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Abstract

Force-directed graph layout is a widely used algorithm for the au-

tomatic layout of graphs. Little experimental work has been done

exploring the behaviour of the algorithm under a variety of conditions.

This thesis carries out three large-scale metric-based experiments.

The first explores how the core algorithm behaves under changes to

initial conditions. The second looks at extending the force-directed

layout algorithm with additional forces to reduce overlaps. The third

develops a novel symmetry metric for graphs and uses that to explore

the symmetries of graphs. This thesis also carries out a user study

to show that the differences reported by metrics in the graphs are

reflected in a difference in user performance when using graphs for a

free-form selection task.
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Chapter 1

Introduction

Many different kinds of data can be represented visually by graphs.

Automatic graph layout allows for the visualisation of systems ranging

from social networks to mind maps. These graphs range in size from

having thousands of vertices, to under 100 for a small network, or a

small mind map. These ideas are supported by a wide range of real

world programs and libraries intended for the layout of graphs such as

Springy.js [1], GraphViz [2], and Prefuse [3]. Many of these systems

implement the force-directed layout [4] as one of their options.

The force-directed layout algorithm simulates the graph as a

physical system in order to lay out the graph. Edges, like springs,

pull vertices together. Vertices, like charged particles, repel each

other. The system uses friction to prevent dynamic equilibrium (i.e.

perpetual motion) so it tends towards a fixed state. The result of

the computation is then used as a visualisation of the graph. A user

can interact with the algorithm while it is running without requiring

modifications.

While force-directed layout is widely implemented and has been

widely researched (discussed in Section 2.1.2 on page 11), there

are still aspects which are not well understood. Previous work by

Purchase [5] has challenged widely held beliefs such as that force-

1



2 CHAPTER 1. INTRODUCTION

directed layout promotes symmetry [4]. However, there has been

little large-scale experimental evaluation of the algorithms, without

which it is not possible to accurately predict the effect of changing

input parameters on the final layout.

The more the parameter effects on the final layout are understood,

the less guess-and-check is required in actually laying out a graph.

The aesthetics of the final layout are an important factor in graph

layout. Consider a user reading the example small graphs shown

in Figure 1.1. The figure shows an extract from a social network

where vertices contain the name of the person they represent. The

graph is laid out in two different ways. In the layout on the right two

of the vertices are overlapping, while on the left they are all drawn

separately. In the layout on the right, it is hard to determine the

names of the two overlapping vertices. In the left layout there is no

such confusion.

Sally

Jo Amy

Mary Sam

Sally

Jo

Amy

MarySam

Figure 1.1: Two different layouts of a network.

Consider vertex overlaps as a simple metric. Historical assump-

tions about graphs have made even this metric difficult to optimise.

Most of the core layout algorithms assume that vertices and edge

labels take up no space when drawn [4, 6, 7]. This assumption is

not upheld in many practical applications with small graphs. Fur-

thermore, previous suggestions about how to resolve this issue have

not been evaluated on a large-scale (e.g. [8, 9, 10, 11, 12, 13]). This

thesis tests its hypotheses on large-scale data sets of small real-world
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Figure 1.2: An example graph laid out as part of the experiments in
this thesis.

graphs where vertices take up space.

To add evidence for the importance of overlaps this thesis attempts

to gauge the effect of the reduced overlaps on human performance in

selection tasks. This is done by means of a user experiment where

users need to perform vertex selection tasks on graphs laid out in

different ways.

This thesis looks at predicting the output of force-directed layout

and shows that different outputs have different usability. It looks

at changing the forces used to achieve reduced overlaps and edge

crossings, how changes to the input parameters affect the layout, and

how changes in the values of metrics are reflected in differences in

user performance. This thesis carries out a large-scale experimental

evaluation of force-directed layout across a real-world data set using

a suite of metrics and user tests. An example graph laid out during

the course of these experiments can be seen in Figure 1.2.
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1.1 Contributions

The major contributions of this thesis focus on predicting the results

of force-directed layout and showing that the predicted differences

are practically useful. The four major contributions are:

1. Identifying the best force combinations to reduce edge crossings

and overlaps in the final layout. This is determined by two

large-scale experiments to evaluate the performance of different

combinations of forces in force-directed layout.

2. Providing basic guidelines on how certain input parameters

affect the final layout. These are determined by means of a

large-scale experiment.

3. Showing a difference in performance between users using graphs

laid out by a control force-directed layout algorithm and one

of the best performing force combinations identified in the first

contribution.

4. A novel symmetry algorithm for evaluating how symmetrical a

graph layout is. It evaluates reflective, rotational and transla-

tional symmetries individually and has been extended to detect

multiple axes of symmetry. The algorithm is evaluated with a

user study and is used on the results of the parameter selection

experiment to show that symmetry is affected by both the

simulation granularity and the length of edges.

Work done as part of this thesis has been published previously [14].

This work was done with the assistance of the other named authors,

but the implementation and the majority of the writing was done by

the author.
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1.2 Organisation

The remainder of this thesis is organised as follows. Chapter 2

on page 7 discusses the background and related work. It covers

graphs, their layout, how to evaluate a layout, gesture controllers,

and the technologies used to perform the large-scale experiments.

Chapter 3 on page 35 discusses modifications to the force-directed

layout algorithm to reduce overlaps in the final layout. Chapter 4 on

page 59 discusses a large-scale study on parameters to force-directed

layout, showing that parameter selection is an important part of

the process. Chapter 5 on page 79 discusses a user study which

demonstrates that the differences shown by the metrics in Chapter 3

are reflected in user performance. Chapter 6 on page 99 discusses

novel extensions to a symmetry-evaluation algorithm allowing it

to work with graphs. It uses this algorithm to extend the results

from Chapter 4 to include symmetry, and performs a user study to

compare the algorithm to human judgements of symmetry. Chapter 7

on page 129 concludes the thesis and explores avenues for future

work.
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Chapter 2

Background

This thesis focuses on graphs, their layout, and interactions. This

chapter looks at what a graph is and different approaches to graph

layout, with a strong focus on the force-directed graph layout al-

gorithm. It then explores what makes a layout “good” and how

those properties can be automatically measured and assigned a nu-

meric value. The properties looked at in this chapter focus primarily

on readability. It then looks at related work concerning human-

computer interaction. Finally, this chapter examines the different

high performance computing resources used in this thesis.

2.1 Graphs

A graph consists of a set of vertices and edges. Each edge connects

exactly two vertices, or one vertex to itself. In most applications

vertices are considered the objects, with edges representing connec-

tions or relationships. A wide variety of data can be represented

in this way, such as social networks [15] and scene graphs [16]. In

other cases, such as road maps, edges represent concrete objects (e.g.

roads) and vertices represent their connections (e.g intersections).

This section now defines some terminology for graphs:

7



8 CHAPTER 2. BACKGROUND

Directed Graph A graph where edges have a direction. In directed

graphs edges are often drawn as arrows.

Undirected Graph A graph where the edges do not have a direc-

tion.

Labelled Graph A graph where edges have labels.

Path A path between two vertices in a graph is a sequence of edges

such that the first edge starts at the first vertex, the last edge

ends at the last vertex, and every intermediate edge starts

where the previous one ended.

Connected Graph A graph is connected if there is a path between

every pair of vertices.

Disconnected Graph A graph that is not connected.

Simple Graph A graph that has no edges from a vertex to itself,

and has at most one edge directly connecting any two vertices.

Degree The degree of a vertex is the number of edges connected to

that vertex.

Planar Graph A graph that can be laid out with no edge crossings.

Graph Density The graph density is the proportion of edges the

graph has compared to the maximum possible. For simple

graphs the maximum possible is the number of edges it would

have if every vertex had an edge to every other vertex.

Some example simple graphs to illustrate these definitions can be

seen in Figure 2.1 on the facing page.
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0 1

2 3
4

(a) An undirected graph. All the
edges are lines.

+

2 *

3 7

(b) A directed graph. Note how
the edges are drawn as arrows.

Age

Eligible Too OldToo Young

< 10 < 30 ≥ 30

(c) A directed labelled graph.

AB

CD

(d) A disconnected di-
rected graph. There is no
path that connects C and
A.

Figure 2.1: Some example simple graphs.

2.1.1 Graph Layout

Many graphs, unlike maps, do not have inherent locations associated

with vertices. The task of graph layout is to assign locations to the

vertices, creating a useful visualisation. Identifying a bad visualisation

is often easy for a human. Consider Figure 2.2 on the next page

which shows the same graph twice but in one version has overlapping

vertices. However, assigning a value to the quality of a graph layout

is difficult for a human, and even harder algorithmically. Graph

layout quality is discussed in detail in Section 2.2 on page 20.

There are a wide range of graph layout algorithms. In many algo-

rithms there is an attractive relationship between vertices connected

by edges, and a repulsive one between all vertices. If these equa-

tions are of the right form they can be simplified to an eigenvector

problem [6] and solved directly. This is called spectral layout. If



10 CHAPTER 2. BACKGROUND

DanielKathy

Richard Sophia

Married

Friend Co-workerFriend

(a) A layout where the graph is
well spaced increasing readability.

Daniel

Kathy

RichardSophia

Friend
Married

Friend

Co-worker

(b) A layout where two vertices
are overlapping decreasing read-
ability.

Figure 2.2: A social network laid out with and without overlapping
vertices. This illustrates one of the more obvious problems that can
impact the readability of a graph layout.

they cannot be solved directly, solving the equations numerically

with the Newton-Raphson method results in the Kamada and Kawai

method [17]. However, this requires computing derivatives. Directly

simulating the rules of the system incrementally results in force-

directed layout (of which the original algorithm was Eades’ Spring

Embedder [4]) which is used in this thesis.

Alternatively, graph layout can be done with search techniques

such as genetic algorithms [18]. A range of other automatic graph

layout algorithms are discussed by Battista et al. [7]. Graph layout

can be done manually [19], but this is difficult for large graphs due to

the number of vertices and edges to consider. To complicate matters,

some graphs require human input to get a good layout. Biochemical

pathways (large graphs of reactions in organic chemistry) can be

laid out automatically for small networks [20], but the algorithms

cannot follow all the standard drawing conventions or deal with

large networks well [21]. For this reason hybrid computer-human

approaches have been developed such as those by Drost et al. [21]

for metabolic networks, or by Yuan et al. [22] for general graphs.

Laying out a graph does not necessarily mean being able to see all

the vertices and edges at the same time. When laying out large graphs
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there are two main approaches. The first involves trying to find a

layout that places all the vertices on the screen at once. This may

involve adjusting vertex positions to unclutter dense areas [12, 23] or

recursively drawing subgraphs [24, 25]. In contrast it is also possible

to only draw the important features of the graph. This can be done

by allowing the users to change which part and how much of the

graph they are looking at [26, 27], or by grouping vertices with certain

properties into single vertices [28]. For small graphs, it is possible

to show all the data on the screen at once, reducing the need to use

simplifying techniques. This is the approach taken in this thesis.

2.1.2 Force-directed Layout

The force-directed layout algorithm has seen wide use, being imple-

mented in a number of real-world systems [2, 3, 1]. Additionally

the lack of large-scale experimentation with graph layout algorithms

means that there is no compelling reason to choose one layout al-

gorithm over another. While force-directed layout is not the most

computationally efficient algorithm, laying out small graphs is very

fast, and it has found wide use in the layout of large graphs. For

example, it can be used for the graph layout component of multi-

dimensional scaling algorithms, which take higher dimensional data

sets and render them in 2D [29]. GreenMax, which is used to visu-

alise graphs with on the order of 1 million vertices, uses a multi-level

graph layout algorithm with force-directed layout [26]. Multi-level

layout involves merging edges and vertices to make a small graph,

laying that out, then gradually adding edges and vertices back until

the whole graph is laid out. Moreover, force-directed layout has a

very simple formulation making it easy to modify, extend, and apply

human physical intuition to.

The force-directed layout algorithm simulates the graph as a

physical system (Figure 2.3 on the next page). Edges, like springs,
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pull vertices together. Vertices, like charged particles, repel each

other. The system uses friction to prevent dynamic equilibrium (i.e.

perpetual motion) so it tends towards a fixed state. At every point

of the computation every vertex has a position on the screen. These

positions can be used as the graph layout. A user can interact with

the algorithm while it is running without requiring modifications.

++
+

++
+

Repulsive Force

Attractive Force

Figure 2.3: Basic forces in force-directed layout.

Various forces can be used to model attraction and repulsion.

Almost all the papers surveyed during the course of this thesis

used electrostatic repulsion (Coulomb’s Law) as the repulsive force

between vertices [4, 30, 7, 31]. In contrast, two different forces are

used for the attractive force. Some papers, including Eades’, use a

logarithmic attractive force [4, 31, 32]. However, Eades describes

edges as springs, so Hooke’s Law (the physical law for ideal springs)

is a natural alternative. It is not clear how they compare, though

Battista et al. claim that from their experiences the logarithmic

variant does not provide sufficiently better results given the extra

computation to compute the logarithm [7]. Chapter 3 on page 35

experimentally compares both attractive forces to see if there is a

difference.

The algorithm terminates either when a certain number of itera-

tions have finished or when the total kinetic energy is low enough.

The kinetic energy is a measure of the activity of the system. Given

the mass (m) and the velocity (v) of a vertex, its kinetic energy is
1
2
mv2. The total kinetic energy is the sum of the kinetic energy for
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each vertex. Low values for the kinetic energy suggest that very little

movement is happening so the algorithm can be stopped.

The general force-directed algorithm is shown in Algorithm 1.

Note the use of the timestep parameter when calling the move method.

This parameter is often omitted in algorithm formulations (which

is equivalent to assuming that it takes the value 1). Some imple-

mentations treat the force directly as velocity, rather than using

acceleration, to avoid the need for friction [30]. This simplifies the

algorithm as fewer forces are required, but loses the flexibility that

manual tuning of friction provides. Generating the initial layout in-

volves placing all the vertices in a random location inside the allowed

space, and setting all velocities to zero.

Algorithm 1: General force-directed layout algorithm.

generateInitialLayout()
for 0 .. maxIterations do

totalEnergy = 0
foreach Vertex v do

tempForce = (0,0)
foreach Edge {v,w} do

tempForce += hookesLaw(v,w)
foreach Vertex w do

if v 6= w then
tempForce += coulombsLaw(v,w)

tempForce += friction(v)
tempForce += drag(v)
v.move(tempForce, timeStep)
totalEnergy += v.kineticEnergy()

if totalEnergy ≤ energyCutOff then
break
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Forces

Each force has a particular function in the simulation with respect to

the final layout desired. The algorithm requires a range of parameters

to specify the strengths of the various forces. Eades’ original work

recommends a set of parameters that it found to work well [4]. Many

later papers simply ignore the issue altogether [33, 10, 34, 31, 20, 26].

A small number of papers use a heuristic method to judge parameter

selection [30, 17, 35]. An intuitive heuristic is to estimate the edge

length the user wishes to achieve by assuming a system with only

two vertices connected by a single edge. While this is easy to solve,

and sounds reliable, there have been no experimental studies to show

whether this distance actually predicts edge length when there are

more than two vertices present. This thesis carries out this analysis

as part of Chapter 4 on page 59.

The following sections go through each component of the al-

gorithm and its associated parameters. x is used as the distance

between two vertices.

Coulomb’s Law Coulomb’s law causes vertices to repel other

vertices, resulting in the layout spreading out across the screen. The

repulsion gets weaker as the vertices get further apart. It has two

parameters that need to be decided in advance: the global strength

of the repulsion (Ke), and the repulsion of each individual vertex

(qi).

FCoulomb = Ke

q1q2

x2
(2.1)

Hooke’s Law Hooke’s law is intended to introduce order into the

layout. By attracting connected vertices it groups them together. If

the graph is highly connected this can cause difficulties. However,

in that case it is hard to know how to group things. Hooke’s law
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requires two parameters: the strength of the spring (Kh), and the

natural length of the spring (N). The natural length of the spring is

the length that the spring would be if there was nothing trying to

stretch it. In this thesis this is twice the diagonal length of a vertex,

so that the spring force will never try move vertices so close together

that they overlap. While it is not necessary for all springs to have the

same strength, in this thesis they do (Kh is constant for all edges).

FHooke = −Kh(x−N) (2.2)

Logarithmic Spring Force (L) The logarithmic spring force

serves the same purpose as Hooke’s law, and is a common alternative

used in Eades’ original paper, and other work [4, 7, 20]. It requires

two constants: the strength of the spring (kl), and the natural length

of the spring (N) as described for Hooke’s Law. It has a behaviour

similar in shape to Coulomb’s Law, making it a logical, if more

computationally expensive, alternative to Hooke’s Law [7].

Flogarithmic = kl log
( x

N

)

(2.3)

Friction Friction serves two purposes. The first is to prevent

settled vertices from starting to move again too easily. The second

is to ensure that the simulation will eventually settle to a stable

state. Fstatic is the amount of force that needs to be applied before a

stationary vertex will start moving. Fkinetic is the amount of friction

that is applied while an object is moving. The formulas used are

based on friction for dragging objects along the ground [36]. This

requires the following constants: µs is the resistance to starting to

move; µk is the friction while moving; m is the mass of a vertex; and

g the strength of gravity.
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Fstatic = µsmg (2.4)

Fkinetic = µkmg (2.5)

Drag Drag serves as an aid to friction. While friction is constant

as an object is moving, drag affects vertices proportionally to their

velocity. It has a parameter A,which represents the size of the vertex.

v is the current velocity of the vertex.

D =
1

4
Av2 (2.6)

Newton’s Law Newton’s Laws of motion are used to convert

the forces acting on a vertex to a displacement on the screen. An

estimate of vertex mass is required, as for friction. These also require

a timestep parameter (referred to as the simulation granularity earlier)

to determine how fine grained the simulation is. The smaller the

timestep, the more realistic the simulation, but also the longer it

takes to run. Many papers, including Eades’ original work, ignore

this parameter [4]. This is equivalent to setting the value to 1.

This thesis explores the effect of timestep on the resulting graph

layout, and attempts to evaluate the common effective choice of the

value 1. It hypothesises that it is an important parameter that has a

significant effect on the resulting layout. This is despite the fact that

in terms of the conceptual model timestep has little effect. Note that

a timestep parameter is needed even if Newton’s laws are not used

and force is converted directly to velocity.

The values vi and di are the velocity and location at the start of

each loop iteration. Similarly vf and df are the velocity and location

at the end of each loop iteration. In this thesis, initial velocities are

zero and locations are random.
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a =
F

m
(2.7)

vf = vi + a ∗ timestep (2.8)

df = di + vf ∗ timestep (2.9)

2.1.3 Extensions to Force-directed Layout

The original definitions used by Eades do not consider vertices as

having any size, or edges as being labelled [4]. In most graph applica-

tions, vertices have a dimension to consider, as they are represented

on the screen, and edges may be labelled. For the sake of simplicity,

this thesis will refer to everything that is drawn except edges (but

including edge labels) as images (e.g., text, raster images, etc). Hav-

ing images leads to occluded pixels and overlaps. An occluded pixel

is a pixel of an image which is covered by a pixel from a different

image. An overlap occurs when two images are drawn so that one

occludes some pixels of the other. This results in parts of the graph

not being visible, reducing clarity and information retrieval from

the visualisation, and should be minimised. Chapter 3 on page 35

focuses primarily on minimising occluded pixels and overlaps.

Some previous works on reducing overlaps are modifications to the

layout algorithm. Wang and Miyamoto implemented modifications

that cancel out attraction of occluded vertices, vary constants to

account for vertex size, and integrate a constraint solver [35]. They

did not do an experimental analysis, except to time the layout of a

single graph, and to generate six figures for the paper. Harel and

Koren claim that näıve extensions to layout algorithms to deal with

drawn vertices often have negative repercussions. They proposed

changes to the Kamada and Kawai method and modifications to the

spring method [8] that they claim do not have these limitations, but
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tested their ideas on only seven graphs. Kumar et al. reduce clutter

by giving certain vertices a stronger repulsive force in directed acyclic

graphs [31], but tested their algorithm on just two graphs. This

thesis extends this approach to create its degree-based charge force

(discussed in Section 3.1.1 on page 39). Lin et al. add vertex rotation

to allow vertices to pack better [32], but this allows vertex images

to end up at arbitrary angles, potentially decreasing readability.

Additionally, their statistical analysis only contained six graphs.

Other works apply a post-processing step to ‘fix’ a layout. Force

Transfer [13] and Force Scan [20] are two common algorithms to

iteratively move vertices apart until they no longer overlap. Each of

their experimental evaluations involved looking at just seven graphs.

Frishman and Tal propose an algorithm to unclutter an existing

layout [12], by mapping from the existing layout to one with a better

information density. This algorithm is designed for huge graphs,

where details on individual vertices are not visible, but was tested

on just five graphs. Gansner and North use Voronoi diagrams to

move vertex centres away from each other [34], and notably introduce

curved edges. Their experiment consisted of only nine graphs. Dwyer

et al. use constraint solving to spread the vertices [37]. They tested

their performance on some randomly generated graphs, but only

tested the layout quality on a single graph. The ePRISM algorithm

uses a proximity stress model to move elements apart to remove

edge and vertex overlaps from the layout [11]. After being used it

requires a second post processing step with the PRISM algorithm.

The evaluation consists of two graphs which are shown in the paper.

None of the works above performed any large-scale testing of

their algorithms, with the largest test set containing just 12 graphs.

This makes it hard to generalise their results. Of all the algorithms

surveyed, only the ePRISM [11] algorithm explicitly considers edge

labels, despite their common use in practice. Additionally, these
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papers did not look at graph metrics or user studies to confirm

the benefit of their systems. For this reason, this thesis performs

a large-scale evaluation on 13,740 realistic graphs, many of which

are anonymised graphs from AT&T. This thesis also includes a user

study to confirm that the differences shown by metrics are reflected

in human use.

2.1.4 Graphs Used

This thesis focuses on small graphs. While large graphs are interesting

particularly with the rise of big data, small graphs are still an

interesting area. In particular the availability of giant datasets does

not reduce the number of small datasets there are. Additionally,

small graphs are interesting from an interaction perspective, as the

graph is small enough to be comprehended by a user.

This thesis uses graphs from the VAST challenge 2009 [38] and

GraphDrawing.org [39]. All these graphs are simple graphs, and are

treated as undirected graphs for the purposes of this thesis. Almost

all the graphs are connected. Any directed graph can be laid out as an

undirected graph and have the directed edges added after the layout,

since there are no special considerations for edge direction. The

VAST challenge dataset contains a fake social network. It contains

6000 individuals, their connections and cities of origin. All data is

fabricated, and the place names are fictitious. It is represented by

individual plain text files that specify the people (vertices), and their

connections (edges).

In contrast the GraphDrawing.org dataset is largely based on

anonymised real graphs. It contains 1,277 anonymised graphs from

AT&T (called the North graphs), 11,534 sample graphs from the

GDToolkit [40] (called the Rome graphs), and 909 randomly gener-

ated directed acyclic graphs (called random-dag). Overall it contains

13,720 graphs. All the graphs are small, containing 10 to 110 vertices
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and 9 to 241 edges. All but three graphs are connected (all three are

in the Rome set) and 70% of the graphs are non planar (Rome: 72%,

North: 33%, Random-Dag: 100%). The graphs span a variety of

graph densities, from 0.86% to 85.45%. However, 75% of the graphs

have densities less than 8.3%. In this dataset graphs are represented

using GraphML, an XML-based format for describing graphs [41].

One of the experiments in this thesis uses a subset of this data set.

10% of the graphs were randomly selected to be included in this

dataset. Figures showing various properties of the graphs of both

the complete and sampled data sets can be found in Appendix A

on page 135. Importantly the distributions of graph properties are

similar between both the sample and the original.

2.2 Graph Layout Evaluation

Simply laying out a graph is insufficient. It is important for the

layout quality to be appropriate for the task. Consider the two social

network graphs shown in Figure 2.4 on the facing page. Figure 2.4a

is clear and allows the reader to identify all the relevant features.

In contrast in Figure 2.4b vertices are overlapping, preventing them

from being read. These overlaps are only an issue in small graphs,

where there is enough space to actually show information on vertices.

As this thesis looks at small graphs, overlaps are relevant to this

work.

There are a number of existing metrics that are used to evaluate

graphs [5, 42]. Moreover, graph layout quality has been shown to have

an effect on how a user can and will use the visualisation [43, 44].

Purchase formally defined a number of these metrics [5]. These

metrics quantify different properties of the graph, such as number of

edge crossings, angle of separation between edges connected to the

same vertex, or enforce certain rules such as keeping edges as straight
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Married

Friend Co-workerFriend

(a) A layout where the graph is
well spaced, increasing readabil-
ity.

Daniel

Kathy

RichardSophia

Friend
Married

Friend

Co-worker

(b) A layout where two vertices
are overlapping, decreasing read-
ability.

Figure 2.4: A graph showing a simple social network laid out with
and without overlapping vertices. This illustrates one of the more
obvious problems that can impact the readability of a graph layout.

lines, or promoting symmetry. Some metrics, such as maximising the

similarity of edge lengths, involve solving NP-Complete problems [4,

45]. As there are many metrics, this thesis selects a small number

on which to focus. The first is the number of overlaps, which is

examined closely in Chapter 3. This thesis looks at this metric as it

clearly impedes readability for small graphs where each vertex can

be examined by the user. The second is the number of edge crossings.

This metric is widely known, and is used by people performing manual

graph layout [42]. Additionally, it is used as a gauge of how this

thesis’s changes affect other properties of the graph layout. Later

experiments also measure symmetry to provide more evidence for or

against the claim that force-directed layout produces symmetrical

layouts [4], which has been experimentally disputed by Purchase [5].

2.2.1 Symmetry

One of the original claims made about force-directed layout was that

it promoted symmetry, a trait that is believed to be helpful in reading

graphs [4, 46]. Purchase defined a way of computing the symmetry

of a graph [5]. This algorithm allowed her to experimentally compare
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the symmetry exhibited by various graphs and layout algorithms.

Her results showed that force-directed layout did not exhibit as much

symmetry as expected relative to other algorithms. However, her

symmetry algorithm has certain limitations. It considers only reflec-

tive symmetries, ignoring rotational and translational symmetries.

It also considers only symmetries generated by the vertices, but, in

connected graphs that are not trees, edges will outnumber vertices

and be responsible for the majority of the structure that a user can

see. For this reason this thesis develops a new symmetry metric for

graphs, and looks at under which circumstances the force-directed

layout generates symmetries in Chapter 6.

There are a number of symmetry detection algorithms for a variety

of different tasks. Symmetries can be found for 3D objects [47], or

images [48, 49]. This thesis is interested in finding symmetries of

a 2D object with known structure. For this reason it extends the

technique described by Loy and Eklundh which focuses on identifying

symmetries between points representing objects of interest [48]. This

makes heavy use of the Hough transform [50], a technique for uniquely

identifying straight lines of infinite length (in this case an axis of

symmetry). Their system represents objects of interest as scale-

invariant feature transform (SIFT) features which have a position,

orientation, location, and scale [51]. In the context of graphs, edges

(as they are lines) are symmetric after a 180 degree rotation instead

of requiring 360 degrees as in the original algorithm.

2.3 Human Computer Interaction

This thesis focuses on game controllers as the interaction medium

as they are widely used. Interaction can be broadly divided up into

5 categories: Navigation, Selection, Manipulation, System Control

and Symbolic Input [52, 53]. Since this thesis uses game controllers
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to interact with small graphs, it focuses on selection tasks. As the

graphs are small, navigation is assumed to not be necessary. This

means that the whole graph is expected to fit on one screen. It

also limits the results as it does not address the issue of navigation

and selection gestures potentially clashing. Manipulation requires

selection to identify what to manipulate. System control and symbolic

input are not tasks that are generally done with a graph and so also

are omitted.

In terms of types of gestures, this thesis looks exclusively at

what Karam and Schraefel [54] classify as deictic (pointing) gestures.

Deictic gestures are used under the assumption that they will be

familiar given the wide spread of touch devices which use direct touch

selection.

2.3.1 Multi-Touch Interaction

Graph interactions have been explored with multi-touch devices.

Multi-touch devices can detect where a number of points are being

touched on their surface. Schmidt et al. [55] created a set of gestures

that facilitate viewing graphs by moving edges around. Kristensson

et al. [56] developed InfoTouch which also enables graph exploration,

but does it though vertex interaction. Dwyer et al. [19] compared

manual graph layout using a multi-touch table against a mouse, with

generally positive results in terms of user preferences.

Gesture controllers remove some of the limitations of multi-touch

tables. Both multi-touch tables and gesture controllers have limited

accuracy compared with a computer mouse [57]. However, this is only

a problem if the error is on the same order as the spacing between

and size of elements on the screen. In a multi-touch system, selecting

(by touching) an element involves occluding the element with the

user’s hand. While there are some techniques to avoid this such

as pointer offsetting, fish-eye lensing, or showing the covered area
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specially [57, 58], gesture controllers allow a different approach by

not requiring physical proximity. Additionally, multi-touch requires

users to be able to physically reach the area they wish to interact

with. With large displays this forced proximity to the device restricts

the user’s field of view, while the screen’s size can limit the scope of

interaction due to a user’s limited reach. With gesture controllers the

user can easily sit at a comfortable distance to see the whole display,

and there are no issues relating to reach as it is based on angles,

although this does cause problems with exaggerated movements.

2.3.2 Gesture-Based Interaction

There is a large bulk of work looking at interaction in virtual re-

ality (VR) environments before commodity 3D tracking hardware

was available. Historical research looking at selection tasks in VR

environments looked at 3D environments, which encouraged the use

of 3D tracking.

The simplest form of selection involves touching or framing the

object the user wishes to select [59]. This is difficult to implement

due to needing to accurately determine which eye the participant is

looking through. If the wrong eye is used parallax may cause the

wrong object to be selected. The ray casting technique solves this

problem, having a user point at the target with a single finger [60].

This avoids the problem of working out which eye is being used,

resulting in a unique point being selected (assuming only one finger

is extended).

As much of this interaction was happening in 3D, some of the

techniques have special characteristics to assist them. The Go-Go

technique allowed users to grab objects with their hand, with the arm

length growing faster the further it got from their body [61]. This

allowed users to reach arbitrarily distant objects, as well as reaching

occluded objects. Pausch et al. used miniatures of the world in front
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of the user, like a doll house, where objects could be interacted with

via their doll house versions [62]. The doll house was interacted with

by direct touch. In this work the graph layouts are 2D and aim to

avoid occlusion. Therefore selection is based on ray casting.

Using hand-held controllers introduces a few extra difficulties.

Bowman et al. [63] found that pushing buttons on a controller

causes the pointer to move, reducing accuracy. They called this the

Heisenberg effect. Constant use of gesture interfaces can cause fatigue

in users if the poses require users to keep their arms extended [64].

This is a particular concern in pointing systems such as the one

described in this thesis, as users may decide to keep their arm

fully extended while interacting with the system. In Chapter 5

the experiments have intentionally been kept short to mitigate this

problem.

Gesture Controllers

Rather than using typical VR controllers, this thesis uses a controller

that was already on the mass market and in common circulation

to ensure that the work had a concrete application in the current

state of hardware. Three gesture controllers have come out with

games consoles on the mass market that were considered for this

work: the Nintendo Wii remote, the Microsoft Kinect, and the Sony

PlayStation Move. Due to their earlier release dates more work has

been done with the Nintendo Wii remote and Kinect [65, 66, 67].

The experiments use the PlayStation Move [68] over the Nintendo

Wii remote as the Move is more modern and has an accessible API

to work with provided by Sony’s Move.Me software [69]. This took

care of tracking the controller at high speed using a PlayStation 3,

removing any errors that could be from misuse of the tracking system.

The Microsoft Kinect system was not considered as it provided no

clear means either to disengage from the system, or to easily “click”
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at a given coordinate due to its lack of buttons. This would make

it complicated to switch between the different tasks the user would

be doing (selecting, deselecting, no selection). It would also require

a mechanism for selecting answer boxes on the question screens as

there is no button to push when the cursor is over the desired option.

Many Kinect games use a point and hold system, where the user

puts the cursor over the option they wish to select and then holds it

there. While this does work in practice, this was in conflict with the

goal of making the experiment short to reduce fatigue.

The PlayStation Move system tracks the location and orientation

of a special controller in 3D space using a camera. The Move controller

(shown in Figure 2.5) has a sphere on the top which is uniformly

illuminated by internal lights. Direct tracking of this glowing sphere

combined with information from sensors within the controller allows

it to be used as a mouse replacement, provided that the sphere can

be kept within view of the camera.

Figure 2.5: A PlayStation Move controller. Note the sphere (on the
left) which can be lit up in a wide range of solid colours.

There are two practical difficulties with the system. The first is

that the camera must be set up with a clear view of the participant.

This requires the participant be sufficiently far from the screen so that

they fit in the camera’s view. The second is that the camera has to

be connected to a PlayStation 3 console in order to do the processing.

The console then sends UDP packets to a listening computer over

the network with the current status of the controller.
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Alternatives The Wii remote was the first to be released in

2006 [70]. It has an internal infrared camera and a number of

internal sensors. The Wii remote comes with a special bar containing

infrared lights which the internal camera and sensors can use to

work out its location and orientation. Due to its early release date

it has generally lower tracking accuracy than the PlayStation Move.

Additionally, unlike the Move, there is no official general use API for

it.

In 2010 Microsoft released the Kinect sensor [71]. It is a commod-

ity depth camera which provides a distance from the camera for each

pixel as well as a colour. Using the depth information, it is possible

to extract the pose of the user(s) interacting with the system, and use

this information to control the system. In 2012 a second version was

released for use with computers [72]. However, this does not provide

an easy way to track simple pointing. The system tracks the whole

body, and the low resolution camera has difficulty identifying the

shape of a user’s hand. This makes it difficult to detect interactions

with the Kinect, as it cannot detect a gesture such as a closed fist

reliably, while the Move can always detect button presses.

At this time there are also PC-specific controllers that have been

released. The Razer Hydra [73], which uses magnetic tracking of

two hand held controllers, does not have the same wide adoption as

the afore mentioned controllers. The Leap Motion which uses two

cameras to track a user’s fingers was not released at the time this

study was being conducted [74].

Game Controller Interaction

More recent work has looked at integrating commodity 3D tracking

systems like the Nintendo Wii remote or Microsoft Kinect into the

research field. The Wii remote has been used for a wide variety of

tasks. It has been used to control robots [75], work out the orientation
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of a head-mounted display [76], validate the steering law [66], and

control a football character in video games [65], among other things.

In fact, using the Wii remote for interaction by pointing is essentially

how the Nintendo Wii main menu works. The main difference is that

their menu is a regular table, and a user simply needs to point at

any spot within the cell they wish to select. In this work, the task

the user must complete is more complex and it involves navigating

around a set of obstacles without a regular pattern for the data.

Use of Gestures in Games These different devices have different

modes of interaction in games. However, these interactions are based

quite strongly around the game context, and do not necessarily

generalise to other tasks. Consider two games for the Xbox 360 that

use the Kinect: Kinect Adventures and Dance Central. In both these

games the user’s body is directly mapped to the body of the character

they are playing. The user can make the character jump and move

individual limbs by performing the appropriate action in the real

world. In other games like Carnival Games: Monkey See, Monkey

Do it may only track part of the body. But it is always based around

a mapping from body position to input. This is particularly useful

in medical contexts because there is no contact with any device, and

so no risk of contamination [77]. However, the experiment described

in this thesis does not consider interactions with data to be somehow

mapped to body actions, and does not require the sterility conditions.

The Move and Wii games that that the author has seen either

make heavy use of buttons and directional thumbpads on the con-

trollers (Super Mario Galaxy, inFAMOUS 2), or they use the gesture

controller to represent an object being held by the user (Sports

Champions, Carnival Island). Both of these interactions are sensible

in the context of a game, but less so for graph selection tasks.

There have been games that have required simple graph selection
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using a D-pad. Bethesda Softworks’ Elder Scrolls V: Skyrim (a

single-player role playing game) requires users to navigate through

a graph when getting ‘perks’ as part of levelling up their character.

These graphs are laid out prettily (see Figure 2.6a), but when a

user is navigating through them to find a vertex to select, the game

zooms in so far that only a small selection of the vertices in any given

graph can be seen (see Figure 2.6b). When played on the console

the graph is navigated using a D-pad. This involves pushing the

direction pad in the direction of the edge the user wants to follow.

Pushing left or right will jump horizontally in the graph even if there

is no connecting edge.

(a) Selecting a ‘perk’ graph. (b) Navigating the ’perk’ graph
shown on the left.

Figure 2.6: Screen shots from the ’perk’ systems in Bethesda Soft-
works’ Elder Scrolls V: Skyrim.

This interface has a number of problems. The first is that there

may be multiple edges going in a similar direction, and it can be hard

to make the selection move in the right direction. If the user gets it

wrong they can always jump left / right, but without seeing what is

there. Consider Figure 2.6b, where “Novice Destruction” is currently

selected. The user can, at this point, move left; however, there is no

way of knowing from that screen which element will be selected as

it is not currently displayed. Moreover, the user can actually jump

from one graph to a different graph with no warning. In fact, in the
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example before that is what will happen if the user were to move

left. This thesis assumes that a pointing interface with the whole

graph visible at once is easier to interact with, and therefore designs

the experiments around such a system.

In this thesis the gesture consists of holding down a button (the

trigger on the Move controller), while moving the controller around

to enclose the desired objects in a bounding path. This sort of

interaction is not sensible with a D-pad controller, where this would

involve holding down a button, and using the D-pad controls to trace

a path. The Move controller on the other hand makes this a natural

interaction as it is similar to pointing, but one that is not common

in video games.

Speed of Interaction

Research on the speed of interaction tasks has resulted in rules like

the Steering Law [78] which predicts that the narrower and longer the

path that a user needs to take for an action is, the longer the action

will take. More recently this has been disputed for screen pointing

tasks similar to the experiment in Chapter 5 using the PlayStation

Move [79], and recent literature suggests that two part models which

also consider gain are better predictors [80]. Gain is the ratio of the

distance moved in the real world to the distance moved on the screen.

For large displays such as televisions with gesture controllers, values

of gain may vary dramatically from values when using a computer

mouse with a standard monitor. The conclusion that narrower and

longer courses are harder to navigate still holds, but with the added

consideration that it is affected by how far a user must move their

hand to move across the display.

Such a model predicts that gesture controllers should find navigat-

ing on a screen easy, as there are no boundaries the user needs to stay

inside when moving between two options. This is also the case when
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pointing at a single object in a graph. It is only when performing a

more complex interaction, like lasso selection, that speed constraints

for avoiding elements become a factor. This is the condition tested

in the study described in Chapter 5.

2.4 High Performance Computing

This thesis performs large-scale experiments requiring many tens of

thousands of trials. In order to make these experiments run within a

reasonable amount of time they were run on various high performance

computing platforms. The various platforms used in this thesis are

described in this section.

2.4.1 Grid Computing

Grid computing utilises a large number of computers which split the

task of performing a computation between them [81]. The only thing

that grid computers require is a common mechanism to assign them

tasks. Each task submitted to the grid is a program that runs and

produces some output. This thesis uses two different types of grid:

cycle-stealing and dedicated. Note that both grids are heterogeneous

— not all of the machines have the same hardware / software.

Cycle-Stealing Grid

A cycle-stealing grid is one where the grid job is not the only task

running on the computer (i.e. a physically present user may also use

the machine). The machines used in this thesis run the Sun Grid

Engine 6.2 to control the distribution of work [82, 83]. Specifically,

the cycle-stealing grid contains approximately 250 machines running

primarily Arch Linux, but also a small number of NetBSD machines.

Many of the machines that make up the grid are the lab machines used
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by the School of Engineering and Computer Science and the School

of Mathematics, Statistics and Operations Research at Victoria

University of Wellington.

In order to prevent grid jobs from affecting users physically using

a computer, any job running via the grid will pause if it may disturb a

physically logged-in user. Moreover, if a machine is restarted or shut

down while a grid job is running, the job will be lost. Additionally to

physically logged-in users, grid jobs compete for resources with users

who have remotely logged into a particular machine. While this is

unlikely to be a major factor, it may still affect a number of jobs.

Dedicated Grid

A dedicated grid is one where each computer only runs the tasks

assigned to it by the grid. Specifically, the one used in this thesis

runs the Open Grid Engine [84, 85]. It has a small number of

high performance machines, each with a large number of cores and

RAM, that are shared between all users of the system (details of

the machines can be found online [85]). The only way to gain access

to the machines is via the grid interface, reducing the amount of

competing for resources that a job has to do as there is no unexpected

load on the CPU or RAM, unlike the cycle stealing grid described

above.

2.4.2 CUDA

This thesis used CUDA 5.0, a programming language for program-

ming modern Nvidia General Purpose Graphics Processing Units

(GPGPUs — graphics cards) [86]. Unlike a CPU which has around

1–8 cores, a GPGPU has hundreds (in this case exactly 240 [87]).

This allows for many more computations to be done in parallel. This

comes with an extra restriction: that all the cores need to be doing
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the same task. Fortunately, force-directed graph layout is amenable

to being programmed in a way compatible with GPGPUs.
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Chapter 3

Layout Algorithm

Consider the example small graph laid out in two different ways

shown in Figure 3.1. This shows an extract from a social network

where vertices contain the name of the person they represent, and

edges have the type of relationship between people. In the right

layout two of the vertices are overlapping, while on the left they are

all drawn separately. In the right layout, it is hard to determine the

names of the two overlapping vertices, and to determine which edge

is connected to which. In the left layout there is no such confusion.

DanielKathy

Richard Sophia

Married

Friend Co-workerFriend

Daniel

Kathy

RichardSophia

Friend
Married

Friend

Co-worker

Figure 3.1: A good and a bad layout of a social network. In the right
layout two of the vertices are overlapping and it is hard to read what
they say or discern which edges connect to them.

This chapter attempts to reduce the number of overlaps in graphs

laid out by force-directed layout. This is done by adding extra

forces to the layout algorithm. This chapter considers a number of

35
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additional forces, either by adapting forces from previous works, or

by means of a novel force.

This chapter describes a large-scale experiment across 13,720

realistic graphs. The experiment measures how the numbers of

overlaps and edge crossings changes as different combinations of

forces are used. This experiment is followed by a second experiment

to validate the results by testing every combination of forces on a

random sample of 10% of the graphs in the first experiment. The

graphs ranged in size from 10 to 110 vertices and come from a graph

drawing benchmark containing real-world data from a major US

corporation [39].

This chapter shows that:

1. Using charged walls, degree-based charge and charged edge

labels reduce overlaps by an order of magnitude over the base

algorithm.

2. Using Hooke’s Law instead of the standard logarithmic attrac-

tive force tends to give layouts with fewer edge crossings.

3. The novel force — wrap-around forces — is not effective at

reducing overlaps or edge crossings.

Overall this chapter finds that the force-directed layout algorithm

without modifications performs significantly worse than the best

modified version with respect to both overlaps and edge crossings.

These findings have been previously published [14].

3.1 Algorithm Design and Variants

This chapter uses the general force-directed algorithm as described

in Section 2.1.2 on page 11 as the basic algorithm. Additional details
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are described below. The system was implemented using Java 1.6,

and is available for download [88].

Initially vertices are assigned random locations. The natural

length for the attractive forces is set as the minimum distance such

that the two connected vertices do not overlap [20, 24]. Edge labels

are placed one pixel away from the centre of the drawn edge, to

prevent the edge hiding the label. All vertices have the same charge,

shown as qvertex in the parameters table (Tables 3.2 and 3.4). The

plane boundaries in this system are an impenetrable barrier (bouncy

walls) representing the edges of the screen to keep the vertices con-

tained. Any vertex that hits a wall has its component of velocity in

the direction of the collision reversed.

3.1.1 Variable Forces

This section describes the different forces that it experimentally

investigated. Recall the basic configuration of forces from Chapter 2.

Coulombs law, Hooke’s Law (H), and the Logarithmic Spring Force

(L) are the same as described.

+

+ + + + +
+

+

+

+

Figure 3.2:
Charged
Walls (W).

Charged Walls (W). Davidson and Harel pro-

posed (but did not implement) charged walls as a

mechanism for keeping vertices inside fixed bound-

aries [9]. Wall charge is just Coulomb’s Law applied

to a line the length of the boundary which will repel

vertices from the walls as shown in Figure 3.2. This

serves several purposes: it prevents unconnected com-

ponents from moving infinitely far from each other; it

prevents layouts settling close to the boundary where

their ability to move is limited, impairing their ability to move into

a minimal energy configuration; and it centres the resulting image.

Wall charge in Tables 3.2 and 3.4 shows the charge of each wall as
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used in this chapter.

+

+

Figure 3.3:
Wrap-Around
Forces (A).

Wrap-Around Forces (A). Wrap-around

forces allow the repulsive forces between vertices

to act as if the layout is on a torus as seen in

Figure 3.3. This does not change how walls affect

the vertices, but Coulomb’s Law calculations are

performed in both directions. Note that the walls

mean that vertices themselves cannot move past

the edge of the screen, only their repulsive forces

can. Given any two vertices, this force pushes

them to be equal distances from each other both ways around the

plane, which is hypothesised to group vertices together, and prevent

disconnected components from drifting off. This chapter hypothesises

that combining wrap-around forces with charged walls will centre all

the graphs neatly. This is a novel force which this chapter tests.

+ +

+

Figure 3.4:
Charged Edge
Labels (E).

Charged Edge Labels (E). Edge labels can

be occluded by other images. To prevent that,

charged edge labels makes labels charged in the

same way that vertices already are as shown in

Figure 3.4. This force is based on the obvious

extension to force-directed layout where edge la-

bels are treated as special vertices. Each label

is charged just like a vertex (with magnitude qlabel), and so repels

vertices to which it is not connected. Labels are placed near the edge,

but not over the top of it (as described earlier) which may cause

interesting behaviour. Labels are unable to move independently so

forces applied to a label instead affect the two vertices which it is

connected to. This is analogous to pushing a bar with weights on

it: it is the weights that roll along the ground, moving the bar with
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them. This avoids moving the label independently, while allowing

labels to affect the layout.

+ ++

Figure 3.5:
Charged Edge
Centres (G).

Charged Edge Centres (G). Charged edge

centres is an alternative to charged edge labels

where the repulsion comes from the centre of the

edge, rather than the edge label which is placed

near the edge. This is shown in Figure 3.5. The

force is exactly the same as charged edge labels,

and each edge centre has charge qlabel. Once again, edge centres

cannot move independently and instead cause the vertices they are

connected to to move instead. Note that only one of E or G can be

active at any one time. Charged edge centres is not used in the first

experiment, as it was only introduced in the second experiment in

response to feedback from anonymous conference paper reviewers

who were concerned about the labels being offset from the edge.

+ +

Figure 3.6:
Collisions
(C).

Collisions (C). Collisions between vertices is a

trivial extension to force-directed layout as it is based

on physical simulation. The collisions are ideal bil-

liard ball collisions using the coefficient of restitution

(Figure 3.6). Collisions are only implemented for

vertices.

This implementation computes the velocity changes due to the

collision and sets the new velocities appropriately. While it is possible

to move the vertices apart until they are no longer overlapping, this

is not implemented as there may not always be a sensible layout

possible where there are no overlaps. Some graphs may have very

dense regions, or so many vertices that allowing some amount of

overlapping is actually beneficial.
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++

+ + +

Figure 3.7:
Degree-
Based Charge
(D).

Degree-Based Charge (D). Kumar et al. pro-

posed to increase the charge on certain vertices to

give them more space [31]. Their technique relies on

the graph being a directed acyclic graph. This chapter

generalises their technique to general graphs, giving

high degree vertices higher charge. The higher the

degree of a vertex the more space it needs, therefore

the more it should repel other images as in Figure 3.7.

Thus the system multiplies the standard Coulomb repulsion between

the vertices by the maximum of 1 and degree(v1)∗degree(v2)
4

. It uses the

product of degrees to increase the strength of the repulsion quickly,

as the repulsive force falls off quickly with respect to distance. The

original formula of Kumar et al. cannot be used directly as it requires

directed acyclic graphs. The constant 4 is chosen for the denominator

so that pairs of vertices of degree two are not affected.

3.2 Experiment One

An experiment was carried out comparing different combinations

of forces to see how they affect the number of overlaps, and edge

crossings. To measure overlaps, the experimental framework recorded

both the number of overlapping vertices and the number of occluded

pixels. It also recorded the time taken to lay out each graph, to see

how the modifications affect performance, and the number of edge

crossings as a secondary goal. Coulomb’s Law is used as the repulsive

force in all the experiments as it is used in Eades’ original work [4],

and makes intuitive sense as the relevant physical law.

Each layout was run until either the kinetic energy (a measure

of the activity of the system) dropped below a given threshold (this

was not expected to happen), or the maximum number of iterations

was reached. Short names comprised of a letter for each active force
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(excluding Coulomb’s Law) are used in figures for compactness.

This experiment involved running each of the fourteen combina-

tions shown in Table 3.1 once on each of the 13,720 graphs in the

dataset. These combinations were chosen by manually testing to

determine which looked the most promising.

Experiment 1 2 3 4 5 6 7 8 9 10 11 12 13 14
H (Hooke’s Law) X X X X X X X

L (Logarithmic Attraction) X X X X X X X

W (Charged Walls) X X X X X X X X X X

E (Charged Edge Labels) X X X X X X X X X X X X

C (Collisions) X X

D (Degree Based Charge) X X X X X X

A (Wrap-Around Forces) X X X X X X

Table 3.1: Combinations of forces tested in Experiment One.

3.2.1 Data Set

The various algorithms were tested on a data set from GraphDraw-

ing.org [39]. These graphs were chosen as they mostly contain graphs

from real-world applications and are small - containing 10 to 110 ver-

tices, and 9 to 241 edges. There are a total of 13,720 graphs. These

graphs are described in more detail in Section 2.1.4 on page 19.

3.2.2 Choice of Constants

The constants for Experiment One can be found in Table 3.2 on the

next page. The screen size grows with the size of the graph, but is

limited to 8000 x 8000 pixels as beyond that it becomes too small

to see clearly. This is based on the assumption that the larger a

graph is, the more space it needs to be laid out. Image size is based

on a personal social network context such that they are small, but

still easily recognisable. The kinetic energy cut off was set so low

that it was unlikely that the system would ever terminate from that
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condition. This was done to try ensure that all graphs would run for

a similar length of time, but wouldn’t keep going if they did actually

stop.

The constants were all initially set by looking at parameters used

in papers that the author surveyed. They were then adjusted by

trial and error, such that they looked reasonable on several data

sets. Choice of constants is a difficult exercise, as small changes can

have unforeseen effects. Many papers have simply ignored the issue

entirely [7, 4, 20, 33, 34, 20, 31, 10]. A standard practice is to use

a heuristic method similar to the one used in this chapter, such as

optimising for a simple case [30, 35, 17].

Constant Value Constant Value
Ke 50,000 Coeff. of Restitution 0.9
Kl -60 Ek Cut Off 3
Kh 0.2 Edge Label Length 2 – 4 characters
qlabel 1 Natural Spring Length 2 × vertex size
qvertex 3 Dampening 0.9
Wall Charge 1000 Max Iterations 10,000
Vertex Mass 2 timestep 0.01
w, h 400px ≤ #Vertices× 100 ≤ 8000px
Vertex Image Size 107x87 pixels

Table 3.2: Constants used in Experiment One.

3.2.3 Architecture

As the experiment involved laying out a large number of graphs, the

experiments were run across a range of machines using a grid as

described in Section 2.4.1 on page 31. The experimental framework

was not optimised for speed, but rather simplicity in order to mitigate

programming errors. However, this came with a cost. Some of the

forces, such as collisions, are implemented using a näıve algorithm,

resulting in a much longer runtime than necessary. The framework
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recorded the final embeddings of about half of the experiments to

allow for manual validation. A random subset of the recorded graphs

were manually inspected.

As the experiment ran on the grid, it had to use Java with

the -Djava.awt.headless = true setting. This was due to not all

machines running an X-Server, and the framework using classes that

used X (this is to calculate the width of text labels, as this requires

specifying a font to use, which references the X libraries). As it was a

simulation (there was no image being rendered to a screen), an actual

instantiation of the X-Server was unnecessary and that parameter

allows Java to use the libraries for computation.

As the framework uses images, there is a wait for the image to

be loaded. This is a problem as Java loads the image in a separate

thread, so the image may not have been loaded before the framework

tries to determine the image width. This entails the use of the

MediaTracker class additionally to all the standard image loading

classes which pauses until all images are loaded, and as such timings

are affected. In hindsight, this feature of the program is unnecessary

and should not have been present.

The experiment was done on the cycle-stealing heterogeneous grid

running Sun Grid Engine 6.2 described in Section 2.4.1 on page 31.

While this has disadvantages compared to the dedicated grid, it

was the only grid the author had access to at the time. Because

the layout tasks were competing for resources with user tasks the

experimental framework could not get accurate results about how

long the algorithm took to run. A number of grid jobs did not finish

successfully, but they were not re-run, as fewer than 5 graphs were

lost for any given combination of forces.
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3.2.4 Results

R version 2.11.1 (2010-05-31) [89] was used to analyse the results of

both experiments. The experimental framework recorded the number

of pixels drawn, the total number of pixels, the number of overlapping

images, and the number of edge crossings. The number of pixels

drawn compared to the total tells us how many pixels were occluded

and therefore how much is hidden. The number of overlaps gives an

indication of how crowded the layout is. While a layout can have no

overlaps and still be crowded, this chapter only looks at crowding

that results in occluded pixels. Edge crossings were recorded as

minimising them is considered to increase goodness [5, 42].

As the resulting data does not seem to follow a normal distribution,

the Wilcoxon rank-sum test was used for significance testing as

opposed to the t-test. For this reason this chapter reports medians

rather than means [90]. This chapter holds that the difference is

significant at 95% significance (p < 0.05).

The list of medians for each force in the first experiment is shown

in Table 3.3 on the facing page. The entries in bold blue are minima.

All reported values have been rounded to 2 decimal places.

With regards to overlaps, H and L (p = 0.12, 0.32 respectively) are

not significantly different and the best equal performers are LWED

and HWED. In terms of occlusion the best performer is LWED,

though HWED is not far behind (difference of 0.01%). With respect

to the proportion of edge crossings compared to an estimated upper

bound (calculation by Purchase [5]), and also as a raw count, HWED

is the best performer. It is interesting to note that all of the forces

that use Hooke’s Law (H) have fewer edge crossings than forces that

use the logarithmic attractive force (L). An example graph generated

using HWED can be seen in Figure 3.8.



3.2. EXPERIMENT ONE 45

Median
Crossings Overlaps Occluded Pixels
# % # % %

H 40.00 2.26 13.00 0.20 1.21
HWE 38.00 2.27 3.00 0.04 0.11
HWEC 39.00 2.26 3.00 0.04 0.10
HWED 34.00 1.98 1.00 0.01 0.03
HWEA 80.00 5.34 85.00 1.95 16.46
HWEDA 73.00 4.75 53.00 1.28 12.21
HEDA 71.00 4.52 49.00 1.14 11.34
L 41.00 2.37 13.00 0.20 1.19
LWE 42.00 2.45 2.00 0.03 0.09
LWEC 41.00 2.46 2.00 0.04 0.09
LWED 38.00 2.23 1.00 0.01 0.02
LWEA 92.00 6.15 103.00 2.27 18.40
LWEDA 91.00 6.05 69.00 1.74 15.34
LEDA 89.00 5.75 63.00 1.58 14.30

Table 3.3: Medians by force combination from Experiment One.

Figure 3.8: A graph produced by HWED. There are no overlaps or
edge crossings allowing a human to see details on the vertices as well
as the graph structure.
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3.3 Experiment Two

The second experiment aims to address some of the limitations of the

first. In the first experiment only a small subset of the possible force

combinations were tested. This resulted in missing potentially good

force combinations. To address this problem the second experiment

tests all possible combinations for forces. However, due to the large

number of combinations, not all of the graphs were used. Instead a

random sample of 10% of the graphs was taken and used for all the

tests (see Section 2.1.4 on page 19 and Appendix A on page 135).

This experiment was run on a dedicated grid, allowing for a picture

of the computation cost of the algorithm, which was not practical

with the first experiment’s data set.

Hypothesis. This experiment set out to confirm a number of

hypotheses from the results of Experiment One.

H1 HWED and LWED are the best performing forces.

H2 Changing between Hooke’s Law (H) and the logarithmic spring

force (L) reduces the number of edge crossings.

H3 Switching between charged edge labels (E) and charged edge

centres (G) has no effect.

3.3.1 Choice of Constants

In this experiment the width and height of the screen were fixed to

1920 x 1080 to mimic a normal screen, and the image size was changed

to be square rather than rectangular. These changes are there to see

if small changes to the setup would affect the relative performance

of the best combination of modifications. The full combination of

parameters is shown in Table 3.4 on the next page.
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Constant Value Constant Value
Ke 50,000 Coeff. of Restitution 0.9
Kl -60 Ek Cut Off 3
Kh 0.2 Edge Label Length 2-4 characters
qlabel 1 Natural Spring Length 2 × vertex size
qvertex 3 Dampening 0.9
Wall Charge 1000 Max Iterations 10,000
Vertex Mass 2 Timestep 0.01
w × h 1920 x 1080 Vertex Image Size 80x80 pixels

Table 3.4: Constants used in Experiment Two.

3.3.2 Architecture

This experiment was run on a dedicated grid running the Open Grid

Scheduler using Java 6 under Red Hat Enterprise Linux 5 described

in Section 2.4 on page 31. Running on a dedicated grid enabled

the collection of accurate timing information, since the layout would

not be suspended while running or competing for resources with

unpredictable user programs.

3.3.3 Results

The list of medians for each force in the second experiment is shown

in Table 3.5. The entries in bold blue are minima. All reported

values have been rounded to two decimal places.

LD was the best performing combinations with respect to edge

crossings. LWED was best in percentage of overlaps and occluded

pixels, and best equal (with HWED) in count of overlaps. In 35

(72%) of the combinations of forces, using H rather than L resulted

in fewer edge crossings.
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Table 3.5: Medians by force from Experiment Two. The minimum
value for each metric is highlighted in blue.

Median
Crossings Overlaps Occluded Pixels

# % # % %

H 34.50 2.28 13.00 0.24 0.91

HA 276.00 18.20 375.50 7.61 80.38

HC 48.00 3.39 19.00 0.34 1.31

HCA 298.00 19.66 172.00 3.12 29.67

HD 31.00 2.09 10.00 0.22 0.82

HDA 294.50 20.57 411.50 8.61 83.47

HDC 32.00 2.25 10.00 0.22 0.83

HDCA 312.00 20.46 172.50 3.10 29.34

HE 38.00 2.72 6.00 0.13 1.16

HEA 95.00 6.94 16.00 0.32 5.72

HEC 41.00 2.87 8.00 0.18 2.02

HECA 55.00 4.18 23.00 0.46 5.76

HED 40.00 2.85 6.00 0.12 1.22

HEDA 176.50 12.02 128.00 2.55 45.02

Continued on next page. . .
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Table 3.5 continued from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

HEDC 41.50 2.89 6.00 0.14 1.57

HEDCA 93.00 6.51 41.00 0.72 8.96

HG 39.00 2.74 8.00 0.19 1.37

HGA 98.00 7.09 21.00 0.41 6.15

HGC 42.00 3.09 11.00 0.23 2.04

HGCA 60.00 4.57 28.00 0.54 6.15

HGD 40.00 2.88 9.00 0.18 1.38

HGDA 171.00 11.94 100.00 2.00 38.88

HGDC 43.00 3.14 10.00 0.21 1.68

HGDCA 99.00 7.11 44.50 0.77 9.34

HW 55.00 3.36 35.00 0.63 2.42

HWA 284.00 19.04 388.50 7.99 82.60

HWC 123.00 8.57 65.50 1.07 8.99

HWCA 306.50 20.66 177.00 3.34 30.74

HWD 43.00 2.62 22.00 0.40 1.54

HWDA 312.00 21.02 434.50 8.83 84.34

HWDC 48.00 3.46 24.50 0.51 1.74

HWDCA 323.00 21.09 176.00 3.33 30.69

HWE 34.00 2.17 4.00 0.08 0.33

HWEA 146.00 9.80 34.00 0.59 10.54

HWEC 39.00 2.74 9.00 0.18 1.48

Continued on next page. . .
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Table 3.5 continued from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

HWECA 83.50 6.08 44.00 0.81 10.31

HWED 34.00 2.22 2.00 0.05 0.13

HWEDA 192.00 13.20 165.00 3.37 52.25

HWEDC 38.00 2.59 5.00 0.11 0.69

HWEDCA 125.50 8.52 61.00 1.09 13.19

HWG 35.00 2.19 7.00 0.15 0.49

HWGA 143.00 9.94 40.00 0.70 10.62

HWGC 44.00 3.03 13.00 0.27 1.75

HWGCA 98.00 6.98 51.00 0.89 10.75

HWGD 35.00 2.25 6.00 0.13 0.39

HWGDA 197.00 12.89 137.00 2.71 46.65

HWGDC 40.00 2.87 9.00 0.20 0.95

HWGDCA 133.50 9.65 64.00 1.15 12.89

L 33.00 2.09 13.00 0.24 0.91

LA 266.50 18.08 369.00 7.42 79.89

LC 42.00 2.81 17.00 0.30 1.16

LCA 285.50 19.60 172.00 3.03 29.73

LD 27.00 1.87 9.00 0.20 0.78

LDA 292.50 19.94 418.50 8.40 82.26

LDC 29.00 1.98 9.00 0.20 0.75

LDCA 315.50 20.60 176.00 3.20 29.54

Continued on next page. . .
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Table 3.5 continued from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

LE 37.00 2.65 4.00 0.10 0.86

LEA 89.00 6.60 12.00 0.26 4.89

LEC 40.00 2.80 6.00 0.12 1.20

LECA 52.00 3.91 20.00 0.41 5.21

LED 39.00 2.77 4.00 0.08 0.73

LEDA 178.00 11.47 106.00 2.06 40.06

LEDC 40.00 2.87 5.00 0.10 1.18

LEDCA 95.00 6.36 40.00 0.71 8.80

LG 36.00 2.72 7.00 0.15 0.99

LGA 95.00 6.74 17.00 0.36 5.89

LGC 42.00 3.03 9.00 0.18 1.54

LGCA 60.00 4.45 24.00 0.50 5.34

LGD 39.00 2.85 7.00 0.16 1.01

LGDA 170.50 11.31 81.00 1.64 34.29

LGDC 40.50 3.02 7.00 0.17 1.22

LGDCA 100.50 7.27 43.00 0.76 9.11

LW 50.00 3.07 36.00 0.63 2.44

LWA 288.00 19.23 401.50 8.04 82.48

LWC 110.00 7.68 65.00 1.04 8.33

LWCA 311.50 20.93 179.00 3.32 30.71

LWD 35.00 2.28 19.50 0.38 1.41

Continued on next page. . .
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. . . Concluded from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

LWDA 315.50 20.97 442.50 8.73 84.21

LWDC 40.00 2.85 22.00 0.45 1.57

LWDCA 322.50 21.50 179.00 3.37 30.78

LWE 32.00 2.10 3.00 0.06 0.25

LWEA 141.50 9.74 32.00 0.53 9.92

LWEC 36.00 2.53 6.00 0.13 0.90

LWECA 84.00 6.03 43.00 0.78 10.14

LWED 34.00 2.16 2.00 0.04 0.09

LWEDA 185.00 12.72 145.00 2.96 49.16

LWEDC 36.00 2.54 3.00 0.07 0.36

LWEDCA 118.00 8.56 61.00 1.08 12.97

LWG 33.00 2.11 6.00 0.14 0.41

LWGA 145.50 9.92 38.00 0.64 10.65

LWGC 41.00 2.95 10.00 0.22 1.15

LWGCA 96.00 6.72 49.00 0.85 10.63

LWGD 35.00 2.23 5.00 0.12 0.37

LWGDA 195.00 12.47 112.00 2.35 43.16

LWGDC 37.00 2.73 7.00 0.16 0.58

LWGDCA 133.00 9.51 66.00 1.14 13.11

3.4 Discussion

The LWED algorithm was the most effective at reducing the number

of hidden pixels in both Experiment One and Two, and was best equal

with HWED in reducing overlaps. It also fared well with respect to

edge crossings in the first experiment, coming second equal. HWED

had the least edge crossings in the first experiment and came second

with regards to minimising occluded pixels. This partially confirms
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H1 that LWED and HWED would be the best, with only LWED

being the best.

All tests run with wrap-around forces (labelled A) fared poorly.

This was a surprising result, as in a simple graph with two vertices

connected by a single edge, this force resulted in the vertices spreading

out. Upon running some additional simulations with larger graphs,

it was found that while wrap-around forces did push all the vertices

together, it did so too much, leading to poor performance. It seemed

to perform particularly poorly on sparse non-planar graphs.

Hypothesis H2, that changing from using Hooke’s Law (H) to the

logarithmic spring force (L) generally increases the number of edge

crossings, was not confirmed. It is true for 72% of the combinations,

however, the force that minimised edge crossings the most is LD.

To test H3, this chapter compares the difference between charged

edge labels (E) and charged edge centres (G). Table 3.6 shows the

difference between the mean percentage of crossings and percentage

of overlaps between each force that contains one of these forces.

Each table entry is the difference in percentages, labels - centres

(E-G). Even the maximum difference is below 1%, a value which is

sufficiently low that there is little practical difference between the

two options either in terms of edge crossings or in terms of overlaps.

Note that in almost all cases the values are positive for edge crossings

and negative for overlaps. This implies that having the charges on

the centre of the edges reduces edge crossings, having the charge

slightly offset reduces overlaps, though not by enough to matter in

either case. This suggests that charged edge labels (E) and charged

edge centres (G) are more or less interchangeable as expected. Note

that in the best performing algorithms charged edge labels (E) was

always used in place of charged edge centres (G) (as it was used to

reduce overlaps, neither was used when minimising crossings).

Using the more consistent results from the second experiment it
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Force % Crossings % Overlaps
LW[E|G]DC 0.51 -0.09
L[E|G] 0.08 -0.05
HW[E|G] 0.03 -0.06
HW[E|G]CA 0.95 -0.12
HW[E|G]DA -0.19 0.60
LW[E|G]CA 0.79 -0.08
H[E|G]A 0.11 -0.08
L[E|G]D 0.04 -0.06
L[E|G]C 0.42 -0.06
HW[E|G]C 0.59 -0.09
HW[E|G]DCA 0.82 -0.08
H[E|G] 0.05 -0.05
LW[E|G]A 0.22 -0.11
LW[E|G]DCA 0.70 -0.07
LW[E|G]C 0.57 -0.08
L[E|G]DCA 0.66 -0.06
H[E|G]C 0.46 -0.06
HW[E|G]A 0.07 -0.07
LW[E|G]DA -0.24 0.62
LW[E|G]D 0.02 -0.07
HW[E|G]DC 0.47 -0.09
L[E|G]DA -0.21 0.51
LW[E|G] 0.03 -0.07
H[E|G]DCA 0.56 -0.07
H[E|G]D 0.09 -0.06
H[E|G]DC 0.44 -0.06
L[E|G]DC 0.33 -0.06
L[E|G]A 0.07 -0.08
H[E|G]CA 0.58 -0.07
HW[E|G]D 0.00 -0.07
L[E|G]CA 0.63 -0.07
H[E|G]DA -0.18 0.56

Table 3.6: Differences between mean percentage of crossings and
overlaps when using charged edge labels (E) or charged edge centres
(G). The maximum value for each column is highlighted blue and
bold.
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was possible to measure the runtime required for graph layout and

compare that between different combinations of forces. The average

runtime for a single iteration of the algorithm for graphs of different

sizes can be seen in Figure 3.9 on the next page. The single iteration

runtime is averaged over the 10,000 iterations done in laying out each

graph. Each data point in the figure is a single graph being laid out

by a single combination of forces.

There are four forces which visibly affect program runtime -

charged edge labels (E), charged edge centres (G), wrap-around

forces (A) and collisions (C). The figure shows that the charged

edge labels / centres (E/G) forces incur a clearly noticeable time

increase. This is due to this modification requiring an extra inner

loop running over all the edges. The presence of both collisions (C)

and wrap-around forces (A) increases the run time more than having

both independently would suggest. This chapter hypothesises that

this happens because the wrap-around forces (A) force promotes

collisions, creating more work for the collisions (C) force. This is

also coupled with a highly inefficient implementation of all the forces,

slowing down the overall system.

Validity The most notable omission of the experiments is that this

chapter does not explore how different combinations of constants

affect the output of the program. Both experiments in this chapter

use an expected edge length of 165, which is not so long as to cause

problems. They use a timestep of 0.01. Based on the results of

the following chapter, that should provide minimal variability in the

results collected.

While this study used a large test set of graphs, they do not

encompass all possible graphs. They span a variety of graph densities,

from 0.8608% to 85.45%, though 75% are less than 8.3%, and all but

three are connected. Nevertheless, this chapter hypothesises that the
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Figure 3.9: Time for an iteration vs number of vertices and edges in
the graph coloured by forces which reduce performance. Times are an
average over the whole runtime of the program with all combinations
of forces. There are three well defined strata. The top one consists
of combinations which contain charged edge labels / centres (E / G).
Within this there are further divisions where either collisions (C) or
wrap-around forces (A) are also present. The second stratum consists
solely of combinations containing both collisions and wrap-around
forces (CA) in the force. The final stratum shows that wrap-around
forces (A) and collisions (C) slow down the algorithm, and having
none of charged edge labels / centres, collision, or wrap-around forces
(G,E,C or A) is the fastest.

set of graphs tested here is representative of many small real-world

graphs as it is sampled from a real data set. This chapter hypothesises

that changes and variances in image size can be accounted for by

linked changes to physical constants for each vertex. This is supported



3.5. CONCLUSION 57

by the second experiment in this chapter where images were smaller,

but the best performing forces were the same.

3.5 Conclusion

This chapter looked at modifications to the force-directed algorithm

to avoid overlaps in small graph layout. It described a range of

different forces which can be used with layout algorithms. Two

experiments were carried out to find which set of forces would produce

a layout with the least number of overlaps and occluded pixels. The

experimental results show that:

• Adding in edge label charges, charged boundaries, and increas-

ing vertex charge proportionally to its degree results in layouts

that minimise the number of overlaps and occluded pixels.

• Using Hooke’s law reduces the number of edge crossings for

most force combinations.

• While there is a time cost for using charged edge labels, it is

not so high as to make the modification too expensive.

• There is little practical difference between putting edge charges

next to the edge or on the centre of the edge.

As a result, this chapter concludes that adding in additional forces

is a viable way of preventing occluded pixels for graphs with large

vertices and edge labels.
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Chapter 4

Parameters

Recall the force-directed layout algorithm from Section 2.1.2 on

page 11. The algorithm requires a range of parameters and an input

graph in order to create a layout. The effect of input parameters

on the resulting layout has not been sufficiently explored in the

literature to allow users of the algorithm to predict how their choice

of parameters is likely to affect the layout properties.

This chapter describes an experiment which compares how dif-

ferent sets of parameters affect a variety of graph layout properties.

The experiment considers only the basic force-directed graph layout

algorithm. The experiment varies the strength of spring attraction

(Hooke’s law), vertex-vertex repulsion (Coulomb’s law), the simula-

tion granularity (timestep), and whether there are bounding walls

or not. Bounding walls can be used to ensure the graph is laid out

entirely on the screen. If bounding walls are not used, the image

has to be be scaled to fit the screen. There are two simple ways

of scaling the graph. The first is shortening all the edges until the

graph fits on the screen. This effectively increases the size of all

the vertices, potentially creating lot of overlapping vertices and very

short edges. This may have a significant affect on how the layout

looks. The second is to scale the whole layout. However, this can

59
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make the vertices so small that they are no longer visible.

This chapter divides the forces into two categories. Forces which

motivate the vertices to move, and forces which motivate them to

stop. The attractive and repulsive forces are the forces which cause

movement. Other forces only cause the vertices to stop moving,

and on their own will not cause vertices to change their positions.

Therefore, they may have less effect on the final layout. For this

reason, this chapter focuses on the parameters for the attractive and

repulsive forces.

Walls are included to measure the effects of constraining the

layout to the inside of a box, which seems reasonable to do given

that the layout is often happening on the screen. The timestep

parameter is a stand in for the forces which cause vertices to stop.

This chapter assumes that its importance will be an indication of the

importance of these stopping forces. This assumption is based on

the author’s experience, where changes to forces like friction seemed

to have similar affects to changing timestep.

Overall this chapter evaluates 250 combinations of four input

parameters over 13,720 graphs each. While more parameters and

combinations could have been evaluated, there are already 3,430,000

data points in this experiment which require a large amount of

computation to evaluate.

Contributions The main contributions of this chapter are:

1. A large-scale experiment that evaluated the effects of input

parameters on a range of graph metrics.

2. Demonstrating that the mean edge length in a graph is not

accurately predicted by a simple two vertex graph.

3. Demonstrating that increased values of timestep result in less

predictable graph layouts.
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4. Showing that there is a relationship between the mean edge

length in a graph layout and the mean distance between vertices

for all graphs.

5. Showing that as the mean edge length increases, the area

occupied by the graph layout as a whole increases. The number

of vertices in the graph is not seen to have a significant effect.

This relationship is suggested to be non-linear.

As a result of this research this chapter shows that the simple

2-vertex graph does not provide very much information about the

final layout. In general a large increase in the predicted edge length

will often result in only a small change in the actual mean edge length.

This chapter also shows that the simulation granularity affects the

probability of the graph layout algorithm not converging to a good

solution, resulting in considerably more variable results. Walls seem

to have little effect beyond imposing some limits on how long edges

and distances can be.

4.1 Experiment

The experiment was run over the GraphDrawing.org set of graphs.

This includes 13,720 real world graphs. To restrict the scope of

the experiment this chapter considers only four parameters: spring

attraction, vertex-vertex repulsion strength, timestep, and walls.

Together, the spring attraction and vertex-vertex repulsion can be

combined to give an Expected Edge Length (EEL), which is the edge

length as calculated analytically for the two vertices connected by a

single edge.

Hypothesis: This chapter sets out to test the following hypotheses:
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H1 The expected edge length is linearly related to the mean edge

length in the resulting layout.

H2 Adding in walls has no effect on any of the metrics tested beyond

limiting how much space the graph can occupy.

H3 The timestep parameter, serving as a proxy for the forces which

cause vertices to stop moving, will have no effect on any of the

metrics tested.

H4 Edge crossings are independent of the expected edge length,

timestep, or the presence of walls.

4.1.1 Parameters

The four parameters looked at in this chapter are: Kh, the strength of

the attractive force; Ke, the strength of the repulsive force; timestep,

the granularity of the simulation; and the presence of walls.

Kh and Ke are the only values necessary to work out the expected

edge length. This is done by solving the equation setting Hooke’s law

equal to Coulomb’s law using the definitions given in Section 2.1.2

on page 14. The result is how long an edge should be if the graph

has exactly two vertices connected by a single edge.

This chapter tested every combination of five values of Kh and

Ke against five values of timestep and having walls present or not.

This gives 250 combinations and 9 distinct EEL values. The values

of parameters tested can be seen in Table 4.1 on the facing page.

The mapping of different Kh and Ke values to expected edge lengths

can be seen in Table 4.3 on page 64. The experiment used values

across a range of orders of magnitude to evaluate a wide range of

values. The values were picked such that the values used in laying

out tests graphs successfully were included in the range.
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Since this chapter only varies four parameters, there were a

number of fixed parameters. All the remaining parameters had

their values fixed across all the trials and have their values listed in

Table 4.2 on the following page. While not varying these parameters

limits the results, this chapter could not cover all the parameters due

to limitations in time and resources. It is likely that these parameters

have an affect on the final layout, and it is assumed that timestep

will provide an indication of how important they may be.

Kh Ke timestep Walls
0.0005 0.5 0.1 Bouncy
0.005 5 0.3 None
0.05 50 0.5
0.5 500 0.7
5 5000 0.9

Table 4.1: Variable experimental parameters.

4.1.2 Test Data

This chapter used three test data sets from GraphDrawing.org [39].

It used these graphs as they mostly contain graphs from real world

applications and are small - containing 10 to 110 vertices, and 9 to

241 edges. There are a total of 13,720 graphs, of which all were used

for each combination of parameters. Additional discussion can be

found in Section 2.1.4 on page 19.

4.1.3 Architecture

The graph layout algorithm was implemented using CUDA 5.0 [86],

to enable the layout of multiple graphs simultaneously providing they

use the same parameters. The implementation is open source and

available online [91]. The layout was run on a headless 64 bit Ubuntu
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Parameter Value Parameter Value
EK cut off 3 Max Iterations 10,000
Screen width 1920 px Screen Height 1080 px
Vertex width 20 px Vertex Height 10 px
µs 0.3 µk 0.04
Vertex Mass 1 Coeff. of Restitution 0.9
A 0.2 g 9.8
Max Vertex Speed Y 540 px

iter
Max Vertex Speed X 960 px

iter

q 3

Table 4.2: Constant experimental parameters.

Ke Kh EEL Ke Kh EEL
0.5 5 1 0.5 0.0005 26
0.5 0.5 3 5000 5 26
5 5 3 5 0.0005 56
5 0.5 6 50 0.005 56
0.5 0.05 6 500 0.05 56
50 5 6 5000 0.5 56
5 0.05 12 5000 0.05 122
0.5 0.005 12 50 0.0005 122
500 5 12 500 0.005 122
50 0.5 12 5000 0.005 262
500 0.5 26 500 0.0005 262
5 0.005 26 5000 0.0005 565
50 0.05 26

Table 4.3: Ke (repulsive force) and Kh (attractive force) values that
make up each EEL value.
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12.04.3 system with an NVIDIA C1060 Tesla card [87]. Each set of

parameters was evaluated on all 13,720 graphs as a single CUDA

kernel invocation.

A separate Java program was written (and released open source)

to evaluate graph properties [92]. This was run on a 64-bit ArchLinux

workstation with 4GB of RAM and a quad core Intel R© CoreTM i5-

2400 CPU (3.10GHz) running the Oracle JVM version 1.7.0 25.

The analysis program ran over the output graphs and exported

the relevant information to a csv file so that it could be analysed.

Analysis was performed using R versions 3.0.2 (2013-09-25) and 3.0.1

(2013-05-16) [89]. The use of multiple R versions was a result of

the size of the dataset. As the dataset is very large, some of the

analysis needed to be run on a high memory machine. To get access

to high memory machines, the dedicated grid was used [85] along

with standard Victoria University of Wellington lab machines for low

memory computations.

4.1.4 Validity

While the graphs span a range of sizes (10 – 110 vertices, 9 – 241

edges) and densities (0.86% – 85%) they still only represent graphs

that occurred in the context of the original graph creators. These

graphs will not cover the full range of graph structures possible.

However, this thesis assumes that their variety is sufficient to give a

strong indication of how other graphs may be expected to behave.

This chapter only explored four of the algorithm’s parameters.

There are more parameters that were ignored. As the other param-

eters were kept constant throughout the experiment this chapter

assumes that these results will still hold, especially as most of them

are not directly responsible for the strength of attractive and repulsive

forces in the system.

Timestep has been used as a proxy for forces that do not cause
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vertices to start moving such as friction and drag. It is assumed

that similar effects can be produced by varying friction and drag

as timestep. This is because all of these can be used to change the

speed of the simulation in different ways. Therefore, they may have

similar effects on the layout. This assumption can be tested in future

experiments but was beyond the scope of this thesis.

4.2 Results

The system recorded the final state of all the trials and analysed the

results using R. Since multiple graphs were laid out simultaneously

it is hard to determine how long it took to lay out a single graph,

however, laying out 13,720 graphs took approximately 5 minutes

(≈21 milliseconds per graph if they were sequential). Distributions of

the results factored by every variable can be found in Figure B.3 on

page 146 for reference. Some example outputs from the experiment

can be seen in Figure 4.1 on the next page.

Proportion of Expected Edge Length In the experiments we

measure the mean edge length of the graphs. However, for different

combinations of parameters we expect to layout graphs with different

expected length edges. In order to simplify the presentation of results

this chapter introduces a new metric: the proportion of expected

edge length. The proportion of expected edge length is the ratio of

the mean edge length to the expected edge length. It is calculated

by:

Proportion of expected edge length =
Mean edge length

Expected edge length

The proportion of expected edge length takes the value 1 when
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Figure 4.1: Example outputs from the experiment with no walls,
timestep: 0.3, Ke: 500, Kh: 0.05.
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the expected edge length matches the mean edge length. Otherwise

it is the number of times longer that the mean edge length is than

the expected. For example, a value of 0.5 implies the mean edge

length is half the expected length. A value of 2 implies that the

mean edge length was twice the expected.

4.2.1 Mean Edge Length

The first hypothesis (H1) is that the expected edge length will be

linearly related to the mean edge length. In terms of proportions of

expected edge length, it means that we expect values to be pretty

close to 1.

Figure 4.2: Distribution of proportions of the expected edge length
by timestep. This shows that as the timestep increases edges get
much longer relative to their expected edge length.

Figure 4.2 shows the distribution of proportions of expected edge

length by timestep value. This shows three things:
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• in general edges are longer than expected (lots of values are

> 1);

• the range of proportions of expected edge length values is

several orders of magnitude;

• and very long edges only occur for high values of timestep.

This disproves both H1 and H3. Note that this does not suggest

that a high timestep will result in long edge lengths. A high timestep

increases the range of edge lengths produced, but does not reliably

produce edges of any given edge length.

Further exploration shows that for low values of timestep, specific

values of Ke and Kh have essentially no effect. While this is not

visible in the graphs shown, it is visible in the complete results

(Figure B.3 on page 146).

Further splitting by walls has has little effect, except where edges

become too long in the presence of a high timestep. This disproves

H1, provides support for H2 and strongly disproves H3 that timestep

will have no effect.

In general this suggests that EEL values are a reasonable way of

thinking about the parameters since their component values do not

have a strong individual effect. Further examination of the values

suggests that in general EEL values are an underestimate of the true

mean edge length.

Relationship with Final Kinetic Energy

In force-directed layout the kinetic energy of the system provides

information about how settled the system is. The more vertices are

moving around quickly, the higher the kinetic energy is. The kinetic

energy is also used as a termination condition. Once the energy is

low enough, the vertices are no longer moving a lot, then the layout
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algorithm is stopped. This prevents the algorithm from running

when it would no longer be making any useful changes to the layout.

Since the kinetic energy is used as a termination condition, there

is a certain implication that the kinetic energy provides information

about the layout. That if the algorithm terminates by running out

of time before the kinetic energy gets low enough, then that may be

a worse layout then if it was allowed to run until the kinetic energy

threshold was reached. An intuitive argument would be that if the

kinetic energy is low then the edges length are not changing much,

and have stabilised at their ideal values. In contrast, if the kinetic

energy is high, the edge lengths are changing a lot, and so may not

reflect their length in a more settled state.

Following that reasoning, it is possible that lower kinetic energies

at the end of layout have shorter mean edge lengths. Moreover, early

pilot tests of the system supported this hypothesis. Additionally,

the previous section showed that long mean edge lengths occur at

high values of timestep. Therefore it is also possible that high values

of timestep result in more graphs with high values for final kinetic

energy. This section explores both of these options.

Correlation with Proportion of Expected Edge Length Fig-

ure 4.3 on the facing page shows the final kinetic energy against the

proportion of expected edge length. This shows virtually no rela-

tionship between the final kinetic energy and how much longer than

expected the mean edge length is, irrespective of the presence of

walls or the value of timestep.

Closer examination of the data shows that this effect is indepen-

dent of graph size or density (see Figures B.1 and B.2).

Correlation with Timestep Figure B.3 suggests that the longer

edge lengths (comparatively to the expected edge length) tend to
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Figure 4.3: The relationship between the proportion of expected edge
length and the kinetic energy separated by whether there were walls.
It is clear that there is no useful relationship between the two values
from the rectangular shape of the data in most cases.
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occur more often for higher values of timestep. Figure 4.4 shows that

higher values of final kinetic energy are more likely at higher values

of timestep. However, this is not strong evidence for the final kinetic

energy affecting edge length as it does not show a direct relationship.

Figure 4.4: Distribution of final kinetic energy by timestep. It shows
that there are more graphs with high values of final kinetic energy
the higher the value of timestep.

4.2.2 Edge Crossings

Hypothesis H4 said that edge crossings would be independent of the

parameters that were varied. To test this percentages for edge cross-

ings (using Purchase’s crossings metric [5]) can be seen in Figure 4.5.

The data do not suggest a strong relationship between edge

crossings and expected edge length or timestep. However, there is
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Figure 4.5: Percentage of the edge crossings in a graph (compared
to the total possible) split by timestep and the presence of walls.

a suggestion that having walls results in more edge crossings. In

general, all combinations of input parameters seem to have resulted

in low numbers of edge crossings. This is largely consistent with H4.

4.2.3 Exploratory Analysis

This section looks at two factors which were recorded by the system,

but are not important to any of the claims in this chapter. In

particular it explored the size of the bounding box of the graph

layout, and the mean distance between all vertices (as an extension

of edge length).

Bounding Box In practice a user may wish to know in advance

how much space a graph layout will take up, or would take up if

it had more space. There is a correlation between the mean edge

length and the area of the bounding box necessary to enclose the
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graph as shown in Figure 4.6. This suggests that the graph tries to

spread out as the edges get longer (though in a restrained way if

there are walls). This is particularly interesting as there is no strong

effect from the number of vertices in the graph (see Figure B.5 on

page 149) as was expected. The relationship seems to be close to

linear as shown by the blue regression line. The diagnostic plots for

the linear regression shown in Figure 4.6 can be found in Figure B.4

on page 148. These show that the linear model is not quite right.

Quadratic and exponential models were expected to provide a better

fit, but did not.

Figure 4.6: Mean edge length vs area of enclosing bounding box.
The longer the edges are the more space the graph takes up if it
is available. Note that the maximum area available with the walls
present is 2× 106 pixels2. The blue line is a linear regression.

Vertex Spacing The previous section looked at how much space

on the screen a graph occupies. This can be seen a way of looking

at the distribution of vertices on the screen. However, this does not
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answer questions like: are most of the vertices packed together? An

alternative view of vertex distribution over the screen is provided

by the vertex-vertex distances between all vertices. This provides

a model of how large vertices can be and still avoid overlaps, as

well as a notion of crowding. The minimum vertex-vertex distance

is essentially uncorrelated to the mean edge length (Figure B.6 on

page 150). However, Figure 4.7 shows that the mean vertex-vertex

distances are linearly strongly correlated to the mean edge length.

This is not an unexpected result as both vertex-vertex distance and

edge length provide information about how spread out a graph layout

is.

Figure 4.7: The mean vertex-vertex distance and the mean edge
length are shown to be strongly correlated.

4.2.4 Individual Parameter Effects

From the data that we collected, we can make some general conclu-

sions about how the parameters that were evaluated in this chapter

affect the resulting layout.

The most interesting result is that individual values of Ke and

Kh are not important. It is only the balance between them which is

important - the EEL value that they get. This is a practically useful

result as it shows that you can tune edge lengths by changing either

Ke or Kh independently.
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The timestep parameter has been shown to increase the variability

in results. In particular, layouts with large timesteps are liable to

have some graphs (at random) be laid out with much longer edge

lengths than would otherwise be expected.

The walls were not found to have any interesting effect on the

layout. While they do contain the graph, they do not seem to change

the layout in any other way. This suggests that walls can safely be

added to graph layout to constrain the layout to fit on a given output

medium.

4.3 Parameter Confirmation Experiment

This experiment replicates the second experiment from Chapter 3

using a sample of 38 graphs on all 96 force combinations. This is

done because the exact set of parameters used that chapter are not

among the combinations tested in this chapter. While only a small

number of graphs were tested so that the experiment would be quick

to run, all force combinations were tested.

The parameters used in this experiment were the parameters in

Table 4.2 on page 64 and Ke : 5000, Kh : 0.05 from Table 4.3 on

page 64. Some parameters from the previous chapter (e.g. Kl) do

not have an analogue in this chapter and so use their original values.

This is done to provide additional evidence that the results from the

previous chapter hold in light of the current results. In other respects

this ran in the same manner as previously described.

Note that the size of the vertices is much reduced between the

chapters. This may reduce the difference in performance between

different force combinations as the number of overlaps is likely to

decrease significantly. As a result, the hypotheses being tested are:

HWED is the best equal force with respect to reducing overlaps; and

HWED has fewer overlaps than H. These hypotheses are chosen to
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validate the use of the H and HWED forces in Chapter 5 on page 79.

4.3.1 Results

The results of this experiment were analysed in the same manner as

above. Due to the smaller vertex sizes used in this chapter there are

fewer overlaps in the resulting graphs. The full table of results can

be found in Table C.1 on page 151.

The interesting results are that HWED is still the best equal

performing force with respect to overlaps and occlusions generating

graphs with 0 overlaps or occlusions. The base force combinations

(H and L) both still generate graphs with overlaps and occluded

pixels. HWED also generates graphs with low numbers of edge

crossings (1.94% of the possible edge crossings compared with 1.98%

in Experiment One and 2.22% in Experiment Two).

This validates our selection of the HWED force as the best per-

former. This also confirms that HWED performs better than H,

which further validates the choice of the two forces to compare in

Chapter 5.

4.4 Conclusion

This chapter describes an experiment to explore how parameter

selection affects the edge lengths of graphs laid out using force-

directed layout. The results invalidate the first three hypotheses

stated earlier in the chapter, and confirm the fourth. The results

suggests a number of conclusions:

• Increasing the expected edge length will increase the mean edge

length, but will only do so reliably for low values of timestep.

• Edge crossings do not seem to follow any clear pattern with

respect to either timestep or expected edge length.
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• The individual values from the parameters Ke and Kh do

not matter. However, the edge length that results from their

combination may have a significant effect on the layout. Ideally

the edge length should be kept as short as practical, which will

usually involve keeping both Ke and Kh as low as possible.

• The timestep parameter has a significant effect on graph layout

and should be kept as low as possible.

• The parameter which controlled the presence of walls did not

have an observed effect on the resulting graphs. It may, however,

significantly affect the aesthetics of the layout as it changes

how the graph can move and spread out.



Chapter 5

User Study

The previous chapters have shown that graph layout can be affected in

significant ways by modifying the input parameters or the forces used.

All of these evaluations are based purely on assessment by metrics.

While the metrics that were used are based on well-known ideas,

there is no clear relationship between the values that a metric takes

and a measurable output with respect to human user performance.

For this reason, this chapter conducts a user study where two

graph layouts with different metric results are compared under free-

form multi-selection tasks. Specifically, this chapter compares the H

and HWED algorithms from Chapter 3. These two combinations of

forces were found to have significant differences with respect to their

metric values.

An experiment was carried out in the context of a personal

social network on an entertainment console. Entertainment consoles

have become a standard household good, owned by over 50% of

households in North America alone [93, 94]. Since the mid 2000s,

consumer entertainment consoles have been releasing gesture based

controllers [70, 71, 68], which are now becoming commonplace. These

controllers allow users (or a point controlled by the user) to be tracked

as they move around. Alongside more traditional gaming functions,

79
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these controllers are also used for tasks such as interacting with

various forms of media and social networks.

Many users use consoles as a social interaction platform [95, 96,

97]. Using a graph layout to display friends can cluster friends

who know each other into coherent groups. This can simplify the

process of finding and selecting a group of users to interact with.

Entertainment console media (i.e. video games, movies, music) have a

natural graph representation based on both similarity and purchasing

recommendations [98].

While many new games target gesture based controllers, free-

form multi-selection is not a common console gameplay mechanic.

In contrast, selection is a core component of interactive systems [52].

It also differs from many gestures (both game and other) in that it

is sensitive to location. Small changes in physical hand position are

exaggerated and result in large cursor movements. Many gestures

are either location agnostic, or partition space into a small number

of coarse sections. In contrast, free-form multi-selection follows the

exact path the user traces, and a few centimetres in the wrong

direction can result in an incorrect selection.

Contributions. This chapter describes a user experiment where

74 participants interacted with graphs laid out by two different

algorithms to see if there was a difference in user performance. The

experiment was carried out in a controlled lab environment, with a

within-subjects experimental design. The chapter also looks at users’

perceptions of the system and how practical it was to use. Overall it

finds that:

• The HWED and H (control) layout algorithms did not have a

significant difference in time taken to complete a selection.

• When using graphs laid out by HWED the participants made

less errors than when using the control algorithm.
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• HWED produced layouts with a lower steering complexity than

the control.

• Multi-selection using free-form polygons allows for greater error

tolerance than repeated single selection.

5.1 Experiment

This section describes an experiment to evaluate the difference in

user performance and preference when performing graph selection

tasks using a single PlayStation Move controller, on graphs laid out

by the H (the control as it is a standard implementation) and the

HWED algorithm. The experiment was approved by the Victoria

University of Wellington Human Ethics Committee. Each participant

had to select a similar set of vertices in a pair of graphs (actually

the same graph laid out with a different layout algorithms). They

then answered three questions about their preferences and perceived

speed. The system recorded all user interactions allowing the system

to determine the true time spent on each graph.

5.1.1 Graph Layout Algorithms

The two graph layout algorithms compared are the standard force-

directed graph layout algorithm by Eades [4] (H), and the HWED

algorithm from Chapter 3. Chapter 3 shows that graphs produced

by HWED have a reduced probability of overlaps, and potentially

increased space between the vertices. It was hypothesised that these

properties would make the selection tasks easier in two ways. First

by decreasing the steering complexity that results from needing to

not select extraneous vertices in the experiment. And second by

compensating for the noisy signal from the Move controller. The

purpose of this experiment is to explore the effect of differences in
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metrics on human performance. While the metrics in the previous

chapter showed significant differences in the layout, it is unclear

whether those differences will affect a user interacting with the graph.

5.1.2 Graph Interaction

Choosing to work in the context of an entertainment console, limited

the common devices to either a gesture controller or D-pad. However,

the D-Pad is quite unsuitable for this task. Using the D-pad to jump

from vertex to vertex by moving along edges may be difficult as there

may be more than one edge going in a single direction. Additionally,

it is hard to draw free form polylines around an area using the D-pad

(directional or analog), due to both awkwardness of interaction (using

the D-pad to control a cursor) as well as the slow speed of interaction

that is required to keep control of the cursor. Moreover, consoles

are moving more and more towards gesture controllers, and it is

important to not ignore the reality of the situation in HCI settings.

The PlayStation 4 D-pad controller has the ability to be tracked in

3D space much like the Move controllers used in this work [99].

5.1.3 Data Set

Rather than using the graphs from the first study, this experiment

uses subsets of the VAST challenge data set [38] which contained a

social network. Each graph was made by taking the friend networks

of each user out to two degrees. It is hypothesised that these graphs

are more likely to to be structured like real social networks than

randomly generated data, and they are publicly available. This also

helps validate the findings in Chapter 3 by testing on a different

set of graphs. This validation is very limited, particularly in the

number of graphs tested and that they were all likely to have similar

structure.
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The experiment used a random subset of 20 graphs that had

no more than 50 vertices. There was no limitation on the number

of edges. The clusters of vertices to select were manually assigned.

Each cluster was assigned such that the entire cluster can be selected

in one selection.

A limitation of this work is that the vertices to select were chosen

after the layout stage, and did not have to be the same for each pair.

Instead the vertices were in a similar location in both layouts. This

was because there was no way to guarantee that any set of vertices

would be laid out close to each other. This experiment only tested

selections that could be selected in a single free-form selection with

up to 5 vertices, as more complex selections are just repeated single

free-form selections. A number of graph pairs used in the experiment

can be seen in Figure 5.1 on the next page. The nodes which need

to be selected are shown in blue.

5.1.4 Test Participants

Participants were recruited by asking students attending Victoria

University of Wellington to participate and to invite their friends.

Participants were informed the study would take 15 – 30 minutes,

and would be put into a draw to win gift vouchers for participation,

as well as a prize for the best performance. Participants had to be at

least 14 years of age, with any below 18 requiring parental consent.

5.1.5 Setup

The display was a 40" Panasonic TV with a resolution of 1920x1080

pixels. The user was seated on a computer chair which they could

adjust as they chose. The chair was positioned opposite the camera

which was at the bottom centre of the screen. It was raised on some

books, as the table was both too wide (the camera saw a lot of the
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Figure 5.1: Pairs of graphs laid out by different algorithms used in
the experiment. Each row is the same logical graph. Nodes which
need to be selected are blue.
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table in its field of view), and the user was quite high relative to it.

A post-it note was hung on each side of the screen with one of the

buttons on the PlayStation controller. The entire set-up can be seen

in Figure 5.2.

Figure 5.2: Experimental setup. The PlayStation eye camera is
propped up on a book as the desk is too low. The vertical column of
post-it notes contains measurements that participants could use to
estimate their height.

As the room being used was quite narrow, and the table quite

wide, participants could not move around much without the camera

losing track of the controller. For some participants, their arm’s

reach could extend out of the camera viewing angle. Fortunately

this did not prove to be an issue with only 1 participant performing

large enough gestures for this to manifest, and only in the practice

graphs. The participants were all initially seated on a standard office

chair in a fixed location in order to minimise differences in gain (see

Section 2.3.2 on page 30).

The system from Chapter 3 was used to lay out the graphs, and

was extended to support and record interaction with the graphs [88].

Additionally, a Java library was developed (and released open source)

to allow communication with the Sony Move.Me system [100].
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5.1.6 Tasks

The experiment was divided up into four parts, taking 15 – 30

minutes in total. Questionnaires in the study used a seven point

Likert scale. Initially each user filled out a pre-questionnaire to get

some demographic information as well as previous experience. They

then calibrated the system, and performed four practice tasks. Upon

completion of the practice tasks the experiment began.

Users were presented with two graphs, one after another, where

they had to perform a similar selection task. They were supervised

by the author. Unknown to the users the two graphs were logically

the same, but had been laid out using different algorithms. Once the

correct selection was completed the application automatically took

the user to the next graph. When both graphs had been completed

they were presented with a question screen about the two previous

graphs as in Figure 5.3 on the facing page. To leave this screen

they had to both answer all the questions and press the x button on

the controller (this allowed users to change their mind about their

answers). Each user was presented with the same 20 pairs. The order

of the graph pairs and the algorithms within each pair were shuffled

for each user. Upon completion of the selection tasks users answered

a post-questionnaire, completing the experiment.

5.1.7 Interaction

The PlayStation Move was set up in laser mode, in which it attempts

to work out where the controller is pointing like a laser pointer

(similar to ray casting). This takes care of the issue of reachability

as it becomes an issue of angle rather than reach. To calibrate the

controller, the participant pointed the controller at each of four post-

it notes around the TV (Figure 5.2 on the previous page) and pushed

the button shown. These could be done in any order.
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Figure 5.3: A screen asking the three questions about the two tasks
that have been completed immediately prior. The green dot in the
top left hand corner is the cursor.

A green dot with a black outline and 20 pixel diameter was shown

as the cursor. This was the raw position as read from the PlayStation

Move Software. If the controller went out of sight of the camera an

error message was shown at the top left of the screen, but the system

would continue to attempt tracking.

In order to enter the selection mode, users had to hold down the

trigger (this was under their index finger). This started drawing a self-

closing pink polyline that showed in real-time which vertices would

be selected when the button was released, finalising the selection.

The polygon obeyed the inside-outside rule, which meant that items

could be deselected partway through a selection (Figure 5.4 on the

following page). Selected vertices were shown with a large green tick

on them. Holding the Move button (under the user’s thumb) drew a

blue polyline with yellow fill that deselected vertices, in real time,

with the same rules as selection.

Allowing the user to begin their selection at an arbitrary point

avoids Bowman et al.’s Heisenberg effect. All precise movements can
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Figure 5.4: The polygon is self-intersecting and can have holes in it.
This is a result of the inside-outside rule that says that containment
requires a ray going out to infinity to pass through an even number
of walls to be inside the polygon.

be done while the button is being held down, avoiding the issue.

5.2 Results

The experiment had 74 participants, many of whom were students

studying computer science related topics at Victoria University. R

version 2.14.2 (2012-02-29) was used for all the data analysis [89].

13 participants were female, the mean age was 24 years old, and

the mean height was 176 cm. Charts showing the distribution of

participant age and height can be seen in Figures 5.5 and 5.6. 75%

of participants reported that their exposure to the PlayStation Move

controller or similar controllers such as the Nintendo Wii remote was

“rarely” (3 out of 7) or less.

The binomial test was used to check that the ordering of which

layout came first for each pair of graphs was random (to verify the

implementation). It gave a 95% confidence interval of [0.48, 0.53]

suggesting that it was in fact random.

The participants answered three questions after each pair of

graphs. The binomial test was used to see if the order mattered.

For the two questions relating to performance - speed and accuracy
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Figure 5.5: Distribution of participant ages. Most are young univer-
sity students.

- there was no bias based on position at 95% confidence. However,

user preference slightly favoured the second layout shown with a 95%

confidence interval of [0.445, 0.498]. The binomial test was used to

determine if users correctly identify which layout they performed

faster on. The 95% confidence interval is [0.69, 0.74], suggesting that

participants could usually identify which layout they had performed

faster on.

Performing the binomial test on the answers users gave provided

the same results. Speed and accuracy have no significant difference

based on algorithm (p = 0.30 and p = 0.51 respectively). Preferences

show a significant difference of very small magnitude in favour of the

modified algorithm (p = 0.036, confidence interval = [0.50, 0.56]).

The next tests looked at speed differences based on different layout.

The Shapiro-Wilk normality test showed that the distribution for

times to complete a graph is not normal (p < 2.2 × 10−16 in both

cases). Hence the Wilcoxon rank sum test was used to compare

the times per graph based on different layouts, and did not find a
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Figure 5.6: Distribution of participant heights. Most participants
were in a fairly narrow height range.

significant difference (p = 0.80). The system also determined the total

path length drawn to complete each task. Again, the Shapiro-Wilk

normality test found the distribution to be not normal (p < 2.2×10−16

in both cases), so the Wilcoxon rank sum test was used to show that

the values were significantly different at 95% (p = 0.00043). The

difference in path lengths can be seen in Figure 5.7a on the next

page, and the similarity in times in Figure 5.7b on the facing page.

As a measure of how often participants made mistakes, the system

recorded the number of times participants used the deselection tool

per graph. The Wilcoxon rank sum test showed a significant difference

at 95% (p < 2.2× 10−16) in the use of deselection. Looking at the

histogram of the log of deselection tool usage frequencies (Figure 5.8

on page 92), shows that users with the modified algorithm were less

likely to use the deselection tool. As users could not advance to the

next graph without completing the task correctly, this means that

these users were less likely to make an error in their selection.

The feedback from users was generally positive. Each participant
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Figure 5.7: These charts show the frequencies of path length for
a selection, and time taken for a selection. There is no significant
difference between the times, but the path lengths for the modified
algorithm are longer suggesting that the user’s arm is moving faster.

answered four main questions, evaluated on a Likert scale from 1 to

7, asking their agreement with the following statements:

• The system was fun to use.

• The system was novel to use.

• I would use this system again.

• The system did what I wanted.

Bar-charts of feedback for each of the questions can be seen

in Figure 5.9 on page 93. Values of 1–3 indicate disagreement, 4

neutrality and 5–7 agreement. These clearly show that users largely

chose ratings which agreed with all of the sentences, indicating

positive feeling.
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Figure 5.8: Number of times the deselection functionality was used.
Note that the frequencies are shown as logarithms, and that for
non-zero uses the control algorithm generally has higher incidence.
This difference is supported by significance testing.
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again”.
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I wanted”.

Figure 5.9: User ratings for questions. 1 is disagree, 4 is neutral, 7 is
agree. For all questions the majority of results are at 4 and above
suggesting that users had a favourable reaction to vertex selection
using the PlayStation Move Controller.
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5.3 Discussion

The feedback on the system was positive. The majority of users

indicated both that the system was fun and that they would use it

again (Figure 5.9 on the previous page). This is good support for

the concept of integrating such controls into the standard user inter-

faces of consoles. Moreover, only a small proportion of participants

particularly disliked the system. It is possible that these participants

could be swayed to a more positive reaction if the system could be

shown to directly improve their interaction with the device.

A number of users attempted to use the controller with their arm

fully extended at the beginning of the experiment. As discussed in

the related work, this can cause excess fatigue and render the system

unusable for long term interaction. While the participants who

continued to hold their arm extended for the entire duration of the

experiment (6 minutes on average) did report feeling tired at the end,

the majority either started off holding the controller comfortably or

moved into a more comfortable position as the experiment progressed.

A number of users started out doing repeated single item selection

rather than drawing free-form selections around the entire set of

vertices. All participants who started out doing selections in this

way changed to free-form multi-selection by the end of the study.

No participants changed from multi-selection to single selection.

This suggests that free-form multi-selection is something that the

participants would use, and so is desirable in a real system.

Users had clear difficulty remembering choices that they had

made previously. A number of users commented that they felt like

they always preferred the first graph. This is contrary to the analysis

which shows that the second graph was preferred, and was also not

noticed by the experimenter who was supervising the participants.

The tendency to prefer the second graph, while not very strong,
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goes against the assumption that users prefer graphs based on the

layout algorithm rather than their ordering. Statistical tests suggest

that the graphs were in fact shuffled, so this effect cannot be explained

by layout algorithm. A possible reason is that slight bias may be

caused by the similarity between each pair of graphs. For each pair,

the vertices that need to be selected are in the same area on the

screen (as much as possible), and the users may have learnt the

location of the selection, and therefore considered the second task

slightly easier than the first. Alternatively the first graph may not

have been remembered clearly, and the second picked for that reason.

However, the magnitude of this difference is small enough to be of

little practical interest.

The experimental analysis showed that the modified layout (HWED)

makes selection tasks easier for the users. There are two main factors

that contribute to this conclusion. The first is that there was no

difference in timing between the different layouts, but the paths

drawn by the user were longer in the modified case. Results on the

steering law [78] and the modifications due to gain [79, 80], imply

that, at a constant gain, if the difficulty of the paths is the same, the

longer path should take more time. In this case, the longer path took

less time. As the gain is constant, this means that the longer paths

in the modified layout must have a lower index of difficulty. This

also provides additional evidence that the modified layout algorithm

results in sparser layouts than the control.

The second is that participants used the deselect functionality

less when they were performing selection tasks on graphs laid out

with the modified algorithm. This means that they generally made

fewer mistakes, while taking no more time to do it. While this does

not consider the case of expert users, it still shows that there is a

difference for some people, re-enforcing the results from the metric

evaluation. Furthermore, this creates a safety net for new users so
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they can make fewer mistakes without having to go slower to do it.

It may be that these results are strongly biased towards novice

users. As the PlayStation Move controller is not used widely for graph

selection tasks, it is unlikely that the participants would have had a

large amount of expertise before the experiment. While a number

of them had previously used gesture controllers, they would have

been unlikely to have done a similar task with them. This is further

supported by participant comments to the effect that they felt that

they liked the more spacious layouts at the beginning, but started to

prefer denser layouts as they got more confident and familiar with

the system.

5.3.1 Adjustments to the Controller

The experiment used the unfiltered pointing information from the

PlayStation Move.Me system. This gave a noisy signal, making it

hard for users to hold the cursor steady, and giving the impression

that they had very shaky hands. It was suggested by a number

of participants that the system would be improved by adding in a

filter over the input signal to reduce the amount of jitter that was

visible on the screen. Unfortunately this was not picked up in pilot

testing, and so was not implemented in the experiment. Moreover,

adding such filtering would add in additional delay between the user

performing an action and it being reflected in the program cursor

state. This should not make a difference to the overall result, as it

affected all participants the same way, but it may have emphasised

the effect if it made the task harder to complete.

5.3.2 Participants

The sample of user participants is drawn from quite a narrow range.

It is largely young men studying computer science or engineering at
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university. This is only a single demographic amongst a variety that

use entertainment consoles. While some participants are members

of other demographics, there are not enough of them to say that

they would definitely exhibit the same behaviours, although in this

experiment no differences were observed. However, this chapters

hypothesises that these results provide a strong indication about the

sorts of people who did participate, and believes that further research

on other demographic groups would find similar results.

5.3.3 Future Work

This work limited itself to selection tasks that could be accomplished

with a single free-form selection. It would be interesting to see

how this extended to more complicated selections, where a single

contiguous selection lasso would not be a practical mechanism. It

would also be interesting to see if factors like decreasing the pointer

sensitivity or having previous experience with the system changed

users’ perceptions of the system.

5.4 Conclusion

As 3D gesture controllers enter the home as part of commodity gaming

systems, people get used to their presence. This mass circulation

allows them to start being integrated into people’s day to day lives

and to be used for tasks beyond gaming. This chapter looks at

how different graph layouts explored in previous chapters affect

users performing a vertex selection task using the PlayStation Move

controller.

Overall this chapter finds that the HWED algorithm from Chap-

ter 3 performs better than its matched control algorithm H. Using

HWED reduces the number of errors users make when selecting ver-
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tices, as well as reducing the steering complexity of the graph. This

provides evidence that the changes that were expressed by means of

metrics in previous chapters have a real world effect on how users

interact with graphs.



Chapter 6

Graph Symmetry Detection

One of the original claims made about force-directed layout was that

it promoted symmetry, a trait that is believed to be helpful in reading

graphs [4, 46]. Both of these claims have been tested by Purchase

whose findings did not support the claim that force-directed layout

increases symmetry [5], and were either inconclusive on [46] or weakly

confirming of [43] the benefits of symmetry. However, the symmetry

comparison done by Purchase has three important limitations which

this chapter attempts to address:

1. The symmetry algorithm focused on the symmetries of the

vertices, ignoring edges.

2. The study only considered reflective symmetries, ignoring rota-

tional and translational symmetries.

3. The symmetry algorithm did not have an evaluation to assess

its performance.

An important limitation of Purchase’s algorithm is that it does

not consider edges when calculating a symmetry score (i.e the first

limitation). In all connected graphs which are not trees, edges will

outnumber vertices. Additionally, edges are drawn as lines connecting

99
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the vertices. This results in the edges having a lot of influence on

symmetry within the graph. This is not to say that vertices play no

part, but edges only exist where vertices do and so implicitly include

their effect (excluding orphan vertices and vertex shape). Consider

the graph shown in Figure 6.1. If the edges are ignored, then the

dotted lines are two potential axes of reflective symmetry. However,

if the edges are also considered then the horizontal axis is the only

axis of symmetry.

· ·

· ·

Figure 6.1: A simple graph containing two potential reflective axes of
symmetry (black dashed lines). While both of these are equally valid
with respect to the vertices, the horizontal line is the only choice
when edges are considered. Additionally there is rotational symmetry
around the point where the two axes of reflective symmetry meet.

The first two limitations of Purchase’s study are addressed here

by developing a novel algorithm for measuring symmetry in graphs.

The third limitation is addressed by the experiments in this chapter.

This chapter extends the symmetry detection algorithm described by

Loy and Eklundh [48]. Their algorithm detects reflective, rotational

and translational symmetries. The algorithm is modified to handle

undirected edges, so that an edge is considered the same after a 180

degree rotation rather than the 360 degree rotation required by Loy

and Eklundh.

An important feature of Loy and Eklundh’s algorithm is that

it can detect when multiple different detected symmetry axes /
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centres are actually very similar (i.e. rather than only when they

are identical), and groups them together into a single axis. Consider

Figure 6.2 on the next page which has a laid out graph with its axis

of reflective symmetry shown as a dashed yellow line. The ring of

black edges around the outside of the layout are all shown as sharing

a single common axis of symmetry (the dashed yellow line). However,

close inspection of the image will show that the yellow line is not an

exact axis of symmetry for many of those edges. It is good enough

that it looks about right, while not being perfect. It is exactly these

sort of approximate axes / centres of symmetry that the grouping

allows the algorithm to detect.

The chapter uses the new symmetry metric to analyse graphs

laid out using the force-directed layout algorithm to gain an idea of

how symmetrical the produced layouts are. Finally a user study is

carried out to determine whether the symmetry judgements made by

the algorithm are similar to symmetry judgements made by humans.

Contributions The main contributions of this chapter are:

• A novel symmetry measuring algorithm for graphs that consid-

ers edges and measures reflective, rotational and translational

symmetries. This is based on the work of Loy and Eklundh [48].

• Applying the symmetry algorithm to the graphs generated in

the experimental study done in Chapter 4 on page 59. The

results give an indication as to the variability in symmetry

expressed in layouts produced by force-directed graph layout.

• A follow up experimental study over a small number of small

graphs which shows that graphs with long mean edge lengths ex-

hibit less symmetry than graphs with short mean edge lengths.

• A user study comparing the symmetry algorithm to human
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Figure 6.2: Graph with best axis of reflective symmetry marked as a
yellow dotted line. The black edges are ones that are mirrored across
the yellow mirror line.

judgement showing that the algorithm agrees with humans 92%

of the time that agreement is possible.

6.1 Algorithm

The extended algorithm developed in this chapter is described in

Algorithm 2 on the next page. The rest of this section describes each

part of the algorithm in detail. The implementation can be found

as part of the open source graph analysis library released as part of

this thesis [92].
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Algorithm 2: Symmetry detection algorithm.

Data: symmetryType ∈ {reflective,rotational,translational}
and N the number of axes to look for

Result: score ∈ [0..1]
axes = empty list
features = Convert all edges to SIFT features
for fi ∈ features do

if symmetryType == reflective then
axes.add(perpendicularBisector(fi), 1)
axes.add(parallelAxis(fi), 1)

else if symmetryType == rotational then
axes.add(getLocation(fi), 1)

foreach fi, fj ∈ features do
axis = find symmetry axis(symmetryType, fi, fj)
quality = find symmetry quality(symmetryType, fi, fj)
axes.add(axis, quality)

axes = quantiseAxes(axes)
bestAxes = pickBest(axes, N)
score = score(bestAxes)
return score

6.1.1 Initialisation and Storage

axes = empty list

The algorithm enumerates all the possible axes of symmetry and

assigns them a quality score. The initial state is an empty list. Note

that the elements of the list are going to be pairs consisting of an

axis and its quality score (a number between 0 and 1).

Each kind of symmetry has a different sort of axis:

Rotational Symmetry requires a centre of rotation. This is a

point in the 2D plane and can be stored as a pair of floating

point numbers.

Translational Symmetry requires a vector. This is a distance

and direction and can also be stored as a pair of floating point
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numbers.

Reflective Symmetry requires a line of symmetry. The standard

representation using m, c from y = mx + c doesn’t work as

it cannot represent vertical lines, and the difference between

two lines based on their m and c values is hard to understand.

As a result, this chapter follows the method used by Loy and

Eklundh [48] of using the Hough transform [50]. This represents

each line as the angle and distance from the origin to the closest

point on the line as in Figure 6.3. This always hits the line at a

right angle, is unique, is bounded by [0 . . . 360] in angle, and is

bounded by the layout size in radius (as the axis of symmetry

is always on screen). As a result the reflective symmetry can

also be represented as a pair of floating point numbers (i.e. the

angle and radius).

x

y

0 1 2 3
0

1

2

3

r

θ

Figure 6.3: A Hough transformed line.

Generic Representation Based on the previous paragraphs a

unified representation was created where each axis is represented as

a pair of floating point numbers and each quality score as a single

floating point number.
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6.1.2 Graph to SIFT Features

In order to enumerate all the possible axes of symmetry the edges are

converted into a standard format, as they will be used to generate

the axes.

features = Convert all edges to SIFT features

The original algorithm of Loy and Eklundh [48] used Scale Invari-

ant Feature Transform (SIFT) [51] features as inputs. Each SIFT

feature is a four-tuple consisting of a location, orientation, scale, and

identifying characteristics. This algorithm uses the same technique.

Each edge in the graph is turned into a SIFT feature. The location

is the centre of the edge, the orientation is the orientation of the

edge in degrees, the scale is the length of the edge in pixels, and the

identifying characteristic is an int which is the same for all edges.

6.1.3 Identify Single Edge Axes

The simplest axes of symmetry to enumerate are those that are

generated by a single edge. Note that these single edge axes of

symmetry are not present in Loy and Eklundh’s algorithm.

for fi ∈ features do

if symmetryType == reflective then

axes.add(perpendicularBisector(fi), 1)

axes.add(parallelAxis(fi), 1)

else if symmetryType == rotational then

axes.add(getLocation(fi), 1)

For reflective symmetry there are two axes that can be generated

from a single edge: the perpendicular bisector of the edge, and the

line that runs along the edge. For rotational symmetry there is one:

the centre of the edge, as an edge can be spun around its centre 180

degrees to get the same edge.
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In all of the cases described above the axes symmetry is perfect,

i.e., the edge lines up perfectly after the symmetry transformation.

As a result the quality score for all single edge axes of symmetry is 1.

6.1.4 Identify Edge Pair Axes

All other possible axes of symmetry can be generated by calculating

the axes of symmetry between every pair of features (edges).

foreach fi, fj ∈ features do

axis = find symmetry axis(symmetryType, fi, fj)

quality = find symmetry quality(symmetryType, fi, fj)

axes.add(axis, quality)

Every pair of features (edges) generates one or more axes of

symmetry. The next few sections will cover how to find the axes of

symmetry for a pair of edges.

This section will also show how to calculate each axes’ quality

score as unlike single edge axes they may not be perfect. This may

be because of differences in edge length (for all symmetry types ) or

orientation (only for reflective and translational symmetry).

The quality score for each axes is the product of its scale quality

(Sij) and orientation quality (Φij) scores. Each score is bound by

[0 . . . 1] and so their product (the quality score) is as well.

The scale quality (Sij) is the same for all symmetry types and is

the same as Loy and Eklundh’s original paper [48]. In the equation

Sij is the scale similarity, sk is the length of edge k, and σs is a

scaling factor (tuning the sensitivity). The value of Sij is 1 when

both edges are the same length, and decreases monotonically as the

difference in edge length (scaled by the total length of the edges)

increases.
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Sij =



e

−|si−sj|
σs(si+sj)





2

(6.1)

Reflective Symmetry

The axis of reflective symmetry is the perpendicular bisector of

the line between the SIFT features (edge centres). However, while

this guarantees that the mid-points of the edges will match, the

orientations of the edges may not line up.

The orientation quality (Φij), which measures how closely the

edges line up after reflection, is specially adapted from Reisfeld et

al. [49] similarly to Loy and Eklundh [48], however, with special

consideration for edges being symmetrical after 180 degree rota-

tions. The following equation shows how to compute this value (see

Figure 6.4 to see what the different labels are).

Φij = |cos (θi + θj − 2 ∗ θij)| (6.2)

The following paragraph illustrates how the equation works. Fig-

ure 6.4 shows the initial state.

fi

fj

θij

θi

θj

Figure 6.4: Angles needed to compute the orientation metric.

Subtracting θij from each of θi, θj in effect lowers the dashed

diagonal line to line up with the x-axis as below.
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fi fj

θi θj

The reflection will then reflect one of the angles.

fi fj

θi θj

If the edges are now parallel then the sum of the two resulting

angles will be 0 (mod 180). The less parallel they are the closer

to 90 (mod 180) the sum will be. Based on Loy and Eklundh’s

formulation, the absolute value of the cosine function is applied as

it maximises values near 0 (mod 180), and minimises values near

90 (mod 180). This results in a value in the range [0 . . . 1], which has

its minimum at 90 degrees (maximally different angle).

Translational Symmetry

For translational symmetry the required translation is the vector

difference in the position of the features. Visually this looks like a

repeated structure in the layout as in Figure 6.5 on the next page.

This needs to be normalised (multiplied by -1 if dy < 0) to ensure

that order that edges are paired up in (which is i and which is j)

does not matter.

For translational symmetry the orientation quality has to be

changed to deal with the edges not being mirrored. Therefore Equa-

tion (6.3) is used.

Φij = |cos (θi − θj)| (6.3)
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· ·

·

·

· ·

·

·

Figure 6.5: An example of translational symmetry. Note how the
arrow shape is repeated on the left and right side of the layout. The
dashed lines show the translational symmetry.

Note that this equation is similar to the equation for reflective

symmetry. The only difference is that none of the angles are mirrored

so when the connecting line is lowered to match the x-axis you get

the following.

fi fj

θi θj

However, in this case the edges should already be parallel, so the

difference between the two angles is used directly.

Rotational Symmetry

For each pair of edges there can be up to two centres of rotational

symmetry. This is because there are two ways to line up the feature

orientations: head to head and head to tail. I.e. you can add 180

degrees to the angle you rotate by and get another correct rotation,

however, this rotation may require a different centre of rotation. This

is shown below.



110 CHAPTER 6. GRAPH SYMMETRY DETECTION

θ1
θ2

f1 f2

This is different from the original paper where there was only one

possible centre, and is a result of an edge being indistinguishable after

a 180 degree rotation (because only undirected edges are considered).

Note that the orientation of the edges will always match after rotation

so an orientation metric is not required (always has the value 1) [48].

The centres of rotation are always on the perpendicular bisector

of the line that joins the two features. This is because the distance

of the two edges from the centre of rotation has to be the same for

both edges.

f1

f2

We can then use θ1, the rotation to line the edges up head to

head, to find the first centre of rotation.

f1

f2

c1

θ1
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Similarly centre two can be found using θ2, the head to tail

rotation, as shown in the following diagram. Note that when θ1 = θ2

= 180 both centres will be the same.

f1

f2

c2

θ2

6.1.5 Finding the Best Axes of Symmetry

Having enumerated all of the axes of symmetry, the quality scores

are now used to vote to find the N best axes. Recall that the value

of N is provided by the user at the start of the algorithm.

axes = quantiseAxes(axes)

bestAxes = pickBest(axes, N)

At this point of the algorithm the axes list contains every possible

symmetry axis (with duplicates) and their quality scores. Each axis

of symmetry votes for itself. It uses its own quality score as its vote,

so a good axis of symmetry (where the edges after the symmetry line

up almost perfectly) will have a larger vote than a very poor one

(where the difference between the edges after the symmetry is still

quite large). Each axis may be in the list more than once, as it may

have been generated by more than one pair of edges (or single edge).

In this case the votes are summed. The N axes with the most votes

are the chosen axes.

In order to deal with noise in the layout — slight deviations from

the ideal — the space is quantised. In the implementation used the

space is quantised in increments of a chosen integer. This allows

votes for two almost identical axes to count for the same axis.
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In the original paper by Loy and Eklundh, the voting space is

Gaussian blurred rather than quantised. However, that is not ideal in

this context as it does not preserve the exact vote count and reduces

the number of votes for axes whose neighbours have fewer votes.

Quantising the space addresses these issues, as it sums the votes

while preserving their number, and does not decrease the vote for

poor neighbours. This is important as a common axis of symmetry

does not have to have any potential alternatives.

6.1.6 Calculating a Symmetry Score

The final stage of the algorithm is to turn the set of N best axes

found into a number that can be used as a metric.

score = score(bestAxes)

To calculate a symmetry score for a graph: count how many of

the edges voted for each of the N axes, and divide that by N times

the number of edges (i.e. the maximum possible score):









∑

axes

number of edges that voted for this axis

N × number of edges









In the case of ‘perfect’ symmetry, all edges are symmetrical with

respect to all the axes. This will result in a symmetry score of 1.

The score decreases as the number of edges which are symmetrical

with respect to the chosen axes decreases. This chapter calculates

a separate score for each of reflective, translational and rotational

symmetry. It does not combine these values as it is interested in

them individually.
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6.2 Experiment

This section reports the results of extending the results from Chap-

ter 4 with the symmetry scoring algorithm. The algorithm was run

over each of the approximately 3 million graphs to see how the force-

directed layout algorithm behaves with respect to symmetry. This

allows for the comparison of symmetry across a range of different

parameters and a large sample of distinct graphs.

6.3 Results

The results can be seen in Figure 6.7 on the next page. They show

that symmetry decreases as the expected edge length increases. They

also show a decrease as the timestep increases, which (in Chapter 4

on page 59) was shown to increase edge lengths. Walls seem to

increase symmetry in the presence of high timesteps, but less so for

long expected edge lengths. Note that the minimum symmetry that

can be exhibited by a graph is 2
N

where N is the number of edges.

This is because every pair of edges generates an axis of symmetry.

This suggests that mean edge length and symmetry may be

related. This can be seen in Figure 6.6 on page 116. No graphs

with long mean edge lengths exhibit large amounts of symmetry.

The converse does not apply. Graphs with short mean edge lengths

exhibit the full range of symmetry scores.

The effect where long mean edge lengths result in low symmetry

scores may be an issue with the algorithm, where it cannot pick up

on the symmetry because the error is not quantised proportionally

to edge length. It may also simply be that longer mean edge lengths

result in less symmetry. To test this theory this chapter carries out

a second experiment where the results are compared manually.
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Figure 6.7: This two page violin plot shows the distribution of
symmetry score for each type of symmetry separated by expected
edge length (EEL) (columns), timestep (rows) and the presence of
walls (dotted or solid lines). Colours are used as well as x-axis labels
to make the type of symmetry easier to distinguish.
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Figure 6.6: Mean edge length vs symmetry present.
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6.4 Small Symmetry Experiment

In order to better understand the differences seen between long and

short edges in the results, a second experiment was carried out. In

this experiment the graphs were generated specially to be laid out

symmetrically. Each graph was laid out twice: once with short edges,

and once with long edges. The differences in symmetry were then

compared both by the symmetry metric and by manual inspection

of all the graphs by the author. There were three types of graphs

generated:

1. Circle graphs — Each vertex is connected to exactly two other

vertices so that the graph can be laid out approximating a

circle.

2. Grid graphs — The graph can be laid out as a regular grid.

3. Binary Tree — The graph is a binary tree.

Both circle graphs and binary trees can be created with any given

number of vertices. However, grid graphs are always complete square

grids, and only their width can be specified. This was done to ensure

that they could actually be drawn in a very symmetrical fashion.

This was not done for binary trees as it was felt that even incomplete

binary trees would be sufficiently symmetrical.

As a test set the system generated circle graphs and binary trees

with 3 – 50 vertices and grids with widths from 3 – 7.

The parameters for the experiment can be found in Table 6.1

on the following page. The expected edge lengths were 565 (Ke =

5000, Kh = 0.0005) and 56 (Ke = 500, Kh = 0.05). There were no

walls to allow the graph to spread out as much as necessary.
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Parameter Value Parameter Value
EK cut off 3 Max Iterations 100,000
Screen width 1920 px Screen Height 1080 px
Vertex width 20 px Vertex Height 10 px
µs 0.3 µk 0.04
Vertex Mass 1 Coeff. of Restitution 0.9
A 0.2 g 9.8
Max Vertex Speed Y 540 px

iter
Max Vertex Speed X 960 px

iter

q 3 timestep 0.1

Table 6.1: Constant experimental parameters.

6.4.1 Results

Figure 6.8 on the next page shows the distribution of each type of

symmetry for the two different edge lengths. This clearly shows

that the layouts with a longer expected edge length result in less

symmetry. However, this is not sufficient to rule out an error in the

formulation of the algorithm as the cause of the discrepancy.

Unfortunately it is not practical to include all the graphs that were

generated in the thesis for comparison. However, the author looked

at all the generated images after the experiment. The differences

between laying out a circle graph with 8 vertices with the two different

edge lengths can be seen in Figure 6.9 on page 120. It can be clearly

seen that the layout with short edges has settled to a neat circle, while

the longer edges have resulted in a strange asymmetric shape (which

is likely to be a local minimum). To mitigate accuracy problems the

layout was run for 100,000 iterations with a timestep of 0.1. This

should result in the best performing layouts (based on the results

from Chapter 4).

This same pattern occurred for all the graphs used in this experi-

ment. In general the layouts with longer edges ended up losing the

symmetry that they had with short edges. This shows that simply

scaling the layout by adjusting the edge lengths does accurately
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Figure 6.8: The distribution of each type of symmetry by edge length
and graph type. Note that for the longer edge lengths the symmetry
values are in general lower for all symmetry types.

preserve behaviour with respect to symmetry.

6.5 Symmetry User Study

The operation of the symmetry algorithm is an entirely mechanical

process. This section carries out an experiment to compare the

symmetry rankings produced by the algorithm with those that would

be produced by a human. The goal is to test whether the judgements
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(a) EEL: 56. (b) EEL: 565.

Figure 6.9: An 8 vertex circle laid out with two different expected
edge lengths. Note how the layout does not form a neat circle for
the longer expected edge length.

made by the algorithm when comparing two graphs are similar to the

judgements that a human would make. For this purpose the relative

symmetries of nine graphs are compared by means of an online

survey. The experiment was approved by the Victoria University of

Wellington Human Ethics Committee.

The graphs used can be found in Table 6.2 on page 127. The

graphs have been sorted based on how symmetrical the algorithm

rated the layouts. A graph A is more symmetrical than graph B if:

A has at least two symmetry scores which are larger (or

equal) than those for B.

Each user was presented with two randomly selected graphs and

asked to click on the one they consider more symmetrical. Figure 6.10

on the facing page shows the user interface that was presented. Click-

ing on the chosen image advances the user to the next page. No

information was collected about users as the study was completely

anonymous. Participants were collected by advertising in classes

and tutorials at Victoria University of Wellington (primarily Com-

puter Science and Engineering) as well as through the authors friend

network.

Each user was presented with ten screens. The first nine feature

a distinct random pair of graphs. The tenth (and final) screen is just
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Figure 6.10: The interface shown to the user.

the third pair repeated with the left and right swapped. This can be

used to test for consistency in the users’ answers.

6.5.1 Results

This user study had 547 participants. Of these 508 completed the

entire survey.

Integrity Checks

Before the user study results were used to evaluate the algorithm,

they were sanity checked to see if they makes sense. There were two

primary concerns about the collected data.

1. Do humans agree with themselves when looking at a repeated

question?
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2. Do humans agree with each other?

These questions are important as the algorithm cannot do better

than the general human consensus.

Self Agreement To address the first concern the first check tests

to see if the if users respond to questions 10 and 3 (which are the

same question) the same way. The data shows that 430 of 508 (85%)

of respondents answered both questions the same way. The binomial

test gives a 95% confidence interval of 81% – 88% for the proportion

of users that get the same result twice.

General Agreement To address the second concern — “how

much do humans agree with each other?” — Figure 6.11 shows how

often humans agreed with the algorithm for each question. If humans

agree with each other then the agreement should be around either

0 (humans disagree with the algorithm) or 100 (humans agree with

the algorithm) percent for each question. However, the graph clearly

shows that there are no graphs with 0 or 100 percent agreement, and

only a small number that are even close. This suggests that humans

did in fact provide different results from each other. Moreover, it also

shows that there are number of questions which humans answered

essentially randomly (i.e. those where 50% is inside the confidence

interval).

Given that the human results are not consistent, the human

answers are used to create a model solution that will result in the

maximum possible agreement. This model solution is approximate, it

will not achieve 100% agreement with the human results, a limitation

caused by the inconsistency in human responses. To determine which

of two graphs is more symmetric the model solution will return the

most popular answer given by humans.

The model solution was then evaluated against the full human
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Figure 6.11: How often users agreed with the algorithm for each pair
of graphs. The width of the error bar shows the 95% confidence
interval from the binomial test. The closer the bar is to 50% the
more humans disagreed with each other.
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survey results which shows that it agrees with users 78% of the time

with a 95% confidence of 77% – 79%. This is the upper bound of how

well a fixed ranking can do (e.g. a ranking generated by an algorithm),

given the inherent inconsistency of humans. Note that the ranking

which is generated this way is not transitive, a property which is

necessary for a sensible symmetry ranking. This shows one of the

advantages of using an algorithm over humans for symmetry ranking:

the algorithm will give results which are internally consistent, but a

human may not.

Performance of the Symmetry Algorithm

Having determined that the data is reasonable, and found an upper

bound on the maximum user agreement possible, the symmetry

algorithm results were compared with the full human survey results.

The binomial test showed that humans agreed with the algorithm 71%

of the time with a 95% confidence interval of 70% – 73%. Since the

maximum possible agreement is 78% (as given by the model solution),

this means that the algorithm achieved 92% of the maximum possible

agreement.

Closer examination of the results shows that while there have

been a number of participants who have disagreed with the algorithm

significantly, many participants agree on about 7–9 questions. The

distribution of per-user agreement with the algorithm can be found

in Figure D.1.

Looking at the specific responses of participants suggests an

additional anomaly. The graph ‘heptagon’ was considered by humans

(but not the algorithm) to be more symmetric than graphs such as

‘5tree’ and ‘7tree’. It is possible that this is partially because many

users (unlike the algorithm) did not consider the axis of symmetry

that splits vertices along a diagonal in the case of the tree graphs.

Since vertices in the graph are rectangular there are only two axes
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of symmetry which split them: vertical and horizontal lines passing

through their centre. Had vertices been circular, this would not have

been the case. However, this shows a limitation of the symmetry

algorithm: it does not account for the shape of vertices and how they

may be affected by axes of symmetry.

6.6 Conclusion

This chapter developed a novel metric to evaluate how symmetrical

a given graph layout is with respect to reflective, rotational and

translational symmetries. It finds that having shorter edges results

in more symmetrical graph layouts. It also shows that the variability

in symmetry with only base force-directed layout spans the full range

of symmetry values.

One of the limitations of this chapter is that it does not say

anything about whether or not it was possible to lay out the graphs

used in the large experiment symmetrically. While the graphs laid out

for different combinations of expected edge length and timestep were

all the same, inside of those groups it is not clear how symmetrical

the graphs could have potentially been. As such the results of this

chapter only make claims about symmetry relative to itself.

While the symmetry algorithm is not perfect, it is shown to have

92% of the best possible performance. While it is not able to agree

with humans in all cases, neither are humans able to agree with each

other. This gives the algorithm a significant advantage over humans

in being consistent, predictable and producing a transitive ranking.

With the large range of graphs used, this chapter looks not at

what the specific values of the symmetry metric are, but rather at the

distribution of values. The rationale behind this is that this allows

for comparison between the distributions of symmetry for different

sets of parameters. The actual values of the metric are not important.
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They only serve to allow multiple graph layouts to be compared in

terms of their symmetry. This means that the value of the metric

cannot always be used to judge the quality of a layout without a

reference layout to compare against.
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(a) hexagon (b) pentagon

(c) 7tree (d) 5tree

(e) 6grid (f) 6tree

(g) 7grid (h) heptagon

(i) 5grid

Table 6.2: Graphs (and their names) used in the symmetry user
study sorted by symmetry as determined by the algorithm described
in this chapter. Starting from the most symmetrical in the top left
corner, then decreasing going right and then row by row.
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Chapter 7

Conclusion

Many different data can be represented by graphs. In many cases,

like social networks, the vertices (people) have no inherent position.

Graph layout is the process of finding a position to put every vertex.

Ideally these layouts will also be good.

This thesis explores force-directed graph layout. It carries out four

experimental studies (eight experiments) exploring the algorithm by

means of metric evaluations and user experiments. Each metric based

study was run over a subset of 13,720 real world graphs, many of

which are anonymised graphs from AT&T. The two user experiments

used different data sets. On was run over 20 graphs derived from

the VAST challenge 2009 dataset, while the second was run over

specially created graphs.

Experimental Study 1 The first experimental study consists

of two experiments which explore the use of additional forces to

reduce overlaps and edge crossings in the resulting layout. The first

experiment tests a sample of 14 of the force combinations on the full

set of graphs. The second experiment tests all the force combinations

on a subset of 10% of the graphs. The experiments show that:

• Adding in edge label charges, charged boundaries, and increas-
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ing vertex charge proportionally to its degree results in layouts

that minimise the number of overlaps and occluded pixels.

• Using Hooke’s law reduces the number of edge crossings for

most force combinations.

• While there is a time cost for using charged edge labels, it is

not so high as to make the modification too expensive.

• There is little practical difference between putting edge charges

next to the edge or on the centre of the edge.

Experimental Study 2 The second experimental study looks at

the effect of four input parameters — Ke, Kh, timestep and the

presence of walls — on the generated layouts. It then describes a

follow on experiment to show that the new results are consistent

with the results from the first study. The results show that:

• Increasing the expected edge length will increase the mean edge

length, but will only do so reliably for low values of timestep.

• Edge crossings do not seem to follow any clear pattern with

respect to either timestep or expected edge length.

• The individual values from the parameters Ke and Kh do

not matter. However, the edge length that results from their

combination may have a significant effect on the layout. Ideally

the edge length should be kept as short as practical, which will

usually involve keeping both Ke and Kh as low as possible.

• The timestep parameter has a significant effect on graph layout

and should be kept as low as possible.

• The parameter which controlled the presence of walls did not

have an observed effect on the resulting graphs. It may, however,
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significantly affect the aesthetics of the layout as it changes

how the graph can move and spread out.

Experimental Study 3 The third experimental study is a user

study. It shows that the differences in overlaps from the second study

are reflected in user performance. Users had to select vertices in

graphs laid out with a control and modified algorithm. The selection

mechanism was free-form multi-selection. Selection was done using a

PlayStation Move controller in laser mode. A 40" TV was used as

the display. The results showed that the modified algorithm results in

users performing less errors with no difference in speed of interaction.

Experimental Study 4 The fourth experimental study explores

the range of symmetry present in graphs laid out by the force-

directed algorithm. This study also involved the development of

a novel metric to measure graph symmetry. The metric measures

reflective, translational, and rotational symmetry.

Three experiments were carried out. The first experiment showed

that the main factor in symmetry was edge length. The second

experimental study showed that this was not an artefact of the

symmetry metric, but rather a property of the layout algorithm.

Symmetry is present for short mean edge lengths, but disappears

as edges get longer. The third experiment was a user study which

showed that the symmetry algorithm agreed with humans 92% of

the time that agreement is possible.

Overall Overall, the thesis has the following contributions:

1. Providing basic guidelines on how certain input parameters

affect the final layout. These are determined by means of a

large-scale experiment.
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2. Identifying the best force combinations to reduce edge crossing

and overlaps in the final layout. This is determined by two

large-scale experiments to evaluate the performance of different

combinations of forces in force-directed layout.

3. Showing a difference in performance between users using graphs

laid out by a control force-directed layout algorithm and one

of the best performing force combinations identified in the

previous contribution.

4. A novel symmetry algorithm for evaluating how symmetrical a

graph layout is. It evaluates reflective, rotational, and transla-

tional symmetries individually. It is extended to detect multiple

axes of symmetry. The algorithm is then used on the results of

the parameter selection experiment to show that symmetry is

affected by both the simulation granularity and the length of

edges.

These contributions can be applied to the practical graph layout

as a set of suggestions on how to layout graphs:

• Keep the expected edge length quite short. Exact parameters

for contributing forces do not matter as much as what the

resulting value is.

• Expose a timestep parameter to the algorithm and make sure

that the value used is low enough that graph layout is pre-

dictable. Practically this may require guess-and-check and be

implementation specific.

• Adding in extra forces can have a positive effect on the graph

layout. This thesis recommends adding charged walls, vertex

charge proportional to the degree and charged edge labels.
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7.1 Future Work

There is a large amount of follow-up work that would be interesting

to do following on from the results in this thesis. This section shall

explore interesting follow-on studies by topic.

Graph Types The graphs used in this thesis do not span all

possible types of graphs. Many of these experiments could be usefully

repeated and have the results separated by structures inherent in the

graph. This would allow for better prediction of the final outcome as

more of the relevant factors could be understood. In particular, wider

exploration of the effect of graph connectivity would be a possible

starting point.

Evaluating Parameters This thesis only looked at the effect of

four parameters. There are also a number of other parameters that

this thesis kept constant that could be explored. Moreover, the

additional forces described in Section 3.1.1 on page 37 could have

each of their parameters explored.

This could then be extended to look at other graph layout algo-

rithms. Ideally it would be possible to create a measure of stability

of a graph layout algorithm. The stability value would indicate how

important choosing the right parameters is to this algorithm. This

would help users select a graph layout algorithm to use, as algorithms

sensitive to parameters are less suitable for use with client systems

where the graph layout should ‘just work’ with minimal tuning.

User Study The user experiment in Chapter 5 only looked at

single selection, on a small set of graphs. Extending this study to

look at other kinds of interaction tasks would provide a broader range

feedback on what aspects of graph layout are important for human

computer interaction.
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Symmetry Detection The symmetry detection in particular has

a number of limitations and weaknesses. The notable weaknesses are

that:

• It cannot detect symmetry when something is almost symmet-

rical but beyond its error detection limits.

• It compares on an edge-by-edge basis, and cannot do abstrac-

tions where two edges take the place of a single edge.

• It does not account for the shape of a vertex.

Many of these limitations come from limits in time and scope

of the project done for the thesis. Future work can address each of

these problems.

Another interesting avenue with the symmetry metric is to com-

pare force-directed layout to other graph layout algorithm to provide

more evidence for or against the claim that force-directed layout

promotes symmetry.

7.2 Summary

This thesis explores force-directed graph layout. It carries out four

experimental studies looking at the force-directed layout and its

behaviour under changes to the forces used and parameters selected,

and provides additional evidence that the metric values reflect user

performance in selection tasks.

The thesis provides insight into which input parameters to the al-

gorithm are important for controlling the output. Moreover, it shows

that changes to metric values can be reflected in user performance

on real tasks.
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Figure A.1: Distribution of graph densities.
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Figure A.2: Distribution of number of vertices per graph.
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Figure A.3: Distribution of number of edges per graph.
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Figure A.4: Distribution of number of vertices and edges per graph.
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Figure A.5: Proportion of planar graphs in the complete graphdraw-
ing.org data set.
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Figure A.6: Proportion of planar graphs in the subset of the graph-
drawing.org data set.
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Figure B.1: The relationship between how much longer the mean
edge length is over the expected edge length and the kinetic energy
separated by whether there were walls. The colour shows the size of
the graph. It is clear that there is no useful relationship between the
two values from the largely rectangular shape of the data.
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Figure B.2: The relationship between how much longer the mean
edge length is over the expected edge length and the kinetic energy
separated by whether there were walls. The colour shows the density
of the graph. It is clear that there is no useful relationship between
the two values from the largely rectangular shape of the data.
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Figure B.3: This two page violin plot shows the distribution of
mean edge lengths (pixels) separated by expected edge length (EEL),
timestep, Ke and the presence of walls. Each value of Ke that makes
up each expected edge length is shown separately and in different
colours to make them easier to distinguish. Violins with dotted lines
are for graphs with walls. The wider a violin is, the more graphs have
that mean edge length. The horizontal black lines are the expected
edge length. Note that both the x and y axes are log scales.
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Figure B.4: Diagnostic plots for the linear model shown in Figure 4.6
on page 74. They show that the linear model does not account for
all of the trend in the data, as there is still a clear pattern in the
top left hand plot. The top right plot shows that the errors from the
model are not normally distributed as it does not form a diagonal
line. The bottom plots do not suggest any serious outliers with high
leverage.
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Figure B.5: The number of vertices and edges in the graph and the
used area in pixels. Splitting by timestep makes it clear that timestep
is a significant factor in the total area that the layout used. However,
the size of the graph itself was not significant.
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Figure B.6: The minimum vertex-vertex distance and the mean edge
length are shown to be largely uncorrelated.



Appendix C

Parameter Confirmation

Results

Table C.1: Medians by force from the parameter confirmation exper-
iment in Chapter 4 on page 59.

Median
Crossings Overlaps Occluded Pixels

# % # % %

H 15.00 1.89 0.93 0.08 2.00

HA 142.50 15.28 5.83 0.60 19.00

HC 19.00 2.25 1.60 0.15 5.00

HCA 98.00 12.59 10.26 1.07 27.50

HD 12.50 1.52 0.50 0.06 1.00

Continued on next page. . .
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Table C.1 continued from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

HDA 124.00 14.87 3.33 0.33 10.00

HDC 15.50 1.78 0.73 0.09 2.50

HDCA 89.00 14.77 12.75 1.18 32.50

HE 11.50 1.38 0.00 0.00 0.00

HEA 13.00 1.99 0.00 0.00 0.00

HEC 12.00 1.57 0.00 0.00 0.00

HECA 15.50 2.19 0.21 0.03 1.00

HED 11.50 1.76 0.00 0.00 0.00

HEDA 40.00 4.35 0.00 0.00 0.00

HEDC 14.50 1.92 0.00 0.00 0.00

HEDCA 26.00 3.16 1.12 0.11 3.00

HG 10.00 1.57 0.00 0.00 0.00

HGA 11.00 1.82 0.00 0.00 0.00

HGC 11.50 1.89 0.00 0.00 0.00

HGCA 24.00 2.92 0.46 0.08 1.00

HGD 13.50 1.63 0.00 0.00 0.00

HGDA 29.50 3.78 0.14 0.04 1.00

HGDC 13.50 2.19 0.11 0.02 1.00

HGDCA 23.00 3.45 1.88 0.16 5.50

HW 23.00 3.49 5.29 0.43 11.50

HWA 147.50 17.71 8.87 0.88 24.00

Continued on next page. . .
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Table C.1 continued from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

HWC 45.50 6.95 6.22 0.64 17.50

HWCA 180.50 20.59 17.79 2.11 55.50

HWD 25.00 3.23 3.03 0.29 8.00

HWDA 135.50 16.65 3.67 0.45 12.50

HWDC 33.50 4.44 4.01 0.41 10.50

HWDCA 186.00 21.00 18.23 2.03 61.50

HWE 13.50 1.77 0.00 0.00 0.00

HWEA 55.00 6.31 0.23 0.06 2.00

HWEC 17.00 2.54 0.00 0.00 0.00

HWECA 58.50 7.30 3.65 0.37 8.00

HWED 14.50 1.94 0.00 0.00 0.00

HWEDA 94.50 12.31 0.47 0.10 3.00

HWEDC 18.00 2.07 0.00 0.00 0.00

HWEDCA 70.00 9.33 4.14 0.38 11.00

HWG 14.00 1.78 0.52 0.04 1.00

HWGA 65.50 7.20 1.52 0.14 4.50

HWGC 14.00 2.81 0.99 0.06 2.00

HWGCA 61.00 6.17 4.07 0.40 12.00

HWGD 14.50 1.94 0.24 0.03 1.00

HWGDA 81.00 11.54 2.07 0.19 6.00

HWGDC 20.00 2.63 1.04 0.07 2.00

Continued on next page. . .



154 APPENDIX C. PARAMETER CONFIRMATION RESULTS

Table C.1 continued from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

HWGDCA 69.50 8.42 5.55 0.59 14.50

L 10.50 1.58 5.46 0.56 17.50

LA 50.50 6.67 11.62 1.38 35.00

LC 23.00 2.42 7.56 0.78 22.50

LCA 52.00 6.44 13.97 1.48 46.00

LD 8.50 1.23 3.31 0.34 7.50

LDA 65.00 8.28 4.95 0.61 16.50

LDC 16.50 2.17 6.47 0.63 17.50

LDCA 91.50 10.00 15.25 1.47 33.00

LE 9.00 1.08 0.00 0.00 0.00

LEA 9.50 1.40 0.29 0.06 1.00

LEC 12.00 1.72 0.36 0.04 1.00

LECA 12.00 2.13 1.87 0.22 4.00

LED 7.00 0.98 0.00 0.00 0.00

LEDA 14.50 1.85 0.03 0.02 1.00

LEDC 9.50 1.19 0.05 0.03 1.00

LEDCA 19.50 3.09 3.04 0.22 6.50

LG 7.00 1.12 0.95 0.10 3.00

LGA 9.50 1.26 1.23 0.10 4.00

LGC 14.00 1.74 2.14 0.20 4.50

LGCA 12.50 2.27 3.86 0.35 8.00

Continued on next page. . .
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Table C.1 continued from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

LGD 8.00 1.13 0.79 0.09 3.00

LGDA 13.50 1.74 1.53 0.12 3.50

LGDC 10.00 1.50 1.59 0.18 4.50

LGDCA 21.00 3.46 4.74 0.48 9.00

LW 12.00 1.59 6.91 0.81 21.50

LWA 118.50 14.37 14.42 1.91 43.00

LWC 32.00 4.06 9.87 0.98 28.50

LWCA 63.50 10.21 15.96 2.00 50.50

LWD 9.50 1.20 5.12 0.50 14.50

LWDA 103.50 14.60 6.56 0.78 21.50

LWDC 22.00 3.04 9.38 0.81 23.50

LWDCA 110.50 12.99 16.64 2.15 53.50

LWE 11.00 1.17 0.01 0.01 0.50

LWEA 36.00 4.42 1.40 0.28 7.50

LWEC 14.00 1.36 0.90 0.10 3.00

LWECA 24.50 3.40 3.99 0.46 13.00

LWED 9.50 1.26 0.04 0.02 1.00

LWEDA 76.50 8.27 1.94 0.29 8.50

LWEDC 11.00 1.53 0.59 0.08 2.00

LWEDCA 62.50 6.40 5.67 0.60 16.50

LWG 11.50 1.54 1.76 0.21 5.00

Continued on next page. . .
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. . . Concluded from previous page.

Median
Crossings Overlaps Occluded Pixels

# % # % %

LWGA 28.00 3.00 4.30 0.43 12.00

LWGC 15.50 2.19 3.26 0.27 7.00

LWGCA 32.50 3.53 4.54 0.53 14.00

LWGD 10.00 1.31 1.68 0.16 4.00

LWGDA 64.00 7.16 4.31 0.48 11.00

LWGDC 12.00 1.36 2.29 0.24 5.00

LWGDCA 34.50 4.56 7.42 0.69 21.50
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Figure D.1: How many questions each user answered the same as
the algorithm. Note that the peak is at around 7 – 8.
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(i) the collection of data 

(ii) attribution of opinions or information  

(iii) release of data to others 

(iv) use for a conference report or a publication 

(iv) use for some particular purpose (specify) 

Any participant is able to retroactively withdraw from the study within 2 weeks of the 

data collection. Additionally, inclusion in the released data set is opt-in.  

Attach a copy of any questionnaire or interview schedule to the application  

(j) How is informed consent to be obtained (see sections 4.1, 4.5(d) and 4.8(g) of the Human 
Ethics Policy) 

(i) the research is strictly anonymous, an information sheet is 
supplied and informed consent is implied by voluntary 
participation in filling out a questionnaire for example (include 
a copy of the information sheet) 

Y ฀  N  
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• In the case of student projects, have you consulted your supervisor about any human 

ethics implications of your research? 
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they will be able to get feedback on the research from you (e.g. they may tick a box on the 

consent form indicating that they would like to be sent a summary), and how the data will 

be stored or disposed of at the conclusion of the research? 
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Participant Information Sheet

Principal Investigator Investigator Investigator
Roman Klapaukh Dr. Stuart Marshall Dr. David Pearce
PhD Student Senior Lecturer Senior Lecturer
roma@ecs.vuw.ac.nz stuart@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 261 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

This experiment is being undertaken towards Roman Klapaukh’s PhD in the Software Engineering
group at Victoria University of Wellington. The Victoria University Human Ethics Committee has
granted ethics approval for this experiment. The research looks at interaction with data using NUI
(natural user interface) controllers such as the Sony PlayStation Move. Participants will be asked to
interact with a number of graphs using the PlayStation Move controller. The experiment is also a
race, with the fastest participant receiving a prize.

Any person above 14 years of age is free to participate in the study, however, any participants
below 18 years of age will require parental consent. Participants will be asked to fill out a pre- and
post-test questionnaire as well as carrying out the experimental tasks. Participants are able to refuse
to answer any given question, and are able to withdraw from the study without question within a
fortnight of the data collection.

While the experiment will be recording the user interaction, only the location of the controller and
its state will be recorded. There will be no video or audio recording of the participants. Participants
will be timed and the information gathered will be assessed for accuracy, but your completed data will
only be reported in aggregate form. The final dataset will also be made available in an anonymised
form for other researchers, but will only contain information from participants who opt in to this
dataset. The entire process should take approximately thirty to forty minutes.

If you have any questions or would like to receive further information about the project, please
contact us via the details supplied above.

Thank you for your participation in the study.



Participant Consent Form

Principal Investigator Investigator Investigator
Roman Klapaukh Dr. Stuart Marshall Dr. David Pearce
PhD Student Senior Lecturer Senior Lecturer
roma@ecs.vuw.ac.nz stuart@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 261 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

Please tick and sign

I have read the information sheet supplied and the researchers have satisfactorily answered any ques-
tions I may have had.

I consent to taking part in this study and understand that I have the right to withdraw from this
experiment within two weeks of data collection by emailing the researchers accordingly.

I consent to the researchers using movement and selection data and answers from my participation
in a non-identifiable way in a PhD thesis and related conference / journal papers

I consent to my data being present in a publicly available anonymised version of the
final results.

I would like to be emailed a softcopy of the report at . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Signed (parent or guardian if under 18): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Initial Questionnaire

Principal Investigator Investigator Investigator
Roman Klapaukh Dr. Stuart Marshall Dr. David Pearce
PhD Student Senior Lecturer Senior Lecturer
roma@ecs.vuw.ac.nz stuart@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 261 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

Name : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gender: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Height: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Please tick the appropriate circle:

How often do you use a PlayStation Move or Nintendo Wii remote:

1 4 7

Never Once Rarely Monthly Weekly Daily Always

I feel comfortable using the PlayStation Move or Nintendo Wii remote:

1 4 7

Disagree Neutral Agree



Final Questionnaire

Principal Investigator Investigator Investigator
Roman Klapaukh Dr. Stuart Marshall Dr. David Pearce
PhD Student Senior Lecturer Senior Lecturer
roma@ecs.vuw.ac.nz stuart@ecs.vuw.ac.nz djp@ecs.vuw.ac.nz
CO 254 CO 261 CO 231

School of Engineering and Computer Science
Victoria University of Wellington

For each pair circle which of the two options was the biggest problem:

Effort / Getting it right Time / Frustration

Time / Effort Physical demand / Frustration

Getting it right / Frustration Physical Demand / Time

Physical Demand / Getting it right Time / Mental Demand

Frustration / Effort Getting it right / Mental Demand

Getting it right / Time Mental Demand / Effort

Mental Demand / Physical Demand Effort / Physical demand

Frustration / Mental Demand

Please tick the appropriate circle:

How mentally demanding was the task:

1 4 7

Low Medium High



How physically demanding was the task:

1 4 7

Low Medium High

Rate the time stress:

1 4 7

Low Medium High

How would you rate your performance:

1 4 7

Poor Medium Good

How much total effort did this require:

1 4 7

Low Medium High

How frustrating did you find the task:

1 4 7

Low Medium High



The system was fun to use:

1 4 7

Disagree Neutral Agree

The system was novel to use:

1 4 7

Disagree Neutral Agree

I would use this system again:

1 4 7

Disagree Neutral Agree

The system did what I wanted:

1 4 7

Disagree Neutral Agree

If you have any comments you wish to make, please write them here:
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