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Abstract

The work presented in this thesis is divided into two parts, both of which investigate

the chemistry of main group elements supported by N,N’-donor ligands.

Part 1 investigates the use of Mg(mesC{NCy}2)(N{SiMe3}2)(THF) (mes = 2,4,6-

Me3C6H3, Cy = C6H11) as a pre-catalyst for the coupling of terminal acetylenes to

carbodiimides. A catalytic cycle for the reaction is proposed, based on a series of

stoichiometric reactions. Ligand redistribution via Schlenk equilibria is a prominent

feature of the proposed catalytic cycle. The scope of catalysis was also investi-

gated, indicating a strong dependence on the sterics and electronics of both the

carbodiimide and the terminal acetylene. Investigation of other magnesium species

identified other pathways into the catalytic cycle.

Part 2 explores the derivitisation of Bi(Me2Si{NAr})Cl (Ar = 2,6-i -Pr2C6H3)

to form a number of novel bismuth(III) species of the general formula

Bi(Me2Si{NAr})X (X = alkyl, aryl, amide, aryloxide, phosphide). In addition,

a number of cationic bismuth species have been isolated from the reaction of

Bi(Me2Si{NAr})Cl with ECl3 (E = Al, Ga). Preliminary investigations reveal that

the amide and aryloxide derivatives are active as initiators for the ring-opening

polymerisation of lactide and ε-caprolactone. A number of bismuth(III) compounds

bearing the related di(amido)ether ligands [O(Me2Si{NAr})2]2− have also been syn-

thesised.
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2.2 Selected bond lengths (Å) and angles (◦) in 13b. . . . . . . . . . . . . 92
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2.4 Selected bond lengths (Å) and angles (◦) in 17. . . . . . . . . . . . . 104

ix
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Chapter 1

Introduction

1.1 Alkaline Earth Metals (Mg, Ca, Sr, Ba)

The high natural abundance and low toxicity of the group 2 (alkaline earth) ele-

ments make them attractive for a wide range of important applications.1 The chem-

istry of group 2 metals is dominated by the +2 oxidation state, with compounds

largely inactive towards redox processes. Group 2 organometallic compounds are

often described as intermediates between the highly polarising nature of the group

1 organometallic compounds (e.g. alkyl lithium) and the high Lewis acidity of the

group 3 metals (e.g. aluminium) (Figure 1.1).2 The reactivity of organometallic al-

kaline earth metal species generally increases down the group, as the metal centres

become increasingly electropositive.3

Figure 1.1: General reactivity of group 1, 2 and 3 organometallic species.
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Group 2 metals share many properties with the lanthanides, governed by similar

bonding interactions, which are highly ionic and non-directional.2 This has resulted

in proposed links between the reactivity of the two classes of compound. Organolan-

thanide(III) compounds have a versatile chemistry and have been utilised in a wide

range of reactions. These compounds demonstrate two fundamental types of reac-

tivity: (i) σ-bond metathesis and (ii) insertion of an unsaturated bond into a M-X

σ-bond (X = C, N, O, P) (Figure 1.2).

Figure 1.2: Reactivity of organolanthanide(III) compounds.

A number of catalytic reactions incorporating these key steps have been developed

using lanthanide(III) compounds.4 The similar reactivity of lanthanide(III) com-

pounds and the alkaline earth metal species has recently led to investigations into

the catalytic activity of compounds of the group 2 elements.

1.1.1 Heavy alkaline earth metal catalysis

A series of recent publications by Hill and co-workers has demonstrated the effec-

tiveness of a number of β-diketiminate stabilised heavy alkaline earth amides as

pre-catalysts for hydroamination and hydrophosphination of a range of different

unsaturated substrates (Figure 1.3).5–9

In related studies, Harder and co-workers reported that heavy alkaline earth benzyl

complexes, M({2-(Me2N)C6H4}CHSiMe3)2(THF) (M = Ca, Sr), are catalytically

active for hydrosilylation reactions with unsaturated substrates.10 Calcium com-

pounds have also been extensively explored as catalysts for the polymerisations of
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Figure 1.3: Ca(BDIDIPP)(N{SiMe3}2)(THF) catalysed heterofunctionalisation of
unsaturated substrates (BDIDIPP = [CH(C(Me){NAr})2]−, Ar = 2,6-i -Pr2C6H3).

activated alkenes and the ring-opening polymerisation of lactide.11–13

1.1.2 Magnesium catalysis

Magnesium compounds have been implemented as one of the most important tools

in synthetic laboratories since the discovery of Grignard reagents. Grignard reagents

are typically viewed as a source of nucleophilic carbon, due to the highly polarising

nature of the Mg-R bond. Reaction of Grignard reagents with electrophilic car-

bon centres results in stoichiometric C-C bond formation via nucleophilic attack

(Scheme 1.1). These reactions are strictly stoichiometric in metal.

Scheme 1.1: Nucleophilic attack of a Grignard reagent with an electrophilic car-
bonyl functionality.
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Catalytically active magnesium compounds remain an attractive target for industrial

and small scale operations due to the commercial availability of many magnesium

compounds and relatively low toxicity of magnesium. A number of groups have re-

ported the use of catalytically active magnesium compounds for the hydroamination

of unsaturated substrates.14–17 Recent work by Coles and co-workers has explored

the catalysis of the Tishchenko reaction by magnesium amidinate and guanidinate

compounds.18,19 In a closely related investigation to the work presented in this the-

sis, Hill et al. recently reported the use of MgBu2 for the magnesium mediated

reaction between alkynes and isocyanates to form bis(imidazolidine-2,4-diones) (eq.

1.1).20

eq. 1.1: Magnesium facilitated synthesis of bis(imidazolidine-2,4-dione).

1.1.3 Schlenk equilibrium

An important consideration when dealing with heteroleptic alkaline earth metal

compounds is the propensity for these compounds to undergo Schlenk-like equilibria,

whereby the ligands redistribute to form the corresponding homoleptic species (eq.

1.2). These equilibria can result in complications in the application of alkaline earth

species in catalysis; for example (1) loss of the ancillary ligand from the metal centre

may result in reduced solubility; (2) a reduction in the control of the environment

of the reactive centre.

eq. 1.2: Schlenk equilibrium in organomagnesium halides.

Ligand redistribution can generally be limited through the use of bulky ancilliary

ligands capable of sterically destabilising the formation of the homoleptic species
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(eq. 1.3).

eq. 1.3: Steric destabilisation of the Schlenk equilibrium.

Although not specific to the work presented in this thesis, we note that Schlenk

equilibria pose a greater problem for the heavier alkaline earth metals (Ca, Sr and

Ba) due to the increased size of the metal centres. Therefore these metals require

greater steric protection, with a lot of the research in this field being focussed on

finding suitable ligands.21

1.2 Amidinate and Guanidinate Ligands

Amidinate ligands ([RC{NR’}2]−) have been employed as ancilliary ligands in a wide

range of metal complexes, spanning all groups of the periodic table.22 One attractive

property of amidinate ligands is the range of different derivatives that are accessi-

ble through substitution at both the nitrogen and backbone-carbon positions, with

substitution at the carbon centre dictating nomenclature. Amidinate and guanid-

inate (R = amine) ligands have received significant attention for their stabilising

properties, relatively simple synthesis and tunability.22 These ligands contain con-

jugated π-systems, allowing for delocalisation of electron density and charge over

Figure 1.4: Resonance structures for amidinate (top) and guanidinate (bottom).
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the CN2 sub-unit (Figure 1.4). While the amidinate ligand is stabilised by two res-

onance structures, the guanidinate ligand has the potential to form three resonance

structures via donation of the lone pair from the tertiary amine, resulting in greater

electronic stabilisation.

Many bonding modes for amidinate and guandinate ligands have been observed.

Mono-dentate binding of the amidinate to the metal centre (Figure 1.5, A) results

when electron density is localised in a C=N bond. Chelation to a single metal centre

affords a four-membered metallacycle (B), while bridging between two-, three- and

four- metal centres has been utilised in the synthesis of multi-metallic clusters (C,

D and E).

Figure 1.5: Possible bonding modes (top) and dependence of sp2 orbital position
on R/R’ (bottom).

Jordan and co-workers proposed that in an idealised amidinate structure, 120◦ bond

angles at the carbon and nitrogen centres result in parallel projection of the sp2

donor obitals (F), favouring a bridging bonding mode.23 Increasing the R-C-N and

C-N-R’ bond angles, achieved through the incorporation of sterically demanding

groups at the nitrogen and backbone-carbon, results in projection of the lone pair

nitrogen orbitals towards the centre of the amidinate (G), favouring a chelating

bonding mode.

Guanidinate ligands have been shown to provide significant steric protection to
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smaller metal centres. Jones and co-workers recently demonstrated this stabil-

ity in the formation of the first Mg(I) species [{i -Pr2N}C{NAr}2Mg]2 (Ar =

2,6-i -Pr2C6H3).
24 Previous work in the Coles group has illustrated the effec-

tiveness of the amidinate ligand [(mes)C{NCy}]− (mes = 2,4,6-Me3C6H2) for

the stabilisation of heteroleptic magnesium compounds.18 This work identified

Mg(mesC{NCy}2)(N{SiMe3}2)(THF) (1) as a pre-catalyst for the Tishchenko re-

action. No evidence of ligand redistribution was observed during catalytic studies,

consistent with significant steric protection at the magnesium centre.

1.3 Catalytic Coupling of Terminal Acetylenes

and Carbodiimides

The catalytic coupling of terminal acetylenes to carbodiimide substrates, via C-C

bond formation, provides an atom economic route to the corresponding propargy-

lamidine compounds (eq. 1.4). While this reaction does not occur spontaneously,

formation of the corresponding propargylamidines can be achieved in the presence

of a catalyst.

eq. 1.4: Catalytic coupling of terminal acetylenes and carbodiimides.

Ong et al. reported amido- and organo-lithium reagents as pre-catalysts for the

coupling of terminal acetylenes and carbodiimides.25 Hou and co-workers recently

reported the catalytic coupling of terminal acetylenes to carbodiimides promoted by

the half-sandwich yttrium complex (Me2Si{C5Me4}{NPh})Y(CH2SiMe3)(THF)2.
26

No catalytic activity was observed for the tris(alkyl) complex Y(CH2SiMe3)3(THF)2,

highlighting the importance of the correct combination of ligands in this process.
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A catalytic cycle for the reaction was proposed (Figure 1.6). Entry into the cat-

alytic cycle is achieved via the protonolysis of the alkyl substituent by a terminal

acetylene. Subsequent insertion of the carbodiimide into the Y-Cacetylide bond results

in formation of the corresponding propargylamidinate species. Protonolysis of the

propargylamidinate by the terminal acetylene liberates the propargylamidine and

regenerates the acetylide species.

Figure 1.6: Proposed catalytic cycle for the catalytic coupling of terminal
acetylenes and carbodiimides.

Hill and co-workers have exploited the similarities between the heavy alkaline earth

metals and the lanthanides to extend this catalytic activity to calcium.27 An anal-

ogous catalytic cycle was proposed for the reaction, based on the similar reactivity

of Ln(III) and Ca(II).

1.4 Research Outlook

Preliminary evidence indicated that Mg(mesC{NCy}2)(N{SiMe3}2)(THF) (1) is ac-

tive for the catalytic coupling of terminal acetylenes with carbodiimides, showing
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comparable yields to those seen for the calcium-based system.28 The aim of the

work presented in Part 1 was to investigate the catalytic properties of the estab-

lished magnesium pre-catalyst 1 for the catalytic coupling of terminal acetylenes

with carbodiimides (eq. 1.5). Investigation of the conditions and scope of the

catalysis was planned through the use of NMR spectroscopy. Identification of key

intermediates in the reaction pathway was targeted to provide information about

the catalytic cycle.

eq. 1.5: Magnesium facilitated coupling of terminal acetylenes and carbodiimides.
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Chapter 2

Results and Discussion

2.1 Outline

This chapter describes a detailed analysis of the magnesium promoted catalytic

coupling of terminal acetylenes and carbodiimides.

Section 2.2 investigates the effect of changing the reaction conditions (temperature,

catalyst loading, solvent, time) on the catalytic activity. A series of catalytic re-

actions were performed on an NMR scale to determine optimal conditions. The

optimal results were obtained when the reaction mixture was heated to 80 ◦C for 24

hours in C6D6. These conditions were retained throughout this investigation.

Section 2.3 investigates the catalytic cycle of the magnesium promoted coupling of

terminal acetylenes and carbodiimides. A series of stoichiometric reactions were

performed in order to elucidate the individual steps of the catalysis.

Section 2.4 explores the scope of catalysis with respect to the acetylene and car-

bodiimide substrates. Substrate dependence was monitored for a range of terminal

acetylenes and carbodiimides. The dependence on the sterics and electronics of

substrates was used to provide information about the reaction mechanism.
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Section 2.5 explores the activity of a range of magnesium reagents, including Grig-

nard reagents, as possible pre-catalysts for this reaction.

Section 2.6 details the independent synthesis and isolation of a number of compounds

identified in the catalytic cycle.

Section 2.7 provides a comparison of the solid-state structures of magnesium species

isolated in Section 2.6. An investigation into the effect of the geometry on the

delocalisation of electron density over the amidinate CN2 unit is presented.

2.2 Reaction Conditions

The effectiveness of 1 in the catalytic addition of terminal alkynes to carbodiimides

was initially investigated using N,N’ -diisopropylcarbodiimide and phenylacetylene

as standard substrates. Reactions were performed on an NMR scale in C6D6 and

monitored by 1H NMR spectroscopy. A stock solution of 1 in C6D6 (0.0034 M) was

used to administer the pre-catalyst. A range of potential internal standards (1,5-

cyclooctadiene, mesitylene, 1,4-dimethoxybenzene, ferrocene and p-xylene) were

tested, but were unsuitable due to overlap with other resonances. Reported yields

were therefore determined by comparison of the integral of the iso-propyl methine

resonance of PhC≡CC{NHi -Pr}{Ni -Pr} (5) in the 1H NMR spectrum, with the

integral of the THF from 1 after 24 hours, unless stated otherwise (Figure 2.1).

Preliminary reactions using a catalyst loading of 10 mol% 1 yielded 44% of the

corresponding propargylamidine at room temperature (Table 2.1, entry 1). Reducing

the catalyst loading to 1 mol% resulted in a significantly lower yield (24%) (entry

2). Heating the reaction mixture resulted in improved yields (entries 3 and 4), with

good yields (∼70 %) obtained at 80 ◦C. As a control reaction, it was determined

that there was no formation of the corresponding propargylamidine in the absence

of 1 under the same conditions.
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Table 2.1: Dependence of catalytic activity on reaction conditions.

entry catalyst loading
(mol%)

solvent temp (◦C) yield (%)

1 10 C6D6 25 44

2 1 C6D6 25 24

3 1 C6D6 50 53

4 1 C6D6 80 72

5 5 toluene 80 73a

6 5 THF 80 51a

aIsolated yield.

The catalysis was repeated on a preparative scale using standard substrates and 5

mol% 1 (entries 5 and 6). Using toluene as the solvent gave better yields than using

THF, consistent with competitive binding of THF to the active Mg centre during

catalysis.
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Figure 2.1: Assigned 1H NMR spectrum for NMR scale catalytic study at 80 ◦C after 24h (entry 4).
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2.3 Catalytic Cycle

The proposed catalytic cycle for the alkaline earth promoted coupling of terminal

acetylenes to carbodiimide substrates involves initial protonolysis of the amide group

(Figure 2.2, Step I), followed by insertion of the carbodiimide into the M-C bond

(Step II) and finally protonolysis of the propargylamidinate by a terminal acetylene

(StepIII).27

Figure 2.2: Generic catalytic cycle for alkaline earth promoted coupling of terminal
acetylene and carbodiimide substrates.

While this catalytic cycle is widely accepted for lanthanide catalysis, little research

has been performed towards the understanding of the mechanism for the alkaline

earth metal promoted reaction. As mentioned in Chapter 1, one key difference

between lanthanides and the alkaline earth metals is the inherent tendency for the

latter to undergo ligand redistribution via a Schlenk-like equilibrium (vide supra).

To investigate the catalytic cycle of the magnesium mediated coupling of termi-

nal acetylenes to carbodiimides, a series of stoichiometric studies were performed

on an NMR scale. These were then repeated on a preparative scale using N,N’ -

diisopropylcarbodiimide and phenylacetylene as standard substrates.
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2.3.1 NMR studies

Step I: Initiation

All catalytic studies described in Section 2.2 were performed by the addition of 1

to a 1:1 pre-mixed solution of phenylacetylene and N,N’ -diisopropylcarbodiimide.

Therefore, pre-catalyst 1 can enter into the proposed catalytic cycle via two possible

pathways; (i) protonolysis of the amide by the terminal acetylene, or (ii) insertion

of the carbodiimide substrate into the Mg-N bond followed by protonolysis of the

guanidinate ligand by phenylacetylene (Figure 2.3). Previous reports of insertion

of unsaturated substrates in Mg-N bonds indicate that this is a viable reaction

pathway.14,29 To investigate these two possible initiation pathways, a series of NMR

scale experiments were performed.

Figure 2.3: Step I: Initiation pathways for the formation of A.
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Pathway (i) 1H NMR analysis of an NMR-scale reaction of 1 and one equiva-

lent of phenylacetylene in C6D6 shows quantitative formation of a new species (Fig-

ure 2.4). Loss of the singlet corresponding to the terminal proton of phenylacetylene

(δH 2.72 ppm) indicates complete consumption of the starting material, with liber-

ation of one equivalent of HN{SiMe3}2 noted (sharp singlet at δH 0.09 ppm). A

single set of resonances for the amidinate and acetylide ligands are observed. The

resonance corresponding to the o-C6H5 proton (δH 7.85 ppm) indicates significant

deshielding compared to free phenylacetylene, consistent with close proximity to the

electropositive magnesium centre.

Figure 2.4: Reaction of 1 and phenylacetylene. 1H NMR spectra of 1 (a) and 1
+ HC≡CPh (b) in C6D6.

Nuclear Overhauser effect (nOe) analysis of the reaction mixture shows through

space coupling of the THF OCH2 to both the α-cyclohexyl and ortho-phenyl protons.

Coupling is also observed between the ortho-phenyl (δH 7.83 ppm) protons and the

α-cyclohexyl (δH 2.87 ppm) and mesityl ortho-methyl (δH 2.46 ppm) protons. This

suggests that all three ligands are in close proximity, consistent with the terminal

acetylide compound, A.
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Significant broadening of signals corresponding to the amidinate and acetylide

groups suggest the presence of equilibria in solution. Variable temperature NMR

(VT-NMR) spectroscopy was used to analyse the reaction mixture in C7D8 (Fig-

ure 2.5). As the reaction mixture is cooled to -80 ◦C, the broad doublet correspond-

ing to the o-C6H5 of the phenyl group resolves into two distinct peaks. Broadening

of the signal corresponding to the THF is also observed as the temperature is low-

ered. At -80 ◦C, the THF resolves into two distinct resonances. This is consistent

with the presence of fluxional processes in solution, however it is unclear whether

this corresponds to ligand redistribution, or other fluxional processes (e.g. THF

dissociation/association, restricted rotation).

In contrast to the single ligand environment observed in the 1H NMR spectrum, the

13C NMR spectrum displays two low field resonances for the metallacyclic carbon (δC

173.9 and 173.7 ppm), suggesting the presence of multiple amidinate environments in

the reaction mixture. Two resonances are also noted for the α-cyclohexyl proton (δC

55.9 and 55.2 ppm), consistent with a mixture of multiple species in solution. Broad

signals corresponding to the acetylene triple bonded carbon centres are observed

at δC 120.1 ppm and 117.6 ppm, significantly downfield from free phenylacetylene

(δC 83.5 and 77.1 ppm). Overlapping peaks complicate the rest of the 13C NMR

spectrum.

Comparison of the resonances in the 1H and 13C NMR spectra of the reac-

tion mixture to independently synthesised Mg((mes)C{NCy}2)2(THF) (2) and

Mg(C≡CPh)2(THF)4 (6.(THF)4) (vide infra) suggest that 2 (δC 173.9 and 55.2

ppm) and the bis(acetylide) 6.(THF)n
i are present in solution. Resonances that do

not correspond to these species are assigned to A. The presence of these species

indicates that ligand redistribution is occurring in solution (eq. 2.1).

To test this hypothesis, a mixture of independently synthesised 2 and 6.(THF)4 was

examined by 1H NMR spectroscopy in C6D6. The resulting spectrum was consistent

iThe number of THF molecules bound to the bis(acetylide) Mg(C≡CPh)2 (6) is unknown in
solution. n = 0, 1 or 2
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Figure 2.5: Variable Temperature 1H NMR spectrum of 1 + HC≡CPh. (a) o-C6H5

proton resonance; (b) THF OCH2 proton resonance.
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eq. 2.1: Ligand redistribution of A.

with the formation of an equilibrium in solution. Significant broadening of the 1H

NMR signals corresponding to the amidinate ligand (δH 6.83 (C6H2), 2.84 (α-Cy),

2.47 (o-Me) and 2.11 (p-Me) ppm) was observed (Figure 2.6). While 6 is only

sparingly soluble in C6D6, addition of 2 to a suspension of 6.(THF)4 results in

complete dissolution of all precipitates.

Figure 2.6: 1H NMR spectra of 2 (a) and 2 + 6.(THF)4 (b) in C6D6.

Treatment of either A or 2 with excess phenylacetylene (2-5 equivalents) at 80 ◦C

in C6D6 does not liberate the amidinate ligand from the magnesium centre. No new

signals attributable to the free amidine were present in the 1H NMR spectrum, with

retention of both starting materials observed.
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Pathway (ii) Reaction of 1 with one equivalent of N,N’ -diisopropylcarbodiimide

(Scheme 2.1) resulted in quantitative consumption of the starting amide, generating

a mixture of species.

Scheme 2.1: Insertion of N,N’ -diisopropylcarbodiimide into Mg-N bond followed
by protonolysis of the guanidinate (pathway (ii)).

Two sets of resonances corresponding to the C6H2 (δH 6.85 and 6.82 ppm), o-Me (δH

2.47 and 2.41 ppm) and p-Me (δH 2.13 and 2.12 ppm) protons of the mesityl sub-

stituent are observed. Two SiMe3 proton environments are also observed (δH 0.37

and 0.32 ppm). The signal corresponding to the α-cyclohexyl proton resonance ap-

pears as a broad multiplet (δH 2.78 ppm). The integral of this multiplet is consistent

with overlapping signals. Resonances corresponding to the iso-propyl methine and

methyl protons overlap with THF and cyclohexyl proton resonances, respectively.

Resonances at δH 6.85, 2.47 and 2.13 ppm correspond to the bis(amidinate) species

Mg(mesC{NCy}2)2(THF) (2), while the resonance at δH 0.32 ppm corresponds

to bis(guanidinate) Mg({Me3Si}2NC{Ni -Pr}2)2(THF) (3). The identity of these

species was confirmed by independent synthesis (vide infra). Signals at δH 6.82,

2.41, 2.12 and 0.37 ppm are attributed to mixed amidinate/guanidinate B.
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The 13C NMR spectrum of the reaction mixture displays two low field resonances

for the metallacyclic carbon of the amidinate ligand (δC 174.0 and 173.8 ppm),

consistent with two distinct amidinate environments. A single low field resonance

is observed for the metallacyclic guanidinate carbon (δC 166.4 ppm), presumed to

be due to overlapping signals from B and 3. Resonances at δC 6.63 and 2.76 ppm,

corresponding to the SiMe3 carbon atoms, confirm the presence of two guanidinate

environments.

The presence of compounds 2 and 3 in the mixture were confirmed by compari-

son to independently synthesised samples (vide infra). The resonance at δC 174.0

ppm corresponds to compound 2, while the resonances at δC 166.4 and 2.76 ppm

correspond to compound 3. Peaks that do not correspond to these species were

attributed to mixed amidinate/guanidinate species B. Formation of this mixture of

products provides strong evidence supporting the presence of ligand redistribution

in this system (eq. 2.2).

eq. 2.2: Ligand redistribution between B and 2/3.

Ligand redistribution to form a mixture of 2 and 3 was confirmed in an independent

experiment. Equimolar amounts of 2 and 3 were dissolved in C6D6 and examined

by 1H NMR. The relative integration of peaks at δH 6.85 and 6.82 ppm and δH 0.37

and 0.32 ppm show a statistical 2:1:1 ratio of B:2:3.

Initiation pathway The results from the the investigation of pathway (i) and

pathway (ii) prove that both are viable reactions when 1 is added to the pheny-

lacetylene/carbodiimide mixture during catalysis. To determine which pathway
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predominates, a competition experiment was performed.

The stoichiometric addition of 1 in C6D6 to a mixture containing 1:1 equiva-

lent of phenylacetylene and N,N’ -diisopropylcarbodiimide was performed. Anal-

ysis of the mixture by 1H NMR demonstrated that both pathways were operating

at room temperature, showing formation of both HN{SiMe3}2 and the guanidine

{Me3Si}2NC{NHi -Pr}{Ni -Pr}. Pathway (i) is the dominant reaction pathway with

formation of HN{SiMe3}2 and {Me3Si}2NC{NHi -Pr}{Ni -Pr} in a 9:1 ratio, deter-

mined from integration of the SiMe3 resonances.

Step II: Insertion into the Mg-C Bond

The addition of one equivalent of N,N’ -diisopropylcarbodiimide to the reaction mix-

ture of A in C6D6 results in complete consumption of the carbodiimide and forma-

tion of a new species, C (eq. 2.3).

eq. 2.3: Step II: Insertion of N,N’ -diisopropylcarbodiimide into A.

Significant upfield shifts in the phenyl proton signals (δH 7.46 and 6.97 ppm) are

consistent with an increased distance between the phenyl ring and the magnesium

centre. Resonances corresponding to the iso-propyl methine and methyl protons (δH

4.35 and 1.48 ppm, respectively) are also shifted upfield compared to the carbodi-

imide starting material, consistent with a change in the environment of the nitrogen

groups. Two sets of resonances corresponding to the mesityl o-Me (δH 2.45 and 2.44

ppm) and iso-propyl methyl (δH 1.48 and 1.41 ppm) protons are observed, once again

indicating formation of a mixture of species. The resonance for the α-cyclohexyl pro-
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ton is observed as a broad multiplet (δH 2.81 ppm). The multiplet corresponding

to the THF protons (δH 3.77 ppm) is downfield from free THF, consistent with an

interaction with a magnesium centre.

The 13C NMR spectrum indicates the generation of a mixture of compounds, with

two sets of resonances present for all carbon environments. This is most clearly

represented by two distinct low-field resonances for each of the metallacyclic carbons

of the amidinate (δC 174.0 and 173.8 ppm) and propargylamidinate (δC 157.9 and

157.7 ppm) ligands. Two sets of signals for the triple bonded carbon centres (δC

95.9, 95.8, 81.0 and 80.8 ppm) are observed as sharp resonances.

These data are consistent with ligand redistribution between the mixed amidi-

nate/propargylamidinate species C and 2 (δH 2.45 and 1.48 ppm; δC 174.0 ppm) /

bis(propargylamidinate) Mg(PhC≡C{Ni -Pr}2)2(THF) (4) (δC 157.9, 95.9 and 80.8

ppm) (eq. 2.4). The identity of these species was confirmed by independent synthesis

(vide infra).

eq. 2.4: Ligand redistribution between C and 2/4

The ability of a mixture of 2 and 4 to undergo ligand redistribution was determined

by 1H NMR analysis of a 1:1 mixture of independently synthesised samples. The

results clearly show formation of C in solution, most evident by the resonance at

δH 2.44 ppm for the o-Me protons of the mesityl.ii

Insertion of a carbodiimide into the Mg-Cacetylide bond was shown to be non-

ii4 was isolated and added to the reaction as the bis(THF) adduct 4.(THF).
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reversible. The addition of N,N’ -dicyclohexylcarbodiimide to C did not result in

formation of a mixture of different insertion products and no consumption of the

N,N’ -dicyclohexylcarbodiimide was observed.iii

If insertion of the N,N’ -diisopropylcarbodiimide into A was reversible, we would

expect to see consumption of the N,N’ -dicyclohexylcarbodiimide and forma-

tion of the corresponding insertion product as it competes with the N,N’ -

diisopropylcarbodiimide for insertion into the Mg-Cacetylide bond (Scheme 2.2, (a)).

This would result in formation of a mixture of the different insertion products. Al-

ternatively, if the insertion of N,N’ -diisopropylcarbodiimide is irreversible, addition

of N,N’ -dicyclohexylcarbodiimide would not result in the formation of a mixture of

the different insertion products (Scheme 2.2, (b)). The lack of reactivity observed

when N,N’ -dicyclohexylcarbodiimide is added to C is consistent with Scheme (b).

iiiThe tendency of compounds A and C to undergo ligand redistribution has been excluded in
this case for simplicity.
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Scheme 2.2: Reversibility of the insertion step; (a) Reversible insertion of N,N’ -
diisopropylcarbodiimide into Mg-Cacetylide, (b) Non-reversible insertion of N,N’ -
diisopropylcarbodiimide into Mg-Cacetylide.

iii
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Step III: Protonolysis of the Propargylamidinate

Attempts to form the corresponding propargylamidine PhC≡CC{NHi -Pr}{Ni -Pr}

(5) by the protonolysis of the propargylamidinate ligand by phenylacetylene proved

unsuccessful (eq. 2.5). Addition of excess phenylacetylene (5 eq.) to the reaction

mixture of C, 2 and 4 resulted in no observable reaction, even after heating to 80

◦C.

eq. 2.5: Step III: Protonolysis of the propargylamidinate by phenylacetylene.

This apparent lack of reactivity was investigated further as the result is counter to

the observed catalytic results (Section 2.2), where protonation must be occurring

to generate the product and complete catalytic turnover. No observable reaction

was observed upon addition of one equivalent of phenylacetylene to independently

synthesised 4.(THF)(vide infra) when heated to 80 ◦C, suggesting the propargy-

lamidinate ligand is unreactive towards phenylacetylene. Previous studies using

lanthanide-based catalysts have reported the protonolysis of the propargylamidi-

nate as the rate determining step.26

To more closely represent catalytic conditions, one equivalent of N,N’ -

diisopropylcarbodiimide was added to a pre-mixed sample of C, 2, 4 and pheny-

lacetylene. Under these conditions, formation of the corresponding propargylami-

dine was observed, completing the catalytic cycle. N,N’ -diisopropylcarbodiimide is

unreactive with C, 2 and 4 in the absence of phenylacetylene.

These observations can be explained by reversible protonolysis of the propargylamid-

inate, where the equilibrium heavily favours formation of C, 2 and 4 (Figure 2.7).
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Figure 2.7: Reversible protonolysis of C. 2 = Mg(mesC{NCy}2)2(THF), 4 =
Mg(PhC≡CC{Ni -Pr}2)2(THF), 6.(THF)n = Mg(C≡CPh)2(THF)n.

Addition of the N,N’ -diisopropylcarbodiimide acts to trap formation of A and drive

the reaction forward.

To test the reversibility of this step of the reaction, two equivalents of propargylami-

dine 5 were added to an independently synthesised sample of Mg(C≡CPh)2(THF)4

(6.(THF)4) (vide infra). This resulted in quantitative formation of the correspond-

ing bis(propargylamidinate) 4.(THF), with liberation of phenylacetylene, shown by

the formation of a sharp singlet in the 1H NMR spectrum corresponding to the

phenylacetylene terminal proton (δH 2.72 ppm) (eq. 2.6). This indicates that, under

these conditions, protonolysis can occur in both directions, consistent with formation

of an equilibrium.

Crimmin et al. reported an analogous system for the calcium catalysed hydrophos-

phination of carbodiimide substrates, whereby reversible protonolysis of the phos-

phaguanidinate ligand was overcome by trapping formation of the phosphide by
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eq. 2.6: Protonolysis of the acetylide ligand by propargylamidine 5.

insertion of a carbodiimide into the Ca-P bond.8

2.3.2 Preparative scale reactions

Attempted Isolation of A

Attempts to isolate the amidinate acetylide A from the reaction of 1 and pheny-

lacetylene in toluene were unsuccessful. Removal of the volatiles yielded a

white solid which, upon recrystallisation from a mixture of THF/hexane, af-

forded the bis(acetylide) Mg(C≡CPh)2(THF)4 (6.(THF)4; first crop, yield 16%)

and bis(amidinate) 2 (second crop, yield 26 %). This is consistent with Schlenk-like

ligand redistribution between A and 2/6.(THF)4 when in the presence of excess

THF (Scheme 2.3). Independent synthesis of 6.(THF)4 confirmed formation of the

bis(acetylide) adduct (vide infra). Attempts to isolate species from non-coordinating

solvents were prevented by low solubility of the products.

Compound 2 was obtained as a colourless crystalline solid. 1H NMR analysis of 2

indicates a single ligand environment for the amidinate, consistent with a symmetric

environment in solution. Integration of the THF signals is consistent with a single

THF molecule associated with the magnesium centre.

The 13C NMR spectrum shows a single low field resonance consistent with the
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Scheme 2.3: Synthesis of 2 and 6.(THF)4.

metallacyclic carbon centre (δC 174.3). The α-cyclohexyl resonance (δC 54.8 ppm) is

significantly downfield compared to the free carbodiimide, consistent with the close

proximity to the resonance stabilised metallacyclic ring. Elemental analysis data is

consistent with the calculated values for compound 2.

Single crystal X-ray analysis confirmed 2 as the monomeric bis(amidinate) complex,

Mg(mesC{NCy}2)2(THF) (Figure 2.8). Compound 2 crystallises in the P43212

space group and lies on a two-fold rotation axis (C2).

Addison et al. reported a convenient method for describing the geometry of 5-

coordinate metal compounds based on the difference between the largest angle about

the metal centre (α) and the second largest angle (β) (Figure 2.9).30 In an ide-

alised trigonal bipyramid geometry, the difference in angles is 60◦, while an idealised

square-based pyramid geometry would have a difference of 0◦. The τ value is calcu-

lated by dividing the difference between α and β by 60◦. A τ value of >0.5 indicates

bias towards a trigonal bipyramid geometry, while a τ value of <0.5 corresponds to

bias towards a square-based pyramid geometry.

Using this classification, the geometry about the magnesium centre in 2 is described

as a distorted square-pyramidal geometry (τ = 0.41). The bidentate chelating amid-

inate ligands are related by symmetry, forming the basal plane, with the THF

molecule occupying the axial position. The four membered metallacycle ring is
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Figure 2.8: ORTEP representation of 2. 30% Thermal ellipsoid. Hydrogens omit-
ted for clarity. Selected bond lengths (Å) and angles (◦) are reported in Table 2.2.

Table 2.2: Selected bond lengths (Å) and angles (◦) in 2.

Mg-N(1) 2.0957(12) N(1)-C(1)-N(2) 115.42(13)

Mg-N(2) 2.1982(12) N(1)-Mg-N(1)’ 142.58(7)

N(1)-C(1) 1.3345(18) N(2)-Mg-N(2)’ 167.38(7)

N(2)-C(1) 1.3212(19) C(1)-N(1)-Mg 92.80(9)

Mg-O 2.0456(16) C(1)-N(2)-Mg 88.68(9)

N(1)-Mg-N(2) 62.99(5)

planar (sum of internal angles = 359.9◦) with an acute bite angle (62.99(4)◦), sig-

nificantly smaller than observed for tetrahedral compound 1 (65.54(7)◦).18

The mesityl ring is approximately orthogonal so that the o-Me groups lie above and

below the CN2Mg plane, with an interplanar angle of 80.31(6)◦. This is consistent

with the structure of 1 and [Mg(mesC{NCy}2)(Br)(Et2O)]2.
18 The Mg-N(1) and

Mg-N(2) distances, (2.0957(12) Å and 2.1982(12) Å, respectively) are consistent

with σ-bonding interactions of the amidinate with the magnesium centre. The N(1)-
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Figure 2.9: τ values for trigonal bipyramid (left) and sqaure-based pyramid (right)
geometries.

C(1) and N(2)-C(1) bond distances (1.3345(18) Å and 1.3212(19) Å, respectively)

are intermediate between typical C-N (1.47 Å) and C=N (1.27 Å), indicating a

bond order greater than 1. The difference in the Mg-N bond lengths is noted and

discussed in greater detail in Section 2.7.

Attempted Isolation of C

Scheme 2.4: Synthesis of 2 and 4.(THF).

The isolation of C from the sequential addition of one equivalent of pheny-

lacetylene to 1, followed by one equivalent of N,N’ -diisopropylcarbodiimide
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in toluene was also unsuccessful. Removal of the volatiles and recrystallisa-

tion from a mixture of THF/hexane afforded 2 (first crop, yield 47 %) and

bis(propargylamidinate) 4.(THF) (second crop, yield 36 %), consistent with lig-

and redistribution (Scheme 2.4). The identity of these compounds was confirmed

through independent synthesis and comparison of NMR data.

2.4 Scope of Catalysis

Investigation of the scope of catalysis was performed for a range of terminal alkyne

(R) and carbodiimide (R’) substituents using a catalyst loading of 1 mol% and heat-

ing to 80 ◦C for 24h (Table 2.3). All catalytic experiments were performed twice,

with the reported yield representing the average of two runs. Yields were again cal-

culated using the THF resonances as an internal standard (Section 2.2). Varying the

R’ substituent of the carbodiimide had a significant effect on the catalytic activity

of 1. The i -Pr and Cy derivatives gave similar yields after 24h (entries 1 and 2),

consistent with the similar steric profile of the two nitrogen substituents. Increasing

the steric bulk at the nitrogen substituents to t-Bu resulted in significantly lower

yields (entry 3).

This is consistent with an associative mechanism that involves interaction with the

metal centre prior to bond formation (Figure 2.10). The i -Pr and Cy substituents

can rotate to prevent steric clashing of the carbon centres with the substrate (α).

This is not possible for t-Bu substituents which do not have the methine hydrogen

(β). It should be noted that while α and β in Figure 2.10 represent the transi-

tion state of the protonolysis step, increasing the steric bulk at the nitrogen will

also influence the insertion step. Protonolysis of the propargylamidinate has previ-

ously been reported as the rate-determining step for this reaction.26,27 While this

is in agreement with our observations for the i -Pr derivative (Section 2.3), the rate

determining step for the t-Bu derivative is unknown.
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Table 2.3: Substrate scope for the coupling of terminal acetylenes and carbodi-
imides.

entry R R’ yield (%)

1 Ph i -Pr 72

2 Ph Cy 74

3 Ph t-Bu 7

4 Ph Ara 0

5 4-t-BuC6H4 i -Pr 76

6 4-MeC6H4 i -Pr 77

7 SiMe3 i -Pr 63

8 Si(i -Pr)3 i -Pr 42

9 CH3(CH2)3 i -Pr 41

10 t-Bu i -Pr 12
aAr = 2,6-i -Pr2C6H3.

No amidine was produced when using N,N’ -di(2,6-diisopropylphenyl)carbodiimide

(entry 4), consistent with previous results from the lanthanides systems discussed

earlier.26 The lack of catalysis was attributed to the high acidity of the aryl-

substituted propargylamidinate; however sterics will also play a role.

Para-substitution of the phenyl ring had little effect on the catalysis (entries 5 and

6) compared to phenylacetylene. The trimethylsilyl-substituted acetylene gave a

reduced yield (entry 7), with the tri-iso-propylsilyl substituted acetylene exhibiting

further reduced activity (entry 8). This suggests that there is some dependence of

the activity on the steric bulk of the acetylene.

Further reduced yields were observed for alkyl-substituted acetylenes (entries 9 and

10), with the t-Bu derivative exhibiting much lower yields. These results indicate

a dependence of the catalytic activity on both the sterics and electronics of the
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Figure 2.10: Associative mechanism for individual steps of the catalytic cycle.
Proposed transition state for the protonolysis step, R’ = i -Pr (α) and t-Bu (β).
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acetylene and carbodiimide substrates.

Assuming that the protonolysis of the propargylamidinate is the rate-determining

step (Step III, Figure 2.2), the relationship between the acetylene R-group and

the reactivity of the terminal proton was investigated. The Hammett values (σp)

for the R substituents were used to investigate the electron withdrawing/donating

properties of these substituents, where a more positive σp value corresponds to

greater electron withdrawing properties and vice versa.31 A weak correlation (R2 =

0.807) is observed between the σp value of R and the reported yield (Figure 2.11).

Figure 2.11: Plot of Hammett values (σp) vs. NMR yields. R2 = 0.807.

As the electron withdrawing properties of R increase (i.e. σp becomes more positive),

there is a linear increase in the yield. More electron withdrawing R groups are

expected to result in a more acidic terminal proton on the acetylene, effecting the

rate of the rate-determining protonolysis step. The relatively weak correlation likely

indicate a contribution from the sterics of the R group. Indeed, removal of the

sterically bulky t-Bu and Si(i -Pr)3 derivatives from the plot results in a much better

fit of the data to a linear relationship (R2 = 0.947). It should be noted that Hammett

values are determined at room temperature, while yields were determined at 80 ◦C

in a sealed system.
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2.5 Alternative Pre-catalysts

The prevalence of ligand redistribution in the catalytic cycle analysis prompted an

investigation into the possible activity of other magnesium compounds (Table 2.4).

All catalytic studies were performed on an NMR scale, under standard conditions

(Section 2.2), unless stated otherwise. The reported yields in Table 2.4 represent

the average of two catalytic runs, and were determined from the integration 1H

resonances of the product relative to the THF or Et2O solvent molecule, unless

stated otherwise.

Table 2.4: Alternative magnesium based pre-catalysts.

entry catalyst yield (%)

1 Mg(mesC{NCy}2)(N{SiMe3}2)(THF) (1) 72

2 Mg(mesC{NCy}2)2(THF) (2) 74

3 Mg({Me3Si}2NC{Ni -Pr}2)2(THF) (3) 73

4 Mg(PhC≡CC{Ni -Pr}2)2(THF) (4.(THF)) 72a

5 Mg(C≡CPh)2(THF)4 (6.(THF)4) 73a

6 MgBu2 (1.0 M, heptane) 74a

7 Mg(N{SiMe3}2)2 70

8 MgMeBr (3.0 M, Et2O) 63a

9 MgMeBr·nEt2O (solid) 59a

10 MgPhBr·nEt2O (solid) 63a

11 Mg(PhC≡CC{Ni -Pr}2)Br(Et2O) (7) 60a

12 MgBr2.Et2O 0

13 Mg(BPh4)2 0

14 MgMeBr, 5 mol % (3.0 M, Et2O)b 56c

15 MgMeBr, 5 mol % (3.0 M, Et2O)d 53c

aYield calculated from consumption of carbodiimide. bToluene. cIsolated yield. dTHF.
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Initially attempts were made to enter into the catalytic cycle via other possi-

ble intermediates in the catalytic cycle. Entries 2-4 demonstrate that it is pos-

sible to enter the catalytic cycle via bis(amidinate) 2, bis(guanidinate) 3 and

bis(propargylamidinate) 4.(THF), providing comparable yields to 1. This demon-

strates that during catalysis the loss of one or more bidentate ligands is occurring.

As loss of the bidentate ligand is a possibility in this catalysis, entry into the cat-

alytic cycle using pre-cursors to the bis(N,N’ -ligand) systems was investigated. The

reactivity of Mg-C/Mg-N bonds indicate that these species may gain entry into the

catalytic cycle either by protonolysis of the alkyl/amido substituent by the acetylene,

or by insertion of the carbodiimide into the Mg-C/Mg-N bonds to form the corre-

sponding bis(N,N’ -ligand) species in situ (Figure 2.12). Entries 5-7 show the activity

of bis(acetylide) (6.(THF)4), bis(alkyl) (MgBu2) and bis(amide) (Mg(N{SiMe3}2)2)

magnesium species. Yields comparable to 1 were obtained, consistent with removal

of the ancillary ligand early on in catalysis.

Figure 2.12: Entry into the catalytic cycle from organo- and amido-magnesium
compounds.

Expanding on this reactivity, a number of Grignard reagents were tested for cat-

alytic activity (entries 9-11). Catalytic turnover was observed, however lower yields

(∼60%) were obtained compared to 1. No change in the activity was observed upon

partial removal of the Et2O solvent and addition of the catalyst as a solid. Com-

pound 7 exhibited similar activity to MeMgBr and PhMgBr, suggesting the reduced

yields are due to the presence of the Mg-Br bond. To confirm this hypothesis, en-

try into the catalytic cycle by magnesium dibromide etherate (MgBr2.Et2O) was

attempted. No catalytic C-C bond formation was observed after 24 hours at 80

◦C, confirming that the Mg-Br bond does not provide entry into the catalytic cycle
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(entry 12). Mg(BPh4)2 was also shown to be inactive towards the catalytic coupling

of terminal alkynes to carbodiimide substrates (entry 13), indicating catalysis is

unlikely to occur via Lewis acid catalysis.

Catalysis was demonstrated on a preparative scale using 5 mol% MgMeBr in toluene

and THF (entries 14 and 15), with isolated yields of 56 % and 53 %, respectively.

While previous catalytic studies suggested a dependence of catalytic activity on the

solvent (Section 2.2), this is not observed in this case.

2.6 Independent Synthesis of Compounds Identi-

fied in the Catalytic Cycle

2.6.1 Synthesis and Characterisation of 3

Compound 3 was synthesised by the addition of two equivalents of N,N’ -

diisopropylcarbodiimide to Mg(N{SiMe3}2)2 in THF (eq. 2.7). The 1H NMR spec-

trum shows the expected resonances for a single symmetric [{Me3Si}2NC{Ni -Pr}2]−

guanidinate ligand. Integration of the THF peaks is consistent with a single THF

molecule bound to the magnesium centre.

eq. 2.7: Synthesis of 3.

The 13C NMR spectrum displays a single low field resonance (δC 167.2 ppm), con-

sistent with the metallacyclic carbon centre. The SiMe3 carbons are observed as a

single high field resonance (δC 2.5 ppm). The elemental analysis data of compound

3 is in good agreement with the calculated values.
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Single crystal X-ray crystallography shows that compound 3 crystallises in the P21/c

space group. The compound exists as a 5-coordinate monomeric bis(guanidinate)

species in the solid-state, containing a single molecule of THF bound to the metal

centre. The geometry of the metal centre is described as intermediate between

square pyramidal and trigonal bipyramidal (τ = 0.50).30 Both guanidinate ligands

chelate to the magnesium centre with acute bite angles (63.04(7)◦and 63.00(7)◦).

The Mg-N bond lengths (range = 2.0646(18) - 2.1842(18) Å) are consistent with σ-

bonding interactions. The N-C bond distances of the metallacyclic CN2 unit (range

= 1.317(3) - 1.331(3) Å) indicate a bond order greater than 1. Analogous to 2,

differences in the Mg-N and N-C bond lengths are noted.

The bis(trimethylsilyl)amino group consists of a planar nitrogen (sum of angles =

359.9◦) with N-C bond distances (N(3)-C(1) 1.457(3) Å and N(6)-C(14) 1.447(3)

Å). The NSi2:metallacycle inter-planar angles are 79.76(6)◦and 80.65(6)◦. These

data are consistent with single C-NSi2 bonds with no overlap of the N lone pair and

the empty p-orbital on the central carbon, and confirm that there is no resonance

contribution from the third (zwitterionic) resonance form (Chapter 1, Figure 1.4).

Figure 2.13: ORTEP representation of 3. 30% Thermal ellipsoid plot. Hydro-
gens omitted for clarity. Selected bond lengths (Å) and angles (◦) are reported in
Table 2.5.
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Table 2.5: Selected bond lengths (Å) and angles (◦) in 3.

Mg-N(1) 2.1842(18) N(1)-Mg-N(2) 61.08(8)

Mg-N(2) 2.0655(18) N(4)-Mg-N(5) 63.01(8)

Mg-N(4) 2.1831(18) N(1)-C(1)-N(2) 113.88(18)

Mg-N(5) 2.0646(18) N(4)-C(14)-N(5) 114.15(19)

N(1)-C(1) 1.3345(18) N(1)-Mg-N(4) 166.00(6)

N(2)-C(1) 1.3212(19) N(2)-Mg-N(5) 136.20(7)

N(3)-C(1) 1.444(3) C(1)-N(1)-Mg 89.04(13)

N(4)-C(14) 1.317(3) C(1)-N(2)-Mg 94.03(15)

N(5)-C(14) 1.329(3) C(14)-N(4)-Mg 93.84(16)

N(6)-C(14) 1.447(3) C(14)-N(5)-Mg 88.97(13)

Mg-O 2.0804(17)

2.6.2 Synthesis and Characterisation of 4.(THF)

Compound 4.(THF) was isolated from the reaction of two equivalents of propar-

gylamidine 5 with MgBu2 in THF. An alternative synthesis for this compound in-

volves the addition of two equivalents of N,N’ -diisopropylcarbodiimide to compound

6.(THF)4 in THF (Scheme 2.5).

Scheme 2.5: Synthesis of 4.(THF).

The 1H NMR spectrum of 4.(THF) displays a multiplet at δH 7.48 ppm correspond-

ing to the o-C6H5 protons of the propargylamidinate. Integration of the THF reso-

nances relative to the amidinate indicates a 1:1 ratio, suggesting two THF molecules
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at the magnesium.

The 13C NMR spectrum displays a single set of peaks corresponding to the propar-

gylamidinate ligand. A single low field resonance (δC 157.9 ppm) represents the

metallacyclic carbon centre. The triply bonded carbon centres appear as sharp

resonances at δC 95.9 and 80.0 ppm. Elemental analysis data is consistent with

calculated values for compound 4.(THF).

Compound 4.(THF) crystallises in the P 1̄ space group and lies on an in-

version centre. The solid-state structure shows a 6-coordinate, monomeric

bis(propargylamidinate) species, and confirms that two THF molecules are bound

to the magnesium centre. The metal centre has a distorted octahedral geometry,

with the THF molecules trans to each other. The bidentate propargylamidinate lig-

ands chelate to the magnesium centre, forming planar four membered metallacycles

(sum of internal angles = 359.9◦). The main distortion in the metal geometry is

due to the acute bite angle of the chelating propargylamidinate ligands (62.77(3)◦).

The N-Mg-O angles (range of angles = 88.94(3)◦- 91.06(3)◦) are consistent with a

distorted octahedral geometry.

Figure 2.14: ORTEP representation of 4.(THF). 30% Thermal ellipsoid plot. Hy-
drogens omitted for clarity. Selected bond lengths (Å) and angles (◦) are reported
in Table 2.6.
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Table 2.6: Selected bond lengths (Å) and angles (◦) in 4.(THF).

Mg-N(1) 2.1691(8) N(1)-C(1)-N(2) 116.33(8)

Mg-N(2) 2.1644(8) Mg-N(2)-C(13) 148.44(6)

N(1)-C(1) 1.3288(13) Mg-N(1)-C(10) 148.45(8)

N(2)-C(1) 1.3279(13) C(1)-C(2)-C(3) 178.57(13)

Mg-O 2.1814(7) C(2)-C(3)-C(4) 179.41(11)

C(2)-C(3) 1.1964(14) C(1)-N(1)-Mg 90.34(7)

N(1)-Mg-N(2) 62.77(3) C(1)-N(2)-Mg 90.56(5)

Mg-N(1) and Mg-N(2) bond distances (2.1691(8) and 2.1644(8) Å, respectively) are

consistent with σ-bonding interactions of the propargylamidinate with the mag-

nesium centre. The N(1)-C(1) and N(2)-C(1) bond distances (1.3288(13) and

1.3279(13) Å, respectively) are consistent with delocalisation of π-electron density

over the metallacyclic CN2 unit. The C(2)-C(3) bond distance (1.196 Å) and the

C(1)-C(2)-C(3) (178.57(11)◦) and C(2)-C(3)-C(4) (179.41(12)◦) bond angles, are

consistent with localisation of electron density to form a triple bond.

2.6.3 Synthesis and Characterisation of 6.(THF)4

The synthesis of compound 6.(THF)4 has previously been reported in the literature,

however full crystallographic and NMR data for this compound were not reported.32

Addition of two equivalents of phenylacetylene to a THF solution of MgBu2 results

in the quantitative formation of 6.(THF)4 (eq. 2.8).

eq. 2.8: Synthesis of 6.(THF)4.

The 1H NMR spectrum of 6.(THF)4 displays three resonances corresponding to

the aromatic protons. The o-C6H5 protons are observed as a relatively low field

doublet (δH 7.89 ppm), consistent with a close proximity to the magnesium centre.
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Integration of the peaks indicate the presence of four THF molecules in 6.(THF)4.

The 13C NMR spectrum provided limited information due to poor solubility of 6

in C6D6. A single set of resonances was observed in the aromatic region (δC 132.2,

129.3, 128.5 and 127.0 ppm), accounting for all carbon centres. Peaks corresponding

to the THF carbons are observed at δC 68.0 and 25.8 ppm. No resonances were

observed for the C≡C carbons.

6.(THF)4 crystallises in the C2/c space group, with the molecule lying on a 2-fold

rotation axis (C2). The solid-state structure confirms the presence of a terminal

bis(acetylide) species and four coordinated THF molecules (Figure 2.15). Two of the

THF molecules are disordered over two positions. The geometry at the metal centre

can be best described as a distorted octahedral, where the acetylide substituents are

trans to each other. The remaining positions are occupied by four THF molecules

bound to the magnesium centre.

Figure 2.15: ORTEP representation of 6.(THF)4. 30% Thermal ellipsoid plot.
Hydrogens omitted for clarity. Selected bond lengths (Å) and angles (◦) are reported
in Table 2.7.

Table 2.7: Selected bond lengths (Å) and angles (◦) in 6.(THF)4.

Mg-C(1) 2.187(2) C(1)-C(2) 1.224(3)

Mg-C(7) 2.191(2) C(7)-C(8) 1.220(3)
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The Mg-C(1) and Mg-C(7) bond lengths (2.187(2) and 2.191(2) Å, respectively) are

within the expected range for terminal magnesium (bis)acetylide species (2.092(2)-

2.348(2) Å)33 and are comparable to the Mg-C bond distances in the six-coordinate

terminal (bis)phenylacetylide Mg(C≡CPh)2(tmeda)2 (2.176(6) and 2.200(6) Å).34

The C(1)-C(2) and C(7)-C(8) bond lengths (1.224(3) and 1.220(3) Å, respectively)

similar to the expected value for a C≡C triple bond (ca. 1.203 Å). Disorder in two

of the THF molecules prevents discussion of the bond lengths and angles of the THF

groups.

2.6.4 Synthesis and Characterisation of 7

As part of the catalytic studies, the mono-propargylamidinate bromide 7 was synthe-

sised (Section 2.5). Compound 7 was synthesised from the addition of one equivalent

of methylmagnesium bromide (MeMgBr) to a stirring solution of propargylamidine

5 in Et2O (eq. 2.9). Recrystallisation from Et2O yielded clear yellow crystals of 7.

eq. 2.9: Synthesis of 7.

The 1H NMR spectrum of 7 displays resonances in the aromatic region correspond-

ing to the o-C6H5 protons at δH 7.38 ppm. The presence of coordinated Et2O is

confirmed by a quartet and triplet (δH 3.53 and 1.07 ppm, respectively) upfield

from free Et2O. Integration of the signals relative to the propargylamidinate peaks

indicates a 1:1 ratio of Et2O to amidinate in the compound.

The 13C NMR spectrum shows a single low field resonance (δC 158.9 ppm) consistent

with the metallacyclic carbon of the propargylamidinate. The quaternary C≡C
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carbons appear as sharp resonances at δC 97.1 and 80.1 ppm. Elemental analysis is

consistent with the calculated values for 7.

X-ray crystallography indicates that 7 crystallises in the Pca21 space group. Com-

pound 7 dimerizes in the solid-state through µ-Br bridges, generating two five-

coordinate magnesium centres (Figure 2.16). The geometry of both metal centres is

intermediate between square pyramidal and trigonal bipyramid (τ = 0.56 (Mg(1))

and 0.48 (Mg(2))).30 The bromides bridge the magnesium centres to form a planar

four-membered Mg2Br2 core (sum of internal angles = 360.0◦). The Mg-Br bonds are

unsymmetrical, with Mg(1)-Br(2) and Mg(2)-Br(1) bonds (2.5364(9) and 2.5406(9)

Å, respectively) being significantly shorter than the Mg(1)-Br(1) and Mg(2)-Br(2)

(2.7202(9) and 2.7181(9) Å, respectively).

Figure 2.16: ORTEP representation of [7]2. 30% Thermal ellipsoid plot. Hydro-
gens omitted for clarity. Selected bond lengths (Å) and angles (◦) are reported in
Table 2.8
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Table 2.8: Selected bond lengths (Å) and angles (◦) in [7]2.

Mg(1)-Br(1) 2.7202(9) Mg(2)-Br(1) 2.5406(9)

Mg(1)-Br(2) 2.5364(9) Mg(2)-Br(2) 2.7181(9)

Mg(1)-N(1) 2.138(2) Mg(2)-N(3) 2.119(2)

Mg(1)-N(2) 2.060(2) Mg(2)-N(4) 2.071(2)

N(1)-C(1) 1.324(4) N(3)-C(16) 1.331(3)

N(2)-C(1) 1.333(3) N(4)-C(16) 1.340(3)

C(2)-C(3) 1.203(4) C(17)-C(18) 1.206(4)

N(1)-Mg(1)-N(2) 64.51(9) N(3)-Mg(2)-N(4) 64.74(9)

Mg(1)CN2:Mg2Br2 inter-planar angle 52.67(7)

Mg(2)CN2:Mg2Br2 inter-planar angle 47.29(7)

The propargylamidinate ligands bind to the magnesium centre in a bidentate fash-

ion, forming planar metallacycles (sum of internal angles = 360.0◦ (Mg(1)) and

359.9◦ (Mg(2))). The bite angle of the propargylamidinate ligands represent the

most acute internal angles of these metallacycles (64.51(9)◦ (Mg(1)) and 64.74(9)◦

(Mg(2))). The plane of the CN2Mg metallacycles intersect the Mg2Br2 plane

at similar angles (dihedral angles = 52.67(7)◦ (CN2Mg(1)/Mg2Br2) and 47.29(7)◦

(CN2Mg(2)/Mg2Br2)), and may be considered trans across the Mg2Br2 plane.

The Mg-N bond distances (range = 2.060(2) - 2.138(2) Å) are consistent with σ-

bonding interactions. The N-C bond distances (range = 1.324(4) - 1.340(3) Å)

and Mg-N bond distances reflect delocalization of electron density on the CN2 moi-

ety. Short bond distances for C(2)-C(3) and C(17)-C(18) (1.203(4) and 1.206(4) Å,

respectively) reflect the presence of a carbon-carbon triple bond.
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2.7 Comparison of Solid-state Structures of Mag-

nesium Amidinate/Guandinate Compounds

Magnesium compounds supported by amidinate and guanidinate ligands are rel-

atively common. A number of bis(amidinate) and bis(guanidinate) magnesium

compounds have been structurally characterised as four-, five- or six-coordinate

species, with neutral donor ligands (L) occupying the remaining sites in five- and

six-coordinate species (Figure 2.17).

Figure 2.17: Representation of a generic bis(amidinate)/bis(guanidinate) magne-
sium compound.

The coordination number of these species is dependent on the sterics and electron-

ics of the substituents at both the nitrogen and backbone carbon. Compounds

containing sterically demanding substituents (e.g. t-Bu,35,36 2,6-i -Pr2C6H3
37 and

2,4,6-Me3C6H2
35) at either the nitrogen atoms or the backbone carbon commonly

form four-coordinate species with no solvent molecules (L) coordinated to the mag-

nesium centre. Reducing the steric bulk at these positions can allow neutral donor

ligands to coordinate, increasing the coordination number of the magnesium cen-

tre. Therefore, the coordination number of the magnesium species can be used to

identify amidinate ligands with similar steric profiles.

2.7.1 Five-Coordinate Magnesium bis(amidinate/guanidinate)

Compounds

Structurally characterised five-coordinate magnesium bis(amidinate)/

bis(guanidinate) compounds are rare, with most existing as four- and six-coordinate
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species in the solid-state. The only other structurally characterised five-coordinate

bis(amidinate)/ bis(guanidinate) magnesium compounds reported in the literature

are Mg(({i -Pr}2NC{Ni -Pr}2)2(THF)38 (I), Mg(PhC{NCy}{NSiMe3})2(Et2O)39

(II) and Mg(PhC{NSiMe3}2)2(N≡CPh)40 (III).

Comparison of the solid-state structures of compounds 2 and 3 to these compounds

indicate a dependence of the geometry of the metal centre on the substituents at

the nitrogen and metallacyclic carbon (Table 2.9). Using the system developed by

Addison et al.,30 bias towards square pyramidal and trigonal bipyramid geometries

have been determined and utilised to classify the geometry of these species.

Both 2 and 3 form heavily distorted geometries, with τ values close to 0.5, sug-

gesting only slight bias towards one geometry over the other. Mg({i -Pr}2NC{Ni -

Pr}2)2(THF) (I) also forms a heavily distorted geometry, which may reflect the sim-

ilar steric profiles of the nitrogen substituents. Mg(PhC{NCy}{NSiMe3})2(Et2O)

(II) and Mg(PhC{NSiMe3}2)2(N≡CPh) (III), which have SiMe3 substituents at the

nitrogens, are biased towards a trigonal bipyramidal geometry (tbp).

Differences in the Mg-N (∆Mg−N) and N-C bond distances (∆N−C) of the metalla-

cycle reflect partial localisation of electron density within the CN2 moiety. This is

most prominent in compounds 2, 3 and I. In an idealised trigonal bipyramidal struc-

ture, M-Naxial bonds are significantly longer than M-Nequitorial bonds.41 The chelating

nature of the amidinate/guanidinate ligands prevent idealised geometries from form-

ing, and may cause the τ value to be a misrepresentation of the true geometries.

The partial localisation of electron density over the CN2 unit may indicate that 2, 3

and I adopt a distorted trigonal bipyramidal geometry, with the longer Mg-N bonds

corresponding to the nitrogen atoms in the pseudo-axial positions and the shorter

Mg-N bonds corresponding to the nitrogen atoms in the pseudo-equatorial positions.

Despite having a greater τ value, compounds II and III have much smaller ∆Mg−N

values than 2, 3 and I.

Coordination of an amidinate ligand to a metal centre can be represented by reso-
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nance structures α and β in Figure 2.18.23 The deviation from symmetrical coordi-

nation of the amidinate ligands is consistent with increased contribution from one

of the resonance structures over the other. Differences in the Mg-N and N-C bond

distances in 2, 3 and I are consistent with a greater resonance contribution from

resonance structure α. The nitrogen associated with the longer Mg-N bond has the

shorter N-C bond, consistent with this assessment.

Figure 2.18: Resonance structures of amidinate bonding to a metal centre.
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Table 2.9: Selected structural data for five-coordinate bis(amidinate)/ bis(guanidinate) magnesium species.

2 3c I II III

τ (geometry biasa) 0.41 (sq. pyr.) 0.5 0.57 (tbp) 0.74 (tbp) 0.92 (tbp)

N-Mg-N’ angle (◦) 63.0(1) 63.0 63.0(3) 64.1(1) 64.8(1)

Mg-N (Å) 2.096(1) , 2.198(1) 2.184 , 2.065 2.066(7), 2.184(6) 2.158(3), 2.103(3) 2.139(3), 2.110(3)

∆Mg−N (Å) 0.103 0.119 0.118 0.055 0.029

N-Cb (Å) 1.335(2), 1.321(2) 1.320, 1.330 1.363(12), 1.306(12) 1.350(5), 1.319(5) 1.320(5), 1.324(5)

∆N−C (Å) 0.013 0.010 0.057 0.031 0.004

Mg-N-C angle (◦) 145.3(10), 150.9(10) 146.7, 139.9 142.3(6), 146.9(5) 142.7(2), 141.0(17) 140.9(17), 138.8(18)
aSquare-based pyramid (sq. pyr.), Trigonal bipyramid (tbp). bMetallacyclic carbon centre. cAverage values of both amidinate ligands.51



2.7.2 Six-Coordinate Magnesium bis(amidinate/guanidinate)

Compounds

In contrast to five-coordinate species 2 and 3, compound 4.(THF) crystallises as a

six-coordinate magnesium species, incorporating two molecules of THF in the co-

ordination sphere. This indicates that the propargylamidinate ligand has a smaller

steric profile than the amidinate and guanidinate ligands of 2 and 3, and illustrates

the effect of changing the metallacyclic carbon substituent on the coordination num-

ber of the metal.

A number of structurally characterised six-coordinate bis(amidinate) species have

been reported in the literature with most incorporating small substituents at ei-

ther the nitrogen or metallacycic carbon. Srinivas et al. reported the solid-

state structure of the six-coordinate bis(benzamidinate) compound, Mg(PhC{Ni -

Pr}2)2(THF)2 (IV).38 The solid-state structure of six-coordinate bis(benzamidinate)

species, Mg(PhC{NSiMe3}2)2(THF)2 (V) was reported by Walther and co-

workers.42 Junk and co-workers reported the solid-state structure of two related six-

coordinate bis(formamidinate) compounds, Mg(HC{N-4-MeC6H4}2)2(THF)2 (VI)

and Mg(HC{N-2-MeC6H4}2)2(THF)2 (VII).43 All of these compounds have the

THF molecules arranged in a trans-conformation.

Comparison of these compounds to 4.(THF) (Table 2.10) indicate a relatively nar-

row range of N-Mg-N’ bite angles (62.30◦ - 63.24◦) for 6-coordinate trans species.

The Mg-N bond distances in 4.(THF) are identical (within 3σ) to the Mg-N bond

distances of IV, consistent with both compounds containing i -Pr substituents at

the nitrogens. Significantly shorter Mg-N bond distances are observed for the aryl-

substituted formamidinate species V and VI, while VII displays significantly longer

Mg-N bonds. The difference in the Mg-N (∆Mg−N) and N-C (∆N−C) bond lengths

within the amidinate ligands suggest only minor localisation of electron density

within the CN2 unit.

52



Comparison of the Mg-N-C angles of 4.(THF) and IV indicate a much larger angle

for 4.(THF). These two species only differ in the substitution at the metallacycle

carbon, with 4.(THF) containing an acetylene linker between the metallacycle car-

bon and the phenyl group. The increased Mg-N-C angle in 4.(THF) is likely a result

of a reduction in the steric profile at the metallacyclic carbon as the phenyl group

is further removed from the nitrogen substituents (Figure 2.19).

Figure 2.19: Comparison of the different metallacycle carbon substituents in
4.(THF) and IV.
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Table 2.10: Selected structural data for six-coordinate bis(amidinate) species

4.(THF) IV V VIb VIIb,c

N-Mg-N’ angle (◦) 62.77(3) 62.3(2) 62.71(10) 62.77 63.24

Mg-N (Å) 2.1691(10), 2.1645(7) 2.169(6), 2.161(6) 2.188(3), 2.208(3) 2.164, 2.150 2.165

δMg−N (Å) 0.0046 0.008 0.02 0.0145 0

N-Ca (Å) 1.3288(12), 1.3280(15) 1.324(9), 1.338(9) 1.328(5), 1.329(5) 1.321, 1.315 1.319

δN−C (Å) 0.0008 0.014 0.001 0.0065 0

Mg-N-C (◦) 148.44(6), 148.45(8) 146.6(5), 146.7(6) 138.76(15), 142.03(14) 147.39, 149.46 152
aMetallacyclic carbon centre. bAverage values of both amidinate ligands. cN atoms of the amidinate ligand are related by symmetry.
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2.7.3 Magnesium halides supported by amidinate and

guanidinate ligands

Despite the ready availability of numerous Grignard reagents, magnesium halides

supported by amidinate and guanidinate ligands are surprisingly rare. Com-

pound 7 forms a dimeric structure in the solid-state, whereby the two molecules

are linked through bridging bromide interactions. The only other structurally

characterised magnesium bromide species supported by an amidinate ligand

is [Mg(mesC{NCy}2)Br(Et2O)]2
18 (VIII). The solid-state structures of the re-

lated magnesium chloride species [Mg({SiMe3}2NC{NCy}2)Cl(THF)]2
44 (IX) and

[Mg(HC{NAr}2)Cl(THF)]2
45 (X) have also been reported (Figure 2.21). These

species also exist as dimers in the solid-state, with two 5-coordinate magnesium

centres with structures similar to that observed in [7]2. The amidinate ligands

are arranged trans to each other across the plane of the Mg2X2 metallacycle (X =

halide).

According to the τ values for these compounds, a range of geometries are possible

(Table 2.11). The amidinate/guanidinate ligands bind to the magnesium centre with

characteristically acute bite angles to form planar metallacycles. While [7]2, VIII

and IX have relatively similar bite angles, X has a significantly smaller bite angle.

This may be a reflection of the similar steric profile at the nitrogen centers for [7]2,

VII and IX, and the increased steric bulk at the nitrogens of X. In addition the bite

angles in these compounds (range = 63.62◦- 64.78◦) are notably higher than that

observed for both 5- and 6-coordinate bis(amidinate) and bis(guanidinate) systems.

Partial localisation of electron density is observed in all of these species, represented

by large ∆Mg−N and ∆N−C values. The nitrogen atom of the longer Mg-N bond

corresponds to the shorter N-C bond, analogous to the 5-coordinate bis(amidinate)/

bis(guanidinate) systems. Significant differences are also observed for the Mg-X

bonds.
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The large ∆Mg−N and ∆Mg−X values in [7]2, VII and IX are consistent with a

trigonal bipyramidal geometry (as in Section 2.7.1), with significant elongation of

the Mg-N and Mg-X bonds of the nitrogen (N*) and halide (X) atoms in the pseudo-

axial position. The other nitrogen occupies the pseudo-equitorial position, and has

a much shorter Mg-N bond length. The nitrogen in the pseudo-axial position (N*)

is defined by the largest angle about the magnesium centre (α), and corresponds to

the nitrogen with the longer bond in all cases.

Figure 2.20: Representation of the effect of inter-planar angles on α. α = largest
angle about Mg, L = solvent molecule.

The CN2Mg : Mg2X2 inter-planar angles determines whether the axial nitrogen atom

(N*) sits trans to the solvent molecule or a halide atom (Figure 2.20). Compound

X has a significantly larger inter-planar angle (mean = 87.4◦) than [7]2, VII and

IX, forming an almost perpendicular arrangement. As a result, the N*-Mg-O bond

angle becomes larger than the N*-Mg-X bond angle, consistent with the solvent

molecule occupying the pseudo-axial position. This is consistent with the relatively

small ∆Mg−X value in addition to a relatively long Mg-O bond (mean = 2.082 Å).

Compounds [7]2, VII and IX display small inter-planar angles (range = 42.01◦-

57.90◦), resulting in the pseudo-axial positions being occupied by N* and X atoms.

This is represented by the largest angle about the magnesium centre correspond-

ing to N*-Mg-Br, shorter Mg-O bond distances (range = 2.024(2)-2.046(2) Å) and

significantly larger ∆Mg−X values.
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Figure 2.21: Bridged halide species supported by amdinate/guanidinate ligands.
L = Et2O (VII), THF (IX, X).
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Table 2.11: Structural data for five-coordinate magnesium halides supported by amdinate/guandinate ligands

[7]2 VIII IX Xd

Mg(1) Mg(2)

τ (geometry biasa) 0.56, 0.48 0.48 0.70 (tbp) 0.43 (sq. pyr.) 0.075 (sq. pyr.)

N-Mg-N angle (◦) 64.51(9) 64.74(9) 64.78(9) 64.10(8) 63.62

Mg-X (X = Br,Cl) (Å) 2.720(1),2.536(1) 2.718(1),2.541(1) 2.553(1), 2.679(1) 2.417(1), 2.495(1) 2.404, 2.440

δMg−X (Å) 0.18 0.18 0.13 0.078 0.036

Mg-N (Å) 2.138(2), 2.060(2) 2.119(2),2.071(2) 2.122(2), 2.050(3) 2.073(2), 2.125(2) 2.081, 2.187

δMg−N (Å) 0.078 0.048 0.072 0.051 0.106

N-Cb (Å) 1.333(3), 1.324(4) 1.340(3), 1.331(3) 1.332(4), 1.338(3) 1.334(3), 1.321(3) 1.313, 1.320

δN−C (Å) 0.009 0.009 0.006 0.013 0.007

CN2Mg:Mg2Br2 inter-
planar angle

52.67(7) 47.29(7) 57.90(7) 42.01(5) 87.4

Mg-O 2.024(2) 2.030(2) 2.046(2) 2.033(2) 2.082

Largest anglec N*-Mg-Br N*-Mg-Br N*-Mg-Br N*-Mg-Cl N*-Mg-O
aSquare-based pyramid (sq. pyr.), Trigonal bipyramid (tbp). bMetallacyclic carbon centre. cAtoms corresponding to α. dAverage of four 5-coordinate Mg

centres.

58



2.7.4 Summary

A recurring theme in this comparison is the dependence of resonance stabilisation on

the geometry of the metal centre. Five-coordinate bis(amidinate)/bis(guanidinate)

magnesium species and magnesium halides supported by amidinate/guanidinate lig-

ands exhibit partial localisation of electron density. In contrast, six-coordinate

bis(amidinate)/bis(guanidinate) species show only minor localisation in the CN2

unit. This is thought to be associated with the formation of trigonal bipyrami-

dal geometries, where the nitrogen atoms occupy the axial or equitorial positions.

Nitrogen atoms in the axial positions have significantly longer Mg-N bonds and

shorter N-C bonds, consistent with bias towards one resonance form (Section 2.7.1,

Figure 2.18).

The geometry of five-coordinate metal species containing bidentate ligands with

acute bite angles is difficult to determine, often forming distorted structures. The

τ value reported by Addison et al.30 has been employed for the classification of

5-coordinate species, however assignments based on this value do not fit with exper-

imental observations of the bond lengths and angles. This suggests that this rule

breaks down when using bidentate ligands that form constrained four-membered

metallacycles.
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Chapter 3

Conclusion

Following on from preliminary reports of catalytic addition of terminal acetylenes to

carbodiimides facilitated by 1, this research has explored the dependence on reaction

conditions and substrate scope. A detailed investigation into the catalytic cycle has

been performed in addition to the identification of a range of magnesium-based

pre-catalysts.

The overall yield of the reaction was shown to be dependent on the catalyst loading,

temperature and solvent. At higher catalyst loading and temperatures, the catalytic

activity is significantly higher. Using THF as a solvent decreased catalytic activity

compared to toluene, possibly due to competitive binding to the active site.

Catalysis was also observed to be dependent on the sterics and electronics of both

the acetylene and carbodiimide substrates. Significant dependence on the steric

bulk at the nitrogen of the carbodiimide was attributed to the presence of an as-

sociative mechanism. The sterics and electronics of the acetylene substituent were

also contributing factors in determining catalytic activity, with a linear relationship

between the electron withdrawing properties of the acetylene substituent (R) and

the catalytic activity.

The catalytic cycle studies show a clear deviation from the mechanism proposed for
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the lanthanides. Identification of important intermediates in the reaction pathway

was performed through the use of a series of NMR scale reactions. A number

of potential intermediates were investigated, however facile ligand redistribution

inhibited the isolation of these compounds. In contrast to the proposed mechanism,

Step III of the catalytic cycle (protonolysis of the propargylamidinate ligand) was

observed to be reversible. A summary of the findings from the catalytic cycle studies

has been compiled in Figure 3.1.

The propensity for intermediates to undergo ligand redistribution led to the catalytic

testing of a range of magnesium compounds. Bis(amidinate)/ bis(guanidinate)/

bis(propargylamidinate) species were catalytically active, suggesting loss of the lig-

and. Homoleptic organo- and amido-magnesium compounds were also observed

to be catalytically active, showing similar yields to 1. Finally, Grignard reagents

showed reduced catalytic activity, due to the lack of reactivity of the Mg-Br bond.

The identity of important species in the reaction mixtures were determined through

the independent synthesis and isolation of these or related compounds. Compounds

were fully characterised using 1H and 13C NMR spectroscopy, single crystal X-ray

crystallography and elemental analysis. Comparison of the solid-state structures of

these compounds to similar species reported in the literature indicated a tendency

for five-coordinate magnesium amidinate species to undergo significant localisation

of electron density in the CN2 unit. The τ value was used to determine bias in

the geometry of five-coordinate magnesium compounds, however it was found to be

unsuitable for compounds containing multiple constrained metallacycles.
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Figure 3.1: Proposed catalytic cycle for magnesium-based catalytic addition of terminal acetylenes to carbodiimides. THF solvent
omitted for simplification. L = [mesC{NCy}]2−
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Chapter 4

Experimental

4.1 General Procedures

All manipulations were performed under a dry and oxygen-free atmosphere of N2

using Schlenk-line and cannula techniques, or in a conventional nitrogen glovebox.

Solvents were dried using a Puresolv. system (Innovative Technologies). NMR

spectra were recorded in C6D6 at 298K using a Bruker Avance DPX 300 MHz at

300.1 (1H) and 75.4 (13C) MHz. All 1H and 13C chemical shifts are referenced

internally to residual solvent resonances. Elemental analyses were performed by

S. Boyer at London Metropolitan University. All compounds were purchased from

the Sigma-Aldrich chemical company and used as received, unless stated otherwise.

Liquids were subjected to 3x freeze-pump-thaw cycles, and stored under nitrogen

in the glovebox. Mg(mesC{NCy}2)(N{SiMe3}2(THF) (1)18 and Mg(N{SiMe3}2)2 46

were synthesised according to literature procedures.

4.1.1 Crystal Structure Data

X-ray diffraction data (Appendix C) were collected by the X-ray Crystallography

Laboratory at the University of Canterbury using an Agilent SuperNova diffractome-
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ter fitted with an Atlas detector. Crystals were covered in inert oil and suitable single

crystals were selected. Data was collected at 120.01(10)K using Cu Kα radiation at

1.5418 Å. The structures were solved using the program package WinGX and refined

using SHELXL97. ORTEP representations were prepared using ORTEP-III.47

4.2 General Procedure for Catalytic Study

4.2.1 NMR scale

To a J. Young NMR tube charged with a mixture of phenylacetylene (0.022 mL,

0.17 mmol.) and N,N -diisopropylcarbodiimide (0.028 mL, 0.17 mmol.) was added

a solution of 1 in C6D6 (0.5 mL of a 0.0034 M standard solution, 1.7 µmol.). The

NMR tube was heated to 80 ◦C for 24h with regular monitoring of the progress

of the catalysis using 1H NMR spectroscopy. The yield of propargylamidine 5 was

determined using peaks corresponding to the THF of 1 as an internal standard.

Yield 72 %.

4.2.2 Preparative scale

A solution of 1 (0.05 g, 0.085 mmol.) in toluene (2.5 mL) was added to a stirring

solution of phenylacetylene (0.22 mL, 1.7 mmol.) and N,N-diisopropylcarbodiimide

(0.28 mL, 1.7 mmol.) in toluene (2.5 mL). The solution was heated to 80 ◦C and

allowed to stir for 24h, followed by removal of the volatiles in vacuo to give a yellow

oil. Clear, yellow crystals of propargylamidine 5 were obtained by recrystallisation

from hexane. Yield 0.28 g, 73 %.
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4.3 Catalytic Cycle Studies

4.3.1 Mg(mesC{NCy}2)(C≡CPh)(THF) (A)

NMR scale

Phenylacetylene (0.0045 mL, 0.034 mmol.) was added to a J. Young NMR tube

charged with a solution of 1 (20 mg, 0.034 mmol.) in C6D6 (0.5 mL). The solution

was allowed to sit for 10 mins at room temperature followed by 1H NMR analysis.

1H NMR (C6D6, 300MHz) δ 7.84 (d, JHH = 7.2 Hz, 2H, o-C6H5), 7.10 (t, JHH =

7.2 Hz, 2H, m-C6H5), 7.01 (d, JHH = 6.9 Hz, 1H, p-C6H5), 6.84 (s, 2H, C6H2),

3.96 (t, JHH = 6.1 Hz, 4H, THF-CH2), 2.81 (br m, 2H, α-C6H11), 2.46 (br s, 6H,

o-Me2), 2.13 (br s, 3H, p-Me), 1.95-1.00 (m, 24H, C6H11 and THF-CH2), 0.09 (s,

18H, HN(SiMe3)2);

13C NMR (C6D6, 75 MHz) δ 173.9 (CN2), 136.6, 136.5, 134.5, 134.3, 132.2, 128.40,

127.4, 126.4(C6H5 and C6H2), 119.9, 117.7 (C≡C ), 68.9 (THF-CH2), 55.9, 55.2

(α-C6H11), 37.9, 26.4 (br), 26.1, 25.6 (α-C6H11), 21.2 (p-Me), 20.8 (o-Me2), 2.7

(HN(SiMe3)2).

Preparative scale

Phenylacetylene (0.065 mL, 0.62 mmol.) was added drop wise to a rapidly stirring

solution of 1 (0.36 g, 0.62 mmol.) in toluene (10 mL). The resulting solution was

left to stir for 24h at room temperature, followed by removal of volatiles in vacuo

to give a yellow oil. The addition of hexane (5 mL) and THF (1 mL) to the oil,

followed by storage at -30 ◦C for 24 h yielded a white powder, identified as 6.(THF)4

by 1H NMR spectroscopy. Yield 0.027 g, 16 %. Additional crops of clear, colourless

crystals were obtained by further concentration of the solution identified as 2. Yield

0.060 g, 26 %.

65



4.3.2 Mg(mesCNCy2)({Me3Si}2NC{Ni -Pr}2)(THF)n (B)

NMR scale

N,N -diisopropylcarbodiimide (0.0056 mL, 0.034 mmol.) was added to a J. Young

NMR tube charged with a solution of 1 (20 mg, 0.034 mmol.) in C6D6 (0.5 mL).

The solution was allowed to sit for 2 h at room temperature followed by 1H NMR

analysis, showing formation of a mixture of 2, 3 and B.

1H NMR (C6D6, 300MHz) δ 6.85 (s, C6H2 {2}), 6.82 (s, C6H2 {B}), 3.79 (m,

(CH (CH3)2 {3/B}), 3.71 (m, THF-CH2 {2/3/B}), 2.87 (m, α-C6H11 {2/B}), 2.47

(s, 6H, o-Me2 {2}), 2.42, 2.41 (s, o-Me2 {B}), 2.13 (s, p-Me {2}), 2.12 (s, p-Me

{B}), 1.95-1.10 (m, C6H11 and CH(CH3)2 {2/3/B}), 1.42 (m, THF-CH2), 0.36 (s,

(SiMe3) {B}), 0.32 (s, (SiMe3 {3}));

13C NMR (C6D6, 75 MHz) δ 174.0 (CN2 {2}), 173.8 (CN2 {B}), 166.4 (overlapping

CN3 {3/B}), 136.5, 136.4, 134.6, 134.3, 134.2, 128.4 (C6H2 {2/B}), 68.1 (THF-CH2

{2/3/B}), 55.3 (α-C6H11 {B}), 54.9 (α-C6H11 {2}), 45.3 (overlapping CH(CH3)2

{3/B}), 37.9, 37.8, 27.5, 27.4, 27.0, 26.5, 26.4, 26.3, 26.2, 25.9, 25.6, 25.3, 24.8

(C6H11, CH(CH3)2 and THF-CH2 {2/3/B}), 21.2 (p-Me 2/B}), 20.8 (o-Me2 B}),

20.7 (o-Me2 {2}).

4.3.3 Mg(mesC{NCy}2)(PhC≡CC{Ni -Pr}2) (THF) (C)

NMR scale

Phenylacetylene (0.0045 mL, 0.034 mmol.) was added to a J. Young NMR tube

charged with a solution of 1 (20 mg, 0.034 mmol.) in C6D6 (0.5 mL). The so-

lution was allowed to sit for 2h at room temperature followed by the addition of

N,N -diisopropylcarbodiimide (0.0056 mL, 0.034 mmol.).1H NMR analysis showed

formation of a mixture of 2, 4 and C.
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1H NMR (C6D6, 300MHz) δ 7.48 (m, o-C6H5 {4)}), 7.46 (m, o-C6H5 {C}), 6.98

(m, m-/p-C6H5 {C}), 6.95 (m, m-/p-C6H5 {4}), 6.84 (s, C6H2 {2}), 6.81 (s, C6H2

{C}), 4.37 (overlapping sept, CH (CH3)2 {4/C}), 3.77 (m, THF-CH2 {2/4/C}),

2.79 (m, α-C6H11 {2/C}), 2.45 (s, o-Me {2}), 2.44 (s, o-Me {C}), 2.13 (s, p-Me

{2/C}), 1.84-1.12 (m, C6H11 and THF-CH2 {2/4/C}), 1.44 (d, CH(CH3)2 {4}),

1.41 (d, CH(CH3)2 {C}), 0.09 (s, 18H, (HN{SiMe3)}).

13C NMR (C6D6, 75MHz) δ 174.0 (CN2 {2}), 173.8 (CN2 {C}), 157.9 (CN2 {4}),

157.7 (CN2 {C}), 136.5, 136.4, 134.7, 134.3, 132.3, 132.2, 128.9, 128.7, 123.1

(C6H5 and C6H2 2/4/C}), 95.9, 95.8, 81.0, 80.8 (C≡C {4/C}), 68.0 (THF-CH2

{2/4/C}), 55.7, 55.1 (α-C6H11 {2/C}), 48.9, 48.8 (CH(CH3)2 {4/C}), 37.9, 37.8,

27.5, 27.3, 26.9, 26.7, 26.5, 26.4, 26.1, 25.6, 24.8 (C6H11, CH(CH3)2 and THF-

CH2 {2/4/C}), 21.2 (overlapping p-Me {2/C}), 20.8, 20.7 (o-Me {2/C}), 2.68

(HN(SiMe3)2).

Preparative scale

Phenylacetylene (0.065 mL, 0.62 mmol.) was added drop wise to a rapidly stir-

ring solution of 1 (0.36 g, 0.62 mmol.) in toluene (10 mL). The solution was

allowed to stir for 4h at room temperature, followed by the addition of N,N -

diisopropylcarbodiimide (0.10 mL, 0.62 mmol.). The resulting solution was stirred

for 24h followed by removal of volatiles in vacuo to give a crude yellow solid. The

addition of hexane (5 mL) to the solid, followed by storage at -30 ◦C for 24 h yielded

clear colourless crystals, identified as 2. Yield 0.11 g, 47 %. Additional crops of clear,

yellow crystals were obtained by further concentration of the solution and storage

at -30 ◦C, identified as 4.THF by 1H NMR spectroscopy. Yield 0.070 g, 36 %.
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4.3.4 Protonolysis of 2/5/C by phenyl acetylene

Phenylacetylene was added dropwise to a pre-formed mixture of 2, 5 and C (vide

supra) in C6D6.
1H NMR analysis showed no change after 2h at 80 ◦C. Addition

of N,N -diisopropylcarbodiimide to the reaction mixture resulted in loss of pheny-

lacetylene and formation of 5 (An electronic copy of 1H NMR spectrum is available

on the attached CD).

4.3.5 General procedure for equilibria studies

A solution of 2 (0.020 g, 0.027 mmol.) in C6D6 (0.5 mL) was added to a vial

containing 6.(THF)4 (0.014 g, 0.027 mmol.). The resulting mixture was transferred

to a J. Young NMR tube. Formation of products was monitored by 1H NMR

spectroscopy at room temperature.

Results:

2 + 6.(THF)4 resulted in formation of A, 2 and 6.(THF)n

2 + 3 resulted in formation of a mixture of B, 2 and 3

2 + 4.(THf) resulted in formation of a mixture of C, 2 and 4.(THF)

4.3.6 Reaction of 1 with a 1:1 mixture of phenylacetylene

and N,N’ -diisopropylcarbodiimide

A solution of 1 (0.020 g, 0.034 mmol.) in C6D6 was added to a mixture of pheny-

lacetylene (4.4 µL, 0.034 mmol.) and N,N’ -diisopropylcarbodiimide (5.6 µL, 0.034

mmol.). The mixture was analysed by 1H NMR spectroscopy, showing formation of

a mixture of A, 2, 6.(THF)n, HN{SiMe3}2 and {SiMe3}2NC{Ni -Pr}{NHi -Pr}.
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4.4 Compounds Identified in the Catalytic Cycle

4.4.1 Mg(mesC{NCy2}2)2(THF)(2)

Compound 2 was isolated from the attempted preparation of A (vide infra).

Anal. Calcd. for C48H74MgN4O (747.43 ): C, 77.13; H, 9.98; N, 7.50 %. Found: C,

76.86; H, 10.12; N, 7.56 %.

1H NMR (C6D6, 300MHz) δ 6.85 (s, 4H, C6H2), 3.74 (m, 4H, THF-CH2), 2.87 (m,

4H, α-C6H11), 2.46 (s, 12H, o-Me2), 2.12 (s, 6H, p-Me), 1.90-1.10 (m, 40H, C6H11),

1.43 (m, 4H, THF-CH2);

13C NMR (C6D6, 75 MHz) δ 174.3 (CN2), 136.7, 134.2, 134.1, 128.8 (C6H2), 67.9

(THF-CH2), 54.8 (α-C6H11), 37.8, 26.5 (C6H11), 25.9 (THF-CH2), 25.8 (C6H11),

21.2 (p-Me), 20.7 (o-Me2).

4.4.2 Mg({Me3Si}2NC{Ni -Pr}2)2(THF) (3)

A solution of N,N -diisopropylcarbodiimide (0.12 mL, 0.73 mmol.) in THF (5 mL)

was added dropwise to a stirring solution of Mg(N{SiMe3}2)2 (0.25 g, 0.73 mmol.) in

THF (5 mL). The resulting solution was stirred at room temperature for 24h followed

by concentration of the solution in vacuo. Clear, colourless crystals suitable for X-

ray diffraction were obtained upon storage of the solution at -30 ◦C for 24h. Yield

0.31 g, 78 %

Anal. Calcd. for C30H72MgN6OSi4 (699.58 ): C, 53.81; H, 10.84; N, 12.55 %. Found:

C, 53.60; H, 10.78; N, 12.54 %.

1H NMR (C6D6, 300MHz) δ 3.69 (sept, JHH = 6.2 Hz, 4H, CH (CH3)2), 3.59 (m,

4H, THF-CH2), 1.41 (m, 4H, THF-CH2), 1.17 (d, JHH = 6.2 Hz, 24H, CH(CH3)2),

0.32 (s, 36H, N{SiMe3}2);
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13C NMR (C6D6, 75 MHz) δ 167.2 (CN2), 67.9 (THF-CH2), 44.7 (CH(CH3)2), 27.4

(CH(CH3)2), 25.7 (THF-CH2), 2.5 (SiMe3).

4.4.3 Mg(PhC≡CC{Ni -Pr}2)2(THF)2 (4.(THF))

Method 1: Reaction of MgBu2 with 2 equiv. of 5

A solution of MgBu2 in heptane (0.88 mL of a 1.0 M solution, 0.88 mmol.) was added

drop wise to a stirring solution of PhC≡CC{Ni -Pr}{NHi -Pr} (0.40 g, 1.8 mmol.)

in THF (5 mL). The solution was allowed to stir for 24 h followed by removal of

the volatiles. Clear yellow crystals suitable for X-ray analysis were obtained by

recrystallization from hexane at -30 ◦C. Yield 0.36 g, 66 %.

Method 2: Reaction of 6.(THF)4 with 2 equiv. N,N’ -diisopropylcarbodiimide

A solution of 6.(THF)4 (0.10 g, 0.19 mmol.) in THF (10 mL) was added drop wise

to a stirring solution of N,N’ -diisopropylcarbodiimide (0.05 mL, 0.38 mmol.) in

THF (5 mL) at -30 ◦C. The solution was allowed to stir for 24 h followed by removal

of the volatiles. Clear yellow crystals were obtained by recrystallization from hexane

at -30 ◦C. Yield 0.094 g, 71 %.

Anal. Calcd. for C38H54MgN4O2 (623.18 ): C, 73.24; H, 8.73; N, 8.99 %. Found: C,

73.15; H, 8.61; N, 9.05 %.

1H NMR (C6D6, 300MHz) δ 7.48 (m, 4H, o-C6H5), 6.95 (m, 6H, m-/p-C6H5), 4.38

(sept, JHH = 6.4 Hz, 4H, CH (CH3)2), 3.62 (m, 4H, THF-CH2), 1.44 (d, JHH = 6.4

Hz, 24H, CH(CH3)2), 1.34 (m, 4H, THF-CH2);

13C NMR (C6D6, 75 MHz) δ 157.9 (CN2), 132.3, 128.9, 128.7, 123.1 (C6H5), 95.9,

80.8 (C≡C ), 68.0 (THF-CH2), 48.9 (CH(CH3)2), 26.7 (CH(CH3)2), 25.6 (THF-

CH2).
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4.4.4 Mg(C≡CPh)2(THF)4 (6.(THF)4)

A solution of MgBu2 in heptane (1.2 mL of a 1.0M solution, 1.2 mmol.) was added

dropwise to a stirring solution of phenylacetylene (0.31 mL, 2.4 mmol.) in THF

(5 mL). The resultant solution was stirred for 24h followed by removal of the sol-

vent in vacuo to give a white powder. Clear colourless crystals were obtained by

recrystallisation from a hexane/THF solution. Yield 0.54 g, 84 %.

1H NMR (C6D6, 300MHz) δ 7.89 (d, JHH = 7.2 Hz, 2H, o-C6H5), 7.10 (t, JHH =

7.2 Hz, 2H, p-C6H5), 7.00 (d, JHH = 7.2 Hz, 4H, m-C6H5), 3.61 (t, JHH = 6.6 Hz,

16H, THF-CH2), 1.40 (t, JHH = 6.6 Hz, 16H, THF-CH2);

13C NMR (C6D6, 75MHz) δ * 132.2, 129.3, 128.5, 127.0 (C 6H5), 68.0 (THF-CH2),

25.8 (THF-CH2).

*Resonances for the C≡C carbons not observed.

4.4.5 Mg(PhC≡CC{Ni -Pr}2)Br(OEt2) (7)

A solution of MeMgBr in Et2O (0.48 mL of a 3.0 M solution, 1.45 mmol.) was

added drop wise to a stirring solution of PhC≡CC{Ni -Pr}{NHi -Pr} (0.33 g, 1.45

mmol.) in Et2O (5 mL). The resultant solution was left to stir for 24h, followed by

concentration and storage at -30 ◦C. Yellow crystals of 7 were obtained after 24h at

-30 ◦C. Yield 0.47 g, 81 %.

Anal. Calcd. for C19H29MgN2OBr (405.66 ): C, 56.26; H, 7.21; N, 6.91 %. Found:

C, 56.05; H, 7.27; N, 6.75 %.

1H NMR (C6D6, 300MHz) δ 7.38 (br, 2H, o-C6H5), 6.95 (s, 2H, m-C6H5), 6.92 (s,

1H, p-C6H5), 4.34 (br, 2H, CH (CH3)2), 3.53 (t, JHH = 6.9 Hz, 4H, CH2CH3), 1.52

(br, 12H, CH(CH3)2), 1.10 (t, JHH = 6.9 Hz, 6H, CH2CH3);

13C NMR (C6D6, 75 MHz) δ 158.9 (CN2), 132.3, 129.3, 128.7, 122.4 (C6H5),
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97.13, 80.05 (C≡C ), 65.6 (CH2CH3), 49.1 (CH(CH3)2), 26.1 (CH(CH3)2), 14.7

(CH2CH3).
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Part II

Bismuth Compounds Supported

by Di(amido) Chelating Ligands
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Chapter 1

Introduction

1.1 Bismuth

Bismuth is the heaviest stable element in the periodic table, with an electron con-

figuration of [Xe]4f145d106s26p3. The most common oxidation state for bismuth

compounds is +3, although a large number of organobismuth compounds occupy-

ing the +5 oxidation state are also known.48 Bismuth(III) maintains a large ionic

radius (Shannon ionic radii Bi3+: 6-coordinate = 1.03 Å; 8-coordinate = 1.17 Å)49

and also contains a stereochemically active lone pair which has a significant effect

on the geometry of the bismuth.48

In contrast to the majority of heavy main group elements (Sn, Pb, Te, Sb and

Tl), bismuth is relatively non-toxic. Bismuth compounds are attracting increas-

ing attention due to their application in medicine (e.g bismuth subsalicylate, the

active ingredient in Pepto-Bismol c©).50 Other uses of bismuth compounds include

superconducting materials,51 and catalysts for organic transformations.52 Bismuth

has also been applied as a non-toxic alternative to lead in radioprotective shielding

material for X-ray computed tomography (CT) scanning.53

While the majority of studies performed on bismuth compounds have focused on
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trivalent species, the general coordination chemistry of bismuth(III) compounds

remains relatively unexplored compared to the chemistry of the other main group

elements.

1.1.1 Low-Coordinate Bismuth(III) Cations

Simple bismuth(III) compounds (BiX3, X = Cl, NO3, OTf and OAc) are active Lewis

acid catalysts for a range of organic transformations such as the Friedel-Crafts acyla-

tion, Diels-Alder reactions and Aldol condensations.52 Cationic bismuth compounds

are expected to have increased electrophilicity associated with a positively charged

metal centre that may further enhance the Lewis acidity.

Low coordinate bismuth compounds (CN<4) have received very little attention,

with the majority of research focussing on 4-, 6- and 8-coordinate cationic bis-

muth. Veith and co-workers reported the synthesis of a number of formally

two-coordinate bismuth cations supported by the divalent bis(amido)silyl scaffold

[Me2Si{Nt-Bu}2]2−.54 These compounds were made via abstraction of the chloride

from the neutral Bi(III) pre-cursor Bi(Me2Si{Nt-Bu}2)Cl by ECl3 (E = Al, Ga, In)

affording the corresponding tetrachlorometallate salt, [Bi(Me2Si{Nt-Bu}2)][ECl4]

(eq. 1.1).

eq. 1.1: Synthesis of [Bi(Me2Si{Nt-Bu}2][ECl4], (E = Al, Ga, In).

The solid-state structure of the tetrachloroaluminate salt [Bi(Me2Si{Nt-

Bu}2)][AlCl4] confirms abstraction of the chloride and formation of the cationic

species. The structure is, however, stabilised by long range Bi· · ·Cl interactions,

where each [Bi(Me2Si{Nt-Bu}2)]+ cation interacts with two [AlCl4]
− anions to form

a polymeric chain (Figure 1.1).
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Figure 1.1: Polymeric solid-state structure of [Bi(Me2Si{Nt-Bu}2)][AlCl4].

Chloride-abstraction by ECl3 has been utilised in the synthesis of a range of bismuth

cations, with the majority of these studies using AlCl3 as the reagent.54–57 Only a few

examples of chloride-abstraction using GaCl3
54,58 and InCl3

54 have been reported

for the synthesis of bismuth cations. Bi· · ·Cl stabilising interactions are common in

these tetrachlorometallate bismuth salts.

Cationic bismuth compounds that do not have stabilising interactions with ei-

ther the counter-ion or solvent molecules are rare. Evans and co-workers re-

cently reported that the bis(aryl) bismuth compound Bi(2,6-{Me2NCH2}2C6H3)2Cl

reacts with NaBPh4 to form the corresponding tetraphenylborate salt, [Bi(2,6-

{Me2NCH2}2C6H3)2][BPh4] (Scheme 1.1). Formation of the bismuth cation was

also achieved by the addition of [HNEt3][BPh4] to the allyl compound Bi(2,6-

{Me2NCH2}2C6H3)2(CH2CH=CH2).
59 The tetraphenylborate acts as an outer-

sphere anion and has no close interactions with the bismuth cation.

Scheme 1.1: Formation of [Bi(2,6-{Me2NCH2}2C6H3)2][BPh4]: (i) NaBPh4, -NaCl;
(ii) [HNEt3][BPh4], -NEt3, -CH3HC=CH2.
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1.1.2 Compounds containing Bi-X bonds (X = NR2, OR,

PR2).

Bismuth Amides, Alkoxides and Aryloxides

Compounds containing one or more Bi-X bonds (X = NR2, OR) are attracting

attention for their interesting reactivity and potential applications. For example,

homoleptic bismuth(III) amides, Bi(NR2)3 (R = alkyl, aryl, silyl), have been used

as pre-cursors for metal-organic chemical vapor deposition (MOCVD) of bismuth-

containing thin films due to their low M-N bond strength.60 These compounds are

extremely sensitive to the reaction conditions (temperature, solvent, light), and

readily decompose at room temperature.

Roesky and co-workers recently reported the synthesis of the 1,8-napthalene sup-

ported amide Bi(1,8-C10H6{NSiMe3}2)(NMe2) from the reaction of the free ligand

1,8-C10H6{NHSiMe}2 with the homoleptic tris(amide) Bi(NMe2)3. The Bi-NMe2

bond is stable to relatively harsh temperature and light conditions, but was shown

to react with a range of unsaturated substrates, including carbodiimides and iso-

cyanates. The principal mode of reactivity was via insertion into the Bi-NMe2 bond

(Scheme 1.2).61

Scheme 1.2: Synthesis of Bi(1,8-C10H6{NSiMe3}2)(NMe2) and reactivity with car-
bodiimide and isocyanate substrates. (i) 1,8-C10H6{NHSiMe}2, - 2NHMe2; (ii) i-Pr-
N=C=N-i-Pr; (iii) PhN=C=O.
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The related compound Bi(Me2Si{NAr}2)(N{SiMe3}2) (Ar = 2,6-i -Pr2C6H3) (16)

has been synthesised in the Coles group from the reaction of Bi(Me2Si{NAr}2)Cl

(9) with LiN{SiMe3}2 (eq. 1.2).62 This compound shows increased stability to-

wards high temperatures compared to the corresponding homoleptic tris(amide)

Bi(N{SiMe3}2)3, which decomposes readily at room temperature.

eq. 1.2: Reaction of 9 with LiN{SiMe3}2.

Bismuth alkoxides and aryloxides are also of interest. Bismuth tris(alkoxides),

Bi(OR)3, have been studied as model systems for understanding the Standard Oil of

Ohio Company (SOHIO) process for the oxidation (Figure 1.2, A) and ammoxidation

(B) of propene, which currently uses a bismuth molybdate catalyst.63 Bismuth(III)

alkoxides have also shown significant activity for the ring-opening polymerisation of

cyclic esters (vide infra).

Figure 1.2: SOHIO process: (A) Oxidation of propene; (B) Ammoxidation of
propene.

Bismuth Phosphides

Bismuth phosphide, BiP, is of interest in materials science as an isoelectronic ana-

logue of PbS, a common semiconducting material.64 Despite this, few examples of
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structurally characterised bismuth phosphide compounds have been reported in the

literature (Figure 1.3), and the majority contain silyl-substituted phosphides. The

only structurally characterised terminal bismuth phosphide is [Bi(P{SiPh2t-Bu}]2,

where bismuth is in the +1 oxidation state.65 In contrast to Bi-N and Bi-O bonds,

no investigation into the reactivity of Bi-P bonds has been reported. Insertion of

unsaturated substrates into M-P bonds has been observed for a number of main

group,66,67 transition metal68 and rare earth metal69–71 compounds.

Figure 1.3: Examples of different structurally characterised bismuth phos-
phides.65,72,73

1.1.3 Ring-Opening Polymersiation of Lactide

Polyesters are attracting increasing attention as a environmentally friendly bio-

degradable plastics.74 The most common method for the synthesis of these poly-

mers is by the metal catalysed ring-opening polymerisation (ROP) of cyclic ester

monomers. Tin(II) octanoate (Sn(Oct)2, Oct = 2-ethylhexanoate) has been em-

ployed as an initiator for the ROP of lactide, to form poly-lactic acid (PLA) (eq.

1.3). The high activity and air/moisture stability of Sn(Oct)2 has led to it being

considered the benchmark catalyst for this polymerisation.

Significant work has gone into the development of alternative catalyts for this re-
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eq. 1.3: Sn(Oct)2 initiated ring-opening polymerisation (ROP) of lactide.

action, with examples of catalytically active main group compounds based on alu-

minium,75 germanium,76 calcium,77 magnesium,71,78 and zinc.71,78 Over the last few

years, the use of bismuth(III) compounds as initiators has gained interest. Krichel-

dorf and co-workers reported that bismuth alkanoates are active as initiators for

the ROP of cyclic esters, albeit with a much lower activity than Sn(Oct)2.
79 Since

this work, catalytic ROP of cyclic esters has been achieved using a range of simple

Bi(III) salts as initiators (e.g. halides,80 carboxylates81 and triflate79). Chisholm

and co-workers have recently reported that bismuth subsalicylate (BSS), the active

ingredient of commercially available Pepto Bismol c©, is highly active in the ring-

opening polymerisation of lactide (eq. 1.4) and ε-caprolactone, showing comparable

activity to the industrial standard Sn(Oct)2.
82 In contrast to the Sn(Oct)2 systems,

BSS exists as a poorly defined aggregate and was insoluble in the reaction solvent

(CHCl3).

eq. 1.4: Bismuth subsalicylate (BSS) initiated ring-opening polymerisation of lac-
tide.

A subsequent investigation reported that cy-salen bismuth alkoxides are active

single-site initiators for the ROP of lactide (1 mol%, 1-1.5 h, room temperature, 74-
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92 % conversion), giving predominantly heterotactic PLA and showing much greater

activity than Sn(Oct)2.
83 The alkoxide species were reactive towards water, result-

ing in deactivation of the catalysts. In a related study, Vuorinen et al. reported that

homoleptic bismuth alkoxide complexes, Bi(OR)3 (R = t-Bu, CMe2i -Pr), are active

initiators for living ROP of rac-lactide in toluene (0.3 mol%, 2.5 h, 75 ◦C, 95-98 %

conversion), whereas the less sterically encumbered alkoxide derivative Bi(Oi -Pr)3

showed considerably lower activity (0.3 mol%, 4 h, 75 ◦C, 16 % conversion), pre-

sumed to be due to oligomerization of the initiating species.84

1.2 Di(amido)silyl Ligands

N,N’-chelating ligands provide an attractive scaffold for the formation of low valent

metal compounds. The divalent N,N’-acilliary ligand, [Me2Si{NR}2]2− has been

utilised in the synthesis of a wide range of metal complexes. These ligands can be

thought of as non-resonance stabilised isostructural analogues of amidinate ligands

(see Part 1, Chapter 1), which occupy two of the available valencies of the metal to

which they are bound.

A wide range of di(amido)silane Me2Si{NHR}2 derivatives have been synthesised

through either (a) the in situ reaction of two equivalents of the corresponding lithium

amide salt, LiNHR, with SiMe2Cl2 or (b) the reaction of four equivalents of the amine

with SiMe2Cl2, where the excess amine acts as a base and removes HCl to form the

corresponding ammonium salt (Scheme 1.3).85,86

Scheme 1.3: Synthetic pathways to Me2Si{NHR}2.
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Di(amido)silyl ligands containing sterically bulky nitrogen substituents (R) are com-

monly employed as kinetically stabilising ligands for main group,87–90 transition

metal91 and rare earth metal92,93 complexes. A number of bonding modes have

been observed for both monoanionic and dianionic analogues (Figure 1.4) including

monodentate (A), bidentate chelate (B and C) and bridging (D) bonding modes.

Figure 1.4: Bonding modes of di(amido)silane ligand.

1.3 Research Outlook

The di(amido)silyl bismuth compound Bi(Me2Si{NAr}2)Cl (Ar = 2,6-i -Pr2C6H3)

(9) has previously been reacted with AlCl3 and LiR (R = N{SiMe3}2, Cp, Cp*).62

The aim of this work was to expand this area to give additional compounds con-

taining Bi-X bonds (X = NR2, OR, PR2). In addition, we aimed to investigate

the formation of low-coordinate cationic bismuth compounds via reaction of 9 with

the metal trichlorides ECl3 (E = Al, Ga, In) and examine the role of Bi· · ·Cl in-

termolecular interactions through the synthesis of cations containing outer-sphere

anions.
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Chapter 2

Results and Discussion

2.1 Outline

The work presented in this chapter leads on from research reported by Day et al.62

Me2Si{NHAr}2 (8),94 Bi(Me2Si{NAr}2)Cl (9),95 Bi(Me2Si{NAr}2)(N{SiMe3}2)

(16)62 (Ar = 2,6-i -Pr2C6H3) and O(Me2SiNHAr”)2 (Ar” = 2,6-i -Pr2C6H3) (19a)96

were synthesised according to literature procedures.

Section 2.2 describes the synthesis of the bismuth dichloride complex

Bi(Me2Si{NHAr}{NAr})Cl2 (11) from the reaction of the mono-metallated ligand,

Me2Si{N(M)Ar}{NHAr} (M = Na, K), with BiCl3. The attempted synthesis of 9

by reaction of 11 with a Lewis base is described.

Section 2.3 details the formation of low-coordinate bismuth cations supported by

the di(amido)silyl scaffold by reaction of 9 with ECl3 (E = Al, Ga, In) or NaBR4

(R = Ph, Et).

Section 2.4 reports the synthesis and reactivity of Bi(Me2Si{NAr}2)X (X =

N{SiMe3}2 (16), O-2,6-t-Bu2C6H3 (17), PCy2 (18)). The ring-opening polymerisa-

tion of lactide and ε-caprolactone was achieved using amide and aryloxide deriva-

tives. The reactivity of the amide and phosphide derivatives with heterocumulenes
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was also briefly investigated.

Section 2.5 explores the synthesis of bismuth(III) compounds containing the related

ligand O{Me2SiNHAr”}2 (Ar” = 2,6-i -Pr2C6H3, 2,6-Me2C6H3).

2.2 Synthesis of Bi(Me2Si{NHAr}{NAr})Cl2

2.2.1 Synthesis of Me2Si{N(M)Ar}{NHAr} (M = Na (10a),

K (10b); Ar = 2,6-i -Pr2C6H3)

Reaction of Me2Si{NHAr}2 (Ar = 2,6-i -Pr2C6H3) (8) with one equivalent of MH

(M = Na, K) in toluene resulted in formation of the corresponding mono-metallated

ligand salt, Me2Si{N(M)Ar}{NHAr} (M = Na (10a) and K (10b)). 10b was soluble

in toluene allowing the isolation by crystallisation from the reaction mixture. 10a

was insoluble in the reaction solvent and was recrystallised from a solution of THF

as 10a.(THF)n. Attempts to react these species with further equivalents of MH to

form the di-sodium and di-potassium salts, Me2Si{N(M)Ar}2, proved unsuccessful

in both toluene and THF, even when the reaction mixture was heated to 80 ◦C for

24 hours (Scheme 2.1). This contrasts with the reaction of 8 with two equivalents

of n-BuLi, where formation of Me2Si{NArLi}2 occurs readily at room temperature,

and may reflect the differences in size of the group 1 metals.94

Scheme 2.1: Reaction of 8 with MH to form Me2Si{N(M)Ar}{NHAr} (M = Na
(10a), K (10b)).

The 1H NMR spectra of both 10a.(THF)n and 10b display two sets of resonances

corresponding to the 2,6-i -Pr2C6H3 substituent, consistent with formation of the
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mono-metallated species. This is most clearly illustrated by the resonances corre-

sponding to the iso-propyl methine protons. The 1H NMR spectrum of 10a.(THF)n

displays two distinct septets for the iso-propyl methine protons (δH 4.23 and 3.87

ppm), while the 1H NMR spectrum of 10b displays a multiplet (δH 3.81 ppm) cor-

responding to four protons, consistent with overlapping signals. A single resonance

for the SiMe2 protons is observed for both 10a.(THF)n and 10b (δH 0.47 and 0.56

ppm, respectively). The N-H resonances for 10a.(THF)n and 10b are observed as

singlets at δH 3.18 and 3.08 ppm, respectively, downfield from the N-H resonance of

8 (δH 2.63 ppm). Integration of the 1H NMR spectrum shows that 10a.(THF)n has

at least 4 THF molecules contained in the isolated crystals.

The 13C NMR spectra of both 10a.(THF)3 and 10b display two distinct environ-

ments for the N-aryl substituents, also consistent with formation of the mono-

metallic species. A single high field resonance for the SiMe2 carbons is observed

in both cases, appearing at δC 4.6 and 5.9 ppm for 10a.(THF)3 and 10b, respec-

tively. A single 29Si NMR resonance at δSi -32.1 ppm is observed for 10b, appear-

ing significantly upfield from both the free ligand and the di-lithiated ligand salt

Me2Si{ArNLi}2 (δSi -8.3 and -15.9 ppm, respectively).94

Single crystal X-ray crystallography identified 10a.(THF)3 as the tris-THF adduct,

Me2Si{N[Na(THF)3]Ar}{NHAr} (10a.(THF)3), crystallising in the P 1̄ space group

(Figure 2.1). The unit cell contains one molecule of 10a.(THF)3, and one molecule

of non-coordinated THF. One of the coordinated THF molecules is disordered over

two positions, with half occupancy at each site.

The tetrahedral sodium centre is coordinated to three THF molecules, with the

mono-dentate di(amido) ligand occupying the final position (bonding mode A, Fig-

ure 1.4). The Na-N(1) bond length (2.3144(11) Å) is consistent with a σ-bonding

interaction. The N(1)-Si bond length (1.6673(10) Å) is significantly shorter than the

N(2)-Si bond length (1.7716(11) Å), consistent with a stronger interaction between

silicon and the formally anionic amido nitrogen.
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Figure 2.1: ORTEP representation of 10a.(THF)3+THF. 30% Thermal ellipsoid.
Selected hydrogens and THF solvate omitted. Selected bond lengths (Å) and angles
(◦) are reported in Table 2.1.

Table 2.1: Selected bond lengths (Å) and angles (◦) in 10a.(THF)3.

Na-N(1) 2.3144(11) N(1)-C(1) 1.3874(15)

Na-C(1) 3.0036(13) N(2)-C(13) 1.4249(14)

N(1)-Si 1.6672(10) Na-N(1)-C(1) 105.72(9)

N(2)-Si 1.7716(11) N(1)-Si-N(2) 109.73(5)

2.2.2 Synthesis of Bi(Me2Si{NAr}{NHAr})Cl2 (11)

Reaction of one equivalent of Me2Si{N(M)Ar}{NHAr} (M = Na (10a),

K (10b)) with BiCl3 followed by work-up resulted in the isolation of

Bi(Me2Si{NAr}{NHAr})Cl2 (11) as a yellow powder (Scheme 2.2). Alternatively,

the sequential reaction of 8 with one equivalent of n-BuLi followed by the in situ

reaction with BiCl3 also resulted in formation of 11. Attempts to obtain crystals

from a mixture of hexane/toluene suitable for single crystal X-ray crystallography
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Scheme 2.2: Synthesis of Bi(Me2Si{NAr}{NHAr})Cl2 (11).

were unsuccessful.

The 1H NMR spectrum of 11 displays two sets of resonances corresponding to iso-

propyl methine (δH 3.79 and 3.26 ppm) and methyl protons (δH 1.40 and 1.09 ppm).

In contrast to the broad resonances observed for the bismuth mono-chloride 9, these

signals are clearly defined at room temperature.95 The more deshielded iso-propyl

methyl protons appear as two separate doublets, consistent with restricted rota-

tion for the aryl substituent adjacent to the bismuth centre. The other iso-propyl

methyl resonance does not display this splitting pattern and is represented by a

single doublet, consistent with two distinct aryl environments. A single high field

resonance is observed for the SiMe2 protons (δH 0.1 ppm). The N-H resonance ap-

pears at δH 4.61 ppm, similar to that observed for the antimony dichloride analogue

Sb(Me2Si{NAr}{NHAr})Cl2 (N-H δH 4.64 ppm, CDCl3).
97

The 13C NMR spectrum displays two sets of resonances for the N-aryl substituent,

consistent with two distinct 2,6-i -Pr2C6H3 groups. A single high field resonance

corresponding to the SiMe2 carbons is observed at δC 3.8 ppm. Elemental analysis

is in agreement with the calculated values for 11.

2.2.3 Reaction of 11 with a Lewis Base

In an attempt to form the mono-chloride species 9 from 11, a number of Lewis bases

were added to an NMR sample in C6D6 and monitored by 1H NMR spectroscopy.

The reaction of one equivalent of NEt3 with 11 did not result in abstraction of HCl

and formation of 9, with no reaction observed after 24 hours at 80 ◦C. Reacting 11

87



with one equivalent of n-BuLi at -30 ◦C resulted in formation of an unidentifiable

mixture of products.

2.3 Synthesis and Characterisation of Low-

Coordinate Bismuth Cations

2.3.1 Reaction of Bi(Me2Si{NAr}2)Cl (9) with ECl3 (E =

Al, Ga, In)

The reaction of Bi(Me2Si{NAr}2)Cl (Ar = 2,6-i -Pr2C6H3) (9) with one equivalent

of ECl3 (E = Al, Ga) in toluene results in formation of the corresponding cation

[Bi(Me2Si{NAr}2)]+ as the [AlCl4]
− (12a) and [GaCl4]

− (12b) salts.i No reaction

was observed upon addition of InCl3 to 9 at room temperature and heating the

reaction mixture to 80 ◦C for 24h resulted in an intractable mixture of products. The

lack of chloride abstraction for the indium reagent contrasts with previous reports

by Veith and co-workers, where [Bi(Me2Si{Nt-Bu }2)][InCl4] was synthesised by

reaction of the neutral chloride with InCl3.
54

The reaction of 9 with one equivalent of AlCl3 in toluene proceeds with a change in

the colour of the solution from yellow to dark red. Deep red crystals of 12a were

obtained upon concentration and cooling of the mother liquor to -30 ◦C (eq. 2.1).

eq. 2.1: Reaction of 9 with AlCl3.

i12a has previously been synthesised by Ben Day62, however has only been characterised by
crystallography. The solid-state structure of 12a has multiple Bi· · ·Cl-AlCl3 interactions, dimeris-
ing to form ([Bi(Me2Si{NAr}2)][AlCl4])2
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The 1H NMR spectrum of 12a shows a single set of resonances for the SiMe2, iso-

propyl methyl and iso-propyl methine protons (δH 0.13, 1.21 (br) and 3.49 (br) ppm,

respectively). This contrasts with the spectra of 9, where two sets of resonances

are observed for these protons,95 and is consistent with a loss of the C S symmetry

imposed by the pyramidal geometry of the bismuth in 9 and formation of a C 2h

symmetric centre in 12a. The simplest interpretation of these data is formation of

the two coordinate cation, with a mirror plane passing through the metallacycle,

although other possible solution-state structures may also correspond to this new

symmetry (see Appendix A).

The 13C NMR spectrum shows a single set of resonances for the ligand, consistent

with a C 2h symmetry. The SiMe2 carbons appear as a single resonance at a δC 10.4

ppm. The 29Si NMR spectrum of 12a has a single resonance at δSi 38.0, downfield

from the 29Si NMR resonance of 9 (δSi 29.7 ppm, difference in chemical shift (∆δSi) =

8.3 ppm). These data and elemental analysis agree with the previously determined

solid-state structure, which showed formation of the two coordinate bismuth cation

12a, with a planar SiN2Bi metallacycle.i

The analogous reaction of 9 with one equivalent of GaCl3 was performed on an

NMR scale, proceeding in a similar manner with an immediate colour change to

afford a deep red solution. The 1H NMR spectrum is similar to 12a, with reso-

nances at δH 0.13, 1.24 and 3.51 ppm corresponding to the SiMe2, iso-propyl me-

thine and iso-propyl methyl protons, respectively. This is consistent with formation

of [Bi(Me2Si{NAr}2)][GaCl4] (12b).

Repeating the reaction on a preparative scale gave a 1H NMR spectrum of the crude

product consistent with formation of 12b. Attempts to isolate 12b by crystallisa-

tion at -30◦C were however unsuccessful, resulting in the co-crystallisation of two

visually distinct species consisting of an off-white precipitate, and deep red crystals.

The off-white precipitate was 1H NMR inactive, with a melting point of 78-79 ◦C,

consistent with GaCl3 (mp 77.9 ± 0.2 ◦C).1 Single crystal X-ray analysis identified

89



the deep red crystals as the di-bismuth cation [{Bi(Me2Si{NAr}2)}2(µ-Cl)][GaCl4]

(13b) (Scheme 2.3).

Scheme 2.3: Synthesis of 13b; (i) GaCl3, toluene (ii) recrystallisation from a
mixture of toluene and hexane solution at -30 ◦C.

The 1H NMR spectrum of an isolated sample of 13b displays a single set of reso-

nances for the SiMe2, iso-propyl methine and p-C6H3 protons (δH 0.21, 3.90 and 6.74

ppm, respectively), shifted downfield from the corresponding signals for 12a/12b

(Figure 2.2). These data are consistent with a C 2h symmetric structure in solu-

tion which contrasts the solid-state structure (vide infra) and implies fluxionality in

solution. Similar to 12a, the 29Si NMR resonance of 13b (δSi 31.2 ppm) appears

downfield from 9, however the difference in chemical shift is much smaller for 13b

(∆δSi = 1.5 ppm).

Single crystal X-ray diffraction shows that 13b crystallises in the P 1̄ space group.

The unit cell contains one molecule of 13b, in addition to one molecule of hexane

(Figure 2.3). The cationic component of 13b consists of two bismuth atoms linked

by a µ-chloride bridge with both bismuth atoms adopting a pyramidal geometry
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Figure 2.2: 1H NMR Spectra of 12b (a) and 13b (b).

(sum of angles = Bi(1) 267.40◦; Bi(2) 267.61◦). The di(amido) ligands chelate to the

bismuth centres forming planar metallacycles (sum of internal angles = Bi(1) 359.9◦;

Bi(2) 360.0◦), with relatively large bite angles (Bi(1) 72.08(15)◦; Bi(2) 72.21(15)◦)

compared to 9 (average = 71.26◦). The inter-planar angle between the SiN2Bi

metallacycles is 144.03(11)◦, occupying the same face of the molecule to form a

trans-trans arrangement. This arrangement is stabilised by Bi· · ·Cl interactions

with the [GaCl4]
− anion at the opposite face of the molecule. The Bi(1)-Cl(3), Bi(2)-

Cl(2) and Bi(2)-Cl(5) bond distances (3.3168(14), 3.5373(16) Å and 3.5618(14) Å,

respectively) are within the sum of the van der Waals radii of Bi and Cl atoms (4.1

Å).58

The µ-chloride bridge has a bent geometry (126.80(4)◦). The Bi(1)-Cl(1) bond

length (2.7888(12) Å) is significantly longer than the Bi(2)-Cl(1) bond length

(2.6902(12) Å), indicating unsymmetrical bonding of the bridging Cl(1) atom (∆BiCl

= 0.10 Å). The difference in bond lengths is attributed to a greater cationic character

for Bi(1). Both bismuth chlorine bond distances are longer than the terminal chlo-

ride bond of 9 (2.556(1) Å and 2.4857(16) Å) and shorter than the closest Bi· · ·Cl

interaction in 12a (2.953(3) Å). The only other structurally characterised mono-

chloride bridged bismuth cation, [{t-BuN(CH2C6H4)2Bi}2(µ-Cl)][B(C6F5)4],
98 also
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exhibits asymmetry at the Bi-Cl-Bi bridge (∆BiCl = 0.11 Å). The Bi-N bond lengths

(range = 2.121(4)-2.153(3) Å) are consistent with σ-bonding interactions. No short-

ening of the bond lengths compared with the neutral compound 9 are observed upon

formation of the cationic species.

Figure 2.3: ORTEP representation of [13b].hexane. 30% Thermal ellipsoid. Hy-
drogens and hexane solvate omitted for clarity. Selected bond lengths (Å) and angles
(◦) are reported in Table 2.2.

Table 2.2: Selected bond lengths (Å) and angles (◦) in 13b.

Bi(1)-Cl(1) 2.7888(12) Bi(2)-Cl(1) 2.6902(12)

Bi(1)-N(1) 2.152(3) Bi(2)-N(3) 2.143(3)

Bi(1)-N(2) 2.131(3) Bi(2)-N(4) 2.121(4)

Bi(1)-Cl(3) 3.3168(14) Bi(2)-Cl(2) 3.5373(16)

Bi(1)-Cl(4)’ 3.3277(13) Bi(2)-Cl(5) 3.5618(14)

N(1)-Bi(1)-N(2) 72.09(13) N(3)-Bi(2)-N(4) 72.22(18)

N(1)-Si(1)-N(2) 92.68(19) N(3)-Si(2)-N(4) 92.2(2)

Ga-Cl(2) 2.1878(14) Ga-Cl(4) 2.1770(13)

Ga-Cl(3) 2.1689(15) Ga-Cl(5) 2.1622(14)
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13b dimerizes in the solid-state, with two [GaCl4]
− units bridging between two

[{Bi(Me2Si{NAr}2)}2(µ-Cl)] units via additional Bi· · ·Cl interactions (Figure 2.4).

In contrast to the solid-state structure of 12a, the Ga-Cl bond distances within

the anion are similar, consistent with all four chlorides being involved in inter-ion

interactions. This is confirmed in the dimer, where Cl(4) is associating with a

second cation (Bi(1)’-Cl(4) 3.3277(1) Å). The only other structurally characterised

bismuth tetrachlorogallate salt, [({SiMe3}2N=N{SiMe3})2Bi][GaCl4], does not ex-

hibit Bi· · ·Cl interactions, instead interacting with the two ligands via three-centre

four-electron bonds.58

Figure 2.4: ORTEP representation of [13b]2. 30% Thermal ellipsoid. Hydrogens
and selected carbons are omitted for clarity.

Addition of 0.5 equivalents of GaCl3 to an NMR sample of 13b in C6D6 resulted

in conversion to 12b, demonstrating the presence of an equilibrium between 13b

and 12b (eq. 2.2). Upon crystallisation, differential solubilities and precipitation

of GaCl3 from the solution is thought to drive the equilibrium towards the left,
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resulting in the crystallisation of both GaCl3 and 13b. The reaction of 9 with 0.5

equivalents of GaCl3 also resulted in formation of 13b, with no evidence of the

GaCl3 precipitation.

eq. 2.2: Synthesis of 12b. (i) 0.5 equivalents of GaCl3.

To test whether this equilibrium was also occurring for the tetrachloroaluminate sys-

tem, the NMR scale addition of one equivalent of 9 to 12a in C6D6 was performed

(eq. 2.3). The 1H NMR spectrum displays significant shifts in all of the peaks

compared to 12a (Figure 2.5). Comparison of the data to the 1H NMR spectrum

of 13b show very similar shifts, with key resonances at δH 0.20, 3.86 and 6.74 ppm

corresponding to the SiMe2, iso-propyl methine and p-C6H3 protons. This is con-

sistent with formation of the di-bismuth cation, [{Bi(Me2Si{NAr}2)}2(µ-Cl)][AlCl4]

(13a).

eq. 2.3: Synthesis of 13a. (i) 1 equivalent of 9.
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Figure 2.5: 1H NMR Spectra of 12a and 13a.

2.3.2 Reaction of 9 with NaBR4 (R = Ph, Et)

1H NMR analysis of the reaction of NaBPh4 and 9 in toluene showed no reaction at

room temperature. Heating the mixture to 90 ◦C for three days gave a yellow solu-

tion which, upon crystallisation of the reaction products from toluene, afforded clear

colourless crystals of BPh3 (first crop) followed by a mixture of colourless crystals of

BPh3 and yellow crystals of Bi(Me2Si{NAr}2)Ph (14) (eq. 2.4) (second crop). The

identity of the colourless crystals as BPh3 was confirmed by unit cell measurements

using X-ray diffraction99 and 11B NMR spectroscopy (δB 68.0 ppm100). Mechanical

separation of the colourless and yellow crystals allowed for full characterisation of

14.

eq. 2.4: Synthesis of 14.

The 1H NMR spectrum of 14 in C6D6 shows two resonances corresponding to the

SiMe2 protons (δH 0.63 and 0.15 ppm), consistent with a C S symmetric structure. A

single set of resonances corresponding to the iso-propyl methyl and methine protons
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is observed (δH 1.29 and 4.30 ppm, respectively), explained by rapid rotation of

the Ar substituents, resulting in equivalent environments for the iso-propyl protons

(i.e. the observed resonance corresponds to the average signal of the two distinct

environments). The o-C6H5 protons of the phenyl substituent appear as a low field

doublet (δH 8.49 ppm), significantly downfield from the o-C6H5 protons of BiPh3 (δH

7.73 ppm, C6D6) and also significantly downfield from the [BPh4]
− anion of [Bi(2,6-

{Me2NCH2}2C6H3)]
+ reported by Evans and co-workers (δH 6.99 ppm, CD3CN59).

The 13C NMR spectrum is consistent with the formation of 14, showing two signals

corresponding to the SiMe2 protons at 17.5 and 4.8 ppm. The 29Si NMR resonance

appears at δSi 19.5 ppm, shifted significantly upfield from 9 (∆δSi = -10.2 ppm).

Elemental analysis data was consistent with the calculated values for 14.

X-ray diffraction studies of single crystals of 14 show that it is monomeric in the

solid-state and crystallises in the P 1̄ space group (Figure 2.6). The unit cell contains

two independent molecules of 14 and a single molecule of toluene. The toluene

solvate molecule lies on a centre of inversion and is disordered over two positions.

The geometry at both three-coordinate bismuth centres is pyramidal (sum of angles

= Bi(1) 269.02◦; Bi(2) 268.62◦), with bond angles ranging between 70.5(7)◦and

100.5(9)◦. The metallacycles are planar (sum of internal angles = Bi(1) 359.8◦;

Bi(2) 360.0◦), with the most acute bond angle corresponding to the bite angle of the

di(amido)silyl ligand (N-Bi-N’ = 70.50(7)◦and 70.86(7)◦, respectively). The Bi-Cipso

bond distances (Bi(1) 2.253(3) Å; Bi(2) 2.252(3) Å) are typical for a phenyl bound

to bismuth.101 The Bi-N bond distances (2.168(2) - 2.1790(19) Å) are consistent

with σ-bonding interactions.
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Figure 2.6: ORTEP representation of [2(14)].0.5toluene. 30% Thermal ellipsoid.
Hydrogens, one molecule of 14 and toluene solvate omitted. Selected bond lengths
(Å) and angles (◦) are reported in Table 2.3.

Table 2.3: Selected bond lengths (Å) and angles (◦) of both molecules of 14.

Bi(1)-N(1) 2.168(2) Bi(2)-N(3) 2.1790(19)

Bi(1)-N(2) 2.177(2) Bi(2)-N(4) 2.172(2)

Bi(1)-C(27) 2.253(3) Bi(2)-C(58) 2.252(3)

N(1)-Bi(1)-N(2) 70.86(8) N(3)-Bi(2)-N(4) 70.50(8)

N(1)-Si(1)-N(2) 93.65(11) N(3)-Si(2)-N(4) 93.91(11)

Bi(1)-N(1)-Si(1) 98.21(10) Bi(2)-N(3)-Si(2) 97.63(9)

Bi(1)-N(2)-Si(1) 97.49(9) Bi(2)-N(4)-Si(2) 97.59(8)
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Comparison of the two molecules of 14 in the unit cell indicate that they dif-

fer in the orientation of the phenyl substituent. In both cases, the phenyl sub-

stituent approaches a perpendicular arrangment with respect to the metallacycle

plane (Si· · ·Bi-Cipso = Bi(1) 102.92(8)◦; Bi(2) 100.45(8)◦). The phenyl groups are

rotated in opposite directions along the Bi-Cipso bond relative to the plane bisecting

the metallacycle through the Si, Bi and Cipso atoms (Bi(1) = +14.85(7)◦; Bi(2) =

-29.56(11)◦, where positive = clockwise and negative = anti-clockwise) (Figure 2.7).

Figure 2.7: Schematic representation of different molecules of 14; top = Bi(1),
bottom = Bi(2). Hydrogens omitted for clarity.

The close proximity of the phenyl substituent to the i -Pr groups of the aryl sub-

stituent results in distortion of the metallacyclic ring in order to relieve steric strain,

with the nitrogen aryl-substituent twisting above the plane of the metallacycle. The

geometry of the nitrogen centres is significantly distorted from trigonal planar (sum

of angles = 353.87◦- 358.71◦). Distortion of the nitrogen geometry is observed to be

larger for N(2) and N(4) (sum of angles = 354.94◦and 353.87◦, respectively), where
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the phenyl substituents are closer to the i -Pr groups. The distortion is more pro-

nounced in the second molecule, where the phenyl substituent show greater rotation

from the Si, Bi and Cipso plane.

Analysis of the packing suggests the presence of intermolecular interactions with the

symmetry-generated molecule (Bi(2)’) (Figure 2.8). The distance between the para-

carbon of the phenyl substituent (C(61)) and Bi(2)’ is 3.629(3) Å, within the range of

distances previously attributed to bonding interactions within [BiCl3.C6H6−nMen]

(Bi-C = 3.168(7) - 3.751(8) Å).102–106 The phenyl rings experience large slippage

(2.57 Å), consistent with dominating π-π stacking effects between the two phenyl

rings (centroid-centroid distance = 3.827(3) Å). It is also noted that crystal packing

forces may account for the formation of the dimer.

Figure 2.8: Schematic representation of the dimerization of 14. Hydrogens and
selected carbons are omitted for clarity.

Reaction of the previously isolated tetrachloroaluminate cation 12a (vide supra)

with one equivalent of NaBPh4 on an NMR scale also resulted in a mixture of 14

and BPh3. This suggests that formation of the bismuth cation may be occurring

prior to abstraction of the phenyl group from the [BPh4]
− anion (Scheme 2.4).

Abstraction of aryl substituents from tetraarylborate anions is well documented.107
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Scheme 2.4: Abstraction of a phenyl group from the tetraphenylborate anion.

Stavila et al. recently reported the reaction of sodium tetraarylborate salts with

bismuth(III) carboxylates as a convenient route to triarylbismuth compounds.108

In order to further investigate this reactivity, the reaction of the tetraalkylborate

NaBEt4 with 9 was performed, resulting in formation of the corresponding alkyl

bismuth compound Bi(Me2Si{NAr}2)Et (15) in addition to the presumed reaction

side products, BEt3
ii and NaCl (eq. 2.5). Tetraalkylborates are significantly more

nucleophilic than tetraarylborates, and are commonly used in the synthesis of a wide

range of alkyl-metal compounds.109

eq. 2.5: Synthesis of 15.

The 1H NMR spectrum of 15 displays two resonances corresponding to the SiMe2

protons (δH 0.42 and 0.04 ppm), consistent with C S symmetry. As observed for

14, a single set of resonances are displayed for the iso-propyl methine and methyl

protons (δH 4.28 and 1.31 ppm, respectively), attributed to the rapid rotation of

2,6-i -Pr2C6H3 substituents resulting in averaged signals. The peaks corresponding

to the ethyl substituent appear as a triplet and quartet at δH 2.47 and 2.04 ppm,

respectively. The integrals of these resonances indicate the presence of a single ethyl

substituent, consistent with abstraction of the ethyl group from the tetraethylborate

anion.

iiBEt3 is a volatile liquid and was removed on work-up
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The 13C NMR spectrum shows two resonances for the SiMe2 carbons (δC 15.6 and 5.2

ppm). The ethyl terminal carbon, CH2CH3 appears as a high field resonance (δC 8.7

ppm), confirmed by HSQC analysis. No resonance was observed for the remaining

ethyl carbon (BiCH2CH3), likely due to quadrupolar broadening caused by the

proximity to bismuth (209Bi = 100% abundant, spin I = 9/2).
110 Elemental analysis

data is consistent with the calculated values for 15. The 29Si NMR resonance appears

at δSi 17.8 ppm, significantly upfield from 9 (∆δ = - 11.9 ppm) and very similar to

that observed in 14. The relatively large upfield shift in the 29Si NMR resonances

for both 14 and 15 reflect the relatively electron rich metallacycle after exchanging

the electronegative chloride for an aryl/alkyl group.

Single crystal X-ray crystallography was used to determine the solid-state struc-

ture of 15. Unfortunately, significant disorder prevents detailed discussion of bond

lengths and angles (Appendix B), however the connectivity is unambiguous, showing

the formation of 15 .

2.4 Reactivity of Compounds Containing Bi-X

Bonds (X = NR2, OAr’, PR2)

Bi(Me2Si{NAr}2)(N{SiMe3}2) (16) was synthesised from the reaction of one equiv-

alent of LiN{SiMe3}2 with 9 via literature procedures.62 Attempts to synthe-

sise this compound via addition of the di(amido) ligand Me2Si{NHAr}2 (8) to

Bi(N{SiMe3}2)3 proved unsuccessful with no reaction at room temperature after

24 hours (Scheme 2.5).
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Scheme 2.5: Synthesis of 16.

2.4.1 Synthesis of Bi(Me2Si{NAr}2)(OAr’) (Ar’ = 2,6-

(t-Bu)2C6H3) (17)

Reaction of one equivalent of KOAr’ (Ar’ = 2,6-t-Bu2C6H3) with 9 in toluene

results in formation of a dark green solution. The corresponding aryloxide,

Bi(Me2Si{NAr}2)(OAr’) (17) was isolated from the reaction mixture after 24 hours

at -30 ◦C as dark green crystals (eq 2.6).

eq. 2.6: Synthesis of 17.

The 1H NMR of 17 displays two singlets at δH 0.70 and 0.01 ppm for the SiMe2

protons, consistent with a CS symmetric bismuth centre. The iso-propyl methyl

protons appear as two sets of doublets (δH 1.13 and 1.34 ppm), one of which overlaps

with the tert-butyl methyl groups (δH 1.39 ppm). The iso-propyl methine protons

appear as a single broad resonance at δH 3.88 ppm, similar to that observed in

compounds 14 and 15. The 13C NMR spectrum is consistent with the formation of

17, showing eight aromatic resonances. Two high field resonances are observed for

the SiMe2 carbon atoms (δC 15.5 and 2.8 ppm). Elemental analysis data is consistent

with the calculated values for 17.
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Single crystal X-ray crystallography confirmed 17 as the monomeric aryloxide crys-

tallising in the P 1̄ space group. The bismuth centre adopts a pyramidal geometry

(sum of angles = 273.71◦) with the di(amido) ligand chelating to the bismuth to

form a planar four-membered metallacycle (sum of internal angles = 359.93◦, bite

angle = 71.63(10)◦). The oxygen atom sits almost perpendicular to the plane of

the metallacycle (Si· · ·Bi-O = 104.41(6)◦). The Bi-O-C27 angle (119.14(16)◦) indi-

cates a bent geometry. Chisholm and co-workers attributed this bent geometry in

Bi(cy-salen)(OAr’) to the hybridisation of the oxygen pπ orbitals toward sp2 in order

to minimise interaction of the lone pairs of the oxygen with the bismuth lone pair

(Figure 2.10).83 This cy-salen derivative has a much larger Bi-O-Cipso bond angle

(130.7(2)◦) compared with 17, consistent with greater sp2 hybridisation in 17. The

plane of the aromatic component of 2,6-t-Bu2C6H3 sits rotated with respect to the

plane of the metallacycle (inter-planar angle = 131.50(12)◦).

Figure 2.9: ORTEP representation of 17. 30% Thermal ellipsoid. Hydrogens
omitted for clarity. Selected bond lengths (Å) and angles (◦) are reported in Ta-
ble 2.4.

103



Table 2.4: Selected bond lengths (Å) and angles (◦) in 17.

Bi-O 2.142(2) Bi-O-C(27) 119.14(16)

O-C(27) 1.359(4) N(1)-Si-N(2) 93.62(13)

Bi-N(1) 2.188(3) Bi-N(1)-Si 96.31(14)

Bi-N(2) 2.136(3) Bi-N(2)-Si 98.37(13)

N(1)-Si 1.738(3) N(1)-Bi-O 110.86(10)

N(2)-Si 1.732(3) N(2)-Bi-O 91.22(9)

N(1)-Bi-N(2) 71.63(10)

SiN2Bi : 2,6-t-Bu2C6H3 inter-planar angle 131.50(12)

Figure 2.10: sp2 hybridisation of the oxygen πp orbitals.

The Bi-N bond distances (N(1) 2.188(3) Å; N(2) 2.136(2) Å) are typical for this

system, consistent with σ-bonding interactions. While N(2) is approximately planar

(sum of angles = 359.6◦), N(1) exhibits significant distortion (sum of angles =

348.31◦), with the aryl substituent being pushed above the plane of the metallacycle.

There does not appear to be any close contacts between the Ar’ substituent and the

aromatic group on N(1). The cause of this distortion may therefore be the result of

intermolecular packing forces.

The Bi-O bond distance (2.142(2) Å) is within the sum of the covalent radii for bis-

muth and oxygen (2.18 Å) indicating the formation of a covalent interaction. The re-

lated three-coordinate bismuth aryloxide complex containing t-Bu groups in the or-

tho-positions, Bi(O-2,4,6-t-Bu3C6H3)2Cl, has significantly shorter Bi-O bond lengths

(average = 2.093(3) Å).111 This demonstrates that the ligand strongly influences the

coordination of the aryloxide group. Indeed, Evans and co-workers reported spon-

taneous formation of the bismuth cation [(2,6-(Me2NCH2)C6H3)2Bi][OAr’], where
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close interaction of the bismuth centre with the bulky aryloxide is prevented by

the aryl ligands (Bi-O = 3.455(2) Å), resulting in the formation of an outer-sphere

aryloxide anion.

2.4.2 Synthesis of Bi(Me2Si{NAr}2)(PCy2) (18)

The reaction of 9 with one equivalent of LiPCy2 in toluene yields

Bi(Me2Si{NAr}2)(PCy2) (18) as a red crystalline solid after work up (eq. 2.7).

eq. 2.7: Synthesis of 18.

The 1H NMR spectrum of 18 displays two singlets corresponding to the SiMe2 pro-

tons (δH 0.51 and 0.16 ppm), consistent with a C s symmetric molecule. A single set

of broad resonances are observed for each of the iso-propyl methine and α-cyclohexyl

protons (δH 4.35 and 3.53 ppm, respectively). Two high field resonances are observed

in the 13C NMR spectrum, corresponding to SiMe2 carbons (δC 15.4 and 4.3 ppm).

The 31P NMR spectrum shows a single peak at δP 56.3 ppm, significantly downfield

from LiPCy2 (δP 21.9 ppm). The 29Si NMR resonance for 18 (δSi 16.4 ppm) appears

upfield from 9 (∆δSi = -13.3 ppm). Elemental analysis data is consistent with the

calculated values for 18.

Single crystal X-ray crystallography shows that 18 crystallises in the P 1̄ space group.

The unit cell incorporates half a molecule of toluene which lies on an inversion centre,

where the CH3 group is disordered over two positions, with half occupancy at each

position.
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Figure 2.11: ORTEP representation of [18].0.5toluene. 30% Thermal ellipsoid.
Hydrogens and toluene solvate omitted for clarity. Selected bond lengths (Å) and
angles (◦) are reported in Table 2.5.

Table 2.5: Selected bond lengths (Å) and angles (◦) in 18.

Bi-P 2.6796(6) N(1)-Bi-N(2) 70.13(6)

Bi-P’ 3.2407(6) N(1)-Si-N(2) 95.69(8)

Bi-N(1) 2.2022(18) Bi-N(1)-Si 97.69(8)

Bi-N(2) 2.2605(18) Bi-N(1)-Si 96.42(8)

N(1)-Si 1.7439(19) N(1)-Bi-P 109.92(7)

N(2)-Si 1.7150(19) N(2)-Bi-P 95.50(6)
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The three-coordinate bismuth centre is pyramidal (sum of angles = 275.55◦). The

di(amido) ligand chelates to the bismuth centre with an acute bite angle (70.13(7)◦)

to form a planar metallacyclic ring (sum of internal angles = 359.9◦). Analogous to

17, the phosphorus is not centred between the two nitrogens, and is closer to N(2)

compared to N(1) (P· · ·N(1) distance 4.006(2) Å (N(1)-Bi-P 109.92(7)◦); P· · ·N(2)

distance 3.668(2) Å (N(1)-Bi-O 95.50(6)◦). Greater pyramidalisation is observed at

the more distant nitrogen centre, N(1) (sum of angles = 349.49◦ and 356.51◦ for

N(1) and N(2), respectively).

The terminal Bi-P bond distance (2.6796(6) Å) in 18 is slightly longer than the

bridging Bi-P-Bi bond lengths observed in [t-Bu2PhSiP](BiCH(SiMe3)2Cl)2
73 and

terminal Bi-P bond lengths of the dibismuthine [BiP(SiPh2t-Bu)2]2
65 (range =

2.630(13) - 2.6482(17) Å). The phosphorus atom sits almost perpendicular to the

plane of the metallacycle (Si· · ·Bi-P = 106.43(2)◦), adopting a pyramidal geometry

(sum of angles = 305.6◦) with the cyclohexyl substituents pointing towards the bis-

muth centre. This contrasts with the structure of the related group 14 terminal phos-

phides M(BDIDIPP)(PCy2) (M = Ge, Sn, Pb; BDIDIPP = [CH(C(Me){NAr})2]−),

where the Cy groups point away from the metal centre (Figure 2.12).112

Figure 2.12: Schematic representation of the positioning of the cyclohexyl groups
in 18 (left) and M(BDIDIPP)(PCy2) (M = Ge, Sn, Pb) (right).

The position of the cyclohexyl substituents in 18 is attributed to the formation of

a dimer in the solid-state (Figure 2.13). Analysis of the solid-state packing of 18
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indicates a relatively close interaction with a symmetry generated molecule of 18.

The intermolecular Bi-P’ distance (3.2407(6) Å) is much longer than the intramolec-

ular Bi-P bond distance (2.6795(8) Å), however it is within the sum of the van der

Waal’s radii for these two atoms (4.25 Å), suggesting a bonding interaction. The

more distorted N(1) atom sits closer to the PCy2 group of the symmetry related

molecule than N(2), which may explain the greater degree of distortion observed at

N(1).

Figure 2.13: ORTEP representation of [18]2 dimer. 30% Thermal ellipsoid. Hy-
drogens are omitted for clarity.

2.4.3 Comparison of Solid-state Structures of Three-

Coordinate Di(amido) Bismuth Compounds

Comparison of the solid-state structures of Bi(Me2Si{NAr}2)X (X = Cl, Ph,

N{SiMe3}2, OAr’, PCy2) (Table 2.6) indicate significant differences in the posi-

tion of the functional group (X) with respect to the ’Me2Si{NAr}2Bi’ unit and the
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geometry of the Bi- and N-atoms depending on the functional group.

The Bi-X bond distance of chloride (9), phenyl (14), amide (16) and aryloxide (17)

derivatives are closely related to the corresponding sum of the covalent radii (%cov

= 99.9% - 102%). The Bi-P bond of 18 is comparatively longer than the sum of

the covalent radii (%cov = 105%), likely due to formation of the dimer [18]2 in the

solid-state.

The di(amido) ligand chelates via a bidentate bonding mode to form a planar four-

membered metallacycle in all cases. The bite angles for these compounds appear

in a relatively narrow range (70.13(6)◦- 71.63(10)◦). The Bi-N bond lengths of the

ligand, however, change significantly depending on the X substituent. Chloride 9 has

significantly shorter Bi-N bond lengths than the heteroatom and phenyl derivatives,

possibly reflecting the increased electronegativity of the halide.

Amide 16, aryloxide 17 and phosphide 18 all show significant shortening of one Bi-

N bond, compared to the other Bi-N bond (Difference in Bi-N bond lengths (∆Bi−N)

= 0.027, 0.052, 0.058 Å, respectively). This is not observed for the chloride (9) or

phenyl (14) derivatives. The nitrogen atom of the longer Bi-N bond experiences a

greater loss of planarity, compared to the shorter Bi-N bond, with greater pyrami-

dalisation observed for the N atoms in 16, 17 and 18, which may be a reflection of

the sterics of the X substituents.

The position of X with respect to the metallacycle is noted to play a significant

role in determining the geometry at both the nitrogen and bismuth centres.62 As all

of these compounds exhibit planar metallacycles, the Si· · ·Bi-X angle can be used

to describe the position of X with respect to the metallacycle (Figure 2.14). The

Si· · ·Bi-X angle is significantly larger for 17 and 18 compared to the chloride and

phenyl derivatives, indicating that the X substituent sits further from the bismuth

centre. Increased Si· · ·Bi-X angles coincide with larger sum of angles about bismuth

(
∑

Bi values), and therefore greater planar character of the bismuth centre (smaller

degree of pyramidalisation (DOP)).
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Figure 2.14: Representation of the Si-Bi-X bond angle in determining the position
of X.

Another measurement that can be used to compare where X sits with respect to

the Me2Si{NAr}2Bi unit is θ, the difference between N-Bi-X angles, measuring how

far X sits to one side of the molecule (Figure 2.15). Positive θ values correspond to

anti-clockwise shift of X, while negative θ values correspond to clockwise shift.

Figure 2.15: Representation of positive shift of θ.

While chloride, phenyl and amide derivatives do not experience large distortions,

significant deviations are observed for the phosphide and aryloxide derivatives. 17

exhibits a large clockwise shift in the position of the oxygen atom (θ = -9.82◦),

resulting in it being situated closer to N(2) than N(1). The PCy2 group of 18

is rotated in the opposite direction, exhibiting a large anti-cloackwise shift in the

position of the phosphorus atom (θ = -7.21◦).
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Table 2.6: Comparison of selected bond lengths and angles within Bi(Me2Si{NAr}2)X complexes

X = Cl, 9a,b Ph, 14b N{SiMe3}2, 16a,b O-2,6-t-Bu2C6H3, 17 PCy2, 18

Bi-X bond length (Å) (%cov (%)c) 2.552 (102) 2.253 (102) 2.187 (99.9) 2.142(2) (100) 2.680(1) (105)

Bite angle (◦) 71.26 70.68 71.19 71.63(10) 70.13(6)

Bi-N bond length (Å) 2.132, 2.144 2.170, 2.178 2.166, 2.193 2.136(2), 2.188(3) 2.202(2), 2.261(2)∑
N (◦) 359.0, 359.8 354.4, 358.7 353.6, 353.2 348.3, 359.6 349.5, 356.5

Si· · ·Bi-X (◦) 94.84 101.69 109.96 104.41(6) 106.43(2)∑
Bi (◦) (DOP (%)d) 264.9 (106) 269.0 (101) 280.5 (88.3) 273.7 (95.9) 275.6 (93.8)

θ (◦)e 0.388 1.345 -0.004 -9.82 7.21
aLiterature values62, bAverage values of all molecules in the unit cell, cPercentage of the sum of covalent radii113 (%cov) = [Bi-X/Σrcov] x 100. dDegree of

pyramidalisation (DOP, %) = [360-ΣBi]/0.9; DOP = 100 % is equivalent to ΣBi = 270◦, DOP = 0% = planar geometry.eθ = difference in N-Bi-X bond
angles within the molecule.
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2.4.4 Insertion of RN=C=Y (R = i -Pr, Cy or Ph, Y = NR

or O) into Bi-N and Bi-P bonds

Insertion of unsaturated substrates into Bi-X bonds remains relatively unexplored,

with few examples reported in the literature. A series of reactions were performed to

investigate the reactivity of compounds containing Bi-N and Bi-P bonds towards the

insertion of heterocummulenes. 1H and 31P NMR spectroscopy was used to monitor

the insertion reactions.

Reaction of 16 and Bi(N{SiMe3}2)3 with N,N’ -dicyclohexylcarbodiimide

The NMR scale reaction of the homoleptic species Bi(N{SiMe3}2)3 with three equiv-

alents of N,N’ -dicyclohexylcarbodiimide in C6D6 affords a new species after 10

minutes at room temperature. Analysis of the 1H NMR spectrum indicates the

presence of significant quantities of unreacted N,N’ -dicyclohexylcarbodiimide, rep-

resented by the α-cyclohexyl proton resonance at δH 3.15 ppm. Resonances at δH

0.34 and 3.38 ppm correspond to the SiMe3 and α-cyclohexyl protons of a new

species. Integration of the α-cyclohexyl resonances indicates a 2:1 ratio of N,N’ -

dicyclohexylcarbodiimide to the new species. These results are consistent with

mono-insertion into Bi(N{SiMe3}2)3 to form Bi({SiMe3}2NC{NCy})(N{SiMe3}2)2.

Repeating this reaction on a preparative scale, using one equivalent of N,N’ -

dicyclohexylcarbodiimide, results in complete consumption of the starting materials

and formation of the mono-insertion product (eq. 2.8). Resonances at δH 3.38, 0.37

and 0.34 ppm correspond to the α-cyclohexyl, guanidinate SiMe3 and amido SiMe3

protons, respectively.

eq. 2.8: Reaction of Bi(N{SiMe3}2)3 with N,N’ -dicyclohexylcarbodiimide.
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The reaction of N,N’ -dicyclohexylcarbodiimide with 16 in C6D6 did not result in

insertion of the carbodiimide into the Bi-N{SiMe3}2 bond, even when heated to 80

◦C for 24 hours (eq. 2.9). This may reflect the significant steric protection provided

by the di(amido) ligand.

eq. 2.9: Reaction of 16 with N,N’ -dicyclohexylcarbodiimide.

The lack of insertion with 16 also contrasts with a recent result by Roesky and co-

workers, where insertion of N,N’ -diisopropylcarbodiimide and phenyl isocyanate into

the Bi-NMe2 bond of Bi(1,8-C10H6{NSiMe3})(NMe2) was observed (vide supra).61

This is due to significant differences in the steric profile of the ligands. Indeed,

analysis of the solid-state structure of (1,8-C10H6{NSiMe3})BiNMe2 indicates that

the bismuth sits well below the plane of the metallacycle and the SiMe3 groups point

above the plane of the metallacycle. This contrasts with the solid-state structure

of 16, where the bismuth is held in the plane of the metallacycle and the N-aryl

substituents sit much closer.62

Reaction of 18 with N,N’ -dicyclohexylcarbodiimide and phenyl iso-

cyanate

The NMR scale reaction of 18 with one equivalent of N,N’ -dicyclohexylcarbodiimide

in C6D6 did not result in the corresponding insertion product, with no consumption

of starting materials even when heated to 80 ◦C for 2 hours (eq. 2.10). This is

analogous to the lack of reactivity observed for 16.

The NMR scale reaction of 18 with one equivalent of phenyl isocyanate, however,

resulted in quantitative consumption of starting materials and formation of a new
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eq. 2.10: Reaction of 18 with N,N’ -dicyclohexylcarbodiimide

species. The 1H NMR spectrum of the reaction shows two resonances corresponding

to the SiMe2 (δH 0.54 and 0.04 ppm), shifted from 18. The iso-propyl methine

and α-cyclohexyl protons appear as a single set of broad signals (δH 4.31 and 3.89

ppm, respectively), significantly downfield from 18. This is consistent with identical

environments for the N-aryl substituents, suggesting insertion into Bi-N bonds is

not occurring. The 31P NMR spectrum shows a single resonance at δP 0.2 ppm,

significantly upfield compared to 18. These data provide preliminary evidence for

the formation of the Bi-P insertion product (eq. 2.11). Further work is ongoing to

definitively establish the structure of this new product.

eq. 2.11: Reaction of 18 with phenyl isocyanate.

2.4.5 Catalytic Ring-Opening Polymerisation of Lactide

and ε-Caprolactone by 16 and 17

Bismuth compounds containing Bi-O bonds form highly active initiators for the

ring-opening polymerisation (ROP) of cyclic esters (vide supra). A series of NMR

scale reactions were performed to investigate whether amide 16 and aryloxide 17
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are active initiators for the ROP of rac-lactide and ε-caprolactone. Catalytic stud-

ies were performed at 80 ◦C, using a catalyst loading of 1 mol%. Reactions were

monitored over time using 1H NMR spectroscopy.

Compounds 16 and 17 were both found to be active as initiators for the ring-opening

polymerisation of lactide and ε-caprolactone, albeit much slower than the current

industry standard (Sn(Oct)2).
84 Similar activities were observed for both species,

showing complete conversion of starting materials within 72 hours when heated to

80 ◦C (Figure 2.16).

Figure 2.16: ROP of lactide and ε-caprolactone initiated by 16 and 17.

The polymerisation is significantly slower than the rate observed for the single site

bismuth catalyst Bi(cy-salen)(OAr’) (Ar’= 2,6-t-Bu2C6H3), where∼70 % conversion

of monomer was observed after 1h at room temperature.83 The slower rate observed

for 16 and 17 may reflect an increased steric profile around the bismuth centre.
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2.5 Synthesis of Bismuth Compounds Supported

by Di(amido)ether Ligands

A class of ligand that is closely related to the di(amido)silyl ligands investigated in

this research is the di(amidosilyl)ether ligand, [O(SiMe2NR)2]
2− (Figure 2.17).

Figure 2.17: Divalent di(amido)ether ligand [O(SiMe2NR)2]
2−.

These ligands have recieved little attention despite their tunability and stabil-

ising properties. Compared to the di(amido)silyl ligand, these ligands provide

significantly more flexibility in the OSi2 backbone, and can be considered iso-

structural to the commonly employed β-diketiminate (BDI) ligand. In contrast

to the di(amido)silane ligands, upon ligation to a metal, the R substituents point

forward from the nitrogen substituents to provide significantly more steric protec-

tion to the metal centre, a result of the reduced ring strain associated with the

6-membered metallacycle.

Figure 2.18: Differing positions of the R substituents in 6- and 4-membered met-
allacycles.

Both bi-dentate (Figure 2.19, A and B) and tri-dentate (C) (via coordination

through the O) bonding modes have been observed, with the latter occurring fre-

quently in actinide compounds.114,115

The synthesis for a number of derivatives containing bulky R groups has been re-

ported. Bochmann and co-workers reported the synthesis of the alkyl derivatives

O(SiMe2NHR)2 (R = Cy and t-Bu) from the addition of O(SiMe2Cl)2 to a solution
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Figure 2.19: Observed bonding modes of divalent, di(amido) ether ligands.

containing four equivalents of the corresponding amine at 0 ◦C (Figure 2.20, pathway

(a)). The excess amine acts as a base to remove two equivalents of HCl as the ammo-

nium salt. Alternatively, aryl derivatives (R = 2,6-i -Pr2C6H3 (19a), 2,4,6-Me3C6H2,

3,5-(CF3)2C6H3) have been synthesised through the reaction of O(SiMe2Cl)2 with

two equivalents of the corresponding lithium amide at -80 ◦C (pathway (b)).96

Figure 2.20: Synthesis of di(amido)ether ligands.

This section focusses on the use of the 2,6-i -Pr2C6H3 (19a) and 2,6-Me2C6H3 (19b)

derivatives for the stabilisation of bismuth compounds.

2.5.1 Synthesis of O{Me2SiNHAr”}2 (Ar” = 2,6-i -Pr2C6H3

(19a), 2,6-Me2-C6H3 (19b))

19a was synthesised according to the literature procedure.96 19b was synthesised via

an analogous method through the generation of the lithium amide salt LiNHAr” (Ar”

= 2,6-Me2C6H3) followed by the in situ reaction with 0.5 equivalents of O(SiMe2Cl)2

(eq. 2.12). The reaction proceeded cleanly, yielding pure 19b as a colourless oil after

work-up.

The 1H NMR spectrum of 19b displays two singlets at δH 2.22 and 0.09 ppm,
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eq. 2.12: Synthesis of O(SiMe2NHAr”)2.

corresponding to the o-Me and SiMe2 protons, respectively. The 13C NMR spectrum

is also consistent with formation of 19b, with a single high field resonance at δC

0.8 ppm corresponding to the SiMe2 carbons. The mass spectrum of 19b displays

a peak at m/z 373.21 corresponding to [O{Me2SiNHAr”}2 + H]+. The base peak

at m/z 122.10 is consistent with [Ar”NH3]
+ via cleavage of the N-Si bond.

2.5.2 Synthesis of Bi(O{Me2SiNAr”}2)Cl (Ar” = 2,6-i -

Pr2C6H3 (20a) and 2,6-Me2C6H3 (20b))

The reaction of 19a or 19b with 2.2 equivalents of n-BuLi to generate the corre-

sponding di-lithium salt, followed by an in situ reaction with BiCl3 resulted in forma-

tion of the corresponding di(amido) bismuth chloride species, Bi(O{Me2SiNAr”}2)Cl

(Ar” = 2,6-iPr2C6H3 (20a), 2,6-Me2C6H3 (20b)) (eq. 2.13). Clear colourless crys-

tals of 20a were obtained from a toluene/hexane solution at -30 ◦C. Attempts to

isolate 20b were unsuccessful, however enough sample was obtained to investigate

the 1H NMR spectrum. Previous work in the Coles group has characterised 20b in

the solid-state.iii

The 1H NMR spectrum of 20a displays two singlets for the SiMe2 protons (δH 0.60

and 0.20 ppm). The iso-propyl methine protons are represented by two distinct

septets at δH 4.22 and 3.66 ppm. Four doublets are displayed for the iso-propyl

methyl protons (δH 1.45, 1.28, 1.26, and 1.05 ppm), resulting from the combination

iii20b exists as a monomer in the solid state, with the di(amido)ether coordinated in a bidentate
fashion to form a six-membered metallacycle. The metallacycle has a boat conformation. No NMR
or elemental analysis data were obtained.116
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eq. 2.13: Synthesis of Bi(O{Me2SiNAr”}2)Cl (Ar” = 2,6-i -Pr2C6H3 (20a) and
2,6-Me2C6H3 (20b))

of a pyramidal bismtuh centre and restricted rotation. At low temperatures, 9

displayed a similar splitting pattern, forming four doublets for the iso-propyl methyl

protons.95

The 13C NMR spectrum is consistent with the formation of 20a, showing two sets

of resonances for the N-aryl substituents. The SiMe2 carbons are represented by two

high field resonances at δC 4.5 and 3.2 ppm. The 29Si NMR spectrum of 20a has a

single resonance at δSi 5.9 ppm, significantly downfield from previously synthesised

bismuth compounds containing the related [Me2Si{NAr}2]2− ligand (range of δSi

= 16.4 to 38.0 ppm, vide supra). Elemental analysis data is consistent with the

calculated values for 20a.

The 1H NMR for 20b is consistent with formation of a pyramidal bismuth centre,

represented by two singlets corresponding to the SiMe2 protons (δH 0.59 and 0.17

ppm). The shifts of these two peaks appear close to those observed for 20a. The

o-Me protons are also represented by two singlets at δH 2.73 and 2.46 ppm.

Single crystal X-ray crystallography revealed that 20a crystallises in the P 1̄ space

group (Figure 2.21). 20a crystallises as a three-coordinate monomeric chloride,

with the bismuth centre forming a trigonal pyramidal geometry (sum of angles =

293.26◦). The ligand binds to the bismuth in a bidentate chelate fashion to give

a six-membered metallacycle in the chair conformation. This contrasts with the

solid-state structure of 20b, where the metallacycle adopts a boat conformation,

with the O and Bi atoms occupying the same face of the molecule.iii
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Figure 2.21: ORTEP representation of 20a. 30% Thermal ellipsoid. Hydrogens
omitted for clarity. Selected bond lengths (Å) and angles (◦) are reported in Ta-
ble 2.7.

Table 2.7: Selected bond lengths (Å) and angles (◦) in 20a.

Bi-Cl 2.5033(10) N(1)-Bi-N(2) 102.47(9)

Bi-N(1) 2.136(2) Si(1)-O-Si(2) 142.92(18)

Bi-N(2) 2.149(2) Bi-N(1)-C(1) 111.91(17)

N(1)-Si 1.731(3) Bi-N(2)-C(17) 109.70(18)

N(2)-Si 1.718(3) Bi-N(1)-Si(1) 121.55(12)

O-Si(1) 1.631(2) Bi-N(2)-Si(2) 122.34(13)

O-Si(2) 1.633(2) N(1)-Bi-Cl 96.50(9)

Bi-O 3.395(2) N(2)-Bi-Cl 94.31(9)

As expected, the bite angle of the di(amido) ligand (102.47(9)◦) is much larger

than that observed for [Me2Si{NAr}2]2− (range = 70.13◦ - 71.63◦) , consistent with

the reduced ring strain. In contrast to 9, the bulky aryl groups project forward

from the ligand backbone due to the reduced strain associated with the 6-membered

metallacycle. This is represented by acute Bi-N-Caryl bond angles (N(1) 109.69(17)◦;

N(2) 111.93(18)◦), much smaller than the angles observed in 9 (range = 121.7(5)◦ -

129.1(5)◦).95
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The Bi-Cl (2.5033(10) Å) and Bi-N bond distances (N(1) 2.136(2); N(2) 2.149(2)

Å) are consistent with σ-bonding interactions and are within the range observed in

9 (range Bi-Cl = 2.4857(16) - 2.556(1) Å); Bi-N = 2.132(3) - 2.181(3) Å). The Bi-

O distance (3.395(2) Å) is significantly longer than observed in systems where the

ligand binds tri-dentate (2.479(12) - 2.529(17) Å)114,115 and is closer to the distances

observed in bi-dentate bonding modes (3.025(4) - 3.229(7) Å),117,118 suggesting that

the oxygen atom is not participating in coordination. The geometry at both N(1)

and N(2) is planar (sum of angles = 359.9◦in both cases).

2.5.3 Reaction of 20a with AlCl3

The reaction of one equivalent of 20a with AlCl3 in toluene results in formation of a

deep red solution after 2 hours stirring at room temperature. Concentration of the

solution followed by storage at -30 ◦C resulted in the formation of deep red crystals

of [Bi(O{Me2SiNAr”}2)][AlCl4] (21) (eq. 2.14).

eq. 2.14: Reaction of 20a with AlCl3

The 1H NMR spectrum of 21 shows loss of the C S symmetry, most clearly evident

from a single set of resonances for the SiMe2 and iso-propyl methine protons (δH 0.22

and 3.42 ppm, respectively). This is consistent with formation of a C 2h symmetric

cation. A single molecule of toluene is also observed in the 1H NMR spectrum. The

13C NMR spectrum is consistent with the formation of 21, displaying a single set

of resonances for each of the carbon environments. A single high field resonance is

observed at δC 3.8 ppm, corresponding to the SiMe2 carbon centres.

Compound 21 crystallises in the P 1̄ space group as a monomeric four-coordinate
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bismuth species (Figure 2.22). A single toluene molecule interacts with the bismuth

centre through π-interactions (Bi· · · centroid distance = 3.2414(9) Å) with significant

slippage with respect to the bismuth (0.51 Å). Interestingly, interaction with the

toluene molecule appears to be more favourable than forming dimeric/polymeric

structures with multiple Bi· · ·Cl-Al bridging chlorides as observed in the di(amido)

bismuth tetrachloroaluminate salts described elsewhere in this thesis. The toluene

molecule occupies the apical position, where the stereochemically active lone pair

would be expected.

Figure 2.22: ORTEP representation of [21].toluene. 30% Thermal ellipsoid. Hy-
drogens omitted for clarity. Selected bond engths (Å) and angles (◦) are reported
in Table 2.8.

The bismuth centre adopts a tetrahedral geometry with the ligand coordinating in a

bidentate chelate fashion. The 6-membered metallacycle adopts a boat conformation

with the Bi and O atoms occupying the same face of the ring. This contrasts with the

chair conformation observed in 20a (Figure 2.23). The Bi-O distance (3.2492(11)

Å) is significantly shorter than that observed for 20a, however it is still not within

the range for tri-dentate coordination and may be a reflection of the change of the

metallacycle from the chair to boat conformation.
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Table 2.8: Selected bond lengths (Å) and angles (◦) in 21.

Bi-Cl(1) 3.0708(4) O-Si(1) 1.6405(11)

Bi-N(1) 2.1136(12) O-Si(2) 1.6832(11)

Bi-N(2) 2.1111(12) Bi-O 3.2492(11)

N(1)-Si(1) 1.7499(13) N(1)-Bi-N(2) 100.29(5)

N(2)-Si(2) 1.7632(13) Si(1)-O-Si(2) 138.90(7)

Al-Cl(1) 2.1900(6) Al-Cl(3) 2.1134(7)

Al-Cl(2) 2.1290(6) Al-Cl(4) 2.1214(6)

Bi-centroid 3.2414(9)

Figure 2.23: ORTEP representation of the metallacycles for 20a (left) and 21
(right). 30% Thermal ellipsoid.

The Bi-N bond distances (N(1) 2.1136(12) Å; N(2) 2.1111(12) Å) are significantly

shorter than the Bi-N bond distances in 20a, consistent with formation of a cationic

bismuth centre. Both N(1) and N(2) retain planarity (sum of angles = 358.9◦and

359.9◦, respectively), with the aryl substituents again pointing forward from the

metallacycle, represented by acute Bi-N-Caryl angles.

The Bi-Cl bond length (3.0708(4) Å) is significantly longer than that observed in the

neutral chloride 20a (2.5033(10) Å) and similar to that observed in 12a (shortest

Bi· · ·Cl distance = 2.953(3) Å). The Al-Cl(1) bond length (2.1900(6) Å) is signifi-

cantly longer than the other Al-Cl bonds (2.1134(8) - 2.1290(7) Å), consistent with

the bridging interaction.

Elemental analysis data is consistent with the calculated values for 21 without the

toluene molecule. This indicates that the toluene molecule can be lost relatively

easily under reduced pressure.
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Chapter 3

Conclusion

The coordination chemistry of mono- and di-anionic ligands derived from

Me2Si{NHAr}2 has been explored through the synthesis of a number of bismuth

compounds.

The monovalent derivative Bi(Me2Si{NAr}{NHAr})Cl2 (11) has been synthesised

from the reaction of Me2Si{N(M)Ar}{NHAr} (M = Na (10a), K (10b)) with BiCl3.

The reaction of Bi(Me2Si{NAr}2)Cl (9) with ECl3 (E = Al, Ga) results in for-

mation of the cationic bismuth species [Bi(Me2Si{NAr}2)]+ as the corresponding

tetrachlorometallate salt (E = Al (12a), Ga (12b)). Attempts to isolate the

tetrachlorogallate salt resulted in isolation of [{Bi(Me2Si{NAr}2)}2(µ-Cl)][GaCl4]

(13b), confirmed by single crystal X-ray crystallography. Attempts to isolate

[Bi(Me2Si{NAr}2)]+ as the tetraphenylborate and tetraethylborate salts were un-

successful, resulting in abstraction of the aryl/alkyl group from the borate anion to

form Bi(Me2Si{NAr}2)Ph (14) and Bi(Me2Si{NAr}2)Et (15), respectively.

A number of derivatives of the general form Bi(Me2Si{NAr}2)X (X = N{SiMe3}2

(16), O-2,6-t-Bu2C6H3 (17), PCy2 (18)) have been synthesised from the reaction

of 9 with the corresponding group 1 salt MX (M = Li or K, X = N{SiMe3}2, O-

2,6-t-Bu2C6H3, PCy2). The amide (16) and aryloxide (17) derivatives were active
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as initiators for the catalytic ROP of cyclic esters. In addition, insertion of N,N’ -

dicyclohexylcarbodiimide into Bi-N or Bi-P bonds was investigated where as no

reaction was observed for compounds 16 and 18, attributed to the steric bulk of

the ligand. Preliminary results suggest insertion of phenyl isocyanate into the Bi-P

bond of 18 was achieved.

Finally, a number of bismuth compounds supported by the related di(amido)ether

ligands [O{Me2SiNAr”}2]2− (Ar” = 2,6-i -Pr2C6H3 (19a)) have been synthesised.

The di(amido)ether complex Bi(O{Me2SiNAr”}2)Cl (20a) was synthesised from the

reaction of O{Me2SiNHAr”}2 with 2.2 equivalents of n-BuLi followed by the in situ

reaction with BiCl3. Attempts to isolate and fully characterise the 2,6-Me2C6H3

derivative were unsuccessful. Further derivitisation of 20a by reaction with AlCl3

resulted in formation of the cationic species [Bi(O{Me2SiNAr”}2)]+ as the tetra-

chloroaluminate salt (21).
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Chapter 4

Experimental

4.1 General Procedures

All manipulations were performed under a dry and oxygen-free atmosphere of N2

using Schlenk-line and cannula techniques, or in a conventional nitrogen glovebox.

Solvents were dried using a Puresolv. system (Innovative Technologies). NMR

spectra were recorded in C6D6 at 298K using either a Bruker Avance DPX 300

MHz at 300.1 (1H) and 75.4 (13C) MHz or a Varian VNMRS 500 MHz spec-

trometer at 500.1 (1H), 160.4 (11B), 125.4 (13C) and 99.3 (29Si) MHz. All 1H

and 13C chemical shifts are referenced internally to residual solvent resonances.

29Si NMR chemical shifts were obstained from 1H-29Si HMBC spectra. Elemen-

tal analyses were performed by S. Boyer at London Metropolitan University. All

compounds were purchased from the Sigma-Aldrich chemical company and used

as received, unless stated otherwise. Liquids were subjected to 3x freeze-pump-

thaw cycles, and stored under nitrogen in the glovebox. Me2Si{NHAr}2 (8)94,

Bi(Me2Si{NAr}2)Cl (9)95, Bi(Me2Si{NAr}2)(N{SiMe3}2) (16)62, O(SiMe2NHAr”)2

(Ar” = 2,6-i -Pr2C6H3) (19a)96 and Bi(N{SiMe3}2)3 119 were synthesised according

to literature procedures. BiCl3 was sublimed before use. 2,6-diisopropylaniline and

2,6-dimethylaniline were distilled before use.
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4.1.1 Crystal Structure Data

X-ray diffraction data (Appendix C) were collected by the X-ray Crystallography

Laboratory at the University of Canterbury using an Agilent SuperNova diffractome-

ter fitted with an Atlas detector. Crystals were covered in inert oil and suitable single

crystals were selected. Data was collected at 120.01(10)K using Mo Kα radiation at

0.71073 Å or Cu Kα radiation at 1.5418 Å. The structures were solved and refined

using Olex2. ORTEP representations were prepared using ORTEP-III.47

4.2 Experimental for Section 2.2

4.2.1 Me2Si{N(Na.(THF)3)Ar}{NAr} (10a.(THF)3)

A solution of 8 (0.30 g, 0.73 mmol.) in toluene (5 mL) was added dropwise to a sus-

pension of NaH (0.017 g, 0.73 mmol.) in toluene (10 mL). The resulting suspension

was stirred for 24 hours followed by removal of the volatiles in vacuo. The white

precipitate was dissolved in THF (5 mL), filtered through celite and concentrated.

Clear colourless crystals of 10a were obtained after storage of the solution at -30

◦C for 24 hours. Yield 0.224 g, 48 %.

1H NMR (C6D6, 300 MHz) δ 7.20 (d, JHH = 7.5 Hz, 2H, m-C6H3), 7.11 (d, JHH =

7.5 Hz, 2H, m-C6H3), 6.93 (t, JHH = 7.5 Hz, 1H, p-C6H3), 6.85 (t, JHH = 7.8 Hz,

1H, p-C6H3), 4.23 (sept, JHH = 6.9 Hz, 2H, CH (CH3)2), 3.87 (sept, JHH = 6.9 Hz,

2H, CH (CH3)2), 3.41 (m, 12H, THF-CH2), 3.18 (s, 1H, N-H), 1.39-1.25 (m, 28H,

CH(CH3)2 and THF-CH2), 0.47 (s, 6H, SiMe2).

13C NMR (C6D6, 75 MHz) δ 144.1, 142.3, 141.4, 123.1, 122.9, 121.6, 114.6 (C6H3*),

68.0 (THF-CH2), 28.6, 28.4, 27.1, 25.7, 25.2, 24.1, 23.8 (CH(CH3)2, CH(CH3)2 and

THF-CH2), 4.7 (SiMe2). *one of the aromatic resonances is not observed
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4.2.2 Me2Si{N(K)Ar}{NAr} (10b)

A solution of 8 (0.30 g, 0.73 mmol.) in toluene (10 mL) was added dropwise to

a suspension of KH (0.030 g, 0.73 mmol.) in toluene (5 mL). The suspension was

stirred for 24 hours followed by filtration through celite. The resulting solution was

concentrated and stored at -30 ◦C. After 24 hours, clear colourless crystals of 10b

were obtained. Yield 0.170 g, 52 %

1H NMR (C6D6, 300 MHz) δ 7.07 (d, JHH = 7.2 Hz, 2H, C6H3), 6.86 (d, JHH =

7.2 Hz, 2H, C6H3), 6.68, 6.63 (overlapping t, 2H, p-C6H3), 3.85, 3.78 (overlapping

sept, 4H, CH (CH3)2), 3.08 (s, 1H, N-H), 1.27-1.12 (m, 24H, CH(CH3)2), 0.56 (s,

6H, SiMe2).

13C NMR (C6D6, 75 MHz) δ 154.5, 146.3, 143.2, 140.8, 123.3, 122.7, 120.8, 112.9

(C6H3), 28.7, 26.5, 25.3, 23.5, 23.3 (CH(CH3)2 and CH(CH3)2), 5.9 (SiMe2).

29Si NMR (C6D6, 99.3 MHz) δ -32.1.

4.2.3 Bi(Me2Si{NHAr}{NAr})Cl2 (11)

Method 1: From the reaction of 10a.(THF)3 with BiCl3

A solution of 10a.(THF)3 (0.15, 0.23 mmol.) in Et2O (5 mL) was added dropwise

to a suspension of BiCl3 (0.073 g, 0.23 mmol.) in Et2O (5 mL) at -30 ◦C. The resul-

tant suspension was stirred for 24 hours at room temperature followed by filtration

through celite and concentration of the solution. After 24 hours at -30 ◦C, a yellow

precipitate began to form, identified as 11. Yield 0.065 g, 41 %.

Method 2: From the reaction of 10b with BiCl3

A solution of 10b (0.10 g, 0.22 mmol.) in Et2O (5 mL) was added dropwise to a

suspension of BiCl3 (0.070 g, 0.22 mmol.) in Et2O (5 mL) at -30 ◦C. The resul-

tant suspension was stirred for 24 hours at room temperature followed by filtration
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through celite and concentration of the solution. After 24 hours at -30 ◦C, a yellow

precipitate began to form, identified as 11 by 1H NMR spectrscopy. Yield 0.051 g,

34 %.

Method 3: From the in situ reaction of ’Me2Si{N(Li)Ar}{NHAr}’ with BiCl3

A solution of n-BuLi (0.17 mL of 1.6M solution in hexane, 0.27 mmol.) in Et2O (5

mL) was added dropwise to a stirring solution of 8 (0.10 g, 0.24 mmol.) in Et2O

(5 mL) at -30 ◦C. The resulting solution was allowed to stir for 5 hours at room

temperature and then added to a suspension of BiCl3 (0.077 g, 0.20 mmol.) in Et2O

(10 mL). The suspension was filtrated through celite and concentrated. After 24

hours at -30 ◦C, a yellow precipitate was deposited, identified as 11 by 1H NMR

spectroscopy. Yield 0.063 g, 38 %.

Anal. Calcd. for C26H41BiCl2N2Si (688.22 ): C, 45.29; H, 5.99; N, 4.06 %. Found:

C, 45.43; H, 5.87, N 4.15 %.

1H NMR (C6D6, 300 MHz) δ 7.33 (d, JHH = 7.8 Hz, 2H, m-C6H3), 7.00 (s, 3H,

C6H3), 6.77 (t, JHH = 7.8 Hz, 1H, p-C6H3), 4.61 (s, 1H, N-H), 3.79 (sept, JHH =

6.9 Hz, 2H, CH (CH3)2), 3.26 (sept, JHH = 6.9 Hz, 2H, CH (CH3)2), 1.49 (d, JHH =

6.9 Hz, 6H, CH(CH3)2), 1.39 (dd, JHH = 6.9 Hz, 6H, CH(CH3)2), 1.10 (d, JHH =

6.9 Hz, 12H, CH(CH3)2), 0.1 (s, 6H, SiMe2).

13C NMR (C6D6, 75 MHz) δ 150.2, 141.3, 137.6, 136.4, 124.9, 124.1, 122.9 (C6H3*),

29.2, 28.2, 27.5, 25.7, 25.1, 24.5 (CH(CH3)2 and CH(CH3)2) , 3.8 (SiMe2). *one of

the aromatic resonances is not observed

4.2.4 Reaction of 11 with NEt3

NEt3 (4 µL, 0.029 mmol.) was added to a J. Young NMR tube charged with a

solution of 11 (0.02, 0.029 mmol.) in C6D6. The reaction mixture was heated to 80

◦C for 24 hours followed by 1H NMR analysis. The 1H NMR showed no consumption

129



of starting materials.

4.2.5 Reaction of 11 with n-BuLi

A solution of n-BuLi in hexane (18.1 µL of a 1.6M hexane solution, 0.029 mmol.)

was added to a solution of 9 (0.020, 0.029 mmol.) in C6D6 at -30 ◦C. 1H NMR anal-

ysis after 10 minutes at room temperature revealed formation of an unidentifiable

mixture of products.

4.3 Experimental for Section 2.3

4.3.1 [Bi(Me2Si{NAr}2)][AlCl4] (12a)

A solution of 9 (0.1 g, 0.15 mmol.) in toluene (5 mL) was added dropwise to a

stirring suspension of AlCl3 (0.019 g, 0.15 mmol.) in toluene (5 mL). The resulting

dark red solution was allowed to stir for 4 hours followed by concentration of the

solution and storage at -30 ◦C. After 24 hours, clear dark red crystals of 12a were

obtained. Yield 0.105 g, 88 %

Anal. Calcd. for C26H40AlBiCl4N2Si (786.47 ): C, 39.71; H, 5.13; N, 3.56 %. Found:

C, 39.85; H, 5.01, N 3.68 %.

1H NMR (C6D6, 300 MHz) δ 7.26 (d, JHH = 7.8 Hz, 4H, m-C6H3), 6.60 (t, JHH =

7.7 Hz, 2H, p-C6H3), 3.49 (br m, 4H, CH (CH3)2), 1.21 (br s, 24H, CH(CH3)2), 0.13

(s, 6H, SiMe2).

13C NMR (C6D6, 75 MHz) δ 148.5, 128.8, 122.5 (C6H3), 28.2 (CH(CH3)2), 27.0 (br,

CH(CH3)2), 10.4 (SiMe2). * o-C not observed.

29Si NMR (C6D6, 99.3 MHz) δ 38.0.
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4.3.2 [Bi(Me2Si{NAr}2)][GaCl4] (12b)

Method 1: NMR scale

A solution of 13b (0.020 g, 0.026 mmol.) in C6D6 (0.5 mL) was added to 9 (8.5 mg,

0.013 mmol.). The 1H NMR spectrum indicated complete consumption of starting

materials after 10 mins at room temperature.

Method 2: Preparative scale

A solution of 9 (0.040 g, 0.061 mmol.) in toluene (2 mL) was added to a solution

of GaCl3 (11 mg, 0.061 mmol.) in toluene (2 mL). Removal of the volatiles followed

by 1H NMR analysis of the crude products revealed formation of 12b.

1H NMR (C6D6, 300 MHz) δ 7.28 (d, JHH = 7.8 Hz, 4H, m-C6H3), 6.58 (t, JHH

= 7.8 Hz, 2H, p-C6H3), 3.51 (sept, JHH = 6.7 Hz, 4H, CH (CH3)2), 1.24 (br, 24H,

CH(CH3)2), 0.13 (s, 6H, SiMe2).

4.3.3 [{Bi(Me2Si{NAr}2)}2(µ-Cl)][AlCl4] (13a)

Method 1: NMR scale

A solution of 12a (0.020 g, 0.026 mmol.) in C6D6 (0.5 mL) was added to 9 (8.5 mg,

0.013 mmol.). The 1H NMR spectrum indicated complete consumption of starting

materials after 10 mins at room temperature.

Method 2: Preparative scale

Addition of a solution of 9 (0.040 g, 0.061 mmol.) in toluene (2 mL) to a stirring

suspension of AlCl3 (4 mg, 0.031 mmol.) in toluene (2 mL). The resulting suspension

was allowed to stir for 4 hours followed by the removal of volatiles. 1H NMR analysis

of the crude product revealed formation of 13a.

1H NMR (C6D6, 300 MHz) δ 7.24 (d, JHH = 7.8 Hz, 4H, m-C6H3), 6.74 (t, JHH =
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7.8 Hz, 2H, p-C6H3), 3.86 (br sept, 4H, CH (CH3)2), 1.25 (d, JHH = 6.6 Hz, 24H,

CH(CH3)2), 0.20 (s, 6H, SiMe2).

4.3.4 [{Bi(Me2Si{NAr}2)}2(µ-Cl)][GaCl4] (13b)

Method 1: Reaction of 9 with 1 equiv. GaCl3

A solution of 9 (0.10 g, 0.15 mmol.) in toluene (5 mL) was added dropwise to

a stirring suspension of GaCl3 (0.027 mg, 0.15 mmol.) in toluene (5 mL). The

resulting dark red solution was allowed to stir for 4 hours followed by concentration

of the solution and storage at -30 ◦C. After 24 hours, an off-white precipitate was

deposited in addition to several clear dark red crystals of 13b suitable for single

crystal X-ray diffraction were obtained. Yield 0.021 g, 18 %.

Method 2: Reaction of 9 with 0.5 equiv. GaCl3

A solution of 9 (0.10 g, 0.15 mmol.) in toluene (5 mL) was added dropwise to

a stirring suspension of GaCl3 (0.014 mg, 0.15 mmol.) in toluene (5 mL). The

resulting dark red solution was allowed to stir for 4 hours followed by concentration

of the solution and storage at -30 ◦C. After 24 hours, small deep red crystals were

obtained, identified as 13b by 1H NMR spectroscopy. Yield 0.047 g, 40 %

Anal. Calcd. for C52H80GaBi2Cl5N4Si2 (1482.34 ): C, 42.13; H, 5.44; N, 3.78 %.

Found: C, 41.97; H, 5.31, N 3.90 %.

1H NMR (C6D6, 300 MHz) δ 7.25 (d, JHH = 7.8 Hz, 4H, m-C6H3), 6.74 (t, JHH =

7.8 Hz, 2H, p-C6H3), 3.90 (sept, JHH = 6.8 Hz, 4H, CH (CH3)2), 1.27 (d, JHH = 6.8

Hz, 24H, CH(CH3)2), 0.21 (s, 6H, SiMe2).

29Si NMR (C6D6, 99.3 MHz) δ 31.2.

13C NMR data could not be obtained due to decomposition of 13b in solution over

extended periods of time.
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4.3.5 Bi(Me2Si{NAr}2)Ph (14)

Method 1: Preparative scale from 9 + NaBPh4

A solution of 9 (0.10 g, 0.15 mmol.) in toluene (5 mL) was added dropwise to a

stirring suspension of NaBPh4 (0.051 g, 0.15 mmol.) in toluene (5 mL). The resulting

solution was allowed to stir for 72 hours at 90 ◦C followed by filtration through celite

and concentration of the solution. After 24 hours at -30 ◦C, a number of white

crystals of BPh3 were deposited. Further concentration and storage at -30 ◦C yield

a 2nd crop of crystals, identified as a mixture of BPh3 and 14. Characterisation of

14 was achieved through mechanical separation of the crystals. Yield 0.070 g, 67 %.

Method 2: NMR scale from 12a + NaBPh4

A solution of 12a (0.020 g, 0.025 mmol.) in C6D6 (0.5 mL) was added to NaBPh4

(0.009 g, 0.025 mmol.) in a J. Young NMR tube. 1H NMR analysis after 5 hours

at 80 ◦C indicated complete consumption of starting materials and formation of 14

and BPh3.

Anal. Calcd. for C32H45BiN2Si (694.78 ): C, 55.32; H, 6.53; N, 4.03 %. Found: C,

55.44; H, 6.61; N, 3.95 %.

1H NMR (C6D6, 300 MHz) 8.48 (d, JHH = 7.5 Hz, 2H, o-C6H5), 7.57 (t, JHH = 7.5

Hz, 1H, p-C6H5), 6.95 (t, JHH = 7.5 Hz, 2H, m-C6H5), 4.30 (sept, JHH = 6.8 Hz,

4H, CH (CH3)2), 1.28 (d, JHH = 6.8 Hz, 24H, CH(CH3)2), 0.63 (s, 3H, SiMe2), 0.15

(s, 3H, SiMe2).

13C NMR (C6D6, 75 MHz) 148.0 (br, C6H5), 147.2, 140.9 (C6H3), 136.2, 131.6

(C6H5), 129.4, 128.4 (C6H3), 124.5 (C6H5), 27.8 (br, CH(CH3)2), 25.1 (br,

CH(CH3)2, 17.5, 4.8 (SiMe2).

29Si NMR (C6D6, 99.3 MHz) δ 19.5.
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4.3.6 Bi(Me2Si{NAr}2)Et (15)

A solution of 9 (0.10 g, 0.15 mmol.) in toluene (5 mL) was added dropwise to a

stirring suspension of NaBEt4 (0.023 g, 0.15 mmol.) in toluene (5 mL). The resulting

solution was allowed to stir for 24 hours at room temperature followed by removal

of the volatiles and extraction into hexane. The resulting suspension was filtered

through celite and concentrated, followed by storage at -30 ◦C. After 24 hours, clear

yellow crystals were deposited, identified as 15. Yield 0.061 g, 63 %.

Anal. Calcd. for C28H45BiN2Si (646.73 ): C, 52.00; H, 7.01; N, 4.33 %. Found: C,

51.81; H, 7.12, N 4.24 %.

1H NMR (C6D6, 300MHz) δ 7.19 (d, JHH = 7.6 Hz, 4H, m-C6H3), 6.99 (t, JHH =

7.6 Hz, 2H, p-C6H3), 4.28 (sept, JHH = 6.9 Hz, 4H, CH (CH3)2), 2.47 (t, JHH = 8.1

Hz, 3H, CH2CH3), 2.04 (q, JHH = 8.1 Hz, 2H, CH2CH3), 1.31 (br, 24H, CH(CH3)2),

0.42 (s, 3H, SiMe2), 0.04 (s, 3H, SiMe2).

13C NMR (C6D6, 75 MHz) δ 147.9, 141.4, 124.2, 123.5 (C6H3), 27.7 (CH(CH3)2),

25.9, 25.4 (CH(CH3)2), 15.6 (SiMe2), 8.7 (CH2CH3), 5.2 (SiMe2). BiCH2CH3 reso-

nance not observed.

29Si NMR (C6D6, 100 MHz) δ 17.8.

4.4 Experimental for Section 2.4

4.4.1 Bi(Me2Si{NAr}2)(OAr’) (Ar’ = 2,6-t-Bu2C6H3) (17)

A solution of 9 (0.10 g, 0.15 mmol.) in toluene (5 mL) was added dropwise to a

stirring suspension of KOAr’ (0.037 g, 0.15 mmol.) in toluene (5 mL). The resulting

solution was allowed to stir for 24 hours at RT followed by filtration through celite

and concentration of the solution. Storage at -30 ◦C for 24 hours yielded deep green

crystals, identified as 17. Yield 0.101 g, 82 %.
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Anal. Calcd. for C40H61BiN2OSi (822.44 ): C, 58.38; H, 7.47; N, 3.40 %. Found: C,

58.25; H, 7.52, N 3.49 %.

1H NMR (C6D6, 300 MHz) δ 7.28 (d, JHH = 7.8 Hz, 2H, m-C6H3(i -Pr)2), 7.20 (d,

JHH = 7.8 Hz, 4H, m-C6H3(t-Bu)2), 6.85 (t, JHH = 7.2 Hz, 2H, p-C6H3(i -Pr)2),

6.70 (t, JHH = 7.8 Hz, 1H, p-C6H3(t-Bu)2), 3.88 (br, 4H, CH (CH3)2), 1.39 (s, 18H,

C(CH3)3), 1.34 (d, JHH = 6.9 Hz, 12H, CH(CH3)2), 1.13 (d, JHH = 6.9 Hz, 12H,

CH(CH3)2), 0.70 (s, 3H, SiMe2), 0.01 (s, 3H, SiMe2).

13C NMR (C6D6, 75 MHz) δ 159.0, 147.9, 143.7, 139.0, 125.4, 125.3, 123.5, 120.7

(C6H3(i -Pr)2 and C6H3(t-Bu)2), 35.4, 33.0, 30.4, 28.4, 27.5, 25.5 (CH(CH3)2,

CH(CH3)2, C (CH3)3 and C(CH3)3), 15.6, 2.8 (SiMe2).

4.4.2 Bi(Me2Si{NAr}2)(PCy2) (18)

A solution of 9 (0.10 g, 0.15 mmol.) in toluene (5 mL) was added dropwise to a

stirring suspension of LiPCy2 (0.030 g, 0.15 mmol.) in toluene (5 mL). The resulting

solution was allowed to stir for 24 hours at RT followed by filtration through celite

and concentration of the solution. After 24 hours at -30 ◦C, a number of deep red

crystals were isolated and identified as 18. Yield 0.076 g, 62 %.

Anal. Calcd. for C38H62BiN2PSi (814.42 ): C, 56.00; H, 7.67; N, 3.44 %. Found: C,

56.17; H, 7.80, N 3.33 %.

1H NMR (C6D6, 300 MHz) δ 7.18 (d, JHH = 7.5 Hz, 4H, m-C6H3), 6.95 (t, JHH =

7.5 Hz, 2H, p-C6H3), 4.35 (br, 4H, CH (CH3)2), 3.53 (m, 2H, α-C6H11), 1.9-0.8 (br

m, 20H, C6H11), 1.43 (d, JHH = 6.3 Hz, 12H, CH(CH3)2), 1.31 (d, JHH = 6.3 Hz,

12H, CH(CH3)2), 0.51 (s, 3H, SiMe2), 0.16 (s, 3H, SiMe2);

13C NMR (C6D6, 75 MHz) δ 148.4, 140.6, 124.2, 123.7 (C6H3), 37.6 (br, α-C6H11),

34.7, 34.3, 27.9, 27.8, 26.7, 26.4, 25.6 (CH(CH3)2, CH(CH3)2 and C6H11), 15.5, 4.4

(SiMe2).
29Si NMR (C6D6, 100 MHz) δ 16.4.
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31P NMR (C6D6, 121 MHz) δ 56.4.

4.4.3 Insertion reactions

Reaction of Bi(N{SiMe3}2)3 with N,N’ -dicyclohexylcarbodiimide

Method 1: NMR scale reaction of Bi(N{SiMe3}2)3 with 3 equivalents of N,N’ -

dicyclohexylcarbodiimide

A solution of Bi(N{SiMe3}2)3 (0.020 g, 0.029 mmol.) in C6D6 (0.5 mL) was added to

N,N’ -dicyclohexylcarbodiimide 0.018 g, 0.09 mmol.) in a vial. The resulting solution

was transferred to a J. Young NMR tube and analysed by 1H NMR spectroscopy.

Method 2: Preparative scale 1:1 equivalents of Bi(N{SiMe3}2)3 and N,N’ -

dicyclohexylcarbodiimide

A solution of Bi(N{SiMe3}2)3 (0.10 g, 0.145 mmol.) in toluene (4 mL) was added

dropwise to a solution of N,N’ -dicyclohexylcarbodiimide (0.030 g, 0.145 mmol.) in

toluene (5 mL). The resulting solution was stirred for 2h followed by removal of the

volatiles. 1H NMR of the crude sample indicated formation of the corresponding

insertion product.

1H NMR (C6D6, 300 MHz) δ 3.38 (br t, 2H, α-C6H11), 1.95-1.05 (m, 20H, C6H11),

0.37 (s, 36H, SiMe3(amide)) 0.02 (s, 18H, SiMe3(guanidinate)).

General procedure for reaction of 16/18 and carbodiimide/isocyanate

substrates

A solution of 16 (0.02 g, 0.026 mmol.) in C6D6 was added to N,N’ -

dicyclohexylcarbodiimide (0.005 g, 0.026 mmol.) in a vial. The resulting solution

was transferred to a J. Young NMR tube and analysed by 1H NMR spectroscopy.

NMR data for the reaction of 18 and phenyl isocyanate.
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1H NMR (C6D6, 300 MHz) δ 7.01 (m, C6H3), 6.79 (m, C6H5), 6.53 (t, C6H5), 4.28

(br m, CH (CH3)2), 3.87 (br, α-C6H11), 2.10-1.00 (br m, C6H11 and CH(CH3)2), 0.52

(s, SiMe2) 0.02 (s, SiMe2).

31P NMR (C6D6, 121 MHz) δ 0.2.

No change in the 1H NMR spectrum was observed upon addition of N,N’ -

dicyclohexylcarbodiimide to 16 or 18.

4.4.4 General procedure for catalytic ROP of cyclic esters

A solution of 16 (0.001 g) in C6D6 (0.5 mL) was added to a J. Young NMR tube

charged with rac-Lactide (0.020 g, 0.139 mmol.), followed by 1H NMR analysis after

10 minutes at room temperature. The reaction was heated to 80 ◦C and analysed

by 1H NMR spectroscopy at regular intervals. (Electronic copies of the stacked 1H

NMR spectra are available on the attached CD)

4.5 Experimental for Section 2.5

4.5.1 O(SiMe2NHAr”)2 (19b) (Ar” = 2,6-Me2C6H3)

A solution of n-BuLi in hexane (20.5 mL of a 1.6 M solution, 0.033 mol.) was added

dropwise to a stirring solution of Ar”NH2 (4 mL, 0.033 mol.) in Et2O (80 mL) at -78

◦C. The resulting suspension was stirred for 4h followed by the dropwise addition of

O(SiMe2Cl)2 at -78 ◦C (3.25 g, 0.016 mol.). The solution was allowed to stir for 18h

followed by filtration through celite. Removal of the volatiles in vacuo gives 19b as

a clear colourless oil. Yield 4.56 g, 78 %.

1H NMR (C6D6, 300 MHz) δ 7.01 (d, JHH = 7.5 Hz, 4H, m-C6H3), 6.88 (t, JHH =

7.5 Hz, 2H, p-C6H3), 2.22 (s, 12H, o-Me2), 0.09 (s, 12H, SiMe2).
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13C NMR (C6D6, 75 MHz) δ 142.9, 131.9, 128.7, 122.5 (C6H3), 19.9 (o-Me2), 0.8

(SiMe2).

EI-MS: m/z (%): 373.21, 122.10.

4.5.2 Bi(O(SiMe2NAr”)2)Cl (Ar” = 2,6-i -Pr2C6H3) (20a)

A solution of n-BuLi in hexane (2.3 mL of a 1.6 M solution, 3.6 mmol.) was added

dropwise to a stirring solution of O(SiMe2NHAr”)2 (Ar” = 2,6-i -Pr2C6H3) (0.80 g,

1.7 mmol.) in Et2O (7 mL) at -30 ◦C. The resulting suspension was allowed to warm

to room temperature and then stirred for 4h. The suspension was added dropwise

to a stirring suspension of BiCl3 (0.53 g, 1.7 mmol.) in Et2O (10 mL) in the absence

of light, followed by stirring for 18h in the absence of light. Unreacted BiCl3 and

decomposition products were removed by filtration through celite to give a clear red

solution. Colourless crystals were obtained upon concentration of the solution and

storage at -30 ◦C for 24h. Yield 0.245 g, 35 %.

Anal. Calcd. for C28H46BiClN2OSi2 (727.29 ): C, 46.24; H, 6.38; N, 3.80 %. Found:

C, 46.23; H, 6.75, N 3.93 %.

1H NMR (C6D6, 300 MHz) δ 7.22 (dd, JHH = 7.5 and 1.8 Hz, 2H, m-C6H3), 7.09

(dd, JHH = 7.5 and 1.8 Hz, 2H, m-C6H3), 6.98 (t, JHH = 7.5 Hz, 2H, p-C6H3), 4.22

(sept, JHH = 6.9 Hz, 2H, CH (CH3)2), 3.66 (sept, JHH = 6.9 Hz, 2H, CH (CH3)2),

1.27 (ddd, JHH = 6.9, 6.9 and 0.3 Hz, 24H, CH(CH3)2), 0.60 (s, 6H, SiMe2), 0.20

(s, 6H, SiMe2).

13C NMR (C6D6, 75 MHz) δ 151.3, 148.3, 137.7, 126.9, 125.0, 123.7 (C6H3), 29.0,

28.7, 27.5, 25.1, 24.6 (CH(CH3)2 and CH(CH3)2), 4.5, 3.2 (SiMe2).

29Si NMR (C6D6, 100 MHz) δ 5.9.
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4.5.3 Bi(O(SiMe2NAr”)2)Cl (Ar” = 2,6-Me2C6H3) (20b)

A solution of n-BuLi in hexane (3.75 mL of a 1.6 M solution, 6.0 mmol.) was added

dropwise to a stirring solution of O(SiMe2NHAr”)2 (0.50 g, 2.7 mmol.) in Et2O (7

mL) at -30 ◦C. The resulting suspension was allowed to warm to room temperature

and then stirred for 4h. The suspension was added dropwise to a stirring suspension

of BiCl3 (0.85 g, 2.7 mmol.) in Et2O (10 mL) in the absence of light, followed by

stirring for 18h in the absence of light. Unreacted BiCl3 and decomposition products

were removed by filtration through celite to give a clear orange solution. A small

number of colourless crystals were obtained upon concentration of the solution and

storage at -30 ◦C for 24h.

1H NMR (C6D6, 300 MHz) δ 7.07 (br, 4H, m-C6H3), 6.82 (t, JHH = 7.8 Hz, 2H,

p-C6H3), 2.73 (s, 6H, o-Me2), 2.46 (s, 6H, o-Me2), 0.59 (s, 6H, SiMe2), 0.17 (s, 6H,

SiMe2);

4.5.4 [Bi(O(SiMe2NAr”)2][AlCl4] (Ar” = 2,6-i -Pr2C6H3)

(21)

A solution of 20a (0.10 g, 0.14 mmol.) in toluene (5 mL) was added dropwise to a

stirring suspension of AlCl3 (0.018 g, 0.14 mmol.) in toluene (5 mL). The resulting

dark red solution was allowed to stir for 4 hours followed by concentration and

storage at -30 ◦C. After 24 hours, clear dark red crystals of 21 suitable for single

crystal X-ray diffraction were obtained. Yield 0.105 g, 89 %

Anal. Calcd. for C28H46AlBiCl4N2OSi2 (860.62 ): C, 39.08; H, 5.39; N, 3.26 %.

Found: C, 38.91; H, 5.31, N 3.28 %.

1H NMR (C6D6, 300 MHz) 7.16 (d, JHH = 7.8 Hz, 4H, m-C6H3), 6.83 (t, JHH =

7.8 Hz, 4H, p-C6H3), 3.41 (sept, JHH = 6.6 Hz, 4H, CH (CH3)2), 1.21 (dd, JHH =

42.8 and 6.9 Hz, 24H, CH(CH3)2), 0.22 (s, 12H, SiMe2);
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13C NMR (C6D6, 75 MHz) 149.2, 129.3, 128.6, 125.7, 124.4(C6H3), 29.3, 27.6, 25.2

(CH(CH3)2 and CH(CH3)2), 3.8 (SiMe2).
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Appendix
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of Disordered Atoms.
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Appendix B: Molecular Structure of

BiMe2Si{NAr}2)Et (15) showing the Position

of Disordered Atoms.
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Appendix C1: Crystal data and structure refinement for
Mg(mesCNCy2)2(THF) (2)

Empirical formula C48H74MgN4O

Formula weight 747.42

Temperature 120(1) K

Wavelength 1.54180 Å

Crystal system Tetragonal

Space group P 43 21 2 (No.96)

Unit cell dimensions a = 10.24350(13) Å, α= 90◦.

b = 10.24350(13) Å, β= 90◦.

c = 43.7040(7) Å, γ= 90◦.

Volume 4585.83(11) Å3

Z 4

Density (calculated) 1.08 Mg/m3

Absorption coefficient 0.608 mm−1

F(000) 1640

Crystal size 0.25 x 0.09 x 0.05 mm3

Theta range for data collection 4.05 to 73.79◦

Index ranges -12≤h≤12, -12≤k≤12, -54≤l≤32

Reflections collected 33678

Independent reflections 4630 [R(int) = 0.058]

Completeness to theta = 73.79◦ 99.90%

Absorption correction Gaussian

Max. and min. transmission 1.782 and 0.924

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4630 / 0 / 248

Goodness-of-fit on F2 1.044

Final R indices [I≥2sigma(I)] R1 = 0.037, wR2 = 0.092

R indices (all data) R1 = 0.040, wR2 = 0.094

Absolute structure parameter -0.02(5)

Largest diff. peak and hole 0.24 and -0.21 e.Å−3
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Appendix C2: Crystal data and structure refinement for
Mg({SiMe3}2NC{Ni -Pr}2)2(THF) (3)

Empirical formula C30H72MgN6OSi4

Formula weight 669.61

Temperature 120.01(10) K

Wavelength 1.5418 Å

Crystal system Monoclinic

Space group P 21/c (No.14)

Unit cell dimensions a = 9.9306(2) Å, α= 90◦.

b = 24.2870(4) Å, β= 114.059(2)◦.

c = 18.9646(4) Å, γ= 90◦.

Volume 4176.61(14) Å3

Z 4

Density (calculated) 1.07 Mg/m3

Absorption coefficient 0.186 mm−1

F(000) 1480

Crystal size 0.32 x 0.27 x 0.11 mm3

Theta range for data collection 3.13 to 73.81◦.

Index ranges -12≤h≤12, -29≤k≤29, -21≤l≤21

Reflections collected 50946

Independent reflections 8369 [R(int) = 0.114]

Reflections with I>2sigma(I) 7105

Completeness to theta = 66.97◦ 98.60%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.00000 and 0.89807

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 8369 / 0 / 379

Goodness-of-fit on F2 1.055

Final R indices [I≥2sigma(I)] R1 = 0.080, wR2 = 0.125

R indices (all data) R1 = 0.088, wR2 = 0.130

Largest diff. peak and hole 0.34 and -0.35 e.Å−3
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Appendix C3: Crystal data and structure refinement for Mg(PhC≡CC{Ni -
Pr}2)2(THF)2 (4.(THF))

Empirical formula C38H54MgN4O2

Formula weight 623.16

Temperature 120.01(10) K

Wavelength 1.5418 Å

Crystal system Triclinic

Space group P 1̄ (No.2)

Unit cell dimensions a = 9.3730(3) Å, α= 78.282(3)◦.

b = 10.0360(4) Å, β= 70.533(4)◦.

c = 10.5466(4) Å, γ= 77.850(3)◦.

Volume 904.86(6) Å3

Z 1

Density (calculated) 1.14 Mg/m3

Absorption coefficient 0.703 mm−1

F(000) 338

Crystal size 0.34 x 0.30 x 0.21 mm3

Theta range for data collection 4.55 to 73.91◦.

Index ranges -11≤h≤11, -12≤k≤11, -13≤l≤11

Reflections collected 10124

Independent reflections 3565 [R(int) = 0.016]

Completeness to theta = 66.97◦ 99.80%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.000 and 0.632

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 3565 / 0 / 205

Goodness-of-fit on F2 1.025

Final R indices [I≥2sigma(I)] R1 = 0.035, wR2 = 0.090

R indices (all data) R1 = 0.036, wR2 = 0.091

Largest diff. peak and hole 0.19 and -0.17 e.Å−3
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Appendix C4: Crystal data and structure refinement for
Mg(C≡CPh)2(THF)4 (6.(THF)4)

Empirical formula C32H42MgO4

Formula weight 514.97

Temperature 120.01(10) K

Wavelength 1.54180 Å

Crystal system Monoclinic

Space group C2/c (No.15)

Unit cell dimensions a = 11.0212(6) Å, α= 90◦.

b = 22.0516(10) Å, β= 105.758(7)◦.

c = 12.0459(8) Å, γ= 90◦.

Volume 2817.6(3) Å3

Z 4

Density (calculated) 1.21 Mg/m3

Absorption coefficient 0.814 mm−1

F(000) 1112

Crystal size 0.55 x 0.41 x 0.24 mm3

Theta range for data collection 4.01 to 73.82◦.

Index ranges -13≤h≤13, -26≤k≤27, -14≤l≤14

Reflections collected 16457

Independent reflections 2836 [R(int) = 0.059]

Completeness to theta = 73.82◦ 99.30%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.00000 and 0.63012

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2836 / 3 / 191

Goodness-of-fit on F2 0.994

Final R indices [I≥2sigma(I)] R1 = 0.075, wR2 = 0.221

R indices (all data) R1 = 0.078, wR2 = 0.229

Largest diff. peak and hole 1.385 and -0.341 e.Å−3
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Appendix C5: Crystal data and structure refinement for [Mg(PhC≡CC{Ni -
Pr}2)Br(Et2O)]2 ([7]2)

Empirical formula C19H29BrMgN2O

Formula weight 405.66

Temperature 120(1) K

Wavelength 1.54180 Å

Crystal system Orthorhombic

Space group Pca21 (No.29)

Unit cell dimensions a = 18.05830(13) Å, α= 90◦.

b = 12.40280(8) Å, β= 90◦.

c = 19.33740(13) Å, γ= 90◦.

Volume 4331.06(5) Å3

Z 8

Density (calculated) 1.24 Mg/m3

Absorption coefficient 2.916 mm-1

F(000) 1696

Crystal size 0.65 x 0.57 x 0.41 mm3

Theta range for data collection 3.56 to 73.91◦.

Index ranges -22≤h≤20, -15≤k≤10, -24≤l≤24

Reflections collected 29431

Independent reflections 8510 [R(int) = 0.029]

Completeness to theta = 73.91◦ 98.70%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 1.00000 and 0.70232

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 8510 / 1 / 434

Goodness-of-fit on F2 1.058

Final R indices [I≥2sigma(I)] R1 = 0.034, wR2 = 0.089

R indices (all data) R1 = 0.034, wR2 = 0.089

Absolute structure parameter 0.00(7)

Largest diff. peak and hole 0.52 and -0.69 e.Å−3
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Appendix C6: Crystal data and structure refinement for
Me2Si{N(Na.(THF)3)Ar}{NHAr} (10a.(THF)3)

Empirical formula C42H72N2NaO4Si

Formula weight 720.09

Temperature/K 120.02(10)

Crystal system triclinic

Space group P 1̄ (No.2)

a/Å 11.3893(4)

b/Å 12.2039(4)

c/Å 16.5160(6)

α/◦ 80.126(3)

β/◦ 74.202(3)

γ/◦ 77.259(3)

Volume/Å3 2139.28(13)

Z 2

calc mg/mm3 1.12

m/mm1 0.105

F(000) 790

Crystal size/mm3 0.8 x 0.43 x 0.41

Radiation MoKα ( = 0.71073)

2 range for data collection 5.564 to 59.998◦

Index ranges -16≤h≤15, -17≤k≤14, -22≤l≤21

Reflections collected 19499

Independent reflections 11706 [R(int) = 0.025]

Data/restraints/parameters 11706/0/484

Goodness-of-fit on F2 1.016

Final R indexes [I≥2σ(I)] R1 = 0.047, wR2 = 0.118

Final R indexes [all data] R1 = 0.060, wR2 = 0.127

Largest diff. peak/hole / e Å−3 0.45/-0.32
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Appendix C7: Crystal data and structure refinement for
[{Bi(Me2Si{NAr}2)}2(µ-Cl)][GaCl4] (13b)

Empirical formula C58H94Bi2Cl5GaN4Si2

Formula weight 1568.48

Temperature/K 120.01(10)

Crystal system triclinic

Space group P 1̄ (No.2)

a/Å 12.8472(5)

b/Å 17.0713(7)

c/Å 17.4081(7)

α/◦ 117.739(4)

β/◦ 92.142(3)

γ/◦ 90.447(3)

Volume/Å3 3375.4(3)

Z 2

calc mg/mm3 1.54

m/mm1 12.97

F(000) 1560

Crystal size/mm3 0.1 x 0.08 x 0.02

2 range for data collection 5.742 to 147.992◦

Index ranges -14≤h≤15, -21≤k≤20, -15≤l≤21

Reflections collected 26092

Independent reflections 13265 [R(int) = 0.034]

Data/restraints/parameters 13265/36/671

Goodness-of-fit on F2 1.036

Final R indexes [I≥2σ(I)] R1 = 0.031, wR2 = 0.073

Final R indexes [all data] R1 = 0.040, wR2 = 0.080

Largest diff. peak/hole / e Å−3 1.66/-2.15
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Appendix C8: Crystal data and structure refinement for
Bi(Me2Si{NAr}2)Ph (14)

Empirical formula C67.5H90Bi2N4Si2

Formula weight 1431.57

Temperature/K 120.02(10)

Crystal system triclinic

Space group P 1̄ (No.2)

a/Å 12.9068(2)

b/Å 15.6323(4)

c/Å 17.3240(5)

α/◦ 108.940(2)

β/◦ 93.6783(18)

γ/◦ 100.2794(18)

Volume/Å3 3224.91(14)

Z 2

calc mg/mm3 1.47

m/mm1 5.528

F(000) 1434

Crystal size/mm3 0.35 x 0.16 x 0.05

Radiation Mo Kα ( = 0.71073)

2 range for data collection 5.328 to 60◦

Index ranges -18≤h≤18, -21≤k≤21, -24≤l≤24

Reflections collected 66037

Independent reflections 18799 [R(int) = 0.035]

Data/restraints/parameters 18799/0/714

Goodness-of-fit on F2 1.036

Final R indexes [I≥2σ(I)] R1 = 0.024, wR2 = 0.053

Final R indexes [all data] R1 = 0.033, wR2 = 0.056

Largest diff. peak/hole / e Å−3 1.82/-0.97
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Appendix C9: Crystal data and structure refinement for Bi(Me2Si{NAr}2)Et
(15)

Empirical formula C14H22.5Bi0.5NSi0.5

Formula weight 323.36

Temperature/K 120.01(10)

Crystal system trigonal

Space group R

(No.148)

a/Å 28.7503(11)

b/Å 28.7503(11)

c/Å 9.8541(5)

α/◦ 90

β/◦ 90

γ/◦ 120

Volume/Å3 7053.9(6)

Z 18

calc mg/mm3 1.37

m/mm1 5.678

F(000) 2916

Crystal size/mm3 0.21 x 0.15 x 0.14

Radiation Mo Kα ( = 0.71073)

2 range for data collection 5.66 to 66.22◦

Index ranges -29≤h≤43, -42≤k≤43, -12≤l≤14

Reflections collected 16452

Independent reflections 5348[R(int) = 0.072]

Data/restraints/parameters 5348/114/179

Goodness-of-fit on F2 1.323

Final R indexes [I≥2σ(I)] R1 = 0.129, wR2 = 0.272

Final R indexes [all data] R1 = 0.151, wR2 = 0.280

Largest diff. peak/hole / e Å−3 1.88/-3.13
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Appendix C10: Crystal data and structure refinement for
Bi(Me2Si{NAr}2)(OAr’) (Ar’ = 2,6-t-Bu2C6H3) (17)

Empirical formula C40H61BiN2OSi

Formula weight 822.97

Temperature/K 120.01(10)

Crystal system triclinic

Space group P 1̄ (No.2)

a/Å 10.5385(2)

b/Å 11.2364(3)

c/Å 17.0806(4)

α/◦ 85.5200(19)

β/◦ 72.430(2)

γ/◦ 88.1001(18)

Volume/Å3 1922.24(8)

Z 2

calcmg/mm3 1.422

m/mm1 4.649

F(000) 840

Crystal size/mm3 0.14 x 0.08 x 0.03

2 range for data collection 5.42 to 55◦

Index ranges -13≤h≤13, -14≤k≤14, -22≤l≤22

Reflections collected 38886

Independent reflections 8839 [R(int) = 0.0456]

Data/restraints/parameters 8839/0/422

Goodness-of-fit on F2 1.057

Final R indexes [I≥2σ(I)] R1 = 0.029, wR2 = 0.064

Final R indexes [all data] R1 = 0.034, wR2 = 0.067

Largest diff. peak/hole / e Å−3 2.81/-0.73
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Appendix C11: Crystal data and structure refinement for
Bi(Me2Si{NAr}2)(PCy2) (18)

Empirical formula C41.5H65.5BiN2PSi

Formula weight 860.5

Temperature/K 120.01(10)

Crystal system triclinic

Space group P 1̄ (No.2)

a/Å 11.6799(2)

b/Å 12.7221(3)

c/Å 15.6698(3)

α/◦ 69.6451(19)

β/◦ 68.6372(16)

γ/◦ 73.3507(18)

Volume/Å3 1998.69(8)

Z 2

calcmg/mm3 1.43

m/mm1 4.511

F(000) 881

Crystal size/mm3 0.25 x 0.18 x 0.15

Radiation Mo Kα ( = 0.71073)

2 range for data collection 5.426 to 54.998◦

Index ranges -15≤h≤15, -16≤k≤16, -20≤l≤20

Reflections collected 58123

Independent reflections 9184[R(int) = 0.029]

Data/restraints/parameters 9184/0/435

Goodness-of-fit on F2 1.075

Final R indexes [I≥2σ(I)] R1 = 0.019, wR2 = 0.048

Final R indexes [all data] R1 = 0.020, wR2 = 0.049

Largest diff. peak/hole / e Å−3 3.91/-0.56
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Appendix C12: Crystal data and structure refinement for
Bi(O{Me2SiNAr”}2)Cl (Ar” = 2,6-i -Pr2C6H3) (20a)

Empirical formula C28H46BiClN2OSi2

Formula weight 727.28

Temperature/K 220.01(10)

Crystal system triclinic

Space group P 1̄ (No.2)

a/Å 10.0438(3)

b/Å 12.5485(3)

c/Å 13.2758(4)

α/◦ 80.632(2)

β/◦ 86.225(3)

γ/◦ 75.858(3)

Volume/Å3 1600.26(8)

Z 2

calcmg/mm3 1.51

m/mm1 5.689

F(000) 728

Crystal size/mm3 0.51 x 0.46 x 0.37

2 range for data collection 5.146 to 59.996◦

Index ranges -14≤h≤14, -17≤k≤17, -18≤l≤18

Reflections collected 23378

Independent reflections 9330[R(int) = 0.037]

Data/restraints/parameters 9330/0/328

Goodness-of-fit on F2 1.044

Final R indexes [I≥2σ(I)] R1 = 0.032, wR2 = 0.070

Final R indexes [all data] R1 = 0.037, wR2 = 0.072

Largest diff. peak/hole / e Å−3 2.11/-2.60

161



Appendix C13: Crystal data and structure refinement for
[Bi(O{Me2SiNAr”}2)][AlCl4] (Ar” = 2,6-i -Pr2C6H3) (21)

Empirical formula C35H54AlBiCl4N2OSi2

Formula weight 952.74

Temperature/K 120.01(10)

Crystal system triclinic

Space group P 1̄ (No.2)

a/Å 10.53512(18)

b/Å 10.83490(18)

c/Å 18.5054(3)

α/◦ 87.1030(13)

β/◦ 88.7719(13)

γ/◦ 75.1549(15)

Volume/Å3 2039.14(6)

Z 2

calcmg/mm3 1.55

m/mm1 4.695

F(000) 956

Crystal size/mm3 0.46 x 0.31 x 0.22

2 range for data collection 5.206 to 60◦

Index ranges -14≤h≤14, -15≤k≤15, -26≤l≤26

Reflections collected 73699

Independent reflections 11894[R(int) = 0.028]

Data/restraints/parameters 11894/0/428

Goodness-of-fit on F2 1.134

Final R indexes [I≥2σ(I)] R1 = 0.015, wR2 = 0.038

Final R indexes [all data] R1 = 0.016, wR2 = 0.039

Largest diff. peak/hole / e Å−3 1.00/-0.55

162



Publication(s)

163



Catalytic C−C Bond Formation Promoted by Organo- and
Amidomagnesium(II) Compounds
Ryan J. Schwamm and Martyn P. Coles*

School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand

*S Supporting Information

ABSTRACT: Mg(mesC{NCy}2)(N{SiMe3}2)(THF) is a (pre)-
catalyst for C−C bond formation. Attempted isolation of
intermediates in a proposed catalytic cycle was hindered by facile
ligand redistribution. A subsequent investigation of commercially
available organo- or amidomagnesium(II) compounds (including
Grignard reagents) demonstrated similar catalytic behavior.

Magnesium catalysts for carbon−carbon bond formation
focus primarily on the Lewis acidic properties of the

metal.1 Examples that proceed via sequential σ-bond meta-
thesis/insertion reactions are less well represented in the
chemical literature.2 We have recently synthesized magnesium
guanidinate3 and amidinate4 compounds and demonstrated
that Mg(mesC{NCy}2)(N{SiMe3}2)(THF) (1) is active for
the dimerization of aldehydes (Tishchenko reaction).4 We
report here that 1 is also active toward the coupling of terminal
alkynes and carbodiimides under catalytic conditions, leading to
the discovery that other commercially available Mg(II)
compounds, including Grignard reagents, effect this trans-
formation. In a related study, Hill et al. have recently shown
that the Mg-mediated reaction between alkynes and isocyanates
forms bis(imidazolidine-2,4-diones).5

Carbodiimide insertion into M−C bonds of terminal
acetylides to afford the corresponding propargylamidinate has
been documented for Li,6 K,7 Ca,8 Y,9 Sm,10 Yb,9a Lu,9a and
U.11 Several compounds produce the C−C coupled product
catalytically,6a,8,9c,12 with the most extensively studied system
promoted by {Me2Si(C5Me4)(NPh)}Y(CH2SiMe3)(THF).

9a A
general mechanism of catalysis has been presented (Scheme 1).
The entry point is the conversion of a metal−alkyl or −amide
(pre)catalyst to acetylide I. Carbodiimide insertion into the
M−C bond affords propargylamidinate III, which is protonated
by alkyne to liberate the amidine V and regenerate I.
The efficacy of 1 in the catalytic addition of terminal alkynes

to carbodiimides was initially investigated on an NMR scale
using N,N’-diisopropylcarbodiimide and phenylacetylene
(Table 1). At room temperature a catalyst loading of 10 mol
% yielded 44% of the amidine after 24 h (entry 1); decreasing
the amount of catalyst to 1 mol % reduced the yield to 24%
(entry 2). More respectable yields were obtained at the lower
loading with increased temperature (entries 3 and 4), with
good yields (∼70%) obtained at 80 °C. Control reactions
showed no catalyst decomposition at this temperature and
confirmed that the propargylamidine was not formed in the

absence of 1. Further studies were performed in C6D6 with 1
mol % of 1 at 80 °C.
Varying the carbodiimide had a significant effect on the

activity. The i-Pr and Cy derivatives gave similar yields after 24
h (entries 4 and 5), consistent with a similar steric profile of the
two nitrogen substituents. Increasing the bulk of the substituent
to t-Bu gave a much lower yield (entry 6), and no amidine was
produced with the 2,6-diisopropylphenyl-substituted carbodii-
mide (entry 7). These results are consistent with associative σ-
bond metathesis during formation of the C−C bond (II;
Scheme 1). Para substitution of the acetylene aryl group had
little effect in comparison to phenylacetylene (entries 8 and 9).
Lower activities were observed for silyl-substituted acetylenes
(entries 10 and 11), with a further reduction in yield obtained
for alkyl derivatives (entries 12 and 13). In preparative-scale
reactions (entries 14 and 15), toluene gave superior results in
comparison with THF, consistent with the competitive binding
of THF to Mg during catalysis.
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In a standard catalytic experiment, a solution of 1 was added
to a premixed 1:1 solution of the acetylene and carbodiimide.
As such, entry into the catalytic cycle may occur by two
possible initiation pathways (Scheme 2). Studies on related

calcium systems suggest initial σ-bond metathesis of the amide
bond to form the metal acetylide and HN{SiMe3}2;

8 this
corresponds to formation of A in Scheme 2. An alternative
activation process for 1 involves insertion of carbodiimide into
the magnesium−amide bond to afford the mixed amidinate/
guanidinate species B; similar heteroallene insertion into Mg−
C bonds has been reported.13 Intermediate B is able to react

with acetylene to afford A with liberation of the guanidine,
{Me3Si}2NC{N-i-Pr}{NH-i-Pr}.

14

An NMR-scale reaction of 1 and phenylacetylene showed
quantitative liberation of HN{SiMe3}2 and formation of a new
species represented by a single set of acetylide and amidinate
resonances. NOE correlations between the o-C6H5 protons of
the acetylide and the α-protons of the THF and cyclohexyl
groups are consistent with the heteroleptic terminal acetylide A.
Compound A is stable to additional phenylacetylene at 80 °C,
demonstrating the stability of the amidinate ligand toward
protonolysis under catalytically relevant conditions.
The 13C NMR of the 1:1 reaction of 1 and N,N’-

diisopropylcarbodiimide showed three low-field resonances
for the metallacyclic carbon (Figure S15, Supporting
Information). The peaks at δC 174.0 and 166.4 ppm correspond
to the bis(amidinate) Mg(mesC{NCy}2)2(THF) (2) and the
bis(guanidinate) Mg({Me3Si}2NC{N-i-Pr}2)2(THF) (3), re-
spectively, confirmed by independently synthesized samples
(vide infra). The remaining peak (δC 173.8) is attributed to the
amidinate CN2 of the mixed amidinate/guanidinate species B
(Scheme 2). The CN3 resonance in B is presumed to overlap
with the peak at δC 166.4 ppm. The 1H NMR spectrum is
complicated by overlapping signals, but resonances for the
mesityl group of 2 (δH 6.84, 2.47, and 2.13 ppm) and the i-Pr
and SiMe3 groups of 3 (δH 1.17 (d), 0.32 ppm) are identifiable
(Figure S14, Supporting Information). The proposed equili-
brium between these complexes (Scheme 2) was demonstrated
by the formation of the mixed-ligand complex B when
equimolar amounts of isolated bis(amidinate) and bis-
(guanidinate) species 2 and 3 were combined.
Addition of 1 equiv of N,N’-diisopropylcarbodiimide to A,

representing the second step of the proposed catalytic cycle,
also generated a mixture of species (Scheme 3). Compound 2

and the bis(propargylamidinate) Mg(PhCCC{N-i-
Pr}2)2(THF) (5) are identified in the 13C{1H} NMR spectrum
of the mixture from comparison with independently synthe-
sized samples (Figure S17, Supporting Information). The
remaining resonances are assigned to the mixed amidinate
Mg(mesC{NCy}2)(PhCCC{N-i-Pr}2)(THF) (C) with CN2

Table 1. Catalytic Addition of Alkynes to Carbodiimides
promoted by 1

R R′ loading (mol %) temp (°C) yield (%)a

1 Ph i-Pr 10 25 44
2 Ph i-Pr 1 25 24
3 Ph i-Pr 1 50 53
4 Ph i-Pr 1 80 72
5 Ph Cy 1 80 74
6 Ph t-Bu 1 80 7
7 Ph Arb 1 80 0
8 4-t-BuC6H4 i-Pr 1 80 76
9 4-MeC6H4 i-Pr 1 80 77
10 SiMe3 i-Pr 1 80 63
11 Si(i-Pr)3 i-Pr 1 80 42
12 n-Bu i-Pr 1 80 41
13 tBu i-Pr 1 80 12
14 Ph i-Pr 5 80 73c,d

15 Ph i-Pr 5 80 51c,e

aYields from 1H NMR integrals using THF (from 1) as internal
standard (average of two runs); bAr = 2,6-diisopropylphenyl. cIsolated
yield. dToluene. eTHF.

Scheme 2. a

aLegend: (i) HCCPh, −HN{SiMe3}2; (ii) i-PrN=CN-i-Pr; (iii)
HCCPh, −{Me3Si}2NC{N-i-Pr}{NH-i-Pr}.

Scheme 3. a

aLegend: (i) i-PrN=CN-i-Pr; (ii) THF.
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resonances at δC 173.8 and 157.7 ppm and acetylenic peaks at
δC 95.8 and 81.0 ppm.
Attempts to isolate acetylide A from the reaction of 1 and

phenylacetylene were unsuccessful. Fractional crystallization of
the resultant white powder from THF/hexane afforded the
bis(acetylide) Mg(CCPh)2(THF)4 (4;15 first crop) and
bis(amidinate) 2 (second crop), in yields of 16% and 26%,
respectively. The composition of 4 was confirmed by
independent synthesis. A similar ligand redistribution occurred
during attempts to isolate C. Reaction of A (generated in situ)
with N,N’-diisopropylcarbodiimide, followed by workup and
crystallization from THF/hexane, gave 2 (first crop) and
solvated Mg(PhCCC{N-i-Pr}2)2(THF)2 (5(THF); second
crop) in isolated yields of 47% and 36%, respectively.
Compound 3 was independently synthesized from the

reaction of N,N’-diisopropylcarbodiimide with Mg(N-
{SiMe3}2)2,

16 confirming the viability of carbodiimide insertion
into Mg−amide bonds in the proposed route to B. Compound
4 was obtained from the reaction of MgBu2 with phenyl-
acetylene. Compounds 2 and 5 were isolated during the
attempted preparation of A and C, respectively. All new
compounds were characterized by 1H and 13C NMR spectros-
copy and elemental analysis; X-ray diffraction studies were
performed on 2−5 (Figures S23−S27, Supporting Informa-
tion).
The propensity for the magnesium compounds to undergo

facile ligand redistribution precludes definitive identification of
the active species in this case. This prompted us to investigate
related magnesium compounds to determine whether the
catalytic cycle could be accessed from simpler reagents (Table
2).
Initial work examined the products of the ligand redis-

tribution reactions as possible active species. Catalytic turnover
was observed for the bis(amidinate/guanidinate) complexes 2,

3, and 5 with activities comparable to those obtained from 1
under identical conditions (∼70%, entries 2−5). Loss of N,N’-
chelating groups to gain entry into catalysis has been observed
for lanthanides in ring-opening polymerization17 and the
Tishchenko reaction.18 The bis(acetylide) 4 exhibited a similar
activity (entry 5), suggesting that a chelating ligand is not
required in the (pre)catalytic species. To eliminate the
possibility that the reaction was proceeding via Lewis acid
catalysis, the tetraphenylborate salt Mg(BPh4)2

19 was tested.
No activity was observed (entry 6), suggesting that Mg−N or
Mg−C bonds (with the potential to form amidinate/
guanidinate ligands or terminal acetylides) are important in
the precatalytic species.
Other magnesium compounds with this general criterion

were identified as candidates for testing. Both MgBu2 and
Mg(N{SiMe3}2)2 were active (entries 7 and 8), with yields
comparable to those noted above. Similar catalytic activity has
been recorded for the addition of amines to carbodiimides
using MgBu2.

20 The Grignard reagents MgMeBr and MgPhBr
were also active, albeit with lower activity (∼60%, entries 9−
11). It was postulated that the presence of a magnesium−
bromide bond was responsible for the reduced yield, supported
by the inactivity of MgBr2·Et2O in catalysis (entry 12). Further
evidence for the detrimental effect of the Mg−Br group
resulted from testing Mg(PhCCC{N-i-Pr}2)Br(OEt2) (6),
synthesized from the reaction of the neutral amidine PhC
CC{Ni-Pr}{NHi-Pr} with MgMeBr (entry 13). A yield of
∼60% was recorded, comparable to those obtained with the
Grignard reagents. We also demonstrated that the commercially
available Grignard reagent MgMeBr was active on a preparative
scale, affording a ∼50% yield of the propargylamidine on
workup (entries 14− and 15), independent of whether toluene
or THF was used as solvent.
In summary, we have shown that catalytic C−C coupling of

alkynes and carbodiimides is promoted by simple organo- and
amidomagnesium species, including the ubiquitous Grignard
reagents. While ligand exchange processes likely dominate the
solution behavior of these Mg compounds,21 this does not have
an adverse effect on the overall activity, with the most
important factor being the presence of groups that are able
to be converted to amidinate/guanidinate ligands. Rather than
being considered as a simple source of carbanion, we hope
these results promote the use of commercially available
reagents to access active metal centers for the development
of new catalytic applications based on magnesium.
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Table 2. Catalytic Addition of Alkynes to Carbodiimides
Promoted by Magnesium Reagents

catalyst yield (%)a

1 Mg(mesC{NCy}2)(N{SiMe3}2)(THF) (1) 72
2 Mg(mesC{NCy}2)2(THF) (2) 74
3 Mg({Me3Si}2NC{N-i-Pr}2)2(THF) (3) 73
4 Mg(PhCCC{N-i-Pr}2)2(THF) (5) 72b

5 Mg(CCPh)2(THF)4 (4) 73b

6 Mg(BPh4)2 0
7 MgBu2 (1.0 M, heptane) 74b

8 Mg(N{SiMe3}2)2 70
9 MgMeBr (3.0 M, Et2O) 63b

10 MgMeBr·nEt2O (solid) 59b

11 MgPhBr·nEt2O (solid) 63b

12 MgBr2·Et2O 0
13 Mg(PhCCC{N-i-Pr}2)Br(OEt2) (6) 60b

14 MgMeBr, 5 mol % (3.0 M, Et2O)
c,d 56

15 MgMeBr, 5 mol % (3.0 M, Et2O)
c,e 53

aYields from 1H NMR integrals using THF (from 1) as internal
standard (average of two runs), unless otherwise stated. bYield
calculated from consumption of carbodiimide. cIsolated yield.
dToluene. eTHF.
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ABSTRACT: Chloride abstraction from the diamido-bismuth
compound Bi(Me2Si{NAr}2)Cl (1, Ar = 2,6-i-Pr2C6H3) using
MCl3 (M = Al, Ga) is a facile route to cationic species.
Stoichiometric reactions afford the tetrachlorometallate salts
[Bi(Me2Si{NAr}2)][MCl4] (2a, M = Al; 3a, M = Ga), whereas
reaction with 0.5 equiv of the group 13 reagent gives the μ-
chlorido bridged cations [{Bi(Me2Si{NAr}2)}2(μ-Cl)][MCl4]
(2b, M = Al; 3b, M = Ga). The crystal structure of 2a shows a
formally two-coordinate bismuth cation, with a Bi···Cl contact
to the [AlCl4]

− anion, whereas the structure of 3b shows a
total of three Bi···Cl contacts to [GaCl4]

−. Both species
associate as {1:1}2 dimers in the solid state through addi-
tional Bi···Cl interactions. Attempted preparation of cationic
complexes using either NaBR4 (R = Ph, Et) or [HNEt3][BPh4] were unsuccessful. Instead of forming the borate salts, the neutral
compounds Bi(Me2Si{NAr}2)R (4, R = Et; 5, R = Ph) were isolated as a result of aryl/alkyl transfer from boron to bismuth.

1. INTRODUCTION

Commercially available BiX3 compounds (X = halogen, triflate,
nitrate) are used as Lewis acidic reagents to promote a range of
organic transformations1 and polymerization reactions.2 More
recently cationic bismuth compounds have been investigated,3,4

developing the concept that an increased electrophilicity
associated with the positively charged metal center will enhance
the activity of the reagents. Due in part to the large radius of
the element [Shannon ionic radii Bi3+: 6-coordinate = 1.03 Å;
8-coordinate = 1.17 Å],5 much of the research on cationic
bismuth compounds has focused on the application of
multidentate ligands able to provide additional interactions to
support the metal center.6 Prominent among these examples
are the potentially tridentate systems based on either a
dianionic (C,E,C) framework (E = N, O, S),4,7 or the mono-
anionic (E,C,E)-system.8,9 Relatively little work has been
directed toward the study of low-coordinate bismuth cations.
A survey of the Cambridge Structural Database10 was con-

ducted to examine the distribution of coordination numbers
associated with crystallographically characterized cationic
bismuth compounds. The results, displayed in Figure 1, were
divided into three classes: bismuth(III), bismuth(V), and
bismuth clusters (defined in this survey as species containing
three or more Bi atoms). Most examples have been reported in
which the bismuth is 4-coordinate (52.5%), with 6- and 8-
coordinate bismuth each representing 12.0% of the total
number of structures listed in the database. Both high- (>8-co-
ordinate: 7.6%) and especially low- (<4-coordinate: 3.8%) co-
ordinate species are poorly represented. For each coordination

number there is a fairly even split between Bi(III) and higher
nuclearity “cluster” compounds, with far fewer examples of Bi(V)
cations. The exception is the 4-coordinate species, for which a large
number of [BiAr4]

+ cations have been structurally determined.

Received: January 20, 2014

Figure 1. Graph showing the coordination number of structurally
characterized bismuth cations (bismuth clusters defined as compounds
containing three or more Bi atoms in the structure).
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The only structurally characterized two-coordinated bismuth
cation is supported by the bulky diamido-ligand [Me2Si{Nt-Bu}2]

2−

(I, Figure 2).11 The salt is generated by chloride abstraction

from the neutral Bi(III) precursor Bi(Me2Si{Nt-Bu}2)Cl,
using MCl3 (M = Al, Ga, and In), to afford the corresponding
tetrachlorometallate species. This strategy for cation production
has been applied to other bismuth systems.12−17 The aluminum
reagent AlCl3 dominates as the chloride abstraction agent, with
relatively few reports on the use of GaCl3,

11,15,17 and only a
single report of this reactivity being achieved with InCl3;

11

these trends presumably reflect the differing Lewis acidity of the
group 13 reagents.
The solid-state structure of the tetrachloroaluminate salt I

contains long-range Bi···Cl interactions between the [Bi(Me2Si-
{Nt-Bu}2)]

+ cation and chlorides from two [AlCl4]
− anions,

generating a polymeric chain parallel to the b-axis of the unit
cell. Such moderation of positive charge in bismuth salts
through the formation of intermolecular Bi···Cl contacts to the
[MCl4]

− counterions is relatively common, and may be
augmented by additional associations in the solid state. For
example, the reaction of BiCl3 and AlCl3 in the presence of
hexamethyl benzene affords the {1:1}2 dimeric salt with an η3-
bonded aromatic ring (II),12 whereas generating the [BiCl2]

+

cation in the presence of SbPh3, using toluene as solvent,
restricted the aggregation to the monobismuth species (III).16

The only structurally characterized tetrachlorogallate salt of
bismuth involves the N,N′,N′-tris(trimethylsilyl)hydrazido
ligand (IV).15 In this example bismuth is involved in three-
center four-electron bonding to the two ligands, precluding the
formation of interion Bi···Cl interactions with the [GaCl4]

−

anion.
In this Contribution we examine the scope and limitations

of cation formation, using Bi(Me2Si{NAr}2)Cl, (1, Ar = 2,6-i-
Pr2C6H3),

18 as a starting material. Compound 1 is stable under
anaerobic conditions, and we have demonstrated that the
chelating diamide ligand is a stable platform for further
derivation of the Bi−Cl bond. While formation of cationic
species is relatively straightforward using MCl3 (M = Al, Ga),
attempts at synthesizing salts containing borate anions [BR4]

−

were complicated by transfer of the R-group and formation of
Bi(Me2Si{NAr}2)R.

2. EXPERIMENTAL SECTION
2.1. General. All manipulations were carried out under dry

nitrogen using standard Schlenk-line and cannula techniques, or in a
conventional nitrogen-filled glovebox. Solvents were dried over
appropriate drying agents and degassed prior to use. NMR spectra
were recorded using a Bruker Avance DPX 300 MHz spectrometer
at 300.1 (1H) and 75.4 (13C) MHz or a Varian VNMRS 500 MHz
spectrometer at 500.1 (1H), 160.4 (11B), 125.4 (13C), and 99.3 (29Si)
MHz. Proton and carbon chemical shifts were referenced internally
to residual solvent resonances. 29Si NMR chemical shifts were ob-
tained from 1H−29Si heteronuclear multiple-bond correlation
(HMBC) spectra. Elemental analyses were performed by S. Boyer at
London Metropolitan University. BiCl3 was freshly sublimed prior to
the synthesis of Bi(Me2Si{NAr}2)Cl (1), which was made according to
our previously published procedure.18 [HNEt3][BPh4] was synthe-
sized from [HNEt3]Cl and Na[BPh4] according to the procedure
described by Evans and co-workers.9 All other chemicals were
purchased from commercial sources and used as received.

2.2. Preparation of [Bi(Me2Si{NAr}2)][AlCl4] (2a). A solution of
1 (0.100 g, 0.15 mmol) in toluene (5 mL) was added dropwise to a
stirred suspension of AlCl3 (0.019 g, 0.15 mmol) in toluene (5 mL).
The resulting dark red solution was stirred for 4 h followed by
concentration and storage at −30 °C. After 24 h, dark red crystals were
obtained. Yield 0.105 g, 88%. Anal. Calcd. for C26H40N2AlBiCl4Si
(786.47): C, 39.71; H, 5.13; N, 3.56%. Found: C, 39.85; H, 5.01; N,
3.68%. 1H NMR: δ 7.26 (d, 3JHH = 7.7 Hz, 4H, m-CH), 6.60 (t, 3JHH =
7.7 Hz, 2H, p-CH), 3.49 (m br, 4H, CHMe2), 1.21 (br, 24H, CHMe2),
0.13 (s, 6H, SiMe2).

13C{1H} NMR: δ *, 148.5, 128.8, 122.5 (C6H3),
28.2 (CHMe2), 27.0 (br, CHMe2), 10.4 (SiMe). * o-C not observed.
29Si NMR: δ 38.0.

2.3. Generation of [{Bi(Me2Si{NAr}2)}2(μ-Cl)][AlCl4] (2b).
Method 1NMR Scale. A solution of 2a (0.020 g, 0.026 mmol) in
C6D6 (0.5 mL) was added to 1 (0.085 g, 0.013 mmol). The 1H NMR
spectrum indicated complete consumption of starting materials after
10 min at room temperature.

Method 2Preparative Scale. A solution of 1 (0.040 g, 0.061
mmol) in toluene (2 mL) was added to a stirring suspension of AlCl3
(0.004 g, 0.031 mmol) in toluene (2 mL). The resulting suspension
was stirred for 4 h followed by the removal of volatiles. 1H NMR
analysis of the crude product revealed formation of 2b. 1H NMR: δ
7.24 (d, 3JHH = 7.8 Hz, 4H, m-CH), 6.74 (t, 3JHH = 7.8 Hz, 2H, p-CH),
3.86 (br sept, 4H, CHMe2), 1.25 (d, 3JHH = 6.6 Hz, 24H, CHMe2),
0.20 (s, 6H, SiMe2).

2.4. Generation of [Bi(Me2Si{NAr}2)][GaCl4] (3a). Method
1NMR Scale. A solution of 2b (0.020 g, 0.026 mmol) in C6D6
(0.5 mL) was added to 1 (0.009 g, 0.013 mmol). The 1H NMR
spectrum indicated complete consumption of starting materials after
10 min at room temperature.

Method 2Preparative Scale. A solution of 1 (0.040 g, 0.061
mmol) in toluene (2 mL) was added to a solution of GaCl3 (0.011 g,
0.061 mmol) in toluene (2 mL). Removal of the volatiles followed by
1H NMR analysis of the crude products revealed formation of 3a. 1H
NMR: δ 7.28 (d, 3JHH = 7.8 Hz, 4H, m-CH), 6.58 (t, 3JHH = 7.8 Hz,
2H, p-CH), 3.51 (sept, 3JHH = 6.7 Hz, 4H, CHMe2), 1.24 (br, 24H,
CHMe2), 0.13 (s, 6H, SiMe2).

2.5. Preparation of [{Bi(Me2Si{NAr}2)}2(μ-Cl)][GaCl4] (3b). A
solution of 1 (0.100 g, 0.15 mmol) in toluene (4 mL) was added
dropwise to a stirring suspension of GaCl3 (0.013 g, 0.075 mmol) in
toluene (4 mL). The resulting dark red solution was stirred for 2 h
followed by concentration of the solution and storage at −30 °C. After
24 h, small dark red crystals of 3b were obtained. Yield 0.047 g, 40%.
Anal. Calcd. for C52H80N4Bi2Cl5GaSi2 (1482.34): C, 42.13; H, 5.44; N,
3.78%. Found: C, 41.97; H, 5.31; N, 3.90%. 1H NMR: δ 7.25 (d,
3JHH = 7.8 Hz, 4H, m-CH), 6.74 (t, 3JHH = 7.8 Hz, 2H, p-CH), 3.90
(sept, 3JHH = 6.8 Hz, 4H, CHMe2), 1.27 (d, 3JHH = 6.8 Hz, 24H,
CHMe2), 0.21 (s, 6H, SiMe2).

29Si NMR: δ 31.2. 13C{1H} NMR data

Figure 2. Examples of structurally characterized bismuth cations
containing tetrachlorometallate anions (see text for references).
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could not be obtained due to decomposition of 3b in solution over
extended periods of time.
2.6. Preparation of Bi(Me2Si{NAr}2)Ph (4). Method 1Prepara-

tive Scale from Bi(Me2Si{NAr}2)Cl + NaBPh4. A solution of 1 (0.100 g,
0.15 mmol) in toluene (5 mL) was added dropwise to a stirring
suspension of NaBPh4 (0.051 g, 0.15 mmol) in toluene (5 mL). The
resulting solution was stirred for 72 h at 90 °C, followed by removal of
the volatiles. Extraction into hexane and filtering through Celite
resulted in a clear yellow solution. The solution was concentrated and
stored at −30 °C. After 24 h, a number of white crystals of BPh3 were
deposited. Further concentration and storage at −30 °C yielded a
second crop of crystals, identified as a mixture of BPh3 and 4. Yield
0.070 g, 67%.
Method 2NMR Scale from Bi(Me2Si{NAr}2)Et + [HNEt3][BPh4]. A

solution of 5 (0.020 g, 0.031 mmol) in C6D6 was added to
[HNEt3][BPh4] (0.013 g, 0.031 mmol). The 1H NMR spectrum
revealed complete formation of 4 and BPh3 after 0.5 h at room
temperature.
Anal. Calcd. for C32H45N2BiSi (694.78): C, 55.32; H, 6.53; N,

4.03%. Found: C, 55.48; H, 6.64; N, 3.95%. 1H NMR: δ 8.48 (d, 3JHH
= 7.5 Hz, 2H, o-C6H5), 7.57 (t, 3JHH = 7.5 Hz, 1H, p-C6H5), 6.95 (t,
3JHH = 7.5 Hz, 2H, m-C6H5), 4.30 (sept, 3JHH = 6.8 Hz, 4H, CHMe2),
1.28 (d, 3JHH = 6.8 Hz, 24H, CHMe2), 0.63, 0.15 (s, SiMe2).

13C{1H}
NMR: δ 148.0 (br, C6H5), 147.2 (C6H3), 140.9 (C6H3), 136.2 (C6H5),
131.6 (C6H5), 129.4 (C6H3), 128.4 (C6H3), 124.5 (C6H5), 27.8 (br,
CHMe2), 25.1 (br, CHMe2), 17.5, 4.8 (SiMe). 29Si NMR: δ 19.5.
2.7. Preparation of Bi(Me2Si{NAr}2)Et (5). A solution of 1 (0.100 g,

0.15 mmol) in toluene (5 mL) was added dropwise to a stirring suspension
of NaBEt4 (0.023 g, 0.15 mmol) in toluene (5 mL). The resulting
solution was stirred for 24 h at room temperature, followed by removal
of the volatiles and extraction into hexane. The resulting suspension
was filtered through Celite and concentrated, followed by storage at
−30 °C. After 24 h, clear yellow crystals were formed. Yield 0.061 g,
63%. Anal. Calcd. for C28H45N2BiSi (646.73): C, 52.00; H, 7.01; N,
4.33%. Found: C, 51.91; H, 7.12; N, 4.24%. 1H NMR: δ 7.19 (d,
3JHH = 7.6 Hz, 4H, m-CH), 6.99 (t, 3JHH = 7.6 Hz, 2H, p-CH), 4.28
(sept, 3JHH = 6.9 Hz, 4H, CHMe2), 2.47 (t, 3JHH = 8.1 Hz, 3H,
CH2CH3), 2.04 (q, 3JHH = 8.1 Hz, 2H, CH2CH3), 1.31 (br, 24H,
CHMe2), 0.42 (s, 3H, SiMe2), 0.04 (s, 3H, SiMe2).

13C{1H} NMR: δ
147.9, 141.4, 124.2, 123.5 (C6H3), 27.7 (CHMe2), 25.9, 25.4
(CHMe2), 15.6 (SiMe), 8.7 (CH2CH3), 5.2 (SiMe). BiCH2CH3 was
not observed. 29Si NMR: δ 17.8.
2.8. Crystal Structure Data. Crystals were covered in inert oil,

and suitable single crystals were selected under a microscope and
mounted on a Enraf Nonius Kappa CCD diffractometer (2a) or an
Agilent SuperNova diffractometer fitted with an Atlas detector (3b,
4, 5). Data was collected at 173(2) K (2a) or 120.01(10) K (3b, 4, 5)
using Mo Kα radiation at 0.71073 Å (2a, 4, 5) or Cu Kα radiation
at 1.5418 Å (3b). The structures were refined with SHELXL-97.19

Additional features of note are listed below:
[{Bi(Me2Si{NAr}2)}2(μ-Cl)][GaCl4] (3b). The compound crystallizes

with a molecule of hexane in the unit cell.
Bi(Me2Si{NAr}2)Ph (4). The toluene solvate was located on an

inversion center and was refined at half-occupancy; hydrogen atoms
were not included in this model.
Bi(Me2Si{NAr}2)Et (5). The data solves in both the R3 and R3̅ space

groups; the latter model (in which the molecule is located on an inver-
sion center) is presented. The disorder was modeled as alternative
positions of the BiEt/SiMe2 groups, with a single position for the NAr
groups. There are large solvent channels in the crystal structure
containing a poorly resolved and unidentified solvent; this was not
modeled in the solution.

3. RESULTS AND DISCUSSION

3.1. Reaction of Bi(Me2Si{NAr}2)Cl with MCl3 (M = Al,
Ga, In). NMR spectroscopy is a convenient tool for the
detection of changes to the Bi environment in relation to the
chelating diamide ligand. The C1 symmetry imposed by the
pyramidal geometry of the bismuth atom in Bi(Me2Si{NAr}2)

Cl (1) is most clearly evident from inequivalent SiMe2
resonances at δH 0.60 and 0.07 ppm.18 Formation of a planar
2-coordinate Bi cation would, however, generate a single set of
ligand resonances in the NMR spectrum, predicted for a C2h
ligand environment.
The reaction between Bi(Me2Si{NAr}2)Cl and one equiv of

AlCl3 in toluene proceeds with an immediate color change
from yellow to deep red. Concentration and cooling of the
resultant solution to −30 °C afforded deep red crystals of the
tetrachloroaluminate salt, [Bi(Me2Si{NAr}2)][AlCl4] (2a,
Scheme 1). The 1H NMR spectrum shows a single sharp

peak for the SiMe2 protons at δH 0.13 ppm and broad
resonances at δH 3.49 and 1.21 ppm for the iso-propyl methine
and methyl protons, respectively (Figure 3a). These data are
consistent with the formation of [Bi(Me2Si{NAr}2)]

+, although
we recognize that a number of alternative structures involving
cation···anion interactions in the solution state also fit these
data (Supporting Information, Figure S1). There is a notable
low-field shift of the 29Si NMR resonance upon generation of
the cation, from δSi = 29.7 ppm in 1 to δSi = 38.0 in 2a (ΔδSi =
+8.3 ppm). This indicates that changes to the environment at
the bismuth center influence spectroscopic properties of the
remote silicon atom, which therefore serves as a convenient
handle to probe the electronic state of the metal in solution.
The analogous NMR scale reaction between 1 and GaCl3

(1 equiv) in C6D6 proceeded in a similar manner, with an
immediate color change on mixing to afford a deep red
solution. The 1H NMR spectrum was similar to that observed
for isolated 2a, with SiMe2, CHMe2, and CHMe2 resonances at
δH 3.51, 1.24, and 0.13 ppm, respectively, and are assigned to
the tetrachlorogallate analogue of 2a, [Bi(Me2Si{NAr}2)]-
[GaCl4], 3a (Figure 3d). Attempted isolation of 3a at −30 °C,
however, gave two visually distinct species that cocrystallized as
pale yellow and deep red solids. The lighter-colored solid was
1H NMR silent and had a melting point of 78−79 °C, con-
sistent with GaCl3 (mp 77.9 ± 02 °C).20 Mechanical separation
enabled full characterization of the red crystals, including single-
crystal X-ray diffraction analysis, which identified the crystals as
the dibismuth cation [{Bi(Me2Si{NAr}2)}2(μ-Cl)][GaCl4]
(3b).
The 1H NMR spectrum of an isolated sample of 3b is also

consistent with a C2h symmetric structure in solution, with
selected peaks shifted notably downfield from the correspond-
ing resonances for the [Bi(Me2Si{NAr}2)]

+ cation in 3a
(Figure 3c). These chemical shift differences are most prom-
inent for the p-C6H3 (δH 6.74 ppm), CHMe2 (δH 3.90 ppm),
and SiMe2 (δH 0.21 ppm) resonances in 3b, with ΔδH values of

Scheme 1. Synthetic Routes to Bismuth Cations 2 and 3a

a(i) 2MCl3 (2 M = Al; 3 M = Ga).
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0.16, 0.39, and 0.08 ppm, respectively. As for 2a, the 29Si NMR
resonance is shifted to low field (δSi = 31.2 ppm), although the
magnitude of the shift is much less than it is in the mono-
bismuth cation (ΔδSi = +1.5). These data show that the
bimetallic [{Bi(Me2Si{NAr}2)}2(μ-Cl)]

+ cation is not retained
as a rigid unit in solution.
Addition of 1 equiv of GaCl3 to an NMR sample of 3b in

C6D6 resulted in complete conversion to 3a. In light of these
results, the aluminum system was re-examined to determine
whether similar interconversion between 2a and the tetra-
chloroaluminate analogue of 3b is possible. Addition of one
equiv of 1 to a solution of 2a gave a 1H NMR spectrum con-
sistent with [{Bi(Me2Si{NAr}2)}2(μ-Cl)][AlCl4] (2b, Figure 3b),
with a maximum Δδ of 0.04 ppm (CHMe2) compared with the
spectrum obtained from 3b.
Veith reported that Bi(Me2Si{Nt-Bu}2)Cl also underwent

chloride abstraction to afford the cation formed when reacted
with InCl3.

11 However no color change was observed when
InCl3 was added to a solution of 1, and NMR analysis indicated
that no reaction had occurred. Attempts to promote cation
formation by heating the mixture to 80 °C afforded an
intractable mixture of species by 1H NMR, and no clean prod-
uct could be isolated. No detailed analysis of changes to the
electronic structure upon replacing the nitrogen substitutents
from t-Bu in Veith’s compound to 2,6-i-Pr2C6H3 in 1 have been
performed to explain this lack of reactivity. However, differences
in the steric profile of the ligands are evident from the solid-state
structures of the chlorides, where Bi(Me2Si{Nt-Bu}2)Cl forms a
one-dimensional (1-D) chain linked by Bi···Cl interactions and 1
is trimeric with Bi···aryl π-bonding interactions.
The molecular structure of the tetrachloroaluminate salt

[Bi(Me2Si{NAr}2)][AlCl4] 2a is shown in Figure 4, with crystal
structure and refinement data collected in Table 1; selected

bond lengths and angles, along with those of the previously
reported structure of compound 1 are presented in Table 2.
The compound crystallizes as the {1:1} salt with the closest
Bi···Cl contact of 2.953(3) Å, considerably longer than the
terminal Bi−Cl bonds in 1 [2.556(1) Å and 2.4857(16) Å].
The Bi−N distances in 2a are within 3σ of those in the neutral
compound, albeit with a trend toward shorter bonds. The
bismuth atom in 2a deviates slightly from the N2Si least-squares
plane (0.09(1) Å), which contrasts with the endo conforma-
tion21 of 1 in which displacements of 0.294(6) and 0.229(8) Å
of the bismuth from this plane are observed. This shift con-
tributes to the larger ligand bite angle of 73.7(3)° in 2a
compared with values of 70.74(16)° and 71.78(11)° observed
in 1.

Figure 3. 1H NMR spectra of cationic Bi compounds 2a, 2b, 3a, and 3b. (a) 2a from isolated [Bi(Me2Si{NAr}2)][AlCl4]; (b) 2b from
[Bi(Me2Si{NAr}2)][AlCl4] + 1 equiv of Bi(Me2Si{NAr}2)Cl (1); (c) 3b from isolated [{Bi(Me2Si{NAr}2)}2(μ-Cl)][GaCl4]; (d) 3a from
[{Bi(Me2Si{NAr}2)}2(μ-Cl)][GaCl4] + 1 equiv of GaCl3.

Figure 4. Thermal ellipsoid plot (30% probability, H-atoms omitted)
of [Bi(Me2Si{NAr}2)][AlCl4] (2a).
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There is a relatively large range of Al−Cl bond lengths in the
tetrachloroaluminate anion (ΔAlCl = 0.08 Å), reflecting differing
degrees of Bi···Cl interaction. The longest Al−Cl bond
(2.172(4) Å) involves chloride Cl1, which is most closely
associated with the bismuth. The shortest bond (Al−Cl2,
2.091(5) Å) is at the low end of the range noted for a series of
noncoordinated [AlCl4]

− anions within the structurally char-
acterized compounds [M(crown)n(THF)m][AlCl4] (M = Li/Na,
crown =12-c-4, n = 2, m = 0; M = Na/K, crown =18-c-6, n = 1,
m = 2; M = K, crown =15-c-5, n = 2, m = 0: range of Al−Cl
bond lengths = 2.102(2)−2.1469(9) Å),22 consistent with a
terminal chloride ligand. The remaining Al−Cl bonds are
intermediate between these two values and involve chlorides
that are engaged in intermolecular Bi···Cl interactions to
another cation, resulting in an overall {1:1}2 molecular struc-
ture (Figure 5). The bonding mode of the [AlCl4]

− anion in
hexa-μ-chlorido-1:3κ4Cl,1:4κ2Cl,2:3κ2Cl,2:4κ4Cl-dichlorido-
1κCl,2κCl-[N,N′-dimethylsilanediylbis(2,6-dipropan-2-ylpheny-
lamido-3κN)][N,N′-dimethylsilanediylbis(2,6-dipropan-2-
ylphenylamido-4κN)]dialuminiumdibismuth ([2a]2) is unusual,
but has been previously observed in polymeric tin23 and samarium24

complexes.
The bismuth component of the tetrachlorogallate salt 3b

consists of a μ-chlorido-bridged monocation in which each
pyramidal Bi atom retains a bidentate diamido-ligand. The inter-
planar angle between the SiN2Bi metallacycles is 144.03(11)°
with a trans−trans arrangement of the ligands with respect to
Si···Bi−Cl−Bi···Si. This unit is supported by three Bi···Cl
interactions to the [GaCl4]

− anion (Figure 6). The Bi−Cl1
bond lengths within the cation are inequivalent (2.7888(12)
and 2.6902(12) Å to Bi1 and Bi2, respectively; ΔBiCl = 0.10 Å),
suggesting a localization of positive charge on Bi2. Both of the

Bi−Cl distances are longer than the terminal chloride bonds
in 1 and shorter than the closest Bi···Cl ion-contact in 2a,
suggesting an intermediate bonding type with delocalization
across the Bi−Cl−Bi moiety. The asymmetry is in good
agreement with the only other structurally characterized mono
chloride-bridged cation, [{t-BuN(CH2C6H4)2Bi}2(μ-Cl)][B-
(C6F5)4],

7 for which ΔBiCl = 0.11 Å. As noted for 2a, there is
no significant decrease in Bi−N bond lengths upon generation
of the cation, and the Bi atoms are essentially coplanar with
the chelating diamide (deviation from the N2Si least-squares plane =
0.088(8) and 0.050(7) Å for Bi1 and Bi2, respectively), generating
relatively large ligand bite angles of 72.08(15)° and 72.21(15)°.
The interion Bi···Cl distances in the asymmetric unit of 3b

span the range of 3.3168(2)−3.5618(2) Å and are considerably
shorter than they are in the crystal structure of IV in which no
bismuth-to-tetrachlorogallate contacts are described.15 Two of
the interactions in 3b involve Bi2, also consistent with this
being the more positive metal. The Ga−Cl bond lengths (range
from 2.1622(14) Å to 2.1878(14) Å) span those reported for
IV and the series of [M(crown)n(THF)m][GaCl4] compounds
(M = Li/Na, crown = 12-c-4, n = 2, m = 0; M = Na, crown =
18-c-6, n = 1, m = 0; M = K, crown = 18-c-6, n = 1, m = 2).25

The difference in the Ga−Cl bond lengths within the anion
(ΔGaCl = 0.03 Å) is considerably smaller than the corresponding
difference in the Al−Cl distances of 2a, consistent with all four
chlorides being involved in Bi···Cl interactions. Indeed,
examination of the unit cell of 3b confirms that Cl4 is
associating with a second cation (Cl4···Bi1′ 3.3277(1) Å)
to generate the {1:1}2 aggregate bis{μ-chlorido-[N,N′-
dimethylsilanediylbis(2,6-dipropan-2-ylphenylamido-1κN)]-
[N,N′-dimethylsilanediylbis(2,6-dipropan-2-ylphenylamido-
2κN)]dibismuth(1+)}deca-μ-chlorido-1:3κ4Cl,1:4κ2Cl,1:5κ2Cl,

Table 1. Crystal Structure and Refinement Data for [Bi(Me2Si{NAr}2)][AlCl4] (2a), [{Bi(Me2Si{NAr}2)}2(μ-Cl)][GaCl4] (3b),
Bi(Me2Si{NAr}2)Ph (4), and Bi(Me2Si{NAr}2)Et (5)

2a 3b·C6H14 2(4)·C7(H8) 5

empirical formula C26H40AlBiCl4N2Si C58H94Bi2Cl5GaN4Si2 C135H180Bi4N8Si4 C28H45BiN2Si
Mr 786.45 1568.48 2863.15 646.73
T [K] 173(2) 120.01(10) 120.02(10) 120.0
crystal size [mm] 0.08 × 0.08 × 0.01 0.10 × 0.08 × 0.02 0.35 × 0.16 × 0.05 0.21 × 0.15 × 0.14
crystal system orthorhombic triclinic triclinic trigonal
space group Pbcn (No.60) P1̅ (No.2) P1̅ (No.2) R3̅ (No.148)
a [Å] 24.9726(10) 12.8472(5) 12.9068(2) 28.7503(11)
b [Å] 16.6486(4) 17.0713(7) 15.6323(4) 28.7503(11)
c [Å] 16.1717(6) 17.4081(7) 17.3240(5) 9.8541(5)
α [deg] 90 117.739(4) 108.940(2) 90
β [deg] 90 92.142(3) 93.6783(18) 90
γ [deg] 90 90.447(3) 100.2794(18) 120
V [Å3] 6723.5(4) 3375.4(3) 3224.91(14) 7053.9(6)
Z 8 2 1 9
Dcalc. [mg m−3] 1.55 1.54 1.47 1.37
absorption coefficient [mm−1] 5.64 12.97 5.53 5.67
2θ range for data collection [deg] 7.02 to 54.16 2.87 to 74.00 5.32 to 60.0 5.66 to 66.22
reflections collected 26421 26092 66037 16452
independent reflections 7374 [Rint 0.161] 13265 [Rint 0.034] 18799 [Rint 0.035] 5348 [Rint 0.072]
reflections with I > 2σ(I) 4578 11200 15967 4288
data/restraints/parameters 7374/0/316 13265/36/671 18799/0/714 5348/114/179
final R indices [I > 2σ(I)] R1 = 0.077, wR2 = 0.163 R1 = 0.031, wR2 = 0.073 R1 = 0.024, wR2 = 0.053 R1 = 0.129, wR2 = 0.272
final R indices (all data) R1 = 0.131 wR2 = 0.189 R1 = 0.040, wR2 = 0.080 R1 = 0.033, wR2 = 0.056 R1 = 0.151 wR2 = 0.280
GOF on F2 1.018 1.036 1.036 1.323
largest diff. peak/hole [e Å−3] 3.64 and −3.18a 1.66 and −2.15 1.82 and −0.97 1.88 and −3.13

aClose to Bi.
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1:6κ2Cl ,2:4κ2Cl ,2:5κ2Cl ,2:6κ4Cl ,3:4κ2Cl ,5:6κ2Cl-[N,N′-
dimethylsilanediylbis(2,6-dipropan-2-ylphenylamido-3κN)]-

[N,N′-dimethylsilanediylbis(2,6-dipropan-2-ylphenylamido-
4κN)][N,N′-dimethylsilanediylbis(2,6-dipropan-2-ylphenyla-
mido-5κN)][N,N′-dimethylsilanediylbis(2,6-dipropan-2-ylphe-
nylamido-6κN)]digalliumtetrabismuthate(2-) in the solid state
([3b]2, Figure 7). This is the only structurally characterized

example of the tetrachlorogallate anion interacting through all
four chloride ligands.

3.2. Reaction with M[BR4] (M = Na, R = Ph, Et; M =
HNEt3, R = Ph). Evans and co-workers have shown that the
bis(aryl) bismuth chloride compound BiAr′2Cl (Ar′ = 2,6-
(Me2NCH2)2C6H3) is converted to the tetraphenylborate salt
upon reaction with NaBPh4 (Scheme 2). The cation is also
generated from the protonolysis reaction of the allyl compound
BiAr′2(CH2CHCH2) with [HNEt3][BPh4].

9 Monitoring a
mixture of 1 and NaBPh4 by

1H NMR spectroscopy indicated
that the reaction did not proceed at room temperature. Heating
the reaction to 90 °C for 3 d, however, afforded a mixture of
yellow 4 and colorless crystals upon workup. Physical separa-
tion allowed pure samples of 4 to be prepared for analysis by
NMR spectroscopy, elemental analysis, and X-ray diffraction.

1H NMR data for 4 indicate a C1 symmetry structure, with
SiMe2 resonances at δH 0.63 and 0.15 ppm. Integration of the
aromatic region of the spectrum is consistent with the presence

Table 2. Selected Bond Lengths (Å) for 2a and 3b, Presented
with Those of 1 for Comparison

1a 2ab 3bc

Bi−N 2.132(3) 2.118(8) 2.121(4)
2.144(3) 2.120(8) 2.131(3)
2.181(3) 2.143(3)

2.152(3)
Bi−Cl 2.4857(16) 2.6902(12)

2.5560(10) 2.7888(12)
Bi···Cl 2.953(3) 3.3168(14)

3.3277(13)
3.5373(16)
3.5618(14)

Si−N 1.733(3) 1.763(9) 1.734(4)
1.735(3) 1.765(8) 1.736(4)
1.736(3) 1.748(4)

1.752(4)
M−Cl 2.091(5) 2.1622(14)

2.134(4) 2.1689(15)
2.152(4) 2.1770(13)
2.172(4) 2.1878(14)

N−Bi−N 70.74(16) 73.7(3) 72.08(15)
71.78(11) 72.21(15)

N−Si−N 92.58(15) 92.1(4) 92.67(17)
93.3(2)

Bi−N−Si 97.17(14) 97.1(3) 97.00(17)
97.54(13) 97.0(3) 97.64(18)
97.71(14) 97.88(18)

98.16(17)
N−Bi−Cl 96.34(9) 94.2(2) 94.28(11)

96.37(9) 98.1(2) 97.56(11)
97.89(9) 97.76(10)

101.12(11)
a1.5 molecules in the unit cell. bM = Al. cM = Ga.

Figure 5. Molecular structure of [2a]2, showing the bridging [AlCl4]
−

anions (′ = 1 − x, y, 1/2 − z; aryl groups reduced to show only ipso-
carbon atoms).

Figure 6. Thermal ellipsoid plot (30% probability, H-atoms and
hexane solvate omitted) of [{Bi(Me2Si{NAr}2)}2(μ-Cl)][GaCl4] (3b).

Figure 7. Molecular structure of [3b]2, showing the bridging [GaCl4]
−

anions (′ = −x, −y, −z; aryl groups reduced to show only ipso-carbon
atoms).
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of a single phenyl group, with the peaks assigned to the ortho-
protons at low field (δH = 8.48 ppm, C6D6). This chemical shift
is significantly different from that observed for the [BPh4]

−

anion (e.g., [Bi(Ar′)2][BPh4]: δH = 6.99 ppm, CD3CN
9) and

BiPh3 (δH = 7.73 ppm, C6D6). These data are consistent with
formation of the phenyl compound Bi(Me2Si{NAr}2)Ph,
confirmed by elemental analysis and an X-ray crystal structure
determination (vide inf ra). The colorless crystals that formed
during the reaction were identified as BPh3 by 11B NMR
spectroscopy (δB 68 ppm26) and by comparison of their unit
cell with published data.27

Aryl transfer reactions from [BAr4]
− anions are well

documented,28 and the reaction of Na[BAr4″] (Ar″ = Ph,
p-tolyl, 4−F-C6H4) with bismuth(III) carboxylates has been
reported recently as a convenient route to BiAr3″ species.29 To
probe this mode of reactivity further we examined the reaction
of 1 with Na[BEt4], where the tetraethylborate anion is known
to behave as an alkyl transfer reagent.30 In this case the reaction
proceeded at room temperature, affording pale yellow crystals
on workup. 1H NMR data was consistent with the bismuth
ethyl compound Bi(Me2Si{NAr}2)Et (5) showing a C1
symmetry (SiMe2: δH = 0.42 and 0.04 ppm). The resonances
for methyl and methylene groups of the ethyl ligand appear as a
triplet and quartet at δH 2.47 and 2.04 ppm, respectively. The
29Si NMR resonances for 4 (δSi = 19.5 ppm) and 5 (δSi = 17.8
ppm) are shifted to higher field compared with 1 (ΔδSi = −10.2
ppm and −11.9 ppm, respectively), reflecting the relatively
electron-rich metallacycle upon exchanging the bismuth
substituent from chloride to aryl/alkyl groups.
The structures of 4 and 5 were determined by single-crystal

X-ray diffraction experiments (Tables 1 and 3; Figures 8 and 9).

Unfortunately the data solution for compound 5 was
complicated by molecular disorder that was modeled in the
R3̅ space group as being about an inversion center (Supporting
Information, Figure S2). This disorder is most likely caused by
the small size of the ethyl substituent compared to other
X-groups in the Bi(Me2Si{NAr}2)X compounds, resulting in a

small energy difference between the two orientations of the
metallacycle with respect to the aryl substituents. As a result the
solution of the data is not of sufficient quality for a meaningful
discussion of bond lengths and angles; it does, however, con-
firm the connectivity of 5 as a rare example of a monomeric
bismuth-ethyl compound (Figure 8).31

Compound 4 crystallizes as the toluene solvate, with two
independent molecules in the unit cell that differ primarily with
respect to the orientation of the phenyl substituent (Figure 9).
Each molecule is monomeric with a pyramidal geometry of the
Bi atom and an essentially planar metallacycle (deviation of Bi
from mean SiN2 plane: Bi1 0.121(4) Å, Bi2 0.037(4) Å). The
Bi−N bond lengths in 4 are longer than in the other structures
examined during this study, resulting in a smaller average bite
angle of 70.68(7)° for the diamide ligand. The Bi−C bond
length (2.253(3) Å) is unexceptional and is within the range
noted for BiPh3 (2.237(7) to 2.273(8) Å).32

Comparing the two molecules within the unit cell we note
that phenyl groups are rotated in opposite directions along the
Bi−Cipso bond relative to the plane bisecting the metallacycle
through the silicon, bismuth, and Cipso atoms (molecule Bi1 =
+14.85(7)°; molecule Bi2 = −29.56(11)°, where +ve = clockwise
directionFigure 10a,b). This twisted orientation brings the
portion of the phenyl group located below the metallacycle into
close proximity with one of the i-Pr groups of the aryl sub-
stituents. The resulting steric conflict is alleviated by the nitrogen

Scheme 2. Reaction of Bi(Me2Si{NAr}2)X (1 X = Cl, 5 X =
Et) with [A][BR4] (A = Na, R = Ph, Et; A = HNEt3, R = Ph)a

a(i) NaBPh4; (ii) NaBEt4; (iii) [HNEt3][BPh4].

Table 3. Selected Bond Lengths (Å) and Angles (deg) for 4

Bi1−N1 2.168(2) Bi2−N3 2.1790(19)
Bi1−N2 2.177(2) Bi2−N4 2.172(2)
Bi1−C27 2.253(3) Bi2−C58 2.252(3)
Si1−N1 1.713(2) Si2−N3 1.721(2)
Si1−N2 1.726(2) Si2−N4 1.731(2)
N1−Bi1−N2 70.50(7) N3−Bi2−N4 70.86(7)
N1−Bi1−C27 98.02(9) N3−Bi2−C58 100.32(8)
N2−Bi1−C27 100.50(9) N4−Bi2−C58 97.44(9)
Bi1−N1−Si1 98.21(9) Bi2−N3−Si2 97.63(9)
Bi1−N2−Si1 97.49(9) Bi2−N4−Si2 97.59(9)
N1−Si1−N2 93.65(10) N3−Si2−N4 93.90(10)

Figure 8. Thermal ellipsoid plot (30% probability) of Bi(Me2Si-
{NAr}2)Et, 5 (′ = 1 − x, 1 − y, −z; H-atoms omitted).

Figure 9. Thermal ellipsoid plot (30% probability) of one of the
independent molecules of Bi(Me2Si{NAr}2)Ph, 4 (H-atoms and
toluene solvate omitted).
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aryl-substituent being located above the BiNSiN-plane,
illustrated by the different angles that the N−Cipso bonds
adopt with respect to this plane (molecule Bi1: N1−C1 = 5.9°,
N2−C13 = 15.3°; molecule Bi2: N3−C34 = 9.3°, N4−C46 =
21.2°; see Supporting Information, Figure S3).
The twisting of the phenyl ligand is more pronounced in

molecule Bi2. Examination of the packing shows that this
molecule is involved in intermolecular interactions with a
symmetry generated equivalent positioned about an inver-
sion center (Figure 10c). The para-carbon atom of the
phenyl substituent (C61) is located at 3.629(3) Å from Bi2′
(′ = 2-x, -y, 1-z), within the range of distances previously
attributed to a bonding interaction within the series of
compounds [BiCl3·(C6H6‑nMen)] (Bi···C distances 3.168(7)
to 3.751(8) Å).33 However, the large ring slippage of 2.57 Å
from the centroid of the C6-ring suggests that it is the π−π
interactions between the two phenyl rings that dominate
(centroid−centroid distance 3.827(3) Å, plane-to-plane shift
1.295(5) Å), although the role of crystal packing forces
should not be dismissed.

4. DISCUSSION

The paucity of low-coordinate bismuth cations is illustrated by
the facts that 2a is only the second formally two-coordinate Bi+

center to be structurally characterized and that 2a is a derivative
of the first example.11 This is perhaps not surprising given the
large radius of the element and the focus on multidentate
ligands in this area of chemistry. As a consequence, additional
interion (and other intermolecular) interactions become
important in the condensed (solid) state, as shown by the
Bi···Cl contacts present in the structures of 2a and 3b.
Previous work has quantified the bond order (BO) of Bi···Cl

interactions (eq 1),34 using values of r0 = 2.423 Å35 and
B = 0.39.36 We recently used this equation to show that the
intermolecular Bi···Cl BO between associated molecules in the
trimeric unit of 1 was 0.1418 and that this was significantly
less than that calculated for a similar Bi···Cl interaction in the
Nt-Bu analogue (BO = 0.20).37 Table 4 summarizes a series of
BOs for some bismuth chloride compounds and the cor-
responding cations, generated by halide abstraction using MCl3
(M = Al, Ga).

=
−⎡

⎣⎢
⎤
⎦⎥

r r
B

BO exp
( )0

(eq 1)

According to eq 1, the terminal bismuth chloride bonds in 1
have BOs of 0.85 and 0.71, reflecting the relatively long Bi−Cl
distances. The smaller BO (weaker bond) corresponds to the
chloride involved in bridging interactions to another molecule,
showing the sensitivity of this measurement to small changes in
the environment of the bond. Given that these Bi−Cl BOs are
significantly less than unity, it is perhaps not surprising that
chloride abstraction and generation of bismuth cations is a
relatively facile process.
Conversion of 1 to the cation and association of the formally

positive bismuth metal and the tetrachloroaluminate
anion gives a BO of 0.26 for the primary Bi···Cl interaction,
suggesting a strongly associated ion pair in the solid state with a
reduction of ∼0.5 on generation of the cation (ΔBO = −0.59
and −0.45). Unfortunately, it is not possible to make a direct
comparison with the ΔBO in the corresponding Nt-Bu cation
(I, Figure 2), as the primary Bi−Cl bond in the neutral
compound (BO = 0.43) is already weakened by intermolecular
interactions along a 1-D chain in the crystal structure (vide
supra). Nevertheless a reduction is observed upon generation of
the cation, with the principal Bi···[Cl−AlCl3] BO of 0.19 in this
case approximately equal to the weaker Bi−Cl···Bi bridging
bond along the chain. The calculated BO values for the Bi···
[Cl−AlCl3] interactions of the associated dimer in 2 (Figure 5)
are 0.11 and 0.04 for Cl4 and Cl3, respectively. These values
indicate weak, nonsymmetrical bonding to the second bismuth
cation with values lower than the major interion interactions
in I.
Comparing these BOs with the corresponding values for

other ligand systems shows that the ΔBOs upon cation
generation are highly dependent on the ligand. For example,
the bulky cyclopentadienyl derivative [Bi(Cp″)Cl2]2 has BO
values of 0.75 for the terminal Bi−Cl bonds, with the BOs of
the nonsymmetrical bridging μ-chlorides being 0.53 and 0.19
(average from two crystal modifications). Formation of the
cation retains the dimeric unit, with only minor modifications
to the Bi(μ-Cl)Bi BOs (0.57 and 0.20), and the closest contact
to the [AlCl4]

− corresponding to a BO of 0.06.

Figure 10. Schematic representations of the two molecules of 4,
showing (a) the different rotation of the phenyl ligand relative to the
Si···Bi−Cipso vector, (b) the displacement of one of the aryl groups out
of the plane of the metallacycle, and (c) the dimerization of molecule
Bi2 (′ = 2 − x, −y, 1 − z).
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The tetrachlorogallate salt 3b has a nonsymmetrically
bridging chloride in the cationic unit, with BOs of 0.50 and
0.39. Despite being aligned well within the dimeric unit
(Figure 7), the interion BOs for Bi···[Cl−GaCl3] are only 0.10
to 0.05, indicating a weak interaction. These are only slightly
more than the calculated BOs of 0.03 in [Bi(N{SiMe3}N-
{SiMe3}2)2][GaCl4] (IV).
In summary, the BOs associated with terminal Bi−Cl bonds

in neutral species are significantly less than those expected for a
single bond, being typically in the range of 0.7−0.8. In contrast
the intermolecular BOs calculated for Bi−Cl···Bi bridges during
the formation of μ,μ-dichlorobridged dimers can be as much as
∼0.55 and during the association of neutral molecules can be
up to ∼0.43. Surprisingly, formation of “contact” ion pairs does
not give such large values of BO between the Bi+ center and the
tetrachloroaluminate anion, despite the electrostatic attraction
between the ions. This is may be due to a delocalization of the
positive charge into the ancillary ligands at Bi (as noted for the
N,N′,N′-tris(trimethylsilyl)hyradzido salt IV) and the relative
exposure of the (long) terminal Bi−Cl bonds compared with
the much shorter Al−Cl bonds.
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