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Abstract

This thesis provides an account of research into a family of novel hybrid P,E

ligands containing an o-xylene backbone. A methodology for the synthesis of these

ligands has been developed, and their coordination behaviour with platinum(II) and

platinum(0) precursors has been explored, with particular focus on a phosphine-

thioether (P,S) ligand of this type. The coordination modes of this P,S ligand

with palladium precursors have also been investigated, and the utility of the ligand

in a palladium and copper co-catalysed Sonogashira carbon-carbon bond-forming

reaction has been evaluated.

A range of hybrid P,E ligands of the type o-C6H4(CH2PBut
2)(CH2E) (E = PR2, SR,

S(O)But , NR2, SiPh2H) have been synthesised in two or three steps from the novel

substrate, o-C6H4{CH2PBut
2(BH3)}(CH2Cl). The initial step involved treatment of

the substrate with the appropriate nucleophilic reagent, or preparation of a Grignard

reagent from o-C6H4{CH2PBut
2(BH3)}(CH2Cl) and reaction with the appropriate

electrophile. In most cases, this versatile strategy produced air-stable crystalline

ligand precursors. Phosphine deprotection was achieved via one of three methods,

dependent upon the properties of the second functional group.

The reactivity of three of these ligands — o-C6H4(CH2PBut
2)(CH2SBut) (14a),

o-C6H4(CH2PBut
2){CH2S(O)But} (16) and o-C6H4(CH2PBut

2)(CH2NMe2) (18a)

— with Pt(II) and Pt(0) precursor complexes has been investigated. Chelated

[PtCl2(P,E)] complexes were synthesised with P,S ligand 14a and P,N ligand

18a, but attempts to produce the equivalent species with P,S=O ligand 16 were

unsuccessful. The X-ray crystal structure of [PtCl2(P,S)] complex 21 displayed

an unexpectedly small ligand bite angle of 86.1◦. A series of platinum(II)

hydride complexes of the types [PtHL(P,S)2] and [PtHL(P,S)2]CH(SO2CF3)2

(L = Cl–, H–, NCMe, −CH2SBut , CO, pta) have been synthesised, where

ligand 14a binds in a monodentate fashion through the phosphorus donor atom.

This work has demonstrated the hemilability of ligand 14a, via the facile and

reversible conversion between [PtH(κ1P-14a)(κ2P,S -14a)]CH(SO2CF3)2 (26) and
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[PtH(NCMe)(κ1P-14a)2]CH(SO2CF3)2 (28). The X-ray crystal structure of

[PtH2(P,S)
2
] complex 25 was used to calculate a cone angle of 180◦ for the phosphine

moiety in ligand 14a.

Reaction of P,S ligand 14a and P,S=O ligand 16 with [Pt(alkene)3] complexes

(alkene = ethene, norbornene) gave the chelated [Pt(alkene)(P,E)] complexes

32–35; however, under similar conditions a [Pt(norbornene)(P,N )] complex did

not form. A large ligand bite angle of 106.6◦ was observed in the X-ray crystal

structure of [Pt(norbornene)(P,S)] complex 34. Reaction of two equivalents of

each of the P,E ligands with [Pt(norbornene)3] gave the corresponding 14-electron

linear complexes [Pt(P,E)2] (36–38) with the ligands coordinated through the

phosphorus donor atoms only. The reactivity of [Pt(norbornene)(P,S)] complex

34 and [Pt(P,S)2] complex 36 has been investigated, resulting in the complexes

[PtH{CH(SO2CF3)2}(P,S)] (39), [Pt(norbornyl)(P,S)] (40), [Pt(ethyne)(P,S)] (41)

and [Pt(O2)(P,S)2] (42).

The reactivity of P,S ligand 14a was investigated with Pd(II) and Pd(0) pre-

cursors, resulting in the identification of five coordination modes of this ligand.

Monodentate binding was observed in [Pd(P,S)2] complex 44, and chelation in the

[Pd(alkene)(P,S)] complexes 47 (alkene = norbornene) and 48 (alkene = dba).

Reaction of ligand 14a with [PdCl2(NCBut)2] at raised temperature resulted in S−C

bond cleavage and the formation of palladium dimer 43 with bidentate coordination

of the ligand through phosphine and bridging thiolate moieties. Reaction of ligand

14a with [Pd(OAc)2] resulted in C−H activation of the aryl backbone and formation

of [Pd(µ-OAc)(P,C)]2 dimer 46. In the presence of excess [Pd(OAc)2], palladium

hexamer 45 was formed, with a combination of P,C palladacycle and monodentate

thioether binding resulting in bridging P,C,S coordination of ligand 14a.

The Sonogashira cross-coupling of 4-bromoanisole and phenylethyne was performed

with 3 mol% of a pre-catalyst mixture containing P,S ligand 14a, [Pd(OAc)
2
]

and CuI, resulting in quantitative conversion to 4-(phenylethynyl)anisole in four

hours. Two enyne by-products were also identified from the reaction. Variations

to the pre-catalyst mixture and catalyst loading indicated there was a significant

ligand dependence on the yield and selectivity of the reactions. Mercury drop

tests and dynamic light scattering experiments confirmed the presence of palladium

nanoparticles in the reaction solution; however, the active catalytic species in these

reactions has not been identified.
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Chapter 1

Introduction

Hybrid P,E ligands have attracted a great deal of interest in recent years in the

field of homogeneous catalysis and a number of other research areas. This attention

is based on the ability of these ligands to produce transition metal complexes with

unusual and potentially beneficial patterns of reactivity. This thesis provides an

account of research into a family of novel hybrid P,E ligands with a large bite angle

o-xylene backbone.

1.1 P,P Ligands

Organophosphorus compounds, and tertiary phosphines in particular, are ubiquitous

ligands in the field of transition metal coordination chemistry. The combination of

σ-donation and π-back bonding ability of these neutral ligands results in stable metal

complexes with a large number of metals and over a range of metal oxidation states.

The ability to easily tune the steric and electronic features of phosphine ligands

(quantified using the Tolman cone angle and electronic parameter respectively1)

through modification of the substituents on the phosphorus donor atom has led to

a huge array of different phosphine ligands reported in the literature.

As each ligand present in a transition metal complex influences the characteristics of

the complex, including the physical space around the metal centre and the electron

density on the metal itself, these features can be easily tuned via the choice of ligand

employed. Phosphine ligands are widely utilised for this purpose, particularly as

ancillary ligands in transition metal-based catalysts, including a number of examples

used in large-scale industrial processes.2,3
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Diphosphine (P,P) ligands are one of the most common types of organophosphorus

ligand. In general, these ligands chelate to metal atoms, producing very stable

transition metal complexes through the chelate effect (an entropic effect used to

explain the increased thermodynamic stability of a bidentate ligand when compared

with two similar monodentate ligands).4 Chelating ligands also tend to create well-

defined transition metal complexes, which offer more control of the regio- and stereo-

selectivity in catalytic reactions employing these ligands. Along with the Tolman

cone angle and electronic parameter, chelating diphosphine ligands contain a third

tunable parameter, the bite angle, which is dependent upon the properties of the

ligand backbone. The bite angle is defined as the P−M−P angle present in metal

complexes of chelating diphosphine ligands, and is calculated either from the crystal

structure of a complex (or the average of a number of complexes) or by molecular

modelling, using a rhodium dummy atom and fixed Rh−P distances of 2.315 Å (the

“natural” bite angle).5,6

1.1.1 Large bite angle ligands

Diphosphine ligands with large bite angles have been shown to promote reac-

tivity patterns in transition metal catalysts quite unlike those of similar ligands

with smaller bite angles. The first example of this phenomenon was with bisbi

(Figure 1.1), a diphosphine ligand with a “natural” bite angle of 113◦ and crystal-

lographically determined bite angles of 124.8 and 117.9◦.7 A pre-catalyst mixture

of [Rh(acetylacetonate)(CO)2] and bisbi in a 1:1 ratio was used for the rhodium-

catalysed hydroformylation of 1-hexene, performed at 34 ◦C under six atm of

dihydrogen/carbon monoxide. This reaction gave excellent selectivity for the

straight-chain isomer (66.5:1 heptanal/2-methylhexanal) with a turnover frequency

(TOF) of 29.4 h−1. In contrast, the use of Ph2PCH2CH2PPh2 (with a “natural” bite

angle of 84.5◦) under the same conditions gave a heptanal/2-methylhexanal ratio of

2.1:1 and a TOF of only 1.1 h−1.

Ph2P PPh2

O

Si

MeMe

Ph2P PPh2

Figure 1.1 Large bite angle P,P ligands bisbi (left) and Sixantphos (right).
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Another example of a family of large bite angle ligands that has been extensively

studied in transition metal-catalysed reactions is the xantphos ligands, diphosphine

ligands with phenyl substituents and xanthene-based backbones.8,9 One of these

ligands, Sixantphos, is shown in Figure 1.1 and has a “natural” bite angle of 105◦.

This ligand (among others) was tested for the nickel-catalysed hydrocyanation of

styrene, using a pre-catalyst mixture of [Ni(1,5-cyclooctadiene)2] and Sixantphos in

a 1:1.2 ratio.10 This reaction produced a yield of 94–95% with 97–98% selectivity

for the branched nitrile product. Again, Ph2PCH2CH2PPh2 was also tested in this

reaction and found to be essentially inactive, producing a yield of <1%. The authors

attributed the difference in reactivity to the fact that large bite angle diphosphine

ligands enhance the reductive elimination step by supporting a tetrahedral geometry

of the catalyst species.

1.1.2 Dbpx

An example of a commercially useful large bite angle ligand is α,α′-bis(di-t-butyl-

phosphino)-o-xylene (dbpx), a chelating diphosphine ligand with a crystallographi-

cally determined bite angle of 104◦ (in [PtCl2(dbpx)]),11 first reported by Moulton

and Shaw in 1976.12 The initial investigations focused on the coordination chemistry

of dbpx with Group 10 metals.12–16 In 1996, it was discovered that dbpx forms

part of a highly active and selective catalyst for the methoxycarbonylation of

ethene, producing methyl propanoate, an industrially important compound.17,18

This result was significant, as chelating diphosphine ligands usually promote the

co-polymerisation of ethene and carbon monoxide to form high molecular weight

polyketone under the same reaction conditions,19 indicating that the bite angle

and steric environment present in transition metal complexes of dbpx produce

reactivity different to other diphosphine ligands. The catalyst, formed in situ from

[Pd(dba)(dbpx)] (dba = trans,trans-dibenzylideneacetone) and methanesulfonic acid

in methanol, produces methyl propanoate with selectivity of 99.98% and a TOF of

50,000 h−1 under mild conditions (80 ◦C and 10 atm pressure of carbon monox-

ide/ethene).20 Under steady state conditions, the catalyst gives turnover numbers

(TON) in excess of 100,000.18 In 2000, all the intermediates in the catalytic cycle

were identified, establishing that the reaction occurs via the hydride cycle shown in

Figure 1.2, rather than the alternative methoxycarbonyl cycle.20,21

This research was instrumental in the development of the Alpha process, a two step

industrial-scale synthesis of methyl methacrylate. The first step of the Alpha process

is the synthesis of methyl propanoate, using a homogeneous catalyst based upon the

palladium dbpx catalyst shown in Figure 1.2, which has a TON of 1,000,000. The
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Figure 1.2 Catalytic cycle for the formation of methyl propanoate.

second step is the reaction of methyl propanoate with formaldehyde, employing

a heterogeneous caesium silica catalyst. Since 2008, a Lucite International plant

in Singapore has used the Alpha process to produce 120,000 tonnes of methyl

methacrylate per annum.22 Lucite International are currently constructing the

world’s largest methyl methacrylate plant in Saudi Arabia, scheduled to begin

production of 250,000 tonnes per annum in late 2014.23 As a result of this commercial

success, a lot of interest has been generated in diphosphine ligands containing

o-xylene backbones. A number of patents have subsequently been granted for

catalytic processes that utilise dbpx,24–28 and the use of phosphine substituents

other than t-butyl groups has also been investigated.29–32

1.1.3 Unsymmetric P,P ligands

Further variations on the dbpx ligand that have generated interest in the past

ten years are the unsymmetric analogues of this ligand, where the substituents on

each phosphorus atom are different (Figure 1.3). A number of articles have been

published,11,33–37 and patents granted,38–44 on the use of these unsymmetric ligands

in recent years, almost exclusively concerning the synthesis of esters from alkenes,

alcohols and carbon monoxide.

In 2012, Pringle and co-workers published a study of structure/activity relationships

in the methoxycarbonylation of ethene with a number of these ligands.37 The investi-

gation of a range of o-C6H4(CH2PBut
2)(CH2PAr2) ligands showed that all of the lig-

ands were active and selective for the Pd-catalysed synthesis of methyl propanoate,

with subtle differences in activity and rate, and generally suggested that steric influ-
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Figure 1.3 Unsymmetric o-xylene-based P,P ligands.

ences are more important than electronic influences in these catalysts. Interestingly,

reactions with the ligand o-C6H4(CH2PBut
2)(CH2PCg) (PCg = 6-phospha-2,4,8-

trioxa-1,3,5,7-tetramethyladamant-6-yl, shown in Figure 1.3) gave higher TONs

than either of the symmetric parent ligands, o-C6H4(CH2PCg)2 and dbpx. This

enhancement in activity was attributed to a mutual perturbation of the PCg and

PBut
2 bonding in the active catalyst species, inferred from crystallographic and

spectroscopic studies of platinum complexes of o-C6H4(CH2PBut
2)(CH2PCg). The

authors also noted “it has been emphatically demonstrated that only one bulky

phosphine donor is required for xylenyl diphosphines to produce a very effective

hydromethoxycarbonylation catalyst”. This statement suggests that hybrid P,E

ligands based upon dbpx may also provide interesting and beneficial properties as

components of homogeneous catalysts.

1.2 Hybrid Ligands

Hybrid ligands are defined as ligands containing at least two different donor atoms,

generally with significantly different binding properties. Ligands of this type are

attractive homogeneous catalyst components as they have the potential to influence

the reactivity and selectivity of catalysts in a beneficial manner. It is well established

that the electronic properties of ligand donor atoms in transition metal complexes

have an influence on the environment at the metal centre and affect the other
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ligands present in the metal complex. In particular, ligand donor atoms influence

the properties (stability and bond length, for example) of the ligands in the trans

positions on the metal centre (trans influence), even to the extent of impacting the

lability of those ligands, and therefore the reaction rates associated with the metal

complex (trans effect).45 As the electronic properties of each donor atom in a hybrid

ligand are different, this creates quite distinct binding sites in the trans positions

on the metal centre (Figure 1.4) and can, for example, influence the selectivity for

particular products in catalytic reactions.

YX

M

L L

Y

X

M

L L

Figure 1.4 Schematic of the features of hybrid ligands.

Another reason hybrid ligands have attracted interest in recent years is their

potential for hemilability. The term “hemilability” (coined by Jeffrey and Rauchfuss

in 197946) describes the reversible dissociation of one donor atom of a hybrid

ligand, while the ligand remains “anchored” to the metal centre by the other donor

atom(s) (Figure 1.4). Ligand hemilability is particularly advantageous in the field

of homogeneous catalysis as the dissociation of a donor atom creates an empty site

in which substrates can bind or metal-directed reactions can take place. Conversely,

facile reassociation of the donor atom imparts stability to the catalyst in the resting

state. The following sections provide a number of literature examples of hybrid P,E

ligands, in the field of homogeneous catalysis and in other research areas.

1.2.1 P,N ligands

As both phosphorus and nitrogen donor atoms are prevalent in the field of coordi-

nation chemistry, P,N ligands are by far the most abundant type of hybrid ligand

known, based upon the soft (phosphorus) and hard (nitrogen) dichotomy of the

donor atoms.47 Generally in these ligands, the more strongly binding (especially in

complexes of low oxidation state metals) phosphorus donor atom anchors the ligand

to the metal centre, while the nitrogen donor atom binds reversibly. For example, in

a 1992 paper, Werner and co-workers reported the observation of fluxional behaviour

in a rhodium(I) complex containing two phosphine-amine ligands.48 This fluxionality

was attributed to the facile exchange of nitrogen donor atoms in solution at room

temperature (Figure 1.5). It was also found that the bound amine group could be
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displaced by carbon monoxide, ethene or dihydrogen (in the case of dihydrogen,

forming a Rh(III) dihydride complex).

PP

Rh

N Cl

P

Rh

Cl N

P

MeMe Me Me

Pri

Pri

Pri

Pri

Me2NNMe2

Pri Pri Pri Pri

Figure 1.5 Hemilability of P,N ligands in a Rh(I) complex.

There are also many instances of P,N ligands used successfully for catalytic

applications.47 One example is the chemoselective hydrogenation of imides using

the [RuClCp⋆(P,N )] complex shown in Figure 1.6.49 A 1 mol% loading of this

ruthenium complex and potassium t-butoxide in i-propanol under an H2 atmo-

sphere (1 MPa) at 80 ◦C selectively converted N -benzylphthalimide to N -benzyl

2-hydroxymethylbenzamide in >99% yield after two hours. The equivalent ruthe-

nium complex bearing a similar N,N ligand (Me2NCH2CH2NH2) was tested under

the same conditions, and resulted in complete recovery of the starting material. The

authors attributed the contrast in reactivity with these ligands to the difference in

electronic character of the PPh2 and NMe2 moieties. They also found that the NH2

group present in the ligand was imperative to the catalytic process, and postulated

that the Brønsted acidity of this group plays a part in the transition state of the

reaction.

Ru

Cp*

Cl
N

P

H
H

Ph

Ph

Figure 1.6 A [RuClCp⋆(P,N )] catalyst for the hydrogenation of imides.

1.2.2 P,S ligands

Although both phosphorus and sulfur atoms are considered to be soft donors, they

display quite different binding strengths to transition metals, producing hybrid

ligands with potentially useful properties. In a 1999 review article, Mirkin and
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co-workers stated that “most phosphorus-thioether ligands do not exhibit hemi-

lability”.50 Nevertheless, Mirkin has subsequently produced a number of significant

examples of research utilising the hemilabile behaviour of phosphine-thioether

ligands to various ends.

N

N N
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S S

N

N N

N
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Mes
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PPh2Ph2P
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Ph2P
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COCl Cl CO

N

N N

N
Zn

Mes

Mes

S S

N

N N

N
Zn

Mes

Mes

S S

PPh2

PPh2

Ph2P

Ph2P

Rh Rh

2+

~3.5 Å

~7.0 Å

Scheme 1.1 Supramolecular cofacial porphyrin complexes in the “closed” (top)
and “open” (bottom) forms.

Using the Weak-Link Approach51 for the synthesis of inorganic macrocycles, Mirkin

and co-workers reported the synthesis of a tetradentate ligand containing a zinc

porphyrin core substituted with thioether-phosphine moieties at the 5 and 15 posi-

tions.52 The reaction of two equivalents of this ligand with [RhCl(nbd)]2 (nbd = nor-

bornadiene) and AgBF4 gave the “closed” macrocycle shown in Scheme 1.1. Treat-

ment of this species with carbon monoxide and a source of chloride anions gave

the “open” macrocyclic form, through displacement of the sulfur donor atoms from

the rhodium centres. In both of these forms, the zinc macrocycles are cofacial,

with porphyrin-porphyrin distances of ca. 3.5 Å in the “closed” macrocycle and

ca. 7.0 Å in the “open” macrocycle. These macrocycles were tested as catalysts

in acyl transfer reactions, and it was found that the rate of reaction with the
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“open” macrocycle was twice that of the “closed” macrocycle, and 14 times that of

a mixture of the zinc(II) and rhodium(I) monomers. This increase in reaction rate

was attributed to the ability of the “open” macrocycle to preorganise the substrates

within the cavity more effectively than the “closed” macrocycle, an effect that is

easily controlled due to the hemilability of the P,S ligand moieties.

B
BH
CH
C

S

Pt

ClPh2P

Ph2P

S

+

S

Pt

ClPh2P

Ph2P

S

+

S

Pt

ClPh2P

Ph2P

S

+

Figure 1.7 Platinum(II) complexes with phosphine-thioether ligands bearing
B-linked (top) or C-linked (bottom) icosahedral carborane substituents.

More recently, Mirkin and co-workers utilised the hemilabile behaviour of phosphine-

thioether ligands to investigate the electronic properties of icosahedral carborane

cages.53 The authors synthesised Ph2PCH2CH2SR (R = carborane cage) ligands

with the carborane cage substituent linked to the sulfur donor atom through either

a boron or carbon atom, and combined two equivalents of these P,S ligands

with [PtCl2(1,5-cyclooctadiene)] and NaBArF
4 to form the platinum complexes

shown in Figure 1.7. The 31P NMR spectrum of the complex containing B-linked

ligands displayed two broad signals, attributed to the facile exchange of sulfur

donor atoms in solution. Conversely, in the 31P NMR spectrum of the complex

containing C-linked ligands the signals were sharp, indicating no exchange on the

NMR timescale. These results indicated that the nature of the S-carborane linker

had an effect on the electronic character of the sulfur donor atom. Analogues of

the complexes were synthesised containing carbon-based substituents on the sulfur

atoms, and it was established that the B-linked carborane cage is a strongly electron-

donating substituent akin to a bulky alkyl moiety, whereas the C-linked carborane
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cage is a strongly electron-withdrawing substituent akin to a fluorinated aryl group.

Through this work, Mirkin and co-workers have established a method for effectively

decoupling electronic effects from steric effects in ligand donor atom substituents.

Examples of the hemilabile behaviour of phosphine-thioether ligands utilised directly

in transition metal catalysts (rather than the allosteric effect demonstrated by

Mirkin) are still very uncommon; however, phosphine-thioether ligands have been

shown to influence the selectivity of catalytic reactions. For example, Consiglio

and co-workers studied the effect of a number of ligands, including diphosphine and

hybrid phosphine ligands, on the carbonylation of styrene using [Pd(NCMe)4](BF4)2

as a pre-catalyst.54 It was found that of the carbonylation products formed,

the ligands Ph2PCH2CH2PPh2, Ph2PCH2CH2NMe2 and EtSCH2CH2SEt all gave

primarily (>80%) the straight-chain isomer, whereas Ph2PCH2CH2SEt gave 71%

conversion to the branched isomer. The authors hypothesised that the phosphine-

amine ligand acts as a monodentate phosphine ligand in this system, whereas

the phosphine-thioether does not. No explanation was offered for the return to

selectivity for the straight-chain isomer in the case of the dithioether ligand.

1.2.3 P,S=O ligands

The primary motivation for the study of phosphine-sulfoxide ligands has been their

use as chiral ligands for asymmetric catalysis. As the chiral centre in these ligands is

the sulfur donor atom, the source of their asymmetry in transition metal complexes is

situated very close to the metal centre, which should produce good enantioselectivity.

The role of the phosphorus donor atom in these ligands is to provide stability to the

M−S bond via the chelate effect. Much of the research in this area to date has been

performed by Hiroi.55

For example, Hiroi and co-workers reported the palladium-catalysed asymmetric

allylic alkylation and allylic amination of (±)-1,3-diphenyl-2-propenyl acetate with

the methoxynaphthyl-substituted P,S=O ligand shown in Figure 1.8.56 The allylic

alkylation of (±)-1,3-diphenyl-2-propenyl acetate with dimethylmalonate was tested

under a range of conditions, and resulted in reasonable yields of the product (up to

75%) with ee’s of 13–82%. Similar results were obtained for the allylic amination of

(±)-1,3-diphenyl-2-propenyl acetate with benzylamine, producing 20–91% yield of

the product and ee’s between 3 and 85%.

Better results were obtained by Liao and co-workers for the rhodium-catalysed

asymmetric 1,4-addition of arylboronic acids to cyclic enones with the t-butyl-
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Figure 1.8 Hiroi’s (left) and Liao’s (right) chiral P,S=O ligands for asymmetric
catalysis.

substituted P,S=O ligand shown in Figure 1.8.57 Reactions with a range of starting

materials were carried out with a pre-catalyst mixture of [RhCl(ethene)2]2 (1 mol%)

and the P,S=O ligand (2.4 mol%) at 40 ◦C for 30 minutes, and resulted in good

yields of between 67 and 99% and ee’s of 74–98%. The authors proposed a steric

repulsion between the t-butyl moiety of the P,S=O ligand and the enone carbonyl

group as the source of the enantioselectivity in these reactions.

1.2.4 P,Si ligands

Silyl ligands are of interest in the field of coordination chemistry due to the

unusual properties of the silicon donor atom in transition metal complexes. Silicon

is an exceptionally strong σ-donor, producing particularly strong Si−M bonds

(in one instance calculated to be nearly 100 kJ mol-1 higher than an equivalent

C−M bond58). For this reason, silicon donor atoms have a very high trans

influence and trans effect, and are expected to generate electron-rich metal centres.59

Unfortunately, metal-silicon bonds are also very reactive, and are easily cleaved

via reductive elimination, nucleophilic attack at the silicon atom, insertion into the

Si−M bond, or σ-bond metathesis. One method employed for reducing the reactivity

of metal-silicon bonds is the use of hybrid P,Si ligands, which significantly increases

the stability of the Si−M bond through the chelate effect.

A number of bidentate P,Si ligands have been produced on this basis, and complexes

of various transition metals with these ligands have been reported.59,60 However, very

little information on the reactivity of these metal complexes is available, presumably

due to their inherent stability. More prevalent in the literature are pincer-type P,Si,P

ligands, such as {o-(Ph2P)C6H4}2MeSi–,61,62 and tripodal P3 ,Si ligands.
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Figure 1.9 Iron dinitrogen complexes containing a tripodal P3 ,Si ligand.

In 2010, Jones and co-workers reported a number of iron dinitrogen complexes

containing a tripodal P3 ,Si ligand.63 As part of an investigation into iron-based

catalysts for the reduction of dinitrogen to ammonia, the authors produced trigonal

bipyramidal complexes of the type shown in Figure 1.9, with dinitrogen occupying

the apical site. The neutral iron(I) species was treated with HBArF
4 to produce

the equivalent cationic iron(II) species, or reduced with sodium naphthalide and

12-crown-4 to produce the anionic iron(0) species, without loss of the coordinated

dinitrogen ligand. Interestingly, the iron(II) species could be treated with a solution

of ammonia to produce [Fe(P3 ,Si)(NH3)]+, where the ammonia ligand also inhabits

the apical site. Reduction of this complex resulted in quantitative release of

ammonia, and regeneration of the iron(I) dinitrogen species (Figure 1.9). The

authors noted that this system is a promising lead to an iron-mediated, N2-fixation

catalyst based on three-fold symmetry.

1.3 Research Objectives

There are many examples in the literature of interesting and useful applications of

hybrid P,E ligands, based upon the weak binding of amine or thioether groups, the

chirality of sulfoxide moieties, or the high trans influence and trans effect of silicon

donor atoms. Similarly, unsymmetric diphosphine ligands containing a large bite

angle o-xylene backbone, based upon the commercially successful dbpx ligand, have

shown excellent activity as components of homogeneous catalysts for the synthesis of

a range of esters, and structure/activity studies have revealed a significant synergistic

effect with one of these P,P ligands. However, this area of research has not been

extended to the study of heterobidentate ligands with an o-xylene backbone, and

there are no literature examples of hybrid P,E ligands of this type. Based on

what is known about the attributes of both hybrid P,E ligands and large bite

angle diphosphine ligands, the integration of these two aspects promises to produce
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compounds with unusual and potentially beneficial reactivity patterns, for use as

ligands in the field of homogeneous catalysis and in other research areas.

The initial objective of this research is to produce examples of novel P,N, P,S,

P,S=O and P,Si ligands containing an o-xylene backbone. A route to unsymmetric

diphosphine ligands of this type is known; however, this synthetic method is

restrictive, and would not be applicable to the synthesis of all the desired P,E

ligands (specifically phosphine-silane ligands). Ideally, a single methodology will be

developed, with the versatility to incorporate a wide range of donor atoms into this

ligand framework.

The coordination chemistry of these novel P,E ligands with Group 10 metals

will then be investigated. Initially, reactions with platinum(II) and platinum(0)

precursors will be performed, as the presence of an NMR active platinum isotope

(platinum-195) and the high stability of platinum complexes tends to simplify

the characterisation and evaluation of complexes with this transition metal when

compared with other Group 10 metals. Nuclear magnetic resonance spectroscopy

will be used to characterise the products of the reactions, and to assess any hemilabile

behaviour or other dynamic processes present in the metal complexes. X-ray

crystallography will also be an important tool for this research, and will be used

to assess various parameters of the metal complexes, including the bite angles and

trans influences of the hybrid ligands.

The platinum study should identify any good candidates for use as components

of palladium-based homogeneous catalysts, and may also suggest the types of

catalytic reactions for which these P,E ligands would be appropriate. On this

basis, the reactivity of the P,E ligands with common palladium precursors will be

examined and the resulting metal complexes characterised by NMR spectroscopy,

X-ray crystallography and other methods. Palladium-catalysed reactions using

these ligands as part of pre-catalyst mixtures and/or in pre-formed palladium

complexes will also be performed, and the reaction kinetics evaluated by GC-MS

and NMR methods. The combination of these two areas of research should

establish whether hybrid P,E ligands containing large bite angle o-xylene backbones

produce homogeneous catalysts with reactivity and/or selectivity different to known

catalysts, and assist in the identification of the active catalytic species.
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Chapter 2

Ligand Synthesis

2.1 Background

The first synthesis of the diphosphine ligand α,α′-bis(di-t-butylphosphino)-o-xylene

(dbpx) was reported in 1976 by Moulton and Shaw.12 This synthetic method involved

the treatment of α,α′-dibromo-o-xylene with di-t-butylphosphine and subsequent

deprotonation of the diphosphonium cation with a base, resulting in a low yield

of dbpx. This remained the sole synthetic methodology15,64,65 until 1999 when

Newman and co-workers patented a different synthesis of dbpx, as part of a catalytic

process for the carbonylation of ethene.66 This method involved the dimetallation

of o-xylene via the in-situ formation of a super base (Scheme 2.1).67 Subsequent

addition of two equivalents of chlorodi-t-butylphosphine formed the product, dbpx.

In 2004, Ooka patented a third method of synthesising dbpx, wherein lithium

di-t-butylphosphide–borane was combined with α,α′-dichloro-o-xylene producing

a borane-protected version of the ligand, which was subsequently deprotected

by reaction with tetrafluoroboric acid.68 At present, the most commonly used

methodology for the synthesis of dbpx is that of Newman and co-workers.

(i)
M

M

(ii)
PBut

2

PBut
2

M = K, Na

Scheme 2.1 Newman’s patented synthesis of dbpx. Reagents and conditions:
(i) n-BuLi, MOBut , alkane or ether solvent; (ii) But

2PCl.
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A large number of α,α′-bis(phosphino)-o-xylene ligands with various phosphine

substituents have been synthesised using these or similar methods.31,69,70 However,

these methods are only applicable to ligands where the substituents on each

phosphorus atom are identical. In order to synthesise unsymmetric ligands of the

type o-C6H4(CH2PR2)(CH2PR′
2), wherein R 6= R′, a different approach must be

taken. At present, all ligands of this type are synthesised using the 2005 method of

Leone and Consiglio.71 This methodology uses a cyclic sulfate, produced in two steps

from α,α′-dihydroxy-o-xylene (Scheme 2.2). The addition of a lithium phosphide (or

lithium phosphide–borane) to this compound ring-opens the cyclic sulfate, producing

a disubstituted o-xylene, with phosphine and lithium sulfate substituents at the

methyl positions. In the final step of this synthetic procedure, a second lithium

phosphide is added, displacing the lithium sulfate substituent to produce the desired

o-C6H4(CH2PR2)(CH2PR′
2) ligand.

(i)

PR2

OSO3Li

OH

OH

O

O

S O

O

O

S

O

O

(iv)

(iii)

(ii)

PR2

PR′2

Scheme 2.2 Leone and Consiglio’s synthesis of unsymmetric diphosphine
ligands. Reagents and conditions: (i) SOCl2, CCl4; (ii) RuCl3 · xH2O, NaIO4,
CCl4/MeCN/H2O; (iii) LiPR2, HMPA, THF; (iv) LiPR′

2.

This synthetic methodology has been used to produce a wide range of unsymmetric

diphosphine ligands,37,42,43 and while it could be modified to synthesise o-xylene-

based hybrid P,E ligands, it does depend on the availability of two nucleophilic

reagents to install the two functional groups. This is restrictive as, for example,

secondary silyl anions are generally unstable. The only known examples are

LiSiMes2H and LiSiPh2H (produced in a low yield),72 and hence to produce P,Si

hybrid ligands of this type a different approach is required. This approach would

depend upon the formation of an o-xylene backbone intermediate species that could
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react with an electrophilic precursor of the type RnEX, to install the non-phosphorus

donor atom of the hybrid ligand, ideally with fewer steps than the Leone and

Consiglio method.

2.2 Initial Attempts

2.2.1 Dimetallated o-xylene

In this study, the first attempts to synthesise hybrid P,E ligands with an o-xylene

backbone used Newman’s dimetallated intermediate species shown in Scheme 2.1.

The dimetallated o-xylene was prepared following the method of Newman and

co-workers,66 the resulting red solid was suspended in diethyl ether and one

equivalent each of chlorodi-t-butylphosphine and chlorodimethylsilane added se-

quentially (Scheme 2.3). Unfortunately, analysis of the NMR data associated with

the reaction mixture showed these reactions produced the known compounds dbpx73

and α,α′-bis(dimethylsilyl)-o-xylene74 only. This is a result of the insolubility of the

dimetallated o-xylene intermediate. Monometallated o-xylene is soluble in a number

of solvents while the dimetallated species is not (and in fact the two compounds can

be separated on this basis), so the first addition of a reagent to the dimetallated

o-xylene results in a soluble monometallated species, which preferentially reacts

with any further reagent in solution, the final result being the two symmetric

compounds shown in Scheme 2.3. Even when a mixture of chlorodi-t-butylphosphine

and chlorodimethylsilane was added in one step, the two symmetric compounds were

the major products formed, likely due to a disparity in reaction rate between the

two reagents.

M

M
(i)

PBut
2

PBut
2

SiMe2H

SiMe2H
+

Scheme 2.3 Attempted synthesis of a P,Si ligand. Reagents and conditions:
(i) But

2PCl, Me2SiHCl, Et2O.

2.2.2 Cyclic phosphonium salt

As the previous reactions were unsuccessful, alternative synthetic methodologies

were investigated. It is known that the synthesis of benzyllithium from benzyl
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halides is low yielding, as bibenzyl is readily formed (Wurtz-type coupling),75 so

other methods of producing a substituted benzyllithium intermediate were explored.

Initially, it was envisaged that P−C bond cleavage of a cyclic phosphonium ion

by lithium metal would give the desired ortho-substituted benzyllithium species.

The reaction of one equivalent of di-t-butylphosphine with α,α′-dibromo-o-xylene

in acetonitrile in the presence of potassium carbonate formed the cyclic phosphonium

bromide 1 in 72% yield (Scheme 2.4). The 1H NMR spectrum of compound

1 in chloroform-d displays the expected doublets associated with the PBut and

CH2P protons in a 9:2 ratio at 1.54 and 4.07 ppm respectively. The 31P NMR

spectrum shows a singlet peak at 71.8 ppm. This compound is similar to known

cyclic dimethyl- and diphenyl-substituted phosphonium bromides.76 Other than the

treatment of these compounds with methylenetrimethylphosphorane76 or potassium

t-butoxide77 to form cyclic phosphorus ylides, and P−C bond cleavage with various

hydroxides,78,79 the reactivity of these five-membered cyclic phosphonium salts has

not been widely studied.

Br

Br
PBut

2

Br
(i)

1

Scheme 2.4 Synthesis of cyclic phosphonium bromide 1. Reagents and conditions:
(i) But

2PH, K2CO3, MeCN, 72% yield.

The direct reaction of cyclic phosphonium bromide 1 with lithium metal in THF

followed by quenching with water resulted largely in the recovery of unchanged

starting material (Scheme 2.5). In an attempt to activate the lithium metal, the

reaction was repeated with the inclusion of a crystal of naphthalene, followed by

addition of one equivalent of chlorodimethylsilane. Unfortunately, an intractable

mixture of products resulted, with no evidence of the desired product present in any

appreciable amount from the NMR spectra.

Me

PBut
2PBut

2
PBut

2

Br
(ii)(i)

Li

O

1 2

Scheme 2.5 Unsuccessful reactions with cyclic phosphonium bromide 1. Reagents
and conditions: (i) Li metal, naphthalene, THF, overnight; (ii) NaOMe, MeOH,
48 h, 45% conversion.
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As the direct lithiation of phosphonium bromide 1 did not produce the desired

metallated species, other routes to this material were explored. The production

of benzyllithiums from benzyl alkyl ether starting materials is a well-established

procedure,75,80 and as such, the synthesis of an o-phosphinomethyl-substituted

benzyl methyl ether compound was commenced. Compound 1 was combined

with sodium methoxide in methanol and the reaction monitored by NMR spec-

troscopy. After 48 hours, no evidence of the desired ring-opened product was

observed. Instead, the starting material slowly converted to o-(methyl)benzyldi-

t-butylphosphine oxide (2), resulting in a 45% yield of this compound after 48

hours (Scheme 2.5). The structure of compound 2 was established through 1H, 13C

and 31P NMR spectroscopy. The 31P NMR shift of this compound, 60.9 ppm, is

consistent with other benzyldi-t-butylphosphine oxides (typically 55–70 ppm81,82).

As mentioned previously, P−C bond cleavage of five-membered cyclic phosphonium

salts with various hydroxides,78,79 producing the corresponding phosphine oxides, is

a known reaction type. This suggests that compound 1 did not react with sodium

methoxide, but rather slow formation of sodium hydroxide occurred in solution due

to the presence of water, which in turn reacted with compound 1, cleaving one of

the benzylic P−C bonds and producing compound 2.

2.2.3 Phosphine–boranes

Another route to the desired compound α-(di-t-butylphosphino)-α′-methoxy-o-xy-

lene was through the known starting material, α-chloro-α′-methoxy-o-xylene (3).

This compound was first synthesised in 1936 by Murahashi in crude form83 and

subsequently synthesised and isolated successfully by Mann and Stewart in 1954,84

requiring at least three reaction steps from a commercially available material. As

the previous synthetic methodologies were not ideal, a new synthesis of compound 3

was developed. This method involved the dropwise addition of a methanol solution

of sodium methoxide to an excess of α,α′-dichloro-o-xylene in methanol at reflux

(Scheme 2.6). The reaction of stoichiometric quantities of these reactants would

result in a statistical distribution of products, and therefore a theoretical maximum

50% yield of the desired product. However, the use of an excess of the xylene

substrate and dropwise addition of the sodium methoxide at reaction temperature

ensured the production of the by-product, α,α′-dimethoxy-o-xylene, was minimised,

and therefore the proportion of desired compound 3 increased. Subsequent sep-

aration of the products and remaining α,α′-dichloro-o-xylene substrate by column

chromatography gave pure desired compound 3 as a clear liquid in 62% yield.85 This

new synthetic methodology gives yields similar to that of Mann and Stewart, and

19



as only one reaction step is required, is more atom economic and time efficient than

previous methods.

Cl

OMe

(ii)

(i)
Cl

Cl

PBut
2(BH3)

OMe

3

4

Scheme 2.6 Synthesis of ortho-substituted benzyl methyl ethers 3 and 4.
Reagents and conditions: (i) 0.5 eq. NaOMe, MeOH, reflux, 1.5 h, 62% yield;
(ii) LiPBut

2(BH3), Et2O, 0 ◦C −→ rt, overnight, 51% yield.

Compound 3 was then used to synthesise the desired α-(di-t-butylphosphino)-α′-

methoxy-o-xylene compound 4 (Scheme 2.6). In this instance, lithium di-t-butyl-

phosphide–borane was reacted with compound 3 in diethyl ether, and desired

compound 4 crystallised in a 51% yield.85 Borane-protection of the phosphine

moiety in compound 4 rendered the product an easily handled air-stable crystalline

solid, and protected the phosphorus atom from oxidation or other side reactions

in any subsequent reaction steps (for example, cyclisation to the corresponding

phosphonium ion has been reported for a compound of this type86). The 31P NMR

signal associated with compound 4 is a broad multiplet centred at 47.3 ppm, due

to coupling to NMR-active boron (primarily boron-11). The presence of borane is

also reflected in the 1H NMR spectrum with a very broad peak between 1.0 and

1.8 ppm, which intergrates for three protons. A B−H stretching peak is also seen

in the infrared spectrum of compound 4, at 2380 cm-1.

The lithiation of compound 4 was attempted in a similar fashion to that of the

cyclic phosphonium bromide 1, initially by combining compound 4 and an excess of

lithium metal in THF overnight, and subsequently quenching with water. Proton

and phosphorus-31 NMR data of the resulting reaction mixture showed unchanged

starting material 4 only (Scheme 2.7). Again, the reaction was repeated with the

inclusion of naphthalene. Following the method of Azzena and co-workers,80 lithium

metal and 5 mol% naphthalene were combined in THF and heated to 50 ◦C until

a dark green colour was observed. The solution was cooled and compound 4 was

added, the mixture stirred overnight, and then quenched with water. The resulting
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1H NMR spectrum of the reaction mixture showed no sign of unreacted compound

4, but also no peaks associated with CH2P moieties, suggesting that C−P bond

cleavage had occurred along with the desired C−O bond cleavage. This is perhaps

unsurprising, as C−P bond cleavage with alkali metals in THF is a well established

reaction type.87

PBut
2(BH3)

Li
(i)

PBut
2(BH3)

OMe

4

Scheme 2.7 Unsuccessful lithiation of compound 4. Reagents and conditions:
(i) Li metal, naphthalene, THF, overnight.

As all lithiation reactions undertaken had been unsuccessful, it was decided the

use of an o-phosphinomethyl-substituted benzyl Grignard reagent may provide

a viable route to the desired compounds. To this end, the synthesis of α-(di-

t-butylphosphino)-α′-chloro-o-xylene–borane (5) was carried out, via reaction

of lithium di-t-butylphosphide–borane with α,α′-dichloro-o-xylene (Scheme 2.8).

Again, the reaction of stoichiometric quantities of these reactants would result

in a statistical distribution of products, so a three-fold excess of α,α′-dichloro-

o-xylene was used in order to minimise production of the by-product, α,α′-bis-

(di-t-butylphosphino)-o-xylene–diborane. In this case, borane-protection of the

phosphine moiety was imperative to prevent cyclisation of the product to the chloride

analogue of compound 1. After the reaction was complete, the excess starting

material was removed from the reaction mixture by vacuum sublimation, and the

remaining crude product recrystallised from n-hexane to give pure compound 5 as

an air-stable crystalline solid in 54% yield.85

PBut
2(BH3)

Cl
(i)

Cl

Cl

5

Scheme 2.8 Synthesis of o-phosphinomethyl-substituted benzyl chloride 5.
Reagents and conditions: (i) 0.3 eq. LiPBut

2(BH
3
), Et2O, −78 ◦C −→ rt, 2 h,

54% yield.

The identity of compound 5 was established through NMR and infrared spec-

troscopy, high resolution mass spectrometry and elemental analysis. The 31P NMR

signal is a broad multiplet centred at 47.9 ppm, very similar to that of compound

4. The 1H NMR spectrum displays a broad peak between 0.6 and 1.5 ppm
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corresponding to the borane protons, doublets centred at 1.05 and 3.11 ppm for

the PBut and CH2P groups respectively, a singlet at 4.72 ppm corresponding to

the CH2Cl protons, and peaks in the aromatic region of the spectrum integrating

for four protons. Again, the infrared spectrum contains a B−H stretching peak, at

2377 cm-1.

Compound 5 is a versatile substrate for the synthesis of a range of hybrid P,E

ligands with o-xylene backbones. Through either direct reaction with nucleophiles

or conversion to a Grignard reagent, this compound has been utilised as the precursor

to unsymmetric diphosphine, phosphine-thioether, phosphine-sulfoxide, phosphine-

amine and phosphine-silane ligands.88 In most cases, this method has the benefit

of providing air-stable, crystalline ligand precursors, which can be easily stored for

many months without decomposition.

2.3 Hybrid P,E Ligands

2.3.1 P,P ligands

Initially, compound 5 was used to synthesise the known ligand, α-(di-t-butylphos-

phino)-α′-(diphenylphosphino)-o-xylene (7)36 in two steps. Compound 5 was

reacted with freshly prepared lithium diphenylphosphide–borane to give a 57%

yield of desired compound 6 after work-up and recrystallisation (Scheme 2.9). The
31P NMR spectrum associated with compound 6 displays broad peaks centred at

18.5 and 47.7 ppm, confirming the presence of benzyldiphenylphosphine–borane

and benzyldi-t-butylphosphine–borane moieties respectively.89 Again, the 1H NMR

spectrum shows a very broad peak between 0.2 and 1.2 ppm, this time integrating

for six protons, for the borane groups in compound 6, and B−H stretching peaks

are present in the infrared spectrum between 2349 and 2386 cm-1.

The deprotection of phosphine–borane adducts to give the corresponding free

phosphines has been achieved via various synthetic methodologies,90,91 and the use

of diethylamine, 1,4-diazabicyclo[2.2.2]octane (DABCO), morpholine and tetrafluo-

roboric acid have been investigated for the deprotection of derivatives of compound

5. It was found that morpholine was the most effective deprotection reagent for

the majority of these hybrid P,E ligands. The use of morpholine as both reagent

and solvent for these reactions achieved quantitative deprotection of the phosphine–

boranes at 100 ◦C over one hour. Importantly, the by-product of these reactions,

morpholine–borane, was easily separated from the desired free phosphine. In the
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PBut
2(BH3)

PPh2(BH3)

(ii)

(i)
PBut

2(BH3)

Cl

PBut
2

PPh2

5 6

7

Scheme 2.9 Synthesis of P,P ligand 7. Reagents and conditions:
(i) LiPPh2(BH3), THF, −78 ◦C −→ rt, overnight, 57% yield; (ii) Morpholine,
100 ◦C, 1 h, 82% yield.

case of compound 6, reaction with morpholine under these conditions, followed

by removal of the remaining morpholine under reduced pressure, extraction into

n-hexane, and filtration through a plug of alumina gave highly air-sensitive pure

compound 7 in 82% yield as a white solid (Scheme 2.9).

Due to the air-sensitivity of compound 7, characterisation of this material was

restricted to NMR methods only. Deprotection of both phosphine moieties was

established from the 31P NMR spectrum of compound 7. Both broad peaks seen

in the spectrum of the precursor, compound 6, had disappeared and were replaced

by sharp doublets at −15.6 and 24.5 ppm (5J PP = 1.4 Hz), corresponding to the

deprotected PPh2 and PBut
2 groups respectively. All the NMR data collected for

compound 7 are in good agreement with the data published by Fanjul and co-workers

in 2010.36

As mentioned previously, some hybrid P,E ligands containing an o-xylene back-

bone are not able to be synthesised by the previous methods, as the appropriate

nucleophilic reagent is unavailable. This is the case for the synthesis of an un-

symmetric diphosphine ligand containing a bis(pentafluorophenyl)phosphine group,

as the bis(pentafluorophenyl)phosphide anion is known to be unstable even at low

temperatures.92 In these instances, compound 5 can be reacted with magnesium

metal to form a substituted benzyl Grignard reagent capable of reacting with

appropriate halide precursors to form the desired P,E ligands.

In order to synthesise a molecule containing a bis(pentafluorophenyl)phosphine moi-

ety (i.e. compound 8), the ortho-substituted benzyl chloride compound 5 was treated

with magnesium powder in THF to produce a benzyl Grignard reagent. This solu-
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tion was then combined with a THF solution of bis(pentafluorophenyl)bromophos-

phine to produce borane-protected unsymmetric diphosphine compound 8, shown

in Scheme 2.10. This reaction also resulted in two other products derived from

compound 5; the reduced form, o-(methyl)benzyldi-t-butylphosphine–borane (9),

and the bibenzyl dimer resulting from Wurtz-type coupling (10). A number of

pentafluorophenyl-containing products relating to the bis(pentafluorophenyl)bromo-

phosphine starting material were also present. All the by-products were successfully

removed from the reaction mixture by extraction into n-hexane and subsequent

washing with methanol, giving desired compound 8 in 32% yield. Due to the

presence of a bis(pentafluorophenyl)phosphine moiety in this compound, it is mildly

air-sensitive. Borane protection of the P(C6F5)2 group was attempted; however, the

facile reversability of the resulting bis(pentafluorophenyl)phosphine–borane adduct

meant this methodology was not worth pursuing.

PBut
2(BH3)

P(C6F5)2

PBut
2(BH3)

Cl

Me

PBut
2(BH3)

(i)

+

PBut
2(BH3)

+

(BH3)But
2P

5

8 9

10

Scheme 2.10 Grignard route to borane-protected P,P compound 8. Reagents
and conditions: (i) Mg powder, (C6F5)2PBr, THF, 32% yield.

Compound 8 was characterised by 1H, 31P, 19F and 13C NMR spectroscopy, and high

resolution mass spectrometry. The 31P NMR spectrum of this compound displays

the expected broad multiplet centred at 49.4 ppm corresponding to the PBut
2(BH3)

moiety, and a quintet (3J PF = 22.2 Hz) centred at −50.5 ppm for the P(C6F5)2 group.

Both this chemical shift and coupling constant are in good agreement with the only

published example of a bis(pentafluorophenyl)benzylphosphine compound.93 The
19F NMR spectrum of compound 8 shows three complex peaks centred at −160.3,
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−149.4 and −130.1 ppm, corresponding to the meta, para and ortho fluorine atoms

of the P(C
6
F5)2

moiety respectively.

Deprotection of compound 8 was achieved via a different synthetic procedure to the

previous P,P ligand. In this case, compound 8 was combined with tetrafluoroboric

acid diethyl etherate, and after one hour, the mixture quenched with sodium hydro-

gen carbonate solution (Scheme 2.11). Subsequent work-up gave pure compound 11

in a 51% yield. Again, this highly air-sensitive material was characterised by 1H,
31P, 19F and 13C NMR spectroscopy. Complete deprotection of the PBut

2 moiety

was established by the disappearance of the broad peak associated with the BH3

protons in the 1H NMR spectrum, and the replacement of the broad peak in the
31P NMR spectrum of borane-protected compound 8 with a sharp doublet signal

centred at 25.2 ppm in the spectrum of compound 11 (shown in Figure 2.1). As in

P,P ligand 7, the doublet splitting is due to a 5J PP coupling between the phosphorus

atoms, in this instance to the quintet of doublets signal at −50.9 ppm, associated

with the P(C6F5)2 moiety.

PBut
2

P(C6F5)2

(ii)

(i)
PBut

2(BH3)

P(C6F5)2

PBut
2

PR2

R = N O

F F

FF

8 11

12

Scheme 2.11 Deprotection of P,P compound 8. Reagents and conditions:
(i) HBF4 · Et2O, CH2Cl2, 1 h, NaHCO3, H2O, 30 min, 51% yield; (ii) Morpholine,
100 ◦C, 1 h, 86% yield.

Deprotection of the phosphine–borane moiety in compound 8 was also attempted

with morpholine. Interestingly, along with the desired deprotection reaction,

nucleophilic aromatic substitution occurred at the para position of each pentaflu-

orophenylphosphine moiety, producing the bis(p-N -morpholinotetrafluorophenyl)-

phosphine compound 12 (Scheme 2.11). The identity of this compound was

established by 1H, 31P, 19F and 13C NMR spectroscopy, and high resolution mass

spectrometry. Only two signals are observed in the 19F NMR spectrum, in a 1:1 ratio,

indicating the loss of the para fluorine atoms of the formerly pentafluorophenylphos-

phine groups. Of note in the 13C NMR spectrum is a triplet peak centred at
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Figure 2.1 31P NMR spectrum of P,P ligand 11 in benzene-d6. Asterisk denotes
a sample impurity.

51.1 ppm corresponding to the CH2N groups of the morpholino substituents, the

3.4 Hz coupling constant being due to a 4J CF coupling to the two meta fluorine

atoms. This connectivity is supported by an HMBC correlation between the protons

of the CH2N groups and one of the fluorine-bearing carbon atoms. This reaction

type has previously been shown to occur between pentafluorophenyl substituents of

various compounds and morpholine,94–96 and with many other secondary amines.

This is, however, the first example of nucleophilic aromatic substitution at the para

position of a pentafluorophenylphosphine by a secondary amine.

2.3.2 P,S ligands

The synthesis of phosphine-thioether ligands with an o-xylene backbone from

compound 5 was quite straightforward. Compound 5 was treated with an excess of

the appropriate sodium thiolate precursor to produce phosphine–borane compounds

with either an electron-rich t-butyl (13a) or electron-poor phenyl (13b) thioether

moiety in recrystallised yields of 80% and 75% respectively (Scheme 2.12). These

compounds are odourless, easy to handle, air-stable white solids. The NMR spectra

of compounds 13a and 13b contain all the expected features of phosphine–borane

species, including broad multiplets in the 31P NMR spectra centred around 48 ppm.

The 1H NMR spectra display doublet peaks at ca. 3.2 ppm corresponding to the

protons of the CH2P groups, and singlets at 3.99 and 4.40 ppm respectively for

the CH2S groups. Proton decoupled 11B NMR spectra were also collected for these

compounds. The spectrum of compound 13a displays a signal centred at −40.4 ppm

with a 1J PB coupling constant of 47.6 Hz. Similarly, the spectrum of compound 13b

displays a signal centred at −40.7 ppm with a 1J PB coupling constant of 48.4 Hz.
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2(BH3)

SR

(ii)
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Cl

PBut
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R = But

R = Ph

R = But
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14a
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Scheme 2.12 Synthesis of P,S ligands 14a and 14b. Reagents and conditions:
(i) NaSR, EtOH, rt, overnight, 75–80% yield; (ii) Morpholine, 100 ◦C, 1 h, 71–93%
yield.

Deprotection of the phosphine–borane adducts was again achieved by heating the

compounds in an excess of morpholine for one hour, followed by extraction with

n-hexane and filtration through alumina (Scheme 2.12). By this method, pure

samples of the highly air-sensitive free phosphine compounds 14a and 14b were

produced in yields of 93% and 71% respectively. Similarly to the previously discussed

diphosphine ligands, the complete deprotection of compounds 14a and 14b was

established through NMR spectroscopy, primarily by the replacement of the broad

peaks in the 31P NMR spectra with sharp peaks at 25.0 and 25.9 ppm respectively.

The 1H NMR spectra of these compounds show a reduction in the 2J PH coupling

constant of the CH2P groups, from 12.0 Hz in the phosphine–boranes to 1.2 Hz

for compound 14a and no observed coupling for compound 14b; however, the 1H

NMR peak corresponding to the CH2S protons of compound 14b did display a long-

range 5J PH coupling of 2.2 Hz. The 1H NMR spectrum of ligand 14a is shown in

Figure 2.2.

2.3.3 P,S=O ligand

The second P,S target in this study was a phosphine-sulfoxide ligand. As it is

known that standard peroxide-based sulfur oxidising agents deprotect and oxidise

trialkylphosphine–boranes,97,98 it was important to select an oxidising agent for

the synthesis of a phosphine-sulfoxide ligand from compound 13a that not only

selectively produced the sulfoxide (rather than further oxidation to the sulfone),

but also had no effect on the phosphine–borane moiety. In 2005, Mohammadpoor-
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Figure 2.2 1H NMR spectrum of P,S ligand 14a in benzene-d6.

Baltork and co-workers published a synthetic procedure that selectively oxidised

thioethers to sulfoxides in good yield, and was tolerant of a number of functional

groups.99 Their method used one equivalent each of 3-carboxypyridinium chlorochro-

mate (CPCC) and aluminium trichloride, and gave sulfoxide yields greater than 73%

either in refluxing acetonitrile solution or under microwave irradiation. In this case,

the CPCC/AlCl3 system oxidised compound 13a to the racemic borane-protected

P,S=O compound 15 in 58% recrystallised yield (Scheme 2.13). It is possible that

a single enantiomer of compound 15 could be synthesised via formation of a benzyl

Grignard reagent from compound 5 and reaction with an enantiomerically pure

t-butylsulfinate ester or t-butylthiosulfinate ester;100 however, this methodology has

not been investigated.

PBut
2(BH3)

SBut

(ii)

(i)
PBut

2(BH3)

SBut

O

PBut
2

SBut

O

13a 15

16

Scheme 2.13 Synthesis of P,S=O ligand 16. Reagents and conditions: (i) CPCC,
AlCl3, MeCN, reflux, 2 h, 58% yield; (ii) Morpholine, 100 ◦C, 1 h, 79% yield.
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As the sulfur atom in compound 15 is a chiral centre, the methylene protons

and phosphine t-butyl groups are rendered diastereotopic, which is reflected in the

doubling of 1H and 13C NMR signals corresponding to these atoms. The 1H NMR

spectrum of compound 15 displays AB systems associated with the protons of the

CH2P group (at 3.04 and 4.07 ppm, 2J HH = 15.0 Hz) and CH2S group (at 3.63 and

4.61 ppm, 2J HH = 13.5 Hz), and distinct signals for the protons of each PBut group

(Figure 2.3). The infrared spectrum of this compound was collected, and displays

both a B−H stretching peak (2391 cm-1) and a S−−O stretching peak (1028 cm-1).

1234567
ppm

Figure 2.3 1H NMR spectrum of borane-protected P,S=O compound 15 in
benzene-d6.

Again, compound 15 was easily deprotected by heating to 100 ◦C for one hour in

excess morpholine, giving 79% yield of the highly air-sensitive white solid ligand 16

after work up (Scheme 2.13). As in the borane-protected precursor, the chirality of

this ligand is reflected in the NMR spectra, with AB systems again evident for the
1H NMR peaks associated with the methylene protons in compound 16, and distinct

signals for the PBut groups. Interestingly, the 1H NMR peaks corresponding to the

CH2S protons also display long-range 5J PH coupling constants of 1.4 and 3.5 Hz.

2.3.4 P,N ligands

The synthesis of phosphine-amine ligands from compound 5 was problematic in

comparison to the synthesis of the phosphine-thioether compounds for two reasons.

Firstly, lithium dialkylamide reagents are known to reduce alkyl and aryl halides,101
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and secondly, the reagent or resulting benzyl dialkylamine compound would likely

deprotect the phosphine–borane moiety producing an air-sensitive compound.90,91

As was the case for the synthesis of diphosphine compound 6, it was necessary to

borane-protect the amine source prior to use in these reactions, in order to prevent

scrambling of the borane protecting group. Lithium N,N -dialkylaminoborohydride

(LAB) reagents are also well-known reducing agents when utilised at room tempera-

ture or above; however, at or below 0 ◦C, it has been shown that LAB reagents react

with benzyl halides to produce tertiary amine–boranes.102 Using this methodology,

compounds 17a–c were synthesised in good yield, even when the LAB reagent

contained bulkier ethyl substituents (Scheme 2.14). Very minor amounts of the

reduced by-product, o-(methyl)benzyldi-t-butylphosphine–borane (9), were seen in

the reaction mixtures of compounds 17b and 17c, but this was not present in the

reaction mixture of benzyldimethylamine compound 17a.

PBut
2(BH3)

NR2(BH3)

(ii)

(i)
PBut

2(BH3)

Cl

PBut
2

NR2

R = Me
R2 = (CH2)4
R = Et

R = Me
R2 = (CH2)4
R = Et

5 17a
17b
17c

18a
18b
18c

Scheme 2.14 Synthesis of P,N ligands 18a–c. Reagents and conditions:
(i) LiNR2(BH3), THF, −5 ◦C, 1 h, 80–89% yield; (ii) HBF4 · Et2O, CH2Cl2, rt,
1 h, NaHCO3, H2O, rt, 30 min, 60–85% yield.

These phosphine-amine–diborane compounds were fully characterised by NMR and

infrared spectroscopy, high resolution mass spectrometry and elemental analysis.

The 1H NMR spectra of these compounds display very broad peaks centred around

1.2 and 2.2 ppm, corresponding to the phosphine–borane and amine–borane protons

respectively, along with all the other expected features. Proton-decoupled 11B NMR

spectra of these compounds were also collected. These spectra all display two peaks,

a doublet for the phosphine–borane moiety centred around −40.9 ppm (J ≈ 50 Hz),

and a singlet for the amine–borane moiety. The chemical shifts of the amine–borane
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peaks are more varied due to the differing amine substituents, from −8.8 ppm for

compound 17a to −12.9 ppm for compound 17c.

These phosphine-amine ligands also required a different deprotection strategy,

as heating in an excess of morpholine did not entirely deprotect the amine–

borane moiety. An effective deprotection strategy for compounds 17a–c involved

treatment with tetrafluoroboric acid diethyl etherate, followed by sodium hydrogen

carbonate, to give novel ligands 18a–c in moderate to good yield with high

purity (Scheme 2.14). Again, due to the particularly high air-sensitivity of 18a–c,

characterisation was performed by NMR methods only. Complete removal of the

borane protecting groups was established by the absence of both broad peaks

associated with the BH3 moieties in the 1H NMR spectra. The 31P NMR spectra of

these compounds also display the expected sharp singlets at ca. 24 ppm for the free

phosphines.

2.3.5 P,Si ligands

As discussed previously, the synthesis of phosphine-silane ligands with an o-xylene

backbone requires a different strategy than previously published methods, due to

the instability of secondary silyl anions.72 For this reason, an appropriate route to

phosphine-silane compounds of this type is via an in situ benzyl Grignard reagent.

Compound 5 was combined with excess magnesium turnings, a crystal of iodine, and

chlorodiphenylsilane in THF under anhydrous conditions and stirred overnight, to

give the borane-protected phosphine-silane compound 19a, as shown in Scheme 2.15.

This reaction also produced a number of by-products, including the reduced form,

o-(methyl)benzyldi-t-butylphosphine–borane (9). The desired compound 19a was

isolated by column chromatography using an alumina stationary phase, resulting in a

yield of 34%. This material was characterised by NMR spectroscopy, high resolution

mass spectrometry and elemental analysis. The 1H NMR spectrum of compound

19a displays all the expected features, including a triplet peak associated with the

Si−H moiety at 5.10 ppm with silicon satellites (1J SiH = 197.3 Hz).

A similar methodology was used to synthesise the dimethylsilane analogue, com-

pound 19b. Again, compound 5 was combined with excess magnesium turnings, a

crystal of iodine, and chlorodimethylsilane in THF under anhydrous conditions, but

in this case the mixture was heated to reflux for one hour, followed by extraction into

toluene (Scheme 2.15). 1H NMR spectroscopy of the reaction mixture showed 85%

conversion to desired compound 19b, with o-(methyl)benzyldi-t-butylphosphine–
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R = Ph
R = Me

5 19a
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20a

Scheme 2.15 Grignard route to P,Si compounds 19a, 19b and 20a. Reagents
and conditions: (i) Mg turnings, I2, R2SiHCl, THF; (ii) DABCO, toluene-d8, 60 ◦C,
overnight, 69% yield.

borane (9) the only by-product. Unfortunately, all attempts to separate these two

compounds by crystallisation and column chromatography were unsuccessful.

Deprotection of isolated compound 19a was attempted a number of times by

heating in excess morpholine; however, in all instances this methodology led to

a mixture of products. Unfortunately, the tetrafluoroboric acid deprotection route

used previously for the P,N ligands was also not appropriate for the deprotection

of phosphine-silane compound 19a, as Si−H bonds are known to undergo acid-

catalysed solvolysis;103 and hence, a third deprotection strategy was required. Com-

pound 19a and 1,4-diazabicyclo[2.2.2]octane (DABCO) were dissolved in toluene-d8,

and the solution heated to 60 ◦C overnight (Scheme 2.15). The reaction was

monitored by 1H and 31P NMR spectroscopy, and showed clean transformation of

the starting materials into compound 20a and DABCO–borane. Subsequent solvent

removal under reduced pressure, extraction into n-hexane and filtration through a

plug of alumina gave pure compound 20a as a highly air-sensitive white solid in 69%

yield. The NMR spectra of this ligand show all the expected features, including a

sharp singlet at 25.2 ppm in the 31P NMR spectrum, and the intact Si−H moiety

at 5.22 ppm with silicon satellites (1J SiH = 197.5 Hz) in the 1H NMR spectrum.

2.4 NMR Comparison

Common 1H and 31P NMR data for the novel o-C6H4{CH2PBut
2(BH3)}(CH2E)

compounds are shown in Table 2.1. The signals corresponding to the PBut
2(BH3)
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moieties show little variation, for example the broad 31P NMR signals range from

47.3 ppm (E = OMe) to 49.8 ppm (E = NMe2(BH
3
), NEt2(BH

3
)), and the t-butyl

1H NMR signals vary by only 0.20 ppm over the twelve compounds. The protons of

the CH2P moieties are somewhat more influenced by the identity of substituent E,

with chemical shifts of 2.69 ppm in compound 19a (E = SiPh2H) to 4.07 ppm in

compound 15 (E = S(O)But). The AB system associated with the CH2P protons of

compound 15 is also the outlier in terms of the 2J PH coupling constants, with values

of 9.0 and 15.0 Hz, as compared to J ≈ 12.0 Hz for all the other borane-protected

P,E compounds. As would be expected, the 1H NMR chemical shifts of the signals

associated with the CH2E protons are highly dependent upon the identity of E,

varying from 2.32 ppm in compound 19b (E = SiMe2H) to 4.72 ppm in compound

5 (E = Cl). These values are consistent with those of benzyldimethylsilane104 and

benzyl chloride respectively.

Table 2.1 Selected 31P and 1H NMR shifts (in ppm) and coupling constants (in
Hz) of borane-protected P,E compounds in benzene-d6.

PBut CH
2
P CH

2
E

Compound E δP
a δH

3JPH δH
2JPH δH

4 OMe 47.3 1.08 12.5 3.16 12.5 4.44
5 Cl 47.9 1.05 12.3 3.11 12.0 4.72
6b PPh2(BH3) 47.7 1.23 12.3 3.11 11.8 3.93
8 P(C6F5)2 49.4 1.09 12.2 3.29 11.9 4.23

13a SBut 47.9 1.12 12.5 3.27 12.0 3.99
13b SPh 48.0 1.05 12.0 3.20 12.0 4.40
15 S(O)But 48.0 1.06 12.5 3.04 15.0 3.63

1.19 12.5 4.07 9.0 4.61
17a NMe2(BH3) 49.8 1.08 12.0 3.55 12.0 3.98
17b N(CH2)4(BH3) 49.6 1.13 12.5 3.69 12.0 4.10
17c NEt2(BH3) 49.8 1.12 12.5 3.82 12.0 4.02
19a SiPh2H 48.6 1.03 12.2 2.69 12.0 2.93
19b SiMe2H 48.1 1.10 12.2 3.07 11.9 2.32

aBroad multiplet coupling.
bSpectra recorded in chloroform-d.

A number of dissimilarities in the 1H and 31P NMR data are observed upon removal

of the borane protecting groups to give the o-C6H4(CH2PBut
2)(CH2E) (P,E) ligands

(Table 2.2). The greatest difference is seen in the 31P NMR spectra, where the

broad signals of the formerly PBut
2(BH3) moieties (ca. 49 ppm) are replaced by

sharp singlets at ca. 25 ppm, corresponding to the free di-t-butylphosphine groups.

Deprotection of the phosphine also has a significant effect on the 2J PH coupling

constants of the signals associated with the CH2P protons. These coupling constants

are reduced from ca. 12 Hz in the phosphine–borane compounds, to <3 Hz in the

free phosphines. In fact, in many cases no 2J PH coupling is observed. However, in a

number of the deprotected P,E ligands a long-range 5J PH coupling of up to 3.5 Hz
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is seen between the CH2E protons and the di-t-butylphosphine. This feature is not

present in the 1H NMR spectra of any of the borane-protected compounds.

Table 2.2 Selected 31P and 1H NMR shifts (in ppm) and coupling constants (in
Hz) of P,E ligands in benzene-d6.

PBut CH
2
P CH

2
E

Ligand E δP δH
3JPH δH

2JPH δH
5JPH

7 PPh2 24.5 1.09 10.5 3.09 – 3.92 –
11 P(C6F5)2 25.2 1.07 10.8 3.07 – 4.27 –
12 P{(C6F4)N(CH2CH2)2O}2 25.4 1.12 10.7 3.20 – 4.53 –

14a SBut 25.0 1.13 10.6 3.09 1.2 4.05 –
14b SPh 25.9 1.07 10.8 3.06 – 4.51 2.2
16 S(O)But 25.2 1.06 10.9 2.99 2.0 3.85 1.4

1.14 10.8 3.37 – 4.25 3.5
18a NMe2 24.5 1.13 10.7 3.16 2.4 3.60 –
18b N(CH2)4 24.6 1.14 10.5 3.16 2.7 3.82 –
18c NEt2 23.8 1.14 10.8 3.12 2.7 3.69 –
20a SiPh2H 25.2 1.05 10.5 2.65 1.5 3.10 1.5

2.5 Concluding Remarks

A number of methodologies for the synthesis of a family of hybrid P,E ligands

containing o-xylene backbones have been investigated, resulting in the develop-

ment of the versatile substrate o-C6H4{CH2PBut
2(BH3)}(CH2Cl) (5). Compound

5 was treated with the appropriate nucleophilic reagents to produce the novel

air-stable phosphine–borane compounds o-C6H4{CH2PBut
2(BH3)}(CH2E), where

E = PPh2 (6), SR (13) or NR2(BH3) (17). Oxidation of phosphine-thioether

compound 13a gave borane-protected phosphine-sulfoxide compound 15, where

E = S(O)But . When the appropriate nucleophilic reagent was not available, com-

pound 5 was converted to a Grignard reagent and treated with an appropriate elec-

trophile to give phosphine–borane compounds o-C6H4{CH2PBut
2(BH3)}(CH2E),

where E = P(C6F5)2 (8) or SiR2H (19).

Deprotection of the phosphine (and amine) moieties of the compounds was achieved

via one of three methods, namely reaction with morpholine, DABCO or HBF4,

dependent upon the properties of the second functional group present. In this

manner, a range of novel P,E ligands of the type o-C6H4(CH2PBut
2)(CH2E) have

been synthesised, where E = PR2 (7 and 11), SR (14), S(O)But (16), NR2 (18) or

SiPh2H (20a). All of the borane-protected compounds have been fully characterised

using a combination of NMR spectroscopy, infrared spectroscopy, high resolution

mass spectrometry and elemental analysis. Due to the high air-sensitivity of the
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deprotected P,E ligands, the characterisation of these species was restricted to NMR

methods only.

This synthetic methodology has been used to produce the first examples of hybrid

P,E ligands containing an o-xylene backbone. The versatile procedure enables the

incorporation of a wide range of donor atoms, from either nucleophilic or electrophilic

reagents. In most cases, this route also has the benefit of providing air-stable,

crystalline ligand precursors, which can be easily stored for many months without

decomposition.
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Chapter 3

Platinum Complexes

Platinum coordination complexes are often used as models for the more catalytically

active complexes of palladium. This is due to the presence of an NMR active isotope

of platinum (195Pt, 34% abundant) and the tendency of platinum complexes to be

more inert than their corresponding palladium analogues (to processes such as ligand

exchange and redox changes at the metal, and catalytically). For these reasons,

platinum complexes are often easier to characterise, and can offer insight into the

behaviour of the same ligands with palladium. This chapter focuses on Pt(II) and

Pt(0) complexes of primarily phosphine-thioether ligand 14a, with some complexes

of phosphine-sulfoxide ligand 16 and phosphine-amine ligand 18a included for

comparison.

3.1 [PtCl2(P,E)] Complexes

The reaction of [PtCl2(1,5-hexadiene)] with one equivalent of P,S ligand 14a in ace-

tone at room temperature rapidly produced the chelated complex 21 (Scheme 3.1).

The appearance of platinum satellites associated with the 31P NMR signal (27.7 ppm,
1J PtP = 3447 Hz) and the CH2S peak in the 1H NMR spectrum (4.92 ppm,
3J PtH = 74.7 Hz) of this complex in acetone-d6 confirmed binding of both donor

atoms to the platinum centre.

Crystals suitable for single crystal X-ray diffraction were grown by inwards diffusion

of n-hexane into a dichloromethane solution of complex 21. The X-ray crystal

structure (Figure 3.1) confirms the chelating behaviour of ligand 14a. Crystallo-

graphic data are given in Table 3.1 and Table 3.2. The structure also demonstrates
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Scheme 3.1 Synthesis of [PtCl2(P,S)] complex 21. Reagents and conditions:
(i) 1 eq. ligand 14a, acetone, overnight, 84% yield.

the different trans influences of the phosphorus and sulfur donor atoms. The Pt−Cl

bond length trans to phosphorus is 2.369(1) Å, whereas the Pt−Cl bond length trans

to sulfur is 2.324(1) Å (a difference of ca. 0.05 Å), consistent with the phosphorus

donor atom binding more strongly to the platinum centre than the sulfur. These

bond lengths are similar to those of a number of other platinum dichloride complexes

of chelating phosphine-thioether ligands.105–108

Somewhat unexpectedly, the bite angle of ligand 14a in this complex is 86.11(2)◦,

lower than would be expected for a chelating ligand with an o-xylene backbone.

For comparison, the crystallographically determined bite angle of the diphosphine

analogue of 14a, dbpx, in [PtCl2(dbpx)] is 104.06(10)◦.11 A result of the constriction

of ligand 14a to near-ideal square planar geometry is the buckling of the ligand

backbone (shown in Figure 3.2). The aryl ring plane of the ligand lies at an angle

of 98.38(7)◦ from the P−Pt−S plane of the complex (the Pt−Cl bonds lie 2.74(3)◦

and −3.41(3)◦ off this plane). The angle between the P−Pt−S and aryl ring planes

in complex 21 is significantly smaller than the equivalent angle in [PtCl2(dbpx)]

(137.9(3)◦),11 a result of the greater buckling of P,S ligand 14a compared to dbpx

in these complexes.

Apparent from the 1H NMR spectrum of complex 21 at room temperature is the

presence of a dynamic process taking place on the NMR timescale, as the signals

corresponding to the CH2S, CH2P and PBut protons are very broad (all methylene

protons are almost undetectable in dichloromethane-d2 at room temperature).

This fluxionality has been encountered before in similar complexes; for example,

in the chelated diphosphine complex [PtCl2{o-C6H4(CH2PBut
2)(CH2PPh2)}], the

diphosphine ligand backbone adopts an envelope conformation, which readily inverts

at room temperature.36 This dynamic process causes the phosphine substituents to

be inequivalent on the NMR timescale, and thus the 1H NMR spectrum displays the

characteristic broad humps of near-coalescence. In the case of complex 21, however,

there is a second dynamic process occurring, as indicated by the sharpness of the

SBut peak in the 1H NMR spectrum.
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Figure 3.1 ORTEP diagram of [PtCl2(P,S)] complex 21 (50% probability thermal
ellipsoids). Dichloromethane solvate and hydrogen atoms omitted for clarity.

Figure 3.2 ORTEP diagram of [PtCl2(P,S)] complex 21 showing buckling of P,S
ligand backbone (50% probability thermal ellipsoids). Dichloromethane solvate and
hydrogen atoms omitted for clarity.
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Table 3.1 Crystallographic data of [PtCl2(P,S)] complex 21.

Empirical formula C
20

H
35

Cl
2
PPtS.CH

2
Cl

2

Formula weight 689.43
Crystal system Monoclinic
Space group P21/n

a/Å 13.7589(4)
b/Å 10.5734(3)
c/Å 18.6757(5)
α/◦ 90.00
β/◦ 105.442(1)
γ/◦ 90.00
V/Å3 2618.83(13)
Z 4
Cell determination reflections 9795
Cell determination range, θmin −−→ θmax/◦ 2.5 −−→ 32.5
Temperature/K 113
Radiation type Mo Kα
Radiation (λ)/Å 0.71073
Crystal size/ mm 0.32 × 0.30 × 0.12
Dcalc/g m−3 1.749
F(000) 1360
µ/mm−1 5.91
Experimental absorption correction type Multi-scan (SADABS)
Tmax, Tmin 0.746, 0.527
Reflections collected 76190, Requiv = 0.040
Index range h −20 −−→ 20
Index range k −15 −−→ 15
Index range l −28 −−→ 28
θ range/◦ 2.2 −−→ 32.7
Independent reflections 9367
Reflections [I >2σ(I )] 7982
Restraints/parameters 0/262
GOF 1.04
R1 [I >2σ(I )] 0.0274
wR2 [I >2σ(I )] 0.0653
R1 [all data] 0.0376
wR2 [all data] 0.0709
Residual density/e Å−3 −2.10<3.53

Table 3.2 Selected bond distances and angles of [PtCl2(P,S)] complex 21.

Bond distances (Å) Bond angles (◦)

Pt1−P1 2.2767(7) P1−Pt1−S1 86.11(2)
Pt1−S1 2.2681(7) P1−Pt1−Cl1 94.51(3)
Pt1−Cl1 2.3246(7) S1−Pt1−Cl2 94.27(3)
Pt1−Cl2 2.3692(7) Cl1−P1−Cl2 85.28(3)

P1−Pt1−S1 plane · · · C6H4 plane 98.38(7)
P1−Pt1−S1 plane · · · Pt1−Cl1 2.74(3)
P1−Pt1−S1 plane · · · Pt1−Cl2 3.41(3)
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As the sulfur atom in thioether compounds contains two lone pairs of electrons,

a simplistic model of the binding of these compounds to transition metals would

involve only one pair of electrons, and in cases where the thioether substituents are

different (such as in ligand 14a), the sulfur atom would become a chiral centre.

At low temperatures this is the case; however, NMR studies have shown that on

increasing the temperature, the time-averaged symmetry of complexes containing

thioether ligands is increased, through an inversion process centred at the sulfur

atom. This process was first demonstrated by Abel and co-workers in 1966,109,110

who showed that the 1H NMR spectrum of [PtCl2(MeSC2H4SMe)] below 95 ◦C

displays non-equivalent signals for the methyl groups of the chelating dithioether

ligand, attributed to distinct isomers, where the methyl groups are either on the

same or opposite faces of the complex. Upon heating these signals converge, and

above 95 ◦C only one signal is seen.

Many subsequent studies111,112 have explored this inversion process, and although

the mechanism is still controversial, it is generally thought to be an associa-

tive process via a planar intermediate (Figure 3.3),110 rather than a dissociation-

recombination mechanism. For Pt(II) complexes specifically, the major piece of

evidence for an associative mechanism is the retention of 3J PtH NMR coupling on

the protons surrounding the sulfur atom111 (this is also the case for complex 21).

The coalescence temperature for the inversion process is heavily dependent upon

the nature of the ligand positioned trans to the sulfur atom. For instance, the

coalescence temperature for the complex [PtPh2(EtSC2H4SEt)] is −70 ◦C compared

with 85 ◦C for [PtCl2(EtSC2H4SEt)],113 which reflects the much greater trans

influence of phenyl ligands when compared to halides.

Pt S

R2
R1

Pt S

R1

R2

Pt S
R1

R2

Figure 3.3 Associative mechanism for the inversion of thioether ligands.

In terms of the fluxional behaviour of complex 21, the 1H NMR data and crystal

structure support the argument that both the buckling and inversion processes are

occurring. The crystal structure shows that the constraints of the chelate ring force

the P,S ligand backbone to buckle, and hence there is an asymmetry across the

plane of the complex. If the only dynamic process occurring were sulfur inversion,

the SBut protons would inhabit two chemical environments, and hence the 1H NMR

peak for these protons would at least broaden. Similarly, if only inversion of the

ligand backbone were occurring, the 1H NMR peak for the SBut protons would

either be broad, or two distinct peaks. The sharpness of the SBut 1H NMR peak
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indicates that both of these inversion processes are occurring simultaneously, and

hence the SBut group remains in the same chemical environment (Figure 3.4).

S

P
Pt

Cl

Cl S

P
Pt

Cl

Cl

Figure 3.4 Fluxional behaviour of [PtCl2(P,S)] complex 21.

VT-NMR spectra of complex 21 were recorded at 20 ◦C intervals between 50

and −70 ◦C in a 1:1 mixture of dichloromethane-d2 and chloroform-d. The 1H

NMR spectra (between 0.0 and 7.5 ppm) are shown in Figure 3.5. Over the entire

temperature range there is very little change to either the singlet peak associated

with the SBut protons (at 1.7–1.8 ppm) or the multiplet signal associated with the

aromatic protons. However, significant variation is seen in the signals associated

with the PBut protons. At 50 ◦C, one doublet is observed for all the PBut protons,

indicating that they inhabit a single time-averaged chemical environment, and hence

both of the previously discussed dynamic processes are rapid on the NMR timescale.

At 10 ◦C, the doublet peak has collapsed into a broad signal, as this temperature

is near the coalescence point. Below 10 ◦C, the doublet peaks associated with the

two PBut groups separate out, and below −30 ◦C one of the doublets collapses. At

−70 ◦C, a broad peak integrating for three protons (one methyl group) is observed

below 1 ppm. Integration of the SBut and remaining PBut signals confirms the

peaks associated with the other two methyl groups of the relevant PBut moiety

are obscured by these signals. These data indicate that below 10 ◦C the two PBut

groups inhabit different chemical environments, and at lower temperatures one of

these is subject to restricted rotation.

An expansion of the methylene region (between 2.4 and 5.2 ppm) of the 1H NMR

spectra is shown in Figure 3.6. At 50 ◦C, the spectrum displays one peak for both

CH2S protons at 4.87 ppm with platinum satellites (3J PtH = 75.6 Hz). Similarly,

one peak is observed for both CH2P protons centred at 3.82 ppm, although this

peak is very broad. Again, the broadness of the methylene peaks in both the 30 ◦C

and 10 ◦C spectra confirms that coalescence of the fluxional behaviour associated

with complex 21 is close to room temperature. Below this temperature, the signals

associated with each methylene proton are distinct. For example, at −30 ◦C an

AB system associated with the CH2S protons is observed at 4.58 and 5.04 ppm

(2J HH = 15.2 Hz), with 3J PtH coupling constants of 90.5 and 61.4 Hz respectively.
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Figure 3.5 1H NMR spectra of [PtCl2(P,S)] complex 21 collected between 50 and
−70 ◦C in CD2Cl2/CDCl3.
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Figure 3.6 Methylene region of the [PtCl2(P,S)] complex 21 1H NMR spectra
collected between 50 and −70 ◦C in CD2Cl2/CDCl3.

The peaks associated with the CH2P protons have an even larger separation, with

an apparent triplet centred at 2.90 ppm (3J PtH = 62.0 Hz) and a doublet of doublets

at 4.64 ppm partially obscured by one of the CH2S signals.

The VT-NMR data presented in Figure 3.5 and Figure 3.6 show there is only one

coalescence point for the dynamic processes occurring in complex 21 (disregarding

the restricted rotation of one t-butyl group at low temperature), and the broadening

and/or separation of the SBut peak that would be associated with one of the two

processes occurring independently is not seen. Consequently, these data confirm

that the inversion processes of both the sulfur atom and the ligand backbone occur
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on the same timescale over the entire temperature range studied. It should also be

noted that there is no change to the 31P NMR spectrum of complex 21 over this

temperature range.

The reaction of [PtCl2(1,5-hexadiene)] with one equivalent of P,N ligand 18a gave

an entirely different product. When [PtCl2(1,5-hexadiene)] and 18a were combined

in acetone-d6, a complex with a broad 31P NMR peak at 29.0 ppm and platinum

coupling of 3109 Hz formed immediately. This material was tentatively assigned

as [PtCl2(η
2-1,5-hexadiene)(κ1P-18a)], wherein the phosphine had displaced one

half of the 1,5-hexadiene ligand (Scheme 3.2). This assignment was based upon the

appearance of peaks centred at 4.96 and 5.78 ppm in the 1H NMR spectrum, which

resemble free 1,5-hexadiene but integrate for only two and one protons respectively,

and very little change to the 1H NMR shifts of the CH2NMe2 moiety.
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Cl
22

Scheme 3.2 Synthesis of proposed phosphonium complex 22. Reagents and
conditions: (i) 1 eq. ligand 18a, acetone-d6, 24 h.

Within five minutes, this complex started converting to a different material, with a

characteristic sharp peak in the 31P NMR spectrum at 40.4 ppm and a significantly

lower platinum coupling constant of 355 Hz. The appearance of a number of new

proton peaks in the 1H NMR spectrum suggested the 1,5-hexadiene formed part of

this complex, but in a different arrangement. Analysis of the 13C NMR spectrum

showed six distinct peaks for the formerly 1,5-hexadiene, and the high-field shifts

of four out of six implied the loss of one of the double bonds. Carbon 5 (shown in

Scheme 3.2) in particular shows a very high platinum coupling constant of 738 Hz,

which would be consistent with this carbon having a σ-bond to platinum. The

associated 2D NMR data show correlations between C6 of the former diene and
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the CH2P and PBut groups of 18a, indicating the coupling of these two ligands to

form a phosphonium ion adduct. Conversion to this species was complete within 24

hours.

This type of reactivity has been seen previously between platinum complexes

of 1,5-hexadiene and secondary amines,114–116 forming σ:η2-bound ammonium

ions; and between platinum complexes of 1,5-cyclooctadiene and tertiary phos-

phines,117–120 forming σ:η2-bound phosphonium ions. Unfortunately, the NMR data

given for these complexes is sparse; however, when 3J PtP coupling was reported it is

in the range 156–223 Hz, similar to the 355 Hz coupling for complex 22. There are

two reports of 1J PtC coupling constants for the σ-bonded carbon atom, 430119 and

622 Hz,117 both of which are trans to phosphorus donor atoms, and so expected to

be lower than the 738 Hz coupling in complex 22.

Unfortunately, complex 22 degraded over a number of days into an insoluble oily

white solid, so all attempts to grow crystals were unsuccessful and the connectivity

of the chlorides was not unequivocally established. It seems likely that one of the

chlorides is a non-coordinating counterion. The high resolution mass spectrum of

complex 22 displays two peaks, corresponding to [M−Cl]+ and [M−Cl−HCl]+. The

absence of a peak corresponding to intact complex 22 suggests one of the chlorides

is weakly coordinating or non-coordinating. This would be consistent with the high

trans influence of the σ-bound alkyl ligand (C5). If one of the chloride ions were

non-coordinating, there would be the potential for the nitrogen atom to coordinate;

however, there is little evidence for this. The 1H and 13C NMR peaks associated

with the CH2N and NMe groups, although broadened, are very similar in shift to the

free ligand and do not display any platinum coupling. It is also unknown whether

complex 22 exists in monomeric or dimeric form. Precedent suggests that complex

22 may be a chloride-bridged dimer, as similar organometallic platinum complexes

bearing chloride and σ:η2-bound ligands (formed by reaction of the corresponding

[PtCl2(diene)] species with an alcohol and a weak base) adopt this form.121,122

The same reactivity pattern was seen in the reaction of phosphine-sulfoxide ligand

16 with [PtCl2(1,5-hexadiene)]. Initially, a broad 31P NMR peak at 29.3 ppm with

platinum coupling of 3100 Hz formed, which was slowly replaced by two peaks

at 39.8 and 41.2 ppm, with platinum couplings of 363 and 358 Hz respectively.

As the platinum centre in complex 22 is in the +2 oxidation state, the alkene

ligand sits perpendicular to the plane of the complex, leading to planar chirality

(rendering the PBut groups NMR inequivalent in both cases). For this reason,

rac-16 produced diastereomers, as indicated by the two separate 31P NMR shifts.
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Also, the phosphine-thioether analogue of complex 22 was sometimes observed as a

minor product in the synthesis of 21 (at 39.9 ppm, 3J PtP = 360 Hz).

It seems that the nature of the non-phosphorus donor atom in the ligand is

fundamental in determining the product of these reactions. It is generally accepted

that the bonding ability of sulfur and nitrogen atoms in chelating phosphine-

sulfur and phosphine-nitrogen ligands is similar (and slightly higher than alkenes),50

although exceptions occur when ligand steric considerations or metallacycle strain

are involved. Other studies suggest that the trans influence of sulfoxide ligands is

comparable to primary amines, and slightly less than ethene.123 There is conflicting

evidence regarding the relative bond strengths of sulfoxide and thioether ligands, as
3J PtH NMR coupling constants tend to be larger for platinum complexes of thioethers

(suggesting higher bond strength), but crystallographic data indicate shorter M−S

bond lengths in sulfoxide complexes.123 As ligands 14a, 18a and 16 all contain

different degrees of steric bulk and, as evidenced by the buckling of the P,S ligand

backbone in complex 21, there is significant strain associated with the metallacycle,

it is difficult to ascribe the difference in reactivity to any one factor. Suffice it to say

that in this specific example, P,E chelation rather than phosphonium ion adduct

formation is only favourable in the case of thioether ligand 14a.

In a similar fashion to the reaction with [PtCl2(1,5-hexadiene)], when P,N ligand

18a and cis-[PtCl2(NCBut)2] were combined in acetone-d6, a complex with a broad
31P NMR signal at 21.0 ppm and platinum coupling of 3385 Hz formed immediately.

The appearance of a peak corresponding to one equivalent of free ButCN in the 1H

NMR spectrum suggested that this material was [PtCl2(NCBut)(κ1P-18a)], wherein

the phosphorus donor atom of ligand 18a had displaced one ButCN ligand, but

chelation had not occurred (Scheme 3.3).

The solution was then heated to 40 ◦C for 24 hours and this complex converted

to a new species, with a sharp peak in the 31P NMR spectrum at 17.2 ppm and

platinum coupling of 3967 Hz. The identity of this species was determined by NMR

spectroscopy and high resolution mass spectrometry to be the desired [PtCl2(P,N )]

complex 23 (Scheme 3.3). The room temperature 1H NMR spectrum of the reaction

mixture (shown in Figure 3.7) displays the expected broad signals associated with

inversion of the P,N ligand backbone. Upon cooling to −20 ◦C, the signals are much

sharper. Clearly visible in this spectrum are signals associated with two inequivalent

PBut groups (at 1.54 and 1.64 ppm), two NMe groups at 3.14 and 3.35 ppm

with platinum coupling constants of 27.0 and 26.3 Hz respectively (confirming the

presence of a Pt−N bond), and AB systems corresponding to the CH2P (3.59 and

3.83 ppm) and CH2N (3.85 and 4.48 ppm) methylene protons.
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Scheme 3.3 Synthesis of [PtCl2(P,N )] complex 23. Reagents and conditions:
(i) 1 eq. ligand 18a, acetone-d6, 40 ◦C, 24 h, >95% conversion.
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Figure 3.7 1H NMR spectra of [PtCl2(P,N )] complex 23 collected at 20 and
−20 ◦C in acetone-d6.
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The same synthetic methodology as shown in Scheme 3.3 was used in an attempt

to form a chelated [PtCl2(P,S=O)] complex. Phosphine-sulfoxide ligand 16 was

combined with cis-[PtCl2(NCBut)2] in acetone-d6 and the reaction followed by 1H

and 31P NMR methods. Again, a complex with a broad 31P NMR signal at 22.1 ppm

and platinum coupling of 3395 Hz formed immediately, and was tentatively assigned

as [PtCl2(NCBut)(κ1P-16)]. However, in this case heating the solution to 40 ◦C for

24 hours produced no change to the complex. As the binding ability of sulfoxide

ligands in platinum(II) complexes is considered to be similar to that of thioethers

and amines, it is likely that steric considerations play a large part in the failure of

phosphine-sulfoxide ligand 16 to form a chelated platinum(II) dichloride species.

3.2 [PtHL(P,S)2] Complexes

There was no reaction when complex 21 was combined with a second equivalent

of ligand 14a. This is perhaps unsurprising as neither the cis nor trans isomers of

[PtCl2(PBut
3)2]124 or [PtCl2(PBnBut

2)2] are known in the literature, both of which

would contain phosphine ligands with a steric bulk comparable to 14a. However,

if one equivalent of a hydride source, such as diethylamine–borane, was included in

the reaction, monohydride complex 24 was formed (Scheme 3.4).
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Scheme 3.4 Synthesis of hydride complexes 24 and 25. Reagents and conditions:
(i) 1 eq. ligand 14a, 1 eq. Et2NH(BH3), acetone-d6, overnight, 87% conversion;
(ii) 1 eq. ligand 14a, 10 eq. NaBH4, ethanol, 24 h, 33% yield.
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The structure of complex 24 was determined by analysis of the associated NMR data.

The 1H NMR spectrum contains a diagnostic hydride peak at −17.38 ppm; the large

upfield shift and platinum coupling of this peak (1J PtH = 1248 Hz) indicating that

this hydride lies trans to a ligand with a low trans influence (chloride in this case).125

This peak is a triplet with a small coupling constant (2J PH = 12.2 Hz), confirming

the presence of two equivalent phosphorus atoms in mutually trans positions. The
1H NMR peaks corresponding to the CH2P and PBut groups of ligand 14a display

virtual triplet coupling, indicative of a second-order XnAA′Xn
′ system,126 in this

case 2J PH + 4J PH and 3J PH + 5J PH couplings respectively. This is consistent with

two mutually trans ligand 14a molecules bound to the platinum through phosphorus

only. A number of the 13C NMR peaks for this complex also display this second-

order phosphorus coupling. The shifts corresponding to the CH2S and SBut groups

of ligand 14a in both the 1H and 13C NMR spectra are very close to those of the free

ligand, consistent with the thioether moiety being removed from the metal centre.

If a large excess of sodium borohydride was added to the reaction mixture, the

product formed over 24 hours was dihydride complex 25 (Scheme 3.4). This

reactivity type has been reported previously, exclusively with sterically bulky

tertiary phosphine ligands, including PBnBut
2.127 Decomposition was observed with

smaller phosphine ligands such as PPh3 and PMe2Ph. The 1H NMR spectrum of

complex 25 displays a significantly different hydride peak to the precursor. While

still a triplet, the peak has shifted downfield from that of complex 24 to −2.83 ppm,

and the platinum coupling constant has reduced to 799 Hz, both consistent with the

hydride now being located trans to a ligand with a much larger trans influence (i.e.

a second hydride).125 The 1H and 13C NMR spectra of dihydride complex 25 show

the same pattern of virtual triplet peaks as complex 24, indicating no other changes

to the molecule.

Recrystallisation from ethanol/toluene yielded crystals of complex 25 suitable for

X-ray diffraction. The structure is shown in Figure 3.8, displaying the expected

trans arrangements of the phosphine ligands and hydride ligands. Crystallographic

data are given in Table 3.3 and Table 3.4. The observed cone angle128 has been

calculated for ligand 14a in this complex, using the angles ascribed by P1, Pt1 and

hydrogen atoms H4, H11a and H16b respectively. The extension of these angles to

take into account the van der Waals radii of the hydrogen atoms (1.0 Å for H4,

1.2 Å for H11a and H16b129) gave the substituent half angles θi/2. Application of

the equation θO = 2/3
∑

θi/2 gave the observed cone angle for 14a, θO = 180◦. The

observed cone angle differs from the Tolman cone angle (θT) in that the actual Pt−P

bond length is used, rather than an arbitrary M−P bond length of 2.28 Å. However,

as the Pt1−P1 bond in this case is less than 0.01 Å shorter than 2.28 Å, θO should
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Figure 3.8 ORTEP diagram of [PtH2(P,S)2] complex 25 (50% probability
thermal ellipsoids). Selected hydrogen atoms omitted for clarity.

be roughly equal to θT. By this reckoning, the Tolman cone angle of ligand 14a,

when bound through the phosphorus only, resembles that of PBut
3 and PCy3.130

The P−Pt−P bond of complex 25 is not quite linear, at 178.58(1)◦, which is likely

to be a result of the constraints imposed by the sterically bulky phosphine ligands.

The complex exists in an eclipsed conformation, with torsion angles of 0.34(12)◦

and 1.51(11)◦ between each xylene group and the proximate But group (Figure 3.9).

The torsion angle between the remaining two But groups is larger, at 14.06(12)◦.

A feature of note in the 1H NMR spectrum of complex 25 is the downfield shift of the

peak corresponding to one of the aryl backbone protons. Through analysis of the 2D

NMR data, this peak was determined to be associated with the aryl proton ortho to

the phosphorus arm of ligand 14a, shifted 1.35 ppm downfield upon complexation.

The close proximity of ligand protons to the metal in transition metal complexes has

long been known to cause downfield 1H NMR peak shifts,131–133 and in this case the

proposal is supported by the X-ray crystal structure. Protons H3 and H23 (shown

in Figure 3.8) are located only 2.771(1) and 2.847(1) Å from the platinum centre

respectively, and as evidenced by the 1H NMR spectrum, it is likely that in solution

the ligands adopt a similar conformation. This feature is also seen in a number of

other complexes of 14a, in instances where the ligand is bound to the metal through

the phosphorus donor atom in a monodentate fashion.

There are two existing publications concerning the protonation of [PtH2(PR3)2]-

type complexes. In 1994, Gusev and co-workers reported the reaction of

trans-[PtH2(PBut
3)2] with CF3SO3D at −80 ◦C,134 and four years later the proto-

nation of trans-[PtH2(PCy3)2] by HBArF
4 at −95 ◦C was reported by Stahl et al.135
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Table 3.3 Crystallographic data of [PtH2(P,S)2] complex 25.

Empirical formula C
40

H
72

P
2
PtS

2

Formula weight 874.13
Crystal system Monoclinic
Space group P21/c

a/Å 18.5216(5)
b/Å 21.6736(6)
c/Å 11.1174(3)
α/◦ 90.00
β/◦ 100.628(2)
γ/◦ 90.00
V/Å3 4386.3(2)
Z 4
Cell determination reflections 9784
Cell determination range, θmin −−→ θmax/◦ 2.2 −−→ 28.7
Temperature/K 113
Radiation type Mo Kα
Radiation (λ)/Å 0.71073
Crystal size/ mm 0.60 × 0.45 × 0.38
Dcalc/g m−3 1.324
F(000) 1808
µ/mm−1 3.39
Experimental absorption correction type Multi-scan (SADABS)
Tmax, Tmin 0.746, 0.584
Reflections collected 101973, Requiv = 0.041
Index range h −25 −−→ 25
Index range k −29 −−→ 29
Index range l −15 −−→ 15
θ range/◦ 2.2 −−→ 28.8
Independent reflections 11344
Reflections [I >2σ(I )] 9849
Restraints/parameters 0/432
GOF 1.14
R1 [I >2σ(I )] 0.0224
wR2 [I >2σ(I )] 0.0419
R1 [all data] 0.0319
wR2 [all data] 0.0452
Residual density/e Å−3 −0.59<0.64

Table 3.4 Selected bond distances and angles of [PtH2(P,S)2] complex 25.

Bond distances (Å) Bond angles (◦)

Pt1−P1 2.2719(5) P1−Pt1−P2 178.584(19)
Pt1−P2 2.2746(5) P1−Pt1 · · · H4 84.694(14)
Pt1 · · · H3 2.77091(8) P1−Pt1 · · · H11a 63.370(13)
Pt1 · · · H23 2.84763(7) P1−Pt1 · · · H16b 65.481(14)
Pt1 · · · H4 4.86224(13) C9−P1 · · · P2−C21 0.34(12)
Pt1 · · · H11a 3.01575(13) C1−P1 · · · P2−C33 1.51(11)
Pt1 · · · H16b 2.90354(6) C13−P1 · · · P2−C29 14.06(12)
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Figure 3.9 ORTEP diagram of [PtH2(P,S)
2
] complex 25 showing the eclipsed

conformation (50% probability thermal ellipsoids). Selected hydrogen atoms omitted
for clarity.

Both procedures generated the dihydrogen adducts, trans-[PtH(H2)(PR3)2]
+

(or deuterated analogues), existing in equilibrium with the solvento species,

trans-[PtH(solv)(PR3)2]
+. These solvento species have also been synthesised by

other methods,136,137 and react readily to form haloarene, aquo, ammonia, nitrile and

carbon monoxide complexes upon treatment with the appropriate ligand. Although

it has been noted that treatment of [PtH(PBut
3)2]ClO4 with excess dimethylsulfide

in acetone led to deprotonation of the complex to form [Pt(PBut
3)2],136 it was

anticipated that protonation of dihydride complex 25 would result in chelation of

one of the P,S ligands.

The addition of one equivalent of the strong fluorocarbon acid, CH2(SO2CF3)2

(pK a = 2.4 in DMSO,138 and estimated to be −1 in water139), to a solution of

dihydride complex 25 in acetone-d6 resulted in the immediate evolution of hydrogen

gas (Scheme 3.5). Analysis of the NMR data showed one product had formed, with

lower symmetry than complex 25. For example, the 31P NMR spectrum displays

two doublets centred at 44.4 and 54.5 ppm, with 2J PP coupling of 324 Hz, and
1J PtP couplings of 2740 and 2770 Hz respectively. All virtual triplet peaks seen in

the starting material have been replaced by two sets of similar peaks with doublet

couplings, confirming the differentiation of the two ligand 14a molecules. A 1H

NMR peak at 3.75 ppm and 19F NMR peak at −81.9 ppm confirmed the presence

of the non-coordinating counterion, –CH(SO2CF3)2.
140 Coordination of the sulfur

donor atom of one of the P,S ligands was verified by the appearance in the 1H
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NMR spectrum of a peak at 4.82 ppm with platinum satellites (3J PtH = 27.6 Hz),

corresponding to one CH2S group. This peak resembles the 1H NMR peak of the

CH2S moiety in chelated [PtCl2(P,S)] complex 21, although the platinum coupling

constant is lower due to the larger trans influence of the ligand located trans to

the sulfur in complex 26 (i.e. H– rather than Cl–). The hydride NMR peak in

this complex has returned to higher field (−14.88 ppm) and the platinum coupling

constant increased (1J PtH = 1050 Hz), both similar to hydride-chloride complex 24,

and reflecting the smaller trans influence of sulfur as compared to the hydride ligand

in complex 25.
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Scheme 3.5 Synthesis of hydride complex 26. Reagents and conditions:
(i) CH2(SO2CF3)2, acetone-d6, 10 min, quantitative conversion.

Interestingly, the two P,S ligands are quite distinct in the NMR spectra, indicating

no displacement of one sulfur atom from the platinum centre by the other on

the NMR timescale at ambient temperature. The fact that the 1H NMR peak

of the coordinated CH2S moiety is a singlet confirms that the inversion process

at sulfur is rapid, as were the sulfur atom static, the methylene protons would

be rendered diastereotopic and inequivalent in the 1H NMR spectrum. Variable

temperature NMR studies confirmed the coalescence temperature for this process

is between −20 and −40 ◦C, and below this temperature the methylene protons

appear as an AB system (2J HH = 10.9 Hz) at 4.44 and 4.59 ppm. Thus, the lack

of interconversion supports the proposal that inversion at sulfur is an associative,

rather than dissociative, process.
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Complex 26 presented an excellent opportunity to investigate the potential for

displacement of the coordinated sulfur atom by other ligands. Initially, carbon

monoxide was bubbled through an acetone-d6 solution of complex 26. The result-

ing NMR data closely resemble that of the known carbon monoxide complexes,

[PtH(CO)(PBut
3)2]X136 and [PtH(CO)(PBn3)2]BPh4.141 The 31P NMR spectrum

of complex 27 displays a singlet peak at 68.4 ppm, with a platinum coupling

constant of 2415 Hz. This, and the return of virtual triplet couplings in the
1H NMR spectrum, confirmed the displacement of the sulfur atom from the

metal centre (Scheme 3.6). The reaction was repeated with 13C-labelled carbon

monoxide, giving a 13C NMR shift corresponding to coordinated carbon monoxide

at 184.5 ppm. This peak couples to two identical phosphines (2J PC = 7.0 Hz) and

to platinum (1J PtC = 1015 Hz), consistent with the proposed structure. An infrared

spectrum of complex 27 was also collected, displaying a CO stretching frequency

of 2070 cm-1. Unfortunately, little information regarding the electronic character of

the metal centre can be drawn from this frequency, due to the potential for coupling

with the PtH stretching frequency.142,143 Isotopic studies of the related complex,

[PtH(CO)(PBut
3)2]PF6, indicate that the perturbation of ν(CO) by ν(PtH) is

ca. 20 cm-1.125
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Scheme 3.6 Synthesis of [PtHL(P,S)2]CH(SO2CF3)2 complexes 27, 28 and
29. Reagents and conditions: (i) CO, NCMe or 1 eq. pta; acetone-d6, 10 min,
quantitative conversion.

Addition of excess acetonitrile to complex 26 in acetone-d6 produced the very similar

complex 28 (Scheme 3.6). Again, PBut
3

136 and PBn3
141 analogues of this species
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have previously been reported, and the NMR data of complex 28 are in good

agreement with these. Peaks corresponding to the carbon atom and protons of

the methyl group in the coordinated acetonitrile are visible in the NMR spectra at

3.2 ppm and 1.90 ppm (4J PtH = 4.9 Hz) respectively; however, the 13C NMR peak

for the acetonitrile quaternary carbon has not been located. As noted previously

with the carbon monoxide ligand of 27, this carbon would be expected to couple to

platinum and two identical phosphorus atoms, and due to the reduced peak height

may not be discernible from the noise of the spectrum.

As demonstrating hemilability of the novel P,E ligands in metal complexes was one

of the goals of this work, complexes 27 and 28 were subjected to high vacuum

to investigate the reversibility of the addition reactions that formed them. No

change was observed in carbon monoxide complex 27; however, when acetonitrile

complex 28 was left under reduced pressure overnight, approximately 50% of the

material reverted to chelated complex 26. Heating to 40 ◦C under vacuum overnight

resulted in 90% conversion of complex 28 to complex 26, and addition of acetonitrile

reconverted the sample to complex 28 (Figure 3.10).

Pt
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PPS Pt

H

NCMe

PPS S
MeCN

vacuum

Figure 3.10 Schematic of the hemilabile behaviour of P,S ligand 14a with MeCN.

A comparison of the Pt−H coupling constants for the hydride ligands in these two

complexes showed that in chelated complex 26 1J PtH = 1050 Hz, whereas in the

acetonitrile complex 28 it is 120 Hz higher. This indicates the sulfur donor atom has

a somewhat larger trans influence than the nitrogen in acetonitrile (similar results

have been obtained with nitrile and thioether hydride complexes of PBn3
141). In

light of this result, and when the advantage of the chelate effect is considered, it

may be a little counterintuitive that acetonitrile can displace the sulfur ligand in

this system. However, in a similar fashion to [PtCl2(P,S)] complex 21 discussed

previously, there must be considerable strain associated with the 7-membered ring

in such a sterically demanding environment, and it is likely that the energy of the

system is reduced with the dissociation of the sulfur atom.

The displacement of the sulfur donor atom in complex 26 was also attempted

with ethene and ethyne; however, no reaction was observed upon introduction of

either gas to acetone-d6 solutions of the complex. This is unsurprising, as it has

been shown previously that ethene does not react with the solvento complexes
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[PtH{(CD3)2CO}(PBut
3)2]X and [PtH(CD2Cl2)(PBut

3)2]X.136 Ethyne does react

with [PtH(CD2Cl2)(PBut
3
)

2
]ClO4, forming what was proposed, using infrared spec-

tral data and changes to the hydride NMR peak, to be [PtH(HC−−−CH)(PBut
3)2]ClO4

in solution.136 However, no 1H NMR shifts for coordinated ethyne were reported,

and removal of volatiles under reduced pressure recovered starting material only.

Finally, the reaction of complex 26 with phosphines was tested. No reaction was

observed upon addition of one equivalent of triphenylphosphine to an acetone-d6

solution of the complex, even at elevated temperature. This is most likely a steric

effect as, for example, the reaction of [PtHCl(PBn3)2] with PPh3 and NaBPh4

produced the trisphosphine complex [PtH(PPh3)(PBn3)2]BPh4.141 With this in

mind, the reaction with 1,3,5-triaza-7-phosphaadamantane (pta) was investigated.

The pta ligand is a sterically unencumbered phosphine, with crystallographically

determined cone angles of 102◦ and 114–117◦, in molybdenum carbonyl144 and palla-

dium iodide145 complexes respectively (the Tolman cone angle of triphenylphosphine

was calculated to be 145◦ 130).

Complex 26 and one equivalent of pta were combined in acetone-d6 and the solution

sonicated until all crystals had dissolved (Scheme 3.6). The subsequent NMR data

show complete absence of starting material, and the presence of one new complex

with two peaks in the 31P NMR spectrum, centred at 47.3 and −89.8 ppm. The peak

at 47.3 ppm presents as a doublet with 18 Hz coupling, and platinum satellites with

2553 Hz coupling. The peak at −89.8 ppm presents as a triplet, also with coupling

of 18 Hz, and platinum satellites with 1942 Hz coupling. These correspond to two

molecules of ligand 14a in identical environments and one pta ligand respectively,

confirming the trans arrangement of 29. The hydride peak in the 1H NMR spectrum,

a large doublet (2J PH = 153.6 Hz) of triplets (2J PH = 15.0 Hz) with 1J PtH coupling

of 728 Hz, supports this assignment. This is the first example of a Group 10 metal

complex containing both a pta and hydride ligand.

The hydride NMR shifts and 1J PtH coupling constants of complexes 24–29 are shown

in Table 3.5. As the 1J PtH values for the hydrides are inversely proportional to the

trans influence of ligand L in each complex, these values give the trans influence

series Cl– < NCMe < −CH2SBut < CO < H– < pta. This series is in agreement

with that deduced from a large number of platinum hydride complexes of PBn3.141

The NMR chemical shift of the hydride ligands generally follows the same trend,

although pta complex 29 is an outlier. It has been noted previously that hydride

NMR shift does not really indicate variations in the Pt−H bond itself but rather

variations at the platinum atom, and that anisotropic effects from aromatic rings of
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other ligands may also influence the shift,45 and as such, it cannot be taken as an

indicator of trans influence.

Table 3.5 1H NMR data of [PtHL(P,S)2] and [PtHL(P,S)2]CH(SO2CF3)2 hydride
ligands in acetone-d6.

Complex Identity of L Hydride NMR shift (ppm) 1JPtH coupling (Hz)

24 Cl– −17.43 1247.7
28 NCMe −17.94 1169.5
26 −CH2SBut −14.88 1049.6
27 CO −5.36 843.3
25 H– −3.29 801.0
29 pta −7.97 728.0

The successful sulfur displacement reactions were repeated with [PtCl2(P,S)] com-

plex 21. As the Pt−S bond in this complex was considered to be stronger than that

of hydride complex 26 (as evidenced by the difference in magnitude of the 3J PtH

coupling constants of the protons in the CH2S moieties), it was envisaged that the

sulfur atom in complex 21 would be more difficult to displace. The addition of an

excess of acetonitrile or carbon monoxide to an acetone-d6 solution of complex 21

(identical conditions to those shown in Scheme 3.6) resulted in no change to the

starting material; however, the addition of one equivalent of pta to a chloroform-d

(or acetone-d6) solution of complex 21 rapidly produced a reaction (Scheme 3.7).

The 1H and 31P NMR spectra associated with the reaction mixture after 10 minutes

showed a mixture of products including four phosphorus-containing species. Three

of these were identified as unreacted complex 21, entirely displaced P,S ligand 14a,

and the known complex [PtCl2(pta)2].146 The fourth complex (30) was identified by

two large doublets with a ratio of 1:1 in the 31P NMR spectrum, centred at −62.3 and

35.3 ppm. The chemical shifts of these doublets indicated that they were associated

with a pta molecule and a PBut
2 moiety respectively, and the large 2J PP coupling

constant of 439 Hz established the mutually trans arrangement of these ligands.

The 1J PtP coupling constants of these signals, 2294 and 2578 Hz respectively, are

consistent with phosphines in trans positions. This evidence, along with a low-field

doublet centred at 8.37 ppm in the 1H NMR spectrum, allowed the assignment of

complex 30 as trans-[PtCl2(κ1P-14a)(pta)].

After 19 hours, white crystals had appeared in the reaction mixture, which were

confirmed by 1H and 31P NMR data to be [PtCl2(pta)2]. The 1H and 31P NMR

spectra associated with the reaction solution showed no remaining [PtCl2(pta)
2
];

however, along with the expected species complex 21, ligand 14a and complex 30,

a new phosphorus-containing species (31) was identified, at around one quarter of

the abundance of complex 30. The new complex also displays two doublets with a
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Scheme 3.7 Reaction of [PtCl2(P,S)] complex 21 with pta. Reagents and
conditions: (i) 1 eq. pta, chloroform-d, 10 min; (ii) Overnight.

ratio of 1:1 in the 31P NMR spectrum, centred at −65.6 and 27.0 ppm, indicating a

pta molecule and a PBut
2 moiety respectively. However, the 2J PP coupling constant

of 12 Hz is much smaller than that of complex 30, and the 1J PtP coupling constants

larger at 3359 and 3578 Hz respectively. Again this evidence, along with a new low-

field doublet in the 1H NMR spectrum centred at 8.78 ppm, allowed the assignment

of complex 31 as cis-[PtCl2(κ
1P-14a)(pta)]. Further 1H and 31P NMR spectra

collected showed no subsequent changes to the reaction mixture.

As would be expected, the sulfur atom in dichloride complex 21 required a stronger

competing ligand to displace than that of hydride complex 26 (due to the larger

trans effect of the hydride ligand when compared with the chloride ligand). However,
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where the sulfur atom was displaced, a more complicated reaction was observed.

A reasonable amount of phosphine-thioether ligand 14a was completely displaced,

forming the known complex [PtCl2(pta)2], and where only the sulfur atom was

displaced, a rearrangement occurred to form the trans mixed phosphine complex

30. Only after 19 hours was the expected cis mixed phosphine product 31 observed,

and even then only in a minor amount.

3.3 Reaction of P,E Ligands with [Pt(alkene)3]

3.3.1 1:1 Complexes

The reaction of one equivalent of either phosphine-thioether ligand 14a or

phosphine-sulfoxide ligand 16 with [Pt(ethene)3] immediately resulted in the

η2-ethene complexes 32 (Scheme 3.8) and 33 (Scheme 3.9). These are two of the

first examples of platinum(0) alkene complexes containing chelating phosphorus-

sulfur ligands (η2-bicyclopropylidene (bcp) and η2-methylenecyclopropane (mcp)

complexes of ligand 14a have also been prepared recently147).

Pt (i)
P

S

Pt

But
But

But

32

Scheme 3.8 Synthesis of [Pt(ethene)(P,S)] complex 32. Reagents and conditions:
(i) 1 eq. ligand 14a, benzene-d6, 10 min, >90% conversion.

The structures of complexes 32 and 33 were determined by analysis of the associated
1H, 13C and 31P NMR data. Integration of the 1H NMR spectra confirmed 1:1

ratios of ligand 14a or 16 with ethene. Two peaks are observed for the ethene

protons in the 1H NMR spectrum of phosphine-thioether complex 32, centred at

2.04 and 2.49 ppm. Both of these present as triplets of doublets with platinum

satellites, indicating that the ethene ligand is static on the NMR timescale at room

temperature. Chelation of ligand 14a in complex 32 was determined by the presence

of platinum satellites associated with the 31P NMR signal (1J PtP = 4067 Hz), and

with most of the 1H and 13C NMR signals of both the CH2PBut
2 and CH2SBut

moieties of the complex.
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Scheme 3.9 Synthesis of [Pt(ethene)(P,S=O)] complex 33. Reagents and
conditions: (i) 1 eq. ligand 16, benzene-d6, 10 min, >95% conversion.

A feature of note in the 1H NMR spectrum of complex 32 is the single signal

associated with the CH2S methylene protons at 4.29 ppm. As noted previously, when

inversion at sulfur is rapid on the NMR timescale, one signal for both methylene

protons is seen, and when the sulfur atom is static, an AB quartet results. In

this case, the 1H NMR data confirm inversion at the sulfur atom occurs rapidly

at room temperature. There is very little published data to compare this result

with, as a recent literature search revealed only a single report of a platinum(0)

complex containing both a thioether and alkene ligand.148 In this report, Canovese

et al. presented a kinetic study of the mechanism of alkene exchange in platinum(0)

complexes of pyridine-thioether ligands, as shown in Figure 3.11. They addressed

the topic of sulfur inversion, noting that this was the only fluxional rearrange-

ment behaviour seen in solutions of these complexes. For the complex [Pt(η2-

tetramethylethylenetetracarboxylate)(pyridine-t-butylthioether)] they reported an

AB system in the 1H NMR spectrum for the CH2S protons at −60 ◦C, and a

singlet for the same protons at 23 ◦C, indicating that coalescence is somewhere

between these temperatures. They noted the same change in the 1H NMR data

for the complex [Pt(η2-fumaronitrile)(pyridine-t-butylthioether)] between −50 and

Pt

alkene

N S R

alkene = maleic anhydride, fumaronitrile,
naphthoquinone, tetramethylethylenetetracarboxylate

R = Ph, But

Figure 3.11 Platinum(0) alkene complexes of pyridine-thioether ligands.
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23 ◦C. These data are in agreement with the results obtained for complex

32, and the cyclopropyl-substituted alkene complexes [Pt(bcp)(κ2P,S -14a)] and

[Pt(mcp)(κ2P,S -14a)],147 and suggests that in general the coalescence temperature

for sulfur inversion in platinum(0) alkene t-butylthioether complexes is below room

temperature.

As a racemic mixture of phosphine-sulfoxide ligand 16 was used to synthesise

complex 33, this material exists as a pair of enantiomers (as shown in Scheme 3.9),

and the presence of the chiral centre results in an asymmetry across the plane of

the complex. Again, the ethene ligand is static on the NMR timescale at room

temperature, evidenced by the presence of four multiplets in the 1H NMR spectrum

between 2.13 and 2.50 ppm associated with the four ethene protons. As in free

ligand 16, the phosphine t-butyl groups and methylene protons are diastereotopic,

and therefore the 1H and 13C NMR signals corresponding to these atoms are distinct.

The 1H NMR spectrum of complex 33 displays the expected AB quartets associated

with the protons of the CH2P group (at 3.23 and 3.41 ppm, 2J HH = 14.0 Hz) and

CH2S group (at 4.20 and 4.39 ppm, 2J HH = 11.6 Hz). Interestingly, only one doublet

of each of these AB systems displays platinum coupling. The CH2P proton signal

centred at 3.41 ppm has 3J PtH coupling of 48.0 Hz, and the CH2S proton signal

centred at 4.39 ppm has 3J PtH coupling of 22.0 Hz. This is due to the dihedral angle

dependence of 3J coupling constants. The conformation of chelated P,S=O ligand

16 in complex 33 must produce Pt−E−C−H (E = P or S) dihedral angles of close

to 90◦ for one proton of each methylene group (associated with the 1H NMR signals

at 3.23 and 4.20 ppm displaying no platinum coupling), and Pt−E−C−H dihedral

angles of closer to 0 or 180◦ for the two remaining methylene protons.149

The 31P and η2-ethene ligand 1H and 13C NMR data of complexes 32 and 33,

and the diphosphine analogue [Pt(ethene)(dbpx)],16 are shown in Table 3.6. The

phosphorus-platinum coupling constants of both hybrid ligands are significantly

higher than the equivalent value for [Pt(ethene)(dbpx)] (by over 300 Hz), indicating a

weaker Pt−P interaction in the diphosphine complex. This is most likely a combined

result of the presence of a more weakly binding donor atom in ligands 14a and 16,

as compared with the second phosphine in dbpx, and the larger steric bulk of dbpx.

This trend is reflected in the 2J PC coupling constants associated with the carbon

atoms located trans to the phosphorus donor atoms (36.5 and 32.1 Hz respectively

for complexes 32 and 33, as compared to 28 Hz for [Pt(ethene)(dbpx)]).

Of note in Table 3.6 is the difference in magnitude of the 1J PtC and 2J PtH coupling

constants associated with the ethene carbon and hydrogen atoms located trans to

the sulfur donor atoms in complexes 32 and 33 (331.1 and 81.6 Hz vs. 284.5 and
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Table 3.6 31P and selected 1H NMR shifts (in ppm) and coupling constants (in
Hz) of [Pt(ethene)(P,E)] complexes in benzene-d6.

P H
2
C−−CH

2

Complex E δP
1JPtP δH

2JPtH δC
1JPtC

2JPC

32 SBut 59.4 4067 2.04 53.5 27.4 205.9 36.5a

2.49 81.6 29.1 331.1 6.2b

33 S(O)But 54.8 3861 2.13 55.2 30.5 199.1 32.1a

2.32 c

2.42 c 32.5 284.5 7.2b

2.50 74.8
[Pt(ethene)(dbpx)]d PBut

2 49.6 3551 2.18 57 27.2 217 28
aLocated trans to the phosphorus donor atom.
bLocated cis to the phosphorus donor atom.
cUnable to determine from spectra.
dLiterature data,16 spectra recorded in dichloromethane-d2.

74.8 Hz respectively). In both cases, these values are lower in P,S=O complex 33,

suggesting that the Pt−C interaction trans to sulfur is weaker (and hence the Pt−S

interaction is stronger) in the phosphine-sulfoxide complex than in the phosphine-

thioether complex. However, it is difficult to determine how much influence the

steric bulk of the chelating ligand has on these values.

The reaction of one equivalent of phosphine-thioether ligand 14a with [Pt(nb)3]

(nb = norbornene) immediately resulted in the η2-norbornene complex 34

(Scheme 3.10). The structure of this complex was determined by analysis of the 1H

and 31P NMR data. Again, integration of the 1H NMR spectrum confirmed a 1:1

ratio of ligands 14a and norbornene. Coordination of both the phosphorus and sulfur

donor atoms of 14a was determined by the presence of platinum satellites associated

with the 1H NMR peaks of both the CH2P and CH2S groups, with coupling constants

of 22.0 and 29.4 Hz respectively. The 31P NMR signal (at 58.3 ppm) displays a

large 1J PtP coupling constant of 3868 Hz. Similarly to the previously discussed

phosphine-thioether ethene complex 32, this value is over 500 Hz greater than that

of the diphosphine analogue of complex 34, [Pt(nb)(dbpx)].15 Again, this is likely

a combined result of the presence of a more weakly binding donor atom in 14a as

compared with the second phosphine in dbpx, and the larger steric bulk of dbpx.

The 1H NMR shifts of the norbornene ligand alkene protons are centred at 2.05 and

2.56 ppm, both with triplet coupling, and platinum satellites of 62.3 and 75.6 Hz

respectively, confirming η2 binding of this ligand.

Crystals of complex 34 suitable for single crystal X-ray diffraction were grown from a

benzene-d6 solution at 4 ◦C. The X-ray crystal structure is shown in Figure 3.12, and

crystallographic data given in Table 3.7 and Table 3.8.∗ This crystal contained some

∗Crystal structure solved by Dr. Bradley Anderson, Victoria University of Wellington.
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Scheme 3.10 Synthesis of [Pt(nb)(P,S)] complex 34. Reagents and conditions:
(i) 1 eq. ligand 14a, toluene, 2.5 h, 92% yield.

disorder, which was modelled with the SHELX program using various restraints. As

shown in Figure 3.12, two components were detected, the major part constituting

89% of the crystal and the minor part 11%. These components share the phosphorus

and sulfur atoms and one PBut group (C3–C6), with the remainder of the molecules

reversed along the b axis, the norbornene of the major component overlapping the

P,S ligand backbone of the minor component and vice versa. As the sulfur atom

in this complex is a chiral centre, these two components comprise enantiomers of

complex 34, with the SBut and norbornene bridge-CH2 groups occupying opposite

faces of the complex in both cases.

As would be expected for a platinum(0) complex, the η2-bound norbornene double

bond lies almost parallel with the trigonal plane of the complex, although it is

offset from the P−Pt−S plane by 12.3(5)◦. This is likely a result of the bulky

t-butyl groups in close proximity to the norbornene ligand. In a similar fashion

to platinum(II) dichloride complex 21, the aryl ring plane of the ligand lies at an

angle of 114.74(9)◦ from the P−Pt−S plane, and occupies the opposite face from

the SBut group. The bite angle of ligand 14a in this complex is 106.63(7)◦, over

20◦ larger than that in complex 21. This bite angle is similar to those seen in

Pt(0) and Pd(0) alkene,150,151 alkyne152 and thioketone153,154 complexes containing

o-C6H4(CH2PR2)2-type ligands, and demonstrates the flexibility of the o-xylene

backbone in P,S ligand 14a.

This is the first crystal structure of a platinum(0) norbornene complex contain-

ing a chelating hybrid ligand, and there are only two published examples of

crystal structures of platinum(0) norbornene complexes with phosphine ligands.

These two structures both contain chelating diphosphine ligands, namely 1,2-bis(di-

t-butyl-phosphino)ethane15 and 1,8-bis(diphenylphosphino)naphthalene.155 Many

of the bond lengths in complex 34 are in good agreement with these struc-

tures, including the norbornene C−−C bond length of 1.459(11) Å (compared with

1.460(11) and 1.469(8) Å respectively for the published structures). The Pt−P bond
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Figure 3.12 ORTEP diagram of the major (89%, top) and minor (11%, bottom)
components of the crystal structure of [Pt(nb)(P,S)] complex 34 (50% probability
thermal ellipsoids). Hydrogen atoms omitted for clarity.
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Table 3.7 Crystallographic data of [Pt(nb)(P,S)] complex 34.

Empirical formula C
27

H
45

PPtS

Formula weight 627.75
Crystal system Monoclinic
Space group P21/n

a/Å 8.9787(2)
b/Å 12.5591(4)
c/Å 23.3341(7)
α/◦ 90.00
β/◦ 96.212(2)
γ/◦ 90.00
V/Å3 2615.81(13)
Z 4
Cell determination reflections 9944
Cell determination range, θmin −−→ θmax/◦ 2.4 −−→ 26.1
Temperature/K 113
Radiation type Mo Kα
Radiation (λ)/Å 0.71073
Crystal size/ mm 0.36 × 0.20 × 0.11
Dcalc/g m−3 1.594
F(000) 1264
µ/mm−1 5.52
Experimental absorption correction type Multi-scan (SADABS)
Tmax, Tmin 0.745, 0.496
Reflections collected 52570, Requiv = 0.052
Index range h −11 −−→ 11
Index range k −15 −−→ 15
Index range l −29 −−→ 28
θ range/◦ 2.8 −−→ 26.3
Independent reflections 5226
Reflections [I >2σ(I )] 4628
Restraints/parameters 80/356
GOF 1.32
R1 [I >2σ(I )] 0.0384
wR2 [I >2σ(I )] 0.1053
R1 [all data] 0.0447
wR2 [all data] 0.1076
Residual density/e Å−3 −4.04<2.84

Table 3.8 Selected bond distances and angles of [Pt(nb)(P,S)] complex 34.

Bond distances (Å) Bond angles (◦)

Pt1−P1 2.2710(19) P1−Pt1−S1 106.63(7)
Pt1−S1 2.3250(18) P1−Pt1−C1 107.8(2)
Pt1−C1 2.109(10) S1−Pt1−C2 106.0(2)
Pt1−C2 2.118(8) P1−Pt1−S1 plane · · · C6H4 plane 114.74(9)
C1−C2 1.459(11) P1−Pt1−S1 plane · · · C1−Pt1−C2 plane 12.3(5)
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length in complex 34 is 2.271(2) Å, essentially identical to those in [Pt(nb){1,2-

bis(di-t-butylphosphino)ethane}], and ca. 0.02 Å longer than those in [Pt(nb){1,8-

bis(diphenylphosphino)naphthalene}]. In this case, the different trans influences of

the phosphorus and sulfur donor atoms have very little effect on the two Pt−C

distances. The Pt−C distances in complex 34 are also virtually identical to those

seen in the chelating diphosphine complexes.

There are two potential dynamic processes associated with complex 34, namely

inversion of the sulfur donor atom and rotation of the norbornene ligand. If both of

these processes were rapid on the NMR timescale, only one signal would be observed

for the alkene protons, which is not the case for complex 34 at room temperature.

Conversely, if both the sulfur atom and norbornene ligand were static on the NMR

timescale, it is likely diastereomers would result and the NMR spectra would reflect

this. Again, this is not the case for complex 34 at room temperature. In fact, the

NMR data suggest that one of the dynamic processes is rapid at room temperature

and the other is not. It is impossible to establish with any certainty from the

NMR spectra which of these processes is occurring rapidly; however, the evidence

gathered from [Pt(ethene)(P,S)] complex 32 along with the pyridine-thioether work

of Canovese and co-workers148 strongly suggests that the norbornene ligand in

complex 34 is static, while the sulfur inversion process is rapid at room temperature.

Phosphorus-31 VT-NMR spectra of complex 34 were recorded at 20 ◦C intervals

between 40 and −60 ◦C in toluene-d8 (Figure 3.13). These data clearly show the

sharp singlet peak with platinum satellites associated with the phosphorus donor

atom collapsing to a broad signal at −20 ◦C, and at lower temperatures separation

into two very similar species. These two complexes are the diastereomers of complex

34 that result from both the sulfur atom and norbornene ligand being static on the

NMR timescale, producing forms of the complex wherein the SBut and norbornene

bridge-CH2 occupy either the same or opposite faces of the molecule. The −40 and

−60 ◦C spectra suggest there is a slight selectivity for one of these forms. Again,

these data are consistent with the VT-NMR data reported by Canovese et al. for

the pyridine-thioether complexes shown in Figure 3.11.

The reaction of one equivalent of phosphine-sulfoxide ligand 16 with [Pt(nb)3] was

carried out in an NMR tube and the products characterised in situ. After five

minutes reaction time, the 31P NMR spectrum contained two related peaks at 53.7

and 54.4 ppm, with platinum coupling constants of 3668 and 3708 Hz respectively,

in a ratio of almost 1:1. The 1H NMR spectrum is quite complicated, but a number

of signals are closely related to peaks in the previously characterised [Pt(nb)(P,S)]

complex 34. Two high-field doublets associated with norbornene bridge-CH2 groups
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Figure 3.13 31P NMR spectra of [Pt(nb)(P,S)] complex 34 collected between 40
and −60 ◦C in toluene-d8.
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are seen at 0.38 and 0.56 ppm, with J values of 8.5 and 8.0 Hz respectively

(cf. 0.50 ppm, J = 7.5 Hz in complex 34). Also apparent are two triplets with

large platinum coupling constants at 2.52 ppm (J = 6.5 Hz, 2J PtH = 77.0 Hz) and

2.63 ppm (J = 6.5 Hz, 2J PtH = 72.0 Hz) associated with coordinated norbornene

alkene protons (cf. 2.56 ppm, J = 6.0 Hz, 2J PtH = 75.6 Hz in complex 34). Two

singlet peaks at 1.38 and 1.40 ppm corresponding to S(O)But groups are also present

(cf. 1.42 ppm for SBut in complex 34).

The two closely related sets of peaks visible in the NMR spectra of this reaction

indicates that two similar products had formed, both with the formula [Pt(nb)(16)].

As only one molecule of racemic ligand 16 was present in the complex, it was

determined that the position of the norbornene ligand was inducing planar chirality

in the complex to produce two enantiomeric pairs of diastereomers of complex 35,

as shown in Scheme 3.11. As noted previously in complex 34, the norbornene ligand

is static on the NMR timescale at room temperature, thus producing two forms of

the complex wherein the SBut and norbornene bridge-CH2 groups occupy either the

same or opposite faces of the complex. Interestingly, as the two forms are produced

in an almost 1:1 ratio, there seems to be no selectivity for either form.

P

S

Pt

But
But

Pt (i) O
But

P

S

Pt

But
But

O
But

+ enantiomers

35

Scheme 3.11 Synthesis of [Pt(nb)(P,S=O)] complex 35. Reagents and conditions:
(i) 1 eq. ligand 16, benzene-d6, 5 min, quantitative conversion.

3.3.2 2:1 Complexes

The reaction of [Pt(nb)3] with two equivalents of phosphine-thioether ligand 14a

initially resulted in a 1:1 mixture of norbornene complex 34 and free ligand.

However, over a period of 24 hours, the remaining norbornene ligand and the
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coordinated sulfur atom were displaced by the second molecule of ligand 14a,

resulting in the linear, 14-electron complex 36 (Scheme 3.12). The structure of

this complex was determined by analysis of the NMR data. Virtual triplet coupling

of the peaks associated with the CH2P and PBut protons in the 1H NMR spectrum

indicated a second-order XnAA′Xn
′ system,126 confirming that the coordinated

phosphorus atoms were in mutually trans positions. The similarity of the 1H

NMR shifts of the CH2S and SBut protons to those of the free ligand indicated

that the sulfur atoms were not coordinated to the platinum centre. Monodentate

coordination of the ligands through phosphorus only was supported by the large

downfield shift (9.06 ppm) of the peak corresponding to one of the aryl backbone

protons in the 1H NMR spectrum. This feature has been seen previously in the

platinum dihydride complex 25 and other Pt(II) complexes with similar geometries

to complex 36.

(i)

Pt PP

E

But

But

But

But

E

E = SBut

E = S(O)But

E = NMe2

Pt

36
37
38

Scheme 3.12 Synthesis of [Pt(P,E)2] complexes 36, 37 and 38. Reagents and
conditions: (i) 2 eq. ligand 14a or 16, or 1–2 eq. ligand 18a; benzene-d6, up to
24 h.

This type of platinum complex was first reported in 1966, with the isolation of

[Pt(PPh3)2] by several different methods (although very little supporting charac-

terisation data were provided).156 A number of years later, studies containing the

complexes [Pt(PCy3)2],
157 [Pt(PBut

3)2], [Pt(PBut
2Ph)2] and [Pt(PPri

3)2]
158 were

published. In 1980, a 31P NMR investigation of this complex type was reported,
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including some of the aforementioned complexes.159 All the linear, 14-electron

complexes display 1J PtP coupling constants greater than 4000 Hz, and downfield

shifts of the phosphine peaks upon coordination of between 48 and 58 ppm. Trigonal

[Pt(PR3)3] complexes were also seen for PPri
3 and PCy3 (which do not show virtual

triplet couplings in the 1H NMR spectra), but not for PBut
2Ph. The 31P NMR

spectrum of 14-electron complex 36 displays a singlet peak at 76.1 ppm, a downfield

shift of 51.1 ppm from the free ligand, with a large 1J PtP coupling of 4397 Hz. These

results are consistent with other complexes of this type.

Similar reactivity was seen when [Pt(nb)3] was combined with two equivalents of

phosphine-sulfoxide ligand 16 in benzene-d6. Initially, a 1:1 mixture of free ligand

and the diastereomers of complex 35 formed, which slowly converted into the linear,

14-electron complex 37 (Scheme 3.12). However, in this case the reaction stopped

at around 70% linear complex 37, with the rest of the sample remaining as a

mixture of norbornene complex 35 and free ligand. This equilibrium behaviour

suggests that the sulfoxide moiety binds more strongly to platinum(0) than the

corresponding thioether. The reaction was repeated using [Pt(1,5-cyclooctadiene)2]

rather than [Pt(nb)3], resulting in quantitative conversion to linear complex 37

within 10 minutes. As the racemic form of ligand 16 was used, complex 37 also

formed as diastereomers, a mixture of the R,R and S,S enantiomeric forms, and the

meso R,S form. The 31P NMR spectrum of complex 37 displays singlet peaks at 76.5

and 77.0 ppm in a 1:1 ratio, with platinum coupling constants of 4408 and 4424 Hz

respectively. The 1H NMR spectrum shows two sets of similar peaks, including

virtual triplet couplings for the peaks associated with the CH2P and PBut protons.

The reaction of one equivalent of phosphine-amine ligand 18a with [Pt(nb)3] did

not produce the same chelated norbornene complex as the previous two examples.

After 20 minutes reaction time, the major product of this reaction was the linear,

14-electron species 38 (Scheme 3.12). Again, the 31P NMR spectrum of this complex

displays a peak with similar downfield shift to that of other 14-electron complexes,

and a 1J PtP coupling over 4000 Hz. The 31P NMR data and selected 1H NMR data

of the related complexes 36, 37 and 38 are collated in Table 3.9, showing that the

identity of the second potential donor atom (E) has little effect on the platinum core

of these complexes.

In light of previous reports, the absence of a [Pt(nb)(κ2P,N -18a)] complex

is not terribly surprising. It is generally known that nitrogen donor atoms

do not bind to platinum(0) centres,160 and the only known Pt(0) norbornene

complex of a chelating phosphine-amine ligand is that of a bicyclic substituted

3-aza-7-phosphabicyclo[3.3.1]-nonan-9-one reported by Zayya in 2012 (shown in
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Table 3.9 31P and selected 1H NMR shifts (in ppm) and coupling constants (in
Hz) of [Pt(P,E)2] complexes in benzene-d6.

P CH
2
P PBut

Complex E δP
1JPtP δH

2JPH + 4JPH
3JPtH δH

3JPH + 5JPH

36 SBut 76.1 4397 3.49 6.1 43.3 1.46 12.4
37 S(O)But 76.5 4408 3.36a 6.5 b 1.40 13.4

77.0 4424 3.70 5.8 b 1.43 13.0
3.79 5.9 b 1.46c 12.5

38 NMe2 75.4 4373 3.60 6.3 49.8 1.49 12.4
aThis value corresponds to two CH2P groups.
bUnable to determine from spectra.
cThis value corresponds to two PBut groups.

Figure 3.14).133 This Pt(0) norbornene complex is fragile in solution, even under

inert atmosphere, and is not able to be stored for long periods of time in the

solid state. Zayya also reported Pt(0) phosphine-amine complexes of ethene and

η2-1,5-cyclooctadiene, both of which reacted spontaneously with the phosphine-

amine ligand framework to form Pt(II) metallated species.

It may be less intuitive that a [Pt(nb)2(κ
1P-18a)] complex did not form in the 1:1

reaction of phosphine-amine ligand 18a with [Pt(nb)3], as [Pt(nb)2(PBut
3)]

161,162 is

known (although it is unstable in solution, converting to [Pt(PBut
3)2] over a number

of days). As PBnBut
2 is a better model for the P,E ligands than PBut

3, the 1:1

reaction was repeated with [Pt(nb)3] and PBnBut
2 in benzene-d6 solution. The

1H and 31P NMR spectra of the reaction mixture showed complete conversion to

[Pt(PBnBut
2)2]163 after 10 minutes. This result indicates that the rapid conversion

of mixtures of [Pt(nb)3] and ligand 18a to linear, 14-electron complex 38 is not

a function of the presence of the amine donor atom, but rather it is due to the

instability of the [Pt(nb)2(PBnBut
2)]-type species.

N

P

O

MeO2C

MeO2C

Ar

Ar But

Me

Pt alkene

alkene = norbornene, ethene, η2-1,5-cyclooctadiene

Figure 3.14 Platinum(0) alkene complexes of a phosphine-amine ligand.
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3.4 Reactivity of [Pt(nb)(P,S)]

Agostic (M · · · H−C) interactions in organometallic complexes have been known

for nearly 50 years,164,165 and have recently become the focus of theoretical in-

vestigations,73,166,167 as they play key roles in a number of industrially important

catalytic processes, including their presence in the transition states of chain growth

and termination steps of alkene polymerisation reactions. A number of stable

agostic complexes have been synthesised via protonation of various metal complexes

containing η2-bound alkene ligands.13,14,73,168,169

An initial attempt at the protonation of complex 34 was performed using the solid

fluorocarbon acid CH2(SO2CF3)2. Although the anion of this acid is nominally non-

coordinating, the reaction of complex 34 resulted in displacement of the norbornene

ligand and quantitative conversion to platinum(II) hydride complex 39, shown in

Scheme 3.13. The structure of this complex was determined by analysis of the NMR

data, and comparison with other complexes of this type.133,140 The 1H NMR peaks

corresponding to the CH2P and CH2S groups of ligand 14a both display platinum

satellites (31.8 and 31.7 Hz respectively), confirming that the ligand remains chelated

in complex 39. The hydride NMR signal of this complex is centred at −14.22 ppm,

with phosphorus coupling of 16.5 Hz and platinum coupling of 1092.9 Hz. This

is in good agreement with the hydride NMR signal associated with [PtH(κ1P-

14a)(κ2P,S -14a)]+ complex 26, and indicates that the hydride ligand in 39 lies

trans to the sulfur donor atom. Coordination of the –CH(SO2CF3)2 anion was

confirmed by the presence of platinum satellites on both the 1H and 13C NMR signals

associated with the CH moiety. The proton NMR peak is centred at 5.84 ppm (quite

different to the ca. 3.8 ppm shift seen when the anion is non-coordinating140), with
2J PtH coupling of 66.0 Hz. The CH carbon NMR signal at 62.3 ppm displays a large
2J PH coupling of 63.8 Hz confirming the trans arrangement with the phosphorus

donor atom, and a large platinum coupling constant of 492.5 Hz, consistent with

this carbon having a σ-bond to platinum.

P

S

Pt

But

But
But

(i)
P

S

Pt

But

But
But

H

CH(SO2CF3)2

34 39

Scheme 3.13 Synthesis of [PtH{CH(SO2CF3)2}(P,S)] complex 39. Reagents and
conditions: (i) 1 eq. CH2(SO2CF3)2, benzene-d6, 15 min, quantitative conversion.
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As this synthetic method did not produce the desired agostic complex, the reaction

was repeated with tetrafluoroboric acid diethyl etherate, which has been shown

to successfully produce platinum norbornyl complexes with agostic interactions.15

Analysis of the 1H, 31P and 19F NMR data of the resulting off-white solid con-

firmed that the desired platinum(II) norbornyl complex 40 had formed almost

quantitatively (Scheme 3.14). The 31P NMR spectrum displays a singlet peak

with a very large platinum coupling constant of 5791 Hz, indicating the presence

of a weakly interacting ligand trans to the phosphorus donor atom. The 1H

NMR peak corresponding to the CH2S group of ligand 14a displays platinum

satellites, confirming that the ligand remains chelated in this complex. The

existence of a peak in the 1H NMR spectrum with a high-field shift of −1.93 ppm,

doublet of doublets coupling with platinum satellites, and integrating for one

proton confirmed the presence of a β-agostic interaction in complex 40. 1H NMR

peaks with very similar features have been noted previously for the products

of protonation of [Pt(nb)(But
2PC2H4PBut

2)]
15 and the [Pt(nb)(P,N )] complex133

shown in Figure 3.14. Both of these complexes were determined crystallographically

to contain σ-bound norbornyl ligands with β-agostic interactions.

P

S

Pt

But

But
But

(i)
P

S

Pt

But

But But

H

BF4

34 40

Scheme 3.14 Synthesis of β-agostic complex 40. Reagents and conditions:
(i) 1 eq. HBF4 · Et2O, dichloromethane, 30 min, >95% conversion.

Interestingly, in the 1H NMR spectrum the peaks associated with the CH2S, CH2P

and PBut groups of ligand 14a appeared as AB systems, indicating asymmetry

across the plane of the complex. In other thioether complexes this has been

attributed to the sulfur inversion process being slow at room temperature; however,

as evidenced previously in this chapter, a sulfur donor atom positioned trans to

a σ-bound alkyl ligand would be expected to have a coalescence temperature

much lower than room temperature, and hence it is very unlikely that this is

the cause of the asymmetry. It has been reported in the literature that β-agostic

[Pt(norbornyl)(diphosphine)] complexes undergo a rapid intramolecular rearrange-

ment process via a mechanism involving transfer of the agostic hydrogen to the

metal to give an intermediate alkene-hydride species in which rotation about the

metal-alkene bond is facile. The result of this dynamic process is an increase in time-

averaged symmetry across the plane of the complex, and a reduction in the number
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of proton and carbon shifts in the NMR spectra.15 Conversely, in complex 40, the

presence of the AB systems indicates that this dynamic process is not occurring on

the NMR timescale at room temperature. As it has been noted that the dynamic

process also does not occur in the β-agostic [Pt(norbornyl)(P,N )] complex,133 it is

likely that the identity of the donor atom trans to the σ-bound norbornyl carbon

dictates the rapidity of the intramolecular rearrangement. As the trans influences

of amine and thioether ligands are much lower than those of phosphine ligands, the

Pt−C bond strength would be increased in the hybrid ligand complexes, causing

the dynamic process to be slowed (or ceased) at room temperature.

Unfortunately, the β-agostic complex 40 immediately began degrading in solution,

resulting in an intractable mixture of products after a few hours, which included

a large number of hydride signals in the 1H NMR spectrum. The instability of

this material precluded any further characterisation of the complex, including the

collection of 13C NMR data. The reaction shown in Scheme 3.13 was repeated in

dichloromethane-d2 solution, resulting in a mixture of hydride complex 39 (70%)

and the equivalent β-agostic complex (30%), indicating that the choice of solvent

has an influence on the coordination behaviour of the –CH(SO2CF3)2 anion.

The reaction of complex 34 with ethyne was also studied. There are few literature

examples of platinum(0) phosphine complexes containing η2-ethyne ligands, due to

the propensity of these species to react further, producing polyacetylene. However,

when ethyne gas was bubbled through a benzene-d6 solution of 34 for a short time,

the η2-ethyne complex 41 was produced (Scheme 3.15), which existed in solution

for a number of hours at room temperature.† The 1H and 13C NMR spectra shows

that the chemical environment of ligand 14a in this complex is essentially identical

to that in the precursor complex 34, with very little change to either the chemical

shifts or coupling constants of the peaks. Similarly, the 31P NMR spectrum displays

a singlet peak at 56.8 ppm, an upfield shift of 1.5 ppm from the precursor, with a
1J PtP coupling of 4018 Hz (150 Hz greater than the precursor). The η2-ethyne ligand

in complex 41 displays two shifts in the 13C NMR spectrum centred at 101.2 and

112.3 ppm, with 2J PC couplings of 8.1 and 68.2 Hz respectively. The much larger

phosphorus coupling constant of the peak at 112.3 ppm identified this carbon centre

as being positioned trans to the phosphorus donor atom. The platinum-carbon

coupling constants of these carbon peaks are also quite different, 444.5 and 258.3 Hz

respectively. These values reflect the larger trans influence of the phosphorus donor

atom as compared to the sulfur donor atom in this complex. Two shifts are also

seen in the 1H NMR spectrum for the ethyne protons, centred at 6.74 and 7.03 ppm,

with similar 3J PH coupling constants of 17.6 and 14.1 Hz respectively.

†This work was carried out as part of an undergraduate research project performed with Eva
Weatherall.
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Scheme 3.15 Synthesis of [Pt(ethyne)(P,S)] complex 41. Reagents and
conditions: (i) Ethyne, benzene-d6, 1 min, >90% conversion.

The diphosphine analogue of complex 41, [Pt(ethyne)(dbpx)], has recently been

synthesised but not published,170 and is quite distinct from complex 41 in a

number of aspects. Whereas complex 41 formed immediately at room tem-

perature, the synthesis of [Pt(ethyne)(dbpx)] required heating of the precursor,

[Pt(norbornene)(dbpx)], to 40 ◦C overnight in the presence of excess ethyne. The

difference in reaction rate of the platinum norbornene complexes can be attributed

to the larger steric bulk of dbpx as compared to ligand 14a. The crystal structure of

complex 34, detailed previously in this chapter, confirmed the bonding of norbornene

to platinum(0) in this complex is very similar to that in diphosphine complexes,

indicating the reactivity difference is unlikely to be an electronic effect. However,

once [Pt(ethyne)(dbpx)] is formed, it is more stable than complex 41. The 1H NMR

shift of the ethyne protons in [Pt(ethyne)(dbpx)] is significantly downfield of that

of complex 41, at 7.78 ppm. This indicates that the ethyne ligand retains more

alkyne character in complex 41 than in [Pt(ethyne)(dbpx)], likely contributing to

the instability of 41. The 1J PtP value in [Pt(ethyne)(dbpx)] is 3463 Hz, over 500 Hz

lower than that in 41, similar to the difference seen in the respective platinum(0)

norbornene complexes of these ligands.

Complex 41 is the first example of a platinum(0) ethyne complex containing a chelat-

ing hybrid ligand, and the second example of a phosphine-thioether metal complex

bearing an η2-alkyne ligand. In 2008, the X-ray crystal structure of the disubstituted

ferrocene (Fc) complex, [Pt(diphenylethyne){κ2P,S -1,2-Fc(PPh2)(CH2SPh)}], was

published.106 This complex was synthesised via the reduction of the precursor

platinum(II) dichloride complex in the presence of diphenylethyne. Unlike complex

41, in which the sulfur inversion process is rapid at room temperature, the sulfur

atom in [Pt(diphenylethyne){κ2P,S -1,2-Fc(PPh2)(CH2SPh)}] is static in solution,

and in the solid state only one diastereomer is seen. The authors note that this

is the case for complexes of all 1,2-Fc(PPh2)(CH2SR) ligands, and that the planar

chirality of the ferrocene controls the configuration at the sulfur atom. Although

not mentioned in the paper, this is most likely a steric effect, and independent of

the identity of the ligand trans to the sulfur atom in these complexes.

76



3.5 Reactivity of [Pt(P,S)2]

The exposure of linear [Pt(P,S)
2
] complex 36 to air resulted in the reaction of this

species with dioxygen, forming the η2-dioxygen [Pt(O2)(P,S)2] complex 42. This

reaction could be controlled by bubbling dioxygen through an n-hexane solution of

complex 36 and cooling to induce crystallisation, to give a 78% yield of complex

42 as pale brown microcrystals (Scheme 3.16). The identity of complex 42 was

determined by 1H, 13C and 31P NMR data, elemental analysis, and comparison

with known [Pt(O2)(PR3)2] complexes (where PR3 = PCy3, PButPh2, PBut
2Me,

PBut
2Bun, PBut

2Ph).171,172 In contrast to the virtual triplet (XnAA′Xn
′) couplings

seen in the 1H NMR spectrum of precursor complex 36, the 1H NMR peaks

associated with the CH2P and PBut groups of 42 display doublet couplings to

phosphorus-31, indicating that the ligands not longer inhabit mutually trans posi-

tions. Similarly, the 13C NMR peaks that had previously displayed virtual triplet

couplings, now show complex second-order multiplet couplings to phosphorus-31

and platinum-195. The 31P NMR spectrum of complex 42 displays a singlet peak

at 43.5 ppm (a shift of 32.6 ppm upfield from the precursor complex), with a 1J PtP

coupling constant of 4112 Hz, consistent with other complexes of this type.171
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Scheme 3.16 Synthesis of [Pt(O2)(P,S)2] complex 42. Reagents and conditions:
(i) Dioxygen, n-hexane, 10 min, 78% yield.
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During the synthesis of complex 42 it was discovered that the coordination of

dioxygen to the platinum centre was reversible, either by subjecting the material

to vacuum, or by passing a stream of another gas through a solution of the

complex or over the material in the solid state. For example, when carbon dioxide

was bubbled through a solution of the similar complex, [Pt(O2)(PBut
2Bun)2], the

only product was the peroxycarbonato species, [Pt(CO4)(PBut
2Bun)2];173 however,

the same reaction with complex 42 produced a mixture of the desired complex

[Pt(CO4)(14a)2] and [Pt(P,S)2] complex 36.‡ Complete removal of the dioxygen

ligand from complex 42 was achieved by heating crystals of the material to 70 ◦C

under high vacuum (∼0.1 mmHg) for 24 hours. This result is significant as it is the

first example of reversible binding of dioxygen to a [Pt(PR3)2]-type complex.

There are only a few examples of reversibility in palladium complexes of this

type. For example, the binding of dioxygen in the complex [Pd(O2)(PBut
2Ph)2]

is reversible under the same conditions as complex 42,174 and the complexes

[Pd(O2)(PBut
2Bun)2] and [Pd(O2)(PAd2Bun)2] (Ad = 1-adamantyl) can be reduced

back to their respective palladium(0) linear complexes by reaction with hydrogen

under mild conditions.175 These [Pd(O2)(PR3)2]-type complexes have generated

interest since their discovery in 1967,176 including for their potential to separate

dioxygen from gaseous mixtures,177 and their use as stable precursors for formylation

and alkoxycarbonylation catalysts.175 Recently, [Pd(O2)(PPh3)2] was found to play

a crucial role in the formation of biaryls as by-products in palladium-catalysed

Suzuki-Miyaura reactions when not conducted under oxygen-free atmosphere.178

An X-ray crystallographic and computational study has been conducted comparing

the dioxygen-reversible palladium complex, [Pd(O2)(PBut
2Ph)2], and the dioxygen-

irreversible platinum analogue, [Pt(O2)(PBut
2Ph)2].

172 This study established that

the P−M−P angle is ca. 2.3◦ larger in the palladium complex than the platinum

analogue, and suggested that the M−O2 interaction is enhanced for the platinum

complex when compared with the palladium analogue. To confirm that the sulfur

arm of P,S ligand 14a is not involved in the unprecedented reversible dioxygen bind-

ing in complex 42, the benzyldi-t-butylphosphine analogue, [Pt(O2)(PBnBut
2)2],

was synthesised.163 It was found that the dioxygen binding was also reversible

under the same conditions as for complex 42, indicating that the reversible binding

of dioxygen to [Pt(P,S)
2
] complex 36 is not due to involvement of the thioether

moiety of the ligand. Unfortunately, crystals suitable for X-ray diffraction studies

were unable to be grown of either of these complexes, so P−Pt−P angles and Pt−O2

interactions were not able to be determined. However, as [Pt(PBut
3)2] does not react

with dioxygen and the binding of dioxygen in a number of similar [Pt(O2)(PBut
2R)2]

‡This work was carried out as part of an undergraduate research project performed with Eve
Martin.
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complexes (where R = Me, Bun , Ph) is irreversible,171,172 it follows that the large

steric bulk of ligands 14a and PBnBut
2 is essential in the reversible dioxygen binding

in these complexes.

As the isolated yield of dihydride complex 25 from the reaction of ligand 14a with

[PtCl2(1,5-hexadiene)] and sodium borohydride was only 33%, it was envisaged that

linear platinum(0) complex 36 could provide an alternative route to the dihydride

species. It is known that the reaction of the similar complex, [Pt(PCy3)2], with

dihydrogen gas produces the platinum(II) dihydride complex [PtH2(PCy3)2].157

Unfortunately, the same synthetic method performed with complex 36 produced

no reaction. Another synthetic route to [PtH2(PR3)2]-type complexes involves the

reaction of [Pt(PR3)2] with hydrochloric acid to form [PtHCl(PR3)2], followed by

reduction with sodium borohydride.125 This reaction type was deemed too similar

to the original synthesis of dihydride complex 25 to pursue.
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Scheme 3.17 Protonation of [Pt(P,S)2] complex 36. Reagents and conditions:
(i) CH2(SO2CF3)2, acetone, 10 min, 55% yield.

Platinum(0) complex 36 also presented a direct route to cationic complex 26. As

noted above, the reaction of [Pt(PR3)2]-type complexes with protic acids yield

hydride complexes of the type [PtHX(PR3)2].
125 It was anticipated that if an

acid containing a weakly coordinating counterion was combined with complex 36,

chelation of one of the P,S ligands would result, producing complex 26. To this

end, complex 36 and fluorocarbon acid CH2(SO2CF3)2 were combined in acetone

and stirred until all solid had dissolved (Scheme 3.17). Analysis of the 1H and 31P
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NMR spectra of the resulting foam confirmed complex 26 was the major product of

the reaction. Unfortunately, all attempts at crystallisation were unsuccessful, and

trituration of the crude product with toluene was ineffective in completely purifying

the material. However, this methodology does constitute a shorter synthetic route

to complex 26.

3.6 Concluding Remarks

The coordination chemistry of o-xylene-based phosphine-thioether, phosphine-

sulfoxide and phosphine-amine hybrid ligands with platinum(II) and platinum(0)

precursors has been investigated. The coordination behaviour of these ligands with

the precursor complex [PtCl2(1,5-hexadiene)] varied depending on the identity of

the second donor atom, producing a chelated [PtCl2(P,S)] complex with phosphine-

thioether ligand 14a, and complexes containing σ:η2-bound phosphonium ion

adducts with P,S=O ligand 16 and P,N ligand 18a. A chelated [PtCl2(P,S=O)]

complex was produced by heating a mixture of [PtCl2(NCBut)2] and ligand 16,

whereas under the equivalent conditions a chelated [PtCl2(P,N )] complex did

not form. This work highlights the importance of both the electronic and steric

characteristics of these large bite angle P,E ligands in their coordination chemistry.

Similarly, the reaction of one equivalent of P,S ligand 14a or P,S=O ligand 16

with [Pt(alkene)3] gave the corresponding chelated [Pt(alkene)(P,E)] complexes, and

monodentate [Pt(P,E)2] complexes with a 2:1 ratio of the starting materials (via

displacement of the sulfur donor atoms), whereas P,N ligand 18a gave [Pt(P,N)2]

in both cases. These results indicate that coordination of the second donor atom to

platinum(0) is more favourable with the sulfur-containing ligands than P,N ligand

18a. Further to this, the equilibrium observed in the 2:1 reaction of P,S=O ligand

16 and [Pt(nb)3] suggests the sulfoxide moiety binds more strongly to platinum(0)

than the equivalent thioether moiety.

The platinum coordination chemistry of phosphine-thioether ligand 14a was more

thoroughly explored. A range of [PtHL(P,S)2] and [PtHL(P,S)2]CH(SO2CF3)2

complexes with monodentate phosphine binding were produced, and it was shown

that the removal of ligand L from these complexes resulted in coordination of one

of the sulfur donor atoms. In the case where L = MeCN, reversible association of

one of the sulfur donor atoms was achieved by removal of the MeCN ligand under

reduced pressure, followed by addition of free MeCN to a solution to the resulting

[PtH(κ1P-14a)(κ2P,S -14a)]CH(SO2CF3)2 complex.
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The reactivity of the platinum(0) complexes [Pt(nb)(P,S)] (34) and [Pt(P,S)2]

(36) was also investigated. [Pt(nb)(P,S)] complex 34 reacted with HBF4 or

ethyne gas to produce unstable β-agostic norbornyl complex 40 and η2-ethyne

complex 41 respectively. This is in contrast to the equivalent platinum(0) β-agostic

norbornyl diphosphine and η2-ethyne diphosphine complexes, which are much more

stable. [Pt(P,S)2] complex 36 reacted reversibly with dioxygen, forming η2-dioxygen

[Pt(O2)(P,S)2] complex 42, the first example of reversible binding of dioxygen to

a platinum bisphosphine complex of this type. Further investigation showed the

reversibility was due to the steric bulk of the phosphine ligands, rather than any

involvement of the thioether moieties.

This research has established that phosphine-thioether ligand 14a displays hemi-

labile behaviour in complexes of both platinum(II) and platinum(0). The X-ray

crystal structure of [PtCl2(P,S)] complex 21 demonstrates both the difference in

trans influence between the phosphorus and sulfur donor atoms of ligand 14a

(based on the disparity in Pt−Cl bond length), and the significantly smaller bite

angle of this ligand when compared with the analogous complex of an o-xylene-

based diphosphine ligand. Conversely, the X-ray crystal structure of [Pt(nb)(P,S)]

complex 34 exhibits very similar features to the analogous complex of an o-xylene-

based diphosphine ligand; however, derivatives of this complex proved to be less

stable than their diphosphine analogues. Due to the hemilability of P,S ligand

14a and the significant differences between metal complexes of this ligand and the

diphosphine analogues, it is likely this ligand would not be suitable for catalytic

reactions where large bite angle diphosphine ligands are usually employed (the

methoxycarbonylation of ethene, for example). Possibly a more favourable area of

research with this ligand would be catalytic reactions where monophosphine ligands

are normally used, such as palladium-catalysed C−C bond forming reactions.

In summary, phosphine-thioether ligand 14a has been shown to adopt chelating,

monodentate and hemilabile binding modes in complexes of both platinum(II) and

platinum(0), suggesting that this ligand would produce Group 10 metal catalysts

with unusual and potentially beneficial patterns of reactivity and selectivity. In

contrast, phosphine-amine ligand 18a showed a greater tendency towards mono-

dentate binding, and hence it is likely this compound would act primarily as

a monodentate phosphine ligand in catalytic applications. Phosphine-sulfoxide

ligand 16 also adopts chelating and monodentate binding modes with platinum(0);

however, characterisation of complexes with this ligand was often hindered by the

presence of diastereomers. Continuation of the study of this ligand would benefit

from the separation of the two enantiomers or an enantioselective ligand synthesis.
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Chapter 4

Palladium Complexes

Palladium coordination complexes bearing phosphine ligands are used extensively

as homogeneous catalysts for a wide range of C−C, C−O and C−N bond-forming

reactions. These catalysts have revolutionised a number of fields, including medicinal

chemistry, materials science and polymer chemistry, from laboratory to industrial

scale. As the catalytic cycles for these reactions generally include palladium in

both the 0 and +2 oxidation state, this chapter covers the reactivity of phosphine-

thioether ligand 14a with Pd(II) and Pd(0) precursors, with a focus on the palladium

complexes commonly used in pre-catalyst mixtures.

4.1 Reactions with Pd(II) Precursors

4.1.1 [PdCl2L2]

Initially, the synthesis of a chelated [PdCl2(P,S)] complex was attempted. To this

end, one equivalent of P,S ligand 14a was combined with a [PdCl2L2] precursor

(L = NCMe, NCBut , NCPh, L2 = 1,5-cyclooctadiene) in either acetone-d6,

dichloromethane-d2 or benzene-d6, and the reaction followed by 1H and 31P

NMR methods (Scheme 4.1). In each case, after 10 minutes reaction time the
31P NMR spectrum of the reaction mixture displayed one broad signal centred

between 40 and 45 ppm. The 1H NMR spectrum showed a set of similarly

broad signals including a downfield peak at ca. 9 ppm (suggesting monodentate

binding of ligand 14a through the phosphorus donor atom), and in the case of

the [PdCl2(1,5-cyclooctadiene)] reaction, a 1:1 ratio of free 1,5-cyclooctadiene
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and unreacted [PdCl2(1,5-cyclooctadiene)] was observed. From comparison

with the known reactivity of similar phosphine ligands, the product of these

reactions was tentatively assigned as trans-[PdCl2(κ
1P-14a)2]. In contrast to the

platinum analogue (discussed in Section 3.2), trans-[PdCl2(PBnBut
2)2] is known,179

and the derivative complexes trans-[PdCl2{P(CH2C6H3R2)But
2}2] (R = OMe,

R2
−− OC2H4OC2H4OC2H4OC2H4O) have 31P NMR signals at 43.5 and 43.7 ppm

respectively.180
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L = NCMe, NCBut, NCPh,
L2 = 1,5-cyclooctadiene

Scheme 4.1 Attempted synthesis of a [PdCl2(P,S)] complex. Reagents and
conditions: (i) 1 eq. ligand 14a, acetone-d6, dichloromethane-d2 or benzene-d6,
24 h.

Unfortunately, after 24 hours reaction time the NMR spectra showed an intractable

mixture of products in every case, with at least three different phosphorus-containing

compounds evident from the 31P NMR spectra. These results are in contrast

to the usual reactivity of phosphine-thioether ligands; a recent literature survey

(March 2014) revealed over 60 examples of chelated [PdCl2(P,S)] complexes, many

of which were formed from the palladium precursors [PdCl2(1,5-cyclooctadiene)],

[PdCl2(NCMe)2] or [PdCl2(NCPh)2].

Interestingly, when the orange solution resulting from the [PdCl2(NCBut)2] reaction

was heated to 50 ◦C overnight, orange crystals (complex 43) formed, leaving a

colourless acetone-d6 solution. Single crystal X-ray diffraction was performed on

these crystals, resulting in the structure shown in Figure 4.1. Crystallographic

data are given in Table 4.1. Unfortunately, observation of the data in the RLATT

program showed that the crystals were extensively twinned with more than one

lattice visible, resulting in a data set of low quality. However, it is obvious from

the crystal structure that complex 43 is a palladium dimer wherein P,S ligand

14a has dealkylated at the sulfur atom, forming thiolate donor atoms that bridge

the two palladium centres. The atoms Pd1, Cl1, P1 and S1 (and associated

carbon atoms) form the asymmetric unit of the complex, with the remaining half

of the dimer generated through inversion. The 1H NMR spectrum of the colourless

acetone-d6 solution confirmed the presence of 2-chloro-2-methylpropane (ButCl), the

by-product of the reaction.
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Figure 4.1 ORTEP diagram of palladium dimer 43 (50% probability thermal
ellipsoids). Hydrogen atoms omitted for clarity.

The dealkylation of thioethers in hybrid ligands to form bridging thiolate dimers of

this type was first published as a Nature communication in 1966.181 In this note, Lin-

doy et al. reported that when dimethylformamide solutions of the chelated complexes

[PdBr2(N,S)] (N,S = 8-(methylthio)quinoline) and [PdX2(As,S)] (X = Cl or Br,

As,S = dimethyl{2-(methylthio)phenyl}arsine), amongst others, were heated, the

sulfur donor atoms demethylated, forming the corresponding thiolate-bridged palla-

dium dimers. A number of palladium halide dimers containing chelating phosphine-

thiolate ligands have since been synthesised via dealkylation of phosphine-thioethers,

either through an amine-assisted method,182 with heating183 or spontaneously,112

and many others have been synthesised from the corresponding phosphine-thiol lig-

ands.184–186 However, there are only two related examples of C−S bond cleavage of a

t-butyl thioether by palladium. In 2006 and 2012, Kersting and co-workers reported

the reaction of three similar ligands containing ArSBut groups with [PdCl2(NCMe)2],

resulting in C−S bond cleavage to form dimers in which the thiolate donor atoms

of the tridentate N,S,N ligands bridged two palladium centres.187,188
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Table 4.1 Crystallographic data of palladium dimer 43.

Empirical formula C
32

H
52

Cl
2
P

2
Pd

2
S

2

Formula weight 846.49
Crystal system Monoclinic
Space group C2/c

a/Å 27.7399(14)
b/Å 8.1262(4)
c/Å 15.7806 (7)
α/◦ 90.00
β/◦ 95.703(2)
γ/◦ 90.00
V/Å3 3539.7(3)
Z 4
Cell determination reflections 9816
Cell determination range, θmin −−→ θmax/◦ 2.6 −−→ 32.7
Temperature/K 111
Radiation type Mo Kα
Radiation (λ)/Å 0.71073
Crystal size/ mm 0.50 × 0.36 × 0.16
Dcalc/g m−3 1.588
F(000) 1728
µ/mm−1 1.40
Experimental absorption correction type Multi-scan (SADABS)
Tmax, Tmin 0.747, 0.605
Reflections collected 40365, Requiv = 0.041
Index range h −40 −−→ 42
Index range k −11 −−→ 12
Index range l −24 −−→ 23
θ range/◦ 2.6 −−→ 32.9
Independent reflections 5775
Reflections [I >2σ(I )] 5463
Restraints/parameters 0/187
GOF 1.13
R1 [I >2σ(I )] 0.0972
wR2 [I >2σ(I )] 0.2719
R1 [all data] 0.0999
wR2 [all data] 0.2729
Residual density/e Å−3 −4.90<5.82

The 1H, 13C and 31P NMR spectra of a dichloromethane-d2 solution of complex 43

display a mixture of sharp and broad peaks. For example, the 1H NMR signals

corresponding to the PBut (1.60 ppm) and CH2S (3.32 ppm) groups are reasonably

sharp; however, the peaks associated with the CH2P moiety and one of the aromatic

backbone protons are almost indistinguishable from the baseline of the spectrum.

The 31P NMR signal centred at 51.0 ppm is also very broad at room temperature.

By analogy with the behaviour of platinum complexes of P,S ligand 14a (Section

3.1), the fluxional processes responsible for these spectral features are likely to be

inversion of the P,S ligand backbone and/or inversion at the sulfur donor atom.

The M2S2 bis-thiolate cores of complexes of this type are known to adopt either a

hinged square-planar structure (where the angle between the two S−M−S planes
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is less than 180◦) or a flat square-planar structure, dependent upon the relative

orientation (syn or anti respectively) of the thiolate R groups, amongst other

factors.189 Figure 4.2 shows clearly the hinged square-planar structure of the Pd2S2

core of complex 43, and the syn arrangement of the P,S ligand backbones. However,

this structure is not static in solution. It is known that in general the inversion of

configuration at the pyramidal sulfur atom in metal complexes containing doubly-

bridging thiolate ligands is relatively rapid (ca. 100 s-1).190 One example of this is the

VT-NMR study of the diruthenium complex trans-[Ru(CO)(µ-SCH2Ph)(η5-C5H5)]2
by Killops and Knox,191 in which broad 1H NMR signals are seen over a large

temperature range and attributed to inversion of the bridging thiolate ligands. This

low energy barrier for inversion of the thiolate donor atom suggests that this process,

coupled with an inversion of the P,S ligand backbone, are occurring in palladium

dimer 43 on the NMR timescale.

Figure 4.2 ORTEP diagram of palladium dimer 43 viewed along the S · · · S
vector, showing the hinged core structure (50% probability thermal ellipsoids).
Hydrogen atoms omitted for clarity.

Proton and phosphorus NMR spectra of complex 43 were collected at −60 ◦C, and

are consistent with the presence of both hinged square-planar and flat square-planar

isomers of the dimer (shown in Figure 4.3), and therefore syn and anti arrangements

of the P,S ligand backbone respectively. The 31P NMR spectrum shows two singlet

peaks in an approximately 3:1 ratio, the major peak at 56.2 ppm and the minor at

37.3 ppm, indicating two different phosphorus environments. As would be expected,

the 1H NMR spectrum is rather complex at this temperature, due to the presence of

AB systems associated with the CH2P and CH2S protons of the P,S ligand backbone

in both syn and anti arrangements, and also inequivalent PBut groups in each form

of the complex.
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Figure 4.3 Schematic of the hinged square-planar (left) and flat square-planar
(right) isomers of palladium dimer 43.

4.1.2 [PdMe2(tmeda)]

The reactivity of P,S ligand 14a with other palladium(II) precursors was also inves-

tigated. Initially, one equivalent of ligand 14a was combined with [PdMe2(tmeda)]

(tmeda = 1,2-bis(dimethylamino)ethane) in benzene-d6 and the reaction monitored

by 1H and 31P NMR spectroscopy. From the 31P NMR spectra, slow conversion of

the free ligand (at 25.0 ppm) into a new species with a sharp peak at 54.4 ppm

was observed over a few hours. The 1H NMR spectrum associated with the new

species displayed virtual triplet peaks centred at 1.41 and 3.29 ppm, corresponding

to the PBut and CH2P protons of the new species respectively, and there was very

little difference to the peaks associated with the SBut and CH2S protons when

compared to those of the free ligand. As seen previously in a number of platinum

complexes of ligand 14a, the observed virtual triplet peaks indicate a second-order

XnAA′Xn
′ system,126 and therefore the formation of a complex containing two

molecules of ligand 14a in a mutually trans arrangement. This was supported by the

presence of unreacted [PdMe2(tmeda)] in the reaction mixture, in a 1:1 ratio with

the new species. Also evident in the 1H NMR spectrum was the presence of ethane,

indicative of a reductive elimination process to give palladium(0), and allowing

the identification of the new species as linear 14-electron [Pd(P,S)2] complex 44

(Scheme 4.2). The reaction of two equivalents of ligand 14a with [PdMe2(tmeda)]

in benzene-d6 gave near-quantitative conversion to complex 44, ethane and free

tmeda in under 24 hours.

N

N

Pd

Me

Me
(i)

Pd PP

ButS

But

But

But

But

SBut

Me
Me

Me
Me 44

Scheme 4.2 Reaction of P,S ligand 14a with [PdMe2(tmeda)]. Reagents and
conditions: (i) 1 or 2 eq. ligand 14a, benzene-d6, <24 h.
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This reaction type has been reported previously by Krause and co-workers,192

who used the resulting 14-electron [Pd(PR
3
)

2
] complexes (R = Pri , Cy, Ph) as

precursors to [Pd(PR3)(η4-1,6-diene)] complexes. They investigated the synthe-

sis of [Pd(PPri
3)2] in detail, showing that at −30 ◦C [PdMe2(tmeda)] reacts

with two equivalents of PPri
3, displacing tmeda to form cis-[PdMe2(PPri

3)2],

which eliminates ethane when heated in an inert solvent to >0 ◦C, forming

[Pd(PPri
3)2]. It is perhaps unsurprising that the desired [PdMe2(P,S)] complex

was not formed from the reaction of [PdMe2(tmeda)] with ligand 14a, as to

date only one example of a complex of this type has been reported in the lit-

erature, and this complex, [PdMe2(Ph2PC2H4SMe)], was synthesised by reaction

of the dichloride analogue with methyllithium.193 Interestingly, the situation is

very similar with the corresponding platinum complexes. Only two examples of

these, [PtMe2(Ph2PC2H4SMe)]194 and [PtMe2{o-C6H4(CH2PPh2)(SMe)}],195 have

been reported. Both of these were synthesised by reaction of the appropriate

phosphine-thioether ligand with [PtMe2(1,5-cyclooctadiene)], and in the case of

[PtMe2(Ph2PC2H4SMe)], also by reaction of the dichloride analogue with methyl-

lithium. However, it is noted that [PtMe2(Ph2PC2H4SMe)] is unstable in acetone-d6,

converting to a solvated mono-methyl derivative over a number of hours.∗

4.1.3 [Pd(OAc)2]

The third palladium(II) precursor to be investigated was [Pd(OAc)2]. Although

there are no reported [Pt(OAc)2(P,S)] complexes, palladium diacetate complexes

of thioether196,197 and chelating diphosphine198,199 ligands are known, and as

[Pd(OAc)2] is widely used as a part of precursor mixtures for homogeneous catalysts,

an understanding of the coordination behaviour of phosphine-thioether ligand 14a

with this precursor was considered beneficial to the subsequent catalytic studies.

When [Pd(OAc)2] was combined with one equivalent of ligand 14a in benzene-d6, a

yellow solution was produced, and the formation of a small number of benzene-

insoluble crystals was observed almost immediately. The single crystal X-ray

structure identified these crystals as containing palladium hexamer 45 (shown

in Figure 4.4) with a large amount of benzene solvate (nine benzene molecules

per hexamer). Crystallographic data are given in Table 4.2 and Table 4.3, and

Figure 4.5 shows the unit cell viewed along the b and c axes, showing the layers of

benzene solvate molecules present in the crystal. Complex 45 contains six palladium

∗The synthesis of a [PtMe2(P,S)] complex from ligand 14a was attempted using [PtMe2(1,5-
hexadiene)], and by reaction of [PtCl2(P,S)] complex 21 with MeLi, Me2Zn and MeMgBr. All
attempts resulted in intractable mixtures of products, including a number of species containing
hydride ligands.
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Figure 4.4 ORTEP diagram of palladium hexamer 45 (50% probability thermal
ellipsoids). Benzene solvate and hydrogen atoms omitted for clarity.

atoms, four molecules of P,S ligand 14a and eight acetate ligands. The palladium

atoms inhabit two different coordination environments: two sites in which the

palladium atom is ligated by two sulfur atoms and two terminal acetate ligands

in a trans arrangement, and four sites in which the palladium atom forms part

of a P,C metallacycle, with bridging acetate ligands completing the coordination

sphere. The atoms between Pd1 and O2 (Figure 4.4) form the asymmetric unit of

the complex, with the remaining half of the hexamer generated through inversion.

There are many examples of metallation of the aromatic ring in benzyldialkylphos-

phines (and similar ligands) in palladium complexes, and complexes of this type

are usually synthesised by combining one equivalent of the phosphine with a

palladium precursor (including [Pd(OAc)2]) in an inert solvent and stirring at room

temperature,200,201 or with the addition of heat.202,203 These palladacycles have

recently shown good activity as catalysts for a range of transformations including

the Heck reaction202,204 and the amination of aryl chlorides.200 However, to date
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Table 4.2 Crystallographic data of palladium hexamer 45.

Empirical formula C
96

H
160

O
16

P
4
Pd

6
S

4
.9 C

6
H

6

Formula weight 3163.72
Crystal system Orthorhombic
Space group Pbcn

a/Å 28.5619(2)
b/Å 22.6496(3)
c/Å 23.3198(2)
α/◦ 90.00
β/◦ 90.00
γ/◦ 90.00
V/Å3 15086.0(3)
Z 4
Cell determination reflections 24873
Cell determination range, θmin −−→ θmax/◦ 3.9 −−→ 73.6
Temperature/K 120
Radiation type Cu Kα
Radiation (λ)/Å 1.54184
Crystal size/ mm 0.31 × 0.25 × 0.15
Dcalc/g m−3 1.393
F(000) 6568
µ/mm−1 7.03
Experimental absorption correction type Multi-scan (SCALE3 ABSPACK)
Tmax, Tmin 1.000, 0.609
Reflections collected 52344, Requiv = 0.032
Index range h −24 −−→ 35
Index range k −27 −−→ 26
Index range l −25 −−→ 28
θ range/◦ 3.1 −−→ 73.9
Independent reflections 14880
Reflections [I >2σ(I )] 13246
Restraints/parameters 0/834
GOF 1.06
R1 [I >2σ(I )] 0.0278
wR2 [I >2σ(I )] 0.0682
R1 [all data] 0.0331
wR2 [all data] 0.0722
Residual density/e Å−3 −1.19<0.65

Table 4.3 Selected bond distances and angles of palladium hexamer 45.

Bond distances (Å) Bond angles (◦)

Pd1−S1 2.3312(6) S1−Pd1−O1 86.72(4)
Pd1−S2 2.3299(6) S1−Pd1−O2 94.00(4)
Pd1−O1 2.0158(16) S1−Pd1−S2 168.21(3)
Pd1−O2 2.0135(16) O1−Pd1−O2 173.00(9)
Pd2−P1 2.2187(5) P1−Pd2−C1 82.69(6)
Pd2−C1 2.000(2) P1−Pd2−O3 97.02(4)
Pd2−O3 2.1165(16) C1−Pd2−O4 94.00(8)
Pd2−O4 2.1267(15) O3−Pd2−O4 85.03(6)
Pd3−P2 2.2235(5) P2−Pd3−C2 82.38(6)
Pd3−C2 1.999(2) P2−Pd3−O6 97.55(4)
Pd3−O5 2.1402(15) C2−Pd3−O5 94.14(7)
Pd3−O6 2.1222(15) O5−Pd3−O6 84.86(6)
Pd2 · · · Pd3 3.3879(3)
Pd1 · · · Pd1′ 12.5257(4)
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Figure 4.5 ORTEP diagram of palladium hexamer 45 unit cell viewed along the
b axis (top) and c axis (bottom) (50% probability thermal ellipsoids). Hydrogen
atoms omitted for clarity.
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there are no published crystal structures of palladacycle dimers of this type with

bridging acetate ligands.

The crystal structure that most closely resembles the Pd2(µ-OAc)2(P,C)2 moi-

eties of complex 45 is the palladium dimer [Pd(µ-tfa){C6H4(CH2PPri
2)}]2

(tfa = trifluoroacetate), shown in Figure 4.6.203 The Pd−P, Pd−C and Pd−O

distances in this complex are almost identical to those in complex 45, and

the bond angles surrounding each palladium atom are also very similar (the

largest divergence is the cis P−Pd−O angles: 100.24(10)◦ and 100.91(11)◦ in

[Pd(µ-tfa){C6H4(CH2PPri
2)}]2 vs. 97.02(4)◦ and 97.55(4)◦ in complex 45). The

biggest difference between the two crystal structures is in the Pd · · · Pd distances,

3.066(8) Å in [Pd(µ-tfa){C6H4(CH2PPri
2)}]2 compared with 3.388(1) Å in complex

45. The larger Pd · · · Pd separation in complex 45 is likely to be primarily due to

the greater steric requirements of the endo PBut groups in the P,S ligands when

compared with the equivalent Pri groups in the benzyldi-i-propylphosphine ligands,

and may also reflect the requirements of the ring structure of complex 45.

Figure 4.6 ORTEP diagram of [Pd(µ-tfa){C6H4(CH2PPri
2)}]2 (50% probability

thermal ellipsoids). Hydrogen atoms omitted for clarity.

Similarly, there is only one published crystal structure that resembles the

Pd(OAc)2(SR2)2 moieties in complex 45, that of trans-[Pd(OAc)2(tht)2] (tht = tet-

rahydrothiophene).197 The Pd−S and Pd−O bond lengths in trans-[Pd(OAc)2(tht)2]

(2.318(1) Å and 2.015(2) Å respectively) are virtually identical to those in complex

45, and likewise the S−Pd−O angles are very similar (87.11(7)◦ and 92.89(7)◦ in

trans-[Pd(OAc)2(tht)2] vs. 86.72(4)◦ and 94.00(4)◦ in complex 45). The only real

difference between the two crystal structures is the slight deviation of the Pd−S

and Pd−O bonds from the plane in complex 45. The S−Pd−S and O−Pd−O bond

angles in trans-[Pd(OAc)2(tht)2] are 180.00(12)◦, as would be expected for a square
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planar complex; however, the S−Pd−S and O−Pd−O bond angles in complex 45

are 11.79(3)◦ and 7.00(9)◦ removed from 180◦ respectively. Again, this is likely due

to the requirements of the ring structure of complex 45.

Metallation of the aromatic backbone of P,S ligand 14a has also been observed

in platinum complexes of this ligand. Over time, the [Pt(η2-alkene)(κ2P,S -14a)]

complexes (alkene = bcp, mcp) briefly mentioned in Section 3.3 convert to the

geometric isomers of the [Pt(allyl)(P,C )] complexes shown in Scheme 4.3.147 Exper-

imental evidence suggests that this conversion proceeds via dissociation of the sulfur

donor atom, followed by ortho-metallation of the P,S ligand backbone and transfer

of the resulting hydride to the alkene ligand.

P

S

Pt

But

But
But

Pt

P

ButS

But But

+ geometric isomers

Scheme 4.3 Formation of [Pt(allyl)(P,C )] complexes from P,S ligand 14a.
Dashed lines denote the second cyclopropyl group present in bcp.

Analysis of the 1H and 31P NMR spectra associated with the mother liquor of

palladium hexamer 45 showed a benzene-soluble species (46) containing P,S ligand

14a and [Pd(OAc)2] in a 1:1 ratio was present in solution, indicating that the

formation of complex 45 was due to the use of a slight excess of [Pd(OAc)2] in

the reaction. The 1H NMR spectrum of the initial solution displayed one broad

signal centred at 1.84 ppm corresponding to all the acetate ligands in solution (i.e.

an acetate to ligand 14a ratio of 2:1, consistent with the ratio of starting materials);

however, when the solution was subjected to high vacuum and then redissolved in

benzene-d6, the peak at 1.84 ppm was replaced by a slightly sharper signal centred

at 2.15 ppm with half the intensity of the previous peak, indicating that complex

46 actually contains an acetate to ligand 14a ratio of 1:1. As the 1H NMR chemical

shift of acetic acid in benzene-d6 is 1.52 ppm,205 these results show that the initial

solution in fact contained a 1:1 mixture of acetic acid and acetate ligands exchanging

rapidly on the NMR timescale at room temperature.

The presence of acetic acid in solution suggested that metallation of P,S ligand

14a had occurred, and this was confirmed by the associated 1H and 13C NMR

data. The 1H NMR spectrum of complex 46 displays only three signals associated
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with aryl protons, in a 1:1:1 ratio; and one of these, centred at 7.82 ppm (in

toluene-d8, only a broad singlet is observed in benzene-d6), shows a 3.9 Hz coupling

to phosphorus (established via a phosphorus-decoupled 1H NMR experiment), which

is not normally observed in complexes of ligand 14a. Similarly, the 13C NMR

spectrum in benzene-d6 displays a downfield signal at 150.6 ppm, identified through

2D NMR data as the aryl carbon atom situated ortho to the CH2PBut
2 moiety of

ligand 14a, and consistent with the shifts of the equivalent carbon atoms in the

ortho-metallated platinum complexes shown in Scheme 4.3 (ca. 157 ppm147) and

[Pd(µ-tfa){C6H4(CH2PPri
2)}]2 (148.1 ppm203).

The bonding mode of the acetate ligands in complex 46 was established through

infrared spectroscopy. It is known that the difference between the C−O and

C−−O infrared stretching frequencies (∆) in carboxylate complexes is dependent

upon the bonding mode of the carboxylate ligand.206 In general, ∆ >200 cm−1

for monodentate (terminal) carboxylate ligands, whereas ∆ <200 cm−1 for bridg-

ing carboxylate ligands. The infrared spectrum of complex 46 displays strong

bands at 1414 and 1593 cm−1 (∆ = 179 cm−1), very similar to the those of the

bridging acetate ligands in the related complex [Pd(OAc)(µ-OAc)(PPh3)]2 (1411

and 1580 cm−1, ∆ = 169 cm−1),207 and confirms the identity of complex 46

as the [Pd(µ-OAc)(P,C)]2 dimer shown in Scheme 4.4. The infrared spectrum of

palladium hexamer 45 was also collected, and displays very similar bands at 1418

and 1594 cm−1 (∆ = 176 cm−1), associated with the bridging acetate ligands. Bands

associated with the terminal acetate ligands of complex 45 are also observed in this

spectrum, at 1302 and 1638 cm−1 (∆ = 336 cm−1). Again, these values are similar

to those associated with the terminal acetate ligands in [Pd(OAc)(µ-OAc)(PPh3)]2
(1314 and 1629 cm−1, ∆ = 315 cm−1).207

(i)
2 [Pd(OAc)2] Pd
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Scheme 4.4 Synthesis of palladium dimer 46. Reagents and conditions: (i) 2 eq.
ligand 14a, benzene-d6, 10 min, >90% conversion.

The trans geometry of palladium dimer 46 has been assigned by analogy with

the hinged structures observed in [Pd(µ-tfa){C6H4(CH2PPri
2)}]2 (Figure 4.6) and
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the Pd2(µ-OAc)2(P,C)2 moieties of complex 45 (Figure 4.4); however, this static

structure is inconsistent with the NMR spectra at room temperature. The 1H

NMR spectrum of complex 46 displays one doublet for all the CH2P protons (at

3.25 ppm) and also one doublet for all the PBut groups (at 1.24 ppm). As the

hinged structures shown in Figure 4.4 and Figure 4.6 contain distinct exo and endo

environments for these protons, the NMR data suggest a facile dynamic process that

exchanges these proton environments, likely via exchange of the bridging acetates.

This type of process has been proposed previously for related structures,202,208 and

would be consistent with the broadness of the 31P NMR signal (at 96.8 ppm) and a

number of signals in the 13C NMR spectrum (including the acetate carbonyl signal

at 179.8 ppm), and the previously mentioned facile exchange of the acetate ligands

in complex 46 with acetic acid in solution.

VT-NMR spectra of palladium dimer 46 were collected at 20 ◦C intervals between

20 and −80 ◦C in toluene-d8. The region between 1.0 and 3.5 ppm of the 1H NMR

spectra is shown in Figure 4.7 (there is no variation in the aromatic region of the

spectra over this temperature range). The 20 ◦C spectrum shows the doublet signal

associated with the CH2P protons centred at 3.21 ppm and the singlet associated

with the CH2S protons at 3.54 ppm. These signals persist down to −40 ◦C,

and below this temperature broadening and separation of these peaks is observed,

indicating the coalescence of the aforementioned dynamic process that exchanges the

environments of these protons. The protons of the But groups (1.0–1.3 ppm) are

affected in a similar manner as the solution is cooled. The broad signal corresponding

to the acetate ligand protons (2.13 ppm at 20 ◦C) sharpens and moves to slightly

lower field as the solution is cooled (to 2.32 ppm at −80 ◦C), consistent with the

cessation of the exchange process associated with these ligands at low temperature.

4.2 Reactions with Pd(0) Precursors

4.2.1 [Pd(nb)3]

The reaction of one equivalent of phosphine-thioether ligand 14a with [Pd(nb)3]

immediately resulted in the formation of a new complex with a sharp 31P NMR

signal at 56.5 ppm, and a mixture of sharp and broad signals in the 1H and 13C

NMR spectra. Analysis of the 2D NMR spectra of the new species identified the

sharp peaks as being associated with coordinated ligand 14a. The downfield shift

of the 31P NMR signal (cf. 25.0 ppm in the free ligand) and the difference in shift

of the peaks associated with the SBut and CH2S protons when compared with
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Figure 4.7 1H NMR spectra of palladium dimer 46 collected between 20 and
−80 ◦C in toluene-d8. Asterisk denotes solvent peak.
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the free ligand (1.44 and 3.88 ppm vs. 1.29 and 4.05 ppm in the free ligand)

indicated chelation of ligand 14a to the palladium centre. Comparison of the
1H and 13C NMR spectra of the new complex with those of free norbornene,

[Pt(nb)(P,S)] complex 34 and the published complex [Pd(nb)(dbpx)]15 allowed

identification of the broad signals as free norbornene and an η2-bound norbornene

ligand, and hence the identity of the new species as [Pd(nb)(P,S)] complex 47

(shown in Scheme 4.5). Unfortunately, the lack of 2D NMR data and coupling

information precluded unequivocal assignment of each peak associated with the

norbornene ligand carbons and protons; however, the broad 13C NMR signal at

66.9 ppm is sufficiently similar to that of [Pd(nb)(dbpx)] (65.4 ppm) to identify it as

corresponding to the alkene carbon atoms, and indicates that the norbornene ligand

binding in these two complexes is comparable. Complex 47 can also be synthesised

by combining one equivalent of ligand 14a with [Pd(C5H5)(allyl)] and norbornene

in benzene-d6.
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Scheme 4.5 Reactions of P,S ligand 14a with [Pd(nb)3]. Reagents and conditions:
(i) 1 eq. ligand 14a, benzene-d6, 10 min, quantitative conversion; (ii) 2 eq. ligand
14a, benzene-d6, 10 min, quantitative conversion.

The 1H NMR data associated with complex 47 show that two dynamic processes

are occurring rapidly on the NMR timescale. Firstly, the broad shape of the NMR

signals corresponding to the η2-norbornene ligand and free norbornene in solution

indicate that, unlike the static norbornene ligand in the platinum analogue 34, these

norbornene molecules are exchanging rapidly at room temperature. In the presence

of free norbornene, solutions of complex 47 are stable over a period of days; however,

in the absence of free norbornene, the complex degrades to [Pd(P,S)2] complex 44
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and palladium black within a few hours. Also, the signal at 3.88 ppm associated

with the CH2S protons is a singlet, indicating that the sulfur inversion process is

rapid on the NMR timescale at room temperature.

The reaction of two equivalents of phosphine-thioether ligand 14a with [Pd(nb)3]

resulted in the formation of the previously described complex 44 (Scheme 4.5). In

contrast to the platinum analogue 36 ([Pt(P,S)2]), in which the second equivalent of

ligand 14a gradually displaced the norbornene ligand and sulfur donor atom from

[Pt(nb)(P,S)] complex 34 over a number of hours, complex 44 formed immediately.

This is consistent with the observed lability of the norbornene ligand in complex

47, and the generally lessened stability of palladium complexes when compared

with their platinum analogues.

4.2.2 [Pd2(dba)3]

A different reaction pathway was observed for the reaction of P,S ligand 14a with

[Pd2(dba)3] (dba = trans,trans-dibenzylideneacetone). A benzene-d6 solution of

ligand 14a was combined with a benzene-d6 solution containing half an equivalent

of [Pd2(dba)3] (Scheme 4.6), and the reaction followed by 1H and 31P NMR methods.

Initially, the NMR spectra showed complete conversion of ligand 14a to [Pd(P,S)2]

complex 44, with free dba and [Pd2(dba)3] also present in solution. Over time, a new

species formed, identified by a broad signal in the 31P NMR spectrum at 59.1 ppm

and a number of broad signals in the 1H NMR spectrum. Analysis of the 1H NMR

data showed that the protons of the PBut groups correlate to two broad signals at

0.91 and 1.27 ppm, and similarly, the CH2S protons are observed as two broad signals

at 3.49 and 3.71 ppm, consistent with binding of both the phosphorus and sulfur

donor atoms to the palladium centre. The presence of two further broad peaks in the
1H NMR spectrum at 4.80 and 4.87 ppm, each integrating for one proton, indicates

η2 binding of one of the dba double bonds to the palladium centre. These shifts are

similar to those observed for the η2-bound double bond protons in [Pd(dba)(dbpx)]65

(at 4.3 and 4.6 ppm) and a [Pd(dba)(P,N )] complex209 (at 4.99 and 5.51 ppm). The

high resolution mass spectrum of this complex confirmed the presence of palladium,

ligand 14a and dba in a 1:1:1 ratio. This data allowed identification of the new

species as [Pd(dba)(P,S)] complex 48, shown in Scheme 4.6. The reaction pathway

observed for the formation of complex 48 from [Pd2(dba)3] (via [Pd(P,S)2] complex

44) has previously been reported for the reaction of [Pd(dba)2] with dbpx65 and a

number of other diphosphine ligands.210
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Scheme 4.6 Synthesis of [Pd(dba)(P,S)] complex 48. Reagents and conditions:
(i) 1 eq. ligand 14a, benzene-d6, 24 h, >95% conversion; (ii) 1 eq. ligand 14a, 1 eq.
dba, benzene-d6, 5 days, >95% conversion.

Unfortunately, all attempts to separate the free dba by-product from complex 48

were unsuccessful, and so a second method for the synthesis of this complex was

developed. As the reaction of P,S ligand 14a with [PdMe2(tmeda)] was known to

produce [Pd(P,S)2] complex 44 (Scheme 4.2), [PdMe2(tmeda)] was combined with

ligand 14a and dba in a 1:1:1 ratio in benzene-d6, and the reaction monitored by 1H

and 31P NMR spectroscopy (Scheme 4.6). Initially, formation of the intermediate

complex 44 was observed, followed by slow dissociation of one of the P,S ligands from

this species to give free ligand 14a and [Pd(dba)(P,S)] complex 48 in a 1:1 ratio.

This methodology gave >95% conversion to desired complex 48 over 5 days. The

volatiles (tmeda, ethane and benzene-d6) were removed from the reaction mixture

under reduced pressure to give slightly impure complex 48 as a red powder, which

was then dissolved in toluene-d8, and 1H and 31P VT-NMR spectra of the complex

collected between 50 and −70 ◦C (Figure 4.8).

The VT-NMR spectra shown in Figure 4.8 indicate the presence of two dynamic

processes in complex 48, with coalescence temperatures of near room temperature

and between −30 and −50 ◦C respectively. The dynamic process with a coalescence

point near room temperature causes no change (other than signal broadening) in

the 31P NMR spectrum, but in the 1H NMR spectrum a number of changes are

observed. At 50 ◦C, there is one signal associated with the CH2S protons (at

3.62 ppm), but below room temperature an AB quartet with chemical shifts of

3.41 and 3.66 ppm is observed for the same protons, indicating a decrease in the
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Figure 4.8 1H (left) and 31P (right) NMR spectra of [Pd(dba)(P,S)] complex 48
collected between 50 and −70 ◦C in toluene-d8. Asterisks denote sample impurities.
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time-averaged symmetry of the complex. A similar effect is seen for the signal at

2.94 ppm corresponding to the CH2P protons, although this doublet peak is observed

to collapse rather than split into two, likely due to a coincidental overlap of the AB

quartet signals. In thioether complexes, this effect is normally associated with the

sulfur inversion process becoming slow on the NMR timescale. However, in the case

of [Pd(dba)(P,S)] complex 48 this is unlikely to be the cause of the coalescence near

room temperature.

It is known that the rate of sulfur inversion in palladium(II) complexes of dithioether

ligands is significantly higher than that of the platinum(II) analogues,110 and in

a range of [Pd(alkene)(N,S)] (N,S = pyridine-thioether) complexes it has been

reported that of all the fluxional processes present, sulfur inversion has the lowest

coalescence temperature.211 This literature evidence, and the fact that in the

[Pt(alkene)(P,S)] complexes of ligand 14a (32 and 34), the coalescence point for

the sulfur inversion process is below room temperature (ca. −20 ◦C for norbornene

complex 34), suggests that the sulfur inversion process in complex 48 should be

rapid until well below room temperature, and hence a different dynamic process

is the cause of the decrease in time-averaged symmetry near room temperature.

This is consistent with the single 1H NMR peak observed for the CH2S protons in

[Pd(nb)(P,S)] complex 47 at room temperature. A VT-NMR study of a similar

dba complex containing a hybrid ligand has been completed by Zayya,209 on the

[Pd(dba)(P,N )] analogue of the complexes shown in Figure 3.14. In that system,

the 1H NMR spectra showed a time-averaged decrease in symmetry between 80 ◦C

and room temperature, and the change was attributed to an intramolecular alkene

exchange between the coordinated and non-coordinated double bonds of the dba

ligand. The same exchange process has been reported for another [Pd(dba)(P,N )]

complex at high temperature,212 and a [Pd(dba)(P,P)] complex, in which coales-

cence is slightly below room temperature.213 This intramolecular alkene exchange

process is also consistent with the observed VT-NMR data for complex 48, and

hence it is likely to be the cause of the coalescence point near room temperature in

the present case.

The coalescence point between −30 and −50 ◦C shown in Figure 4.8 indicates a

further decrease in time-averaged symmetry of [Pd(dba)(P,S)] complex 48. At

−70 ◦C, the 31P NMR spectrum of complex 48 displays three major peaks at 54.2,

56.4 and 57.9 ppm, and a minor peak at 59.4 ppm. Similarly, at this temperature

the 1H NMR spectrum is quite complicated, showing a number of signals associated

with the η2-bound double bond protons of the dba ligand between 4.4 and 5.4 ppm.

These data are consistent with the presence of four conformational isomers of the

complex, with slow interconversion on the NMR timescale. A VT-NMR study of the
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diphosphine analogue of complex 48, [Pd(dba)(dbpx)], was reported by Sabounchei

and Karamei in 2001,65 and showed very similar results at low temperature. At

−80 ◦C, seven sharp peaks were observed in the 31P NMR spectrum, attributed to

three major and one minor conformers of [Pd(dba)(dbpx)] (with one of the peaks

of the minor isomer obscured). The authors rationalised the data by adapting a

schematic representation proposed by Herrmann et al. for the conformers of the

related complex [Pd(dba)(bisbi)] (bisbi = 1,1′-bis(diphenylphosphinomethyl)-2,2′-

biphenyl).214 The schematic of the four proposed conformers of [Pd(dba)(dbpx)]

at low temperature is shown in Figure 4.9. These conformers are based on the

two rotamers of free dba (s-cis,cis and s-cis,trans) observed in solution at room

temperature,215 and depend upon the ligand backbone inversion process that occurs

in metal complexes of dbpx and rotation about the C−−C−C−−O single bond in the

dba ligand being slow on the NMR timescale. A similar schematic could be drawn

for [Pd(dba)(P,S)] complex 48; however, as P,S ligand 14a is less symmetric than

dbpx, more conformers are possible for this system. Unfortunately, with the data

available at present it is not possible to tell which conformations of the complex

relate to the four signals observed in the 31P NMR spectrum of complex 48 at

−70 ◦C.
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Figure 4.9 Schematic of the four proposed conformers of [Pd(dba)(dbpx)] at
−80 ◦C.
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4.3 Concluding Remarks

The coordination chemistry of hybrid o-xylene-based phosphine-thioether ligand

14a with palladium(II) and palladium(0) precursors has been investigated, resulting

in the identification of a number of ligand bonding modes. Reaction of P,S

ligand 14a with either a palladium(0) or palladium(II) precursor ([Pdx(alkene)y ]

or [PdMe2(tmeda)]) produced the linear 14-electron [Pd(P,S)2] complex 44, in

which P,S ligand 14a displayed monodentate coordination through the phosphorus

donor atom. It is likely monodentate phosphine coordination of ligand 14a in a

palladium(II) complex was also observed in the reaction with [PdCl2L2] precursor

complexes. The reaction of ligand 14a with [Pdx(alkene)y ] also resulted in chelated

[Pd(alkene)(P,S)] complexes 47 and 48, either directly in the case of [Pd(nb)3], or

via rearrangement of a mixture of [Pd(P,S)
2
] complex 44 and free dba.

Two examples of metallation of P,S ligand 14a were observed in reactions of this

ligand with palladium(II) precursors. The reaction of [PdCl2(NCBut)2] with ligand

14a at raised temperature resulted in S−C bond cleavage of the SBut moiety,

forming thiolate-bridged palladium dimer 43. A palladium dimer was also formed

in the reaction of ligand 14a with [Pd(OAc)2]; however, in this case facile C−H

activation of the aryl backbone ortho to the phosphorus arm of the ligand gave rise

to the [Pd(µ-OAc)(P,C)]2 palladacycle dimer 46. The presence of a slight excess of

[Pd(OAc)2] in this reaction resulted in another bonding mode of P,S ligand 14a.

Coordination of the sulfur donor atoms in two equivalents of [Pd(µ-OAc)(P,C)]2
dimer 46 to two equivalents of [Pd(OAc)2] resulted in the formation of palladium

hexamer 45, with ligand 14a adopting a bridging P,C,S coordination mode.

This research has identified five coordination modes of P,S ligand 14a in palladium

complexes:

• Monodentate binding through the phosphorus donor atom with both Pd(0)

and Pd(II).

• Chelation through the phosphine and thioether moieties in Pd(0) complexes.

• Bidentate coordination through phosphine and bridging thiolate groups.

• Palladacycle formation through chelation of the phosphorus atom and aryl

backbone.

• A combination of palladacycle and monodentate thioether binding resulting

in bridging P,C,S coordination.

The versatile coordination behaviour of ligand 14a with palladium indicates a

number of binding modes could be available in palladium catalysts with this ligand.
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This will potentially result in interesting and unusual catalyst behaviour, but may

also exacerbate the difficulties involved in identifying and characterising the active

catalytic species.
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Chapter 5

Sonogashira Catalysis

5.1 Background

The Sonogashira reaction is a homogeneous palladium and copper co-catalysed C−C

bond-forming reaction between an aryl or alkenyl halide (or triflate) and a terminal

alkyne (or ethyne). It was first reported by Sonogashira, Tohda and Hagihara

in 1975.216 This initial communication detailed the coupling of two equivalents of

iodobenzene with ethyne using 1 mol% [PdCl2(PPh3)2] and 0.5 mol% copper(I)

iodide in diethylamine solvent. Ethyne gas was bubbled through a solution of the

other reactants under a nitrogen atmosphere for six hours at room temperature,

to give an 85% recrystallised yield of diphenylethyne. Under similar conditions, a

range of aryl and alkenyl halides (bromides and iodides) were coupled with ethyne,

phenylethyne and propargyl alcohol, producing the corresponding disubstituted

alkynes in generally high yields.

In the intervening four decades, a vast number of variations on the original reaction

conditions have been reported,217–219 with a large number of ligands (including

phosphines, nitrogen-based ligands, carbenes and palladacycles), palladium pre-

cursors, bases and solvents represented. The choice of substrate has also varied

widely, with examples including the less reactive aryl and alkenyl chlorides, sterically

hindered substrates, and the presence of a range of functional groups. There

are also many examples of not strictly homogeneous catalyst systems, including

palladium nanoparticles and solid-supported molecular catalysts. As functionalised

arylalkynes and conjugated enynes are recurring building blocks in natural products,

agrochemicals, pharmaceuticals and molecular materials for optical and electronic

devices, the Sonogashira reaction plays an important role in a number of fields of
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chemistry. Recent examples include the synthesis of the benzylisoquinoline alkaloids

(+)-(S)-laudanosine and (−)-(S)-xylopinine,220 the pharmaceutical Altinicline,221

and alkynylruthenium complexes that display non-linear optical properties.222
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Figure 5.1 Generalised Sonogashira catalytic cycles.

The exact mechanism of the Sonogashira reaction is not well understood, but is

generally accepted to take place via the two catalytic cycles shown in Figure 5.1.219

The palladium-cycle is based upon classical palladium-catalysed C−C bond-forming

reactions,223 and begins with the catalytically active species [Pd0L2]. In cases where

a palladium(II) pre-catalyst is used in the reaction, formation of a [PdII(C−−−CR)2L2]

species, which then reductively eliminates the corresponding diyne, can yield

[Pd0L2]; or [Pd0L2] can be formed via the action of ligands or bases present (for

example, through the conversion of an amine to an iminium cation). The first step

in the palladium-cycle is oxidative addition of the aryl or alkenyl halide, which is

considered to be the rate-limiting step of the Sonogashira reaction. The [PdArXL2]

species formed is then converted to [PdAr(C−−−CR)L2] via transmetallation with a
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copper acetylide species formed in the copper-cycle, and reductive elimination gives

the disubstituted alkyne product and re-forms [Pd0L2] (fast cis-trans isomerisation

may also take place in the palladium(II) species223).

The copper-cycle (Figure 5.1) is poorly understood, in part due to the difficulties

involved with analysing the combined action of the two metal catalysts. It is believed

that the base abstracts the acetylenic proton of the terminal alkyne, forming the

copper acetylide species in the presence of a copper(I) salt.218 It should be noted

that the generally employed amines tend not to be basic enough to deprotonate

the alkyne, and hence an intermediate π-alkyne copper complex has been proposed,

increasing the acidity of the acetylenic proton.224 However, it has recently been

shown that CuI–polyphosphine adducts can be formed in reactions of this type and

ligands can be transferred between metals.225 Therefore, copper–ligand interactions

may well influence Sonogashira reactions.
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Figure 5.2 Literature hybrid ligands used in Sonogashira reactions.

There are a number of literature examples of Sonogashira coupling reactions utilising

hybrid ligands. These P,N,226,227 P,S,228 P,O 229 and N,O 230 ligands (shown in

Figure 5.2) are used in a range of pre-catalyst mixtures under various conditions,

and generally display reasonable to good activity in the Sonogashira reactions

chosen. However, the primary motivation for investigating the catalytic activity

of phosphine-thioether ligand 14a in the Sonogashira coupling reaction was the ex-

cellent results obtained for this type of catalysis using sterically bulky, electron-rich

monophosphine ligands. The pioneering work in this area was reported by Buchwald,

Fu and co-workers in 2000.231 They investigated a number of phosphine ligands

(PPh3, P(o-tolyl)3, 1,1′-bis(diphenylphosphino)ferrocene, PCy3, PBut
3) in pre-

catalyst mixtures with [PdCl2(NCMe)2] and CuI for the coupling of 4-bromoanisole
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and phenylethyne. It was found that the only ligand displaying any activity was

PBut
3 (96% yield of the desired product after two hours at room temperature). A

range of alkynes and aryl bromides were also tested under these reaction conditions,

and showed good to excellent yields in all cases. Similarly, Plenio and co-workers232

showed that the bulky monophosphine ligands PBut
3, PBut

2Cy, PButCy2, PBnBut
2,

PAd2But and PAd2Bn all showed good to excellent activity in pre-catalyst mixtures

with Na2PdCl4 and CuI for the parallel multisubstrate screening of a range of aryl

bromides containing different levels of steric bulk with phenylethyne. Critically

for the current investigation, PBnBut
2 (the monophosphine analogue of phosphine-

thioether ligand 14a) displayed almost identical activity to PBut
3 in these reactions.

Although the first step of the palladium-cycle in the Sonogashira reaction and

other Pd-catalysed C−C bond-forming reactions is generally thought to produce

a [PdArXL2] species, for sterically bulky monophosphine ligands there is strong

evidence that the oxidative addition step of the catalytic cycle is preceded by disso-

ciation of one of the phosphine ligands, resulting in 14-electron, three-coordinate

palladium complexes of the type [PdArX(PR3)]. Hartwig233 and Fu and co-

workers234 have provided mechanistic evidence for this, and in 2002, Stambuli,

Bühl and Hartwig published the crystal structures of the T-shaped complexes

[PdBrPh(PAdBut
2)] and [PdI(2,4-xylyl)(PBut

3)] (shown in Figure 5.3).235 Addition

of diphenylamine, sodium t-butoxide, 4-methoxyphenylboronic acid or styrene to

[PdBrPh(PAdBut
2)] gave the expected C−N, C−O or C−C coupling products,

and reactions of catalytic amounts of [PdBrPh(PAdBut
2)] with bromobenzene and

diphenylamine are kinetically comparable with palladium complexes of PAdBut
2

generated in situ. This indicates that these T-shaped complexes are likely inter-

mediates in palladium-catalysed reactions with bulky monophosphine ligands. This

study also suggested that rather than [Pd(PR3)2], the palladium(0) catalyst may be

a Pd(PR3) species stabilised by other means, for example [Pd(dba)(PR3)].

Regardless of whether the catalytically active species in Sonogashira reactions with

bulky monophosphine ligands is [Pd(PR3)2] or a Pd(PR3) species, it was envisaged

that the application of phosphine-thioether ligand 14a to this type of catalysis in

a 1:1 ratio with a palladium precursor may provide a chelated Pd(P,S)-type active

catalyst. A complex of this type would provide added stabilisation when compared

with a Pd(PR
3
) species, but also more facile oxidative addition of an aryl halide

substrate than a [Pd(PR3)2] complex, via dissociation of the sulfur donor atom in

ligand 14a. The [Pd(alkene)(κ2P,S -14a)] (alkene = nb, dba) complexes detailed in

Section 4.2 confirm that chelation is a preferred bonding mode of ligand 14a with

palladium(0), and Chapter 3 provides good evidence of hemilability of ligand 14a
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Figure 5.3 ORTEP diagrams of [PdBrPh(PAdBut
2)] (left) and

[PdI(2,4-xylyl)(PBut
3)] (right) (50% probability thermal ellipsoids). Hydrogen

atoms omitted for clarity.

with both platinum(0) and platinum(II), suggesting that the same reactivity would

occur in catalytic reactions with Group 10 metals.

5.2 Kinetic Measurements

One of the major obstacles to the use of electron-rich trialkylphosphine ligands in

pre-catalyst mixtures for Sonogashira coupling reactions (and similar) is their high

air-sensitivity, rendering them more difficult to handle than triarylphosphine ligands

for example. In 2001, Netherton and Fu addressed this problem by replacing the air-

sensitive ligands PBut
3 and PBun

3 with the air- and moisture-stable phosphonium

salt analogues But
3PH+BF–

4 and Bun
3PH+BF–

4.236 The phosphonium salts were

tested in reactions such as the reductions of diphenyl disulfide and n-octyl azide,

and the palladium-catalysed Suzuki, Stille and Sonogashira coupling reactions. It

was found that in all cases the product yields were comparable (within 6%) with

the equivalent reactions utilising the free phosphines.

Using the methodology of Netherton and Fu,236 phosphine-thioether ligand 14a

and PBnBut
2 were converted to the corresponding air-stable phosphonium tetraflu-

oroborate salts 49 and 50 via reaction with excess aqueous tetrafluoroboric acid

(Scheme 5.1). Conversion of P,S ligand 14a to phosphonium salt 49 was confirmed

by analysis of the associated NMR data and high resolution mass spectrometry. The
31P NMR signal of compound 49 appears at 39.6 ppm in acetone-d6, a downfield

shift of approximately 15 ppm from the free phosphine. In the 1H NMR spectrum
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a doublet of triplets signal associated with the PH proton is observed, centred at

6.77 ppm, with a large 1J PH coupling of 466.3 Hz and 3J HH couplings of 6.3 Hz to

the CH2P protons. The 19F NMR spectrum displays a singlet peak at −150.1 ppm,

consistent with a non-coordinating tetrafluoroborate anion. The NMR spectra of

phosphonium salt 50 display similar features to those associated with phosphonium

salt 49, and are consistent with previously described benzyldi-t-butylphosphonium

bromide.237
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R

(i)
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2

R = CH2SBut

R = H
49
50

Scheme 5.1 Synthesis of phosphonium tetrafluoroborate salts. Reagents and
conditions: (i) ∼10 eq. aq. HBF4, CH2Cl2, 10 min.

The reaction conditions used for the kinetic investigation of the Sonogashira coupling

of 4-bromoanisole and phenylethyne are shown in Scheme 5.2. In a 2007 review

paper, Doucet and Hierso noted that virtually any palladium source is capable

of reaching high TONs for facile reactions; however, with less reactive substrates

much lower TONs are generally obtained and the ligands have a large influence

on the outcome of the reactions.217 As an electronically deactivated aryl halide,

4-bromoanisole is commonly chosen as a coupling partner for ligand investigations

of this type. 4-Bromoanisole also contains a methyl group, the associated 1H NMR

shift of which (3.74 ppm in THF-d8) is situated away from the aryl region, producing

a convenient “handle” for NMR-scale studies of this reaction. Similarly, [Pd(OAc)2]

is commonly used in Sonogashira coupling reactions and, of specific importance to

this study, [Pd(OAc)2] is the only easily-handled palladium precursor to initially

produce a 1:1 complex with P,S ligand 14a (palladacycle dimer 46, shown in

Scheme 4.4). Di-i-propylamine has been shown to be an effective base in reactions

of this type,231,238 and is often used as the solvent as well as the base. However,

as the capability to perform NMR-scale studies was desired in this case, an excess

of di-i-propylamine in THF solvent was used. The palladium precursor loading of

3 mol%, with a slightly lower loading of the copper(I) salt, is a commonly employed

catalyst loading for Sonogashira reactions, although usually with a monodentate

phosphine ligand loading of 6 mol%.

Two independent runs of the reaction shown in Scheme 5.2 were performed, and

the rate of conversion of 4-bromoanisole to 4-(phenylethynyl)anisole monitored

by GC-MS. The results of these reactions are shown in Figure 5.4. The data
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(i)MeO Br MeO

Scheme 5.2 Sonogashira coupling of 4-bromoanisole and phenylethyne. Reagents
and conditions: (i) 3 mol% [Pd(OAc)2], 3 mol% P,S phosphonium salt 49, 2 mol%
CuI, 5 eq. Pri

2NH, THF, 60 ◦C, 10 min, 1.3 eq. phenylethyne, 60 ◦C, 2 h.

show a reproducible kinetic profile for this reaction, with the GC-MS results of

the runs consistent within ± 3%. The averaged data from the two experiments

show 82% conversion to 4-(phenylethynyl)anisole in 120 minutes, with a turnover

frequency (TOF) of 20 h−1 (calculated for the 40 to 90 minute time period). This

TOF is comparable with that of the synthesis of 4-(phenylethynyl)anisole using

a [PdCl2(NCPh)2]/PBut
3/CuI pre-catalyst mixture in dioxane solvent at room

temperature,231 but pales in comparison to the same reaction performed with a

Na2PdCl4/PBut
3/CuI pre-catalyst mixture in di-i-propylamine solvent at 80 ◦C

(TOF = 3240 h−1).238 The data shown in Figure 5.4 also shows an induction period

of ca. 20 minutes. This induction period is consistent with the conversion of the

initial pre-catalyst mixture to the active catalyst species.
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Figure 5.4 Kinetic investigation of the Sonogashira coupling of 4-bromoanisole
and phenylethyne. First run, second run, average of two runs.
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A preparative run of this reaction was also performed, and monitored by 1H NMR

spectroscopy. After two hours, the 1H NMR spectrum of the reaction mixture

showed 93% conversion to 4-(phenylethynyl)anisole, broadly consistent with the

GC-MS data (it is possible a spuriously high conversion was observed in the 1H

NMR spectrum, as the sample was subjected to vacuum in order to remove the

solvent, which may also have affected the amount of 4-bromoanisole in the sample).

After four hours reaction time, both 1H NMR spectroscopy and GC-MS analysis

confirmed quantitative conversion to the desired product. The reaction mixture was

then worked up and the crude product purified by column chromatography, resulting

in an 86% isolated yield of 4-(phenylethynyl)anisole.

The GC-MS data collected also identified the formation of two by-products in

this reaction, both with the empirical formula C16H12, indicating that these

by-products relate to the dimerisation of phenylethyne. Analysis of the 1H

NMR spectrum of the reaction mixture identified these by-products as the enyne

compounds (E)-1,4-diphenylbut-1-en-3-yne and 2,4-diphenylbut-1-en-3-yne (shown

in Figure 5.5). The alkene protons of (E)-1,4-diphenylbut-1-en-3-yne appear as

doublet peaks centred at 6.39 and 7.05 ppm (3J HH = 16.3 Hz), and the alkene

protons of 2,4-diphenylbut-1-en-3-yne appear as singlet peaks at 5.77 and 5.99 ppm,

all consistent with literature data.239 The transition metal-assisted dimerisation

of phenylethyne is well established in the literature, primarily with rhodium and

ruthenium complexes, but there are also many examples of palladium-catalysed

reactions of this type. Trost and co-workers have published extensively in this

area, including on the cross-coupling of terminal alkynes with acceptor alkynes

with a [Pd(OAc)2]/tris(2,6-dimethoxyphenyl)phosphine pre-catalyst mixture.240

The enynes shown in Figure 5.5 have been synthesised as the desired products in a

number of palladium-catalysed reactions,241,242 and as by-products in a number of

copper-free Sonogashira reactions.243,244 In 2012, Jahier and co-workers determined

through computational studies that the mechanism of palladium-catalysed formation

of (E)-1,4-diphenylbut-1-en-3-yne is via the hydropalladation catalytic cycle shown

in Figure 5.6.245 Interestingly, the most common by-product of copper co-catalysed

Sonogashira reactions performed with phenylethyne, 1,4-diphenylbutadiyne, was

not formed in these reactions. 1,4-Diphenylbutadiyne is produced in reactions of

this type by the Glaser-Hay reaction, a copper-catalysed homocoupling of terminal

alkynes in the presence of an amine base and oxygen,246 which is the reason

Sonogashira reactions must be performed under inert atmosphere.

A number of reactions with variations to the pre-catalyst mixture in Scheme 5.2

were also performed, and monitored by GC-MS. The results of these reactions are

shown in Figure 5.7. Initially, 6 mol% phosphonium salt 49 was used, giving a
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Figure 5.5 Enyne by-products of the Sonogashira coupling of 4-bromoanisole and
phenylethyne.
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Figure 5.6 Mechanism of the palladium-catalysed formation of (E)-1,4-
diphenylbut-1-en-3-yne.
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ligand/palladium ratio of 2:1. This pre-catalyst mixture resulted in an induction

period of over 30 minutes, and a slower reaction rate than the standard reaction

conditions (1:1 ligand/palladium ratio). This result indicates that the second

equivalent of P,S ligand 14a inhibits the reaction, possibly through the formation of

[Pd(P,S)2] complex 44. This is consistent with the observation by Hartwig and co-

workers that aryl halides react more slowly with [Pd(PR3)2] complexes of bulky

phosphines than with mixtures of [Pd(dba)2] and bulky phosphines, and hence

[Pd(PR3)2] cannot be the active catalyst species.235
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Figure 5.7 Variations of the Sonogashira reaction pre-catalyst mixture.
Standard pre-catalyst mixture, 6 mol% phosphonium salt 49, copper(I)
iodide omitted, phosphonium salt omitted, 3 mol% phosphonium salt 50.

Reactions wherein one of the components of the pre-catalyst mixture was omitted

were also performed. When copper(I) iodide was omitted from the reaction, the

induction period was not affected; however, the reaction rate was severely decreased

(TOF = 3.2 h−1 for the 75 to 120 minute time period). This is consistent with

the known ability of copper(I) salts to accelerate Sonogashira reactions,217 likely

via copper acetylide formation and transmetallation with the palladium catalyst, a

more rapid process than direct palladium acetylide formation (although no direct

evidence of the transmetallation process has been reported). Reactions were also
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performed with the phosphonium salt omitted, and the associated GC-MS data

showed no 4-(phenylethynyl)anisole produced over the 120 minute reaction period.

Another variation to the standard reaction conditions investigated was the replace-

ment of P,S phosphonium salt 49 with the monodentate analogue, phosphonium salt

50 (But
2BnPH+BF–

4). As shown in Figure 5.7, this pre-catalyst mixture produced

a more rapid reaction, with the averaged GC-MS data showing 90% conversion to

4-(phenylethynyl)anisole in 120 minutes, and a TOF of 31 h−1 (calculated for the

10 to 40 minute time period). This reaction also displayed a much shorter induction

period than the reaction using P,S phosphonium salt 49, suggesting that the sulfur

donor atom in P,S ligand 14a has a significant effect on the rate of formation of

the active catalyst species in these reactions. However, the rate of formation of

the enyne by-products shown in Figure 5.5 was also more rapid in reactions using

monodentate phosphonium salt 50. In these reactions, the GC-MS data showed no

trace of the phenylethyne starting material after 120 minutes reaction time, although

10% of the 4-bromoanisole had not been converted to 4-(phenylethynyl)anisole

(the initial GC-MS phenylethyne/4-bromoanisole ratio observed for all reactions

discussed was in the range 1.27–1.52:1). For comparison, the averaged ratio of

4-(phenylethynyl)anisole to enyne by-products at 81% conversion (75 minutes) with

PBnBut
2 is 4.2:1, whereas the averaged ratio of 4-(phenylethynyl)anisole to enyne

by-products at 82% conversion (120 minutes) with P,S ligand 14a is 10.5:1 (a ratio

of 9:1 was observed in the 1H NMR spectrum of the preparative reaction after four

hours reaction time).

As the Sonogashira coupling reactions performed with 3 mol% loadings of

[Pd(OAc)2] and each of the phosphonium salts (49 and 50) essentially went

to completion, lower catalyst loadings were investigated, with the intention of

establishing the maximum turnover number (TON) for each pre-catalyst mixture.

The reaction shown in Scheme 5.2 was repeated in duplicate, with pre-catalyst

mixtures of 0.3 mol% phosphonium salt 49 or 50/0.3 mol% [Pd(OAc)
2
]/0.2 mol%

CuI (one tenth of the original pre-catalyst mixture loading). The results of these

reactions are shown in Figure 5.8. At this pre-catalyst mixture loading, there is

a striking difference between the activities of the catalysts. The averaged GC-MS

data for the mixture including phosphonium salt 50 (But
2BnPH+BF–

4) show 95%

conversion of the starting materials to 4-(phenylethynyl)anisole, a TON of 317;

whereas the averaged GC-MS data for the mixture including P,S phosphonium salt

49 show only 5% conversion, a TON of only 17.

Of note in these reactions is the increased TOF for the pre-catalyst mixture including

phosphonium salt 50 (But
2BnPH+BF–

4) with lower catalyst loading, from a TOF
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Figure 5.8 Sonogashira coupling of 4-bromoanisole and phenylethyne with a
lower catalyst loading. 0.3 mol% [Pd(OAc)2]/0.3 mol% P,S phosphonium
salt 49/0.2 mol% CuI, 0.3 mol% [Pd(OAc)2]/0.3 mol% phosphonium salt
50/0.2 mol% CuI.

of 31 h−1 at 3 mol% loading to a TOF of 123 h−1 (calculated for the 0.5 to two

hour time period) with a 0.3 mol% loading. This phenomenon has been reported

previously by de Vries and co-workers for the Heck coupling of bromobenzene and

butylacrylate with “homeopathic” loadings of ligand-free [Pd(OAc)2].
247 The authors

reported conversions of over 90% at 0.02 and 0.08 mol% catalyst loading; however,

when the catalyst loading was increased to 1.28 mol%, the conversion dropped to less

than 5% for the same time period. This was attributed to the existence of soluble

palladium clusters, from which monomeric Pd(0) species could enter the catalytic

cycle, or aggregation of the clusters could occur, withdrawing the palladium from

the catalytic cycle. They suggest that while the Heck reaction is first order in

palladium concentration, the aggregation process must be higher order, and hence

lowering the catalyst-to-substrate ratio reaches a point where the initial oxidative

addition step of the Heck cycle outruns the aggregation process. The authors also

mention that this phenomenon is generally associated with palladacycles, which by

analogy with the synthesis of palladacycle dimer 46, the reaction of [Pd(OAc)2]

and PBnBut
2 should produce. In the present study, the aggregation of metastable

palladium clusters may also assist in explaining why both of the catalysts operate
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for around two hours, suggesting catalyst degradation is a function of time rather

than turnover number.

5.3 Suspicious Circumstances

As homogeneous palladium-catalysed carbon-carbon bond-forming reactions have

become progressively more important in a number of fields of chemistry, the

identification of the nature of the active catalyst species has become a focus of

research in this area. It has been found that the catalytic activity present in a

number of these systems is not, as previously thought, due to the action of discrete

metal complexes, but actually palladium nanoparticles formed by the degradation of

the metal complexes during the reaction. Various review papers have been published

on this topic, and specifically on the difficulties in distinguishing true homogeneous

catalysts from colloidal catalysts, over the past ten years.248–252 In his 2012 review

paper, Crabtree identified a number of “suspicious circumstances” that suggest a

supposed homogeneous catalyst may actually be colloidal in nature:252

• Unexplained lag time before onset of catalysis.

• Catalyst properties, such as selectivity, closely resemble the properties of the

appropriate analogous conventional heterogeneous catalyst.

• Ligand effects are minimal; all active catalysts have similar rates and proper-

ties.

• Transmission electron microscopy shows electron-dense particles.

• Catalytic activity is halted by a selective poison for the heterotopic catalyst.

• Kinetic irreproducibility.

• Reaction mixture turns dark in colour.

• Metal-containing deposit or mirror formed.

• Harsh conditions (for example, >150 ◦C or strong oxidants, acids or bases).

Although the Sonogashira coupling of 4-bromoanisole and phenylethyne with P,S

phosphonium salt 49 was performed under reasonably mild conditions, proved to

be kinetically reproducible and the ligand effects were pronounced, the induction

period and solution colour change from yellow to dark brown at the onset of catalysis

suggested nanoparticles may play a role in the reaction. For this reason, mercury

poisoning reactions were performed on the reaction shown in Scheme 5.2. As the

addition of Hg(0) at the beginning of the reaction may have disrupted the formation

of the active catalyst species, 150 mol% of Hg(0) (50:1 Hg/Pd) was added after 45

or 65 minutes reaction time, and the high stirring rates (800–1000 rpm) ensured

effective mixing of the components. As shown in Figure 5.9, in each case the
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addition of mercury caused complete cessation of the reaction. Traditionally, this

was considered good evidence that the active catalyst species consisted of Pd(0)

nanoparticles; however, in recent years it has become accepted that Hg(0) also

poisons relatively naked (i.e. sterically unencumbered) mono- or di-nuclear Pd(0)

species.250 In fact, in a 2006 review paper, Phan and co-workers suggested that

Hg(0) quenching of catalytic activity can only be interpreted as “catalysis via a

cycle with a Pd(0) intermediate”.249 An example of this was reported in 1991, where

it was found that a number of [Pd0(alkene)(N,N )] complexes reacted with Hg(0)

under inert atmosphere, with loss of the coordinated alkene, forming an unidentified

compound.253
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Figure 5.9 Mercury poisoning of Sonogashira coupling of 4-bromoanisole and
phenylethyne. Hg(0) added after 45 min, Hg(0) added after 65 min, no
Hg(0) added.

To confirm the presence of palladium nanoparticles in the reaction mixture, a

dynamic light scattering experiment was performed on the reaction solution after

low-speed centrifugation (to separate the insoluble di-i-propylammonium bromide

by-product). This experiment showed a polydisperse colloidal suspension was

present, with nanoparticles in the 2–11 nm range. The combination of these two

tests confirms the presence of palladium nanoparticles in the reaction solution;

however, neither of the tests indicate whether the nanoparticles are the active
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catalytic species. There are a number of instances in which it has been reported

that palladium nanoparticles (and solid-supported palladium) serve as reservoirs

for palladium atoms or ions, which constitute the active catalytic centres.249 This

was demonstrated for the Sonogashira reaction by Rothenberg and co-workers in

2005. The authors used 14.5 nm Pd(0) nanoparticles to catalyse the coupling of

4-bromobenzonitrile and phenylethyne, and using a combination of kinetic analysis

and transmission electron microscopy, determined that the reaction proceeds via

a homogeneously catalysed mechanism with a leached palladium species.254 In a

subsequent paper, Rothenberg and co-workers came to the same conclusion for

Suzuki and Heck C−C bond-forming reactions, using a membrane reactor for

palladium transfer.255 In the present case, further study would be required to

distinguish between a nanoparticle surface reaction and a mechanism involving the

leaching of palladium atoms/ions back into solution. It is generally agreed that

a combination of methods is required to unambiguously determine the nature of

the active catalytic species, so techniques such as transmission electron microscopy,

Rothenberg’s membrane reactor experiments,255 and poisons selective for homo-

geneous catalysts (e.g. carbon disulfide, thiophene, polyvinylpyridine) may prove

useful in this case.248,252

5.4 NMR Investigation

In an attempt to identify the catalytic species present in this Sonogashira coupling

reaction, an NMR-scale reaction with a high catalyst loading was performed and

monitored by 1H and 31P NMR spectroscopy. The conditions for this reaction

are shown in Scheme 5.3. Initially, a mix of [Pd(OAc)2], P,S phosphonium salt

49 and copper(I) iodide was combined with a solution of 4-bromoanisole and di-i-

propylamine in THF-d8 and the mixture heated to 60 ◦C for 10 minutes with stirring.

The resulting pale yellow solution was transferred to an NMR tube and 1H and 31P

NMR spectra were collected at room temperature. Analysis of the NMR spectra

confirmed the presence of the expected [Pd(µ-OAc)(P,C )]2 palladacycle dimer 46.

However, the peaks associated with this complex were particularly broad, as was

the peak associated with the methine proton of di-i-propylamine. The 31P NMR

spectrum also contained two broad signals associated with this system, at 97.4 and

106.7 ppm. These data suggested that dimer 46 was in dynamic equilibrium with a

[Pd(OAc)(NPri
2H)(P,C )] species, an observation that has been made previously by

Hartwig and Louie in the reaction of a similar acetate-bridged palladacycle dimer

with diethylamine.256
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(i)MeO Br MeO

Scheme 5.3 NMR-scale Sonogashira coupling of 4-bromoanisole and
phenylethyne. Reagents and conditions: (i) 50 mol% [Pd(OAc)2], 50 mol%
P,S phosphonium salt 49, 33 mol% CuI, 2.5 eq. Pri

2NH, THF-d8, 60 ◦C, 10 min,
1.3 eq. phenylethyne, 60 ◦C, 1 h.

Also observed in the 31P NMR spectrum was a broad signal centred at 29.1 ppm.

This signal correlated with a doublet signal (2J PH = 7.9 Hz) at 3.41 ppm, a singlet

at 4.12 ppm, and a larger singlet at 1.63 ppm in the 1H NMR spectrum, associated

with the CH2P, CH2S and SBut protons of P,S ligand 14a respectively. The

chemical shifts of the phosphorus atom, CH2P and SBut signals, and the CH2P

coupling constant were dissimilar enough to the free ligand to suggest both donor

atoms were bound to a metal centre. An NMR-scale test reaction consisting of

P,S phosphonium salt 49, copper(I) iodide and di-i-propylamine in THF-d8 showed

that this species was a 1:1 P,S ligand 14a/copper(I) iodide complex. A literature

search indicated this species may be a [Cu(µ-I)(P,S)]2 species, as copper(I) dimers

of this type containing phosphine-thioether ligands and bridging iodides257 or other

halides257,258 are known. The ratio of P,S ligand present in the palladacycle dimer

46/di-i-propylamine dynamic system to P,S ligand 14a/copper(I) iodide complex

(approximately 1.5:1) indicated neither the entirety of the [Pd(OAc)2] nor copper(I)

iodide present in the reaction mixture had reacted with P,S ligand 14a.

A third metal complex was identified in the NMR-scale Sonogashira coupling

reaction prior to the addition of phenylethyne. The 1H NMR spectrum showed two

doublets of equal intensity at 1.31 and 1.66 ppm, and a peak with octet coupling

centred at 2.79 ppm (in actual fact, two overlapping septet signals). These data are

consistent with metal-bound di-i-propylamine, as association of the nitrogen donor

atom to a metal centre ceases the facile inversion process present in free amines,

rendering the methyl and methine protons diastereotopic, and therefore inequivalent

in the 1H NMR spectrum. An NMR-scale test reaction consisting of [Pd(OAc)2]

and di-i-propylamine in THF-d8 showed that this species was a [Pd(OAc)2]/di-i-

propylamine complex, and a signal associated with the acetate protons was identified

at 1.68 ppm. The only other signals present in the 1H NMR spectrum of the

NMR-scale Sonogashira coupling reaction prior to the addition of phenylethyne were

associated with 4-bromoanisole, and there was no indication that this species had

reacted with any of the metal complexes present in solution.

Upon addition of phenylethyne, no physical change to the pale yellow solution was

observed; however, the resulting 31P NMR spectrum was significantly different from
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the spectrum prior to addition of phenylethyne. A stacked plot of the 31P NMR

spectra collected during the reaction is shown in Figure 5.10. The broad peak

at ca. 30 ppm associated with the P,S ligand 14a/copper(I) iodide complex was

unchanged, and in fact remained unchanged throughout the reaction. Conversely,

the peaks associated with the palladacycle dimer 46/di-i-propylamine dynamic

system had been completely replaced by six sharp peaks in the same region,

suggesting that reaction with phenylethyne had occurred, producing a number of

species, likely all with the palladacycle moiety intact. The 1H NMR spectrum

confirmed that the [Pd(OAc)2]/di-i-propylamine complex also remained intact, and

a number of new unidentified signals on the baseline of the spectrum were observed,

consistent with the six new signals in the 31P NMR spectrum. A signal corresponding

to the alkyne proton of phenylethyne was also observed in the 1H NMR spectrum,

the associated integral value of which indicated a 1:1 ratio of 4-bromoanisole and

free phenylethyne, rather than the expected 1:1.3 ratio (Scheme 5.3).

The NMR tube containing the pale yellow Sonogashira reaction solution was then

heated to 60 ◦C. Almost immediately, the solution turned dark brown in colour.

After 10 minutes, the solution was cooled and 1H and 31P NMR spectra collected.

As shown in Figure 5.10, more sharp signals were observed in the 31P NMR

spectrum between 80 and 110 ppm. The 1H NMR spectrum showed the presence

of small amounts of the desired product, 4-(phenylethynyl)anisole, and the enyne

by-products shown in Figure 5.5. The solution was heated to 60 ◦C for a further

20 minutes and 1H and 31P NMR spectra collected again. At this point, the

number of peaks in the 80 and 110 ppm region of the 31P NMR spectrum had

returned to six, but with different chemical shifts and intensities from the six peaks

observed directly after the addition of phenylethyne, and in this instance all very

near 100 ppm. No phenylethyne starting material was observed in the 1H NMR

spectrum, although only around 50% of the 4-bromoanisole had reacted to form

4-(phenylethynyl)anisole. This was due to the large amount of enyne by-products

present in the sample, accounting for the disappearance of the other 50% of the

diphenylethyne. This result is interesting, and is consistent with the GCMS data

collected in the previous Sonogashira reactions, as the reactions performed with

the lower (0.3 mol%) catalyst loading produced a lesser amount of by-product when

compared with the reactions containing 3 mol% catalyst. No changes to the reaction

mixture were observed upon heating to 60 ◦C for a further 30 minutes.

Although a number of palladacycle-type pre-catalysts have shown good activity in

Sonogashira coupling reactions,218,219 very few mechanistic investigations of these

systems have been performed. Instead, authors have tended to draw parallels

between these reactions and the mechanistic investigations of other palladacycle-
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Figure 5.10 31P NMR spectra of the NMR-scale Sonogashira reaction. Asterisk
denotes phosphine oxide of P,S ligand 14a.
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catalysed carbon-carbon bond-forming reactions. In the cases of the Stille, Negishi,

palladium-catalysed Grignard, and presumably Suzuki cross-coupling reactions, a

reduction process for a P,C ligand palladacycle has been unequivocally estab-

lished.256,259 As shown in route (i) of Scheme 5.4, the reaction of the acetate-bridged

palladacycle dimer with PhSnMe3, PhMgBr or PhZnCl resulted in coupling of the

carbon donor atom of the P,C ligand with the phenyl anion, and hence reduction of

the Pd(II) to Pd(0), giving free phosphine, a [Pd0P2] complex and unligated Pd(0).
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Scheme 5.4 Proposed reactions of palladacycles under catalytic conditions.
Reagents and conditions: (i) PhM (M = SnMe3, ZnCl, MgBr); (ii) Et2NH, NaOBut .

Similarly, Louie and Hartwig investigated the reaction of the same acetate-bridged

palladacycle dimer with diethylamine and sodium t-butoxide, as part of a study on

the palladacycle-catalysed amination of aryl halides.256 Route (ii) of Scheme 5.4

shows the postulated steps for the formation of [Pd0P2] and unligated Pd(0)

from these starting materials. Initial reaction of the acetate-bridged palladacycle

dimer with diethylamine cleaved the dimer, producing a [Pd(OAc)(P,C )(NEt2H)]

species, which was characterised by NMR spectroscopy and X-ray crystallography.

The addition of sodium t-butoxide to this species gave nearly quantitative yield

of [Pd0P2] based on the amount of phosphine in the reaction. The authors

proposed this transformation proceeds via deprotonation of the amine ligand,

β-H elimination to give a palladium hydride species, reductive elimination, and

subsequent disproportionation of the resulting [Pd0P] species. Neither the proposed

amide- or hydride-ligated species were observed; however, it was established that

the acetate-bridged palladacycle dimer does not catalyse the amination reaction
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when the diethylamine was replaced with diphenylamine (which does not possess a

β-hydrogen atom).

Other mechanisms have been proposed for palladacycle-catalysed Heck reactions,

including a Pd(II)/Pd(IV) catalytic cycle202,260 and the reduction of Pd(II) to

Pd(0) with retention of the palladacycle, to give an active [Pd0(P,C )]– catalyst

species.261 However, no experimental evidence for either of these mechanisms

has been reported. In their 2006 critical review paper, Phan and co-workers

stated that the collected data for P,C, N,C and S,C palladacycle pre-catalysts

is consistent with the hypothesis that these complexes are sources of low-ligated,

“homeopathic” palladium in a number of palladium-catalysed carbon-carbon bond-

forming reactions, and it is widely accepted that the actual catalysts operate via

traditional Pd(0)/Pd(II) cycles.249

In terms of the current investigation of the Sonogashira reaction with acetate-

bridged palladacycle dimer 46, either of the routes to an unligated (or low-ligated)

palladium(0) species shown in Scheme 5.4 may be applicable, via reaction with a

copper(I) acetylide species or with di-i-propylamine. However, if either of these

processes did occur in the previously discussed NMR-scale Sonogashira coupling

reaction, it must have been to a very minor extent, as no evidence of the formation

of free P,S ligand 14a or [Pd(P,S)2] complex 44 (or similar) was observed in the

NMR spectra. This is not inconsistent with the idea that in this instance the

coupling of 4-bromoanisole and phenylethyne is catalysed by palladium atoms/ions

leached from palladium clusters present in solution, as it has previously been noted

that it is beneficial to have only very small amounts of these species present.247

However, the differences in reaction rates and induction periods in the Sonogashira

coupling reactions performed with P,S ligand 14a and PBnBut
2 (discussed in

Section 5.2) indicate that the effect of the sulfur donor atom in P,S ligand 14a

cannot be discounted, but more investigation would be required to be able to draw

any conclusions regarding this matter.

Perhaps the more interesting result of the NMR-scale Sonogashira coupling reaction

is the relationship observed between the amount of pre-catalyst mixture employed

and the yield of enyne by-products. In both the P,S ligand 14a and PBnBut
2

ligand systems, it has been demonstrated that increasing the amount of catalyst

leads to an increase in the ratio of phenylethyne homocoupling products to desired

cross-coupling product, 4-(phenylethynyl)anisole. The palladacycle dimer 46/di-i-

propylamine dynamic system has been shown to react directly with phenylethyne (as

evidenced by the before and after phenylethyne addition 31P NMR spectra shown

in Figure 5.10), likely via cleavage of the acetate bridges and/or displacement of
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the amine ligand, to form a number of species with 31P NMR shifts suggesting

the palladacycle moieties remained intact. It is possible that one or more of these

palladium complexes is responsible for the homocoupling of phenylethyne, while

the slow conversion of these species to palladium(0) produces the active palladium

catalyst for the cross-coupling reaction. Again, this proposition requires further

research, including an investigation of the reaction between palladacycle dimer 46

and phenylethyne in the absence of the other starting materials.

5.5 Concluding Remarks

This research has demonstrated that phosphine-thioether ligand 14a forms part of

an active catalyst species for the palladium and copper co-catalysed Sonogashira cou-

pling of 4-bromoanisole and phenylethyne. A 3 mol% loading of a [Pd(OAc)2]/P,S

phosphonium salt 49/CuI pre-catalyst mixture gave quantitative conversion to

the desired product, 4-(phenylethynyl)anisole, in four hours. Variations to this

catalyst mixture showed that significantly slower reactions were produced when

two equivalents of P,S phosphonium salt 49 were used, or the copper salt was

omitted from the reaction. Omission of P,S phosphonium salt 49 resulted in

complete inactivity of the catalyst. Replacement of P,S phosphonium salt 49

with But
2BnPH+BF–

4 produced a more rapid reaction, and an increase in formation

of enyne by-products. Comparison of these two ligands at lower catalyst loading

(0.3 mol%) showed an even more significant ligand dependence on the reaction rate

and yield.

Investigation of the active catalyst species present in these reactions resulted in

the identification of a number of metal complexes in solution. An NMR study

showed the initial presence of [Pd(µ-OAc)(P,C )]2 palladacycle dimer 46, a P,S

ligand 14a/copper(I) iodide complex and a [Pd(OAc)2]/di-i-propylamine complex.

Upon addition of phenylethyne, palladacycle dimer 46 was replaced by a number

of similar species, and subsequent heating caused a dark brown colour to develop

in the reaction solution. No change was observed in the P,S ligand 14a/copper(I)

iodide or [Pd(OAc)2]/di-i-propylamine complexes during the reaction. Mercury drop

tests and dynamic light scattering experiments confirmed the presence of 2–11 nm

nanoparticles in the reaction solution; however, the nanoparticles are not necessarily

the active catalyst species.

The summation of the literature data on the subject of C−C bond-forming reactions

catalysed by palladacycles suggests that these species are sources of low-ligated
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palladium atoms or ions (via a Pd nanoparticle reservoir), and some researchers

have asserted that the ligands of the former palladacycles are not involved in the

catalytic process. However, a recent literature survey (April 2014) revealed no

studies directly comparing palladacycles containing similar ligands under identical

conditions. The present investigation does this, and clearly shows that the nature of

the phosphine ligand employed in the catalysis affects the rate and selectivity of the

reaction. Further study would be required to ascertain the mechanism by which this

catalytic reaction proceeds, and specifically the role of phosphine-thioether ligand

14a. Further investigation of the mechanism by which the enyne by-products are

produced would also be of value. Another potentially worthwhile avenue of study in

this area is the investigation of catalysis with a pre-formed palladium(0) complex,

such as chelated [Pd(dba)(P,S)] complex 48. Reactions with this palladium complex

may bypass the complicating factors involved in C−C bond-forming reactions with

palladacycle pre-catalysts, and could be employed in Sonogashira reactions or other

more widely studied palladium-catalysed cross-coupling reactions, such as the Suzuki

cross-coupling of organic halides and boronic acids (or similar).
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Chapter 6

Conclusions

Hybrid P,E ligands have attracted a great deal of interest in recent years, in the field

of homogeneous catalysis and in many other research areas. The combination of a

strongly binding phosphorus donor atom and a second donor atom exhibiting quite

different binding properties can create transition metal complexes with interesting

and unusual characteristics, including hemilability, chirality, and the stabilisation of

reactive donor atom types. Other ligand features can be integrated into ligands of

this class, creating transition metal complexes with potentially unique patterns of

behaviour. For example, unsymmetric diphosphine ligands with a large bite angle

o-xylene backbone (based on the commercially successful dbpx ligand) have shown

excellent catalytic activity and interesting synergistic effects; however, the chemistry

of hybrid P,E ligands with this backbone type has not previously been explored.

On this basis, a family of novel hybrid P,E ligands containing an o-xylene backbone

has been synthesised from the versatile substrate o-C6H4{CH2PBut
2(BH3)}(CH2Cl)

(5). Reaction of this precursor with nucleophilic reagents, or conversion of compound

5 to a Grignard reagent and subsequent reaction with electrophiles produced a

number of borane-protected hybrid P,E compounds, which in most cases were air-

stable and crystalline. Deprotection of these compounds gave novel hybrid P,E

ligands of the type o-C6H4(CH2PBut
2)(CH2E), where E = PR2 (7 and 11), SR

(14), S(O)But (16), NR2 (18) or SiPh2H (20a).

The reactivity of three members of this family of ligands — phosphine-thioether

ligand 14a, phosphine-sulfoxide ligand 16 and phosphine-amine ligand 18a —

has been investigated with platinum(II) and platinum(0) precursor complexes. It

was found that P,S ligand 14a adopted chelating, monodentate and hemilabile

bonding modes in platinum complexes. The chelated [PtCl2(P,S)] complex 21
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displayed an unexpectedly small bite angle of 86.1◦ (18◦ lower than a diphosphine

analogue), whereas [Pt(nb)(P,S)] complex 34 displayed a bite angle of 106.6◦,

demonstrating the flexibility of this ligand. Monodentate [Pt(P,S)2], [PtHL(P,S)2]

and [PtHL(P,S)2]CH(SO2CF3)2 complexes wherein ligand 14a binds through the

phosphorus donor atom only were also synthesised. A large observed cone angle

of 180◦ was calculated for the phosphine moiety of ligand 14a in [PtH2(P,S)2]

complex 25, and the large steric bulk of this phosphine ligand was demonstrated

in the reversible dioxygen binding of [Pt(O2)(P,S)2] complex 42. The facile

and reversible conversion between [PtH(NCMe)(κ1P-14a)2]CH(SO2CF3)2 (28) and

[PtH(κ1P-14a)(κ2P,S -14a)]CH(SO2CF3)2 (26) demonstrated the hemilability of

ligand 14a. The coordination behaviour of this ligand with platinum was found

to differ from that of the diphosphine analogue, dbpx, in a number of respects.

A chelated [PtCl2(P,N )] complex (23) was also synthesised with phosphine-amine

ligand 18a, although this ligand generally favoured binding in a monodentate fashion

through the phosphorus donor atom. Chelated [Pt(alkene)(P,S=O)] (33 and 35)

and monodentate [Pt(P,S=O)2] (37) complexes were produced with phosphine-

sulfoxide ligand 16; however, characterisation of these complexes was often hindered

by the presence of diastereomers. Further investigation of this ligand as a potential

component of enantioselective catalysts would be valuable, but this would require

either separation of the two enantiomers of P,S=O ligand 16 or an enantioselective

ligand synthesis, neither of which have been attempted.

The coordination chemistry of phosphine-thioether ligand 14a with palladium(II)

and palladium(0) precursor complexes has also been investigated, resulting in

the identification of five ligand bonding modes. Monodentate ligand coordina-

tion through the phosphorus donor atom was observed in the linear, 14-electron

[Pd(P,S)2] complex 44. Chelation of the P,S ligand was observed in the palla-

dium(0) alkene complexes [Pd(nb)(P,S)] (47) and [Pd(dba)(P,S)] (48). Reaction

of ligand 14a with a palladium(II) dichloride precursor at raised temperature

resulted in S−C bond cleavage and the formation of palladium dimer 43 with

bidentate coordination of the ligand through phosphine and bridging thiolate

moieties. The reaction of P,S ligand 14a with [Pd(OAc)2] identified two further

bonding modes of this ligand. Initially, C−H activation of the aryl backbone gave

[Pd(µ-OAc)(P,C)]
2

dimer 46 with ligand 14a occupying a P,C palladacycle bonding

mode. In the presence of further [Pd(OAc)2], palladium hexamer 45 was formed,

with a combination of palladacycle and monodentate thioether binding resulting

in bridging P,C,S coordination of ligand 14a. This rich coordination chemistry

indicates a large number of possibilities for active catalyst species in palladium-

catalysed reactions with this ligand. Further investigation in this area could include
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the synthesis of palladium(II) complexes with ligand 14a in the monodentate and

chelated coordination modes, perhaps via oxidation of palladium(0) complexes of

this ligand.

The Sonogashira palladium and copper co-catalysed coupling of 4-bromoanisole and

phenylethyne was investigated with a 3 mol% loading of a pre-catalyst mixture

including phosphine-thioether ligand 14a. This ligand produced an active catalyst,

giving quantitative conversion to the desired product, 4-(phenylethynyl)anisole, in

four hours. An NMR-scale study showed that a number of metal complexes (with

both palladium and copper) were formed during the reaction, and the reactive pre-

catalyst species was [Pd(µ-OAc)(P,C)]2 dimer 46. Variations to the pre-catalyst

mixture, including the replacement of P,S ligand 14a with PBnBut
2 and omission

of the phosphine ligand, showed a definite ligand dependence on the rate and

selectivity of the reaction. This result is significant as it is the first example of

a direct comparison of similar palladacycles in palladium-catalysed C−C bond-

forming reactions under identical conditions. Further investigation showed that

polydisperse palladium nanoparticles were formed during the reaction, consistent

with the idea that palladacycles are sources of low-ligated palladium atoms or ions,

produced via a nanoparticle reservoir. Further study would be required to identify

the active catalyst species in this system, including the use of techniques such

as transmission electron microscopy, membrane reactor experiments, and poisons

selective for homogeneous catalysts. Another interesting and potentially valuable

avenue of investigation in this area would be the use of a pre-formed palladium(0)

complex of phosphine-thioether ligand 14a in Sonogashira or other palladium-

catalysed carbon-carbon bond-forming reactions, or indeed other types of catalysis.

In summary, these novel hybrid P,E ligands have shown an interesting and varied

coordination chemistry with Group 10 metals. The formation of an active catalyst

with P,S ligand 14a for Sonogashira cross-coupling reactions indicates that further

investigation of these ligands in homogeneous catalysis could produce unusual and

potentially beneficial results.
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Chapter 7

Experimental

7.1 General Methods

All reactions were carried out using degassed solvents and standard Schlenk

techniques under a nitrogen or argon atmosphere unless stated otherwise. Starting

materials were obtained from Sigma-Aldrich or Merck Chemical Companies, and

BOC Industrial Gases. DABCO was sublimed under reduced pressure, and other

amines and thiols were dried and distilled before use. Di-t-butylphosphine,262

diphenylphosphine–borane,263 bis(pentafluorophenyl)bromophosphine,264 3-car-

boxypyridinium chlorochromate,99 pyrrolidine–borane,265 diethylamine–borane,266

[PtCl2(1,5-hexadiene)],267 cis-[PtCl2(NCBut)2],
268 CH2(SO2CF3)2,

139 1,3,5-triaza-7-

phosphaadamantane,269 [Pt(ethene)3],
270 [Pt(nb)3],

160 [Pt(1,5-cyclooctadiene)2],271

[PdCl2(NCBut)2],272 [PdMe2(tmeda)],273 [Pd(nb)3],
274 [Pd(OAc)2],275 [Pd(Cp)(all-

yl)]276 and [Pd2(dba)3]277 were synthesised using literature methods. Benzyldi-t-

butylphosphine was synthesised in a manner similar to the syntheses of compound

4 and ligand 7.163 Tetrahydrofuran (THF) and diethyl ether (Et2O) were distilled

under a nitrogen or argon atmosphere from sodium benzophenone ketyl immediately

prior to use. All other solvents used were of analytical grade, and were degassed

and dried over molecular sieves.

Nuclear magnetic resonance (NMR) spectra were recorded using a Varian Unity

Inova spectrometer operating at 300, 121 and 282 MHz for 1H, 31P and 19F spectra

respectively, a Varian Unity Inova spectrometer operating at 500, 125 and 96 MHz

for 1H, 13C and 11B spectra respectively, and a Varian DirectDrive spectrometer

operating at 600 and 150 MHz for 1H and 13C spectra respectively. All direct-

detected 1H and 13C chemical shifts, δ (ppm), were referenced to the residual

133



solvent peak of the deuterated solvent.278 31P, 19F and 11B NMR spectra were

referenced to H3PO4, CFCl3 and BF3 · Et2O respectively. 13C, 31P, 19F and 11B

NMR spectra were measured with 1H-decoupling. Infrared spectra were obtained

using a Perkin-Elmer Spectrum One FT-IR spectrophotometer (resolution 4 cm-1)

in absorbance mode. All spectral data were obtained at ambient temperature unless

stated otherwise. Electrospray ionisation mass spectrometry was performed using an

Agilent 6530 Q-TOF mass spectrometer, or by the Carbohydrate Chemistry Group

at Industrial Research Limited, Lower Hutt, using a Waters Q-TOF Premier Tandem

mass spectrometer. Gas chromatography-mass spectrometry was performed using a

Shimadzu QP2010-Plus GC-MS operating in positive electron impact mode (70 eV).

Elemental analysis was performed at the Campbell Microanalytical Laboratory at

Otago University, Dunedin. Dynamic light scattering was performed using a Malvern

Zetasizer Nano ZS instrument.

X-ray diffraction data were collected on a Bruker SMART APEX-II CCD diffrac-

tometer using Mo Kα radiation or an Agilent SuperNova (Dual Source) CCD

diffractometer using Cu Kα radiation. Data were reduced using Bruker SAINT

or Agilent CrysAlisPro software. Absorption correction was performed using the

SADABS or SCALE3 ABSPACK programs. OLEX2 (Version 1.2.5)279 was used as

a front-end for SHELX280 or Superflip281 executables during structure solution and

refinement. The positions of all hydrogen atoms (other than the hydride ligands in

complex 25) were calculated during refinement.

7.2 Ligands

α,α′-(Di-t-butylphosphonium)-o-xylene bromide (1)

α,α′-Dibromo-o-xylene (0.20 g, 0.76 mmol), di-t-butylphosphine (0.14 mL,

0.76 mmol) and potassium carbonate (0.11 g, 0.76 mmol) were combined in

acetonitrile (15 mL) and stirred overnight. The solvent was removed under reduced

pressure and the resulting white solid extracted into chloroform (25 mL) in the

air. Removal of the solvent under reduced pressure and washing with diethyl ether

(2 × 5 mL) gave desired compound 1. Air-stable white powder (0.18 g, 72%). 1H

NMR δ (500 MHz, CDCl3): 1.54 (d, J = 16.1 Hz, 18H, PBut), 4.07 (d, J = 8.5 Hz,

4H, CH2P), 7.29 (br s, 2H, Ar), 7.49 (br s, 2H, Ar). 13C NMR δ (125 MHz, CDCl3):

24.97 (d, J = 46.1 Hz, CH2P), 27.26 (s, PCMe3), 34.02 (d, J = 33.1 Hz, PCMe3),

127.59 (d, J = 13.0 Hz, Ar), 129.11 (s, Ar), 134.51 (d, J = 4.8 Hz, Ar). 31P NMR δ
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(121 MHz, CDCl3): 71.75 (s). HRMS calcd for C16H26P [M−Br]+: m/z = 249.1767;

found: 249.1763.

o-(Methyl)benzyldi-t-butylphosphine oxide (2)

Compound 1 (100 mg, 0.3 mmol) and sodium methoxide (16 mg, 0.3 mmol) were

dissolved in methanol (3.5 mL) and stirred for 48 h (45% conversion). 1H NMR δ

(500 MHz, C6D6): 0.97 (d, J = 13.2 Hz, 18H, PBut), 2.27 (s, 3H, ArMe), 2.80 (d,

J = 11.3 Hz, 2H, CH2P), 7.01 (m, 2H, Ar), 7.08 (m, 1H, Ar), 7.62 (d, J = 7.3 Hz,

1H, Ar). 13C NMR δ (125 MHz, C6D6): 20.68 (s, ArMe), 26.23 (d, J = 52.3 Hz,

CH2P), 26.89 (br, PCMe3), 36.42 (d, J = 58.1 Hz, PCMe3), 126.18 (s, Ar), 127.04

(d, J = 1.9 Hz, Ar), 130.93 (s, Ar), 131.61 (d, J = 3.8 Hz, Ar), 133.01 (d, J = 7.2 Hz,

Ar), 136.62 (d, J = 5.2 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 60.86 (s).

α-Chloro-α′-methoxy-o-xylene (3)

A solution of sodium methoxide (0.59 g, 11 mmol) in methanol (30 mL) was

added dropwise in the air to a refluxing solution of α,α′-dichloro-o-xylene (3.85 g,

22 mmol) in methanol (30 mL) over 30 min. Reflux was continued for 1 h, and the

cooled mixture was reduced to half volume under reduced pressure. Distilled water

(40 mL) was added and the mixture extracted with diethyl ether (2 × 40 mL). The

combined organic layers were washed with brine (25 mL), dried over magnesium

sulfate and the solvent evaporated under reduced pressure to give a yellow liquid

containing compound 3, α,α′-dichloro-o-xylene and α,α′-dimethoxy-o-xylene. The

α,α′-dimethoxy-o-xylene by-product was removed by elution through a silica gel

column with 5% ethyl acetate in n-hexane (Rf = 0.31). Elution through a silica

gel column with 10% toluene in n-hexane was then used to separate the unreacted

α,α′-dichloro-o-xylene (Rf = 0.54) and pure compound 3 (Rf = 0.17). Clear liquid

(1.16 g, 62%). 1H NMR δ (500 MHz, CDCl3): 3.42 (s, 3H, OMe), 4.60 (s, 2H,

CH2O), 4.71 (s, 2H, CH2Cl), 7.32 (m, 2H, Ar), 7.38 (m, 2H, Ar). 13C NMR δ

(125 MHz, CDCl3): 43.80 (s, CH2Cl), 58.54 (s, OMe), 72.39 (s, CH2O), 128.57 (s,

Ar), 128.94 (s, Ar), 129.65 (s, Ar), 130.43 (s, Ar), 136.09 (s, Ar), 136.72 (s, Ar). IR

(liquid film): 1088 (CO), 2823–3068 cm-1 (CH). Anal. calcd for C9H11ClO: C, 63.4;

H, 6.5; found: C, 63.8; H, 6.6.

α-(Di-t-butylphosphino)-α′-methoxy-o-xylene–borane (4)

A mixture of di-t-butylphosphine (0.55 mL, 3 mmol) and borane–dimethylsulfide

complex (0.3 mL, 10 M, 3 mmol) was stirred in THF (4 mL) for 2 h, and the

solvent evaporated under reduced pressure. The resulting white solid was dissolved

135



in diethyl ether (30 mL) and cooled to 0 ◦C, and a solution of n-butyllithium (1.9 mL,

1.59 M in hexanes, 3 mmol) was added dropwise with stirring. The mixture was

stirred at room temperature for 30 min, then cooled to 0 ◦C and a solution of

compound 3 (0.51 g, 3 mmol) in diethyl ether (20 mL) was added. After warming

to room temperature, the mixture was stirred overnight. The resulting solution was

filtered in the air and the solvent evaporated under reduced pressure, leaving a clear

liquid. Desired compound 4 was recrystallised from n-hexane. Air-stable white

crystals (0.45 g, 51%). 1H NMR δ (500 MHz, C6D6): 1.0–1.8 (br, 3H, BH3), 1.08

(d, J = 12.5 Hz, 18H, PBut), 3.09 (s, 3H, OMe), 3.16 (d, J = 12.5 Hz, 2H, CH2P),

4.44 (s, 2H, CH2O), 6.99 (t, J = 8.0 Hz, 1H, Ar), 7.11 (d, J = 7.5 Hz, 2H, Ar),

8.10 (d, J = 8.0 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 21.16 (d, J = 24.4 Hz,

CH2P), 28.18 (d, J = 1.0 Hz, PCMe3), 33.06 (d, J = 24.8 Hz, PCMe3), 57.54 (s,

OMe), 74.36 (s, CH2O), 126.75 (d, J = 1.9 Hz, Ar), 130.66 (d, J = 1.0 Hz, Ar),

131.92 (d, J = 2.9 Hz, Ar), 135.50 (d, J = 2.9 Hz, Ar), 136.55 (d, J = 5.3 Hz,

Ar), other Ar obscured by solvent. 31P NMR δ (121 MHz, C6D6): 47.30 (m). IR

(film from CH2Cl2): 1070 (CO), 2380 (BH), 2871–2967 cm-1 (CH). HRMS calcd

for C17H32BNaOP [M+Na]+: m/z = 317.2182; found: 317.2180. Anal. calcd for

C17H32BOP: C, 69.4; H, 11.0; found: C, 69.2; H, 11.1.

α-(Di-t-butylphosphino)-α′-chloro-o-xylene–borane (5)

A mixture of di-t-butylphosphine (4.4 mL, 24 mmol) and borane–dimethylsulfide

complex (2.8 mL, 10 M, 28 mmol) was stirred in THF (15 mL) for 2 h, and the

solvent evaporated under reduced pressure. The resulting white solid was dissolved

in diethyl ether (50 mL) and cooled to 0 ◦C, and a solution of n-butyllithium

(15.1 mL, 1.59 M in hexanes, 24 mmol) was added dropwise with stirring. The

mixture was stirred at room temperature for 15 min, then cooled to −78 ◦C and a

solution of α,α′-dichloro-o-xylene (12.3 g, 70 mmol) in ether (50 mL) was added.

After warming to room temperature, the mixture was stirred for 2 h. The resulting

solution was filtered in the air and the solvent evaporated under reduced pressure,

leaving a pale yellow solid. Unreacted α,α′-dichloro-o-xylene was sublimed out of

the crude material at 50 ◦C and ∼0.1 mmHg overnight, and the desired product

5 recrystallised from n-hexane. Air-stable white crystals (3.87 g, 54%). 1H NMR

δ (500 MHz, C6D6): 0.6–1.5 (br, 3H, BH3), 1.05 (d, J = 12.3 Hz, 18H, PBut),

3.11 (d, J = 12.0 Hz, 2H, CH2P), 4.72 (s, 2H, CH2Cl), 6.89 (m, 1H, Ar), 6.98

(m, 2H, Ar), 7.57 (d, J = 7.5 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 21.91

(d, J = 22.9 Hz, CH2P), 28.27 (d, J = 1.4 Hz, PCMe3), 32.98 (d, J = 24.3 Hz,

PCMe3), 46.21 (s, CH2Cl), 127.54 (d, J = 2.3 Hz, Ar), 128.70 (d, J = 1.4 Hz, Ar),

131.39 (d, J = 1.4 Hz, Ar), 132.29 (d, J = 3.3 Hz, Ar), 135.01 (d, J = 3.2 Hz, Ar),

137.24 (d, J = 4.1 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 47.90 (m). IR (film
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from CH2Cl2): 2377 (BH), 2870–2969 cm-1 (CH). HRMS calcd for C16H29BClNaP

[M+Na]+: m/z = 321.1686; found: 321.1685. Anal. calcd for C16H29BClP: C, 64.4;

H, 9.8; found: C, 64.1; H, 9.9.

α-(Di-t-butylphosphino)-α′-(diphenylphosphino)-o-xylene–diborane (6)

A solution of freshly prepared diphenylphosphine–borane (0.136 g, 0.68 mmol) in

THF (5 mL) was cooled to 0 ◦C and a solution of n-butyllithium (0.35 mL, 2.0 M in

cyclohexane, 0.70 mmol) was added dropwise with stirring. The mixture was stirred

at room temperature for 2 h, cooled to −78 ◦C and a solution of compound 5 (0.180 g,

0.60 mmol) in THF (4 mL) added. The mixture was stirred at room temperature

overnight, the solvent removed under reduced pressure, and the resulting off-white

solid stirred in toluene (25 mL) for 1 h in the air. Filtration and solvent removal

under reduced pressure gave crude compound 6, which was recrystallised from 1:3

toluene/n-hexane. Air-stable white crystals (0.158 g, 57%). 1H NMR δ (600 MHz,

CDCl3): 0.2–1.2 (br, 6H, 2 × BH3), 1.23 (d, J = 12.3 Hz, 18H, PBut), 3.11

(d, J = 11.8 Hz, 2H, CH 2PBut), 3.93 (d, J = 11.8 Hz, 2H, CH 2PPh), 6.51 (d,

J = 7.6 Hz, 1H, Ar), 6.90 (t, J = 7.4 Hz, 1H, Ar), 7.10 (t, J = 7.6 Hz, 1H,

Ar), 7.42 (m, 5H, Ar & PPh), 7.50 (m, 2H, PPh), 7.59 (m, 4H, Ar). 13C NMR δ

(150 MHz, CDCl3): 23.54 (d, J = 23.5 Hz, CH2PBut), 28.55 (s, PCMe3), 31.88 (d,

J = 31.1 Hz, CH2PPh), 33.15 (d, J = 24.8 Hz, PCMe3), 126.50 (t, J = 2.6 Hz,

Ar), 126.88 (dd, J = 3.2, 1.9 Hz, Ar), 128.81 (d, J = 10.2 Hz, PPh), 129.10 (d,

J = 54.0 Hz, PPh), 131.41 (d, J = 1.9 Hz, PPh), 131.60 (dd, J = 3.8, 1.9 Hz, Ar),

131.78 (t, J = 3.8 Hz, Ar), 132.03 (t, J = 3.2 Hz, Ar), 132.80 (d, J = 8.9 Hz, PPh),

134.66 (t, J = 4.5 Hz, Ar). 31P NMR δ (121 MHz, CDCl3): 18.52 (br, PPh), 47.69

(br, PBut). IR (film from CH2Cl2): 2349–2386 (BH), 2869–3079 cm-1 (CH). HRMS

calcd for C28H42B2NaP2 [M+Na]+: m/z = 485.2850; found: 485.2848. Anal. calcd

for C28H42B2P2: C, 72.8; H, 9.2; found: C, 73.0; H, 9.0.

α-(Di-t-butylphosphino)-α′-(diphenylphosphino)-o-xylene (7)

Compound 6 (50 mg, 0.11 mmol) and morpholine (1 mL) were combined in a sealed

tube and heated to 100 ◦C for 1 h. After cooling, the solvent was evaporated

under reduced pressure. The resulting white solid was extracted with n-hexane

(2 × 2 mL), filtered through a plug of alumina, and the solvent evaporated under

reduced pressure, giving desired product 7. Highly air-sensitive white solid (39 mg,

82%). 1H NMR δ (500 MHz, C6D6): 1.09 (d, J = 10.5 Hz, 18H, PBut), 3.09 (s,

2H, CH 2PBut), 3.92 (d, J = 2.5 Hz, 2H, CH 2PPh), 6.75 (d, J = 7.6 Hz, 1H, Ar),

6.85 (t, J = 7.5 Hz, 1H, Ar), 7.00 (t, J = 7.6 Hz, 1H, Ar), 7.04 (m, 6H, PPh),

7.42 (m, 4H, PPh), 7.50 (d, J = 7.9 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6):
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27.41 (dd, J = 26.9, 6.7 Hz, CH2PBut), 30.10 (d, J = 13.4 Hz, PCMe3), 32.12

(d, J = 24.0 Hz, PCMe3), 34.63 (dd, J = 17.0, 11.8 Hz, CH2PPh), 125.82 (t,

J = 1.9 Hz, Ar), 126.28 (d, J = 2.9 Hz, Ar), 128.59 (d, J = 6.2 Hz, PPh), 128.77

(s, PPh), 131.45 (d, J = 7.2 Hz, Ar), 131.74 (dd, J = 10.6, 1.4 Hz, Ar), 133.51

(d, J = 18.2 Hz, PPh), 136.03 (dd, J = 6.5, 2.2 Hz, Ar), 139.28 (d, J = 16.3 Hz,

PPh), 139.60 (dd, J = 8.7, 3.9 Hz, Ar). 31P NMR δ (121 MHz, C6D6): −15.61 (d,

J = 1.4 Hz, PPh), 24.47 (d, J = 1.4 Hz, PBut).

Compounds 8, 9 and 10

Flame-dried magnesium powder (1.20 g, 49 mmol) and THF (5 mL) were combined

in a Schlenk tube, 1,2-dibromoethane (0.05 mL) added and the mixture heated until

bubbles appeared. After reaction was complete, the solvent was decanted and fresh

THF (5 mL) added. A solution of compound 5 (0.40 g, 1.34 mmol) in THF (5 mL)

was added and the mixture stirred for 2 h. The resulting green solution was de-

canted and added dropwise to a solution of bis(pentafluorophenyl)bromophosphine

(0.30 mL, 1.34 mmol) in THF (5 mL) at 0 ◦C. The solution was stirred at room

temperature overnight and the solvent removed under reduced pressure giving a

mixture of compounds 8, 9 and 10 as a sticky solid. Compound 10 was removed

by trituration with n-hexane (40 mL) and filtration through a plug of alumina. The

solvent was removed under reduced pressure and the resulting cloudy oil washed

with methanol (2 × 5 mL) to remove 9 and other impurities, giving compound 8.

Air-sensitive white powder (0.27 g, 32%).

α-(Di-t-butylphosphino)-α′-{bis(pentafluorophenyl)phosphino}-o-xylene–borane (8)
1H NMR δ (500 MHz, C6D6): 0.9–1.6 (br, 3H, BH3), 1.09 (d, J = 12.2 Hz, 18H,

PBut), 3.29 (d, J = 11.9 Hz, 2H, CH 2PBut), 4.23 (d, J = 4.6 Hz, 2H, CH 2P(C6F5)),

6.64 (d, J = 7.6 Hz, 1H, Ar), 6.69 (t, J = 7.6 Hz, 1H, Ar), 6.86 (t, J = 7.6 Hz,

1H, Ar), 7.51 (d, J = 7.8 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 23.22 (dd,

J = 22.1, 9.1 Hz, CH2PBut), 28.29 (s, PCMe3), 30.20 (m, CH2P(C6F5)), 33.08 (d,

J = 24.0 Hz, PCMe3), 108.60 (m, P(C6F5)), 127.34 (t, J = 2.4 Hz, Ar), 127.45 (dd,

J = 3.4, 1.5 Hz, Ar), 130.91 (d, J = 8.6 Hz, Ar), 132.74 (t, J = 2.9 Hz, Ar), 134.02

(dd, J = 5.8, 4.3 Hz, Ar), 134.44 (t, J = 3.8 Hz, Ar), 137.76 (dm, J = 254.3 Hz,

P(C6F5)), 142.50 (dm, J = 257.2 Hz, P(C6F5)), 147.96 (dm, J = 246.6 Hz, P(C6F5)).
31P NMR δ (121 MHz, C6D6): −50.47 (quin, J = 22.2 Hz, P(C

6
F5)), 49.38 (br,

PBut). 19F NMR δ (282 MHz, C6D6): −160.32 (m, 4F, P(m-C6F5)), −149.37 (tt,

J = 21.8, 4.0 Hz, 2F, P(p-C6F5)), −130.11 (m, 4F, P(o-C6F5)). HRMS calcd for

C28H28BF10P2 [M−H]+: m/z = 627.1599; found: 627.1597.
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o-(Methyl)benzyldi-t-butylphosphine–borane (9)
1H NMR δ (500 MHz, C6D6): 1.0–1.8 (br, 3H, BH3), 1.05 (d, J = 12.3 Hz, 18H,

PBut), 2.22 (s, 3H, ArMe), 2.85 (d, J = 12.5 Hz, 2H, CH2P), 7.00 (m, 2H, Ar),

7.07 (m, 1H, Ar), 7.98 (d, J = 7.9 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6):

20.86 (s, ArMe), 21.99 (d, J = 24.0 Hz, CH2P), 28.29 (br s, PCMe3), 33.00 (d,

J = 24.5 Hz, PCMe3), 126.19 (d, J = 1.4 Hz, Ar), 127.05 (d, J = 2.4 Hz, Ar),

130.86 (d, J = 1.5 Hz, Ar), 131.64 (d, J = 2.9 Hz, Ar), 134.05 (d, J = 3.4 Hz, Ar),

136.20 (d, J = 4.8 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 48.05 (br). HRMS calcd

for C16H30BNaP [M+Na]+: m/z = 287.2076; found: 287.2080.

2,2 ′-(Di-t-butylphosphinomethyl)bibenzyl–diborane (10)

Selected 1H NMR δ (300 MHz, C6D6): 1.0–1.8 (br, 6H, BH3), 1.03 (d, J = 12.0 Hz,

36H, PBut), 2.52 (d, J = 12.0 Hz, 4H, CH2P), 2.98 (s, 4H, CH2CH2), 7.78 (m,

2H, Ar). 31P NMR δ (121 MHz, C6D6): 49.07 (br). HRMS calcd for C32H57B2P2

[M−H]+: m/z = 525.4127; found: 525.4116.

α-(Di-t-butylphosphino)-α′-{bis(pentafluorophenyl)phosphino}-o-xylene

(11)

A solution of compound 8 (60 mg, 0.10 mmol) in dichloromethane (2 mL) was cooled

to −10 ◦C, tetrafluoroboric acid–diethyl ether complex (0.17 mL, 85% solution,

1.0 mmol) added dropwise, and the resulting solution stirred at room temperature

for 1 h. Diethyl ether (3 mL) was added, followed by saturated sodium hydrogen

carbonate solution (6 mL), and the mixture stirred for 30 min. The resulting layers

were separated, the aqueous layer washed with diethyl ether (2 × 3 mL), combined

organic fractions washed with distilled water (3 mL) and brine (3 mL), dried over

magnesium sulfate, filtered, and the solvent removed under reduced pressure, giving

desired compound 11. Highly air-sensitive white solid (30 mg, 51%). 1H NMR δ

(500 MHz, C6D6): 1.07 (d, J = 10.8 Hz, 18H, PBut), 3.07 (s, 2H, CH 2PBut), 4.27

(s, 2H, CH 2P(C6F5)), 6.69 (d, J = 7.8 Hz, 1H, Ar), 6.74 (t, J = 7.3 Hz, 1H, Ar),

6.91 (t, J = 7.5 Hz, 1H, Ar), 7.41 (d, J = 7.6 Hz, 1H, Ar). 13C NMR δ (125 MHz,

C6D6): 27.36 (dd, J = 27.8, 6.7 Hz, CH2PBut), 29.29 (m, CH2P(C6F5)), 29.87 (d,

J = 13.4 Hz, PCMe3), 32.07 (d, J = 24.0 Hz, PCMe3), 109.13 (m, P(C6F5)), 126.24

(dd, J = 2.4, 1.9 Hz, Ar), 127.63 (d, J = 3.4 Hz, Ar), 130.50 (d, J = 9.6 Hz, Ar),

132.36 (dd, J = 11.1, 2.4 Hz, Ar), 133.21 (dd, J = 7.7, 1.9 Hz, Ar), 137.77 (dm,

J = 252.9 Hz, P(C6F5)), 139.97 (dd, J = 8.6, 4.3 Hz, Ar), 142.46 (dm, J = 257.2 Hz,

P(C6F5)), 148.03 (dm, J = 246.6 Hz, P(C6F5)).
31P NMR δ (121 MHz, C6D6):

−50.87 (quind, J = 22.3, 11.9 Hz, P(C6F5)), 25.15 (d, J = 12.6 Hz, PBut). 19F

NMR δ (282 MHz, C6D6): −160.51 (m, 4F, P(m-C6F5)), −149.81 (tt, J = 20.8,

4.0 Hz, 2F, P(p-C6F5)), −130.01 (m, 4F, P(o-C6F5)).
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α-(Di-t-butylphosphino)-α′-{bis(p-N -morpholinotetrafluorophenyl)-

phosphino}-o-xylene (12)

Compound 8 (61 mg, 0.10 mmol) and morpholine (1 mL) were combined in a sealed

tube and heated to 100 ◦C for 1 h. After cooling, the solvent was evaporated

under reduced pressure. The resulting white solid was extracted with n-hexane

(2 × 2 mL), filtered through a plug of alumina, and the solvent evaporated under

reduced pressure, giving compound 12. Highly air-sensitive white foam (63 mg,

84%). 1H NMR δ (500 MHz, C6D6): 1.12 (d, J = 10.7 Hz, 18H, PBut), 2.76

(br s, 8H, CH2N), 3.20 (s, 2H, CH 2PBut), 3.36 (br s, 8H, CH2O), 4.53 (s, 2H,

CH 2P(C6F4)N), 6.85 (t, J = 7.3 Hz, 1H, Ar), 6.98 (m, 2H, Ar), 7.56 (d, J = 7.0 Hz,

1H, Ar). 13C NMR δ (125 MHz, C6D6): 27.11 (dd, J = 27.3, 7.2 Hz, CH2PBut),

29.78 (m, CH2P(C6F4)N), 30.00 (d, J = 13.4 Hz, PCMe3), 32.11 (d, J = 24.5 Hz,

PCMe3), 51.11 (t, J = 3.4 Hz, CH2N), 67.05 (s, CH2O), 106.06 (m, P(C6F4)N),

126.13 (s, Ar), 127.24 (d, J = 3.4 Hz, Ar), 130.83 (d, J = 8.7 Hz, Ar), 132.00 (m,

P(C6F4)N), 132.19 (dd, J = 12.5, 2.4 Hz, Ar), 134.37 (dd, J = 7.8, 2.1 Hz, Ar),

140.12 (dd, J = 9.1, 4.3 Hz, Ar), 142.06 (dm, J = 230.3 Hz, P(C6F4)N), 149.04 (dm,

J = 234.2 Hz, P(C6F4)N). 31P NMR δ (121 MHz, C6D6): −51.73 (quind, J = 23.7,

8.1 Hz, P(C6F4)N), 25.40 (d, J = 8.1 Hz, PBut). 19F NMR δ (282 MHz, C6D6):

−150.56 (dd, J = 20.9, 7.0 Hz, 4F, P(m-C6F4)N), −132.47 (td, J = 22.8, 9.9 Hz, 4F,

P(o-C6F4)N). HRMS calcd for C36H43F8N2O2P2 [M+H]+: m/z = 749.2667; found:

749.2659.

α-(Di-t-butylphosphino)-α′-(t-butylthio)-o-xylene–borane (13a)

Sodium metal (0.164 g, 7.1 mmol) and ethanol (50 mL) were combined and after

reaction was complete, t-butylthiol (0.84 mL, 7.5 mmol) was added and resulting

solution stirred for 1 h. Compound 5 (1.05 g, 3.5 mmol) was added and the mixture

stirred overnight, followed by solvent evaporation under reduced pressure. The

resulting white solid was dissolved in toluene (50 mL) in the air, filtered and the

solvent evaporated under reduced pressure leaving crude compound 13a, which was

recrystallised from n-hexane. Air-stable white powdery crystals (0.98 g, 80%). 1H

NMR δ (500 MHz, C6D6): 1.0–1.8 (br, 3H, BH3), 1.12 (d, J = 12.5 Hz, 18H, PBut),

1.29 (s, 9H, SBut), 3.27 (d, J = 12.0 Hz, 2H, CH2P), 3.99 (s, 2H, CH2S), 6.99 (t,

J = 7.5 Hz, 1H, Ar), 7.04 (t, J = 7.5 Hz, 1H, Ar), 7.23 (d, J = 7.0 Hz, 1H, Ar),

7.79 (d, J = 8.0 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 22.43 (d, J = 23.5 Hz,

CH2P), 28.38 (d, J = 1.0 Hz, PCMe3), 30.98 (s, SCMe3), 32.93 (s, CH2S), 33.08

(d, J = 24.8 Hz, PCMe3), 42.67 (s, SCMe3), 127.22 (d, J = 1.5 Hz, Ar), 127.37

(d, J = 1.9 Hz, Ar), 131.69 (d, J = 1.4 Hz, Ar), 132.16 (d, J = 3.3 Hz, Ar),

134.67 (d, J = 3.4 Hz, Ar), 137.17 (d, J = 4.8 Hz, Ar). 31P NMR δ (121 MHz,
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C6D6): 47.94 (br). 11B NMR δ (96 MHz, C6D6): −40.37 (d, J = 47.6 Hz). IR (film

from CH2Cl2): 2383 (BH), 2902–3051 cm-1 (CH). HRMS calcd for C20H38BNaPS

[M+Na]+: m/z = 374.2459; found: 374.2462. Anal. calcd for C20H38BPS: C, 68.2;

H, 10.9; S, 9.1; found: C, 68.0; H, 11.1; S, 9.0.

α-(Di-t-butylphosphino)-α′-(phenylthio)-o-xylene–borane (13b)

Sodium metal (0.175 g, 7.6 mmol) and ethanol (50 mL) were combined and after

reaction was complete, thiophenol (0.82 mL, 8.0 mmol) was added and resulting

solution stirred for 1 h. Compound 5 (1.13 g, 3.8 mmol) was added and the mixture

stirred overnight, followed by solvent evaporation under reduced pressure. The

resulting white solid was dissolved in toluene (50 mL) in the air, filtered and the

solvent evaporated under reduced pressure leaving crude compound 13b, which was

recrystallised from n-hexane. Air-stable white plate-like crystals (1.05 g, 75%). 1H

NMR δ (500 MHz, C6D6): 0.9–1.7 (br, 3H, BH3), 1.05 (d, J = 12.0 Hz, 18H, PBut),

3.20 (d, J = 12.0 Hz, 2H, CH2P), 4.40 (s, 2H, CH2S), 6.92 (m, 2H, Ar & SPh),

7.01 (m, 4H, Ar & SPh), 7.32 (d, J = 8.5 Hz, 2H, SPh), 7.61 (d, J = 8.0 Hz,

1H, Ar). 13C NMR δ (125 MHz, C6D6): 22.31 (d, J = 22.9 Hz, CH2P), 28.31 (d,

J = 1.0 Hz, PCMe3), 32.99 (d, J = 24.4 Hz, PCMe3), 38.50 (s, CH2S), 126.52 (s,

SPh), 127.33 (d, J = 2.0 Hz, Ar), 127.51 (d, J = 1.4 Hz, Ar), 129.17 (s, SPh),

130.11 (s, SPh), 131.57 (d, J = 1.5 Hz, Ar), 132.20 (d, J = 3.4 Hz, Ar), 134.67 (d,

J = 3.4 Hz, Ar), 136.61 (d, J = 4.3 Hz, Ar), 137.21 (s, SPh). 31P NMR δ (121 MHz,

C6D6): 47.97 (br). 11B NMR δ (96 MHz, C6D6): −40.65 (d, J = 48.4 Hz). IR (film

from CH2Cl2): 2381 (BH), 2870–3059 cm-1 (CH). HRMS calcd for C22H34BNaPS

[M+Na]+: m/z = 395.2110; found: 395.2116. Anal. calcd for C22H34BPS: C, 71.0;

H, 9.2; S, 8.6; found: C, 71.0; H, 9.4; S, 8.5.

α-(Di-t-butylphosphino)-α′-(t-butylthio)-o-xylene (14a)

Compound 13a (50 mg, 0.14 mmol) and morpholine (1 mL) were combined in a

sealed tube and heated to 100 ◦C for 1 h. After cooling, the solvent was evaporated

under reduced pressure. The resulting white solid was extracted with n-hexane

(2 × 2 mL), filtered through a plug of alumina, and the solvent evaporated under

reduced pressure, giving desired product 14a. Highly air-sensitive clear oil (44 mg,

93%). 1H NMR δ (600 MHz, C6D6): 1.13 (d, J = 10.6 Hz, 18H, PBut), 1.29 (s, 9H,

SBut), 3.09 (d, J = 1.2 Hz, 2H, CH2P), 4.05 (s, 2H, CH2S), 7.01 (t, J = 7.3 Hz, 1H,

Ar), 7.07 (t, J = 7.7 Hz, 1H, Ar), 7.31 (d, J = 7.3 Hz, 1H, Ar), 7.68 (d, J = 7.3 Hz,

1H, Ar). 13C NMR δ (150 MHz, C6D6): 26.21 (d, J = 26.0 Hz, CH2P), 30.07 (d,

J = 13.2 Hz, PCMe3), 31.00 (s, SCMe3), 32.01 (d, J = 24.2 Hz, PCMe3), 32.25 (d,

J = 8.7 Hz, CH2S), 42.57 (s, SCMe3), 126.18 (d, J = 1.8 Hz, Ar), 127.20 (s, Ar),
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131.14 (s, Ar), 131.63 (d, J = 14.4 Hz, Ar), 136.58 (d, J = 2.9 Hz, Ar), 140.06 (d,

J = 9.2 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 24.99 (s).

α-(Di-t-butylphosphino)-α′-(phenylthio)-o-xylene (14b)

Compound 13b (50 mg, 0.13 mmol) and morpholine (1 mL) were combined in a

sealed tube and heated to 100 ◦C for 1 h. After cooling, the solvent was evaporated

under reduced pressure. The resulting white solid was extracted with n-hexane

(2 × 2 mL), filtered through a plug of alumina, and the solvent evaporated under

reduced pressure, giving desired product 14b. Highly air-sensitive white solid

(33 mg, 71%). 1H NMR δ (500 MHz, C6D6): 1.07 (d, J = 10.8 Hz, 18H, PBut), 3.06

(s, 2H, CH2P), 4.51 (d, J = 2.2 Hz, 2H, CH2S), 6.93 (m, 2H, Ar & SPh), 6.99 (t,

J = 7.6 Hz, 2H, SPh), 7.03 (t, J = 7.3 Hz, 1H, Ar), 7.09 (d, J = 7.5 Hz, 1H, Ar),

7.30 (d, J = 7.0 Hz, 2H, SPh), 7.47 (d, J = 7.5 Hz, 1H, Ar). 13C NMR δ (125 MHz,

C6D6): 26.79 (d, J = 27.4 Hz, CH2P), 29.99 (d, J = 13.5 Hz, PCMe3), 32.04 (d,

J = 24.4 Hz, PCMe3), 37.84 (d, J = 12.9 Hz, CH2S), 126.19 (d, J = 1.4 Hz, Ar),

126.35 (s, SPh), 127.57 (s, Ar), 129.06 (s, SPh), 130.23 (s, SPh), 131.18 (s, Ar),

131.91 (d, J = 10.5 Hz, Ar), 135.65 (d, J = 2.4 Hz, Ar), 137.50 (s, SPh), 140.16 (d,

J = 8.6 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 25.93 (s).

α-(Di-t-butylphosphino)-α′-(t-butylsulfinyl)-o-xylene–borane (15)

Compound 13a (1.00 g, 2.84 mmol), 3-carboxypyridinium chlorochromate (0.74 g,

2.84 mmol) and aluminium trichloride (0.38 g, 2.84 mmol) were combined in

acetonitrile (50 mL) in the air, and heated to reflux for 2 h. The resulting mixture

was separated by centrifugation and the solid washed with acetonitrile (2 × 40 mL).

The combined purple solutions were passed through a plug of alumina, which was

then washed through with further acetonitrile (30 mL). Solvent evaporation under

reduced pressure gave the crude product. Recrystallisation from hot toluene gave

desired compound 15. Air-stable hygroscopic white powder (0.61 g, 58%). 1H NMR

δ (500 MHz, C6D6): 0.8–1.6 (br, 3H, BH3), 1.06 (d, J = 12.5 Hz, 9H, PBut), 1.09 (s,

9H, SBut), 1.19 (d, J = 12.5 Hz, 9H, PBut), 3.04 (t, J = 15.0 Hz, 1H, CH2P), 3.63 (d,

J = 13.5 Hz, 1H, CH2S), 4.07 (dd, J = 15.0, 9.0 Hz, 1H, CH2P), 4.61 (d, J = 13.5 Hz,

1H, CH2S), 7.06 (m, 3H, Ar), 7.36 (d, J = 7.5 Hz, 1H, Ar). 13C NMR δ (150 MHz,

C6D6): 22.95 (s, SCMe3), 23.33 (d, J = 22.7 Hz, CH2P), 28.51 (d, J = 0.9 Hz,

PCMe3), 28.53 (d, J = 1.1 Hz, PCMe3), 32.99 (d, J = 25.0 Hz, PCMe3), 33.01 (d,

J = 24.1 Hz, PCMe3), 52.19 (d, J = 1.2 Hz, CH2S), 53.44 (s, SCMe3), 127.43 (d,

J = 2.0 Hz, Ar), 127.55 (d, J = 2.2 Hz, Ar), 132.39 (d, J = 2.0 Hz, Ar), 132.56 (d,

J = 3.9 Hz, Ar), 134.34 (d, J = 3.6 Hz, Ar), 136.47 (d, J = 3.9 Hz, Ar). 31P NMR

δ (121 MHz, C6D6): 47.98 (br). IR (film from CH2Cl2): 1028 (SO), 2391 (BH),
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2870–3052 cm-1 (CH). HRMS calcd for C20H38BNaOPS [M+Na]+: m/z = 391.2372;

found: 391.2376. Anal. calcd for C20H38BOPS: C, 65.2; H, 10.4; S, 8.7; found: C,

65.1; H, 10.6; S, 8.4.

α-(Di-t-butylphosphino)-α′-(t-butylsulfinyl)-o-xylene (16)

Compound 15 (50 mg, 0.14 mmol) and morpholine (1 mL) were combined in a

sealed tube and heated to 100 ◦C for 1 h. After cooling, the solvent was evaporated

under reduced pressure. The resulting white solid was extracted with n-hexane

(2 × 2 mL), filtered through a plug of alumina, and the solvent evaporated under

reduced pressure, giving desired product 16. Highly air-sensitive white solid (39 mg,

79%). 1H NMR δ (500 MHz, C6D6): 1.06 (d, J = 10.9 Hz, 9H, PBut), 1.08 (s, 9H,

SBut), 1.14 (d, J = 10.8 Hz, 9H, PBut), 2.99 (dd, J = 14.8, 2.0 Hz, 1H, CH2P),

3.37 (d, J = 14.9 Hz, 1H, CH2P), 3.85 (dd, J = 13.0, 1.4 Hz, 1H, CH2S), 4.25 (dd,

J = 13.0, 3.5 Hz, 1H, CH2S), 7.04 (m, 2H, Ar), 7.23 (d, J = 8.1 Hz, 1H, Ar), 7.46

(d, J = 7.1 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 22.99 (s, SCMe3), 27.59

(d, J = 26.4 Hz, CH2P), 30.06 (d, J = 13.0 Hz, PCMe3), 30.13 (d, J = 13.0 Hz,

PCMe3), 32.04 (d, J = 26.9 Hz, PCMe3), 32.22 (d, J = 26.4 Hz, PCMe3), 50.89

(d, J = 13.4 Hz, CH2S), 53.46 (s, SCMe3), 126.41 (d, J = 1.5 Hz, Ar), 128.00 (s,

Ar), 131.79 (d, J = 1.9 Hz, Ar), 132.04 (d, J = 10.5 Hz, Ar), 132.54 (s, Ar), 141.00

(d, J = 7.7 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 25.23 (s).

α-(Di-t-butylphosphino)-α′-(dimethylamino)-o-xylene–diborane (17a)

A solution of dimethylamine–borane (93 mg, 1.6 mmol) in THF (5 mL) was cooled

to 0 ◦C and a solution of n-butyllithium (1.0 mL, 1.6 M in hexanes, 1.6 mmol) was

added dropwise with stirring. The mixture was stirred at room temperature for

1 h, then added dropwise to a solution of compound 5 (0.42 g, 1.4 mmol) in THF

(5 mL) at -5 ◦C and stirred at this temperature for 1 h. The solvent was evaporated

under reduced pressure, and the resulting white solid was stirred in distilled water

(10 mL) in the air for 1 h, filtered and desired compound 17a recrystallised from

1:2 toluene/n-hexane. Air-stable white needle-like crystals (0.36 g, 80%). 1H NMR

δ (500 MHz, C6D6): 0.8–1.6 (br, 3H, PBH3), 1.08 (d, J = 12.0 Hz, 18H, PBut),

1.9–2.8 (br, 3H, NBH3), 2.09 (s, 3H, NMe), 3.55 (d, J = 12.0 Hz, 2H, CH2P), 3.98

(s, 2H, CH2N), 6.74 (d, J = 8.0 Hz, 1H, Ar), 6.93 (t, J = 7.5 Hz, 1H, Ar), 7.09 (t,

J = 7.5 Hz, 1H, Ar), 7.69 (d, J = 8.0 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6):

24.08 (d, J = 22.5 Hz, CH2P), 28.43 (d, J = 1.0 Hz, PCMe3), 32.99 (d, J = 24.4 Hz,

PCMe3), 51.32 (s, NMe), 64.98 (s, CH2N), 126.23 (d, J = 2.4 Hz, Ar), 128.62 (d,

J = 2.0 Hz, Ar), 132.02 (d, J = 4.3 Hz, Ar), 132.74 (d, J = 3.8 Hz, Ar), 133.51

(d, J = 1.4 Hz, Ar), 137.70 (d, J = 3.8 Hz, Ar). 31P NMR δ (121 MHz, C6D6):
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49.80 (br). 11B NMR δ (96 MHz, C6D6): −40.83 (d, J = 52.5 Hz, PBH3), −8.78

(s, NBH3). IR (film from CH2Cl2): 2278–2380 (BH), 2871–2988 cm-1 (CH). HRMS

calcd for C18H38B2NNaP [M+Na]+: m/z = 344.2832; found: 344.2832. Anal. calcd

for C18H38B2NP: C, 67.3; H, 11.9; N, 4.4; found: C, 67.4; H, 12.1; N, 4.4.

α-(Di-t-butylphosphino)-α′-pyrrolidino-o-xylene–diborane (17b)

A solution of pyrrolidine–borane (68 mg, 0.8 mmol) in THF (3 mL) was cooled to

0 ◦C and a solution of n-butyllithium (0.5 mL, 1.6 M in hexanes, 0.8 mmol) was

added dropwise with stirring. The mixture was stirred at room temperature for

1 h, then added dropwise to a solution of compound 5 (0.21 g, 0.7 mmol) in THF

(3 mL) at −5 ◦C and stirred at this temperature for 1 h. The solvent was evaporated

under reduced pressure, and the resulting white solid was stirred in distilled water

(5 mL) in the air for 1 h, filtered and desired compound 17b recrystallised from 1:2

toluene/n-hexane. Air-stable white crystals (0.22 g, 89%). 1H NMR δ (500 MHz,

C6D6): 0.8–1.6 (br, 3H, PBH3), 1.13 (d, J = 12.5 Hz, 18H, PBut), 1.8–2.6 (br,

3H, NBH3), 1.19 (m, 2H, NCH2CH 2), 1.82 (m, 2H, NCH2CH 2), 2.31 (m, 2H,

NCH 2CH2), 2.90 (m, 2H, NCH 2CH2), 3.69 (d, J = 12.0 Hz, 2H, CH2P), 4.10 (s,

2H, ArCH2N), 6.84 (d, J = 7.5 Hz, 1H, Ar), 6.99 (t, J = 7.5 Hz, 1H, Ar), 7.11 (t,

J = 7.5 Hz, 1H, Ar), 7.66 (d, J = 7.5 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6):

22.15 (s, NCH2CH2), 24.36 (d, J = 22.9 Hz, CH2P), 28.50 (d, J = 1.0 Hz, PCMe3),

33.06 (d, J = 24.4 Hz, PCMe3), 59.93 (s, NCH2CH2), 63.18 (s, ArCH2N), 126.39

(d, J = 2.4 Hz, Ar), 132.71 (d, J = 3.4 Hz, Ar), 132.79 (d, J = 1.9 Hz, Ar), 133.28

(d, J = 3.8 Hz, Ar), 138.00 (d, J = 3.9 Hz, Ar), other Ar obscured by solvent. 31P

NMR δ (121 MHz, C6D6): 49.55 (br). 11B NMR δ (96 MHz, C6D6): −40.86 (d,

J = 47.8 Hz, PBH3), −11.44 (s, NBH3). IR (film from CH2Cl2): 2279–2379 (BH),

2904–3052 cm-1 (CH). HRMS calcd for C20H40B2NNaP [M+Na]+: m/z = 370.2990;

found: 370.2981. Anal. calcd for C20H40B2NP: C, 69.2; H, 11.6; N, 4.0; found: C,

69.1; H, 11.7; N, 4.0.

α-(Di-t-butylphosphino)-α′-(diethylamino)-o-xylene–diborane (17c)

A solution of diethylamine–borane (70 mg, 0.8 mmol) in THF (3 mL) was cooled

to 0 ◦C and a solution of n-butyllithium (0.5 mL, 1.6 M in hexanes, 0.8 mmol) was

added dropwise with stirring. The mixture was stirred at room temperature for

1 h, then added dropwise to a solution of compound 5 (0.21 g, 0.7 mmol) in THF

(3 mL) at −5 ◦C and stirred at this temperature for 1 h. The solvent was evaporated

under reduced pressure, and the resulting white solid was stirred in distilled water

(5 mL) in the air for 1 h, filtered and desired compound 17c recrystallised from 1:2

toluene/n-hexane. Air-stable white crystals (0.20 g, 80%). 1H NMR δ (500 MHz,
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C6D6): 0.6–1.6 (br, 3H, PBH3), 0.88 (t, J = 7.0 Hz, 6H, NCH2Me), 1.12 (d,

J = 12.5 Hz, 18H, PBut), 1.6–2.5 (br, 3H, NBH3), 2.50 (sext, J = 7.0 Hz, 2H,

NCH 2Me), 2.62 (sext, J = 7.0 Hz, 2H, NCH 2Me), 3.82 (d, J = 12.0 Hz, 2H,

CH2P), 4.02 (s, 2H, ArCH2N), 6.95 (d, J = 7.5 Hz, 1H, Ar), 7.00 (t, J = 7.5 Hz,

1H, Ar), 7.10 (t, J = 7.5 Hz, 1H, Ar), 7.53 (d, J = 7.5 Hz, 1H, Ar). 13C NMR

δ (125 MHz, C6D6): 8.75 (s, NCH2Me), 24.75 (d, J = 22.5 Hz, CH2P), 28.55 (s,

PCMe3), 33.01 (d, J = 24.8 Hz, PCMe3), 52.51 (s, NCH2Me), 60.35 (s, ArCH2N),

126.08 (d, J = 2.4 Hz, Ar), 132.89 (d, J = 3.8 Hz, Ar), 133.07 (d, J = 3.8 Hz, Ar),

133.18 (d, J = 1.9 Hz, Ar), 138.35 (d, J = 3.8 Hz, Ar), other Ar obscured by solvent.
31P NMR δ (121 MHz, C6D6): 49.80 (br). 11B NMR δ (96 MHz, C6D6): −40.97 (d,

J = 53.7 Hz, PBH3), −12.93 (s, NBH3). IR (film from CH2Cl2): 2281–2366 (BH),

2872–2998 cm-1 (CH). HRMS calcd for C20H42B2NNaP [M+Na]+: m/z = 372.3146;

found: 372.3138. Anal. calcd for C20H42B2NP: C, 68.8; H, 12.1; N, 4.0; found: C,

68.9; H, 12.2; N, 3.9.

α-(Di-t-butylphosphino)-α′-(dimethylamino)-o-xylene (18a)

A solution of 17a (0.17 g, 0.53 mmol) in dichloromethane (10 mL) was cooled

to -10 ◦C, tetrafluoroboric acid–diethyl ether complex (0.85 mL, 85% solution,

5.3 mmol) added dropwise, and the resulting solution stirred at room temperature

for 1 h. Diethyl ether (15 mL) was added, followed by saturated sodium hydrogen

carbonate solution (30 mL), and the mixture stirred for 30 min. The resulting layers

were separated, the aqueous layer washed with diethyl ether (2 × 15 mL), combined

organic fractions washed with distilled water (15 mL) and brine (15 mL), dried over

magnesium sulfate, filtered, and the solvent removed under reduced pressure, giving

desired compound 18a. Highly air-sensitive cloudy oil (0.133 g, 82%). 1H NMR

δ (500 MHz, C6D6): 1.13 (d, J = 10.7 Hz, 18H, PBut), 2.11 (s, 6H, NMe), 3.16

(d, J = 2.4 Hz, 2H, CH2P), 3.60 (s, 2H, CH2N), 7.05 (t, J = 7.3 Hz, 1H, Ar),

7.15 (t, J = 7.6 Hz, 1H, Ar), 7.21 (d, J = 7.3 Hz, 1H, Ar), 7.77 (d, J = 7.3 Hz,

1H, Ar). 13C NMR δ (125 MHz, C6D6): 25.53 (d, J = 25.5 Hz, CH2P), 30.02 (d,

J = 13.9 Hz, PCMe3), 31.95 (d, J = 24.0 Hz, PCMe3), 45.46 (s, NMe), 63.46 (d,

J = 6.2 Hz, CH2N), 125.56 (d, J = 1.9 Hz, Ar), 127.38 (s, Ar), 131.08 (s, Ar),

131.54 (d, J = 14.8 Hz, Ar), 137.54 (d, J = 2.9 Hz, Ar), 141.20 (d, J = 10.1 Hz,

Ar). 31P NMR δ (121 MHz, C6D6): 24.53 (s).

α-(Di-t-butylphosphino)-α′-pyrrolidino-o-xylene (18b)

A solution of 17b (50 mg, 0.14 mmol) in dichloromethane (3 mL) was cooled

to −10 ◦C, tetrafluoroboric acid–diethyl ether complex (0.24 mL, 85% solution,

1.4 mmol) added dropwise, and the resulting solution stirred at room temperature
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for 1 h. Diethyl ether (4 mL) was added, followed by saturated sodium hydrogen

carbonate solution (8 mL), and the mixture stirred for 30 min. The resulting

layers were separated, the aqueous layer washed with diethyl ether (2 × 4 mL),

combined organic fractions washed with distilled water (4 mL) and brine (4 mL), and

solvent evaporated under reduced pressure. The resulting material was extracted

into n-hexane (6 mL), dried over magnesium sulfate and filtered through a plug

of alumina. The solvent was evaporated under reduced pressure, giving desired

compound 18b. Highly air-sensitive clear oil (27 mg, 60%). 1H NMR δ (500 MHz,

C6D6): 1.14 (d, J = 10.5 Hz, 18H, PBut), 1.58 (m, 4H, NCH2CH 2), 2.40 (m,

4H, NCH 2CH2), 3.16 (d, J = 2.7 Hz, 2H, CH2P), 3.82 (s, 2H, ArCH2N), 7.07 (t,

J = 7.3 Hz, 1H, Ar), 7.16 (t, J = 7.6 Hz, 1H, Ar), 7.27 (d, J = 7.5 Hz, 1H,

Ar), 7.81 (dd, J = 7.6, 1.5 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 23.90 (s,

NCH2CH2), 25.29 (d, J = 25.0 Hz, CH2P), 30.00 (d, J = 13.4 Hz, PCMe3), 31.95

(d, J = 24.0 Hz, PCMe3), 54.31 (s, NCH2CH2), 59.64 (d, J = 5.8 Hz, ArCH2N),

125.60 (d, J = 1.9 Hz, Ar), 127.24 (s, Ar), 130.50 (s, Ar), 131.35 (d, J = 15.4 Hz,

Ar), 138.15 (d, J = 2.9 Hz, Ar), 140.87 (d, J = 10.5 Hz, Ar). 31P NMR δ (121 MHz,

C6D6): 24.56 (s).

α-(Di-t-butylphosphino)-α′-(diethylamino)-o-xylene (18c)

A solution of 17c (50 mg, 0.14 mmol) in dichloromethane (3 mL) was cooled

to −10 ◦C, tetrafluoroboric acid–diethyl ether complex (0.24 mL, 85% solution,

1.4 mmol) added dropwise, and the resulting solution stirred at room temperature

for 1 h. Diethyl ether (4 mL) was added, followed by saturated sodium hydrogen

carbonate solution (8 mL), and the mixture stirred for 30 min. The resulting

layers were separated, the aqueous layer washed with diethyl ether (2 × 4 mL),

combined organic fractions washed with distilled water (4 mL) and brine (4 mL), and

solvent evaporated under reduced pressure. The resulting material was extracted

into n-hexane (6 mL), dried over magnesium sulfate and filtered through a plug

of alumina. The solvent was evaporated under reduced pressure, giving desired

compound 18c. Highly air-sensitive clear oil (33 mg, 73%). 1H NMR δ (500 MHz,

C6D6): 0.97 (t, J = 7.1 Hz, 6H, NCH2Me), 1.14 (d, J = 10.8 Hz, 18H, PBut), 2.46 (q,

J = 7.1 Hz, 4H, NCH 2Me), 3.12 (d, J = 2.7 Hz, 2H, CH2P), 3.69 (s, 2H, ArCH2N),

7.08 (t, J = 7.3 Hz, 1H, Ar), 7.17 (t, J = 7.4 Hz, 1H, Ar), 7.33 (d, J = 7.3 Hz, 1H,

Ar), 7.95 (dd, J = 7.3, 2.9 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 11.81 (s,

NCH2Me), 25.17 (d, J = 24.0 Hz, CH2P), 30.09 (d, J = 13.5 Hz, PCMe3), 32.00 (d,

J = 24.0 Hz, PCMe3), 46.89 (s, NCH2Me), 57.64 (d, J = 3.9 Hz, ArCH2N), 125.55

(d, J = 1.9 Hz, Ar), 127.16 (s, Ar), 130.88 (s, Ar), 131.26 (d, J = 18.2 Hz, Ar),

138.00 (d, J = 3.3 Hz, Ar), 140.96 (d, J = 11.0 Hz, Ar). 31P NMR δ (121 MHz,

C6D6): 23.76 (s).
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α-(Di-t-butylphosphino)-α′-(diphenylsilyl)-o-xylene–borane (19a)

Flame-dried magnesium turnings (24 mg, 1.00 mmol), compound 5 (150 mg,

0.50 mmol), chlorodiphenylsilane (0.15 mL, 0.75 mmol), a crystal of iodine and

THF (12 mL) were combined and stirred at room temperature overnight. The

solvent was removed under reduced pressure, the resulting mixture extracted into

toluene (15 mL) in the air, filtered and solvent again removed under reduced

pressure. Elution through an alumina column with 1% ethyl acetate in n-hexane

gave pure compound 19a (Rf = 0.33). Air-stable clear oil (75 mg, 34%). 1H NMR δ

(500 MHz, C6D6): 1.0–1.8 (br, 3H, PBH3), 1.03 (d, J = 12.2 Hz, 18H, PBut), 2.69 (d,

J = 12.0 Hz, 2H, CH2P), 2.93 (d, J = 3.4 Hz, 2H, CH2Si), 5.10 (t, J = 3.1 Hz, 1J SiH

= 197.3 Hz, 1H, SiH), 6.97 (m, 3H, Ar), 7.11 (m, 6H, SiPh), 7.45 (d, J = 7.6 Hz,

4H, SiPh), 7.82 (d, J = 7.8 Hz, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 21.71 (s,

CH2Si), 22.91 (d, J = 23.1 Hz, CH2P), 28.34 (s, PCMe3), 32.97 (d, J = 23.9 Hz,

PCMe3), 125.20 (d, J = 1.9 Hz, Ar), 127.22 (d, J = 1.9 Hz, Ar), 128.39 (s, SiPh),

130.19 (s, SiPh), 130.59 (d, J = 1.5 Hz, Ar), 132.12 (d, J = 2.9 Hz, Ar), 132.98

(d, J = 3.3 Hz, Ar), 133.73 (s, SiPh), 135.67 (s, SiPh), 137.60 (d, J = 4.8 Hz, Ar).
31P NMR δ (121 MHz, C6D6): 48.57 (br). HRMS calcd for C28H39BPSi [M−H]+:

m/z = 445.2652; found: 445.2643. Anal. calcd for C28H40BPSi: C, 75.3; H, 9.0;

found: C, 75.3; H, 9.2.

α-(Di-t-butylphosphino)-α′-(dimethylsilyl)-o-xylene–borane (19b)

Flame-dried magnesium turnings (50 mg, 2.06 mmol), compound 5 (200 mg,

0.67 mmol), chlorodimethylsilane (0.24 mL, 2.16 mmol), a crystal of iodine and

THF (15 mL) were combined and heated to reflux for 1 h. The solvent was removed

under reduced pressure, the resulting mixture extracted into toluene (10 mL) in the

air, filtered and solvent again removed under reduced pressure. Attempts to purify

this compound by crystallisation or column chromatography were unsuccessful. Air-

stable clear oil (85% conversion). 1H NMR δ (500 MHz, C6D6): −0.03 (d, J = 3.7 Hz,

6H, SiMe), 1.0–1.8 (br, 3H, PBH3), 1.10 (d, J = 12.2 Hz, 18H, PBut), 2.32 (d,

J = 3.2 Hz, 2H, CH2Si), 3.07 (d, J = 11.9 Hz, 2H, CH2P), 4.14 (non, J = 3.7 Hz,
1J SiH = 185.1 Hz, 1H, SiH), 6.89 (m, 1H, Ar), 7.00 (m, 2H, Ar), 7.94 (m, 1H,

Ar). 13C NMR δ (125 MHz, C6D6): −4.29 (s, 1J SiC = 51.3 Hz, SiMe), 22.93 (d,

J = 23.6 Hz, CH2P), 23.10 (d, J = 1.0 Hz, CH2Si), 28.31 (d, J = 1.0 Hz, PCMe3),

33.05 (d, J = 24.0 Hz, PCMe3), 124.95 (d, J = 1.9 Hz, Ar), 127.14 (d, J = 1.9 Hz,

Ar), 130.02 (d, J = 1.5 Hz, Ar), 132.11 (d, J = 2.9 Hz, Ar), 132.28 (d, J = 3.3 Hz,

Ar), 138.68 (d, J = 4.8 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 48.05 (br). HRMS

calcd for C18H36BNaPSi [M+Na]+: m/z = 345.2315; found: 345.2314.
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α-(Di-t-butylphosphino)-α′-(diphenylsilyl)-o-xylene (20a)

Compound 19a (15 mg, 0.03 mmol) and DABCO (4 mg, 0.04 mmol) were combined

in toluene-d8 (0.5 mL) and heated to 60 ◦C overnight. After cooling, the solvent was

evaporated under reduced pressure. The resulting white solid was extracted with

n-hexane (2 × 1 mL), filtered through a plug of alumina, and the solvent evaporated

under reduced pressure, giving desired product 20a. Highly air-sensitive white solid

(9 mg, 69%). 1H NMR δ (500 MHz, C6D6): 1.05 (d, J = 10.5 Hz, 18H, PBut),

2.65 (d, J = 1.5 Hz, 2H, CH2P), 3.10 (dd, J = 3.4, 1.5 Hz, 2H, CH2Si), 5.22 (t,

J = 3.7 Hz, 1J SiH = 197.5 Hz, 1H, SiH), 6.95 (m, 1H, Ar), 7.01 (m, 2H, Ar), 7.13

(m, 6H, SiPh), 7.51 (dd, J = 7.5, 1.2 Hz, 4H, SiPh), 7.53 (d, J = 7.8 Hz, 1H, Ar).
13C NMR δ (125 MHz, C6D6): 20.72 (d, J = 8.6 Hz, CH2Si), 27.17 (d, J = 26.4 Hz,

CH2P), 30.03 (d, J = 13.5 Hz, PCMe3), 31.97 (d, J = 25.0 Hz, PCMe3), 125.13

(s, Ar), 126.07 (d, J = 2.0 Hz, Ar), 128.29 (s, SiPh), 130.01 (s, SiPh), 130.44 (s,

Ar), 131.71 (d, J = 12.5 Hz, Ar), 134.23 (s, SiPh), 135.76 (s, SiPh), 137.33 (d,

J = 2.4 Hz, Ar), 138.45 (d, J = 8.6 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 25.22

(s).

7.3 Platinum Complexes

[PtCl
2
{κ2P,S-o-C

6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}] (21)

Ligand 14a (140 mg, 0.4 mmol) was dissolved in acetone (5 mL), and a solution of

[PtCl2(1,5-hexadiene)] (140 mg, 0.4 mmol) in acetone (5 mL) added with stirring.

After 24 h, the solvent was removed under reduced pressure, and the crude material

recrystallised from a minimum of warm dichloromethane at −20 ◦C giving desired

product 21. Air-stable, pale yellow microcrystals (204 mg, 84%). X-ray diffraction

quality crystals were grown by inwards diffusion of n-hexane into a dichloromethane

solution of complex 21. 1H NMR δ (500 MHz, CD2Cl2): 1.48 (br, 18H, PBut),

1.73 (s, 9H, SBut), 2.99 (br, 1H, CH2P), 4.4–5.2 (br, 3H, CH2S & CH2P), 7.27 (m,

3H, Ar), 7.33 (d, J = 7.5 Hz, 1H, Ar). 13C NMR δ (125 MHz, CD2Cl2): 22.33 (d,

J = 27.3 Hz, CH2P), 29.86 (s, SCMe3), 30.75 (br, PCMe3), 38.86 (d, J = 23.9 Hz,

PCMe3), 40.60 (s, SCMe3), 54.83 (d, J = 2.8 Hz, CH2S), 127.73 (s, Ar), 127.88 (d,

J = 2.0 Hz, Ar), 131.17 (d, J = 2.4 Hz, Ar), 132.50 (d, J = 4.8 Hz, Ar), 132.56

(d, J = 2.9 Hz, Ar), 134.61 (d, J = 5.8 Hz, Ar). 31P NMR δ (121 MHz, CD2Cl2):

28.55 (s, 1J PtP = 3450 Hz). 1H NMR δ (300 MHz, (CD3)2CO): 1.52 (br, 18H,

PBut), 1.77 (s, 9H, SBut), 3.36 (br, 1H, CH2P), 4.65 (br, 1H, CH2P), 4.92 (br,
3J PtH = 74.7 Hz, 2H, CH2S), 7.30 (m, 2H, Ar), 7.44 (m, 1H, Ar), 7.53 (m, 1H, Ar).
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31P NMR δ (121 MHz, (CD3)2CO): 27.69 (s, 1J PtP = 3447 Hz). HRMS calcd for

C20H39Cl2NPPtS [M+NH4]+: m/z = 620.1545; found: 620.1539. Anal. calcd for

C20H35Cl2PPtS: C, 39.7; H, 5.8; S, 5.3; found: C, 39.5; H, 5.8; S, 5.3.

Reaction of o-C6H4(CH
2
PBut

2
)(CH

2
NMe2) (18a) with

[PtCl
2
(1,5-hexadiene)]

Ligand 18a (95 mg, 0.32 mmol) was dissolved in acetone (2 mL), and a solution of

[PtCl2(1,5-hexadiene)] (111 mg, 0.32 mmol) in acetone (3 mL) added with stirring.

After 24 h, the solvent was removed under reduced pressure giving crude proposed

complex 22 as an off-white solid. Attempts at purification were unsuccessful due to

degradation of material. 1H NMR δ (500 MHz, (CD3)2CO): 1.02 (quin, J = 6.1 Hz,
3J PtH = 96 Hz, 1H, H4), 1.43 (d, J = 14.2 Hz, 9H, PBut), 1.56 (m, 2H, H3 & H4),

1.64 (d, J = 14.2 Hz, 9H, PBut), 2.03 (m, 1H, H3), 2.25 (br, 6H, NMe), 2.75 (ddd,

J = 15.1, 12.2, 7.8 Hz, 3J PtH = 95 Hz, 1H, H6), 2.94 (m, 2J PtH = 130 Hz, 1H,

H5), 3.55 (d, J = 12.5 Hz, 2J PtH = 70 Hz, 1H, H1), 3.67 (br, 2H, CH2N), 3.74 (d,

J = 7.8 Hz, 1H, H1), 3.84 (t, J = 13.2 Hz, 1H, H6), 4.06 (t, J = 15.4 Hz, 1H, CH2P),

4.23 (ddd, J = 12.2, 7.6, 4.7 Hz, 2J PtH = 73 Hz, 1H, H2), 4.58 (t, J = 14.4 Hz,

1H, CH2P), 7.36 (m, 2H, Ar), 7.44 (m, 1H, Ar), 7.80 (d, J = 7.8 Hz, 1H, Ar). 13C

NMR δ (125 MHz, (CD3)2CO): 21.02 (d, J = 13.9 Hz, 1J PtC = 738 Hz, C5), 22.08

(br d, J = 35.5 Hz, CH2P), 27.49 (d, J = 15.8 Hz, C6), 28.40 (d, J = 21.1 Hz,

2 × PCMe3), 31.54 (s, C4), 34.23 (s, C3), 36.72 (d, J = 37.0 Hz, PCMe3), 36.98 (d,

J = 38.8 Hz, PCMe3), 45.40 (br, NMe), 56.86 (s, 1J PtC = 267 Hz, C1), 64.24 (br,

CH2N), 84.70 (s, 1J PtC = 268 Hz, C2), 128.82 (d, J = 1.4 Hz, Ar), 128.88 (br, Ar),

131.65 (d, J = 7.5 Hz, Ar), 132.55 (d, J = 3.4 Hz, Ar), 133.28 (br, Ar), 138.97 (s,

Ar). 31P NMR δ (121 MHz, (CD3)2CO): 40.35 (s, 3J PtP = 355 Hz). HRMS calcd

for C24H41NPPt [M−Cl2H]+: m/z = 568.2603; found: 568.2608. HRMS calcd for

C24H42ClNPPt [M−Cl]+: m/z = 604.2370; found: 604.2380.

Reaction of o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SOBut) (16) with

[PtCl
2
(1,5-hexadiene)]

Ligand 16 (20 mg, 0.06 mmol) was dissolved in acetone-d6 (0.4 mL) in an NMR

tube, and a solution of [PtCl2(1,5-hexadiene)] (20 mg, 0.06 mmol) in acetone-d6

(0.4 mL) added. Reaction was complete after 24 h (quantitative conversion). 31P

NMR δ (121 MHz, (CD3)2CO): 39.77 (s, 3J PtP = 363 Hz), 41.18 (s, 3J PtP = 358 Hz).
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[PtCl
2
{κ2P,N -o-C

6
H

4
(CH

2
PBut

2
)(CH

2
NMe

2
)}] (23)

Ligand 18a (40 mg, 0.14 mmol) was dissolved in acetone-d6 (0.4 mL) in an NMR

tube, and a solution of cis-[PtCl2(NCBut)2] (59 mg, 0.14 mmol) in acetone-d6

(1.0 mL) added. The resulting solution was heated to 40 ◦C for 24 h (>95%

conversion). 1H NMR δ (500 MHz, (CD3)2CO): 1.56 (br d, J = 11.2 Hz, 9H,

PBut), 1.64 (br d, J = 10.7 Hz, 9H, PBut), 3.17 (br s, 3H, NMe), 3.39 (br s, 3H,

NMe), 3.59 (br, 1H, CH2P), 3.82 (br, 2H, CH2P & CH2N), 4.49 (br, 1H, CH2N),

7.34 (t, J = 7.6 Hz, 1H, Ar), 7.44 (m, 2H, Ar), 7.60 (d, J = 7.8 Hz, 1H, Ar). 13C

NMR δ (125 MHz, (CD3)2CO): 24.66 (d, J = 21.1 Hz, CH2P), 30.30 (br, PCMe3),

33.24 (br, PCMe3), 39.70 (br, 2 × PCMe3), 52.99 (br s, NMe), 56.53 (br s, NMe),

71.23 (s, CH2N), 127.63 (d, J = 2.4 Hz, Ar), 130.02 (d, J = 2.0 Hz, Ar), 131.58 (d,

J = 5.3 Hz, Ar), 133.41 (d, J = 3.9 Hz, Ar), 135.14 (d, J = 2.9 Hz, Ar), 137.63 (d,

J = 3.9 Hz, Ar). 31P NMR δ (121 MHz, (CD3)2CO): 17.16 (s, 1J PtP = 3967 Hz).

HRMS calcd for C18H32ClNPPt [M−Cl]+: m/z = 522.1588; found: 522.1588.

[PtHCl{κ1P-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}

2
] (24)

Ligand 14a (25 mg, 0.074 mmol) and diethylamine–borane (3 mg, 0.037 mmol)

were dissolved in acetone-d6 (0.4 mL) in an NMR tube. A solution of [PtCl2(1,5-

hexadiene)] (13 mg, 0.037 mmol) in acetone-d6 (0.4 mL) was added, and solution left

to react overnight (87% conversion). 1H NMR δ (500 MHz, (CD3)2CO): −17.43 (t,

J = 12.2 Hz, 1J PtH = 1247.7 Hz, 1H, PtH), 1.39 (vt, 3J PH + 5J PH = 12.9 Hz, 36H,

PBut), 1.43 (s, 18H, SBut), 3.99 (s, 4H, CH2S), 4.02 (vt, 2J PH + 4J PH = 6.7 Hz,
3J PtH = 40.6 Hz, 4H, CH2P), 7.12 (m, 4H, Ar), 7.31 (m, 2H, Ar), 8.92 (m, 2H, Ar).
13C NMR δ (125 MHz, (CD3)2CO): 21.74 (vt, 1J PC + 3J PC = 22.1 Hz, CH2P),

30.34 (vt, 2J PC + 4J PC = 4.4 Hz, PCMe3), 31.04 (s, SCMe3), 32.49 (s, CH2S), 36.86

(vt, 1J PC + 3J PC = 23.5 Hz, PCMe3), 43.19 (s, SCMe3), 126.77 (s, Ar), 126.96

(s, Ar), 131.44 (s, Ar), 133.88 (vt, 3J PC + 5J PC = 5.3 Hz, Ar), 135.94 (s, Ar),

136.48 (vt, 2J PC + 4J PC = 5.3 Hz, Ar). 31P NMR δ (121 MHz, (CD
3
)

2
CO): 59.69

(s, 1J PtP = 2848 Hz). HRMS calcd for C40H71P2PtS2 [M−Cl]+: m/z = 871.4099;

found: 871.4100.

[PtH
2
{κ1P-o-C

6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}

2
] (25)

Ligand 14a (163 mg, 0.48 mmol) and [PtCl2(1,5-hexadiene)] (83 mg, 0.24mmol)

were dissolved in ethanol (15 mL) and stirred at room temperature for 24 h.

Sodium borohydride (91 mg, 2.4 mmol) was added, and stirring continued for

another 24 h. Solvent was removed under reduced pressure, and the resulting

off-white solid was extracted with toluene (40 mL). The toluene was removed
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under reduced pressure, and the crude material recrystallised from a minimum

of 10:1 ethanol/toluene at −20 ◦C giving desired product 25. Air-stable, X-ray

diffraction quality colourless crystals (70 mg, 33%). 1H NMR δ (500 MHz, C6D6):

−2.83 (t, J = 16.7 Hz, 1J PtH = 798.7 Hz, 2H, PtH), 1.28 (s, 18H, SBut),

1.46 (vt, 3J PH + 5J PH = 12.7 Hz, 36H, PBut), 3.91 (s, 4H, CH2S), 3.98 (vt,
2J PH + 4J PH = 6.5 Hz, 3J PtH = 40.6 Hz, 4H, CH2P), 7.06 (t, J = 7.3 Hz, 2H,

Ar), 7.28 (d, J = 7.3 Hz, 2H, Ar), 9.03 (d, J = 7.5 Hz, 2H, Ar), other Ar obscured

by solvent. 13C NMR δ (125 MHz, C6D6): 29.43 (vt, 1J PC + 3J PC = 24.2 Hz,

CH2P), 30.28 (vt, 2J PC + 4J PC = 5.1 Hz, 3J PtC = 21.6 Hz, PCMe3), 30.96 (s,

SCMe3), 32.84 (s, CH2S), 36.01 (vt, 1J PC + 3J PC = 24.0 Hz, 2J PtC = 33.0 Hz,

PCMe3), 42.52 (s, SCMe3), 126.53 (s, Ar), 126.67 (s, Ar), 131.05 (s, Ar), 132.34

(vt, 3J PC + 5J PC = 6.5 Hz, Ar), 136.51 (vt, 2J PC + 4J PC = 5.3 Hz, Ar), 137.09

(s, Ar). 31P NMR δ (121 MHz, C6D6): 68.26 (s, 1J PtP = 2940 Hz). IR (KBr

disk): 2384 (PtH), 2895–3022 cm-1 (CH). HRMS calcd for C40H71P2PtS2 [M−H]+:

m/z = 871.4099; found: 871.4097. Anal. calcd for C40H72P2PtS2: C, 54.8; H, 8.5;

S, 7.3; found: C, 55.0; H, 8.5; S, 7.1.

[PtH{κ1P-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}{κ2P,S-o-C

6
H

4
(CH

2
PBut

2
)

(CH
2
SBut)}]CH(SO

2
CF

3
)

2
(26)

Method 1: Complex 25 (40 mg, 0.046 mmol) and CH2(SO2CF3)2 (13 mg,

0.046 mmol) were combined in acetone-d6 (0.8 mL) in an NMR tube. The tube was

shaken until all crystals had dissolved and bubbling had ceased. Removal of solvent

under reduced pressure gave desired product 26. Air-stable off-white powder

(quantitative conversion). Method 2: To a suspension of complex 36 (235 mg,

0.27 mmol) in acetone (5 mL) was added a solution of CH2(SO2CF3)2 (78 mg,

0.28 mmol) in acetone (5 mL). Reaction was stirred until all solid had dissolved,

and solvent was removed under reduced pressure leaving a foam. Trituration of

material in toluene (3 × 1 mL) gave impure desired product 26. Air-stable pale

brown powder (170 mg, 55%). 1H NMR δ (500 MHz, (CD
3
)
2
CO): −14.88 (t,

J = 13.9 Hz, 1J PtH = 1049.6 Hz, 1H, PtH), 1.32 (d, J = 13.5 Hz, 18H, monodentate

PBut), 1.40 (s, 9H, monodentate SBut), 1.55 (m, 27H, bidentate PBut & bidentate

SBut), 3.75 (s, 1H, –CH), 3.98 (m, 4H, monodentate CH2P & monodentate CH2S),

4.12 (d, J = 7.1 Hz, 2H, bidentate CH2P), 4.82 (s, 3J PtH = 27.6 Hz, 2H, bidentate

CH2S), 7.23 (m, 1H, monodentate Ar), 7.26 (m, 1H, monodentate Ar), 7.34 (m,

2H, bidentate Ar), 7.41 (d, J = 7.4 Hz, 1H, monodentate Ar), 7.53 (d, J = 7.1 Hz,

1H, bidentate Ar), 7.56 (d, J = 6.9 Hz, 1H, bidentate Ar), 8.32 (d, J = 6.3 Hz,

1H, monodentate Ar). 13C NMR δ (150 MHz, (CD3)2CO): 25.18 (d, J = 18.5 Hz,

bidentate CH2P), 26.65 (d, J = 18.4 Hz, monodentate CH2P), 30.49 (d, J = 20.3 Hz,

monodentate PCMe3 & bidentate PCMe3), 31.04 (s, monodentate SCMe3), 31.26
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(s, bidentate SCMe3), 32.35 (s, monodentate CH2S), 36.83 (s, bidentate CH2S),

38.87 (d, J = 24.3 Hz, 2J PtC = 49.8 Hz, bidentate PCMe3), 39.53 (d, J = 24.2 Hz,
2J PtC = 48.6 Hz, monodentate PCMe3), 43.53 (s, monodentate SCMe3), 55.09

(s, bidentate SCMe3), 55.30 (sept, J = 2.8 Hz, –CH), 122.25 (q, J = 326.0 Hz,

CF3), 126.88 (s, monodentate Ar), 128.35 (s, monodentate Ar), 128.76 (s, bidentate

Ar), 128.98 (s, bidentate Ar), 132.16 (s, monodentate Ar), 132.40 (d, J = 2.5 Hz,

bidentate Ar), 133.13 (s, monodentate Ar & bidentate Ar), 133.81 (s, monodentate

Ar), 134.12 (d, J = 1.9 Hz, bidentate Ar), 137.06 (s, bidentate Ar), 138.12 (d,

J = 4.7 Hz, monodentate Ar). 31P NMR δ (121 MHz, (CD3)2CO): 44.43 (d,

J = 324 Hz, 1J PtP = 2740 Hz, bidentate P), 54.52 (d, J = 324 Hz, 1J PtP = 2770 Hz,

monodentate P). 19F NMR δ (282 MHz, (CD3)2CO): −81.91 (s). HRMS calcd for

C40H71P2PtS2 [M−CH(SO2CF3)2]+: m/z = 871.4099; found: 871.4091. Anal. calcd

for C43H72F6O4P2PtS4: C, 44.8; H, 6.3; S, 11.1; found: C, 45.1; H, 6.3; S, 11.1.

[PtH(CO){κ1P-o-C6H4(CH
2
PBut

2
)(CH

2
SBut)}

2
]CH(SO

2
CF3)

2
(27)

Complex 26 (20 mg, 0.017 mmol) was dissolved in acetone-d6 (0.5 mL) in an NMR

tube and carbon monoxide gas was bubbled through the solution for 1 min. Removal

of solvent under reduced pressure gave desired product 27. Air-stable yellow oil

(quantitative conversion). 1H NMR δ (500 MHz, (CD3)2CO): −5.36 (t, J = 11.4 Hz,
1J PtH = 843.3 Hz, 1H, PtH), 1.38 (s, 18H, SBut), 1.55 (vt, 3J PH + 5J PH = 14.9 Hz,

36H, PBut), 3.77 (br, 1H, –CH), 3.93 (s, 4H, CH2S), 4.00 (vt, 2J PH + 4J PH = 7.1 Hz,
3J PtH = 28.1 Hz, 4H, CH2P), 7.24 (t, J = 7.4 Hz, 2H, Ar), 7.28 (t, J = 7.4 Hz,

2H, Ar), 7.42 (d, J = 7.4 Hz, 2H, Ar), 7.63 (d, J = 7.6 Hz, 2H, Ar). 13C NMR

δ (125 MHz, (CD3)2CO): 26.64 (vt, 1J PC + 3J PC = 24.0 Hz, 2J PtC = 12.0 Hz,

CH2P), 30.06 (vt, 2J PC + 4J PC = 3.8 Hz, PCMe3), 31.05 (s, SCMe3), 32.92 (s,

CH2S), 39.12 (vt, 1J PC + 3J PC = 25.0 Hz, 2J PtC = 34.6 Hz, PCMe3), 43.85 (s,

SCMe3), 55.26 (br, –CH), 122.21 (q, J = 325.8 Hz, CF3), 128.18 (s, Ar), 128.98 (s,

Ar), 132.43 (vt, 3J PC + 5J PC = 5.8 Hz, Ar), 132.84 (s, Ar), 135.43 (s, Ar), 138.37

(vt, 2J PC + 4J PC = 5.7 Hz, Ar), 184.50 (t, J = 7.0 Hz, 1J PtC = 1014.6 Hz, CO). 31P

NMR δ (121 MHz, (CD3)2CO): 68.38 (s, 1J PtP = 2415 Hz). 19F NMR δ (282 MHz,

(CD3)2CO): −81.86 (s). IR (film from (CD3)2CO): 2070 (CO), 2869–3069 cm-1

(CH). HRMS calcd for C41H71OP2PtS2 [M−CH(SO2CF3)2]
+: m/z = 899.4048;

found: 899.4055.

[PtH(NCMe){κ1P-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}

2
]CH(SO

2
CF

3
)

2
(28)

Complex 26 (20 mg, 0.017 mmol) was dissolved in acetone-d6 (0.5 mL) in an NMR

tube and acetonitrile (10 µL, 0.19 mmol) was added. Removal of solvent under

reduced pressure gave desired product 28. Air-stable yellow oil (quantitative conver-

152



sion). 1H NMR δ (500 MHz, (CD3)2CO): −17.94 (t, J = 11.9 Hz, 1J PtH = 1169.5 Hz,

1H, PtH), 1.43 (s, 18H, SBut), 1.49 (vt, 3J PH + 5J PH = 14.2 Hz, 36H, PBut), 1.90

(s, 4J PtH = 4.9 Hz, NCMe), 3.78 (s, 1H, –CH), 3.89 (vt, 2J PH + 4J PH = 6.9 Hz,
3J PtH = 27.0 Hz, 4H, CH2P), 4.05 (s, 4H, CH2S), 7.26 (m, 4H, Ar), 7.42 (m, 2H, Ar),

8.20 (m, 2H, Ar). 13C NMR δ (125 MHz, (CD3)2CO): 3.23 (s, NCMe), 24.45 (vt,
1J PC + 3J PC = 22.5 Hz, CH2P), 30.21 (vt, 2J PC + 4J PC = 4.3 Hz, PCMe3), 31.01

(s, SCMe3), 32.57 (s, CH2S), 37.85 (vt, 1J PC + 3J PC = 25.4 Hz, PCMe3), 43.61 (s,

SCMe3), 55.16 (sept, J = 2.8 Hz, –CH), 122.17 (q, J = 325.8 Hz, CF3), 127.33 (s,

Ar), 128.06 (s, Ar), 132.18 (s, Ar), 132.50 (vt, 3J PC + 5J PC = 6.7 Hz, Ar), 135.07 (s,

Ar), 137.89 (vt, 2J PC + 4J PC = 6.3 Hz, Ar), NCMe not seen. 31P NMR δ (121 MHz,

(CD3)2CO): 56.63 (s, 1J PtP = 2732 Hz). 19F NMR δ (282 MHz, (CD3)2CO): −81.93

(s). HRMS calcd for C42H74NP2PtS2 [M−CH(SO2CF3)2]
+: m/z = 912.4377; found:

912.4365.

[PtH(pta){κ1P-o-C6H4(CH
2
PBut

2
)(CH

2
SBut)}

2
]CH(SO

2
CF3)

2
(29)

Complex 26 (27 mg, 0.023 mmol) and 1,3,5-triaza-7-phosphaadamantane (4 mg,

0.023 mmol) were combined in acetone-d6 (0.8 mL) in an NMR tube, and sonicated

until all crystals had dissolved. Removal of solvent under reduced pressure gave

desired product 29. Air-stable clear oil (quantitative conversion). 1H NMR δ

(500 MHz, (CD3)2CO): −7.97 (dt, J = 153.6, 15.0 Hz, 1J PtH = 728.0 Hz, 1H,

PtH), 1.44 (s, 18H, SBut), 1.54 (vt, 3J PH + 5J PH = 14.0 Hz, 36H, PBut), 3.75 (s,

1H, –CH), 4.01 (s, 6H, PCH2N), 4.04 (d, J = 12.5 Hz, 3H, NCH2N), 4.10 (s, 4H,

CH2S), 4.24 (br, 4H, ArCH2P), 4.29 (d, J = 13.0 Hz, 3H, NCH2N), 7.35 (m, 4H, Ar),

7.49 (m, 2H, Ar), 8.15 (m, 2H, Ar). 13C NMR δ (125 MHz, (CD3)2CO): 27.65 (vt,
1J PC + 3J PC = 23.1 Hz, ArCH2P), 31.01 (br, PCMe3), 31.08 (s, SCMe3), 32.22 (s,

CH2S), 39.62 (vtd, 1J PC + 3J PC = 27.4 Hz, J = 1.9 Hz, 2J PtC = 43.7 Hz, PCMe3),

43.70 (s, SCMe3), 53.58 (d, J = 11.1 Hz, PCH2N), 55.33 (sept, J = 2.9 Hz, –CH),

72.72 (d, J = 6.7 Hz, NCH2N), 122.26 (q, J = 325.4 Hz, CF3), 127.34 (s, Ar), 128.80

(s, Ar), 131.31 (vt, 3J PC + 5J PC = 9.1 Hz, Ar), 132.55 (s, Ar), 134.33 (s, Ar), 138.77

(vt, 2J PC + 4J PC = 7.2 Hz, Ar). 31P NMR δ (121 MHz, (CD3)2CO): −89.77 (t,

J = 18 Hz, 1J PtP = 1942 Hz, pta), 47.33 (d, J = 18 Hz, 1J PtP = 2553 Hz, PBut).
19F NMR δ (282 MHz, (CD3)2CO): −81.95 (s). HRMS calcd for C46H83N3P3PtS2

[M−CH(SO2CF3)2]+: m/z = 1028.4877; found: 1028.4868.

Reaction of [PtCl
2
{κ2P,S-o-C

6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}] (21) with pta

Complex 21 (19 mg, 0.03 mmol) was dissolved in chloroform-d (0.4 mL) and a

solution of 1,3,5-triaza-7-phosphaadamantane (5 mg, 0.03 mmol) in chloroform-d

(0.4 mL) added, and the reaction was followed by 1H and 31P NMR spectroscopy.
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After 10 min, a mixture of complex 21, ligand 14a, [PtCl2(pta)2] and complex 30

was observed. After 19 h, all [PtCl2(pta)
2
] had crystallised out of solution and

complex 31 was also observed.

trans-[PtCl2(pta){κ1 P-o-C6H4(CH2PBut
2)(CH2SBut)}](30)

Selected 1H NMR δ (500 MHz, CDCl3): 8.37 (d, J = 8.0 Hz, 1H, Ar). 31P NMR

δ (121 MHz, CDCl3): −62.26 (d, J = 439 Hz, 1J PtP = 2294 Hz, pta), 35.30 (d,

J = 439 Hz, 1J PtP = 2578 Hz, PBut).

cis-[PtCl2(pta){κ1 P-o-C6H4(CH2PBut
2)(CH2SBut)}](31)

Selected 1H NMR δ (500 MHz, CDCl3): 8.78 (d, J = 7.0 Hz, 1H, Ar). 31P NMR

δ (121 MHz, CDCl3): −65.56 (d, J = 12 Hz, 1J PtP = 3359 Hz, pta), 27.01 (d,

J = 12 Hz, 1J PtP = 3578 Hz, PBut).

[Pt(ethene){κ2P,S-o-C6H4(CH
2
PBut

2
)(CH

2
SBut)}] (32)

Ligand 14a (30 mg, 0.09 mmol) was dissolved in benzene-d6 (0.4 mL) in an NMR

tube, and a solution of [Pt(ethene)3] (25 mg, 0.09 mmol) in benzene-d6 (0.4 mL)

added. Reaction was complete after 10 min (>90% conversion). 1H NMR δ

(500 MHz, C6D6): 1.23 (d, J = 12.4 Hz, 18H, PBut), 1.34 (s, 9H, SBut), 2.04

(td, J = 10.5, 8.1 Hz, 2J PtH = 53.5 Hz, 2H, −−CH2), 2.49 (td, J = 10.5, 4.4 Hz,
2J PtH = 81.6 Hz, 2H, −−CH2), 3.32 (d, J = 8.1 Hz, 3J PtH = 21.9 Hz, 2H, CH2P),

4.29 (s, 3J PtH = 32.0 Hz, 2H, CH2S), 6.98 (t, J = 7.6 Hz, 1H, Ar), 7.03 (t,

J = 7.6 Hz, 1H, Ar), 7.15 (m, 2H, Ar). 13C NMR δ (125 MHz, C6D6): 27.37

(d, J = 36.5 Hz, 1J PtC = 205.9 Hz, −−CH2), 29.14 (d, J = 6.2 Hz, 1J PtC = 331.1 Hz,
−−CH2), 29.51 (d, J = 3.9 Hz, 2J PtC = 8.6 Hz, CH2P), 29.74 (s, 3J PtC = 15.8 Hz,

SCMe3), 30.18 (d, J = 6.2 Hz, 3J PtC = 19.2 Hz, PCMe3), 37.01 (d, J = 13.4 Hz,
2J PtC = 57.1 Hz, PCMe3), 40.07 (d, J = 3.8 Hz, 2J PtC = 32.6 Hz, CH2S), 49.90

(d, J = 4.3 Hz, 2J PtC = 10.6 Hz, SCMe3), 126.90 (d, J = 2.4 Hz, Ar), 126.95 (d,

J = 1.5 Hz, Ar), 131.69 (d, J = 4.3 Hz, Ar), 132.41 (d, J = 1.9 Hz, Ar), 136.69 (d,

J = 3.4 Hz, Ar), 139.27 (d, J = 0.9 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 59.37

(s, 1J PtP = 4067 Hz).

[Pt(ethene){κ2P,S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
S(O)But)}] (33)

Ligand 16 (45 mg, 0.13 mmol) was dissolved in benzene-d6 (0.5 mL) in an NMR tube,

and a solution of [Pt(ethene)3] (36 mg, 0.13 mmol) in benzene-d6 (0.5 mL) added.

Reaction was complete after 10 min (>95% conversion). 1H NMR δ (500 MHz,

C6D6): 1.11 (d, J = 12.7 Hz, 9H, PBut), 1.13 (d, J = 11.9 Hz, 9H, PBut), 1.34

(s, 9H, SBut), 2.13 (m, 2J PtH = 55.2 Hz, 1H, −−CH2), 2.32 (m, 1H, −−CH2), 2.42
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(m, 1H, −−CH2), 2.50 (m, 2J PtH = 74.8 Hz, 1H, −−CH2), 3.23 (dd, J = 14.0, 6.1 Hz,

1H, CH2P), 3.41 (dd, J = 14.0, 10.7 Hz, 3J PtH = 48.0 Hz, 1H, CH2P), 4.20 (br d,

J = 11.6 Hz, 1H, CH2S), 4.39 (d, J = 11.6 Hz, 3J PtH = 22.0 Hz, 1H, CH2S), 7.04 (m,

2H, Ar), 7.13 (m, 1H, Ar), 7.37 (m, 1H, Ar). 13C NMR δ (125 MHz, C6D6): 23.63

(s, SCMe3), 29.17 (d, J = 7.7 Hz, CH2P), 29.99 (d, J = 6.2 Hz, 3J PtC = 19.7 Hz,

PCMe3), 30.31 (d, J = 5.7 Hz, 3J PtC = 17.8 Hz, PCMe3), 30.46 (d, J = 32.1 Hz,
1J PtC = 199.1 Hz, −−CH2), 32.45 (d, J = 7.2 Hz, 1J PtC = 284.5 Hz, −−CH2), 36.58

(d, J = 14.9 Hz, 2J PtC = 48.0 Hz, PCMe3), 37.43 (d, J = 13.4 Hz, 2J PtC = 50.9 Hz,

PCMe3), 58.34 (br s, CH2S), 61.05 (d, J = 6.2 Hz, 2J PtC = 51.8 Hz, SCMe3), 126.56

(d, J = 2.9 Hz, Ar), 127.66 (d, J = 1.9 Hz, Ar), 130.83 (d, J = 2.9 Hz, Ar), 131.58

(d, J = 4.8 Hz, Ar), 135.54 (s, Ar), 138.66 (s, Ar). 31P NMR δ (121 MHz, C6D6):

54.79 (s, 1J PtP = 3861 Hz).

[Pt(nb){κ2P,S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}] (34)

Ligand 14a (170 mg, 0.50 mmol) was dissolved in toluene (10 mL), and a solution

of [Pt(nb)3] (240 mg, 0.50 mmol) in toluene (10 mL) added with stirring. After

2.5 h, the brown solution was filtered through a plug of alumina, which was washed

with further toluene (10 mL). Solvent was removed under reduced pressure and

the crude material dissolved in toluene (9 mL). n-Hexane (18 mL) was added and

solution cooled to −20 ◦C to crystallise desired product 34. Air-stable pale brown

crystals (221 mg, 92%). X-ray diffraction quality crystals were grown by cooling

of a benzene-d6 solution of complex 34 to 4 ◦C. 1H NMR δ (600 MHz, C6D6):

0.50 (d, J = 7.5 Hz, 1H, bridge-CH2), 1.26 (d, J = 12.3 Hz, 9H, PBut), 1.29 (d,

J = 12.5 Hz, 9H, PBut), 1.42 (s, 9H, SBut), 1.47 (m, 3H, bridge-CH2 & CH2), 1.78

(m, 1H, CH2), 1.84 (m, 1H, CH2), 2.05 (t, J = 5.1 Hz, 2J PtH = 62.3 Hz, 1H, −−CH),

2.56 (t, J = 6.0 Hz, 2J PtH = 75.6 Hz, 1H, −−CH), 2.95 (br s, 1H, CH), 2.98 (br s, 1H,

CH), 3.29 (dd, J = 7.9, 3.3 Hz, 3J PtH = 22.0 Hz, 2H, CH2P), 4.25 (d, J = 10.6 Hz,
3J PtH = 29.4 Hz, 2H, CH2S), 6.98 (m, 2H, Ar), 7.12 (br d, J = 7.5 Hz, 2H, Ar). 13C

NMR δ (150 MHz, C6D6): 29.66 (s, 3J PtC = 14.6 Hz, SCMe3 & CH2P obscured),

30.08 (br s, PCMe3), 32.39 (s, 3J PtC = 49.7 Hz, CH2), 32.46 (s, 3J PtC = 50.2 Hz,

CH2), 36.67 (d, J = 12.7 Hz, 2J PtC = 57.8 Hz, PCMe3), 37.11 (d, J = 13.7 Hz,
2J PtC = 61.2 Hz, PCMe3), 39.71 (d, J = 3.7 Hz, 2J PtC = 32.8 Hz, CH2S), 40.88

(s, 3J PtC = 56.4 Hz, bridge-CH2), 44.62 (s, 2J PtC = 17.4 Hz, CH), 44.78 (br s,

CH), 49.15 (br d, J = 44.1 Hz, 1J PtC = 324.9 Hz, −−CH), 49.20 (br d, J = 7.2 Hz,
1J PtC = 469.8 Hz, −−CH), 49.59 (d, J = 5.1 Hz, 2J PtC = 35.0 Hz, SCMe3), 126.88

(d, J = 3.4 Hz, Ar), 126.90 (d, J = 2.8 Hz, Ar), 131.60 (d, J = 3.9 Hz, Ar), 132.20

(d, J = 2.0 Hz, Ar), 136.86 (d, J = 3.1 Hz, Ar), 139.21 (d, J = 1.4 Hz, Ar). 31P

NMR δ (121 MHz, C6D6): 58.33 (s, 1J PtP = 3868 Hz). HRMS calcd for C20H36PPtS
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[M−C7H9]
+: m/z = 533.1902; found: 533.1893. Anal. calcd for C27H45PPtS: C,

51.7; H, 7.2; S, 5.1; found: C, 51.7; H, 7.4; S, 4.8.

[Pt(nb){κ2P,S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
S(O)But)}] (35)

Ligand 16 (19 mg, 0.05 mmol) was dissolved in benzene-d6 (0.4 mL) in an NMR

tube, and a solution of [Pt(nb)3] (24 mg, 0.05 mmol) in benzene-d6 (0.4 mL) added.

Reaction was complete after 5 min (quantitative conversion). Selected 1H NMR δ

(500 MHz, C6D6): 0.38 (d, J = 8.0 Hz, 1H, bridge-CH2), 0.56 (d, J = 8.5 Hz, 1H,

bridge-CH2), 1.38 (s, 9H, S(O)But), 1.40 (s, 9H, S(O)But), 2.52 (t, J = 6.5 Hz,
2J PtH = 77.0 Hz, 1H, −−CH), 2.63 (t, J = 6.5 Hz, 2J PtH = 72.0 Hz, 1H, −−CH). 31P

NMR δ (121 MHz, C6D6): 53.71 (s, 1J PtP = 3668 Hz), 54.40 (s, 1J PtP = 3708 Hz).

[Pt{κ1P-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}

2
] (36)

Ligand 14a (0.20 g, 0.58 mmol) was dissolved in toluene (5 mL), a solution of

[Pt(nb)3] (0.13 g, 0.27 mmol) in toluene (5 mL) added and the resulting pale

brown solution stirred overnight. Removal of solvent under reduced pressure gave

complex 36. Highly air-sensitive off-white solid (quantitative conversion). 1H NMR

δ (500 MHz, C6D6): 1.28 (s, 18H, SBut), 1.46 (vt, 3J PH + 5J PH = 12.4 Hz, 36H,

PBut), 3.49 (vt, 2J PH + 4J PH = 6.1 Hz, 3J PtH = 43.3 Hz, 4H, CH2P), 4.32 (s,

4H, CH2S), 7.07 (t, J = 7.3 Hz, 2H, Ar), 7.11 (t, J = 7.3 Hz, 2H, Ar), 7.27 (d,

J = 7.1 Hz, 2H, Ar), 9.06 (d, J = 7.5 Hz, 2H, Ar). 13C NMR δ (125 MHz, C6D6):

25.93 (vt, 1J PC + 3J PC = 15.8 Hz, CH2P), 30.91 (vt, 2J PC + 4J PC = 7.2 Hz,

PCMe3), 31.13 (s, SCMe3), 33.84 (s, CH2S), 37.14 (vt, 1J PC + 3J PC = 20.2 Hz,

PCMe3), 42.60 (s, SCMe3), 126.20 (s, Ar), 126.67 (s, Ar), 131.01 (s, Ar), 134.26

(vt, 3J PC + 5J PC = 7.6 Hz, Ar), 137.23 (vt, 2J PC + 4J PC = 3.9 Hz, Ar), 138.14 (s,

Ar). 31P NMR δ (121 MHz, C6D6): 76.13 (s, 1J PtP = 4397 Hz). HRMS calcd for

C40H71P2PtS2 [M+H]+: m/z = 871.4099; found: 871.4092.

[Pt{κ1P-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
S(O)But)}

2
] (37)

Ligand 16 (35 mg, 0.10 mmol) was dissolved in benzene-d6 (0.4 mL) in an NMR

tube, and a solution of [Pt(1,5-cyclooctadiene)2] (21 mg, 0.05 mmol) in benzene-d6

(0.4 mL) added. Reaction was complete after 10 min (quantitative conversion).
1H NMR δ (500 MHz, C6D6): 1.07 (s, 18H, SBut), 1.09 (s, 18H, SBut), 1.40

(vt, 3J PH + 5J PH = 13.4 Hz, 18H, PBut), 1.43 (vt, 3J PH + 5J PH = 13.0 Hz,

18H, PBut), 1.46 (vt, 3J PH + 5J PH = 12.5 Hz, 36H, 2 × PBut), 3.36 (dvt,

J = 14.6 Hz, 2J PH + 4J PH = 6.5 Hz, 4H, 2 × CH2P), 3.70 (dvt, J = 13.9 Hz,
2J PH + 4J PH = 5.8 Hz, 2H, CH2P), 3.77 (d, J = 12.9 Hz, 2H, CH2S), 3.79 (dvt,
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J = 12.5 Hz, 2J PH + 4J PH = 5.9 Hz, 2H, CH2P), 4.12 (d, J = 12.9 Hz, 2H, CH2S),

4.53 (d, J = 13.0 Hz, 2H, CH2S), 4.73 (d, J = 12.9 Hz, 2H, CH2S), 7.09 (m, 8H,

Ar), 7.18 (m, 2H, Ar), 7.23 (m, 2H, Ar), 8.48 (m, 2H, Ar), 8.52 (m, 2H, Ar). 31P

NMR δ (121 MHz, C6D6): 76.45 (s, 1J PtP = 4408 Hz), 76.97 (s, 1J PtP = 4424 Hz).

[Pt{κ1P-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
NMe

2
)}

2
] (38)

Ligand 18a (23 mg, 0.08 mmol) was dissolved in benzene-d6 (0.4 mL) in an NMR

tube, and a solution of [Pt(nb)3] (19 mg, 0.04 mmol) in benzene-d6 (0.4 mL)

added. Reaction was complete after 20 min (quantitative conversion). 1H NMR

δ (500 MHz, C6D6): 1.49 (vt, 3J PH + 5J PH = 12.4 Hz, 36H, PBut), 2.11 (s, 12H,

NMe), 3.60 (vt, 2J PH + 4J PH = 6.3 Hz, 3J PtH = 49.8 Hz, 4H, CH2P), 3.74 (s, 4H,

CH2N), 7.12 (m, 4H, Ar), 7.23 (m, 2H, Ar), 9.64 (d, J = 7.8 Hz, 2H, Ar). 13C

NMR δ (125 MHz, C6D6): 24.71 (vt, 1J PC + 3J PC = 17.3 Hz, CH2P), 30.80 (vt,
2J PC + 4J PC = 7.1 Hz, PCMe3), 37.08 (vt, 1J PC + 3J PC = 20.7 Hz, PCMe3), 45.44

(s, NMe), 64.79 (s, CH2N), 125.54 (s, Ar), 126.97 (s, Ar), 130.93 (s, Ar), 134.52

(vt, 3J PC + 5J PC = 8.2 Hz, Ar), 137.72 (vt, 2J PC + 4J PC = 4.8 Hz, Ar), 139.40 (s,

Ar). 31P NMR δ (121 MHz, C6D6): 75.41 (s, 1J PtP = 4373 Hz). HRMS calcd for

C36H65N2P2Pt [M+H]+: m/z = 781.4250; found: 781.4246.

[PtH{CH(SO
2
CF

3
)

2
}{κ2P,S-o-C

6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}] (39)

Complex 34 (23 mg, 0.04 mmol) was dissolved in benzene-d6 (0.5 mL) in an NMR

tube, and a solution of CH2(SO2CF3)2 (10 mg, 0.04 mmol) in benzene-d6 (0.4 mL)

added. Reaction was complete after 15 min (quantitative conversion). 1H NMR δ

(500 MHz, C6D6): −14.22 (d, J = 16.5 Hz, 1J PtH = 1092.9 Hz, 1H, PtH), 1.12 (d,

J = 14.1 Hz, 18H, PBut), 1.25 (s, 9H, SBut), 3.02 (d, J = 10.5 Hz, 3J PtH = 31.8 Hz,

2H, CH2P), 3.77 (d, J = 1.7 Hz, 3J PtH = 31.7 Hz, 2H, CH2S), 5.84 (d, J = 6.1 Hz,
2J PtH = 66.0 Hz, 1H, PtCH), 6.95 (m, 4H, Ar). 13C NMR δ (125 MHz, C6D6): 23.93

(d, J = 15.3 Hz, CH2P), 29.70 (d, J = 3.8 Hz, 3J PtC = 25.0 Hz, PCMe3), 30.41

(s, SCMe3), 36.33 (s, CH2S), 37.26 (d, J = 27.8 Hz, 2J PtC = 60.0 Hz, PCMe3),

52.05 (s, SCMe3), 62.28 (d, J = 63.8 Hz, 1J PtC = 492.5 Hz, PtCH), 120.27 (q,

J = 329.2 Hz, CF3), 131.43 (d, J = 4.8 Hz, Ar), 132.51 (d, J = 2.4 Hz, Ar), 132.91

(d, J = 3.9 Hz, Ar), 135.89 (d, J = 2.4 Hz, Ar), other two Ar obscured by solvent.
31P NMR δ (121 MHz, C6D6): 52.28 (s, 1J PtP = 3678 Hz). 19F NMR δ (282 MHz,

C6D6): −75.57 (s).
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[Pt(norbornyl){κ2P,S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}]BF

4
(40)

Complex 34 (25 mg, 0.04 mmol) dissolved in dichloromethane (1 mL) was cooled

to 0 ◦C, and tetrafluoroboric acid–diethyl ether complex (8 µL, 85%, 0.04 mmol)

added. The solution was stirred at room temperature for 30 min, and removal of

solvent under reduced pressure gave desired product 40. Unstable, off-white solid

(>95% conversion). 1H NMR δ (300 MHz, CD2Cl2): −1.93 (dd, J = 47.6, 17.1 Hz,
1J PtH = 37.4 Hz, 1H, agostic-CH), 0.90 (m, 3H, norbornyl), 1.42 (d, J = 14.6 Hz, 9H,

PBut), 1.45 (d, J = 14.6 Hz, 9H, PBut), 1.60 (s, 9H, SBut), 1.72 (m, 2H, norbornyl),

2.49 (br, 2J PtH = 46.8 Hz, 1H, PtCH), 2.78 (d, J = 2.8 Hz, 1H, norbornyl), 2.98

(s, 1H, norbornyl), 3.83 (dd, J = 15.0, 10.9 Hz, 1H, CH2P), 3.93 (dd, J = 15.0,

11.5 Hz, 1H, CH2P), 4.43 (d, J = 12.7 Hz, 3J PtH = 43.3 Hz, 1H, CH2S), 4.52 (d,

J = 12.7 Hz, 3J PtH = 32.2 Hz, 1H, CH2S), 7.31 (m, 3H, Ar), 7.43 (m, 1H, Ar), other

two norbornyl obscured by But peaks. 31P NMR δ (121 MHz, CD2Cl2): 62.46 (s,
1J PtP = 5791 Hz). 19F NMR δ (282 MHz, CD2Cl2): −151.63 (s).

[Pt(ethyne){κ2P,S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}] (41)

Complex 34 (25 mg, 0.04 mmol) was dissolved in benzene-d6 (0.5 mL) in an NMR

tube and ethyne gas was bubbled through the solution for 1 min, giving unstable

complex 41 (>90% conversion). 1H NMR δ (600 MHz, C6D6): 1.27 (d, J = 12.6 Hz,

18H, PBut), 1.38 (s, 9H, SBut), 3.30 (d, J = 8.4 Hz, 3J PtH = 22.6 Hz, 2H, CH2P),

4.20 (s, 3J PtH = 35.9 Hz, 2H, CH2S), 6.74 (d, J = 17.6 Hz, 2J PtH = 33.8 Hz, 1H,
−−−CH), 6.98 (t, J = 7.0 Hz, 1H, Ar), 7.03 (d, J = 14.1 Hz, 2J PtH = 90.6 Hz, 1H,
−−−CH), 7.03 (m, 1H, Ar), 7.14 (m, 2H, Ar). 13C NMR δ (150 MHz, C6D6): 29.00

(d, J = 5.8 Hz, CH2P), 29.19 (s, 3J PtC = 16.8 Hz, SCMe3), 30.03 (d, J = 6.4 Hz,
3J PtC = 17.2 Hz, PCMe3), 36.61 (d, J = 16.8 Hz, 2J PtC = 53.0 Hz, PCMe3), 40.09

(d, J = 4.0 Hz, 2J PtC = 33.0 Hz, CH2S), 48.90 (d, J = 3.5 Hz, SCMe3), 101.19 (d,

J = 8.1 Hz, 1J PtC = 444.5 Hz, −−−CH), 112.27 (d, J = 68.2 Hz, 1J PtC = 258.3 Hz,
−−−CH), 126.96 (d, J = 2.3 Hz, Ar), 127.03 (d, J = 1.7 Hz, Ar), 131.70 (d, J = 4.0 Hz,

Ar), 132.26 (d, J = 1.7 Hz, Ar), 136.10 (d, J = 2.8 Hz, Ar), 138.92 (s, Ar). 31P

NMR δ (121 MHz, C6D6): 56.79 (s, 1J PtP = 4018 Hz).

[Pt(O
2
){κ1P-o-C

6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}

2
] (42)

Complex 36 (214 mg, 0.24 mmol) was dissolved in n-hexane (25 mL) and O2 bubbled

through the solution until solid began to appear, then cooled to −20 ◦C overnight.

The clear solution was decanted off the resulting crystals and these were dried under

a stream of O2, giving desired complex 42. Pale brown microcrystals (169 mg, 78%).
1H NMR δ (500 MHz, C6D6): 1.18 (s, 18H, SBut), 1.48 (d, J = 12.9 Hz, 36H, PBut),
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3.59 (s, 4H, CH2S), 3.77 (d, J = 10.5 Hz, 3J PtH = 35.8 Hz, 4H, CH2P), 6.83 (t,

J = 7.5 Hz, 2H, Ar), 6.92 (t, J = 7.4 Hz, 2H, Ar), 7.09 (d, J = 7.5 Hz, 2H, Ar),

8.50 (d, J = 7.5 Hz, 2H, Ar). 13C NMR δ (125 MHz, C6D6): 27.02 (m, CH2P),

30.84 (s, SCMe3), 31.12 (br s, PCMe3), 32.41 (s, CH2S), 38.64 (m, PCMe3), 42.66

(s, SCMe3), 126.57 (s, Ar), 127.18 (s, Ar), 131.31 (s, Ar), 132.29 (m, Ar), 135.52

(m, Ar), 136.70 (m, Ar). 31P NMR δ (121 MHz, C6D6): 43.47 (s, 1J PtP = 4112 Hz).

HRMS calcd for C40H69P2PtS2 [M−O2H]+: m/z = 869.3943; found: 869.3942. Anal.

calcd for C40H70O2P2PtS2: C, 53.1; H, 7.8; S, 7.1; found: C, 53.4; H, 7.9; S, 7.0.

7.4 Palladium Complexes

[PdCl{κ2P,µ-S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
S)}]

2
(43)

Ligand 14a (30 mg, 0.09 mmol) was dissolved in acetone-d6 (0.4 mL) in an NMR

tube, and a solution of [PdCl2(NCBut)2] (31 mg, 0.09 mmol) in acetone-d6 (0.4 mL)

added. After 24 h, the orange solution was heated to 50 ◦C overnight, resulting

in orange crystals of complex 43 (quantitative conversion). 1H NMR δ (500 MHz,

CD2Cl2): 1.60 (d, J = 13.6 Hz, 36H, PBut), 3.32 (br d, J = 8.8 Hz, 4H, CH2S), 3.80

(br, 4H, CH2P), 7.06 (m, 2H, Ar), 7.14 (d, J = 7.4 Hz, 2H, Ar), 7.43 (d, J = 7.1 Hz,

2H, Ar), other Ar too broad to be observed. 13C NMR δ (125 MHz, CD2Cl2):

25.10 (br d, J = 11.5 Hz, CH2S), 30.87 (br, PCMe3), 31.62 (br, CH2P), 38.76 (d,

J = 11.0 Hz, PCMe3), 127.14 (d, J = 1.4 Hz, Ar), 127.86 (d, J = 2.4 Hz, Ar),

130.84 (d, J = 1.9 Hz, Ar), 131.05 (br, Ar), 134.07 (s, Ar), 140.51 (s, Ar). 31P NMR

δ (121 MHz, CD2Cl2): 51.00 (br). HRMS calcd for C32H54ClP2Pd2S2 [M−Cl+2H]+:

m/z = 813.0904; found: 813.0895. Anal. calcd for C32H52Cl2P2Pd2S2: C, 45.4; H,

6.2; S, 7.6; found: C, 45.7; H, 6.3; S, 7.5.

[Pd{κ1P-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}

2
] (44)

Method 1: Ligand 14a (34 mg, 0.10 mmol) was dissolved in benzene-d6 (0.4 mL) in

an NMR tube, and a solution of [PdMe2(tmeda)] (13 mg, 0.05 mmol) in benzene-d6

(0.4 mL) added. Reaction was complete in <24 h (quantitative conversion). Method

2: Ligand 14a (40 mg, 0.12 mmol) was dissolved in benzene-d6 (0.4 mL) in an

NMR tube, and a solution of [Pd(nb)3] (23 mg, 0.06 mmol) in benzene-d6 (0.4 mL)

added. Reaction was complete in 10 min (quantitative conversion). 1H NMR δ

(500 MHz, C6D6): 1.29 (s, 18H, SBut), 1.41 (vt, 3J PH + 5J PH = 12.2 Hz, 36H,

PBut), 3.29 (vt, 2J PH + 4J PH = 5.2 Hz, 4H, CH2P), 4.27 (s, 4H, CH2S), 7.06

(t, J = 7.2 Hz, 2H, Ar), 7.12 (t, J = 7.7 Hz, 2H, Ar), 7.29 (d, J = 7.3 Hz,
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2H, Ar), 8.87 (d, J = 7.6 Hz, 2H, Ar). 13C NMR δ (125 MHz, C6D6): 26.34 (vt,
1J PC + 3J PC = 4.4 Hz, CH2P), 31.05 (vt, 2J PC + 4J PC = 11.1 Hz, PCMe3), 31.11 (s,

SCMe3), 33.41 (vt, 4J PC + 6J PC = 3.3 Hz, CH2S), 35.20 (vt, 1J PC + 3J PC = 7.2 Hz,

PCMe3), 42.64 (s, SCMe3), 126.16 (s, Ar), 126.79 (s, Ar), 131.12 (s, Ar), 133.35

(vt, 3J PC + 5J PC = 13.0 Hz, Ar), 137.00 (vt, 2J PC + 4J PC = 6.7 Hz, Ar), 138.86

(s, Ar). 31P NMR δ (121 MHz, C6D6): 54.40 (s).

Complexes 45 and 46

Ligand 14a (45 mg, 0.13 mmol) was dissolved in benzene-d6 (0.4 mL) in an NMR

tube, and a solution of [Pd(OAc)2] (30 mg, 0.13 mmol) in benzene-d6 (0.4 mL) added.

Yellow X-ray diffraction quality crystals of complex 45 formed from the solution at

room temperature over a few hours. Solvent was removed from the resulting pale

yellow solution under reduced pressure to give slightly impure complex 46. Off-white

foam (>90% conversion).

[Pd3(OAc)2(µ-OAc)2{κ3 P,C,S-o-C6H3(CH2PBut
2)(CH2SBut)}2]2 (45)

Selected 1H NMR δ (300 MHz, C6D6): 1.40 (s, 36H, SBut), 1.96 (s, 12H, OAc), 2.30

(s, 12H, OAc), 3.01 (dd, J = 17.8, 8.2 Hz, 4H, CH2P), 3.73 (dd, J = 17.5, 12.0 Hz,

4H, CH2P), 4.30 (d, J = 14.4 Hz, 4H, CH2S), 5.05 (d, J = 14.4 Hz, 4H, CH2S).
31P NMR δ (121 MHz, C6D6): 100.05 (s). IR (KBr disk): 1302 (terminal C−O),

1418 (bridging C−O), 1594 (bridging C−−O), 1638 (terminal C−−O), 2870–3034 cm-1

(CH).

[Pd(µ-OAc){κ2 P,C-o-C6H3(CH2PBut
2)(CH2SBut)}]2 (46)

1H NMR δ (600 MHz, C6D6): 1.22 (s, 18H, SBut), 1.24 (d, J = 14.4 Hz, 36H, PBut),

2.15 (br, 6H, OAc), 3.25 (d, J = 9.7 Hz, 4H, CH2P), 3.58 (s, 4H, CH2S), 6.94 (d,

J = 7.0 Hz, 2H, Ar), 6.98 (t, J = 7.4 Hz, 2H, Ar), 7.95 (br, 2H, Ar). 13C NMR

δ (150 MHz, C6D6): 29.22 (br s, PCMe3), 29.78 (br d, J = 18.5 Hz, CH2P), 30.85

(s, SCMe3), 34.45 (br s, CH2S), 35.36 (d, J = 18.5 Hz, PCMe3), 42.47 (s, SCMe3),

125.95 (br s, Ar), 126.75 (br s, Ar), 131.71 (br, Ar), 135.55 (br, Ar), 148.20 (d,

J = 18.0 Hz, Ar), 150.55 (br, Ar), 179.80 (br, CO), acetate Me peak too broad

to be observed. 31P NMR δ (121 MHz, C6D6): 96.80 (br). IR (film from THF):

1414 (C−O), 1593 (C−−O), 2865–3039 cm-1 (CH). HRMS calcd for C22H37NPPdS

[1
2
M−OAc+NCMe]+: m/z = 484.1422; found: 484.1424.

[Pd(nb){κ2P,S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}] (47)

Method 1: Ligand 14a (33 mg, 0.10 mmol) was dissolved in benzene-d6 (0.4 mL) in

an NMR tube, and a solution of [Pd(nb)3] (39 mg, 0.10 mmol) in benzene-d6 (0.4 mL)
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added. Reaction was complete in 10 min (quantitative conversion). Method 2:

Ligand 14a (33 mg, 0.10 mmol) and norbornene (19 mg, 0.20 mmol) were dissolved

in benzene-d6 (0.4 mL) in an NMR tube, and a solution of [Pd(Cp)(allyl)] (21 mg,

0.10 mmol) in benzene-d6 (0.4 mL) added. After 3 h, the solution was passed through

a plug of celite and the solvent evaporated under reduced pressure. The resulting

yellow solid and a crystal of norbornene were dissolved in benzene-d6 (0.4 mL),

giving a reasonably stable solution of complex 47. 1H NMR δ (500 MHz, C6D6):

0.68 (br, 1H, nb), 1.26 (d, J = 11.9 Hz, 18H, PBut), 1.37 (br m, 3H, nb), 1.44 (s,

9H, SBut), 1.66 (br, 2H, nb), 2.98 (br, 2H, nb), 3.09 (d, J = 5.8 Hz, 2H, CH2P), 3.21

(br, 2H, nb), 3.88 (s, 2H, CH2S), 6.95 (t, J = 7.3 Hz, 1H, Ar), 7.00 (t, J = 7.3 Hz,

1H, Ar), 7.12 (d, J = 7.6 Hz, 1H, Ar), 7.20 (d, J = 7.5 Hz, 1H, Ar). 13C NMR δ

(125 MHz, C6D6): 28.62 (d, J = 5.8 Hz, CH2P), 29.14 (br, nb), 30.30 (s, SCMe3),

30.37 (s, PCMe3), 35.70 (s, PCMe3), 37.24 (br s, CH2S), 42.52 (br, nb), 44.78 (br,

nb), 47.31 (d, J = 4.3 Hz, SCMe3), 66.86 (br, nb C−−C), 126.71 (d, J = 1.0 Hz, Ar),

126.79 (s, Ar), 131.65 (s, Ar), 132.73 (s, Ar), 136.98 (d, J = 2.9 Hz, Ar), 139.60 (d,

J = 4.3 Hz, Ar). 31P NMR δ (121 MHz, C6D6): 56.50 (s).

[Pd(dba){κ2P,S-o-C
6
H

4
(CH

2
PBut

2
)(CH

2
SBut)}] (48)

Method 1: Ligand 14a (22 mg, 0.06 mmol) was dissolved in benzene-d6 (0.4 mL) in

an NMR tube, and a solution of [Pd2(dba)3] (34 mg, 0.03 mmol) in benzene-d6

(0.4 mL) added. Reaction was complete in 24 h (>95% conversion). Method

2: Ligand 14a (44 mg, 0.13 mmol) was dissolved in benzene-d6 (0.4 mL) in an

NMR tube, and a solution of [PdMe2(tmeda)] (33 mg, 0.13 mmol) and dba (30 mg,

0.13 mmol) in benzene-d6 (0.4 mL) added. Reaction was complete in 5 days (>95%

conversion). 1H NMR δ (500 MHz, C6D6): 0.91 (br, 9H, PBut), 1.27 (br, 9H,

PBut), 1.45 (s, 9H, SBut), 2.92 (m, 2H, CH2P), 3.49 (br, 1H, CH2S), 3.71 (br, 1H,

CH2S), 4.80 (br, 1H, coordinated −−CH), 4.87 (br, 1H, coordinated −−CH), 6.78 (t,

J = 7.1 Hz, 1H, Ar), 6.83 (t, J = 7.3 Hz, 1H, Ar), 6.92 (d, J = 7.1 Hz, 1H, Ar), 7.01

(br m, 9H, Ar & dba), 7.30 (br m, 4H, dba). 13C NMR δ (125 MHz, C6D6): 27.82

(br s, CH2P), 29.91 (br, PCMe3), 30.54 (br, PCMe3), 30.92 (s, SCMe3), 32.59 (s,

PCMe3), 35.82 (br, CH2S), 48.52 (s, SCMe3), 64.21 (br, coordinated −−CH), 72.90

(br, coordinated −−CH), 124.70 (br, dba), 126.92 (s, Ar), 127.04 (s, Ar), 127.14 (br,

dba), 128.57 (br, dba), 131.45 (d, J = 3.3 Hz, Ar), 132.55 (s, Ar), 134.89 (br, Ar),

137.56 (br, dba), 138.32 (s, Ar), other PCMe3 peak obscured. 31P NMR δ (121 MHz,

C6D6): 59.06 (br). HRMS calcd for C37H50OPPdS [M+H]+: m/z = 679.2363; found:

679.2370.
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7.5 Sonogashira Catalysis

α-(Di-t-butylphosphonium)-α′-(t-butylthio)-o-xylene tetrafluoroborate

(49)

Compound 14a (0.180 g, 0.53 mmol) was dissolved in dichloromethane (15 mL),

50% aqueous tetrafluoroboric acid (0.7 mL, 5.6 mmol) added and the mixture

stirred vigorously for 10 min. Distilled water (3 mL) was added and the layers

separated. The organic layer was dried over magnesium sulfate, filtered and the

solvent evaporated under reduced pressure leaving a foam. The oil was triturated

with n-hexane (2 × 3 mL) and the solvent decanted, giving compound 49. Air-

stable white solid (0.195 g, 86%). 1H NMR δ (500 MHz, (CD3)2CO): 1.42 (s, 9H,

SBut), 1.56 (d, J = 16.6 Hz, 18H, PBut), 4.01 (s, 2H, CH2S), 4.26 (dd, J = 14.1,

6.1 Hz, 2H, CH2P), 6.77 (dt, J = 466.3, 6.3 Hz, 1H, PH), 7.35 (m, 2H, Ar), 7.49

(m, 1H, Ar), 7.62 (m, 1H, Ar). 13C NMR δ (125 MHz, (CD3)2CO): 19.34 (d,

J = 39.3 Hz, CH2P), 27.66 (s, PCMe3), 30.97 (s, SCMe3), 31.72 (s, CH2S), 34.65

(d, J = 34.0 Hz, PCMe3), 44.05 (s, SCMe3), 128.98 (s, Ar), 129.49 (d, J = 1.9 Hz,

Ar), 130.41 (d, J = 8.2 Hz, Ar), 131.53 (d, J = 6.7 Hz, Ar), 132.92 (s, Ar), 137.50

(d, J = 6.2 Hz, Ar). 31P NMR δ (121 MHz, (CD3)2CO): 39.62 (s). 19F NMR

δ (282 MHz, (CD3)2CO): −150.11 (s). HRMS calcd for C20H36PS [M−BF4]+:

m/z = 339.2270; found: 339.2291.

Benzyldi-t-butylphosphonium tetrafluoroborate (50)

Benzyldi-t-butylphosphine (0.170 g, 0.72 mmol) was dissolved in dichloromethane

(10 mL), 50% aqueous tetrafluoroboric acid (0.8 mL, 6.4 mmol) added and the

mixture stirred vigorously for 10 min. The aqueous layer was removed, the organic

layer dried over magnesium sulfate, filtered and the solvent evaporated under

reduced pressure giving compound 50. Air-stable white solid (0.190 g, 82%). 1H

NMR δ (300 MHz, (CD3)2CO): 1.60 (d, J = 16.4 Hz, 18H, PBut), 4.15 (dd, J = 13.5,

5.9 Hz, 2H, CH2P), 6.39 (dt, J = 466.3, 5.9 Hz, 1H, PH), 7.42 (m, 3H, Ar), 7.57

(m, 2H, Ar). 31P NMR δ (121 MHz, (CD3)2CO): 48.33 (s). 19F NMR δ (282 MHz,

(CD3)2CO): −150.86 (s).

Sonogashira coupling of 4-bromoanisole and phenylethyne

[Pd(OAc)2] (6.7 mg, 0.03 mmol), phosphonium salt 49 (12.8 mg, 0.03 mmol)

and copper(I) iodide (3.8 mg, 0.02 mmol) were combined in a flask containing a

large stir bar. A THF solution (3.0 mL) of 4-bromoanisole (0.13 mL, 1.0 mmol)

and di-i-propylamine (0.70 mL, 5.0 mmol) was added and the vigorously stirred
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(800–1000 rpm) mixture heated to 60 ◦C for 10 min. Phenylethyne (0.14 mL,

1.3 mmol) was added and the heating continued for 2 h. Samples for GC-MS

(0.05 mL) were taken at regular intervals and added to dichloromethane solu-

tions (10.0 mL) containing carbon disulfide (0.01 mL). Samples of these solutions

(0.05 mL) were diluted with dichloromethane (1 mL) and GC-MS chromatograms

collected using a Restek Rxi-5Sil column (length 30 m, inner diameter 0.25 mm, layer

thickness 0.25 µm), helium carrier gas at 83.9 kPa with a 50:1 split, 270 ◦C injection

temperature, and temperature program consisting of 50 ◦C for 2 min, heating to

100 ◦C at 10 ◦C/min, 100 ◦C for 2 min, heating to 300 ◦C at 20 ◦C/min, 300 ◦C

for 5 min. An example of a GC-MS chromatogram from this reaction is shown in

Figure 7.1. All reactions were performed in duplicate.
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Figure 7.1 Example GC-MS chromatogram from the Sonogashira coupling of
4-bromoanisole and phenylethyne.

For the preparative run, a 2-methylnaphthalene (142 mg, 1.0 mmol) internal

standard was included in the reaction. The reaction was followed by NMR

spectroscopy, with samples (0.1 mL) taken at 0, 2 and 4 h, solvent evaporated

under reduced pressure, and the residue dissolved in chloroform-d (0.4 mL). After

4 h, the reaction was quenched with hydrochloric acid solution (20 mL, 2 M) in the

air and ethyl acetate (20 mL) added. The resulting layers were separated and the

aqueous layer washed with ethyl acetate (10 mL). The combined organic fractions

were washed with distilled water (10 mL), dried over magnesium sulfate, filtered,

and the solvent removed under reduced pressure giving the crude product as a brown

liquid. Elution through a silica gel column with 25:1 petroleum ether/ethyl acetate

gave pure 4-(phenylethynyl)anisole (Rf = 0.43). Yellow solid (168 mg, 86%). 1H

NMR δ (300 MHz, CDCl3): 3.83 (s, 3H, OMe), 6.88 (d, J = 9.0 Hz, 2H, Ar), 7.33

(m, 3H, Ar), 7.50 (m, 4H, Ar).

Variations to the catalyst mixture were made by using 2 eq. of phosphonium salt

49 (25.6 mg, 0.06 mmol), replacing phosphonium salt 49 with phosphonium salt

50 (9.7 mg, 0.03 mmol), omitting copper(I) iodide, or omitting the phosphonium
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salt. A lower catalyst loading was achieved by grinding each of the three catalyst

components (6.7 mg of [Pd(OAc)
2
], 12.8 mg of phosphonium salt 49 or 9.7 mg of

phosphonium salt 50, 3.8 mg of copper(I) iodide) with an appropriate amount of di-

i-propylammonium bromide (prepared by combining di-i-propylamine and aqueous

hydrobromic acid in distilled water at 0 ◦C and evaporating water under reduced

pressure) to produce 50 mg of each mixture. The [Pd(OAc)2] mixture was freshly

prepared as it decomposed over a number of days. For each reaction, 5 mg of each of

the three catalyst component mixtures was used. For the mercury poisoning studies,

mercury (300 mg, 1.5 mmol) was added to the reaction after 45 or 65 min.

NMR-scale Sonogashira coupling reaction

[Pd(OAc)2] (6.0 mg, 0.026 mmol), phosphonium salt 49 (11.0 mg, 0.026 mmol) and

copper(I) iodide (3.4 mg, 0.017 mmol) were combined in a sealable tube containing

a stir bar. A solution composed of 4-bromoanisole (6.5 µL, 0.052 mmol), di-i-

propylamine (18.0 µL, 0.130 mmol) and THF-d8 (0.40 mL) was added, the tube

sealed, and the mixture heated to 60 ◦C with rapid stirring for 10 min. The resulting

pale yellow solution was transferred to an NMR tube and 1H and 31P NMR spectra

collected. Phenylethyne (8.0 µL, 0.070 mmol) was added and 1H and 31P NMR

spectra collected again. The pale yellow solution was heated to 60 ◦C, at which

point the solution turned dark brown. After 10, 30 and 60 min, the solution was

cooled and 1H and 31P NMR spectra were collected. A number of variations with

starting materials omitted were also performed, in order to identify the species

formed in the reaction.

[Pd(µ-OAc){κ2 P,C-o-C6H3(CH2PBut
2)(CH2SBut)}]2 (46)/di-i-propylamine

dynamic system

Selected 1H NMR δ (300 MHz, THF-d8): 1.11 (d, J = 6.6 Hz, NCHMe2), 1.35 (s,

SBut), 1.36 (br, PBut), 1.92 (br, OAc), 3.10 (br, NCHMe2), 3.34 (br, CH2P), 3.71

(s, CH2S), 5.02 (br, NH), 6.71 (br, Ar). 31P NMR δ (121 MHz, THF-d8): 97.40

(br), 106.65 (br).

α-(Di-t-butylphosphino)-α′-(t-butylthio)-o-xylene (14a)/copper(I) iodide complex
1H NMR δ (300 MHz, THF-d8): 1.34 (d, J = 13.2 Hz, PBut), 1.63 (s, SBut), 3.41

(d, J = 7.9 Hz, CH2P), 4.12 (s, CH2S), 7.14 (t, J = 7.9 Hz, Ar), 7.20 (t, J = 7.3 Hz,

Ar), 7.32 (d, J = 6.5 Hz, Ar), 7.35 (d, J = 6.7 Hz, Ar). 31P NMR δ (121 MHz,

THF-d8): 29.06 (br).

164



[Pd(OAc)2]/di-i-propylamine complex
1H NMR δ (300 MHz, THF-d8): 1.31 (d, J = 6.3 Hz, NCHMe2), 1.66 (d, J = 6.6 Hz,

NCHMe2), 1.68 (s, OAc), 2.79 (oct, J = 6.3 Hz, NCHMe2), 7.37 (br, NH).
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