

We hovered the mouse
pointer over the error indica-
tor in the text margin.

it’ll tell us what the error is
on this line, just a compiler er-
ror — “unknown variable or
method name ’blah’́’. If we try
to run now,

We clicked the “Run” button.

we can’t, and if we try to
switch views

We clicked the “Code View”
button.

we also can’t, but it’ll give
us this popup. Here’s the er-
ror we just saw, and here’s an
offer to reset our code back
to the last version that didn’t
have an error in it, and that we
can switch views with. Let’s
do that,

We chose “OK” in the DOM
confirm() dialogue box.

and it’s given us our 10 back,
and we can switch views
again. So you can change be-
tween tiles and text at any
time unless there’s an error in
the program at the moment.

We switched back to tiled
view.

Through the experiment
you’ll be doing different tasks.
Each of them will give you a
program over here

We indicated the program
source area on the left.

340

341

and a task up here We indicated the task descrip-
tion text area in the top-right.

The tasks will be things
like “change this program
to do something different”,
“fix this problem the program
has”, “describe this program”.
When you’re done with a task,
click this button

We indicated the “Continue to
next task” button.

to move on to the next one.
It’ll also prompt you to move
on after a few minutes —
don’t worry about that, it’s
just so we can fit everything
into a 30-minute window, just
move on when it says. Now
I’ll get you into the experi-
ment proper.

We switched the participant
or participants to a differ-
ent browser tab displaying
the original tutorial program.
This tab contained the instru-
mentation necessary to record
interaction data.

This is the same program we
were just looking at. You can
get used to the system here,
and then move on to the first
task with this button when
you’re ready. The final ques-
tionnaire is in the next tab to
the right.

We left participants at this
point and retired to our obser-
vation point.

341

342 APPENDIX E. TILED GRACE TOUR SCRIPT

342

Bibliography

[1] Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt.
The Fortress language specification version 1.0β. Technical report,
Sun Microsystems, Inc., March 2007. Cited on page 120.

[2] William F. Atchison, Samuel D. Conte, John W. Hamblen, Thomas E.
Hull, Thomas A. Keenan, William B. Kehl, Edward J. McCluskey,
Silvio O. Navarro, Werner C. Rheinboldt, Earl J. Schweppe, William
Viavant, and David M. Young, Jr. Curriculum 68: Recommenda-
tions for academic programs in computer science: A report of the
ACM curriculum committee on computer science. Commun. ACM,
11(3):151–197, March 1968. Cited on page 11.

[3] Lennart Augustsson, Howard Mansell, and Ganesh Sittampalam.
Paradise: A two-stage DSL embedded in Haskell. In Proceedings
of the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’08, pages 225–228, New York, NY, USA, 2008. ACM.
Cited on page 40.

[4] Daniel Ballinger, Robert Biddle, and James Noble. Spreadsheet vi-
sualisation to improve end-user understanding. In Proceedings of the
Asia-Pacific Symposium on Information Visualisation - Volume 24, APVis
’03, pages 99–109, Darlinghurst, Australia, Australia, 2003. Australian
Computer Society, Inc. Cited on page 54.

343

344 BIBLIOGRAPHY

[5] Wolmet Barendregt and Mathilde M. Bekker. Children may expect
drag-and-drop instead of point-and-click. In CHI ’11 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’11, pages
1297–1302, New York, NY, USA, 2011. ACM. Cited on pages 266
and 279.

[6] Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Lost in trans-
lation: Formalizing proposed extensions to C#. In Proceedings of the
22Nd Annual ACM SIGPLAN Conference on Object-oriented Program-
ming Systems and Applications, OOPSLA ’07, pages 479–498, New
York, NY, USA, 2007. ACM. Cited on page 185.

[7] Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble.
Grace: The absence of (inessential) difficulty. In Proceedings of the
ACM International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software, Onward! ’12, pages 85–98, New
York, NY, USA, 2012. ACM. Cited on page 57.

[8] Andrew P. Black, Kim B. Bruce, Michael Homer, James Noble, Amy
Ruskin, and Richard Yannow. Seeking grace: A new object-oriented
language for novices. In Proceeding of the 44th ACM Technical Sympo-
sium on Computer Science Education, SIGCSE ’13, pages 129–134, New
York, NY, USA, 2013. ACM. Cited on page 57.

[9] Douglas Blank, Jennifer S. Kay, James B. Marshall, Keith O’Hara, and
Mark Russo. Calico: A multi-programming-language, multi-context
framework designed for computer science education. In Proceedings
of the 43rd ACM Technical Symposium on Computer Science Education,
SIGCSE ’12, pages 63–68, New York, NY, USA, 2012. ACM. Cited on
pages 50 and 277.

[10] Blockly Project. Blockly web site. https://code.google.com/
p/blockly/. Cited on pages 48 and 275.

344

https://code.google.com/p/blockly/
https://code.google.com/p/blockly/

BIBLIOGRAPHY 345

[11] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor
Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad. Thorn: Robust,
concurrent, extensible scripting on the JVM. In Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 117–136, New York,
NY, USA, 2009. ACM. Cited on page 21.

[12] Bard Bloom and Martin J. Hirzel. Robust scripting via patterns.
SIGPLAN Notices, 48(2):29–40, October 2012. Cited on page 21.

[13] Matthias Blume, Umut A. Acar, and Wonseok Chae. Extensible
programming with first-class cases. In Proceedings of the Eleventh
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’06, pages 239–250, New York, NY, USA, 2006. ACM. Cited on
page 111.

[14] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E.
Keene, Gregor Kiczales, and David A. Moon. Common LISP Ob-
ject System specification X3J13 Document 88-002R. ACM SIGPLAN
Notices, 23(SI):1–142, September 1988. Cited on page 120.

[15] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox, and Eliot Miranda. Modules as objects in Newspeak. In Pro-
ceedings of the 24th European Conference on Object-oriented Programming,
ECOOP’10, pages 405–428, Berlin, Heidelberg, 2010. Springer-Verlag.
Cited on pages 28, 131, and 144.

[16] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco
Visser. Stratego/XT 0.16: Components for transformation systems. In
Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation, PEPM ’06, pages 95–99,
New York, NY, USA, 2006. ACM. Cited on page 44.

345

346 BIBLIOGRAPHY

[17] Quinn Burke and Yasmin B. Kafai. The writers’ workshop for youth
programmers: Digital storytelling with Scratch in middle school
classrooms. In Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE ’12, pages 433–438, New York,
NY, USA, 2012. ACM. Cited on pages 13 and 203.

[18] Eugene Burmako, Martin Odersky, Christopher Vogt, Stefan Zeiger,
and Adriaan Moors. Scala macros. http://scalamacros.org,
April 2012. Cited on pages 38 and 195.

[19] Margaret Burnett, Andrei Sheretov, Bing Ren, and Gregg Rothermel.
Testing homogeneous spreadsheet grids with the "what you see is
what you test" methodology. IEEE Transactions on Software Engineering,
28(6):576–594, June 2002. Cited on page 54.

[20] Calico Project. Calico web site. http://calicoproject.org/

Calico. Cited on page 50.

[21] Rachel Cardell-Oliver. How can software metrics help novice pro-
grammers? In Proceedings of the Thirteenth Australasian Computing
Education Conference - Volume 114, ACE ’11, pages 55–62, Darlinghurst,
Australia, Australia, 2011. Australian Computer Society, Inc. Cited
on page 9.

[22] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3 language definition. SIGPLAN
Notices, 27(8):15–42, August 1992. Cited on page 32.

[23] Janet Carter, Dennis Bouvier, Rachel Cardell-Oliver, Margaret Hamil-
ton, Stanislav Kurkovsky, Stefanie Markham, O. William McClung,
Roger McDermott, Charles Riedesel, Jian Shi, and Su White. Moti-
vating all our students? In Proceedings of the 16th Annual Conference
Reports on Innovation and Technology in Computer Science Education -

346

http://scalamacros.org
http://calicoproject.org/Calico
http://calicoproject.org/Calico

BIBLIOGRAPHY 347

Working Group Reports, ITiCSE-WGR ’11, pages 1–18, New York, NY,
USA, 2011. ACM. Cited on page 5.

[24] Michael E. Caspersen and Jens Bennedsen. Instructional design of a
programming course: A learning theoretic approach. In Proceedings
of the Third International Workshop on Computing Education Research,
ICER ’07, pages 111–122, New York, NY, USA, 2007. ACM. Cited on
page 10.

[25] Craig Chambers. The Cecil language, specification and rationale.
Technical report, Department of Computer Science and Engineering,
University of Washington, 1993. Cited on page 120.

[26] David G. Clarke, John M. Potter, and James Noble. Ownership types
for flexible alias protection. In Proceedings of the 13th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’98, pages 48–64, New York, NY, USA, 1998.
ACM. Cited on page 167.

[27] Douglas H. Clements and Dominic F. Gullo. Effects of computer
programming on young children’s cognition. Journal of Educational
Psychology, 76(6), 1984. Cited on page 8.

[28] Damian Conway. Leading::Zeros Perl module. http://search.
cpan.org/~dconway/Leading-Zeros-0.0.2/. Cited on
page 45.

[29] Damian Conway. Lingua::Romana::Perligata. http://search.

cpan.org/~dconway/Lingua-Romana-Perligata/. Cited on
page 45.

[30] Damian Conway. Smart::Comments perl module. http://search.
cpan.org/~dconway/Smart-Comments-1.000005/. Cited on
page 46.

347

http://search.cpan.org/~dconway/Leading-Zeros-0.0.2/
http://search.cpan.org/~dconway/Leading-Zeros-0.0.2/
http://search.cpan.org/~dconway/Lingua-Romana-Perligata/
http://search.cpan.org/~dconway/Lingua-Romana-Perligata/
http://search.cpan.org/~dconway/Smart-Comments-1.000005/
http://search.cpan.org/~dconway/Smart-Comments-1.000005/

348 BIBLIOGRAPHY

[31] Stephen Cooper, Wanda Dann, and Randy Pausch. Teaching objects-
first in introductory computer science. In ACM SIGCSE Bulletin,
volume 35, 2003. Cited on pages 51 and 275.

[32] J.R. Cordy, C.D. Halpern, and E. Promislow. TXL: a rapid prototyping
system for programming language dialects. In Computer Languages,
1988. Proceedings., International Conference on, pages 280–285, Oct 1988.
Cited on page 44.

[33] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. Ad-
vanced macrology and the implementation of Typed Scheme. In
ICFP workshop on Scheme and Functional Programming, 2007. Cited on
page 35.

[34] Dave Cunningham, Rajesh Bordawekar, and Vijay Saraswat. GPU
programming in a high level language: Compiling X10 to CUDA. In
SIGPLAN X10 Workshop, pages 8:1–8:10, New York, NY, USA, 2011.
ACM. Cited on page 181.

[35] J Dalbey and M. C. Linn. The demands and requirements of computer
programming: a literature review. Journal of Educational Computing
Research, 1(3), 1985. Cited on pages 7 and 8.

[36] Wanda P. Dann, Stephen Cooper, and Randy Pausch. Learning to
Program with Alice. Pearson Prentice Hall, 2011. Cited on page 13.

[37] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De
Meuter. Ambient-oriented programming in AmbientTalk. In Proceed-
ings of the 20th European Conference on Object-Oriented Programming,
ECOOP’06, pages 230–254, 2006. Cited on page 29.

[38] Victor R. Delclos, Joan Littlefield, and John D. Bransford. Teaching
thinking through Logo: The importance of method. Roeper Review,
7(3), 1985. Cited on page 8.

348

BIBLIOGRAPHY 349

[39] Véronique Donzeau-Gouge, Gilles Kahn, Bernard Lang, Bertrand
Melese, and Elham Morcos. Outline of a tool for document manipu-
lation. In IFIP Congress, pages 615–620, 1983. Cited on page 41.

[40] Droplet authors. Droplet source repository. https://github.

com/dabbler0/droplet. Cited on pages 54 and 276.

[41] Jennifer L. Dyck and Richard E. Mayer. Teaching for transfer of com-
puter program comprehension skill. Journal of Educational Psychology,
81(1), 1989. Cited on pages 7 and 8.

[42] Eclipse Software Foundation. Little tortoise Xtext language.
http://www.eclipse.org/Xtext/7languagesDoc.html#

tortoise, last accessed June 4, 2014. Cited on pages 198 and 199.

[43] Eclipse Software Foundation. Xtext web site. http://www.

eclipse.org/Xtext/index.html, 2013. Cited on pages 43
and 156.

[44] Standard ECMA-262 ECMAScript Language Specification, 3rd Edi-
tion. Technical report, Ecma International, 1999. Cited on page 296.

[45] ECMA-262, 5th Edition. Technical report, Ecma International, 2009.
Cited on page 296.

[46] Burak Emir, Martin Odersky, and John Williams. Matching objects
with patterns. In Proceedings of the 21st European Conference on Object-
Oriented Programming, ECOOP’07, pages 273–298, Berlin, Heidelberg,
2007. Springer-Verlag. Cited on pages 16, 17, 74, and 104.

[47] EPFL. Environment, universes, and mirrors – Scala doc-
umentation. http://docs.scala-lang.org/overviews/

reflection/environment-universes-mirrors.html, 2013.
Cited on pages 38 and 195.

349

https://github.com/dabbler0/droplet
https://github.com/dabbler0/droplet
http://www.eclipse.org/Xtext/7languagesDoc.html#tortoise
http://www.eclipse.org/Xtext/7languagesDoc.html#tortoise
http://www.eclipse.org/Xtext/index.html
http://www.eclipse.org/Xtext/index.html
http://docs.scala-lang.org/overviews/reflection/environment-universes-mirrors.html
http://docs.scala-lang.org/overviews/reflection/environment-universes-mirrors.html

350 BIBLIOGRAPHY

[48] Moritz Eysholdt and Heiko Behrens. Xtext: Implement your lan-
guage faster than the quick and dirty way. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, SPLASH ’10, pages
307–309, New York, NY, USA, 2010. ACM. Cited on pages 43 and 198.

[49] Mattias Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. The
DrScheme project: An overview. SIGPLAN Notices, 33(6):17–23, June
1998. Cited on pages 12 and 13.

[50] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
DrScheme: a programming environment for Scheme. J. Funct. Pro-
gram., 12(2):159–182, 2002. Cited on page 35.

[51] Bryan Ford. Parsing expression grammars: A recognition-based
syntactic foundation. SIGPLAN Notices, 39(1):111–122, January 2004.
Cited on page 22.

[52] Martin Fowler. Domain Specific Languages. AW, 2011. Cited on
page 38.

[53] Diana Franklin, Phillip Conrad, Bryce Boe, Katy Nilsen, Charlotte
Hill, Michelle Len, Greg Dreschler, Gerardo Aldana, Paulo Almeida-
Tanaka, Brynn Kiefer, Chelsea Laird, Felicia Lopez, Christine Pham,
Jessica Suarez, and Robert Waite. Assessment of computer science
learning in a Scratch-based outreach program. In Proceeding of the 44th
ACM Technical Symposium on Computer Science Education, SIGCSE ’13,
pages 371–376, New York, NY, USA, 2013. ACM. Cited on pages 13
and 203.

[54] Free Software Foundation. The GNU General Public License v3.0.
https://gnu.org/licenses/gpl, accessed May 15 2014. Cited
on page 282.

350

https://gnu.org/licenses/gpl

BIBLIOGRAPHY 351

[55] N. Freed, J. Klensin, and T. Hansen. Media Type Specifications and
Registration Procedures. RFC 6838 (Best Current Practice), January
2013. Cited on page 141.

[56] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.
Design Patterns. Addison-Wesley, 1994. Cited on pages 87 and 154.

[57] Sandy Garner, Patricia Haden, and Anthony Robins. My program is
correct but it doesn’t run: A preliminary investigation of novice pro-
grammers’ problems. In Proceedings of the 7th Australasian Conference
on Computing Education - Volume 42, ACE ’05, pages 173–180, Dar-
linghurst, Australia, Australia, 2005. Australian Computer Society,
Inc. Cited on page 9.

[58] Felix Geller, Robert Hirschfeld, and Gilad Bracha. Pattern matching
for an object-oriented and dynamically typed programming language.
Technical Report 36, Hasso-Plattner-Instituts für Sofwaresystemtech-
nik an der Universität Potsdam, 2010. Cited on pages 16, 17, 19, 74,
104, and 108.

[59] Douglas J. Gillan, Kritina Holden, Susan Adam, Marianne Rudisill,
and Laura Magee. How does Fitts’ law fit pointing and dragging? In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’90, pages 227–234, New York, NY, USA, 1990. ACM.
Cited on page 266.

[60] Go Project. Go language website. http://golang.org/, 2013.
Cited on pages 27, 30, and 145.

[61] Valentina Grigoreanu, Margaret Burnett, Susan Wiedenbeck, Jill Cao,
Kyle Rector, and Irwin Kwan. End-user debugging strategies: A
sensemaking perspective. ACM Transactions on Computer-Human
Interaction, 19(1):5:1–5:28, May 2012. Cited on pages 54 and 216.

351

http://golang.org/

352 BIBLIOGRAPHY

[62] A N Habermann and D Notkin. Gandalf: Software development
environments. IEEE Transactions on Software Engineering, 12(12):1117–
1127, December 1986. Cited on page 41.

[63] Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: a high-level
directive-based language for GPU programming. GPGPU-2, pages
52–61, New York, NY, USA, 2009. ACM. Cited on page 181.

[64] Karl Hasselström and Jon Åslund. The Shakespeare programming
language. http://shakespearelang.sourceforge.net, Au-
gust 2001. Cited on page 45.

[65] Philip Hazel. Perl-compatible regular expressions. The University of
Cambridge, 2012. pcre.org. Cited on page 114.

[66] Martin Hirzel, Nathaniel Nystrom, Bard Bloom, and Jan Vitek. Match-
ete: Paths through the pattern matching jungle. In PADL, 2008. Cited
on page 21.

[67] Richard C. Holt and David B. Wortman. A sequence of structured
subsets of PL/I. SIGCSE Bulletin, 6(1):129–132, January 1974. Cited
on pages 12 and 35.

[68] Michael Homer. Grace-CUDA source repository. https://github.
com/mwh/grace-cuda, 2013. Cited on pages 178 and 300.

[69] Michael Homer. Grace-GTK source repository. https://github.
com/mwh/grace-gtk, 2013. Cited on pages 137 and 298.

[70] Michael Homer, Kim B. Bruce, James Noble, and Andrew P. Black.
Modules as gradually-typed objects. In Proceedings of the 7th Workshop
on Dynamic Languages and Applications, DYLA ’13, pages 1:1–1:8, New
York, NY, USA, 2013. ACM. Cited on pages 2 and 123.

[71] Michael Homer, Timothy Jones, James Noble, Kim B. Bruce, and
Andrew P. Black. Graceful dialects. In Richard Jones, editor, ECOOP

352

http://shakespearelang.sourceforge.net
pcre.org
https://github.com/mwh/grace-cuda
https://github.com/mwh/grace-cuda
https://github.com/mwh/grace-gtk
https://github.com/mwh/grace-gtk

BIBLIOGRAPHY 353

2014 — Object-Oriented Programming, volume 8586 of Lecture Notes in
Computer Science, pages 131–156. Springer Berlin Heidelberg, 2014.
Cited on pages 2, 149, and 173.

[72] Michael Homer and James Noble. A tile-based editor for a textual
programming language. In Proceedings of IEEE Working Conference on
Software Visualization, VISSOFT’13, pages 1–4, Sept 2013. Cited on
pages 2 and 203.

[73] Michael Homer and James Noble. Combining tiled and textual views
of code. In Proceedings of IEEE Working Conference on Software Visual-
ization, VISSOFT’14, Sept 2014. Cited on pages 2 and 203.

[74] Michael Homer, James Noble, Kim B. Bruce, Andrew P. Black, and
David J. Pearce. Patterns as objects in Grace. In Proceedings of the 8th
Symposium on Dynamic Languages, DLS ’12, pages 17–28, New York,
NY, USA, 2012. ACM. Cited on pages 2 and 73.

[75] R Nigel Horspool, Judith Bishop, Arjmand Samuel, Nikolai Till-
mann, Michał Moskal, Jonathan de Halleux, and Manuel Fähndrich.
TouchDevelop: Programming on the Go. Microsoft Research, 2013. Cited
on page 52.

[76] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley, 1999. Cited on page 135.

[77] IBM Globalization Center of Competency. ICU – international com-
ponents for Unicode. http://site.icu-project.org/. Cited
on page 295.

[78] Kazuhiro Ichikawa and Shigeru Chiba. Composable user-defined
operators that can express user-defined literals. In Proceedings of the
13th International Conference on Modularity, MODULARITY ’14, pages
13–24, New York, NY, USA, 2014. ACM. Cited on page 43.

353

http://site.icu-project.org/

354 BIBLIOGRAPHY

[79] IEEE and The Open Group. dlopen. In POSIX.1-2008 [80]. URL:
http://pubs.opengroup.org/onlinepubs/9699919799/

functions/dlopen.html, 2013. Cited on pages 190 and 289.

[80] IEEE and The Open Group. POSIX.1-2008; The Open Group Base
Specifications, Issue 7; IEEE Std 1003.1, 2013 Edition. IEEE, 2013. Cited
on page 354.

[81] Roberto Ierusalimschy. A text pattern-matching tool based on parsing
expression grammars. Softw. Pract. Exper., 39(3). Cited on pages 22
and 115.

[82] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar
Celes. The evolution of Lua. In Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, HOPL III, pages 2–1–
2–26, New York, NY, USA, 2007. ACM. Cited on page 34.

[83] Takeo Igarashi, Jock D. Mackinlay, Bay-Wei Chang, and Polle T. Zell-
weger. Fluid visualization of spreadsheet structures. In Proceedings of
the IEEE Symposium on Visual Languages, VL ’98, pages 118–, Wash-
ington, DC, USA, 1998. IEEE Computer Society. Cited on page 54.

[84] Kori M. Inkpen. Drag-and-drop versus point-and-click mouse in-
teraction styles for children. ACM Transactions on Computer-Human
Interaction, 8(1):1–33, March 2001. Cited on page 266.

[85] Barry Jay. Pattern Calculus: Computing with Functions and Structures.
Springer-Verlag, 2009. Cited on pages 15 and 23.

[86] R. A. Jeffries. Comparison of debugging behavior of novice and
expert programmers. In AERA Annual Meeting, 1982. Cited on
page 216.

[87] Kathleen Jensen and Niklaus Wirth. Pascal User Manual and Report.
Springer, 1975. Cited on page 12.

354

http://pubs.opengroup.org/onlinepubs/9699919799/functions/dlopen.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/dlopen.html

BIBLIOGRAPHY 355

[88] Association for Computing Machinery (ACM) Joint Task Force on
Computing Curricula and IEEE Computer Society. Computer Science
Curricula 2013: Curriculum Guidelines for Undergraduate Degree Pro-
grams in Computer Science. ACM, New York, NY, USA, 2013. 999133.
Cited on pages 11 and 73.

[89] Mark P. Jones. Experience report: playing the DSL card. In Proceed-
ings of the 13th ACM SIGPLAN international conference on Functional
programming (ICFP), ICFP ’08, pages 87–90, New York, NY, USA, 2008.
ACM. Cited on page 40.

[90] Seonghoon Kang and Sukyoung Ryu. Formal specification of a
JavaScript module system. SIGPLAN Notices, 47(10):621–638, Oc-
tober 2012. Cited on page 30.

[91] Lennart C.L. Kats and Eelco Visser. The Spoofax language work-
bench: Rules for declarative specification of languages and ides. In
Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’10, pages
444–463, New York, NY, USA, 2010. ACM. Cited on page 45.

[92] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. Storytelling Alice
motivates middle school girls to learn computer programming. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’07, pages 1455–1464, New York, NY, USA, 2007. ACM.
Cited on page 235.

[93] John G. Kemeny and Thomas E. Kurtz. A Manual for BASIC,
the elementary language designed for use with the Dartmouth Time
Sharing System. Available from http://bitsavers.informatik.

uni-stuttgart.de/pdf/dartmouth/BASIC_Oct64.pdf.
Cited on page 11.

355

http://bitsavers.informatik.uni-stuttgart.de/pdf/dartmouth/BASIC_Oct64.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/dartmouth/BASIC_Oct64.pdf

356 BIBLIOGRAPHY

[94] Brian W. Kernighan. Why Pascal is not my favourite programming
language. Computing Science TR 100, AT&T Bell Laboratories, 1981.
Available from http://cm.bell-labs.com/cm/cs/cstr/100.

ps.gz. Cited on page 12.

[95] Michael Kölling. The Greenfoot programming environment. ACM
Transactions on Computer Education, 10(4):14:1–14:21, November 2010.
Cited on page 52.

[96] B. B. Kristensen, Ole L. Madsen, B. Möller-Pedersen, and K. Nygaard.
Syntax-directed program modularization. In P. Degano and E. Sande-
wall, editors, Integrated Interactive Computing Systems, pages 207–219.
North-Holland, Amsterdam, 1983. Cited on page 31.

[97] Chris Lattner. LLVM: An infrastructure for multi-stage optimization.
Master’s thesis, Computer Science Dept., University of Illinois at
Urbana-Champaign, 2002. Cited on page 292.

[98] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol,
Jonathan Robie, Mike Champion, and Steve Byrne. Document Object
Model (DOM) level 3 core specification. http://www.w3.org/TR/
2004/REC-DOM-Level-3-Core-20040407/, April 2004. Cited
on page 207.

[99] LEGO Group. Lego Mindstorms web site. http://mindstorms.
lego.com/. Cited on page 49.

[100] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combina-
tors for the real world. Technical Report UU-CS-2001-27, Universiteit
Utrecht, 2001. Cited on page 114.

[101] U. Leron. Quasi-Piagetian learning in Logo. Journal of Computers in
Mathematics and Science Teaching, 4, 1984. Cited on page 8.

356

http://cm.bell-labs.com/cm/cs/cstr/100.ps.gz
http://cm.bell-labs.com/cm/cs/cstr/100.ps.gz
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://mindstorms.lego.com/
http://mindstorms.lego.com/

BIBLIOGRAPHY 357

[102] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. The OCaml system release 3.12: Doc-
umentation and user’s manual. http://caml.inria.fr/pub/

docs/manual-ocaml/index.html, July 2011. Cited on pages 16,
21, and 113.

[103] Colleen Lewis, Sarah Esper, Victor Bhattacharyya, Noelle Fa-Kaji,
Neftali Dominguez, and Arielle Schlesinger. Children’s perceptions
of what counts as a programming language. J. Comput. Sci. Coll.,
29(4):123–133, April 2014. Cited on page 210.

[104] Colleen M. Lewis. How programming environment shapes percep-
tion, learning and goals: Logo vs. Scratch. In Proceedings of the 41st
ACM Technical Symposium on Computer Science Education, SIGCSE ’10,
pages 346–350, New York, NY, USA, 2010. ACM. Cited on page 210.

[105] Sheng Liang. Java Native Interface: Programmer’s Guide and Reference.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1999. Cited on page 34.

[106] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig Schaffert.
Abstraction mechanisms in CLU. Comm. ACM, 20(8):564–576, August
1977. Cited on page 31.

[107] Raymond Lister. Computing education research: Geek genes and
bimodal grades. ACM Inroads, 1(3):16–17, September 2011. Cited on
page 6.

[108] Raymond Lister and Ilona Box. A citation analysis of the SIGCSE 2007
proceedings. In Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education, SIGCSE ’08, pages 476–480, New York,
NY, USA, 2008. ACM. Cited on page 9.

[109] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot
Soloway. Mental models and software maintenance. In Papers Pre-

357

http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/manual-ocaml/index.html

358 BIBLIOGRAPHY

sented at the First Workshop on Empirical Studies of Programmers, pages
80–98, Norwood, NJ, USA, 1986. Ablex Publishing Corp. Cited on
page 124.

[110] LLVM website. http://www.llvm.org/. Cited on page 292.

[111] Robert Lockhart. Codemancer home page. http:

//codemancergame.com/. Cited on page 49.

[112] David H. Lorenz and Boaz Rosenan. Cedalion: A language for
language oriented programming. In Proceedings of the 2011 ACM
International Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’11, pages 733–752, New York, NY,
USA, 2011. ACM. Cited on pages 35, 41, and 196.

[113] I. Scott MacKenzie, Abigail Sellen, and William A. S. Buxton. A
comparison of input devices in element pointing and dragging tasks.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’91, pages 161–166, New York, NY, USA, 1991. ACM.
Cited on page 266.

[114] David MacQueen. Modules for Standard ML. In Proceedings of the
1984 ACM Symposium on LISP and Functional Programming, LFP ’84,
pages 198–207. ACM, 1984. Cited on page 31.

[115] John H. Maloney, Kylie Peppler, Yasmin Kafai, Mitchel Resnick, and
Natalie Rusk. Programming by choice: Urban youth learning pro-
gramming with Scratch. SIGCSE Bulletin, 40(1):367–371, March 2008.
Cited on pages 13 and 203.

[116] Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd D. Mill-
stein, Chris Andreae, and James Noble. JavaCOP: Declarative plug-
gable types for Java. ACM Transactions on Programming Languages and
Systems, 32(2), 2010. Cited on page 46.

358

http://www.llvm.org/
http://codemancergame.com/
http://codemancergame.com/

BIBLIOGRAPHY 359

[117] Simon Marlow. Haskell 2010 language report, 2010. Available at
http://www.haskell.org/onlinereport/haskell2010/.
Cited on pages 16, 23, and 34.

[118] Paul Marquess. Source filters. The Perl Journal, Issue #11, 1988. Cited
on page 45.

[119] Eugene McArdle, Jason Holdsworth, and Ickjai Lee. Assessing the
usability of students object-oriented language with first-year IT stu-
dents: A case study. In Proceedings of the 25th Australian Computer-
Human Interaction Conference: Augmentation, Application, Innovation,
Collaboration, OzCHI ’13, pages 181–188, New York, NY, USA, 2013.
ACM. Cited on page 14.

[120] Eugene McArdle, Jason Holdsworth, and Sui Man Lui. Usability eval-
uation of SOLA: An object-oriented programming environment for
children. In World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education, 2009. Cited on page 14.

[121] John McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part I. Commun. ACM, 3(4):184–195,
April 1960. Cited on page 12.

[122] James McKinna. Why dependent types matter. In Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’06, pages 1–1, New York, NY, USA, 2006.
ACM. Cited on page 103.

[123] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari.
Habits of programming in scratch. In Proceedings of the 16th Annual
Joint Conference on Innovation and Technology in Computer Science Edu-
cation, ITiCSE ’11, pages 168–172, New York, NY, USA, 2011. ACM.
Cited on pages 13 and 274.

359

http://www.haskell.org/onlinereport/haskell2010/

360 BIBLIOGRAPHY

[124] Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-
Ari. Learning computer science concepts with Scratch. In Proceedings
of the Sixth International Workshop on Computing Education Research,
ICER ’10, pages 69–76, New York, NY, USA, 2010. ACM. Cited on
pages 13 and 203.

[125] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992. Cited on
page 158.

[126] Microsoft. Microsoft PE and COFF specification. Technical report,
Microsoft, 2013. Available from http://msdn.microsoft.com/

en-us/windows/hardware/gg463119.aspx, accessed April 9,
2014. Cited on page 191.

[127] Eliot Miranda. Newspeak foreign function interface user
guide. http://wiki.squeak.org/squeak/uploads/6100/

Alien%20FFI.pdf, 2009. Cited on page 34.

[128] Hisham Muhammad, Fabio Mascarenhas, and Roberto Ierusalimschy.
LuaRocks - a declarative and extensible package management system
for Lua. In André Rauber Du Bois and Phil Trinder, editors, Program-
ming Languages, volume 8129 of Lecture Notes in Computer Science,
pages 16–30. Springer Berlin Heidelberg, 2013. Cited on page 132.

[129] Laurie Murphy and Lynda Thomas. Dangers of a fixed mindset:
Implications of self-theories research for computer science education.
SIGCSE Bulletin, 40(3):271–275, June 2008. Cited on page 10.

[130] Linda MvIver and Damian Conway. GRAIL: A zeroth programming
language. In International Conference on Computers in Education, 1999.
Cited on page 14.

[131] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung,
Alex Potanin, and Jonathan Aldrich. Wyvern: A simple, typed,

360

http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
http://wiki.squeak.org/squeak/uploads/6100/Alien%20FFI.pdf
http://wiki.squeak.org/squeak/uploads/6100/Alien%20FFI.pdf

BIBLIOGRAPHY 361

and pure object-oriented language. In Proceedings of the 5th Work-
shop on MechAnisms for SPEcialization, Generalization and inHerItance,
MASPEGHI ’13, pages 9–16, New York, NY, USA, 2013. ACM. Cited
on pages 42 and 196.

[132] James Noble and John Grundy. Explicit relationships in object ori-
ented development. In TOOLS 18. Prentice Hall, 1995. Cited on
page 175.

[133] Ulf Norell. Dependently typed programming in Agda. In Pieter
W. M. Koopman, Rinus Plasmeijer, and S. Doaitse Swierstra, editors,
Advanced Functional Programming, volume 5832 of Lecture Notes in
Computer Science, pages 230–266. Springer, 2008. Cited on page 103.

[134] NVIDIA Corporation. CUDA parallel programming and computing
platform web site. http://www.nvidia.com/object/cuda_

home_new.html, 2013. Cited on pages 178 and 300.

[135] Martin Odersky. In defense of pattern matching. Accessed Aug
2012. http://www.artima.com/weblogs/viewpost.jsp?

thread=166742, June 2006. Cited on page 104.

[136] Martin Odersky. Pattern matching wrap-up. Accessed Aug
2012. http://www.artima.com/weblogs/viewpost.jsp?

thread=168839, July 2006. Cited on page 104.

[137] Martin Odersky. Scala contracts. In Runtime Verification, 2010. Cited
on page 158.

[138] Martin Odersky. The Scala language specification. Technical report,
Programming Methods Laboratory, EPFL, 2011. Cited on pages 32,
37, and 195.

[139] Cyrus Omar, Benjamin Chung, Darya Kurilova, Alex Potanin, and
Jonathan Aldrich. Type-directed, whitespace-delimited parsing for

361

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.artima.com/weblogs/viewpost.jsp?thread=166742
http://www.artima.com/weblogs/viewpost.jsp?thread=166742
http://www.artima.com/weblogs/viewpost.jsp?thread=168839
http://www.artima.com/weblogs/viewpost.jsp?thread=168839

362 BIBLIOGRAPHY

embedded dsls. In Proceedings of the First Workshop on the Globalization
of Domain Specific Languages, GlobalDSL ’13, pages 8–11, New York,
NY, USA, 2013. ACM. Cited on pages 42 and 196.

[140] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex
Potanin, and Jonathan Aldrich. Safely composable type-specific
languages. In Proceedings of the 28th European Conference on Object-
oriented Programming, ECOOP’14, 2014. To appear. Cited on page 42.

[141] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. My-
ers. Active code completion. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages 859–869, Piscat-
away, NJ, USA, 2012. IEEE Press. Cited on page 54.

[142] D. B. Palumbo. Programming language/problem-solving research: a
review of relevant issues. Review of Educational Research, 60(1):65–89,
1990. Cited on pages 7 and 211.

[143] Seymour Papert. Mindstorms: children, computers, and powerful ideas.
Basic Books, Inc., 1980. Cited on pages 8, 13, and 49.

[144] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H.
Perkins, and Michael D. Ernst. Practical pluggable types for Java. In
ISSTA, 2008. Cited on page 46.

[145] Parrot Foundation. Parrot virtual machine. http://parrot.org/.
Cited on page 292.

[146] Dale Parsons and Patricia Haden. Programming osmosis: Knowledge
transfer from imperative to visual programming environments, 2007.
Cited on page 203.

[147] David J. Pearce and Lindsay Groves. Whiley: A platform for research
in software verification. In Martin Erwig, Richard F. Paige, and Eric
Wyk, editors, Software Language Engineering, volume 8225 of Lecture

362

http://parrot.org/

BIBLIOGRAPHY 363

Notes in Computer Science, pages 238–248. Springer International Pub-
lishing, 2013. Cited on page 103.

[148] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Eliza-
beth Adams, Jens Bennedsen, Marie Devlin, and James Paterson. A
survey of literature on the teaching of introductory programming.
In Working Group Reports on ITiCSE on Innovation and Technology in
Computer Science Education, ITiCSE-WGR ’07, pages 204–223, New
York, NY, USA, 2007. ACM. Cited on page 5.

[149] D. N. Perkins and Fay Martin. Fragile knowledge and neglected
strategies in novice programmers. In Papers Presented at the First
Workshop on Empirical Studies of Programmers on Empirical Studies of
Programmers, pages 213–229, Norwood, NJ, USA, 1986. Ablex Pub-
lishing Corp. Cited on page 7.

[150] D. N. Perkins and Gavriel Salomon. Teaching for transfer. Educational
Leadership, 22(32), 1988. Cited on pages 6 and 7.

[151] Perl Foundation. The Perl programming language. http://www.
perl.org/, 2013. Cited on pages 34 and 45.

[152] Simon Peyton Jones. View patterns: lightweight views for
Haskell. http://hackage.haskell.org/trac/ghc/wiki/

ViewPatterns, 2007. Cited on page 25.

[153] Jean Piaget. Play, dreams and imitation in childhod. Cited on page 8.

[154] Jean Piaget. Science of education and the psychology of the child. Cited
on page 8.

[155] Jean Piaget. The child’s conception of the world. Rowman & Littlefield,
1951. Cited on page 8.

[156] Jean Piaget. Six psychological studies. Vintage, 1968. Cited on page 8.

363

http://www.perl.org/
http://www.perl.org/
http://hackage.haskell.org/trac/ghc/ wiki/ViewPatterns
http://hackage.haskell.org/trac/ghc/ wiki/ViewPatterns

364 BIBLIOGRAPHY

[157] Leonardo Pisano. Liber Abaci. 1202. Cited on pages 24 and 227.

[158] Kris Powers, Stacey Ecott, and Leanne M. Hirshfield. Through the
looking glass: Teaching CS0 with Alice. SIGCSE Bulletin, 39(1):213–
217, March 2007. Cited on pages 203, 210, 211, and 276.

[159] Python Software Foundation. Python website. http://python.

org/, 2013. Cited on pages 27, 34, and 126.

[160] Red Hat. Cygwin. http://www.cygwin.com/. Cited on page 190.

[161] Claus Reinke. Introduce lambda-match (explicit match failure
and fall-through). Haskell-Prime Ticket #144, http://hackage.
haskell.org/trac/haskell-prime/ticket/114, October
2006. Cited on page 24.

[162] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. Scratch: pro-
gramming for all. Communications of the ACM, 52(11):60–67, Novem-
ber 2009. Cited on pages 13, 47, 203, 206, and 273.

[163] Adam Richard and Ondrej Lhotak. OOMatch: Pattern matching as
dispatch in java. In Companion to the 22nd ACM SIGPLAN Conference
on Object-oriented Programming Systems and Applications Companion,
OOPSLA ’07, pages 771–772, New York, NY, USA, 2007. ACM. Cited
on page 21.

[164] Anthony Robins. Transfer in cognition. Connection Science, 8(2):185–
204, 1996. Cited on page 6.

[165] Anthony Robins. Learning edge momentum: a new account of
outcomes in CS1. Computer Science Education, 20(1):37–71, 2010. Cited
on pages 6 and 9.

364

http://python.org/
http://python.org/
http://www.cygwin.com/
http://hackage.haskell.org/trac/haskell-prime/ticket/114
http://hackage.haskell.org/trac/haskell-prime/ticket/114

BIBLIOGRAPHY 365

[166] Anthony Robins, Janet Rountree, and Nathan Rountree. Learning
and teaching programming: A review and discussion. Computer
Science Education, 13:137–172, 2003. Cited on page 5.

[167] Tiark Rompf and Martin Odersky. Lightweight modular staging:
A pragmatic approach to runtime code generation and compiled
dsls. In Proceedings of the Ninth International Conference on Generative
Programming and Component Engineering, GPCE ’10, pages 127–136,
New York, NY, USA, 2010. ACM. Cited on pages 37 and 195.

[168] Ruby. Ruby language. http://www.ruby-lang.org/. Cited on
page 34.

[169] RubyGems. Rubygems. http://www.rubygems.org/. The gem
tool is bundled with Ruby. Cited on page 132.

[170] Sukyoung Ryu, Changhee Park, and Guy L. Steele Jr. Adding pattern
matching to existing object-oriented languages. In FOOL, 2010. Cited
on page 21.

[171] Michael G. Schwern. Lingua::tlhInganHol::yIghun. http:

//search.cpan.org/dist/Lingua-tlhInganHol-yIghun/.
Cited on page 45.

[172] Sisyphus. Inline::Python – write Perl subroutines in C. http://

search.cpan.org/dist/Inline-Python/. Cited on page 45.

[173] Andreas Stefik and Susanna Siebert. An empirical investigation
into programming language syntax. ACM Transactions on Computing
Education, 13(4):19:1–19:40, November 2013. Cited on page 14.

[174] Rok Strniša, Peter Sewell, and Matthew Parkinson. The Java mod-
ule system: core design and semantic definition. SIGPLAN Notices,
42(10):499–514, October 2007. Cited on page 32.

365

http://www.ruby-lang.org/
http://www.rubygems.org/
http://search.cpan.org/dist/Lingua-tlhInganHol-yIghun/
http://search.cpan.org/dist/Lingua-tlhInganHol-yIghun/
http://search.cpan.org/dist/Inline-Python/
http://search.cpan.org/dist/Inline-Python/

366 BIBLIOGRAPHY

[175] Don Syme, Keith Battocchi, Kenji Takeda, Donna Malayeri, Jomo
Fisher, Jack Hu, Tao Liu, Brian McNamara, Daniel Quirk, Matteo
Taveggia, Wonseok Chae, Uladzimir Matsveyeu, and Tomas Pet-
ricek. Strongly-typed language support for internet-scale informa-
tion sources. Technical Report MSR-TR-2012-101, Microsoft Research,
September 2012. Cited on pages 34 and 138.

[176] Don Syme, Gregory Neverov, and James Margetson. Extensible
pattern matching via a lightweight language extension. In ICFP, 2007.
Cited on pages 16 and 25.

[177] Clemens A. Szyperski. Import is not inheritance — why we need
both: Modules and classes. In OleLehrmann Madsen, editor, ECOOP
’92 European Conference on Object-Oriented Programming, volume 615
of Lecture Notes in Computer Science, pages 19–32. Springer Berlin
Heidelberg, 1992. Cited on pages 33 and 124.

[178] http://racket-lang.org. Racket documentation - ALGOL-
60. http://docs.racket-lang.org/algol60/index.html,
2013. Cited on page 36.

[179] The Self-Appointed Master Librarians (OOK!) of the CPAN. The
Comprehensive Perl Archive Network. http://www.cpan.org/.
The cpan tool is bundled with Perl. See also man 1 cpan. Cited on
page 132.

[180] TIOBE Software. Tiobe index. http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html, accessed May
2014. Cited on page 12.

[181] Sam Tobin-Hochstadt. Extensible Pattern Matching in an Exten-
sible Language. http://arxiv.org/abs/1106.2578v1 [cs.PL].
Cited on pages 15, 26, and 112.

366

http://docs.racket-lang.org/algol60/index.html
http://www.cpan.org/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://arxiv.org/abs/1106.2578v1

BIBLIOGRAPHY 367

[182] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. Languages as libraries. In Proceedings
of the 32nd ACM SIGPLAN conference on Programming language design
and implementation, PLDI ’11, pages 132–141, New York, NY, USA,
2011. ACM. Cited on pages 13, 32, 35, 54, 184, and 216.

[183] Laurence Tratt. Domain specific language implementation via
compile-time meta-programming. ACM Transactions on Program-
ming Languages and Systems, 30(6):31:1–31:40, October 2008. Cited on
page 41.

[184] Mark Tullsen. First-class patterns. In PADL, number 1753 in LNCS,
2000. Cited on page 24.

[185] David Ungar. Annotating objects for transport to other worlds. SIG-
PLAN Notices, 30(10):73–87, October 1995. Cited on page 29.

[186] David Ungar and Randall B. Smith. Self: The power of simplicity.
In Conference Proceedings on Object-oriented Programming Systems, Lan-
guages and Applications, OOPSLA ’87, pages 227–242. ACM, 1987.
Cited on page 29.

[187] David W. Valentine. CS educational research: A meta-analysis
of SIGCSE technical symposium proceedings. SIGCSE Bulletin,
36(1):255–259, March 2004. Cited on page 9.

[188] Tom van Cutsem. AmbientTalk documentation: Modular pro-
gramming. http://soft.vub.ac.be/amop/at/tutorial/

modular. Cited on page 29.

[189] Joost Visser. Matching objects without language extension. Journal
of Object Technology, 5(8), 2006. http://www.jot.fm/issues/

issue200611/article2. Cited on page 22.

367

http://soft.vub.ac.be/amop/at/tutorial/modular
http://soft.vub.ac.be/amop/at/tutorial/modular
http://www.jot.fm/issues/issue 2006 11/article2
http://www.jot.fm/issues/issue 2006 11/article2

368 BIBLIOGRAPHY

[190] Markus Voelter. Embedded software development with projectional
language workbenches. In Proceedings of the 13th international confer-
ence on Model driven engineering languages and systems: Part II, MOD-
ELS’10, pages 32–46, Berlin, Heidelberg, 2010. Springer-Verlag. Cited
on pages 41 and 197.

[191] P. Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL ’87, pages 307–313,
New York, NY, USA, 1987. ACM. Cited on page 24.

[192] Alessandro Warth and Ian Piumarta. OMeta: An object-oriented
language for pattern matching. In Proceedings of the 2007 Symposium
on Dynamic Languages, DLS ’07, pages 11–19, New York, NY, USA,
2007. ACM. Cited on pages 16, 22, and 115.

[193] Neil Watkiss and Stefan Seifert. Inline::C – write Perl subroutines in C.
http://search.cpan.org/dist/Inline/. Cited on page 45.

[194] Allen Wirfs-Brock and Brian Wilkerson. A overview of Modular
Smalltalk. volume 23, pages 123–134, New York, NY, USA, January
1988. ACM. Cited on page 32.

[195] N. Wirth. The programming language PASCAL. Acta Informatica,
1(1), 1971. Cited on page 12.

[196] Niklaus Wirth. Programming in Modula-2. Springer Verlag, 1985. isbn
0-387-15078-1. Cited on page 128.

[197] William A. Wulf, Ralph L. London, and Mary Shaw. An introduction
to the construction and verification of Alphard programs. IEEE
Transactions on Software Engineering, SE-2(4):253–265, 1976. Cited on
page 31.

368

http://search.cpan.org/dist/Inline/

	Introduction
	Related Work
	Programming language education
	Educational psychology
	Programming pedagogy
	Educational languages

	Pattern matching
	Scala
	Newspeak
	Other object-oriented languages
	Functional languages

	Modules
	Classes and objects as modules
	Packages
	Foreign objects

	Dialects and domain-specific languages
	Racket
	Scala
	Ruby
	Haskell
	Cedalion
	Converge
	Wyvern
	Protean operators
	External domain-specific languages
	Pluggable checkers.

	Visual interfaces for novices
	Scratch
	Blockly
	Codemancer
	Lego Mindstorms
	Calico
	Alice
	Greenfoot
	TouchDevelop
	Droplet
	Graphical overlays on programs

	The Grace Language
	Goals of Grace
	Variables and literals
	Objects in Grace are closer than they appear
	Methods
	Operators
	Field accesses
	Multi-part method names
	Visibility

	Blocks
	Classes
	Inheritance
	Chained inheritance

	Types
	Generic types

	Pattern matching
	Modules
	Dialects

	Patterns as Objects
	Introduction
	Conceptual model
	Graceful patterns
	match()case()...case
	Matching blocks
	Literal patterns
	Type patterns
	Variable patterns
	Wildcard pattern
	Combinators
	Destructuring
	Predicates
	Using arbitrary expressions to obtain patterns

	Patterns as objects
	Patterns as an object framework
	Irrefutable patterns
	Combinators
	Types
	Autozygotic patterns
	Destructuring patterns
	Destructuring types
	Lambda patterns and match...case

	Types and patterns
	Pattern and MatchResult
	Destructuring
	Combinators
	Exhaustive matching

	Generalising patterns
	Discussion and comparison with related work
	Scala
	Newspeak
	Racket
	Gradual and optional typing
	Matching as monads
	Future work
	Alternative approaches
	Application

	Conclusion

	Modules as Gradually-Typed Objects
	Introduction
	What is a module?

	Modules as objects
	Importing modules
	Gradual typing of modules
	Recursive module imports

	Design rationale
	Package management
	Identifying packages
	Finding packages
	Installing packages
	Publishing packages

	Extensions and future work
	Foreign objects
	External data
	Resource imports

	Comparison with related work
	Python
	Newspeak
	Go

	Conclusion

	Dialects
	What is a dialect?
	Structure
	Pluggable checkers
	Run-time protocol

	Case studies of dialects
	Logo-like turtle graphics
	Design by contract
	Dialect for writing dialects
	Requiring type annotations
	Literal blocks
	Ownership types
	Type checking
	Relations
	Finite state machines
	GrAPL
	GPGPU parallelism

	Discussion
	Inheritance
	Delegation
	Macros
	Local dialects
	Default methods

	Implementation
	Lexical scoping
	Executing checkers statically
	Side effects
	Security concerns

	Comparison with related work
	Racket
	Scala
	Ruby
	Wyvern
	Cedalion
	Haskell
	Xtext

	Conclusion

	Tiled Grace
	Tiled Grace
	Implementation

	Motivation
	Functionality
	Handling errors
	Overlays
	Dialects
	Type checking
	Hints

	Experiment
	Research questions
	Participation
	Instruments
	Protocol
	Data collection

	Results
	Demographics
	Programming experience
	Technologies used
	Engagement
	Error handling
	View switching
	Freeform responses
	Threats to validity
	Summary

	Comparison with related work
	Scratch
	Blockly
	Alice
	Droplet
	Calico Jigsaw

	Future work
	Conclusion

	Implementation
	Overview
	Extensions and limitations

	Architecture
	Lexer
	Parser
	Identifier resolution
	Code generation: C
	Code generation: ECMAScript

	History
	Parrot to LLVM
	Self-hosting with LLVM
	Unicode
	Generating ECMAScript
	Generating C
	Garbage collection

	External libraries
	Grace-GTK
	Grace-CUDA

	Outside contributions

	Conclusions
	Future work

	Auxiliary data
	Extended examples
	Scala matching
	F matching

	Package Manager Example
	Tiled Grace Experiment
	Tiled Grace Tour Script

