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Abstract

We study magneto-tunnelling between two parallel two-dimensional electron gases
theoretically, where the electrons have a pseudo-spin-1

2
degree of freedom that is cou-

pled to their momentum. The two-dimensional electron gases focused on in this work
are single layer graphene, bilayer graphene, and single layer molybdenum disulphide.

The results are derived using a linear response theory formalism in the weak tun-
nelling regime, and it is assumed that the electron gases are at zero temperature, with
no interactions or disorder. The linear magneto-tunnelling conductance characteris-
tics for an applied in-plane and tilted magnetic field are found to strongly depend on
the pseudo-spin structure of the tunnelling matrix and the pseudo-spin’s dependence
on momentum. For instance, resonances in the linear magneto-tunnelling conduc-
tance are sensitive to the pseudo-spin tunnel-coupling across the barrier and how the
pseudo-spin eigenstates are coupled to momentum.

We discuss how measurements of the magneto-tunnelling conductance can be
applied as a spectroscopic tool. We explain how to measure the pseudo-spin tunnel-
coupling through least squares parameter fitting of the magneto-tunnelling conduc-
tance. We show that the parameters are interdependent, one can use the interde-
pendency to test the consistency between theory and experiment. It is expected
that measurements of pseudo-spin tunnel-coupling will be a function of the lattice
structure of the double layer system, which suggests these measurements can be used
as a spectroscopic tool. Additionally, we investigate in-plane electric fields in single
layer graphene to see if their effects can be observed in magneto-tunnelling transport.
Then, we perturbatively include the effects of electron-electron interactions in single
layer graphene, and find it should dampen the linear tunnelling conductance.

We investigate tunnel-coupled , parallel , single layer and bilayer graphene sys-
tems. We find that using an in-plane magnetic field, one can generate a valley
polarized tunnelling current. This method is unique because it does not require
manipulation of the single and bilayer graphene samples through nano-structuring,
coupling to electromagnetic fields, application of mechanical strain, or the presence
of defects. In particular, the valley polarization is dependent on the pseudo-spin
tunnel-coupling between the single and bilayer graphene systems, and the strength
of an applied in-plane magnetic field.

We explicitly show through analytic derivations how an understanding of linear
magneto-tunnelling transport (zero bias limit) can be used to understand non-linear
magneto-tunnelling transport (finite bias).
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Chapter 1

Introduction

In 2004, Andre Geim and Konstantin Novoselov separated the first one-atom-thick
layer of graphite, called graphene, and explored the unusual material’s electronic
properties [3]. Graphene was found to be the thinnest and strongest material known
to date, as well as being an excellent transparent conductor[4]. These novel proper-
ties have provided hope for graphene to be used in a variety of applications. However,
there is also a purely scientific interest in graphene. In particular, graphene’s hon-
eycomb lattice of carbon atoms provides a linear dispersion relation, simulating the
effects of quantum physics and Einstein’s theory of relativity in a two-dimensional
electronic device[5, 6]. Just as a massless particle in three spatial dimensions follows
the three dimensional Dirac equation, an electron in graphene also follows a Dirac
like equation in two dimensions.

The band structure of graphene has two valleys in the Brillouin zone where low
energy excitations are possible. These valleys are known as the K and K′ valleys.
Each valley is characterised by a Dirac-cone-like energy-momentum relation ε =
±v‖p‖, where v is the Fermi velocity of graphene. The valleys are centred at the
points where the conduction and valence bands meet, as shown in Fig. 1.1.

One can show that a honeycomb lattice consists of two equivalent sub-lattices,
which are labelled A and B, as in Fig. 1.2. In particular, an electron in graphene
can occupy the pz-orbitals of either sub-lattice A or sub-lattice B. One can employ a

pseudo-spin-1
2

representation where |A〉 =

(
1
0

)
and |B〉 =

(
0
1

)
. These two quantum

states span a two-dimensional Hilbert space, analogous to the intrinsic spin of an
electron. For this reason, we call the states associated with occupied sub-lattices
pseudo-spin.

The pseudo-spin eigenstates for electrons in graphene are coupled to the direction
of the momentum eigenstates via the Hamiltonians [7]

HK = vσxpx + vσypy , HK′ = −vσxpx + vσypy ; (1.1)

where σx, σy, σz are the Pauli matrices for pseudo-spin. More details on graphene
can be found in Ref. [8].

In recent years, there has been progress in the fabrication of other two-dimensional
crystals, such as bilayer graphene, hexagonal boron nitride (h-BN), molybdenum
disulphide (MoS2), and tungsten disulphide (WS2)[9–11]. Each two-dimensional
crystal has different electronic properties. For example, h-BN is an insulator and
MoS2 is a semi-conductor. Further more, it is possible to layer these materials on

1
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Figure 1.1: The band structure of graphene. The hexagon represents the Brillouin
zone for graphene, and the blue line indicates the direction in which momentum varies
in the energy-momentum plot. We can see the K and K′ valleys at each corner of the
Brillouin zone. Near these valleys, the energy-momentum relation becomes linear, a
shown by the Dirac cones. The green line corresponds to the Fermi energy.

Figure 1.2: a) Diagram of the carbon honeycomb lattice of graphene, where each
member of a sub-lattice has been labelled A or B. An electron can occupy one of the
sub-lattices of pz-orbitals, shown in b).
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top of each other, in what is called a van der Waals heterostructure[12]. Materials
used in van der Waals heterostructures have lattice structures similar to graphene.
Each material has a pseudo-spin structure, and each material can be reduced to a
single atomic layer.

Quantum particles such as electrons often carry discrete degrees of freedom such
as their real (intrinsic) spin or pseudo-spin, which have properties of angular mo-
mentum. In certain situations, the dynamics of the (pseudo-)spin is rigidly coupled
to the particle’s orbital motion. We call systems in which such a spin-momentum
locking exists chiral. The charge carriers in graphene form a chiral system in their
sublattice-related pseudo-spin degree of freedom. See Fig. 1.4 where it is illustrated
how the pseudo-spin direction (more precisely; its quantisation axis) depends on the
direction of the electron momentum. Other examples of chirality can be found from
the Dirac equation [13] and from Rashba spin-orbit coupling [14].

The examples of chiral materials we will focus on can be used in van der Waals
heterostructures, these are single layer graphene, bilayer graphene, and MoS2.

A popular van der Waals heterostructure is two layers of graphene separated by
an atomically thin insulating barrier (approx. 3 nm [15]), such as h-BN (stacked
in the order graphene/h-BN/graphene) [15–19]. This double layer van der Waals
heterostructure has been used in coulomb drag experiments [20], and as the core
component of the new device known as a vertical field effect transistor[15–18]. But
other than Ref. [21], little work has been done to learn about the tunnelling of chiral
charge carriers across a double layer van der Waals heterostructure in the presence
of both electric and magnetic fields. We are filling this void by extending previous
work [22–25] on magneto-tunnelling spectroscopy. See Ref. [1, 2] for a record of the
published results in this thesis.

It is well known that tunnelling spectroscopy is an effective tool for investigating
electronic structure [26, 27]. Tunnelling spectroscopy is well known for being used
to measure the density of states. Typically a well understood contact system, such
as a tip, is put in tunnelling contact with a sample material. In order to measure
the density of states in the sample material, one needs to assume zero temperature,
a constant tunnelling matrix element, and a constant density of states in the contact
material. Under these assumptions, the tunnelling conductance between the contact
material and the sample material is proportional to the sample’s density of states.

When tunnelling occurs through a uniform extended barrier, the momentum com-
ponent that is parallel to the barrier must be conserved in a tunnelling event. The
condition of simultaneous energy and momentum conservation enables tunneling
spectroscopy to be used to measure a material’s band structure. Due to energy and
canonical momentum conservation in the tunnelling process, tunnelling can only oc-
cur whenever the energy-momentum curves of the two systems intersect. One can
apply a bias and magnetic field to separate the two energy-momentum curves. A
description of this is shown in Fig. 1.3. When the two energy-momentum curves
start/cease to intersect, the tunnelling current is switching on/off. This switching
on or off is a sharp discontinuity in the tunnelling current, which creates a reso-
nance (or divergence) in the magneto-tunnelling conductance. These resonances and
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other features of the magneto-tunnelling conductance can be used to probe the band
structure of the two systems.

Momentum-resolved tunnelling has been used in the context of parallel two-
dimensional quantum wells [28–34], parallel quantum wires [35–38], and quantum
dots [39], where it has shown success for measuring the energy-momentum relations
[40–42]. However, none of these works include materials with pseudo-spin eigenstates
that are coupled to momentum. This provided us with the opportunity to apply and
extend methods used in previous works, to research that is relevant at present.

Since pseudo-spin states are determined by the lattice structure of the two-
dimensional systems, the atomic lattice structure of the barrier will alter possible
magneto-tunnelling processes for a double layer van der Waals heterostructure. We
show later that an applied magnetic field will alter the chiral pseudo-spin eigenstates
in a van der Waals heterostructure. These features of double layer van der Waals
heterostructures suggest that there is much to learn from studying their magneto-
tunnelling transport, motivating the work in this thesis.

We find that momentum-resolved tunnelling can be used to probe pseudo-spin
structure of a graphene double layer van der Waals heterostructure. The magneto-
tunnelling conductance is sensitive to the pseudo-spin coupling between layers. This
is particularly fascinating because the pseudo-spin states are determined by the sub-
lattice structure of the two parallel systems. One can expect that the coupling will
depend on the atomic structure of the barrier, and the alignment of sub-lattices
between the two graphene systems.

In this work, we investigate the magneto-tunnelling conductance between two
parallel two-dimensional chiral electron gases. We employ linear response theory,
and extend methods used previously in the study of tunnelling between parallel
two-dimensional non-chiral electron gases in the presence of an in-plane and tilted
magnetic field. We look at how the magneto-tunnelling conductance may be used to
investigate the influence of momentum dependent pseudo-spin in the tunnelling pro-
cess, and allow one to probe the pseudo-spin structure of a double layer graphene van
der Waals heterostructure. We also investigate effects of electron-electron interac-
tions and in-plane electric fields on the magneto-tunnelling transport. We then look
at the possibility of creating a valley-filter using single layer and bilayer graphene
in the presence of an in-plane magnetic field. The possibility of a valley-filter would
allows one to control the valley degree of freedom for electrons in graphene for in-
formation processing, allowing one to create valleytronic devices[43–45]. Lastly, we
discuss the finite bias magneto-tunnelling current and conductance for single layer
graphene.

The layout of this thesis is as follows. In chapter 2, we introduce the pseudo-
spin and band structure for single layer graphene, bilayer graphene, and MoS2. In
chapter 3, we introduce the formalism for calculating the tunnelling current and
conductance. We also review previous work for magneto-tunnelling between two
parallel non-chiral two-dimensional electron gases. This includes the effect of an in-
plane and titled magnetic field with a small bias between the layers, then the effect
of an in-plane magnetic field with a finite bias between the layers. In chapter 4, we
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Figure 1.3: (left) Two parallel two-dimensional electron gases, separated by an in-
sulating tunnelling barrier. A bias V is applied between the layers, and an in-plane
magnetic field B‖ is applied. (right) Two intersecting energy momentum relations
for the system on the left. Energy and canonical momentum conservation in the
tunnelling process means that the magneto-tunnelling conductance between the two
layers is determined by the intersection of the energy-momentum relations, which
have been shifted by the applied bias (shifts energy) and magnetic field (shifts ki-
netic momentum).

Figure 1.4: A figure showing how the direction of momentum determines the direction
of pseudo-spin. The red arrows show the direction of the positive energy pseudo-spin
eigenstates for electrons in graphene, for momentum states on the blue circle. For
the K valley, the eigenstate is parallel to the direction of momentum (px, py). In the
K′ valley, the eigenstate is parallel to (−px, pp).
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investigate magneto-tunnelling between two parallel chiral two-dimensional electron
gases. In particular, chapter 4 extends the work reviewed in chapter 3. In chapter
5, we discuss using magneto-tunnelling as a spectroscopic tool. We suggest how
one could use the work in chapter 4 to experimentally probe the tunnel-coupling
between two single layer graphene systems. We propose how single layer graphene
and bilayer graphene can be used to create a valley filter. We also investigate the
effects of an in-plane electric field and interactions for magneto-tunnelling in a double
layer graphene system. In chapter 6, we look at the effects of an in-plane magnetic
field on magneto-tunnelling between two parallel single graphene layers with a finite
bias. This extends the finite bias work in chapter 3 for two-dimensional chiral electron
gases. In chapter 7 we conclude this thesis, and suggest possible future works.



Chapter 2

Band structure of two-dimensional
chiral conductors

In this chapter we present the Hamiltonians on which later calculations will be based
on, for electrons in single layer graphene (SLG), bilayer graphene (BLG), and MoS2

at the K and K′ valleys. These Hamiltonians are valid at low energies. Each of these
two-dimensional chiral electron gases can be used in a van der Vaals double layer
heterostructure, and are studied later in this work.

At the K and K′ valleys, the axis of the pseudo-spin eigenstates depends on the
direction of momentum. The K and K′ valleys follow the same energy-momentum
relation, but the pseudo-spin eigenstates at each valley have a different dependence
on momentum.

Since two valleys can be occupied, the Hamiltonian for system m at low energies
will be of the form

H(m) =

(
H(m)

K 0

0 H(m)
K′

)
. (2.1)

HK and HK′ are 2× 2 Hamiltonians at the K and K′ valley respectively. Each has
single particle eigenstates that follow

H(m)
γ |ψ

(m)
γ,k,σ〉 = ε

(m)
γ,k,σ|ψ

(m)
γ,k,σ〉 , (2.2)

σ = ± represents the positive and negative (conduction and valence band) energy
pseudo-spin eigenstate. γ = K,K′ represents the valley for the eigenstate.

The pseudo-spin eigenstates are chiral, which means they are a function of the
momentum eigenstates. For a particle in the presence of a magnetic field, one can
write this as

|ψγ,k,σ(B)〉 = |k〉 ⊗ |σ〉γ,Π(k.B). (2.3)

We use p = h̄k to denote the canonical momentum, e to denote the charge of an
electron, and

Π(k,B) = h̄k + eA (2.4)

is the kinetic momentum which is implicitly a function of the external magnetic field
B due to the vector potential A.

7



Chapter 2 8

Figure 2.1: The honeycomb lattice structure of SLG. SLG can be split into two
distinct sub-lattices A (blue) and B (red). These sub-lattices determine the pseudo-
spin structure for SLG. This same structure is also shown in Fig. 1.2.

2.1 Single layer graphene

The honeycomb lattice structure of SLG can be seen in Fig. 2.1. This lattice can
be split into two sub-lattices of equivalent points, sub-lattice A and B. An electron

occupying a given sub-lattice can be viewed as a pseudo-spin state, i.e. A =

(
1
0

)
and B =

(
0
1

)
.

The Hamiltonians at K and K′ valleys are

H(slg)
K = vh̄k

(
0 e−iθk

eiθk 0

)
and H(slg)

K′ = vh̄k

(
0 e−i(π−θk)

ei(π−θk) 0

)
, (2.5)

where θk = arctan
(
ky
kx

)
is the angle of momentum, v is the Fermi velocity, and

k = ‖k‖. It is clear that H(slg)
K is analogous to the two-dimensional Dirac equation

for a massless particle, with an effective speed of v [46]. As one would expect, for
each valley we find a linear energy-momentum relation that is characteristic of a
massless particle

ε
(slg)
γ,k,σ = σvh̄k , (2.6)

The pseudo-spin eigenstates at each valley are

|σ〉(slg)
K,k =

1√
2

(
e−iθk/2

σeiθk/2

)
|σ〉(slg)

K′,k =
1√
2

(
e−i(π−θk)/2

σei(π−θk)/2

)
. (2.7)

Using these eigenstates, one can calculate the average pseudo-spin for each valley

S
(slg)
γ,k,σ =

(slg)
γ,k 〈σ|(σx, σy, σz)|σ〉

(slg)
γ,k , (2.8)
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Figure 2.2: On the left is a Dirac cone centred at the K or K′ valley of SLG.
On the right are slices of the cone for the conduction (blue) and valence (green)
band for the K and K′ valleys. The red arrows show the direction of the pseudo-
spin eigenstate |σ〉γ,k, relative to the direction of momentum. For the K valley,
the positive (negative) pseudo-spin eigenstates point (anti-)parallel to the angle of
momentum θk. The positive (negative) pseudo-spin eigenstate in the K′ valley points
(anti-)parallel to the direction π − θk.

which determines the direction and axis of the pseudo-spin eigenstate. One finds the
average pseudo-spin, for each eigenstate, at each valley as

S
(slg)
K,k,σ = σ(cos θk, sin θk, 0), S

(slg)
K′,k,σ = σ(− cos θk, sin θk, 0) . (2.9)

The positive (negative) pseudo-spin eigenstate at the K valley is (anti-)parallel to
the direction of momentum. The positive (negative) pseudo-spin eigenstates for the

K′ valley point at the (anti-)parallel to the angle π − θk. One can see S
(slg)
γ,k,σ in Fig.

2.2, where it is compared to the direction of momentum.

2.2 Bilayer graphene

BLG is made out of two stacked layers of SLG, as shown in Fig. 2.3. In fact, the
Hamiltonian for BLG can be expressed in terms of two coupled SLG systems. One
can write this Hamiltonian in terms of the sub-lattices {A1,B1,A2,B2}

H(blg)
K =


0 vh̄k+ γ1 0

vh̄k− 0 0 0
γ1 0 0 vh̄k−
0 0 vh̄k+ 0

 . (2.10)

where k± = kx± iky [47]. We have labelled A1 and A2 as the two sub-lattices which
overlap between the two SLG layers in BLG. This results in the coupling energy γ1

between A1 & A2. To obtain a 2 × 2 BLG Hamiltonian, one assumes that A1 and
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Figure 2.3: (left) The lattice structure of BLG, two stacked layers of SLG. Layer
one (blue) is stacked on top of layer two (red). In purple, one can see sub-lattice A1

imposed on top of sub-lattice A2. (right) The effective BLG lattice at low energies.
At low energies, the states A1 and A2 are not accessible. This reduces the system
to the B1 and B2 sub-lattices.

A2 are inaccessible states, so that γ1 is the largest energy scale of the system. One
can then use Löwdin partitioning to project on the accessible states B1 and B2, to
obtain the approximation

H(blg)
K ≈ −(vh̄)2

γ1

(
0 k2

+

k2
− 0

)
. (2.11)

Each valley of BLG has a Hamiltonian of a massive chiral two-dimensional elec-
tron gas [48],

H(blg)
K = − k2

2M

(
0 ei2θk

e−i2θk 0

)
and H(blg)

K′ = − k2

2M

(
0 e−i2θk

ei2θk 0

)
. (2.12)

The energy-momentum relation is parabolic, with an effective mass M

ε
(blg)
γ,k,σ = σ

h̄2

2M
k2 . (2.13)

The pseudo-spin eigenstates for each valley are

|σ〉K,k =
1√
2

(
eiθk

−σe−iθk

)
|σ〉K′,k =

1√
2

(
e−iθk

−σeiθk

)
. (2.14)

The direction of the pseudo-spin eigenstates in BLG have a conceptually more diffi-
cult relationship with the direction of momentum than SLG. However, the pseudo-
spin direction for an eigenstate can be written as

S
(blg)
K,k,σ = −σ(cos 2θk,− sin 2θk, 0), S

(blg)
K′,k,σ = −σ(cos 2θk, sin 2θk, 0) . (2.15)

The positive (negative) pseudo-spin eigenstate points anti-parallel (parallel) to the
angle −2θk in the K valley, and anti-parallel (parallel) to the angle +2θk at the K

valley. S
(blg)
γ,k,σ is shown in Fig. 2.4, where it is compared to the direction of momentum.
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Figure 2.4: On the left is the dispersion relation at the K or K′ valley of BLG. On
the right slices of the two touching parabola for the conduction (blue) and valence
(green) band for the K and K′ valleys. The red arrows show the direction of the
pseudo-spin eigenstate |σ〉γ,k, relative to the direction of momentum. For the K
valley, the positive (negative) pseudo-spin eigenstates point anti-parallel (parallel)
to −2θk, where θk is the angle of momentum. The positive (negative) pseudo-spin
eigenstate in the K′ valley points anti-parallel (parallel) to the angle +2θk.

2.3 Molybdenum disulphide

The lattice structure of MoS2 can be seen in Fig. 2.5, where it is shown to be
a honeycomb structure with sulphur and molybdenum atoms. Each valley in MoS2

has Hamiltonian similar to the two-dimensional Dirac equation for a massive particle
[50, 51],

H(mos)
K = vh̄

(
k∆ ke−iθk

keiθk k∆

)
and H(mos)

K′ = vh̄

(
k∆ ke−i(π−θk)

kei(π−θk) k∆

)
, (2.16)

where vh̄k∆ is the band gap energy (1.2 eV). MoS2 has the energy-momentum relation

ε
(mos)
γ,k,σ = σvh̄

√
k2 + k2

∆ , (2.17)

and the pseudo-spin eigenstates for each valley are

|σ〉(mos)
K,k =

1√
2

√1+σζk
2

e−iθk/2

σ
√

1−σζk
2

eiθk/2

 |σ〉(mos)
K′,k =

1√
2

√1+σζk
2

e−i(π−θk)/2

σ
√

1−σζk
2

ei(π−θk)/2

 , (2.18)

where ζk = k∆/
√
k2 + k2

∆. For large values of momentum ζk ≈ 0, while for small
values ζk ≈ 1. The average pseudo-spin for each eigenstate is

S
(mos)
K,k,σ = σ

(√
1− ζ2

k cos θk,
√

1− ζ2
k sin θk, ζk

)
, (2.19)
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Figure 2.5: The lattice structure of MoS2 from two points of view, with sulphur
atoms in yellow and molybdenum atoms in teal. This image has been taken from
Ref. [49].

and

S
(mos)
K′,k,σ = σ

(
−
√

1− ζ2
k cos θk,

√
1− ζ2

k sin θk, ζk

)
. (2.20)

At zero momentum ζk = 1, and the pseudo-spin is polarized along the z-axis. As
the momentum increases, the pseudo-spin direction is pushed into the xy-plane, with
ζk → 0. When k is much larger than k∆, MoS2 has similar pseudo-spin eigenstates
to SLG.

2.4 Carrier concentration and density of states at

the Fermi energy

In this section, we present the electron density n and density of states at the Fermi
energy ρF at zero temperature, for SLG, BLG, and MoS2 (see Tab. 2.1).

To calculate the electron density [52], we sum all momentum states within a
Fermi circle to obtain

n = gsgv
πk2

F

(2π)2
, (2.21)

where we have included spin and valley degeneracies gs and gv.

The density of states ρ(ε) is defined as

ρ(ε) =
dN(ε)

dε
, (2.22)
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Table 2.1: A list of the carrier concentration n and density of states ρF at the
Fermi energy, at zero temperature. ρF does not include spin, pseudo-spin, or valley
degeneracy.

n ρF

SLG 1
π(vh̄)2 ε

2
F

1
2π(vh̄)2 εF

BLG 2M
h̄2 εF

M
2πh̄2

MoS2
1

π(vh̄)2 (ε2
F −∆2) 1

2π(vh̄)2 εF

where N(ε) is the number of states at energy ε per a unit volume [52]. To calculate
the density of states at the Fermi energy, one can use the single particle retarded
Green’s function for a time independent and transnationally invariant system

GR
α (t,k) = −iΘ(t)〈{cαk(t), c†αk(0)}〉 , (2.23)

which is the phase and amplitude for a particle to propagate between states (k, α)→
(k, β) in time t. cαk and c†αk are creation and annihilation operators. We have used
the notation 〈...〉 = Tr [...ρ̂]as the thermal average, where ρ̂ is the density matrix for
the system.

This allows one to calculate the spectral function

Aα(ε,k) = −2ImGR
α (ε,k) , (2.24)

from the Fourier transform of the single particle retarded Green’s function. The spec-
tral function is a normalised weighting of possible excitations in a system, indicating
if it is possible for a particle to be in state (α,k) with energy ε [53]. If we consider
the density of states at the Fermi energy with no spin or pseudo-spin degeneracy

ρF ≡ ρ(εF) =
1

2π

1

(2π)2

∫
d2kA (εF,k) . (2.25)

When there are no interactions, the spectral function will only allow excitations that
follow the band structure A (ε,k) = 2πδ(ε− εk) [53].
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Theory of magneto-tunnelling trans-
port

In this chapter, we review and present standard theory of magneto-tunnelling trans-
port. This starts with using linear response theory to derive a formula for tunnelling
current and conductance. Then we review past work, where magneto-tunnelling
transport between two parallel two-dimensional electron gases was studied. These
works are important, as the basis of this thesis is to apply these tools to investigate
two-dimensional chiral electron gases.

3.1 Linear response theory for tunnelling trans-

port

A full derivation of the tunnelling current shown here can be found in Ref. [53]. We
follow a similar format. To model two coupled systems we use the single particle
Hamiltonian

H =

(
H(1) T
T † H(2)

)
. (3.1)

One can use this to write a many body Hamiltonian in terms of single particle
eigenstates , with

H (m) =
∑
α

ε(m)
α c†m,αcm,α (3.2)

as the Hamiltonian for system m = 1, 2, with energies εm,α. cm,α and c†m,α are the cre-
ation and annihilation operators for system m, and α is the single particle eigenstate.
To couple the two systems across the barrier we use the tunnelling Hamiltonian

T =
∑
νη

〈ψ(1)
ν |T |ψ(2)

η 〉c
†
1,νc2,η + H.C., (3.3)

where 〈ψ(1)
ν |T |ψ(2)

η 〉 is the tunnelling matrix element between the single particle eigen-

states |ψ(2)
η 〉 and |ψ(1)

ν 〉. To include a chemical potential in each system we add the
term

µ(m)N̂ (m), (3.4)

14
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where N̂ =
∑

α c
†
αcα is the operator for the total number of particles. Collecting all

terms, we find

H = H (1) + H (2) + T − µ(1)N̂ (1) − µ(2)N̂ (2). (3.5)

One can perform a unitary transformation to obtain the equivalent Hamiltonian

H̄ = H (1) + H (2) + T̄ , (3.6)

where

T̄ =
∑
νη

〈ψ(1)
ν |T |ψ(2)

η 〉c
†
1,νc2,ηe

i
h̄ [µ(1)−µ(2)]t + H.C. (3.7)

Using the Heisenberg representation, the current operator is found to be

I(t) = − e
h̄

∑
νη

〈ψ(1)
ν |T |ψ(2)

η 〉c
†
1,νc2,ηe

i
h̄ [µ(1)−µ(2)]t − H.C. (3.8)

In the weak tunnelling limit, we can treat the coupling between our systems as
a perturbation. From this perturbation, we can calculate the average tunnelling
current using the Kubo formula from Linear response theory. If introducing the
coupling between the systems is done adiabatically, the Kubo formula is

〈I(t)〉 = 〈I〉0 −
i

h̄

∫ ∞
−∞

dt′Θ(t− t′)〈[II(t), T̄I(t′)]〉0, (3.9)

where 〈...〉0 denotes the equilibrium average, and AI(t) denotes an operator in the
interaction representation. At equilibrium, the number of particles in each system is
conserved, so 〈I〉0 = 0.

Using Wick’s theorem, particle number conservation at equilibrium, and then
relating Green’s functions to the spectral function, it can be shown that

I(V ) =
e

h̄

∑
αβ

∫ ∞
−∞

dε

2π
A(1)
α (ε)|〈ψ(1)

α |T |ψ
(2)
β 〉|

2A(2)
β (ε− eV ) [nF (ε− eV )− nF (ε)] .

(3.10)
We have made the substitution µ(1) − µ(2) = eV , and nF denotes the Fermi-Dirac
distribution. The finite bias tunnelling conductance can then be caculated from

G(V ) ≡ ∂I(V )

∂V
. (3.11)

It follows that the tunnelling conductance in the zero bias limit is [23]

G(0) ≡ ∂I(V )

∂V

∣∣∣∣∣
V=0

=
e2

h̄

∑
αβ

∫ ∞
−∞

dε

2π
A(1)
α (ε)|〈ψ(1)

α |T |ψ
(2)
β 〉|

2A(2)
β (ε)

[
−∂nF

∂ε
(ε)

]
.

(3.12)
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We will typically call this the linear tunnelling conductance, because it is the linear
order term in the Taylor series expansion, i.e.

I(V ) ≈ G(0)V +O(V 2) . (3.13)

Of course, this shows for V ≈ 0 that one can use Ohm’s law, and G(0) is the
proportionality constant between I and V .

Motivated by the form of the linear conductance, in this work we choose to write
the tunnelling current in the form

I(V ) =
1

e

∫ ∞
−∞

dε G̃(ε, V ) [nF (ε− eV )− nF (ε)] , (3.14)

where

G̃(ε, V ) =
∑
αβ

e2

2πh̄
A(1)
α (ε)|〈ψ(1)

α |T |ψ
(2)
β 〉|

2A(2)
β (ε− eV ) . (3.15)

Now we will introduce some assumptions to simplify the tunnelling current and con-
ductance. At zero temperature the Fermi-Dirac distribution becomes a step function,
and it follows that [

−∂nF

∂ε
(ε)

]
= δ (εF − ε) . (3.16)

Using the Hamiltonians in Eq. (3.2), which do not include interactions or disorder,
the spectral function (defined in Eq. (2.24)) is calculated to be

A(m)
α (ε) = 2πδ

(
ε− ε(m)

α

)
. (3.17)

In the case of zero temperature, no interactions, and no disorder, we find

G̃(ε, V ) =
2πe2

h̄

∑
αβ

δ(ε− ε(1)
α )|〈ψ(1)

α |T |ψ
(2)
β 〉|

2δ
(
ε− eV − ε(2)

β

)
, (3.18)

which can be used to calculate the tunnelling current

I(V ) =
1

e

∫ εF+eV

εF

dε G̃(ε, V ). (3.19)

In fact, one can also show that

G(0) =
2πe2

h̄

∑
α,β

δ
(
ε

(1)
F − ε

(1)
α

)
|〈ψ(1)

α |T |ψ
(2)
β 〉|

2δ
(
ε

(2)
F − ε

(2)
β

)
, (3.20)

where one can see that for equal Fermi energies in each layer G(0) = G̃(εF, 0). We
calculate Eq. (3.18) and Eq. (3.20) for magneto-tunnelling transport using the same
methods. In chapter 6 of this work, we discuss how the two quantities are related.
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Figure 3.1: The double layer 2DEG systems reviewed in this section. Green rep-
resents the 2DEG systems, and blue is the insulating barrier. In this section, we
review the magneto-tunnelling transport for a) an in-plane magnetic field with a
small bias, b) a tilted magnetic field with a small bias, and c) an in-plane magnetic
field with a finite bias. For a) & b), we calculate the linear magneto-tunnelling con-
ductance. While for c), we calculate the non-linear magneto-tunnelling current and
conductance.

3.2 Tunnelling between two-dimensional non-chiral

electron gases

In this section, we discuss and derive the linear magneto-tunnelling conductance
between two parallel two-dimensional (non-chiral) electron gases, for an in-plane and
tilted magnetic field. Then we discuss the finite bias magneto-tunnelling conductance
between two parallel two-dimensional electron gases for an in-plane magnetic field.
Each double layer system is shown in Fig. 3.1. First we list our assumptions for
calculating Eq. (3.20). An ordinary two-dimensional electron gas (2DEG) has the
energy-momentum relation

εk =
h̄2k2

2M
, (3.21)

with eigenstates |k〉. It is reasonable to assume that the barrier is homogeneous and
that it conserves momentum [22–24], so the tunnelling matrix is of the form

T =
∑

k

|k〉〈k|τ0 , (3.22)
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where τ0 is a constant. Given that there are no magnetic impurities in the barrier,
spin will be conserved in the tunnelling process. This allows one to sum over spin as
a degeneracy gs = 2. The last assumption is the continuum limit for summing over
momentum states ∑

k

→ A

(2π)2

∫
d2k , (3.23)

where A denotes the area of a sample.

3.2.1 The effect of an in-plane magnetic field

Here we review work performed in Ref. [23], to derive the linear magneto-tunnelling
conductance for an in-plane magnetic field B‖ = B‖b̂‖. We use a vector potential

of the form A = B‖zb̂‖ × ẑ. b̂‖ is the unit vector in the direction of the in-plane
magnetic field. This means we can write our kinetic momentum in each layer as

Π(m)(k,B‖) = h̄k + h̄
zm
`2
B‖

b̂‖ × ẑ (3.24)

where `B‖ =
√

h̄
eB‖

is the magnetic length and zmẑ is the location of system m.

We find that the magnetic field shifts the kinetic momentum in each system by
−h̄zm/`2

B‖
b̂‖ × ẑ.

The energy for each system is

ε
(m)
k =

h̄2

2M

∥∥∥∥∥k +
zm
`2
B‖

b̂‖ × ẑ

∥∥∥∥∥
2

, (3.25)

with eigenstates |ψk〉 = |k〉. One can then compute the linear magneto-tunnelling
conductance

G(0) =
gsA|τ0|2

(2π)2

2πe2

h̄

∫
d2k δ

(
ε

(1)
F − ε

(1)
k

)
δ
(
ε

(2)
F − ε

(2)
k

)
. (3.26)

The possible momentum states at ε
(m)
k = ε

(m)
F generate a shifted Fermi circle. The

Fermi circles have been separated in kinetic momentum by Q = [(z2−z1)/`2
B‖

] b̂‖× ẑ.

Conservation of energy and momentum in a tunnelling event require that tunnelling
can only occur between the momentum states at the points where the two Fermi
circles intersect. This description is shown in Fig. 3.2.

We can evaluate the integral in Eq. (3.26), and we introduce the units of con-
ductance

G0 =
gsgve2

2πh̄
Tr
[
τ †τ
] 4π2ρ

(1)
F ρ

(2)
F

k
(1)
F k

(2)
F

A. (3.27)

ρF is the density of states found in Table 2.1, and gv = 1 is the valley degeneracy for
a 2DEG. Presenting the conductance in units of G0 allows us to remove structure
due to the density of states, and obtain the structure due to the intersecting Fermi
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Figure 3.2: (a) Two energy-momentum curves for a 2DEG are separated by an in-
plane magnetic field. The separation in momentum space due to this magnetic field
is Q. Since V ≈ 0, tunnelling occurs at the Fermi energy for each system, where
the Fermi energy is determined by the electron density in each layer. (b) Since
tunnelling only occurs at the Fermi energy, the magneto-tunnelling conductance can
be described by two intersecting Fermi circles, where a Fermi circle is all momentum
states at the Fermi energy. These red and green circles can be seen as a cross-section
of (a). The two black points of intersection are states that conserve energy and
momentum in tunnelling, so determine when tunnelling can occur.

circles. One can inter-change between using the Fermi wave number and the electron
density. However, we will present all results in terms of the parameters

2k̃F = k
(1)
F + k

(2)
F and ∆ = |k(1)

F − k
(2)
F | . (3.28)

In general, the zero bias magneto-tunnelling conductance is a function of electron
densities in each layer, and the strength of the applied magnetic field. Implicitly,
this determines the three parameters k̃F, ∆, and Q.

The linear magneto-tunnelling conductance is [23]

G(2deg)(0)

G0

=
4k̃2

F −∆2√[
4k̃2

F −Q2
]

[Q2 −∆2]

Θ(Q−∆)Θ(2k̄F −Q) . (3.29)

For equal densities electron densities in each layer this simplifies

G(2deg)(0)

G0

=
4k̄2

F

Q
√

4k̄2
F −Q2

Θ(2k̄F −Q) (3.30)

a plot for this equation is shown in Fig. 3.3, where it is compared with two inter-
secting Fermi circles. The magneto-tunnelling conductance shows a resonance when
the Fermi circles overlap (Q = ∆) and when they are kissing (Q = 2k̄F). This
result was first presented in the study in Ref. [23], where it was also computed with
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Figure 3.3: A plot of the linear magneto-tunnelling conductance for two parallel elec-
tron gases within an in-plane magnetic field. Each layer has equal electron densities
(∆ = 0), so this plot corresponds to Eq. 3.30 as a function of Q. As explained in Fig.
3.2, the linear magneto-tunnelling conductance can be described by the points of two
intersecting Fermi circles shown below the plot. The radius of each Fermi circle is
k̄F, and the separation between the circles is Q. The black lines across the plot,
attached to the boxes, indicate the separation of the Fermi circles inside the boxes.
One finds a resonance when the Fermi circles overlap (Q/2k̄F = 0) and when they
kiss (Q/2k̄F = 1). These resonances indicate when the tunnelling current switches
on.
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a finite electron life-time (the time for electrons scatter with impurities) in the two
systems. When there is no disorder, the resonances diverge. But in the presence
of disorder, the resonances have a finite peak and width of a Lorentzian determined
by the electron life-time. This result was also shown to match the experiment per-
formed in Ref. [30], and was used to measure the electron life-time in two parallel
two-dimensional electron gases.

3.2.2 The effect of a tilted magnetic field

In this section, we calculate the linear magneto-tunnelling conductance when the
magnetic field is titled in the zy plane, i.e. B = B‖ŷ + B⊥ẑ. This work was first
performed in Ref. [24].

For definiteness, we choose the Landau gauge A = (−y B⊥ + z B‖, 0, 0), but the
same results can be easily obtained from any other gauge. One can use the lad-
der operators a± = `B⊥ (Πx ± iΠy) /(

√
2h̄), which follow the commutation relation

[a−, a+] = 1[54]. We use the eigenstates a+a−|ν, kx〉 = ν|ν, kx〉. We can then write
the Hamiltonian for a two-dimensional electron gas as

H =
h̄Ωc

2
(a−a+ + a+a−) , (3.31)

where Ωc = eB⊥/M is the cyclotron orbit frequency. The eigenstates and energies of

H(m) for layer m are |ν(m), κ
(m)
x 〉 and ε

ν(m),k
(m)
x

= h̄Ωc(ν
(m) + 1

2
), where κ

(m)
x = kx+ zm

`2B‖

is a degeneracy that determines the cyclotron orbit guiding centre κ
(m)
x `2

⊥. The linear
magneto-tunnelling conductance for tunnelling between Landau levels is

G(0) =
gsπe

2|τ0|2

h̄

∑
kx

∞∑
ν(1),ν(2)=0

δ
(
ε

(1)
F − ε

(1)

ν(1),kx

)
|〈ν(1), κ(1)

x |ν(2), κ(2)
x 〉|2δ

(
ε

(2)
F − ε

(2)

ν(2),kx

)
.

(3.32)
One can calculate the overlap between two Landau levels for two layers separated by
distance d = |z − z′| (see Fig. 3.4)

〈ν, κx|ν ′, κ′x〉 =
δkx,k′xe

−
(
d`⊥
2`2‖

)2

√
2ν2ν′ν ′! ν! π

∫ ∞
−∞

dη e−η
2

Hν

(
η +

d`⊥
2`2
‖

)
Hν′

(
η − d`⊥

2`2
‖

)
,

(3.33)

where Hν(·) is a Hermite polynomial. The above expression can be simplified further
[24, 55]

〈ν, κx | ν ′, κ′x〉 = δkx,k′x (−1)ν>−ν<
(
ν<!

ν>!

) 1
2
(
ξ2

2

) ν>−ν<
2

e−
ξ2

4 Lν>−ν<ν<

(
ξ2

2

)
, (3.34)

where ν<(>) = min(max){ν, ν ′}, ξ = (d/`B⊥)(B‖/B⊥), and Ln
′
n (·) is the generalized

Laguerre polynomial. We can use the fact that the number of orbits in a Landau
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Figure 3.4: An example of two shifted Landau levels, due to B‖. The blue
wave function is system 1 and the green wave function is system 2. Increasing
ξ separates the Landau levels, creating oscillations in the wave function overlap
|〈ν(1), κ

(1)
x |ν(2), κ

(2)
x 〉|2.

level is limited by the size of the system

∑
kx

≈ Lx
2π

∫ Ly

`2
B⊥

0

dkx =
A

2π

eB⊥
h̄

(3.35)

This leads to the magneto-tunnelling conductance

G(0) =
gsπe

2|τ0|2

h̄

A

2π

M2

h̄2

1

eB⊥h̄

∞∑
ν(1),ν(2)=0

δ
(
ν

(1)
F − ν

(1)
)
|〈ν(1), κ(1)

x |ν(2), κ(2)
x 〉|2δ

(
ν

(2)
F − ν

(2)
)
.

(3.36)
Ref. [24] shows that for an in-plane magnetic field (B⊥ = 0), one obtains Eq.

(3.29) as expected. For a perpendicular magnetic field (B‖ = 0), the linear magneto-
tunnelling conductance reduces to

G(0) =
gsπe

2|τ0|2

h̄

A

2π

M2

h̄2

1

eB⊥h̄

∞∑
ν(1),ν(2)=0

δ
(
ν

(1)
F − ν

(1)
)
δ
(
ν

(2)
F − ν

(2)
)
. (3.37)

3.2.3 The effect of an in-plane magnetic field with a finite
bias

Now we will calculate the magneto-tunnelling current and conductance between two
parallel two-dimensional electron gases in the presence of an in-plane magnetic field,
when there is a finite bias applied between the two tunnel-coupled systems.

One should notice that the calculation of Eq. (3.18) is performed in the same
way as the linear magneto-tunnelling conductance. For two parallel two-dimensional
electron gases at equal densities, with an in-plane magnetic field and an applied bias
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between them, we can show that

G̃(ord)(ε, V ) = G0
4εF√

h̄2/2MQ

√
4ε− [(h̄2/2M)Q2+eV ]

2

(h̄2/2M)Q2

Θ

(
ε−

[
(h̄2/2M)Q2 + eV

]2
4(h̄2/2M)Q2

)
.

(3.38)

Using the relation ε = h̄2k2

2M
, one can see the similarities with the zero bias conductance

G(ord)(0) in Eq. (3.30). In particular, the only difference is that the divergences are
now modified as a function of the bias eV . The two formula are related because they
both describe intersecting circles, where G̃(ord)(ε, V ) is determined by the intersecting
cross-section at energy ε of two energy-momentum relations separated in energy by
eV and momentum Q.

Evaluating the integral in Eq. (3.19), one finds the magneto-tunnelling current
as

I(ord)(V ) =
G0

e

4εF

2 h̄√
2M
Q

[
Θ

(
4εF −

( h̄2

2M
Q2 − eV )2

h̄2

2M
Q2

)√√√√4εF −
( h̄2

2M
Q2 − eV )2

h̄2

2M
Q2

−Θ

(
4εF −

( h̄2

2M
Q2 + eV )2

h̄2

2M
Q2

)√√√√4εF −
( h̄2

2M
Q2 + eV )2

h̄2

2M
Q2

]
.

(3.39)

This formula is consistent with the expression for the magneto-tunnelling current
found in [22]. One can differentiate with respect to V , and obtain the non-linear
magneto-tunnelling conductance

G(ord)(V ) = G0

[
Θ

(
4εF −

( h̄2

2M
Q2 − eV )2

h̄2

2M
Q2

)
4εF

( h̄
2

2M
Q2−eV )

2 h̄2

2M
Q2

h̄√
2M
Q

√
4εF −

( h̄
2

2M
Q2−eV )2

h̄2

2M
Q2

+Θ

(
4εF −

( h̄2

2M
Q2 + eV )2

h̄2

2M
Q2

)
4εF

( h̄
2

2M
Q2+eV )

2 h̄2

2M
Q2

h̄√
2M
Q

√
4εF −

( h̄
2

2M
Q2+eV )2

h̄2

2M
Q2

]
.

(3.40)
From this formula, it is clear that G(ord)(V ) = G(ord)(−V ). One will find that
G(ord)(0) is consistent with Eq. (3.30). Also, one can use this formula to show
that there are resonances at the locations

eV

εF

= +

(
2± Q

kF

)
Q

kF

and
eV

εF

= −
(

2± Q

kF

)
Q

kF

. (3.41)

Fig. 3.5 shows a plot of the non-linear magneto-tunnelling conductance, where one
can see these divergences create a fish shape. One can find that this plot is consistent
with the plots of experimental measurements found in [41, 42], where the divergences
follow the same fish shape and are discussed in detail. Fig. 3.6 explains how each
resonance relates to the intersecting energy-momentum relations.
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Figure 3.5: (Top Left) Two parabolic energy-momentum relations shifted, due to
a magnetic field and bias, by momentum Q and energy eV , where each system
is occupied up to the Fermi level. (Top Right) A plot of the magneto-tunnelling
conductance between two parallel 2DEG, as a function Q and eV . The divergences
create a distinct fish shape, which is present in experimental results from [41, 42].

(Bottom) One can see the lines of divergence eV
εF

=
(

2± Q
kF

)
Q
kF

(+ green, - blue)

and eV
εF

= −
(

2± Q
kF

)
Q
kF

(+ pink, - red). The dashed black line is a line of constant

voltage, Fig. 3.6 shows the separated energy-momentum relations for the divergences
along this line.



25 Chapter 3

Figure 3.6: Two parabolic energy-momentum relations separated by energy eV and
momentum Q, each diagram can be mapped to the divergences along the dashed
black line in Fig. 3.5. Each system is occupied up to the Fermi energy represented
by the line. At Q = 0, no current can flow because the surfaces do not intersect.

However, when the surfaces start to intersect at Q
kF

=
√

1− eV
εF
− 1 the current

switches on. The current increases until Q
kF

= 1−
√

1− eV
εF

, because total intersection

increases. At Q
kF

= 1 −
√

1 + eV
εF

the current starts to decrease again, because the

total intersection starts to decrease. The current switches off at Q
kF

= 1 +
√

1 + eV
εF

.
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Magneto-tunnelling between two di-
mensional chiral electron gases

In this chapter, we calculate the linear magneto-tunnelling conductance between two
parallel two-dimensional chiral electron gases, extending previous work discussed in
subsections 3.2.1 & 3.2.2. We investigate magneto-tunnelling transport in a double
layer van der Waals heterostructure. Specifically, we investigate the effect of an in-
plane magnetic field for SLG, BLG, and MoS2, and a tilted magnetic field in two
parallel layers of SLG.

In order to look at the effect of chiral pseudo-spin states, we introduce the
momentum-resolved pseudo-spin tunnelling matrix. This tunnelling matrix encodes
the pseudo-spin properties of the barrier, which we discuss in section 5.

For an in-plane magnetic field, we find that pseudo-spin overlap at the intersection
of the Fermi circles dampens the tunnelling conductance as a function of Q. For a
tilted magnetic field in SLG, we find oscillations in the linear magneto-tunnelling
conductance as a function of ξ = (d/`B⊥)(B‖/B⊥), and different oscillations are
possible due to pseudo-spin couplings.

4.1 Effect of an in-plane magnetic field

In this section, we obtain an analytic formula for the linear magneto-tunnelling
conductance between two parallel chiral systems, for an in-plane magnetic field (see
Fig. 4.1). We introduce the assumptions and an outline for the calculation. We
also introduce the chosen parametrisation of the momentum-resolved pseudo-spin
tunnelling matrix. Then we compare calculations for SLG, BLG, and MoS2.

The possible states are determined by the valley γ, canonical momentum k, and
pseudo-spin σ. To calculate the linear tunnelling conductance, one can use Eq.
(3.20).

4.1.1 Form of the tunnelling matrix

To describe tunnelling between two systems, the systems are coupled with the tun-
nelling matrix T . Thus, T encodes how particles can transition between the states
of each system. The intrinsic spin of a particle is conserved in tunnelling, assuming
there are no magnetic impurities in the barrier. However, we cannot ensure that

26
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Figure 4.1: Two parallel two-dimensional chiral systems are separated by an atomi-
cally thick barrier. A small bias V ≈ 0 is applied between the two layers. An in-plane
magnetic field is applied along the barrier and two layers, as shown by the red arrow.

pseudo-spin is conserved in tunnelling, since it relies on the coupling between sub-
lattices across the barrier. For two systems with pseudo-spin, the tunnelling matrix
can be written as

T =

(
T↑↑ T↑↓
T↓↑ T↓↓

)
, (4.1)

where ↑ is spin pseudo-up and ↓ is pseudo-spin down along the z-axis. Each Tαβ is
an operator that can be written in position or momentum representation.

When the barrier is translationally invariant, canonical momentum is conserved
when a particle tunnels across the barrier [22–24]. This means a particle in momen-
tum state (kx, ky) can only tunnel to another state with the momentum (kx, ky).
Which suggests that the tunnelling matrix is diagonal in canonical momentum.
Therefore, when momentum is conserved in tunnelling, the tunnelling matrix is

T =
∑

k

|k〉〈k|⊗τk . (4.2)

τk is a complex valued 2 × 2 matrix, it is the momentum-resolved pseudo-spin tun-
nelling matrix as a function of k.

One can combine Eq. (2.3) and Eq. (4.2) to show that the tunnelling matrix
element is

〈γ,k(1),σ(1)ψ(1)|T |ψ(2)

γ,k(2),σ(2)〉 = γ,Π(1)〈σ(1)|τk|σ(2)〉γ,Π(2) . (4.3)

4.1.2 Linear magneto-tunnelling conductance formula

At zero temperature, with no interactions or disorder, and enforcing conservation of
canonical momentum across the barrier, we can use Eq. (3.20) to calculate the linear
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magneto-tunnelling conductance

G(0) =
gsA

(2π)2

2πe2

h̄

∑
γ=K,K′

∫
d2k δ

(
ε

(1)
F − ε

(1)

σ
(1)
F ,k

)
|γ,Π(1)〈σ(1)

F |τk|σ
(2)
F 〉γ,Π(2) |2δ

(
ε

(2)
F − ε

(2)

σ
(2)
F ,k

)
(4.4)

where we have defined σ
(m)
F = Sign(ε

(m)
F ). One can see this is the same as Eq. (3.26),

but with the pseudo-spin tunnelling matrix element.
Due to the shift in kinetic momentum between the layers (see Eq. (3.24)), SLG,

BLG, and MoS2 have the dispersion relations

ε
slg,(m)
γ,σ,k = σvh̄

∥∥∥∥∥k +
zm
`2
B‖

b̂‖ × ẑ

∥∥∥∥∥ , ε
blg,(m)
γ,σ,k = σ

h̄2

2M

∥∥∥∥∥k +
zm
`2
B‖

b̂‖ × ẑ

∥∥∥∥∥
2

, (4.5)

ε
MoS2,(m)
γ,σ,k = σvh̄

√√√√∥∥∥∥∥k +
zm
`2
B‖

b̂‖ × ẑ

∥∥∥∥∥
2

+ k2
∆. (4.6)

In each type of chiral material, the possible momentum states for ε
(m)
σ,k = ε

(m)
F

generate a shifted Fermi circle. Even though SLG and MoS2 do not have parabollic
energy-momentum relations, Fig. 4.2 explains how the linear magneto-tunnelling
conductance can be viewed using two separated Fermi circles. As with an ordinary
2DEG, the Fermi circles have been separated in momentum space by Q = [(z2 −
z1)/`2

B‖
] b̂‖× ẑ. Conservation of energy and momentum in a tunnelling event require

that tunnelling can only occur between the momentum states at the points where
the two Fermi circles intersect. This means that any new characteristics in the
linear magneto-tunnelling conductance will be due to pseudo-spin, and not due to
the energy-momentum relation.

In this work, we assume that there is no tunnelling between the K and K′ valleys.
For this assumption to be true requires that the valleys do not intersect. This is
enforced when Q < π

a
, where a is the lattice constant. Letting d = z2 − z1, one can

write this as

B‖ <
π

a

h̄

ed
. (4.7)

One can assume that a ≈ 10−10, d ≈ 10−9, and one would need a magnetic field on
the order of 104 T to make the K and K′ valleys overlap.

One can show that the linear magneto-tunnelling conductance in the case of two
intersecting Fermi circles is

G(0)

A
=
gse

2

h̄

∑
γ

2π ρ
(1)
F ρ

(2)
F

[∣∣Γ(γ)
u

∣∣2 +
∣∣∣Γ(γ)

l

∣∣∣2]

×
Θ
(
‖Q‖−

∣∣∣k(1)
F − k

(2)
F

∣∣∣)Θ
(
k

(1)
F + k

(2)
F − ‖Q‖

)
√[(

k
(1)
F + k

(2)
F

)2

−Q2

] [
Q2 −

(
k

(1)
F − k

(2)
F

)2
] , (4.8)
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Figure 4.2: a) Diagram showing two linear energy-momentum relations separated

in momentum space by distance Q. Each system has a different Fermi energy ε
(m)
F

due to different electron densities. This shows that even for a non-parabolic energy-
momentum relation, one can still view the tunnelling conductance as being explained
by two intersecting Fermi circles. b) A diagram of two intersecting Fermi circles,
separated in momentum space by distance Q. The colour of each Fermi circle relates
to the conical cross-sections in a). The black dots at the intersections represent where
tunnelling can occur, conserving energy and canonical momentum.

where

Γ
(γ)
u/l

(
Q, k

(1)
F , k

(2)
F

)
=

γ,Π
(1)
u/l

〈σ(1)
F |τku/l

|σ(2)
F 〉γ,Π(2)

u/l

. (4.9)

The density of states at the Fermi energy ρF does not include spin, and can be found
in Table 2.1. We have defined σ

(m)
F = Sign(ε

(m)
F ). We have defined ku/l so that it

represents where the Fermi circles intersect in canonical momentum space, and u (l)
is the upper (lower) intersection. In later results, we will assume that τk ≡ τ .

We define the following

∥∥∥Π(m)
u/l

∥∥∥ = h̄k
(m)
F , (4.10a)

Π
(1)
u/l −Π

(2)
u/l = h̄Q , (4.10b)

h̄ku/l =
1

2

(
Π

(1)
u/l + Π

(2)
u/l − h̄

z1 + z2

`2
B‖

b̂× ẑ

)
. (4.10c)

The context of each variable can be seen in Fig. 4.3. One will notice that since the
pseudo-spin eigenstates are a function of momentum, the tunnelling matrix element
Γ

(γ)
u/l is a function of Q and k

(m)
F .
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Figure 4.3: Here we see two Fermi-circles at the K valley for each layer, separated
in momentum space by distance Q (blue). The points which satisfy energy and
momentum can be found at the intersection points ‘u’ and ‘l’. ku/l is the canonical
momentum for each of these intersection points. The kinetic momentum at the ‘u’
intersection is represented via the purple arrows, and the direction of pseudo-spin
eigenstates are shown using the green and red arrows. This diagram corresponds to
two n-doped layers of SLG with equal electron densities.

4.2 Pseudo-spin tunnelling matrix elements

4.2.1 Single layer graphene

In this subsection, we investigate if System 1 n doped ↔ System 2 n doped (n ↔
n) tunnelling between two SLG layers is different from p ↔ p doped tunnelling.
Similarly, we see if n↔ p doped tunnelling is different from n↔ p doped tunnelling.
In each case, we conclude there is no difference.

Using Eq. (2.7), the eigenstates at the u intersection can be related to the other
intersections (see Fig. 4.4). The angle of momentum at the u intersection can be
related to the angle at the l intersection as a reflection along the y-axis. This provides
the relation θ

Π
(m)
u

= −θ
Π

(m)
l

, which we combine with Eq. (2.7) to show that

|σ(m)
F 〉

(slg)

γ,Π
(m)
l

= σx|σ(m)
F 〉

(slg)

γ,Π
(m)
u

. (4.11)

The pseudo-spin eigenstates in the K and K′ valleys are related through a reflection
along the x-axis. For the u intersection, this can be written as θ′

Π
(m)
u

= π−θ
Π

(m)
u

where

θ′
Π

(m)
u

is the angle of pseudo-spin at the u intersection for the K′ valley. Combining

this relation with Eq. (2.7) shows that

|σ(m)
F 〉

(slg)

K′,Π
(m)
u/l

= σy|σ(m)
F 〉

(slg)

K,Π
(m)
u/l

. (4.12)

If one looks at the pseudo-spin eigenstates in Eq. (2.7), one will notice that the
pseudo-spin eigenstates in SLG can be written using a rotation by the angle of
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momentum, U(θΠ(m)) = exp (−iσzθΠ(m)/2). For example, at the top intersection u,
at the K valley

|+〉(slg)

K,Π
(m)
u

= U(θ
Π

(m)
u

)|→〉 and |−〉(slg)

K,Π
(m)
u

= U(θ
Π

(m)
u

)|←〉 , (4.13)

where |→〉 = 1√
2

(
1
1

)
and |←〉 = σz|→〉.

Using the above relations for two n-doped layers of SLG ( which means σ
(1)
F = +

and σ
(2)
F = +), one can write the sum of tunnelling matrix contributions in Eq. (4.8)

to find[∣∣ΓK
u

∣∣2 +
∣∣ΓK

l

∣∣2 +
∣∣∣ΓK′

u

∣∣∣2 +
∣∣∣ΓK′

l
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n↔n

=∣∣∣〈→ |U(θ
Π

(2)
u

)†τU(θ
Π

(1)
u

)|→〉
∣∣∣2 +

∣∣∣〈→ |U(θ
Π

(2)
u

)†σxτσxU(θ
Π

(1)
u
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∣∣∣2
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(4.14)
One can then use the relation |→〉 = σz|←〉 to show that this sum is the same for

two p-doped layers of SLG (when σ
(1)
F = − and σ

(2)
F = −) ,

[∣∣ΓK
u

∣∣2 +
∣∣ΓK

l
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.

(4.15)

In conjunction with Eq. (4.8), this tells us that G
(slg)
n↔n(0) = G

(slg)
p↔p(0). Following the

same process, one can show that G
(slg)
p↔n(0) = G

(slg)
n↔p(0) using
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(4.16)

One can then use |→〉 = σz|←〉 to show

[∣∣ΓK
u

∣∣2 +
∣∣ΓK

l

∣∣2 +
∣∣∣ΓK′

u

∣∣∣2 +
∣∣∣ΓK′

l

∣∣∣2] ∣∣∣∣∣
n↔p

=

[∣∣ΓK
u

∣∣2 +
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∣∣2 +
∣∣∣ΓK′

u

∣∣∣2 +
∣∣∣ΓK′

l

∣∣∣2] ∣∣∣∣∣
p↔n

.

(4.17)
This shows that n↔ p tunnelling is the same as p↔ n tunnelling in the zero bias

limit.
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Figure 4.4: Intersecting Fermi circles for SLG and BLG. Each intersection point has
been labelled with the corresponding tunnelling matrix element. The positive pseudo-
spin eigenstate at the intersection points is represented by the arrows, with each
eigenstate written in terms of |+〉

K,Π
(m)
u

. From this, one has a visual representation

of the transformation relations shown in the text.
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4.2.2 Bilayer graphene

Now, we perform the same investigation as in the last subsection, but for tunnelling
between two layers of BLG. We are interested in seeing if n↔ n doped tunnelling is
different from p ↔ p doped tunnelling. Similarly, we see if n ↔ p doped tunnelling
is different from p ↔ n doped tunnelling. Unlike SLG, we find that swapping the
doping of both layers of BLG between n and p changes the conductance.

The BLG pseudo-spin eigenstates in Eq. 2.14 can be used to relate the eigenstates
of each intersection (see Fig. 4.4), using the same method as the previous subsection.
The angles of momentum at the u and l intersections are related by θ

Π
(m)
u

= −θ
Π

(m)
l

.

Using Eq. 2.14 we find the relation

|σ(m)
F 〉

(blg)

γ,Π
(m)
l

= −σx|σ(m)
F 〉

(blg)

γ,Π
(m)
u

. (4.18)

However, the K and K′ valley pseudo-spin eigenstates are related through θ′
Π

(m)
u

=

π − θ
Π

(m)
u

. Using Eq. 2.14 we find the relation

|σ(m)
F 〉

(blg)

K′,Π
(m)
u/l

= σx|σ(m)
F 〉

(blg)

K,Π
(m)
u/l

. (4.19)

Similar to SLG, if one looks at the pseudo-spin eigenstates in Eq. 2.14, one will
notice that the pseudo-spin eigenstates in BLG can be obtained using a rotation by
the angle of momentum, U(−2θΠ(m)). For example, at the u intersection of the K
valley

|+〉(blg)

K,Π
(m)
u

= U(−2θ
Π

(m)
u

)|←〉 and |−〉(blg)

K,Π
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K,Π
(m)
u

. (4.20)

Using the relations above, one can write the sum of tunnelling matrix contributions
in Eq. (4.8) for n↔ n tunnelling as[∣∣ΓK
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(4.21)

where we use σ
(1)
F = + and σ

(2)
F = + for each system. Using the relation |→〉 = σz|←〉,

one will find that the sum is different for p↔ p tunnelling[∣∣ΓK
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(4.22)

where σ
(1)
F = − and σ

(2)
F = −. From the above, we find[∣∣ΓK
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(4.23)
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which means that G
(blg)
n↔n(0) 6= G

(blg)
p↔p (0).

Following the same process, one can show that G
(blg)
p↔n(0) 6= G

(blg)
n↔p(0). One can

write the sum of tunnelling matrix contributions in Eq. (4.8) for n → p tunnelling
as[∣∣ΓK
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(4.24)

where we use σ
(1)
F = + and σ

(2)
F = − for each system. Using the relation |→〉 = σz|←〉,

one will find that the sum is different for p→ p tunnelling[∣∣ΓK
u

∣∣2 +
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(4.25)

where σ
(1)
F = − and σ

(2)
F = +. From the above, we find[∣∣ΓK
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which means that G
(blg)
n↔p(0) 6= G

(blg)
p↔n(0) at zero bias. However, there are cases when

G
(blg)
n↔p(0) = G

(blg)
p↔n(0), i.e. when pseudo-spin is conserved.

We have shown that G
(blg)
n↔p(0) 6= G

(blg)
p↔n(0) when there is zero bias between system

1 and system 2. This suggests that system 1 and system 2 can be distinguished in
the zero bias limit. However, it may be that G

(blg)
n→p(0) = G

(blg)
p→n(0) is required for

physicality, this would simplify the possible the pseudo-spin couplings between the
two layers of BLG.

4.2.3 Tunnelling matrix parametrisation

The most convenient way to evaluate the tunnelling matrix element is to represent
the tunnelling matrix in terms of the basis of Pauli matrices

τ =
1√
2

[τ0σ0 + τxσx + τyσy + τzσz] . (4.27)

τη are complex numbers that encode pseudo-spin flips about the ηth axis. For in-
stance, we find

Γ
(γ)
u/l =

∑
η=0,x,y,z

1√
2
τη,ku/l γ,Π

(1)
u/l

〈σ(1)
F |ση|σ

(2)
F 〉γ,Π(2)

u/l

. (4.28)
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Figure 4.5: The three different types of pseudo-spin flips for a pseudo-spin state in
the xy plane. The pseudo-spin before interaction with the barrier, |ψ〉, is shown in
blue. The pseudo-spin after the flip about the x, y, z axis, Rx,y,z(π)|ψ〉, is shown in
green. Each of these processes are encoded in the pseudo-spin tunnelling matrix,
through the parameters τx, τy, τz.

From the relations between the Pauli matrices and the pseudo-spin rotation operator
Rη(θ) = exp

[
−i θ

2
ση
]
σx = iRx(π), σy = iRy(π), σz = iRz(π), (4.29)

we can see how the Pauli matrices represent pseudo-spin flips about a given axis due
to the tunnelling process [56]. τη would be a phase and amplitude attached to such
a process. An example of each pseduo-spin flip is shown in Fig. 4.5.

From the kinetic momentum dependence of the pseudo-spin eigenstates, one can
calculate

γ,Π
(1)
u/l

〈σ(1)
F |ση|σ

(2)
F 〉γ,Π(2)

u/l

(4.30)

as a function of Q, and k
(m)
F . For example, one will find the straightforward calcula-

tion for SLG

(slg)

γ,Π
(1)
u/l

〈σ(1)
F |σ0|σ(2)

F 〉
(slg)

γ,Π
(2)
u/l

= cos

(
θ

Π
(1)
u/l

− θ
Π

(2)
u/l

2

)
. (4.31)

One can then use trigonometric identities to obtain the pseudo-spin overlap as a
function of cos θ

Π
(m)
u/l

and sin θ
Π

(m)
u/l

, the momentum direction at the intersections of

the Fermi circles. Once in this form, one can use Eqs. 4.10 to obtain algebraic
formulae at the ‘u’ intersection,

cos θ
Π

(1)
u

=
k

(2)
F

2 − k(1)
F

2 −Q2

2Qk
(1)
F

, cos θ
Π

(2)
u

=
k

(2)
F

2 − k(1)
F

2 +Q2

2Qk
(2)
F

, (4.32)

sin θ
Π

(1)
u

=

√[(
k

(1)
F + k

(2)
F

)2

−Q2

] [
Q2 −

(
k

(1)
F − k

(2)
F

)2
]

2Qk
(1)
F

,

sin θ
Π

(2)
u

=

√[(
k

(1)
F + k

(2)
F

)2

−Q2

] [
Q2 −

(
k

(1)
F − k

(2)
F

)2
]

2Qk
(2)
F

.

(4.33)
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For the ‘l’ intersection,

cos θ
Π

(m)
l

= cos θ
Π

(m)
u
, sin θ

Π
(m)
l

= − sin θ
Π

(m)
u

. (4.34)

See Fig. 4.3 to see the ‘u’ and ‘l’ intersections of the intersecting Fermi circles.

4.3 Comparative study of chiral magneto-tunnelling

transport

In this section, we investigate the derived linear magneto-tunnelling conductance
formula Eq. (4.8), using different chiral materials and for different dopants in the
presence of an in-plane magnetic field. We present and compare the linear magneto-
tunnelling conductance for graphene, bilayer graphene, and MoS2.

From now on, we assume that τk ≡ τ has no momentum dependence. This has
been shown to be a reasonable assumption in Ref. [23]. We will also choose the
notation

τ =
1√
2

[
τ0σ0 + τ⊥σ⊥ + τ‖σ‖ + τzσz

]
, (4.35)

where ⊥ and ‖ are the in-plane axes perpendicular and parallel to the in-plane
magnetic field (for example one could choose x =⊥ and y = ‖).

4.3.1 Single layer graphene

To calculate the linear magneto-tunnelling conductance for SLG, one uses

ε
(slg)
γ,k,σ = σv‖Π(k,B)‖ , (4.36)

and the pseudo-spin eigenstates

|σ〉(slg)
K,Π =

1√
2

(
e−iθΠ/2

σeiθΠ/2

)
|σ〉(slg)

K′,Π =
1√
2

(
e−i(π−θΠ)/2

σei(π−θΠ)/2

)
. (4.37)

One can now use Eq. (4.8) to calculate the magneto-tunnelling conductance.
The linear magneto-tunnelling conductance between two n doped SLG systems

is

G
(slg)
n↔n(0)

G0

=
Θ(Q−∆)Θ(2k̄F −Q)

Tr[τ †τ ]

{[
|τ0|2+|τ⊥|2

∆2

Q2

]√
4k̄2

F −Q2

Q2 −∆2

+

[
|τz|2+|τ‖|2

4k̄2
F

Q2

]√
Q2 −∆2

4k̄2
F −Q2

}
.

(4.38)

We find that pseudo-spin flips, τ⊥, τ‖, τz in the above equation, can activate the
resonances seen at Q = 2k̄F and Q = ∆.
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For tunnelling between n and p doped systems, the magneto-tunnelling conduc-
tance is

G
(slg)
n→p(0)

G0

=
Θ(Q−∆)Θ(2k̄F −Q)

Tr[τ †τ ]

{[
|τ0|2+|τ⊥|2

4k̄2
F

Q2

]√
Q2 −∆2

4k̄2
F −Q2

+

[
|τz|2+|τ‖|2

∆2

Q2

]√
4k̄2

F −Q2

Q2 −∆2

}
.

(4.39)

One will notice that G
(slg)
n→n(0) has a similar form to G

(slg)
n→p(0), where the resonances

are the same but depend on different parameters. This is because the conduction and
valence band eignstates are related by a pseudo-spin flip about the z-axis, σz|+〉 =
|−〉. This effectively swaps the roles between τ0 and τz, as well as τx and τy.

For equal densities (∆ = 0) and pseudo-spin conservation in the tunnelling process
(τ = 1√

2
τ0σ0), one can generally show that

G(slg)(0)

G
(slg)
0

=
∣∣∣(slg)

K,Π
(1)
u

〈σ(1)
F |σ

(2)
F 〉

(slg)

K,Π
(2)
u

∣∣∣2 G(2deg)(0)

G
(2deg)
0

, (4.40)

which means the characteristics only differ from the 2DEG due to the pseudo-spin
overlap at the u intersection. Since the pseudo-spin overlap is bounded between 0
and 1, the chiral eigenstates can only dampen the conductance. For two n doped
layers, one will find

G
(slg)
n↔n(0)

G0

=

√
4k̄2

F −Q2

Q
Θ(2k̄F −Q). (4.41)

The pseudo-spins are parallel when the Fermi circles overlap (Q = 0), and contin-
uously become orthogonal as the Fermi circles kiss. In particular, the pseudo-spin
overlap removes the resonance at the kissing point (Q = 2k̄F). See Fig. 4.6 for a plot
of Eq. (4.41).

Now one can investigate

G
(slg)
n↔p(0)

G0

=
Q√

4k̄2
F −Q2

Θ(2k̄F −Q) . (4.42)

For two n and p doped layers, the pseudo-spins are orthogonal when the Fermi circles
overlap (Q = 0), but become parallel at the kissing point (Q = 2k̄F). This removes
the resonance at Q = 0, while preserving the resonance at Q = 2k̄F. Essentially,
the reverse situation of two n doped layers, because of the pseudo-spin relation
σz|+〉 = |−〉 between the conduction and valence band. See Fig. 4.7.

4.3.2 Bilayer graphene

In BLG, the energy is similar to a 2DEG

ε
(blg)
γ,k,σ = σ

1

2M
‖Π(k,B)‖2 , (4.43)
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and the pseudo-spin eigenstates are

|σ〉K,Π =
1√
2

(
eiθΠ

−σe−iθΠ

)
|σ〉K′,Π =

1√
2

(
e−iθΠ

−σeiθΠ

)
. (4.44)

The linear magneto-tunnelling conductance between two n doped layers is

G
(blg)
n↔n(0)

G0

=
Θ(Q−∆)Θ(2k̄F −Q)

Tr[τ †τ ]
× (4.45)

∣∣τ0

(
4k̄2

F + ∆2 − 2Q2
)
Q2 − τ⊥

[
8k̄2

F ∆2 −
(
4k̄2

F + ∆2
)
Q2
]∣∣2

Q4
(
4k̄2

F −∆2
)√(

4k̄2
F −Q2

)
(Q2 −∆2)

+
∣∣τ‖ 8k̄2

F ∆2 − i τz 2Q2
∣∣2
√(

4k̄2
F −Q2

)
(Q2 −∆2)

Q4
(
4k̄2

F −∆2
)

 , (4.46)

For tunnelling between an n doped and p doped system, the linear magneto-tunnelling
conductance is

G
(blg)
n→p(0)

G0

=
Θ(Q−∆)Θ(2k̄F −Q)

Tr[τ †τ ]

∣∣τ0 2Q2 + τ⊥ 8k̄2
F ∆2

∣∣2
√(

4k̄2
F −Q2

)
(Q2 −∆2)

Q4
(
4k̄2

F −∆2
)

+

∣∣τ‖ [8k̄2
F ∆2 −

(
4k̄2

F + ∆2
)
Q2
]

+ i τz
(
4k̄2

F + ∆2 − 2Q2
)
Q2
∣∣2

Q4
(
4k̄2

F −∆2
)√(

4k̄2
F −Q2

)
(Q2 −∆2)

 . (4.47)

When pseudo-spin is conserved in tunnelling and the densities in each layer are equal,
we find the familiar relation

G(blg)(0)

G
(blg)
0

=
∣∣∣(blg)

K,Π
(1)
u

〈σ(1)
F |σ

(2)
F 〉

(blg)

K,Π
(2)
u

∣∣∣2 G(2deg)(0)

G
(2deg)
0

. (4.48)

For two n doped layers, one finds

G
(blg)
n↔n(0)

G0

=

(
2k̄2

F −Q2
)2

k̄2
FQ

√
4k̄2

F −Q2
Θ(2k̄F −Q) . (4.49)

In this case, the divergences when the Fermi circles overlap (Q = 0) and kiss
(Q = 2k̄F ) are still present, because the pseudo-spins are parallel. However, when
Q =

√
2k̄F , the pseudo-spins are orthogonal. This causes the magneto-tunnelling

conductance to vanish at Q =
√

2k̄F , and dampen near this location. See Fig. 4.6
for a plot of Eq. (4.49). For tunnelling between n and p doped layers,

G
(blg)
n↔p(0)

G0

=
Q
√

4k̄2
F −Q2

k̄2
F

. (4.50)

Now one finds, the magneto-tunnelling conductance vanishes at Q = 0 and Q = 2k̄F
due to orthogoanl pseudo-spins, removing both resonances. The maximum of the
magneto-tunnelling conductance is when Q =

√
2k̄F , where the pseudo-spins are

parallel at the Fermi circle intersections. See Fig. 4.7.
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Figure 4.6: Here we compare the linear magneto-tunnelling conductance as a function
of Q/2k̄F between two n doped layers of 2DEG (blue), SLG (green), and BLG (red),
when the densities in the layers are equal and pseudo-spin is conserved in tunnelling.
Below the plot are diagrams of the intersecting Fermi circles with the direction of
pseudo-spin for SLG and BLG, for values of Q = 0.2k̄F,

√
2k̄F, 1.96k̄F, as indicated by

the black lines on the plot. The 2DEG shows a resonance when the Fermi-circles kiss
and overlap. For SLG, the pseudo-spins at the intersections become orthogonal as
Q→ 2k̄F, which dampens the conductance and removes the divergence at the kissing
point Q = 2k̄F. For BLG, the pseudo-spins at the intersections are parallel when
Q = 0, 2k̄F, but become orthogonal as Q→

√
2k̄F, which dampens the conductance

close to this point.
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Figure 4.7: The linear magneto-tunnelling conductance as a function of Q/2k̄F be-
tween two n↔ p doped layers of 2DEG (blue), SLG (green), and BLG (red), when
the densities in the layers are equal and pseudo-spin is conserved in tunnelling. The
2DEG shows a resonance when the Fermi circles kiss and overlap, note that there
is no dampening due to pseudo-spin overlap. For SLG, the pseudo-spins at the in-
tersections become orthogonal when Q = 0, which dampens the conductance and
removes the divergence at Q = 0. For BLG, the pseudo-spins at the intersection are
orthogonal when Q = 0, 2k̄F, but become parallel as Q →

√
2k̄F, which is why the

BLG curve touches the 2DEG curve at this point.
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4.3.3 Molybdenum disulphide

The semi-conductor MoS2 has the energy-momentum relation

ε
(mos)
γ,k,σ = σ

√
v2‖Π(k,B)‖2+v2h̄2k2

∆ , (4.51)

and the pseudo-spin eigenstates for each valley are

|σ〉(mos)
K,Π =

1√
2

√1+σζΠ
2

e−iθΠ/2

σ
√

1−σζΠ
2

eiθΠ/2

 |σ〉(mos)
K′,Π =

1√
2

√1+σζΠ
2

e−i(π−θΠ)/2

σ
√

1−σζΠ
2

ei(π−θΠ)/2

 . (4.52)

One will notice that the pseudo-spin eigenstates do not lie in the xy plane. This
allows for more complexity when pseudo-spin is not conserved in tunnelling. To stay
within the scope of this work, we enforce pseudo-spin conservation (τ = 1√

2
τ0σ0), and

calculate the linear magneto-tunnelling conductance between two n doped layers of
MoS2

G
(mos)
n↔n (0)

G0

=
Θ(Q−∆)Θ(2k̄F −Q)

4

×


√

4k̄2
F −Q2

Q2 −∆2
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1 + ζ
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F

)(
1 + ζ

k
(2)
F

)
+

√(
1− ζ

k
(1)
F

)(
1− ζ

k
(2)
F

)]2

+

√
Q2 −∆2

4k̄2
F −Q2

[√(
1 + ζ

k
(1)
F

)(
1 + ζ

k
(2)
F

)
−
√(

1− ζ
k

(1)
F

)(
1− ζ

k
(2)
F

)]2
 .(4.53)

For tunnelling between n and p doped layers, the linear magneto-tunnelling con-
ductance is

G
(mos)
n→p (0)

G0

=
Θ(Q−∆)Θ(2k̄F −Q)

4

×


√

4k̄2
F −Q2

Q2 −∆2

[√(
1 + ζ

k
(1)
F

)(
1− ζ

k
(2)
F
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−
√(

1− ζ
k

(1)
F

)(
1 + ζ
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F
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+

√
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F −Q2

[√(
1 + ζ

k
(1)
F

)(
1− ζ

k
(2)
F

)
+

√(
1− ζ

k
(1)
F

)(
1 + ζ

k
(2)
F

)]2
 .(4.54)

If the densities in each layer are equal, one finds

G
(mos)
n↔n (0)

G0

=

(√
4k̄2

F −Q2

Q
+

ζ2
k̄F
Q√

4k̄2
F −Q2

)
Θ(2k̄F −Q) . (4.55)

We have denoted ζk̄F
= k∆/

√
k̄2

F + k2
∆, which is a measure of how close the Fermi

energy vh̄kF is to the band gap vh̄k∆. When the band gap is very small, k̄F

k∆
is very
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Figure 4.8: The linear magneto-tunnelling conductance for two n doped layers of
MoS2. One can see the transition from SLG to 2DEG as ζk̄F

transitions from 0 to 1.

large, so ζk̄F
≈ 0 and one obtains the result found for SLG. For a Fermi energy close

to the band gap kF

k∆
≈ 0, so ζk̄F

≈ 1 and obtains the result for 2DEG. This shows
how one can change the Fermi energy to switch on chiral characteristics. One can
see the transition from SLG to 2DEG characteristics for equal densities in Fig. 4.8.

One will also find

G
(mos)
n↔p (0)

G0

=
(1− ζ2

k̄F
)Q√

4k̄2
F −Q2

Θ(2k̄F −Q) . (4.56)

When kF

k∆
is very large, one obtains the result found for SLG. However, when kF

k∆
≈ 0,

the pseudo-spin in the n layer points along +z and the pseudo-spin in the p layer
points along −z. This means the magneto-tunnelling conductance vanishes due to
zero pseudo-spin overlap.
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Figure 4.9: Two layers of SLG separated by a barrier, with V ≈ 0. A tilted magnetic
field, B = B‖ŷ + B⊥ẑ is applied across the systems and barrier. The red arrow
represents the magnetic field, with its components shown in orange. This magnetic
field produces discrete Landau level states and energies, with the cyclotron orbit
guiding centres shifted by the in-plane magnetic field component. This shift in the
orbit guiding centres creates oscillations in the wave function overlap between the
SLG layers, as a function of the in-plane magnetic field.

4.3.4 Experimental requirements

To observe the full extent of the magneto-tunnelling characteristics discussed in this
work requires sufficiently large magnetic fields to shift the Fermi circles in kinetic
momentum space, through to separation. This leads to the condition d ≥ 2k̄F `

2

B
(Max)
‖

,

which ensures that the largest applied magnetic field will separate the Fermi circles
completely. For the case of two layers of SLG, with equal densities n = gsgvk̄

2
F/(4π)

in the two layers, we find

B
(Max)
‖ ≥ 2πh̄

e

√
4

gsgv

n

πd2
≈ 20 T×

√
n [1010 cm−2]

d [nm]
. (4.57)

In recently made Van der Waals heterostructures, made from stacking SLG/h-BN/SLG,
a typical tunnelling barrier will be made from four to nine layers of h-BN. The thick-
ness of one layer of h-BN is 0.33 nm. With densities on the order of 1010 cm−2, one
would need an in-plane magnetic field of at most 20 T.

4.4 Landau levels in single layer graphene

In this section, we look at the linear magneto-tunnelling conductance between two
layers of SLG when the magnetic field is titled in the zy plane, i.e. B = B‖ŷ +B⊥ẑ,
as shown in Fig. 4.9. We enforce momentum conservation, using the tunnelling
matrix found in Eq. (4.2). To calculate Eq. (3.20) for two layers of SLG in a tilted
magnetic field, one needs to know the eigenstates and energies of SLG in a tilted
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magnetic field. This is an extension of Ref. [24], which has been briefly reviewed in
section 3.2.2.

Using the Landau level ladder operators defined by a± = `B⊥ (Πx ± iΠy) /(
√

2h̄),
the single-particle Hamiltonians for the K and K′ ≡ −K valleys of SLG are given
by

H(slg)
±K (B) = ±

√
2
h̄v

`B⊥

(
0 a∓

a± 0

)
. (4.58)

As in section 3.2.2, we choose the Landau gauge A = (−y B⊥+z B‖, 0, 0). The energy

eigenvalues of H(slg)
±K (B) are found to be εγ,σ,ν = σ h̄v

√
2ν/`B⊥ , where ν = 0, 1, . . . ,

and the corresponding eigenstates in the K and K′ valleys are

|ν, σ, κx〉K =
1√
2

(
σ|ν − 1, κx〉
|ν, κx〉

)
for ν > 0, |0, κx〉K =

(
0

|0, κx〉

)
, (4.59a)

|ν, σ, κx〉K′ =
1√
2

(
|ν, κx〉

σ|ν − 1, κx〉

)
for ν > 0 |0, κx〉K′ =

(
|0, κx〉

0

)
. (4.59b)

Here the real-space Landau level eigenstates satisfy a+a−|ν, kx〉 = ν|ν, kx〉, with the
wave number κx = kx + z

`2B‖
determining the cyclotron-orbit guiding-centre position

in y direction.

4.4.1 Linear magneto-tunnelling conductance in tilted mag-
netic field

One can now write the linear magneto-tunnelling conductance between two layers of
SLG in a tilted magnetic field as

G(LLg)(0) =
gsgve

2

h̄

A

h̄2v2

√
ν

(1)
F

(
ν

(1)
F + ∆νF

) ∞∑
ν1,ν2=1

δ
(
ν

(1)
F − ν1

)
δ
(
ν

(1)
F + ∆νF − ν2

)
×
[∣∣τ0 F

(0)
ν1ν2

(ξ) + τx F
(x)
ν1ν2

(ξ)
∣∣2 +

∣∣τy F (y)
ν1ν2

(ξ) + τz F
(z)
ν1ν2

(ξ)
∣∣2] , (4.60)

We denote the Landau level at the Fermi energy in layer j by ν
(j)
F , and ∆νF =

ν
(2)
F − ν

(1)
F . We have not included ν(1) = 0 or ν(2) = 0 contribution in the sum

because of the vanishing pre-factor, however, for electrons with finite life-times there
will be a contribution. We have defined

F (η)
ν1ν2

(ξ) = K〈ν1, σ
(1)
F , κ(1)

x |ση|ν2, σ
(2)
F , κ(2)

x 〉K , (4.61)



45 Chapter 4

where ση are Pauli matrices for η = 0, x, y, z, and σ
(m)
F = Sign(ε

(m)
F ). One can then

calculate the following

F (0)
ν1ν2

(ξ) =
1

2

(
ν<!

ν>!

) 1
2
(
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2
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, (4.62a)
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) 1
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, (4.62b)

F (y)
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(ξ) = − i
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) 1
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, (4.62c)

F (z)
ν1ν2

(ξ) =
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) 1
2
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, (4.62d)

where the upper (lower) +/− sign is used for tunnelling between two n doped layers
(an n and p doped layer). As defined in section 3.2.2, ν<(>) = min(max){ν, ν ′},
ξ = (d/`B⊥)(B‖/B⊥), and Ln

′
n (·) is the generalized Laguerre polynomial. When

ν1 = ν2 ≡ ν, we simplify the notation to

F (0)
νν (ξ)

∣∣
n→n ≡ F (z)

νν (ξ)
∣∣
n→p = F (+)

ν (ξ) , (4.63a)

F (x)
νν (ξ)

∣∣
n→n ≡ i F (y)

νν (ξ)
∣∣
n→p = F (⊥)

ν (ξ) , (4.63b)

F (y)
νν (ξ)

∣∣
n→n ≡ F (x)

νν (ξ)
∣∣
n→p = 0 , (4.63c)

F (z)
νν (ξ)

∣∣
n→n ≡ F (0)

νν (ξ)
∣∣
n→p = F (−)

ν (ξ) , (4.63d)

with the definitions

F (±)
ν (ξ) =

1

2
e−

ξ2

4

[
L0
ν

(
ξ2

2

)
± L0

ν−1

(
ξ2

2

)]
, (4.64a)

F (⊥)
ν (ξ) = −e−

ξ2

4

√
ξ2

2ν
L1
ν−1

(
ξ2

2

)
. (4.64b)
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One can then write the linear magneto-tunnelling conductance as

G(LLg)
n↔n (0) =

gsgve
2

h̄

A

h̄2v2
νF

∞∑
ν1,ν2=1

δ (νF − ν1) δ (νF − ν2)

×
[∣∣τ0F (+)

ν1
(ξ) + τ⊥F (⊥)

ν1
(ξ)
∣∣2 +

∣∣τz F (−)
ν1

(ξ)
∣∣2] , (4.65a)

G(LLg)
n↔p (0) =

gsgve
2

h̄

A

h̄2v2
νF

∞∑
ν1,ν2=1

δ (νF − ν1) δ (νF − ν2)

×
[∣∣τ0F (−)

ν1
(ξ)
∣∣2 +

∣∣τ‖F (⊥)
ν1

(ξ) + τz F (+)
ν1

(ξ)
∣∣2] . (4.65b)

One can see plots of Eqs. (4.64) in Fig. 4.10, as a function of ξ. One will see
that increasing B‖ will result in oscillations in the magneto-tunnelling conductance.
This is because B‖ determines the shift in the cyclotron orbit guiding centres, which
shifts the wave function overlap between the orbits in each layer. These oscillations
also happen in the non-chiral tunnelling shown in section 3.2.2, however the pseudo-
spin tunnel-coupled structure allows for more possible oscillations in wave function
overlap.

4.4.2 Effect of a perpendicular magnetic field

In the limit that B = B⊥ẑ, one finds that ξ = 0. In this case, the linear magneto-
tunnelling conductance between two SLG layers is

G(LLg)
n↔n (0) =

gsgve2

h̄

A

h̄2v2

√
ν

(1)
F

(
ν

(1)
F + ∆νF

) ∞∑
ν1,ν2=1

δ
(
ν

(1)
F − ν1

)
δ
(
ν

(1)
F + ∆νF − ν2

)
×

[∣∣∣∣τ0 δ0,∆νF
+ τx

δ−1,∆νF
+ δ1,∆νF

2

∣∣∣∣2 + |τy|2
δ−1,∆νF

− δ1,∆νF

4

]
, (4.66a)

G(LLg)
n↔p (0) =

gsgve2

h̄

A

h̄2v2

√
ν

(1)
F

(
ν

(1)
F + ∆νF

) ∞∑
ν1,ν2=1

δ
(
ν

(1)
F − ν1

)
δ
(
ν

(1)
F + ∆νF − ν2

)
×

[
|τx|2

δ−1,∆νF
+ δ1,∆νF

4
+

∣∣∣∣τy δ−1,∆νF
− δ1,∆νF

2
− i τz δ0,∆νF

∣∣∣∣2
]
. (4.66b)

There are resonances in tunnelling between the Landau levels at the Fermi energy.
But, the possible resonances are also limited from the pseudo-spin structure of the
tunnelling matrix. For tunnelling between two n-doped layers, pseudo-spin conser-
vation would mean that a resonance could occur at equal Fermi energies. However,
if the barrier causes pseudo-spin flips about the x or y axes in the tunnelling process,
this will allow adjacent SLG states to overlap, causing a resonance when the Fermi
energies are slightly mismatched (∆F = ±1) .

In a system with disorder, the resonances will have a finite width and height. One
can use the Born approximation so that the spectral functions become Lorentzian.
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Figure 4.10: a) and b) are plots of the form factors in Eqs. (4.64) for Landau Fermi
levels νF = 1, 6 as a function of ξ = (d/`B⊥)(B‖/B⊥). c) shows shows |F (+)(ξ)|2
for νF = 1, 3, 6, which is relevant when pseudo-spin is conserved (τ = 1√

2
τ0σ0). The

oscillatory behaviour is due to the shift in orbit guiding centres in each layer due to
B‖.
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This suggests that the resonance in tunnelling between the Landau levels shown here
by the delta functions, will have a finite width and peak determined by the electron
life-time of the system.

It is useful to notice that the density in each layer is related to νF via summation
of states

n =
gsgv

A

∑
kx

νF∑
ν=0

≈ gsgv

2π

eB⊥
h̄

(νF + 1). (4.67)

This relation between n and νF shows that ∆νF ∝ n(2)−n(1). This makes it explicitly
clear how changing the density in each layer will shift the Fermi Landau levels.

In particular, when the densities in each layer are equal ∆νF = 0, and one will
find only a contribution from the pseudo-spin conserving component of the tunnelling
matrix τ0 or the pseudo-spin flip component τz

G(LLg)
n↔n =

gsgve2

h̄

A|τ0|2

h̄2v2
νF

∑
ν1,ν2

δ (νF − ν1) δ (νF − ν2) ,

(4.68a)

G(LLg)
n↔p =

gsgve2

h̄

A|τz|2

h̄2v2
νF

∑
ν1,ν2

δ (νF − ν1) δ (νF − ν2) .

(4.68b)

Since these delta functions will be Lorentzian for systems with disorder, one will
be able to probe the τ0 and τz components for any barrier, when both layers have
equal density. If one knows the life-time for the SLG systems, one should be able to
estimate |τ0|2 and |τ0|2 from experiment.
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Magneto-tunnelling as a spectroscopic
tool

In this chapter, we investigate how magneto-tunnelling can be used as a spectro-
scopic tool. We start by looking at how measuring the linear magneto-tunnelling
conductance for an in-plane and titled magnetic field may allow one to measure the
tunnel-coupling between two parallel SLG layers, which could provide insight into
the properties of the double layer SLG system. Then we investigate parallel layers of
SLG and BLG in an in-plane magnetic field, where we find conditions that could lead
to a valley polarised current. We discuss the effect of electron-electron interactions in
SLG, and how they will alter the linear magneto-tunnelling for an in-plane magnetic
field in a double layer SLGs system. We use a mean field theory (Hartree-Fock) ap-
proximation to model the interactions. In this case the interactions renormalise the
velocity, which changes the density of states at the Fermi level of each layer. This
results in a dampening of the tunnelling-current magnitude, allowing one to observe
the effect of electron-electron interactions. Last in this chapter, we investigate how
an in-plane electric field would alter the linear magneto-tunnelling conductance in
a double layer SLG system, for an in-plane magnetic field. We find that one can
observe the effects of an in-plane electric field through resonance shifts in the linear
magneto-tunnelling conductance.

5.1 Experimental measurement of tunnel-coupling

In this section, we focus on showing how one can measure the zero bias magneto-
tunnelling conductance to obtain amplitudes of the tunnelling matrix parameters,
|τα|2. Then we discuss how these parameters could be dependent on the lattice
structure for a van der Waals heterostructure.

In the previous chapter, we have shown that for B = B⊥ẑ, the magneto-tunnelling
conductance between two layers of SLG with equal densities could allow one to
estimate |τ0|2 and |τz|2 from experiment. To measure |τ‖|2, |τ⊥|2, |τz|2, one can look

at the magneto-tunnelling conductance for an in-plane magnetic field B = B‖b̂.

It is possible rearrange the Eq. (4.38) into a polynomial of the form

F (Q, k̄F,∆) =
2πh̄G

(slg)
n↔n(0)

gsgve2
Q2
√

(4k̄2
F −Q2)(Q2 −∆2) (5.1)

49
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where

F (Q, k̄F,∆) ≡ −c1Q
4 + c2Q

2k̄2
F − c3Q

2∆2 + c4 k̄
2
F∆2 . (5.2)

We have defined the coefficients as

c1 ≡
A (|τ0|2−|τz|2)

h̄2v2
, c2 ≡ 4

A
(
|τ0|2+|τ‖|2

)
h̄2v2

,

c3 ≡
A (|τ⊥|2+|τz|2)

h̄2v2
, c4 ≡ 4

A
(
|τ⊥|2−|τ‖|2

)
h̄2v2

. (5.3)

In practice, one can perform a least squares fit to this polynomial and obtain an
estimate for the coefficients. This can be done by first choosing the densities in each
layer to be equal, which allows one to make a measurement of G

(slg)
n↔n(0) when ∆ = 0,

then using a least squares allows one to obtain c1 and c2. Knowing c1 and c2, another
measurement of G

(slg)
n↔n(0) where ∆ 6= 0 will make it possible to obtain c3 and c4.

According to theory, these coefficients are not independent due to their relation
with the tunnelling matrix. We can show this in a matrix format, where our system
of equations has the form

A

h̄2v2


1 −1 0 0
4 0 4 0
0 1 0 1
0 0 −4 4



|τ0|2
|τz|2
|τ‖|2
|τ⊥|2

 =


c1

c2

c3

c4

 . (5.4)

From a simple calculation, this matrix only has rank three, so there are only three
independent equations with four unknowns. However, it is possible solve for an upper
bound on the tunnelling matrix element amplitudes

A

h̄2v2
Tr
[
τ †τ
]

=
1

4
c2 + c3 . (5.5)

Also, we find that c4 must depend on c1, c2, and c3 from the relation

c2 + c4 = 4(c1 + c3). (5.6)

If this equality is not true for the fitted parameters, then the derived theory is not
consistent with experiment. To be clear, this equality allows one to test if the theory
is wrong.

If uses magnetic field perpendicular to the double layer system, Eq. (4.65) can
be used to independently measure c5 = A

h̄2v2 |τ0|2, and we find

A

h̄2v2


1 −1 0 0
4 0 4 0
0 1 0 1
0 0 −4 4
1 0 0 0



|τ0|2
|τz|2
|τ‖|2
|τ⊥|2

 =


c1

c2

c3

c4

c5

 . (5.7)
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The rank of this matrix is four, so it is clear that one can always solve for all of the
magnitudes of tunnelling matrix parameters |τα|2. For any barrier, one can use the
following formula

A

h̄2v2
|τ0|2 = c5 ,

A

h̄2v2
|τz|2 = −c1 + c5 ,

A

h̄2v2
|τ‖|2 =

1

4
c2 − c5 ,

A

h̄2v2
|τ⊥|2 = c1 + c3 − c5 .

(5.8)

A general expression for the magnitudes of tunnelling matrix parameters can
be given in terms of the azimuthal angle θB‖ ≡ arctan(B‖,y/B‖,x) of the in-plane
magnetic field,

|τ⊥(θB‖)|
2 =

|τx|2+|τy|2

2
+
|τx|2−|τy|2

2
cos(2θB‖)

+<{τxτ ∗y } sin(2θB‖) , (5.9a)

|τ‖(θB‖)|
2 =

|τx|2+|τy|2

2
− |τx|

2−|τy|2

2
cos(2θB‖)

−<{τxτ ∗y } sin(2θB‖) . (5.9b)

If a measurement is performed at θB‖ = π
4

and θB‖ = 0, one can obtain the phase
difference between τx and τy

arg(τxτ
∗
y ) = arccos

[ |τ⊥(π
4
)|2−|τ⊥(π

4
)|2

2|τ‖(0)||τ⊥(0)|

]
. (5.10)

This allows an experimentalist to learn about some of the phase information within
the tunnelling matrix.

5.1.1 Relating τ to sub-lattice tunnel-coupling

In SLG, the pseudo-spin represents an electron occupying either sub-lattice ↑≡ A
or ↓≡ B. It is then straight forward to see that τ represents the tunnel-coupling
of sub-lattices between two systems. We can label our pseudo-spin using sub-latices
{A1,B1} and {A2,B2}. We then find the coupling between sub-lattices is repre-
sented by

τ =

(
τA1A2 τA1B2

τB1A2 τB1B2

)
. (5.11)

We can relate the coupling between sub-lattices to our previous parametrization τ =
1√
2

[τ0σ0 + τxσx + τyσy + τzσz]. In this parametrization we find the same tunnelling
matrix as

τ =
1√
2

(
τ0 + τz τx + iτy
τx − iτy τ0 − τz

)
. (5.12)
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In this form, one can see that if τ0, τx, τy and τz are all real valued, then τ is Hermitian.
When τ is Hermitian, |τA1B2 |2= |τB1A2 |2, so the probability rate of tunnelling

between A1 ↔ B2 is the same as tunnelling between B1 ↔ A2. However, if both
τ0 6= 0 and τz 6= 0, one will find that |τA1A2|2 6= |τB1B2|2. In general, this means
the probability rate of tunnelling between A1 ↔ A2 is not the same as tunnelling
between B1 ↔ B2.

Also, if τ is Hermitian, one can interpret ~τ = (τx, τy, τz) as a real valued vector
pointing in the direction of a pseudo-spin flip. One can use the relation

i‖~τ‖e−i
π
2

~τ
‖~τ‖ ·~σ = ~τ · ~σ

to show that

τ =
1√
2

[
τ0σ0 + i‖~τ‖e−i

π
2

~τ
‖~τ‖ ·~σ

]
.

However, this equality does not hold when τ is not Hermitian, because then ~τ is not
real valued.

When τ is not Hermitian, there is no restriction on the couplings between the
two systems. So all couplings could be independent.

5.1.2 Alignment of sub-lattices and structure of the barrier

One can speculate how the alignment of sub-lattices and the barrier itself may affect
the components of τ . For example, if the barrier is a vacuum, then the coupling will
depend strongly on the wave function overlap between the initial and final tunnelling
states. In SLG, the wave functions are determined by the pz-orbitals of the sub-
lattices, which implies that the coupling is determined by the separation of the sub-
lattices. For tunnelling to occur, it is reasonable to assume that the coupling requires
the wave-functions to overlap between the sub-lattices {A1,B1} and {A2,B2}. In
particular [27] shows that the tunnelling matrix element can be expressed in terms
of the wave-functions in each system:

τσσ′ =

∫
System2

ψ∗2,σ′(r)U2(r)ψ1,σ(r) d3r , (5.13)

where σ is represents sub-lattice, and U2 is the potential for system 2. From this
equation, it is clear how the tunnelling matrix elements will depend on the wave-
function overlap between two sub-lattices. And thus, how the tunnelling matrix
elements will depend on the separation distance between the sub-lattices. This means
that the coupling between sub-lattices should change when one translates one sub-
lattice relative to the other, as shown in Fig. 5.1.

When one includes a thin barrier, which is typical for a van der Waals heterostruc-
ture, the barrier will influence the coupling between sub-lattices. In particular, one
can look at the total coupling between the two SLG systems as the sum of possible
nearest neighbour couplings through the barrier. One can view this as the sum of
possible paths through the barrier, from one sub-lattice to another, as seen in Fig.
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Figure 5.1: Two SLG lattices are separated by a vacuum, with the pz-orbitals for each
sub-lattice overlapping with the other layer. Since the top layer has been translated
relative to the bottom layer, the wave function overlap between the sub-lattices
has been altered. This suggests that translating one system relative to the other
will change the pseudo-spin coupling between the systems. So that the coupling is
strongly determined by the alignment of the sub-lattices between the SLG layers.

5.2. In this view, the barrier could also cause constructive and destructive interfer-
ence for tunnelling due to phase effects (which also justifies using a complex valued
τ). The implies that the barrier will play a large role in determining the pseudo-spin
coupling, with the couplings along the possible tunnelling paths determining τ .

5.2 Valley polarisation of current between single

and bilayer graphene

In this chapter, we investigate a Van der Waals heterostructure in the form of
SLG/barrier/BLG. We focus on the linear magneto-tunnelling conductance for an
in-plane magnetic field B = B‖b̂, and look at how the conductance is different for
tunnelling between Kslg ↔ Kblg and K′slg ↔ K′blg. We find a situation where the
magneto-tunnelling transport creates a valley-filter, where tunnelling can only occur
for a single valley. A realised valley-filter would provide control over the valley degree
of freedom for electrons in graphene for information processing [43–45].
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Figure 5.2: Two SLG lattices separated by a tunnelling barrier (in practice, they
are 4 layers or more). One can view the couplings between each layer as a sum
of nearest neighbour couplings through the barrier. For example, the black lines
represent possible paths through the barrier, from one sub-lattice to another. The
net coupling due to these paths will determine τ .

5.2.1 Effective tunnel coupling between single layer and bi-
layer graphene

In this section, we focus on the single particle Hamiltonian for coupled SLG and BLG
systems. Since BLG is two stacked layers of SLG, BLG can be described by a 4× 4
matrix. However, at low energies, two eigenstates become inaccessible, previously
allowing us to approximate BLG using a 2× 2 matrix through Löwdin partitioning.
We now use Löwdin partitioning for both coupled systems, to see how removing the
two inaccessible eigenstates affects the coupling between SLG and BLG.

One can write the single particle Hamiltonian in the form of

H =

(
H(slg) T
T † H(blg)

)
. (5.14)

Using the sub-lattice representation {A,B,A1, B1, A2, B2}, this Hamiltonian is

H =


0 vh̄k− τA,A1 τA,B1 τA,A2 τA,B2

vh̄k+ 0 τB,A1 τB,B1 τB,A2 τB,B2

τ ∗A,A1 τ ∗B,A1 0 vh̄k+ γ1 0
τ ∗A,B1 τ ∗B,B1 vh̄k− 0 0 0
τ ∗A,A2 τ ∗B,A2 γ1 0 0 vh̄k−
τ ∗A,B2 τ ∗B,B2 0 0 vh̄k+ 0

 . (5.15)
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We can then change the basis using the matrix

Λ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1√

2
0 1√

2
0

0 0 1√
2

0 − 1√
2

0

 . (5.16)

This puts one in the position to use Löwdin partitioning to project on to the
{A,B,B1, B2} partition of the Hamiltonian, giving an approximate 4 × 4 Hamil-
tonian. To zeroth order, one finds

H(0) = 0 . (5.17)

The first order contribution consists of the SLG Hamiltonian, and couplings between
the SLG and BLG states

H(1) =


0 vh̄k− τA,B1 τA,B2

vh̄k+ 0 τB,B1 τB,B2

τ ∗A,B1 τ ∗B,B1 0 0
τ ∗A,B2 τ ∗B,B2 0 0

 . (5.18)

To second order, one finds the Hamiltonian

H(2) = − 1

γ1


τA,A1τ

∗
A,A2 + τ ∗A,A1τA,A2 τA,A1τ

∗
B,A2 + τA,A2τ

∗
B,A1 vh̄k−τA,A2 vh̄k+τA,A1

τB,A1τ
∗
A,A2 + τ ∗A,A1τB,A2 τB,A1τ

∗
B,A2 + τ ∗B,A1τB,A2 vh̄k−τB,A2 vh̄k+τB,A1

vh̄k+τ
∗
A,A2 vh̄k+τ

∗
B,A2 0 (vh̄)2k2

+

vh̄k−τ
∗
A,A1 vh̄k−τ

∗
B,A1 (vh̄)2k2

− 0

 .

(5.19)
One can see the form of the familiar BLG Hamiltonian. However, one can see extra
terms due to the couplings between SLG and BLG. In the case that vh̄2

γ1
� 1 and

each term of τ is small, we find that these terms can be neglected, and only the BLG
Hamiltonian will remain

H(2) ≈


0 0 0 0
0 0 0 0

0 0 0 − (vh̄)2

γ1
k2

+

0 0 − (vh̄)2

γ1
k2
− 0

 . (5.20)

If one lets v2/γ1 = 1/2M , one obtains the simplified result

H ≈


0 vh̄k− τA,B1 τA,B2

vh̄k+ 0 τB,B1 τB,B2

τ ∗A,B1 τ ∗B,B1 0 − h̄2

2M
k2

+

τ ∗A,B2 τ ∗B,B2 − h̄2

2M
k2
− 0

 , (5.21)

where the tunnelling matrix is straightforward. Here, we have justified that we can
ignore the coupling to the A1 and A2 sub-lattices. It follows that we can use Eq.
(5.21) to calculate the linear magneto-tunnelling conductance between the SLG and
BLG graphene systems.
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5.2.2 Generation of a valley polarisation

To calculate the total linear magneto-tunnelling conductance for B = B‖ŷ, one can
use Eq. (4.8). However, in this section we find it useful to label the linear magneto-
tunnelling conductance for each valley

G(γ) =
gse

2

h̄
2πAρ

(1)
F ρ

(2)
F

[∣∣Γ(γ)
u

∣∣2 +
∣∣∣Γ(γ)

l

∣∣∣2]

×
Θ
(
|Q|−

∣∣∣k(1)
F − k

(2)
F

∣∣∣)Θ
(
k

(1)
F + k

(2)
F − |Q|

)
√[(

k
(1)
F + k

(2)
F

)2

−Q2

] [
Q2 −

(
k

(1)
F − k

(2)
F

)2
] . (5.22)

To quantify the how much current is passing through one valley relative to the other,
we define the valley polarisation

χ =
GK −GK′

GK +GK′
. (5.23)

When χ = ±1 one will find G(0) = GK or G(0) = GK′ . Using Eq. (5.22), the valley
polarisation can be written as

χ =

[∣∣ΓK
u

∣∣2 +
∣∣ΓK

l

∣∣2]− [∣∣ΓK′
u

∣∣2 +
∣∣ΓK′

l

∣∣2]
|ΓK

u |
2 + |ΓK

l |
2

+ |ΓK′
u |

2 +
∣∣ΓK′

l

∣∣2 . (5.24)

Following work in Sec. 4.2, one can write the pseudo-spin eigenstates using the
rotation U(θ) = exp (−iσzθ/2) and pseudo-spin along the x-axis |→〉 :

|+(slg)
F K,Π

(slg)
u
〉 = U(θ

Π
(slg)
u

)|→〉 ,

|+(slg)
F K′,Π

(slg)
u
〉 = U(π − θ

Π
(slg)
u

)|→〉 ,

|+(blg)
F K,Π

(blg)
u
〉 = U(−2θ

Π
(blg)
u

)|←〉 ,

|+(blg)
F K′,Π

(blg)
u
〉 = U(2θ

Π
(blg)
u

)|←〉 .

(5.25)

This allows one to write the momentum-resolved tunnelling matrix elements as∣∣ΓK
u

∣∣2 =
∣∣∣〈← |U(2θ

Π
(blg)
u

)τU(θ
Π

(slg)
u

)|→〉
∣∣∣2 ,∣∣ΓK

l

∣∣2 =
∣∣∣〈← |U(2θ

Π
(blg)
u

)σxτσxU(θ
Π

(slg)
u

)|→〉
∣∣∣2 ,∣∣∣ΓK′

u

∣∣∣2 =
∣∣∣〈← |U(2θ

Π
(blg)
u

)σxτσyU(θ
Π

(slg)
u

)|→〉
∣∣∣2 ,∣∣∣ΓK′

l

∣∣∣2 =
∣∣∣〈← |U(2θ

Π
(blg)
u

)σzτU(θ
Π

(slg)
u

)|→〉
∣∣∣2 .

(5.26)

It is worth noting that the pseudo-spin eigenstates in SLG transform from the
K→ K′ valley as θ → π−θ, while in BLG they transform as 2θ → −2θ. These trans-
formations have been represented with Pauli matrices using the relation Rν(π) = iσν
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Figure 5.3: When Q = ±2kF, the Fermi circles kiss, and the pseudo-spin lies along
the x-axis. When Q ≈ 2kF, we see that the K valley pseudo-spins will align at 2kF

while the K′ valley pseudo-spins will be orthogonal. This allows tunnelling for only
one valley at the kissing point.

(which is discussed in work from Sec. 4.2). The difference in how the SLG and
BLG eigenstates transform between their respective valleys is the source of valley
polarization effects.

For a general tunnelling matrix, the valley polarisation at Q = ±
[
k

(slg)
F + k

(blg)
F

]
,

the kissing point between the two Fermi circles, can be calculated by inputting
θ

Π
(slg)
u

= 0 and θ
Π

(blg)
u

= π, or θ
Π

(slg)
u

= π and θ
Π

(blg)
u

= 0. One can then show that the

valley polarisation at Q = ±
[
k

(slg)
F + k

(blg)
F

]
is

χ(Q = ±[k
(slg)
F + k

(blg)
F ]x̂) = ±|τ0 − τx|2−|τy + iτz|2

|τ0 − τx|2+|τy + iτz|2
.

It is clear that there is a valley filter at the kissing point when τ = [τ0σ0 + τxσx] /
√

2
or τ = [τyσy + τzσz] /

√
2. This valley filter is a result of the pseudo-spin overlap at

the u/l intersections shown in Fig. 5.3. The pseudo-spins are shown to be parallel
in one valley, and orthogonal in the other.

When the pseudo-spin coupling is τ = [τ0σ0 + τxσx] /
√

2, the magneto-tunnelling
conductance can be written as

G(slg)↔(blg)(0) = GK +GK′ =
e2A

πh̄

(k
(slg)
F /vh̄)(m/h̄2)√[

(k
(blg)
F + k

(slg)
F )2 −Q2

] [
Q2 − (k

(blg)
F − k(slg)

F )2
]

×

[
2|τ0 + τx|2−<{τ0τ

∗
x}

(Q2 + (k
(blg)
F )2 − (k

(slg)
F )2)2

Q2(k
(blg)
F )2

]
.

(5.27)

At the kissing point Q = ±[k
(slg)
F + k

(blg)
F ], there is a divergence in the magneto-

tunnelling conductance. In practice, this divergence will become a resonance that is
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Figure 5.4: The valley polarisation χ (red) is compared with the magneto-tunnelling
conductance G(0) (blue). The magneto-tunnelling conductance is in units of G0 =
e2MA|τ0|2/(2πh̄4vkF), where both systems have equal electron densities and pseudo-
spin is conserved in the tunnelling process.

a function of the electron life-time, emphasising that G(slg)↔(blg)(0) 6= 0 at the kissing
point. When τ = τ0σ0/

√
2, one finds

χ = sin2

(
θ

Π
(slg)
u

+ 2θ
Π

(blg)
u

2

)
− cos2

(
θ

Π
(slg)
u

+ 2θ
Π

(blg)
u

2

)
. (5.28)

In the case that k
(slg)
F = k

(blg)
F , the valley polarisation can be put in the simple

algebraic form

χ =
Q

2kF

. (5.29)

Which states that there is a valley filter at the kissing points Q = ±2kF. This can
be seen in Fig. 5.4, where it is compared with the magneto-tunnelling conductance
for pseudo-spin conserved tunnelling

G(0)

G0

=
4k2

F

Q
√

4k2
F −Q2

, (5.30)

where G0 = e2MA|τ0|2/(2πh̄4vkF). Again, we see a resonance in G(0) at Q = 2kF,
resulting in a finite current when χ = ±1.

Using Eq. (5.29), the maximum possible valley polarization is then limited by
the maximum magnetic field

χmax ≤ min

{
1,
e

h̄

B(max)d√
4πn

≡ 0.05× B(max) [T] d [nm]√
n [1010 cm−2]

}
. (5.31)

Methods to generate a valley polarized current require breaking inversion/time-
reversal symmetry, methods suggested in other works involve nanostructuring of
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a graphene sample [44, 57], coupling to electromagnetic fields [58–66], application
of mechanical strain[61–63, 66–68], or the presence of defects[69]. However, the
method proposed in this work is unique, it requires an applied magnetic field and
an appropriate pseudo-spin coupling between the single layer and bilayer graphene
systems to generate a valley polarized current.

5.3 Effect of an in-plane electric field on magneto-

tunneling current

In this section, we look at the effect of a constant electric field applied perpendicular
and parallel to the magnetic field in two SLG layers, and investigate the effect on
the magneto-tunnelling conductance between them.

It can be shown that when an electric field is applied in the xy plane, we should
have a Hamiltonian of the form [7]:

Hslg
±K(B, E) = v (Πxσx + Πyσy ± (FxΠy − FyΠx)σz) (5.32)

where E is an in-plane electric field, and Fi is an energy such that Fi ∝ Ei. We
calculate the magneto-tunnelling conductance following the same methods in chapter
3.

5.3.1 Electric field perpendicular to the in-plane magnetic
field

One can look at an electric field E⊥x̂ perpendicular to the in-plane magnetic field
B‖ŷ as shown in Fig. 5.5. The Hamiltonian is

Hslg
±K = v (Πxσx + Πyσy ± F⊥Πyσz) . (5.33)

The energies are

εγ,σ,k = σv
√

Π2
x + (1 + F 2

⊥)Π2
y . (5.34)

The pseudo-spin eigenstates are

|σ〉K,Π(k,B) =
1√
2

e−i
θΠ
2

√
εk,σ+vF⊥Πy

εk,σ

σei
θΠ
2

√
εk,σ−vF⊥Πy

εk,σ

 , |σ〉K′,Π(k,B) =
1√
2

e−i
π−θΠ

2

√
εk,σ−vF⊥Πy

εk,σ

σei
π−θΠ

2

√
εk,σ+vF⊥Πy

εk,σ

 .

(5.35)
One can evaluate Eq. (4.4) using a substitution to obtain the linear magneto-

tunnelling conductance. Eq. (5.34) shows that the momentum values at the Fermi en-
ergy parametrize an ellipse rather than a circle. Now, the linear magneto-tunnelling
conductance is determined where the two Fermi ellipses intersect ku/l.

One will find that since the Fermi momentum does not have a constant magnitude,
one has to express the the linear magneto-tunnelling conductance using the Fermi
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Figure 5.5: Two layers of SLG separated by a barrier. A constant magnetic field
B = B‖ŷ and electric field E = E⊥x̂ are applied across the systems and barrier. The
red arrow represents the magnetic field, and the yellow arrow represents the electric
field.

energy

G(slg)(0) =
gse

2A

πh̄
√

1 + F 2
⊥

ε
(1)
F ε

(2)
F

(vh̄)2

√[
(ε

(1)
F + ε

(2)
F )2 − h̄2v2Q2

] [
h̄2v2Q2 − (ε

(1)
F − ε

(2)
F )2

]
×Θ

(
h̄v|Q|−

∣∣∣ε(1)
F − ε

(2)
F

∣∣∣)Θ
(
ε

(1)
F + ε

(2)
F − h̄v|Q|

)∑
γ

[∣∣Γ(γ)
u

∣∣2 +
∣∣∣Γ(γ)

l

∣∣∣2]
.

(5.36)
The tunnelling matrix elements at the intersecting Fermi ellipses are

Γ
(γ)
u/l =

γ,Π
(1)
u/l

〈σ(1)
F |τku/l

|σ(2)
F 〉γ,Π(2)

u/l

. (5.37)

In the case where ε
(1)
F = ε

(2)
F and τk ≡ 1√

2
τ0σ0

G
(slg)
⊥ (0) ≡ G(slg)

n↔n(0) =
gse

2A|τ0|2

(vh̄)2πh̄
√

1 + F 2
⊥

√
4
(
εF
vh̄

)2 −Q2

Q
. (5.38)

5.3.2 Electric field parallel to the in-plane magnetic field

One can now investigate using the electric field E‖ŷ parallel to the magnetic field
B‖ŷ, as shown in Fig. 5.6. The Hamiltonian is

Hslg
±K = v

(
Πxσx + Πyσy ∓ F‖Πxσz

)
(5.39)

The energies are

εγ,σ,k = σv
√

Π2
x + (1 + F 2

‖ )Π2
x. (5.40)
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Figure 5.6: Two layers of SLG separated by a barrier. A constant magnetic field
B = B‖ŷ and electric field E = E‖ŷ are applied across the systems and barrier. The
red arrow represents the magnetic field, and the yellow arrow represents the electric
field.

The pseudo-spin eigenstates are

|σ〉K,Π(k,B) =
1√
2

e−i
θΠ
2

√
εk,σ−vF‖Πx

εk,σ

σei
θΠ
2

√
εk,σ+vF‖Πx

εk,σ

 , |σ〉K′,Π(k,B) =
1√
2

e−i
π−θΠ

2

√
εk,σ+vF‖Πx

εk,σ

σei
π−θΠ

2

√
εk,σ−vF‖Πx

εk,σ

 .

(5.41)
One can evaluate Eq. (4.4) using a substitution to obtain the magneto-tunnelling

conductance. Eq. (5.40) shows that the momentum values at the Fermi energy
parametrize an ellipse rather than a circle. Again, the magneto-tunnelling conduc-
tance is determined where the two Fermi ellipses intersect ku/l.

One will find

G(slg)(0) =

gse2A

πh̄
√

1+F 2
⊥
ε

(1)
F ε

(2)
F

∑
γ

[∣∣∣Γ(γ)
u

∣∣∣2 +
∣∣∣Γ(γ)

l

∣∣∣2]
(vh̄)2

√[
(ε

(1)
F + ε

(2)
F )2 − h̄2v2[1 + F 2

‖ ]Q2
] [
h̄2v2[1 + F 2

‖ ]Q2 − (ε
(1)
F − ε

(2)
F )2

]
×Θ

(
h̄v|Q|[1 + F 2

‖ ]−
∣∣∣ε(1)

F − ε
(2)
F

∣∣∣)Θ
(
ε

(1)
F + ε

(2)
F − h̄v|Q|[1 + F 2

‖ ]
) .

(5.42)
The tunnelling matrix elements at the intersecting Fermi ellipses are

Γ
(γ)
u/l =

γ,Π
(1)
u/l

〈σ(1)
F |τku/l

|σ(2)
F 〉γ,Π(2)

u/l

. (5.43)

In the case where ε
(1)
F = ε

(2)
F and τk ≡ 1√

2
τ0σ0

G
(slg)
‖ (0) ≡ G(slg)

n↔n(0) =
gse

2A|τ0|2

(vh̄)2πh̄
√

1 + F 2
‖

√
4
(
εF
vh̄

)2 − [1 + F 2
‖ ]Q2

Q
√

1 + F 2
‖

. (5.44)
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5.3.3 Noticeable effects of an in-plane electric field

To see the effects of an in-plane electric field in the magneto-tunnelling conductance
in presence of an in-plane magnetic field, one has to first formulate the Fermi energy
in terms of the electron density in both layers. The electron density for SLG in an
applied electric field is calculated to be

n =
ε2

F

πv2h̄2

1√
1 + F 2

q

, (5.45)

where q =⊥, ‖. The density of states at the Fermi energy can now be calculated in
terms of the density

ρF =

√
n

2vh̄
√
π
√√

1 + F 2
q

. (5.46)

We then choose to define

G0 =
2πe2

h̄
ρ2
FATr{τ †τ} 1

nπ
. (5.47)

Eq. (5.47) is consistent with Eq. (3.27) when Fq = 0, however, it is written in terms
of density n rather than Fermi wave number kF. We choose this formulation because
when an electric field is applied kF ≡ ‖kF‖ is directionally dependent, however, n
still only depends on the Fermi energy.

We can now see a renormalized Q, moving the divergence in G
(slg)
n↔n(0) for the F‖

term

G
(slg)
‖ (0)

G0

=

√
4nπ −

[
Q

√√
1 + F 2

‖

]2

Q

√√
1 + F 2

‖

, (5.48)

and for the F⊥ term

G
(slg)
⊥ (0)

G0

=

√
4nπ −

[
Q√√
1+F 2

⊥

]2

Q√√
1+F 2

⊥

. (5.49)

Each equation above can be explained from each Fermi surface being stretched/con-
tracted into a Fermi ellipse from the applied electric field. This changes the where
the Fermi ellipses cease to intersect, which is accounted for in the re-normalization

of Q. In particular, G
(slg)
‖ (0) = 0 when Q =

√
4nπ√
1+F 2

‖
and G

(slg)
⊥ (0) = 0 when

Q =
√

4nπ
√

1 + F 2
⊥. For an in-plane electric field, when Q→ 0 one will also find

G
(slg)
‖ (0)

G0

→ 1

Q

√√√√ 4nπ√
1 + F 2

‖

, (5.50)
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and

G
(slg)
⊥ (0)

G0

→ 1

Q

√
4nπ

√
1 + F 2

⊥ , (5.51)

which also allows one to observe the effect of an in-plane electric field.

5.4 Measuring interaction renormalisation of Fermi

velocity

From Eqs. (3.27) & (4.38), one will find that the linear magneto-tunnelling conduc-
tance G(slg)(0) depends on the pseudo-spin structure, the intersecting Fermi circles,
and the density of states at the Fermi energy. In this section, we investigate how
the presence of electron-electron interactions could affect the magneto-tunnelling
conductance.

To introduce electron-electron interactions, one can use many-body theory[53, 70].
The Dyson equation for a single particle retarded Green’s function can be written as
[70]

GR
αβ(k, ε) = GR,0

αβ (k, ε) +
∑
γη

GR,0
αγ (k, ε)Σγη(k, ε)GR

ηβ(k, ε) (5.52)

where GR,0
αβ (k, ε) is the non-interacting Green’s function, and Σγη(k, ε) is the self

energy. The self energy can be written as a series of electron-electron interaction
processes within the system. By adding different terms of the series, one can estimate
the effect of the full interaction process. In particular, the self energy allows one to
renormalise aspects of the band structure due to interactions.

If one writes the Green’s functions and self energy as matricies in pseudo-spin,
Eq. (5.52) can be rearranged into the form

GR(k, ε) =
[[
GR,0(k, ε)

]−1 − Σ(k, ε)
]−1

(5.53)

For SLG this can be written as[71]

GR(k, ε) =
[
εσ0 − v0h̄k · ~σ − Σ(k, ε)

]−1
, (5.54)

where v0 is the Fermi velocity in SLG with no interactions, σ0 and ~σ are the Pauli
matrices. GR(k, ε) has been written as a matrix in pseudo-spin states. When GR(k, ε)
is diagonal in pseudo-spin, one can calculate the band structure as [70, 72]

Aσ(k, ε) =
−2={Σσ(k, ε)}

[ε− σv0h̄k −<{Σσ(k, ε)}]2 + [={Σσ(k, ε)}]2
. (5.55)

Here we can see that the real part of the self energy shifts the energy of the band
structure, and imaginary part of the self energy provides a finite width.
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The first order diagram approximation of the self energy, the Hartree-Fock con-
tribution, for electron-electron interactions in SLG is [71]

Σ(k, ε) ≈ −α
4

ln

[
k

Λ

]
v0h̄k · ~σ − i0+ , (5.56)

where the cut-off momentum is Λ � k, and the interaction strength is α � 1.
Using the first order self energy to calculate the spectral function, one finds that the
velocity for SLG is renormalized

v(k) = v0

(
1− α

4
ln

[
k

Λ

])
. (5.57)

This implies that the new Hamiltonians are

HK = v(k)h̄k

(
0 e−iθk/2

eiθk/2 0

)
,HK′ = v(k)h̄k

(
0 e−i(π−θk)/2

ei(π−θk)/2 0

)
(5.58)

with energies εγ,σ,k = σv(k)h̄k. From the new Hamiltonians, it is clear that the
pseudo-spin eigenstates remain unchanged. For the first order diagram of the self-
energy, one only has to renormalise the velocity v. (This is also true for the random
phase approximation [71]). Further more, the renormalised velocity has radial sym-
metry, i.e. v(k) = v(k), so one expects most aspects of Eq. (4.38) to be preserved.
For instance, the pseudo-spin eigenstates are the same. Also, the Fermi surface will
be a Fermi circle when εγ,σ,k = σv(k)h̄k, so the conductance is still described by two
interesting Fermi circles. However, the renormalised velocity will change the density
of states at the Fermi energy, changing the pre-factor G0.

In particular, one can calculate the density of states at the Fermi energy

ρF =
kF

2πh̄

[
1

v(kF) + dv
dk

(kF)kF

]

= ρ0
F

[
1

1− α
4

(
ln
[
kF

Λ

]
+ 1
)] , (5.59)

where ρ0
F = kF

2πv0h̄
is the density of states without interactions. One can now look

at how the renormalised velocity changes the scaling of the tunnelling conductance
through

G0 =
gsgve2

2πv2
0h̄

3 Tr
[
τ †τ
]
A

ρ
(1)
F ρ

(2)
F

ρ
0,(1)
F ρ

0,(2)
F

, (5.60)

which shows that G0 ∝ [ρF/ρ
0
F]

2
for k

(1)
F = k

(2)
F . One can use (5.59) to see how G0

scales for different interactions strengths and different Fermi wave numbers, resulting
in the relation [

ρF

ρ0
F

]2

=

[
1

1− α
4

(
ln
[
kF

Λ

]
+ 1
)]2

. (5.61)

Eq. (5.61) can be seen for different values of α in Fig. 5.7, which shows that
increasing the interaction strength dampens the tunnelling conductance.
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Figure 5.7: [ρF/ρ
0
F]

2
as a function of kF/Λ, using Eq. (5.61) for different interaction

strengths α = 0.01 (blue), 0.05 (green), 0.1 (red). Through the relation G0 ∝
[ρF/ρ

0
F]

2
, this plot shows that increasing the interaction strength α dampens the

tunnelling conductance.
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Non-linear magneto-tunnelling trans-
port

In this chapter, we use linear response theory to obtain an analytic description of the
finite bias magneto-tunnelling current and conductance between two layers of SLG
in the presence of an in-plane magnetic field (see Fig. 6.1). In partciular, we extend
the previous work reviewed in section 3.2.3. This chapter also lays out the ground
work for finding an analytic finite bias magneto-tunnelling conductance and current
between BLG and MoS2 layers, which one could investigate in the future.

To calculate the magneto-tunnelling current and conductance for an in-plane
magnetic field, we use Eqs. (3.18) & (3.19).

We start with the assumption that the momentum-resolved pseudo-spin tun-
nelling matrix is momentum independent, τk = τ . To avoid a cumbersome formula
we choose τ = τ0√

2
σ0 and equal densities in each layer. However, one could extend

the work in this chapter to a non-pseudo-spin-conserving barrier, and for different
densities in each layer. Using these assumptions, we calculate Eq. (3.18) for SLG

G̃(slg)(ε, V ) = G0

√
(2ε− eV )2 − (h̄vQ)2

(h̄vQ)2 − (eV )2

×Θ (|2ε− eV |−h̄vQ) Θ(h̄vQ− |eV |) . (6.1)

Next we discuss how to interpret the finite bias magneto-tunnelling conductance from
Eq. (3.19) and Eq. (6.1).

Fig. 6.2 a) shows the dispersion relations of two layers of SLG, which are sep-
arated in momentum by Q and in energy by eV . The applied bias V opens up
an window of energies εF ≤ ε ≤ εF + eV for which electrons can participate in
tunnelling.

Fig. 6.2 b) shows that tunnelling at an energy ε can be described by the intersec-
tion of an occupied circle with radius ε− eV and an unoccupied circle with radius ε.
The two intersecting circles suggest that the tunnelling at an energy ε can be under-
stood using a the zero-bias tunnelling conductance, with a density difference of eV .
If one labels 2vh̄k̄ = 2ε−eV and vh̄∆ = eV , it is straightforward to see that G̃(ε, V )
has the same form as the linear magneto-tunnelling conductance in Eq. (4.38), where
eV acts like a difference in densities between the layers. The current contribution at
an energy ε, due to a small energy window of thickness dε, is 1

e
G̃(slg)(ε, V )dε.

Eq. (3.19) shows that the tunnelling current I(slg)(V ) can be calculated from
integrating G̃(slg)(ε, V ) over the total window of energies εF ≤ ε ≤ εF + eV . Since

66
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G̃(slg)(ε, V ) can be described by the intersection of an occupied circle with radius
ε − eV and an unoccupied circle with radius ε, I(slg)(V ) can be understood using a
stack of intersecting circles between εF ≤ ε ≤ εF + eV .

The integral in Eq. (3.19) can be evaluated to find an analytic solution of I(slg)(V )

I(slg)(V )

G0

= Θ(2εF + eV − h̄vQ)
1

4
√

(h̄vQ)2 − (eV )2
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√
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1

4
√
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√
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4
√
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ln
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]
.

(6.2)
If one differentiates the tunnelling current with respect to V , one will find the

finite bias magneto-tunnelling conductance

G(slg)(V )
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= Θ(2εF + eV − h̄vQ)
1

2

√
(2εF − eV )2 − (h̄vQ)2

(h̄vQ)2 − (eV )2

+ Θ(2εF − eV − h̄vQ)
1

2

√
(2εF + eV )2 − (h̄vQ)2

(h̄vQ)2 − (eV )2

+ Θ(2εF + eV − h̄vQ)
V

4[(h̄vQ)2 − (eV )2]
3
2

[
(2εF + eV )

√
(2εF + eV )2 − (h̄vQ)2

]
+ Θ(2εF − eV − h̄vQ)

V

4[(h̄vQ)2 − (eV )2]
3
2

[
(2εF − eV )

√
(2εF − eV )2 − (h̄vQ)2

]
+ Θ(2εF + eV − h̄vQ)

(h̄vQ)2V

4[(h̄vQ)2 − (eV )2]
3
2

ln

[
h̄vQ

2εF + eV +
√

(2εF + eV )2 − (h̄vQ)2

]

+ Θ(2εF − eV − h̄vQ)
(h̄vQ)2V

4[(h̄vQ)2 − (eV )2]
3
2

ln

[
2εF − eV +

√
(2εF − eV )2 − (h̄vQ)2

h̄vQ

]
,

(6.3)
which can be seen as a function of Q and V in Fig. 6.3. From this figure and Fig.
6.4, one can see different characteristics in the regions 0 < vh̄Q < eV , eV < vh̄Q <
2εF − eV , and 2εF − eV < vh̄Q < 2εF + eV . When vh̄Q < eV , the two Dirac cones
do not intersect, so no tunnelling is allowed. At vh̄Q = eV , the two conical surfaces
start to intersect with maximum pseudo-spin overlap, this gives rise to a resonance in
the tunnelling conductance. For eV < vh̄Q < 2εF− eV , the characteristics originate
from the stacked pairs of intersecting circles, and the pseudo-spin overlap at each
of their intersections. For vh̄Q near eV , the finite bias tunnelling conductance is
greater than the zero bias tunnelling conductance. This is because there are more
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Figure 6.1: Two parallel layers of SLG (green) are separated by an insulating barrier
(blue). There is a finite bias between the layers, and an in-plane magnetic field is
applied. In this chapter we derive the finite bias magneto-tunnelling current and
conductance for this system.

electrons tunnelling within the energy window. However, the finite bias tunnelling
conductance dips below the zero-bias tunnelling conductance as vh̄Q increases. When
vh̄Q = 2εF − eV , the intersecting circles at ε = εF cease to intersect, this generates
a kink in the tunnelling conductance. The intersecting circles completely separate
over the region 2εF − eV < vh̄Q < 2εF + eV . At each separation, the pseudo-spins
are orthogonal, which explains why there is no divergence over this region.

In this chapter, we have linked the linear magneto-tunnelling conductance to
the non-linear magneto-tunnelling conductance, for tunnelling between two layers
of SLG. Using Eq. (3.19), one can explore other examples of chiral and non-chiral
magneto-tunnelling transport with a finite bias by relating each example to the zero-
bias case.
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Figure 6.2: a) Two intersecting Dirac cones that have been shifted by a magnetic
field and applied bias, as shown by Q and eV . Tunnelling can only occur for states
where the conical surfaces intersect (purple). The energy window at which tunnelling
occurs can be seen in red (εF) and green (εF +eV ). b) The tunnelling that occurs can
be described using two intersecting circles (orange), an unoccupied circle of radius ε
and an occupied circle of radius ε−eV . At an energy ε, the current contribution where
the circles intersect is 1

e
G̃(ε, V )dε (green dots). The pseudo-spin vectors for each

intersection can be seen in yellow. The finite bias tunnelling current characteristics
can be understood from using a stack of intersecting circles (in orange) from εF to
εF + eV .
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Figure 6.3: (Left)The finite bias magneto-tunnelling conductance ploted as a function

of Q+eV/vh̄

2k̄F
, for eV/εF = 0 (black) eV/εF = 0.2 (green) eV/εF = 0.4 (red), eV/εF = 0.6

(blue). We see that the finite bias conductance dips below the zero-bias conductance,
this is because of the pseudo-spin overlap at the intersection of the two cones. We
can also see a kink at vh̄Q = 2εF − eV , where there is a change in behaviour due to
the current switching off. (Right) The magneto-tunnelling conductance plotted as a
function of Q and V . One can see the divergence where the cones intersect, and the
termination when the cones are completely separated. In the small window with the
adjusted scale, one can see the kink where the current starts to switch off (see Fig.
6.4).

Figure 6.4: A series of Dirac cones for equal densities, separated by an applied bias
eV and momentum Q. The horizontal lines represent the Fermi level, all states
below the horizontal lines are occupied. When vh̄Q = 0, the Dirac cones do not
intersect so there is no current. However, once vh̄Q = eV the cones intersect, and the
pseudo-spins have a full overlap at this boundary, which produces a divergence in the
tunnelling conductance. For the region eV < vh̄Q < 2εF + eV , only states between
the Fermi levels (εF < ε < εF + eV ) of each cone can tunnel. At vh̄Q = 2εF − eV ,
the current starts to turn off because the cones start to separate, this causes a kink
in the conductance. At each separation point the pseudo-spin overlap is zero. For
vh̄Q > 2εF − eV , only states between vh̄Q < ε < 2εF + eV can tunnel. When
vh̄Q > 2εF + eV , particles do not occupy the states that would conserve energy and
momentum in the tunnelling process, so the conductance is zero.



Chapter 7

Conclusion

We theoretically studied magneto-tunnelling transport between two parallel two-
dimensional chiral electron gases. The motivations for doing so stem from past
work on magneto-tunnelling transport between two parallel two-dimensional non-
chiral electron gases, and the recent fabrication of double layer van der Waals het-
erostructures which have a chiral structure. This thesis extends previous knowledge
in magneto-tunnelling transport to chiral charge carriers, in a way that is relevant
to current research. We show how magneto-tunnelling be used to probe the lat-
tice structure of a van der Waals heterostructure, and how magneto-tunnelling can
be used to generate a valley polarized current in a van der Waals heterostructure.
Significant results from this thesis can be found in Refs. [1, 2].

At the start of this work, we preformed a review of magneto-tunnelling trans-
port. We discussed energy-momentum conservation in the tunnelling process, and
we also introduced our assumptions of zero temperature, no interactions or disorder.
This review allowed us to extend the previous work of magneto-tunnelling transport
between non-chiral electron gases, to the new work of magneto-tunnelling transport
between chiral electron gases. We will now conclude this MSc thesis by summarising
the new and relevant understanding obtained from this work.

To investigate the tunnelling of chiral charge carriers, we extended the tunnelling
matrix to include pseudo-spin tunnelling processes. We represented the pseudo-
spin tunnelling matrix using the basis of Pauli matrices, where each Pauli matrix
represents a possible pseudo-spin flip in the tunnelling process. This basis for the
tunnelling matrix provides clarity in the results, as it relates terms in the magneto-
tunnelling conductance to the types of tunnelling processes.

In general, the momentum dependent pseudo-spin states that conserve energy
and momentum in a tunnelling event are responsible for the change in magneto-
tunnelling characteristics from that of a non-chiral electron gas. This could be seen in
the linear magneto-tunnelling conductance characteristics for tunnelling between two
single layer graphene, bilayer graphene, and MoS2 layers in an in-plane magnetic field.
The pseudo-spin states at the intersections of the Fermi circles change as a function
of the Fermi circle separation, this changes the pseudo-spin overlap between the final
and initial tunnelling states as a function of the in-plane magnetic field. Further
more, the pseudo-spin tunnelling matrix may alter the pseudo-spin states in the
tunnelling process. Both the momentum dependence of pseudo-spin and the altering
of pseudo-spin states in the tunnelling process explain the resonances and features
of the linear magneto-tunnelling conductance between two parallel two dimensional
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chiral electron gases.

When pseudo-spin is conserved, it was shown that the pseudo-spin overlap be-
tween tunnelling states would dampen the linear magneto-tunnelling conductance
characteristics from that of the non-chiral tunnelling. This explains the tunnelling
characteristics for single layer graphene, bilayer graphene, and MoS2 double layer
systems. In MoS2, the chirality of the pseudo-spin eigenstates depends on how close
the Fermi energy is to the band gap. By shifting the Fermi energy in each layer of
MoS2, one can tune the characteristics of the linear magneto-tunnelling conductance.

For a tilted magnetic field in single layer graphene, the magneto-tunnelling con-
ductance was also found to depend on pseudo-spin overlap between energy-momentum
conserving states. In this case, pseudo-spin overlap consists of overlapping Landau
levels (a pair of cyclotron orbits). The orbits are determined by the out of plane
component of the magnetic field, and the in-plane component of the magnetic field
shifts guiding centres for these orbits between the layers. As one shifts the guiding
centres of the orbits between the layers using an in-plane magnetic field, one will
see the wave function overlap between the layers oscillate. These oscillations can
then be seen in the magneto-tunnelling conductance, since it is proportional to the
wave function overlap. Again, the pseudo-spin tunnelling matrix allows for different
tunnelling processes, allowing for the different oscillations in wave-function overlap.
For zero in-plane magnetic field, the relevant pseudo-spin structure of the tunnelling
matrix simplifies, and becomes sensitive to the Fermi energies in each layer.

In this work, we discussed how linear magneto-tunnelling transport can be em-
ployed as a tool. We showed how it can be used to investigate the properties of a
double layer van der Waals heterostructure, or to generate a valley polarised current
between single and bilayer graphene.

We explicitly demonstrated how measurements of the linear magneto-tunnelling
conductance between two layers of single layer graphene can be used to measure
properties of the tunnelling matrix. We suggest using a least squares approach to fit
the curve to a polynomial, to obtain parameters that interdependent on the pseudo-
spin tunnel-coupling. Theory predicts that the fitted parameters will be dependent,
this allows one to test if theory is consistent with experiment. The pseudo-spin
tunnel-coupling is expected to depend on the atomic lattice structure between the
layers. Measuring the pseudo-spin tunnel-coupling allows one to probe this structure,
providing a new spectroscopic tool.

For two parallel tunnel-coupled single layer and bilayer graphene systems, we
calculated the linear magneto-tunnelling conductance for an in-plane magnetic field.
In particular, we found conditions in which the tunnel-coupling would allow a valley
polarised current. When pseudo-spin is conserved in the tunnelling process, we cal-
culate the valley polarisation of the current as a function of the maximum magnetic
field. This method for generating a valley polarised current is dependent on the
applied magnetic field and the pseudo-spin tunnel-coupling between the single layer
and bilayer graphene systems. It is distinct from methods suggsted in other works
which require nanostructuring of a graphene sample [44, 57], coupling to electromag-
netic fields [58–66], application of mechanical strain[61–63, 66–68], or the presence
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of defects[69]. This new method for generating a valley polarised current may be
important for creating valleytronic information processing devices.

The effect of electron-electron interactions in single layer graphene on magneto-
tunnelling transport was investigated. For two parallel tunnel-coupled layers of
graphene with an applied in-plane magnetic field, the first order self energy diagram
was used to calculate the effect on the linear magneto-tunnelling conductance. From
this calculation, it was found that increasing the interaction strength will dampen
the magnitude of the tunnelling conductance, while not effecting the characteristics.

The effect of an in-plane electric field on magneto-tunnelling transport was in-
vestigated. The linear magneto-tunnelling conductance between two single layer
graphene layers was calculated with an in-plane magnetic field, when an in-plane
electric field was perpendicular or parallel to the magnetic field. The in-plane electric
field changes the Fermi surface from a Fermi circle to a Fermi ellipse. Therefore, the
linear magneto-tunnelling conductance can be explained by two intersecting Fermi
ellipses, separated due to a magnetic field. The electric field determines the shape of
each ellipse, which determines how the Fermi circles start/cease to intersect, therefore
the electric field will change the resonance locations in the linear magneto-tunnelling
conductance.

The non-linear magneto-tunnelling transport between two parallel single graphene
layers was studied. We calculated the magneto-tunnelling current and conductance
in the presence of an in-plane magnetic field. We explained how the magneto-
tunnelling current is calculated from integrating over the intersection of the two
energy-momentum relations, separated in momentum by the in-plane magnetic field
and in energy by the applied bias between the layers. We discussed how the magneto-
tunnelling current could be related to the understanding of the linear magneto-
tunnelling conductance. We described how features in the conductance relate to
various intersecting energy-momentum relations and the pseudo-spin overlap between
the states at the intersection.

Looking towards the future, there are multiple research avenues to explore. To
point this out, we list two avenues that we are aware of, and suggest why they could
be worth investigating.

For experimental research, one could use measurements of the magneto-tunnelling
conductance between tunnel-coupled two-dimensional chiral electron gases, and com-
pare the measurements with the theory in this work. In the case that experiment
is consistent with theory, it should be possible to test the new spectroscopic meth-
ods suggested in this work. This may lead to an experimental understanding of
pseudo-spin tunnel-coupling.

To move forward in theoretical aspects of magneto-tunnelling, one can investigate
magneto-tunnelling spin transport between two-dimensional chiral electron gases. In
this topic, one could start with the spin polarised non-linear magneto-tunnelling
transport between the electronic surface states of a thin topological insulator film
(which has momentum coupled with real spin eigenstates). In Ref. [25], the lin-
ear magneto-tunnelling conductance was calculated for a charge and spin tunnelling
current between the two surfaces of the film. However, extending chapter 6 of this
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work, one can derive an analytic formula for the finite bias magneto-tunnelling con-
ductance for the spin and charge current across a thin topological insulator film.
Only recently, Ref. [73] experimentally investigated the band-structure of Bi2Se3

thin films in the quantum tunnelling limit. A theoretical understanding of magneto-
tunnelling spin transport between surface states of a thin film topological insulator
could aid experimental efforts.
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