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ABSTRACT 

Proteins traversing the secretory pathway begin their passage in the endoplasmic 

reticulum (ER) where they must be correctly folded and processed to pass quality control 

measures. Complications with this process can result in the accumulation of misfolded 

proteins, commonly referred to as ER-stress, which has been associated with a number of 

diseases. The unfolded protein response (UPR) is the cell’s mechanism of dealing with ER-

stress and is activated via the IRE1-HAC1 pathway in yeast. Ire1p is the ER-stress sensor 

and upon recognising misfolded proteins Ire1 oligomerises and forms local clusters. 

Activated Ire1p then splices out an inhibitory intron from the UPR specific transcription 

factor Hac1p which goes on to initiate downstream responses to alleviate ER-stress. 

Here we utilise high-throughput microscopy and UPR-specific GFP reporter systems to 

characterise the UPR in the yeast Saccharomyces cerevisiae. High-throughput microscopy 

and automated image analysis is increasingly being used as a screening tool for 

investigating genome-wide collections of yeast strains, including the yeast deletion 

mutant array and the yeast GFP collection. We describe the use of GFP labelled Ire1p to 

visualise cluster formation as a reporter for early UPR recognition of misfolded proteins, 

as well as a GFP controlled by a Hac1p responsive promoter to measure downstream UPR 

activation. These UPR-specific GFP reporter systems were used to screen a collection of 

non-essential gene deletion strains, identifying gene deletions that induce UPR activation 

and thus are likely to function in the early secretory pathway. This included well known 

components such as the ALG members of the glycosylation pathway and various ER 

chaperones such as LHS1 and SCJ1. Additionally this analysis revealed 44 previously 

uncharacterised genes, suggesting there are still processes related to the secretory 

pathway that are yet to be described. Moreover, by inducing ER-stress in this screening 

system we revealed genes required for the normal activation of the UPR including 

ribosomal/translation and chromatin/transcriptionally related genes, as well as various 

genes from throughout the secretory pathway. 

Furthermore, we screened a collection of ~4000 strains, each expressing a different GFP 

fusion protein, under ER-stress conditions to identify protein expression and localisation 

changes induced by the UPR. Comparison to UPR deficient Δhac1 cells uncovered a set of 

UPR specific targets including 26 novel UPR targets that had not been identified in 



 
 

previous studies measuring changes at the transcript level. As part of this work, we 

developed a dual red fluorescent protein system to label cells for automated image 

segmentation to enable single cell phenotype measurements. Here we describe the use 

of texture analysis as a means of increasing automation in the identification of 

phenotypic changes across the proteome. These novel techniques may be more widely 

applied to screening GFP collections to increase automation of image analysis, 

particularly as manual annotation of phenotypic changes is a major bottleneck in high-

throughput screening. The results presented here from microscopy based screening 

compare well with other techniques in the literature, but also provide new information 

highlighting the synergistic effects of integrating high-throughput imaging into traditional 

screening methodologies. 
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1 INTRODUCTION 

The central dogma of molecular biology describes the flow of information from DNA to 

RNA to protein. Indeed it is this controlled flow of information that permits the blueprints 

of life to be transmissible from one generation to the next, allowing life to prosper so well 

in all its variety. It is the protein products however, that give physical manifestation to 

this information and carry out the functions and complex interactions required to 

maintain living cells. The specialised functions of each protein are highly particular to its 

three dimensional structure and thus a high fidelity must be maintained in the flow of 

information from DNA through to protein. DNA replication is extremely accurate with 

error rates estimates on order of 1 in 1010, even the processes of transcription and 

translation are generally considered to be accurate although to a lesser extent with error 

rate estimates around 1 in 104 (Cochella and Green, 2005; Hebert and Molinari, 2007; 

Ogle and Ramakrishnan, 2005; Rosenberger and Hilton, 1983). It is the later steps of 

protein production that are less accurate, in particular initial protein folding is rife with 

difficulties with estimates as high as 30% of nascent peptides terminally misfolding 

(Schubert et al., 2000). It is perhaps surprising that protein folding is inherently so 

erroneous given that precise protein folding is critical for correct protein functionality and 

cell viability. Failure of accurate protein folding can result in abnormal protein function or 

aggregation and is the cause of a number of debilitating and proteopathic diseases 

including Alzheimer's disease and Cystic fibrosis (Hebert and Molinari, 2007). As such, 

stringent quality control mechanisms are required to ensure protein folding fidelity.   

This dissertation focuses on the early secretory pathway and protein folding within the 

endoplasmic reticulum. Close to a third of all proteins in the yeast Saccharomyces 

cerevisiae are ultimately destined to various endocytic compartments, plasma membrane 

or to be secreted, and must traverse the secretory pathway (Ghaemmaghami et al., 2003). 

This requires being translocated, processed and folded within the endoplasmic reticulum 

(ER), a factory-like organelle specialised in oxidative protein folding. It became apparent 

in early studies of the secretory pathway that there must be sophisticated quality control 

mechanisms in place to maintain protein fidelity and that a specific response capable of 

recognising unfolded proteins must exist (Kozutsumi et al., 1988; Needham and Brodsky, 

2013). Since then quality-control in the ER has been a prevalent area of research. 
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1.1 Protein Folding and the Secretory Pathway 

Most nascent peptides destined for the secretory pathway are synthesised at membrane 

bound ribosomes where they are co-translationally translocated into the ER lumen 

through the Sec61 translocon. This process is facilitated by use of signal recognition 

peptides present on the N-terminus of secretory proteins which can be recognised on the 

nascent protein chain, designating entry into the ER. Once peptides are in the ER they are 

modified and folded with assistance of a host of chaperones and folding enzymes to 

guide the process and prevent aggregates forming. These modifications not only assist 

folding into a stable functional protein but also determine the ultimate destination of the 

protein, whether for secretion, membrane insertion or organelles further along the 

secretory pathway. 

Protein folding is the process in which a peptide is arranged into its native state, the 

confirmation with the lowest Gibbs free energy, that is able to function correctly in its 

biological context. The polypeptide itself can encode enough information to reach this 

state in optimal conditions, folding down its energy landscape until the lowest free 

energy is achieved. Indeed this has been achieved in vitro (Hebert and Molinari, 2007). 

However, this process alone takes far longer than acceptable in a native biological setting. 

The ER further optimises protein folding by decreasing exposure of hydrophobic residues 

to the outside of the cell assisted by chaperones, folding enzymes and disulphide bond 

formation (Hebert and Molinari, 2007). Cycling through states of glycosylation allows 

unfolded proteins time for multiple folding attempts while maintaining them within the 

ER without premature export as a misfolded protein (Aebi et al., 2010).  

Nascent protein flux fluctuates across time and environmental conditions, as such there 

will be times where a cell cannot maintain protein folding fidelity with the demand for 

new protein. The result is an ER-stress condition characterised by the accumulation of 

unfolded and/or misfolded proteins, and is known to be a contributing factor to a number 

of pathologies (Yoshida, 2007). ER-stress must be swiftly dealt with in order to prevent 

toxic levels of misfolded protein accumulation and aggregation. A comprehensive set of 

cellular responses are in place to monitor and maintain the ER folding environment; 
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namely the Unfolded Protein Response (UPR) and ER-assisted degradation (ERAD). Figure 

1 depicts a basic overview of the yeast secretory pathway, which is discussed in detail 

throughout this chapter. 

 

Figure 1 – Overview of the yeast secretory pathway.  

Nascent proteins are translocated into the ER lumen either co- or post-translationally. Proteins undergo glycosylation 

and folding events assisted by chaperones and folding enzymes. Anterograde transport of folded proteins to the 

Golgi is via COPII vesicles, whereas retrograde transport is via COPI vesicles. Ultimately proteins may be delivered to 

the cell surface for secretion or sorted to destination organelles. Misfolded proteins initiate an Unfolded Protein 

Response and are targeted for ER-assisted degradation (ERAD) via the proteasome.  

1.2 Translocation 

S. cerevisiae has mechanisms for both co- and post-translational translocation of nascent 

secretory proteins into the ER, including soluble and integral membrane proteins (Delic et 

al., 2013). Secretory proteins are targeted to the ER either via a hydrophobic N-terminal 

signal sequence or transmembrane domain (Barlowe and Miller, 2013; Ng et al., 1996). In 

co-translational translocation as the signal sequence is translated it can be recognised 

and bound by the signal recognition particle (SRP) forming the ribosome nascent chain 

(RNC)-SRP complex, halting further translation of the peptide (Walter and Blobel, 1981). 

The SRP in turn targets the complex to the ER membrane bound SRP receptor (SR) in a 
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GTP dependant manner, directing and transferring the RNC to the translocon pore. GTP 

hydrolysis leads to separation of the SRP-SR from the RNC and peptide translation can 

continue (Keenan et al., 2001). There are two translocon pore complexes in S. cerevisiae, 

the Sec61 complex and its non-essential homologue the Ssh1 complex. Sec61p is a 53 kDa 

protein with ten trans-membrane spans that forms the major subunit of the 

heterotrimeric Sec61 complex, along with two smaller proteins Shb1p and Sss1p 

(Osborne et al., 2005). The Sec61 complex is part of the larger SEC’ complex, made up of 

the Sec61 complex along with Sec63p, Sec71p and Sec72p which is required for co-

translational translocation (Jermy et al., 2006). In addition to the SEC’ complex the 

hexameric Ssh1 complex is capable of co-translational translocation comprising; Ssh1p, 

Sbh2p and Sss1, analogous to the Sec61 complex, along with Sec63p, Sec71p and Sec72p 

(Finke et al., 1996). Removal of the signal sequence occurs during translocation and is an 

essential part of protein maturation. The sequence is removed by the signal peptidase 

complex consisting of Spc1p, Sp2p, Spc3p and Sec11p (Böhni et al., 1988; YaDeau et al., 

1991), of which Sec11p contains the active protease site (Mullins et al., 1995). The ER 

luminal Hsp70 chaperone Kar2p, along with co chaperones Lhs1p and Sil1p, is thought to 

provide the means of pulling the peptide through the translocon in a ratcheting 

mechanism (Matlack et al., 1999). 

For SRP-independent post-translational translocation the nascent peptide must be 

protected from misfolding and aggregation upon release from the ribosome. This is 

achieved by the actions of the cytosolic Hsp70 chaperones Ssa1p-Ssa4p along with Hsp40 

co-chaperone Ydj1p; which help maintain a loosely folded conformation suitable for 

translocation into the ER (Becker et al., 1996). The heptameric SEC complex is required 

for post-translational translocon and is made up from an association of the Sec61 

complex along with the Sec63 complex (Sec62p, Sec63p, Sec71p and Sec72p) (Brodsky 

and Schekman, 1993; Panzner et al., 1995). The Sec63 complex is involved in recognition 

and initial binding of the signal peptide region facilitating transferral to the Sec61 

translocon.  

Different substrate specificity between co and post translation translocation differs 

between organisms. Simpler organisms such a yeast tend to have a greater dependence 

on post-translational translocation than mammalian cells, possibly due to their high 
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growth rates preventing protein translocation  keeping up with synthesis (Rapoport, 

2007). However specific substrates for both co- and post-translational translocation have 

been identified in yeast and mammalian cells (Lakkaraju et al., 2012), indicating that 

requirement differences are more likely rather than volume of throughput alone. Highly 

hydrophobic signal peptides and integral membrane proteins tend to use co-translational 

translocation whereas soluble proteins tend to depend on post-translational mechanisms 

(Ng et al., 1996). 

A third post-translational translocation mechanism exists for membrane proteins 

targeted to the ER known as the guided entry of tail-anchored proteins (GET) pathway 

(Schuldiner et al., 2005, 2008). This pathway operates independently of the Sec61 and 

Sec63 translocon complexes, and instead includes the proteins Get1-5 and Sgt2 (Battle et 

al., 2010; Costanzo et al., 2010; Jonikas et al., 2009; Schuldiner et al., 2008). A cytosolic 

GET pre-targeting complex consisting of Sgt2p, Get4p and Get5p loads nascent tail-

anchored proteins onto the targeting factor complex (Get3p), which then delivers the 

protein to an ER-membrane receptor complex made up of Get1p and Get2p. Finally the 

Get1/2 complex facilitates insertion of the protein into the ER-membrane in an ATP 

dependant mechanism (Shao and Hegde, 2011). 

1.3 Protein maturation in the ER 

1.3.1 Disulphide-bond formation 

Once proteins have translocated, the endoplasmic reticulum lumen provides an oxidative 

environment that encourages the formation of disulphide bonds intrinsic to protein 

folding and stabilising the correct protein confirmation. This process is especially 

important for proteins destined for the cell surface or to be secreted that will eventually 

be exposed to an oxidising environment as opposed to reducing conditions such as in the 

cytoplasm. The major pathway for disulphide bond formation in yeast is mediated by ER 

oxidoreductin (Ero1p) and protein disulphide isomerases (PDI) (Barlowe and Miller, 2013). 

Ero1p provides the major source of de novo disulphide bonds in S. cerevisiae, which are 

eventually shuttled onto protein folding substrates via PDIs in a series of  dithiol-

disulphide exchange reactions (Frand and Kaiser, 1998, 1999; Pollard et al., 1998). 
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There are five PDI proteins in S. cerevisiae only one of which, Pdi1p, is essential and 

constitutes the main PDI in yeast (Farquhar et al., 1991; Laboissière et al., 1995). PDIs 

contain thioredoxin-like domains that in their active oxidised state catalyse the direct 

formation and rearrangement of disulphide bonds within nascent peptides during protein 

folding. Inactive reduced PDI is regenerated by re-oxidation in a dithiol-disulphide 

exchange with Ero1p (Sevier et al., 2007). Ero1p is an ER membrane bound flavoprotein 

containing 14 cysteines with two catalytically active cysteine pairs; the active-site pair 

Cys352-Cys355, and the shuttle pair Cys100-Cys105 (Kim et al., 2012b). The shuttle 

cysteine pair directly oxidises PDI and is itself re-oxidised by internal dithiol-disulphide 

exchange with the active site cysteine pair. The active site is in turn re-oxidised by 

electron transfer to molecular oxygen as the preferred acceptor (Tu and Weissman, 2004) 

via the redox cofactor FAD in a process generating reactive oxygen species (ROS) (Bader 

et al., 1999; Tu and Weissman, 2002, 2004; Tu et al., 2000).  

Ero1p catalytic activity is modulated through an additional two cysteine pairs Cys90-

Cys349 and Cys150-Cys295 in a redox dependant manner (Sevier et al., 2007). When the 

regulatory cysteine pairs are in a reduced state Ero1p is catalytically active and vice versa. 

The sophistication of this system is in the maintenance of oxidative folding homeostasis 

by the feedback loop created as the regulatory cysteines compete with substrate 

cysteines for Ero1p activity. Upon increased demand for protein folding and disulphide 

formation the regulatory cysteines are exposed to reducing conditions and activate Ero1p 

to provide more oxidising equivalents. As demand is fulfilled the ER becomes increasingly 

oxidising shutting down Ero1p activity by autonomous inactivation in both cis and trans 

preventing hyper-oxidising conditions. PDI is consequently the main substrate and also 

main regulator of Ero1p activity.  

In this respect it can be noted that under conditions of high protein turnover cells are 

often subject to significant levels of oxidative stress. Glutathione may play a role in the 

detoxification of the ER-generated ROS by using up reduced glutathione (GSH) generating 

the oxidised disulphide form (GSSG), this is likely to be a contributing factor to the 

relatively high levels of GSSG in the ER compared to the cytoplasm (Chakravarthi et al., 

2006). 
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The ER redox status is also important for regulating the balance of PDI activity and largely 

determined by glutathione the major small molecule redox buffer in the ER (Kim et al., 

2012b). In this respect it should be noted that Pdi1 but not Ero1 responds to the relative 

glutathione redox state (Delic et al., 2012) and in this manner Ero1p activity is regulated 

through the redox conditions of the ER through Pdi1 (Appenzeller-Herzog, 2011; Sevier et 

al., 2007). The  ER ratio of reduced glutathione (GSH) to oxidised glutathione disulphide 

(GSSG) is much lower than found in the cytosol (∼3:1 compared to ∼100:1 respectively) 

hence the ER is less reducing (Hwang et al., 1992). This ratio is optimal for regulating a 

steady state activation of Ero1p and disulphide bond formation (Kim et al., 2012b; Lyles 

and Gilbert, 1991). Glutathione is not required for disulphide bond formation itself, but 

instead acts as a net reductant helping to maintain an optimal level of reduced PDI 

required for activation of the regulatory bonds in Ero1p (Cuozzo and Kaiser, 1999; Frand 

and Kaiser, 1998; Kim et al., 2012b). PDI reductase activity is also required to reshuffle 

misoxidised disulphide bonds or reduction of a terminally misfolded protein prior to 

ERAD  (Fassio and Sitia, 2002). As such GSH may have a role in ensuring some of the ER 

oxidoreductases are maintained in a reduced state so that they can catalyse the 

rearrangement of non-native disulphides (Chakravarthi and Bulleid, 2004; Jessop and 

Bulleid, 2004; Molteni et al., 2004).  

1.3.2 Glycosylation 

Most proteins traversing the secretory pathway are glycosylated to some level. 

Glycosylation is essential for a number of protein functions and has importance for such 

processes as maintaining cell wall integrity and osmotolerance. Glycosylation is also 

generally considered to be important in protein folding dynamics. Addition of 

oligosaccharides increases solubility of a protein and provides a means of signalling to 

target proteins to the Golgi, retaining them in the ER for further folding or for targeting 

terminally misfolded proteins to the proteasome. 

Protein glycosylation occurs parallel to translocation and signal sequence removal. As the 

nascent peptide emerges from the translocon it is scanned for consensus N-glycosylation 

sites (Asn-X-Ser/Thr). The enzyme oligosaccharylytransferase (OST) catalyses the addition 

of the preassembled oligosaccharide precursor Glc3Man9GlcNAc2 from dolichyl 

pyrophosphate donor to a nitrogen on the asparagine residue. The OST complex is made 
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of eight integral membrane proteins (Ost1p, Ost2p Ost3p or Ost6p, Ost4p, Ost5p, Wbp1, 

Swp1p and the catalytically active subunit Stt3p), whereas the assembly of the 

oligosaccharide precursor is carried out by the ALG family of enzymes. Although the first 

step of N-linked glycosylation occurs as the protein is translocated, signal sequence 

cleavage must occur before oligosaccharides can be attached to sites near the signal 

sequence (Chen et al., 2001). After the initial N-glycosylation the two terminal glucose 

residues are sequentially removed by glucosidase I and II resulting in GlcMan9GlcNAc2 

which is specifically recognised and bound by the ER membrane bound lectin chaperone 

calnexin (Cne1). Calnexin disassociates from the protein when the remaining α1,3-linked 

glucose residue is removed by glucosidase II. Higher eukaryotes including mammalian 

cells have a quality control system involving a cycle of calnexin binding and disassociation. 

If the protein has not folded correctly UDP-glucose:glycoprotein glucosyltransferase 

(UGGT) adds another α1,3-linked glucose residue allowing re-binding of calnexin 

(Caramelo and Parodi, 2008). This process is thought to allow more time for proteins to 

fold properly, however unlike other yeast, S. cerevisiae has no functional homologue of 

UGGT (Fernández et al., 1994). After the final glucose removal, glycans can be acted on by 

ER mannosidase I (Mns1p) which trims a single mannose residue generating a specific 

isomer Man8GlcNAc2 (Aebi et al., 2010). Correctly folded proteins can then be directed to 

ER-exit sites for transport to the Golgi. Terminally misfolded proteins may undergo 

further mannosyl trimming by Mnl1p to generate Man7GlcNAc2 exposing an α1,6-linked 

mannose. These mannosyl trimmings are thought to be the first step in directing 

terminally misfolded protein to the ERAD pathway for degradation (discussed in more 

detail below).  

O-linked glycosylation in S. cerevisiae involves the attachment of mannose to ser/thr 

residues by protein O-mannosyltransferases (PMT, Pmt1-7) using dolichol phosphate 

mannose as the mannosyl donor. The role of these additions is less well understood that 

that for N-linked glycans, however conflicting roles have been proposed for the O-

mannosylation in labelling of misfolded proteins, both for protection from degradation or 

alternatively leading to ERAD elimination (Harty et al., 2001; Hirayama et al., 2008).  

Glycosylphosphatidylinositol (GPI) anchoring is a type of C-terminal glycolipid addition to 

a protein, the lipid component of which ultimately provides a means for the protein to 
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attach to the cell membrane. Between ten and twenty percent of proteins processed 

through the secretory pathway receive a GPI anchor addition (Orlean and Menon, 2007). 

The GPI core itself is preassembled in a complex multistep process involving greater than 

twenty gene products. Biosynthesis of the GPI core begins on the cytosolic side of the ER 

membrane where phosphatidylinositol receives an addition of glucosamine which is then 

deacetylated. The GPI intermediate is then flipped onto the luminal side of the ER where 

it receives additions of an acyl chain, four mannose residues and two ethanolamine 

phosphates (Pittet and Conzelmann, 2007). Substrate proteins are bought to the ER via 

traditional N-terminal signal peptide and upon completion of translocation into the ER is 

further recognised by a C-terminal GPI anchor signal sequence. The GPI core is 

transferred to the designated ω residue via the five membered transamidase complex 

(Gpi8p, Gaa1p, Gpi17p, Gpi16p, and Gab1p) and the GPI signal sequence is removed. 

Further processing includes lipid remodelling of diacylglyerol and the addition of a 

ceramide moiety in yeast (Sipos et al., 1994). Additionally extra sugar side chains can be 

added at later stages and often in yeast GPI-proteins ultimately end up cross-linked to the 

cell wall and associated with lipid rafts (Orlean and Menon, 2007). Interestingly GPI 

attachment is an essential process in yeast, yet there is only one known GPI containing 

protein, Rot1p, that is itself essential (Leidich et al., 1994; Machi et al., 2004). GPI 

proteins have various roles on the cell surface including maintenance of cell wall 

structure and cell morphology, enzymatic actions and cell adhesion (Pittet and 

Conzelmann, 2007).  

1.4 Protein misfolding and disease 

Protein folding within the ER is a complex process and there are numerous points at 

which it could go wrong. As mentioned above, up to a third of nascent peptides are 

initially misfolded (Schubert et al., 2000). Correct protein structure is absolutely critical to 

function, and indeed for protecting the protein from inappropriate interactions or 

aggregation. Unsurprisingly there are numerous human pathological disorders associated 

with protein folding defects (Hebert and Molinari, 2007; Yoshida, 2007).  

The classic example is that of cystic fibrosis, caused by defects in the folding of the cystic 

fibrosis transmembrane conductance regulator (CFTR) preventing enough functional 

protein from being produced. CFTR is a notoriously poor folding protein, with estimates 
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as low as 25% of nascent proteins folding into mature protein (Ward and Kopito, 1994). 

When combined with mutations that cause further folding defects this leads to 

pathological levels of protein misfolding, the most common of which is ΔF508, present in 

up to 90% of cystic fibrosis cases and results in retention of CFTR in the ER (Kopito, 1999). 

Encouragingly, CFTR is a good example of how targeting the ER and protein folding 

processes can lead to the development of potential therapeutics such as chemical 

chaperones to assist in folding dynamics (Brown et al., 1996; Roomans, 2003).  

Several other protein folding diseases arise from the formation of toxic protein 

aggregates that commonly form due to exposed hydrophobic residues in misfolded 

proteins (Yoshida, 2007). This is problem in a number of neurodegenerative disorders 

including Parkinson’s, Huntington’s and Alzheimer’s disease (Hebert and Molinari, 2007; 

Yoshida, 2007). In the case of Alzheimer’s disease – one of the most common 

neurodegenerative disorders, disease pathology is associated with accumulation of 

amyloid-β plaques and Tau proteins (Ozcan and Tabas, 2012). Mutations in the presenilin 

genes PS1 and PS2 have been associated with familial Alzheimer’s disease. This is an 

example where defects in ER machinery can lead to disease onset, in particular mutations 

in PS1 have been shown to down-regulate ER quality control responses leading to a build-

up of the toxic aggregates (Katayama et al., 1999). As a final neurodegenerative example, 

Parkinson’s disease  is  associated with aggregation of the protein α- synuclein, named 

lewy bodies (Cooper et al., 2006). Parkinson’s disease has been associated with mutations 

in parkin, a gene encoding a ubiquitin ligase enzyme involved in the degradation of 

misfolded proteins (Shimura et al., 2000). This leads to the accumulation of misfolded 

parkin substrates in the ER and ultimately leads to ER-stress induced cell death (Imai et al., 

2000). 

It is clear that defects in ER-machinery and accumulation of misfolded proteins within the 

ER is an issue of major cellular concern. It is unsurprising then that cells have evolved a 

number of ER quality control mechanisms to deal with typical levels of protein misfolding. 

Of particular importance to this thesis is the UPR that acts as the sensing mechanism for 

misfolded proteins, and further initiates the response to cope with and eliminate the ER-

stress.  
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1.5 The Unfolded Protein Response (UPR) 

The UPR is a stress monitoring system for protein folding conditions within the ER lumen 

comprising an ER to nucleus signalling system. Activated in times of ER-stress, the UPR 

controls expression of a host of gene products to protect the cell from and deal with the 

accumulation of misfolded proteins. This highly conserved process is present across all 

eukaryotes, with a very highly conserved sensor protein, Inositol requiring enzyme 1 

(IRE1), as well as two additional metazoan systems (Figure 2). Metazoans also use 

activating transcription factor 6 (ATF6) and Protein Kinase-RNA like ER kinase (PERK).  

 

Figure 2 - Metazoan UPR.  

Three separate signalling pathways make up the metazoan UPR. The IRE1 pathway is highly conserved between 

yeast and metazoans. Metazoan IRE1α responds to ER stress in a similar manner to yeast Ire1p and ultimately splices 

out an inhibitory intron from the UPR specific transcription factor XBP1 (homologous to yeast HAC1). Additionally 

the RNase function of IRE1α is also involved in the regulated Ire1-dependant decay (RIDD) of specific mRNAs. RIDD 

substrates include a number of secretory protein mRNAs and thus RIDD acts to reduce the protein folding load in the 

ER. PERK shows structural homology to IRE1 in the ER-stress sensing domain. Upon activation, PERK phosphorylates 

the eukaryotic translation initiation factor eIF2α resulting in a general block of translation also decreasing the 

protein folding load in the ER. Additionally, phosphorylation of eIF2α results in the preferential translation of the 

transcription factor ATF4 which in turn upregulates specific UPR target genes. Under conditions of chronic ER-stress 

PERK can ultimately lead to activation of pro-apoptotic genes including the transcription factor CHOP. The ATF6 

branch of the UPR shows no structural similarity to IREα or PERK and senses ER stress through a different mechanism. 

Upon activation ATF6 is transported to the Golgi where the cytosolic domain is cleaved off and released allowing it to 

translocate to the nucleus and act as a transcription factor for specific UPR genes. 
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The UPR was first characterised in Saccharomyces cerevisiae and yeast has remained an 

invaluable tool to the field owing to genomic scale tools unavailable in metazoan systems 

(Ghaemmaghami et al., 2003; Giaever et al., 2002; Huh et al., 2003; Winzeler et al., 1999). 

The yeast Saccharomyces cerevisiae system has only the most conserved of the three 

sensing systems, the IRE1 - HAC1 signalling pathway as described below. 

1.6 IRE1 (Inositol Requiring Enzyme 1)  

1.6.1 Structure 

Ire1p is a trans-ER-membrane serine/threonine kinase comprising a luminal ER-stress 

sensing domain and cytosolic RNase and kinase effector domains. In yeast the ER luminal 

domain has been proposed to consist of five subregions (Kimata et al., 2004). Subregions I 

and V are thought to be loosely folded while II-IV form a tightly folded core stress-sensing 

region (CSSR), also referred to as the core luminal domain cLD (Credle et al., 2005; Kimata 

et al., 2004). The CSSR forms two interfaces, I and II, that facilitate Ire1p oligomerisation; 

interface I allows dimerization of Ire1p monomers creating a major histocompatibility 

complex (MHC) like groove thought to be involved in direct binding of unfolded proteins, 

while interface II facilitates higher-order oligomerisation of Ire1p clusters (Credle et al., 

2005; Gardner and Walter, 2011; Kimata et al., 2007). Subregion III sticks out as a flexible 

section of the CSSR and is essential for Ire1p activation. Subregion V is a binding site for 

the Hsp70 chaperone Kar2p (BiP in Mammalian cells) juxtaposed with the 

transmembrane domain (Kimata et al., 2004). 

1.6.2 Sensor mechanism 

The exact mechanism of unfolded protein sensing and Ire1p activation has been a subject 

of some controversy with arguments put forward for direct unfolded peptide binding via 

the MHC-like groove in Ire1p dimers or alternatively competitive binding of Kar2p with 

unfolded peptides. However recent compelling evidence would suggest it is likely a 

combination of these with direct peptide binding being the activation event and Kar2p 

having a modulating role for the response (Credle et al., 2005; Gardner and Walter, 2011; 

Kimata et al., 2004, 2007; Pincus et al., 2010). The likely sequence of events seems to be a 

two-step process initially involving the dissociation of Kar2p from subregion V, probably 

through competitive binding with misfolded proteins (Bertolotti et al., 2000; Kimata et al., 

2003), and withdrawal of repression by subregion I. This is followed by oligomerisation, 
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direct binding of unfolded peptides via the CSSR and activation of the cytosolic domains 

(Gardner and Walter, 2011; Kimata et al., 2007). Transduction of the UPR signal is 

facilitated by an Ire1p trans-autophosphorylation event, activating the cytosolic RNase 

effector domain and the unconventional splicing of its sole target in yeast HAC1 (Niwa et 

al., 2005; Sidrauski and Walter, 1997). Available evidence suggests activation of the 

endonuclease domain is unlikely to be a direct consequence of phosphorylation and more 

like to be due to a conformational change induced by the phosphorylation and clustering 

of Ire1p (Credle et al., 2005; Korennykh et al., 2009). 

 

 

Figure 3 - Overview of the UPR.  

In unstressed conditions Ire1p is associated with the chaperone Kar2p. Under ER-stress conditions unfolded proteins 

competitively bind to Kar2p causing a dissociation of Kar2p from Ire1p. Activated Ire1p forms homo-dimers through 

interface I forming a MHC-like groove capable of binding unfolded proteins. Ire1p undergoes high-order 

oligomerisation through interface II and a conformational shift in the cytosolic domain induces trans-

autophosphorylation. This conformational change supports efficient splicing of an inhibitory intron from the UPR 

transcription factor HAC1. Hac1p protein can then translocate into the nucleus where it binds UPRE upstream 

activator sequences of various UPR target genes for transcriptional upregulation. 

 

1.7 HAC1 (Homologous to Atf/Creb1)  

HAC1 encodes a basic leucine zipper transcription factor with homology to Atf/Creb1 

(Nojima et al., 1994). Hac1p upregulates a number of UPR genes upon activation of the 

UPR as described above. Facilitated by the tRNA ligase Trl1p, splicing of HAC1 mRNA by 

Ire1p removes a 252 nucleotide inhibitory intron (Cox and Walter, 1996; Gonzalez et al., 
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1999; Sidrauski et al., 1996). The uninduced HAC1 mRNA (HAC1u) is constitutively 

transcribed but not translated due to a stalling event at the ribosome (Rüegsegger et al., 

2001). The induced HAC1i is efficiently translated into the transcription activator Hac1p – 

initiating transcriptional induction of a broad array of UPR target genes (Kimata et al., 

2006; Travers et al., 2000). Hac1p is translocated to the nucleus where it binds an 

upstream non-coding activating sequence, termed the UPR element (UPRE) that occurs in 

various target genes including itself. The UPRE was initially identified as a cis-acting 22 

base pair element in the promoter region of the well characterised UPR target gene KAR2 

(Mori et al., 1992). This binding element was then described in numerous other UPR 

target gene promoters including genes for chaperones, ERAD components and 

phospholipid synthesis, although it is not ubiquitous across all target genes. Bioinformatic 

approaches further characterised an additional two UPR elements designated UPRE-2 and 

3, although collectively all three elements are only present in less than half of all known 

UPR target genes (Patil et al., 2004). 

 

1.8 Regulation of the UPR 

Although the basic mechanism of IRE1-HAC1 UPR signalling appears to be simple at first 

glance, there is a surprising amount of sophistication in the fine-tuned regulation of the 

response. Firstly there is the level of gain control provided by the positive regulation of 

HAC1 which itself has a UPRE Hac1p binding domain in its promoter region (Ogawa and 

Mori, 2004) and secondly the Hsp70 chaperone Kar2p (BiP) provides another level of 

regulation. Kar2p has been shown to bind inactive monomeric Ire1p but not activated 

Ire1p dimers (Bertolotti et al., 2000; Okamura et al., 2000). Additionally mutations of the 

Kar2p binding region that prevent Kar2p binding do not constitutively activate the UPR, 

which still requires binding of misfolded protein (Oikawa et al., 2007; Pincus et al., 2010). 

Moreover mutations in KAR2 that disrupt the dissociation of Kar2p from Ire1p 

significantly lower the level of UPR activity as does overexpression of Kar2p (Kimata et al., 

2003, 2004; Kohno et al., 1993). These data suggest that rather than initiating UPR 

activation, Kar2 modulates the level of response and deactivation dynamics, and may 

provide a buffer to physiological fluctuations in protein folding fidelity preventing 

premature UPR activation (Pincus et al., 2010).  
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Finally there is a level of control provided through formation of high-order Ire1p 

oligomers that form dense local clusters across the ER (Credle et al., 2005; Kimata et al., 

2007). This is thought to promote efficient HAC1 splicing by providing dense clusters of 

Ire1p to which HAC mRNA is targeted to (Aragón et al., 2009). This high-order 

oligomerisation also induces a conformational shift in the cytosolic domain of Ire1p 

dimers, optimising the Ire1p trans-autophosphorylation event that significantly increases 

splicing activity (Korennykh et al., 2009). This cluster formation of Ire1p is associated with 

strong short-term activation of the UPR. In conditions of chronic ER-stress Ire1p no longer 

forms clusters but instead exists as still active Ire1p dimers providing another level of 

regulation for lower but sustained UPR activation (Ishiwata-Kimata et al., 2013a). This is 

important as Hac1p itself has a short half-life of around two minutes, thus it is continued 

Ire1p activity that must sustain the UPR in long-term ER-stress (Kawahara et al., 1997). 

 

1.9 UPR target genes 

A number of genome-wide approaches have been employed to define the set of UPR 

target genes. The gold standard for referring to UPR target genes is a set of cDNA 

microarray based studies by Travers et al. In these experiments Travers et al. used 

dithiothreitol and tunicamycin as ER-stress inducing agents to activate the UPR and 

measure mRNA regulation of potential UPR target genes (Travers et al., 2000). By using 

the UPR knockout strains, Δire1 and Δhac1, Travers et al. were able to eliminate non-UPR 

effects and identified a set of 381 potential UPR-specific target genes. It is noteworthy 

that two previously known UPR target genes, KAR2 and INO2 did not pass their statistical 

selection criteria. What is particularly interesting about this is that KAR2 was the gene 

from which the UPRE Hac1p binding element was originally identified – suggesting that 

this may not represent the full scope of UPR targets, a point this thesis examines in detail. 

The Travers study identified a coordination between the UPR and ER-assisted protein 

degradation, as well as a range of UPR target gene functions including translocation, 

glycosylation, protein folding, vesicle transport, cell wall biogenesis and lipid metabolism. 

Kimata et al. followed up with a similar cDNA microarray approach, however they made 

use of a constitutively active HAC1i mutant lacking the inhibitory intron to define UPR 
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target genes. This study identified additional anti-oxidative stress genes as UPR targets, 

suggesting that the UPR also responds to the ROS produced in protein folding reactions 

(Kimata et al., 2006). Furthermore Kimata and colleagues identified a set of genes down-

regulated by the UPR, mainly cell wall proteins.  

 

1.10   ER-assisted degradation (ERAD) 

The UPR regulates a number of ER quality control (ERQC) measures to ensure protein 

folding fidelity is maintained. A fundamental aspect of protein folding is the ability to 

allow correctly folded proteins to be separated out and transported to their final 

destination, while still retaining actively folding proteins giving them time to fold. 

Importantly the system differentiates terminally misfolded proteins that must be 

prevented from accidental export and must be targeted for degradation. One such 

mechanism of degradation is the highly conserved process of ER assisted protein 

degradation (ERAD), which relies on involvement of chaperones and glycosylation 

processing markers for recognition of misfolded substrates before exporting them into 

the cytosol for degradation by the 26S proteasome (Xie and Ng, 2010).  

ERAD systems are present across all eukaryotes and while metazoan cells have a more 

complex system with an unknown number of pathways, yeast have three well described 

pathways. ERAD-C for proteins with a misfolded cytosolic domain, ERAD-L for misfolded 

soluble proteins or those with a misfolded domain in the ER lumen and ERAD-M for a 

misfolded transmembrane domain (Carvalho et al., 2006). There are two specialised E3 

ubiquitin ligases in yeast which are central to directing ERAD substrates to the 

proteasome; Doa10p for ERAD-C and Hrd1p for ERAD-L and M. There is only a small 

degree of homology between Doa10p and Hrd1p although their complexes share some of 

the same members including the E2 ubiquitin conjugating enzyme Ubc7p attached via 

Cue1p, as well as the Cdc48 complex (Cdc48p, Ufd1p and Npl4p) attached via Ubx2p. The 

Hrd1 E3 complex is, however, more intricate and also includes Der1p attached via Usa1p, 

both of which are required for ERAD-L. Also Hrd3p and Yos9p are both required and are 

involved in substrate recognition. Associated with the Hrd1 E3 complex is Sec61p, which 

is possibly used in translocation of ERAD-L substrates (Xie and Ng, 2010).  
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The glycan detection system in ERAD-L is by far the best characterised system of 

substrate recognition. After N-linked glycosylation, release from calnexin and mannose 

trimming by Msn1p (described above in 1.3.2) a terminally misfolded protein can be 

designated to ERAD-L rather than exported to the Golgi. The mannosidase-like protein 

Mnl1p is able to trim another mannose generating Man7GlcNAc2 (Clerc et al., 2009), this 

is specifically recognised by the lectin-like protein Yos9p and along with Hrd3p binding 

the unfolded structure of the protein, is sufficient to target the protein to the 

proteasome (Gauss et al., 2006; Xie et al., 2009). The misfolded protein is then 

translocated back to the cytosol likely through a Sec61p pore via the Cdc48 complex, 

ubiquitinated by Ubc7p and Hrd1p and finally presented to the 26S proteasome (Xie and 

Ng, 2010). The ERAD-M pathway differs from ERAD-L in that recognition is independent 

of Hrd3p/Yos9p, instead Hrd1p itself is able to directly recognise substrates with 

misfolded transmembrane domains (Sato et al., 2009). Finally, the ERAD-C pathway likely 

works in a manner similar to ERAD-M, but instead utilising Doa10p as the ubiquitin ligase 

(Carvalho et al., 2006). Recognition of the misfolded domain in yeast makes use of the 

cytosolic Ssa-family of Hsp70 chaperones as well as their Hsp40 co-chaperones Ydj1p and 

Hlj1p (Huyer et al., 2004). 

 

1.11   Saccharomyces cerevisiae - a secretory pathway model 

There is a great deal of history behind the usage of the model yeast Saccharomyces 

cerevisiae. It is probably the oldest of domesticated organisms and has for thousands of 

years been exploited for its fundamental role in fermentation for brewing and leavening 

of bread. For this reason it is colloquially known as brewers or baker’s yeast. It is perhaps 

no surprise then that yeast has long been the canonical model organism for a plethora of 

studies on eukaryote cell biology including the workings of the secretory pathway 

(Schekman Nobel address 2013).  

Yeast is unique in its scope of traits that make it so suited to use as a model organism. 

Like bacteria, yeast has the benefit of a rapid growth rate, ease of culturing conditions 

and is a unicellular organism. Yeast is genetically very malleable, with very efficient 

homologous recombination allowing for precise genetic modifications including gene 
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deletion or insertion. Importantly yeast are eukaryotic organisms and have a remarkably 

high level of homology to higher eukaryotes including humans, with estimates of around 

30% of yeast genes having human homologues (Botstein et al., 1997; Gilbert, 2002) and 

an order of 1000 human disease related genes (Botstein and Fink, 2011; Heinicke et al., 

2007). It has become increasingly well documented that inter-species homology generally 

holds true at a gene function level as well (Dolinski and Botstein, 2007). These factors 

have led to the commonplace use of yeast in studies that lay the groundwork for our 

understanding of complex biological phenomena. In fact early landmark studies defining 

the genes involved in protein secretion and organising them into a pathway were carried 

out by Schekman and colleagues using yeast as a model system, and would simply not 

have otherwise been feasible in metazoan systems (Novick et al., 1980, 1981). Classical 

genetic screens utilising random mutagenesis, such as those of Schekman and colleagues, 

involve isolation of a huge amount of colonies to be tested in order to comprehensively 

cover the genome and require lengthy complementation and cloning assays before 

individual genes can be identified. However recent advances in genomics have paved the 

way for more precise and systematic methodologies for genomic screening. 

 

1.12   Yeast gene deletion collections 

The benefits as a model organism as well as having a small genome size, ∼12 million bp, 

led to S. cerevisiae being the first eukaryote organism to have its complete genome 

sequenced and published (Goffeau et al., 1996) identifying  approximately 6000 genes. 

The manageable size of this genome enabled development of a number of genomic tools 

in yeast that have opened the road for development of systems biology and functional 

genomics, fields in which yeast still drives forefront technologies. There are a number of 

yeast clone collections that comprise a set of mutant strains that cover the entire 

genome; prominent amongst these are the yeast knockout collections. These collections 

comprise a set of precise knockout mutants for each gene, systematically generated by 

PCR mediated transformation and replacement with a kanamycin resistance gene and a 

uniquely identifiable ‘molecular barcode’ DNA sequence (Giaever et al., 2002; Winzeler et 

al., 1999). Construction of the Deletion Mutant Array (DMA) revealed quite surprisingly 

that roughly 80% of yeast genes were not individually required for growth on rich 
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medium and dubbed ‘non-essential’ genes. Although these non-essential gene knockout 

strains show no viability defect on rich medium, their function often becomes apparent 

when they become conditionally required upon exposure to various stress conditions 

(Giaever et al., 2002; Hillenmeyer et al., 2008).  

The non-essential deletion mutant array has been extensively used for synthetic genetic 

array (SGA) analysis, a technique in which a query gene knockout strain is mass mated 

against the DMA in order to comprehensively map any epistatic interactions indicative of 

functional relationships between genes (Costanzo et al., 2010; Tong et al., 2001, 2004). 

SGA analysis measures colony size as a means to infer synthetic sick or lethal (SSL) 

interactions, a form of negative genetic epistasis whereby the combined effect of two 

individually non-essential gene knockouts results in either a reduced growth ‘sick’ or 

lethal phenotype. In addition to SSL interactions, positive genetic interactions can be 

measured in the case where each gene deletion may individually show a growth defect 

that is non-additive in the double mutant. The generalised interpretation of this is that 

negative genetic interactions tend to imply a buffering relationship between two genes 

potentially involved in two related pathways for some shared essential downstream 

function, while a positive genetic interaction likely implies two genes lie within the same 

pathway or protein complex (Boone et al., 2007). A good example showcasing the power 

of this approach is the work by Schuldiner and colleagues, where they mapped both 

positive and negative genetic interactions across a large array of secretory pathway genes 

from which they identified the GET complex, functioning in Golgi to ER trafficking and tail-

anchored protein translocation to the ER (Costanzo et al., 2010; Schuldiner et al., 2005, 

2008). The GET pathway was further expanded by applying the same epistasis principles 

to phenotypes other than growth measurements, namely UPR activation in knockout 

mutant strains (Jonikas et al., 2009). This is also a good example of the DMA being used in 

what has become to be known as a reporter-SGA (R-SGA) in which a reporter system for a 

phenotype of interest is mass mated to the DMA in an SGA-like methodology. This 

approach allows for measurement of phenotypic changes as a consequence of non-

essential gene knockouts in the DMA that otherwise show no impact on cell viability 

(Burston et al., 2009; Fillingham et al., 2009; Kainth et al., 2009; Proszynski et al., 2005; 

Vizeacoumar et al., 2010; Wolinski et al., 2009). Previously we have used this approach to 
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identify non-essential gene knockouts that cause a defect in the secretory pathway 

processing of a GFP tagged variant of the protein Mrh1p, a multi trans-membrane 

spanning protein of the plasma membrane. By using high-content microscopy we were 

able to screen for a build-up of intracellular Mrh1p-GFP levels in an automated high-

throughput fashion. This identified 24 gene knockouts causing a defect in Mrh1p-GFP 

processing including all six members of the ER-membrane complex (EMC), all of which 

showed EMC-unique localisation in an ER-like retention pattern (Bircham et al., 2011). 

The EMC had only recently been identified as a complex in a complementary UPR 

reporter based screen of the DMA, where the authors suggested a probable function in 

protein folding (Jonikas et al., 2009), although taken in the context of our work a role in 

protein trafficking seems likely. 

 

1.13   Yeast GFP collection 

The versatility of yeast has facilitated the development of further genome-wide strain 

collections including protein over-expression and two-hybrid and tandem affinity 

purification systems (Ghaemmaghami et al., 2003; Sopko et al., 2006; Uetz et al., 2000). 

Of particular importance for the studies presented here is the yeast green fluorescent 

protein (GFP) tagged collection of 4,156 strains comprising ~75% of the yeast proteome 

(Huh et al., 2003). In this collection each strain expresses a different GFP fusion protein 

tagged at the carboxyl terminal with the Aequorea Victoria GFP variant S65T (Heim et al., 

1995). Expression remains driven by the endogenous gene promoter and accordingly 

fluorescence can be measured proportionally to gene expression (Newman et al., 2006; 

Soboleski et al., 2005). Huh et al used this collection to classify proteins into 22 

localisation patterns and provided localisation data for 70% of previously unclassified 

proteins. The Huh et al. study identified >300 ER localised proteins almost a third of 

which had not previously been described.  

It is important to keep in mind the possible effects that adding a GFP tag could have on 

protein functionality. One consideration is that protein stability or turnover rates could 

be affected. However there is no known folding problems associated with GFP and overall 

there is no evidence of any effect on protein interactions with the proteasome that 
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constitutes the principal means of protein turnover (Newman et al., 2006). Another 

consideration is the possibility of protein mislocalisation due to the C-terminal tag. This is 

likely to be the case where proteins contain a C-terminal signal such as in tail-anchored 

and GPI-anchored proteins or those with a HDEL ER retention signal, such as the ER 

chaperone Kar2p, which was annotated with an ambiguous localisation in the GFP 

dataset. It should be noted however that only a small portion of proteins, around 4% of 

the GFP collection, are likely to mislocalise due to C-terminal tagging (Breker et al., 2013) 

and for the most part there is a high correspondence, around 80% agreement, between 

GFP localisations and previously annotated localisations (Huh et al., 2003). Additionally 87% 

of essential genes in the collection were successfully tagged indicating that in general 

gene function is likely to be maintained in the presence of a C-terminal GFP tag.  

 

1.14   High-throughput microscopy 

Over the past decade advances in technology have progressed development of high-

throughput imaging platforms while maintaining a high level of image quality. These 

systems are often referred to as high-content screening (HCS) due to the plethora of 

information that can be extracted from images on a single cell basis, in comparison to 

traditional growth assays (Li et al., 2011). Because of the ease of growth conditions of 

yeast and their small cell size the yeast GFP collection pairs perfectly with HCS enabling 

live cell imaging of subcellular features across the proteome (Chong et al., 2012; 

Vizeacoumar et al., 2009). Combined with the mass mating procedures available in yeast 

this system is open to rapid modifications such as introduction of additional fluorescent 

cell markers for colocalisation or cell identification. Deletion mutants can be used to 

visualise non-growth phenotypes, or alternatively individual strains provide a rich source 

for GFP reporters in R-SGAs. 

There are now a number of commercial HCS imaging platforms available including the 

Perkin Elmer Opera™ system used here. The Opera system is a high-throughput spinning 

disk confocal microscope, fitted with a 60X water immersion lens and a dual camera 

setup with 488 nm and 561 nm excitation lasers for imaging GFP and RFP simultaneously. 

A motorised plate holder enables automated image acquisition across 384 well microtitre 
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plates with automatic focusing achieved via an infrared laser. This system is capable of 

imaging the entire yeast proteome in a day. Screening the GFP set with both control and 

treated cells along with RFP cell markers, two fields of view and three Z-stacks will 

generate almost 100,000 images per replicate. The enormous quantity of images 

produced has led to a demand for automated image analysis software. Manual scoring of 

images by eye is not suitable at this level of throughput, and has the added complication 

caused by subjective rather than quantitative measurements, variation between 

individuals and possible bias.  

Because of this many of the commercial imaging platforms also come with image analysis 

software. Acapella™ is the Perkin Elmer offering and has been used for the studies 

presented in this thesis. Most of these commercial software packages offer out-of-the-

box drag and drop functionality for building basic scripts with the ability to customise for 

purpose built features. There are also a number of open-source software packages that 

are increasing in popularity such as ImageJ, CellProfiler and Cell-ID (Abramoff et al., 2004; 

Carpenter et al., 2006; Gordon et al., 2007). Recently there have been a number of 

advances in image recognition procedures for yeast screening systems, particularly in the 

recognition of single cells for protein abundance measurements (Breker et al., 2013; 

Dénervaud et al., 2013; Handfield et al., 2013; Mazumder et al., 2013; Nadler-Holly et al., 

2012; Tkach et al., 2012). More sophisticated algorithms for specific measurements of 

reporter proteins show the versatility of image recognition procedures. Examples are the 

detection of spindle morphologies (Vizeacoumar et al., 2010), plasma membrane 

retention (Bircham et al., 2011), nuclear-cytoplasm translocations (Mazumder et al., 2013) 

and even proteome-wide localisation assessment (Dénervaud et al., 2013; Handfield et al., 

2013). The application of high-throughput microscopy and automated image analysis for 

yeast screening is discussed in more detail in later chapters. 

  



23 
 

1.15   Research aims 

The overall aim of this dissertation was to investigate the proteome-wide changes 

initiated by the UPR under conditions of ER-stress in the yeast Saccharomyces cerevisiae. 

For this we chose to utilise high-throughput live cell microscopy of genome-wide yeast 

collections, paired with automated image analysis. The work was split into three specific 

goals: 

1. Firstly, to develop a system for the automated recognition and analysis of yeast 

cells. Specifically to design a reliable labelling system for cells to be accurately 

identified in confocal images, and furthermore to develop a method of 

automating identification of localisation changes across the proteome.  

 

2. Secondly, to apply the image recognition procedures for the analysis of specific 

reporters of UPR activity as a means to systematically assess the consequences of 

single gene deletions on UPR activity. This will be assessed under both normal 

growth conditions and ER-stress conditions.  

 

3. Finally, to apply the image recognition procedures in the systematic identification 

of UPR-specific localisation and abundance changes throughout the yeast 

proteome in response to ER-stress. 
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2 MATERIALS AND METHODS 

2.1 Yeast strains  

All yeast strains used in this study are derived from S288c and are maintained as glycerol 

stocks stored at -80°C. Strains are displayed in Table 1 below. 

Table 1 - Yeast strains 

Strain Name Description Genotype 

Y7092  SGA starting strain 
from Boone Lab 

MATalpha; can1Δ::STE2pr-
Sp_his5; lyp1Δ; his3Δ1 leu2Δ0 
ura3Δ0 met15Δ0 LYS2+ 

Y9230  SGA starting strain 
from Boone Lab 

MATalpha; can1Δ::STE2pr_URA3  
lyp1Δ  his3Δ1  leu2Δ0 ura3Δ0  
met15Δ0  LYS2+ 

yCG307 BY4742 
cenLEU2 

BY4742 transformed 
with pRS315 (cenLEU2) 
plasmid 

MATalpha; his3Δ1 leu2Δ0 lys2Δ0 
ura3Δ0 

yCG215 NLS-RedStar2-
nat 

BPSV40 NLS fused to 
the N-terminus of 
DsRed2 with the Nat 
MX cassette at the 3' 
end intergrated into 
the ura3 locus 

MAT apha; can1Δ::STE2pr_URA3  
lypΔ1  leu2Δ0 his3Δ1 leu2Δ0 
met15Δ0 ura3Δ0::NLS-DsRed2-
NAT  
LYS2+ 
 

yCG251 NLS-RedStar2-
HPH 

yCG215 marker switch 
to HPH 

MAT apha; can1Δ::STE2pr-URA3; 
lyp1Δ; his3Δ1; leu2Δ0; ura3Δ0; 
met15Δ0: 

yCG253 NLS-RedStar2 
mCherry 

yCG251 transformed 
with mCherry; 
NATMX4-TEFpr-
mCherry 

MATalpha; can1Δ::STE2pr-
Sp_URA; lyp1Δ::mCherry-Nat; 
his3Δ1; leu2Δ0; ura3Δ0::NLS-
RedStar2-HPH; LYS2+;  

yCG261 UPRE-GFP 4xUPRE-GFP 
integrated into met17 
locus of Y7092 

MATalpha; can1Δ::STE2pr-
Sp_his5; lyp1Δ; his3Δ1 leu2Δ0 
ura3Δ0 met15Δ::4xUPRE-GFP-
URA3 LYS2+ 

yCG262 mCherry TEF2pr_mCherry-NAT 
integrated into lyp1 
locus of Y7092 

MATalpha; can1Δ::STE2pr-
Sp_his5; lyp1Δ::TEF2pr_mCherry-
NAT; his3Δ1 leu2Δ0 ura3Δ0 
met15Δ0 LYS2+ 
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yCG266 UPRE-GFP 
mCherry 

yCG261 transformed 
with mCherry into lyp1 
locus 

MATalpha; can1Δ::STE2pr-
Sp_his5; his3Δ1 leu2Δ0 ura3Δ0 
met15Δ::4xUPRE-GFP-URA3 
lyp1Δ::TEF2pr_mCherry-NAT 
LYS2+ 

yCG458 Ire1-GFP  
NLS-RedStar2 
mCherry 

ire1-gfp from the 
NLS/mCherry GFPset 
mated against YCG307 
(BY4742 cen::leu) and 
selected for by 
random spore 

MATalpha; IRE1-GFP_HIS3, 
can1Δ::STE2pr-Sp_URA; 
lyp1Δ::mCherry-Nat; his3Δ1; 
leu2Δ0; ura3Δ0::NLS-RedStar2-
HPH; LYS2+;  

 

2.2 Growth media 

All cultures were grown using the following media and standard growth procedures 
detailed below (Amberg et al., 2005). Yeast strains were incubated at 30°C whereas 
bacteria strains were grown at 37°C. All media was autoclaved at 121°C for 20 min and 
allowed to cool to 65°C before addition of glucose from a 40% (w/v) stock solution, as 
well as any necessary drug or antibiotics. Broth media was made following the same 
recipes with the omission of agar. 

Yeast-extract peptone dextrose (YPD) Media 
 
Yeast extract  1% (w/v) 
Bacto-peptone 2% (w/v) 
Adenine  0.012% (w/v) 
Glucose 2% (w/v) 
Agar 2% (w/v) 
  
Synthetic Complete (SC) or Synthetic Dropout (SD) Media 
 
Yeast nitrogen base  (without  amino  
acids  or  ammonium  sulphate) 

0.17% (w/v) 

Monosodium  glutamate 0.1% (w/v) 
Amino acid mixture to suit* 0.2% (w/v) 
Glucose 2% (w/v) 
Agar 2% (w/v) 
* synthetic complete amino mixture is made up as follows:  
3 g adenine, 2 g uracil, 2 g inositol, 0.2 g para-aminobenzoic acid, 2  g  alanine,  2  g  
arginine,  2  g  asparagine,  2  g  aspartic  acid,  2  g  cysteine,  2  g glutamic acid, 2 g 
glutamine, 2 g glycine, 2 g histidine, 2 g isoleucine, 10 g leucine, 2  g  lysine,  2  g  
methionine,  2  g  phenylalanine,  2  g  proline,  2  g  serine,  2  g threonine, 2 g 
tyrosine, 2 g tryptophan, and 2 g valine. 
 
Dropout variants follow the mixture above with the omission of any desired amino 
acid(s) 

 



26 
 

 

Glucose Nutrient Agar (GNA) Pre-Sporulation Media 
 
Yeast extract 0.8% (w/v) 
Bacto-peptone 0.3% (w/v) 
Glucose 10% (w/v) 
Agar 2% (w/v) 
  

 

Enriched Sporulation Media 
 
Potassium acetate 1% (w/v) 
Yeast extract 0.1% (w/v) 
Amino acid supplement  
(histidine, leucine, lysine, uracil) 

0.01% (w/v) 

Glucose 0.05% (w/v) 
Agar 2% (w/v) 
  

 

Luria-Bertani (LB) Media 
 
Bacto-tryptone 1% (w/v) 
Yeast extract 0.5% (w/v) 
Sodium chloride 1% (w/v) 
Agar 2% (w/v) 
  
Antibiotic supplement 
 

Stock solution Working 
concentration 

Nourseothricin (ClonNat, Werner  
BioAgents) 

100 mg/mL 100 μg/mL 

Geneticin (G418, Invitrogen) 200 mg/mL 200 μg/mL 
Canavanine 50 mg/mL 50 μg/mL 
Thialysine 50 mg/mL 50 μg/mL 
Hygromycin B (HPH, InvivoGen) 100 mg/mL 200 μg/mL 
Ampicillin 100 mg/mL 100 μg/mL 

 

2.3 Plasmids used 

All plasmids used in this study were maintained in bacterial cultures frozen at -80°C as 

glycerol stocks using standard procedures (Amberg et al., 2005). Competent DH5α E. coli 

cells (Invitrogen) were transformed with plasmid DNA following the manufacturer’s 

instructions with minor alterations. Briefly, 25 μL cell aliquots were thawed on ice before 
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addition of 1-10 ng plasmid DNA, followed by further incubation on ice for 30 min. Cells 

were then heat shocked at 42°C for 20 s and placed back on ice for a further 2 min. After 

addition of 475 μL of pre-warmed LB broth, cells were incubated at 37°C for 1 hr with 

shaking at 225 rpm. Aliquots of 20, 100 and 200 μL were then plated onto pre-warmed LB 

plates containing ampicillin and were incubated overnight at 37°C. Single colonies were 

picked and grown in 3 mL LB broth containing ampicillin overnight at 37°C. Finally, cells 

were harvested to be frozen down as 15% glycerol stocks at -80°C. Plasmid DNA for use in 

PCR amplification reactions was isolated from bacteria cultures and purified using the 

Zippy™ plasmid miniprep kit (Zymo Research) following the manufacturer’s instructions. 

Table 2 - Plasmids used 

 

2.4 Polymerase Chain Reaction (PCR) conditions  

PCR products for use in yeast transformations were all amplified using HotStar™ taq DNA 

polymerase (Qiagen). All primers were resuspended in ddH2O to a concentration of 100 

pM and stored at -20°C. Reaction mixtures were made up to 25 μL volumes following the 

manufacturer’s guidelines as follows: 

ddH2O 19.6 μL 
10X buffer 2.5 μL 
5 mM dNTPS 1.25 μL 
HotStar Taq 0.15 μL 
Template DNA 0.5 μL 
5’ primer 0.5 μL 
3’ primer 0.5 μL 
 

Plasmid name Description Source 

pYM-N19 natNT2 TEF2pr Janke et al, 2004 

pYM43 Redstar2 natNT2 Janke et al, 2004 

pFA6a-HPH HPHNT1 Janke et al, 2004 

pYM-N22 KanMX4 Janke et al, 2004 

pMJ002 natMX4 TEF2pr_mCHerry David Breslow, UCSF 

P4339 natMX4 Tong et al, 2001 

pPM47 URA3 4XUPRE-RFP (Addgene #20132, 
Merksamer et al 2008 
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We used robust PCR cycling conditions that work well with difficult PCR reactions   (Janke 

et al., 2004). This was found to work well in reactions using the long primers (>70 bp) 

required for efficient homologous recombination during transformation. The conditions 

used for this general PCR cycle are as follows: 

Hot start activation : 95°C  15 min 
3 step cycling x 10 repeats:   
Denaturation 95°C 1 min 
Annealing 54°C 30 s 
Extension 72°C 2 min 40 s 
3 step extension cycling x 20 repeats:   
Denaturation 95°C 1 min 
Annealing 54°C 30 s 
Extension 72°C 2 min 40 s + 20 s / cycle 
 

PCR products were checked for correct product size by electrophoresis on a 1% agarose 

gel with comparison to a 1 kb+ ladder. Confirmed PCR products were purified using a 

Geneaid PCR clean-up kit as per manufacturer’s instructions. 

Table 3 - List of primers used 

Primer 
number 

Description Sequence 

144 5’ promoter-NLS TGCGAGGCATATTTATGGTGAAGGATAAGTTTTGACCATCAAAGAAG
GTTCGTACGCTGCAGGTCGAC 

145 3’ promoter-NLS CTTTCTCTTTTTCTTTGGAGATTCAAATTCAGAACCATCAGCAGTTCTTT
TACCACCAGTCATAGAAGCCATGTCCGGGGGGGATCCACTAG 

146 5’ NLS-RFP GAATTTGAATCTCCAAAGAAAAAGAGAAAGGTTGAAGCTTCTGGTTT
GGTTCCTAGAGGTTCTGCTTCTTCTGAAGATGTCATC 

147 3’ NLS-RFP CCATGAAGCTTTTTCTTTCCAATTTTTTTTTTTTCGTCATTATAGAAATC
CGCTGGCCGGGTGACCCGGCGGGGAC 

148 5’ Cyc promoter ATGATACATTTCTTACGTCATGATTGATTATTACAGCTATGCTGACGTA
CGCTGCAGGTCGAC 

149 3’ cyc promoter ACGTCCCAATTGTCCCCCTCCTAATATACCAACTGTTCTAGAATCCATC
GATGAATTCTCTGTCG 

176 UPRE Kan MX GGCCATCCACGCTATATATACACGCCTGGCGGATCTGCTCTTTCGACA
CGCTGTCCAGTTCCGTTTTCGACACTGGATGGCGGC 

240 HPH marker 
switch 

CGAGAAAATCTGGAAGAGTAAAAAAGGAGTAGAAACATTTTGAAGCT
ATGAGCTCCGAGCTCGTTAAAGCCTTCGAG 

224 mCherry fw AATTGCATTGTCTATAACGATAACAAAAGACATCGTATATATATATAT
ATCGTACGCTGCAGGTCGAC 

252 mCherry rv TCTATTTTTTTATTTTTTTCTATTTTGAAGGCATGCAAGAGGTTCTGTGA
ACTATAGGGAGACCGGCAGA 

257 MET15_URA3_fw TCGAATCCCTTAGCTCTCATTATTTTTTGCTTTTTCTCTTGAGGTCACAT
TCAGCGGGTGTTGGCGGGT 

258 MET15_plasmid_
rv 

AAACTTTGTTGAATGTTGAGCAAGTTAACATCTTATAGGACATATTAA
ACGTGAATGTAAGCGTGACATA 
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259 UPRE-GFP 
overlap 

AACACCAGTGAATAATTCTTCACCTTTAGACATTATTAATTTAGTGTGT
GTAT 

260 GFP-MET15 AAACTTTGTTGAATGTTGAGCAAGTTAACATCTTATAGGACATATTAA
ACTTATTTGTACAATTCATCCATACC 

261 UPRE overlap-
GFP 

AACACAAATACACACACTAAATTAATAATGTCTAAAGGTGAAGAATTA
TTCA 

 

2.5 DNA electrophoresis 

Electrophoresis was performed using 1% agarose gels made with TBE buffer (89 mM Boric 

Acid, 2 mM EDTA disodium dihydrate, 89 mM Tris Base [pH 8]). Prior to casting, ethidium 

bromide was added to the gels for DNA staining to a concentration of 0.5 µg/ml. Gels 

were run in the same TBE buffer and loaded with samples of 5 μL of PCR product and 2 μL 

loading dye (glycerol 30% (v/v), bromophenol blue 0.25% (w/v)) beside 2uL 1 kb+ DNA 

ladder (Invitrogen) in loading dye for size comparison. Electrophoresis was run at 120 V 

until the loading dye had migrated a satisfactory distance. DNA bands were visualised and 

images captured using an Alpha Imager mini transilluminator (Alpha Innotech) at 365 nm. 

 

2.6 Yeast transformation procedure 

Yeast transformations were carried out following a high efficiency lithium acetate/single-

stranded carrier DNA/PEG method with minor modification (Gietz and Schiestl, 2007). In 

brief, 50 mL of YPD broth was inoculated with yeast cells picked from a single colony and 

grown overnight at 30°C with shaking at 225 rpm. Once the culture had reached an OD in 

the range of 1 – 2, cells were harvested by centrifugation at 3,000 g for 5 min and washed 

twice by repeated steps of resuspension in sterile H2O and centrifugation. Cells were then 

resuspended to a concentration of 109 cells/mL of which 100 μL samples were placed into 

micro-centrifuge tubes for each transformation. Cells were then centrifuged at 13,000 g 

for 30s and the supernatant removed. Cells were resuspended in a transformation mix of 

the following components: 

50% (w/v) PEG 3350  240 μL 
1M Lithium acetate 36 μL 
2 μ/mL Denatured salmon sperm DNA 50 μL 
PCR product 10 μL 
ddH2O 24 μL 
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Cells were then heat shocked at 42°C for 40 min, centrifuged at 13,000 g for 30 s and the 

supernatant removed. Cells were resuspended in 3 mL YPD and incubated at 30°C in a 15 

mL Falcon tube with rotation for 3 hrs. Finally aliquots of 2, 20 and 200 μL were plated 

onto selective media and incubated at 30°C for two days. Transformed cells were re-

streaked again onto selective media and single colonies were isolated to be stored in 15% 

glycerol stocks at -80°C. 

 

2.7 Transformation confirmation by colony PCR 

Colony PCR was used to confirm that the transformant yeast cells had indeed integrated 

the desired product into the correct locus. PCR primers were designed within the internal 

antibiotic cassette that had been introduced and ~200 bp upstream or downstream of 

the target ORF or integration site. Confirmation PCR product amplification should then 

only be possible if the transformation had occurred within the correct locus. PCR 

products were amplified and visualised using standard procedures as above. 

 

2.8 Random spore selection for strain construction 

Random spore selection was used to create strains of a desired mating type and traits 

from the genetic background of the two haploid parental strains. By using strains with the 

genotype background of the SGA starting strains ([can1Δ::STE2pr-Sp_his5; lyp1Δ] or 

[can1Δ::STE2pr_URA3; lyp1Δ]), haploid progeny can be selected in the same manner as 

the SGA mass mating procedure described in detail below. The desired haploid parental 

strains of opposite mating type were mated on YPD plates by streaking cells harvested 

from a single colony toward each other in a chevron pattern. Cells were mixed at the 

point of the chevron to ensure efficient mating and the plates were incubated overnight 

at 30°C. Diploids were selected by replica plating onto media selective for traits from 

both parental strains and incubated overnight at 30°C. Diploid cells were replica plated 

onto GNA pre-sporulation media and incubated for no more than 16 hours at 30°C. Cells 

were then harvested from a patch ~1 cm2 and used to inoculate 1.5 mL of enriched 

sporulation broth in a 15 mL Falcon tube. These cells were left to sporulate for a 
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minimum of 5 days at 20°C on a rotator. Following this, 200 μL of the sporulation culture 

was centrifuged at 13,000 g for 30 s and the cell pellet resuspended in 100 μL of 2.5% 

(w/v) zymolyase 20T. This was then incubated for 30 min at 30°C before vortexing for 1 

min to release spores from the ascus. Samples were diluted 100, 1000 and 10,000 fold in 

water and plated onto selective media to isolate single colonies. A series of replica plating 

onto selective media allowed for genotypic selection and colonies containing the desired 

traits were re-streaked and frozen down in 15% (w/v) glycerol stocks at -80°C. 

 

2.9 Construction of red fluorescent marker strains 

A dual red fluorescent protein marker strain was created to visualise the cytoplasm and 

nucleus for the efficient automated identification of a cell in image analysis. A bipartite 

nuclear localisation signal from SV40 (Hodel et al., 2006, 2001) was attached to the red 

fluorescent protein Redstar2(Bevis and Glick, 2002; Janke et al., 2004) with expression 

controlled by the TEF2 promoter (Janke et al., 2004). The construct was created by PCR 

amplification of two products with homologous flanking regions to the yeast URA3 locus 

and an overlapping region between them. The TEF2 promoter was amplified from 

plasmid pYM-N19 with PCR primers 144 and 145, while the RedStar2 RFP along with the 

cloneNAT antibiotic resistance marker was amplified from plasmid pYM43 with primers 

146 and 147. An overlapping region containing the NLS signal was introduced from 

primers 145 and 146 allowing for concurrent transformation of both products into the 

genome of the yeast strain Y9230 resulting in the strain yCG215. This strain was then 

marker switched from cloneNAT to hygromycin B (HPH) by transformation with the PCR 

product amplified from plasmid pFA6a-HPH with primers 144 and 240 resulting in the 

strain yCG251. This strain was further transformed with the PCR product amplified from 

plasmid pJM002 (A kind gift from David Breslow, University of California, San Francisco) 

with primers 224 and 252. This introduced the cytoplasmic RFP mCherry under control of 

the TEF2 promoter into the lyp1 locus, resulting in the strain yCG253. 

2.10    SGA mass mating procedure 

Mass mating of query strains to the yeast libraries was achieved using the Singer ROTOR 

HDA (Singer Instruments, Somerset, UK) colony arraying robot. This allowed for the rapid 
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introduction of a query deletion or reporter into these libraries. Query strains were 

derived from the SGA starting strains Y7092 and Y9230 that contain a MATa specific 

selection system (can1Δ::STE2pr-Sp_his5 or can1Δ::STE2pr_URA3 respectively) for 

haploid selection. Mating procedures were carried out using standard protocol (Tong and 

Boone, 2007). The general procedure is summarized below with specific strains and their 

selection media indicated in Table 4:  

1. Yeast Library 

a. DMA 

The DMA was a kind gift from Charles Boone (University of Toronto) and 

consists of ~4,500 MATa non-essential deletion strains arrayed across 14 

plates. Plates were arrayed with 384 strains per plate with a Δhis3 control 

strain along the borders. The DMA collection is maintained on YPD + G418 

media. 

b. GFP Collection 

The GFP collection was obtained from Invitrogen and consists of 4159 

MATa strains each with a different GFP-fusion protein arrayed across 11-

384 colony plates. The GFP collection is maintained on SD-His media. 

2. Mating of the Query strain and Yeast libraries 

Query strains for reporter SGAs were derived from the appropriate SGA starting 

strains (see row two, Table 4). A 10 mL overnight culture of the MATα query strain 

was poured into an empty singer plate as a liquid source to pin onto agar plates in 

384 format to match the density of the yeast library being used. Plates were 

incubated overnight at 30°C.  

These initial query plates were then pinned onto fresh YPD plates and the MATa 

yeast library pinned directly on top to allow mating to occur. The mating plates 

were incubated at 30°C overnight. 

3. Diploid selection 

MATa/α diploids were selected by pinning onto YPD media containing the 

appropriate selections as seen in row 4 of Table 4. This double selection media 

allowed for conjoint selection of the desired genetic markers from both parent 
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strains (query & library array), thus eliminating unmated haploids.  Diploid 

selection plates were then incubated for two days at 30°C. 

4. Sporulation 

Diploid cells were then pinned onto enriched sporulation media as described in 

section 1.2. These plates were incubated for 7 days at 20°C. These plates are 

deficient in nitrogen which encourages diploid cells to undergo meiosis and 

produce haploid spores.  

5. MATa selection 

After sporulation cells were pinned onto MATa specific selection media (see row 5 

Table 4) and plates were incubated for two days at 30°C. This MATa specific 

selection works on the basis of the STE2 promoter (specific to haploid MATa cells) 

which drives the expression of a selectable marker (Histidine or Uracil 

biosynthesis). Additional haploid selection markers are present in these cells as 

they carry gene deletions of the arginine and lysine permeases CAN1 and LYP1. 

When grown on media containing toxic analogues of arginine and lysine 

(Canavanine and Thialysine) any diploid cells still carrying the functional wild type 

permeases will be selected against as they take up these toxic drugs. For SGAs 

using Y7092 derived strains the selection media was SD-His/Arg/Lys + CAN/THIA 

or for Y9230 derived strains SD-Ura/Arg/Lys + CAN/THIA. Plates were then 

incubated for two days at 30°C.   

A second MATa selection was repeated following this and incubated overnight at 

30°C. 

6. Allele selection 

Following MATa selection, a series of pinning procedures were carried out 

maintaining the MATa genotype and selecting one more allele each time until all 

desired alleles had been accounted for (See row 6 Table 4). For each selection 

step cells were allowed to grow for two days at 30°C. 
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Table 4 - outline of SGA mating selections 

Library created UPRE-GFP DMA Ire1p-GFp DMA 
GFP collection with 

RFP markers 

Query strain 
yCG266 

(from Y7092) 

yCG458 

(from Y9230) 

yCG253 

(from Y9230) 

Yeast library DMA DMA GFP collection 

Diploid selection YPD + NAT/G418 YPD + NAT/G418 SD – His + NAT 

MATa selection 
SD – His/Arg/Lys + 

CAN/THIA 

SD – Ura/Arg/Lys + 

CAN/THIA 

SD – Ura/Arg/Lys + 

CAN/THIA 

Final selection 
SD – His/Arg/Lys + 

CAN/THIA/NAT/G418 

SD – 

URA/His/Arg/Lys + 

CAN/THIA/NAT/HPH 

SD – 

URA/His/Arg/Lys + 

CAN/THIA/NAT/HPH 

 

2.11   Mating type assessment 

To verify reliability of the R-SGA selection procedures, colonies were selected for PCR-

based mating type testing using a combination of three primers as described in Huxley et 

al. (1990). One primer corresponded to the MAT locus while the other two are mating 

type specific primers that produce a different product size for each mating type; a 544 bp 

product for MATa and a 404 bp product for MATα or both products in the case of a 

diploid. The protocol in brief is as follows: strains of interest were streaked on agar plates 

and grown for two days at 30°C. Single colonies were harvested and suspended in 50 μL 

of 1 mg/mL zymolyase 20T for 30 min at 30°C to extract template DNA from cells. PCR 

reactions of 25 μL were setup with the reaction mix listed below:  

ddH2O 14.6 μL 
10X buffer 2.5 μL 
5 mM dNTPS 1.25 μL 
HotStar Taq 0.15 μL 
Template DNA 5 μL 
MAT locus primer 0.5 μL 
MATa specific primer 0.5 μL 
MATα specific primer 0.5 μL 
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A thermal cycle consisting of a 15 min 95°C hot start followed by 30 cycles of 95°C for 1 

min denaturation, 58°C for 2 min annealing and 72°C for 2 min extension. PCR products 

were analysed by DNA electrophoresis as described above (section 2.5). 

2.12  Serial spot dilution assay 

Cells were harvested from single colonies grown on YPD agar plates and used to inoculate 

a 3 mL YPD culture. Cultures were grown overnight until an OD600 of 1 (~1x107 cell/mL) 

was reached from which serial 10-fold dilutions were set up in a 96 well microtitre plate. 

Five μL spots were pipetted onto agar drug plates using an 8-channel pipette giving a 

range from 50,000 cells per spot down to single cells. Plates were grown for 24 or 48 

hours and scored for growth sensitivity. 

2.13   Image acquisition / analysis 

Cells were grown on agar plates in 384 colony format overnight at 30°C to obtain fresh 

cells. These cells were transferred into 384 well clear bottomed microtitre plates (Perkin 

Elmer cell carrier) containing 50 μL of media using the Singer RoToR HAD colony arraying 

robot. Cells were incubated for four hours at 30°C and placed in the microscope 5 

minutes prior to imaging to allow cells to settle to the bottom. Cells were imaged using 

the Perkin Elmer Opera high-throughput confocal microscope using the following setup: 

60X water immersion lens NA = 1.2. GFP and RFP were simultaneously imaged by 

splitting light through a 568 nm detection dicroic mirror to two peltier cooled 1.3 

megapixel CCD cameras. GFP was excited using a 488 nm laser and captured through a 

520/35 bandpass filter. RFP was excited using a 561 nm laser and captured through a 

600/40 nm bandpass filter. Images were exposed for 400 ms and a binning of 2 was used 

for screening conditions. 

2.14   Gene ontology analysis 

Gene ontology analysis was conducted using the web-based software tools on YeastMine 

(Balakrishnan et al., 2012. http://yeastmine.yeastgenome.org). Gene ontology 

enrichments were calculated for gene hit lists by comparison to custom background 

population sets that only represented the strains present in the yeast collection used. 

Benjamini–Hochberg (False discovery rate) was used as a test correction with p-value cut-
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offs as described in the text. Redundant gene ontology terms were ignored after 

comparison using amiGO (Carbon et al., 2009. http://amigo.geneontology.org).  

2.15  Transcription factor analysis 

Transcription factor analysis was conducted using a comprehensive web-based database 

of all known yeast transcription factor (TF) interactions in YEASTRACT (Abdulrehman et al., 

2011; Monteiro et al., 2008; Teixeira et al., 2006, 2013). TF interactions were identified 

using the online search tool ‘rank by TF’ available on the YEASTRACT website. The gene 

hit list of expression changes being analysed was used as input for the target ORFs. 

Potential TFs were either limited to the same set of input genes to search for interactions 

within the hits, or alternatively all known TFs were used to search for interactions outside 

of the hit list. A p-value of 0.005 as calculated by YEASTRACT was used as a significance 

cutoff for TF interactions unless otherwise stated. 
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3 AUTOMATED IMAGE ANALYSIS 

Commercial availability of automated microscopy screening platforms – such as the 

PerkinElmer Opera microscope used here - provide an efficient means to capture 

thousands of images that has enabled measures of proteome-wide responses. It is 

commonly said a picture is worth a thousand words, although the challenge now appears 

to be extracting information from the wealth of data we are able to capture. Whilst the 

Opera microscope – like most commercial platforms – provides its own software for 

phenotypic analysis, we found that the existing cell recognition procedures were better 

suited to larger mammalian cells than the Saccharomyces cerevisiae cells used here. One 

of the major goals of this thesis was therefore to develop an automated system for 

analysing phenotypic data from proteome-wide yeast screens. Developing a standard 

platform that could be broadly applied, but also customized for each experiment would 

enable the identification of a range of possible phenotypes under different growth 

conditions. This chapter describes the innovative development of a consistent RFP 

labelling system and custom yeast-optimised image recognition software scripts for cell 

identification. This was developed in the Acapella programming language that comes with 

the Opera microscope using custom written as well as built in procedures.  Because we 

chose to image live cells that were freely suspended in growth media, one of the first 

challenges that we had to overcome was to automate selection of optimal focal planes 

for image analysis. The aims of this chapter were thus: 

1. To define a procedure for automated selection of images containing optimal yeast 

mid-sections. 

2. To develop a cytoplasm based cell recognition procedure, suitable for reporter-

SGA screens with specific reporter proteins.   

3. To develop a high fidelity nucleus-cytoplasm based cell recognition procedure, 

suitable for the analysis of the wide range of highly variable GFP proteins in the 

yeast GFP collection. 

4. Design these algorithms to be easy to use and highly customisable as a screening 

platform for future experiments. 
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3.1 Background 

3.1.1 Subcellular organisation of proteins 

In order to function appropriately, proteins not only require accurate synthesis and 

folding but must also localise to the correct subcellular compartment or organelle. The 

subcellular arrangement of proteins within a cell is highly structured but also highly 

dynamic. At any given time a cell expresses thousands of different proteins; all of which 

must be spatiotemporally managed to maintain normal biological function. Organelles 

can provide the environmental context in which a protein functions, and can vary in 

conditions such as pH, redox state and ionic concentration. Furthermore, localisation of a 

protein can ensure that interacting proteins can efficiently find each other, for instance 

the assembly of protein complexes, or conversely to prevent inappropriate interactions 

from taking place. In this sense, localisation can control the post-translational machinery 

and microenvironment conditions necessary for protein function, or control the physical 

interaction partners a protein is exposed to. Evidencing the essential role of location is 

research showing that the controlled mislocalisation of proteins can negate protein 

function analogous to loss-of-function mutants (Geda et al., 2008). Indeed abnormal 

localisation of proteins has been implicated in a number of wide-ranging human diseases 

including several cancers and neurological disorders (Hung and Link, 2011).  

Living cells must respond dynamically to changes in growth conditions and adapt their 

intracellular components correspondingly to suit. Control of protein localisation is one 

means of regulating protein function in response to environmental conditions. Of note is 

Ire1p, a regulator of the UPR, which splices HAC1 mRNA more efficiently when it 

oligomerises in the presence of unfolded proteins, and changes from a dispersed ER 

protein to form localised foci. This dynamic change is used as a means of regulating levels 

of UPR activity (Kimata et al., 2007). Another instance of regulation is the localisation of 

transcription factors which are often held in an inactive state in the cytoplasm. When 

required, they are rapidly translocated into the nucleus where they exert their actions. An 

example of this is the response of the transcription factor Crz1p. Upon cellular stress 

conditions, cytoplasmic Crzp1 is dephosphorylated by calcineurin resulting in 

translocation into the nucleus (Stathopoulos-Gerontides et al., 1999). Another example is 

the ribosomal RNA processing element-binding protein, Stb3p, which in glucose starved 
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quiescent cells is maintained in the nucleus, suppressing numerous growth related genes. 

Upon glucose repletion, Stb3p is translocated into the cytoplasm, permitting the 

expression of genes required for cell growth (Liko et al., 2010). This approach, where 

mature proteins are held in check until needed, can offer a much faster response than if a 

protein must be synthesized first.  

Increasingly, there are reports of proteins ‘moonlighting’ or having multiple unrelated 

functions (Jeffery, 1999). Often these functions occur at differing locations within the cell. 

An example is Hxk2p which is the predominant hexokinase used for glucose metabolism 

in the cytoplasm in S. cerevisiae. Additionally, in cells growing on glucose, a proportion  of 

Hxk1p localises to the nucleus where it plays a secondary role of regulating the glucose-

dependent repression of various genes including invertase and galactose metabolic genes 

(Moreno and Herrero, 2002; Randez-Gil et al., 1998). It has been noted that these 

additional functions may often be overlooked or overcautiously disregarded as possible 

artefacts; however there is increasing evidence that it is likely to be a common 

phenomenon (Butler and Overall, 2009; Copley, 2012). Unexpected changes in 

localisation have been proposed as a means to identify potential moonlighting proteins 

(Gancedo and Flores, 2008). In fact, there is evidence for a significant number of well-

described cytoplasmic proteins potentially ‘moonlighting’ with secondary functions on 

the cell surface (Nombela et al., 2006).  

3.1.2 Fluorescent proteins as markers for live cell imaging 

With the importance of the interplay between protein localisation and function in mind, 

it is apparent that live cell imaging of localisation dynamics can give insight into the 

function of uncharacterised proteins, or provide additional functions to expand existing 

annotations. Green Fluorescent Protein (GFP) has widely been used for its versatility as a 

means to label proteins for live cell imaging. Originally isolated from the jellyfish 

Aequorea victoria, GFP was first cloned in 1992 (Prasher et al., 1992) and subsequently 

demonstrated as a useful in vivo fluorescent tag (Chalfie et al., 1994). The open reading 

frame encoding GFP can be integrated genomically in yeast for either N- or C-terminal 

tagging of endogenous proteins. This provides a number of advantages over other 

labelling approaches. Firstly as GFP is expressed by the cells themselves there is no need 

for multi-step staining procedures that may be impractical in a high-content screening 
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process. Additionally, GFP has very low toxicity related side-effects making it ideal for 

live-cell imaging. Because of these factors; GFP has been adopted as a preferred means of 

labelling proteins in live cells for both visual inspection and as a reporter of gene 

expression (Tsien, 1998). Various other coloured fluorescent proteins have since been 

identified, both naturally occurring such as the red fluorescent protein dsRed isolated 

from the coral Discosoma sp. (Matz et al., 1999), as well as mutational variants created to 

cover a broad spectrum of colours (Chudakov et al., 2010).  There are a number of 

mutation enhancements that can be made to improve the performance of fluorescent 

protein tags in vivo. An enhanced GFP variant was used in the creation of the yeast GFP 

collection (Huh et al., 2003). This is one of the most widely used GFP variants and 

contains Ser65→Thr and Phe64→Leu mutations that dramatically increase maturation 

rate and brightness. Additionally, these mutations shift the excitation and emission 

wavelengths to a more useful 488 nm and 510 nm respectively, which is suited to 

commonly used fluorescein isothiocyanate (FITC) filter sets (Cormack et al., 1996; Heim et 

al., 1995). Pairing GFP with RFP is a common approach for dual labelling systems due to 

their well separated excitation and emission spectra. However, wild-type RFP proteins 

such as dsRed are often unsuitable for protein tagging due to their low brightness and 

multimeric nature that can lead to protein aggregation and toxicity. A large number of 

mutational enhancements were therefore required to create a fast maturing and 

monomeric version of dsRed (Bevis and Glick, 2002; Campbell et al., 2002). This has since 

been further enhanced to create a number of dsRed variants with much enhanced 

brightness and photostability including the two used here, RedStar2 and mCherry (Janke 

et al., 2004; Shaner et al., 2004). The RFP mCherry is a highly optimised variant with an 

especially good maturation rate and is also a true monomer, which are good attributes 

for a protein tag. RedStar2 has a combination of mutations that make it ~6-10 fold 

brighter than mCherry, and a fast maturing RFP variant (Janke et al., 2004). However 

Redstar2 is also a dimer and hence has the potential to cause localisation artefacts 

(Kaufmann, 2009). Nevertheless in the context of our studies this has not been a problem.  
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3.1.3 Location proteomics with the yeast GFP collection 

Systems biology is concerned with the understanding of cell biology on an all-inclusive 

level. Sequencing of the yeast genome has seen the development of a number of genome 

scale tools that have led to an escalating amount of powerful genome-wide screens that 

produce an abundance of data. However a wealth of data does not always correspond to 

a wealth of knowledge. Bioinformatics is becoming increasingly important to interpret 

datasets, especially to comprehend some of the often, rather abstract relationships 

behind data such as the synthetic lethal interactions of an SGA. Over the past decade or 

so there has been an increase in excitement regarding high-content microscopy for 

genomic screens – a technology that potentially offers more direct insight into protein 

function. As discussed above, the location or re-localisation of a protein has great 

implications for function. Thus by directly visualising proteins and their phenotypes on a 

subcellular level, we are able to gain insights into function and/or their involvement in 

biological processes of interest. ‘Location proteomics’ has been termed to describe high-

content imaging to measure protein localisation as means to screen for protein function 

on a genome-wide level (Chen et al., 2003).  Current microscopy technologies have 

enabled high-throughput image acquisition of live cells and the availability of increasingly 

powerful computers for automated image analysis has laid the grounds for microscopic 

analysis of the entire proteome. Forefront in these studies is the use of the yeast GFP 

collection, the most comprehensive fluorescent protein library covering ~70% of the 

yeast proteome. A number of studies using this collection are listed in Table 5. Initial 

construction of the yeast GFP library allowed for manual annotation of protein 

localisations into 22 localisation classifiers, although a significant portion of these were 

classed as ambiguous (Huh et al., 2003). The GFP collection may be used to screen for 

protein changes in localisation and/or abundance in response to various conditions, the 

combination of which has been used very successfully to study proteome changes in 

response to both drug treatment and mutations (Breker et al., 2013; Nadler-Holly et al., 

2012; Tkach et al., 2012).  
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Table 5 - summary of various large-scale papers that have used the yeast GFP collection to screen the proteome 

Publication Conditions Live 
cells 

Strains Analysis Notes 

(Breker et al., 
2013) 

Stress conditions 
(DTT, H2O2, 

nitrogen 
starvation) 

Yes 5,330 

Automated cell 
recognition and 

abundance analysis. 
Manual inspection of 

localisation 

Wide-field 60X air. 
Cytoplasmic RFP to 

identify cell borders. 
 

(Handfield et al., 
2013) 

N/A Yes 
4,004 

 

Automated cell 
recognition, protein 
localisation and cell 

cycle stage 

Confocal 60X water. 
Cell cycle analysis 

associated proteins 
with specific stages of 

growth 

(Herzig et al., 
2012) 

Mutations in 
secretory cargo 

receptors 
Yes 

~150 
Cargo 

proteins 

Manual inspection of 
localisation 

Paired mutations in 
cargo receptors with 

GFP-tagged cargo 
proteins to match 

receptors and 
substrates 

(Nadler-Holly et 
al., 2012) 

Mutations in 
subunits of the 

cytosolic 
chaperonin Cct 

ring complex 

Yes ~5,100 

Automated cell 
recognition and 

abundance analysis. 
Manual inspection of 

localisation 

Wide-field 60X air. 
Cytoplasmic RFP to 

identify cell borders. 
 

(Narayanaswamy 
et al., 2009a) 

Alpha factor 
mating 

pheromone 
No ~4,200 

Automated cell 
recognition. Manual 

and machine learning 
methods to identify 
proteins localising to 
the mating projection 

Fixed cells printed 
onto slide micro-

arrays 

(Narayanaswamy 
et al., 2009b) 

Nutrient 
depletion 

No 

~800 
Cytoplas

mic 
proteins 

Manual inspection of 
foci formation 

Fixed cells printed 
onto slide micro-

arrays 

(Newman et al., 
2006) 

Rich and minimal 
media 

Yes >2,500 
Flow cytometry to 

monitor protein 
abundance 

 

(Noree et al., 
2010) 

Filament 
formation in 
cytoplasmic 

proteins 

Yes 

1,632 
Cytoplas

mic 
proteins 

Manual inspection of 
filament formation 

 

(Shin et al., 2009) Rapamycin Yes 4159 
Manual inspection of 

localisation 
Wide-field 100X oil 

(Tkach et al., 
2012) 

 
 
 
 

DNA damage 
(MMS, HU) 

Yes 4,148 

Automated cell 
recognition and 

abundance analysis. 
Manual inspection of 

localisation 

Confocal 60X water. 
Nup49p-RFP to identify 

nuclei, estimated 
cytoplasm region rather 

than identify cell 
borders 

(Dénervaud et 
al., 2013) 

DNA damage 
(MMS) 

Yes 4,085 

Automated cell 
recognition and 

abundance analysis. 
Automated and manual 

inspection of localisation 

Chemostat array system 
to maintain cultures 
while imaging. Used 
texture analysis for 
localisation changes 
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(Mazumder et al., 
2013) 

DNA damage 
(MMS) 

No >4000 

Automated cell 
recognition, abundance 

analysis and 
nuclear/cytoplasm 
expression ratios 

Used DAPI and Alexa 647 
conjugated 

Concanavalin A to label 
cells for image detection 

 

3.1.4 Automated image analysis 

Since the construction of the Yeast GFP collection there has been a push toward 

automated analysis of protein localisation and abundance at the single cell level. 

Automated identification of single cells in micrographs has been a successful technique in 

a number of applications and usually requires fluorescent labelling of cell components 

such as nuclei and cytoplasm (Bircham et al., 2011; Breker et al., 2013; Nadler-Holly et al., 

2012; Narayanaswamy et al., 2009a; Tkach et al., 2012). When screening for a specific 

type of localisation change, as in the case of Reporter-SGA screening, efficient recognition 

procedures can be created to measure differences. We have previously had success 

measuring internal accumulation of a GFP-tagged membrane protein in response to gene 

deletions by measuring the ratio of internal to cell surface fluorescence (Bircham et al., 

2011), Others have also had good success with specific reporters measuring spindle 

morphology (Vizeacoumar et al., 2010). However in the context of screening the entire 

GFP collection, a large number of organelles must be considered and every protein has 

the potential to behave differently.  

Most image recognition applications in the context of the GFP collection have been to 

measure protein abundance on a single cell level. However, there has been significant 

progress made toward automated localisation analysis as well (Chen et al., 2007; 

Handfield et al., 2013; Huh et al., 2009). One approach is to classify localisations based on 

a large number of parameters including morphological features (e.g. cell size and shape), 

as well as descriptors such as Haralick texture features, Zernike moment features or 

wavelet features (Murphy et al., 2003). Classification approaches can use a supervised 

approach where control images for each pre-determined localisation are used to train the 

algorithm (Chen et al., 2007; Huh et al., 2009; Narayanaswamy et al., 2009a), or 

alternatively a less biased, unsupervised approach uses clustering methods to 

discriminate into an undetermined number of groups based on similarity (Handfield et al., 

2013). Although success of such techniques has been shown, and in some cases can 
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match or even exceed manual human annotation between proteins (Murphy et al., 2003), 

a vast majority of studies comparing protein changes to a treatment still rely on manual 

visual inspection of images to determine localisation changes (Breker et al., 2013; Tkach 

et al., 2012). One of the major limitations lies in the classification system itself, which may 

be inadequate to describe subtle localisation changes, or proteins that fall under multiple 

categories (Murphy, 2005; Newberg et al., 2009). For the studies presented here, we 

decided not to question where a protein was located within the cell, but rather whether 

there was any change in localisation pattern between treatments, without regard for its 

similarity to other proteins. To achieve this, accurate cell segmentation scripts were 

developed to measure textural features at a single cell level and discriminate protein 

localisation patterns between control and treated cells. 

 

3.2 Image preparation 

Prior to analysis, one image must be chosen from the stack of z-planes that have been 

imaged. Depending on the trait being measured, one can add the values of all planes 

together to get a total value, generate a maximum projection image from the brightest 

points across all z-planes, or as in most cases, select the z-plane which most accurately 

portrays the cell mid-section. For localisation analysis the mid-section provides the 

highest level of intracellular detail. It is therefore essential that the mid-section is 

accurately selected to avoid identifying false localisation changes that can occur when 

comparing images of different heights. For instance, cell wall proteins appear only on the 

periphery of a cell in a mid-section, but may appear blurred and more cytoplasmic-like if 

imaged at z planes approaching the top or bottom of the cell. One of the challenges with 

our screening setup was the variability in optimal focal height across wells. This problem 

was twofold, firstly the Opera is setup with a high-speed auto-focus laser that measures 

focal height from the bottom of the well; rather than slower image-based focus systems. 

Consequently image accuracy in terms of yeast mid-sections is not automated at time of 

image acquisition. Secondly we imaged live yeast cells freely suspended in media. Thus, 

depending on how they had settled in the well, cells could be at different heights 

between wells. These two factors contributed to significant well-to-well variation in 

optimal focal height, therefore we imaged five Z-planes per well that encompassed this 
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variation. Z-planes were spaced one micron apart, altogether spanning the approximate 

height of a yeast cell. In order to automate mid-section identification from these z-planes, 

the gradient of pixel intensity changes was measured across all images and the plane with 

the greatest standard deviation in values was assumed to represent the mid-section 

(Figure 4). This is because the mid-section usually has a clear change in contrast at nuclei 

and cell borders and thus a much greater variance across the gradient. This method is 

sensitive to bright auto-fluorescent artefacts that often appear in images that are taken 

too close to the bottom of a well. These can be removed by first filtering out any small or 

very large objects that are unlikely to be cells. To test the accuracy of the automated 

selection, images from a 384 well plate were analysed using our automated scripts and 

compared to z-plane selection by manual visual inspection with 98% agreement. The few 

differences were due to bright artefacts in the well, outlier cells with extremely bright 

nuclei, or cases where a choice was made between two z-planes that both presented 

different cells in mid-section. 

 

 

Figure 4 – Comparison of pixel intensity gradients across Z-planes.  

The top row is a series of RFP images in greyscale taken at various Z-heights. Below is the corresponding pixel 

intensity gradient map represented as an image where brighter pixels correspond to a higher gradient slope. The 

fourth plane from the left has the best defined nuclei and cell borders and highest corresponding gradient standard 

deviation (SD) used for automated selection. 
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3.3 Cell Detection without nuclei recognition for Reporter-SGAs 

For experiments using consistently well expressed reporter strains such as the 4xUPRE-

GFP reporter, we used an automated cell recognition algorithm that only requires 

cytoplasmic labelling for detection. Because reporter expression is the primary 

measurement in these screens, we chose to use a constitutively expressed cytoplasmic 

marker for cell detection that also doubles as a control for protein expression. Thus, 

mCherry RFP under the control of a constitutively expressed TEF2 promoter was used for 

cytoplasmic labelling. This system has proved effective in the literature as a control 

protein to which reporter expression can be normalised (Jonikas et al., 2009).  

3.3.1 Cytoplasmic RFP strain construction 

The mCherry strain was created by transformation of the usual laboraotory SGA starting 

strain Y7092 with the PCR product amplified from plasmid pJM002 (a kind gift from David 

Breslow, UCSF) with primers 224 and 252. This introduced cytoplasmic RFP mCherry 

under the control of the TEF2 promoter – along with a NatMX4 nourseothricin resistance 

cassette – into the lyp1 locus of Y7092 resulting in the R-SGA starting strain yCG262. 

3.3.2 Cytoplasm based cell detection algorithm 

The identification of the cell boundaries based on cytoplasmic labelling was achieved 

using custom Acapella scripts (Appendix 7.3). Cytoplasmic staining is achieved from the 

expression of the TEF2pr_mCherry cassette which has been genomically integrated. 

Firstly a mask of all the pixels that are brighter than a surrounding ring of pixels in the 

image is created to define potential cell objects. A mask like convolution kernel – 

representing a ring with an internal diameter of 24 pixels which is approximately equal to 

1.3x the width of a yeast cell – was used to convolve the image to infer the surrounding 

reference intensity. The convolved image was then subtracted from the original image 

leaving only pixels brighter than their surroundings. These pixels were then used to 

define a binary mask of bright pixels. This produces a mask of well-defined cell objects, 

but a high level of noise in the surrounding image background (Figure 5b). The mask is 

then converted into individual object stencils by defining each separate mask feature as a 

new object (Figure 5c). The high background noise in the mask produces a number of 

inappropriate small objects which are removed by setting a minimum size filter to below 

the size of a yeast cell (Figure 5d). The remaining objects were then checked to see if any 
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are actually multi-cell objects ‘stuck’ together (Figure 5c, arrows)  and split into individual 

cells (Figure 5d). 

Next the cell’s object borders are individually fine-tuned using a local threshold for each 

cell. Local minimum and maximum brightness values are calculated for each cell from the 

background area surrounding the cell, and the internal region of the cell respectively. 

These values are defined by rings or ‘zones’ that expand out from, and also within the cell 

(Figure 5e-f). Pixels within each zone are then added or subtracted from the cell border as 

they meet or fail the local threshold (Figure 5g). 

 

Figure 5 - cytoplasm detection without nuclei.  

a) mCherry RFP labelling of cytoplasm; b) Mask of bright pixels highlighting potential cells ; c) Initial cell objects. 

Different colours indicate individual objects, the arrow points to two groups of ‘stuck’ cells; d) splitting of ‘stuck’ cells 

and removal of small non-cell objects; e) Inner zones used for individual cell contrast measurements, different 

colours represent individual zones; f) Outer zones used for individual cell contrast measurements; g) Cells after 

individual threshold adjustment, arrows point to erroneous projections from the cell border; h) Cell trimming and 

filtering of cells. 

To correct imperfections in the cell recognition, cell borders are smoothed to more 

closely match the ellipsoid shape expected of a yeast cell. We found an efficient way to 

achieve this was to 'trim' off any small erroneous projections from the cell border (Figure 

5g, arrowed). This can be achieved simply by shrinking the cell border down in size and 

lowering the resolution of the objects, thus losing any small details along the cell border. 

The objects can then be expanded back up to the original size but will have a smoother 

surface (Figure 5h). Objects are filtered based on size and circularity (described below) – 

to remove any spurious objects; and by intensity – to remove any dead cells which often 
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become highly fluorescent (Breker et al., 2013). Finally any partial cells touching the 

border of the image are removed. 

 

3.3.3 Measuring circularity 

 Yeast cells have smooth contours and range from circular to ellipsoidal in shape (de 

Carvalho et al., 2007). Therefore, a measure of circularity was used as a filter to remove 

erroneous shapes from the analysis. A perfect circle has a centre equidistant to all points 

along its perimeter. As a quick and efficient method to assess circularity a measure of the 

radius ratio (RR) was used. The distance from the mass centre of a cell to each point along 

it’s perimeter was calculated, and circularity defined as the ratio of the minimum and 

maximum distances (Gordon et al., 2007; Ritter and Cooper, 2009): 

   
          

          
 

The radius ratio provides a well performing method of measuring circularity that is 

computationally inexpensive, resolution independent and matches well with human 

perception of circularity (Ritter and Cooper, 2009). Because RR is a ratio, it measures on a 

convenient scale from 0 to 1, where 1 would be a perfect circle, as the shape of yeast 

cells ranges from circular to ellipsoid a radius ratio cut-off of 0.5 was found to be effective 

for selecting cells. There are however limitations in the case where a cell body is 

essentially round but the boundary has been incorrectly identified with a small section 

either sunken or projecting out exaggerating the radius minimum or radius maximum 

respectively. This was seen commonly in cells that show a large negative space 

corresponding to the vacuole. For the analysis described in this thesis, accuracy was 

favoured over cell count and thus, elimination of cells with this problem was not deemed 

to be significant.  

 

3.4 Cell detection with nuclei detection 

3.4.1 Dual RFP marker strain development 

Using the mCherry RFP alone for cell border recognition, as described above, is fine for 

automating relatively simple measurements such as expression changes of a cytoplasmic 
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reporter-GFP. However, for measurement of more complex phenotypes such as 

localisation changes, cell border accuracy is of the highest importance. For example 

inaccuracies along cell borders can greatly effect measurement of cell periphery proteins 

and could lead to false positive or negatives in localisation change. Moreover, whilst 

using only a cytoplasmic protein marker is possible for accurate cell recognition in some 

situations, it often leads to inaccurate cell separation when cell density in an image is too 

high. As we do not have the ability to rigorously control cell counts or distribution of cells 

in our images we needed a more accurate method of cell separation. In order to facilitate 

automated cell recognition to identify individual yeast cells with high fidelity, we 

developed a consistent labelling system to label cells throughout cell cycle stages and/or 

growth conditions. To this end, we created a dual RFP system specifically labelling the 

cytoplasm and nucleus of each cell, which could be integrated into the genome of any 

reporter strain (Figure 6). In addition to the mCherry used to label the cytoplasm above, 

we used a RFP protein Redstar2 (Bevis and Glick, 2002; Janke et al., 2004), fused to a 

nuclear localisation signal (NLS) to target the nucleus. In order to ensure as much 

consistency between individual cells as possible we used the constitutive promoter 

region of TEF2 to control expression of each RFP reporter (Janke et al., 2004). The use of 

this simultaneous nuclear and cytoplasmic labelling system allows each object to be 

centred on the nucleus which will always be well separated from adjacent cells, thereby 

improving detection accuracy.  

A bipartite nuclear localisation signal from SV40 (Hodel et al., 2006, 2001) was used to 

target the RFP Redstar2 to the nucleus. The construct was created by PCR amplification of 

two products with homologous flanking regions to the yeast URA3 locus and an 

overlapping region between them. The TEF2 promoter was amplified from plasmid pYM-

N19 with PCR primers 144 and 145, while the RedStar2 RFP along with the nourseothricin 

(clonNAT) antibiotic resistance marker was amplified from plasmid pYM43 using primers 

146 and 147. An overlapping region containing the NLS signal was introduced from 

primers 145 and 146, and allowed for simultaneous transformation of both products into 

the genome of the yeast strain Y9230 resulting in the strain yCG215. This strain was then 

marker switched from a clonNAT to a hygromycin B (HPH) resistance cassette by 

transforming with the PCR product amplified from plasmid pFA6a-HPH with primers 144 
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and 240 resulting in the strain yCG251. This strain was further transformed with the PCR 

product amplified from plasmid pJM002 with primers 224 and 252, introducing the 

cytoplasmic RFP mCherry under control of the TEF2 promoter into the lyp1 locus, 

resulting in the strain yCG253. 

 

 

Figure 6 – Schematic of the dual RFP labelling used.  

NLS-Redstar2 marks the nucleus and mCherry marks the cytoplasm. Both of these proteins are under control of a 

‘neutral’ constitutively expressed promoter TEF2. 

 

3.4.2 Nuclei detection 

The first procedure in cell recognition is the identification of cell nuclei. Genomic 

integration of the TEF2pr_NLS-RS2 construct provided a consistently bright nuclear signal 

across all cells. This also avoids the need for any additional staining steps and the 

problems associated with dyes such as DAPI including; loosing cells from washing steps, 

over or under staining, mitochondrial staining and exposure to more harmful UV laser 

excitation. Once the optimal z-plane has been selected, a lenient global threshold is 

applied to the mid-section image to create a binary mask that can be converted into 

initial nuclei objects (Figure 7a-c). This initial threshold is rather liberal and over estimates 

the nuclear size (sometimes to the size of a whole cell) to increase the likelihood of 

encompassing all nuclei that can be further refined in later stages. The initial objects are 

then checked to see if any larger objects are likely to be multiple nuclei objects ‘stuck’ 

together from being in close proximity. These compound objects were split up into 

individual nuclei using built in Acapella procedures (Figure 7d). This step also includes a 

minimal size filter to remove any non-nuclear objects caused by background noise in the 



51 
 

image. Once objects have been identified as likely nuclei, they are further refined into 

more accurate nuclei objects by applying an individual local threshold to each object and 

smoothing the final nuclei border (Figure 7e-g). Firstly, zones are created extending both 

inward and outward of the initial nuclei borders. These zones, and individual pixels within 

these zones are used to measure local contrast for each nucleus with an individual 

threshold applied to each nucleus to optimise the boundary. Results of this are generally 

very accurate since there is such a large contrast difference between the nuclear and 

cytoplasmic fluorescence. A final filter step removes any objects that are too large to be 

nuclei (such as those produced by the auto-fluorescence of dead cells or debris in the 

well), nuclei that fail a circularity test (Figure 7h, see section 3.3.3), and any nuclei 

touching the border of the image.  

 

Figure 7 - Nuclei recognition procedure.  

a) RFP labelling of nuclei and cytoplasm; b) Mask of potential nuclei from initial global thresholding; c) Initial nuclei 

objects. Different colours indicate individual objects, the arrow points to two ‘stuck’ nuclei; d) Splitting of ‘stuck’ 

nuclei (arrowed) and removal of small non-nuclei objects (lower left corner); e) Outer zones used for individual 

nuclei contrast measurements – different colours represent individual zones; f) Inner zones used for individual nuclei 

contrast measurements; g) Nuclei after individual threshold adjustment; h) Nuclei filtering based on size and shape. 

The arrow in g and h points to a nucleus that was filtered based on circularity. 
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3.4.3 Cytoplasm identification 

The second procedure in cell recognition is identification of the cell boundaries based on 

cytoplasmic labelling. Cytoplasmic staining is achieved from genomic integration of the 

TEF2pr_mCherry cassette. Although both the nuclei and cytoplasmic markers are 

expressed using the same promoters, mCherry produces a fainter cytoplasm in 

comparison to nuclear RedStar2. This is due to its fluorescent properties and the fact that 

it is distributed over a larger area of the cell. However, the large contrast difference can 

be problematic for accurate cytoplasm detection described above as the thresholding 

technique tends to pull the cell border in toward the brighter nucleus, underestimating 

the size of cells. To circumvent this problem, the first stage of the cytoplasm detection 

algorithm is removal of nuclei fluorescence (Figure 8c). For each identified nucleus, the 

average cytoplasm fluorescence is measured in a two pixel wide ring, one pixel away from 

the nucleus border. The nuclei region is then expanded by one pixel and used as a stencil 

on the RFP image to replace the nuclei staining with the average measured cytoplasm 

intensity. The whole image then has a mean filter applied to smooth the transition into 

cytoplasm. The resulting image is similar to that which would be produced if only 

cytoplasm had been labelled but is suitable for accurate cytoplasm and cell border 

detection.  

Once nuclei have been removed from the image, a mask defining bright points in the 

image is created to determine initial cell objects (Figure 8d). To increase accuracy of 

initial cell objects, the image is separated into areas of high or low cell density and an 

optimised bright mask algorithm used for each. The image is split into 35 subdivisions and 

the number of nuclei counted in each, any section with greater than 10 nuclei was 

considered to be high density. The bright mask for low cell density areas was calculated 

as described in section 3.3.2. The bright mask for high density areas was defined as the 

top 60% bright pixels within the section.  These bright masks produce a set of well-

defined cell objects, but a high level noise in the surrounding image background.  The 

mask is then converted into individual object stencils (Figure 8e), from which the majority 

of noise can be removed by setting a minimum size filter that will remove most spurious 
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objects. The remaining objects are then checked to see if any objects are multiple cells 

clumped together and if so split into individual cells (Figure 8f). 

The next step is to individually adjust the threshold for each cell in order to define more 

accurate cell borders. To do this, average local minimum and maximum brightness values 

are calculated for each cell from the background area and the internal region of the cell 

respectively. Zones are then created that expand out from and also within the cell (Figure 

8g-h). These zones and individual points of each zone are then added or subtracted from 

the cell border as they meet or fail the local threshold (Figure 8i).  

Because yeast should have a smooth ellipsoid shape we can further refine the cell border 

by 'trimming' off any small erroneous projections from the cell border as described in 

section 3.3.2 (Figure 8i-j). Each cell object is then checked to ensure that there is one 

nucleus per cell (Figure 8k-l). Any cells with more or less than one nucleus are removed, 

and any nuclei without a corresponding cell are also removed. The objects are then 

filtered based on size, intensity and circularity (see section 3.3.2) and any cells touching 

the border of the image are removed (Figure 8l-m). Finally regions of interest can be 

added including cytoplasm, membrane and internal regions (Figure 8n-p). 
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Figure 8 - cytoplasm recognition procedure.  

a) RFP labelling of nuclei and cytoplasm; b) Nuclei as recognised from the nuclei recognition procedure (Figure 7); c) 

RFP labelling of cytoplasm after nuclear staining has been removed; d) Mask of bright pixels highlighting potential 

cells ; e) Initial cell objects. Different colours indicate individual objects, the arrow points to two ‘stuck’ cells; f) 

splitting of ‘stuck’ cells (arrowed) and removal of small non-cell objects; g) Outer zones used for individual cell 

contrast measurements with different colours representing individual zones; h) Inner zones used for individual cell 

contrast measurements; i) Cells after individual threshold adjustment, arrows point to erroneous projections from 

the cell border; j) Cell trimming, arrows point to cell borders that have been corrected; k-l) Filtering for cells with 

single nuclei, arrows in k point to a cell without nuclei and nuclei without a cell; m) Filtering based on size and shape. 

Arrow in l and m points to a cell that was filtered based on circularity; n) Final cell borders with nuclei outlined 

representing the cytoplasm region; o) Membrane region; p) internal region. 

 

3.4.4 Confirmation of cell border recognition scripts 

To evaluate the performance of the cytoplasm identification procedure, cell borders were 

manually drawn for ~1000 example cell images and compared to the corresponding 

automatically identified cells. Firstly the object centres were identified for the manual 

and automated cell bodies and the distance between these centres calculated, showing 
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that 95% were no further than 2 pixels away from each other and 30% of cells had 

perfectly matching centres. The average distance was 0.858 pixels with a standard 

deviation of 0.655. The areas of manual and automated cells were calculated and showed 

a correlation of 0.912 in area and 0.889 in perimeter indicating high similarity in shape 

and size. Coverage of the total percentage of cells identified was estimated from a sample 

of 1000 images as the percentage of cells identified from the initial nuclei count. An 

average of 85.2% of cells were recognised that met selection criteria with a standard 

deviation of 6.2. It was noted that cell coverage was density dependent, as the total cell 

number increased (estimated from total nuclei) the percentage of cells identified 

decreases (Figure 9). At low cell density (<250 cells/image) the average coverage was 90.0% 

± 3.7, at medium cell density (250-500 cells/image) with the average coverage 84.1% ± 

4.5, whilst at high cell density (>500 cells/image) the average coverage dropped to 77.7% 

± 4. Even at the highest cell densities the cell recognition procedures still provided a more 

than adequate sample collection for further image analysis. 

 

Figure 9 - Percentage of cells recognised 
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3.5 Feature measurements 

3.5.1 GFP expression 

GFP expression performs well as a measure of fusion protein abundance and is 

comparable/correlates to other methodologies such as western blotting and mass 

spectrometry (Breker et al., 2013; Newman et al., 2006).  When measuring GFP-protein 

fluorescence for expression changes, the intensity values are often normalised against a 

control RFP protein (Handfield et al., 2013; Jonikas et al., 2009). As such, GFP expression 

measurements in this study were normalised against the constitutive mCherry RFP 

expression where possible. GFP expression levels were measured by calculating the pixel 

intensities within each cell body and normalising the expression as Log2(GFP/RFP). By 

averaging pixel intensities within each cell the intensity measurement is independent of 

cell size, and measuring in Log2 space means that an increase or decrease of expression 

will be depicted on an even scale.  

3.5.2 Spot detection 

Detection of punctate spot patterns of GFP-protein localisation within the cell was 

achieved using the built-in Acapella spot detection algorithms. The spot detection 

algorithms were optimised to identify features on order of 2-3 pixels in diameter (~0.5 

μm). This size was empirically determined to be appropriate for recognising Ire1p-

GFP cluster formation, and thus considered appropriate for general in spot detection 

in screening the GFP collection for localisation changes (see later chapters). 

3.5.3 Texture analysis 

Texture analysis offers a means to automate assessment of protein localisation changes 

without having to manually inspect images by eye and presents a number of advantages. 

Firstly, the increase in automation provides a more efficient work-flow for identification 

of localisation changes. Manual inspection of images may be fine for one-off experiments 

but is unproductive when assessing multiple genomic screens with replicates. Secondly, 

texture analysis is an unbiased measurement of localisation change, thus removing any 

human bias or judgment errors and can in some cases perform better than human vision 

(Murphy et al., 2003).  Lastly since texture analysis measures changes in fluorescent 

intensity patterns, there is no requirement to specifically define subcellular regions or co-

localise against organelle markers. This also means one is not limited to any specific 
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organelle which is advantageous as localisation shifts often result in proteins being 

distributed across multiple locations. An example can be seen in published work of ours, 

where gene deletions caused a partial blockage in delivery of the plasma membrane 

protein Mrh1p to the cell surface (Bircham et al., 2011). In this case protein was still 

delivered to the plasma membrane, but also caused an accumulation in other organelles 

including the ER, Golgi and vacuole.  

 

 

Figure 10 - Visual representation of SER texture features on Bap2p-GFP cells with and without DTT treatment.  

 

Here we used the spots edges and ridges (SER) texture analysis procedures available in 

Acapella. SER features defines a set of eight characteristic fluorescence patterns, namely: 

bright, dark, edge, hole, ridge, saddle, spot and valley. These feature names are self-

explanatory in terms of the features identified (shown in Figure 10), the size of which is 

determined by a scale factor. In our case we used two scale factors of 1 and 2. The SER 

features are examples of textural energy features (Laws, 1980a, 1980b), generated by 

applying a set of second order Gaussian derivatives filters to the original image (van Vliet 

et al., 1998). The corresponding texture feature is characterized by mean intensity of the 
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filtered image in that cell region (P. Kask, personal communication, Oct 2012). We have 

found SER features to perform well with the small size and limited resolution of yeast 

cells in images, importantly SER features are rotation-invariant and intensity independent 

and so should be unaffected by variation in fluorescence or cell orientation. Furthermore, 

because SER features produces only a small set of eight measurements, there is no need 

for complex dimensionality reduction as required by other textural analyses (Dénervaud 

et al., 2013; Liu et al., 2004; Singan et al., 2012). 

 

3.6 Discussion 

In this chapter we have described the development of automated procedures to identify 

optimal images containing yeast cell mid-sections and recognise individual cells for 

further analysis. One of the initial problems early on in these studies was the variation in 

image quality due to differences in focal planes across wells. Yeast cells were found to 

settle down to the bottom of the well within ten minutes, yet we still noticed small 

differences of 1-2 microns between the optimal focal heights across wells leading to 

significant inaccuracies when measuring textural and localisation changes. Other studies 

have adhered cells to the bottom of wells to form a monolayer for imaging (Breker et al., 

2013), but this could cause alteration in membrane dynamics.  We therefore chose to 

image multiple Z-planes and choose the optimal section per sample during image analysis. 

To this effect we developed a highly accurate procedure capable of automatically 

selecting the optimal mid-sections of yeast cells from multiple image stacks based on 

fluorescence intensity gradients across the images. Testing of the procedure showed a 

high degree of accuracy and was found to be as effective as manual inspection by eye. 

In addition, we also encountered a number of problems with the image recognition 

procedures supplied with the Opera microscope, which had been optimised for much 

larger cell types. This often resulted in cells with jagged borders, and poor cell separation 

in areas of high density. Because a high-level of accuracy is needed for detailed 

measurement of sub-cellular features we needed to develop a set of yeast-optimised 

procedures. Here we have described the development of two automated image 

recognition algorithms that are able to accurately separate individual yeast cells - even in 
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densely clumped regions - and produce a precise mapping of cell borders. The first 

algorithm is able to rapidly identify yeast cells from cytoplasmic labelling alone and is 

appropriate for the measurement of cytoplasmic proteins such as the UPRE-GFP reporter 

discussed in Chapter 4. The second algorithm utilises both cytoplasmic and nuclear 

labelling for identification of yeast cells with high precision; ideal for texture and 

expression measurements of a wide variety of GFP proteins such as those in the yeast 

GFP collection. Both algorithms also exclude outlier cells that are not typical of the overall 

population to improve measurement reliability.  

One of the goals of this project was to set up the image recognition procedures 

developed in this study as easy to use, fully customisable yeast screening platforms for 

future experiments. Thus, each procedure was created as a stand-alone module in 

Acapella, complete with basic usage instructions. These modules have been designed in 

such a way that they are optimised for the experiments described in this thesis, but also 

have a set of straight-forward customisation parameters for future users with limited 

programming knowledge. This should allow easy manipulation of these modules to 

incorporate any future phenotypic assays. The modules that were developed include:  

 Combine_stack – takes a stack of images and selects the optimal focus plane, 

combines all planes, and produces a max projection of the brightest points across all 

planes. Also has an option for a rolling ball background correction (Sternberg, 1983).  

 Radii_ratio – measures the circularity of an object 

 Cytoplasm_without_nuclei 

 Nuclei_identification 

 Cytoplasm_from_nuclei 

 Analyse_cells – measures a number of cellular features including: spots, GFP and RFP 

intensities, membrane-cytoplasm ratio, nucleus-cytoplasm ratio, and texture features 

including SER, Haralick and TAS features (Hamilton et al., 2007; Haralick et al., 1973). 

 Z-score – Calculates the Z score for a feature between two populations 

 MannWhit – carries out a Mann Whitney U test for a feature between two 

populations  

The code for each scripting module can be found in Appendices 7.1-7.7 
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Overall we have found the cell recognition procedures described here to be highly 

effective. There are however a number of enhancements that could be integrated into 

future versions. Firstly, the intensity-gradient based approach to optimal image selection 

performed extremely well in selecting the overall best mid-section image. However this 

could be further improved by implementing the algorithm on a per-cell basis, as cells are 

not a strict monolayer there is always a portion of cells that have an optimal mid-section 

up or down one Z-plane. Additionally, it could be beneficial to use image planes directly 

above and below the mid-section to gain volumetric measurements within the cell, for 

example of total protein abundance. Using these outer images could also provide 

additional localisation data, for example yeast mitochondria display complex tubular 

networks in these outer planes that only appear as small spots in the mid-section. 

Another appealing feature to add would be cell-cycle analysis based on bud size. This has 

previously proven to be an effective technique in revealing cell-stage specific responses 

that may not be apparent when analysing the entirety of the cell population (Handfield et 

al., 2013).  Finally, although the analysis is automated and faster than manual inspection, 

the analysis can take over 24 hours for data processing to analyse a complete screen of 

the yeast GFP collection. This is partly due to Acapella being a high-level programming 

language, which although easy to program is known to cause performance issues in 

similar applications (Mursalin, 2013). High-level programming languages such as Acapella 

are processed at run-time by an interpreter which converts the script line-by-line into 

machine code for execution, thereby slowing the processing speed.  Additionally 

implementing these scripts in an open source programming language would make them 

more distributable and accessible for other applications.  
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4 SCREENING THE YEAST DELETION SET FOR UPR GENES 

 

4.1 Background 

4.1.1 Use of the DMA for genomic screening 

The yeast deletion mutant array (DMA) is a genome-wide set of gene knockouts 

(Winzeler et al., 1999) that has been widely utilised as a screening platform to elucidate 

gene function (Boone et al., 2007; Costanzo et al., 2010). Early screens using the DMA 

typically involved either drug treatment or introduction of a second mutation to define 

chemical-genetic (Stockwell, 2000) or epistatic genetic interactions respectively. DMA 

screens such as these have proved successful in identifying novel gene functions in 

processes of interest, including studies of the secretory pathway (Schuldiner et al., 2005). 

An example is some of our earlier published work (Bircham et al., 2011) which combined 

secondary gene mutations and drug treatment of the DMA, to identify additional genes 

required for secretory pathway function under conditions of unfolded protein stress. 

Although studies such as these have proved fruitful, the actual assay measurements – 

that is growth rate based on colony size – is a relatively simplistic indicator of gene 

function.  It seems reasonable then to suggest that cell-location behaviour of specific 

reporter proteins may offer insight into some of the less obvious effects caused by gene 

deletions. This has been shown to be the case by both ourselves and others using 

reporter-SGAs (Bircham et al., 2011; Jonikas et al., 2009; Vizeacoumar et al., 2010; 

Wolinski et al., 2009). In our case we introduced a GFP labelled plasma membrane 

protein, Mrh1p-GFP, into the DMA to identify genes required for correct delivery of this 

reporter to the cell surface. This screen revealed that deletions within the six-membered 

ER membrane complex (EMC) resulted in an accumulation of Mrh1p-GFP within the cell, 

despite the fact that none of these genes caused any visible growth defect. Continuing 

along this rationale, we decided to introduce specific UPR reporters into the DMA to test 

for gene deletions that induced the UPR, and define genes required for this induction 

under conditions of induced unfolded proteins stress. 
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The aims of this chapter are thus: 

1. To develop a sensitive reporter system for measuring activity of the unfolded 

protein response in both standard growth conditions and chemically induced ER-

stress conditions 

 

2. To introduce the UPR reporter into the yeast DMA and screen for gene deletions 

that induce the UPR under standard growth conditions   

 

3. To screen for gene deletions that prevent normal UPR induction under conditions 

of chemically induced ER-stress  

 

4.1.2 UPR Reporter selection 

There are a number of desirable characteristics that need to be considered when deciding 

on a suitable reporter system. Firstly the reporter needs to have low background levels 

and be easily measureable in high-throughput assays. The reporter system should have a 

large dynamic range so the level of reporter activation can be accurately quantified. The 

reporter should be fast responding so as to provide real-time measurements of the 

condition being tested. Finally and most importantly the reporter gene should be related 

to the biological function of interest to limit false-positive results. GFP tagged proteins 

are often used as they provide a rapid real-time reporter that can be visualised with 

automated fluorescence microscopy. Additionally, the ability to label native proteins with 

a GFP-tag can often provide a simple means for developing specific reporters. 

To choose suitable candidate reporter proteins we looked at the signalling pathway of the 

UPR, which at its simplest level can be broken down to: 

 

 

Upstream of the UPR, an accumulation of unfolded proteins is recognised by Ire1p which 

in turn activates the response (Cox et al., 1993; Mori et al., 1993). However mis-folding of 
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proteins in a broad sense is not something that can be readily assayed and is therefore 

not suitable for a reporter system.  

The UPR itself requires both Ire1p and Hac1p to be sequentially activated, each of which 

involves a phenotypic change. As such, Ire1p and Hac1p were both considered as 

potential reporter candidates for UPR activation. 

Downstream of Ire1p and Hac1p activation, UPR target genes are transcriptionally up-

regulated following the binding of Hac1p to the UPR-element (UPRE) upstream activating 

sequences found in the promoter of the target genes. This provides two possible 

candidates for a reporter system. Firstly, various target genes themselves should change 

in expression proportionate to UPR activation. This idea has been used in recent studies 

in our lab by a colleague Yee Low, who used the GFP labelled variants of the UPR target 

genes Orm2p, Yip3p and Erv29p to measure the downstream UPR effects from 

overexpression of a misfolded protein CPY* (Low, 2013). The second candidate is using 

UPRE sequences to drive the expression of a reporter itself rather than tagging a native 

protein (Mori et al., 1992). This method has the benefit of being UPR specific, without the 

possibility of non-UPR gene regulation affecting protein expression as is possible when 

using native proteins. 

4.1.3 Ire1p as a GFP reporter 

Ire1p functions directly to recognise unfolded proteins in the ER (Credle et al., 2005; 

Gardner and Walter, 2011), making it the pivotal component in initiating the UPR in yeast. 

The ER luminal domain of Ire1p contains a core stress sensing domain, which facilitates 

self-dimerization and formation of an MHC-like groove capable of directly binding 

unfolded proteins (Credle et al., 2005; Gardner and Walter, 2011). Binding to unfolded 

proteins results in the clustering of Ire1p into high-order oligomers that function in 

regulating the activation levels of the UPR (Kimata et al., 2007). By using GFP tagged Ire1p, 

these clusters can be visualised to determine activation levels of the UPR by exogenous 

ER-stress agents, such as dithiothreitol (DTT) (Aragón et al., 2009; Ishiwata-Kimata et al., 

2013b; Kimata et al., 2007; Promlek et al., 2011).  

Although Ire1p cluster formation is a consequence of direct binding to unfolded proteins, 

it was recently reported that actin plays a role in facilitating efficient cluster formation 
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(Ishiwata-Kimata et al., 2013b). It is unclear to what extent, if any, other proteins play in 

cluster formation and thus we hypothesised that Ire1p-GFP cluster formation could be 

used as a visual reporter to screen the yeast DMA and identify proteins involved in Ire1p 

activation and cluster formation. Additional proteins required for this process may be 

identified by screening the DMA for gene-deletions that prevent cluster formation. 

Additionally Ire1p-GFP cluster formation caused by gene deletions under non-stressed 

conditions should identify genes involved in protein folding and ER homeostasis.  

4.1.4 Hac1p as a GFP reporter 

Hac1p is the transcription factor responsible for executing the up-regulation of UPR 

target genes. Under normal unstressed conditions, HAC1 mRNA (HAC1u) is not translated 

due to an inhibitory intron. Once activated, Ire1p splices HAC1u mRNA, removing this 

intron, to form induced HAC1i mRNA. HAC1i is then translated and translocated into the 

nucleus where it binds to UPRE sequences in the promoters of target genes. This provides 

a possible reporter system whereby GFP labelled Hac1p would not be present in 

unstressed cells, however expression would increase and localise to the nucleus under 

stress conditions. By screening the DMA for changes in Hac1p activity it should be 

possible to identify gene deletions that affect UPR activation post-Ire1p activation and 

pre-UPR target gene up-regulation. Screening in ER-stress conditions could potentially 

discriminate gene deletions that block UPR activation from those that prevent target 

gene expression. 

4.1.5 UPRE as a reporter 

UPRE elements are upstream activating sequences present in a majority of known UPR 

target genes. Thus far three distinct UPRE elements have been identified (Patil et al., 

2004). The first element identified is a 22 bp DNA sequence that was originally found in 

the promoter region of KAR2 (Mori et al., 1992) and is the most prevalent element 

amongst UPR target genes. This UPRE element has been successfully used to drive 

expression of a number of reporter systems including LacZ, luciferase and GFP by 

inserting the UPRE element upstream of a crippled CYC1 promoter such that expression is 

only induced upon UPR activation (Cox et al., 1993; Pollard et al., 1998). As an alternative 

to GFP expression that requires fluorescent imaging techniques for measurement, we 

hypothesised that UPRE elements could be used to drive the expression of  ADE2 gene 
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which is involved in purine biosynthesis. Mutations in ADE2 cause a block in the purine 

nucleotide biosynthetic pathway, thus when these strains are grown on low adenine 

media; this results in the accumulation of precursor product, P-ribosylaminoimidazole 

(AIR), in the vacuole. When oxidised, AIR turns red, giving a colour change to yeast 

colonies that can be used as a simple and easily measured reporter readout (Ng, 2005; Ng 

et al., 2000). In this case, red colonies would indicate unstressed cells and low expression 

of ADE2 whereas induced UPR activity would drive expression of ADE2 and result in 

completion of the purine biosynthesis pathway seen by white colonies.  

 

4.2 Ire1p-GFP DMA screen 

4.2.1 Ire1p-GFP reporter strain construction 

To generate the Ire1p-GFP reporter strain, the cytoplasmic and nuclear red fluorescent 

protein (RFP) marker strain yCG253 was mated with the Ire1p-GFP strain taken from the 

yeast GFP collection (Invitrogen, Huh et al., 2003; see Materials and Methods). The 

resulting strain had the correct markers but was of a MATa mating type which is 

unsuitable for mating with the DMA which is also MATa. To generate a MATα strain, 

random spore selection was used (see Materials and Methods) in which the above strain 

was mated with the MATα wildtype strain yCG307 containing a selectable cen::LEU2 

plasmid for use in diploid selection. Spores were generated and germinated, and the 

MATα Ire1p-GFP reporter strain yCG458 was selected in which the cen::LEU2 plasmid was 

lost and the desired reporters were retained. 

4.2.2 Ire1p-GFP reporter validation 

To test the efficacy of Ire1p-GFP as a reporter, cells had ER-stress chemically induced 

using DTT and were visualised with automated confocal microscopy. The optimal DTT 

concentration for Ire1p cluster (foci) formation was determined by performing a dose-

response curve ranging from 0.125 – 8 mM DTT. Cells were grown for four hours at 30°C 

in a 384 well clear bottomed microtitre plate containing 50 μL of SC + DTT. Cells were 

imaged using the Opera confocal microscope and automated image recognition 

procedures were used to count the number of foci per cell (see Chapter Three). As can be 
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seen in Figure 11a, the number of foci per cell did not have much variation over different 

DTT concentrations.  

 

Figure 11 - Ire1p-GFP foci formation in ER-stress conditions. 

a) Ire1p-GFP foci formation after 4 hours growth in different concentrations of DTT; Bars – 

percentage of cells of cells with foci; Line – average number of foci formed per induced cell. Error 

bars show standard deviation. b) Top and bottom pannels show control and 2 mM DTT treated 

cells respectively. Red fluorescence arises from mCherry, a cytoplasmic marker, and nuclear 

localisation signal RFP (NLS)-RedStar2. Green is  Ire1p-GFP. White arrows point to examples of 

Ire1p-GFP foci. 

The average number of foci per cell ranged from 2-4, and a small portion of control cells, 

i.e. no DTT was added, had foci. However, counting the percentage of the total cell 

population displaying foci appeared to be a more reliable measurement of Ire1p 

activation, increasing in a dose-dependent manner and peaking at 2 mM DTT. 

Concentration above 2 mM DTT resulted in a higher percentage of Ire1p clustered cells, 

however the foci were less well defined and there was an increased number of dead cells 
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which may affect analysis. The fact that Ire1p-GFP clustered as expected under ER-stress 

conditions (see Figure 11b) is indicative that a C-terminal GFP tag does not impair the 

proteins ability to recognise misfolded proteins and consequently form high-order 

oligomer clusters. 

4.2.3 Identification of gene deletions that induce Ire1p cluster formation 

In order to identify gene deletions that induce Ire1p-GFP cluster formation and are 

therefore likely to have caused protein mis-folding, the Ire1p-GFP reporter strain yCG458 

was introduced into the DMA following standard R-SGA procedure (see Materials and 

Methods for details). The resulting DMA/reporter library was then imaged after four 

hours growth in 50 μL SC media in fourteen 384 well microtitre plates using the high-

throughput Opera confocal microscope and standard settings (refer to Materials and 

Methods). The images were assayed for foci formation using the Acapella scripts for spot 

detection described previously (Chapter Three) and statistical analysis was conducted 

using R software (R Core Team, 2013). The percentage of cells showing Ire1p foci for each 

deletion strain was compared to the median of its corresponding plate to account for 

plate to plate variation. P-values were calculated for each strain using Fisher's exact test 

of independence, testing for gene deletions that showed a greater than expected level of 

foci formation. Fisher’s method was used to combine p-values across replicates. Gene 

deletions were considered a hit if their p-value fell below the threshold of 0.005. Genes 

annotated as dubious ORFs in Saccharomyces Genome Database (SGD; Cherry et al., 2012) 

were removed from the analysis. Results are summarised in Table 6 and genes were 

grouped in broad functional categories based on those presented in Costanzo et al., 2010: 

Table 6 - Gene deletions that induce Ire1p-GFP cluster formation 

Gene deletions that induce Ire1p-GFP cluster formation with a p-value less than 0.005. Functional categories were 

adapted from those used in Costanzo et al., 2010. 

Functional Category Genes 
Amino acid biosynthesis ASI1, PRS5, VBA5 
Cell polarity/morphogenesis ABP140, AIM3, RGA2, SAC7, STE3 
Chromatin/transcription SGF29, YPR022C 

Cell cycle progression/meiosis SPO19 

DNA replication HSM3 
Drug/ion transport PNS1, TPO5, YBT1, ZRC1, ZRT3 
ER-Golgi traffic ERV29, RUD3, SHH3, TRS85 
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Cell cycle progression/meiosis CLN3, FKH1, POG1, SPO74 
Golgi/endosome/vacuole/sorting GDA1, PRB1, SIW14, SSO2 

Lipids PLB3, SSP2, VAC14 

Metabolism 

ASP1, EHT1, GID8, IMP2, KGD2, MAL13, MRS4, 
NDE2, NPP1, OM45, PCP1, PEX1, PEX6, PXA2, RMD5, 
SUC2, URA8, VID30, YDL119C, YNL200C 

Ribosome/translation 
ATS1, RCM1, RPL37A, RPL40B, RPS18B, RSA3, SCD6, 
TRM82 

Signalling/stress response CNB1, NMA111, PPT1, SVF1, YAP5 
Protein degradation/proteasome DFM1, HLJ1, HRD1, STE24, UBR1, UBX2, UBX4 

Protein folding/glycosylation 
ACF2, ALG12, ALG5, ALG9, EMC1, EMC3, EMC5, 
HAC1, LAS21, NBP2, OST5, PMT1, PMT2 

Unknown 

BOP3, CUE3, ESL1, ESL2, FMP16, LEE1, SSP120, 
TOS1, YBR219C, YEL057C, YGR266W, YIL163C, 
YKL033W-A, YKR051W, YMR196W, YPR078C, 
YPR147C, YPR148C, YSY6 

 

Non-redundant GO categories that showed enrichment with a false discovery rate (FDR) 

less than 0.1 were obtained from Yeastmine (Balakrishnan et al., 2012) by comparison to 

a background population set of all gene deletions present in the DMA.  GO-Biological 

process terms that showed enrichment included proteolysis (17 genes), ER-associated 

ubiquitin-dependent protein catabolic process (7 genes), protein glycosylation (7 genes) 

and cellular response to topologically incorrect protein (5 genes). GO-Cellular component 

terms that showed enrichment included Endoplasmic reticulum (19 genes) and organelle 

membrane (36 genes). 

Interestingly two publications, Jonikas et al., 2009; Schuldiner et al., 2005, showed 

enrichment for this set of genes with a FDR < 0.05, both of which were studies 

investigating the secretory pathway/UPR using the DMA. The Jonikas dataset is 

particularly interesting as they used a UPRE reporter to screen the DMA using flow 

cytometry for genes involved in protein folding. Comparison of their dataset of UPRE 

inducers to our Ire1-GFP cluster inducing genes shows an overlap of 28 genes (27 % of 

our hits). It should be noted that their dataset used different cut-offs to define hits and as 

such has a larger hits list than ours (318 compared to 104). Cells were also grown in liquid 

media prior to screening as opposed to the agar media in our screen which would 

influence differences in growth rates and protein expression.  
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Another two datasets of interest are presented in Travers et al., 2000 and Kimata et al., 

2006, both of which used cDNA microarrays to measure mRNA expression changes in 

response to ER-stress to define the set of UPR target genes. Travers induced ER-stress 

using tunicamycin and DTT whereas Kimata used tunicamycin and a constitutively active 

UPR strain. Comparison of our Ire1p-GFP cluster inducing hits to their combined datasets 

(after removing dubious ORFs and genes not represented in our array) shows only a 

limited overlap of 14 genes (13% of our hits, Figure 12). This may indicate that most of 

the gene deletions inducing Ire1p clustering are not required for actively dealing with 

misfolded proteins, but rather their absence is causing protein misfolding to occur by 

another mechanism. This may be the reason that only around 17 % of our hits are 

annotated to be involved in protein folding or degradation (Table 6). 

 

 

Figure 12 - Ire1p cluster formation literature comparison 

 

Overlap between gene deletions that cause Ire1p cluster formation and UPR targets as defined by Kimata et al., 2006 

and Travers et al., 2000; and gene deletions that induced expression of a UPRE reporter as defined by Jonikas et al., 

2009. Dubious ORFs and genes that were not present in the DMA were removed from the datasets before 

comparison. 
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4.2.4 Gene deletions that prevent Ire1p cluster formation under ER-stress 

To identify genes that may be required or assist in recognition of misfolded proteins and 

activation of Ire1p, the Ire1p-GFP reporter DMA was screened under ER-stress conditions. 

Cells were grown in 50 μL SC containing 2 mM DTT for four hours at 30°C to induce ER-

stress. Under these conditions wild-type cells displayed an increased percentage of cells 

having Ire1p-GFP foci (Figure 11). Cells were screened with the Opera confocal 

microscope using standard conditions, and images were analysed using Acapella scripts 

for foci detection (see Materials & Methods). DTT treated cells were compared to 

untreated cells of the same strain using Fisher's exact test of independence and p-values 

across replicates were combined using Fisher’s method. Gene deletions were considered 

not to have induced Ire1p clustering in strains that could not reject the null hypothesis i.e. 

strains with a p-value > 0.05. Additionally strains were considered to have lower than 

expected Ire1p clustering if the percentage of cells showing foci was less than 10 % across 

all replicates.  Dubious ORFs were omitted resulting in a list of 13 hits, shown in Table 7:  

Table 7 - Gene deletions that prevent Ire1p clustering after DTT treatment 

Gene deletions that prevent proper Ire1p cluster formation. Columns showing % foci represent the percentage of 

cells in the population showing Ire1p clusters, averaged across replicates. P-values were calculated using Fisher’s 

exact test and combined across replicates using Fisher’s method. Strains with p-values above 0.05 (highlighted red) 

could not reject the null hypothesis indicating that control and treated populations are not statistically 

distinguishable.  

ORF Gene 
Control 
% foci 

Treated 
% foci 

Description 

YOR067C ALG8 2.66 2.5 Glucosyl transferase 

YNL169C PSD1 0.47 2.6 
Phosphatidylserine decarboxylase of 
the mitochondrial inner membrane 

YNL284C MRPL10 0 0.8 
Mitochondrial ribosomal protein of the 

large subunit 

YKL073W LHS1 0 1 
Molecular chaperone of the 

endoplasmic reticulum lumen 

YJR073C OPI3 0.92 5.3 Phospholipid methyltransferase 

YOR106W VAM3 0.13 2.1 
Syntaxin-like vacuolar t-SNARE that 

functions in vacuolar trafficking 

YKL006W RPL14A 0 2.9 Ribosomal 60S subunit protein L14A 

YJR145C RPS4A 0.47 4.7 
Protein component of the small (40S) 

ribosomal subunit 

YNL162W RPL42A 0.35 3.4 Ribosomal 60S subunit protein L42A 

YKL081W TEF4 0.8 5.3 Gamma subunit of translational 
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elongation factor eEF1B 

YMR243C ZRC1 9.25 5.4 Vacuolar membrane zinc transporter 

YML017W PSP2 1.27 9.7 
Asn rich cytoplasmic protein that 

contains RGG motifs 

YGR092W DBF2 0 5.7 
Ser/Thr kinase involved in transcription 

and stress response 

 

These genes showed no significant GO enrichment, although 10 of the 13 were shown to 

have physical interactions with UBI4 (ubiquitin) and 7 of the 13 with UBP3 (UBiquitin-

specific Protease). It should also be noted that some of the hits which showed no Ire1p 

cluster formation were larger than expected for haploid cells. Of all the hits LHS1 and 

OPI3 are the only genes known to be a UPR target gene (Kimata et al., 2006; Travers et al., 

2000), although 5 of the 13 hits were UPRE inducing gene deletions in Jonikas et al., 2009. 

Interestingly 10 of the 13 were UPRE inducers, identified as defined later in this chapter. 

Additionally it is intriguing that deletion of ZRC1 both increased the number of Ire1p foci 

under non-stressed conditions and decreased the number under stressed conditions. 

 

4.3 Hac1p-GFP as a potential reporter of UPR activation 

Hac1p is the transcription factor mainly responsible for the up-regulation of UPR target 

genes. As described previously, HAC1 transcript must be spliced by Ire1p in order to be 

efficiently translated, and subsequently translocated into the nucleus where it activates 

the transcription of target genes containing UPRE upstream activator sequences. Hac1p is 

able to up-regulate its own expression via a UPRE binding site within its promoter region 

(Ogawa and Mori, 2004). We hypothesised that measuring both nuclear translocation and 

expression levels of Hac1p tagged with GFP (Huh et al., 2003) would provide a useful 

reporter to assess UPR activation. Cells were transferred from agar plates into a 384 well 

clear-bottomed microtitre plate containing 50 μL SC + DTT with concentrations ranging 

from 0-8 mM and grown at 30°C. Cells were imaged at 30 minute intervals and assessed 

for nuclear translocation and nuclear GFP expression levels, selected time points are 

shown in Figure 13 below. 
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Figure 13 - Hac1p-GFP activation in ER-stress conditions. 

a) DTT dose-response depicting Hac1p-GFP nuclear GFP expression. Error bars show standard deviation. 

b) Top and bottom panels show control and 2 mM DTT treated cells respectively. Red fluorescence 

arises from mCherry, a cytoplasmic marker, and nuclear localisation signal RFP (NLS)-RedStar2. Green is  

Hac1p-GFP. Nuclear localisation is not initially seen (red nuclei at 0 hours), however at 4 hours growth 

both control and treated cells show nuclear localisaed Hac1p-GFP. DTT treated cells have more nuclear 

Hac1p-GFP expression as seen by the distincly more green nucleus matching the data in panel a). 

 

In our growth conditions we found rapid nuclear translocation in both control and DTT 

treated conditions. Presumably transferring cells into fresh media causes enough protein 

misfolding to induce some Hac1p activation. It has been previously shown in normal 

growth conditions up to 30% of nascent proteins can misfold and induce measurable but 

low levels of UPR activation (Jonikas et al., 2009; Schubert et al., 2000).  

Although nuclear translocation occurred in both control and treated cells, nuclear GFP 

intensity showed a dose-dependent increase of Hac1p-GFP expression in response to DTT 

(Figure 13). However the dynamic range of this expression increase was not large enough 

to employ it as a suitable reporter. Although Hac1p-GFP expression increases with DTT 

concentration there is a large standard deviation for each measurement (shown as error 

bars in Figure 13), thereby limiting the discriminatory power of Hac1p-GFP as a reporter. 

This is particularly limiting in high-throughput screening given the large number of 

measurements and thus the need for statistically robust measurements. Because of this 

limitation and the lack of distinguishable nuclear translocation between control and 
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treated cells, we deemed Hac1p-GFP to be an unsuitable reporter for measuring UPR 

activation in high-throughput screens. 

 

4.4 UPRE reporter DMA screen 

4.4.1 UPRE-ADE2 reporter construction 

To make a simple colour based reporter assay for UPR activity that does not require 

further detection like fluorescent systems do, we hypothesised that Ade2p expression 

could be controlled by a UPRE-promoter construct as shown in previous works. By 

replacing the promoter of the Ade2 gene with a crippled cyc1 promoter (Guarente and 

Mason, 1983) containing an upstream UPRE element (Mori et al., 1992) the Ade2 enzyme 

should only be present when the UPR is activated. By introducing this into the YGDS, UPR 

activation should be apparent by the appearance of white colonies while those with 

compromised UPR signalling should remain red.  

Construction of the UPRE-ADE2 reporter strain was carried out by a two-step sequential 

transformation of the SGA starting strain Y7092 (see materials and methods for PCR and 

transformation protocol). Firstly a crippled cyc1 promoter along with an upstream NatR 

antibiotic resistance cassette was introduced upstream of the ADE2 gene replacing the 

native promoter. This was achieved by transformation of the PCR product from plasmid 

pYM-N11, amplified using primers #148 and #149 into Y7092 generating the strain 

yCG214. This strain was further transformed with a PCR product containing a KanMX 

resistance cassette and 22 bp UPRE sequence. This product was amplified from plasmid 

pYM-N22 using primers #148 and #176, generating the UPRE-ADE2 reporter strain. This 

second transformation replaces NatR with the KanMX resistance cassette and introduces 

the UPRE activating sequence upstream of the crippled cyc1 promoter, transforming it 

into a UPR inducible promoter.  
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Figure 14 - UPRE-ADE2 reporter 

UPRE-ADE2 reporter strain grown on low adenine media. A.) untreated conditions; top – Y7092 starting strain; 

bottom – UPRE-ADE2 reporter strain showing red colonies. B.) UPRE-ADE2 reporter strain replicates grown on 0.5 

μg/mL tunicamycin, as can be seen there is a large amount of variation in colour between replicates and none of the 

strains expressed enough Ade2p to prevent pigment accumulation. 

 

4.4.2 UPRE-ADE2 reporter testing 

The UPRE promoter replacement strains resulted in generation of colonies that grow red 

on low adenine media as expected (Figure 14a). However colonies sometimes required a 

couple of days at 4°C to develop a significant amount of pigment accumulation able to be 

visualized. Moreover, when grown on a relatively high concentration of the UPR inducing 

agent tunicamycin (0.5 μg/mL), the UPRE reporter failed to consistently induce enough 

ADE2 expression to produce non-pigmented colonies (Figure 14b). Additionally the 

reporter showed a large amount of colour variation in replicates. It is possible that adding 

additional UPRE repeats in the promoter could enhance the response to ER-stress, 

however the requirement of a long pigment accumulation time could not be fixed and 

consequently the UPRE-ADE2 construct was not considered appropriate as reporter for 

acute ER-stress induction.  

 

4.4.3 Construction of 4xUPRE-GFP strain 

There have been reports in the literature describing a Hac1p responsive GFP-reporter  

(Jonikas et al., 2009; Pollard et al., 1998) therefore we decided to construct one for this 

work. Tandem repeats have been shown to increase the sensitivity of UPRE reporters 
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(Cox and Walter, 1996) and as such we chose to use a 4xUPRE-GFP construct as  a 

reporter. The 4xUPRE-GFP reporter strain was created by simultaneous transformation of 

two PCR products with an overlapping region of homology. The first PCR product 

containing the URA3 (uracil biosynthesis gene) as a selectable marker and the 4xUPRE 

portion from plasmid pPM47 (Addgene plasmid #20132, Merksamer et al., 2008) was 

amplified using primers #257 and #259. The second PCR product containing the gene 

encoding the yeast enhanced GFP variant (yeGFP), was amplified from plasmid pYM-N21 

using primers #260 and #261. A region of homology between the two PCR products to 

facilitate homologous recombination and also join the 4xUPRE promoter to the yeGFP 

gene. Flanking regions of homology to the genomic regions directly up and down-stream 

of the MET17 ORF, facilitating transformation into this locus. These PCR products were 

transformed into the SGA background strain Y7092 generating the strain yCG261. This 

strain was then further transformed with a PCR product consisting of the TEF2 promoter 

driving expression of the cytoplasmic RFP mCherry along with the selectable maker 

clonNAT amplified from plasmid pMJ002 with primers #224 and #252 generating yCG266. 

4.4.4 4xUPRE-GFP strain validation 

To test the effectiveness of the 4xUPRE reporter strain, cells were exposed to chemically 

induced ER-stress using DTT and visualised with confocal microscopy. A dose-response 

ranging from 0.125 – 8 mM DTT was run in triplicate to determine the optimal DTT 

concentration for UPRE expression. Cells were grown for four hours at 30°C in a 384 well 

clear bottomed microtitre plate containing 50 μL of SC + DTT. Cells were then imaged 

using the Opera confocal microscope and Acapella image recognition procedures were 

used to measure the level of UPRE-GFP abundance in each cell. GFP intensity was 

normalised against the expression of the constitutively expressed mCherry RFP protein 

and measured in log2 space (see Material and Methods). As can be seen in Figure 15, 

expression of the 4xUPRE-GFP construct increases in a dose-dependent manner, 

plateauing around 2 mM DTT. The response showed a good dynamic range for reporter 

activation and importantly there was a basal level of reporter expression enabling 

screening for gene deletions that decrease UPRE expression in unstressed conditions. 
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Figure 15 - 4xUPRE-GFP DTT dose response 

UPR activation as a function of DTT concentration after 4 hours of treatment as measured from the expression of a 

4xUPRE-GFP reporter and normalised against the expression of a constitutively expressed RFP protein 

TEF2pr_mCherrry. Error bars display standard deviations. 

 

4.4.5 Gene deletions that induce UPRE-GFP expression 

To screen for gene deletions that cause UPR activation and consequently UPRE-GFP 

reporter expression, the 4xUPRE-GFP reporter strain yCG266 was introduced into the 

DMA following the standard R-SGA procedure (see Materials and Methods). The resulting 

DMA/reporter library was then imaged in 384 well microtitre plates after four hours 

growth in 50 μL SC media at 30°C using the Opera confocal microscope and standard 

settings (see Materials and Methods). Images were then analysed to measure single cell 

UPRE-GFP expression using a simpler version of the Acapella scripts that do not require 

nuclear labelling or detection, as described in Chapter Three. GFP intensities were 

normalised against the intensity of the consistent mCherry cytoplasmic control RFP. UPRE 

activation was thus measured as Log2(GFP/RFP) and statistical analysis was conducted 

using R software (R Core Team, 2013). The average UPRE expression of cells from each 

deletion strain was compared to the median of its corresponding plate to account for 

plate to plate variation. Z-scores were calculated by comparing the median UPRE 
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induction of each gene deletion strain to the plate median to account for plate to plate 

variations and measured as:  

         
                                           

        
 

Where MADplate is the median absolute deviation of the plate. Z-scores were then 

combined across triplicates using Stouffer's Z-score method (Stouffer et al., 1949; 

Whitlock, 2005) and converted into p-values. A cut-off threshold of 0.01 was used for 

strains showing higher than expected UPRE activation and gene deletions were 

considered a hit if their p-value fell below this. Genes were removed if they were 

annotated as dubious ORFs in SGD. Results are summarised in Table 8 and grouped into 

broad functional categories based on those presented in Costanzo et al., 2010: 

 

Table 8 - Gene deletions that induce UPRE-GFP expression 

Gene deletions that induce UPRE-GFP expression with a p-value less than 0.01. Functional categories were adapted 

from those used in Costanzo et al., 2010. 

Functional Category Genes 
Amino acid biosynthesis BAS1, DAL80, GTR1, MEH1, MTC5, TRP3 
Cell polarity/morphogenesis ARC18, EDE1, MYO3, PIN3, PRR1, SHE4, SPS22 

Chromatin/transcription 

BDF2, CSE2, CTK1, FUN30, HDA3, HIR2, HIR3, HMS1, 
HTZ1, KNS1, LEO1, MED1, SIF2, SNT1, SPT21, SWC3, 
UME6 

Chromosome segregation DBF2, MAM1, RBL2, TOF2 
DNA replication ESC2, HAM1, MSC1, MSH6, RAD27, RTT109 

Drug/ion transport ICE2, PMC1, PMP3, SKY1, YHM2, ZRC1, ZRG17 

ER-Golgi traffic 
CPR7, ERP1, ERV25, GCS1, GET3, PHO86, SEC22, 
SIL1, SPC2, YER084W 

Cell cycle progression/meiosis 
EGT2, RME1, SAP185, SAP190, SMK1, SPR3, SUM1, 
YOX1 

Golgi/endosome/vacuole/sorting 

BCH2, COG8, DRS2, ENT3, HUT1, PKR1, RIC1, RTC2, 
RTT10, SNX3, SWF1, VAC17, VAC7, VAM3, VPS24, 
VPS30, VPS38, VPS53, VPS70, VPS9, YPT6 

Lipids 
DGK1, DPL1, ENV9, FAT1, FEN1, INO2, IST2, LCB4, 
OPI3, PAH1, PSD1, SSP2, TGL4 

Metabolism 

AAC3, AAH1, ALD6, BNA3, CMC1, COQ2, ECM4, 
HOT13, HXT3, KGD1, MET22, MET5, MIG2, NRK1, 
PET191, QRI7, SDT1, SOD2, SPE3, THI21, VID30, 
YSA1 
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Ribosome/translation 
ATE1, EAP1, MRN1, PUS6, RPL14A, RPL20B, RPL42A, 
RPS10A, RPS4A, RPS4B, RPS8A, TIF1, TSR3 

Signalling/stress response 

CKA2, CKB1, GCY1, GPA2, GRE1, NBP2, OPY2, 
PHO80, PTC1, SFL1, SHR5, SNF1, SNF4, TPK1, TUS1, 
WHI2, YAK1 

Nuclear-cytoplasmic transport HMT1, KAP122, MOG1, SLX9, YKL069W, YRA2 

Protein degradation/proteasome 

ATG10, CUE1, HLJ1, HRD1, HRD3, OLA1, RPN4, 
SPG5, UBC7, UBP11, UBP16, UBX2, UFD2, USA1, 
YUH1 

Protein folding/glycosylation 

ALG12, ALG3, ALG5, ALG6, ALG8, ALG9, ARV1, BST1, 
CPR4, CSF1, EOS1, ERD1, FKS1, GAS1, GTB1, INO1, 
KEX2, KRE1, LAS21, LHS1, LRG1, MPD1, OST3, OST4, 
PER1, PMT1, PMT2, RLM1, SCJ1, SPF1, SSE1, STE24, 
SUN4 

RNA processing 
BUD31, CBC2, DBR1, DXO1, ISY1, LSM1, LSM6, 
LSM7, MUD2, NOT3, PAT1, SKI8, VTS1 

Unknown 

ILM1, IRC8, KIN3, LCL2, NIF3, OSW5, SLP1, STB6, 
TDA4, YBR225W, YDR186C, YFR016C, YGL230C, 
YGR066C, YJR124C, YJR142W, YJR154W, YKL100C, 
YKR011C, YKR018C, YKR070W, YLL007C, YOR062C, 
YPL107W, YPL150W, YSY6 

 

GO categories that showed enrichment with a FDR < 0.05 were obtained from Yeastmine 

(Balakrishnan et al., 2012) by comparison to a background population set consisting of all 

gene deletions present in the DMA.  GO-Biological process terms that showed enrichment 

included protein transport (39 genes), macromolecule catabolic process (33 genes), RNA 

processing (24 genes), cellular lipid metabolic process (24 genes), ubiquitin-dependent 

protein catabolic process (20 genes), phospholipid metabolic process (16 genes), mRNA 

processing (15 genes), ER-associated ubiquitin-dependent protein catabolic process (13 

genes), protein glycosylation (13 genes), regulation of response to stress (11 genes), 

dolichol-linked oligosaccharide biosynthetic process (5 genes), phosphatidylinositol 

biosynthetic process (5 genes) and GPI anchor metabolic process (4 genes). 

GO-Cellular component terms that showed enrichment included endoplasmic reticulum 

(55 genes), endoplasmic reticulum membrane (43 genes), endomembrane system (75 

genes), endoplasmic reticulum lumen (6 genes), ER ubiquitin ligase complex (5 genes), 

Hrd1p ubiquitin ligase complex (3 genes) 
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A number of publications including several large scale UPR studies were also enriched for 

genes in our hit list with a FDR < 0.05. These publications included Čopič et al., 2009; 

Jonikas et al., 2009; Promlek et al., 2011; Schuldiner et al., 2005 and some of our previous 

work (Bircham et al., 2011). Of particular note is Jonikas et al., 2009 who also used the 

same UPRE-GFP reporter as us to screen the DMA using flow cytometry. Comparison of 

our results to Jonikas et al. shows a great deal of overlap, with 40 % of our hits (98 of 244, 

Figure 16) also present in the Jonikas dataset. There are a number of differences between 

the studies, discussed later, that may account for some of the differences. Additionally it 

is important to note that the UPRE response is being measured on a continuous scale and 

thus the core overlap between studies is likely to represent gene deletions that strongly 

induce UPR, whereas other deletions may be more variable or less severe in response.  

Comparison of our hits to known UPR target genes as defined by Kimata et al., 2006; and 

Travers et al., 2000 shows that a more limited subset of our hits, ~14 %, are UPR targets 

(33 of 244, Figure 16). This is comparable to the 13 % overlap of the Ire1p-GFP foci data 

(Figure 12) and the 16 % overlap when comparing the Jonikas UPRE dataset to known 

UPR targets.  

 

Figure 16 - UPRE-GFP inducer literature comparison  

Overlap between gene deletions that induce UPRE-GFP expression and UPR targets as defined by Kimata et al., 2006 

and Travers et al., 2000; and gene deletions that induced expression of a UPRE reporter as defined by Jonikas et al., 

2009. Dubious ORFs and genes that were not present in our DMA collection were removed from the datasets before 

comparison. 
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4.4.6 Gene deletions that down-regulate UPRE activity 

To identify gene deletions that showed a lower than expected level UPRE expression, 

further statistical analysis was conducted using R software (R Core Team, 2013). The 

average UPRE expression of cells from each deletion strain was again compared to the 

median of its corresponding plate as described above. A cut-off p-value threshold of 0.05 

was used for strains with lower than the expected basal UPRE activation and gene 

deletions were considered a hit if their p-value fell below this. Genes were removed if 

they were annotated as dubious ORFs in SGD. Results are summarised in Table 9 and 

grouped in functional categories based on those presented in Costanzo et al., 2010: 

 

Table 9 - Gene deletions that down-regulate UPRE activity 

Gene deletions that down-regulate UPRE activity in unstressed conditions with a p-value less than 0.05. Functional 

categories were adapted from those used in Costanzo et al., 2010. 

Functional Category Genes 

Cell polarity/morphogenesis BEM2 

Chromatin/transcription 

BRE1, CHD1, DST1, LGE1, RRN10, RTF1, SDC1, 
SGF29, SIR2, SNF5, SOH1, SPT2, SPT3, SPT8, SWD1, 
SWD3,  THP3 

Chromosome segregation LDB18 
DNA replication DPB3, TOP1 
Cell cycle progression/meiosis SWI4, SWI6 
Golgi/endosome/vacuole/sorting PIB2, RCY1, RIM8, SNC1, VAM6 
Lipids HTD2, IPK1, ISC1, MOT3, SUR2 

Metabolism 
CEM1, COX12, COX7, GSH2, IDH2, MDM12, MRM2, 
OAR1, PHO5, RIM1, RPO41,  AIM22 

Ribosome/translation 
MAF1, MRT4, PUF6, REI1, RPL35B, RPL37A, RPL37B, 
RPP2B, RPS9B, SSF1, SWS2,  SSD1 

Nuclear-cytoplasmic transport SXM1 
Protein degradation/proteasome UBP6 
Protein folding/glycosylation EXG1, HAC1, IRE1, MNN10, NAB6 
RNA processing MUD1, PSP2, SAC3,  XRN1 
Unknown YPR117W 
 

GO enrichments were obtained from Yeastmine (Balakrishnan et al., 2012) with FDR 

<0.05. GO-Biological process showed enrichment in a number of chromatin and histone 
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processes including but not limited to: regulation of transcription, DNA-templated (26 

genes), chromatin organization (15 genes), histone modification (10 genes), chromatin 

silencing (8 genes), histone methylation (5 genes) and histone ubiquitination (4 genes). 

GO-Cellular component terms that showed enrichment included nucleus (35 genes), 

nucleolus (9 genes), histone acetyltransferase complex and SAGA complex (4 genes), 

histone methyltransferase complex and Set1C/COMPASS complex (3 genes) 

 

4.4.7 Gene deletions that suppress UPRE-GFP induction 

To identify genes that are required for UPR activation, the UPRE-GFP reporter DMA was 

screened under ER-stress conditions in triplicate. Cells were grown in 50 μL SC containing 

2 mM DTT for four hours at 30°C to induce ER-stress, as these conditions induce the 

highest levels of UPRE activation and Ire1p foci formation (Figure 11 and Figure 15). Cells 

were screened with the Opera confocal microscope using standard conditions, and 

images were analysed using Acapella scripts for cell recognition and intensity 

measurements followed by statistical analysis. UPRE induction was measured as 

Log2(GFP/RFP) as described above. Hits were defined as gene deletions strains showing a 

lower UPRE activation than expected from the plate median with a p-value less than 0.05. 

Dubious ORFs and ORFs that were missing in two of the three replicates were removed. 

Results are listed in Table 10 and grouped into functional categories based on those 

presented in Costanzo et al., 2010:  

 

Table 10 - Gene deletions that suppress UPRE-GFP induction upon ER-stress 

Gene deletions that prevent UPRE-GFP expression upon ER-stress with a p-value less than 0.05. Functional categories 

were adapted from those used in Costanzo et al., 2010. 

Functional Category Genes 

Amino acids/Nitrogen utilisation CPA2, MET18, SLM4, THR1, THR4, YOR302W 
Cell polarity/morphogenesis BEM1, BEM2, BNI1, HBT1, RVS161, SHE4 

Chromatin/transcription 
BRE1, CHD1, CUP2, DEP1, EAF1, ELF1, RTF1, SDC1, 
SGF29, SNF5, SPT2, SPT3, SPT8, SUB1, SWD3, SWI4 

Chromosome segregation CIN8, SRC1 
DNA replication CTF18, RTT109, SLX5, SLX8, XRS2 
Drug/ion transport FPS1, PHO88, PMA2, PMR1, ZRC1 
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ER-Golgi traffic CPR7, GET2 
Golgi/endosome/vacuole/sorting CCZ1, DID2, MON1, RAV1, RCY1, RIM8, VAC8, VPS41 

Lipids CSG2 

Metabolism/mitochondria 
AMD1, ATP11, BCS1, BNA6, COA4, PKP1, RIM1, 
RPO41, TPS2, XYL2 

Ribosome/translation 
AEP2, ANB1, DBP7, MAF1, MRPL10, RPL37A, RPP2B, 
RPS10A, RPS21B, RSM25, SSD1, TMA23 

Signalling/stress response BCK2, GPB2, GPR1, PRX1, SKN7, SNF4 
Nuclear-cytoplasmic transport SXM1, YKL069W 
Protein degradation/proteasome RPN10, UBP6 
Protein folding/glycosylation HAC1, IRE1, LAS21, MNN10, OST4, PAC10 
RNA processing LRP1, NAM7, NMD2, PUF3, RRP6 

Unknown ECM34, ECM8 
 

GO enrichments were obtained from Yeastmine (Balakrishnan et al., 2012) with FDR 

<0.05. GO-Biological process categories that showed enrichment encompassed a 

substantial number of chromatin and transcription processes including; gene expression 

(46 genes), regulation of DNA-templated transcription (25 genes), chromosome 

organization (22 genes), chromatin organization (14 genes) and histone modification (10 

genes). Others included; cellular response to stress (22 genes), membrane docking (4 

genes) and vesicle docking (3 genes).  

GO-Cellular component categories that showed enrichment included the histone 

acetyltransferase complex (5 genes), SAGA complex (4 genes), Mon1-Ccz1 complex (2 

genes), and SUMO-targeted ubiquitin ligase complex (2 genes). 

Comparison of the UPRE suppressors to the gene deletions that down regulate 

unstressed UPRE expression shows an overlap of 25 genes – around 26 % of the 

suppressors and 36 % of down-regulators. These 25 genes show enrichment for GO terms 

including gene expression (21 genes), DNA-templated transcription (15 genes), chromatin 

organisation (10 genes), covalent chromatin modification (8 genes) and histone 

modification (8 genes).  

Comparison to the UPRE down-regulators in the Jonikas dataset show similar overlap 

numbers (Figure 17) but only 8 genes overlapping between all three screens; HAC1, IRE1, 

MAF1, RPL37A, RPP2B, SGF29, SPT3 and SPT8. Notably these genes include the two 

central UPR components IRE1 and HAC1, without which UPR activation is not possible. 
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SGF29, SPT3 and SPT8 are all subunits of the SAGA histone acetyltransferase complex 

that regulates transcription of some RNA polymerase II-dependent genes. SGF29 is a 

component of the histone acetyltransferase core module of the SAGA complex, although 

the other member of this complex was not present in our DMA.  MAF1 is a negative 

regulator of RNA polymerase III and is involved in tRNA processing and stability. RPL37A is 

a ribosomal 60s subunit protein and RPP2B is a ribosomal protein involved in the 

interaction of translational elongation factors and the ribosome. 

 

 

Figure 17 - Comparison of UPRE suppressors and down regulators  

Overlap between gene deletions that suppress UPRE-GFP expression under ER-stress conditions and gene deletions 

that down regulate expression of a UPRE reporter as defined by Jonikas et al., 2009. Dubious ORFs and genes that 

were not present in the DMA were removed from the datasets before comparison. 

 

4.5 Discussion 

Almost 80% of yeast genes can individually be knocked out of the genome without 

causing an obvious growth defect, leading to the notion that measuring specific reporter 

phenotypes in gene deletion strains may be more revealing than simple growth 

measurements alone. Indeed this is the case for a number of ER-function related 

phenotypes shown by ourselves and others (Bircham et al., 2011; Čopič et al., 2009; 
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Jonikas et al., 2009). The fact that cells can adapt to the diverse impairments caused by 

gene knockouts that cause phenotypic consequences, is testament to the proficiency of 

homeostasis systems even in simple organisms such as yeast. Here we have investigated 

the phenotypic consequences of single gene deletions on UPR function both in standard 

growth and elevated ER-stress conditions. Specifically we have used reporters for 

function of the two UPR signalling components Ire1p and Hac1p. The use of automated 

microscopy to measure foci formation of Ire1p-GFP is a novel approach, allowing us to 

assess genes involved in early misfolded protein sensing events. This was complemented 

through monitoring the expression of Hac1p responsive UPRE-GFP which allowed for the 

elucidation of genes involved in downstream UPR activation. 

There is substantial overlap between our result utilising UPRE-GFP and those of previous 

genome-wide studies assessing UPR function. Of particular note is the Jonikas et al., 2009 

study which also used a UPRE-GFP reporter to screen the DMA. Comparing the gene 

deletions that increase basal UPRE expression between our datasets showed that only 40% 

of our hits were accounted for in their study. There are a number of differences between 

the two studies that could account for the discrepancies between the studies. Firstly our 

study used confocal microscopy to measure the reporter whereas Jonikas et al. used flow 

cytometry. Both techniques have their merits. Confocal microscopy is considered more 

sensitive and has the benefit of being able to visually inspect cells. Flow cytometry on the 

other hand measures thousands of cells as opposed to hundreds in microscopy, giving 

more statistical power to the measurements. Secondly, our study transferred yeast from 

overnight agar cultures into fresh SC media prior to imaging, whereas Jonikas et al. grew 

cells to saturation in a small amount of liquid YPD media and back-diluted the cultures 

with fresh media prior to screening. Both studies allowed cells to grow over a similar 

timeframe, however the differences in media change (liquid to liquid vs. solid to liquid), 

and the use of rich media (YPD) as opposed to SC likely caused some of the discrepancies. 

Indeed deletion strains are known to have different responses between rich and minimal 

growth media (Giaever et al., 2002; Hillenmeyer et al., 2008; Newman et al., 2006; 

Winzeler et al., 1999). Finally differences in statistics and cut-off limits for hit detection 

are likely to have caused differences between the screens, we used a relatively 

constricting cut-off identifying 244 UPRE inducing gene deletions, and by comparison 
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Jonikas et al. identified almost 400 hits. Given these differences we consider the overlap 

between the screens to be quite substantial and likely to represent the consistent set of 

‘core’ gene deletion hits. As a case in point, all of the top 20 hits in the Jonikas et al. 

screen were found in our study, and 70% of their top 50. Conversely 76% of our top 50 

were in the Jonikas screen, showing that as hit cut-offs are lowered more discrepancies 

between the studies arise. Beyond these comparisons, the two studies diverge on the use 

of UPRE-GFP as a reporter, Jonikas et al. created a series of double deletion strains 

looking for epistatic effects on UPR induction, whereas we have used DTT as an ER-stress 

and UPR inducing agent to identify gene deletions supressing activation of the UPR. 

Another approach is that of Čopič et al., 2009, in which the DMA was screened for defects 

in the retention of an ER chaperone, Kar2p. This study identified a total of 87 mutants 

that caused secretion of Kar2p, 73 of which were non-essential genes. Of these, 14 hits 

showed an overlap with our UPRE-GFP inducing gene deletions, 13 of which were also 

identified by Jonikas et al. Notably 12 of the 14 genes are ER localised proteins and 

included functions in protein glycosylation, ER quality control, protein folding, GPI-protein 

maturation and ER-golgi transport. Inverse to the retention defect screen of  Čopič et al. 

is previous work from out lab in Bircham et al., 2011 where we screened the DMA for 

defects in in the delivery of a plasma membrane protein, Mrh1p, to the cell surface. In 

this screen we identified 24 gene deletions that caused a partial blockage of Mrh1p 

delivery to the plasma membrane. Comparison of our UPR reporter results presented 

here identified an overlap of 11 genes between the two studies, 10 of which were UPR 

inducers identified by us or Jonikas et al. 2009. Comparison of these screens with 

different but ER-function specific reporters shows the extensive, non-growth defects 

caused by gene-deletions as well as highlighting the importance and power of combining 

multiple approaches to enrich for specific gene functions. Remarkably all of these studies 

identified a number of genes with unknown function, highlighting the fact that there are 

still many ER protein folding/quality control processes yet to be defined. Below we 

discuss the hits from our screens in relation to the category of reporter measurement i.e. 

induction or suppression caused by particular gene deletions.  
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4.5.1 UPR inducers 

Comparing the 104 gene deletions that induced Ire1p-GFP cluster formation to the 244 

gene deletions that induced UPRE-GFP expression revealed only a limited overlap of 15 

genes. These overlapping genes are enriched for a sizeable number of ER-associated 

protein degradation (ERAD) and glycosylation related GO terms including but not limited 

to: protein maturation (7 genes), proteasome-mediated ubiquitin-dependent protein 

catabolic process (6 genes), protein glycosylation (5 genes) and endoplasmic reticulum 

unfolded protein response (3 genes). The Ire1p-GFP foci inducers and the UPRE-GFP 

inducers datasets both individually show similar ER-function/UPR GO enrichments as 

expected, demonstrating that both reporter methods have functioned effectively. The 

small overlap between the two datasets is indicative of the temporal action of the 

reporters (i.e. Ire1p foci formation occurs upstream of UPRE induction) rather than 

implying one method is superior over the other. Ire1p-GFP clustering for example is 

normally a transient phenotype (Ishiwata-Kimata et al., 2013a) and here we measured 

the proportion of cells in the population with this phenotype at a given time. UPRE-GFP 

expression on the other hand is a more prolonged component of the UPR, and in this case 

we measured the average UPR activation of all cells. With this in mind it seems possible 

that Ire1p-GFP clustering may have identified gene deletions that cause a transient 

misfolding of protein. Since there is only ever a proportion of cells with this phenotype it 

would be interesting in future studies to measure if any correlation exists between cell-

cycle stage and the effect of the gene deletion hits identified.  

It is interesting to note that of the Ire1p cluster inducers and UPRE inducers only 13% and 

14% of their respective hits were UPR targets as defined in the literature or by us (see 

Chapter 5). By contrast almost half of the overlapping hits are UPR target genes, 

specifically they are HRD1, LAS21, PMT1, PMT2, STE24 and UBX2. Four of these proteins 

have ERAD functions, HRD1 is the ubiquitin ligase of the Hrd1p complex, UBX2 is a 

bridging factor associated with the Hrd1p complex, and PMT1/PMT2 forms an ER 

membrane Protein O-mannosyltransferase complex involved in ER quality control (see 

Chapter 1 for details on these genes).  

Of all the UPR inducing gene deletions, whether Ire1p foci forming or UPRE activating, the 

two standout functional categories are glycosylation and ERAD/protein degradation with 



87 
 

15 and 16 genes in each category respectively. Specifically the glycosylation related genes 

are: ALG3, ALG5, ALG6, ALG8, ALG9, ALG12, EOS1, ERD1, GDA1, GTB1, OST3, OST4, OST5, 

PMT1 and PMT2, and the ERAD related genes are BST1, CUE1, DFM1, HLJ1, HRD1, HRD3, 

LCL2, PMT1, PMT2, SCJ1, UBC7, UBR1, UBX2, UBX4, UFD2 and USA1. It is understandable 

that deletions of genes with these functions leads to an activation of UPR as protein 

glycosylation is a critical component of protein folding and logically defects in this would 

lead to an increased rate of protein misfolding. Conversely ERAD is essential for the 

removal and degradation of terminally misfolded proteins, thus defects in ERAD would 

lead to the accumulation of naturally occurring misfolded proteins.  

 

4.5.2 UPR suppressors 

Given that Ire1p cluster formation is the result of high order oligomerisation through 

specific domain interactions rather than a mere consequence of protein aggregation 

(Kimata et al., 2007), its is reasonable to hypothesize that additional proteins may be 

involved in this conformation event. Indeed it was recently shown that actin filaments 

and type-II myosin are required for efficient Ire1p cluster formation (Ishiwata-Kimata et 

al., 2013b). It is interesting to note that here we found very few gene deletions that 

supressed the formation of Ire1p foci upon exposure to ER-stress (Table 7), indicating 

that this process may not require additional interaction partners outside of Ire1p and 

misfolded proteins themselves. The simplest explanation for hits identified here would be 

that the gene deletions themselves have caused a small induction of UPR stress and 

‘primed’ the cells such that Ire1p no longer clusters in response to additional ER stress. 

Indeed comparing these foci inhibiting hits to the list of gene deletions that induce a 

chronic UPR activation (Table 8), we show that of the 13 gene deletions that prevent 

Ire1p clustering, 10 deletions (Δalg8, Δdbf2, Δlhs1, Δopi3, Δpsd1, Δrpl14a, Δrpl42a, 

Δrps4a, Δvam3 and Δzrc1) already showed UPR activity before the addition of DTT stress. 

Ire1p clustering has been demonstrated previously to be a short-term response to ER-

stress and is not maintained in long-term stress (Ishiwata-Kimata et al., 2013a). In these 

cases Ire1p still exists as an activated homo-dimer and a lower level of continued UPR 

activity is maintained. This suggests that the cluster inhibitory effect of these 10 gene 

deletions is likely a secondary effect from an already active UPR. Of the three deletions 



88 
 

that did not themselves induce UPR activity, only Δpsp2 caused a down-regulation of 

basal UPR expression while Δmrpl10 and Δzrc1 caused a repression of UPRE expression 

upon addition of external ER-stress. Both Δmrpl10 and Δpsp2 are known to be sensitive 

to DTT treatment (Fernandez-Ricaud et al., 2005, 2007). The Ire1p-GFP and UPRE-GFP 

data suggest that sensitivity to DTT stress is likely caused by the lack of a functional UPR 

in these strains.  

The effects of ZRC1 deletion are intriguing as it both increased the number of foci beyond 

expected in untreated cells, and decreased the number in treated cells. By itself this 

could be overlooked, however the same effect was measured in the UPRE-GFP expression 

screens suggesting this is not an artefact. Zrc1p is a zinc transporter that transports zinc 

from the cytoplasm to the vacuole for detoxification and storage, and also functions to 

maintain ER zinc levels (Ellis et al., 2004; MacDiarmid et al., 2002). Surprisingly, the 

deletion of the Zrc1p paralog Cot1p showed no UPR effects in our screens. The exact 

mechanism behind these contrasting UPR phenotypes remains to be determined, 

however it may be due to unbalanced zinc homeostasis in the ER causing basal as well as 

ER-stress induced UPR defects. Zinc is well known to have catalytic and structural roles in 

almost 400 yeast proteins (Regalla and Lyons, 2006), additionally recent studies have 

shown that zinc deficiency can induce the UPR and is required for normal secretory 

pathway function (Ellis et al., 2004, 2005). Furthermore, we also found deletion of the 

vacuole to cytoplasm zinc transporter, ZRT3, to increase basal Ire1p-GFP clustering similar 

to Δzrc1. Additionally, deletions of ICE2, a gene required for ER zinc homeostasis, and 

ZRG17, an ER zinc transporter, also caused an increase in basal UPRE-GFP expression. 

Moreover, it is noteworthy that 11 of the deletions increasing basal Ire1p-GFP clustering 

or UPRE-GFP expression have a zinc requirement and/or zinc related functions. Taken 

together these data suggest that although zinc homeostasis is required for proper ER-

function, these genes are unlikely to be specifically required for UPR activation as only 

deletion of ZRC1 had a suppressing effect on the UPR in the presence of additional ER-

stress. Additionally, in the case of Δzrc1 it was not a complete blockage of UPR signalling 

but rather an attenuation of the response, whereas for the other zinc transporter related 

gene deletions only the basal UPR was affected suggesting the effect was due to an 

increase in protein misfolding.  
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It is interesting that only two gene deletions (Δmrpl10 and Δzrc1) caused both 

suppression of Ire1p clustering and UPRE induction under ER-stress conditions. This 

implies that the other 94 gene deletions that were found to inhibit ER-stress induced UPR, 

are not a consequence of failure to initially detect misfolded proteins. It is perhaps 

unsurprising then that most of the UPRE suppressor hits only caused a partial attenuation 

of the UPR response (see supplementary Table 1). In fact the only gene deletion that 

completely blocked UPR signalling to Δhac1 levels was a dubious ORF that partially 

overlapped with the HAC1 reading frame. Only a dozen gene deletions in the presence of 

DTT reduced UPRE expression to less than half what was expected, specifically: Δbem2, 

Δcpa2, Δhac1, Δire1, Δost4, Δpac10, Δrcy1, Δrps10a, Δthr1, Δthr4, Δubp6 and Δyor302w. 

Expectedly Δire1 and Δhac1 completely negated UPRE induction. Δbem2, Δrcy1 and 

Δubp6 also caused a decrease in basal UPRE expression. Both Δost4 and Δrps10a actually 

caused an increase in basal UPRE expression. Some of the other gene deletions are less 

interpretable, for example THR1 and THR4 for instance are genes required for threonine 

biosynthesis.  

Functional enrichments within the hits that suppress ER-stress induced UPRE expression 

were concentrated around functions in gene expression, transcription and 

chromatin/histone modification. In fact there were 10 hits involved in chromatin 

modification and 5 hits involved in the histone acetyltransferase (HAT) complex. Four of 

these genes CHD1, SGF29, SPT3 and SPT8 are part of the SAGA complex responsible for 

histone acetylation during transcriptional activation, which has previously been shown to 

play a role in the UPR (Welihinda et al., 1997, 2000). It has been suggested previously that 

SAGA related effects could possibly be due to a general decrease in transcription reducing 

the protein load on the ER thus reducing the activation of UPR prior to IRE1 or HAC1 

(Urano et al., 2000). This remains a possibility, although we believe this is unlikely as the 

SAGA components seen in our results also down-regulate the basal UPRE expression prior 

to any additional ER-stress and SGF29, a component of the HAT/Core module of the SAGA 

complex also increased the basal Ire1p cluster formation suggesting an increase rather 

than a decrease in ER protein load. 

Another interesting enrichment was the two genes of the Mon1-Ccz1 complex. Mon1p 

and Ccz1p are required in autophagy and in the fusion of autophagosomes and vesicles 
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with the vacuole (Meiling-Wesse et al., 2002; Wang, 2002). ER-stress is known to induce 

autophagy, and this has been shown to counterbalance the ER membrane expansion 

associated with ER-stress and UPR induction (Bernales et al., 2006; Yorimitsu et al., 2006). 

Why deletion of these genes, which result in an absence of autophagy (Kanki et al., 2009), 

results in an attenuation of UPRE expression in DTT treatment is unclear. Possibly in the 

short term ER-expansion alone is beneficial to dealing with ER-stress, lowering UPRE 

expression. Supporting this possibility, deletions of MON1 have been shown to be 

resistant to DTT stress (Kim et al., 2012a). Thus it may only be in the long term, or upon 

resolution of ER-stress that autophagy is required to compensate for the no longer 

necessary ER expansion. 

As a final example of hit enrichment, the UPRE suppressor hits also included both 

members of the Slx5-Slx8 SUMO-targeted ubiquitin ligase complex (Xie et al., 2007). Small 

ubiquitin-like modifier (SUMO) proteins are covalently attached to a number of proteins 

to modify their function as a form of post-translational control. One of the functions of 

SUMOylation is to direct proteins for ubiquitinylation by the Slx5-Slx8 complex (Uzunova 

et al., 2007). Interestingly one of the gene deletions that induced basal UPRE expression 

was Δsnf1. Snf1p is also a UPR target gene, and is known to be regulated by SUMOylation 

which inhibits its function and ultimately targets Snf1p for destruction by the Slx5-Slx8 

ubiquitin ligase (Simpson-Lavy and Johnston, 2013). This suggests that the deletions of 

SLX1 and SLX5 may actually attenuate UPR induction by supressing the degradation of 

UPR target genes, specifically Snf1p, although there may be other UPR targets that are 

modulated by SUMOylation. 
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4.6 Conclusion 

In this chapter we describe the use of the yeast DMA – a collection of non-essential 

knock-out strains – to screen for gene deletions affecting UPR function. We describe the 

application of the image recognition scripts described in Chapter 3 to measure two 

reporters to specifically measure different phases of the UPR on a per cell basis. Firstly 

Ire1p-GFP foci formation was used as a phenotypic reporter for UPR initiation, and 

secondly we used the UPR/Hac1p responsive UPRE-GFP reporter to measure downstream 

UPR activity. Although the gene deletion strains of the DMA show no obvious growth 

consequences, here we show that many of the deletions affect basal UPR activity and 

additionally identify genes that are required for UPR activation in conditions of additional 

ER-stress. The Ire1p-GFP screen identified 104 gene deletions that induced Ire1p cluster 

formation under normal growth conditions, and 13 gene deletions that prevented the 

expected foci formation under conditions of induced ER-stress. The UPRE-GFP screens 

elicited a greater number of hits, identifying 69 gene deletions that down-regulated basal 

UPRE expression, 244 gene deletions that induced basal UPRE expression and 96 gene 

deletions that suppressed the expected UPRE induction under conditions of ER-stress. 

Cross examination of these results showed functional connections between UPR inducing 

and UPR suppressing hits that explain the nature of these responses. Comparison with 

the literature showed a good correspondence between our results and similar DMA 

studies assessing UPR function. Additionally our data provided new information not seen 

in the literature for a number of genes affecting the UPR. The studies presented here also 

show the versatility of automated microscopy for genome-wide screens, particularly in 

identifying subtle phenotypes that are not apparent based on cell viability alone.  
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5 LOCALISATION PROTEOMICS OF ER-STRESS 

5.1 Background 

Yeast are very malleable to a variety of stress conditions. Stress responses such as the 

UPR allow cells to adapt in a variety of ways, most observable of which is a change in the 

cellular milieu of proteins available to deal with the particular stress. Such changes may 

be initiated by an increase in protein expression or a change of protein localisation, both 

of which can be readily assayed using high-throughput fluorescence microscopy. The 

yeast GFP collection has accelerated the development of localisation proteomics and 

‘phenomics’ in Saccharomyces cerevisiae, which has been growing in popularity as a 

screening technique (Breker et al., 2013; Dénervaud et al., 2013; Mazumder et al., 2013; 

Tkach et al., 2012). In this chapter we describe the use of high-throughput fluorescence 

microscopy to characterise proteome-wide changes induced by UPR activation with the 

ER-stress agents DTT and tunicamycin (TM).  

DTT and TM are both well-established ER-stress inducers (see Chapter One). Chemical 

induction of the UPR is known to have several phenotypic consequences, including up-

regulation of UPR target genes (Kimata et al., 2006; Travers et al., 2000), ER-expansion 

(Bernales et al., 2006) and Ire1p foci formation (Kimata et al., 2007). Previous genome-

wide screens for UPR adaptations have used cDNA microarrays to assess regulation at an 

mRNA level. Travers et al., (2000) used both DTT and TM to induce ER-stress and defined 

UPR target genes. This has been the primary resource for UPR target genes in the 

literature, and has since been followed up by Kimata et al., (2006) who used TM and a 

constitutively active UPR strain to further define UPR target genes. Although these 

studies have provided a wealth of knowledge, it is well known that changes in mRNA 

levels do not always correspond to a change in protein level and in some cases protein 

level changes are not activated at the transcript level (Gygi et al., 1999). Here we sought 

to supplement current knowledge of UPR targets by assessing proteome-wide UPR 

changes at the protein level using the yeast GFP collection. By assessing the fluorescence 

distribution of GFP-proteins, we are also able to include UPR consequences that are 

actuated through a change in protein localisation rather than expression.  
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One of the major challenges in high-content screening is the scoring of localisation 

changes. Because localisation patterns show so much variation between proteins and can 

change unexpectedly, automated scoring of localisation phenotypes can be a difficult task. 

The most common approach has simply been to visually screen and annotate localisation 

changes by eye (Breker et al., 2013; Tkach et al., 2012). Another approach has been to 

measure specific changes of interest, for instance nuclear-cytoplasmic translocations 

(Mazumder et al., 2013). Here we present an approach that uses the speed of automated 

texture analysis to enrich for a set of ‘likely’ localisation changes followed up by visual 

inspection. 

 

The aims of this chapter are as follows: 

1. Introduce the dual RFP labelling system from Chapter Three into the yeast GFP 

collection to enable genome wide screening of protein changes by automated 

image analysis.   

 

2. Screen the GFP collection using automated microscopy and image analysis to 

characterise the proteome-wide changes in protein expression and localisation 

induced by the ER stress agents DTT and tunicamycin.  

 

3. Define UPR specific changes by comparing to DTT induced GFP changes in a Δhac1 

UPR deficient GFP collection    

 

4. Assess the efficacy of texture analysis as a means to automate screening of 

localisation changes  
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5.2 Screening for proteome changes induced by the UPR 

5.2.1 Selection of optimal drug concentrations for ER-stress conditions 

In order to screen the yeast GFP collection under UPR conditions we chose to use 

chemical induction of ER-stress with dithiothreitol (DTT) and tunicamycin (TM). Drug 

concentration was selected based on the optimal response of the UPRE-GFP and Ire1p-

GFP reporters described in Chapter Four. Cells were transferred directly from 384 colony 

agar plates into a 384 well microtitre plate containing 50 μL SC + drug. Imaging was 

carried out as per standard screening conditions. Dose responses of DTT ranging from 

0.125 - 8 mM showed optimal UPR activation and Ire1p foci formation at 2 mM DTT 

(Figure 18).  

 

 

Figure 18 –UPR activation as a dose-response to Dithiothreitol treatment 

UPR activation as a function of DTT concentration after 4 hours of treatment. a)  UPR activation measured from the 

expression of a 4xUPRE-GFP reporter and normalised against the expression of a constitutively expressed RFP 

protein TEF2pr_mCherrry; b) Ire1p-GFP cluster formation presented as percentage of cell population displaying Ire1p 

foci. 
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Dose responses of TM ranging from 0.125 - μg/mL showed optimal UPR activation and 

Ire1p foci formation at 2 μg/mL TM (Figure 19). Visual inspection of the images showed 

healthy looking cells that were actively dividing, thus these drug concentrations were 

chosen for further screening. Although drug concentrations higher than this have a high 

UPRE-GFP activation, there was an increase in the number of dead cells. Ire1p-GFP foci 

counts also dropped off. Most likely as a result of less well defined foci at these 

concentrations which may have affected the image analysis. 

 

 

Figure 19 - UPR activation as a dose response to tunicamycin treatment 

UPR activation as a function of TM concentration after 4 hours of treatment. a)  UPR activation measured from the 

expression of a 4xUPRE-GFP reporter and normalised against the expression of a constitutively expressed RFP 

protein TEF2pr_mCherrry; b) Ire1p-GFP cluster formation presented as percentage of cell population displaying Ire1p 

foci. 

5.2.2 Preparation and screening of the yeast GFP collection under UPR 

conditions  

To enable automated image analysis of the yeast GFP collection, the dual cytoplasmic – 

nuclear RFP labelling system described in Chapter Three was introduced into the 

collection using standard SGA procedures (See Materials and Methods). Briefly, the MATα 

dual-RFP SGA starting strain yCG253 was mated to the 11 plates of the MATa GFP 
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collection in 384 colony format using the Singer RoToR HDA robot. Diploids were selected 

on SD-His + NAT media selecting for the GFP marker and mCherry RFP respectively. After 

sporulation MATa haploid progeny were selected for on SD-Ura/Arg/Lys + CAN/THIA. This 

was followed by sequential selections for the GFP-fusion protein on media lacking 

histidine and the cytoplasmic and nuclear RFP on media containing nourseothricin and 

hygromycin B in that order.  

The Opera microscope was used for high-throughput imaging of the collection using 

standard procedures. Cells were pinned directly from agar plates grown overnight into 

384 well clear bottomed microtitre plates (cell carrier, Perkin Elmer) containing 50 μL SC 

± drug. As tunicamycin is not water soluble DMSO was used as a carrier to a final 

concentration of 2% in both treated and control conditions. Cells were grown without 

shaking for 4 hours prior to imaging and transferred to the microscope 5 minutes before 

imaging to allow cells to settle and reduce motion blur when imaging. An exposure time 

of 400 ms was used for optimal GFP fluorescence across the highly variable protein levels 

in the collection. Treated and untreated cells were imaged in adjacent wells to minimise 

variation due to growth conditions and plate effects. Images were taken from two 

locations in each well to increase cell counts and to provide redundancy in the case of 

unfocused images. 

 

5.3 Abundance changes across the proteome 

5.3.1 Measurement of protein abundance 

Protein abundance was assessed by automated image analysis using customised Acapella 

scripts described in Chapter Three. Changes in protein expression were measured by 

taking the total fluorescence intensity within the cell body and taking the median of all 

the individual cell measurements for each GFP-strain. The benefit of using total cell 

intensities is that changes to weakly expressed proteins that are localised to only a small 

portion of the cell can still be detected. An example is the Ire1-GFP strain used that is only 

weakly expressed but upon ER-stress forms discrete foci along the ER. As these foci are 

still relatively faint and only occupy a small portion of the cell, they would not be 

detected if the pixels were averaged instead. A possible problem when using the total cell 
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intensity is that the measurements can become dependent on cell size. Indeed in an 

individual population of cells as measured per image there is a relatively strong 

correlation between cell size and total GFP fluorescence. A sampling of 100 cells per well 

for a randomly selected plate from the DTT treated screen showed an average R2 value of 

0.72. However this was not considered to be a significant problem as no noticeable 

change in cell size was apparent between control conditions and the treatments used, 

and median measurements were used to compare between populations. To test this we 

compared the difference in protein fluorescence against the difference in cell size 

between DTT treated and control conditions. No correlation was observed (R2 = 0.129) 

indicating that changes in GFP expression were independent of cell size changes (Figure 

20). 

 

Figure 20 - Comparison between cell size and total GFP fluorescence after DTT treatment.  

Comparing the difference in GFP expression levels (x axis) and difference in cell size (y axis) between treated and 

control conditions for each strain in the GFP collection shows no correlation between the two. 

During the GFP collection screens we noticed a decrease in our 561 nm laser power used 

for RFP excitation. This resulted in a significant decrease in RFP fluorescence, although 

enough protein was visualised for the cell detection algorithms to run appropriately. 

Since GFP and RFP were simultaneously imaged we found that the low RFP expression led 

to cross-talk from high GFP fluorescence appearing in the fainter RFP channel. Because of 

this we chose not to use the RFP for normalisation in these screens.  



98 
 

5.3.2 Data normalisation and analysis: 

GFP-protein intensity changes were measured as log2(treated/control). Expressing the 

ratio in Log2 space better depicts the spread of data and its variation and also results in 

an even scale for an increase or decrease in intensity. Data analysis was conducted in R (R 

Core Team, 2013). Firstly each replicate screen was filtered to remove samples with a low 

cell count of ≤25 in either the control or treated samples.  It has been reported that a 

large portion of proteins in the GFP collection are expressed at low levels making them 

effectively indistinguishable from auto-fluorescence (Breker et al., 2013; Dénervaud et al., 

2013; Newman et al., 2006). Therefore, to remove strains likely to be below our detection 

threshold we estimated auto-fluorescence from the lowest abundance strain with greater 

than 150 recognised cells. The lower GFP detection limit was set as the estimated median 

auto-fluorescence intensity of this strain plus 2.5 times the median absolute deviation. 

Any strains with GFP fluorescence lower than this in both treated and control conditions 

were removed from the analysis. Replicate data were then filtered to remove data that 

were highly variable between the two replicates (Figure 21). The treated/control GFP 

ratio was calculated for each replicate. If the ratios are reproducible between replicates 

then log2(ratio replicate 1/ratio replicate 2) should be close to zero (Quackenbush, 2002). 

In Figure 21 we can see the plot of ratio1 against ratio2 follows closely to a slope of one, 

passing through zero as we would expect in reliable replicates. Outliers were defined as 

samples greater than 3 standard deviations away from the diagonal and removed from 

the analysis (highlighted red in Figure 21). Although if both replicates showed greater 

than 1.5 fold or less than 0.75 fold change i.e. the protein had considerably changed in 

expression across both replicates although to a greater degree in one replicate than the 

other these were included in the analysis (highlighted green in Figure 21). 
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Figure 21 –Replicate filtering. 

log2(treated/control) intensity ratios of replicates plotted against each other. The red dots highlight outliers that are 

3 σ away from the diagonal and were not reproducibly up-regulated. These strains were considered inconsistent 

between replicates and were removed from the analysis. Green dots represent strains that are greater than 3 σ away 

from the diagonal but were kept in the analysis as both replicates increased in expression greater than 1.5 fold, as 

indicated by the green box. 

Following data filtering the replicate screens were normalised in order to make their 

arbitrary fluorescent values directly comparable between screens. Since laser power 

decreases with use over time and between screens fluorescence intensity will decrease 

too. However, the units will keep their relative values within a given screen. To adjust for 

this quantile normalisation was used on both the control replicates and treated replicates 

(Bolstad et al., 2003) to adjust the replicates to have distributions with the same 

statistical properties (Figure 22). Briefly the two replicates are input into a matrix and 

their rank order noted. The replicates are then ordered by value and replaced by row 

means. For each replicate the new mean values are then rearranged to match the original 

rank order. This gives two matching distributions while maintaining the relative position 

of each gene within the population. To combine the replicates the mean was used to 

average values. Missing values were estimated from the normalised data from the other 

replicate. 
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Figure 22 - boxplots showing control and treated GFP distributions across replicates before and after normalisation.  

As can be seen in the DTT replicates an overall decrease in intensity due to reduced laser power in the second 

replicate is adjusted for by quantile normalisation. 

Intensity changes are commonly measured as the ratio of treated to control in log space 

(Figure 23, left panels). However these plots often give an overly high sense of agreement 

between conditions and may not show important trends in the data.  To see if there was 

any intensity based effects a magnitude - average (MA) plot  (Dudoit et al., 2002) was 

used to visualise the data (Figure 23, right panels). An MA-plot is a form of ratio-intensity 

plot analogous to a scaled 45 ° rotation of the control-treated plot and depicts the 

relationship between the magnitude of intensity change (M) as the log intensity ratio, 

and the average log intensity (A) calculated as: 

      (
       

       
) 

  
 

 
     (               ) 

Although the treated-control plot (Figure 23, left panels) appears to show good 

concordance between the local regression line (red) and a linear model (green), when we 

visualise the same data on an MA plot it becomes apparent that there is a strong non-

linear effect on the intensity ratio as average intensity increases (Figure 23, right panels).  
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Figure 23 – Treated-Control intensity plots.  

Panels on the left depict the averaged GFP intensities of treated against control for each protein. Panels on the right 

show MA plots – a 45° rotation of the left hand plots depicting the magnitude of expression change against the 

average. Green lines depict a linear model of the plot, blue lines depict a base line of no expression change and the 

red lines depict a local regression line. In plots on the left a general increase of protein expression in treated cells can 

be seen as the red and green lines have shifted upward from the zero change base line (blue). Although the linear 

model appears to closely match the local regression on the left, in the MA plots we can see an intensity based effect 

suggesting that low expression proteins behave differently from high expression proteins.  As such the expression 

data were normalised to the red local regression lines in the MA plots for further analysis. 

Because the GFP collection screen is essentially analogous to expression microarray data 

we employed local regression methods that are well established in the microarray 

literature to remove any intensity effects from the data (Colantuoni et al., 2002). To 

achieve this, the residuals calculated from the loess  (LOcal regrESSion, Cleveland and 

Devlin, 1988) function in R were used to smooth the scatterplot and fit a non-linear local 
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regression curve which the data were normalised to (Figure 24, left panels). The loess 

normalised data was then used to calculate local Z scores for increases and decreases in 

protein expression ratios (Figure 24, left panels - green lines and right panels). A similar 

methodology has previously been described for microarray expression data (Colantuoni 

et al., 2002). 

 

Figure 24 - Loess normalisation and local Z score calculation.  

Plots on the left are the same MA plots as in Figure 23 after normalising to the Loess regression. As can be seen now 

the new local regression modelling (red) closely follows and is centred on the zero change base line (blue). Green 

lines represent local standard deviation measurement of 1σ. On the right hand panels the local Z-scores are plotted 

against the mean intensity. Green lines represent the hit cut-off Z-score of 2. 
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Proteins were considered to be significantly up-regulated in strains that showed a local Z-

score ≥ 2 (Figure 25, highlighted green). Analysis revealed that very few proteins actually 

showed a significant decrease in protein abundance over the time-frame measured.  This 

may be due to a number of factors. Firstly, GFP is known to be a relatively stable protein 

and one might not expect to see much of a protein decrease in this time frame unless 

proteins were specifically being targeted for degradation (Mateus and Avery, 2000). Drug 

treatment also caused a general increase in protein fluorescence, as can be seen in the 

plot of treated against control GFP expression in Figure 23. With this in mind we chose to 

measure repressed proteins as those that showed a lower than expected GFP 

fluorescence compared to proteins of similar expression levels with a local Z-score ≤ -2 

(Figure 25, highlighted red). 

 

Figure 25 - Local Z-score for GFP expression changes.  

Local Z-scores for proteins abundance changes across the proteome. Strains are ordered by rank. Up-regulated hits 

are highlighted in green, repressed proteins are highlighted in red. The histogram displays a density function of the 

plots. 

 

Proteins were removed from the hit list if the GFP tag was likely to have affected 

localisation due to disruption of the C-terminus as defined in Breker et al., (2013). Hit lists 

of up-regulated proteins for DTT and TM treatments are listed in Table 11 and Table 12 

respectively. Hit lists of repressed proteins for DTT and TM treatments are listed in Table 
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13 and Table 14. Gene ontology analysis was conducted using the online software tool 

YeastMine (Balakrishnan et al., 2012) by comparing the hit lists to a background set 

consisting of all proteins in the GFP collection. To correct for multiple testing the 

Benjamini Hochberg (False Discovery Rate) test correction was used and GO term 

enrichments were considered significant if they showed an FDR less than 0.05. 

Redundant GO terms were disregarded by comparison of GO term hierarchies using the 

web-based tool AmiGO (Carbon et al., 2009). 

5.3.3 Proteins up-regulated under ER-stress conditions 

Analysis identified 255 proteins that were up-regulated in expression in response to DTT 

(Table 11) and 217 up-regulated in response to TM (Table 12). An overlap of 80 proteins, 

roughly a third of each set, was observed between both treatments (Figure 26). These 

proteins are more likely to represent a ‘core’ UPR response, rather than any drug specific 

effect. This is likely to be a conservative estimate as statistical cut-offs are ultimately a 

subjective decision in data confidence and if we were to loosen the stringency we would 

likely find more overlap. Nonetheless it is  curious that this core overlap of 80 proteins did 

not show enrichment for any particular GO biological process term, however GO cellular 

component showed enrichments for endoplasmic reticulum (23 proteins), 

endomembrane system (27 genes) and Sec62/Sec63 complex (3 out of 4 proteins). 

Additionally Yeastmine identified a publication involving a yeast GFP collection screen for 

DNA damaging agents (Tkach et al., 2012) as having significant enrichment for 22 of the 

80 overlap proteins, this indicates that at least some of these proteins are likely to be 

involved in a more general stress response rather than being UPR specific. 
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Figure 26 - Overlap between DTT and TM up-regulated proteins 

 

 

Table 11 - Proteins up-regulated by DTT treatment. 

Proteins that increase in abundance in response to 2 mM DTT treatment with a local Z-score ≥ 2. Functional 

categories were adapted from those used in Costanzo et al., 2010. 

Functional Category Genes 

Amino acid biosynthesis ARO10, HIS2, PAR32 

Cell polarity/morphogenesis 
ABP1, BUD5, CAP1, MYO3, PIL1, PIN3, RCR1, SAC6, 
STE50, SUR1, TWF1 

Chromatin/transcription SDS3, SPT2, TFC7, WTM1 

DNA replication DDR48, MHR1 

Drug/ion transport 
AST2, BSD2, CTR1, CUP2, ISU2, MEP1, MEP2, PDR5, 
PMC1, TPO4, ZRT1 

ER-Golgi traffic 
ERP1, ERP2, ERV29, RET2, SEC66, SEC72, SFB2, SLY1, 
SPC2, SRP14, TRX2, YIP3 

Golgi/endosome/vacuole/sorti

ng 

APE1, BTS1, GDI1, GYP7, HSE1, IVY1, PBI2, PRC1, RUP1, 
SLA2, SNA3, VPS1, VPS68 

Lipids 
CSG2, DPP1, ERG10, ERG24, FMP45, LAP2, OPI3, OSH6, 
SAY1, SCS3, YDC1, YKL091C 

Metabolism 

ACB1, ACS1, ADH4, ALD4, ARI1, ATP2, ATP3, ATP7, AYR1, 
BNA1, CAR2, CBP3, COQ4, COQ6, CPR3, DAK1, DLD3, 
DOG2, ECM4, FBP26, GAD1, GCY1, GDB1, GLC3, GLK1, 
GLO1, GPD1, GPM2, GPP1, GPP2, GPX2, GRX1, GSY2, 
HEM1, HEM14, HEM15, HXK1, HXT2, KGD2, LSC1, LSC2, 
MAM3, MCT1, MDH2, MSP1, MTG1, NTH1, OCT1, OYE2, 
PET10, PNC1, POR1, PUT1, PYC1, QCR7, RBK1, RIB1, RIP1, 
RBK1,SDH4, SOL4, STF1, TAL1, TDH2, THI20, THI80, TSA2, 
TSL1, UBC8, UGA1, UGA2, URA10, XKS1, YAT2, YDL124W, 
YJL068C, YLR345W, YMR315W 
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Ribosome/translation 
BFR1, MAF1, MRPL16, MRPL38, MRPL6, RSM23, SWS2, 
TMA17, YET1, YMR295C 

Signalling/stress response 
CMK1, CMK2, CMP2, GRE3, HSP30, MCA1, MRP8, PRM5, 
PRX1, PST2, RIM11, RTS3, TFS1, YBL055C 

Protein 

degradation/proteasome 
DFM1, HRD1, UBC7, UBC5, UBI4, URH1 

Protein folding/glycosylation 
ALG6, ERJ5, GET4, GUP1, GWT1, ORM2, PMI40, PUN1, 
SEC62, SHR3, SLT2, SSA4, SSE2, TDH1, YLR194C, YPS3 

RNA processing EDC2, GSP2, IGO1, KIN28, ROX3 

Unknown 

ADD37, COS10, COS6, COS8,  CRP1, NCE102, PRM8, 
RAM2, RCN2, RDL1, RGI1, TDA1, UIP3, YBR085C-A, 
YBR287W, YET3, YHR097C, YHR138C, YIL108W, YKL151C, 
YML007C-A, YMR122W-A, YMR178W, YNK1, YOR289W, 
YOR385W, YPL107W, YPR127W, YRO2 

 

The set of 225 proteins up-regulated by DTT treatment showed enrichment for GO 

biological process terms including; redox related terms oxidation-reduction process (46 

genes) and oxidoreduction coenzyme metabolic process (11 genes), as well as some 

relatively broad carbohydrate and metabolism related terms including carbohydrate 

metabolic process (29 genes), carbohydrate catabolic process (16 genes) and generation 

of precursor metabolites and energy (23 genes). These hits were also enriched for the 

molecular Function GO term oxidoreductase activity (30 genes) and for the cellular 

component GO term endoplasmic reticulum (39 genes). A number of publications on 

stress responses were enriched for genes in this hit list including salinity, heat shock, DNA 

damage, ethanol, cell wall stress, and glycosylation deficiency (Alexandre et al., 2001; 

Boorsma et al., 2004; Cullen et al., 2006; Liu et al., 2007; Tkach et al., 2012; Wu and Li, 

2008). 

 

Table 12 - Proteins up-regulated by TM treatment 

Proteins that increase in abundance in response to 2 μg/mL TM treatment with a local Z-score ≥ 2. Functional 

categories were adapted from those used in Costanzo et al., 2010. 

Functional Category Genes 
Amino acid biosynthesis/transport MEP3, HIS2, PAR32, TRP1 

Cell polarity/morphogenesis 
AXL2, CAP1, CHS3, PFY1, PIN3, PRR1, PXL1, RCR1, 
RHO2, SDS24, SKT5, SRV2, STE24, SUR1, YPT32 

Cell cycle progression/meiosis CDC14, CDC28, CDC37, FPR3, NBP1 

Chromatin/transcription CPR1, FRA1, HTZ1, IES3, IES4, MCM1, SDC1, TUP1 

Chromosome segregation MAD2, MCD1 
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DNA replication/repair CDC9, MHR1, RAD52 
Nuclear-cytoplasmic transport POM33 

Drug/ion transport 
ARN1, BSD2, FLC1, KCH1, MEP1, MEP2, MUP1, 
NHX1, PMT3, SNA2, YPR003C, YVC1, ZRT1 

ER-Golgi traffic 

ERD2, ERP1, ERP2, ERP3, ERV25, RER1, RET2, SEC13, 
SEC28, SEC66, SEC72, SFB2, SFB3, SPC2, SVP26, 
TRS23, YIP3 

Golgi/endosome/vacuole/sorting 

ARF1, ARL1, BMH1, GYP7, PBI2, RUP1, SEC2, SNA3, 
TVP15, TVP18, VID22, VMA11, VMA21, VPS45, 
VPS52, VPS68 

Lipids 
DNF2, ERG24, FAR8, FMP45, GPT2, HMG2, ITR1, 
NCR1, OPI10, OPI3 

Metabolism 

ACB1, ADK1, ARH1, ASN2, CBP3, CDD1, COQ4, 
COR1, COX14, COX17, DFR1, DOG2, GPD1, GPP1, 
GPP2, GRX1, HEM13, HXT2, ICP55, MDM10, MIC17, 
MSP1, NCE103, NQM1, OYE2, PAM17, PET10, 
PGM2, PYK2, QCR2, RIB1, SDH4, SOL4, STF2, TAL1, 
TDH2, UBC8, YCF1, YDL124W, YLR345W, YMR315W 

Ribosome/translation 

BFR1, CCA1, MRPL36, MRPL38, NOB1, RSM25, 
SDO1, SGN1, SQS1, TAD2, TAN1, TIF1, TMA17, YET1, 
YMR295C 

RNA processing LSM2, POP5, RTC3, YSH1 

Signalling/stress response CMK2, HSP26, POG1, PRM5, PST2, RTS3, STE7, TSA1 
Protein degradation/proteasome ADD66, DFM1, NAS6, PRD1 

Protein folding/glycosylation 

GET4, GPI17, GWT1, HAC1, HSP104, HSP82, ORM2, 
PCM1, PUN1, SEC62, SHR3, SLT2, SPF1, SWP1, 
YLR194C, YPS3 

Unknown 

COS10, CSI2, GIS3, HNT2, MHO1, NCE102, NIF3, 
NIT3, PIN2, PMU1, RCN2, RDL1, TDA1, VBA4, 
YBR287W, YDR210W, YDR476C, YFR006W, 
YGL010W, YGR017W, YHR127W, YHR138C, 
YJR015W, YLR290C, YNR061C, YOL019W, YOR289W, 
YPL067C, YPL107W, ADD37,  VID27, YBR085C-A, 
YCP4, YET3, YMR122W-A 

 

For the 217 proteins up-regulated by TM treatment the only GO biological process term 

that showed enrichment with an FDR < 0.05 was ER to Golgi vesicle-mediated transport 

(15 genes). GO Cellular component enrichments included ER (48 genes), intrinsic 

component of membrane (83 genes), ER to Golgi transport vesicle (10 genes), Vesicle (17 

genes), endomembrane system (66 genes), endoplasmic reticulum membrane (35 genes) 

and the Sec62/Sec63 complex (3 genes). Publications that showed enrichment included 

yeast genome-wide studies on DNA damage, cell wall, salt, glycosylation deficiency and 
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heat shock (Boorsma et al., 2004; Cullen et al., 2006; Liu et al., 2007; Melamed et al., 

2008; Tkach et al., 2012; Wu and Li, 2008).   

5.3.4 Proteins repressed under ER-stress conditions 

Analysis identified 174 proteins whose expression was repressed in DTT treatment (Table 

13) and 147 in TM treatment (Table 14). An overlap of 44 proteins was observed between 

DTT and TM (Figure 27) which showed a GO biological process enrichment (FDR < 0.05) 

for ribosome biogenesis (15 proteins), ribonucleoprotein complex biogenesis (16 proteins) 

and ribosomal large subunit biogenesis (7 proteins). 

 

 

Figure 27 - Overlap between DTT and TM repressed proteins 

 

Table 13 - Proteins repressed by DTT treatment. 

Proteins that decrease in abundance or have lower than expected expression in response to 2 mM DTT treatment 

with a local Z-score ≤ -2. Functional categories were adapted from those used in Costanzo et al., 2010. 

Functional Category Genes 

Amino acid biosynthesis 
ADE6, APT1, ARG7, BAP3, CHA1, CPA1, CPA2, DIP5, 
HIS6, LEU9, LTV1, LYS2, TAT1, YOR302W, YPQ1 

Cell polarity/morphogenesis BZZ1, RAX2, SKM1, STE2, YPT31 
Chromatin/transcription HHF2, HTA2, RAP1, RPA34, SWI3, TAF3, ZPR1 

Chromosome segregation DAD1, SPC34 

DNA replication MKT1, POL5 

Drug/ion transport FET3, FTR1, PDR12, TNA1, TPO1, TPO3, VCX1 
ER-Golgi traffic ERP4, ERV14, ERV41, USO1 
Golgi/endosome/vacuole/sorting EMP70, VID22, VMA11, VMA16, VPH1 
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Lipids 
CHO2, CPT1, ERG5, ERG11, FAA3, FEN1, HNM1, 
KEI1, SAH1, SUR2, YPR063C 

Metabolism 

AAH1, COX19, FSH1, GPM3, HNT1, HPT1, HXT3, 
HXT6, JJJ3, RPO41, SAM1, SAM3, SAM4, SPE1, 
TIM17, URA7, YHB1 

Ribosome/translation 

ALB1, BUD23, CBF5, DBP3, DPH2, DPH6, DRS1, 
EFG1, EFT1, ELP2, EMG1, ENP1, FCF2, IKI3, KAP123, 
MAK21, MDN1, MRPL24, NSA1, PRP38, PWP1, 
PWP2, PXR1, RBG1, RIA1, RMT2, RPL11A, RPL17A, 
RPL19B, RPL19A, RPL20B, RPL21A, RPL22B, RPL23A, 
RPL23B, RPL27A, RPL33B, RPL34B, RPL40A, RPL41A, 
RPL42B, RPL5, RPL7B, RPL8A, RPS10A, RPS14B, 
RPS17A, RPS18B, RPS19A, RPS22A, RPS21B, RPS23B, 
RPS24A, RPS25B, RPS6A,  SRO9, SRP40, SSF1, SYO1, 
TIF11, TRM11, TRM12, TRM82, TSR2, UTP5 

Signalling/stress response GIS2, HMS2, SAP185 
Nuclear-cytoplasmic transport ARX1 
Protein degradation/proteasome CIC1, POC4 
Protein folding/glycosylation EMW1, NAB6, PER1, TDH3, ZIM17 

RNA processing 

HCA4, MTR3, MTR4, NAM8, NOP12, RPA135, 
RPA190, RPA43, RPA49, RRP46, RRP5, SKI6, SRB4, 
TAF14, TFC6 

Unknown 
INA1, NOG1, SKG6, YCR016W, YIL055C, YML018C, 
YML020W, YOR342C,  

 

The set of 174 proteins whose expression was repressed after DTT treatment showed 

significant enrichment (FDR < 0.05) for a number of GO biological process terms relating 

to protein translation and ribosomal function including but not limited to ribosome 

biogenesis (45 genes), translation (36 genes), RNA processing (40 genes), rRNA processing 

(32 genes), ribosomal small subunit biogenesis (18 genes), ribosomal large subunit 

biogenesis (17 genes), cleavage involved in rRNA processing (13 genes), ribosome 

assembly (10 genes) and rRNA transcription (7 genes). 

Table 14 - Proteins repressed by TM treatment. 

Proteins that decrease in abundance or are lower in expression than expected in response to 2 μg/mL TM treatment 

with a local Z-score ≤ -2. Functional categories were adapted from those used in Costanzo et al., 2010. 

Functional Category Genes 

Amino acid biosynthesis 
ARG1, ARO8, CPA1, HIS4, LYS2, MET18, TAT1, 
YOR302W 

DNA replication MCM6, MCM7, SUA5 
ER-Golgi traffic SRP72 
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Cell polarity/morphogenesis BZZ1, CLA4, GIN4, RAX2 
Chromatin/transcription BDF1, EAF5, IOC3, RAP1, RKM4, SWI1, UME6 

Chromosome segregation BRN1, PDS5, SLK19, SPC72 

Nuclear-cytoplasmic transport CRM1, 

Drug/ion transport FCY2, FET3, FTR1, TNA1, TPO1 
Golgi/endosome/vacuole/sorting MDR1, MRL1, NVJ1, SWA2, VAM7, VMA7 
Lipids AUR1, ERG5, FEN1, OSH3, PEX11 

Metabolism 

BNA6, CDC19, FBA1, GCV2, HNT1, HPT1, HXT3, 
HXT6, ILV6, MGR3, MRI1, OAC1, RCF2, RPO41, SPE2, 
SRX1, URA7, YHB1, YLH47 

Ribosome/translation 

ALB1, BMT6, BRX1, DBP7, DPH6, DRS1, DUS1, 
EMG1, FAL1, GAR1, GCD10, HGH1, KRI1, MAK11, 
MAK21, NAN1, NOP15, NUG1, PWP2, PXR1, RIA1, 
RPL1B, RPL22A, RPL23A, RPL23B, RPL8A, RPL8B, 
RPL9A, RPS10A, RPS10B, RPS17B, RPS21B, RPS26A, 
SMM1, SSF2, SQT1, SYO1, TEF4, TIF11, TOD6, 
TRM11, TSR2, UBA4, URB2, UTP21, UTP6, UTP8, 
URM1, YFL034W, YTM1 

Signalling/stress response GAL83, NAT5, SFK1, SIP1, SKM1, SKN7 

Nuclear-cytoplasmic transport ARX1 
Protein folding/glycosylation KRE6, NUS1, STT3 
Protein degradation/proteasome CIC1, ORM1, PTH2 

RNA processing 
DBP8, ECM16, HRB1, MLP1, NAF1, PRP45, RPA43, 
RPC17, RRP5, RRP8, SNU114, SYF1 

Unknown 
INA1, SSP120, SYH1, YCR087C-A, YGR122W, 
YIL055C, YKL071W, YRB30, YTA6 

 

The set of 147 proteins whose expression was repressed after TM treatment also showed 

a significant enrichment (FDR <0.05) for ribosomal function including the GO biological 

process terms ribosome biogenesis (41 genes), RNA processing (37 genes), rRNA 

processing (27 genes), ribosomal large subunit biogenesis (16 genes) and ribosomal small 

subunit biogenesis (14 genes).  

Given that translation and ribosomal function related proteins are being repressed in ER-

stress conditions induced by both DTT and TM, it seems likely this represents a control 

mechanism of protein translation, presumably in an effort to lower the protein folding 

burden within the ER. Since there seems to be no global effect of lowered protein 

expression in our screens, this mechanism may take place over a longer timeframe than 

the four hour time point we measured here.  
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5.4 Localisation changes across the proteome 

One of the major bottlenecks in proteome-wide high-throughput microscopy is the 

assessment of localisation changes. Typically high-throughput microscopy assesses one 

reporter at a time as we have done previously (Bircham et al., 2011) and with the DMA 

screening in chapter 4. Using single reporters allows for the development of highly 

accurate recognition algorithms specific to that reporter. Measuring proteome-wide 

localisation changes is more than a single reporter as there is such a broad range of 

proteins that can be visualised in the yeast GFP collection, all expressed to different levels 

and localised to their specific organelle. Additionally, the scope of proteins being 

measured means that not all possible localisation changes can be known a priori to define 

recognition procedures. Given these problems it is common for localisation shifts to be 

assessed by eye (Breker et al., 2013; Tkach et al., 2012). This is a time consuming and 

laborious process when dealing with tens of thousands of images per screen. Manual 

inspection can also be highly subjective and objectivity may change as more images 

have been observed and assessed. We sought to overcome some of the problems of 

manually visualising large datasets by first enriching for a subset of ‘likely’ 

localisation changes through texture analysis.  

Texture analysis measures local patterns within the fluorescent distribution of an image 

and can provide an unbiased measurement of protein localisation shift. Texture 

measurements have widely been used in machine vision and facial recognition algorithms, 

and more recently applied to high-content microscopy. Texture analysis is not specific for 

any particular localisation change and therefore it is possible to broadly identify changes 

regardless of what they are and without prior knowledge.  Many of the commonly used 

texture features such as Haralick textures, threshold adjacency statistics (TAS), and Gabor 

filters (Gabor, 1946; Hamilton et al., 2007; Haralick et al., 1973; Turner, 1986) produce a 

large number of features that may require complex processing such as dimensionality 

reduction (Dénervaud et al., 2013; Liu et al., 2004; Singan et al., 2012). Additionally these 

features often perform better for the analysis of more detailed images than is possible 

here due to the small size of yeast cell, as is the case for TAS features (N. Hamilton, 

personal communication Feb 2011). Here we combine the use of morphological features 

along with the spots edges and ridges (SER) texture analysis procedures available in 
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Acapella to measure localisation differences between control and treated images. We 

have found SER features to perform well with the small size of yeast cells and it produces 

a set of easily interpretable measurements.  

The Acapella SER texture analysis uses a set of eight characteristic fluorescence patterns 

to identify textural differences between images. These are spots, holes, edges, ridges, 

saddles, valleys, bright and dark. The SER features are generated by applying a set of 

filters based on second order Gaussian derivatives to the original image. The 

corresponding texture feature is then characterized by mean intensity of the filtered 

image in that region. SER measurements are controlled by a scale factor that defines the 

size of the texture properties. As these features are based on fluorescence patterns, they 

are independent of overall intensity and should not be affected by changes due to 

exposure conditions.  

To define a list of probable localisation changes induced by DTT and TM treatment, we 

measured a set of phenotypic fluorescent properties as well as texture features for 

control and treated images. The properties measured were; the overall GFP intensity, the 

ratio of peripheral GFP to internal GFP intensity, the proportion of bright pixels within the 

cell and on the periphery, spot formation and the eight SER texture features measured at 

two different scales. For each measurement a Z score was calculated using the following 

formula: 

        
                            

          
 

Medians were used as they are more robust to outliers and as such the median absolute 

deviation was used in place of standard deviation. The Z scores from the SER features 

were combined for both scales using Fisher’s method. Each measurement was then rank 

ordered based on Z score and the top 100 hits of each feature were combined to get a list 

of probable localisation changes. This method produces a set of ~400 probable protein 

localisation changes, reducing the number of images needed to be inspected by eye to 

roughly 10% of the total collection.  
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Figure 28 - Example localisation changes.  

Example GFP localisation changes overlaid with nuclear/cytoplasm RFP; control is on the left and DTT treated on the 

right for each panel. CP -cell periphery, NP -nuclear periphery. Image brightness has been adjusted equivalently in 

each pair for optimal image reproduction. 

To test the fidelity of this method, the entire set of TM treated images were assessed by 

eye and compared to the list of probable hits. All localisation changes identified by eye 

were encompassed in this set as well as some subtle changes that went unnoticed on first 

inspection. However, as texture analysis is sensitive to image quality, a significant portion 

of these changes were due to unfocused images or blurring caused by cell movement. As 

such the set of probable changes for each condition was further assessed by eye. Strains 

that showed genuine localisation changes in either condition were reimaged in triplicate 

at a higher resolution for reassessment in both conditions. Proteins that consistently 

showed a change in localisation across replicates were considered hits and listed in Table 

15 below with examples displayed in Figure 28.  
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Table 15 - Protein localisations altered by ER stress induced by TM or DTT treatment 

Highlighted in red are proteins that only changed in response to DTT. 

Localisation Change Genes 

Bud tip -> foci AXL2, CAP1, CAP2, EDE1, RSE1 

Cytoplasm -> foci AIP1, AKL1, AMS1, APE1, DCP1, DCP2, DYS1, EDC3, 
EMI2, GGA1, GLK1, GLT1, GSY1, HSP26, HSP42, 
KAP95, RBS1, XRN1, YAR009C, YDR170W-A, 
YIL108W 

Cytoplasm -> internal ARN1, ATG18, OPY2, PHM7, PRM5, RCR1, RCR2, 
SUR1, UIP3 

Cytoplasm -> nucleus CRZ1, LCB5, RPL18B, RRP12, STB3, TOD6, TSR3, 
VHR1 

ER -> Cytoplasm ALG2, ALG9 

ER foci ERG1, ERG6, FAA1, FAA4, IRE1, LAC1, LAG1, NUS1 

Foci -> Cytoplasm ANP1, CDC15, KEX2, MNN10, MNN11, MNN5, 
PEX21, RNR1, VAN1 

Foci change (spread) CCZ1, DID4, FCY2, HSE1, IST1, ITR1, MVP1, PEP1, 
PEP8, PSO2, SNF7, VPS16, VPS17, VPS24, VPS38, 
VPS4, VPS8, VTA1 

Nuclear periphery -> foci HMG1, HMG2, NSP1, NUP159, NUP82, YPR174C 

Nucleus -> Cytoplasm CDC20, CDC24, DUS3, GCN4, KAP123, YOR342C 

Nucleus -> nucleus foci/nucleolus CDC16, DRS1, FPR3, FPR4, GLC7, JIP5, MAK11, 
NOP16, NSA1, NUG1, RDH54, RIX1, SIS1, THO2, 
WTM1, WTM2 

Cell periphery -> internal AGP2, ARF3, AQR1, BAP2, DIP5, FLC1, FUI1, HNM1, 
HSP30, HXT2, HXT3, HXT6, MEP1, MRPL6, QDR3, 
RSN1, THI7, YDR090C 

 

The 126 proteins that changed localisation in either TM or DTT showed enrichment in the 

GO biological process terms including: late endosome to vacuole transport (12 genes), 

endosomal transport (14 genes), vacuolar transport (16 genes), protein glycosylation (8 

genes), protein targeting to vacuole (8 genes), actin filament depolymerisation (3 genes), 

transport (55 genes) and localisation (58 genes).   

GO cellular process enrichments included: endomembrane system (47 genes), endosome 

(16 genes), plasma membrane (25 genes), vacuole (17 genes), alpha-1,6-

mannosyltransferase complex (4 genes), ESCRT III complex (3 genes), F-actin capping 

protein complex (also WASH complex, 2 genes) and acyl-CoA ceramide synthase complex 
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(2 genes). The gene set also showed enrichment in the GO molecular function 

mannosyltransferase activity (7 genes). Looking at only the proteins that changed 

localisation in both DTT and TM did not show any changes in GO enrichements.  

Publications that showed enrichment for the hit list included a DNA damage screen of the 

yeast GFP collection (Tkach et al., 2012) and various studies on protein sorting and 

vacuole function: (Banta et al., 1988; Nickerson et al., 2010; Robinson et al., 1988; 

Rothman et al., 1989). 

 

5.5 Changes compared to UPR deficient GFP set 

To determine the contribution of the UPR to the proteomic changes induced by ER-stress, 

we created a UPR deficient yeast GFP collection for comparison. A modified SGA 

procedure was used to introduce a Δhac1 knock-out mutation into the yeast GFP 

collection to prevent the normal transcriptional up-regulation of UPR targets. This 

collection was imaged under DTT induced ER-stress conditions as previously described for 

comparison to wild-type cells. Abundance changes are listed in Table 16 and Table 17 

below. Localisation changes are listed in Table 18 . 

Table 16 - Proteins up-regulated by DTT in the absence of a functional UPR (Δhac1).  

Proteins that increase in abundance in response to 2 mM DTT treatment with a local Z-score ≥ 2. Functional 

categories were adapted from those used in Costanzo et al., 2010. Proteins highlighted in red were not significantly 

up-regulated by DTT in the presence of a functional UPR (Table 11)  

Functional Category proteins 
Amino acid biosynthesis/transport ARO10, GAP1 

Cell polarity/morphogenesis 
ABP1, AIP1, BUD5, LSB3, MYO3, PIL1, PIN3, RCR1, 
SAC6, SDS24 

Cell cycle progression/meiosis OSW5, SDS22 
Chromatin/transcription BDF1, IES4, WTM1 
ER-Golgi traffic BET3 

DNA replication/repair DDR48, MSC1 

Drug/ion transport FLC1, INH1, MEP1, MEP2, PDR5 
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Golgi/endosome/vacuole/sorting 
APE1, GGA1, GYP7, PBI2, RUP1, SAC1, SNA3, VPS68, 
VPS1 

Lipids ERG24, FMP45, GPT2 

Metabolism 

ACH1, ADH4, ALD3, ALD4, ARA1, ARI1, BNA1, DAK1, 
DUG1, GAD1, GDB1, GLK1, GLO1, GOR1, GPD1, 
GPP1, GPP2, GRX1, GSY2, GTT1, IDH2, IGD1, ISU1, 
KGD2, LSC1, MBF1, NCE103, NRG1, PAM17, PGM2, 
PNC1, PUT2, RIB4, SER3, SOD2, SRX1, STF1, STF2, 
TAL1, TPS1, TPS2, TSA2, TSL1, URA10, YDL124W, 
YMR315W 

Ribosome/translation MNP1, YMR295C 

Signalling/stress response 
AHP1, CMK2, GRE3, HSP12, HSP26, HYR1, MCA1, 
MRP8, RTS3, TFS1, TSA1 

Protein degradation/proteasome AFG3, UBC5 

Protein folding/glycosylation 
HSP104, HSP42, HSP78, OCH1, PUN1, SLT2, TDH1, 
YLR194C, YPS3 

RNA processing DCS1, EDC2, IGO1, RTC3, SRB6, SSA4, SSE2 

Unknown 

AIM17, AIM41, COS6, FMP21, PHM7, RCN2, RDL1, 
RGI1, TDA1, VID27, YBR085C-A, YBR287W, 
YDR391C, YHR097C, YHR138C, YJL016W, YJR085C, 
YKL151C, YLR257W, YNK1, YNL134C, YNR014W, 
YNR034W-A YOR385W, YPL067C, YPL260W, 
YPR127W, YPR172W 

 

76 of 225 proteins up-regulated by DTT in wild-type cells were also up-regulated in the 

UPR deficient collection (142 proteins up-regulated in total). Interestingly there were an 

additional set of 67 genes only that were up-regulated in the UPR deficient strains. This 

may be due to an altered homeostasis and buffering effects due to the UPR deficiency, 

but may also include some genes that were just below the significance threshold in the 

functional UPR DTT screen. 

This set of 142 proteins showed enrichment for a number of GO terms including the 

expected, redox related terms. GO biological process enrichments included oxidation-

reduction process (28 genes), response to oxidative stress (14 genes), trehalose 

metabolic process (5 genes) and cellular carbohydrate biosynthetic process (9 genes). 

Interestingly this set was no longer enriched for endoplasmic reticulum genes as the WT 

DTT screen hits list was. 
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Table 17 - Proteins repressed by DTT treatment in the absence of a functional UPR (Δhac1). 

Proteins that decrease in abundance or are lower in expression than expected in response to 2 mM DTT treatment 

with a local Z-score ≤ -2. Functional categories were adapted from those used in Costanzo et al., 2010. Proteins 

highlighted in red were not significantly repressed by DTT in the presence of a functional UPR (Table 13).  

Functional Category Genes 

Amino acid biosynthesis 

ADE6, ARG7, ARO2, ARO4, BAP3, CHA1, CPA1, CPA2, 
GNP1, HIS5, HOM3, LTV1, LYS2, PRO1, PRS1, TRP4, 
URE2 

Cell polarity/morphogenesis BEM2 
Chromatin/transcription HHO1, MOT1, SCP160, SFH1 
Chromosome segregation  SMC1 
DNA replication RFA2 
Golgi/endosome/vacuole/sorting EMP70, RTT10 

Drug/ion transport CAR1 

Cell cycle progression/meiosis SAP185 

Lipids HNM1 
Metabolism AAH1, GCV2, PDC1, SAM1, SAM4, SHB17 

Ribosome/translation 

ALB1, BUD20, DBP3, DPH6, EFG1, EFT1, EFT2, FYV7, 
IPI1, LIA1, MAK21, NAN1, NEW1, NIP1, NIP7, NOC2, 
NSA1, NSA2, PXR1, RIX1, RPG1, RPL11A, RPL13B, 
RPL17A, RPL18B, RPL21A, RPL22B, RPL23A, RPL27B, 
RPL2A, RPL31B, RPL33B, RPL34B, RPL38, RPL40A, 
RPL42A, RPL42B, RPL43B, RPL4B, RPL4A, RPL5, 
RPL6B, RPL7B, RPL8A, RPL8B, RPP1A, RPS14B, 
RPS16B, RPS17A, RPS18B, RPS19A, RPS21A, RPS22B, 
RPS23B, RPS24A, RPS24B, RPS25B, RPS30B, RPS7B, 
RPS8A, RPS8B, RRP12, RRP15, TRM82, RRP7, SGD1, 
SRO9, SUI2, TSR2, URB1, UTP14, UTP21, UTP6 

Signalling/stress response BCY1, GIS2 

Nuclear-cytoplasmic transport ARX1, SXM1 

Protein degradation/proteasome CIC1, UBP1, UBP10 

Protein folding/glycosylation CWP1, PLP2, TDH3, WBP1 

RNA processing 

BUD31, DBP8, ECM16, HCA4, MSL5, NOP12, PRP43, 
RPA12, RPA135, RPA190, RPA43, RPO31, RRP5, 
TAF14 

Unknown INA1, YIL055C  
 

 

56 of the 174 proteins repressed in the wild-type DTT screen were also repressed in UPR 

deficient conditions. An additional 79 proteins were considered to be repressed in the 

UPR deficient Δhac1 screen, which as mentioned in the up-regulated protein results 
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above, may be due to homeostasis changes and/or proteins that fell just outside of 

significance in the WT screen. Of note, the set of 135 proteins repressed in the UPR 

deficient screen were still enriched for translational and ribosomal related GO terms (FDR 

< 0.05) including the GO biological process terms; gene expression (90 genes), ribosome 

biogenesis (54 genes), translation (47 genes), rRNA processing (38 genes), ribosomal 

small subunit biogenesis (28 genes), ribosomal large subunit biogenesis (21 genes), 

ribosome assembly (12 genes) and translational elongation (11 genes). This indicates that 

any translational repression due to this is likely to be UPR independent and may be part 

of a more general stress-response.  

Table 18 - Localisation changes induced by ER-stress in UPR deficient cells.  

Proteins highlighted in red did not change localisation in cells with a functional UPR (Table 15) 

Localisation Change Proteins 

Cytoplasm -> foci AIP1, AKL1, APE1, DCP1, DCP2, EDC3, EMI2, GGA1, 
GLK1, GLT1, GSY1, HSP26, HSP42, KAP95, PPZ1, 
RBS1, SRP1, XRN1, YAR009C, YCR043C, YDR170W-A, 
YIL108W, YJL017W 

Cytoplasm -> internal OPY2, PHM7, PRM5, RCR1, RCR2, SUR1, UIP3 

Cytoplasm -> nucleus CRZ1, TSR1, LCB5, RPL18B, RRP12, STB3, TSR3, VHR1 

ER foci ERG1, ERG6, FAA1, FAA4, IRE1, LAC1, LAG1, NUS1 

Foci -> Cytoplasm ANP1, CDC15, GEA2, KEI1, KEX2, MNN5, PEX21, 
RNR1, VAN1 

Foci change (spread) CCZ1, FCY2, HSE1, IST1, ITR1, MVP1, PEP1, PSO2, 
VPS16, VPS17, VPS24, VPS38, VPS4, VPS8, VTA1 

Nuclear periphery -> foci HMG1, HMG2, NSP1, NUP159, NUP82, YPR174C 

Nucleus -> Cytoplasm CDC24, DUS3, GCN4, KAP123, YOR342C 

Nucleus -> nucleus foci/nucleolus CDC16, CGR1, DRS1, FPR3, FPR4, GLC7, JIP5, MAK11, 
MRT4, NOP16, NSA1, NUG1, RDH54, SIS1, THO2, 
WTM1, WTM2 

Cell periphery -> internal ARF3, AQR1, BAP2, DIP5, FLC1, FUI1, HNM1, HSP30, 
HXT2, HXT3, HXT6, INA1, MEP1, MRPL6, PDR5, 
QDR3, RSN1, TAT1, THI7, VHT1, YDR090C 

 

Interestingly almost all of the localisation changes in the Δhac1 UPR deficient DTT screen 

were also observed in the functional UPR screen, indicating that UPR regulation of the 

proteome is mainly actuated through increased protein expression rather than control 

through localisation. Only 13 new localisation changes were observed in the UPR 

deficient set. These are likely to be effects either through increased levels of ER-stress 
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due to a lack of UPR response and/or homeostatic changes that may include buffering 

systems to deal with the lack of a functional UPR. It is noteworthy that a number of the 

changes seen in the functional UPR DTT screen were not seen as changes in the Δhac1 

screen as the proteins were already in the secondary localisation prior to DTT treatment. 

Specifically these proteins were: AGP2, ALG2, ALG9, AMS1, CAP1, CAP2, CDC20, DID4, 

EDE1, MNN10, MNN11 and PEP8. This is probably due to the increased level of basal ER-

stress in UPR deficient cells that cannot effectively deal with the normal levels of protein 

misfolding. Therefore, these localisation changes must be UPR independent responses. 

Only seven proteins; ARN1, ATG18, AXL2, DYS1, RIX1, RSE1 and TOD6 were found to 

change localisation only in the functional UPR screen, as such these localisation changes 

are likely due to a direct effect of UPR activation. One protein SNF7 could not be assessed 

in the Δhac1 screen as there were too few cells for analysis. 

 

5.6 Transcription factor analysis 

Transcription factor (TF) analysis was used to identify any potential regulators, other than 

Hac1p, the well-established TF responsible for the expression changes induced by ER-

stress. YEASTRACT, a comprehensive database of all known transcription factor 

interactions in yeast (Abdulrehman et al., 2011; Monteiro et al., 2008; Teixeira et al., 

2006, 2013) was used to identify all TFs present in either the expression or localisation hit 

sets. These TFs were then assessed for activating regulatory interactions amongst the up-

regulated protein expression data.  

5.6.1.1 Transcription factors activated in response to DTT 

Taking all TFs in the DTT abundance and localisation data, 11 TFs were found to change. 

Nine of these had potentially regulating interactions amongst the DTT hits and had 

regulatory interactions with 50% (112/225) of the proteins in the hit list (57% or 129/225 

including Hac1p interactions). Three of these TFs were considered to be significantly 

enriched for interactions amongst up-regulated hits (pval<0.001 from YEASTRACT), Crz1p 

(20% of hits), Wtm2p (9.33%) and Cup2p (15.11%) together accounting for 67 possible 

regulatory interactions with protein hits. By comparison Hac1p, the TF component of the 

UPR showed potential regulatory functions with 15.56% of the hits list. Other TFs that 
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were identified as interacting with the hit list but fell below statistical significance were 

Gcn4p (34.67%), Spt2p (5.78%), Sds3p (1.78%), Wtm1p (1.33%), Tod6p (0.89%) andTho2p 

(0.44%). 

Searching the full set of known TFs in the yeast genome we found 23 TFs potentially 

regulating the hit set with significant target enrichment, together accounting for possible 

interactions with 196 of the 225 proteins. We searched the Prophecy database 

(Fernandez-Ricaud et al., 2005, 2007) for DTT sensitivity to deletions of these TFs  and 

found that deletion mutants of 8 TFs (HAC1, MGA2, SWI4, RLM1, CRZ1, FLO8, MSN4, 

YAP6) are designated as sensitive to 1.6mM DTT. Notably Crz1p was the only DTT 

sensitive TF to show a phenotypic change upon DTT treatment in our data.  

5.6.1.2 Transcription factors activated in response to TM 

Assessment of the TM abundance and localisation data showed that Hac1p was the most 

enriched TF with reported interactions covering 17.51% of the TM up-regulated hit set  

(pval< 0.001), followed by Crz1p interacting with 12.44% of the hit set and Wtm2p with 

5.53%. TFs that fell below statistical significance but had regulatory interactions with the 

hit set included Mcm1p (18.89%), Gcn4p (27.19%), Tup1p (15.21%), Wtm1p (2.30%) 

and Pog1p (1.38%). 

Searching the full set of known TFs we found a total of 15 TFs with potential activating 

regulatory interactions (p-value<0.01) accounting for possible interactions with 154 of 

the 217 proteins in the TM hit list. Searching SGD we found that deletion mutants in 3 of 

these TFs (CRZ1, HAC1 and RLM1) result in a sensitivity to TM. 

5.6.1.3 Transcription factors that respond to DTT in UPR deficient cells. 

Searching the Δhac1 UPR deficient screen for TFs that change in expression or localisation 

we identified seven TFs with potential activator interactions. Four of these showed 

significant enrichment of target genes in the Δhac1 up-regulated proteins hit set; Crz1p 

(30.28% of hits), Gcn4 (73.94% of hits), Wtm2 (16.9%) and Nrg1 (22.5%). Others that fell 

below statistical significance were Mbf1p (6.34% of hits) and Wtm1p (3.52%).  

Searching the full set of yeast TFs revealed 34 potential regulators, nine of which cause 

DTT sensitivity in null mutations (MGA2, SWI4, RLM1, CRZ1, CIN5, FLO8, ADR1, MSN4, 

YAP6). Altogether the 34 possible TFs account for activator interactions with 96% of 
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Δhac1 up-regulated proteins hits. Limiting to the nine DTT sensitive TFs still accounts for 

interactions with 91% of hits. As expected Hac1p was no longer enriched as a TF for 

interactions with the hit set. 

 

5.7 Discussion 

5.7.1 Comparison of DTT and TM as ER-stress inducers 

Comparing the expression data from the DTT and TM screens, we see a significant portion 

of each hit set is unique to each stress condition (Figure 26). These discrepancies can be 

rationalised as a drug specific component of the cells stress response. The protein set up-

regulated by DTT for example, is uniquely enriched for the redox related gene ontology 

terms oxidation-reduction process (46 genes) and oxidoreduction coenzyme metabolic 

process (11 genes). These processes can evidently be attributed to DTT’s mode of action 

as a reducing agent. These condition-specific hits are not in themselves particularly 

pertinent in the context of studying the UPR and so are not discussed here in detail. More 

interesting is the overlap of 80 up-regulated proteins between DTT and TM treatments. 

These proteins are likely to represent the set of proteins required to deal with ER-stress 

and the resulting physiological consequences. Although this set of 80 proteins is up-

regulated in both conditions, they may not necessarily be UPR specific hits. In fact 20 of 

the 80 proteins are also significantly up-regulated by DNA damaging agents in a similar 

GFP-based screen (Tkach et al., 2012), see Figure 29 and Supplementary appendix 2. 

Additionally, searching Yeastmine for publication enrichments showed that a number of 

the overlapping hits were also enriched in a number of stress condition studies including 

cell wall stress and salinity (Boorsma et al., 2004; García et al., 2009; Liu et al., 2007; 

Melamed et al., 2008). Transcription factor analysis using YEASTRACT identified 9 possible 

transcription factors with statistically significant activating interactions amongst the 80 

overlap hits. As expected, Hac1p is amongst these with reported regulatory interactions 

with 26.25% of the hits. Other possible TFs were Rsc1, Mga2, Cbf1, Spt23, Rgm1, Crz1, 

Wtm2 and Rlm1. Distinct among these are Crz1p and Wtm2p which both show a 

phenotypic change in DTT and TM treatment. Crz1p is a calcineurin-dependent TF known 

to activate stress response genes (Yoshimoto et al., 2002) and has potential activating 

interactions with 26.25% of the 80 overlap hits. Wtm2p showed potential activating 
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regulatory interactions with 10% of the overlap hits. Wtm2p is a transcriptional regulator 

that has been implicated in replication stress (Pemberton and Blobel, 1997; Tringe et al., 

2006). Wtm2p has a paralog Wtm1p which also showed a localisation shift in DTT and TM 

treatments. DTT treatment also caused a foci to cytoplasm localisation shift of the 

Wtm2p target gene Rnr1p. Rnr1p is a known DNA damage response gene and a similar 

localisation shift has previously been described for autophagy mutants (Dyavaiah et al., 

2011).  

 

 

Figure 29 - Overlap between ER-stress inducers and DNA damaging agents. 

Overlap between proteins up-regulated by DNA damage (Tkach et al., 2012) and the ER-stress agents DTT and TM. 

 

 

5.7.2 GFP proteomic screening reveals novel UPR target genes 

We initially defined possible UPR targets as proteins whose expression was significantly 

up-regulated in DTT treatment but not in UPR deficient cells i.e. the Δhac1 screen (Figure 

30 yellow and green). From this we identified 149 UPR target proteins (see 

supplementary appendix 2  for a list of genes), of which 38 overlapped with previously 

identified UPR targets (Kimata et al., 2006; Travers et al., 2000) and 28 of which 

overlapped with DNA damage hits (Tkach et al., 2012). Among these 149 possible UPR 
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targets are 15 proteins of unknown function. A second group of possible UPR targets are 

the set of 172 proteins whose expression was significantly up-regulated in TM treatment 

but not in UPR deficient cells (Figure 30 blue and green). However as we did not screen 

the UPR deficient cells with TM induced ER-stress, we cannot be sure how many of these 

may be TM-specific effects that are not genuine UPR targets and as such less emphasis 

was put on these hits.  

 

 

Figure 30 - overlap of up-regulated proteins between DTT, TM and UPR deficient cells 

 

 

By further refining a set of definite UPR targets as those proteins whose expression was 

significantly unregulated in both DTT and TM treatment but not in UPR deficient cells, we 

identify a total of 49 UPR targets (Table 19 and Figure 30 green).  By limiting the set of 

definitive UPR targets to those that respond to both DTT and TM, secondary drug-specific 

hits from DTT or TM should be eliminated. Of these more stringent hits 27 are novel UPR 

targets when compared to UPR targets as defined in the literature (Kimata et al., 2006; 

Travers et al., 2000). A search on YEASTRACT revealed that for these 27 novel UPR targets 

there is no known TFs having significant activator interactions with this group. This lends 

weight to the likelihood that these are unique UPR hits rather than from additional stress 
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responses. It is also noteworthy that seven of these novel UPR targets are proteins of 

unknown function.  

 

Table 19 – UPR target Genes.  

UPR-specific target proteins. The 27 novel targets are highlighted in red and proteins of unknown function are 

underlined. 

UPR specific up-regulated proteins 

ACB1, ADD37, BFR1, BSD2, CAP1, CBP3, COQ4, COS10, DFM1, DOG2, ERP1, ERP2, GET4, 
GWT1, HIS2, HXT2, MHR1, MRPL38, MSP1, NCE102, OPI3, ORM2, OYE2, PAR32, PET10, 

PRM5, PST2, RET2, RIB1, SDH4, SEC62, SEC66, SEC72, SFB2, SHR3, SOL4, SPC2, SUR1, 
TDH2, TMA17, UBC8, YET1, YET3, YIP3, YLR345W, YMR122W-A, YOR289W, YPL107W, 

ZRT1 
 

In addition to up-regulated proteins, 20 localisation changes were found only in UPR 

functional cells (Table 20). However, when inspecting the untreated Δhac1 images we 

found that 12 of these proteins already displayed the stress induced phenotype. This 

suggests that the deletion of hac1 itself causes enough ER-stress to induce these 

phenotypes, and that these phenotypes are not UPR regulated.  

 

Table 20 - UPR localisation changes.  

Proteins that showed a localisation shift to DTT or TM in wild-type but not Δhac1 cells. Underlined proteins are those 

that already showed the ER-stress phenotype in untreated Δhac1 cells. 

Proteins showing a localisation change in TM or DTT but not UPR deficient cells 

AGP2, ALG2, ALG9, AMS1, ARN1, ATG18, AXL2, CAP1, CAP2, CDC20, DID4, DYS1, EDE1, 
MNN10, MNN11, PEP8, RIX1, RSE1, SNF7, TOD6 

 

Among the novel UPR targets were two proteins Yet1p and Yet3p, homologues to the 

mammalian B-cell receptor-associated protein BAP31 implicated in ER quality control and 

secretory cargo export (Toikkanen et al., 2006). These have been recently shown to form 

a heteromeric complex that interacts with the ER translocon Sec complex, potentially 

regulating the biogenesis of specific transmembrane proteins (Wilson and Barlowe, 2010). 

Previous studies have also shown YET1, YET2 and YET3 mRNA levels increase in response 

to DTT (Gasch et al., 2000), however they had not previously been shown to be UPR 

specific targets. As there is no GFP-tagged variant of Yet2p in the GFP collection we were 
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unable to assess whether Yet2p is also a UPR target. However Yet2p seems to function 

separately from the Yet complex (Wilson and Barlowe, 2010). Additionally it was recently 

shown that the YET complex has regulatory interactions with Opi1p a repressor of 

Ino2p/Ino4p mediated control of phospholipid biosynthesis (Wilson et al., 2011). Indeed 

Opi3p a known Ino2/Ino4 target is also an up-regulated UPR target here, suggesting a 

possible role of the YET complex in UPR mediated up-regulation of phospholipid 

biosynthesis. 

Another novel UPR target is Shr3p an ER packaging chaperone. Shr3p is required for 

specific packaging of amino acid permeases into COPII coated vesicles for delivery to the 

cell surface (Gilstring et al., 1999; Ljungdahl et al., 1992).  Interestingly we also show that 

two of the permease substrates of Shr3p, Dip5p and Bap2p, (Herzig et al., 2012; Wright et 

al., 1997) show localisation shifts from the plasma membrane to an ER-retention-like 

phenotype  similar to shr3 null mutants. In this case the mislocalisation of these 

permeases is either due to TM/DTT induced misfolding or general secretory pathway 

shutdown, Shr3p is presumably up-regulated to cope with the processing of such proteins.  

The ubiquitin ligase adaptor Bsd2p was also identified as a novel UPR target protein. 

Bsd2p acts as an adapter protein for the ubiquitin ligase Rsp5p, an essential protein for 

ubiquitin-dependent trafficking events in yeast including trans-membrane proteins 

(Belgareh-Touzé et al., 2008). Bsd2p recognises exposed hydrophilic residues in the trans-

membrane domain of target proteins that lack the Rsp5p recognition ‘PY’ motif. Bsd2p 

itself contains PY motifs and thus is able to recruit Rsp5p to target proteins via this 

interaction (Hettema et al., 2004). Ubiquitination then acts as a signalling mechanism 

targeting these proteins to the vacuole for degradation. Bsd2p has been implicated in the 

homeostatic regulation of a number of trans-membrane proteins and permeases 

including heavy metal ion homeostasis. Bds2p facilitates the trafficking of the heavy 

metal ion transporters Smf1p and Smf2p to the vacuole for degradation thus preventing 

heavy metal accumulation within the cell (Liu et al., 1997; Sullivan et al., 2007).  

It has been suggested that Bsd2p may in fact act as a general mechanism to target 

misfolded membrane proteins for degradation in the vacuole (Hettema et al., 2004). 

However, given that Bsd2p is involved in the homeostatic trafficking of proteins for 

physiological function it has remained unclear whether Bsd2p plays a general role in 
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protein quality control or not (Fredrickson and Gardner, 2012). Our results presented 

here suggest that Bsd2p is likely to play a role in general protein quality control given that 

it is up-regulated in a UPR specific manner.  

Additionally we identified Tma17p (also known as Acd17p) as a novel UPR target. Tma17p 

has recently been shown to act as an ATPase dedicated chaperone crucial for 

homeostatic maintenance of the proteasome under stress conditions (Hanssum et al., 

2014). As discussed previously in chapter 1, the proteasome is tightly linked to the UPR 

and is ultimately responsible for the degradation of terminally misfolded proteins. A 

number of proteasome subunits are known to be upregulated under conditions of 

protein folding stress, which in yeast are under the control of the transcription factor 

Rpn4p (Xie and Varshavsky, 2001). Notably, deletion of RPN4 showed up in the DMA 

screens presented here as an inducer of UPRE expression. However, expression of 

subunits alone is not enough to increase proteasome levels. Tma17 has recently been 

shown to increase under ER-stress conditions and acts to assist in the assembly of 

complete proteasomes (Hanssum et al., 2014). Interestingly TMA17 was not previously 

identified as a UPR target at the mRNA level (Kimata et al., 2006). Closer inspection of 

their data shows that TM treatment did induce TMA17 expression at the transcript level 

but it failed to meet their requirements to define UPR targets as a constitutively active 

HAC1i mutant did not induce expression. This is interesting as Kimata et al. state that 

HAC1i is overall a stronger inducer of UPR targets than TM in their system, yet both DTT 

and TM induced Tma17p expression in a UPR specific manner in the results presented 

here. This allows the novel suggestion that simple IRE-HAC1 regulation is not enough to 

induce expression of all UPR targets. There likely exists cross-talk between other 

transcription factors that modulate the level and selection of UPR target genes required 

for a response. This concept is further discussed later on in this chapter. 

As expected the UPR-specific proteins we identified here include previously identified 

UPR targets, such as members of the sec63 complex (Sec62, Sec66 and Sec72), Erp1p and 

Erp2, members of the p24 complex involved in ER-Golgi traffic and Opi3p required for 

phospholipid biosynthesis. The major notable difference between our screen for UPR 

targets and previous genome-wide screens for UPR targets (i.e. Kimata et al., 2006; 

Travers et al., 2000) is that the previous screens used cDNA microarrays. The prior 
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screens therefore measured regulation at the transcript level, whereas our approach 

measured regulation at the protein level. Both approaches inherently have their merits. 

Microarrays are able to measure early transcript expression changes whereas GFP fusion 

proteins require time to fold and mature properly before they can be measured. 

Additionally C-terminal GFP tagging may cause protein defects and/or interfere with 

localisation or regulation. An example of this is the canonical UPR target protein Kar2p, 

an essential ER chaperone whose localisation is maintained by a C-terminal HDEL tag. C-

terminal GFP tagging disrupts the HDEL tag causing the GFP variant of Kar2p to 

mislocalise (Huh et al., 2003). Because of this there are some proteins that cannot be 

accurately assessed by GFP tagging. In our analysis we assessed 4024 proteins that we 

considered unlikely to be affected by the GFP tag, which still represents 69% of the 

currently known verified ORFs. GFP screens do however offer some major advantages, 

primarily as the fact that measurements are taken at the protein level and therefore 

directly measure physical changes in protein regulation. It is well known that changes in 

transcript level do not always account for a change of protein level (Gygi et al., 1999). 

Additionally, GFP provides the unique ability to assess localisation changes in protein 

localisation on a proteome scale. These unique factors of each approach complement 

each other, as highlighted by the fact that each methodology produced a set of unique 

hits as well as an overlap of consistent UPR targets between them. 

5.7.3 Additional stress responses act alongside the UPR 

Looking at the amount of up-regulated proteins in ER-stress conditions that are still 

activated in UPR deficient cells (Figure 30 grey overlaps), we can see there are a 

significant number of proteins induced that are likely regulated through pathways acting 

in parallel to the UPR. We assessed the TFs that may regulate the 31 UPR-independent 

up-regulated proteins overlapping between the DTT, TM and Δhac1 screens (Figure 31). 

Statistically Crz1p and Wtm2p are the stand out candidates with potential interactions 

amongst 42% and 23% of the hits respectively (target enrichment p-value < 0.001). 

Additionally Gcn4p, a TF which was found to localise more to the nucleus, interacts with 

58% of hits although this is less statistically significant given the large number of 

documented interactions of Gcn4p in YEASTRACT. Gcn4p is responsible for the general 

amino acid control response (GAAC) and is a basic-leucine zipper transcription factor, like 
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Hac1p. Gcn4p is well known to interact with Hac1p and is required for induction of many 

UPR target proteins (Patil et al., 2004). ER-stress induced by TM has also been shown to 

modulate GCN4 mRNA expression independently of Hac1p to similar levels as amino acid 

starvation (Herzog et al., 2013). Cross talk between the UPR and GAAC pathways has 

been well documented (Herzog et al., 2013; Patil et al., 2004), therefore it is not 

surprising that Gcn4p may be activated alongside the UPR in response to ER-stress, even 

in UPR deficient cells. Interestingly the TF Mbf1p was up-regulated in Δhac1 cells treated 

with DTT but not in wild-type cells and shows potential interactions with 10% of the UPR 

independent hits. Mbf1p is a transcriptional co-activator of Gcn4p that functions by 

bridging the TATA binding protein Spt1p to the DNA binding region of Gcn4p (Takemaru 

et al., 1998). This activation of Mbf1p suggests an increased dependence on the GAAC 

pathway in UPR deficient cells exposed to ER-stress. 

 

Figure 31 - UPR independent TF regulation.  

Transcription factor interactions amongst UPR independent hits generated using YEASTRACT. TFs are highlighted in 

red. Arrows denote activator interaction direction, colours distinguish TFs. 

Comparing the UPR independent up-regulations to the Tkach et al., (2012) dataset we 

find that 10 of the 31 proteins are up-regulated by DNA damage, and further to this SGD 

annotations describe a total 16 of the 31 hits to be involved in a non-UPR stress response 

including oxidative, osmotic and cell wall stress.  

Interestingly Cap1p was shown to be specifically UPR up-regulated, while both Cap1p and 

Cap2p showed a UPR independent localisation change in response to ER-stress, shifting 

from the bud neck to foci along the cell periphery. Cap1p and Cap2p are respectively the 

alpha and beta subunits of the actin capping protein that binds to the barbed ends of 

actin filaments and prevents further polymerization (Kim et al., 2004). Recently DTT 

treatment was shown to cause actin cytoskeleton depolarisation, and a role for actin 

filaments was demonstrated in the efficient formation of Ire1p clusters, which may 

explain the CAP protein localisation shift (Ishiwata-Kimata et al., 2013b). Additionally in 
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the same study Sac6p (fimbrin) an actin-bundling protein was shown to be required for 

Ire1p clustering. Here we found Sac6p was also up-regulated in a UPR independent 

manner in response to DTT but not TM.  

 

5.7.4 ER-stressed repressed proteins are enriched for ribosomal proteins 

There is a general increase in GFP protein fluorescence seen in cells treated with DTT or 

TM compared to control (Figure 23) probably because of major ER expansion that occurs 

under these conditions (Bernales et al., 2006).  Because of this very few proteins showed 

GFP down-regulation to levels below unstressed conditions. Therefore we measured 

proteins that showed significantly less expression than we expected after quantile 

normalisation and local Z-score calculation and classified these as ER-stress repressed 

proteins. Looking at the effect of ER-stress on protein repression in either DTT or TM the 

standout feature is the multitude of ribosomal/translation related proteins that are 

repressed. 4% and 7% of up-regulated proteins in DTT and TM treatments comprised 

ribosomal/translation related hits respectively. The repressed proteins by comparison 

showed a substantial portion of hits to be ribosomal/translation related constituting 37% 

and 34% of DTT and TM repressed proteins respectively. This repression appears to be 

UPR independent as Δhac1 cells treated with DTT showed 54% of repressed hits to be 

ribosomal/translational related proteins, a significantly larger portion of hits than the UPR 

functional cells. Additionally, the specifically UPR repressed proteins- that is those 

repressed by DTT and TM in wild-type cells but not in Δhac1 cells - showed no enrichment 

for ribosomal or translational proteins. Defects in the secretory pathway have been well 

documented in the repression of ribosomal genes in a UPR independent manner (Mizuta 

and Warner, 1994). 
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5.8 Conclusion 

Here we have described the use of high-content automated microscopy to evaluate the 

yeast GFP collection, in this instance to characterise the proteomic changes induced by 

the UPR in response to DTT and TM. Automated microscopy is increasingly being used as 

a screening technique, particularly with the yeast GFP collection. One of the major 

bottlenecks in these studies is the manual assessment of localisation changes by 

inspection. This process is incredibly time consuming considering the tens of thousands of 

images that need to be inspected. Here we successfully describe the use of automated 

analysis of textural image features to identify a subset of likely localisation changes. This 

drastically reduces the number of images that need to be inspected by eye to around 10% 

of the total collection, increasing throughput and efficiency.  Other automation attempts 

have either been restricted to specific localisation changes, for example nuclear-

cytoplasm translocation or localisation to mating projections (Mazumder et al., 2013; 

Narayanaswamy et al., 2009a). Here we show that texture features can be successfully 

used to predict numerous localisation changes without a priori knowledge. Using this 

system we identified the localisation changes and protein expression changes induced by 

the ER-stress agents DTT and TM. We identified a total of 126 localisation changes in 

either DTT or TM. One of the most interesting findings from these data is that most of 

these localisation changes occur independently of UPR regulation as they are also evident 

in Δhac1 cells. This is in contrast to the expression data which clearly defines a large set of 

UPR-specific protein up-regulations and thus demonstrates that the UPR is primarily a 

transcriptional/protein expression response relying only on a limited selection of 

localisation changes for the response. We show that the use of the yeast GFP collection 

for protein-level expression measurements compliments more traditional mRNA 

expression data, and identified an additional 27 novel UPR targets. The studies here also 

provide an insight into the current limitations of live cell GFP screening techniques which 

are discussed in detail later. 
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6 DISCUSSION 

The work described throughout this thesis details the development of an automated 

image recognition procedure for analysing high-throughput image data generated from 

yeast genomic screens. Specifically these methodologies were applied to measure 

phenotypes associated with the UPR in yeast using a two-pronged approach. Firstly, the 

effects of single-gene deletions were assessed for their impact on UPR function using two 

UPR-specific reporters, namely Ire1p-GFP and UPRE-GFP. This approach allowed us to 

identify gene deletions that caused an increase in basal UPR expression, as well as gene 

deletions that caused an attenuation of the UPR under conditions of exogenous ER-stress. 

Secondly, we used automated image recognition and texture analysis as a means of 

identifying UPR-induced changes throughout the yeast proteome, including both protein 

abundance and localization effects. From these data we were able to identify additional 

novel UPR targets, as well as UPR specific localization changes which had not previously 

been assessed. Although here we have applied our image analysis methodologies 

specifically to the study of UPR, these systems have been designed with a broader range 

of applications in mind allowing flexibility and customization to easily suit future 

experiments. The implications of our findings and an outlook on the procedures used are 

discussed in detail below. 

 

6.1 Automated recognition procedures  

One of the early frustrations encountered in this work was the challenge of extracting 

precisely the information desired from high-content imaging data. As humans we heavily 

rely on visual perception. Thus manually inspecting a set of images for localization 

patterns provides an immediate sense of any changes. Of course when one increases the 

scale of an experiment enough, it simply becomes too much to keep up with by manual 

inspection. The difficulty then becomes translating how we perceive these localisation 

patterns into a set of computational instructions to develop quantitative image 

recognition algorithms. Suddenly seemingly obvious phenotypic differences become 

incredibly difficult to define in absolute terms.  Most commercial high-throughput 

imaging platforms come with some sort of image analysis software, such as the Acapella 

software used here. These programs tend to provide drag and drop scripting functionality 
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for designing basic procedures, and usually comprise a set of algorithms designed for 

broad functionality. Although these procedures offer quick script development, they are 

often not as specific as one would like – a jack of all trades, master of none – so to speak. 

True customisation requires some level of programming knowledge, something that 

many end users of high-content microscopy coming from a background in biological 

sciences do not have.  To this end, although the yeast-specific recognition procedures 

developed here were applied specifically to UPR study, they are also designed to offer 

future flexibility and customisable options for future users without programming 

knowledge.  

Firstly, a set of marker RFP proteins were chosen to label cells, namely; mCherry (Shaner 

et al., 2004) as a cytoplasm marker and NLS-RedStar2 (Hodel et al., 2006, 2001; Janke et 

al., 2004) as a nucleus marker. Both of these proteins are expressed under the control of 

a constitutive TEF2 promoter to provide uniformity throughout the cell population. These 

markers were genomically integrated into an SGA starting strain to provide an easy 

means of introducing the markers into a range of yeast clone collections – namely the 

DMA and GFP collections – using modified SGA mating procedures. Two versions were 

created each with different advantages. A dual marker system using both mCherry and 

NLS-RedStar2 is used for a highly accurate cell recognition procedure that holds up well 

even in images of high cell density. This is particularly important when measuring 

localisation based effects, particularly in the case of plasma membrane proteins which 

are sensitive to inaccuracies in cell border recognition. Secondly, mCherry cytoplasmic 

labelling can be used alone in cell recognition. This is appropriate in cases such as when 

measuring cytoplasmic reporter proteins, which are not as sensitive to inaccuracies at the 

cell border. Additionally the mCherry system only uses up a single antibiotic selection, 

which can be an important consideration if additional markers or reporters are required 

that also need antibiotic markers. 

In order to make the algorithms designed here malleable to different experimental 

designs a number of customisable input parameters were included for easy assay 

optimisation. By default the cell analysis module already measures most common 

features including; spot detection, fluorescence intensity in various regions (whole cells, 

nucleus, cytoplasm and membrane), cell size, roundness, and three different measures of 
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texture features. Although these scripts are already optimised for yeast, adjustable 

parameters include optimisations for variables such as the expected size of cell objects 

recognised, which may change for example between haploid and diploid cells or if higher 

resolution images were used. Other useful variables include initial masking threshold 

adjustments (can account for changes in laser power), the amount of smoothing applied 

to cell borders, and the minimum distance between two nuclei. There is also an option to 

display ‘testing images’ depicting each stage of the algorithms, making it easy to 

understand what different parameters do and what stages may need optimisation. Finally 

there are also a number of filtering parameters that can be adjusted, including the 

distance from the image border that cells should be excluded from, the minimum ratio of 

nucleus/cell size, the number of standard deviations away to define bright or faint outlier 

cells, maximum and minimum cell size, and the minimum circularity allowed (useful for 

instance if one were assaying cell shape). 

The procedures presented here performed very well when tested when compared to a 

set of manually drawn cell borders. Over 95% of the automatically identified cells 

matched with a centre no further than two pixels away from the manually drawn cells, 

with the average distance less than one pixel. Comparison of cell size showed a very high 

correlation of 0.912 between manual and automated cells. These statistics compare 

favourably against other methodologies presented in the literature for which data were 

available, performing just as well as the recent methodologies presented by Handfield et 

al. and out performing established procedures available in the well-known open source 

software CellProfiler (Carpenter et al., 2006; Handfield et al., 2013). In terms of 

identifying localisation changes, as noted by others manual inspection by the human eye 

produces miniscule error rates in comparison to previous fully automated techniques 

(Breker and Schuldiner, 2009; Rimon and Schuldiner, 2011). However, there is simply too 

much data produced when performing multiple screens to rely on manual inspection 

alone. There are a number of factors that can affect accuracy in automated procedures 

including; noise, dead cells, contamination and out of focus objects (Handfield et al., 

2013). Because of this there should always be a human component in verifying 

localisation changes. Here we take a hybrid approach to localisation analysis where we 

first use texture analysis to identify a set of likely localisation changes, reducing the 
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amount of images to be manually inspected by 90%. Using manual inspection as a final 

quality control measure allows for easy removal of false positives and a higher reliably. 

We found our automated procedures to perform well, and correctly encompassed all 

localisation changes identified by complete manual inspection of the dataset.  

In terms of future directions for the automated recognition analysis presented here, 

there are a number of performance enhancements that could be included in future 

versions. Firstly moving to an open source platform would make these procedures more 

widely distributable and applicable to other systems. Additionally, producing a compiled 

version of the software rather than running in an interpreted scripting language would 

provide significant speed improvements to the analysis. There are a number of additional 

features that could prove useful in terms of cell recognition performance. The total 

number of cells identified could be increased in a number of ways. Firstly, the optimal 

mid-section selection could be applied per cell as opposed to selecting an entire image. 

This would be particularly useful in the dual RFP system as the nucleus provides a very 

clear optimal midsection. Additionally the cytoplasm only procedures could potentially be 

optimised for more accurate cell separation by using data from non-midsection images. 

As the focal plane moves away from the mid-section cells appear smaller and more 

separated, albeit less well defined as you approach the top or bottom of the cell. 

Although these peripheral images cannot provide additional cell boundary information, 

they could be used to define object centres as surrogates for nuclei staining – from which 

the better performing dual marker algorithms could be used.  

There are also a number of analysis techniques used in other studies that could improve 

recognition of protein localisation and/or abundance changes. Firstly, one of the things 

we noticed in some cases was distinct populations of responders within the total cell 

population, particularly in cytoplasm-nucleus translocations. By including testing for bi-

modal populations we may be better able to identify cases such as these, particularly if 

they are less distinct (Breker et al., 2013). Similarly including cell-cycle stage, or mother-

bud analysis may identify a relationship to bi-modal expression patterns (Handfield et al., 

2013). Finally we could further optimise the texture recognition procedures to be more 

yeast specific and include a number of more interpretable measurements, an approach 
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that has proved useful for others and could further reduce the number of images to be 

manually inspected by eye (Dénervaud et al., 2013; Handfield et al., 2013). 

 

6.2 Characterising UPR phenotypes 

6.2.1 Deletion array screens and GFP screens reveal different aspects of the UPR 
We applied our automated cell recognition procedures in a dual strategy to identify 

proteins with UPR function. Firstly we measured UPR-specific reporters to screen for 

effects on UPR activation as consequences of non-essential gene deletions. This was 

followed up with a proteome-wide GFP collection screen to identify UPR specific protein 

abundance and localisation changes. These approaches complement each other well. The 

DMA represents a collection of loss-of-function mutants and as such was used to identify 

genes required for normal UPR function in two ways. Firstly gene deletions that induce 

UPR activation are likely to be involved in the normal functioning of protein folding 

and/or ER homeostasis. Secondly, gene deletions that prevent the normal activation of 

UPR in response to ER-stress are likely to be involved in the UPR or maintenance of the 

response itself. To investigate these scenarios we used two GFP reporter assays; the first 

was Ire1p-GFP foci formation which measures early misfolded protein recognition events 

of the UPR, the second reporter was UPRE-GFP expression which measures downstream 

UPR activation. The GFP collection on the other hand represents a set of functional 

proteins for which we can measure abundance and localisation changes. Thus this 

collection was used to identify UPR specific targets and additional down-stream effects.  

These differences between the DMA and GFP approaches are also reflected in our results. 

The UPR inducers, whether Ire1-GFP cluster or UPRE expression inducing, were enriched 

for genes involved in a number of ER and protein folding related processes. In particular 

protein glycosylation and ERAD functions. It is interesting to note the lack of oxidative 

protein folding genes here but this may be due to the essentiality of this process, for 

which the key members are all essential genes whose deletions are not found in the DMA 

(e.g. PDI1 and ERO1). What is important to note however is that of the gene deletions 

inducing UPR activation, only a small portion, ~13%, are UPR targets as defined by 

Kimata et al., 2006; Travers et al., 2000 or our results described here. This is in stark 
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contrast to the results from our GFP collection screen for which 61% of all the ER-stress 

specific GFP changes (i.e. occurring in both TM and DTT treatment) were also UPR specific 

effects (i.e. they did not occur in Δhac1 cells).  

6.2.2 GFP screening reveals protein-level UPR effects 
Less than half of the UPR-targets we identified in our GFP collection screens were 

previously known targets as measured at the mRNA level (Kimata et al., 2006; Travers et 

al., 2000). It is interesting to note this distinction between the studies as Travers et al. 

and Kimata et al. measured UPR targets at the transcript level, whereas here we have 

measured effects at the protein level. These results indicate two things; that regulation of 

at least some of these UPR targets does not occur at the mRNA level, and that not all UPR 

induced transcript changes result in a significant change at the protein level. This may be 

due to differences in post-UPR regulation or differential protein functional requirements, 

i.e. minor increases in some proteins can have a dramatic effect, whereas other functions 

may require a significantly larger increase in protein levels. Furthermore we identified a 

number of possible transcription factors that may function alongside Hac1p upon UPR 

activation. It would be interesting to further explore the possible connection of these in 

the response, and likewise to see if deletion mutants lacking these TFs had a significant 

impact on UPR target regulation particularly of UPR targets lacking any known UPRE 

elements.  

6.2.3 Ire1p activation appears to be a committal event 
Interestingly early UPR activation in response to ER-stress appears to be a committal 

event in terms of Ire1p foci formation. We could not measure any significant increase in 

the number of foci per cell in response to DTT induced ER-stress. However, the total 

number of cells within the population displaying foci increased in a dose dependant 

manner. Presumably all cells are undergoing protein misfolding in the relatively high 2 

mM DTT concentration used, yet not all cells commit to UPR activation. It would be 

interesting to explore any relationship between this UPR committal event and cell cycle 

stage or any other commonality between the sub-population of non-responders. 

Alternatively a vital stain would show if these cells had undergone cell death instead. It is 

interesting that 10 of the 13 gene deletion strains we found to prevent normal Ire1p 

cluster formation also induced UPRE expression. Our interpretation of this is that these 

gene deletions are probably priming the UPR in these cells with some level of chronic 
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misfolding. Further ER-stress does not then result in Ire1p foci formation which is usually 

only a transient event. What remains unclear is why not all UPRE inducers cause a 

repression of Ire1p foci formation. Possibly the type of ER-stress these deletions cause, or 

the strength of the chronic UPR are factors in this. On the other side of the UPR time 

scale it may be interesting to investigate events at the end of UPR activation. Ire1 foci 

rapidly disassociate within 15 minutes after removal of ER-stress, the mechanism of 

which is currently unclear (Kimata et al., 2007). Thus it would be interesting to assay for 

any gene deletions preventing the normal dissociation of Ire1p foci. 

6.2.4 Downstream UPR activity is blocked by SAGA complex components  
The set of gene deletion strains that suppressed the normal UPRE expression in response 

to ER-stress was enriched for a number of chromatin and transcription related genes. 

Specifically four of these hits are components of the SAGA histone acetyltransferase 

complex (CHD1, SGF29, SPT3 and SPT8) which has previously been shown to play a role in 

the UPR (Welihinda et al., 1997, 2000). As expected these genes were not enriched in the 

list of Ire1p foci preventers, as these genes are acting at a translation level downstream 

of Ire1p. However, what is interesting is that deletion of SGF29, a component of the SAGA 

core histone acetyltransferase module, instead resulted in an induction of Ire1p foci. One 

possibility here is that blocking downstream Hac1p transcription activity is preventing the 

UPR from dealing with basal levels of protein misfolding and hence resulting in enough 

build-up to induce Ire1p foci formation. It would also be interesting to see how much of 

the UPR is blocked by these mutations, for instance are UPR target genes that contain the 

UPRE2 or UPRE3 upstream activator sequences, as opposed to the UPRE1 used here, also 

inhibited in the same manner?  

 

6.3 Limitations and future directions 

6.3.1 DMA screening 

Essential Genes 

One of the major short comings of the R-SGA approach is that essential genes are not 

present in the collection, leaving around 20% of the genome unevaluated. Potentially 

there are genes of major implication here – although given their essential status these 
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are likely to be genes required for fundamental processes rather than anything 

specifically of the UPR. However, this is not to suggest essential genes are unlikely to 

contribute to UPR function, in fact a good example of an essential process impacting on 

UPR function is the requirement for F-actin and type-II myosin in efficient Ire1p foci 

formation. Recently Ishiwata-Kimata et al. showed that the actin disrupting agent 

latrunculin-A prevents Ire1p foci formation upon DTT stress. Additionally the type-II 

myosin gene MYO1 – which is not in our DMA array – is required for Ire1p foci (Ishiwata-

Kimata et al., 2013b). The DMA collection we used here has also had slow growing strains 

removed that can be problematic for traditional SGA analysis. However, these strains 

could potentially reveal interesting results, clearly these deletions have some 

consequence based on the growth defect. Unlike essential genes we can probe the effect 

of a complete knock-out mutation in these strains. Again an example can be seen in the 

work by Ishiwata-Kimata and colleagues who also showed that deletion of the actin 

bundling gene SAC6 – a strain removed from our DMA because of slow growth – 

additionally prevented Ire1p foci formation. These findings suggest that it would be 

worthwhile to further screen the slow growing strains, as well as the essential genes 

using either the temperature-sensitive or DAmP hypomorphic strain collections available 

(Ben-Aroya et al., 2008; Breslow et al., 2008; Li et al., 2011). Fluorescent protein reporters 

have previously been successful for identifying phenotypes associated with these 

conditional essential gene alleles validating the approach (Herzig et al., 2012; Li et al., 

2011). 

Optimal growth conditions for early UPR events 

Although here we used a four hour incubation and drug treatment time to be consistent 

across all screens, it would be interesting to also investigate the UPR activation events in 

a shorter time frame. Particularly for the early UPR activation events measured by Ire1p 

foci activity, which unlike downstream UPRE activity is not limited by protein synthesis 

rates. Ire1p clustering for instance has been shown to occur as rapidly as 6 minutes 

(Aragón et al., 2009). This may present different early UPR dynamics between deletion 

mutants, for instance some strains may take longer to form foci that others. Additionally 

it would be interesting to find conditions where Hac1p translocation to the nucleus was a 

measurable phenotype. The problem we encountered was that control cells also showed 
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Hac1p translocation to the nucleus, presumably because of protein synthesis rates in 

actively growing cells produces high enough levels of misfolded proteins to induce low 

levels of UPR. It may be possible that using stationary phase cells or reducing 

temperature to slow down cell growth rates could be a way around this problem. This 

would provide potentially interesting information on the dynamics between early Ire1p 

activation and Hac1p splicing events.  

 

6.3.2 GFP set screening 

C-terminal tagging and possible protein disruptions 

One of the limitations of using C-terminal GFP tagging is that it intrinsically removes any 

proteins dependant on the C-terminus for proper function. This includes proteins that 

contain HDEL-ER retention signals, which naturally are of interest when studying ER 

function. In fact of the 93 strains systematically removed from our analysis, 13 had 

previously been defined as UPR targets including key players such as the chaperones 

Kar2p and Lhs1p as well as the protein disulphide isomerases Pdi1p, Mpd1p and Mpd2p 

required for oxidative protein folding. As an alternative, using N-terminal GFP fusions in 

these cases is an appealing option (Prein et al., 2000). Additionally this strategy could be 

applied to the proteins completely missing from the commercial yeast GFP-collection that 

did not produce notable GFP fluorescence with C-terminal tagging (Huh et al., 2003). 

Proteomic context of biological changes 

One of the interesting points to note is the systematic increase in protein abundance 

upon ER-stress. This is unlikely to be a consequence of drug induced changes to GFPs 

fluorescence properties as both DTT and TM caused an increase and other data from our 

lab showed that overexpression of a misfolded protein causes the same general increase 

in abundance (Low, 2013). This raises a few points of intriguing significance, particularly 

as to the cause of the overall increased protein abundance. This seems counterintuitive 

given that we saw a specific repression of ribosomal and translation related proteins. 

However one possible explanation is that rather than being an overall increase in protein 

expression we are instead seeing the consequences of decreased protein turnover, 

possibly due to the proteasome being overwhelmed with ERAD substrates as a 
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consequence of ER-stress and misfolding. This also brings up a general point worth 

discussing given the number of proteins with increased abundance, particularly after DTT 

treatment. If we had used a standard Z-score calculation rather than the local Z-score 

that takes into account intensity effects, almost 25% of proteins in the GFP collection 

would have been considered upregulated at the same significance level (data not shown). 

This highlights an important feature of proteome-wide screens in which the degree of 

abundance change can be taken in context of the whole proteome. Using a local Z-score 

we found closer to 5% of proteins to actually be significantly upregulated from DTT 

treatment in context of the whole proteome. This highlights an aspect of improved 

statistical strength in whole proteome screening, where the entire proteome is effectively 

acting as a control. In contrast if we had cherry picked only a small collection of proteins 

for measurement many of them would have shown individually significant increases with 

strong p-values, underscoring the importance of control selection in such cases. Along 

this same line of thought, it is important to consider the biological context of localisation 

changes in proteome screens. For instance a sizeable portion of the ER-stress induced 

localisation changes were cell periphery proteins that also localised internally within the 

cell. It is unclear whether such changes have specific functional significance or are instead 

a consequence of reduced secretory pathway function. Further to this, it can be 

incredibly difficult interpreting which localisation hits are most relevant. Take the 

example of ire1 which has a major role in activating the UPR, yet due to low protein 

abundance the localisation effect is far more subtle than the majority of other changes 

identified. This is in contrast to measuring protein abundance or a single specific reporter 

for which there is a comparable quantitative component to the measurements. One final 

note of interest is the dominance of UPR induced abundance changes in comparison to 

the number of UPR specific localisation changes. This might be explained by the fact that 

the UPR is a transcriptional response and hence localisation changes are likely to be 

down-stream effects from up-regulation of primary UPR targets. 

Separating the UPR specific response from general ER-stress consequences. 

It is clear that there are a number of physiological changes that are a consequence of ER-

stress rather than just UPR induced changes. Although here we attempt to separate the 

two by comparison to a Δhac1 strain lacking a functional UPR, it is appears that many 
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‘UPR specific’ changes are likely to involve complex downstream regulation and/or 

interactions amongst UPR targets. This is particularly apparent when considering that 

most known UPR targets do not contain a recognisable UPRE sequence (Patil et al., 2004), 

and that many of the UPR targets we identified are not known to be regulated at the 

transcript level (Kimata et al., 2006; Travers et al., 2000). It would thus be interesting to 

attempt to totally separate UPR activity from other ER-stress consequences, possibly 

using a similar system to Kimata et al. where they used a constitutively activated HAC1 i 

mutant, rather than just treating with ER stress agents (Kimata et al., 2006). Although 

constitutively active UPR strains can be problematic to maintain due to slow growth and 

spontaneous loss of function mutations at the HAC1i locus (Y. Kimata, personal 

communication September 2012) an appealing option would instead be to use a HAC1i 

allele under control of an inducible promoter to activate the UPR, without the 

detrimental consequences of inducing ER-stress.  

CONCLUSION 
In conclusion we have described an efficient framework for automated image analysis of 

large high-throughput microscopy datasets. In the context of this thesis we have applied 

these methods to the characterisation of phenotypic changes induced by the UPR, and in 

the process identified a number of new UPR target proteins. We have also separated the 

genes required for the early events in the UPR from the later ones involving UPR targets. 

In the broader scheme this study highlights the usefulness of high-content imaging and 

GFP based proteomic screening as a systems biology tool, particularly when used in 

combination with traditional deletion mutant array screening. With the advances 

currently occurring in automating both image acquisition and data analysis this field will 

continue to grow and undoubtedly provide a wealth of information. It is foreseeable that 

as the number of such studies increases more and more image data will be compiled into 

online databases as traditional growth data has, and potentially lead to image-based 

searching or clustering methods for drug mode of action screening and/or 

characterisation of novel gene functions. 
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7 APPENDICES 

7.1 Nuclei recognition script 
 

Proc nuclei_identification (image nucleus in "nuclei stained image", bool 

ShowIllustrations=YES in, objectlist nuclei out "objectlist containing 

detcted nuclei", bool ShowTestingImages=NO in, bool 

IntensityFilterHigh=No in "filters nuclei + input # of  stdev away of the 

mean RFP intensity", bool IntensityFilterLow=No in "filters nuclei - 

input # of  stdev away of the mean RFP intensity", string 

RoundnessFilter="Radii" in "method for roundness filtering uses either a 

radius ratio method or form factor method: possible values 'Radii' 'Form' 

or 'none'")  

Peters "Detects and outputs an objectlist contianing nuclei"  

{ 

Input(th, 1.4, "initial mask threshold : Nuclei", "d", "Controls the size 

of the initial masking threshold, larger values increase mask, adjust 

based on nuclei mask") 

input(rom, 5, "range of maximums: Nuclei", "d", "Nuclei splitting, Point 

is discarded as object center if within a disk with radius 

RangeOfMaximums it has the highest pixel value") 

input(sdr, 2, "smoothing disk radius: Nuclei", "d", "Nuclei splitting, 

Radius for smoothing disk") 

Input(minar, 20, "minimum area of initial nuclei : Nuclei", "d", "Nuclei 

splitting, minimum allowed area of split nuclei") 

input(minar2, 20, "minimum area of final nuclei : Nuclei", "d", "minimum 

allowed area of detected nuclei") 

Input(sm, 4, "smoothing : Nuclei", "d", "Controls the smoothness of 

detected nuclei. adjust based on nuclei") 

Input(tun, 2.5, "individual threshold : Nuclei", "d", "Controls the 

individual threshold around which individual nuclei are adjusted. adjust 

based on nuclei") 

input(rd, 0.5, "roundness : Nuclei", "d", "Controls the filtering of 

nuclei based on roundness. values closer to one should be more round. 

adjust based on nuclei") 

input(ed, 2, "border edge: Nuclei", "d", "distance for border removal") 

input(ar, 150, "maximum area: Nuclei", "d", "max area filter for 

identified nuclei") 

input(ih, 2, "Intensity High: Nuclei", "d", "number of stddev away from 

mean for high intensity filter") 

input(il, 2, "Intensity Low: Nuclei", "d", "number of stddev away from 

mean for low intensity filter") 

ThresholdXX(th, Image=nucleus) 

Mask(threshold, image=nucleus) 

if(ShowIllustrations) 

imageview(mask, "nuclei mask", image=nucleus) 

end() 

//Bright_Mask(nucleus, 2) 

//imageview(mask, "bright mask") 

mask2stencil(mask) 

 stencil2objects() 

 set(cells_initial=objects) 

if(ShowTestingImages) 

 imageview(cells_initial.border, "initial objects", image=nucleus, 

gamma=2.6) 

end() 

 split_stuck_objects(nucleus, RangeOfMaximums=rom, minarea=minar, 

SmoothingDiskRadius=sdr) 

set(cells_initial_split=objects) 

if(ShowTestingImages) 
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imageview(cells_initial_split.border, "split objects", image=nucleus, 

gamma=2.6) 

end() 

calczone(10, ZoneType="equidistant", objects=objects) 

CalcZoneIntensity(Image=nucleus) 

set(initialzone_objects=objects) 

if(ShowTestingImages) 

imageview(initialzone_objects.zone, "nuclei inner zones", image=nucleus) 

imageview(initialzone_objects.outerzone, "nuclei outer zones", 

image=nucleus) 

end() 

IndividualThreshold(MinArea=minar2, MaxMode="maxpoint", Smooth=sm, 

Image=nucleus, Tune=tun) 

set(unfiltered_objects=objects) 

if(ShowTestingImages) 

imageview(unfiltered_objects.border, "individual threshold", 

image=nucleus, gamma=2.6) 

end() 

 

// Object Filters 

RemoveBorderObjects(ed) 

Calcarea() //Calculates area 

Calcarea(border) //Calculates border area 

if(RoundnessFilter=="Form") 

Calcattr(Roundness_corrected, 3.544*sqrt(area-

border_area/2.0)/border_area-0.1) 

objectfilter(Roundness_corrected>rd) 

else() 

 if(RoundnessFilter=="Radii") 

 Radii_Ratio_internal(objects=objects, stainedcells=nucleus) 

 objectfilter(radius_ratio>rd) 

 end() 

end() 

objectfilter(area<ar) 

CalcIntensity(Image=nucleus) 

renameattr(RFP=intensity) 

calcattr(intensity, "ln(RFP)", objects=objects) 

set(intensitylow=objects.intensity.mean-(il*objects.intensity.stddev)) 

set(intensityhigh=objects.intensity.mean+(ih*objects.intensity.stddev)) 

if(IntensityFilterHigh) 

objectfilter(intensity<intensityhigh) 

end() 

if(IntensityFilterLow) 

objectfilter(intensity>intensitylow) 

end() 

Stencil2Objects(objects.body) 

CalcAttr(area, objects=objects) 

set(nuclei=objects) 

if(ShowIllustrations) 

imageview(nuclei.border, "nuclei", image=nucleus, gamma=2.6) 

end() 

} 

 

7.2 Cytoplasm recognition script from nuclei 
 

Proc Cytoplasm_from_nuclei (image stainedcells in "nuclei and cytoplasm 

stained image", objectlist nuclei in "nuclei objects", bool 

CellDensity=YES in "changes cytoplasm identification based on cell 

desnsity", string standard_nuclei_removal="mean" in "other option 
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'convolution': this option will be used for low cell counts if 

'CellDensity' method is used", string high_nuclei_removal="convolution" 

in "only used if CellDensity is used: other option 'mean'", string 

standard_cell_detection="threshold" in "other option 'density':  this 

option will be used for low cell counts if CellDensity is used", string 

high_cell_detection="density" in "other option 'threshold'", string 

brightmask="none" in "use a bright mask instead of quantile for high/low 

quadrants: options are 'high' 'low' 'both' or 'none'", bool minarray=YES 

in "use a minarray for individual cell thresholding", bool maxarray=YES 

in "use a maxarray for individual cell thresholding",  bool 

IntensityFilterHigh=No in "filters nuclei + input # of  stdev away of the 

mean RFP intensity", bool IntensityFilterLow=No in "filters nuclei - 

input # of  stdev away of the mean RFP intensity", bool 

ShowIllustrations=YES in, bool ShowTestingImages=NO in, string 

RoundnessMethod="Radii" in "roundness filtering method uses either Radius 

Ratio or Form Factor: possible values 'radii' 'Form'", objectlist 

wholecells out, image nonucmean out, image highlowmask out) 

 

Peters "cytoplasm detection from nuclei, the number of nuclei in does doe 

always equal the number of cells out"  

{ 

Input(bth, 12, "initial mask threshold: cytoplasm", 

description="threshold adjustment for initial bright mask if not using 

CellDensity, adjust based on initial wholecell mask") 

Input(nuclei_high_count, 300, "nuclei high count:cytoplasm", 

description="cutoff for a high density cell count") 

Input(high_low_cut, 10, "high low cutoff: cytoplasm", 

description="high/low cutoff for grid nuclei count, only for density 

method, set to '0' if a low method is not wanted") 

Input(high_quantile, 0.4, "high quantile: cytoplasm", 

description="quantile for quadrants with high cell counts") 

Input(low_quantile, 0.4, "low quantile: cytoplasm", description="quantile 

for quadrants with low cell counts") 

Input(minar12, 12, "minimum area: cytoplasm") 

input(sm1, 4, "smoothing adjustment: cytoplasm") 

input(tun1, 3, "individual threshold tuning: cytoplasm") 

Input(zm, 3, "trimming threshold: cytoplasm", description="higher values 

will trim more protrusions from cell, values too high will decrease 

accuracy of cell borders. suggested range 1-4") 

Set(zm2=-(zm+1)) 

Input(rd, 0.5, "roundness filter: cytoplasm") 

Input(ar, 1000, "max area filter: cytoplasm") 

Input(bd, 2, "border removal distance: cytoplasm") 

input(ih, 2, "Intensity High: cytoplasm", "d", "number of stddev away 

from mean for high intensity filter") 

input(il, 2, "Intensity Low: cytoplasm", "d", "number of stddev away from 

mean for low intensity filter") 

Input(rt, 0.5, "nuclei/wholecell area ratio filter: cytoplasm") 

/////////////////////////////////////////////////////////////////// 

//  sets methods for nuclei removal (n_meth) and cell thresholding 

(cell_meth) 

//////////////////////////////////////////////////////////////////////// 

If(!CellDensity) 

 Set(n_meth=standard_nuclei_removal) 

 Set(cell_meth=standard_cell_detection) 

Else() 

 If(CellDensity and nuclei.@count<nuclei_high_count) 

  Set(n_meth=standard_nuclei_removal) 

  Set(cell_meth=standard_cell_detection) 

 Else() 

  If(CellDensity and nuclei.@count>=nuclei_high_count) 
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   Set(n_meth=high_nuclei_removal) 

   Set(cell_meth=high_cell_detection) 

  End() 

 End() 

End() 

//////////////////////////////////////////////////////////////////// 

// nuclei removal 

//////////////////////////////////////////////////////////////////////// 

CalcMassCentre(objects=nuclei) 

Mask(image=objects.masscentre.mask.image) 

set(nucmass=mask) 

 

If(n_meth=="mean") 

 CalcZone(5, objects=nuclei, ZoneType="Equidistant") 

 ZoneMask(-3, -2, objects=objects) 

 CalcIntensity(zonemask, stainedcells, objects=objects) 

 ZoneMask(-1, objects=objects  

 CarryObjects(objects.zonemask, objects.zonemask_intensity, 

image=stainedcells) 

 set(nonuc=image) 

 Mean(Image=nonuc) 

 set(nonucmean=image) 

Else() 

 If(n_meth=="convolution") 

  CalcZone(5, objects=nuclei, ZoneType="Equidistant") 

  ZoneMask(-3, -2, objects=objects) 

  CalcIntensity(zonemask, stainedcells, objects=objects) 

  ZoneMask(-1, objects=objects)  

  CarryObjects(objects.zonemask, objects.zonemask_intensity, 

image=stainedcells) 

  set(nonuc=image) 

  Mean(Image=nonuc) 

  Set(mean=image) 

 set(convolutionkernel=toimage(vec(1,4,6,9,6,4,1,4,16,24,36,24,16,4,

6,24,36,54,36,24,6,9,36,54,81,54,36,9,6,24,36,54,36,24,6,4,16,24,36,24,16

,4,1,4,6,9,6,4,1),7,7).image) 

  set(convolutionkernelfactor=convolutionkernel.sum) 

  convolution(image=nonuc) 

  set(nonucmean=image) 

 Else() 

  Error("cytoplasm: high_nuclei_removal or 

standard_nuclei_removal is not correct, must be 'mean' or 'convolution'") 

 End() 

End() 

// 

If(cell_meth=="threshold") 

 Bright_Mask(nonucmean, bth) 

 //Or(m_bright, image=nuclei.body.mask.image) 

 Set(bright_nuc=m_bright) 

 set(highlowmask=bright_nuc) 

 Mask2Stencil(bright_nuc) 

 Stencil2Objects() 

 split_stuck_objects(nonucmean, objects) 

 FillObjects() 

 set(initialobjects=objects) 

 Set(nucgridimage=nuclei.body.image) 

Else() 

 If(cell_meth=="density") 

  Blank(stainedcells.width, stainedcells.height) 

  Set(blank=image) 

  Bright_Mask(nonucmean, bth) 
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  ReadImage("C:\Documents and Settings\Opera\My Documents\Peter 

acapella\Images\grid_dots.bmp") 

  Redimension(stainedcells.width, stainedcells.height) 

  Mask2Stencil(image) 

  Stencil2Objects() 

  CalcStencilFromCenters() 

  CalcIntensity(stencilfromcenters, nucmass, Total=yes) 

  Set(gridobj=objects) // objects from griddots image that 

cover the full field of view 

 

 Set(nucgridimage=gridobj.stencilfromcenters_border.mask.image) 

// high objects 

  ObjectFilter(stencilfromcenters_intensity>=high_low_cut, 

objects=gridobj) 

 If(brightmask=="high" or brightmask=="both") 

  CarryPixels(objects.StencilFromCenters, m_bright, 

image=blank) 

  Set(highmask=image) 

 Else() 

  CalcStat("quantile",high_quantile, Image=stainedcells, 

Stencil=stencilfromcenters) 

  calcThreshMask(stencilfromcenters, quantile, Image=nonucmean, 

Inverse=no) 

  Set(highmask=objects.threshmask.mask.image) 

 End() 

  Set(high=objects) 

 

// low objects 

  ObjectFilter(stencilfromcenters_intensity<high_low_cut, 

objects=gridobj) 

 If(brightmask=="low" or brightmask=="both") 

  CarryPixels(objects.StencilFromCenters, m_bright, 

image=blank) 

  Set(lowmask=image) 

 Else() 

  CalcStat("quantile",low_quantile, Image=nonucmean, 

Stencil=stencilfromcenters) 

  calcThreshMask(stencilfromcenters, quantile, 

Image=stainedcells, Inverse=no) 

  Set(lowmask=objects.threshmask.mask.image) 

 End() 

  Set(low=objects) 

// combine objects 

Or(lowmask, image=highmask) 

//Or(image, image=nuclei.body.mask.image) 

Set(highlowmask=image) 

  Mask2Stencil(highlowmask) 

  Stencil2Objects() 

  split_stuck_objects(nonucmean, objects) 

  FillObjects() 

  set(initialobjects=objects) 

 Else() 

 Error("cytoplasm_from_nuclei, cell_method must equal 'general' or 

'cell_conc'") 

 End() 

End() 

// trimming ends off split object 

Set(zmask=objects.body.mask.image) 

CalcZone() 

ZoneMask(zm, oo) 

Stencil2Objects(objects.zonemask) 
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CalcZone(Stencil=zmask) 

ZoneMask(zm2, oo) 

Stencil2Objects(objects.zonemask) 

calczone(ZoneType="equidistant", objects=objects) 

CalcZoneIntensity(Image=nonucmean) 

calcintensity(image=nonucmean,autorecalc=no) 

set(initialzone_objects=objects) 

If(minarray) 

 set(objects=initialzone_objects) 

 calczone(ZoneType="equidistant", Autorecalc=no) 

 zonemask(-15,-4.0,autorecalc=no) 

 calcstat("median",stencil=zonemask,image=nonucmean, autorecalc=no, 

AttrName="attribute_median")   

 threshmask(zonemask,Threshold=attribute_median, autorecalc=no, 

image=stainedcells)  

 calcintensity(threshmask,image=nonucmean,autorecalc=no) 

 Set(minarrayxx=objects.threshmask_intensity) 

End() 

 

If(maxarray) 

 set(objects=initialzone_objects) 

 calczone(ZoneType="equidistant", Autorecalc=no) 

 ZoneMask(2, oo, AutoRecalc=no) 

 calcstat("median",stencil=zonemask,image=nonucmean, autorecalc=no, 

AttrName="attribute2_median") 

 threshmask(zonemask,Threshold=attribute2_median, autorecalc=no, 

image=stainedcells) 

 calcintensity(threshmask,image=nonucmean,autorecalc=no) 

 Set(maxarrayxx=objects.threshmask_intensity) 

End() 

Set(objects=initialzone_objects) 

If(minarray) 

 If(maxarray) 

  individualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=nonucmean, Tune=tun1, MinArray=minarrayxx, 

MaxArray=maxarrayxx) 

 Else() 

  IndividualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=nonucmean, Tune=tun1, MinArray=minarrayxx) 

 End() 

Else() 

 If(maxarray) 

  IndividualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=nonucmean, Tune=tun1, MaxArray=maxarrayxx) 

 Else() 

  IndividualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=nonucmean, Tune=tun1) 

 End() 

End() 

set(unfiltered_objects=objects) 

///////////////////////////////////////// trimming cells 

Set(zmask=objects.body.mask.image) 

CalcZone() 

ZoneMask(zm, oo) 

Stencil2Objects(objects.zonemask) 

CalcZone(Stencil=zmask) 

ZoneMask(zm2, oo) 

Stencil2Objects(objects.zonemask) 

Set(trimmed_objects=objects) 

split_stuck_objects(stainedcells) 

///////////////////////////////////////// object filters 
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CalcIntensity(objects=objects, Image=nucmass, Total=yes) 

ObjectFilter(intensity==1, objects=objects)      

//filters out objects with more or less than one nuclei 

 

 

 

 

// adding nuclei body to wholecell body to keep nuclei within cytoplasm 

mask 

Set(prenuc=objects) 

Mask2Stencil(nucmass) 

Stencil2Objects() 

CalcIntensity(Image=prenuc.body.vector.image) 

ObjectFilter(intensity>0, objects=objects) 

CalcZone(50, Stencil=nuclei.body) 

ZoneMask(-50) 

Set(newnuc=objects) 

CarryObjects(newnuc.zonemask, newnuc.intensity, 

image=prenuc.body.vector.image) 

Stencil2Objects(image) 

Set(postnuc=objects) 

Stencil2Objects(newnuc.zonemask.vector) 

Set(cyto=objects) 

Set(objects=postnuc) 

Calcarea() //Calculates area 

Calcarea(border) //Calculates border area 

if(RoundnessMethod=="Radii") 

 Radii_Ratio_internal(objects=objects, stainedcells=stainedcells) 

 objectfilter(radius_ratio>rd) 

else() 

 if(RoundnessMethod=="Form") 

  Calcattr(Roundness_corrected, 3.544*sqrt(area-

border_area/2.0)/border_area-0.1) 

 objectfilter(Roundness_corrected>rd)  

 else() 

 Error("cytoplasm_from_nuclei: method type must be Radii or Form and 

within quoatations")         

 end() 

end() 

RemoveBorderObjects(bd)         

objectfilter(area<ar)          

CalcIntensity(Image=stainedcells) 

calcattr(RFPintensity, "ln(intensity)", objects=objects) 

set(RFPintensityhigh=objects.RFPintensity.mean+(ih*objects.RFPintensity.s

tddev)) 

set(RFPintensitylow=objects.RFPintensity.mean-

(il*objects.RFPintensity.stddev)) 

if(IntensityFilterHigh) 

objectfilter(RFPintensity<RFPintensityhigh) 

end() 

if(IntensityFilterLow) 

objectfilter(RFPintensity>RFPintensitylow) 

end() 

deleteattr(RFPintensity) 

set(preWholeCells=objects) 

CarryPixels(objects.body.mask.image, 0, image=nucmass)  

//removing nuclei that have no cytoplasm  

CalcIntensity(objects=cyto, Image=image, Total=yes) 

ObjectFilter(intensity<1) 

CalcIntensity(body, prewholecells.body.vector.image) 

CarryObjects(objects.body, objects.intensity, image=objects.body.image) 
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Stencil2Objects(image) 

CalcZone(50, ZoneType="equidistant", Stencil=postnuc.body) 

ZoneMask(-50, -1) 

CalcBorder(zonemask) 

set(newcyto=objects) 

set(objects=preWholeCells) 

CalcArea()           

//adding final attributes 

SetAttr(centers, newcyto.body) 

SetAttr(centers_border, newcyto.border) 

SetAttr(cytoplasm, newcyto.zonemask) 

SetAttr(cytoplasm_border, newcyto.zonemask_border) 

CalcArea(centers) 

CalcAttr(centers_body_ratio, "centers_area/area") 

CalcMassCentre() 

ObjectFilter(centers_body_ratio<rt) 

///////////////// 

MembraneRegion("body", no, WholeCells=objects) 

CalcIntensity(Image=wholecells.body.mask.image, objects=wholecells) 

CalcThreshMask(body, Image=wholecells.membraneregion.mask.image, 

objects=objects, Inverse=yes, Threshold=intensity) 

RenameAttr(inside=threshmask) 

///////////////// 

Set(WholeCells=objects) 

if(showillustrations) 

imageview(nuclei.body, "nuclei quadrants", image=nucgridimage, gamma=2.6) 

end() 

if(showtestingimages) 

imageview(nonucmean, "Nuclei removal", gamma=2.6) 

If(cell_meth=="density") 

imageview(highmask, "high mask") 

imageview(lowmask, "low mask") 

end() 

end() 

if(showillustrations) 

imageview(highlowmask, "initial cell mask") 

end() 

if(showtestingimages) 

imageview(initialobjects.border, "initial objects", image=stainedcells, 

gamma=2.6) 

imageview(initialzone_objects.border, "pre-individual threshold", 

image=stainedcells, gamma=2.6) 

imageview(unfiltered_objects.border, "post-individual threshold", 

image=stainedcells, gamma=2.6) 

end() 

if(showillustrations) 

imageview(wholecells.border, "testwholecells", image=stainedcells, 

gamma=2.6) 

end() 

} 

 

7.3 Cytoplasm recognition script without nuclei 
 

proc cytoplasm_without_nuclei (image cytoplasm in "cytoplasm stained 

image to detect wholecells", bool Ploi_is_a_horrible_little_shit=YES 

in, string ThreshMethod="Bright" in "method of thresholding: possible 

values 'bright' or 'standard'", bool minarray=YES in, bool 

maxarray=YES in, bool IntensityFilterHigh=No in "filters nuclei + 

input # of  stdev away of the mean RFP intensity", bool 
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IntensityFilterLow=No in "filters nuclei - input # of  stdev away of 

the mean RFP intensity", image RFP=none in "image for RFP intensity 

filtering", string RoundnessMethod="Radii" in "roundness filtering 

method uses either Radius Ratio or Form Factor: possible values 

'radii' 'Form'", bool ShowTestingImages=NO in, bool 

ShowIllustrations=YES in, objectlist WholeCells out "Output 

objectlist of WholeCells")  

Peters "Detects and outputs an objectlist contianing wholecells 

without the use of nuclei"  

{ 

Input(br1, 10, "threshold tuning bright: cytoplasm", "d", "only 

required if method is set to bright") 

Input(th1, 1.4, "threshold tuning standard: cytoplasm", "d", "only 

required if method is set to standard") 

input(rom1, 8, "range of maximums: cytoplasm", "d", "Cell splitting, 

Point is discarded as object center if within a disk with radius 

RangeOfMaximums it has the highest pixel value") 

input(sdr1, 4, "smoothing disk radius: cytoplasm", "d", "Cell 

splitting, Radius for smoothing disk") 

Input(minar1, 80, "minimum area of initial wholecells : cytoplasm", 

"d", "Cell splitting, minimum allowed area of split Cells") 

input(minar12, 80, "minimum area of individual threshold adjusted 

cells : cytoplasm", "d", "minimum allowed area of detected Cells") 

Input(sm1, 4, "smoothing : cytoplasm", "d", "Controls the smoothness 

of detected Cells. adjust based on WholeCells") 

Input(tun1, 5, "individual threshold : cytoplasm", "d", "Controls the 

individual threshold around which individual Cells are adjusted. 

adjust based on WholeCells") 

Input(zm, 3, "trimming threshold: cytoplasm", description="higher 

values will trim more protrusions from cell, values too high will 

decrease accuracy of cell borders. suggested range 1-4") 

Set(zm2=-(zm+1)) 

input(rd1, 0.5, "roundness : cytoplasm", "d", "Controls the filtering 

of Cells based on roundness. values closer to one should be more 

round. adjust based on WholeCells") 

input(ed1, 2, "border edge: cytoplasm", "d", "distance for border 

removal") 

input(ar1, 700, "maximum area: cytoplasm", "d", "max area filter for 

identified cells") 

Input(ar2, 80, "minum area: cytoplasm", "d", "mimimum area filter for 

identified cells") 

input(ih1, 2, "Intensity High: cytoplasm", "d", "number of stddev 

away from mean for high intensity filter") 

input(il1, 2, "Intensity Low: cytoplasm", "d", "number of stddev away 

from mean for low intensity filter") 

 

 

 

if(ThreshMethod=="Bright") 

 Bright_Mask(cytoplasm, br1) 

 set(mask=M_Bright) 

  Else()   

   if(ThreshMethod=="standard") 

    ThresholdXX(th1, Image=cytoplasm) 

    Mask(threshold, image=cytoplasm) 

   else() 

    Error("Wholeobjectsonly: method type must be 

Bright or Standard and within quoatations") 
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   end() 

End() //if ThreshMethod 

 

mask2stencil(mask) 

 stencil2objects() 

 set(cells_initial=objects) 

fillobjects()  

 split_stuck_objects(cytoplasm, RangeOfMaximums=rom1, 

minarea=minar1, SmoothingDiskRadius=sdr1) 

set(cells_initial_split=objects) 

// trimming ends off split object 

Set(zmask=objects.body.mask.image) 

CalcZone() 

ZoneMask(zm, oo) 

Stencil2Objects(objects.zonemask) 

CalcZone(Stencil=zmask) 

ZoneMask(zm2, oo) 

Stencil2Objects(objects.zonemask) 

calczone(ZoneType="equidistant", objects=objects) 

CalcZoneIntensity(Image=cytoplasm) 

calcintensity(image=cytoplasm,autorecalc=no) 

set(initialzone_objects=objects) 

If(minarray) 

 set(objects=initialzone_objects) 

 calczone(ZoneType="equidistant", Autorecalc=no) 

 zonemask(-15,-4.0,autorecalc=no) 

 calcstat("median",stencil=zonemask,image=cytoplasm, 

autorecalc=no, AttrName="attribute_median")   

 threshmask(zonemask,Threshold=attribute_median, autorecalc=no, 

image=cytoplasm)  

 calcintensity(threshmask,image=cytoplasm,autorecalc=no) 

 Set(minarrayxx=objects.threshmask_intensity) 

End() 

If(maxarray) 

 set(objects=initialzone_objects) 

 calczone(ZoneType="equidistant", Autorecalc=no) 

 ZoneMask(2, oo, AutoRecalc=no) 

 calcstat("median",stencil=zonemask,image=cytoplasm, 

autorecalc=no, AttrName="attribute2_median") 

 threshmask(zonemask,Threshold=attribute2_median, autorecalc=no, 

image=cytoplasm) 

 calcintensity(threshmask,image=cytoplasm,autorecalc=no) 

 Set(maxarrayxx=objects.threshmask_intensity) 

End() 

  

Set(objects=initialzone_objects) 

If(minarray) 

 If(maxarray) 

  individualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=cytoplasm, Tune=tun1, MinArray=minarrayxx, 

MaxArray=maxarrayxx) 

 Else() 

  IndividualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=cytoplasm, Tune=tun1, MinArray=minarrayxx) 

 End() 

Else() 

 If(maxarray) 
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  IndividualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=cytoplasm, Tune=tun1, MaxArray=maxarrayxx) 

 Else() 

  IndividualThreshold(MinArea=minar12, MaxMode="maxpoint", 

Smooth=sm1, Image=cytoplasm, Tune=tun1) 

 End() 

End() 

set(unfiltered_objects=objects) 

/////// trimming cells 

Set(zmask=objects.body.mask.image) 

CalcZone() 

ZoneMask(zm, oo) 

Stencil2Objects(objects.zonemask) 

CalcZone(Stencil=zmask) 

ZoneMask(zm2, oo) 

Stencil2Objects(objects.zonemask) 

Set(trimmed_objects=objects) 

split_stuck_objects(cytoplasm) 

//  Object Filters 

RemoveBorderObjects(ed1) 

Calcarea()  

Calcarea(border) 

if(RoundnessMethod=="Radii") 

 Radii_Ratio_internal(objects=objects, stainedcells=cytoplasm) 

 objectfilter(radius_ratio>rd1) 

else() 

 if(RoundnessMethod=="Form") 

  Calcattr(Roundness_corrected, 3.544*sqrt(area-

border_area/2.0)/border_area-0.1) 

 objectfilter(Roundness_corrected>rd1)  

 else() 

 Error("cytoplasm_without_nuclei: method type must be Radii or 

Form and within quoatations")       

           

 //roundness 

 end() 

end() 

objectfilter(area<ar1) 

ObjectFilter(area>ar2) 

set(filtered_objects=objects) 

 

 //intensity filter 

CalcIntensity(Image=cytoplasm) 

calcattr(RFPintensity, "ln(intensity)", objects=objects) 

set(RFPintensityhigh=objects.RFPintensity.mean+(ih1*objects.RFPintens

ity.stddev)) 

set(RFPintensitylow=objects.RFPintensity.mean-

(il1*objects.RFPintensity.stddev)) 

if(IntensityFilterHigh) 

objectfilter(RFPintensity<RFPintensityhigh) 

end() 

if(IntensityFilterLow) 

objectfilter(RFPintensity>RFPintensitylow) 

end() 

Stencil2Objects(objects.body) 

fillobjects() 

CalcAttr(area, objects=objects) 

set(WholeCells=objects) 
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if(ShowIllustrations) 

 imageview(mask, "initial wholecell mask") 

End() 

 

if(ShowTestingImages) 

 imageview(cells_initial.border, "initial wholecell objects", 

image=cytoplasm, gamma=2.6) 

 imageview(cells_initial_split.border, "split wholecell 

objects", image=cytoplasm, gamma=2.6) 

 imageview(initialzone_objects.zone, "inner wholecell zones", 

image=cytoplasm) 

 imageview(initialzone_objects.outerzone, "outer wholecell 

zones", image=cytoplasm) 

 imageview(unfiltered_objects.border, "individual wholecell 

threshold", image=cytoplasm, gamma=2.6) 

end() 

if(ShowIllustrations) 

 imageview(Wholecells.border, "WholeCells", image=cytoplasm, 

gamma=2.6) 

End() 

 

} 

 

7.4 Combine stack script (mid-section selection) 
 

Proc CombineStack (double NumberOfChannels=2 in "number of channels", 

double NumberOfFields=1 in "number of fields", double 

NumberOfZplanes=5 in "number of Z planes", bool AllImages=YES in "use 

all images in stack, if No then select stacks to use in ImagePrep 

inputs", bool ImageAddition=YES in "adds images in a stack together", 

bool MaxProjection=YES in "Maxprojection of images in a stack", bool 

FocusImage=YES in "finds the most in focus image within a stack", 

bool BGC=NO in "Rollingball Background correction", bool 

ShowIllustrations=YES in, Memblock CombinedPack out)  

Peters "Combines images in a stack by adding together, images are 

output within a Package by channel and field as 

ComImage_method_C#_F#. Module must be follwed by the module: 

unpack(Combinedpack)"  

{ 

singlewell() 

Set(num_ch=NumberOfChannels) 

Set(num_planes=NumberOfZplanes) 

Set(num_fields=NumberOfFields) 

input(er, 15, "BGC edge: ImagePrep", "d", "edge size for background 

correction erosion") 

input(firstplane, 1, "first plane: ImagePrep", "d", "first plane to 

use from stack") 

input(lastplane, 5, "last plane: ImagePrep", "d", "last plane to use 

from stack") 

if(AllImages) 

set(firstplane=1) 

set(lastplane=num_planes) 

end() 

//////////////// ADDITION 

if(ImageAddition) 

set(m="Plus") 
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foreach(1..num_fields, "f") 

 

Foreach(1..num_ch, "c") 

set(i2=1) 

Foreach(firstplane..lastplane, "p") 

 if(i2==1) 

  set(zz=c+(f-1)*num_planes*num_ch) 

  plus(_["image" &zz], _["image" &zz+num_ch]) 

set(i2=i2+1) 

 

 else() 

  while(i2<=lastplane-firstplane) 

   set(i3=zz+i2*num_ch) 

   plus(result, _["image" &i3]) 

   set(i2=i2+1) 

  end() //while 

 end() //if(i2==1) 

set(_["ComImage_"&m&"_C"&c&"_F"&f]=result) 

 

end() //planes 

if(ShowIllustrations) 

 imageview(_["ComImage_"&m&"_C"&c&"_F"&f], 

"Plus_Field"&f&"Channel" & c) 

end() 

    //rollingballing background correction plus 

 if(BGC) 

  resize(1/4, image=result, yfactor=1/4) 

  eros(edge=er) 

  resize(4, image=image, yfactor=4) 

   set(backval = image.mean) 

   set(xslip = (result.width - image.width)/2) 

   set(yslip = (result.height - image.height)/2) 

   redimension(result.width, result.height, xslip, 

yslip, backval, image=image, BackgroundMethod="mirror") 

    set(BGimage = image) 

   minus(result, BGimage, neg_method="zero") 

    set(_["ComImage_"&m&"_BGC_C"&c&"_F"&f]=result) 

   if(ShowIllustrations) 

   imageview(_["ComImage_"&m&"_BGC_C"&c&"_F"&f], 

"BGC_"&m&"_Field_"&f&"Channel" & c) 

   end() 

 end() 

end() //channels 

end() //fields 

end() 

 

//////////////////////////////////////////////// MAX PROJECTION 

if(MaxProjection) 

set(m="Max") 

foreach(1..num_fields, "f") 

set(CubeDepth=Lastplane-Firstplane+1) 

foreach(1..num_ch, "c") // For each channel 

  create("datacube",image1.width,image1.height,CubeDepth, 

"unsigned short") 

  set(j=(c-num_ch)+(firstplane*num_ch)) 

  set(i2=0) 

  foreach(Firstplane..Lastplane, "p")  // For each plane 
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   Set(zz=(c-num_ch)+(p*num_ch)+((f-

1)*num_planes*num_ch))    

    set(datacube[i2]=_["image" & zz ]) 

    set(i2=i2+1) 

   set(j=j+num_ch) 

 end() // For each plane 

  Maximums3D(0,image=datacube) 

  StencilFrom3DTo2D(stencil=maximums,datacube=datacube) 

//Projects the found maximums from 3-dim to plane 

  delete(datacube)  

  set(_["ComImage_"&m&"_C"&c&"_F"&f] = ValueImage) 

   if(ShowIllustrations) 

   imageview(_["ComImage_"&m&"_C"&c&"_F"&f], 

"Max_Field"&f&"Channel" & c) 

   end() 

// foreach(1..num_ch, "c") // For each channel 

//  create("datacube",image1.width,image1.height,CubeDepth, 

"unsigned short") 

//  set(j=c+(f-1)*num_planes*num_ch) 

//  set(i2=0) 

//  foreach(Firstplane..Lastplane, "p")  // For each plane 

//   if(i2==0) 

//    set(datacube[i2]=_["image" & c+(f-

1)*num_planes*num_ch ]) 

//   else() 

//    set(datacube[i2]=_["image" & j ]) 

//   end() 

//   set(i2=i2+1) 

//   set(j=j+num_ch) 

//  end() // For each plane 

//  Maximums3D(0,image=datacube) 

//  StencilFrom3DTo2D(stencil=maximums,datacube=datacube) 

//Projects the found maximums from 3-dim to plane 

//  delete(datacube)  

//  set(_["ComImage_"&m&"_C"&c&"_F"&f] = ValueImage) 

// 

// 

//   if(ShowIllustrations) 

//   imageview(_["ComImage_"&m&"_C"&c&"_F"&f], 

"Max_Field"&f&"Channel" & c) 

//   end() 

    //rollingballing background correction max 

 if(BGC) 

  resize(1/4, image=ValueImage, yfactor=1/4) 

  eros(edge=er) 

 

  resize(4, image=image, yfactor=4) 

   set(backval = image.mean) 

   set(xslip = (ValueImage.width - image.width)/2) 

   set(yslip = (ValueImage.height - image.height)/2) 

  

   redimension(ValueImage.width, ValueImage.height, 

xslip, yslip, backval, image=image, BackgroundMethod="mirror") 

    set(BGimage = image) 

   minus(ValueImage, BGimage, neg_method="zero") 

    set(_["ComImage_"&m&"_BGC_C"&c&"_F"&f]=result) 

   if(ShowIllustrations) 
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   imageview(_["ComImage_"&m&"_BGC_C"&c&"_F"&f], 

"BGC_"&m&"_Field_"&f&"Channel" & c) 

   end() 

 end() 

 end() // For each channel 

end() 

end() 

//////////////////////////////// Focus Image 

if(FocusImage) 

if(!Allimages) 

Set(num_planes=lastplane-firstplane+1) 

 

end() 

Set(m="Focus") 

Foreach(1..num_fields, "f") 

 Foreach(1..num_ch, "c") 

 Set(i2=1) 

  //set(zz=c+(f-1)*num_planes*num_ch) 

  Foreach(firstplane..lastplane, "p") 

   Set(zz=(c-num_ch)+(p*num_ch)+((f-

1)*num_planes*num_ch)) 

   If(i2==1) 

    mean(image=_["image"&zz]) 

    Gradient(image=image) 

    Set(temp=image.stddev) 

    //Set(_["stddev"&zz]=temp) 

    Set(temp2=_["image"&zz]) 

    Set(temp3="image"&zz) 

    set(temp4=zz) 

    Set(i2=i2+1) 

    //Set(zz=zz+num_ch) 

   Else() 

    if(i2<=lastplane) 

     mean(image=_["image"&zz]) 

     Gradient(image=image) 

     Set(_["stddev"&zz]=image.stddev) 

     If(image.stddev > temp) 

      Set(temp=image.stddev) 

      Set(temp2=_["image"&zz]) 

      Set(temp3="image"&zz) 

      Set(temp4=zz) 

     End() //if image.stddev 

     Set(i2=i2+1) 

     //Set(zz=zz+num_ch) 

    End() // while 

   End()//if i2==1 else 

  Set(_["ComImage_"&m&"_C"&c&"_F"&f]=temp2) 

  Set(_["ComImage_"&m&"_C"&c&"_F"&f&"_Image_name"]=temp3) 

  set(_["ComImage_"&m&"_C"&c&"_F"&f&"_Image_no"]=temp4) 

  //Set(_["C"&c&"F"&f&"mean"]=temp) 

  End()          

 //num planes 

if(ShowIllustrations) 

 imageview(_["ComImage_"&m&"_C"&c&"_F"&f], 

"Focus_Field"&f&"Channel" &c) 

end() 

    //rollingballing background correction plus 

 if(BGC) 
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  resize(1/4, image=temp2, yfactor=1/4) 

  eros(edge=er) 

 

  resize(4, image=image, yfactor=4) 

 

   set(backval = image.mean) 

   set(xslip = (temp2.width - image.width)/2) 

   set(yslip = (temp2.height - image.height)/2) 

  

   redimension(temp2.width, temp2.height, xslip, yslip, 

backval, image=image, BackgroundMethod="mirror") 

    set(BGimage = image) 

 

   minus(temp2, BGimage, neg_method="zero") 

    set(_["ComImage_"&m&"_BGC_C"&c&"_F"&f]=result) 

 

   if(ShowIllustrations) 

   imageview(_["ComImage_"&m&"_BGC_C"&c&"_F"&f], 

"BGC_"&m&"_Field"&f&"Channel"&c) 

   end() 

 end() 

 End()           

 //num ch 

End()            

 //num fields 

end() 

/////////////////// Package 

pack(CombinedPack, ComImage_*) 

} 

 

7.5 Z-score script 
Proc Z_score (objectlist control_objects in "control objects", 

objectlist treated_objects in "treated objects", string 

variable="nan" in "attribute list to be tested'", string Z_score out 

"Z-score")  

Peters "Z score = treated_median-control_median/control_MAD"  

{ 

Set(values=_["control_objects."&variable]) 

company ( "abs(values - values.median)" ) 

Set(z_score=(_["treated_objects."&variable&".median"]-

_["control_objects."&variable&".median"])/(result.median * 1.4826)) 

} 

 

7.6 Mann-Whitney U test script 
 

Proc Mann_Whitney (objectlist obj1 in "object group one", objectlist 

obj2 in "object group two", string data="nan" in "attribute list to 

be tested'", double Z_ratio out "Z-score")  

Peters "Mann-Whitney test"  

{ 

///////////////combining object lists 

CalcAttr(label, "1", objects=obj1) 

Rename(obj1=objects) 

CalcAttr(label, "2", objects=obj2) 

Rename(obj2=objects) 
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AddObjects(obj1, objects=obj2, CheckOverlap=no) 

Rename(obj_all=objects) 

 

////////////////////////////ranking 

Sort(_["obj_all."&data]) 

Set(data_orig=_["obj_all."&data]) 

Sort_Prepare(data_orig, 0) 

 

Set(v1=vec()) 

Foreach(0..obj_all.@count-2) 

If(result[i]==result[i+1]) 

Set(same=1) 

Else() 

Set(same=0) 

End() 

Push(v1, same) 

End() 

Push(v1,0) 

ConvElems(result, "float") 

Set(result1=result) 

Set(x="nan") 

Foreach(0..obj_all.@count-1) 

If(i<x+1) 

Else() 

 If(v1[i]==1) 

 Set(med=i+1+i+1+1) 

 Set(x=i+1) 

  While(v1[x]) 

  Set(x=x+1)   

  Set(med=med+x+1) 

   End() 

  Foreach(i..x,"j") 

  Set(result[j]=med/(x+-i+1)) 

  Set(test=med/(x-i+1)) 

  End() 

Else() 

Set(result[i]=i+1) 

End() 

End() 

End() 

////// Mann-Whitney Test 

Set(resultx=result) 

Create("vector", "float", data_orig.size, 0) 

BackOrder(resultx, target=vector) 

SetAttr(rank, result, objects=obj_all) 

If(obj1.@count<obj2.@count) 

 Set(obj_small=obj1) 

 Set(lab=1) 

 Else() 

 Set(lab=2) 

 Set(obj_small=obj2) 

End() 

ObjectFilter("label==lab") 

Set(sqrt=sqrt(obj1.@count*obj2.@count*(obj_all.@count+1)/12)) 

Set(uT=obj_small.@count*(obj_all.@count+1)/2) 

Set(Z_ratio=(objects.rank.sum-uT+.5)/sqrt) 

if(lab==1) 

set(z_ratio=-z_ratio) 
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end() 

} 

 

7.7 Radii ratio script 
Proc Radii_Ratio (objectlist objects in "wholecells, body will be 

used to measure roundness", bool ShowIllustrations=NO in, image 

StainedCells=none in, bool OutputResults=YES in, objectlist objects 

out)  

Peters "Calculates the roundness of cells using the radii ratio 

method, generally more robust and resolustion independent than form 

factor methods used in the roundness_corrected attribute"  

{ 

set(initial_cells=objects) 

Input(rr, 0, "roundness ratio high: object_attributes", 

description="roundness filter, objects with roundness above this 

threshold will be kept. range 0-1") 

Input(rr2, 1, "roundness ratio low: object_attributes", 

description="roundness filter, objects with roundness below this 

threshold will be kept. range 0-1") 

CalcMassCentre(objects=objects) 

Stencil2Objects(objects.masscentre) 

CalcZone(50, ZoneType="equidistant", Stencil=initial_cells.body) 

ZoneImage(ZoneType="outerZones") 

DistanceImage() 

CalcStat("min", Stencil=border, Image=distanceimage, 

objects=initial_cells) 

CalcStat("max", Stencil=border, Image=distanceimage, objects=objects) 

CalcAttr(radius_ratio, "min/max") 

ObjectFilter(radius_ratio>rr, objects=objects) 

ObjectFilter(radius_ratio<rr2, objects=objects) 

If(ShowIllustrations) 

ImageView(objects.body, "radius ratio", image=StainedCells) 

End() 

if(OutputResults) 

output(objects.radius_ratio.mean, "radius_ratio") 

end() 

} 
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7.8 DTT and TM induced localisation changes 

Control DTT TM 
Gene/ORF  

notes 

 

AGP2 
YBR132C 

 

AIP1 
YMR092C 

 

AKL1 
YBR059C 

 

ALG2 
YGL065C 

 

ALG9 
YNL219C 
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AMS1 
YGL156W 

 

ANP1 
YEL036C 

 

APE1 
YKL103C 

 

AQR1 
YNL065W 

 

ARF3 
YOR094W 

 

ARN1 
YHL040C 
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ATG18 
YFR021W 

 

AXL2 
YIL140W 

 

BAP2 
YBR068C 

 

CAP1 
YKL007W 

 

CAP2 
YIL034C 

 

CCZ1 
YBR131W 
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CDC15 
YAR019C 

 

CDC16 
YKL022C 

 

CDC20 
YGL116W 

 

CDC24 
YAL041W 

 

CRZ1 
YNL027W 

 

DCP1 
YOL149W 
DTT only 
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DCP2 
YNL118C 

 

DID4 
YKL002W 

 

DIP5 
YPL265W 

 

DRS1 
YLL008W 

 

DUS3 
YLR401C 

 

DYS1 
YHR068W 
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EDC3 
YEL015W 

 

EDE1 
YBL047C 

 

EMI2 
YDR516C 
DTT only 

 

ERG1 
YGR175C 

 

ERG6 
YML008C 

 

FAA1 
YOR317W 
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FAA4 
YMR246W 

 

FCY2 
YER056C 

 

FLC1 
YPL221W 

 

FPR3 
YML074C 

 

FPR4 
YLR449W 

 

FUI1 
YBL042C 
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GCN4 
YEL009C 

 

GGA1 
YDR358W 
DTT only 

 

GLC7 
YER133W 

 

GLK1 
YCL040W 

 

GLT1 
YDL171C 

 

GSY1 
YFR015C 
DTT only 
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HMG1 
YML075C 

 

HMG2 
YLR450W 

 

HNM1 
YGL077C 

 

HSE1 
YHL002W 

 

HSP26 
YBR072W 

 

HSP30 
YCR021C 
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HSP42 
YDR171W 

 

HXT2 
YMR011W 

 

HXT3 
YDR345C 

 

HXT6 
YDR343C 

 

IRE1 
YHR079C 

 

IST1 
YNL265C 
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ITR1 
YDR497C 

 

JIP5 
YPR169W 

 

KAP95 
YLR347C 

 

KAP123 
YER110C 

 

KEX2 
YNL238W 

 

LAC1 
YKL008C 



193 
 

 

LAG1 
YHL003C 

 

LCB5 
YLR260W 

 

MAK11 
YKL021C 

 

MEP1 
YGR121C 

 

MNN10 
YDR245W 

 

MNN11 
YJL183W 
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MNN5 
YJL186W 

 

MRPL6 
YHR147C 

 

MVP1 
YMR004W 

 

NOP16 
YER002W 

 

NSA1 
YGL111W 

 

NSP1 
YJL041W 
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NUG1 
YER006W 

 

NUP82 
YJL061W 

 

NUP159 
YIL115C 

 

NUS1 
YDL193W 

 

OPY2 
YPR075C 

 

PEP1 
YBL017C 
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PEP8 
YJL053W 

 

PEX21 
YGR239C 

 

PHM7 
YOL084W 

 

PRM5 
YIL117C 

 

PSO2 
YMR137C 

 

QDR3 
YBR043C 
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RBS1 
YDL189W 

 

RCR1 
YBR005W 

 

RCR2 
YDR003W 

 

RDH54 
YBR073W 

 

RIX1 
YHR197W 

 

RNR1 
YER070W 
DTT only 
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RPL18B 
YNL301C 
DTT only 

 

RRP12 
YPL012W 

 

RSE1 
 

 

RSN1 
YMR266W 

 

SIS1 
YNL007C 

 

SNF7 
YLR025W 
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STB3 
YDR169C 

 

SUR1 
YPL057C 

 

THI7 
YLR237W 

 

THO2 
YNL139C 

 

TOD6 
YBL054W 

 

TSR3 
YOR006C 
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UIP3 
YAR027W 

 

VAN1 
YML115C 

 

VHR1 
YIL056W 

 

VPS4 
YPR173C 

 

VPS8 
YAL002W 

 

VPS16 
YPL045W 
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VPS17 
YOR132W 

 

VPS24 
YKL041W 

 

VPS38 
YLR360W 

 

VTA1 
YLR181C 

 

WTM1 
YOR230W 

 

WTM2 
YOR229W 
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YAR009C 

 

YDR090C 
DTT only 

 

YDR170W-A 

 

YIL108W 

 

YOR342C 

 

YPR174C 
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7.9 Systematically removed GFP strains 
ORF Reason for exclusion 

YAL014C Tail-anchored protein 

YBR016W Tail-anchored protein 

YBR067C GPI-anchored protein 

YBR093C cell wall 

YBR162W-A Tail-anchored protein 

YBR222C PTS1 

YCL043C HDEL protein 

YCR005C PTS1 

YCR067C HDEL protein 

YDL012C Tail-anchored protein 

YDL065C fatty acid acylation 

YDL078C PTS1 

YDL195W GPI-anchored protein 

YDR055W GPI-anchored protein 

YDR077W GPI-anchored protein 

YDR086C Tail-anchored protein 

YDR144C GPI-anchored protein 

YDR200C Tail-anchored protein 

YDR234W PTS1 

YDR261C GPI-anchored protein 

YDR281C Tail-anchored protein 

YDR304C HDEL protein 

YDR461W fatty acid acylation 

YDR498C Tail-anchored protein 

YDR517W cell wall 

YEL040W GPI-anchored protein 

YER019C-A Tail-anchored protein 

YER150W GPI-anchored protein 

YFL046W Tail-anchored protein 

YGL028C cell wall 

YGL032C cell wall 

YGL067W PTS1 

YGL184C PTS1 

YGR136W GPI-anchored protein 

YGR189C GPI-anchored protein 

YGR279C cell wall 

YGR282C cell wall 

YHR204W GPI-anchored protein 

YIL123W cell wall 

YIL160C PTS1 

YIR034C PTS1 

YJL034W HDEL protein 

YJL078C GPI-anchored protein 

YJL171C cell wall 

YJR086W fatty acid acylation 

YKL020C Tail-anchored protein 

YKL046C GPI-anchored protein 

YKL073W HDEL protein 

YKL096W-A GPI-anchored protein 

YKL164C cell wall 

YKL165C cell wall 

YKL175W GPI-anchored protein 

YKR042W cell wall 

YLR042C GPI-anchored protein 

YLR093C Tail-anchored protein 

YLR110C GPI-anchored protein 

YLR120C GPI-anchored protein 

YLR268W Tail-anchored protein 

YLR300W cell wall 

YLR343W GPI-anchored protein 

YLR390W-A GPI-anchored protein 

YMR161W Tail-anchored protein 

YMR215W GPI-anchored protein 

YMR238W GPI-anchored protein 

YMR251W-A GPI-anchored protein 

YMR307W GPI-anchored protein 

YNL064C fatty acid acylation 

YNL070W Tail-anchored protein 

YNL111C Tail-anchored protein 

YNL111C GPI-anchored protein 

YNL154C fatty acid acylation 

YNL300W GPI-anchored protein 

YNL322C cell wall 

YNL327W GPI-anchored protein 

YNR044W GPI-anchored protein 

YNR056C GPI-anchored protein 

YNR067C GPI-anchored protein 

YOL011W GPI-anchored protein 

YOL030W cell wall 

YOL044W Tail-anchored protein 

YOL052C-A GPI-anchored protein 

YOL088C HDEL protein 

YOL154W GPI-anchored protein 

YOR045W Tail-anchored protein 

YOR084W PTS1 

YOR101W fatty acid acylation 

YOR214C GPI-anchored protein 

YOR288C HDEL protein 

YOR324C Tail-anchored protein 

YOR327C Tail-anchored protein 

YOR336W HDEL protein 

YPL192C Tail-anchored protein 

YPL206C Tail-anchored protein 

 


