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Abstract

This thesis describes a novel hybrid computational methodology in which the

Molecular Dynamics and Kinetic Monte Carlo methods are concurrently com-

bined. This hybrid methodology has been developed to simulate phenomena

which are unfeasible to treat with either Molecular Dynamics or Kinetic Monte

Carlo alone, due to the wide range of time scales involved and the need for highly

detailed atom dynamics. Is is shown that the hybrid methodology can reproduce

the results of a larger (more atoms) all Molecular Dynamics simulation at a sig-

nificant reduction in computational cost (run time) - due to the replacement of

Molecular Dynamics atoms with Kinetic Monte Carlo atoms.

The hybrid methodology has been successfully used to study the dynamics of

epitaxial stacking fault grain boundaries. This work identified that grain boundary

motion was hindered by atoms lodging in off-lattice sites, and also by overlayer

islands built up by adatom deposition. It was verified that the ‘kink flip” move is

a key element in the motion of grain boundaries.

Methods for enhancing the hybrid methodology were researched. It was shown

that by an optimal choice of damping parameterγ, wave reflections back into the

Molecular Dynamics domain could be minimised. This is expected to enable the

hybrid methodology to operate successfully with smaller Molecular Dynamics

domains, making larger and/or longer simulation runs feasible. This research in-

cluded the derivation of the dispersion relation for the discrete case with damping

and net reflectivity formulas. These are believed to be new results.

The hybrid model can be applied to a wide variety of MD and KMC methods.

Other MD potentials such as Embedded Atom or Modified Embedded Atom could

be employed. The KMC component can be developed to use a more refined lattice

or an ”on the fly” KMC method could be employed. Both the MD and KMC



components can be extended to handle more than one species ofatom. Parallelised

versions of the MD and KMC components could also be developed.

Any situation where the problem can be decomposed into distinct domains

of fine scale and coarse scale modelling respectively, is potentially suitable for

treatment with a hybrid model of this design.
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1.1 Opening

1.1.1 Epitaxial Growth

The term epitaxy, which was coined by Royer [1], comes from theGreek roots

epi, meaning “above”, and taxis, meaning “in ordered manner”, which can be

translated as “to arrange upon”. Epitaxial growth occurs when crystalline mate-

rial deposited on a crystalline substrate adopts the crystallographic structure of

the substrate. The deposition is typically by way of a flux of individual atoms.

Epitaxial growth may result in the deposit forming a continuous film - referred

to as an epitaxial film or epitaxial layer, or distinct islands [2], or a combination

[3]. Epitaxial growth can be used to produce crystalline thin films of well de-

fined thickness. As an extreme example, the Atomic Layer Epitaxy technique can

produce compound semiconductor films a single atomic layer thick [4]. Epitaxial

growth of thin films has now become a very important element inthe fabrication

of electronic and optical devices, because modern semiconductor devices are typ-

ically composed of assemblies of numerous thin layers of distinct compositions -

“heterostructures”.

1.1.2 Significance of Epitaxial Structures

Pashley [5] has given an historical review of early work on epitaxial growth. Epi-

taxial growth first became of interest to the semiconductor industry in the 1960s

when Theurer [6] demonstrated the growth of thin silicon epitaxial layers on a sil-

icon substrate. It was later suggested by Esaki and Tsu [7] that epitaxial structures

could lead to new electronic and optical phenomena. This relied on forming two

dimensional semiconductor structures - “quantum wells”, which would confine

carriers within regions in the order of their de Broglie wavelength, whereupon

quantum effects were expected to become evident. Confinementin a quantum

well was first observed in 1974 by Dingle [8].

One major application of semiconductor epitaxial thin film structures is in

optoelectronic devices including light emitting diodes and lasers. These devices
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are used in fiber optical communication systems and optical data storage. Im-

provements in the quality of epitaxial GaN layers enabled the development of a

very bright blue GaN light emitting diode [9, 10]. The long-lived InGaN blue light

laser [11] utilises multiple quantum wells. Use of blue light significantly increases

the storage density of optical media. Considerable work has gone into producing

heterostructures that can confine carriers to one dimension- quantum wires, and

to zero dimensions - quantum dots, as a way to develop improved devices. For

example, quantum dot lasers are expected to have significantly improved thresh-

old current and modulation dynamics compared to quantum well lasers [12]. The

expectation of high carrier mobility in quantum wires suggests they may have a

role in high speed devices [13].

Epitaxial structures also play a significant role in basic science. Epitaxy of

metal-metal systems was undertaken with the expectation that high-quality metal-

lic thin film structures would exhibit novel magnetic phenomena. This expectation

was fufilled leading to the discovery of enhanced magnetoresistance [14] and giant

magnetoresistance [15]. Epitaxial structures are used to test fundamental ideas in

condensed matter physics such as the Wigner electron crystal [16, 17]. This lead

to the discovery of the quantum hall effect [18] and subsequently the fractional

quantum hall effect [19].

1.1.3 Modelling of Epitaxial Growth

Simulations of epitaxial growth are of great scientific and technological interest.

They can provide us with a fuller understanding of the evolution of the surface

morphology during the growth process. They are a cost effective way of determin-

ing the sensitivity of a growth process to the relevant parameters. Additionally,

the effect of significant changes in key parameters on the growth of an epitax-

ial layer, with respect to a given growth technique, can be quantified. Similarly,

simulations allow ready testing of proposals for the improved control of a growth

process. They also enable study of growth in regimes that arenot readily reached

in experiments.
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1.1.4 Hybrid Models

Modelling of epitaxial growth poses considerable difficulties - in particular the

long time scale involved in the process and the importance ofcapturing enough

atomistic detail, as discussed in Chapter 2.

In this thesis we develop a novel hybrid methodology to attack these prob-

lems. This methodology effectively increases the accuracyof Kinetic Monte

Carlo (KMC) methods by incorporating fine grained Molecular Dynamics (MD)

modelling in small specified regions. The KMC and MD methods are explained

in Chapter 3. Alternatively it can be seen as increasing the practical size scale

of Molecular Dynamics simulations by approximating large regions by a coarse

grained computationally less demanding Kinetic Monte Carlomodel, when this is

suitable.

Stacking faults occur when separate parts of a layer of atomsdiffer in their

registration with respect to the layers below. Parts of layers with different stacking

are unable to mesh together, giving rise to grain boundarieswhere they meet.

When stacking fault grain boundaries occur in the process of epitaxial growth,

they reduce the quality of the grown material. The hybrid model developed in this

thesis, is ideally suited to modelling stacking fault grainboundaries, to which it is

applied in this work.

A number of other hybrid methodologies have been developed to try and ad-

dress these issues. We note that Pomeroy et al. [20] have described a scheme for

hybrid MD KMC. However, their scheme involved consecutive application of MD

and KMC rather than the concurrent, spatially decomposed algorithm used here.

Several other hybrid schemes have been developed for modeling epitaxial growth

based on spatial decomposition, including an algorithm that couples the contin-

uum BCF model to KMC [21, 22]. In principle, it would be possibleto combine

several such hybrid schemes with the method described here.
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1.2 Chapter Overviews

1.2.1 Chapter 2: Epitaxial Growth

As discussed in Chapter 2, a major issue in modelling epitaxial growth is the wide

range of length and time scales that play a part in the phenomena. For modelling

all aspects of epitaxial growth, neither of the atomistic methods, Molecular Dy-

namics or Kinetic Monte Carlo, is sufficient. MD cannot address the long time

scales involved. KMC may not capture all the important atomic configurational

changes. Continuum methods, such as Burton Caberera Frank cover the time

scale but ignore important atomistic details. As a result hybrid models such as the

model described in this thesis have been developed to address these issues.

1.2.2 Chapter 3: Methodologies

Chapter 3 describes the modelling methodologies used in the work. The Molecu-

lar Dynamics and Kinetic Monte Carlo simulation methods are discussed. Addi-

tional theory used in applying KMC to epitaxial growth simulations, i.e. Transi-

tion State Theory and the Nudged Elastic Band method, are alsoexplained.

1.2.3 Chapter 4: Molecular Dynamics

In Chapter 4 we carry out Molecular Dynamics modelling to set areference frame

for our hybrid model. We show that Molecular Dynamics simulations using the

Lennard Jones potential can model dynamic stacking fault grain boundaries in

an epitaxial layer on a (111) surface. These simulations reproduce experimen-

tally observed features, e.g. a tendency to form triangularshaped islands. The

grain boundaries continually alter their shape and position. The grain boundaries

migrate over the surface following a temperature dependentrandom walk. Over

long time periods a small drift in grain boundary position isobserved, in addition

to the random diffusion. A pair of grain boundaries can meet and annihilate each
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other - eliminating the stacking fault. The key atomic process for grain boundary

migration is shown to be the “kink flip” move.

1.2.4 Chapter 5: Hybrid Modelling of Grain Boundaries

Our hybrid MD KMC modelling methodology was developed and applied to the

same problem studied with MD in Chapter 4. The hybrid methodology was used

to follow the propagation of a stacking fault grain boundarybetween Face Cen-

tered Cubic (FCC) and Hexagonal Close Packing (HCP) islands nucleating on a

FCC (111) surface.

This hybrid methodology combines Molecular Dynamics and Kinetic Monte

Carlo methodologies within a single concurrent atomistic simulation. Different

domains within this hybrid simulation are modelled with different methodologies

(MD or KMC). And as the simulation progresses the model applied to a given

domain is changed (perhaps several times) as necessary, so that the stacking fault

grain boundary is always modelled with MD, as it moves about the surface.

This method leads to a speed up over conventional MD, reducing the execution

time by a factor approximately equal to the relative fraction of remaining MD

atoms. We show that it is possible to reproduce grain boundary mobilities from

full MD simulations with the domain decomposition method inthe absence of

KMC events - when the MD regions are sufficiently large with length30σ (where

σ is the length scale defined in section 3.2.6).

We have also used the method to study the effect of over layer adatoms on the

mobility of the boundaries, demonstrating that boundariescan become trapped by

adatom islands. These effects would have been difficult to capture in a conven-

tional KMC simulation.

1.2.5 Chapter 6: Model Enhancement

In Chapter 6 a way to enhance the hybrid model by reducing wave reflections

from the MD KMC interface is investigated. The waves considerd in this theis
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are lattice vibrations. It is shown that the reflection coefficient is a function of the

Langevin damping parameterγ. It is proposed that by suitable tuning ofγ in the

region adjacent to the rigid KMC atoms, the reflections of waves back into the

MD domain can be minimised. This is not tested but left for future development.

1.3 Summary

This thesis describes a novel hybrid computational methodology in which the

Molecular Dynamics and Kinetic Monte Carlo methods are concurrently com-

bined.The hybrid methodology has been developed to model features of epitaxial

growth which are unfeasible to treat with either Molecular Dynamics or Kinetic

Monte Carlo alone. The dynamics of epitaxial stacking fault grain boundaries

have been elucidated using the hybrid methodology. Methodsfor enhancing the

hybrid model are discussed. Any situation where the problemcan be decomposed

into distinct domains of fine scale and coarse scale modelling, is potentially suit-

able for treatment with a hybrid model of this design.
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2.1 Introduction

This chapter gives an introduction to epitaxial growth and its technological role.

Further information on these topics can be found in [23, 24].We then discuss

methods of modelling epitaxial processes and the use of hybrid methodologies.

2.2 Epitaxial Growth

Epitaxial growth [1] refers to the growth of additional crystalline material on top

of an existing crystal substrate, where the additional material grows in alignment

and registration with the substrate. The growth results from controlled deposition

of adatoms (adsorbed atoms that diffuse on the suface) onto the substrate. When

the additional material forms atomic layers on the substrate, the result is a crystal

film coherently orientated on the crystal substrate - an epitaxial thin film. The

growing material and the substrate may be composed of the same or distinct ma-

terials. When the two materials are the same we have ordinary crystal growth. If

the substrate is a single crystal the epitaxial layer will bealso, otherwise a poly-

crystalline layer will form [23]. At very high deposition rates amorphous islands

may form.

2.3 Technological Importance

Epitaxial growth is the most cost effective method of producing high quality crys-

tals of many technologically important semiconductor materials, e.g. Si [24],

SiGe [25], GaN [26] and GaAs [27].

The formation of epitaxial thin films is fundamental to the manufacture of

many electronic and optoelectronic devices, because thesedevices are constructed

from layers of different materials and different doping states of the same material.

Light emitting diodes and semiconductor lasers are based onheteroepitaxial films

[28].
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For electronic devices Si is the typical substrate. In device fabrication the

deposit materials may be elementary semiconductors, e.g. Si or Ge [29]. More

complicated deposits using two element compounds, such as GaAs [30] or CdTe

[31], may be used. Ternary compounds such as InxGa1−xAs [32] may also be

deposited.

When manufacturing transistors in semiconductor devices, an initial stage is

the homoepitaxy of Si on Si. This is done because the epitaxial Si layer is usually

freer of defects than the underlying Si substrate and the epitaxial layer can be

doped independently of the substrate [24].

2.3.1 Applications of epitaxy

There are many applications of epitaxy in the manufacture ofsemiconductor and

thin film devices.

• Development of new wide-band gap optoelectronic devices, e.g. LEDs and

lasers based on GaInN [33].

• Fabrication of high speed high frequency communications devices based on

GexSi1−x [34] and compound semiconductor materials [35].

• The fabrication of multilayer heterojunction composites,including quantum

wells and superlattices. By engineering bandgap structuressome remark-

able nanoscale quantum electronic and optical devices haveemerged, e.g.

quantum well lasers, high electron mobility transistors, quantum cascade

lasers and quantum hall effect devices [36, 37, 38].

• Deposition of orientated electroceramic films and multilayers for varied pur-

poses, e.g. high temperature superconductors, magnetic garnets for magne-

tooptical devices and ferroelectric films for memory applications [39].
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2.4 Features of Epitaxial Growth

2.4.1 Homo-and Hetero-Epitaxy

A simple definition of homoepitaxy is that it occurs when the deposit material and

the substrate are the same, e.g. deposition of Ge onto Ge [40]. Heteroepitaxy

is then the deposition of a material different to the substrate, e.g. deposition of

(AlGa)As onto GaAs [41]. Heteroepitaxy is the more common situation techno-

logically.

The difficulty of achieving heteroepitaxy between given deposit and substrate

materials depends on:

• the difference between the crystal lattice constants of thematerials, i.e. the

lattice mismatch [42], and

• the balance between the cohesive energies within each of thematerials and

the adhesion energy at the material interface [24].

The lattice mismatch in heteroepitaxy will vary depending on the material used

in the substrate and the deposit; typically the mismatch is less than7%, as larger

mismatches can lead to textured or polycrystalline films [43].

2.4.2 Deposition Methods

A number of methods are available to produce epitaxial deposits of one mate-

rial upon another. The methods can be broadly classified intoeither physical or

chemical.

Physical vapour deposition (PVD) [44] methods rely on heat induced evapo-

ration or sublimation in vacuum of the material to be deposited. The hot deposit

material then travels in a controlled fashion through the vacuum to the substrate,

where epitaxial growth occurs. Evaporation deposition hasa long history and is

widely used in producing optical thin films, wide area coatings and epitaxial thin

films. An alternative to evaporation is sputtering [45]. In sputtering it is the impact
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of gaseous ions with the material to deposited, rather than heating, which causes

atoms to be ejected from the source of the deposit material into the vacuum. Sput-

tering is commonly employed when alloy films are required.

In chemical vapour deposition (CVD) [46], a volatile compound of the ma-

terial to be deposited is allowed to decompose on the hot substrate producing

a nonvolatile solid. This results in the epitaxial growth ofthe deposit material,

while volatile by-products leave the surface. Chemical vapour deposition meth-

ods are used for depositing nonmetallic hard coatings, dielectric films and high

quality epitaxial (single crystal) semiconductor films.

Some approaches employ both physical and chemical methods [47]. In molec-

ular beam epitaxy (MBE) [48, 49], beams of different elementscan be directed at

the substrate so the deposit grows one atomic layer at a time.For example, GaAs

layers can be deposited by repeatedly applying a layer of Ga and then a layer of

As, which then combine chemically to form GaAs. The beams maybe produced

by heating or by chemical reactions.

2.4.3 Surface analysis

The process of epitaxial growth and the development of the epitaxial films can be

monitored and analysed using a variety of techniques. The techniques generally

utilise either diffraction or real space imagery. A commonly used diffraction based

technique is reflection high energy electron diffraction (RHEED) [50], while scan-

ning tunneling microscopy (STM) [51] is a widely used real imaging technique.

The RHEED technique records the diffraction of high energy electrons that

have been directed towards the surface at a glancing angle. RHEED measurements

allow monitoring of the crystallinity of the growing film [52].

In STM the tunnelling current between the atom scale tip and the surface is

measured. By scanning the tip over the surface, information related to the charge

density at each scan point is obtained. This information provides near atomic res-

olution images of the detailed morphology of an epitaxial film during the growth

of the film [53, 54]. STM is not suitable for production line monitoring as it is too



CHAPTER 2. EPITAXIAL GROWTH 13

time consuming.

2.4.4 Epitaxial Growth Modes

There are three well known epitaxial growth modes [55]:

• (a) Volmer-Weber (VM) or island growth [56],

• (b) Frank-van der Merwe (FM) [57] or layer-by-layer growth,and

• (c) Stranski-Krastanov (SK) [58] or layer-by-layer growthfollowed by for-

mation of islands.

These growth modes are illustrated in Figure 2.1.

Figure 2.1: Snapshots (cross-section view) of epitaxial growth in the three growth
modes: (a) Volmer-Weber island growth, (b) Frank-van der Merwe layer-by-layer
growth and (c) Stranski-Krastanov layer-by-layer growth followed by islands.
Elapsed time and surface layer coverage increase progressively down the columns.

Which growth mode occurs depends on the wetting of the substrate by the

deposited material, and the lattice mismatch between the deposit and the substrate

[23, 59].
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When the deposit does not fully wet the substrate, VM mode occurs. In the

case of full wetting and a small lattice mismatch between deposit and substrate,

FM mode is predominant. If there is full wetting but a significant lattice mismatch

SK mode ensues.

FM growth is favoured when the sum of the free energy of the vacuum deposit

interface and the free energy of the deposit substrate interface is less than the free

energy of the vacuum substrate interface. Then wetting of the substrate by the

deposit is energetically favourable.

When the free energy of the vacuum substrate interface is lessthan the sum of

the other two free energies, formation of a deposit layer over the whole substrate

is disfavoured as it will increase the free energy of the system. In such cases VM

growth of isolated deposit islands on the substrate is favoured.

The SK growth mode is a response to the strain caused by the difference in

lattice constants between the deposit and the substrate. Initially a wetting layer

epitaxial film up to a few monolayers thick is formed. This filmis strained to

match the lattice constant of the underlying substrate, with the strain increasing as

the film thickens. Beyond a certain thickness the strain can berelaxed by misfit

dislocations resulting in the formation of separate islands on top of the film.

The following trends in growth mode generally hold [60]:

• FM growth is exhibited at low substrate temperatures, with SK or VM

growth at high substrate temperatures.

• The higher the rate of deposition, the more layer-like the resulting growth

and vice versa.

• With a larger lattice mismatch the growth is more island-like.

• Denser packing of the substrate facet produces more layer-like growth.

2.4.5 Layer Growth

The FM growth mode can be understood in terms of the followingatomic scale

processes. Adatoms are deposited onto the substrate and diffuse across it. Adatoms



CHAPTER 2. EPITAXIAL GROWTH 15

may meet and bind with each other or they may attach to screw dislocations. In

either case, small monolayer islands are formed. Additional adatoms attach to the

edges of the island causing them to grow, until eventually a monolayer is formed.

This process may then be repeated on top of the newly formed monolayer, creat-

ing over time another monolayer. In this way an epitaxial thin film can be grown

a monolayer at a time.

At any point there may be many partly completed monolayers stacked on top

of each other in a series of steps. Adatoms deposited on the terraces between the

steps diffuse across the terraces and attach to the step edges. The adatoms reaching

a step edge may diffuse along the step edge before becoming attached, or they may

diffuse away again. An adatom is more likely to be successfully incorporated into

a step edge at kink sites, where there are more neighbouring atoms, and so more

bonds to hold the adatom in place. When an adatom attaches to a flat section of

a step edge, a kink site is formed on either side of the adatom’s edge position.

Once an adatom attaches to an existing step edge kink site, the attached adatom

creates a new kink site one atom spacing further along the step edge. As a result

of the kink sites on the step edge capturing adatoms, and thenmoving along the

step edge, the step edge will eventually have an adatom attached at all lattice sites

along its length. At this stage the position of the step has moved by one row of

atoms, enlarging the terrace by one atomic row. In this way the positions of the

step edges flow across the surface and the terraces eventually grow to form full

monolayers. When an adatom reaches a step edge it may also go upor down over

the step rather than attach to it. The Schwoebel barrier [61]is an energy barrier

that inhibits diffusing atoms on terraces from stepping down to lower levels. An

Schwoebel barrier can lead to a coarsening of the evolving surface morphology.

In the presence of a Schwoebel barrier, growth by step flow is stable only if the

surface has sufficient density of steps [62].
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2.5 Modelling Epitaxial Growth

A major issue in modelling epitaxial growth is the wide rangeof length and time

scales that play a part in the phenomenon. For technologicalpurposes, a com-

plete epitaxial film covering a Si wafer has an area in the order of 0.02m2 and

the time for the growth of a monolayer can be in the order of1s− 1 min [63].

To fully model the properties and morphology of such epitaxial films requires

taking account of the movements of adatoms on surfaces, their interactions, and

the resulting layer formation and subsequent growth to macroscopic size. There

is presently no single modelling methodology that can accurately encompass the

length and size scales involved. The usual approach to handling this issue is to use

a combination of different metholodgies, each of which covers a part of the time

and length scales. Information produced by the methodologyoperating at a fine

space and time scale, plus any parameters determined by fit toexperiment, must

be passed up to the methodology operating at the next coarse scale. For example,

detailed information on atom positions from a Molecular Dynamics model would

be simplified to an occupied lattice site in a Kinetic Monte Carlo model.

2.5.1 Atomistic Modelling Methodologies

Atomistic methods take explicit account of the atoms that compose the material

being modelled. Molecular Dynamics and Kinetic Monte Carlo are two widely

used atomistic methods. These methods are discussed in moredetail in Chapter 3.

In MD the vibration of the atoms, and subsequent larger atomic motions oc-

curing on longer time scales, are derived from the forces acting on the atoms. The

forces in turn are typically derived from a potential. Potentials may be derived

empirically or from more detailed quantum mechanical calculations. In theory

MD is a very suitable method for modelling epitaxial growth.In practice there are

two problems with MD that limit its usefulness. Firstly, theform of the potential

for a particular system is not always easy to determine. Secondly, MD requires the

use of a small time step to maintain the accuracy of a simulation, while the force

calculation tends to scale superlinearly with the number ofatoms [64]. Thus when
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large numbers of atoms are modelled, simulation of long timescales requires long

computer runs. Therefore in practice MD simulations are limited to simulating

nanosecond time scales.

The KMC method forgoes the detailed atomic dynamics that aresimulated by

MD, thereby avoiding the need to calculate interatomic forces. Instead, only the

rate limiting events are included on average, based on effective rates of occur-

rence. As a consequence KMC is computationally cheaper thanMD, and so it can

simulate a wider range of time and space scales. The main difficulty with KMC is

that the interatomic events to be modelled must typically beidentified beforehand

[65], and their rates determined and coded into the model. For example, when

KMC is used to simulate FM epitaxial growth, events such as adatom hopping,

adatom attachment to and detachment from step edges, and formation of dimers

and trimers would need to be included in the model with appropriate rates.

2.5.2 Continuum Modelling Methodologies

The Burton Caberera Frank (BCF) [66] method models the growth of epitaxial

layers as the result of the flow of steps across the surface. Itdoes not explicitly

simulate the adatom motions or the atomistic detail of the step edges. Instead the

step edge is modeled as a moving boundary, and adatoms on the terraces above

and below the step are represented by adatom densities.

The main assumptions made in the BCF method are: steady state conditions,

a series of equally spaced straight steps, a single atomic species, adatom diffu-

sion occurring much faster than step flow, equal probabilityfor a step to capture

adatoms from the upper and lower terrace and low adatom density on terraces.

The BCF model describes the adatom density evolution by Eq. (2.1), which

equates the change in adatom density to the combined effect of adatom surface

diffusion less adatom evaporation plus adatom deposition

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
− 1

τ
ρ(x, t) + F, (2.1)

wherex is the direction perpendicular to the step,t is time, ρ(x, t) the adatom
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density on the terrace,D the adatom surface diffusion constant,1
τ

the probabil-

ity of adatom evaporation andF the adatom deposition rate. Assuming that the

emission and capture of adatoms at steps is rapid, the boundary condition on the

adatom density at the steps isρ(x) = ρ0, whereρ0 is the equilibrium adatom den-

sity for the given temperature T (assuming an infinite surface at equilibrium with

its saturating vapour). The formula forv, the velocity of a step separating two

terraces of respective widthsw1 andw2, is derived from Eq. (2.1) giving [67]:

v = D(Fτ − ρ0)k[tanh (
kW1

2
) + tanh (

kW2

2
)], (2.2)

wherek =
√

1
Dτ

.

Extensions of BCF have been developed that relax some of its assumptions.

For example Ghez [68] allows for near equilibrium adatom concentration at steps

and for fast step flow, while modelling of multiple species has been undertaken

by Mandel [69], and Caflisch et al [70] treat high deposition far from equilibrium

conditions.

The BCF method operates at a coarser level of description than KMC. BCF

does not model features such as kinks in the step edge, interactions among adatoms

and the Schwoebel barrier [61], which are important in many cases.

A further development of the BCF method is Island Dynamics (ID)[71],[72].

ID allows for growth on the terraces. ID models epitaxial growth resulting from

the nucleation, growth and subsequent coalescence (or otherwise) of islands. In

ID the island edges are the moving boundaries of interest. The ID equation for

adatom density change is based on Eq. (2.1), with an additional term representing

loss of adatoms due to island nucleation. ID handles much higher deposition rates

than BCF. The level set method [73, 74], is a numerical method used in ID to track

the motion of the island edges [71]. The phase field method [75], is another front

tracking technique that can be used for this purpose. Different variants of ID are

distinguished by different formulas for the boundary conditions and the velocity.

Other continuum methods using even coarser representations of epitaxial growth

have been developed. These methods typically follow the evolution of the height

profile of the epitaxial surface through a smooth height function h(x, y, t) [76].
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For example, the growth of the height of a surface over time can be modelled

using the Khardar-Parisi-Zhang (KPZ) equation [77],

∂h(x, t)

∂t
= s∇2h(x, t) +

λ

2
(∇h(x, t))2 + η(x, t). (2.3)

The first term on the right hand side of the KPZ equation modelsthe smoothing of

the shape of the surface due to the surface tension,s. This term redistributes the

irregularities of the surface without changing the averageheight. The second term

is nonlinear, and accounts for lateral growth which occurs along the local normal

to the surface. The third term on the right hand side, is uncorrelated random noise

with mean zero, which reflects random fluctuations in the deposition process. The

KPZ equation can be extended to model the change in height of atwo dimen-

sional surfaceh(x, y, t), by separating each of the terms intox andy terms with

distinct coefficients, and replacing∇ by the corresponding partial derivative. This

extended KPZ equation can allow for the effects of surface anisotropy introduced

by the presences of steps, e.g. differential growth parallel and perpendicular to

step edges.

In this hierarchy of methods, detailed representation has been progressively

reduced in order to access larger time and size scales. Particular methods may be

well suited to a particular level of description, but no single method is capable of

fully capturing epitaxial growth.

2.6 Hybrid Methods

For modelling all aspects of epitaxial growth, neither of the atomistic methods,

MD or KMC, is sufficient. MD cannot practically address the long time scales and

large numbers of atoms involved. KMC may not capture all the important atomic

configurational changes. Continuum methods, such as BCF, coverthe time scale

but ignore important atomistic details.

An approach to handling these issues is to combine distinct methods into a

hybrid method. An example is the atomistic-continuum method of Schulze [21].

Lam and Valachos [78] employ a hybrid scheme combining a continuum model
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and Monte Carlo to study the transition from step flow to two-dimensional island

nucleation. Kundin and Emmerich [79], have investigated the same transition with

a hybrid algorithm employing a phase field model and KMC.

In this thesis we develop a hybrid method which concurrentlycombines MD

and KMC. This hybrid method retains the detail and atomistic dynamics of MD,

but has a reduced computational cost compared to MD with the same number of

atoms. The cost reduction is the result of limiting the MD force calculation to

a subset of atoms, with KMC being applied to the balance of theatoms. The

division of atoms into MD and KMC subsets is dynamic and can change during

the course of a simulation. This method has been used to studystacking fault

grain boundaries in epitaxial layers [80].
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3.1 Introduction

This Chapter describes the modelling methodologies used in this work. This thesis

presents a novel hybrid of the MD and KMC methodologies. Simulations using

the hybrid methodology will be assessed for consistency with comparable MD

simulations. This Chapter discusses each of MD and KMC as theyare applied

individually.

3.2 Molecular Dynamics

Molecular Dynamics is a methodology for simulating the behaviour of a system of

discrete particles. This behaviour emerges as a result of the particles interacting in

a specified manner. Consequently the nature of the interaction assumed between

the particles is a key part of the MD methodology. These interactions between the

particles determine interparticle forces. As a result of these forces the positions

and velocities of the particles are changed.

The MD simulation evolves the configuration of the system through a sequence of

discrete time steps by carrying out the following computations at each time step

in the simulation:

• calculate forces based on differentiating a potential energy function applied

to current positions

• update positions and velocities based on current forces using a discrete ap-

proximation to Newton’s equations.

3.2.1 Applications of MD

Here we provide an overview of MD, with emphasis on those aspects that are most

relevant to this work. MD simulations have been used in a range of applications:

• In materials science: crack propagation [81], crystal growth [82], bulk and
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surface diffusion [83], thermodynamic studies (determination of phase dia-

grams) [84].

• In chemistry: molecular reconfigurations [85], catalysis [86].

• In molecular biology: structure and behaviour of biomolecules [87], cell

membrane mechanics [88], studies of DNA [89].

• In nanoscience: studies of nanoclusters [90], nano mechanics and tribology

[91], nanoscale features [92].

In this work, MD is used in simulation studies of aspects of epitaxial growth.

In particular, the behaviour of surface grain boundaries has been studied using

MD alone and as part of a hybrid methodology.

3.2.2 MD Equations of Motion

The prototypical MD simulation involves numerically integrating Newton’s equa-

tions of motion 3.1, for the N particles which comprise the system:

mi
d2

ri

dt2
= Fi(r1, . . . , rN) i = 1, . . . , N. (3.1)

In this work the N particles are (idealised) atoms, withmi their masses,ri their

position vectors, andFi the forces acting on them due to the interactions with the

other particles in the system.

Typically, a potential functionV is specified at the start of the simulation and

the forces (at each time) are determined from the negative gradient of the potential

(at that time):

Fi(r1, . . . , rN) = −dV (r1, ..., rN)

dri

.

Such potential functions are determined semi-empiricallyor from approximate

quantum mechanical calculations. At each discrete time step in the simulation, the

potential energy of the system is determined by applying thepotential function to

the atoms in their current geometric configuration.
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A system obeying Newton’s Equation of Motion will conserve its total energy

E at all times i.e.dE
dt

= 0. However, the energy may well vary between potential

and kinetic forms while maintaining the fixed total. When there is no chemical

bonding between the atoms, it is sufficient to calculate the potential and hence the

force on an atom, from its pairwise interactions with the other atoms, based on the

radial distance between the atoms:

V (ri) =
N

∑

j 6=i

V (rij).

Here the radial distance between atom i and atom j is:rij = |rij| whererij =

rj − ri. The aggregate force experienced by an atom (at a given time)is the sum

of the forces produced by each of its pairwise interactions with the other atoms in

the system (at that time) and acts along the line between the pair of atoms. The

force on atom i from all the other atoms can be derived by expanding the positions

Fi =
N

∑

j 6=i

−dV (rij)

drij

r̂ij

wherêrij is the unit vector from atom i to atom j. Note that once the force on atom

i due to atom j has been determined, the force on atom j from atom i is simply the

negative of this force, by Newton’s third law.

3.2.3 Time Integration

The integration routine numerically integrates the equations of motion over a sim-

ulation time step, advancing the positions and velocities of the atoms by a time

step. Note that the positions and velocities may not be at thesame time point, e.g.

the velocity may be one step behind the position. Many integration formulae can

derived by expanding the positions and velocities at timet with time stepδt, using

Taylor series

ri(t + δt) = ri(t) + vi(t)δt +
1

2
ai(t)δt

2 + O(δt3) (3.2)
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vi(t + δt) = vi(t) +
1

2
ai(t)δt + O(δt2) (3.3)

whereri ,vi andai are the position, velocity and acceleration respectively,of atom

i. The acceleration is calculated from the force

ai(t) = Fi(t)/mi.

Combinations of expansions such as these can then be used to produce integration

formulae. For example, consider the Taylor series for a backward time step in

position

ri(t − δt) = ri(t) − vi(t)δt +
1

2
ai(t)δt

2 − O(δt3). (3.4)

Adding Eq. (3.2) and Eq. (3.4) and rearranging gives the following equation for

ri(t + δt)

ri(t + δt) = 2ri(t) − ri(t − δt) + ai(t)δt
2. (3.5)

Similarly, subtracting Eq. (3.2) and Eq. (3.4) and rearranging gives

vi(t) =
ri(t + δt) − ri(t − δt)

2δt
. (3.6)

Note that in this casevi(t) can only be computed onceri(t + δt) is known. These

equations, Eq. (3.5) and Eq. (3.6), define the Verlet integration formula [64].

The advantages of the Verlet formula when compared to more complicated

formulas such as the Gear predictor-corrector [64] are: no systematic drift in total

energy of the system, good stability when time step is small enough, only one

force call per time step, and ease of implementation.

3.2.4 Periodic Boundary Conditions

MD simulations are often designed to provide information about macroscopic

sized systems, composed of approximately1023 atoms. In the 1990’s computers

capable of109 floating point operations per second (FLOPS) became available,

enabling the MD simulation of millions of atoms. Computer power has continued

to grow since then. Currently the most powerful supercomputers can perform1015

FLOPS and state of the art MD simulations of1012 atoms are possible [93, 94].
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However very few groups have the resources to carry out such large simulations.

In practice, MD simulations commonly use a few thousand atoms. Creating a

small subset of the macroscopic system introduces artificial surfaces. In addition,

the proportion of surface atoms in such a simulation is much larger than the pro-

portion of surface atoms in the macroscopic system. These features can distort the

simulation, because the surface atoms may have missing bonds, giving them an

artificially large potential energy. These issues are usually dealt with by the use

of periodic boundary conditions (PBC), which mimic the effectof being part of

the bulk and effectively eliminate the artificially introduced surfaces, while still

limiting the length scale on which properties can be calculated. PBC involves

treating the set of atoms in the simulation as being surrounded by multiple images

of itself. In this way any missing bonds can be replaced by bonding with an atom

in one of the images. When calculating pairwise interactionsbetween atoms, the

closer of the direct position of the atom and its nearest image position is used.

3.2.5 Temperature Control

The MD methodology described up to this point, in which Newton’s equations of

motion are integrated, is only the simplest case. In such cases a constant energy

ensemble is simulated. The total energy of the system remains constant through-

out the simulation while its individual components, potential energy and kinetic

energy, vary. At thermal equilibrium the equipartition theorem [95] relates the

average kinetic energy to the temperatureT of the system during the simulation

via: < 1
2
mv2 >= 3

2
kBT , wherekB is the Boltzmann constant.

In many situations of interest the system under study is in intimate thermal

contact with a much larger environment and thus the system’stemperature is main-

tained at the temperature of the environment. To simulate such systems using MD

the simplest case equations of motion need to be modified so that the temperature

of the system is controlled. Such modifications are known as thermostats.

MD thermostats may be divided into two classes - deterministic and stochas-

tic. The simplest deterministic thermostat is velocity scaling, where at each time
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step the velocities of the atoms are scaled to maintain a predetermined kinetic en-

ergy, and hence temperature. This has the disadvantage of eliminating the natural

fluctuations of the temperature about its average value.

The Langevin thermostat [96] is in the stochastic class. It involves the addition

of both a “frictional” damping force, and random jostling ofthe motion of the

atoms, to the previously discussed equation of motion Eq. (3.1). The revised

equation of motion incorporating a Langevin thermostat, for atomi with massmi

and position vectorri is:

mi

d2
ri

dt2
= −∇V (ri) − γ

dri

dt
+ Ri(t). (3.7)

There are now three forces involved. Firstly, the force fromall pairs of atoms,

secondly, a damping termγ, proportional to the velocity of the atom, and thirdly, a

random forceRi. The random force is uncorrelated across time and across atoms.

The combination of the damping term and the random term simulates the effect

of being in contact with a heat bath. In respect of each coordinate direction, the

fluctuation-dissipation theorem [97, 98] relates the damping γ, the random force

Ri and the temperatureT by:

< Ri(t
′),Rj(t) >= 2miγkBTδ(t′ − t)δij. (3.8)

This ensures that a constant chosen average temperature is maintained due to a

balance between the heating effect ofR and the cooling effect ofγ. In this work

the random fluctuations were uniformly distributed on(−√
2γT ,

√
2γT ), where

we have usedm = 1 andkB = 1 in Eq. (3.8), as discussed in section 3.2.6. The

default value used for the damping parameter wasγ = 1.0 [20].

To implement this revised equation of motion the Verlet integration formula is

modified to include the damping and random forces.

3.2.6 The Lennard-Jones Potential

The Lennard-Jones potential [99] was developed to model systems in which the

dominant (or only) interaction between the particles is thevan der Waals force.
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This potentialVLJ(r) has two parametersǫ andσ, and depends on the interatom

radial distancer as follows:

VLJ(r) = 4ǫ [
σ12

r12
− σ6

r6
].

The strength of the interaction (the depth of the potential well) is given byǫ,

while σ gives a length scale. The largest negative value of the potential (depth of

the potential well) is−ǫ, which is the potential’s minimum atr = 2
1

6 σ. When

the interatom distance r is less than this value, the potential gives rise to a strong

repulsive force between particles, whereas for interatom distances greater than

this, a weak attractive force arises.

The repulsive force at short distance, that arises from the first term 1
r12 , mod-

els the repulsion due to overlapping full electron orbitals. And the attractive force

from the second term− 1
r6 , which predominates at longer distances, models the

attractive van der Waals dispersion forces. Thus the Lennard-Jones potential pro-

vides a very good model for weakly bonded closed-shell elements such as Neon,

Argon and Krypton, when the parameters are tuned to the physical properties of

these materials [100]. This potential was initially proposed for liquid Argon [101].

The Lennard-Jones potential is not sufficient for accurate determination of

material and thermodynamic properties when modelling openshell systems. In

open shell systems with strong localised and directional bonds, the weaker van der

Waals forces only play a minor role. However the general features exhibited by

the Lennard-Jones potential, i.e. short range repulsion, an equilibrium spacing and

longer range attraction, are common to a wide range of systems. These features

combined with the simplicity of the Lennard-Jones potential have resulted in its

widespread use as a general first approximation in MD. In thiswork the Lennard-

Jones potential has been adopted for these reasons.

Mixtures of Lennard-Jones materials can be treated by usingthe Bertholt com-

bination rules to produce suitable values ofǫ andσ. That is for two elements la-

beled bya andb, the combination rules give parameter values for the mixture ab

as:

σab =
1

2
(σa + σb)
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ǫab =
√

ǫaǫb.

As an alternative, the attractive part of the potential may be varied.

In this work, dimensionless units known as Lennard-Jones reduced units have

been employed. These reduced units are constructed by choosing m as a standard

unit of mass,σ as a standard unit of length andǫ as a standard unit of energy. All

other dimensioned quantities are then expressed in terms ofthese standard units

and become dimensionless numeric values. Thus all distances are in terms ofσ,

all energies in terms ofǫ, temperature is in terms ofǫ/kB and time is in terms of

σ(m
ǫ
)

1

2 . We denote this Lennard-Jones reduced time unit byt. The parameters

in the Lennard-Jones potential both now have numeric value1 which simplifies

subsequent formulae and calculations. Also, in this work all atoms have the same

massm with reduced numeric value1. In these reduced unitskB is also set to

1. The main advantage of using such dimensionless units in simlation work is

that the results from a single model can be scaled to a whole class of systems. In

a Lennard-Jones material, melting occurs at the reduced temperature triple point

T = 0.694. For example in the case of Argon,ǫ = 0.0104eV [102] implies that

the unit of reduced temperature (i.e.T = 1.0ǫ/kB) corresponds to121K, and

so T = 0.694 corresponds to84K, the melting point of Argon [102]. In this

work reduced temperatures in the rangeT = 0.35 to T = 0.50 are used. These

correspond to51% and72% of the melting temperature respectively. Comparing

to Iridium with a melting point of2719K, T = 0.50 corresponds to1959K. Over

these temperature ranges the simulated slab of material remains solid, but there is

sufficiant thermal energy for atoms to hop between adjacent lattice sites frequently

enough that a simulation run exhibiting significant grain boundary motion could

be completed in less than8 hours of wall clock time.

The Lennard-Jones potential is a member of the set of potentials known as

pair potentials. These potentials get their name from the fact that they are based

solely on interactions between pairs of particles. The local environment (i.e. the

number and the configuration of neighbouring particles) is not explicitly taken

into consideration.
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Another popular pair potential is the Morse potential [103,104]

VMorse(r) = D[1 − exp(−β(r − r0))]
2.

The parameterr0 stands for the nearest neighbour lattice spacing, andD andβ

are additional fitting parameters. The Morse potential is computationally more

expensive than the Lennard-Jones potential, but is more realistic for many materi-

als.

3.2.7 The Embedded Atom Method

In many situations the local environment is very important in determining the po-

tential energy of a system of particles. For example, at a surface of a crystal, the

atomic bonds may have different properties than in the bulk.Pair potentials do

not capture this effect. In metals, the properties of chemical bonds between pairs

of atoms can depend strongly on the local environment. This is due to quantum

mechanical effects that describe the influence of the electron gas. To more accu-

rately model such situations, so called multibody potentials were developed. In

such potentials the potential energy between two particlesis no longer simply a

function of the distance between them, but also a function ofthe positions of all

other particles in the vicinity, i.e. a function of the localenvironment. In the case

of metals, the interactions of atoms can be quite accuratelydescribed using po-

tentials based on the embedded atom method (EAM) [105, 106, 107]. The EAM

potential features a contribution by a pair potential (two-body) term to capture the

basic repulsion and attraction of atoms, in conjunction with a multibody term that

accounts for the local electronic environment of the atom.

An EAM potential for metals is typically given in the form

VEAM(i) =

Ni
∑

j=1

φ(rij) + f(ρi),

whereφ is the pair potential,ρi is the local electron density andf is the embedding

function. The electron densityρi depends on the local environment of atomi, and
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the embedding functionf describes how the energy of an atom depends on the

local electron density. The electron density itself is typically calculated based on

a simple pair potential that maps distance between atoms to the corresponding

contribution to the local electron density.

Overall multibody potentials allow a much better reproduction of the elastic

properties of metals than pair potentials [105]. However, most conventional multi-

body potentials are not capable of modelling any effect of directional bonding. To

address these effects, modified embedded atom potentials (MEAM) have been

proposed that can be parameterised, for instance for silicon [108].

3.2.8 Integration Time Step

The time stepδt used in the integration routine is an important parameter inan

MD simulation. A longer time step means that less computer time is required to

simulate a given period of real time. On the other hand, errors in the numerical

integration increase with the length of the time step. The truncated Taylor series

underlying the Verlet algorithm has a local truncation error in atom position of

orderO(δt4) at each time step. During the course of a simulation the localtrun-

cation errors aggregate, resulting in a global truncation error of orderO(δt2) over

a series of time steps [109]. This shows how these errors decrease asδt tends to

zero, but not how well the numerical integrator tracks the correct dynamics during

a simulation. If, for a given length of time stepδt, the global truncation error

grows without bound during the course of a simulation, the results of the numeri-

cal integration will diverge from the correct dynamics, e.g. unbounded growth in

the energy, invalidating the simulation. In order to assessthe effect of the length

of the time step on the global truncation error, it is common practice to use a

harmonic oscillator as a test case for the numerical integration method, as dis-

cussed in [110], [111] and [112]. For the case of the Verlet integrator applied to a

damped harmonic oscillator with angular frequencyω and damping parameterγ,

Zhang and Schlick [111] show that the time step must satisfy the following limit

δt ≤ 2ω − γ

ω2
, (3.9)
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in order to prevent unbounded growth in the global truncation error. Thus the

time stepδt is limited by the frequency of oscillation. We estimate the frequency

of oscillation for the Lennard-Jones system using the harmonic oscillator as a

model. In the following calculations Lennard-Jones reduced units are used. For

most simulations in this work the reduced temperature isT = 0.35, although in

some cases temperatures up to0.50 are used. Using the equipartition theorem with

kB = 1, the temperatureT = 0.50 corresponds to an average kinetic energy of

0.75. Consider a harmonic oscillator at its equilibrium positionat the bottom of its

potential well where its energy of0.75 is all kinetic energy. As it oscillates away

from equilibrium the kinetic energy is converted to potential energy, until at its

maximum displacement the kinetic energy is zero and the potential energy is now

0.75. In the case of the Lennard-Jones potential with energy−1 at the bottom of

the potential well, this maximum displacement correspondsto a potential energy

of −0.25. The Lennard-Jones potential rises to−0.25 when atoms either move

a little closer together than the equilibrium spacing of2
1

6 , or when they move

significantly further apart than the equilibrium spacing. We consider the case of

closer approach, as there the force is the strongest leadingto a higher frequency of

oscillation and consequently lower bound on the time step. At a separation1.012

i.e. approximately90% of the equilibrium spacing of2
1

6 , the potential energy is

−0.25. The effective spring constant i.e. the slope of the force, at separation1.012

is KLJ = 376.5 and the atom mass is1, giving a corresponding frequency of os-

cillation of ω =
√

376.5
1

= 19.4 in the case of a harmonic oscillator. Therefore

with γ = 1 the upper bound onδt from Eq. (3.9) is0.10. As this upper bound

has been estimated using a harmonic oscillator model and without any allowance

for fluctuations in the average energy it was deemed prudent to set the time step

significantly lower than the upper bound. Consequently in this work the reduced

time step was set atδt = 0.01. We note that this size of time step has been shown

to be effective in other work using the Lennard-Jones potential and Verlet integra-

tor as discussed in Heerman [113]. Also, Allen and Tildesley[64] demonstrate

that with a time step ofδt = 0.01 the Verlet integrator only produces small short

term fluctuations in energy, i.e. root mean square energy fluctuations of approxi-
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mately0.01. Furthermore, with the short term energy fluctuations well controlled

there will not be any long term drift in energy, because the Verlet integrator is

a symplectic integrator. The advantage of a symplectic integrator is that it con-

serves phase volume throughout the time evolution of the system. As a result, the

Verlet integrator rigorously conserves a pseudo-Hamiltonian of the sytem. The

difference between the conserved pseudo-Hamiltonian and the true Hamiltonian

(energy) is of the order ofδt2, thus avoiding long term energy drift [114].

3.2.9 Computational Cost

From the equations of motion Eq. (3.1) it follows that in a direct force calculation

over all pairs of atoms, the calculation cost scales asO(N2) for N atoms. There-

fore, the force calculation is the most computationally expensive part of an MD

simulation and it is very important in practice to make this calculation as efficient

as possible. One way to reduce the computational cost is to express the force in

analytic form, rather than carrying out a differentiation of the potential at each

time step. A further very important step to reduce the cost isthe use of a cut-off

distance where appropriate. Atoms which are separated by more than this cut-off

distance do not have any interaction. Force calculations for any given atom are

then limited to only those atoms within the cut-off distanceof the given atom. Use

of a cut-off distance therefore reduces the number of force pair calculations per

time step. Employing a cut-off distance is only suitable when the potential rapidly

reduces to a negligible size within a short distance from an atom. Otherwise the

forces on a given atom due to atoms beyond the cut-off distance may be signifi-

cant, in which case disregarding such forces could invalidate the simulation. The

Lennard-Jones potential used in this work is short ranged and so a cut-off distance

of the order of2.5σ is commonly employed [64]. In this work the cut-off was set

to 3.0σ.

When a cut-off is used the force calculation at each time step for each atom

i involves checking the distance between atomi and every other atom and then

carrying out a force calculation if the distance is within the cut-off. Since only a



CHAPTER 3. MODELLING METHODOLOGIES 34

few atoms are within the cut-off distance of a given atom, most of these checks do

not contribute to the force on the given atom. Therefore the computational cost of

the force calculation can be further reduced by avoiding these unneeded checks.

This can be achieved by maintaining, for each atom, a neighbour list of the other

atoms it interacts with, and limiting the force calculations to the lists. These lists

need to be updated at intervals to take into account any movement of neighbouring

atoms into or out of the cut-off distance. This use of neighbour lists was suggested

by Verlet [115]. Through limiting the atom pair distance calculations and force

calculations to each of theN atoms and their respective neighbour lists the calcu-

lation cost scales asO(N). The MD simulation code used in this work employs

such neighbour lists for computational efficiency.

3.2.10 Visualisation

It is very useful to be able to visually inspect the changes inatomic configura-

tions that occur during a simulation run. This visual information facilitates the

discovery of interesting or novel atomic rearrangements and can help gain an un-

derstanding of how observed rearrangements arise.

To accomplish this visualisation the coordinates of all theatoms in the sim-

ulation are written to a file at regular intervals during a simulation run. These

coordinate files are then read by a visualisation program such as gopenmol [116]

which can display each atom as a sphere centered on its coordinates. The con-

figuration of visualised atoms can be translated, rotated and enlarged within the

visualisation program as desired to aid inspection. Individual atoms in the config-

uration can be color coded based on factors such as the numberof nearest neigh-

bour atoms. These visualised atom configurations can be saved as image files.

The atom configuration figures in this thesis were produced using this method.
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3.2.11 Combining Methodologies

A key element in this work is the implemention of a hybrid methodology which

dynamically combines both Molecular Dynamics and Kinetic Monte Carlo within

a single simulation. The details of this hybrid method are covered in Chapter 5

Hybrid MD KMC Model. This section discusses how different methodologies

may be combined.

When two methods are being employed in concert, the most useful approach

is to apply the separate methods in spatially separate domains within the simu-

lation. Where domains hosting different methods meet, arrangements must be

made to combine the two simulation methods. A common appproach is to estab-

lish a ’handshaking region’ between each pair of different domains. A transition

is made between the simulation methods across each handshaking region. Such

a transition is most readily achieved when the two methodolgies are very similar

in nature, for example between two Molecular Dynamics methods with different

potential functions.

Buehler [117, 118] employed handshaking regions to transition between the

ReaxFF force field and the Tersoff potential to implement Multiparadigm Molec-

ular Dynamics simulations of crack propagation in Silicon.Across the hand-

shaking region the force and energy contribution from the two formulations were

weighted, giving rise to a smooth transition between ReaxFF and Tersoff. The

weights were set by linear interpolaton.

The hybrid method in this work makes use of two very differentmethodol-

gies. Molecular Dynamics uses an interatomic potential function to determine

forces and velocities, while Kinetic Monte Carlo employs transition rates to move

atoms between lattice sites. As a consequence it is not feasible to readily im-

plement a transition between the methods across a handshaking region. In this

work the two methods are combined as follows. Molecular Dynamics domains

treat adjacent Kinetic Monte Carlo domains as if they were Molecular Dynamics

domains composed of stationary (frozen) atoms. Kinetic Monte Carlo domains

interact with adjacent Molecular Dynamics domains by treating the Molecular

Dynamics atoms as if they were located on Kinetic Monte Carlo lattice sites. This
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approach has been effective in combining these two distinctsimulation method-

ologies, and it allows for switching the methodology applied to a given domain

during a simulation run as needed.

3.3 Transition State Theory (TST)

Transition state theory is a method for calculating the rateof occurrence of rare

events.

In many systems of interest, the system spends a large part ofthe time resid-

ing in one of a number of local potential energy minima, with infrequent shifts

between these minima, e.g. an adatom diffusing across a surface. Calculating the

rates of such shifts is of considerable importance, and Transition State Theory is

one method of doing so.

Transition State Theory was originally developed by Eyring[119], [120] to

more accurately describe chemical reactions. In this theory, during a chemical

reaction the initial reactants which are in a stable state with low potential energy

interact to form an activated complex (a transition state).This activated complex

has high potential energy and is unstable. The activated complex rapidly decays to

the stabler (lower potential energy) products (and possibly some reactants). The

theory was extended to solids by Wert and Zener [121] and Vineyard [122].

Again, as with other subjects in this work, only the main aspects and features

of Transition State Theory (TST) relevant to this work will be discussed here.

An extensive review of transition state theory is to be foundin [123], and TST is

described in more detail in [124],[125], and [126].

3.3.1 TST Assumptions

The basic assumptions of TST are:

i) there exists a (hyper)surface in the phase space which divides the space into

a reactant region and a product region (this dividing surface contains the transition

state);
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ii) trajectories that pass through this dividing surface inthe direction of the

products which originated at reactants, will not re-cross the surface in the opposite

direction (the no-recrossing assumption);

iii) the reactants and the transition state are equilibrated in a canonical (fixed-

temperature) ensemble; and

iv) the reaction is electronically adiabatic (i.e. according to the Born-Oppenheimer

approximation the electronic state does not change during the transition).

Eyring demonstrated that when these assumptions hold, the rateΓrp for the

transition from reactants to productsMr ⇒ Mp, is given by

Γrp =
kBT

h

Zq

Zr

whereZq andZr are the canonical partition functions of the transition state and of

the initial state (reactants) respectively, and h is Planck’s constant.

Using the canonical expression for the Helmholtz free energy F = −kBT ln Z,

the rate can be written in Arrhenius law form

Γrp =
kBT

h
exp(−F (Mq) − F (Mr)

kBT
). (3.10)

Now the Helmholtz free energy can be written asF = U − TS. The internal

energyU of a crystal lattice consists of a static partE and a vibrational partUvib,

and the entropy is vibrational entropySvib. The rate of a process can therefore be

expressed as:

Γrp = Γo
rp exp(

△E

−kBT
) (3.11)

where Γo
rp =

kBT

h
exp(−△Uvib

kBT
+

△Svib

kB

).

The static energy difference△E can represent a diffusion or desorption energy

barrier. The prefactorΓo
rp is usually interpreted as an attempt-to-escape frequency

from the reactant configuration.



CHAPTER 3. MODELLING METHODOLOGIES 38

3.3.2 Harmonic TST

In the practical application of Eq. (3.10) to surface diffusion, one usually con-

siders the surface as a heat bath of harmonic oscillators. AtMr, the system is

described byN normal modes with angular frequenciesωr
n. At the saddle point

Mq, however, the mode corresponding to traversing the reaction coordinate which

connects the saddle point with the reactants and products has an imaginary fre-

quency and has to be excluded. Thus atMq there areN − 1 normal modes with

frequenciesωq
n. In the classical limitkBT ≫ h̄ωn, the analytical expressions

for Uvib andSvib can be simplified. As a result the attempt frequencyΓo
rp can be

expressed by the frequency-product formula developed by Vineyard [122]:

Γo
rp =

1

2π

∏N
n=1 ωr

n
∏N−1

n=1 ωq
n

.

In practice, in most of the works that deal with the theoretical computation

of process rates, the prefactors are chosen as site-independent constants. This

choice is adopted in part because it is computationally expensive to evaluate the

attempt frequencies from first principles, but also becausethe relevant phonon

modes are not expected to vary much from site to site, while the exponential term

exp(− △E
kBT

) can easily vary by several orders of magnitude. Moreover, even if

the attempt frequencies were known accurately, the uncertainty in the calculated

energy barrier of approximately±0.1 would result in an exponentially large un-

certaintyexp(±0.1
kBT

) in the jump (transition) rate. Therefore, for qualitative anal-

ysis it is usually only necessary to obtain an order of magnitude estimate forΓo.

This can be obtained by using the Debye temperatureΘD of the substrate mate-

rial asΓo ≈ kBΘD/h, or by using Vvedensky’s harmonic approximation [127]:

Γo ≈ 2kBT/h. The attempt frequencies are more often equated to the maximum

phonon frequency, whose typical values in the physical systems of interest are

approximately1013sec−1.
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3.4 The Nudged Elastic Band method

3.4.1 Finding the Minimum Energy Path

In the previous section we discussed the relationship between the diffusion energy

barrier△E and the rate of transition between reactant and product states. This

energy△E is the minimum energy required for a transition to occur. To calculate

△E it is necessary to know the potential energy at the transition state and at the

minima. Transition states occur at saddle points between the lower energy states

occupied by the reactants and products.

In this section we consider the problem of finding the MinimumEnergy Path

(MEP), connecting a pair of local potential energy minima via a saddle point be-

tween them. The maximum potential energy along the MEP is thepotential energy

at the saddle point (transition state). Therefore, knowledge of the MEP enables

calculation of the diffusion energy barrier△E. The MEP gives the the reaction

path followed by the system in its transition. Also, a reaction coordinate can be

defined as the distance along the MEP.

The Nudged Elastic Band method (NEB) developed by Hannes Jónsson and

co-workers [128, 129, 130] is an efficient method for finding the MEP. The NEB

method belongs to the class of chain-of-states methods in which a chain of im-

ages (or replicas) of the3N -dimensional system is generated between the end

point configurations. All the intermediate images are optimised simultaneously

in a concerted way, in order to move the path they form towardsthe MEP, while

the end points remain fixed. Typically the initial images arelocated along the line

joining the initial and final points. The optimisation is carried out by simultaneous

annealing of all the images. This relaxes each image to its lowest energy config-

uration. After the optimisation the images lie near the MEP.The distribution of

the images, which gives a discrete representation of the path, can be controlled

and can be set to be higher (images closer together) in the saddle point region as

compared with the end regions.

The NEB is an improvement of the Elastic Band method, in which the images

are connected with springs of zero natural length, so the force acting on imagei
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is:

Fi = −∇E(Ri) + F
s
i

whereRi is a3N -dimensional coordinate, andFs
i is the spring force:

F
s
i = ki+1(Ri+1 − Ri) − ki(Ri − Ri−1.)

Two problems that can arise from this approach are known as “corner cutting”

and “sliding down”. The problem of “corner cutting” resultsfrom the component

of the spring force which is perpendicular to the path, and tends to pull images

off the MEP. The problem of “sliding down” results from the component of the

true force−∇E(Ri) in the direction of the path. The cure for these undesired

effects proposed by Hannes Jónsson et al. is to include only the perpendicular

component of the true force−∇E(Ri) ⊥, and the parallel component of the

spring forceFs
i ‖. The total force acting on imagei is thus reduced to:

Fi = −∇E(Ri) ⊥ +F
s
i ‖ (3.12)

where

−∇E(Ri) ⊥= ∇E(Ri) · τ̂i −∇E(Ri) (3.13)

F
s
i ‖= [ki+1|Ri+1 − Ri| − ki|Ri − Ri−1|] · τ̂i (3.14)

with τ̂i being the tangent to the path at pointRi. These force projections, referred

to as “nudging”, decouple the action of the true force on the path from that of

the spring force. The force in Eq. (3.13) pulls the elastic band onto the MEP,

while the force in Eq. (3.14) controls the distribution of the images along the

MEP. The spring force does not interfere with the convergence of the elastic band

to the MEP. The strength of the spring forces can be varied by several orders of

magnitude without affecting the equilibrium position of the band.

3.4.2 Enhancements

3.4.2.1 Tangent Estimate

When the energy of the system changes rapidly along the path, but the restoring

force on the images perpendicular to the path is weak, as can be the case when
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covalent bonds are broken and formed, kinks can form on the elastic band.

If we compute the local tangent of the path as

τ̂i =
Ri+1 − Ri−1

Ri − Ri−1

then the perpendicular component of the true force Eq. (3.13) acting on the two

images that are adjacent to the imagei will be affected by the presence of the kink.

As the minimisation algorithm is applied, the wrong movement of the two adjacent

images will cause the kink to continue oscillating back and forth, preventing the

band from converging to the MEP.

The tangent to the path at the imagei is then chosen according to the prescrip-

tion [131]

τ̂i =
(Ri+1 − Ri−1)

(Ri − Ri−1)
if Ei+1 > Ei > Ei−1

which makes the tangent point from imagei to the adjacent image that has the

higher energy. The tangent is then normalized. This choice ensures that the high-

est energy image between those adjacent to a kink is not affected in its motion by

the presence of the kink. The choice for the local tangent to be determined by the

higher energy neighbouring image is motivated by the fact that the MEP can be

found by following the force lines down the potential from the saddle point, but

never up from a minimum.

3.4.2.2 Climbing Image

When the elastic band converges to the MEP, typically none of the images lands

at the saddle point, and the saddle point energy needs to be estimated by interpo-

lation. “Climbing image” [132] is a slight modification to theNEB algorithm that

makes one of the images climb up along the elastic band and converge rigorously

on the highest saddle point. After a few NEB iterations, the imageimax with the

highest energy is identified. The force acting on this image is not given by Eq.

3.12, but rather by

Fimax
= −∇E(Rimax

) − 2∇E(Rimax
) ‖= −∇E(Rimax

) − 2∇E(Rimax
) · τ̂i.
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This is the true force due to the potential with the componentalong the elastic band

inverted. The spring force does not act on the maximum energyimage. Therefore,

the spacing of the images will be different on each side of theclimbing image. As

it moves up to the saddle point, images on one side will get compressed, and on

the other side spread out.

3.4.2.3 Variable Spring Constants

Since the saddle point is the most relevant point along the MEP, it is important

to get a good estimate of the tangent to the path near the saddle point, especially

when climbing the image. This can be accomplished by using stronger spring

constants near the saddle point. As we have already explained, the choice of the

spring constant does not affect the saddle point position, thus one is free to choose

their values in different ways. The choice suggested in [132] is to choose spring

constants that depend linearly on the energy of the image. Inparticular one has

to set a range for spring constant variabilityδk = kmax − kmin, then the spring

acting between two adjacent images is

ki = kmax − δk(
Emax − Ei

Emax − Eref

) if Ei > Eref .

HereEi is the higher energy of the two images connected by springi; Emax is the

higher energy value along the band;Eref is a reference value that can be set at the

highest energy between the two endpoints of the MEP [132]. By choosingEi to

be the higher energy of the two images connected by the spring, the two images

adjacent to the climbing image will tend to be almost symmetrically arranged

around the saddle point.



CHAPTER 3. MODELLING METHODOLOGIES 43

3.5 Simulation Time Scale

The physical phenomena that determine the surface evolution during crystal growth

take place with mesoscopic or macroscopic length scales, and over time scales of

seconds or even minutes. However the physics and chemistry that govern the be-

havior of an atom on a surface operate on the length scale of the chemical bond,

i.e. 10−10 meters, and with time scales of atomic vibrations, i.e. approximately

10−13 seconds. Atomistic simulations of crystal growth therefore require bridg-

ing the gap between a microscopic and a mesoscopic or macroscopic description.

Large time scales are involved because thermally activated, rare events predom-

inate. The time period between two diffusion processes, e.g. adatom hops, de-

pends on the temperature and crystal surface facet. This time period can extend

to nanoseconds. This rare events problem precludes the use of a direct Molecular

Dynamics approach.

3.5.1 Accelerated Molecular Dynamics

When the dynamics of a system are determined by rare events, the system spends a

large part of the time residing in one of a number of local potential energy minima,

with infrequent transitions between these minima. For suchsystems, Voter has

developed three accelerated Molecular Dynamics methods toextend the time scale

that can be simulated. These methods are designed to increase the likelihood

of the rare events occurring. Therefore more rare events andeffectively longer

simulation times, occur in a given amount of computer time, when compared to

standard Molecular Dynamics.

The first method is called Hyperdynamics [133]. In Hyperdynamics, the po-

tential energy surface of the system is modified by adding to it a non-negative

bias potential. A constant temperature Molecular Dynamicstrajectory is then

propagated on this modifed potential energy surface. The method requires that

the system obeys TST. Also the bias potential must be zero at all the dividing sur-

faces, and the system must still obey TST for dynamics on the modified surface. A

trajectory on such a modified surface, while relatively meaningless on the atomic
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vibrational time scale, evolves correctly from state to state at an accelerated pace.

The evolution is correct in the sense that the probability ofobserving any partic-

ular sequence of states is the same for a simulation on the modified potential as

for the original potential. In Hyperdynamics, the time advance at each step equals

the regular Molecular Dynamics time step multiplied by an instantaneous boost

factor, the inverse Boltzmann factor for the bias potential at that point. A major

difficulty with this method is the construction of a suitablebias potential for a

given system.

The second of Voter’s methods is Parallel Replica Dynamics [134]. This

method is the simplest and most accurate of the three accelerated Molecular Dy-

namics techniques, with the only assumption being that of infrequent events obey-

ing first order kinetics (exponential decay). That is, for any time greater than

decorrelation timeτcorr after entering a state, the probability distribution function

for the time of the next escape is given by

p(t) = kexp(−kt),

wherek is the rate constant for escape. Starting with an N atom system in a basin

around a local potential energy minima, the entire system isreplicated on each of

M available processors. After a short dephasing stage (τdephase > τcorr), during

which momenta are periodically randomized to eliminate correlations between

replicas, each processor carries out an independent constant temperature Molecu-

lar Dynamics trajectory for the entire N atom system, thus exploring phase space

within the particular basin M times faster than a single trajectory would. When-

ever a transition out of the basin is detected on any processor, all processors are

alerted to stop. The simulation clock is advanced by the accumulated trajectory

time summed over all replicas, i.e. the total time spent exploring phase space

within the basin until an escape pathway is found.

This method also correctly accounts for correlated dynamical events, i.e. there

is no requirement that the system obeys TST. This is accomplished by allowing

the trajectory that made the transition to continue on its processor for a further

amount of time (∆τ > τcorr), during which recrossings or follow on events may
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occur. The simulation clock is then advanced by∆τ , the final state is replicated

on all processors, and the whole process is restarted. This overall procedure then

gives exact state to state dynamical evolution because the escape times obey the

correct probability distribution; nothing about the procedure corrupts the relative

probabilities of the possible escape paths, and the correlated dynamical events

are properly accounted for. A key requirement for this method is an effective

transition detection scheme.

The efficiency of the method is limited by both the dephasing stage, which

does not advance the system clock, and the correlated event stage, during which

only one processor accumulates time.

The third method is Temperature Accelerated Dynamics (TAD)[135]. The

idea of this method is to speed up the transitions by increasing the temperature,

while filtering out the transitions that should not have occurred at the original tem-

perature. The TAD method is more approximate than the previous two methods

in that it relies on the harmonic TST approximation. The TAD method often gives

substantially more boost than Hyperdynamics or Parallel Replica dynamics. The

trajectory in TAD is allowed to wander on its own to find each escape path, so

that no prior information is required about the nature of thereaction mechanisms.

In each basin, the system is evolved at a high temperatureThigh (while the tem-

perature of interest is some lower temperatureTlow). Whenever a transition out

of the basin is detected, the saddle point for the transitionis found, e.g. using the

Nudged Elastic Band method. The trajectory is then reflected back into the basin

and continued. This procedure generates a list of escape paths and attempted es-

cape times for the high temperature system. Assuming that TST holds and that

the system is ergodic, the probability distribution for thefirst escape time for each

mechanism is an exponential. Because harmonic TST gives an Arrhenius depen-

dence of the rate on temperature, depending on the saddle point energy barrier,

the escape time observed atThigh can be extrapolated to obtain a corresponding

escape time atTlow that is drawn correctly from the exponential distribution at

Tlow. The event with the shortest time at low temperature is the correct transition

for escape from this basin. For a chosen level of confidence that the shortest time
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has been found, a stop time is determined. Once this stop timeis reached, the sys-

tem clock is advanced by the shortest time atTlow, the corresponding transition is

accepted, and the TAD procedure is started again in the new basin.

3.5.2 Autonomous Basin Climbing Method

This method for speeding up molecular dynamics was developed by Kushima, Yip

and others [136]. This is a potential energy surface sampling method developed

to simulate slow dynamical processes without explicitly following all the atomic

rearrangements all the time. The method requires the input of an interatomic

interaction potential for the constituent particles in thesystem, and retains full

information on the particles along the trajectory of the sampling. The system is

evolved by a series of elementary steps of alternating activation and relaxation

in the space of its potential energy, which allows the systemto climb out of any

potential well. On the potential energy surface where thereare many local minima

and saddle points, having the ability to climb out of any potential well means that

one can then sample the topography of the potential energy surface by generating

an explicit transition state pathway trajectory. The system evolution, on an energy

scale, is therefore described by this trajectory.

A series of the two elementary steps of activation and relaxation move the

system up a particular potential well. Firstly a3N dimensional Gaussian penalty

function (N is the number of atoms in the system) is added to an initial energy

minimised configuration. This has the effect that upon the following relaxation

step (minimisation of the combined energy of the penalty andthe original po-

tential energy), the system is pushed away from the initially energy-minimised

configuration into a higher energy state. With sufficient energy penalties accu-

mulated after a series of such steps, the system will cross anenergy saddle point

during a relaxation step and enter into an adjacent potential well. Starting at the

bottom of this well the activation-relaxation series is repeated until the system is

able to escape from the second well. Since the energy penaltyfunctions imposed

in the previous activation steps are not removed during the entire sampling, the
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system is always discouraged from returning to any previously visited potential

minima.

In this method one is not sampling a fixed potential energy surface; rather

the potential energy surface evolves along with the sampling such that the system

is always encouraged to sample new regions of the potential energy surface. In

contrast to saddle point sampling techniques such as the NEBmethod, this method

does not require prior knowledge of the final state. This is particularly useful for

systems where the structure is too complex to generate such an input. This method

has be applied to study activated kinetics of solid-state deformations under stress

[137].

3.6 Kinetic Monte Carlo

3.6.1 Uses and Features of the KMC Methodology

Surface evolution during crystal growth is dominated by rare events such as adatom

diffusion. During the long time period between rare adatom diffusion events, the

adatom undergoes a large number of vibrations around its local minima in the po-

tential energy surface. These vibrations are irrelevant from the point of view of

surface evolution. The surface only alters when atoms or adatoms move from one

site to another. Hence there is no need for a detailed description of the adatom

motion during the time the adatom resides in a local minimum.

This opens the way for approaches such as Kinetic Monte Carlo [138], [139],

[140]. Bridging of time scales can thus be realised, by using microscopic param-

eters estimated using NEB as input data for KMC simulations.

The activation energyEa for each identified process can be calculated by the

NEB method, as previously discussed. These calculated energy barriersEa are

input parameters for KMC simulations, where at each step a particular process is

randomly selected with a probability proportional to the process rate. The process

rate is defined according to transition state theory:
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Γ = Γo exp(− Ea

kBT
). (3.15)

3.6.2 Basic Idea of KMC

The standard Monte Carlo (MC) technique [140], is a methodology for calculat-

ing chosen averages in a given equilibrium thermodynamic ensemble. States in

the configuration space are generated and used for the calculation of the quanti-

ties of interest. These states, although generated sequentially, do not necessar-

ily correspond to the dynamics of the system. Some 30 years ago Monte Carlo

simulations started to be applied to the study of kinetic processes [141], [142].

The aim of KMC simulations is to reproduce nonequilibrium dynamics. In KMC

the selected configurations correspond to the real configurations the system goes

through during its evolution.

MC techniques can be viewed as methods for solving the masterequation

describing the evolution of the system from a given configuration C:

∂P (C, t)

∂t
= −

∑

C
′

W (C → C
′

)P (C, t) +
∑

C
′

W (C
′ → C)P (C

′

, t),

whereP (C, t) is the distribution of configurations at time t, andW (C → C
′

) is a

matrix of transition probabilities connecting two states.The transition probability

in standard MC simulations does not need to have any relationship to the dynamics

of the system. At each MC step a trial configuration is generated, which is then

either accepted or rejected. A sequence of configurations forms a Markov chain,

which is used for calculating the desired quantities. The condition of detailed

balance

W (C → C
′

)P (C, t) = W (C
′ → C)P (C

′

, t),

which ensures that the ratio of the “forward” and the “backward” probabilities is

equal to the ratio of the “forward” and the ”backward” transition probabilities, is
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a sufficient condition for the convergence of the Markov chain. Detailed balance

holds at steady states and both MC and KMC satisfy detailed balance.

In KMC, configuration changes correspond to real events in thestochastic sys-

tem. Each of the events can happen with a probability per unitof time (process

rate), given by Eq. (3.15). The total rateR for the system to change from con-

figurationC to some other configuration is given by the sum of the rates of the N

processes that are possible at configurationC:

R =
N

∑

j

Γj

whereΓj is the rate for processj.

3.6.3 KMC Scheme for Crystal Growth

When KMC is used to simulate crystal growth, a discrete geometry is usually

employed. Atoms can only occupy positions on a discrete lattice, which has the

geometry of the crystal. This choice is justified if the material retains its basic

crystalline structure during epitaxial growth. In such cases we are only interested

in the motion of the atoms forming the crystal, and the growthproceeds by the

addition of atoms at unoccupied adsorption positions. Suchis the case for example

in Molecular Beam Epitaxial growth, where the surface is directly bombarded by

atoms.

In KMC, atoms can move from one lattice site to another (diffusion) or appear

on or disappear from the surface (adsorption and desorption) by discrete jumps.

The motion of individual atoms takes place instantaneouslyand the motions are

independent and Markovian i.e. no memory of previous position. By only con-

sidering the jumps, information about atom dynamics between these rare events

(jumps) is eliminated. That is, the atom vibrations and the associated time scales

are not explicitly modelled. This information is, however,taken into account in

the attempt frequencyΓo.
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3.6.4 KMC Algorithm

The basic KMC algorithm was formulated by Bortz et al. [138]. In this work we

follow the version developed by Schulze [21, 22]. A simple description of the

KMC algorithm is:

1. Determine all processes j that possibly could take place -based on the

current configuration of the system.

2. Calculate the total rateR =
∑

j Γj, where the sum runs over the possible

processes identified at step 1. Deposition can be one of theseprocesses.

3. Choose two random numbersρ1, ρ2 in the range (0,1].

4. Find the integer numberl for which

l−1
∑

j=1

Γj ≤ ρ1R <
l

∑

j=1

Γj.

5. Carry out processl, e.g. move an atom.

6. Update the simulation timet = t + △t with △t = − ln(ρ2)/R.

7. Go back to step 1.

Two important features are the following: firstly, the algorithm for process

selection (step 4), ensures that the selected process is chosen randomly with a

probability given by the ratioΓj/R of its rate and the total rate for the current

configuration of the system. Secondly, in KMC simulations, all physical processes

are separated so that at any point in time only one event takesplace, and sets of

events are generated by Poisson processes. This condition makes the KMC time

a physical quantity [143].

The time interval△t between two successive events is a random variable with

the distributionP (△t) = Re−△tR, and average value of< △t >= 1/R. Note

that the total rateR depends on the system configurationC. Step 6 in the algo-

rithm states that the system remains in configurationC for a time interval that is

proportional to the inverse of the total rateR of configurationC. Thus the larger

the total rate for a given process to occur, the shorter the time spent by the system

in that configuration. The total rateR also depends on the system temperature.

It increases exponentially with the temperature, so that△t as defined in step 6
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becomes very small at high temperatures. This reflects the fact that the events are

activated more frequently at higher temperatures. Simulating the system evolution

at high temperatures requires a larger number of KMC steps tosimulate a given

amount of time.

3.6.5 Events and Energy Barriers

A very important aspect of the KMC algorithm used here is thatit requires a pre-

determined list of events and their corresponding energy barriers in order to im-

plement the algorithm. It can be very difficult to determine all the relevant events

for some situations, particularly if concerted multiple atom rearrangements are

involved. Omission of significant events can distort the results of KMC simula-

tions, as discussed by Voter [65]. Once the list of events hasbeen determined, the

relevant energy barriers can be computed using the Nudged Elastic Band method

from section 3.4.

In this work, KMC is applied to adatoms diffusing on a (111) facet. A com-

monly applied approach for determining events and the corresponding energy bar-

riers in such a situation is by way of “bond counting” [140]. In this approach the

events are distinguished by the difference between the number of in-plane nearest

neighbours of the lattice site an atom is moving from and of the site it is moving

to. The energy barrier is composed of an energy term for an isolated adatom plus

the energy for the net number of bonds that are broken (one bond per in-plane

nearest neighbour) as a result of moving from one site to a neighbouring site.

For the Lennard-Jones potential used in this work, the energy required for an

isolated adatom sited in a three-fold hollow site on a (111) facet, to hop to a near-

est neighbour three-fold hollow site, was determined usingthe Nudged Elastic

Band method. Each three-fold hollow site on the (111) facet has three adjacent

three-fold hollow sites at a distance of1√
3
× 2

1

6 σ, and six nearest neighbour three-

fold hollow sites at2
1

6 σ separation. When a three-fold hollow site is occupied by

an adatom, none of its three adjacent sites can also be occupied without causing

extremely strong repulsive forces between the occupying adatoms, i.e. an adatom
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“collision”. The direct path for an adatom between nearest neighbour sites in-

volves climbing over a surface atom. The NEB calculations show that the MEP

between nearest neighbour sites is an indirect “dogleg” path, moving around the

intervening surface atom and passing through a adjacent three-fold hollow site, as

shown in Figure 3.1.

Figure 3.1: On this three layer (111) facet the bottom A layeratoms are blue,
second B layer atoms are green and top C layer atoms are gold. The two white
circles indicate a pair of nearest neighbour three-fold hollow sites (directly above
A layer blue atoms). The white arrows show the “dogleg” minimum energy path
for an adatom hopping between these two nearest neighbour sites via an adjacent
three-fold hollow site (directly above a B layer green atom).

Figure 3.2 below shows the energy along the minimum energy path for an

adatom hopping to a nearest neighbour three-fold hollow site. It is composed of

two short hops, the first to the adjacent site and second from the adjacent site to

the destination. In Figure 3.2 the dots indicate the positions of the NEB images.

The smooth curve fitted through the images shows the MEP. The energy along the

MEP is measured relative to the energy of the initial site, i.e. the first image at

the origin of the graph. The third image at distance0.32σ along the MEP is the

climbing image. It has climbed to the peak of the MEP between the adjacent three-

fold hollow sites, giving a0.31ǫ energy barrier for the first hop. The second peak

in the MEP is for the second hop and it has the same energy barrier. Therefore

the KMC energy barrier for a nearest neighbour hop is taken tobe 0.31ǫ. Note
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that an adatom can make the short hop to an adjacent three-fold hollow just as

easily, provided no adatom “collision” would ensue. In Chapter 4 we discuss

how making a short hop changes an adatom’s stacking, i.e. itsrelationship to the

underlying layers of atoms. Changes in atomic stacking are very important in this

work, consequently short hops are explicitly modelled in the KMC used here.

This 0.31ǫ energy barrier and the energy per bond of1ǫ (the depth of the

Lennard-Jones potential well) are used with “bond counting” to determine the

energy barriers for other events.
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Figure 3.2: Energy along the “dogleg” minimum energy path for adatom nearest
neighbour hop on (111) surface.

3.7 Summary

The Molecular Dynamics methodology was discussed first. There is a wide range

of applications of MD. The dynamics of atoms in an MD simulation follow from

(in the simplest case) Newton’s equation of motion. The equation of motion is

numerically integrated to derive the positions and velocities of the atoms at each

time step in the simulation. Suitable boundary conditions are required when bulk
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material is modelled. When the temperature of the simulationis to be controlled,

the equation of motion and the integration process need to bemodified. The force

between pairs of atoms is derived from a potential energy function. In this work

the Lennard-Jones potential is used. This is a simple potential widely used as a

general first approximation in MD.

The other simulation methodology used here is Kinetic MonteCarlo. Prior to

discussing KMC we covered Transition State Theory and the Nudged Elastic Band

method. Transition State Theory is a method for calculatingthe rate of occurrence

of rare events. Harmonic Transition State Theory relates the rate of transition to

the energy barrier separating distinct atomic configurations. The Nudged Elastic

Band method is used to determine these energy barriers. The energy barriers

are key parameters in determining the rates for atomic rearrangements and hence

atomic configuration changes in KMC simulations. The KMC methodology and

algorithm were discussed, as applied to the modelling of crystal growth.
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4.1 Molecular Dynamics Modelling

In this chapter we discuss our application of the Molecular Dynamics method-

ology to simulate the behaviour of stacking fault grain boundaries in an epitax-

ial layer. This is being done to establish a benchmark for thehybrid MD KMC

methodology. The hybrid methodology which is discussed in chapter 5, was struc-

tured to be consistent with the MD simulations in this chapter. For the MD sim-

ulations discussed here, a configuration of atoms containing stacking fault grain

boundaries was constructed. The movements of and changes inthese grain bound-

aries were then simulated using Molecular Dynamics. Many simulations were

carried out and inferences were drawn from the aggregate statistics of the results

of these simulations.

We discuss the changes in the shape of such grain boundaries with time. The

migration of positions of the grain boundaries with time is analysed. The results

of the simulations are compared with relevant experimentalwork, and the key

atomic mechanisms for these changes are determined.

4.2 Atomic Layer Stacking on the (111) Facet

The Face Centered Cubic (FCC) crystal structure is composed of a cubic lattice

with one atom at each vertex of the cube and one atom in the centre of each face

of the cube. The lattice spacing is given by the edge length ofthe cube, and the

distance between nearest neighbour atoms is half the lengthof the face diagonal

of the cube. A (111) facet is formed when a block of atoms in theFCC structure

is cleaved along a pair of adjacent face diagonals, e.g. for acube of edge length

a, the cleavage plane through the three points (a,0,0), (0,a,0) and (0,0,a). We now

discuss some of the features of the (111) facet, as such facets form the atomic

surface used in these simulations.

The (111) facet displays a triangular lattice of hollow sites, each of which

has six surrounding hollow sites. Any atoms of the same type deposited on a

(111) facet are most strongly bound in these hollow sites, and when this occurs
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epitaxial atomic layers start to form. The threefold natureof the lattice provides

three distinct sets of hollow sites for atoms to attach to, asshown in Figure 4.1.

These three sets are labelled A-sites, B-sites and C-sites respectively.

For a (111) facet to grow epitaxially while retaining its FCC stacking, adjacent

atomic layers must follow the stacking pattern ABC. That is, a layer of atoms all in

A-sites is followed by the next layer of atoms all in B-sites, and in the subsequent

layer all atoms are in C-sites. This stacking pattern is repeated for all following

atomic layers.

Alternatively, after a layer of A-sites has been followed bya layer of B-sites

the third layer may be comprised of atoms on A-sites again, rather than atoms on

C-sites. This change in stacking pattern from ABC to ABA is a stacking fault

[144, 145] and gives rise to hexagonal close packing (HCP) stacking. Figure 4.1

shows a side view of these different stacking patterns. A topview is shown in

Figure 4.2.

Figure 4.1: Side view of three atomic layers showing the three different stacking
sites. Three layers in the ABC (from bottom layer to top layer)stacking pattern
(left half of image) give FCC stacking. When the stacking pattern is ABA, HCP
stacking results (right half of image). There is a stacking fault grain boundary in
the center of the top layer where the two different stackingsmeet.
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Figure 4.2: Top view of the three atomic layers in Figure 4.1.The left side of the
image with gold atoms in the top layer, form the FCC stacking region. On the
right side is the HCP stacking region with atoms coloured bluein the top layer.
The two different stacking regions are unable to merge, leaving a stacking fault
grain boundary (vertical gap in top layer in center of image)between them. On
the left side of the image the bottom A layer atoms in blue, second B layer atoms
in green and top C layer atoms in gold can be all be glimpsed. Onthe right side
the top layer blue atoms are located in A sites, placing them directly above the
bottom layer A sites. The C sites are not occupied and so the white background
shows through.

Stacking patterns such as ABB are not stable. The interlayer spacing between

the atoms in the two adjacent B-site layers is too small, producing strong repulsion

between the atoms in these two layers, thereby deranging theepitaxial layers.

Hence we need only consider FCC and HCP stacking patterns.

Layers of atoms which only cover part of a (111) facet are known as islands.

Islands in the different stackings FCC and HCP may form independently on dif-

ferent parts of a (111) facet. When islands with different stacking grow (due to

deposition or movement of adatoms) and meet each other, theyare unable to im-

mediately coalesce into a single larger island if they are sufficiently large, because

their constituent atoms reside on different sets of sites. Astacking fault grain
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boundary is where two such islands with different stackingsmeet each other. Fig-

ure 4.2 gives an example of a stacking fault grain boundary.

The step edges of islands on a (111) facet are of two types: A-steps and B-

steps. In an A-step the step edge atoms meet above gaps between the atoms in the

layer below. The edge atoms in B-steps meet on top of atoms in the layer below.

In Figure 4.3 we show examples of hexagonal FCC and HCP stackingislands

and their corresponding A-steps and B-steps. These A-steps and B-steps alternate

around these islands. The atoms in FCC and HCP islands sit on different sets of

sites, so the pattern of A-steps and B-steps is reversed between these FCC and

HCP islands.

When an FCC and an HCP island meet along A-step edges, this stacking fault

grain boundary is called an A-gap. Similarly when alternatestacking islands meet

along B-step edges, the stacking fault grain boundary is called a B-gap. Because

of the reversal in the pattern of A-steps and B-steps between FCC and HCP stack-

ing islands, an A-step on one island cannot meet with a B-step on an alternate

stacking island, preventing coalescence of the islands.

Note that a triangular shaped island will be composed of either all A-steps or

all B-steps. But even in these cases, because of the reversed orientation of such

triangular islands on alternate stacking, they are limitedto forming A-gaps or B-

gaps when they meet. Figure 4.4 shows stacking fault grain boundaries exhibiting

A-gaps and B-gaps.
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Figure 4.3: This figure shows two hexagonal mono-layer islands on a (111) facet.
The atoms are coloured gold in the FCC stacking island and bluein the HCP
stacking case. The alternating A-steps and B-steps at the edges of these respective
islands are identified. In an A-step the step edge atoms meet above gaps between
the atoms in the layer below. The edge atoms in B-steps meet on top of atoms in
the layer below.
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Figure 4.4: This image shows a close up view of stacking faultgrain boundaries
between FCC and HCP stacking regions. On the left is a B-gap (where two B-
steps meet) and on the right is an A-gap (where two A-steps meet). Atoms in a
B-gap can move out of their edge into the hollow site in front ofthem. In this case
they change to the alternate stacking. Atoms in A-gaps are head to head and do
not have room to move in this way.
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4.3 Stacking Fault Grain Boundaries

This section describes the stacking fault grain boundariessimulated in this thesis.

4.3.1 Slab of Atoms

In these simulations, mono-layer FCC and HCP stacking islandswere created

on (111) faceted slabs of Lennard-Jones atoms. These slabs have 12 columns of

atoms across their width of10σ. They have six layers of atoms in a depth of5σ.

Slabs of different lengths were used in different cases, butthe minimum length

was81σ, encompassing 144 rows of atoms. An example slab is shown in Figure

4.5.

4.3.2 FCC and HCP site energies

The difference in potential energy between adatoms locatedon FCC and HCP sites

was determined in the following way. Two slabs were constructed without any

stacking fault grain boundaries. In one slab the top layer ofatoms formed a single

FCC stacking layer. The second slab had the top layer of atoms in HCP stacking.

These slabs were relaxed using MD. The MD simulations ran for10, 000t (where

t is the Lennard-Jones reduced time step), with a set temperature ofT = 0.0. A

Langevin thermostat withγ = 1.0 was used to control the temperature. For each

slab the temperature initially increased to approximately0.006 as the atoms re-

laxed and then rapidly declined to0.0. The potential energy declined and rapidly

converged for each slab. For the slab with FCC stacking the potential energy per

atom converged to−7.0032ǫ. In the case of the HCP stacked slab the potential

energy per atom converged to−7.0078ǫ. This difference in potential energy be-

tween the two slabs is attributable to the different stacking of the atoms in the

top layers. The HCP stacking slab has deeper potential wells for adatoms which

implies that adatoms on HCP sites are in more stable configurations than adatoms

on FCC sites. The deeper potential wells in HCP stacking is attributed to the fact

that HCP threefold hollow sites have a second neighbour atom directly below. We
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conclude that for the atomic slab geometry used in this work,HCP stacking is

favoured over FCC stacking, as HCP has the lower potential energy.

4.3.3 Initial Configuration

The initial configuration of a slab of atoms comprises a pair of HCP/FCC stacking

fault grain boundaries positioned at approximately 25% and75% of the length

slab. These grain boundaries lie straight across the width of the slab as seen in

Figure 4.6. They are composed of alternating A-gaps and B-gaps, each of which

is only one atom spacing in extent.

This configuration provides a central island in either FCC or HCP stacking,

impinging on a pair of alternate stacking islands at either end of the slab. These

apparently separate end islands are in fact in contact with each other by way of

the periodic boundary conditions applied along the length of the slab. Hence, for

consistency, islands at both ends of the slab must have the same stacking, requir-

ing the placement of a pair of grain boundaries on the slab. Periodic boundary

conditions also apply across the width of the slab to maintain the atoms in this

slab geometry.

The atoms are colour coded to identify which stacking, FCC (Gold) or HCP

(Blue), applies to each part of the slab. This colour coding enables changes in

the location and extent of the stacking islands to be followed visually during a

simulation.

A slab with an FCC stacking island in its center and HCP islands on its ends

is shown in its initial configuration in Figure 4.5. Both top and side views are

shown.

4.4 Grain Boundary Shape

The changes in the shape of grain boundaries during the simulation are discussed

in this section. Once the simulation begins, visual inspection shows that the shape
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Figure 4.5: Top view and side view of a slab of atoms with a central FCC stacking
island.

Figure 4.6: The center of this image shows a grain boundary inits initial configu-
ration, straight across the width of the slab.
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of grain boundaries becomes more complicated, changing from the initial straight

line to mixtures of more extensive A-gaps and B-gaps, as demonstrated in Fig-

ures 4.7 and 4.8. As the simulation progresses these mixtures continually change

as atoms shift back and forth across the grain boundary between the different

stacking islands. In Figure 4.7 and Figure 4.8 we see some examples of the dif-

ferent shapes the grain boundaries may take at different times.

Figure 4.7: This grain boundary is composed mainly of B-gaps,where atoms on
the different stacking islands are offset with respect to each other giving them
room to move and the opportunity to cross the grain boundary.
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Figure 4.8: In this chevron shaped grain boundary, the atomsin the upper arm
are mostly in an A-gap configuration “head to head” and so are unable to move.
However the atoms in the lower arm are in a B-gap arrangement which allows
them to readily move.

Due to the periodic boundary conditions and the narrow widthof the slab, the

curvature of the grain boundaries is limited. During the simulations the extent

or spread of grain boundaries along the length of the slab wasrecorded. This

spread of a grain boundary is referred to as the width of the grain boundary in this

work. The width was determined from the number of rows of atoms along the

length of the slab that contained some atoms in FCC sites and some in HCP sites.

The initial straight line configurations change to mixturesof A-gaps and B-gaps,

making the grain boundaries more convoluted and increasingtheir width. The mix

of A-gaps and B-gaps, and hence the width of the grain boundaries, varies during

a simulation. From MD simulations the average width of a grain boundary was

found to be2.8σ, with a maximum width of7.3σ. This average is taken over18

grain boundaries from9 simulations of duration10000t each. The maximum is

the greatest width measured in the9 simulations. The changes in width of a grain

boundary during a simulation is shown in Figure 4.9.
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Figure 4.9: The changing width of a single grain boundary is graphed over the
10000 time steps of a simulation. Width values at every100t are shown. The width
generally remains within the range2.3σ to 3.4σ, with occasional fluctuations to
larger or smaller values. There is no obvious trend in width during the simulation.

The orientation of the A-gaps and B-gaps in the grain boundaries follows the

“natural directions” on the 111 facet, as indicated on the grain boundary in Fig-

ure 4.10.
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Figure 4.10: The black lines indicate the natural horizontal and diagonal directions
on the (111) facet, due to the triangular shape of the lattice.

The existence of these directions is conducive to the formation of triangular

shaped stacking fault islands with opposite orientations for FCC and HCP stack-

ing. Instances of such islands are shown for Iridium islandson an Iridium (111)

surface in the image from Busse et al. [146] in Figure 4.11.
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Figure 4.11: Image (used with permission) from Busse et al. [146], showing tri-
angular stacking fault islands of Iridium on Iridium. The white triangle gives the
orientation of HCP stacking islands. Two HCP islands are delineated by translu-
cent white lines. Islands with the opposite orientation arein FCC stacking. The
white scale bar at the bottem left is 100Å long.

In some instances a grain boundary can attain a zigzag configuration as shown

in Figure 4.12.

Figure 4.12: This grain boundary has evolved into the zigzagconformation. The
atoms along both sides of the diagonals and the horizontal ofthe zigzag meet their
counterparts in the other stacking island in A-gap configurations. These atoms are
so closely packed that they are unable to change their local configuration (without
climbing out of the surface epitaxial layer). Only the atomsat the apexes of the
zigzag, which are in B-gap configurations, have sufficient room to readily move.
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This is an attempt at the formation of a pair of impinging triangular stacking

fault islands. Such zigzags have a large proportion of A-gaps which are comprised

of closely packed atoms which do not have space to cross over to the other stack-

ing island. Consequently once formed, a grain boundary may remain in such a

configuration for some time.

A grain boundary tends to approximate the initial shape whenits width is very

narrow, while the zigzag shape as in Figure 4.12, typically occurs when the width

is long. Most of the time the grain boundary is of medium width, as shown in

Figure 4.9, and then its shape is usually composed of a mix of A-gaps and B-gaps,

as seen in Figures 4.8 and 4.10 for example.

The change in grain boundary shape can be a relatively rapid process. The

zigzag configuration in Figure 4.12 was formed within50t of the start of the sim-

ulation.

Over a longer time scale the average positions of the grain boundaries move

along the slab.

4.5 Atomic Details of Grain Boundary Motion

The observed grain boundary motion is the aggregate result of the atoms on ei-

ther side of the grain boundary repeatedly crossing the boundary (enlarging one

stacking fault island at the expense of the other) thus altering the configuration

and position of the grain boundary over time.

In the “kink flip” move an atom crosses a B-gap in the grain boundary from

one stacking island to another and adheres to a kink site on the adjacent island,

thereby moving the kink site along the grain boundary by one atom. By continuing

this process in a “zipper like” fashion a whole row of atoms changes from one type

of stacking to the other and the position of the grain boundary is moved by one

row. Figure 4.13 demonstrates this process.
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Figure 4.13: The top image shows the red atom about to make a “kink flip” move
across the B-gap and join the HCP stacking island. The bottom image shows the
red atom after completing the “kink flip” move. The kink site has moved along
the B-gap.

When a section of a B-gap in a grain boundary does not have kink sites, it

is necessary for them to be created before a sequence of “kinkflip” moves can

occur. In these cases kink sites are most easily produced when an atom at a corner

site crosses the grain boundary. One or more positive (outward) kinks are formed

on the island the atom has just moved to, while a negative (inward) kink remains

on the island the atom has moved from. In Figure 4.14 we see an atom making

such a “corner crossing” move and producing kink sites. Figure 4.15 shows a

pink coloured atom subsequently making a “kink flip” move into one of the newly

created kink sites and thus shifting part of the B-gap on the left side of the FCC
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island. The next figure, Figure 4.16 demonstrates an alternative “kink flip” move

by the grey coloured atom, into the other newly created kink site. This moves part

of the A-gap on the right of the FCC island.

In the case of a grain boundary being in the zigzag configuration the islands

are separated exclusively by a pair of A-gaps. Figure 4.17 shows this situation.

After the corner atom has made a “corner cross” move, a short B-gap (composed

of two kink sites) is produced as shown in Figure 4.17 (bottom). Atoms can then

cross this short B-gap by moving into the kink sites, as seen inthe top image in

Figure 4.18. Once that configuration has been reached, “kinkflip” moves can then

occur, which will result in moving part of the B-gap (sited on the left of) or A-

gap (sited on the right of) the FCC island. Such moves are shownin Figure 4.18

(bottom) and Figure 4.19 (bottom) respectively.

The relative frequency of atomic moves which alter the location of the grain

boundaries can be assessed from the energy barriers that must be overcome for

these moves to take place. The following energy barriers forthese atomic moves

were determined using the NEB method (described in chapter 3). These NEB

calculations used a slab of atoms21 atomic rows wide,28 atomic rows high and

6 atomic layers deep. A chevron shaped grain boundary was formed across the

center of the top layer of the slab, separating FCC and HCP stacking islands. For

some cases, one arm of the grain boundary was formed by a B-gap and the other

by an A-gap. In other cases both arms of the grain boundary were formed by A-

gaps. Atoms within a distance of4σ of the moving atom were free to move while

those further away were fixed. Using MD the initial and final configurations were

relaxed by slow cooling. Then a chain of seven intermediate configurations was

interpolated between the initial and final configurations. The chain of images was

then relaxed with elastic band forces applied to determine the minimum energy

path between the initial and final configurations. The maximum value of the en-

ergy along the minimum energy path less the energy of the initial configuration is

the energy barrier for the configurational change or atomic move.
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Table 4.1: Energy Barriers

Atomic move Figure Energy barrierǫ

FCC to HCP
“kink flip” B-gap 4.13 0.71

“corner cross” A-gap B-gap 4.14 0.72
“kink flip” A B corner 4.15 0.72

“corner cross” A-gap A-gap 4.17 0.41
“kink flip” A A corner 4.18 0.71

HCP to FCC
“kink flip” B-gap 0.74

“kink flip” A B corner 0.74
“kink flip” A A corner 0.77

The energy barriers in Table 4.1 are all of the order0.70ǫ, except for the “cor-

ner cross” at an intersection of A-gaps. This lower energy barrier reflects that

fact that the moving atom leaves a site with only two, rather than three, in-plane

nearest neighbours.

Based on these energy barriers and the geometric constraint that atoms in A-

gaps have limited motion, the “kink flip” across a B-gap appears to be the key

atomic process for grain boundary migration for the slab geometry and tempera-

ture range studied in this work.

Given its lower energy barrier, the “corner cross” at an intersection of A-gaps

occurs more frequently than the “kink flip”. Once such a move has occurred,

the changed atomic geometry allows “kink flip” moves to occur. A series of

“kink flip” moves which are (in aggregate) in the same direction can move a grain

boundary by one atomic row, in which case the average observed energy barrier

per move for the displacement of a grain boundary by an atomicrow (due to a

sequence of atomic moves) will be approximately0.70ǫ.

The energy barriers for the “kink flip” moves from HCP stackingto FCC stack-

ing are a little higher than for the “kink flips” from FCC to HCP. This will give
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a slight preference to HCP stacking over FCC stacking during the course of a

simulation.

Note that in respect of the migration of stacking fault grainboundaries in Irid-

ium, it has been argued by Busse [146] that “kink flip” moves arethe key pro-

cesses.

Figure 4.14: The top image shows the atom at the apex of the FCC island
(coloured red) about to “corner cross” and join the HCP stacking island. In the
bottom image the red coloured atom has just completed a “corner cross” move.
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Figure 4.15: In the top image the red coloured atom has attached to the HCP
stacking island creating kink sites on the HCP island. The bottom image shows
the pink coloured atom after it has just completed a “kink flip” move into one of
the kink sites.
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Figure 4.16: In the top image the red atom has attached to the HCP stacking island,
creating kink sites on the HCP island. The bottom image shows the grey coloured
atom after it has just completed a “kink flip” move, and attached itself to the HCP
island. Repeated “kink flip” moves will relocate the A-gap by one atomic row.
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Figure 4.17: This pair of images shows a triangular FCC islandmeeting an HCP
island producing a pair of intersecting A-gaps. The top image shows the red atom
about to “corner cross” from the FCC island to the HCP island. The lower figure
shows the short B-gap formed after the red atom has attached tothe HCP island.
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Figure 4.18: In this figure the top image shows a short B-gap formed after the red,
grey and pink coloured atoms have moved from the FCC island andbecome part
of the HCP island. In the lower image a gold coloured atom has made a “kink
flip” move across the B-gap at the apex of the FCC island and has attached itself
to the HCP island.
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Figure 4.19: The top image in this figure also shows a short B-gap formed after the
red, grey and pink coloured atoms have moved from the FCC island and become
part of the HCP island. In the lower image a gold coloured atom on the right hand
side of the FCC island has made a “kink flip” move across the B-gapat the apex
of the FCC island and joined the HCP island.
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4.6 Grain Boundary Migration

4.6.1 Changes in Grain Boundary Position

At each time step the position of a grain boundary was determined as the average

position of the rows of atoms along the length of the slab thatcontained a mixture

of atoms in FCC sites and HCP sites. During a simulation run the positions of the

grain boundaries along the length of the slab vary. Atoms cross back and forth,

attaching to and detaching from the two different stacking islands. A series of

“kink flip” moves can “zipper” along a grain boundary and moveit by one atomic

row. A sequence of such one row moves in the same direction will enlarge one

island at the expense of the other and reposition the grain boundary sited between

them.

Figure 4.20 demonstrates such a migration of grain boundarypositions over

time. In each simulation run a distinct random seed is used toprovide unique

random velocities to all the atoms, consistent with the chosen temperature for the

simulation. In this way each simulation run provides a distinct instance of grain

boundary behaviour. It was found that the detailed motion ofthe grain bound-

ary positions can differ significantly between separate simulation runs at the same

temperature, from the extensive motion as shown in Figure 4.20 to very limited

motion, and in some cases meeting and annihilating each other due to the peri-

odic boundary conditions. The migrations are composed of periods of stability or

steady progression, interspersed with occasional rapid excursions.
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Figure 4.20: This graph is a time trace of the migration of thetwo grain boundaries
over the surface of the slab during a simulation. The slab is located along the y-
axis of the graph, with the lower grain boundary (GB1) initially positioned at 25%
of the length of the slab and the upper grain boundary (GB2) initially positioned
at 75%. There is considerable rapid short range motion whichmakes the graph
appear as a broad band approximately5σ thick. Over a longer time period the
grain boundaries can migrate across a substantial proportion of the surface of the
slab. Because periodic boundary conditions are applied, grain boundaries reaching
the end of the slab are able to “wrap around”. Here the graph ofGB1 has been
unwrapped and extended beyond the end of the slab (hence the negative range for
σ).

4.6.2 Random Walk

For simulations at temperatureT = 0.35, it was found that the grain boundary

migration could be quantified in terms of the mean square displacement (MSD) of
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the grain boundary position

〈

∆x(∆t)2
〉

=
〈

(x(t + ∆t) − x(t))2〉

in a time interval∆t. The MSD curves differ significantly between individual

grain boundaries. However when the MSD curves of 30 individual grain bound-

aries were averaged, a clear linear trend emerged, as seen inFigure 4.21. The

diffusion coefficientD for two dimensional motion is related to the mean square

displacement by

D =
〈∆x(∆t)2〉

4∆t
.

The linear trend (constant slope) in the averaged MSD curve indicates that grain

boundary migration is a diffusive process withD = 0.016. That is, the grain

boundaries appear to be performing a simple random walk overthe surface of the

slab.
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Figure 4.21: The average grain boundary mean square displacement〈∆x(∆t)2〉)
versus∆t from MD simulations. This linear trend implies that the grain bound-
aries are are essentially following a diffusive random walk.

4.6.3 Temperature Dependence

The rate of grain boundary migration is found to be temperature dependent. Fig-

ure 4.22 shows grain boundary MSDs averaged over a number of MD simulations,

at a range of temperaturesT : 0.35, 0.40, 0.45 and0.50. In each of these cases,

〈∆x(∆t)2〉 shows a distinct linear trend with∆t. Higher temperatures produce

a more rapidly diffusing grain boundary, because energy barriers for atoms shift-

ing to another site are more likely to be surmounted at highertemperatures. The

respective diffusion coefficients are given in Table 4.2.
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Figure 4.22: This shows the average grain boundary mean square displacement
〈∆x(∆t)2〉) versus∆t for various temperatures from MD simulations. The lin-
ear relationship indicates that the motion is diffusive. The Diffusion coefficient
(which is proportional to the slope of graph) increases withthe simulation tem-
perature.

Table 4.2: Diffusion coefficient as a function of Temperature.

T D

0.35 0.016

0.40 0.022

0.45 0.037

0.50 0.046
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4.6.4 Grain Boundary Collision

The pair of grain boundaries on the slab are initially separated by 50% of the

length of the slab. Over time they may move closer together asa result of grain

boundary migration. In the case where both grain boundariescollide, the stacking

fault defect between the pair of islands is eliminated and the whole surface of the

slab then comprises a single stacking layer. From31 independent MD cases of

duration10000t at temperatureT = 0.35, the grain boundaries collided and the

stacking fault was eliminated in13 cases. The elapsed time until collision varied

widely, from 2100t to 9500t. When stacking faults had been eliminated in this

way, there were no instances in any of the simulations of spontaneous reformation

of stacking fault grain boundaries from a single stacking island.

4.6.5 Drift

The positions of grain boundaries on the slab may exhibit some systematic drift,

as suggested by the motion of grain boundary two in Figure 4.24, in addition to

random diffusion along the length of the slab. A cause of suchdrift may be the

slight preference for HCP stacking islands over FCC stacking islands, (subsection

4.3.2). The slab in these simulations has a central FCC islandwith HCP islands

at either end, and so growth of the islands at the ends of the slab is favoured at

the expense of the central island. This stacking preferenceis independent of the

distance between the grain boundaries.

We now show that when drift is present, the MSD will display some nonlin-

earity. In the case of drift as a simple linear function of time, let b be the drift

coefficient and∆xrw(∆t) the displacement for a purely diffusive random walk

(one without any drift). Then the displacement of the grain boundary position

with drift ∆xd(∆t) at time separation∆t can be expressed as:

∆xd(∆t) = ∆xrw(∆t) + b∆t

thus

∆xd(∆t)2 = ∆xrw(∆t)2 + 2∆xrw(∆t)b∆t + b2∆t2
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and since

〈∆xrw(∆t)〉 = 0

we have
〈

∆xd(∆t)2
〉

=
〈

∆xrw(∆t)2
〉

+
〈

b2∆t2
〉

.

Therefore when there is linear drift as well as random diffusion, the MSD will

show some parabolic curvature upwards.

In Figure 4.23 we see a comparison atT = 0.35 between the average MSD of

all grain boundaries from a set of simulations and the average MSDs for the lower

and the upper grain boundaries on each slab separately. The average MSD for all

grain boundaries is seen to be well approximated by a diffusive random walk with

slope0.066. Also we note that at large time separations the MSDs of the upper

and lower grain boundaries diverge from the MSD for all cases. These deviations

suggest some drift in grain boundary positions at large timeseparations. However

we must keep in mind that the aggregate MSD is formed as the average of the

MSDs for the upper and lower grain boundaries, and so must liebetween them.

We can assess the size of the drift coefficients for the upper and lower grain

boundaries by fitting quadratic polynomials to their MSDs. In both cases the drift

coefficients were found to be very small. For grain boundary one in Figure 4.23

the polynomial had a linear term (slope) coefficient of0.072 and a coefficient of

−6.1x10−6 for the quadratic term. This negative sign for the quadraticcoefficient

i.e. b2, is inconsistent with the linear drift model. The polynomial fit to grain

boundary two had a linear coefficient of0.068 and a coefficient of9.4x10−7 for

the quadratic term, givingb = 0.001. These fitted polynomials hadr2 = 0.99,

indicating that99% of the variance in the MSDs is explained by the fitted poly-

nomials. The result for grain boundary two is consistent with a small linear drift

component in the random walk.

The time traces of the average positions of the two grain boundaries shown

in Figure 4.24 suggest a slight drift of the grain boundariestoward each other

over long time periods. As mentioned earlier, this drift could be due to the slight

preference for HCP stacking islands over FCC stacking islands.
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Figure 4.23: In this figure the average grain boundary mean square displacement
〈∆x(∆t)2〉 versus∆t is shown for three cases. The cases are: all grain boundaries
(black) in aggregate, the lower grain boundaries (GB1) only (red) and the upper
grain boundaries (GB2) only (blue). These results are from 18MD simulations
at temperatureT = 0.35 in which the grain boundaries did not merge during the
10, 000t duration of the simulations. A linear fit, plotted in green, has been made
to the all grain boundaries data. The slope of this linear fit,0.066 is proportional
to the diffusion coefficient of the grain boundaries at this temperature.
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Figure 4.24: This figure shows time traces of the average positions of GB1 (red)
and GB2 (blue). At each time step, the average positions of each of GB1 and GB2
are determined by averaging the positions of the respectivegrain boundaries from
the 18 cases in Figure 4.23. Note that in these cases, the grain boundaries did not
collide during the simulations. The average position of GB1 shows no significant
change. GB2 trends downwards over time.

4.7 Occurrence of Atomic Rearrangements

We have undertaken extensive MD simulations of grain boundary migration over

a range of temperatures, allowing us to identify the rate limiting step in boundary

diffusion. For each of the temperaturesT = 0.30 to T = 0.45, in steps of0.05,

the average mean squared displacement of grain boundary motion was determined

based on24 to 28 grain boundaries at each temperature. At each temperature a

regression line was fitted to the mean squared displacement graph.
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When the grain boundary diffusion follows a thermally activated Arrhenius

process we have

D = Ae
− ∆E

kBT .

This can be rearranged (askB = 1 in reduced units) to

ln D = ln A − ∆E
1

T
.

Thus in such cases there is a linear relation ship betweenln D and inverse temper-

ature, with the negative of the slope giving the activation energy.

Figure 4.25 shows an Arrhenius plot, i.e.ln D vs1/T , of the grain boundary

diffusion coefficientD = 〈∆x(∆t)2〉 /4∆t, which demonstrates a linear rela-

tionship. The slope of the line gives an energy barrier of∆E = 0.70ǫ, which

presumably corresponds to that of the rate limiting step in grain boundary diffu-

sion.

As expected, this is very close to the NEB calculated energy barrier for the

“kink flip” move in section 4.5, supporting the hypothesis that the “kink flip”

move is the key mechanism for grain boundary migration over the range of pa-

rameters studied. That is, for constant temperature situations with temperatures in

the rangeT = 0.30, . . . 0.45, without deposition of adatoms and without signifi-

cant multiple-atom concerted moves.
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Figure 4.25: The dependence of the log of the grain boundary diffusion coeffi-
cient, D, on temperature, calculated using MD. The slope of the plot gives an
energy barrier∆E = 0.70ǫ. As expected this is very close to the barrier for the
“kink flip” move (shown in the inset) calculated using the NEBmethod, which
limits the diffusion of the boundaries.
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4.8 Summary

In this chapter we have used MD simulations with the Lennard-Jones potential to

model dynamic stacking fault grain boundaries in an epitaxial layer on a (111) sur-

face. These simulations reproduce experimentally observed features where stack-

ing fault grain boundaries are composed of a mix of A-gaps andB-gaps. The

grain boundaries continually alter their shape and position. The grain boundaries

migrate over the surface following a temperature dependentrandom walk. Over

long time periods a slight drift in grain boundary position is observed, in addition

to the random diffusion. A pair of grain boundaries can meet and annihilate each

other, eliminating the stacking fault. The key atomic process for grain boundary

migration is shown to be the “kink flip” move, as proposed by Busse [146].
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5.1 Hybrid Methodology

A hybrid MD KMC modelling methodology has been developed to deal with the

long time scales involved in modelling epitaxial growth, while maintaining the

fidelity provided by MD in key domains. In this work the hybridmethodology

has been applied to follow the propagation of a stacking fault grain boundary

between FCC and HCP islands nucleating on a FCC (111) surface.

This hybrid methodology combines Molecular Dynamics and Kinetic Monte

Carlo methodologies within a single concurrent atomistic simulation. Different

domains within this hybrid simulation are modelled with different methodologies

(MD or KMC) and as the simulation progresses the methodology applied to a

given domain is changed (perhaps several times) as necessary, so that the stacking

fault grain boundary is always modelled with MD, as it moves about the surface.

A great advantage of this hybrid methodology is that when compared to an

equivalent full MD simulation, the computer time for the hybrid simulation is re-

duced in proportion toM
N

, whereM is the number of atoms in MD domains and

N is the total atoms. The reduction in computational cost of the hybrid methodol-

ogy comes largely from avoiding the computation of forces between pairs of KMC

atoms. If the system is described by a short-range potentialwith a cut-off, then the

MD force calculation employing Verlet lists (Chapter 3) would ordinarily scale as

O(N), whereN is the total number of atoms. In this case, a domain decomposi-

tion with distinct KMC domains that are significantly largerthan the force cut-off

will maximise the number of pairs of KMC atoms that can be ignored in the force

calculation.

5.2 Features of the Hybrid Method

5.2.1 Methodology Domains

In this work our goal is to follow the propagation of grain boundaries between

FCC and HCP islands nucleating on an FCC (111) surface.
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The KMC methodology is only able to simulate a set of predetermined events,

whereas MD simulates all changes resulting from the forces between the atoms.

Therefore our hybrid approach applies MD to those domains with the most com-

plexity, i.e. in proximity to the grain boundaries. The remaining atoms are con-

tained in KMC domains. The system is adaptively partitionedso that the grain

boundaries are always contained in MD domains. This split ofmethodologies

into distinct domains reduces the computational cost compared to applying MD

to all the domains. The MD domains contain the grain boundaries so that accuracy

is retained where it is important to do so.

5.2.2 Domain Interface

However, there are several artefacts that may potentially arise at the interface

between the MD and KMC domains. The first involves the reflection of waves

from the rigid atoms in the KMC lattice. This problem also arises in hybrid MD-

continuum methods, and several techniques have now been proposed to deal with

this issue.

To and Li [147] have developed an approach called the Perfectly Matched

Layer (PML). The PML is sited between regions modelled with distinct method-

ologies, where it damps out spurious reflections of waves. Inthe PML, a damping

term proportional to velocity is applied to atom motion. In addition, the spacing

between the atoms is adjusted, thereby changing the stiffness of the system. E and

Huang [148] approach the problem of minimising the reflection of waves from

an atomistic-continuum interface by effectively applyingadditional forces at the

interface. Cai et al. [149] develop time dependent boundary conditions in order

to reduce the reflections of elastic waves.

We note that the rigidity of the KMC domain will also bias the effective hop-

ping rates of MD atoms near the interface. As the primary object of interest in this

study is the migration of grain boundaries, we have dealt with these artefacts by i)

applying a Langevin thermostat [96] to the atoms in the MD domains to damp the

reflection of waves (in view of the use of such damping in the PML scheme) and
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to keep the MD atoms in thermal equilibrium, and ii) increasing the widths of the

MD domains until we observed the convergence of the grain boundary diffusion

coefficient.

5.3 Initial Configuration

5.3.1 Arrangement of Atoms

We have simulated the behaviour of a stacking fault grain boundary in the top

atomic layer of a (111)-terminated FCC slab of atoms. As discussed in Chapter 4,

parts of the top atomic layer are in HCP stacking, producing a stacking fault grain

boundary where they meet the FCC stacking atoms in the top layer. The stacking

fault grain boundary is initialised as a missing row of atomsacross the narrow

direction (width) of the slab. The details of the slab of atoms are given in Chapter

4.

5.3.2 Domain Geometry

The initial configuration of a slab with an FCC stacking islandin its centre and

HCP islands on its ends is shown in Figure 5.1 (Top). A close-upof one of the

grain boundaries on this slab, in its initial configuration,is shown in Figure 5.1

(Bottom).
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Figure 5.1: (Top) View from above looking down on the initialconfiguration of
grain boundaries on a slab. The blue and gold atoms in the MD domains are on
HCP and FCC sites respectively, while the grey and red KMC atomsare located
on HCP and FCC sites respectively. The grain boundaries lie in the MD domains
at the juncture of the blue and gold MD atoms. (Bottom) Close up of a grain
boundary in its initial configuration. Because the blue and gold MD atoms are
on different sites, their respective islands cannot interlock at the grain boundary.
The atomic scale “gap” at the grain boundary is sufficient to allow atoms to move
back and forth at random across the grain boundary from one stacking island to
the other. Over time this atomic motion changes the shape of the grain boundary
and also alters its location along the slab, as one island type grows at the expense
of the other.

The slab is of the same design as the slab used in the MD simulations in

Chapter 4. The pair of grain boundaries are contained in separate MD domains,

with KMC domains encompassing the rest of the atoms in the slab. Because of the

periodic boundary conditions, the domains at either end of the slab are effectively
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one. When the configuration of the slab is written out, the atoms are colour coded

to identify the MD and KMC domains on the slab. This colour coding also shows

which stacking, FCC or HCP, applies to a particular domain. Table 5.1 gives

the correspondence between domains, stacking and colours.The colour coding

enables the location and extent of the domains and stacking islands to be followed

visually during a simulation.

Table 5.1:Atom Colour Code

Domain Stacking Colour
KMC HCP Grey
KMC FCC Red

MD HCP Blue
MD FCC Gold

Initially there are four domains, two MD domains (containing their respective

grain boundaries) and two longer KMC domains. One KMC domainis between

the two MD domains and the other “split” around the ends of theslab. As the

simulation progresses, migration of the grain boundaries towards each other may

result in the (temporary or permanent) coalescence of the two MD domains into

one, eliminating the central KMC domain as well, as occurredin the MD simula-

tions.

The domains are rectangular in shape covering the width and depth of the slab.

The interface between adjacent MD and KMC domains is a flat surface parallel

to the narrow end of the slab, covering the width and depth of the slab. At this

interface, the MD atoms “feel” a wall of immobile KMC atoms.

The MD domains are each of lengthL with the KMC domains making up the

remaining length of the slab.
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5.3.3 MD Domain Length

The length of the MD domain,L, is a key element in the hybrid methodology

developed here. The MD domain needs to be of sufficient lengththat the dynam-

ics of the grain boundary contained within it is unaffected by the presence of the

blocks of immobile atoms comprising the adjacent KMC domains. At the same

time the number of MD atoms, and henceL, should be kept small to minimise the

computational cost of the hybrid model, which is dominated by the computational

cost of MD. Figure 5.2 shows the results of several simulations using the domain

decomposition algorithm without KMC events. Atoms in the KMC domains re-

main fixed on the lattice unless the grain boundary migrates,in which case the

adaptive domain decomposition converts these domains to MDdomains to keep

the MD domain centred on the grain boundary.

Using this approach we have examined the dependence of grainboundary mi-

gration on the lengthL of the MD partition. In Figure 5.3, we plot the mean square

displacement in a time interval versus this time interval for a variety of MD do-

main lengths, including a full MD simulation without partitioning. Once again

the linear growth with time indicating a diffusive random walk is seen. Note the

convergence of〈∆x(∆t)2〉 to that of the full MD result as the length of the MD

domains increases with good agreement whenL = 30σ.

The default lengthL of an MD domain is thus set to be30σ. As a simulation

progresses, a grain boundary can become more convoluted andtake up a greater

length of the slab, i.e. the width of the grain boundary may grow as discussed in

Chapter 4. A sufficiently wide grain boundary may spread, requiring an increase

in the size of the MD domain. The algorithm used will increasethe size of the MD

domain where necessary during the course of the simulation,as discussed further

in section 5.4.3. The configuration of a grain boundary can fluctuate considerably

during a simulation. Thus the length of its encompassing MD domain can also

vary, subject to the minimum length of30σ.
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Figure 5.2: Evolution of the grain boundary position (beingthe average position
of the boundary across the width of the slab) during typical simulations using
the MD method, the hybrid method withL = 5σ and the hybrid method with
L = 30σ. The mobility of the boundary in theL = 5σ MD domain is clearly
suppressed.
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Figure 5.3: The mean square displacement〈∆x(∆t)2〉 versus∆t for the MD
simulation and for the hybrid method for various MD domain sizes. The slight
sublinearity observed in the MD simulation graph is just dueto limited statistics
- as the results of more runs are included in the average the graph becomes linear
for longer durations.
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5.3.4 KMC Lattice

Because of the existence of both FCC and HCP sites on the (111) surface of the

slab, the usual triangular lattice is not sufficient for the KMC lattice in this simula-

tion. The grain boundaries separate islands of atoms on FCC sites from islands on

HCP sites, so the KMC lattice must be constructed to allow bothFCC and HCP

sites to be identified. A “refined lattice” with a finer triangulation mesh than the

(111) nearest neighbour triangulation was used. The KMC atoms occupy posi-

tions on this refined triangular lattice given byr = naa + nbb + nc

√
2c, where

|a| = |b| = |c| and thea andb axis lie in the (111) plane, the plane of the slab.

They cross at a sixty degree angle and thec axis is normal to the surface of the

slab. In this coordinate system an atom at positionr in a close-packed facet will

have three nearest neighbours at either{r + a + b, r + a − 2b, r − a − b} or

{r+2a−b, r−2a−b, r−a+2b}, as shown in Figure 5.4. Note that the nearest

siteswill be unoccupied in a closest packed plane, but in the course of a simulation

any of the sites in the lattice could become occupied at some point. The nearest

neighbour distance for an FCC crystal in this coordinate system is
√

3|a|.
KMC atoms can only move to or be deposited on sites which are unoccu-

pied, have unoccupied neighbouring sites and aresupportedby a triad of nearest

neighbor atoms in the layer below. Movements of KMC atoms in the plane are re-

stricted to a subset of the six neighbouring lattice sites{r±a, r±b, r±(a − b)},

to prevent atoms being sited within the nearest neighbour distance of each other.
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Figure 5.4: The in the (111) plane refined lattice vectors a and b are shown with
respect to the site of the central atom. The six in plane nearest neighbour atoms
are labelled with their relative positions in terms of a and b.

5.4 Hybrid Algorithm - Domain Adaptivity

5.4.1 Algorithm

The Algorithm for the hybrid Methodology is composed of the following steps.

• Initialisation

• Initial Domain Identification

• Dynamic Steps: repeat the following steps for the duration of the simulation

– KMC Step

– MD Step

– Domain Identification

– Data Collection

The initialisation step reads in the coordinates of the atoms in the slab in its initial

configuration. Atoms are then given velocities consistent with the temperature
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set for the simulation. In the domain identification step theslab is divided up

into MD and KMC domains. The MD domains are set so that they contain the

grain boundaries. Grain boundaries are recognised when rows of atoms across the

width of the slab contain a mix of FCC sited and HCP sited atoms. The dynamic

phase now follows, where for the duration of the simulation there is a sequence

of a KMC step applied to the KMC domains, followed by an MD step. Each

KMC step carries out a KMC event on a KMC domain and increases the amount

of time simulated. The subsequent MD step performs an MD simulation for a

period equal to the time increase from the previous KMC step.At the start of

the MD step, any atoms that were in a KMC domain in the previousiteration but

are now encompassed in an MD domain are assigned velocities consistent with

the temperature, i.e. their kinetic energies are determined from the temperature

of the simulation using the equipartition theorem. Before going onto the next

KMC step the division of the slab into MD and KMC domains is checked and

adjusted if necessary. When a grain boundary changes its extension along the slab

or its average position, the encompassing MD domain may needto have its size or

location adjusted and the adjacent KMC domains are also adjusted accordingly.

Periodically, data on grain boundary positions and the atomic configuration of the

slab are written to files.

5.4.2 Initialisation

In the initialisation stage of a simulation, a status list classifying each atom as

mobile or fixed is constructed. This list is subsequently used to determine which

simulation methodology will apply to a given atom at a particular time in the sim-

ulation. Those atoms classified as mobile are subject to the MD methodology,

while those classified as fixed are treated by KMC. At first all the atoms are clas-

sified as being mobile. A list of the Langevin damping parameter γ (see Chapter

3) to be applied to each atom is also constructed. The standard value isγ = 1.0 in

these simulations. All atoms in the initial configuration are given random initial

velocities such that their initial kinetic energies correspond to the kinetic tem-



CHAPTER 5. HYBRID MD KMC MODEL 104

perature chosen for the simulation. The standard temperature for the simulations

is a reduced temperature ofT = 0.35. The average velocity is then subtracted

(component-wise) from each atom’s velocity, to remove any linear momentum of

the slab as a whole. This ensures that velocity is measured inthe center of mass

frame and the thermostat maintains the temperature set. Foreach simulation a

different random seed is used to generate the initial velocities, thus making each

simulation a distinct realisation of the evolution of the grain boundaries.

5.4.3 Initial Domain Identification

For the purposes of determining the location of the MD and KMCdomains, the

length of the slab is divided into bins, each covering the full width and depth of

the slab but of length10σ. These bins are effectively a series of stripes traversing

the slab along its length. Each atom in the slab is then allocated into the bin that

encompasses it. For each bin the siting (FCC or HCP) of its top layer atoms is

calculated, based on the lattice site of each atom (see section 5.3.4). Only those

bins with a mixture of HCP and FCC sited atoms contain a grain boundary. The

bins that contain a grain boundary, plus the adjacent bin on either side (buffer

bins), together comprise an MD domain. Initially a grain boundary is fully en-

compassed by a single bin. In between updates of the locationand extent of the

MD domain, the buffer bins of dynamic atoms on either side provide some space

for the grain boundary to migrate or to take up a more convoluted shape, without

being impeded by fixed KMC atoms. The atoms in the remaining bins have their

status set to fixed and comprise the KMC domains. The atoms in the bottom layer

of the slab remain static throughout the simulation.

5.4.4 Dynamic Steps

Once initialisation is complete and the location and extentof the initial MD and

KMC domains have been determined, a series of dynamic steps is carried out.

Each dynamic step comprises a KMC step followed by an MD step for the same
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duration of simulation time. These steps update the atom configuration of the

slab. Before the next dynamic step, the MD and KMC domains are reviewed and

adjusted if there has been any significant change in the location or extent of the

grain boundaries.

5.4.4.1 KMC Step

For atoms in the KMC domains the energy barriers to hop to a neighbouring site

are determined from the number of nearest neighbours, as discussed in Chapter

3. The KMC routine attempts to choose a KMC atom from one of theKMC

domains to hop from its current lattice site to an empty adjacent site. The fixed

atoms which are all in KMC domains are located exactly on lattice sites. However,

the dynamic atoms in the MD domains are not in general exactlyon lattice sites,

as they continually vibrate about their equilibrium positions (the lattice sites).

Consequently, for KMC atoms at the interface between a KMC domain and an

MD domain, both the number of their nearest neighbours and the number and

location of adjacent vacant sites is uncertain. To resolve this issue, the KMC

routine notionally allocates each MD atom to its nearest vacant lattice site, which

in most instances is where it would reside if it had been simulated as a KMC atom

from the start.

A table of nearest neighbours and adjacent vacant sites for each KMC atom is

then built. This gives the list of possible hops for the current atomic configuration.

One hop is picked at random (but in proportion to the hop ratesof the currently

possible hops) from this list. The chosen atom is then moved to its new location.

This hop advances the simulation time by an incrementtn [138], which de-

pends on the hopping rate for the chosen hop. If the hop has a low energy barrier

(i.e. the chosen atom has few neighbours) compared to the energy available (

kBT ), then such a hop would be expected to occur frequently and occur in a short

time, with a much longer time expected when the energy barrier is larger. For ex-

ample, with an attempt frequency of1013, temperature of0.35 and energy barrier

of 0.3 the expected time for a hop is on the order of10−13, while for a larger energy

barrier of3.3 the expected time is on the order of10−7. Thus the time increment
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tn is essentially this expected occurrence time. The rate for aKMC hop depends

on the location of neighbouring MD (as notionally allocatedto lattice sites) and

KMC atoms. The more neighbours, the more difficult it is for anatom to hop

away from its current site and the lower its hop rate. If the advance in timetn is

less than1t, the KMC step is repeated (as often as necessary) until the aggregate

time advance
∑

tn exceeds1t. This ensures a minimum time period of1t for the

subsequent MD step to cover. Setting this minimum time avoids short MD steps

as these would not produce any significant change in atomic configurations while

adding to the computational cost.

5.4.4.2 MD Step

Now there is a period of MD simulation in the same way as in Chapter 4. Any

atoms that are new to an MD domain because of resizing of the domains since the

last MD step are assigned velocities consistent with the simulation temperature.

To ensure that the MD and KMC domains interact with contemporaneous versions

of each other, the evolution of the MD and KMC domains is synchronised as

much as possible. Thus the MD step, in which the positions andvelocities of all

the dynamic MD atoms are updated (stepped forward in time) byan MD time

stepδt = 0.01, is run
∑

tn
δt

times to move forward the MD domains by the same

amount of simulation time as the KMC domains.

5.4.4.3 Inter-Domain Transfers

As a result of the hop(s) during the KMC step, an atom that was in a KMC domain

may now be located in a MD domain. In that case its status is changed to a mobile

MD atom and it is given a random velocity consistent with the temperatureT as

in the initialisation stage. Also, as a result of (subsequent) MD steps, an MD atom

may diffuse into a KMC domain; its status is then immediatelychanged to a fixed

KMC atom and it is placed on the nearest vacant lattice site.
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5.4.4.4 Domain Location Update

At the end of each dynamic step the atoms are repartitioned into KMC and MD

categories, using the same methodology employed in the initial decomposition.

The time interval between these updates to the domain locations, is usually of

the order of1t or 100δt. From the square root of the slope of the MSD graph

for full MD simulation (Figure 5.3), we can estimate the typical displacement

of a grain boundary as0.26σ per 1t. In the repartitioning, those atoms withy

coordinate (long axis of the slab) within15σ of the correspondingy position of a

grain boundary become MD atoms while the rest are classified as KMC atoms. In

this way the MD domains remain centred around the grain boundaries even as the

grain boundaries change their shape and migrate over the surface of the slab.

5.4.4.5 Data Collection

During each simulation, information on the positions of thegrain boundaries are

recorded for each integer value oft. The positions of the grain boundaries were

tracked using the same binning approach employed in identifying the MD do-

mains encompassing the grain boundaries, but using much finer bins of length

1.7σ. This data was subsequently used to provide time traces of the migration of

grain boundaries along the surface of the slab, and to enablecalculations of the

grain boundary diffusion coefficients to be made. Snapshotsof the full atomic

configurations were recorded approximately every 100t.

5.4.5 Total Simulation Run-Time

The required simulated time is a parameter fed into the modelat commencement

of a simulation run. Typically, simulations were run until the simulation timet

reached 10,000, i.e. 1 million MD steps of durationδt each. Runs of this length

allow for the possibility of grain boundaries diffusing most of the length of the

slab, meeting and then coalescing.
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5.5 Off-Lattice Events

Any events that are off-lattice (with respect to the latticeused here) will not be

captured by KMC. However, the simulations have shown (see section 5.7.1) that

atoms on off-lattice sites are important in grain boundary pinning. The use of MD

is thus clearly necessary to observe effects such as these which have not already

been built into the KMC, and this is a key strength of this hybrid methodology.

5.6 Effect of Proximity to a KMC Domain

The atoms in the KMC domain sit rigidly on lattice sites whilein the MD domain

atoms vibrate about their equilibrium positions. These equilibrium positions are

the analogues of the KMC lattice sites. As can be seen in figure5.5, an extension

of the KMC lattice into the MD domain would closely match lattice sites with

equilibrium positions in most cases.

Figure 5.5: Image of a grain boundary in an MD domain which hastransformed
into the zigzag conformation. The edges of the adjoining KMCdomains are visi-
ble on the left and right sides of the image. The equilibrium positions of the MD
atoms are closely aligned to a continuation of KMC lattice sites

MD atoms further than the force cut-off distance from the KMCdomain only
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experience direct forces from other similarly mobile MD atoms. There is the

possibility of indirect interactions between MD and KMC atoms further than the

cut-off distance apart, due to reflections of elastic waves off rigid KMC atoms.

In contrast, MD atoms within the force cut-off of the KMC domain directly ex-

perience forces from the rigid KMC atoms. This alters their motion compared

to the rest of the MD atoms. This can be seen from the energy barriers (depths

of potential wells) that MD atoms in different locations experience. The energy

barriers for key atomic motions (hops between equilibrium positions) when the

MD atoms were in close proximity to the KMC domain were calculated using

the NEB method. Figure 5.6 shows the results of these calculations. These cal-

culations were carried out using an MD domain of length30σ, with the grain

boundary established at a number of different distances from the KMC domain in

each case. When atoms in the grain boundary are within approximately5σ of the

KMC domain, the energy barriers for “corner crossing” and “kink flip” hops are

affected. The “kink flip” hop energy barrier increases, making “kink flip” hops

less frequent. Conversely, the “corner crossing” hops are slightly more frequent.

Overall the net effect is a small reduction in grain boundarymobility when they

are close to KMC domains.

This effect of the proximity of rigid KMC atoms on the motion of MD atoms

also indicates a minimum size for L, the length of the MD domain. Figure 5.7

shows the change in “kink flip” and “corner crossing” energy barriers for various

values of L. These show larger changes than in Figure 5.6, because MD atoms are

now in close proximity to two KMC domains. The distance of MD atoms in the

grain boundary from a wall of KMC atoms needs to be more than approximately

8σ to avoid any effects. Hence on these grounds L should be at least16σ.

These effects of the proximity of KMC domains (and their walls of rigid KMC

atoms) on MD atom energy barriers, and hence motion, are small and localised to

a range of approximately8σ. Consequently they are not sufficient to fully explain

the reduction in grain boundary mobility observed when the MD domain length

L is less than some30σ. A further small part in the explanation may be some

reduction in MD atom vibration rates due to the proximity of KMC domains. A



CHAPTER 5. HYBRID MD KMC MODEL 110

greater part of the explanation, however, is thought to be due to elastic interactions

between MD atoms and the walls of rigid KMC atoms. Any elasticwaves propa-

gating in the MD domain that meet the KMC walls will be completely reflected,

without diminution, back into the MD domain. In contrast, such waves would con-

tinue to propagate much further, and likely be attenuated, in a simulation that was

fully comprised of MD atoms. We think that such nonphysical reflected waves

may interfere with the propagation of the grain boundaries.The reflected waves

may interact with the normal modes and thereby alter the attempt frequency as

determined by the Vineyard formula in Chapter 3. Altering theattempt frequency

changes the hop rates of the events that move the grain boundaries. This could

be tested by adding wave attenuation regions between the MD and KMC domains

and measuring the effect of their presence on grain boundarypropagation. In

Chapter 6 we discuss ways of reducing such reflections to minimise this artefact

and potentially enable a smaller MD domain length L to be usedin the hybrid

model.

5.7 Grain Boundaries and Adatoms

To demonstrate the full hybrid scheme we have investigated the effect of adatoms

on grain boundary mobility. It is important that the rates for events in the KMC

model are consistent with corresponding processes in the MDdomain. To ensure

this we simulated adatom diffusion in a purely MD system at temperatures up to

0.2 ǫ/kB. The resulting diffusion coefficient showed the usual Arrhenius depen-

dence on temperature with an energy barrier of 0.29ǫ. This compares well with

the barrier height estimated using the NEB method of 0.31ǫ. In addition, we were

able to compute the prefactor for the KMC rate using the MD simulations which

has a value of 0.38(mσ2/ǫ)1/2. As the main role of KMC is to model adatom

diffusion, rates for other processes were computed using this prefactor, and the

energy barrier calculated using the NEB method combined with a bond counting

scheme.



CHAPTER 5. HYBRID MD KMC MODEL 111

Nearest wall distanceσ

E
ne

rg
y

B
ar

rie
r

(ε)

2 4 6 8 10 12 14 16
0.71

0.72

0.73

0.74

0.75

0.76

Corner Cross FCC to HCP
Corner Cross HCP to FCC
Kink Flip FCC to HCP
Kink Flip HCP to FCC

Figure 5.6: This figure shows how the energy barriers for the “kink flip” and
“corner crossing” hops are effected by proximity to the KMC domain and its rigid
atoms. Once the grain boundary is more than approximately5σ from the KMC
domain there is essentially no effect on these energy barriers
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Figure 5.7: The energy barriers for the “kink flip” and “corner crossing” hops in
this figure were carried out using grain boundarys centrallyplaced in MD domains
of various lengths L, from3σ to 30σ. In each case the “kink flip” and “corner
crossing” energy barriers were determined using the NEB method. The grain
boundary needs to be more than approximately8σ away from any KMC domain
to avoid artefacts.
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5.7.1 Pinning by Adatoms

Using the set-up discussed above we simulated boundary movement using the

synchronised hybrid method for a variety of adatom coverages. In these cases the

adatoms were initially randomly distributed over the top surface of the slab. They

may diffuse across the boundaries between MD and KMC domains, in which

case they are treated in the same way as inter-domain transfers. These simula-

tions used a reduced temperature ofT = 0.35 and a Langevin damping parameter

γ = 1. They were run for10, 000 reduced time units. Figure 5.10 compares the

displacement in time of a boundary at 2.5% adatom coverage with a boundary at

30% adatom coverage. Clearly, at 30 % coverage the grain boundary becomes

pinned for long periods of time by adatoms or adatom islands,as indicated by

the steps in the 30% trace. At intermediate levels of coverage, intermittent pin-

ning of grain boundaries can be observed. In Figure 5.8 the time trace shows

temporary pinning of a grain boundary at 10% adatom coverage, by interaction

with an adatom island. This pinning effect is also summarised in Figure 5.11,

which shows〈∆x(∆t)2〉 vs∆t for a variety of adatom coverages. Also shown in

the inset is one of the principal pinning mechanisms identified, where a kink site

has become decorated by a diatomic island. Note that the pinning atom is in an

off-lattice position, sitting in a fourfold hollow above the A-gap. This effect has

recently been observed experimentally in homoepitaxial growth on Ir (111) [146].

Other possible mechanisms for pinning include: a line of adatoms decorating an

A-gap away from a kink site, adatoms inserting into the spaceat the intersection

of an A-gap and a B-gap, and an adatom inserting into the top layer of atoms ei-

ther in a B-gap portion of a grain boundary or in a vacancy site close to the grain

boundary. Highly convoluted grain boundaries may offer more sites for adatom

insertion and subsequent boundary motion pinning.

5.7.2 Trapping by Adislands

Trapping or constraints on grain boundary motion are also caused by larger adis-

lands (aggregations of adatoms). The presence of such adislands makes it difficult
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for grain boundaries to propagate past them. Consequently when such an adis-

land forms (which can only happen at higher coverage levels), grain boundary

motion can be constrained to continually “bounce off” the adisland as shown in

Figure 5.8. Similarly a pair of adislands can constrain a grain boundary to oscil-

late between them. In order for a grain boundary to propagatepast an adisland,

the atomic stacking in all the surface layer atoms directly beneath the adisland

must be changed to the alternate stacking, but the presence of the adisland atoms

above hinders this change. The larger the adisland, the moredifficult it is for a

grain boundary to propagate past the adisland. It would appear that it is only when

the part of the grain boundary that meets the edge of the adisland happens to have

the appropriate local configuration, e.g. a kink site in the grain boundary meeting

the adisland edge, that the boundary can propagate under theadisland. The adis-

lands themselves do not necessarily change their stacking as the result of a grain

boundary passing under them.

5.8 Effect of Varying Langevin Parameterγ

The parameterγ acts as a drag force opposing the velocity of the MD atoms in a

simulation. The temperature is maintained by random velocity “kicks” which, on

average, offset the damping due toγ.

To investigate the effect ofγ in the hybrid model, sets of hybrid MD KMC

runs were carried out withγ = 2 andγ = 4 respectively. In figure 5.12 we

show the mean squared displacement of the grain boundary position for these

runs, compared to the equivalent results for the standard cases.

As γ is increased there is a distinct reduction in the mean squared displace-

ment. That is, by damping the motion of the individual atoms,the mobility of the

grain boundary is also reduced.

To gain further insight into how the variation inγ altered the mobility of the

grain boundary, the effect of varyingγ on the diffusion of an adatom was studied.

For these simulations an adatom was placed on top of a small slab with periodic

boundary conditions applied in both in-plane directions. Since there were rela-
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Figure 5.8: Time trace of two grain boundaries in a single simulation with 10%
adatom coverage. Over the time period 8000-9000 the downward motion of the
upper grain boundary (GB2) was constrained (as indicated by the flattening of
the bottom of the time trace), due to interaction with an adatom island that had
nucleated between the two grain boundaries. The motion of GB1was constrained
throughout the simulation. The slab used here was of length108σ.
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Figure 5.9: This image corresponds to time 8400t in the time trace in Figure 5.8
where the grain boundaries are in close proximity. GB1 is on the left and GB2
is on the right. The adisland that has nucleated on top of the FCC stacking is-
land is preventing GB2 from propagating any further to the left (down the slab in
Figure 5.8).

tively few atoms in this full MD simulation, it was feasible to carry out a single

run for a relatively long time300, 000t, in order to produce sufficient data for

statistics. Runs were carried out with a range of values ofγ. In figure 5.13 we see

the mean squared displacement of the adatom at differentγ. The same trend of

decreasing mobility with increasingγ is evident here. The reduction in slope of

the mean squared displacement lines, and hence the diffusivity, from theγ = 1 to

γ = 2 cases is approximately three times larger than the reduction from theγ = 2

to γ = 3, andγ = 3 to γ = 4 cases. This appears to be distorted somewhat by the

upward curve in theγ = 1 case at large time separation. Making an allowance for

this, the reduction in slope fromγ = 1 to γ = 2 is still approximately twice the

reduction of these other two cases.

When the effect ofγ is only indirect, i.e. γ is applied to the atoms in the

slab but not the adatom, the pattern of decreasing diffusivity with increasingγ is

no longer found. In Figure 5.14, it is shown that in this case the mean squared

displacement and hence diffusivity are approximately the same for all values ofγ,

without any clear trend asγ varies. This result makes it seem unlikely that changes

in γ affect grain boundary mobility through an indirect mechanism. Consequently

the effect of variations inγ on the grain boundary mobility is expected to be due
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Figure 5.10: Time series showing the movement of grain boundaries at different
adatom coverages (30, 2.5 and 0 % respectively). At 30% coverage the boundaries
are generally pinned by adatoms and adatom islands, although motion can occur
when the boundaries pass under islands (two such events are noted by arrows).
At 2.5 % the pinning is not observed although mobility is impaired when the
boundaries encounter adatoms.
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Figure 5.11: The mean square displacement〈∆x(∆t)2〉 of the boundary versus
∆t for a range of adatom coverages from 0% to 60%. The inset showsthe main
mechanisms for pinning of the boundaries: a kink site decorated by an adatom in
an off-lattice position.
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to the direct action ofγ on those atoms that comprise either side of the grain

boundary at any given time.
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Figure 5.12: In the MD cases and the base MD KMC case, the Langevin param-
eter is at it standard valueγ = 1. From this plot it is clearly seen that the mean
squared displacement of grain boundary position reduces asthe Langevin damp-
ing parameterγ increases. In theγ = 4 case, the downward curve of the graph
at longer time separations is attributed to the smaller sample size at these longer
time separations. The sample size was smaller because of theshorter time series
in this case.
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Figure 5.13: This plot shows the mean squared displacement for a single adatom
diffusing over a (111) surface. The slope of these lines reduces and hence the
adatom’s diffusivity declines as the Langevin parameterγ increases. In this work
the standard value for this parameter isγ = 1. In these adatom diffusion simula-
tionsγ has been applied to all mobile atoms, including the diffusing adatom.
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Figure 5.14: The mean squared displacement for a single adatom diffusing over a
(111) surface. However in this case, unlike Figure 5.13,γ has NOT been applied
to the diffusing adatom. Hence whenγ only indirectly influences the adatom,
there is no longer any consistent effect on the adatom’s diffusivity.

5.9 Benefits of the Hybrid Scheme

5.9.1 Computational Cost Reduction

The following table compares the run times for full MD and thehybrid scheme

in different sized (total atom number) simulations. Case B uses a slab of atoms

more than twice the size of that used in Case A. In all cases, atoms in the bottom

layer of the slab are kept fixed to ensure that the slab retainsits shape. Hence even

in the full MD cases these fixed atoms are not MD atoms (they arenot explicitly
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included in the force calculation). All cases ran for a simulated time of100t.

The run time is in seconds. In the hybrid scheme, the MD atoms only exist in

domains around the grain boundaries, so the number of MD atoms does not scale

with the size of the simulation. However, in the hybrid scheme when a grain

boundary changes length or curvature, the size of the MD domain encompassing

it is adjusted accordingly, altering the numbers of MD and KMC atoms. In this

table the average number of MD atoms and KMC atoms during eachrun is shown.

Table 5.2: Run time comparison.

Model Case Total atoms MD atoms KMC/Fixed atoms Run time (s)
Hybrid A 5182 3235 1947 2620

MD A 5182 4318 864 3356
Hybrid B 12350 3245 9105 5808

MD B 12350 10298 2052 16599

Case A: The reduction in MD atoms in the hybrid run relative to the full MD run

is (4318 - 3235)/4318 = 0.251 i.e. 25.1%. The run time reduction relative to MD

is (3356 - 2620)/3356 = 0.215 i.e. 22%. So here a 25.1% reduction in the number

of MD atoms gives a 22% reduction in run time, relative to the full MD case.

Case B: The reduction in MD atoms in the hybrid run relative to the full MD

run is (10298 - 3245)/10298 = 0.684 i.e. 68.5%. The run time reduction relative to

MD is (16599 - 5808)/16599 = 0.65 i.e. 65%. Thus in Case B a 68.5%reduction

in the number of MD atoms produces a 65% reduction in run time,with respect

to the full MD case.

Overall the decrease in run time equates to the proportionate reduction in MD

atoms. This result is consistent with the fact that in MD simulations the force

calculation consumes almost all the run time. Consequently,MD run time scales

with the number of MD atoms as Verlet lists are used, while in the KMC algorithm

used in the hybrid scheme, the run time is essentially independent of the number

of atoms and constitutes a negligible part of the computation time.
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5.9.2 Active Simulation in KMC Domains

There is as already discussed a saving in run time, since withapproximately 32%

of the MD atoms of a full MD run in the runs used to collect the data collected in

this Chapter, the hybrid runs took approximately 1/3 of the time of corresponding

full MD runs.

Also, it can clearly be seen that the grain boundaries, and hence their en-

compassing MD atoms, are moving beyond the range of their initial MD domain

(length30σ). This illustrates the adaptive nature of the hybrid scheme.

A most significant feature of the hybrid method is demonstrated in the trace

shown at 30% adatom coverage. In this case the grain boundaryis pinned by a

structure that has nucleated and grownwithin the KMC domain before the arrival

of the grain boundary. This makes it clear that the KMC domains are not merely

passive “walls of atoms” acting only as mechanical boundaries for the active MD

domains. In fact the KMC domains are actively simulating atomic interactions and

the MD domains and KMC domains evolve in conjunction, indepenently but con-

sistently. In terms of atomic dynamics the KMC domains act as“coarse grained”

versions of the MD domains.

5.10 Summary

In this Chapter we have demonstrated the application of our adaptive hybrid method,

coupling MD and KMC in a domain decomposition, to the inhomogeneities that

develop in epitaxial growth. This method leads to a speed-upover conventional

MD, reducing the execution time by a factor approximately equal to the relative

fraction of remaining MD atoms. We have shown that it is possible to reproduce

grain boundary mobilities from full MD simulations with thedomain decomposi-

tion method in the absence of KMC events, when the MD domains are sufficiently

large (length30σ). A lower bound on the MD domain length needed to reproduce

grain boundary mobilities is approximately19σ. This accommodates the average

grain boundary spread/length and maintains sufficient distance from the edges of
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KMC domains. An MD domain length of less than30σ may be effective if propa-

gation of elastic waves within the MD domain can be reduced. This would further

reduce the computational cost of the hybrid method comparedto full MD for a

given simulation. The diffusion of the grain boundaries is shown to reduce as the

Langevin damping parameterγ is increased. We have also used the method to

study the effect of over-layer adatoms on the mobility of theboundaries, demon-

strating that boundaries can become trapped by adatom islands. These effects

would have been difficult to capture in a conventional KMC simulation.
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6.1 Introduction

The hybrid MD KMC methodology developed in this thesis employs the two dis-

tinct simulation methodologies, Molecular Dynamics and Kinetic Monte Carlo.

These two methodologies are applied in separate regions of the slab of atoms

used in a simulation. The atoms in an MD region vibrate about their equilibrium

positions and may move to a nearby position. Atoms in a KMC region are fixed

to lattice sites and are only moved one at a time, whenever a KMC event occurs

and the configuration of KMC atoms is changed. MD regions and KMC regions

are positioned alternately along the long axis of the slab.

MD atoms near an interface between adjacent MD and KMC regions cannot

impart any of their motion to the rigid KMC atoms. Therefore any waves or

patterns of vibrations in the MD region cannot propagate further along the axis

of the slab, but are reflected back into the MD region. This is in contrast to the

case of using MD exclusively, when such waves would propagate along the slab.

Such reflections of waves from an MD KMC interface are artefacts of the hybrid

methodology.

These artefacts alter the dynamics of the grain boundaries when compared to

a full MD simulation. It is expected that reduction of these wave reflections will

enable the hybrid model to operate successfully with smaller MD domains, so

further reducing the computational cost of the hybrid model.

In this chapter we investigate the application of a frictional damping force,

of the same form as the Langevin parameterγ, to the reduction of the amplitude

of reflected waves. This force is applied in a limited dampingregion next to the

interface between MD and KMC regions. A simple 1-D model is developed to

estimate the effect of such a damping region within the hybrid MD KMC model.

6.2 Wave Reflections

We analyse the theory of wave reflections from a boundary using the simple model

of a 1-D linear chain of atoms. Atoms are equally spaced alongthe 1-D linear
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chain. All the atoms have the same mass. The atoms have nearest neighbour

interactions via linear spring forces. Initially all the atoms are at rest in their

equilibrium positions. A wave propagating along the chain of atoms is registered

as the displacement of the atoms from these equilibrium positions. A boundary to

wave propagation occurs when there is a change in the mass of the atoms or in the

strength of the spring force or at the termination of the chain. We introduce the

following notation:

For the 1-D chain:

Un is the displacement (from equilibrium position) of particle n.

K is the spring constant (assuming a harmonic potential).

m is the particle mass.

a is the equilibrium spacing between particles.

For a wave propagating along the 1-D chain:

A is the wave amplitude,t is time,k is angular wavenumber

andω is angular frequency.

6.3 Equation of Motion and Dispersion Relation

The force on particle n due to the ‘spring’ to its left is

KUn−1 − KUn.

Similarly the force on particle n due to the ‘spring’ to its right is

KUn+1 − KUn.

This gives the following equation of transverse or longitudinal motion for particle

n (usingma= F),

mÜn = K(Un−1 − 2Un + Un+1). (6.1)

Assume that a sinusoidal wave (travelling to the right) is a solution to the

equation of motion, i.e.Un = Aei(ωt−kan). The elements in Eq. (6.1) can be
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expressed in terms ofUn as follows:Ün = −ω2Un , Un−1 = eikaUn andUn+1 =

e−ikaUn. Substituting these into Eq. (6.1) and rearranging we obtain the following

ω = 2

√

K

m
| sin(

ka

2
)|. (6.2)

We take the positive root asω is a nonnegative quantity. The formula forω2 is

thus:

ω2 = 2
K

m
(1 − cos(ka)). (6.3)

Equation (6.2) is the dispersion relation for the discrete 1-D chain, which ex-

presses the frequencyω as a Function of the wave numberk and the material

propertiesK andm. Note that the dispersion relation can be rearranged to ex-

pressk as a Funtion ofω.

For a fixed value ofa, the dispersion relation only depends on the ratio
√

K
m

.

The graph ofω is shown in Figure 6.1. The graph forω rises to a maximum of

2
√

K
m

at ka = π. This maximum frequency is a feature of waves on a discrete

chain of this nature.

Note that the range ofka is limited to−π < ka < π. A wave number ofπ
a

means the wave length equals2a; twice the interatom spacing. Waves with wave

length shorter than2a cannot be distinguished on the discrete chain. The motion

of atoms on the chain for a wave length less than2a is indistinguishable from the

motion due to some other wave length longer than2a. This is incorporated in

the dispersion relation whereby (due to the symmetry ofsin(ka
2

) aboutπ
2
) a wave

number greater thanπ
a

gives the same frequencyω as some wave number smaller

than π
a
.

6.4 Reflection of Waves

If a propagating wave encounters a region with different material properties, i.e.

a change inK, m or a, then some portion of the wave will be reflected from the

interface between the different regions.
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Figure 6.1: The dispersion relation for the discrete 1-D chain. In this figure
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6.4.1 Reflection CoefficientRc

When a wave is reflected from an interface, the ratio of the amplitude of the re-

flected wave to that of the incident wave defines the reflectioncoefficientRc.

Consider a 1-D discrete chain that exhibits a change in particle mass atn = 0.

Particles to the left of zero have massm and those at zero and rightwards have

massM . The equations of motion are then:

for n ≤ −1

mÜn = K(Un−1 − 2Un + Un+1),
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while for n = 0

MÜ0 = K(U−1 − 2U0 + U1).

An incident wave with unit amplitude travels from the left tothe right. At

n = 0 part of the incident wave is reflected back to the left and partcontinues to

travel on to the right.

For n ≤ −1 the displacement is a superposition of the incident and reflected

waves, whereRc is the amplitude of the reflected wave. We define two regions

along the 1-D chain. RegionL is to the left of zero (i.en < 0) and regionR

encompasses zero and rightwards (i.e.n ≥ 0).

The displacement in regionL is given by the following equation

Un = ei(ωt−kLan) + Rce
i(ωt+kLan).

Note that the equation for the reflected (leftward travelling) wave differs from the

equation of the incident (rightward travelling) wave by thechange of the sign of

the wave numberkL in regionL, and by multiplication by the reflection coefficient

Rc.

At n = 0 the displacement due to the superposition of the incident and re-

flected waves must equal the displacement due to the transmitted wave:

Un = ei(ωt−kLan) + Rce
i(ωt+kLan) = Tce

i(ωt−kRan)

i.e.

U0 = eiωt + Rce
iωt = Tce

iωt

hence1 + Rc = Tc.

Forn > 0 the transmitted wave moves to the right:

Un = Tce
i(ωt−kRan).

A smooth transmission of waves across the interface requires that the slope of

the displacement of the superposition of waves forn ≤ 0 is equal to the slope of

the displacement for the transmitted wave forn ≥ 0 at n = 0. The respective

slopes (derivatives with respect to distance n) are:

dUn

dn
|L = −kLaei(ωt−kLan) + kLaRce

i(ωt+kLan)
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and
dUn

dn
|R = −kRaTce

i(ωt−kRan).

Equating these atn = 0 gives:

−kLaeiωt + kLaRce
iωt = −kRaTce

iωt.

Canceling thea andeiωt terms and using the fact that1 + Rc = Tc, this equation

then becomes

−kL + kLRc = −kR(1 + Rc).

Note that we are equating a wave with frequencyω for n ≤ 0 with a wave trans-

mitted pastn = 0 that also has frequencyω. We assume that the interatomic

spacinga is the same for all values ofn.

Solving forRc now gives the following equation for the reflection coefficient

in terms of the wave numbers in the two regions (kL in regionL andkR in region

R):

Rc =
kL − kR

kL + kR

.

From this equation it follows that when there is no difference between region

L and regionR, i.e. K andm are the same in both regions, their respective wave

numberskL andkR will be the same. The reflection coefficientRc will then be

zero, and the transmission coefficientTc will be equal to1 in this instance. As the

difference between the regions gets larger, so does the difference between their

respective wave numbers and consequently|Rc| (the magnitude of the reflection

coefficient) increases, giving rise to larger amplitude reflected waves from the

interface. When the magnitude ofkR exceeds that ofkL, Rc becomes negative, in-

dicating a1800 phase shift (inversion) of the reflected wave relative to theincident

wave.

6.5 Dispersion Relation with Damping

Adding a constant frictional damping coefficientγ to each atom in the discrete

1-D chain gives the following equation of motion:
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mÜn = K(Un−1 − 2Un + Un+1) − γU̇n.

Where the effect on atomn, from the damping applied to atomsn − 1 andn + 1,

feeds through in their altered displacements (compared to the undamped case).

Again, for the same assumed sinusoidal wave solution, we have in addition

thatU̇n = iωUn. Thus, following the derivation above gives the dispersionrelation

for this case of constant damping:

ω2 = 4
K

m
sin2(

ka

2
) + iω

γ

m
, (6.4)

i.e.

ω =
iω γ

m
±

√

(−iω γ
m

)2 + 16K
m

sin2(ka
2

)

2
. (6.5)

We assume a complex wave numberk = kre − ikim because the real and

imaginary parts of such a wave number play distinct roles. The real partkre be-

comes the wave vector for the damped wave. The imaginary partkim gives rise

to exponential damping of wave amplitude with distance, with damping multiple

e−kiman.

Usingk = kre − ikim, we solve forω as follows:

ω2 = 4
K

m
sin2(

krea − ikima

2
)) + iω

γ

m

=
K

m
(2 − 2 cos(krea − ikima)) + iω

γ

m
.

This can be split into its Real part

ω2 = 2
K

m
(1 − cosh(kima) cos(krea)) (6.6)

and Imaginary part

0 = −2
K

m
(sinh(kima) sin(krea)) + ω

γ

m
. (6.7)

Solving forcosh(kima) gives:

cosh(kima) = C± D
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where

C =
−γ2 cos(krea)

4Km(1 − cos2(krea))

and

D =

√

C2 + 1 +
γ2

2Km(1 − cos2(krea))
.

Note that asK, m and(1 − cos2(krea)) are non-negative, all the terms inside

the square root are also non-negative. Therefore D is real and positive.

cosh(k ima) C D

k
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a
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cosh (k
im
a)
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Figure 6.2: The red curve iscosh(kima). It is formed by summation of the other
two curves.
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C is negative overall forkrea from 0 to π
2
, becausecos(krea) is nonnegative

over that range. So over this rangecosh(kima) = −|C| + D is less than D. For

krea > π
2
, C has positive sign and socosh(kima) is the sum of both terms.

Figure 6.2 shows this construction ofcosh(kima) (red curve) from its two

terms, whenK,m, a, andγ are all1. In this casecosh(kima) is fairly flat for krea

less than approximately2, after whichcosh(kima) rises steeply. Whencosh(kima) ≈
1 thenkima ≈ 0 and there is very little damping (see section 6.5.2).

The rapid increase incosh(kima) askrea tends towardsπ is due to the 1
(1−cos2(krea))

elements in both C and D.

The imaginary part of the wave vectorkim, has the same shape ascosh(kima),

but with a reduced magnitude and a minimum value of zero (whenkrea = 0).

In Figure 6.3 the effect of varyingγ on cosh(kima) and hencekim is shown.

From the equation ofcosh(kima), it can be seen that this curve depends on the ratio
γ2

Km
. This ratio is a dimensionless quantity, which is referred to as the damping

number in this thesis. Two different sets ofγ,K andm, with the same damping

number, have identicalcosh(kima) curves.

As γ becomes very large (relative toK andm), the graph of the First term in

cosh(kima) tends to a vertical line throughkrea = π
2
. This results in the graph of

cosh(kima) tending to infinity askrea approachesπ
2
, as displayed in Figure 6.3.

This equation forcosh(kima) effectively expresseskim in terms ofkre. There-

fore ω can now be evaluated in terms ofkre by substituting forcosh(kima) in the

Real part formula Eq. (6.6), repeated here:

ω2 = 2
K

m
(1 − cosh(kima) cos(krea)).

This is the same form as forω2 in the undamped case Eq. (6.3), with the

additionalcosh(kima) factor multiplying thecos(krea) term. Whenγ is zero,

cosh(kima) = 1 andkim = 0, so that the usual dispersion relation for the 1-D

discrete chain Eq. (6.2), is recovered.

By definitioncosh(kima) is greater than or equal to1, for all values ofkima.

As krea increases from0 to π
2
, thecos(krea) term declines from1 to 0. Therefore

for 0 < krea < π
2
, the dampedω2 is less than or equal to the undamped case, with
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Figure 6.3:cosh(kima) for a range ofγ values.

equality atkrea = π
2
. Over the rangeπ

2
< krea ≤ π thecos(krea) term is negative,

finally reaching−1. Hence over this range− cosh(kima) cos(krea) > 0, and so

the dampedω2 exceeds the undamped case.

Whenkrea ≈ π, thencos(krea) ≈ −1, so that the dampedω2 is:

ω2 ≈ 2
K

m
(1 + cosh(kima)).

Figure 6.4 shows the damped 1-D dispersion relation i.e.ω versuskrea curves,

for a range ofγ values. These curves follow from the correspondingcosh(kima)

curves discussed previously. For a fixeda, the damped dispersion relation only

depends on
√

K
m

and the damping number. The undamped case (red curve), where

γ = 0, rises to reach its maximum value2
√

K
m

whenkrea = π, as seen previously
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in Figure 6.1. Note that in contrast to the undamped case discussed previously,

there is no maximum value ofω in the damped case. Asγ increases (relative to

K andm), dampedω falls further below the undamped case whenkrea < π
2
. All

the graphs intersect whenkrea = π
2
. Conversely forkrea > π

2
the damped curve

progressively exceeds the undamped case with increasingγ.
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Figure 6.4: The damped 1-D dispersion relation. This figure showsω as a function

of krea, for a range ofγ values. Here
√
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=
√

4
4

= 1.
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6.5.1 k as a Function ofω

The dispersion relation derived previously enables determination ofω for givenk.

The reflection coefficientRc depends on the values ofk in the respective regions.

Therefore we rearrange the dispersion relation to expressk as a function ofω.

First we effectively solve forkre by developing a formula forcos(krea). A

simple rearrangement of the Real part formula Eq. (6.6) gives:

cosh(kima) cos(krea) = 1 − 1

2
ω2 m

K
.

Substitute forcosh(kima) to obtain an equation incos(krea)

−γ2 cos(krea)2

4Km(1 − cos(krea)2)
+

√

γ4 cos(krea)4

4K2m2(1 − cos(krea)2)2
+ cos(krea)2 +

γ2 cos(krea)2

2Km(1 − cos(krea)2)

= 1 − 1

2
ω2 m

K
.

Solving forcos(krea) gives the following four solutions

cos(krea) = ±
√

2

4K

√

P±
√

Q.

Where

P = ω4m2 + (γ2 − 4Km)ω2 + 8K2

and

Q = ω8m4 + (2m2γ2 − 8m3K)ω6 + (4Km − γ2)2ω4 + 16K2ω2γ2.

The first two solutions,

±
√

2

4K

√

P+
√

Q

are rejected as they give| cos(krea)| > 1.
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We now show that both of the remaining solutions

S+ =

√
2

4K

√

P−
√

Q

and

S− = −
√

2

4K

√

P−
√

Q

need to be used, to obtain the correct formula forcos(krea) (and hencekre) in

terms ofω and the other parameters.

Figure 6.5 shows the values ofkrea as a function ofω, given by each of S+
(red curve) and S− (green curve) in the simple case of no damping.
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Figure 6.5: This figure showskrea as a function ofω from S+ and from S−. In

this figure
√

K
m

= 1.
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The correct relationship betweenkrea andω, under the conditions in Figure

6.5, is the undamped dispersion relation plotted in Figure 6.1. Comparison of

these two figures shows that in order to obtain the correct relationship, both so-

lutions are required. S+ must be used for small values ofω up until the point at

which the two solutions meet. This point is found to be
√

2K
m

. For larger values of

ω, S− is to be used. This dependence on the two solutions can be expressed more

concisely by the formula:

| cos(krea)| =

√
2

4K

√

P−
√

Q. (6.8)

g = 0 g = 0.5 g = 1 g = 5

w
K
m

0 1 2 3 4 5 6

k
re
a

0

1

2

3

Figure 6.6: This figure showskrea as a function ofω for a range of values ofγ,

where
√

K
m

= 1.

The functional relationship ofkrea uponω using both S+ and S−, i.e. Eq.
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(6.8), is shown in Figure 6.6. This Figure displays the same relationship as in

Figure 6.1, but now withω as the independent variable.

The second step is to obtain the functional dependence ofkima on ω. This is

easily achieved usingcosh(kima), which is a function ofcos(krea), and therefore

a function ofω.

In Figure 6.7 we show the dependence ofkrea on ω for a larger range ofγ

values. Figure 6.8 shows the comparable graphs forkima.
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Figure 6.7: This figure showskrea as a function ofω for a broad range of values

of γ. In this figure
√

K
m

= 1.
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Figure 6.8: This figure plotskima as a function ofω for a broad range of values

of γ.
√
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6.5.2 Damping Effect

With complex wave numberk = kre − ikim, the displacement for a particle on the

1-D chain becomes:

Un = Aei(ωt−(kre−ikim)an) = e−kimanAei(ωt−krean).

As noted earlier,kre is the wave vector for the damped wave andkim gives

the damping multiplee−kiman. The size ofkima determines the magnitude of the

damping in wave amplitude over the distancea (one interparticle spacing). As

kima increases, the damping multiple decreases exponentially,and a given wave
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amplitude is extinguished over a shorter distance.

The dependence ofkima on ω, for a broad range of damping parametersγ, is

shown in Figure 6.8.

The following features are of note. Whenω is very close to zero,kima is

effectively zero and thus there is no damping of very low frequency waves. For

such small values ofω, kre is also very small; see Figure 6.7. Therefore these low

frequencies correspond to wave lengths that are extremely long with respect to

the interatom spacinga. As ω increases for a given value ofγ, the value ofkima

initially rises rapidly, before reducing to a slower growthrate. For an increasedγ,

this rapid rise occurs at a smaller value ofω. Not shown in Figure 6.8 is the case

of γ = 0, wherekima is zero and there is no damping. For a given value ofγ,

kima increases asω increases. Thus, high frequency waves have their amplitudes

heavily damped and only propagate short distances before being extinguished.

For example, whenγ = 1 andω ≈ 6, thenkima ≈ 3.5. The corresponding

damping multiple over the distance of a single interatomic space (whena = 1) is

e−3.5 ≈ 0.03. Therefore in the case ofγ = 1, a wave withω ≈ 6 has its amplitude

damped down to≈ 3% of its previous value, over a distance of one interatomic

space.

6.5.3 Damped Reflection Coefficient

Here we consider reflections from the interface between two regions, both of

which (in the most general case) have damping forces. As previously, the region

to the left of the interface is labelledL, and the region to the right is labelledR.

The previous derivation of the reflection coefficient still holds, but in this case the

wave numbers in the damped regions are now complex numbers. In the case of the

reflected wave, the sign of the real part of the complex wave number is inverted to

give a wave travelling to the left. If both regions are damped, the formula for the

reflection coefficientRc becomes

Rc =
(kLre − ikLim) − (kRre − ikRim)

(kLre + ikLim) + (kRre − ikRim)
.
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Thus, in the case of damping in both regions (or only one region), the reflection

coefficentRc becomes a complex number.

Clearly when there is no damping in either region (zero imaginary components

of the wave numbers) this formula reduces to the previous (undamped) formula

andRc is purely real.

The complex reflection coefficientRc can be expressed in polar form:

Rc = |Rc|eiArg(Rc).

When a wave is reflected its wave form is multiplied byRc. Therefore the am-

plitude of the wave is multiplied by|Rc| and the phase of the wave is changed by

Arg(Rc). In the previous undamped case, only amplitude variations (and com-

plete inversion) could occur.

This reflection coefficient and the corresponding transmission coefficient pro-

vide the amplitude (and phase change) of the reflected and transmitted waves,

respectively, at the interface. As these waves travel, their amplitudes are reduced

with distance travelled, due to the corresponding damping multiple e−kiman.

Consider a wave of a given frequencyω travelling in regionL towards region

R. In the general case at the interface between regionL and regionR, part of the

wave is reflected back into regionL and part is transmitted into regionR. In the

particular case of the two regions having exactly the same material properties (i.e.

sameK andm) and same damping forces (if any), the wave is fully transmitted

without any reflection, giving|Rc| = 0. A more general statement can also be

made. The dispersion relation in a region, and hence the values ofkre andkim,

only depends on the ratioK
m

and the damping numberγ
2

Km
in the region. Con-

sequently, when each of the pair of regions has the same ratioK
m

and the same

damping number, there will be no reflections from the interface between them.

In order to determine the reflection coefficientRc for a wave of a given fre-

quencyω using the formula presented above, the complex wave numberskL and

kR in the two regions are required. These are determined using the formulas pre-

viously derived, and the relevant material values and damping parameter values in

the respective regions.



CHAPTER 6. ENHANCEMENT 144

g = 2 g = 5 g = 10 g = 20
g = 100

w

K
m

0 1 2 3 4

|R
c
|

0

0.2

0.4

0.6

0.8

1.0

Figure 6.9: This figure shows|Rc| as a function ofω for γ = 1 in regionL, and a

range ofγ values in regionR.
√

K
m

= 1.

In Figure 6.9 there are two obvious trends. Firstly, for a givenγ the reflectivity

|Rc| decreases asω increases. The decrease in|Rc| is steeper for low values ofω

and flattens out asω gets larger. Secondly, for a given frequencyω the reflectivity

|Rc| increases asγ increases. Increasingγ in regionR makes a greater difference

between the regions, whenγ = 1 is fixed in regionL.
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Figure 6.10: This figure shows|Rc| as a function ofω for γ = 1 in regionL and

a range of small values ofγ in regionR.
√
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The case of reflections whenγ in region R becomes less thanγ in region

L, is shown in Figure 6.10. As the value ofγ in regionR reduces toward the

value ofγ in regionL i.e. 1, the value of|Rc| decreases throughout the range

of ω. However once the value ofγ in regionR goes below1, the value of|Rc|
increases, particularly at smaller values ofω. This again exhibits the fact that the

greater the difference inγ between the regions, the greater|Rc|, assuming all other

parameters remain unchanged.

Whenγ in regionR becomes very small, e.g.γ = 0.1 (blue curve), the graph

of |Rc| begins to exhibit a hollow followed by a hump. This arises because for very

small values ofγ the dispersion relation is very close to the undamped dispersion
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relation. In such caseskRre follows the undampedkR curve until its value is close

to π, whereuponkRre very rapidly increases. This sudden increase inkRre gives

rise to the hump. Asγ in regionR declines further, the hump in|Rc| concentrates

into a cusp and its location moves towardsω = 2
√

K
m

, the maximum value ofω

in the undamped case.

6.6 Reflection with a Damping Region

Here we investigate the use of a damping region, in which waveamplitude is re-

duced, resulting in dimished reflections back into the remainder of the MD region.

A damping region is formed in an MD region adjacent to the MD KMC inter-

face. The damping region crosses the full width of the slab, and extends for a few

rows of atoms along the axis of the slab away from the KMC region. The MD

atoms in the damping region are subject to a damping force of the same form as,

but different magnitude to, the Langevin damping parameterγ used for tempera-

ture control.

Because of the rigidity of the KMC atoms, any waves reaching the MD KMC

interface cannot be transmitted and must be fully reflected.Also as the transmitted

wave amplitude is zero, the net amplitude of the incident andreflected wave at the

interface must also be zero. Therefore the reflected wave must be out of phase

with the incident wave, and henceRc = −1 at the MD KMC interface.

To model a damping region between an MD region and a KMC region, the

case discussed in the previous section of damping in both regions, withγ = 1 in

regionL, is taken a step further. The additonal step is the introduction of a totally

reflecting barrier located inside regionR. This barrier is sited a distance D to the

right of the interface, between regionL and regionR. RegionL models the normal

MD region, while the part of region R to the left of the barriercorresponds to the

damping region. The barrier itself represents the MD KMC interface. When there

is no difference in material properties and damping parameters between regionL

and regionR, there is no reflection from the interface between them. Also, there

is no additional damping in regionR. Increasing the damping in regionR will
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create reflections from the interface between regionL and regionR, so waves will

only be partly transmitted into regionR and then exposed to damping.

Minimising reflections of waves back into the MD region requires a large value

of the damping parameter. However a large damping parameterwill result in large

reflections from the interface between regionL and regionR, reducing the portion

of the wave amplitude subject to damping. A balance needs to be struck between

these two effects.

A further feature of regionR (the damping region), when damping is in effect,

is partial internal reflection of waves inside regionR. The portion of a wave

that enters regionR and is then reflected (and fully inverted) by the barrier then

undergoes a partial reflection at the interface between region R and regionL.

The wave may traverse regionR several times (being damped on each traverse),

transmitting a portion back into regionL each time it reaches the interface between

regionR and regionL, until the remnant of the wave inside regionR has been

extinguished.

The resulting Net Reflectivity (NR) back into the MD region of a wave that

travels into the damping region and then undergoes a sequence of partial internal

reflections (within the damping region) is now derived.

We introduce the following notation:

RcLR is the reflection coefficient for reflection from the interface between the

MD region and the damping region, of a wave travelling (from left to right) into

the damping region. The formula forRcLR is the same as the formula forRc

derived previously.

TcLR = 1 + RcLR is the transmission coefficient for transmission through the

interface between the MD region and the damping region, of a wave travelling

(from left to right) into the damping region.

RcB = −1 is the reflection coefficient for reflection from the interface between

the damping region and the KMC region i.e. reflection from thetotally reflecting

barrier.

RcRL is the reflection coefficient for reflection from the interface between the

damping region and the MD region of a wave travelling (from right to left) out
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of the damping region. WhenRcRL 6= 0, partial internal reflection (within the

damping region) occurs.

TcRL = 1 + RcRL is the transmission coefficient for transmission through the

interface between the damping region and the MD region of a wave travelling

(from right to left) out of the damping region.

dkD is the damping multiple of wave amplitude for a traverse of the damping

region. The damping multiple depends on the value of the imaginary part of the

wave number in the damping region, and on the number of rows ofatoms in the

damping region.
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Figure 6.11: This diagram shows a wave (large arrow at top of diagram) travelling
from the left out of the MD region into and through the MD damping region
(shaded grey) and then reflecting off the interface (thick vertical line) between
the MD damping region and KMC region. The wave is damped (indicated by
the reduction in the size of the arrow) on each passage through the MD damping
region. At the inteface (thin vertical line) between the MD damping region and
the MD region there is both transmission (leftward out into the MD region) and
reflection (rightward back into the MD damping region) of thewave. The part of
the wave that is internally reflected within the MD damping region is eventually
totally damped out.

For a wave of unit amplitude entering the damping region, thenet reflectivity

back into the MD region is composed of a number of components:

RcLR Reflection from the MD damping region interface.

TcLR(dkDRcBdkD)TcRL Transmission back into the MD region after a single damping cyle.
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TcLR(dkDRcBdkD)RcRL(dkDRcBdkD)TcRL Transmission after two damping cyles.

TcLR(dkDRcBdkD)RcRL(dkDRcBdkD)RcRL(dkDRcBdkD)TcRL

Transmission after three damping cyles.

. . .

TcLR(dkDRcBdkD)mRm−1
cRL TcRL Transmission after m damping cyles.

. . .

Thus the net reflectivity back into the MD region is given by the following

summation

RcLR + TcLR(dkDRcBdkD)TcRL

∞
∑

m=0

(dkDRcBdkDRcRL)m.

With damping in effect in the damping region,|RcRL| < 1 and|dkD| < 1, so

the summation is a convergent geometric series. The net reflectivity is therefore

NR = RcLR +
TcLRd2

kDRcBTcRL

1 − d2
kDRcBRcRL

.

From the definitions ofTcLR, RcB andTcRL this simply rearranges to

NR = RcLR − (1 + RcLR)d2
kD

1 + RcRL

1 + d2
kDRcRL

. (6.9)

Note that if the damping effect is set to zero thendkD = 1 and this formula

reduces to

RcLR − (1 + RcLR) = −1.

Clearly when there is no damping effect in the damping region,all waves enter

the region, are reflected and inverted by reflection from the MD KMC interface.

They are then fully transmitted back into the MD region, undamped but inverted.
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The formula forRcRL, the reflection coefficient for a wave travelling (right to

left) from the damping region back into the MD region, is derived in the same way

as the formula for the reflection coefficientRc derived previously, whereRc is for

waves travelling (left to right) from regionL into regionR.

In the case ofRcRL, the incident wave and the portion of it that is transmitted

travel from right to left, while the portion of the wave that is reflected travels to

the right. To obtain leftward travelling incident and transmitted waves, the sign

of the real part of the complex wave number for these two wavesis inverted. The

resulting formula is

RcRL =
(kRre + ikRim) − (kLre + ikLim)

(kRre − ikRim) + (kLre + ikLim)
.

Note that now the subscriptL (left region) refers to the MD region and the

subscriptR (right region) refers to the damping region.

The formula fordkD is

dkD = e−kRimD/a.

The net reflectivity formula Eq. (6.9) results in a complex number. The mod-

ulus of this number gives the total amplitude of all the reflected components of

the incident wave after damping. The argument of this complex number gives the

aggregate phase change.

In Figure 6.12 we show the modulus of the net reflectivity|NR|, for a range

of γ values in the damping region.
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Figure 6.12: This figure shows the net reflectivity|NR| from the damping region
as a function ofω for γ = 1 in the MD region (regionL) and a range of values
of γ in the damping region (regionR). The corresponding reflectivity from the
interface between the MD region and the damping region|RcLR| is also shown. In

this figure
√

K
m

= 1, D = 2, anda = 1 in both regions.

Figure 6.12 shows that for small values ofω the net reflectivity back into the

MD region is quite high. For all theγ values used in this Figure,|NR| trends

down to a minimum value of|RcLR| (the reflectivity from the interface of the

MD region and the damping region) asω increases. This downward trend can be

attributed to the fact that asω increases, the imaginary part of the wave number

kRim, and hence the damping, increases.

For each value ofγ in Figure 6.12, for a sufficiently large value ofω, |NR|
reduces to the level of|RcLR|. Thus from that value ofω onwards, the portion
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of the wave that is transmitted into the damping region is being damped below

0.01. The only reflection remaining is from the interface betweenthe MD region

and the damping region. In these circumstances, wave reflections from the rigid

interface between the damping region and the KMC region haveeffectively been

replaced by reflections from the MD damping region interface.

Note that without a damping effect in the damping region, we would have

|NR| = 1 for all ω.

The level ofγ considered here, on the order of2, is sufficient to extinguish

waves whenω > 1.5, using a modest damping region of two rows of atoms (D =

2). In this situationγ = 2 corresponds to a damping number of4.

Given the effective damping at this level ofγ, the strategy to mimimse reflec-

tions back into the MD region is to utilise the smallest effective γ, thus exposing

the largest portion of incident waves to damping (by maximising transmission into

the damping region). This is seen in Figure 6.12, where the case ofγ = 1.5 gives

the lowest value of|NR| throughout the range ofω.

The next case to consider is when the damping number in the MD region is

significantly smaller than1.
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Figure 6.13: This figure shows the net reflectivity|NR| from the damping region
as a function ofω, for γ = 0.1 in the MD region (regionL) and a range of values
of γ in the damping region (regionR). The corresponding reflectivity from the
interface between the MD region and the damping region|RcLR| is also shown. In

this figure
√

K
m

= 1, D = 2, anda = 1 in both regions.

Figure 6.13 shows the net reflectivity|NR| whenγ = 0.1 in the MD region.

In this case the damping number in the MD region is0.01.

In Figure 6.13 smallγ values of0.2 and0.5 are used in the damping region,

to get significant transmission into the damping region. However, these small

values ofγ result in weak damping whenω is less than about2. In this case the

smallestγ value of0.2 is not the best choice, unlike the situation in Figure 6.12.

Settingγ = 0.5 (green curve) in the damping region gives significantly smaller

net reflectivity forω ≤ 2 thanγ = 0.2 (red curve). Forω > 2 the choice of
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γ = 0.2 (red curve) gives slightly less net reflectivity thanγ = 0.5 (green curve).

The use of the largerγ = 0.5 reduces the transmission into the damping region

but this is compensated by greater damping and reduced|NR|.
Of course the net reflectivity could be reduced in all cases bylengthening the

damping region, i.e. increasingD.

6.7 Hybrid Model with a Damping Region

In this section we apply the previously developed damping region formula using

the parameter values of the hybrid MD KMC model.

For the Lennard-Jones potential used in the hybrid model there is an effective

spring constant ofKLJ = 57.15, at an interatom distance of2
1

6 (in reduced units).

The Langevin damping parameterγ is set to1 in the MD region. The atom mass

is 1.

Note that with these valuesγ = 1 corresponds to a very small damping number

of 0.017. Also, the maxmiumω value for an undamped case is15.11.



CHAPTER 6. ENHANCEMENT 156

g = 2 g = 5 g = 10
|RcLR| g = 2 |RcLR| g = 5 |RcLR| g = 10

w
0 2 4 6 8 10 12 14 16 18

|NR|

0

0.2

0.4

0.6

0.8

1.0

Figure 6.14: This figure shows the net reflectivity|NR| from the damping region
as a function ofω using Lennard-Jones parameter values.γ = 1.0 in the MD
region (regionL) and there are a range of values ofγ in the damping region
(regionR). The corresponding reflectivity from the interface between the MD
region and the damping region|RcLR| is also shown. In this figureKL = 57.15,
KR = 57.15, mL = 1, mR = 1, D = 2 × 2

1

6 , anda = 2
1

6 in both regions.

In Figure 6.14 we see the net reflectivity when Lennard-Jonesparameter val-

ues are used. The choice of a small value ofγ = 2.0 in the damping region results

in a relatively large value of|NR|. When largerγ values i.e.5 and10 are used

there is a significant reduction in|NR| for values ofω up to about15. These

largerγ values only allow a smaller portion of each wave into the damping region

but then damp this portion relatively heavily.

Overall,γ = 5.0 appears the best choice of theγ values considered here, as it
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produces a relatively low value of|NR| over a wide range ofω.

However, even with this best choice the overall level of|NR| of approximately

0.30 could still be considered high. We show the effect of doubling the length of

the damping region in Figure 6.15.
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Figure 6.15: This figure shows the net reflectivity|NR| from the damping region
as a function ofω using Lennard-Jones parameter values.γ = 1.0 in the MD
region (regionL) and there are a range of values ofγ in the damping region
(regionR). The corresponding reflectivity from the interface between the MD
region and the damping region|RcLR| is also shown. In this figureKL = 57.15,
KR = 57.15, mL = 1, mR = 1, D = 4 × 2

1

6 , anda = 2
1

6 in both regions.

The broad pattern of net reflectivity in Figure 6.14 is repeated in Figure 6.15,

but the magnitude of|NR| has been reduced as a result of extending the damping

region. In this case also, the choice ofγ = 5.0 appears the best of those shown
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giving a relatively low value of|NR| over a wide range ofω. The broad level of

|NR| is now approximately0.20.

6.7.1 Selection ofγ in the Damping Region

The value ofγ in the damping region is chosen to minimise the summed net

reflectivity |NR|, over the range of frequencies that are expected to give riseto

wave reflections.

Waves with wavelength less than30σ may be reflected within an MD domain,

as the minimum MD domain length is30σ. The corresponding wave number is
2π
30

= 0.209, and therefore from Eq. (6.2) we determine the minimum frequency

of interest asωmin = 2
√

57.15
1

sin(0.209×2
1
6

2
) = 1.77, using the equilibrium spacing

Lennard-Jones effective spring constant of57.15, and mass of1.

A maximum frequency can be determined by considering the maximum fre-

quency for a harmonic oscillator, as previously discussed in Chapter 3. For a

harmonic oscillator at the usual simulation temperature ofT = 0.35, the kinetic

energy is zero and the potential energy has risen by3/2 × 0.35 = 0.525 at the

maximum displacement from the equilibrium position. The Lennard-Jones po-

tential energy rises to−1 + 0.525 = −0.475 when the interatom distance has

reduced from the equilibrium spacing of2
1

6 to 1.025. At this interatom spacing of

1.025, the Lennard-Jones effective spring constant is303.74, and the correspond-

ing maximum frequency isωmax =
√

303.74
1

= 17.43 for the harmonic oscillator.

This value ofωmax is based on the average kinetic energy at temperatureT = 0.35.

However, because the kinetic energy fluctuates above the average value, a larger

value ofωmax is used in this work. We note from Figure 6.14 and Figure 6.15

that asω increases beyond2.0
√

K
m

= 2.0
√

57.15
1

= 15.12 the reflectivity de-

clines rapidly, as the higher frequencies are heavily damped. Consequently, we

setωmax = 4.0
√

57.15
1

= 30.24, as cutting off higher frequencies is not expected

to cause any significant error.

Comparisons of the summed|NR| over the frequency range1.77 to 30.24 for

a range ofγ values in the damping region is shown in Figure 6.16.
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Figure 6.16: This figure shows the net reflectivity|NR|, numerically integrated
over the frequency range1.77 to 30.24 for values ofγ in the damping region
(region R) from 1 to 10, and two values ofD. In the MD region (regionL),

γ = 1, and in both regions
√

K
m

=
√

57.15
1

= 7.56 anda = 2
1

6 .

When the damping region extends for a distance2a from the wall of fixed

KMC atoms (red curve in Figure 6.16) the greateast damping occurs forγ ≈ 6.

For the larger damping region with extent4a the greatest damping is found when

γ ≈ 4. Doubling the extent of the damping region provides distinctly greater

damping forγ near4. As γ increases the two curves in Figure 6.16 converge,

because waves are increasingly being reflected from the interface between the

MD region and the damping region, rather than entering the damping region and

being attenuated.

On this measure of summed net reflectivity, the use of the larger damping
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region withγ = 4 provides a significant level of damping from a damping region

that is modest compared to the size of the MD domain.

6.8 Summary

The dispersion relation for a discrete 1-D chain of atoms in the presence of a

frictional damping force was derived. This disperion relation is shown in Figure

6.4. To the best of our knowlege this is a new result.

The reflection coefficient formula for wave reflections from an interface be-

tween discrete 1-D chains with different material parameters and frictional damp-

ing forces was developed. This reflection coefficient formula depends on the dis-

persion relations in the media on either side of the interface. Therefore the reflec-

tion coefficient can be determined for a wave of any frequencyω incident on the

interface.

The formula for the net reflectivity, Eq. (6.9), from a damping region separat-

ing an MD region and a KMC region was developed. This is also believed to be a

new result.

The effect of the damping region on the magnitude of reflectedwaves was

explored in a number of scenarios. It was shown that for Lennard-Jones parameter

values a modest sized damping region can significantly reduce the amplitude of

waves reflected back into the MD region by using a damping parameter ofγ =

4.0. The effectiveness of this damping has not been tested in simulation.
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7.1 Discussion

The key result of the research described in this thesis is thedevelopment and

implementation of a hybrid atomistic methodology which dynamically combines

both Molecular Dynamics (MD) and Kinetic Monte Carlo (KMC) methodologies

within a single simulation. The hybrid method switches the simulation methodol-

ogy applied to different regions as the simulation progresses, so that MD is only

applied to regions where fully detailed atomic trajectories are required while KMC

is applied to the other regions. By dynamically partitioningthe simulation in this

way, the hybrid method provides the same level of detailed results as a corre-

sponding total MD simulation, but at less computational cost. The computational

cost saving arises because the more expensive MD is only applied to regions of

complex atomic interactions, while less complex regions are adequately treated

by much faster KMC. As a result of the reduced computational cost the hybrid

method enables simulations with more atoms or for longer periods of simulated

time or some combination of both, compared to the MD method.

The detailed feature of this work is the simulation studies of aspects of epi-

taxial growth. In particular, the behaviour of surface grain boundaries has been

studied by separately using MD alone and the hybrid method. This provided a

test of the consistency of the hybrid method with comparableMD simulations.

It has been demonstrated that when each MD domain in the hybrid model is of

length30σ (or more), the dynamics of the grain boundary contained within the

MD domain is unaffected by the presence of the adjacent blocks of immobile

KMC domain atoms. That is, sufficiently large dynamically reallocated MD do-

mains within the hybrid method reproduce the results of equivalent full MD sim-

ulations. The hybrid method also applies a Langevin thermostat to the atoms in

each MD domain, to maintain the MD atoms in thermal equilibrium, and to damp

the reflection of waves (lattice vibrations) from the interface between each MD

domain and adjacent KMC domains. An advantage of the hybrid method is that

the MD domains enable observation of effects such as pinningof grain boundaries

by atoms in off-lattice sites, which will not be captured by the lattice based KMC.
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7.1.1 Chapter Summaries

Chapter 1 introduces epitaxial growth and the importance of epitaxial structures

within semiconductor devices, including light emitting diodes and lasers. The

investigation of epitaxial growth by simulation is a cost effective way to deter-

mine the sensitivity of the growth process to the relevant parameters, and to study

growth regimes that are not readily reached by experiments.Modelling of epi-

taxial growth has a number of difficulties especially the long time scale involved,

and a number of hybrid methods have been developed to try and deal with these

difficulties.

In Chapter 2 we discuss details of epitaxial growth includingapplications,

homo-and hetero-epitaxy, deposition methods, growth modes and modelling method-

ologies. A major issue in modelling epitaxial growth is the wide range of length

and time scales that play a part in the phenomena. For modelling all aspects of

epitaxial growth, neither of the atomistic methods, Molecular Dynamics or Ki-

netic Monte Carlo, is sufficient. MD cannot address the long time scales involved.

KMC may not capture all the important atomic configurationalchanges. Con-

tinuum methods, such as Burton Caberera Frank cover the time scale but ignore

important atomistic details. As a result hybrid models suchas the model described

in this thesis have been developed to address these issues.

Chapter 3 describes the modelling methodologies used in the work. The

Molecular Dynamics and Kinetic Monte Carlo simulation methods are discussed.

Additional theory used in applying KMC to epitaxial growth simulations, i.e.

Transition State Theory and the Nudged Elastic Band method, are also explained.

In Chapter 4 we carry out Molecular Dynamics modelling to set areference

frame for our hybrid model. We show that Molecular Dynamics simulations using

the Lennard Jones potential can model dynamic stacking fault grain boundaries in

an epitaxial layer on a (111) surface. These simulations reproduce experimen-

tally observed features, e.g. a tendency to form triangularshaped islands. The

grain boundaries continually alter their shape and position. The grain boundaries

migrate over the surface following a temperature dependentrandom walk. Over

long time periods a small drift in grain boundary position isobserved, in addition
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to the random diffusion. A pair of grain boundaries can meet and annihilate each

other - eliminating the stacking fault. The key atomic process for grain boundary

migration is shown to be the “kink flip” move.

Chapter 5 develops and applies the hybrid MD KMC modelling methodology

to the same problem studied with MD in Chapter 4. The hybrid methodology was

used to follow the propagation of a stacking fault grain boundary between Face

Centered Cubic (FCC) and Hexagonal Close Packing (HCP) islands nucleating

on a FCC (111) surface. This hybrid methodology combines Molecular Dynam-

ics and Kinetic Monte Carlo methodologies within a single concurrent atomistic

simulation. Different domains within this hybrid simulation are modelled with

different methodologies (MD or KMC). And as the simulation progresses the

model applied to a given domain is changed (perhaps several times) as neces-

sary, so that the stacking fault grain boundary is always modelled with MD, as it

moves about the surface. This hybrid method leads to a speed up over conven-

tional MD, reducing the execution time by a factor approximately equal to the

relative fraction of remaining MD atoms. We show that it is possible to reproduce

grain boundary mobilities from full MD simulations with thedomain decomposi-

tion method in the absence of KMC events - when the MD regions are sufficiently

large with length30σ. We have also used the method to study the effect of over

layer adatoms on the mobility of the boundaries, demonstrating that boundaries

can become trapped by adatom islands. These effects would have been difficult to

capture in a conventional KMC simulation.

In Chapter 6 a way to enhance the hybrid model by reducing wave (lattice

vibration) reflections from the MD KMC interface is investigated. It is shown that

the reflection coefficient is a function of the Langevin damping parameterγ. It is

proposed that by suitable tuning ofγ in the damping region adjacent to the rigid

KMC atoms, the reflections of waves back into the MD domain canbe minimised.

Such a reduction in wave reflections implies that a smaller MDdomain will be

sufficient, thus further speeding up the hybrid model. This is not investigated in

detail but left for future development.
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7.2 Conclusion

This thesis has developed a hybrid atomistic simulation method which dynami-

cally combines the Molecular Dynamics and Kinetic Monte Carlo methodologies.

With suitably selected MD domains this hybrid method can reproduce the results

of a larger (more atoms) all MD simulation at a significant reduction in compu-

tational cost (run time). This reduction is related to the proportion of all MD

simulation atoms which have been replaced by KMC atoms in thehybrid model.

This hybrid method offers another approach to computer simulation of phe-

nomena such as epitaxial growth, which are difficult to treatbecause of the wide

range of length and time scales involved.

The hybrid method was successfully used to study the dynamics of stacking

fault grain boundaries in epitaxial surface layers. The hindering of grain boundary

motion due to pinning by deposited adatoms and also by the formation of over-

layer islands was identified using the hybrid model. These results could not be

captured by KMC alone as pinning adatoms were located in an off-lattice sites.

While MD alone could not have simulated the nucleation and growth of overlayer

islands within a feasible runtime.

In the process of developing the hybrid model we have verifiedthat the ‘kink

flip” move is a key element in the motion of grain boundaries.

In the final part of this thesis we have investigated an approach to further speed

up the hybrid model. We have developed a mathematical model of the effect of the

damping parameterγ on the reflection of lattice vibration waves from the interface

between MD domains and KMC domains.

This mathematical modelling included the derivation of thedispersion rela-

tion for the discrete case with damping and net reflectivity formulas. These are

believed to be new results.

It was shown that by an optimal choice ofγ wave reflections can be minimised.

Reduced wave reflections back into the MD domain imply that a smaller MD

domain would suffice in the hybrid model. A smaller MD domain makes larger

and/or longer hybrid model simulation runs feasible. This improvement to the
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hybrid model has not been implemented, but left for future development.

Another possible future development of this approach to damping wave re-

flections is to use either a stepped series of damping regionsor a gradient in the

damping parameterγ. Such an arrangement may increase the amount of damping

that can be obtained.

The hybrid model has been developed and tested on a long narrow slab geom-

etry. The next logical future extension is to extend the hybrid model to a full two

dimensional surface. In principal the hybrid model could befurther extended to

a three dimensional volume. Each such extension would be a significant research

project in its own right. A key aspect for any such further extension is expected

to the development of methods to efficiently identify changes in grain boundary

shape and to track changes grain boundary position, in two and three dimensions.

This hybrid model is another tool in the collection of multiscale methods. It

has been viewed as a method to speed up MD but it can also be considered as a

method to enable KMC to handle more complexity.

The hybrid model can also be applied to a wide variety of MD andKMC

methods. For example other MD potentials such as Embedded Atom or Modified

Embedded Atom could be employed. It may be feasible to incorporate Ab-initio

MD methods. The KMC component can be developed to use a more refined lat-

tice enabling more complicated configuration changes in theKMC domain. An

”on the fly” KMC method could be employed, where hop rates for configuration

changes are developed as the run proceeds. This eliminates the need for a prede-

termined table of hop rates but increases the computationalcost of KMC. Both

the MD and KMC components can be extended to handle more than one species

of atom. A further enhancement is to develop parallelised versions of the MD and

KMC components, so that computer clusters or multicore computers can be used

to speed up the run time or enable larger simulations.
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