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Abstract

After the first claim of single molecule (SM) detection by surface en-

hanced Raman spectroscopy (SERS) was published in 1997 and years of

debate and maturing, SM-SERS can now be considered as an established

subfield of SERS. Besides the obvious promising advances in analytical

spectroscopy that SM-SERS enables, some more fundamental studies are

now also accessible. The main focus of this thesis is to understand cer-

tain aspects and tackle some outstanding issues in SM-SERS, both in

methods and applications.

In the first part of this thesis, we focus on the application of SM-SERS

to the study of the homogeneous broadening of molecular vibrations. We

show that the homogeneous linewidth of the dye Nile blue as measured

on single molecule SERS spectra is much smaller than the inhomoge-

neous broadening obtained from the average signal. Individual molecules

having the central Raman frequency occurring at slightly different po-

sitions is therefore the main cause of the inhomogeneous broadening in

this system. Furthermore, we show that the homogeneous broadening

of the mode of single molecules exhibits a strong temperature depen-

dence from 80 K to 300 K. This is suggestive of the vibrational energy

exchange model which explicitly relates the temperature dependence of

the linewidth of a vibrational mode to its interaction with other modes of

the molecule or its environment. The average signal does not show this

temperature dependence, this property is indeed washed out by ensemble

averaging and its unravelling is made possible by SM-SERS. This study

is the first example of direct measurement and study of the homogeneous

broadening of a Raman peak.

In the second part of this work, we focus on a particular method
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to prove single molecule sensitivity and demonstrate the single molecule

detection of the iconic C60 by SM-SERS using its peculiar spectral prop-

erties regarding isotopic substitution. A change in one unit mass in one

of the carbon atoms is readily observed as a detectable frequency shift

in the Ag(2) mode on the Raman spectrum of one C60. This remarkable

result is a direct consequence of the high symmetry of the molecule and

is only accessible experimentally by measuring individual molecules. We

perform SM-SERS detection of a isotopically enriched C60 and show how

the distribution of frequencies for the Ag(2) mode reflects the isotopic

spread of the sample. Density Functional Theory (DFT) calculations

support the experimental results. This provides the first ever evidence

of single molecule detection of C60 via SERS.

Finally, we focus on the photostability of dyes excited resonantly in

SERS conditions. Photobleaching of the molecule is an issue when doing

SERS (and SM-SERS) at resonance. Nile blue is deposited on a highly

ordered gold nanolithographic substrate and the time dependence of the

SERS signal is monitored. Using a simple two-level system model to de-

scribe the mechanisms of photobleaching and express the photobleaching

rate, we analyse the SERS intensity decay at different powers. This study

is the first to be dedicated to the photobleaching decay rates of molecules

on metallic surfaces and to highlight that the decay dynamics contains

rates spanning four orders of magnitude. This work can potentially re-

veal information on the distribution of SERS enhancement factors on the

surface.
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Chapter 1

Introduction

This chapter gives some theoretical background of Raman and surface

enhanced Raman scattering (SERS) to support the work which is pre-

sented in this thesis. The treatment of the Raman effect and SERS can

be extended to any level of complexity; we will however limit here the

complexity of the description to the level needed to understand the issues

which are raised in the following chapters.

This chapter also aims to set this thesis into the current context of

single molecule Surface Enhanced Raman Spectroscopy and giving the

motivation and goals I had when I started my PhD at Victoria University

within the Raman group.

For detailed and thorough treatments of Raman and SERS, interested

readers are invited to consult the text books given in Refs. [1, 2].

1.1 Optical spectroscopy of molecules

1.1.1 Energy levels of molecules

In molecules, the interaction with light is primarily determined by the

energy levels of their degrees of freedom: electronic energy levels and

atomic motions (nuclei) energy levels. The Jablonski diagram is a con-

ventional way to represent these energy levels in molecular spectroscopy

(see Fig. 1.1). The energies of the molecular states are given as a function

of the normal mode coordinate and the minima in energy correspond to
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the equilibrium positions of the atoms. The electronic energy levels are

the energies of the electronic states of the unperturbed molecule. The

vibronic states are sub-states of the electronic states where the electron

molecular orbitals are now perturbed by internal vibrations of the nuclei

around their equilibrium positions. There are also the rovibronic states

which are sub-states of the vibronic states arising from the quantization

of the molecular rotation. In the context of this thesis, we will not take

into account the subset of rotational states as their energies are too small

to be resolved by our spectrometer.

1.1.2 Transitions between molecular states

Transitions between molecular states can be induced by various interac-

tions; we can classify molecular transitions into two groups:

• Radiative: or dipole-allowed transitions, they involve the absorp-

tion or emission of a photon.

• Non-radiative: transitions between states which do not involve a

photon. They can be induced by interactions between vibrations

within the molecule (Intramolecular Vibrational Relaxation (IVR))

or interaction with the environment. “Heating” or thermal acti-

vation can trigger non-radiative transitions to higher vibrational

levels by an amount ≈ kBT .

Optical absorption

A photon of energy E can excite a molecule from a level E1 to a level E2

with E2 > E1 and E = E2−E1; the photon is annihilated in the process.

The photon can only couple to dipole-allowed transitions. In the case of

electronic absorption, an electron is excited to a higher energy electronic

state and in the case of infrared (IR) absorption, the molecule is excited

to a higher energy rotational/vibrational state.
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Figure 1.1: Jablonski diagram of the energy levels of a molecule. The
electronic levels S0 and S1 are in bold and the vibrational levels v are
thin lines. Dipole-allowed transitions, absorption in green and sponta-
neous/stimulated emission in red, are represented by dashed arrows. The
black arrow represents the non-radiative processes from S1 to S0.

Radiative emission and fluorescence

A molecule in an excited state relaxes from the level E2 to the level E1

with E2 > E1 while emitting a photon. Even though radiative emission

can occur between two vibrational states, in the cases of interest in this

thesis, radiative emission occurs between two electronic states of the

molecule. Two processes are possible:
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• Stimulated emission: in the presence of incident photons, the in-

teraction of the excited molecule with the incident photons will

stimulate the emission of a photon that is identical to the inci-

dent ones. This process occurs at the same rate as the absorption

process.

• Spontaneous emission: in the absence of any incident photon, the

excited molecule can interact with the vacuum state of the elec-

tromagnetic field and this interaction results in the emission of a

photon. This is a stochastic process described by a probability per

unit time; for the dyes used for the work presented in this thesis,

this probability is of the order of 107 − 109 s−1.

The two-step process of absorption of a photon followed by emission

is called luminescence, the most common case being that of fluorescence:

* An incident laser beam of energy Einc excites an electron from S0

to a vibronic state of S1.

* The electron quickly (picosecond [3]) relaxes down to the vibra-

tional ground state of S1 through IVR or solvent interaction.

* From there, several transitions are possible but if spontaneous emis-

sion of a photon of energy ES < Einc occurs associated with the

electron relaxation down to S0, the overall process is called fluores-

cence.

Fluorescence is therefore a two-step process and happens on the same

time-scale as spontaneous emission. The energies of the fluorescent pho-

tons vary and form the fluorescence spectrum.

Light scattering processes

The optical processes discussed previously involve the absorption or emis-

sion of a single photon. Another important family of processes involves

the simultaneous (instantaneous) absorption and emission of a photon.

Such processes are called scattering processes and can be classified into

two groups:
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Figure 1.2: Simplified Jablonski diagrams illustrating the Rayleigh (left)
and Raman (right) scattering processes. From a quantum mechanical
point of view, the scattering can be viewed as two simultaneous pro-
cesses; absorption of a photon through a transition to a virtual state and
emission of a photon through recombination to S0.

• Elastic scattering: incident and scattered photons have the same

energy (but different polarization and direction). For molecules,

hence in the case where the size of the object is much smaller than

the wavelength (visible-IR), this process is referred to as Rayleigh

scattering.

• Inelastic scattering: the scattered photon is at a different energy

ES from that of the incident photon EL. The energy difference cor-

responds to a transition between two states in the molecule. In the

case of Raman scattering, transitions between vibrational/rotational

states are involved.

Rayleigh and Raman scattering are illustrated in Fig. 1.2. The im-

portant difference between Raman scattering and fluorescence is that the

Raman process is instantaneous while fluorescence is a two-step process

which require absorption of a photon then spontaneous emission. Ra-

man scattering can occur without direct absorption of a photon, there-

fore when no electronic transition exists in the molecule at the incident

wavelength. However scattering processes (which can be described in a

quantum treatment of the interaction between light and matter as second

order perturbations) are intrinsically weak phenomena when compared

to other optical processes like absorption or fluorescence.
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1.2 The Raman effect

The Raman effect was named after Sir Chandrasekhara Venkata Raman

who discovered it and published it in the journal Nature in 1928 [4] (Nobel

prize in physics awarded in 1930). Sunlight focused through a telescope as

excitation and crossed complementary monochromatic filters were used

for the experiment; a small amount of light had changed frequency and

could pass the second filter. The experiments were quite challenging as

the Raman scattered light was very weak; therefore the scatterers used

were highly concentrated liquids. Progress in Raman spectroscopy as a

technique was stalled until the invention of lasers in the 1960s as powerful

monochromatic sources.

Raman spectroscopy is non-destructive, can be carried out in air, or

water (which does not exhibit any strong background signal in Raman)

and the sample preparation is usually quite straightforward. Further-

more, Raman spectroscopy can be performed at any incident wavelength

as no absorption of the incident photons by the sample is required. A

Raman spectrum is a unique fingerprint of a molecule which can be used

for analytical purposes in many cases and combinations. It is much more

specific than other commonly used optical techniques like fluorescence

spectroscopy.

The main drawback however, is that the Raman effect is intrinsically

weak, much weaker than fluorescence.

1.2.1 Terminology in Raman spectroscopy

Before giving a description of the Raman effect, let us define here some

terms and conventions specific to Raman spectroscopy:

• If the scattered photon has less energy than the incident photon

ES < EL, then the molecule is excited to a higher vibrational en-

ergy level. This is called a Stokes process and typically corresponds

to the excitation of the molecule from the ground vibrational state

v = 0 to the first vibrational excited state v = 1 by creating a

vibrational mode of energy ~ωv = EL − ES.
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• If, on the contrary, the scattered photon has more energy than the

incident photon ES > EL, then the molecule has relaxed from an

excited vibrational state v = 1 to its ground state v = 0. this is

called anti-Stokes process. In order for the process to occur, the

molecule should already be in an excited vibrational state. This

may only happen through thermal activation, therefore the anti-

Stokes signal depends on the temperature T through a Boltzmann

factor. Hence the anti-Stokes side of a Raman spectrum is much

weaker than the Stokes side.

• The energy lost in the scattering event is called the Raman shift

and is commonly expressed in wavenumber units [cm−1]; ∆ER =

EL−ES. The Raman shift is hence positive for Stokes and negative

for anti-Stokes.

• The Raman spectrum is commonly shown as Raman intensity as a

function of Raman shift as shown on Fig.1.3. Peaks in the spectrum

correspond to Raman-active vibrational modes of the molecule.

This spectrum is a unique fingerprint of a molecule.

1.2.2 Classical description of Raman scattering

This section presents a classical and phenomenological description of the

Raman effect. Raman scattering should in principle be described by a

quantum theory, however this approach is not straightforward and is not

a necessary tool to the comprehension of the work presented in this thesis.

A complete semi-classical derivation (the molecule is treated quantum

mechanically but the electromagnetic field is described classically) of the

Raman effect can be found in Ref. [2].

Classical approach to optical scattering

The classical approach to scattering makes use of the fact that the emis-

sion of light from a small source (like an emitting molecule) can be de-

scribed in terms of multipolar components, the dominant one being the

electric dipole.
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Figure 1.3: A typical Raman spectrum (in fact SERS spectrum of Nile
blue at 633 nm). The Raman intensity is a function of the Raman shift.
The zero hence corresponds to unshifted photons i.e. light at the laser
wavelength. The central line has to be rejected lest it destroys the
very sensitive photo-detectors used in a Raman spectroscopy experiment.
Notch or edge filters are used for that purpose.

An electric dipole ~p(t) oscillating at the frequency ω radiates (emits)

photons at energy ~ω. Using complex notation, ~p(t) is:

~p(t) = <
(
~p× e−iωt

)
(1.1)

The scattered radiation can be described as the radiation emitted by a

dipole. To describe how the incident beam gives rise to an oscillating

dipole, the notion of polarizability is introduced. The molecule is char-

acterized, in absence of perturbation, by the position of the nuclei and its

orbitals. In the presence of an external perturbation, the electronic or-

bitals change and the charge redistribution constitutes an induced dipole.

The incident electric field ~E(ω) oscillating at the angular frequency ω

induces a dipole ~p
L
(ω) such as:
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~p
L
(ωL) = α̂L~E(ωL) (1.2)

where α̂L is the linear polarizability tensor or Rayleigh polarizability ten-

sor; it fully characterizes the linear response of a molecule to an incident

electric field. The polarizability provides a measure of the “responsive-

ness” of the electrons in a molecule to the presence of an external electric

field. The dipole radiates at the same angular frequency as the incident

field; this is the classical description of Rayleigh scattering.

The Raman tensor

In the description of α̂L above, it is implicit that the molecule is in its

ground-state geometry, i.e. minimum of its electronic energy and the

atoms are static. However nuclei can vibrate around their equilibrium

positions and these vibrations can be seen as small perturbations to the

electronic structure, hence a small perturbation to α̂L. This small per-

turbation is at the origin of Raman scattering.

A molecule with N atoms has 3N internal degrees of freedom. Vibra-

tional analysis consists in finding the 3N normal modes of the molecule

(eigenvectors of the Hessian matrix or force constant matrix, which cor-

responds to the secondary derivatives of the potential energy of the

molecule with respect to atomic displacements). In Section 5.4.2, vi-

brational analysis is presented and we will see how this is achieved nu-

merically for the molecule C60. Once the normal modes and the normal

mode coordinates are known, we can express the induced changes in the

linear polarizability α̂L when the molecule is deformed by a normal mode

vibration.

We define the Raman tensor of the normal mode k by:

R̂k(ωL) =

(
∂α̂L(ωL)

∂Qk

)
Qk=0

(1.3)

where Qk is the mass-weighted normal mode coordinate. From there, we

can see that, if α̂L(ωL) does not depend on Qk (very common for highly
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symmetric molecules), then the Raman tensor for the mode k is zero and

the mode is Raman-inactive.

The classical Raman dipole

We may phenomenologically generalize the classical description of Rayleigh

scattering given previously to the case of inelastic scattering, in partic-

ular Raman scattering. In the case of Stokes scattering from a vibra-

tional mode of energy ~ωk, the scattered radiation is at a frequency

ωR = ωL − ωk different from the incident frequency ωL . The induced

Raman dipole must therefore oscillate at the radiated frequency ωR and

is denoted ~p
R

(ωR).

We can define, by analogy with Rayleigh scattering, the Raman po-

larizability tensor α̂(ωL, ωk) by:

~p
R

(ωR) = α̂(ωL, ωk).~E(ωL) (1.4)

α̂(ωL, ωk) is a proportionality factor which is fully phenomenological and

cannot be considered as a linear response function as was the case for

the linear polarizability tensor α̂L.

The phenomenological Raman polarizability α̂(ωL, ωk) for the normal

mode k is proportional to the Raman tensor R̂k(ωL) [1]:

α̂(ωL, ωk) =
Q0
k

2
R̂k(ωL) (1.5)

where Q0
k is the amplitude of the vibration k which caused the Raman

scattering effect. Hence the perturbation caused by the vibration pro-

duces a “modulation” of the linear polarizability resulting in a beating

of frequencies between the frequency of the excitation ωL and the fre-

quency of the vibration ωk; this beating phenomenon results in inelastic

scattering, i.e. in Raman scattering.
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1.2.3 Resonant Raman scattering

As seen earlier, Raman scattering can occur without direct absorption of

a photon, i.e. when no electronic transition exists in the molecule at the

incident wavelength (which is not the case for fluorescence). Neverthe-

less, when the incident angular frequency ωL is close to a real electronic

transition frequency of the molecule, a resonant response occurs and can

account for at least four orders of magnitude changes in the Raman in-

tensity.

A semi-classical treatment of Raman scattering, where the molecule

is described quantum mechanically but not the electromagnetic field,

is necessary to provide a qualitative explanation for resonant Raman

scattering. From the quantum treatment of the scattering process [2], a

given component of the Raman tensor can be shown to be a sum over all

possible vibronic states of the molecule of transition probabilities between

an initial state and a final state (computed by perturbation theory). One

feature of these expressions is the energy denominators; when they are

small, i.e. when ωL is close to a real electronic transition frequency, then

resonance is expected.

Resonant effects and even pre-resonance effects can have a large in-

fluence on the Raman cross-section of typical SERS probes.

1.2.4 Raman cross-sections

The absolute differential Raman cross-section
dσR
dΩ

is (by definition [1])

derived from:

dPR
dΩ

(90◦) =
dσR
dΩ

Sinc (1.6)

It relates the molecular-orientation-averaged differential Stokes Raman

scattered power at ωR = ωL − ωv observed in the 90◦-configuration to

the incident power density Sinc. Differential here means per unit solid

angle dΩ. It characterizes the scattering efficiency of a certain vibrational

mode of energy ~ωv in a certain direction of observation with respect to

the incident field. It is expressed in cm2/sr units.
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dσR
dΩ

for a particular mode depends on the incident wavelength and on

the refractive index of the environment. We can show that the absolute

differential Raman cross-section and more generally all optical scattering

cross-sections have a dependence in ω4
R; this factor in fact comes from

the electromagnetic theory of dipole emission.

The direct accurate measurement of the absolute differential Raman

cross-section is a complex issue and requires the careful characterization

of the whole experimental set-up [5]. Such studies have only been carried

out for a handful of compounds (N2 gas, benzene, cyclohexane [5]) which

hence serve as standards. The relative cross-sections of other compounds

are then determined by comparing the Raman intensity with the Ra-

man intensity of the standard. As long as the exact same experimental

conditions (excitation wavelength, optics, solvent) are used for both the

sample and the standard, the absolute differential Raman cross-section

of the sample can be determined via the ratio of peak intensities and

of concentrations. Throughout this thesis, N2 gas, 2B2MP (2-bromo-

2-methylpropane) and toluene were used as standard references in the

experimental determination of Raman cross-sections at 633 nm excita-

tion.

Within the context of SERS, one must quantify the cross-sections of

molecules that are used as SERS probes, among which the most com-

monly used are dyes (Nile blue, Rhodamine 6G, Crystal violet, ...). How-

ever, the determination of their Raman cross-sections at resonance is

tricky due to the overwhelming intensity of the fluorescence background.

An experimental method to overcome this particular issue has been re-

cently developed by our group and is presented in Refs. [6, 7].

Table 1.1 provides values for the absolute differential Raman cross-

sections of the fingerprint Raman modes of the three standards we use

routinely in our group as references and the dye Nile blue A in water

(in resonance) at 633 nm. Note the dramatic difference in the values of
dσR
dΩ

between the cross-sections off-resonance for typical organic liquids

(such as 2B2MP and toluene) or a very small molecule like N2 and the

cross-section of Nile blue measured at resonance.
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Mode frequency [cm−1] dσR
dΩ

[cm2/sr]
N2 gas 2230 2.1× 10−31

Toluene 1002 3.5× 10−30

2B2MP 516 5.6× 10−30

Nile blue A (water)a 590 1.7× 10−24

Table 1.1: Absolute differential Raman cross-sections at 633 nm for the
fingerprint modes of the three standards b used in this thesis and the dye
Nile blue in water.

aFrom Ref. [7]
bFrom Ref. [1]

1.3 Surface Enhanced Raman Scattering

(SERS)

The SERS effect is the amplification of the Raman signal of molecules

on or close to (few nm) a metallic surface through electromagnetic in-

teraction of light with the metal; these interactions produce a large en-

hancement of the incident field through the excitation of localized surface

plasmon resonances, which are electromagnetic surface modes of metal-

lic systems with dimensions smaller than or of the order of the incident

wavelength. The metallic systems - or SERS substrates - can be for ex-

ample colloidal solutions of metallic nanoparticles, planar substrates onto

which colloids have been aggregated, arrays of nanoparticles produced by

electron beam lithography, etc.

SERS was discovered in 1974 [8] for pyridine molecules adsorbed onto

roughened electrodes and wrongly attributed to an increase in the effec-

tive surface area. The effect was correctly interpreted in 1977 by two

independent and simultaneous studies [9, 10]. During the last 40 years,

the field has matured and grown enormously and is now a well estab-

lished spectroscopic technique. It is multi-disciplinary by nature as it

encompasses aspects such as electromagnetic theory of plasmon reso-

nances in a metals, colloidal solutions, molecular adsorption, substrate

nano-fabrication and applications in analytical chemistry and biology.

The discovery of SERS has addressed the main issue of Raman spec-
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troscopy: the sensitivity. SERS combines the high specificity of Raman

spectroscopy with a much higher sensitivity which then becomes compa-

rable to or greater than fluorescence. SERS can, in principle be applied

to any analyte, provided that one manages to bring the molecule in close

vicinity to a SERS efficient metallic substrate. SERS therefore has many

potential applications in analytical chemistry, biochemistry, forensic sci-

ences, trace analysis, analysis of dyes from old artwork, etc. SERS has

also immensely benefited from the development of nanosciences and nan-

otechnologies in terms of SERS substrate design and fabrication and from

the development of plasmonics in the last decade or so.

The most widely used SERS metals (i.e. providing the enhancement

of the signal) are gold and silver as their electromagnetic resonances are

located in the visible or near-infrared region of the light spectrum and

as they have low absorption losses in that regime.

The following sections present some key points necessary to the un-

derstanding of the electromagnetic origins of the SERS enhancement of

the signal. The molecule will be seen as a dipole whose excitation and

emission are modified by the presence of the metallic surface/system.

1.3.1 Local field enhancement: enhancement of the

excitation

When the excitation wavelength λL is close to the electromagnetic reso-

nance of the metallic system, the electric field at the molecule position

(on or near to the metal) ~Eloc can be very different, both in magnitude

and orientation, from the incident field ~Einc. ~Eloc is called the local field.

In the case of SERS, the magnitude of ~Eloc can be much, much larger

than the magnitude of ~Einc.

The local field induces a Raman dipole (through the molecular polar-

izability) ~pR = α̂R ~Eloc(ωL) whose magnitude is therefore enhanced by a

factor | ~Eloc(ωL)|/| ~Einc|. If such a dipole radiates in free space (no metal),

then the energy (intensity) radiated would be enhanced by a factor:
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Mloc(ωL) =
| ~Eloc(ωL)|2

| ~Einc|2
(1.7)

This factor is called local field intensity enhancement factor and is as-

sociated with the enhanced excitation of the Raman dipole, in simple

terms, the molecule will be polarized by an enhanced local electric field.

For an absorbing molecule (such as a dye) it also characterizes the en-

hancement of the absorption cross-section, as we will see in Chapter 6.

Electromagnetic calculations predict that Mloc can be as large as ∼ 105

at the plasmon resonance.

1.3.2 Radiation enhancement

Under SERS conditions, the Raman dipole (the molecule), radiates, not

in free space, but in close proximity to the metal. The dipole radiation

is strongly affected by the metallic surface, in a similar manner to the

dipole excitation. It affects the dipole in two ways:

• The radiation pattern is modified.

• The total power radiated by the dipole is modified compared to

that in free space.

We can thus define a radiation enhancement factor Mrad. In the case of

SERS, for a dipole of given amplitude, more total energy will be extracted

from it compared to a dipole of same amplitude in free space.

1.3.3 The | ~E|4-approximation to SERS enhancement

For one molecule in SERS conditions, the total single molecule SERS

electromagnetic enhancement factor (SMEF) can be simply expressed

as:

SMEF ≈Mloc(ωL)Mrad(ωR) (1.8)

15



The problem is that estimating Mrad is a priori a difficult task, whereas,

Mloc can be found by solving the electromagnetic problem under specific

external conditions. To avoid this issue, it is often assumed (and can be

justified using the optical reciprocity theorem [11]) that Mrad ≈ Mloc.

Moreover, in many cases, the Raman shift is also small compared to the

incident and scattered energies so that we can consider that ωR ≈ ωL.

thus Eq. 1.8 becomes:

SMEF(ωL) ≈ |
~Eloc(ωL)|4

| ~Einc|4
(1.9)

otherwise known as the | ~E|4-approximation.

This approximation is sufficient to know the right order of magni-

tude of the electromagnetic enhancement of the Raman intensity experi-

enced by a single molecule under SERS conditions, when | ~Eloc(ωL)| at the

molecule’s position can be evaluated (by an electromagnetic computation

for example).

1.3.4 Influence of the plasmon resonances on the

SERS enhancement

A complete treatment of this issue is given in Ref. [1] and we will here

just summarize some key points.

• The localized surface plasmon (LSP) modes of a metallic nanopar-

ticle (or more complex structures) can be excited by an incident

wave with the appropriate polarization and frequency. This cor-

responds to a strong optical response which can be detected in a

UV-visible absorption or extinction experiment. Large local field

enhancement are obtained at the LSP resonance of the metallic

structures. These LSP resonances are, fortunately for SERS, quite

broad and generally a large range of incident wavelengths can be

used to “activate” the SERS substrate. For examples of resonance

spectra of SERS active metallic colloidal solutions used for the work

presented in this thesis, please refer to Section 2.3.
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Figure 1.4: Normalized extinction spectra of the arrays of nanoparticles
used in the photobleaching studies of Chapter 6. They are arrays of gold
nanodiscs whose diameter is given in the legend. It can readily be seen
that the position of the LSP shifts towards greater wavelengths when the
size of the nanoparticles increases.

• Size effects: LSP resonances tend to redshift when the size of

nanoparticles increases. The resonances tend also to broaden. Fig-

ure 1.4 shows an example of the shift towards greater wavelengths of

the LSP resonances when the diameters of gold nanodiscs increase.

• Shape effects: the aspect ratio of a particle and its curvature (flat-

ter or pointier) dramatically affect its LSP resonances, the magni-

tude and the localization of the enhancement in the electric field.

Usually, the more “pointy” the shape, the larger the enhancement

factor. However, the place where the largest EF is achievable on

the particle becomes increasingly localized to a very small area.

• Gap effects: plasmon resonances and electromagnetic enhancements

also arise from the interaction of two or more objects. This inter-

action becomes increasingly important at small separation between

the particles (small gaps), where large local fields | ~Eloc|2 result in
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some of the largest known values for the SMEF: ∼ 1011.

Hot spots

We finish this section by introducing the notion of hot spot, a widely

used term in the SERS literature. A hot spot is a point of very large

local field intensity enhancement. Hot spots are usually highly localized

and can be within a few nanometers of points with little or negligible

enhancement. Usually the SERS signal from molecules located at the hot

spots of nanoparticles in a SERS substrates will dominate the average

SERS signal. For example, in Fig. 1.5, a molecule at the tip of the prolate

spheroid in (a) will emit as much as 100 molecules adsorbed on the green

area. More drastically, if a colloidal solution was constituted of dimers

of spheres as in (b) and used as a SERS substrate with an homogeneous

coverage in molecules, the detected SERS signal would be completely

dominated by the few molecules located at the gap junctions between

particles.

The concept of hot spot localization is crucial in SERS, because of the

usually extreme spatial variations of the enhancement on most substrates

[13, 14].

1.3.5 Current status of SERS

Surface enhanced Raman spectroscopy as a technique has progressed over

the last 40 years through contradictions, disagreements and heated de-

bates. One of the hottest issues was the origin and nature of the SERS

enhancement. Over the years, many of these conflicts have been re-

solved to some degree and the electromagnetic enhancement factor EF is

thought to be by far the main contribution to the enhanced signal. An

additional “chemical” enhancement is possible and often referred to an-

tagonistically by some authors as part of the SERS enhancement; it would

be a mechanism concerning only certain probes when they are chemically

adsorbed onto the metal, these molecules would see their electronic res-

onance shifted by this adsorption by means of charge-transfer, resulting

in some more enhancement of the signal. Its existence is still subject to
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Figure 1.5: Typical electromagnetic hot spots in nanostructures. They
are evidenced by computing the distribution on the surface of the SERS
enhancement factor (EF) M2

loc. Both calculation were done with an in-
cident field at the LSP resonance of the particles. (a) An elongated Ag
spheroid exhibits two tip hot spots where the EF reaches values close to
107. (b) More spatially localized hot spots can be obtained in gap hot
spots as shown in the gap between two nanospheres with EF of 1010.
Adapted from Ref. [12].

controversy [15], the point being that it makes the chemical enhancement

a property which is probe-dependent, hence not an intrinsic property of

a SERS substrate. Nevertheless, the mechanisms underlying SERS are

complex and the story is not yet complete regarding some of the fun-

damental aspects; the modification of the electronic structure of some

molecules via adsorption being in fact a fascinating topic that SERS can

help investigate [16].

1.4 Single-molecule Surface Enhanced Ra-

man Scattering (SM-SERS)

This section is dedicated to arguably one of the most interesting develop-

ments in SERS: the realization and demonstration that a single molecule
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can be detected by SERS.

In 1997, two independent reports claimed the observation of single

molecule emission under SERS conditions [17, 18]. The appeal of single-

molecule spectroscopy is huge for two main reasons:

• SM-SERS indeed gives the possibility to push analytical tools to

the ultimate resolution limit: the single molecule. Even though

fluorescence spectroscopy had already achieved the single molecule

detection level, SM-SERS has a unique high spectral specificity,

it is applicable to non-resonant probes and infrared excitation is

possible. Naturally, the potential applications in biology are very

attractive and a considerable amount of SM-SERS work published

nowadays is in relation to biologic systems or issues.

• SM-SERS also suggests the possibility of many fundamental appli-

cations. It has the potential to allow the understanding of unique

single molecule phenomena that are washed out by ensemble aver-

ages. It could also lead to a better understanding of SERS itself.

Today, not many researchers in the field of SERS would doubt the

reality of SM-SERS detection but the path was not free of controversy

and problems; which were emphasized by the lack of reproducibility, lack

of understanding of the origins and conditions for SM-SERS (in terms of

enhancement factors), lack of control over the hot spot distribution and,

last but not least, the confusing early indirect proofs for single molecule

detection. And these past issues are today still combined with a general

confusion on how to evaluate reliably SERS enhancement factors (first

attempt at a standardization of the definitions and evaluation of the EF

in 2007 [19]) and more generally some still deep rooted misconceptions

regarding SERS [20].

1.4.1 Early evidence for single molecule detection

By far, the largest group of evidence for single molecule detection by

SERS comes from an “ultra low concentration” approach [21] with the

use of metallic colloids as SERS substrates either in liquid form or dried
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onto a planar surface. The analyte concentration was chosen to be very

low compared to that of nanoparticles, hence the argument was that,

statistically speaking, there could not be many more than one molecule

per colloid or one molecule in the scattering volume. However, the use

of concentrations in analyte well below nM, of the order of pM, requires

particular care in the materials and methods to avoid contamination,

wall adsorption, dilution errors, etc. Furthermore, it is quite impossible

to estimate the accurate concentration of colloids and their distribution

of sizes and shapes from a knowledge of the reactant proportions for the

synthesis of the colloids. The presence of a small number of large ag-

gregates could lead to a dramatic underestimation of the analyte:colloid

ratio. Finally, at low concentrations, the probability to have a molecule

find its way to a hot spot is extremely small, making the statistics of the

SM-SERS signal unreliable.

Another argument put forward as evidence was the fact that the SERS

signals were exhibiting strong fluctuations. However, such fluctuations

are also observed in SERS conditions even with high concentrations of

analytes. These fluctuations are more to be attributed to the fluctuations

of the SERS enhancement factors within the SERS substrate.

1.4.2 Bi-analyte technique

The bi-analyte technique is another approach to the single molecule

SERS problem. It was developed by our group in 2006 [21] and addresses

the issue of the unreliable statistics.

It consists in measuring the SERS signal from a mixture of two

molecules with distinguishable SERS spectrum and preferably compa-

rable cross-sections. If the concentration of the two analytes is such that

there are many molecules at hot spots, the SERS signal should in princi-

ple be a mixture of the two spectra. The observation of SERS signals of

purely one type or the other is clear evidence that it comes from a very

small number of molecules.

For example, if a SERS signal originates from, say, 5 molecules, the

probability of it being purely of analyte 1 is only 1/32 and this prob-
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ability decreases to 1/1024 for 10 molecules. By carrying out several

such experiments at decreasing concentrations, one should in principle

observe a transition from a regime where only mixtures of the two spec-

tra are observed to a regime where the majority of observed spectra are

“pure”. The non-mixed spectra may then be attributed to either single

molecules or a few molecules of the same type. Such a study allows one

to determine for a given system [SERS substrate + analyte] the prepara-

tion conditions and concentrations for which single molecule spectra are

likely to be obtained.

The technique has been since then implemented in different variations

[22, 23, 24, 25], notably the use of isotopically edited probes as bi-analyte

partners [26, 25]. With isotopic substitution, the change in adsorption

properties is expected to be minimal but there can still be measurable

differences in the Raman spectra .

In summary, the bi-analyte technique is simple, unambiguous and

applicable to a wide variety of SERS substrates. The implementation

of this technique has also shown that, in fact, single molecule SERS is

quite common even at relatively high concentration, due to the extreme

localization of hot spots.

1.4.3 General motivation and thesis outline

Nowadays, the field of single molecule SERS is considered as a well estab-

lished subfield of SERS or laser spectroscopy and the conditions under

which SM-SERS can be observed have become increasingly well under-

stood. Besides the analytical possibilities, we can exploit some more

“fundamental” applications of the technique:

• SM-SERS can be a tool to further our understanding of the mech-

anisms of SERS. For example, in Ref. [27], the comparison of SERS

over fluorescence ratios in single molecule spectra unveils the rela-

tive dominance of the non-radiative enhancement in SERS condi-

tions. Another study was dedicated to charge transfer mechanisms

at the single molecule level [28]. Single molecule studies have also
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shown that the measured maximum SM-SERS EF may be artifi-

cially affected by photobleaching in some cases [29].

• The detection of non-resonant probes by SM-SERS is in itself a

challenging goal. Using the concept of isotopic substitution, to cre-

ate bi-analyte partners, SM-SERS detection of adenine was demon-

strated [30]. Other types of molecules have also been detected [31].

The conditions required for SM-SERS detection of non-resonant

molecules present more challenges than for resonant or pre-resonant

molecules as contamination issues become problematic and the

SERS substrate must also provide increased enhancement. For that

reason, the vast majority of SM-SERS studies to date are carried

out on resonant molecules.

• SM-SERS is also now a promising tool to investigate indirectly

properties of molecules that are accessible at the single molecule

level but are hidden in measurements of an ensemble of molecules.

As an example, the determination of the resonance excitation spec-

trum of a single molecule performed in Ref. [16]. Another example

is the study of single molecule conductance and/or heating proper-

ties [32, 33]. Finally single molecule SERS detection has allowed the

study of an electrochemical phenomenon at the single molecule level

and demonstrated the step-like nature of the oxidation/reduction

process [34, 35].

In the context of the aforementioned studies, we decide to focus on

one of the fundamental aspects of Raman spectroscopy: the homoge-

neous broadening of the Raman peaks; our goal is to see whether, once

the inhomogeneous broadening brought by ensemble averaging has been

eliminated, the true homogeneous broadening of the peaks and its prop-

erties and nature will be revealed. This constitutes the focus of Chapter

4.

Concerning the quest for single molecule detection of non-resonant

probes by SERS, C60, with its high symmetry and remarkable spectro-

scopic properties regarding isotopic substitution, seems an interesting
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candidate to work with. The extension of the bi-analyte method to a

multi-analyte experiment with isotopically resolved partners is the ob-

ject of Chapter 5.

Finally, because single molecule SERS studies have shown the effects

that the photostability of probes have on a reliable estimation of en-

hancement factors and because the issue of photobleaching under SERS

conditions has not yet been tackled, we dedicate the last chapter, Chapter

6 of this manuscript to the study of the photobleaching rates of resonant

molecules on metallic surfaces.

These three chapters constitute the core results of this thesis. In

Chapters 2 and 3 we provide details on the experimental methods and

data analysis procedures which are used throughout our work.
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Chapter 2

Experimental methods:

instrumentation and sample

preparation

The following chapter introduces the instruments, techniques and sam-

ples which are used for the studies presented in this thesis.

2.1 Acquiring a Raman spectrum: the Ra-

man setup

The spectrometer used in all Raman and SERS measurements is a Jobin

Yvon Labram HR800 as shown on Fig. 2.1. Shown are the lasers used

for our work: He-Ne laser for the 633 nm excitation and the Argon Ion

laser for the 514 nm excitation. The sample is placed under the Olympus

BX41 confocal microscope and the scattered light is collected in the back-

scattering configuration. The (x,y) stage of the microscope is motorized

and can be controlled automatically by the spectrometer’s software Lab-

spec in order to carry out Raman mapping, it has a step-size of 0.1 µm

and a reproducibility of 1 µm.

A simplified diagram of the layout of the system is shown in Fig. 2.2.

The laser excitation He-Ne 1© or Argon Ion 2© enters the spectrometer,

plasma lines are filtered, goes through the Optical Density (OD) wheel
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Figure 2.1: A photograph of the Horiba-Jobin Yvon Labram HR800
spectrometer in our laboratory.

which enables power modifications, and is totally reflected by the notch

filter towards the sample placed under the microscope (see Fig. 2.2). The

light is then focused on the sample with an objective. The scattered

light is collected by the same objective and follows the same path as the

incident light. While the Raman shifted scattered photons pass through

the notch filter, the laser light is reflected back. The converging lens

focuses the light through a pinhole slit such that an image of the sample

is formed onto the pinhole. The magnification is 0.56 times the objective

magnification, hence for the ×100 objective, the image of a 1µm spot

will have a 56µm diameter on the slit. Thus the pinhole size is limiting

the region of the sample from which the signal is collected. This directly

affects the spectral resolution of the experiment. The light is then sent

down to a collimating mirror and onto a diffraction grating which dis-

perses the light according to its wavelength. Finally the dispersed light

is sent onto the CCD detector Symphony, which is liquid nitrogen cooled

(working temperature −133 ◦C) and offers data conversion speeds from

20 kHz (normal mode) to 1 MHz (ultrafast mode).
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Figure 2.2: Schematic diagram of the internal optics of the Labram HR
800. The full path of the 633 nm (red line) laser line is shown. If we wish
to use the 514 nm excitation, the mirror at their point of intersection
needs to be lowered.

2.2 Cryostats

In order to get the temperature-dependent measurements of Chapter 4

and the low temperature measurements of Chapter 5 we used two types

of cryostat: a closed cycle helium cryostat for the acquisition of the

spectrum of the Ag(2) mode of C60 at 9 K in Sec. 5.4.3 and a freezing

microscope stage operating with liquid nitrogen which we used for all

the temperature dependent studies, down to 80 K.

The helium cryostat is a Janis Closed Cycle Refrigerator (CCR) and

enables one to reach temperatures down to 5 K. The setup contains a

copper mount (cold head) on which the sample is placed, using a highly

thermally conductive silver paste. C60 in toluene was put in a glass

pipette tip, sealed at both ends by Teflon tape and glued to the sample

holder with silver paste. The sample is then enclosed within a windowed

steel chamber and pumped down to low pressure. Once low pressure is at-

tained, the temperature of the sample is adjusted with the cryostat. The

sample is accessible to the excitation light through the windows; however

micron-sized vibrations inherent to every closed cycle system are trans-
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mitted directly from the cold head to the sample, making microscopic

Raman spectroscopy impossible. This is why this setup was unfortu-

nately unsuitable for the SM-SERS studies of Chapter 4 and 5 where we

needed the spatial resolution of excitation and collection through a mi-

croscope. We used a macroscopic lens to collect the scattered light in the

90◦ configuration with the CCR cryostat (for a presentation of the 90◦

scattering configuration: see [1]) and our other Raman spectrometer, the

Jobin Yvon T 64000 is used as the cryostat is set up next to it.

Figure 2.3: Linkam THMS600 microscope stage

The microscope stage we used for the temperature dependence of the

homogeneous broadening of Nile blue in Chapter 4 and the low temper-

ature SERS measurements of C60 in Chapter 5 is a Linkam THMS600

which is cooled by liquid nitrogen (the liquid N2 pump is the LNP 94

model). It is a compact bench-top apparatus which enables microscopic

acquisitions of Raman spectra at temperatures ranging from −195 ◦C to

600 ◦C of a sample enclosed into the stage (see Fig. 2.3). We used it in the

lower temperature range, from 80 K to room temperature. The sample is

sitting on a highly polished silver element through which liquid or cold

nitrogen is circulating. The LNP pumps the liquid nitrogen from a 2.5 L

Dewar into the circuit and diverts a part of it as nitrogen gas into the

chamber. This can be used to purge the atmosphere of the chamber prior

going down to low temperature by evacuating air (and thus water) from

the chamber and then preventing condensation of water or crystallization
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of ice onto the sample. The controller enables one to chose a target tem-

perature and to reach it with speeds as fast as 130 ◦C min−1 or as low as

0.1 ◦C min−1 by adjusting the rate of the liquid nitrogen pump. Because

the sample is enclosed into the chamber, we need to use objectives with

a long working distance and hence a lower numerical aperture, like the

×100 Long Working Distance (LWD) with N.A.=0.6.

2.3 SERS substrates

One of the main factors of success (or conversely, of failure !) in SERS ex-

periments is the SERS substrate itself, whether it offers high, medium or

low enhancement locations, whether these locations are sparse or many

(the SERS enhancement factor distribution is important [36]), its homo-

geneity and last but not least, its affinity with the SERS analyte we want

to use. Then, from the point of view of the “user”, it should be easy to

prepare and, ideally, be reproducible.

Our group has been mainly exploiting three types of SERS substrates:

planar metallic surfaces in the Kretschmann configuration [37, 38] (where

the enhancement of the Raman signal comes from the coupling of the

Raman scattering to the surface plasmon polaritons (SPP) excited at

the metal-air interface), aggregated colloidal solutions, and aggregated

colloids on planar substrates. The latter are systems presenting many hot

spots which are typically located at the gap junctions between metallic

nanostructures. Aggregated metallic colloidal solutions are among the

most sensitive SERS substrates available [39, 40, 41] where the SERS

enhancement factor can be as high as ∼ 109 − 1011 [42, 13] for silver

nanoparticles in solution.

The studies presented in Chapters 4 and 5 make use of SM-SERS

capabilities to study the homogeneous broadening of a vibration of a

well known dye and to resolve individual cases of isotopic substitution

induced frequency shifts in C60 in the latter. Our group conducted most

of its extensive work on SM-SERS with silver colloids prepared in situ- in

particular Lee & Meisel [43] colloids - as SERS substrate and a lot of work

was done previously on resonant dyes (rhodamine 6G, Nile blue, Crystal
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violet) and Lee & Meisel colloids [23, 25, 29]. Consequently, our group is

familiar with the sample preparation for SM-SERS detection with such

systems and the statistics of the corresponding measured SERS signals.

2.3.1 Silver colloids as SERS substrates

Silver colloids are extensively used in the SERS context even though

they are more susceptible to oxidation under ambient conditions than

gold colloids and the chemistry of molecular binding to them is not as

well understood [1]. Nevertheless, silver particles give rise to much larger

enhancements in the visible with plasmon resonances for Ag aggregates

located typically at around 600 to 650 nm as can be measured by UV-

visible extinction spectroscopy. The following section presents the recipes

for preparation of Ag colloids that were used for SERS and SM-SERS

work for this thesis.

Figure 2.4: UV-Vis absorption spectrum of the Lee & Meisel Ag colloids
(non-aggregated) diluted twice, typically used for Single Molecule SERS
experiments.
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Citrate-reduced silver colloids: the Lee & Meisel method

The preparation of Lee & Meisel silver colloids [43] is rather simple and

its characteristics as SERS substrates have been studied in detail [44]. I

will just summarize here the essential steps of the process:

• 90 mg silver nitrate (AgNO3) is added to 500 mL of ultrapure water

in a 1 L conical flask equipped with a magnetic stirring bar. The

solution is then brought to boil.

• Upon boiling, 10 mL of trisodium citrate 1% Na3C6H5O7 (100 mg,

294.1 g mol−1) is added drop-wise and the solution is kept boiling

under vigorous stirring for approximately 1 hour.

• The solution is then allowed to cool down to room temperature and

eventually stored in a plastic container wrapped in aluminum foil

to protect it from sunlight, lest the particles start to oxidize [45].

After addition of the reducing agent (trisodium citrate), the solution

rapidly undergoes colour changes: from transparent to clear brown to

eventually a grey-green opaque coloration. The silver particles are coated

by citrate ions C6H5O3–
7 which in this case play both roles of reducing

and stabilizing agent; they indeed prevent the particles from aggregating

by turning on Coulomb repulsion.

Figure 2.5: Scanning electron microscope (SEM) images of citrate-
reduced Lee & Meisel silver colloids. One can appreciate the polydisper-
sity in sizes and shapes, particularly the presence of rods. The spherical
particles display an average diameter of 60 nm.
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The UV/Vis absorption spectrum of Lee & Meisel colloids shows an

absorption maximum at ∼ 430− 460 nm as shown in Fig. 2.4. The main

peak is the contribution of the dipolar localized surface plasmon reso-

nances of the individual particles; this peak is strongly broadened in the

case of such colloids due to the high polydispersity in sizes and shapes

(see Fig. 2.5), typically spherical particles and rods are produced. The

shoulder at ≈ 380 nm can be attributed to the quadrupolar resonance.

The mean particle size is found to be around 60 nm in diameter, thus

if we assume the reduction of the AgNO3 has been complete and that

all the silver is in the form of spheres of 60 nm diameter then the col-

loid concentration can be estimated to be ≈ 1010 particles/cm3 as one

60 nm diameter silver sphere contains about 3.66 × 10−17 moles of Ag

and the starting Ag concentration is ≈ 1 mM which leads to an estimate

of ≈ 2.73× 1010 particles/cm3. This is most likely an overestimate of

the real concentration as a large proportion of silver could be in a small

number of very large particles (SEM pictures of citrate-reduced colloids

show that there is a significant proportion of nanorods also produced in

the process).

Lee & Meisel silver colloids are negatively charged since they are

coated with (and bathing in) the unreacted citrate ions C6H5O3−
7 which

produce a repulsive Coulomb interaction between the particles and ensure

the colloidal stability. The single colloids dispersed in water already

provide some SERS enhancement through the excitation of their dipolar

localized surface plasmon resonances at ∼ 430−460 nm as seen in Figure

2.4, providing a maximum enhancement factor which can be calculated

via Mie theory to be ∼ 1.6 × 105 for a single 50 nm silver sphere in

water. Even though this enhancement is not negligible, it may yet not

be large enough to enable the detection of single molecules under SERS

conditions; moreover the resonance wavelength is too close to the UV

range for a convenient application.

It is common practice when carrying out SERS experiments, while

using metallic colloids as a source of electromagnetic enhancement, to

break the metastable equilibrium of the system by adding some charged

species into the solution and thus screening the Coulomb repulsion be-
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tween the particles. This results in partial aggregation of the colloids

solution which is desirable as the largest SERS enhancements generally

occur at the junction between two particles. In the case of the citrate-

reduced silver colloids used throughout this study, this is achieved by

mixing the Ag colloids with potassium chloride (KCl) 20 mM in 1:1 pro-

portion, allowing the silver particles to get close enough to each other for

them to feel the van der Waals attraction forces, the colloidal solution

remains stable and shows good SERS activity [46]. The chloride ions

also replace the citrate ions on the surface of the silver nanoparticles

[47]. The solution is typically allowed to aggregate for 15 minutes before

being used for the SERS experiments.

To summarize this section on the Lee & Meisel colloids, we can say

that, for us their advantages are:

* They are easy to make. In fact it takes only about an hour and a

half to synthesize them, no advanced chemical facility is required

as there is no need for a fume-hood and the reactants are not dan-

gerous nor toxic.

* We know exactly in our group how to prepare them for SERS or

SM-SERS and understand them well, especially when they are used

in combination with resonant dyes like rhodamine 6G or Nile blue.

They nevertheless have several significant drawbacks:

* Their properties can vary quite a lot from one batch to the other.

These colloids are also not very stable and degrade over time. A

good batch may last ≈ 1 year in the refrigerator.

* They contain some very large particles which can play some im-

portant role in our experiments. Generally speaking, their size and

shape polydispersity makes them a very messy system and is an

obstacle to a proper understanding of the surface coverage of the

colloids by the analyte.
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Borohydride reduced silver colloids

As an alternative to Lee & Meisel colloids, we prepared borohydride

reduced silver colloids following the method given in [48] but adding KCl

as a first step to increase stability.

• KCl (7.9 mg, 74.6 g mol−1) is added to a solution of AgNO3 (18 mg,

1.06 mM) in 80 mL ultrapure water in a 250 mL round-bottomed

flask equipped with a stir bar. This results in a cloudy blue pre-

cipitate of AgCl.

• The solution is cooled in an ice bath and an ice-cooled solution of

NaBH4 (6 mg, 37.8 g mol−1) in ultrapure water is added drop-wise

to the AgCl solution. Upon addition of the reductant, the solution

becomes a cloudy yellow/grey color.

• The solution is left to warm to room temperature while being kept

stirring under a fume hood for at least 1 hour to react the excess

NaBH4.

The colloids synthesized via this method are typically smaller than those

from the Lee & Meisel method; their advantage over the latter is that the

silver particles are not coated by citrate, thus eliminating the problem

of carbon contamination of the SERS signal, which can be a significant

problem when one transfers colloids onto planar SERS substrates by

drying them. However, borohydride reduced silver colloids are much less

stable than the Lee & Meisel colloids and their shelf lifespan does not

exceed a couple of weeks at best.

Borohydride reduced silver colloids were used for the preparation of

the planar SERS substrate for the experiments of Chapter 4.

Hydroxylamine reduced silver colloids

We also synthesized hydroxylamine hydrochloride reduced silver colloids

according to the method (C) proposed by Leopold & Lendl [49].

• A solution of AgNO3 10−2 M is prepared by dissolving 42.4 mg of

silver nitrate in 25 mL of ultrapure water.
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• A solution 0.96 M of NaOH is prepared by dissolving 96.6 mg of

sodium hydroxide in 25 mL of ultrapure water.

• A solution of hydroxylamine hydrochloride 1.67 mM in 3.33 mM

NaOH is prepared by dissolving 11.6 mg hydroxylamine with 3.45 mL

of the previous NaOH solution and water into a volume of 100 mL.

The aim is to get a concentration ratio between hydroxylamine and

NaOH of 1:3.

• 1 mL of the AgNO3 solution is added rapidly with a pipette to 9 mL

of hydroxylamine in NaOH. The reaction is instantaneous and the

solution turns to a bright yellow/orange colour.

The advantages are that they are highly reproducible, the monodis-

persity is improved compared to Lee& Meisel silver colloids and their

shelf-life is longer (couple of months). the disadvantage is that we have

less experience in using them for SERS, thus some work is required to

optimize the parameters.

2.3.2 Preparation of planar SERS substrates: the

dried colloids approach

This kind of substrate is very easy to fabricate: it can be as easy as

drying a drop of colloidal solution on a glass slide or silicon wafer and the

aggregation will eventually occur upon drying. Thanks to this aggregated

state, such substrates usually exhibit large SMEF and average EF due

to the presence of many gap-coupled plasmon resonances at the junction

between particles [50]. On the other hand, due to the randomness of

the fractal-like structure of dried colloids, the SERS enhancement is very

non-uniform (especially when using high magnification objectives)and

susceptible to dramatic changes with very small changes in the geometry

of the structures. Hence it is important to have a statistical criterion

for the single molecularity of the detected signals firstly, and secondly,

a way to prevent the colloids from moving once they are dried onto the

substrate. For the latter goal, we coated our substrates (whether glass,
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(a) Dried Lee & Meisel silver colloids

(b) Dried borohydride reduced silver colloids

Figure 2.6: Photographs of the surface of the SERS substrates obtained
by drying (a) Lee & Meisel colloids + 20 mM KCl on poly-L-lysine coated
Si and (b) borohydride reduced silver colloids + 10 mM KCl on poly-L-
lysine coated Si. The pictures were taken with the optical microscope
(×100) and white light.
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quartz or silicon) with a poly-L-lysine layer to graft the colloids to the

surface.

Deposition of poly-L-lysine layer on the substrate

Poly-L-lysine is a small natural polymer of the amino acid L-lysine and

is used as a charge enhancer for promoting the attachment of negatively

charged species to a surface. Poly-L-lysine (30 to 70 kDa) was purchased

from Sigma-Aldrich. The process we used to cover substrates (glass or

silicon wafer) is as follows:

• A buffer solution 0.1 mM Tris-HCl is prepared. Tris-HCl 0.1 M was

purchased from Sigma Aldrich.

• A stock of “pre-poly” solution is prepared by adding 0.643 g of NaCl

to 110 mL of the buffer solution prepared above. The pH is tested

with pH strips to be ≈ 7. The addition of NaCl is necessary in

order to preserve the structure of the polypeptide.

• The substrates (glass or Si) are cleaned in an O2 plasma cleaner.

• A solution of poly-L-lysine is pepared by dissolving polylysine 1 mg/mL

in the pre-poly solution. The poly-L-lysine powder is put first in a

glass beaker then the pre-poly solution is poured onto it.

• The substrate is then immersed in the beaker and let to sit for

30 min.

• The substrate is then rinsed in the buffer solution to remove excess

unattached poly-L-lysine and dried under N2 flux.

The SERS substrates are then prepared by placing a drop of sil-

ver colloids containing the analyte for 5 minutes then siphoning off the

drop. Fig. 2.6 shows photographs of substrates prepared with dried Lee

& Meisel colloids (a) and borohydride reduced silver colloids (b) on sili-

con wafers coated with poly-L-lysine. The dried Lee & Meisel+KCl tend

to result in bigger, less uniform aggregates drying in fractal-like struc-

tures and citrate are expected to be everywhere. The dried borohydride
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reduced silver colloids + 10 mM KCl result in much smaller and sparser

aggregates.

2.4 SERS active dyes under study

The work presented in Chapter 4 has been carried out on two dyes, mea-

sured in resonance conditions : Nile blue A (NB) and rhodamine 800

(R800) (see Figure 2.7). Both dyes were purchased from Sigma-Aldrich.

(a) Nile Blue A (b) Rhodamine 800

Figure 2.7: Chemical structure of (a) Nile blue A, here with a counter
perchlorate ion and (b) rhodamine 800 with a counter ion Cl−.

Nile blue (C20H20N3O+, molar mass 353.85 g mol−1) has been exten-

sively studied as a SERS probe by our group [51, 52, 53] over the past

years : it is soluble in both water and ethanol and has its maximum

optical absorption at 635 nm in water which closely matches the 633 nm

emission wavelength of the He-Ne laser used throughout the experiments

and thus ensures one benefits from the further enhancement of the Ra-

man signal due to resonant excitation of the molecules. In order to avoid

dilution errors, care had to be taken to dissolve the powder in a large

volume of water, typically by preparing (under long-lasting and vigorous

stirring) 5 L of 15 µM Nile blue solution.

Rhodamine 800 is a laser dye belonging to the same class as the widely

used (and studied) rhodamine 6G and is a common stain in the study of

mitochondria. It has the chemical formula C26H26N3O+ and a molar mass

of 396.21 g mol−1. What makes R800 an interesting system to study in the

case of Raman spectroscopy is the presence of a cyano bond C−−−N which

forms a localized high frequency Raman active vibration at 2230 cm−1.
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In this region, only triple bonds have Raman active vibrations. Being

localized, the cyano stretching eigenvector is particularly susceptible to

isotopic substitution and such a substitution (for example 13C −→ 12C)

can readily be seen as a detectable shift in the frequency of the mode on

a single molecule spectrum [54].
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(b) Rhodamine 800 absorption spectrum

Figure 2.8: UV-Visible absorption spectra of Nile blue A (a) and rho-
damine 800 (b) in water. Note the presence of two resonance absorption
peaks for rhodamine 800; with λ1 corresponding to the absorption due
to the dimers of rhodamine 800 and λ2 to the monomers [55].
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Chapter 3

Data analysis

As we will see in Chapter 4, the spectrum around a Raman mode of an

isolated molecule is expected to have a Lorentzian lineshape. However,

when recording experimental spectra, many additional sources of broad-

ening of the Raman signal arise, such as ensemble averaging of the signal

coming from many molecules which experience different environmental

conditions or speeds and instrumental broadening, in particular the fact

that spectral resolution is limited. In most of the cases, when we carry

out Raman spectroscopy or SERS experiments, we do not try to extract

from the data the physical reasons for the broadening of the signal; we

are interested in determining various relevant parameters which will help

us describe and understand the physics of our system. We perform fits

of the data to a model or a reference in order to obtain:

• The intensity of a Raman peak without the dependence on the

noise.

• Central frequencies and linewidths automatically and precisely.

• In some cases the lineshape of a peak.

Two approaches were used throughout this work to the fitting of Ra-

man and SERS spectra: non-linear least square fits to a model function

(pseudo-Voigt in most of the cases) and fits of the data to a linear com-

bination of reference spectra.
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3.1 Non linear least-square fits of the Ra-

man peaks to pseudo-Voigt profiles.

It is common in spectroscopy to fit the intensity profile of peaks to

Voigt or pseudo-Voigt profiles [56]. This combines either by convolu-

tion (Voigt) or by simple addition (pseudo-Voigt) a Lorentzian and a

Gaussian function. The Lorentzian mainly describes the homogeneous

or natural broadening (when lifetime effects dominate) while the Gaus-

sian contributes more to rendering the inhomogeneous broadening mech-

anisms, sample imperfections and any random statistical effect, whatever

their origin.

The Voigt lineshape is defined by:

V (ω − ω0, σ,Γ) =

∫ +∞

−∞

e−t
2/(2σ2)

σ
√

2π

Γ/2

(ω − ω0 − t)2 + (Γ/2)2
dt (3.1)

The function V above is normalized and centered in ω0.

In the case of the Pseudo-Voigt function, the convolution is approximated

by the weighted sum:

Vpseudo(ω) = αG(ω) + (1− α)L(ω) (3.2)

G and L being respectively a Gaussian and a Lorentzian function and

with α ∈ [0, 1] the Gaussian fraction.

The purpose here with these pseudo-Voigt fits is not to give a physical

interpretation to α. The main advantage of Voigt (or pseudo-Voigt) fits

is that the combination of Lorentzian and Gaussian can be tailored to

suit the particular peak shape of a particular spectrum. In any case, in

Raman spectroscopy, one rarely has the sufficient intensity and resolution

to measure the real shape of a spectroscopic peak.

In this thesis, every time the data around a Raman peak centered in ν̄0

were fitted to a Voigt profile (by non-linear least-squares fit), they were
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fitted to the equation:

I(ν̄)

Imax
=α exp

[
−4 ln(2)

(
ν̄ − ν̄0

Γ

)2
]

(3.3)

+ (1− α)
(Γ/2)2

(ν̄ − ν̄0)2 + (Γ/2)2
+B(ν̄). (3.4)

where Γ is the full width at half maximum (FWHM) of the peak, B is

a linear background in the neighborhood of ν̄0: B(ν̄) = aν̄ + b. This

definition was chosen such that the FWHM of the Gaussian and the

Lorentzian are the same (Γ).

Γ is related to the Gaussian standard deviation σ by:

Γ = 2
√

2σ ln 2 (3.5)

The way we proceed is by doing a non-linear least squares fit of the data

around the peak to the profile given in Eq. 3.4. If the experimental data

set of n points (recorded spectrum) is (ν̄i, Si)i=1...n, and the model func-

tion f(ν̄, ~α) (given in Eq. 3.4 above, ~α is a vector holding the adjustable

parameters of the fit), the principle is to minimize the sum Σ of squared

residuals Σ =
∑n

i=1 (Si − f(ν̄i, ~α))2 by adjusting the parameters of ~α.

The minimum of Σ is found by setting the gradient of Σ to 0, which

leads to solving m gradient equations if there are m parameters:

−2
n∑
i=1

(Si − f(ν̄i, ~α))
∂f(ν̄i, ~α)

∂αj
= 0 for j = 1 . . .m (3.6)

As f is not linear, initial values or guess have to be chosen for the param-

eters at the start. The parameters αj are then refined iteratively using an

optimization algorithm. In the case of Microsoft Excel (used for most of

the non-linear fits of this thesis), we use the Solver to minimize the sum

of squared residuals. The Solver uses a method called the Generalized

Reduced Gradient (GRG) non-linear engine which is suitable for smooth

non-linear problems [57]; this method is also used by the optimization al-

gorithm of fminsearch in Matlab. It can find a locally optimal solution

to a well-scaled problem. The boundaries of the fit, the interval [ν̄1, ν̄2],
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are important as Σ has to be convex over [ν̄1, ν̄2]. Indeed, if the prob-

lem is not well-scaled, the algorithm might stop after having reached a

local optimum which could be different from the global optimum solution.

Figure 3.1: Examples of non-linear least square fits of spectra in the
590 cm−1 region of a sample of Nile blue in SERS conditions at low tem-
perature (80 K). The spectrum in a) is a single molecule event and the
best fit was obtain by fitting the data to a Lorentzian lineshape. The
spectrum in b) is the average SERS spectrum and one can appreciate
the broadening induced by ensemble-averaging of the signal. The best
fit was obtained by fitting to a pseudo-Voigt profile with α = 0.4.

In the case of the fitting of experimental Raman (or SERS) spectra to

pseudo-Voigt profiles, the adjustable parameters are the central frequency

ν̄0, the peak height Imax, the linear background (a, b), the parameter α

(proportion of Gaussian in the pseudo-Voigt model) and the FWHM.

We fix the parameter α most of the time or manually look for the best α

value as, in the case of noisy signal, it can easily converge towards non-

physical solutions. For the fits of SM-events in Chapter 4, α was fixed

to be 0 as a pure Lorentzian lineshape for these spectra was expected.

Generally we do not want to assign a physical meaning to the width

Γ either except in the Single Molecule cases where Γ(T ) gives us the

temperature dependence of the broadening of the 590 cm−1 mode of Nile

blue. In our work, we have used these non-linear least squared fits mainly

as a way to identify SM-events in series of thousands of spectra when

linear fitting (see Section 3.2) is not possible because no reference can be
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used or the peak’s width and position can vary a lot from one spectrum to

another as it is the case in the experiments of Chapter 4. For example, Γ

can range from 0.9 to 3 cm−1 at 80 K for the Nile Blue mode at 590 cm−1

and we can see also that the SM-events span 5 to 6 cm−1 in position.

Non-linear least square fits were also used to determine the width or

position of a given peak in a spectrum or to fit data when determining

scattering volumes (see Section 5.5.3).

3.2 Linear fit of a spectrum to a reference

The main inconveniences of the non-linear least square fits presented

above are that they are slower than linear fits. The quality of the fit

becomes increasingly bad when the signal-to-noise ratio of the spectrum

is low, they can not take into account any asymmetry of the peak and

are quite unstable when trying to fit multiple peaks in the same spectral

region. This is why, sometimes, we prefer to do a linear fit of the data;

for example when we expect the spectrum to be a linear combination of

one or more reference spectra and a background. Linear fits are very fast

and have a unique solution (mathematically), which in most cases is also

the physically acceptable solution.

Let us consider the case of an experimental spectrum S(λ) that we

want to fit to a reference spectrum R(λ) and a linear background B(λ).

We want the spectrum S(λ) written as:

S(λ) = α1R(λ) +B(λ)

= α1R(λ) + α3λ+ α2

(3.7)

If we write S(λ) as a vector (S(λ)j)j∈[1...N ] with N the total number

of pixels recorded (which is 1024 with our CCD detector) then Eq. 3.7

becomes: 
S(λ1)

...

S(λN)

 =


R(λ1) 1 λ1

...
...

...

R(λN) 1 λN


α1

α2

α3

 (3.8)
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If we write:

A =


R(λ1) 1 λ1

...
...

...

R(λN) 1 λN


then doing a linear fit of the spectrum S is solving the overdetermined

system of N equations and 3 unknowns ~α = (α1, α2, α3). To solve this

system, we use the command mldivide in Matlab; mldivide(A, S) will

return a least-squares solution of this system by minimizing the function

Σ:

Σ(~α) =
∑
|S − A~α|2 (3.9)

This problem has an unique solution if the columns of A are linearly

independent i.e. the rank of A is 3. The minimization problem is then

equivalent to solving the system of 3 equations, k = 1 . . . 3:

0 =
∂Σ

∂αk
=

N∑
j=1

−2Ajk

(
Sj −

3∑
i=1

Ajiαi

)

=
N∑
j=1

(
−2AjkSj + 2

3∑
i=1

AjkAjiαi

)

=
N∑
j=1

(−2AjkSj) + 2
N∑
j=1

3∑
i=1

(
AtkjAjiαi

)
=

N∑
j=1

(
−2AtkjSj

)
+ 2

3∑
i=1

(
AtA

)
ki
αi

=
(
2AtS

)
k

+
(
AtA~α

)
k

(3.10)

with At the transpose of A. AtA is then a square 3×3 matrix. As A is of

rank 3, At is also of rank 3 and thus AtA is of rank 3 so invertible. Hence

finding the best fitting parameters in the least-squares sense is solving

the equation:

~α =
(
AtA

)−1
AtS (3.11)
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There is only one ~α satisfying Eq. 3.11. Note: the background B(λ) can

be chosen to be quadratic or more generally a polynomial of order n and

M reference spectra can be also chosen; then A is a n + M + 1 by N

matrix and is required to have a rank of n+M + 1 for the least-squares

problem to have a unique solution.

This is very fast because the derivative of f is linearly dependent

on the αk and hence can be used to fit large series of spectra. It is for

example particularly suitable for the analysis of bi-analyte experiments

[25, 23] where each SERS spectrum taken from a mixture of two or more

analytes is compared to the reference spectra of the analytes.

It is important to note here that this particular kind of linear fit does

not work if the broadening of the sample spectra (FWHM) and/or the

central frequency of the peaks are different from the reference spectrum.

Hence, approximating the sample spectra to a linear combination of ref-

erence spectra is not valid in case of significant frequency shifts and/or

change in broadening; this is the case when the linewidth of the mode

is particularly small compared to the frequency shifts induced by ex-

ternal perturbations as we see later in Chapter 4 or when the expected

frequency position of the peak can span a wide range of wavenumbers

as is the case with the isotopically enriched sample of C60 in Chapter 5.

The aim of the data analysis of the C60 experiments was mainly to dis-

criminate single molecule events among tens of thousands of spectra of

C60 on silver, most of them showing no signal or massive and compli-

cated backgrounds (due probably to the presence of amorphous carbon

caused by burning the surface when the local field intensity was too high);

and the spectra showing the presence of the 1470 cm−1 peak had usually

also complicated non-linear backgrounds. Non-linear least-squares fits to

Voigt profiles were unsuccessful in filtering SM-SERS or simply SERS

events as the algorithm would often try to fit noise oscillations or parts

of the background as peaks. Because of the complicated features of the

spectra of this experiment, we adapted the linear fitting routine to the

situation as shown below.
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3.3 Improvement of the linear fits

In Chapter 5, we focus on the pentagonal pinch mode Ag(2) of C60 and

use its sensitivity to isotopic substitution as a way to discriminate Single-

Molecule C60 events. Silver nanoparticle aggregates and C60 were de-

posited on a planar substrate and SERS spectral maps were recorded.

We used linear fits of the series of SERS spectra of C60 isotopologues in

the Ag(2) region. We were expecting the central frequency of the Ag(2)

mode to span a range of ∼ 20 cm−1 (see Sec. 5.5.2) so we adapted the

linear least-squares fitting routine as follows:

* Instead of using the average spectrum of the maps as the reference,

we used a Lorentzian function centered in x0ref. The background

was also set to be quadratic so ~α was of length 4.

* Then, for each spectrum, the central frequency of the Raman peak

is allowed to be different from the one of the reference by testing the

goodness of the fit for 40 different positions of the central frequency

of the reference corresponding to 20 shifts left of 1 pixel and 20

shifts right of 1 pixel. After the 40 iterations, the best fit (i.e. the

position giving the smallest sum of squared residuals) is stored.

* Finally, different FWHM for the reference are tested. This is done

by repeating the previous step for Γ = 1..10 and storing the final

parameters vector ~α for which the overall smallest sum of least-

squared residues is obtained.

Hence, for each of the 15000 spectra of the series of experimental data,

400 linear least-squared fits were performed so a total of 6 million fits;

yet it was a lot faster than non-linear least-squares Voigt fits and the

discrimination of SM-events was relatively straightforward then; they

were the events for which α1 was not negligible and Γ was around 4 to

5 cm−1. Bigger Γ correspond to multi-C60 molecule events.
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Chapter 4

Measurement of the

homogeneous broadening of

spontaneous resonant Raman

lines via SM-SERS

4.1 Introduction

A basic concept in spectroscopy (Raman in particular) is that of homo-

geneous / inhomogeneous broadening of features [58]. While the former

has its origin in intramolecular anharmonic interactions, and is a funda-

mental property of a vibration of an isolated molecule, the latter is rep-

resentative of a population of molecules and their inevitable variabilities

at different places in the sample. The inhomogeneous broadening can be

a substantial contribution to the actual measured peak width, especially

if its intrinsic linewidth is comparable to the shifts in frequency induced

by external interaction between the molecules and their environment or

isotopic variations as we will see in Chapter 5. A conventional Raman

experiment involves the monitoring of (at least) 104 to 106 molecules in

the scattering volume, thus the intrinsic homogeneous broadening of the

peaks is usually convoluted with the inhomogeneous broadening. If one

wants to access the homogeneous broadening of a peak, one has to mea-
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sure individual molecules; this is the motivation of the study presented in

this chapter. By using SM-SERS, one can disentangle the contributions

to the inhomogeneous broadening, and access the intrinsic homogeneous

broadening of a molecule on a surface.

4.2 Homogeneous and inhomogeneous broad-

ening in Raman spectroscopy

The notions of lifetime of an excited quantum state or the broadening

associated with a transition between two quantum states, are central in

spectroscopy, whether electronic (UV-vis absorption), vibrational (Ra-

man) or spin (NMR) transitions are studied. But the terminology which

is used tends to vary quite a lot depending on the community which

can lead to a lot of confusion. The finite lifetime (energy relaxation)

or dephasing of the excited states is the reason why energy levels are

intrinsically broadened [58]; this is what is usually referred to as homo-

geneous broadening. There are further mechanisms of broadening, on

top of the homogeneous one, which are referred to as inhomogeneous as

they depend on a particular emitter of a species and its environment

or are limitations of the detection technique such as the spectral resolu-

tion limit. The following section gives a brief overview of the different

terms and mechanisms they encompass in order to set the context of the

problematic of this chapter.

4.2.1 Homogeneous broadening of a molecular vi-

bration

Homogeneous broadening: definition

Homogeneous broadening is usually referred to as the intrinsic effects

which increase the linewidth of a vibrational transition of a single molecule

in a particular environment at a given temperature T [58]. For exam-

ple, a single molecule will have transitions exhibiting a natural linewidth

due to the finite lifetime and coherence time of the excited levels. We
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will in this thesis refer to the linewidth of a vibration as being homoge-

neous when the spectrum comes from a single molecule and is hence not

a superposition of peaks with slightly different positions (inhomogeneous

broadening).

The broadening of the vibrational energy levels has its origin in the

anharmonicity of the vibrations and is not predicted by the harmonic

approximation [59]. The harmonic approximation consists in expanding

the potential energy of the nuclei of a molecule in powers of the atomic

displacements and terminating the expansion at the term quadratic in

displacement (see Sec. 5.4.2). The most significant result from this ap-

proximation is the possibility of decoupling the molecular vibrations by a

transformation to normal coordinates, leading to the concept of phonons

or normal modes as non-interacting quantized vibrational excitations.

When we take into account higher terms in the expansion of the po-

tential energy (order 3 and higher terms), the decoupling is no longer

perfect, and phonon-phonon interactions terms appear [59]. As a result

of interactions with other intramolecular modes or intermolecular modes

or modes available in the environment, a vibrational mode will eventu-

ally disappear after a finite time and the frequencies of the normal modes

one get in the harmonic approximation are shifted when anharmonic in-

teractions are introduced. Anharmonic interactions play a fundamental

role in the relaxation pathways of vibrations towards equilibrium [60].

Intramolecular anharmonic interactions tend to dominate the relaxation

pathways of vibrations for many molecules [61], but interactions with the

substrate or the solvent can provide additional pathways that dominate

the relaxation in other cases. The finite lifetime of the vibrations shows

itself in a spectrum by the broadening of the lines.

One can distinguish two types of interactions: interactions resulting in

a loss of population of the vibration or energy relaxation and interactions

resulting in pure dephasing of the vibration, which cause fluctuations

of the transition frequency without level decay (without loss in energy).

The linewidth Γ (in cm−1) of an homogeneously broadened transition has
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then two contributions:

Γ[cm−1] = Γ1 + Γ′2 =
1

2πc

(
1

T1

+
2

T ′2

)
(4.1)

where 2T1 is the population decay time associated with energy relaxation

(population amplitude decay) of the excited level and T ′2 is the dephasing

time, associated with the loss of coherence of the vibration. The factor

2 comes from the density matrix formalism where the density matrix ρ̂

is a tool to represent the state of a quantum system which can be in a

statistical mixture of states (a molecule coupled to a bath for example).

The off-diagonal terms are called coherences and are associated with pure

dephasing which is a property of the probability amplitude. The diagonal

terms are called the populations and are connected to the square of the

probability amplitude.

Much work has been done in the 1970s and 1980s towards an improved

understanding of what determines the observed vibrational linewidth of

molecules, whether they are in liquid phase, crystalline phase, at metal-

lic surfaces or non-metal surfaces. And for each scenario, what is the

relative importance of population and pure phase relaxation ?[60, 61, 62,

63, 64, 65]. And in the case of T1 processes dominating the linewidth,

what mechanisms lead to the relaxation of level populations: damping

via the formation of electron-hole pairs, creation of metal phonons or ei-

ther intramolecular or intermolecular vibrational energy transfer (VEE,

[66])? Time-resolved optical spectroscopic techniques [67, 68] have the

advantage of being able to resolve separately population relaxation and

pure dephasing by using a variety of time delayed pulse sequences. Con-

versely, with frequency-resolved spectroscopies, such as CW Raman spec-

troscopy, these quantities are only accessible by lineshape analysis and

their disentanglement is not straightforward.

Simple illustration of homogeneous broadening mechanisms

Let us describe an excited vibration of a molecule q(t) by the classical

model of an harmonic oscillator with angular frequency ω0. If this har-

monic vibration has an infinite lifetime and undergoes no dephasing, then
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the intensity distribution in the frequency domain is a Dirac peak at ω0

and hence exhibits no broadening.

Let us now examine the case of a damped harmonic oscillator; the en-

ergy loss results in a damping of the oscillation described by the damping

constant Γ:

q(t) = e−
Γ
2
t cos(ω0t) (4.2)

This vibration with central frequency ω0 can be written as a super-

position of harmonic oscillations with slightly different frequencies ω and

amplitudes A(ω):

q(t) = <
(

1

2
√

2π

∫ ∞
0

A(ω)eiωtdω

)
(4.3)

A(ω) is the frequency distribution and is then related to q(t) by Fourier

transform. The intensity profile I(ω) is proportional to |A(ω)|2. Within

the classical model of the damped harmonic oscillator,

A(ω) =
1

2
√

2π

∫ +∞

−∞
q(t)e−iωtdt

=
1

2
√

2π

∫ +∞

0

q0e
−(Γ/2)t cos(ω0t)e

−iωtdt

=
q0

2
√

2π

(
1

i(ω − ω0) + Γ/2
+

1

i(ω + ω0) + Γ/2

) (4.4)

It follows:

I(ω) ∝ A∗(ω)A(ω) ≈ C

(ω − ω0)2 + (Γ/2)2
(4.5)

when ω is close to ω0. This intensity profile is a Lorentzian function (see

Fig. 4.1 b)). After normalization, the real intensity profile is:

I(ω − ω0) = I0
(Γ/2)2

(ω − ω0)2 + (Γ/2)2
(4.6)
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where I0 = I(ω = ω0). The Full Width at Half Maximum (FWHM) is Γ.

When Γ is given in cm−1, it is related to the lifetime T1 of the vibration

by:

Γ =
1

2πc
· 1

T1

(4.7)

Figure 4.1 illustrates the broadening of the spectral lines which is

induced by the exponential decay of the damped harmonic oscillator q(t).

Let us now consider the case where an harmonic oscillation experi-

ences pure dephasing. The decay of correlations in the oscillator coordi-

nate q(t) results from random phase factors acquired in elastic collisions

with the surroundings. We can illustrate this mechanism with the os-

cillator q(t) propagating in an undamped manner during a time 2τc and

then undergoing a phase shift δ. The coordinate outside the window 2τc

is uncorrelated to the coordinate within due to the acquisition of the

random phase factor. Let us write:

q(t) =

< (q0e
iω0t) for |t| < τc

<
(
q0e

iω0t+δ
)

for |t| ≥ τc
(4.8)

One can show [65] that in this case, the intensity profile, which is obtained

by taking the Fourier transform of the correlation function of q(t), has

the lineshape in the frequency domain:

I(ω) =
2 sin2[(ω − ω0)τc]

τc(ω − ω0)2
(4.9)

The appearance of the factor sin2[(ω − ω0)τc] is a consequence of the

correlation function having an envelope with sharp “corners” (triangular

envelope, consequence itself of the collision model and sudden jump in

phase). If the envelope of the correlation function was exponential, a

pure Lorentzian lineshape would be retrieved for I(ω) which corresponds

to what is observed experimentally.

In Fig. 4.2 a), we illustrate numerically the broadening induced by
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(a) Damped oscillator trajectory: q(t) = e−(Γ/2)t sin(ω0t)

(b) I(ω) obtained by Fast Fourier Transform.

Figure 4.1: Numerical illustration of the broadening of the spectral lines
induced by damping. The lineshape in b) is a Lorentzian function whose
FWHM is Γ.
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(a) Oscillator trajectory: q(t) = sin(t+ rand(1)× 2π)

(b) I(ω) obtained by fft.

Figure 4.2: Numerical illustration of the broadened spectral lines induced
by loss of correlation. We can see that I(ω) ≡ sinc2(ω−ω0). The FWHM
of b) is 1

2τc
.
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pure dephasing by q(t) being a sine curve over [−1000, 1000] undergoing

64 consecutive shifts in phase of a random fraction of 2π . These jumps in

phase occur at regular intervals 2τc. The corresponding spectral distribu-

tion in Fig. 4.2 b) was obtained by generating 100 different functions q(t),

taking their Fourier transform with the Fast Fourier Transform (FFT) in

Matlab and taking the average. One can readily see that the lineshape

which is obtained this way is that of a squared cardinal sine function

(sinc), as expected.

4.2.2 Instrumental broadening
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Figure 4.3: Example of instrumental broadening: broadening induced by
the use of a lower resolution grating. Raman spectrum of silicon [100]
around the 520 cm−1 mode taken at 458 nm excitation, 3 s acquisition,
with the 600 l/mm grating (black) and the 1800 l/mm grating (red).

What we detect in a conventional spectroscopy experiment is usually

not the pure Lorentzian line profile with natural linewidth Γ as the latter

is concealed by other broadening effects such as instrumental broadening

and inhomogeneous broadening.
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The response function of the spectrometer can introduce instrumental

broadening; it comes from the finite resolution of the diffraction gratings

and the CCD. In our Raman experiment, the spectral resolution is de-

termined by: the incident laser wavelength (the higher the wavelength,

the better the resolution), the number of grooves (lines) per millimeter,

and the size of the image of the sample on the entrance slit (the resolu-

tion deteriorates as the size of the image on the entrance slit increases).

If the image is small, ideally a “point-like” source, the position of the

peak will still depend on the location of the image with respect to the

optical axis. By reducing the size of the entrance slit, one can remove

the contributions to the signal coming from point-sources with too much

departure from the axis and hence increase the resolution; this procedure

ensures that any variation in frequency of the peak will be due to inho-

mogeneous broadening (see below) and not to image location. Figure 4.3

shows the influence of the choice of gratings on the resolution and thus

the measured width of the Raman peak of silicon at 520 cm−1.

Figure 4.4: Example of inhomogeneous broadening of a peak due to
the simultaneous measurement of three molecules having their central
frequency slightly different from each other. The data are from the
590 cm−1 mode of Nile blue taken at 80 K at 633 nm with the high reso-
lution 2400 l/mm grating.
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4.2.3 Mechanisms of inhomogeneous broadening

In Section 4.2.1, we have defined the homogeneous broadening as a broad-

ening of a single oscillator or a single molecule. Conversely, we will de-

fine in this work the inhomogeneous broadening of a Raman peak as the

broadening which comes from the fact that the signal arises from a pop-

ulation of molecules which can have each slightly different interactions

with the surrounding medium (which lead to slightly different frequency

positions for a given peak and possibly slightly different widths). Ad-

ditional contributions to the inhomogeneous broadening can also come

from the presence of isotopologues in a given population as we will see is

the case for the Ag(2) mode of C60 in Chapter 5. The concept of inhomo-

geneous broadening underlies entire laser spectroscopy techniques [58]

(like ‘hole-burning’ for example). In spectroscopy in liquids, solvation

effects (intermolecular interactions) are formally considered to be part

of the inhomogeneous broadening processes. But in the case of SERS,

the environment is the SERS substrate itself and additional variations

in the conditions of the molecules may come from interactions with it.

Figure 4.4 shows the effects of frequency variations of the inhomogeneous

broadening of a measured peak. In Refs. [22, 51], a systematic study of

the origin of the inhomogeneous broadening in SM-SERS spectra (and

the origin of frequency variations) was carried out.

Hence, at a formal level, we can say that the detection of a peak in a

spectrometer is a triple convolution problem; the homogeneous broaden-

ing is convoluted with the inhomogeneous contributions to the linewidth

and this is further convoluted with the response function of the spec-

trometer.

4.2.4 Anharmonic coupling of phonons and Vibra-

tional Energy Exchange Model (VEE)

The temperature (T ) dependence of the homogeneous width of a Raman

mode provides information on the anharmonic coupling of that particular

mode with the rest of the vibrations and/or the substrate [69].

The lowest order anharmonic interactions (cubic term of the Hamil-
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Figure 4.5: Feynmann diagrams for the three-phonon interaction pro-
cesses. In the first row, the phonon ~q is annihilated and in the second
row, the phonon ~q is created. These processes are described by the cubic
term of the Hamiltonian, which was the first left out in the harmonic
approximation.

tonian) for a phonon ~q of frequency ωq are shown in Fig 4.5: they cor-

respond to three-phonon interactions. The two processes corresponding

to the simultaneous creation or annihilation of three phonons violate en-

ergy conservation but they are possible virtual intermediate subprocesses

of multi-step interactions [59]. In three-phonon interactions, the num-

ber of phonons changes. The decay route which corresponds to the first

row of Fig 4.5 results in the decay of the original phonon ~q and hence is

the main (however not sole) contribution to T1 processes (population de-

cay). The created phonons ~q1 and ~q2 can be intramolecular modes of the

molecule or available vibrations in the environment. The rate at which

the phonon ~q disappears as a result of interactions with ~q1 and ~q2 is the

sum of the probabilities of processes in the first row minus the sum of

the probabilities of the processes of the second row. These probabilities

directly depend on the occupation number n1 and n2 in modes ~q1 and

~q2. Phonons are bosons hence n1 and n2 can be expressed at thermal

equilibrium by the Bose-Einstein distribution:

〈ni〉 =
1

exp
(

~ωi

kBT

)
− 1

(4.10)

where 〈ni〉 is the average number of phonons of angular frequency ωi
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or phonon occupancy of the mode ωi. At low temperatures, Eq. 4.10

becomes:

〈ni〉 ∼ exp

(
− ~ωi
kBT

)
(4.11)

Hence one can see that the rate at which the phonon ~q disappears, thus

its lifetime (T1) will be dependent on the temperature through its anhar-

monic interactions with other phonons. The temperature dependence of

the peak width of the phonon due to population relaxation follows an

Arrhenius type law:

Γ = Γ0 + ∆Γ exp

(
−~Ω

kBT

)
(4.12)

where Ω is the frequency of the boson/vibration to which the system

is coupled. This has been shown to be true even when one takes into

account higher order multi-phonon decay processes [70, 71], which are

weaker but can contribute nevertheless to the broadening. The vibra-

tional energy of the molecule indeed includes contributions from more-

than-three phonon processes like four-phonon processes and higher. Multi-

phonon relaxation is not a probable decay route for the polyatomic

molecules we will consider in this Chapter but it can become a dominant

mechanism for population relaxation when a single isolated vibration has

a much higher energy than the remaining low frequency vibrations in the

molecule or in the continuum provided by the environment (solvent, sub-

strate), also called bath or reservoir [72].

There are also three-phonon processes for which the phonon distribu-

tion is the same in the initial and final states. They consist of two-step

processes, in each case the first process, leading to the virtual intermedi-

ate step, is identical with one of the eight processes of Fig. 4.5. Fig. 4.6

shows two examples of these 2-step processes involving the three phonons

~q, ~q1 and ~q2. Two examples of these processes are shown in Fig. 4.6. Be-

cause the molecule returns to its original state, these processes do not

contribute to T1 (loss of population) but instead, contribute to the broad-

ening of the spectral line via T ′2 (pure dephasing) [73].
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Figure 4.6: Feynmann diagrams for two examples of two-step phonon-
phonon interactions. These processes contribute to the spectral broad-
ening mainly via pure dephasing.

The broadening of a mode due to pure dephasing through anhar-

monic coupling between phonons is also temperature dependent and also

takes on an Arrhenius-like form. Some approaches to this problem are

presented in [72, 74, 75]. The following section presents a model for de-

phasing of a high frequency mode caused by intramolecular anharmonic

coupling to a low-frequency vibration which is an extension of the ex-

change model of Anderson and Kubo [76, 77].

Vibrational energy exchange model for the temperature depen-

dence of the spectral homogeneous broadening of a vibration

When exploring the dephasing processes for vibrational relaxation, sev-

eral models [78, 79] have been advanced to relate the experiments to the

specific interactions responsible for dephasing. These models treat the

system as a harmonic oscillator weakly coupled to a reservoir of oscillators

in thermal equilibrium. In the case of polyatomic molecules however this

is complicated by the fact that some intramolecular modes may interact

more strongly with the vibration of interest than does the bath. In their

article [80], Harris et al. show that the Raman vibrational dephasing

times can reflect random frequency modulation of high-frequency modes

via exchange with low-frequency modes and that the temperature depen-

dence of the spontaneous Raman spectrum (lineshape and Raman shift)

can reveal quantitatively lifetimes and scattering rates between normal

modes.

The idea is as follows (se Fig. 4.7):

1. The degrees of freedom of the system {molecule + environment}

62



Figure 4.7: Energy levels for vibrational exchange between the states V
and V ′. The vibrational mode A with frequency ω0 and occupancy nA
interacts with a low frequency mode B (occupancy nB) such that the
excitation of the low-frequency mode shifts the frequency of A by δω.
W+ is the scattering rate from V and τ is the true lifetime in V ′.
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are partitioned into three groups: the vibrational mode A (quan-

tum number nA, frequency ω0) whose dephasing is under study, the

exchanging modes and the reservoir. For simplification we assume

that, for a given temperature range, one exchange mode B (quan-

tum number nB) only is responsible for scattering of phonons to

higher energy states. We separate relaxation to other states (T1

channels) from scattering between the initial state V and the other

vibrational state V ′. The energy of the state V ′ is at an energy Ei

above the initial state (See Fig. 4.7).

2. When the anharmonic perturbations which couple these 2 modes

are taken into account, the levels shift such that a number of vi-

brational frequencies are possible for the high frequency mode A,

depending on the occupation of the low frequency mode B. Exci-

tation and relaxation (population relaxation) of the low frequency

mode can now cause dephasing of the high frequency mode through

modulation of its vibrational frequency.

3. When the rates from vibrational energy exchange are incorporated,

we get the expressions for the effective vibrational frequency ωeff

and overall relaxation time Teff for the mode A under study [80]:

ωeff = ω0 +
δωW+τ

1 + (δω)2 τ 2
(4.13)

(Teff)−1 = T−1
1 + T ′−1

2 +W+ (δω)2 τ 2

1 + (δω)2 τ 2
(4.14)

where W+ is the rate of scattering from state V to V ′ and τ is the

true lifetime (population relaxation time) in V ′ which is then not

obscured by contributions from dephasing.

4. As τ can be considered to be independent of temperature, the prin-

ciple of detailed balance states that W+ will be expected to depend

on the temperature T as W+ = τ−1exp(−Ei/kBT ). This leads to
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the observed temperature dependence:

ωeff = ω0 +
δωτ

1 + (δωτ)2

1

2πcτ
exp(−Ei/kBT ) (4.15)

(Teff)−1 =
(δωτ)2

1 + (δωτ)2

1

πcτ
exp(−Ei/kBT ) (4.16)

where ωeff and (Teff)−1 are expressed in cm−1.

The temperature dependent frequency shift together with a similar

temperature dependent homogeneous broadening is the signature of vi-

brational exchange between two or more normal modes, and when both

of them are analyzed, one obtains W+, δω and τ which are not quantities

easily accessible otherwise.

4.3 Temperature dependence of the homo-

geneous broadening of the 590 cm−1 mode

of Nile blue

4.3.1 Immediate context of the study

The work published by our group in 2010 in [51] has shown that it is

possible to resolve single molecule contributions within the inhomoge-

neous broadening of peaks: the proof of concept was made using the

590 cm−1 mode of Nile blue and the 2226 cm−1 mode of rhodamine 800

at low temperature (80 K). The origin of inhomogeneous broadening in

SERS spectra was systematically studied, so was the origin of frequency

variations between different events [22]. Moreover, an important applica-

tion of SM-SERS to disentangle the inhomogeneous contributions in the

Raman spectrum has been demonstrated in [16] where it is shown that

single molecule surface enhanced Raman excitation profiles are narrow

in comparison to the ensemble-averaged excitation profiles.

Having the tools to measure confidently individual molecules with

SERS with a high spectral resolution, it is natural to investigate whether

one could observe a significant temperature dependence of the linewidth
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of the single molecule events and, in that case, what could be learned

about the vibrational relaxation pathways of an excited vibration of a

molecule adsorbed onto a metallic surface in SERS conditions. The study

of the lineshape and linewidth of vibrations at the single molecule level

in the frequency domain by direct CW Raman measurement is now ac-

cessible, free from inhomogeneous contributions.

4.3.2 Experiments

SM-SERS experiments were carried out for the dye Nile blue (NB) excited

resonantly at 633 nm, focusing, in particular, on the 590 cm−1 Raman

mode. The conditions under which SM-SERS can be observed in this

system have been previously studied in detail [51]. Briefly, a mixture of

either citrate- reduced Lee & Meisel or borohydrate reduced Ag colloids

[48], KCl and Nile blue (final concentration 5 nM) was drop-cast on poly-

L-lysine coated Si wafers then siphoned off, as described in Chapter 2.

Raman spectra were acquired using the ×100 LWD objective (NA=

0.6) with excitation at 633 nm and an incident power of 2.5 mW on the

sample. In order to minimize the instrumental broadening, we used the

high resolution 2400 l/mm grating. At this wavelength, this grating al-

lows us to achieve a resolution of ∼ 0.17 cm−1 per pixel thus enabling

the distinction of small frequency variations as well as individual contri-

butions from more than one molecule to the linewidth.

The temperature was varied between 80 K to room temperature with

the Linkam-Scientific THMS600 stage for optical microscopy, which keeps

the sample under a N2 atmosphere. SM-SERS spectra were obtained

from several spatial maps of 30× 30 scans with varying steps (1 to 5µm)

and 1 s integration time per point. 3600 spectra were then recorded for

each temperature: 80 K, 98 K, 123 K, 198 K and 298 K. Each spectrum

was fitted with a pseudo-Voigt lineshape (see Chapter 3). A large number

of low intensity events (below noise level) are then discarded, as they

correspond to locations with no signal. This large amount of “waste”

is unavoidable to ensure the single molecule nature of the remaining

observable spectra.
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4.3.3 Results and discussion

Figure 4.8 (a-e) shows a representative collection of some of the narrowest

SERS spectra of the data at different temperatures. A quick qualitative

analysis showed first that, in the data, the spectra showing signal in

the 590 cm−1 region were of two types: very narrow events which have

varying frequency positions and broaden with increasing temperature

and broader events exhibiting no significant frequency variations nor sig-

nificant increase in the broadening with higher temperature: we assign

these narrow events to SM-SERS events and the wider events to many-

molecules SERS events (see below). The frequency variations can be

easily appreciated in Fig. 4.8 together with the change in the intrinsic

broadening of the peaks. Average spectra are also shown in Fig. 4.8 (f)

for 80 K and 298 K. Clearly, the frequency variations is the dominant

contribution to the inhomogeneous broadening (i.e. that of the average).

It is worth noticing at this point that, at 80 K, the single NB events for

the 590 cm−1 mode are quite narrow (∼ 0.85 cm−1) compared to the av-

erage signal taken at the same temperature (∼ 3.5 cm−1), this suggests

that more than one molecule can be resolved within the inhomogeneous

broadening of the peak.

We carried out a more detailed statistical analysis based on non-linear

fits to pseudo-Voigt profiles (see Chapter 3) to discriminate “narrow”

events from average, wide events and hence sort SM-events and many

molecule events, then further reveal the temperature dependence of both

homogeneous broadening and frequency shifts, as was suspected by the

qualitative analysis of the data. To this end, we used the full-widths at

half-maximum (FWHM) Γ obtained from the fits to discriminate SM-

events.

Figure 4.9 summarizes the results of the pseudo-Voigt fits. Lowest in-

tensity events (below noise level) have been removed from the statistics,

and for each temperature, only the most intense and narrowest events

have been included in the graph. One can appreciate that the intensity

of these events varies greatly; which reflects the distribution of enhance-

ment factors over several orders of magnitude that one typically obtains
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Figure 4.8: (a-e) Representative SM-SERS signals at different temper-
atures (for the 590 cm−1 mode of NB, 633 nm laser excitation, 2.5 mW
and 1 s integration time; all spectra are normalized in intensity for better
visualization). The change in (homogeneous) broadening of the peaks
with T is readily seen by eye. The frequency variations from one SM-
event to another are, however, sufficiently large to wash out most of the
information on the homogeneous broadening in the average spectra (for
an ensemble of molecules), as shown in (f) for the two extreme tempera-
tures. The small red-shift in peak frequency with increasing temperature
is visible in both the average spectra and the average position of SM-
spectra.
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Figure 4.9: FWHM (Γ) of different SERS events for the 590 cm−1 mode
of NB for different temperatures. The vertical axis is logarithmic and,
therefore, the different events represent signals with widely varying in-
tensities. At all temperatures a clear minimum threshold broadening
is observed (boxes). Events at this threshold broadening have a pure
Lorentzian lineshape, and correspond to the minimum possible width
that a SM can have at a specific temperature. The variation of this
threshold ΓSM(T ) provides a measurement of the dependence of the ho-
mogeneous broadening as a function of temperature (schematically shown
by a dashed line).
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when using dried colloids as SERS substrate. A clear threshold for the

narrowest events was revealed by the analysis (there is a minimum width

that an event can have) and this minimum width increases steadily as a

function of T . Moreover, these narrowest spectra (examples of which are

shown in Fig. 4.8(a-e)) are all pure Lorentzian, within the uncertainties

of the fits.

This minimum broadening, ΓSM(T ) is therefore assigned to the single

molecule (homogeneous) broadening of the 590 cm−1 Raman mode of

Nile blue on the Ag surface at a given temperature. By contrast, spectra

whose fit resulted in a much larger FWHM than the threshold for a given

temperature, often exhibit (after direct inspection) a double or multi-

peak lineshape. These can therefore be attributed to multi-molecule

events [51]. The remaining spectra, exhibiting a single peak of larger

FWHM than the threshold are also probably two-molecule events with

closely spaced Raman frequencies, but we cannot exclude the possibility

that some of these are SM-spectra with a slightly larger homogeneous

broadening than the others.

Having identified SM-events, it is possible to study their frequency

spread at a fixed T by plotting a histogram of their frequency positions,

as shown in Fig. 4.10 (for the two extreme temperatures 80 K and 298 K).

From these histograms, we can conclude that the magnitude of the fre-

quency shifts from one molecule to another has little (if any) temperature

dependence and this narrows down their possible origin as surface interac-

tions. This is in clear contrast with the decrease of ΓSM from ∼ 2.7 cm−1

to as little as ∼ 0.85 cm−1 at 80 K as seen in Fig. 4.9). The small variation

of the average broadening is well accounted for by a dominant constant

contribution from frequency variations, convoluted with a smaller tem-

perature dependent homogeneous linewidth. This reinforces the idea that

only SM-measurements can directly access the homogeneously broadened

spectra.

Figure 4.11 summarizes the measured temperature dependence of the

homogeneous ΓSM and inhomogeneous Γave broadening, together with the

average Raman frequency ∆ν̄. We first note that the small linewidths

observed here place a lower limit on the dephasing T ′2 and population
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Figure 4.10: Histograms of the Raman peak positions for SM-SERS
events at 80 and 298 K. Superimposed is also the actual average spectrum
for these temperatures. The frequency variations of SM-events domi-
nates the linewidth of the average, which masks the true homogeneous
broadening and its temperature dependence. Rare events at 595 cm−1

are tentatively attributed to natural isotopic substitutions or contami-
nation by a similar (but not identical to NB) molecular species (e.g. a
by-product of the dye synthesis reaction).

relaxation time T1 of the 590 cm−1 vibration (see Section 4.2.1), from the

fundamental relation:

Γ =
1

2πc

(
1

T1

+
2

T ′2

)
(4.17)

where Γ is in cm−1 .

For example, at 298 K ΓSM ∼ 2.7 cm−1 implies T ′2 ≥ 4 ps and T1 ≥ 2 ps

while at 80 K ΓSM ∼ 0.9 cm−1 implies T ′2 ≥ 12 ps and T1 ≥ 6 ps.

The observed simultaneous temperature dependence of ΓSM and ∆ν̄

is suggestive of the vibrational energy exchange (VEE) model (see Sec-

tion 4.2.4). We constructed Arrhenius plots for both the linewidth and

frequency position and then extracted the activation energy EB of the

dominant exchange mode which is likely to be responsible for the tem-
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Figure 4.11: (a) Arrhenius plots for the temperature dependence of the
homogeneous broadening ΓSM(T ) (red circles) as opposed to the linewidth
of the average signal Γave(T ) (blue circles). The temperature dependence
of the average signal is weaker because it is dominated by the inhomo-
geneous broadening. (b) The temperature dependence of the average
Raman shift ∆ν̄(T ) (green circles) and that of the homogeneous broad-
ening ΓSM(T ) (red circles) can be fitted using the vibrational energy
exchange model (dashed lines). From these, the energy of the exchange
mode EB is found to be ∼ 158 cm−1, indicating a dominant anharmonic
coupling to the substrate (Ag) phonons (the Debye frequency of Ag is
∼ 160 cm−1).
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perature dependence of ΓSM and ∆ν̄ for the 590 cm−1. Namely:

ΓSM = Γ0 +
(δωτ)2

1 + (δωτ)2

1

πcτ
exp(−EB/(kT )) (4.18)

∆ν̄ = ∆ν̄0 +
δωτ

1 + (δωτ)2

1

2πcτ
exp(−EB/(kT )) (4.19)

where δω represents the coupling strength between the Raman and the

exchange modes, τ is the relaxation time of the exchange mode, and EB

its energy. As shown in Fig. 4.11, a satisfactory fit to both quantities

is obtained using the parameters: Γ0 = 0.65 cm−1, ∆ν̄0 = 592.1 cm−1,

τ = 0.77 ps, δωτ = 0.67, and EB = 158 cm−1. Uncertainties in these

parameters are mainly associated with the determination of the limit of

ΓSM at low temperatures from Fig. 4.9. Nevertheless, it is interesting to

note that EB closely matches the Debye frequency of silver. This suggests

a natural interpretation: the dominant contribution to the temperature

dependence of the homogeneous broadening is through anharmonic cou-

pling to the phonons of the Ag substrate; by vibrational energy exchange

between the 590 cm−1 mode of Nile blue and the phonons of Ag, de-

phasing of the 590 cm−1 mode occurs. This is indeed more likely than

population relaxation through multi-phonon excitation in the silver sub-

strate (because the Debye frequency is not an obvious multiple of the

Raman one and thus a direct population decay is less likely to happen) .

The dephasing time associated with this process can be estimated from

ΓSM − Γ0 to be ∼ 5.2 ps at room temperature.

4.3.4 Application to the temperature dependence

of the homogeneous broadening of the 2230 cm−1

mode of rhodamine 800

The previous section has proven that SM-SERS allows experimental in-

vestigation of the anharmonic coupling of a mode of a molecule with

other modes or the underlying substrate and the relaxation channels a

vibration is likely to take.

From here, we carry out a similar study on another resonant dye,
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Figure 4.12: Average SERS spectrum of rhodamine 800 at 20 nM, exci-
tation wavelength 633 nm , objective ×100, integration time 0.1 s.

rhodamine 800 (R800), and see if we could unravel subtle interactions

between this molecule and the Ag substrate or intramolecular interac-

tions between modes. Usually, for medium-size to large molecules, the

eigenvectors that produce Raman active modes will be extended over

many atoms [1], but there are some exceptions as for the ∼2230 cm−1

mode of R800 (for a R800 with 12C≡14N). The carbon-nitrogen triple

bond in the structure of R800 is a strong bond that produces a relatively

isolated and localized stretch vibration which appears in the high en-

ergy part of the Raman spectrum. Moreover, the peak associated to this

mode is narrow enough for us to expect to resolve its true homogeneous

broadening within the broadening of the average (multi-molecule) peak.

Rhodamine 800 was thus thought to be a good candidate to carry out

a study similar to the previous one and it would be interesting to see

whether the temperature dependence of the homogeneous broadening of

such an isolated and energetic mode would produce a different outcome.

The aim was also to compare the temperature dependence of the

broadening of the 2230 cm−1 mode to the temperature dependence of the
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linewidth of a lower energy mode of the molecule (the 1650 cm−1 peak)

which is also relatively sharp and intense and see whether they were

exhibiting a different behavior in their relaxation processes. Figure 4.12

shows an average SERS spectrum of rhodamine 800 at 633 nm.

The sample preparation was the same as described in Section 2.3. We

used either poly-L-lysine coated Si wafers or quartz slides onto which a

solution of Lee & Meisel silver colloids + R800 5 nM was drop cast then

siphoned off leaving a sparse collection of Ag clusters on the surface.

All the maps were recorded on the Labram spectrometer with 633 nm

excitation wavelength, ×100 LWD objective and 1800 l/mm gratings.

We used the latter instead of the 2400 l/mm used for the Nile Blue study

because the latter one was no longer available. It was not a significant loss

of resolution (0.25 cm−1 per pixel at 633 nm for the 1800 l/mm gratings

instead of 0.17 cm−1 for the 2400 l/mm grating).

For each mode, 1650 cm−1 and 2230 cm−1, maps with 5µm steps and

1 s acquisition time were recorded at 80 K, 100 K, 150 K, 200 K, 225 K,

250 K and 300 K. As a first step, all the spectra were fitted to a pseudo-

Voigt lineshape and the spectra with a small signal-to-noise ratio were

discarded from the statistics. We used then the FWHM Γ obtained from

the fits to discriminate SM-events.

As previously appreciated for Nile blue, for both of the modes of R800,

there was a clear threshold in the minimum width the narrowest events

could exhibit and this minimum Γ was increasing for increasing temper-

atures. Fig. 4.13 shows the temperature dependence of the homogeneous

broadening ΓSM for both modes of R800.

However, the tentative representation of the data by Arrhenius plots

was not conclusive. While a fit to the VEE model taking the exchange

mode to be 158 cm−1 was satisfactory for the 1650 cm−1 mode, the fits

were not trustworthy for the 2230 cm−1 mode data. Several “good enough”

fits could be obtained for the 2230 cm−1 mode with very different param-

eters and it would be quite impossible to choose one route or the other

with confidence.

Hence no satisfactory conclusion could be drawn concerning the com-

parative behavior of these two particular modes of rhodamine 800. Ta-
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Figure 4.13: Temperature dependence of the homogeneous ΓSM for the
1650 cm−1 mode ( in red) and the 2230 cm−1 mode (in black) of R800
together with exponential fits (dash dotted lines).

ble 4.1 shows the results of the fit when the room temperature data for

the 2230 cm−1 mode are left out and the activation energy is constrained

to be 158 cm−1.

4.4 Conclusion

This chapter demonstrates that SM-SERS can be a extraordinary tool

to access properties of a molecule which would otherwise be hidden due

to the ensemble averaging inherent to less sensitive techniques. The

simplicity of the experimental set-up should be here, again, emphasized;

frequency domain conventional CW Raman spectroscopy is used to get

values of lifetimes of the order of the ps; a complicated ultrafast set-up

would be necessary to get that resolution in the time domain. Such a

study is one among many which are achievable now that SM-SERS is

becoming an established technique.
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Mode 1650 cm−1 2230 cm−1

EB (cm−1) 158 158
ω0 1652.11 2231.50
δωτ 0.76 0.24

δω (cm−1) 11.86 10.57
τ (ps) 1.02 0.35

Table 4.1: Exchange mode parameters obtained by fits to the VEE model
similarly to Sec. 4.3.3.
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Chapter 5

Single-molecule Surface

Enhanced Raman

Spectroscopy of C60

5.1 Introduction

Carbon is polymorphic: it is a remarkable element showing a variety of

stable forms ranging from diamond and graphite to fullerenes and 1D

conducting and semi conducting carbon nanotubes. While diamond -

which has a three dimensional covalent crystal structure - is the hardest

of all bulk materials and has the highest thermal conductivity, graphite

consists of carbon layers with covalent and metallic bonding which are

stacked and linked by weak van der Waals interactions and is the stable

phase of carbon under ambient conditions and in bulk form.

In the mid 1980s, Smalley and co-workers at Rice University devel-

oped the chemistry of fullerenes [81] and were the first to report the pro-

duction of a “remarkably stable cluster consisting of 60 carbon atoms”

which was obtained by graphite vaporization under laser irradiation. A

few years later, their discovery led to the synthesis by Iijima et al. of

carbon nanotubes which are long, slender fullerenes and can be visual-

ized as a sheet of graphite which has been rolled into a tube [82]. Among
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the many applications they enable: the use of carbon nanotubes as gas

storage components, STM probes, field emission sources, high power elec-

trochemical capacitors, chemical sensors, components of solar cells, tran-

sistors, etc.

The closed cage molecule C60, also called “Buckminster ball”1 , and

other fullerene molecules have attracted considerable interest in the past

three decades because of their unique structure and exceptional material

properties: optical, thermal, electronic and chemical. C60 finds today

many applications that include being one of the best known electron

acceptors in organic solar cells [83]. The fullerene properties (including

those of carbon nanotubes) have been studied to an impressive level of de-

tail [84]. The structure of the regular truncated icosahedron was already

known to Leonardo da Vinci and German painter and mathematician

Albrecht Dürer in about the year 1500. In the 20th century, there was

a number of theoretical suggestions for icosahedral molecules [85, 86]

and it was proposed in 1970 that an icosahedral C60 might be stable

chemically [87] but it was not until the experimental work of Kroto and

Smalley in the mid 1980s that the stability of C60 molecule in gas phase

was established. At that time, mass spectroscopy was used as the main

characterization tool for fullerenes and several experiments, like chemi-

cal stability or photofragmentation studies, were carried out to support

the cage-like structure of C60. But the direct evidence of the icosahedral

symmetry came from nuclear magnetic resonance experiments [88] where

a single line was observed consistent only with one type of chemical site

for carbon atoms in this molecule.

In studying the vibrational spectra of C60, the major experimental

techniques are: inelastic neutron scattering, electron energy loss spec-

troscopy (EELS), infrared and Raman spectroscopy. The Raman spec-

trum of C60 (in its various forms) in particular has already been investi-

1In homage to Richard Buckminster Fuller (1895 - 1983) an architectural modeler
who popularized the geodesic domes. As the discovery of the fullerene family came
after the buckminsterfullerene, the short name “fullerene”is used to name it, with the
suffix “-ene” indicating that each C atom is covalently bonded to three others.
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(a) La Geode (b) Eden Project

(c) C60 molecule

Figure 5.1: Structural analogy between the Buckminster ball molecule
(c) and the geodesic domes (a) “La Geode” at La Villette near Paris
(image obtained from https://www.flickr.com/photos/patrick_

nouhailler/11653321646 under the license creativecommons.org/

licenses/by-sa/2.0) and (b) “The Eden Project” at St Austell in
Cornwall (obtained from http://commons.wikimedia.org/wiki/File:

Eden_project.JPG).

gated in detail [89, 90, 91, 92, 93, 94, 95, 96, 97, 98] and while the original

emphasis of the earlier Raman studies was on the confirmation of group

theory predictions for the proposed icosahedral symmetry of the molecule

[96, 95], later Raman studies addressed other issues such as photopoly-

merization [99], crystal dynamics [100], optical transitions [101, 102] and
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isotope effects [97, 103]: it turns out that the highly symmetric character

of the C60 molecule has dramatic consequences for its vibrational isotope

effects and this will be a key point for its single molecule SERS detection

as we shall see in this chapter.

5.2 Structure of C60, icosahedral point group

Ih and Raman active modes

5.2.1 Structure of the C60 molecule

The 60 carbon atoms of the C60 molecule are located at the vertices

of a truncated icosahedron where all carbon sites are equivalent. An

icosahedron is a regular polyhedron with 20 identical equilateral faces,

30 edges and 12 vertices. To obtain a regular truncated icosahedron,

one has to cut the 12 vertices such that one third of each edge is cut

off at both ends (see Figure 5.2 (a) and (b)). The regular truncated

icosahedron has 60 equivalent vertices, 90 edges of the same length, 12

regular pentagonal faces and 20 regular hexagonal faces to form a closed

shell which is consistent with Euler’s polyhedron formula:

f + v = e+ 2 (5.1)

where f , v and e are respectively the number of faces, vertices and edges

of the convex polyhedron. Furthermore, from Equation 5.1 a simple rule

for closed cage molecules follows: a closed cage containing only hexag-

onal and pentagonal faces requires the number of pentagonal faces to

be exactly 12 and the number of hexagonal faces can be arbitrary. In-

spection of Figure 5.2 (c) shows that every pentagon is surrounded by

five hexagons. Two single electron-poor C-C bonds are located along a

pentagonal edge between pentagon and hexagon whose length is denoted

a5 and has been measured by NMR [104] to be 1.46 Å (and 1.455 Å by

neutron scattering [105]). The third bond is an electron-rich double bond

located at the fusion between two hexagons and has a bond length de-

noted a6 which has been measured to be 1.40 Å by NMR and 1.39 Å by
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neutron diffraction. The vertices of the C60 molecule therefore do not

form strictly speaking a regular truncated icosahedron; however, in most

of the descriptions of C60, the small discrepancy between a5 and a6 can

be neglected [84]. Moreover, the icosahedral symmetry Ih is preserved in

spite of unequal values for a5 and a6.

(a) (b) (c)

Figure 5.2: (a) Regular icosahedron,(b) regular truncated icosahedron
and (c) C60 molecule showing single bonds (a5) and double bonds (a6).

C60 has a mean ball diameter of 7.10 Å and an outer diameter of

10.34 Å, assuming that it has a thickness of 3.35 Å, which comes from the

interplanar distance between two graphite layers [106]. While optimizing

the geometry of the C60 molecule by Density Functional Theory (DFT),

using the computational chemistry software Gaussian09 R©, we found the

optimized bond lengths to be a5 = 1.452 Å and a6 = 1.392 Å (see Fig.5.3

and Section 5.4.2 for details on the DFT calculations on C60).

5.2.2 Symmetry and normal modes of the C60 molecule

Many of the exceptional properties of the Buckminster ball arise di-

rectly from its symmetry: C60 has the highest degree of symmetry of

all molecules. The truncated icosahedron structure belongs to the icosa-

hedral symmetry point group Ih.

In calculating the normal modes and frequencies of vibrations, symme-

try considerations can reduce enormously the labor in the calculations.

Furthermore, without any other information whatsoever, the symmetries

and geometry of a molecule can be used to determine the number of nor-
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Figure 5.3: Optimized structure of C60 calculated by DFT.

mal frequencies, their degeneracies, whether they are infrared or Raman

active (by considering the respective selection rules of these processes)

and the polarization properties of the Raman modes. The determination

of these different properties arises directly from group theory considera-

tions.

Symmetry considerations of the C60 molecule

The molecule C60 belongs to the point group Ih [84] which contains 120

symmetry operations arranged into 10 conjugacy classes. These classes

are the identity operator, the 24 fivefold rotations (C5 and C2
5) going

through the centers of the 12 pentagonal faces, the 20 threefold rotations

C3 going through the centers of the 20 hexagonal faces, the 15 twofold

C2 rotations going through the centers of the 30 hexagon-hexagon edges,

the inversion operator and all the classes formed by the product of these

five-, three-, twofold rotations with the inversion operator. C60 has 174

vibrational degrees of freedom (174 normal eigenvectors). Since icosahe-

dral symmetry gives rise to a large number of degenerate modes, only 46
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modes have distinct frequencies. The point group Ih has 10 irreducible

representations as given in Table 5.1. These results come from group

theoretical arguments. Only the 8 fivefold degenerate gerade modes of

symmetry Hg and the 2 non-degenerate gerade modes of symmetry Ag,

so 10 mode frequencies are Raman active in the first order. The sub-

scripts g or u stand for gerade (even) and ungerade (odd), referring to

the symmetry of the eigenvector under the action of the inversion oper-

ator. The Ag(1) ‘breathing’ mode at 492 cm−1 involves identical radial

displacements for all the 60 carbon atoms whereas the Ag(2) ‘pentagonal

pinch’ mode at 1469 cm−1 involves tangential displacements with con-

traction of the pentagonal rings and expansion of the hexagonal rings.

The 8 fivefold degenerate Hg modes are harder to visualize on a figure,

their frequencies range from 273 to 1578 cm−1.

Nω
a Ag

b F1g F2g Gg Hg
c Au F1u F2u Gu Hu

C60 46 2 3 4 6 8 1 4 5 6 7

Table 5.1: Table of representations: symmetry types of vibrational modes
of C60, adapted from [84]

aNumber of modes with distinct frequencies
bRaman active mode only seen in (‖, ‖) polarization
cRaman active mode seen in both polarization configurations

Table 5.2 gives the frequencies of the 10 Raman-active modes of the

isolated C60 molecule [107].

Although the vibrational frequencies given in Table 5.2 are all for an

isolated molecule, they are usually compared to experimental data on C60

molecular vibrations in the solid state [89]. The justification for this is

that C60 in solid state (for example the powder which can be purchased)

consists in face-centered cubic crystals where the bonds between C60

molecules are van der Waals and this gives rise to very small, generally

unresolved splitting of the 10 Raman lines. Hence the 2 Ag modes and

the 8 Hg modes dominate the Raman spectrum of the solid state sample

as can be seen in Fig. 5.4.
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Mode Frequencya(cm−1)
Hg(1) 272
Hg(2) 433
Ag(1) 496
Hg(3) 709
Hg(4) 772
Hg(5) 1099
Hg(6) 1252
Hg(7) 1426
Ag(2) 1469
Hg(8) 1575

Table 5.2: First order Raman active modes of the isolated C60 molecule

aas given in [107]

Figure 5.4: First order Raman spectrum of natural C60 powder, recorded
at 514 nm excitation and 10 min integration.
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5.3 Direct isotopic effect on the Ag(2) mode

frequency

Raman spectroscopy is a very sensitive tool for probing structural changes

around a symmetric molecule. In the case of C60, one obvious question

that comes to mind is: what happens to the vibrational and rotational

spectra when natural isotopic substitution 13C −→ 12C occurs?

Carbon has two stable isotopes: 12C, which is 98.892% abundant, has

an atomic mass of 12 u and nuclear spin of 0 and 13C which is 1.108%

abundant with atomic mass 13.03 u and a nuclear spin of 1
2
. The proba-

bility pm for m isotopic substitutions to occur on a C60 molecule is given

by:

pm =
60!

(60−m)!m!
xm (1− x)60−m (5.2)

where x is the fractional abundance of of the isotope. Equation 5.2 stems

from the probability, for each of the 60 carbon atoms, of picking 13C

instead of a 12C, the probability of which is weighted by their respective

fractional abundance. Figure 5.5 shows the m dependence of pm(C60)

for values concentrations of x equal to 1.1%, 20% and 30%. We can

see that, naturally, about 51% of C60 molecules are 12C60 and about

48% are 13Cm
12C60-m with m ≥ 1. We also see that, as x increases,

the distribution peak shifts towards larger m - higher content in 13C on

average per molecule - and the distribution broadens.

These results have important consequences for both symmetry con-

siderations and rotational levels of C60 molecules [108]. Whereas the
12C60 molecules exhibit the highest degree of symmetry and the 13C60

the next highest degree of symmetry, molecules as 12C59
13C1, 12C58

13C2

have a much lower symmetry than that of the the full Ih point group; in

fact, with two or more substitutions, C60 loses its entire symmetry and

so, theoretically, none of the 174 vibrational modes is degenerate and in

principle all of them are Raman-active. Experimentally, upon addition

of 13C isotopes, the rotational and rotational-vibrational spectra are not

affected significantly but at ultra low temperatures (≤1 K) and the in-

tensities of the Raman lines do not change much compared to the natural
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C60 case: the optically active modes still show strong intensities and the

previously optically inactive modes remain undetectable.

Figure 5.5: Probability of 13C −→ 12C substitution for a C60 molecule.

One interesting isotope effect is the softening of the Ag(2) mode, due

to the effect a change in the mass of one or more carbon atoms has

on the
(
K
M

)1/2
factor (which the mode frequencies depend on). This

effect has been reported in 1994 by Guha et al. and is the basis of our

work on single molecule SERS detection of C60. In their paper, they

show that the Raman spectrum of C60 in CS2 at 30 K around the Ag(2)

mode (1469 cm−1) has a fine structure which is isomorphic to the mass

spectrum of the molecule [97, 109]. They attributed the three resolved

peaks to Raman scattering coming from molecules containing 0, 1 or 2
13C atoms and showed that the frequency of the Ag(2) mode undergoes

a first-order shift ∆ω induced by n isotopic substitutions within non-

degenerate perturbation theory:(
∆ω2

ω2
0

)
1

= − n

720
(5.3)
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where ω0 is the frequency of the unperturbed Ag(2) mode (for a 12C60).

This surprisingly simple result arises directly from the symmetry of the

Ag(2) mode and the fact that every site in the unperturbed C60 molecule

is symmetry-equivalent.

Specifically, upon 13C −→ 12C substitution, the force-constant matrix

and the Raman polarizabilities are unchanged as the molecular electronic

states are not affected by isotopic substitution- and so, determining the

effects on the vibrational spectrum of any isotopic substitution by DFT

once the electronic structure of the molecule has been calculated, is not

costly. It is natural to try perturbation theory (non-degenerate) given

how ‘small’ the isotopic perturbations are: the perturbation introduced

by each 13C is only of order 1/720. The perturbed frequency for a non-

degenerate mode f is given by the series [109, 110]:

∆ω2
f

ω2
0f

=
∑

n=1,2...

(
∆ω2

f

ω2
0f

)
n

(5.4)

The first order correction is:(
∆ω2

f

ω2
f0

)
1

= −χt
0(f)∆Mχ0(f) (5.5)

where ∆M is such as M0 + ∆M is the mass matrix of the perturbed

molecule, χ0(f) the unperturbed eigenvector of mode f and χt
0(f) its

transpose. Because every site in the unperturbed icosahedral C60 molecule

is symmetry equivalent, the magnitude of the atomic displacements for

the unperturbed totally symmetric Ag modes are site-independent and

thus for n isotopic substitution we get the simple expression of the first-

order correction in Eq. 5.3. The independence of the exact positions of

the 13C substitutions on the overall frequency shift can be demonstrated

with a direct calculation of the vibrational dynamics of C60 as shown

with DFT calculation on C60 isotopologues, see Section 5.5.2.
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5.4 Preliminary experiments

We purchased the non-enriched C60 from Sigma-Aldrich with a purity

of 99.9 % and the 13C-enriched C60 sample from Materials & Electro-

chemical Research (MER) Corporation with a purity > 98 %. Both sam-

ples are brown-black micro-crystalline powder, the solubility in water is

1.3× 10−11 mg/mL [111]- so is almost negligible- and the solubilities of

C60 in various organic solvents at 298 K are given in Table 5.3:

Solvent C60 solubility, mg/mL
methanol 0.000
ethanol 0.001
dichloromethane (CH2Cl2) 0.26
toluene 2.8
carbon disulfide (CS2) 7.9

Table 5.3: Solubility of C60 in various solvents (adapted from [112])

Before conducting SERS and SM-SERS experiments on C60, we needed

to carry out some preliminary work which would help us characterize

some relevant properties of C60 and get to know better the system we

wanted to study (sample preparation, measurement’s resolution, etc.):

* Determination of the differential Raman cross section of the Ag(2)

mode at 633 nm excitation written in this section
dσ

dΩ

)(Ag(2))

633 nm

: this

knowledge is necessary to determine the enhancement factors in

SERS spectra.

* Density Functional Theory (DFT) calculation of the vibrational

spectrum of an isolated C60 molecule: this is interesting to calcu-

late to, on the one hand, validate the experimental determination

of
dσ

dΩ

)(Ag(2))

633 nm

and , on the other hand use the calculated force con-

stant matrix to simulate the effect of isotopic substitution on the

vibrational spectrum of C60.
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5.4.1 Experimental determination of the differen-

tial Raman cross-section of the Ag(2) mode

at 633 nm

A fundamental question in SM-SERS is always that of the magnitude of

the enhancement factor (EF) [29, 41]. In order to be able to quantify

the SM-SERS EF, it is necessary to: ensure that the observed signals are

indeed from single molecules, be able to compare the integrated peak in-

tensity of a vibration with a signal of known Raman differential cross sec-

tion (dσ/dΩ) under the same experimental conditions, and finally know

the intrinsic dσ/dΩ of the molecule for that specific vibration. Unfortu-

nately, intrinsic values of dσ/dΩ for a specific laser excitation are very

difficult to find (even for an iconic molecule like C60). Therefore, we

concentrate first on this task.

Beside its interesting effect with regard to isotopic substitution, the

Ag(2) mode at 1469 cm−1 is the most distinguishable Raman-active fin-

gerprint from C60. The differential cross section of this mode can be

obtained in solution by a direct comparison of the Raman intensity with

that of a solvent that has a nearby Raman peak with a known dσ/dΩ [19].

This indeed ensures that both molecules experience exactly the same ex-

perimental conditions. Inspection of Table 5.3 shows that toluene is a

good solvent for C60 and the absolute differential Raman cross section

of the 1002 cm−1 mode of toluene has been measured accurately to be

2.9× 10−30 cm2/sr at 633 nm [5]. Some preliminary tests showed that

if C60 is in a 1 mM solution in toluene, 20 s acquisition with ×100 im-

mersion objective at λex = 633 nm are necessary to resolve the Ag(2)

peak whose height is only 2.5 % of the height of the background. But

as toluene is a very volatile solvent, it evaporates over the length of the

measurement (400 s as we take the average of 20 spectra of 20 s) and as a

consequence of the unstable C60 concentration, the integrated intensity’s

ratio between C60 and toluene is not constant. To avoid evaporation

problems, we decided to carry out the measurements on C60 in toluene

in a quartz cell (see fig 5.6) and used the ×100 LWD objective (N.A. 0.6)

and focused the laser inside the cell. To determine the dσ/dΩ of the
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1469 cm−1 mode of C60, we used a solution of C60 1 mM in toluene, the

spectrometer was equipped with the 1800 l/mm gratings, excitation was

633 nm, Pinc = 6.3 mW. The Raman spectrum of the 1002 cm−1 mode of

toluene was recorded with 1 s acquisition and 20 Raman spectra around

the 1469 cm−1 peak of C60were accumulated with 20 s acquisition and

their average was used for determining the integrated intensity of the

peak (see Fig. 5.7).

Figure 5.6: Quartz cell used for the determination of the differential
Raman cross section of the Ag(2) mode of C60 at 633 nm.

The comparison is made between the known differential cross sec-

tion of the 1002 cm−1 mode of toluene and the integrated intensity of

the 1469 cm−1 pinch mode of C60 (properly scaled by the number of

molecules participating in the signal and the integration time). The den-

sity of toluene is 0.86 g/mL and its molar mass is 92.14 g/mol, hence the

concentration of toluene ctol is:

ctol =
0.86

92.14
= 9.3× 10−3 M (5.6)

Hence the ratio of C60 molecules versus toluene molecules is:

cC

ctol

= 1.12× 10−4 (5.7)
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Thus, knowing the latter ratio, and knowing the ratio of the integrated

Raman intensities per second, we get the value for the differential Raman

cross section of the pentagonal pinch mode of C60 at 633 nm:

dσ

dΩ

)(Ag(2))

633 nm

= 2.9× 10−28 cm2/sr (5.8)

The value given in Eq. 5.8 is the thus the absolute differential Raman

cross-section of the Ag(2) mode of the C60 molecule in toluene at 633 nm;

if one wants to get an approximate value for the cross section of the free

molecule (without the solvent), a local field correction (LM) for the index

of refraction of toluene needs to be included [19]. The local field felt by

a molecule in a solvent is modified compared to the macroscopic field

created by the laser excitation. For Raman scattering, it leads to a local

field correction of the cross section:

LM =

[
n2

M + 2

3

]1/4

(5.9)

where nM is the refractive index of the medium surrounding the molecule

(solvent). In the case of toluene, the refractive index is ntol = 1.497 and

so LM ' 4, which means that the cross section of C60 in toluene is ap-

proximately four times larger than the cross section of the free molecule,

which would be reduced then to ' 7.2× 10−29 cm2/sr. The latter value

is the one we use later when determining the SERS enhancement factors

(see Section 5.5.3) as the SERS experiments were carried out in air.

It is worth mentioning at this stage that a value of the cross section

dσ

dΩ

)(Ag(2))

633 nm

= 7.2× 10−29 cm2/sr is only a factor of ' 10 smaller than

typical cross sections for fingerprint modes of typical pre-resonant dyes

used in SM-SERS. For example, the differential cross section for the

610 cm−1 mode of rhodamine 6G (RH6G) at 633 nm is 6.7× 10−28 cm2/sr

[19], and single molecules of RH6G can be easily observed with this

cross section with enhancement factors of the order of ' 108. Taking

into account that maximum SERS enhancement factors can go up to

' 1010− 1011, the characterization of the differential cross section of C60
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Figure 5.7: Determination of the differential Raman cross-section of the
1469 cm−1 mode.

immediately suggests that single molecules should be detectable; except

for limitations related to the ability of C60 to reach the right places (hot-

spots) to profit from the enhancement, or additional factors linked to the

photostability of the molecule [29].

5.4.2 DFT calculation of the Raman spectrum of

C60 and determination of the differential Ra-

man cross-section of the Ag(2) mode

To double-check the accuracy of the experimental value of
dσ

dΩ

)(Ag(2))

633 nm

, we

use Density Functional Theory (DFT) calculations as a tool to predict the

intensities of the Raman active modes of an (isolated) C60 molecule; the

DFT calculated value of the cross section is only an estimate and doesn’t

suffice in itself but is a good basis of comparison when experimental cross

sections are measured. Even though DFT is particularly suited for small

molecules, we could assume that in the case of C60, despite its number

of atoms, its high symmetry would help decrease the complexity of the

normal mode problem and be less computationally demanding.
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To perform the DFT computations we used the software Gaussian 092,

which is dedicated to electronic structure modeling [113]. Starting from

the fundamental laws of quantum mechanics, Gaussian 09 predicts the

energies, molecular structures, vibrational frequencies and molecular prop-

erties using a wide variety of methods. The most stable geometry struc-

ture of a molecule is obtained by minimizing the total energy as a function

of atoms’ positions. The DFT approach consists in solving and finding

the ground state of the Kohn-Sham equation [114]:[
− ~2

2m
∇2 + VKS(n(r), r)

]
Ψ(r) = EΨ(r) (5.10)

where VKS is the Kohn-Sham potential which depends on the electronic

density:

n(r) = |Ψ(r)|2 (5.11)

hence VKS is a function of the electronic density. DFT replaces the com-

plex solving of a many-body problem for the electrons by a simpler prob-

lem of solving a one-electron Shrödinger equation in a non-linear potential

depending on the electronic density.

The wave-function solution Ψ(r) is a expressed as a linear combination

of basis functions φi(r) called the basis set. The form of the Kohn-Sham

potential (its dependence on n(r)) has to be chosen as an initial guess by

the user as well as the basis set to be used to express the wave-function

solutions; these choices are crucial and depend on the system being stud-

ied, the computational power available, etc. The first density functional

perturbation theory calculation on C60 was performed in 1994 [115] and

in 2001, Schettino et al. have shown that a DFT B3LYP/6-31G* calcula-

tion of the vibrational frequencies of C60 grants a very small (≈ 3.6 cm−1)

average misfit between the experimental and calculated frequencies [116].

We used Beckes 3-parameter hybrid functional B3LYP, which employs a

hybrid of Becke and Hartree-Fock exchange energy with a combination of

VWN and LYP local and non-local correlation energy [117, 118, 119, 120]

and the basis set designated as 6-311G(d) which is a set of Gaussian-like

2Official Gaussian website: www.gaussian.com
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orbitals [121]. The main limitations in the size and complexity of the

basis set are most of the time based on computational time.

Geometry optimization

The first step is to find the equilibrium atomic positions, this is called

geometry optimization. Vibrational analysis, as it is described in most

textbooks and implemented in Gaussian 09 is valid only when the first

derivatives of the energy with respect to atomic displacements are zero:

in other words, the starting point of the analysis requires the molecule

to be in its equilibrium position and this optimization has to be done

with the same method and same basis set as the following vibrational

analysis.

Vibrational analysis: practical implementation

The starting point of the treatment of vibrations in molecules is the Born-

Oppenheimer approximation, in which the electronic cloud of a molecule

adapts instantaneously to the configuration of the nuclei. Once the ge-

ometry optimization has been done, the next step is to calculate the force

constant matrix or Hessian matrix.

The classical approach is sufficient to define the concept of normal modes

if we introduce some parameters empirically. For a molecule with N

atoms indexed by k = 1...N , each with a mass mk, the coordinates

of the nuclei can be expressed in terms of the displacements ~uk, rep-

resenting their relative positions with respect to their equilibrium posi-

tions. Instead of the vectors ~uk, it can be convenient to use 3N scalar

variables accounting for all the Cartesian components of the N vectors

ξ1 = u1x, ..., ξ3N = uNz and to divide them by the squared mass of the

atom they relate to in order to get the reduced-mass coordinates :

qi =
√
miξi (5.12)

The potential energy of the classical Hamiltonian for the nuclei, in
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the limit of small displacements of the nuclei, can be written:

V =V0 +
3N∑
i=1

(
∂V

∂qi

)
qi=0

qi +
1

2

3N∑
i,j=1

(
∂2V

∂qi∂qj

)
qi,qj=0

qiqj

+
1

6

3N∑
i,j,k=1

(
∂3V

∂qi∂qj∂qk

)
qi,qj ,qk=0

qiqjqk + ...

(5.13)

where V0 can be chosen to be zero and the second term, corresponding

to the sum of the forces on the nuclei must also be zero as the atoms are

in their equilibrium position. Keeping only the lowest order (harmonic

approximation),

V =
1

2

3N∑
i,j=1

fi,jqiqj, where fi,j =

(
∂2V

∂qi∂qj

)
qi,qj=0

(5.14)

The fi,j are called the force constants and (fi,j) is the force constant

matrix and is real and symmetric; hence is diagonalizable. The way

Gaussian 09 determines (fi,j) is by displacing each atom, one at a time,

along three mutually perpendicular axis from their equilibrium position

and recalculating the total energy of the new configuration by a new DFT

calculation, then by numerical differentiation, the force constant matrix

can be constructed.

Gaussian 09 then diagonalizes the force constant matrix which yields a

set of 3N eigenvectors and 3N eigenvalues but stores only the eigenvalues

(frequencies squared) and discards the eigenvectors which will be recal-

culated later, once the translational and rotational modes are separated

out (by finding a matrix which diagonalizes the moment of inertia ten-

sor, it will enable the generation of the vectors corresponding to rotations

and translations). Then the software determines the transformation from

the 3N reduced-mass Cartesian coordinates to 3N coordinates in the ro-

tating and translating frame (internal coordinates), a frame in which the

translations and rotations of the molecule are separated from the remain-

ing 3N − 6 vibrational modes.

The Hessian matrix (fi,j) in the reduced-mass coordinates is then trans-
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formed into the new internal coordinates (fint). The restriction of (fint)

to the coordinates corresponding only to vibrations is then diagonalized,

yielding 3N − 6 eigenvalues ω2 and 3N − 6 eigenvectors.

Raman activities and depolarization ratios

Gaussian 09 provides the Raman activities Rk (from which are inferred

the differential Raman cross-sections out of resonance) and Raman depo-

larization ratios ρk for each normal mode. To get the Raman activities,

Gaussian has to evaluate the Raman tensor. First the linear optical

polarizability tensor of the molecule is calculated using DFT by recom-

puting the electronic structure of the molecule in the presence of an

external static field. Then the linear polarizability tensor is re-evaluated

for the molecule undergoing the deformations that follows the pattern

of each of the normal modes of vibration. The difference between the

linear polarizability tensor of the molecule with deformation and the lin-

ear polarizability tensor without deformation yields the Raman tensor

R̂k. From R̂k it is possible to calculate the absolute differential Raman

cross-section (at room temperature) using the equation Eq. 5.15 [1], (and

being careful with the units as Gaussian 09 typically gives the Raman

activities in units of [Å4/u]):

dσk
dΩ

[cm2/sr] =5.8× 10−46 [107/ (λL[nm])− (ν̄k[cm−1])]
4

(ν̄k[cm−1])

× LM ×
(
Rk[Å

4/u]
)
×
(

1− exp

(
− ν̄k[cm−1]

201.56

))−1

(5.15)

where λL is the wavelength of the laser, ν̄k the wavenumber of the mode

under consideration and LM the local field correction factor presented

earlier accounting for the presence of the solvent (toluene). For the Ag(2)

mode of C60 at 1469 cm−1 with an excitation λL = 633 nm and LM ' 4,

Eq. 5.15 gives:

dσ
DFT

dΩ

)(Ag(2))

633 nm

= 3.81× 10−29 cm2/sr (5.16)
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The theoretical value is a factor of ∼ 7 smaller than the experimental one

(
dσexp
dΩ

)(Ag(2))

633 nm

= 2.9× 10−28 cm2/sr), but this can be easily accounted for

by an additional resonant enhancement (which has not been included in

the calculation). It is well known that C60 has vibronic absorptions in

the visible range [122], and these can easily contribute to a mild reso-

nant enhancement for the cross sections compared to calculations. We

use therefore the more reliable experimentally determined value for the

estimation of SERS enhancement factors in Section 5.5.3.

5.4.3 Resolution of the isotopically induced frequency

shifts on C60 at 9 K

As one of the preliminary experiments, we wanted to know whether we

could resolve the frequency shifts due to isotopic substitution in the C60

sample with a natural 13C abundance in an experiment similar to the low

temperature one conducted by Guha et al. [97]. A closed cycle Helium

cryostat is adapted to our T 64000 spectrometer, enabling scattered light

from a sample in the cryostat chamber to enter directly the spectrometer

via the first entrance slit (the excitation and collection are not done

through the microscope). This cryostat can cool samples down to ' 5 K.

The commercial natural C60 powder was dissolved in toluene (freezing

point at 180 K) with a final concentration of 1.05 mM. We enclosed

100µL of this solution within the tip of a glass pipette which was then

carefully broken and sealed at both ends with Teflon tape. The Raman

measurements were done on the T64000 spectrometer with the 647 nm

excitation line of the Ar-Kr laser, the 1800 l/mm gratings. The scattered

light was collected in a 90◦ configuration and focused through through a

×10 macro-lens onto the entrance slit of the spectrometer. As the signal

in the additive mode (which we usually use) was too weak, we switched to

subtractive mode and closed the slits (first entrance and intermediate) to

a minimum. To adjust the slit size (and thus the resolution of the peaks),

we were monitoring the resolution and intensity of the 1002 cm−1 mode of

toluene in real time at room temperature and then all the way through

the cooling procedure until the sample temperature was 9 K and the
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Figure 5.8: Closed cycle He cryostat and entrance to the T64000

Raman signal of the toluene was stable with a peak width of ' 1 cm−1.

To be able to resolve this narrow linewidth was a good indication that

the isotopic splitting of the 1469 cm−1 mode of C60 would be detectable.

The spectrum in Fig. 5.9 shows the results for a 3 hour long integration.

By freezing the C60 molecules into a solid transparent matrix at low

temperature, we reduce additional contributions to the broadening of the

peak and a substructure of ‘shoulders’ coming from the different natural

isotopic versions of C60 can be revealed. The green, red, and blue curves

in Fig. 5.9 are the three components of the best fit to the data. For the

fit we proceeded as follows: the frequency of the pure 12C60 was allowed

to vary but the frequency positions of the other two peaks were to be in

a fixed relation to this one, according to Eq. 5.3. The relative intensity

ratios of the peaks is fixed in the ratio: 0.5150 : 0.3437 : 0.1128, which

is the probability of picking 60 atoms with a probability of 0.989, the

probability of picking 59 atoms with a probability of 0.989 times the

probability of picking one 13C with a probability of 0.011 (times 60) and

the probability of picking 58 atoms with a probability of 0.989 times the

probability of picking two 13C (with p=0.011) times (60!/58!2!). So the

only parameter allowed to vary was the width of the peaks (chosen to be
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Figure 5.9: Low temperature (9 K) Raman spectrum of the pentagonal
pinch mode of natural C60 frozen in toluene (647 nm excitation line). The
presence of one and two 13C −→ 12C isotopic substitutions can be seen
as shoulders to the main peak of pure 12C60 at 1469 cm−1. Due to its
symmetry properties, the pentagonal pinch mode is isomorphic to the
mass spectrum.
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the same for all three peaks) and an overall intensity scaling factor. We

obtain a width of 0.8 cm−1 for the peaks. The implicit approximation we

used here is to assume it does not matter which 12C is replaced, the effect

on the frequency shift of the Ag(2) mode is the same, which is justified

in Section 5.3 and in [110].

Can we use the natural isotopic effect of the Ag(2) mode to

detect SM-SERS of C60?

Unfortunately, the natural isotopic effect in C60 cannot be used for single

molecule SERS detection. The reason is that the separation among peaks

is only ∼ 1 cm−1 as we just saw above. This small shift competes with

the intrinsic broadening of the peaks –which is ∼ 1.5 − 2 cm−1 (even at

very low temperatures, as in Fig. 5.9) and the additional small frequency

variations produced by the environment under SERS conditions (which is

the origin of the inhomogeneous broadening studied in Chapter 4). The

combination of the two effects washes out our ability to easily distinguish

single isotopic versions of C60 differing by one mass unit.

A much easier strategy to detect SM-SERS of C60 is, in fact, to in-

crease the isotopic spread of the natural sample to make the different

isotopic versions of the molecule more easily distinguishable despite the

intrinsic homogeneous broadening of the peaks and the possible addition

of small frequency shifts from the environment.

5.5 SERS and single-molecule SERS detec-

tion of C60

The first SERS studies on C60 on noble metal were published in 1991

and since then some work has been done on SERS, mainly as a way to

probe the interactions between fullerenes and substrates [123, 124, 125,

126]. On our route to single molecule detection of C60, we started by

carrying out preliminary experiments with the natural C60 sample to

understand how the molecule was behaving in SERS conditions, what
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kind of substrate would be appropriate and how low in concentration we

could work.

5.5.1 SERS experiments on natural C60

The quest for a suitable SERS substrate

The preparation of SERS samples with C60 was somewhat challenging

and time-consuming. One of the obvious challenges is the fact that C60

is not water-soluble and the colloids we use routinely in our group are

dispersed in water and thus the mixing of the C60 in solution with colloids

before dropcasting onto a planar surface is not as straightforward as it

is with Nile blue for example. Hence we tried silver films: commercial

50 nm Ag films roughened by exposure to ambient air, island films that we

evaporated on glass slides and thick (∼ 4 µm) silver films prepared also by

thermal evaporation and then roughened by exposure to a Ar+ plasma.

We tested the SERS efficiency of the evaporated films with rhodamine

6G, which showed the island films to be the only SERS active substrates.

However, any silver film was deteriorated almost instantaneously when

C60 dissolved in toluene or dichloromethane was deposited. The same

deterioration was observed when trying to deposit drops of C60 solution

in toluene onto dried Lee & Meisel colloids.

Eventually, we found out a suitable way of preparing SERS and SM-

SERS samples and this is the sample preparation which we used in the

following experiments: freshly prepared borohydride reduced silver col-

loids (see Section 2.3.1) were centrifuged in four eppendorfs for 5 min at

14.5× 103 rpm, the supernatant water was sucked off, thus leaving con-

centrated colloids at the bottom. We then dropcast a few drops of these

colloids onto a commercial 100 nm silver film and left it to dry out under

a lamp for an hour. The resulting substrate is covered by clusters of

colloids and can be expected to have many hots spots.

We obtained the first satisfying SERS results on C60 with this sub-

strate: C60 is dissolved in CH2Cl2 (solubility 0.26 mg/mL) with 20 µM

concentration, as CH2Cl2 did not seem to deteriorate the silver substrate.

Then the solution was dropcast onto the substrate drop by drop, letting
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each drop evaporate before putting the next one and covering this way

the whole surface of dried colloids. Fig. 5.10 shows some SERS spectra

around the region of the Ag(2) mode taken on the latter sample in the

Linkam cryostat at 80 K with 633 nm excitation (2.5 mW on the sample),

the ×100 LWD objective, the 2400 l/mm gratings, the confocal pinhole

closed to 200 µm and 1 s acquisition. It is worth noticing at this point

that out of a map of the sample of around 2500 spectra, only 1 − 2%

were identified as showing the Ag(2) mode peak. By reducing the inci-

dent power by a factor of 10, we increased slightly more the number of

detectable events (3− 4%), showing thus that C60 is photosensitive and

it is better to work with an incident power ∼ 250 µW. We also carried

out the same experiment as before but with a starting solution of C60

2 M in CH2Cl2 and got a similar statistics of SERS events.

These SERS experiments however confirmed what we already suspected,

i.e. that the natural isotopic effect can not be used for Single-Molecule

SERS detection. Eq. 5.3 indeed predicts a shift of the frequency of the

Ag(2) mode of ∼ 1 cm−1 for each 13C −→ 12C substitution and this com-

petes with the natural linewidth of the peak (∼ 2 cm−1 at 80 K), even

at 80 K, and the small frequency shifts induced by the interaction of the

molecules with the surface.

Tentative bi-analyte experiments on C60 and BPE

It is possible to some degree to find a bi-analyte SERS [25] partner

for C60; and we performed experiments with C60 and 1,2-di-(4-pyridyl)-

ethylene (BPE) in which we were able to distinguish individual spectra of

either one compound or the other. However, the bi-analyte method with

two different partners works at its best when the molecules have sim-

ilar chemical properties and comparable affinities for the SERS-active

surface. The unique properties of C60 in terms of size, shape, and chem-

istry, makes it difficult to find a suitable partner; and experiments with

BPE had to be performed at widely different concentrations for the two

molecules (to compensate for the different surface affinity properties).

This leads to very skewed statistics of SM-events, in which the two part-

ners might not be experiencing the same enhancement factor distribu-
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Figure 5.10: High resolution SERS spectra around the 1469 cm−1 mode of
natural C60 dried on borohydride reduced silver colloids at 80 K, 633 nm
excitation and 1 s acquisition. Note that it is not possible to ascertain
whether these spectra are single molecule spectra relying solely on nat-
ural isotopically induced frequency shifts as for natural C60, only shifts
of 1 cm−1 (1 substitution) or 2 cm−1 (2 substitutions) are statistically
expected and these shifts compete with the broadening and frequency
wandering of the peak due to SERS conditions.

tions.

As the bi-analyte method was not successful and as the spread in

frequencies of the Ag(2) mode of the natural C60 molecule was not suf-

ficient with respect to the intrinsic broadening of the peak to allow for
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discrimination of SM events by frequency wandering only, we opted for

the use of artificially enriched C60 for the following SM-SERS studies.

5.5.2 Experiments on C60 commercial isotopologues

Isotopically enriched C60 with an average of 18 sites replaced by 13C was

obtained commercially (MER Corp.Tucson, AZ) and characterized by

high-performance liquid chromatography (HPLC), and mass spectrome-

try (seen in Fig. 5.11 (a)). The most probable atomic mass in this sample

is m = 738; which implies that 18 carbons (30% of the total) have been

replaced by 13C. But there are (at least) 14 different isotopic variations

around this most probable case, as shown in Fig. 5.11 (a); from m = 732

to 745.

We can use the mass spectrum in Fig. 5.11 (a) as a probability distri-

bution and calculate the histogram of possible frequencies for a large

number of C60 molecules where the isotopic replacement sites are chosen

at random. This is done with the force constants calculated by DFT in

the computation we made before to obtain the Raman cross section of

the pentagonal pinch mode (see Section 5.4.2). The DFT force constant

matrix (fi,j) does not depend on the masses of the atoms, and can be

used therefore for any combination of isotopically substituted C60 with

randomly chosen sites for 13C, and a mass distribution given by the ex-

perimentally determined values in Fig. 5.11 (a). This calculation is shown

in Fig. 5.11 (b) for 104 different isotopic versions of C60.

Note that:

* Frequencies in the calculation are overestimated with respect to

experimental values (a well known fact for DFT [1, 15])

* The histogram of calculated frequencies displays a series of discrete

peaks mimicking the mass distribution. This does not happen for

other vibrational modes in the molecule and it is again a manifes-

tation of the peculiar symmetry properties of the pentagonal pinch

mode and the fact that 13C isotopic disorder (for a fixed number of
13C) does not play a noticeable effect in the overall frequency shift
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Figure 5.11: (a) Experimental mass spectrum of the isotopically substi-
tuted (30% average) sample used for SM-SERS. There are (at least) 14
different isotopic substitutions around the average of 30% in the sam-
ple. (b) Vibrational Raman spectrum calculated from the DFT force
constants for 104 random versions of isotopically substituted C60 cho-
sen with a probability distribution given by the mass spectrum in (a).
Because of the symmetry of the pentagonal pinch mode, the Raman
spectrum is isomorphic to the mass distribution, resulting in a series
of discrete frequencies mimicking the mass spectrum (see Section 5.3).
The Raman frequencies are overestimated in DFT calculations, which is
why the full spectrum appears at slightly larger frequencies than those
observed experimentally in Fig. 5.12.

(which depends then only on the total mass M). Furthermore,

since the magnitude of the Raman cross section for individual iso-

topic versions of C60 is an electronic property that does not de-

pend on small mass-induced shifts of the frequency, the histogram
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of frequencies in Fig. 5.11 (b) automatically represents the Raman

spectrum of the ensemble of all possible isotopic versions of C60

contained in the mass spectrum of Fig. 5.11 (a).

From the point of view of SM-SERS, the separation amongst con-

secutive peaks in the calculated spectrum of Fig. 5.11 (b) is still small

(∼ 1 cm−1), and might still compete to be distinct enough when the nat-

ural linewidths of the peaks and the possible effects of small frequency

shifts produced by the interaction with the surface [127] are taken into

account. However, the existence of multiple peaks spanning a broad fre-

quency range (∼ 20 cm−1) gives now the opportunity to identify different

isotopic versions of C60 in SM-SERS; in what is a natural extension of

the bi-analyte SERS technique [21] to multiple (isotopic) analytes.

SM-SERS experiments were carried out for the isotopic C60 sample

excited at 633 nm and with a focus on high-resolution measurements of

the Ag(2). The SERS substrate we used is a variation of the one pre-

sented in Section 5.5.1. Concentrated (by centrifugation) borohydride re-

duced silver colloids were dropcast onto poly-L-lysine covered Si wafers

(see Section 2.3.2), and allowed to dry under a lamp, thus leaving a

dense collection of clusters on the surface. Small amounts of the iso-

topic C60 sample –previously dissolved in CH2Cl2 at 1 M concentration–

were dropcast on top of the colloids and allowed to quickly evaporate.

Compared to typical concentrations used in SM-SERS experiments for

resonant dyes [127], the C60 solution is very concentrated. This is nec-

essary to compensate for the much smaller affinity of C60 to stick to Ag

colloids and find its place at hot spots on the substrate. The reasonably

large number of colloid clusters achieved by centrifugation together with

the much higher concentration of C60 compared to the dye ensures that

SM-SERS conditions will be found in a few selected places in the sample,

as demonstrated later.

Raman spectra were acquired using the ×100 LWD (NA= 0.6) with

excitation at 633 nm (2.5 mW on the sample) and the high resolution

1800 l/mm grating. The sample is placed inside the cryostat stage for op-

tical microscopy, which keeps the sample at 80 K under a N2 atmosphere.

SM-SERS maps of 40 × 40 points (1.5 µm step and 1 s integration time
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Figure 5.12: Room temperature Raman spectra of natural C60 powder
(green) and isotopically enriched C60 powder (blue) and average SERS
spectra of the isotopic sample at 80 K. The average SERS spectrum
shows a slightly narrower peak produced by lower temperature in which
the search for SM-SERS signal is carried out. The bottom part of the
figure shows different examples of SM-SERS signals within the frequency
range spanned by the average (∼ 20 cm−1). For plotting purposes the
SM-spectra have been normalized to show similar intensities, but they
represent in reality signals with different intensities spanning enhance-
ment factors in the range 6.5 × 107 − 1.2 × 108. In addition, SM-SERS
spectra have typical broadenings in the range of ∼ 4 − 5 cm−1, which
are larger than the broadening observed in SM-spectra of natural C60 at
the same temperature. This is attributed to isotopic-disorder induced
broadening.
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per point) were taken to search for single-molecule C60 signals of differ-

ent isotopic compositions. At least ten maps were required to obtain the

necessary statistics of cases, as each map contained only ∼ 1% of clearly

distinguishable SM-SERS spectra.

Fig. 5.12 summarizes the main SERS results. At the top of the figure

we can observe the normal spectrum of natural C60 powder at room

temperature (RT); note the slight broadening and asymmetry of the

Ag(2) peak caused by the presence of natural isotopic substitutions (al-

though they are not resolvable as shoulders at RT, as they were at 9 K in

Fig. 5.9). The powder of the isotopically substituted sample (30%) at RT

in Fig. 5.12 shows a peak with a maximum shifted to 1450 cm−1 which

is in agreement with Eq. 5.3), and a larger broadening than the natural

sample (spanning ∼ 20 cm−1) produced by the different isotopic versions

of the molecule. As with the natural sample, the individual isotopic ver-

sions cannot be distinguished due to the overlap and broadening of the

individual peaks. The average SERS signal over 1.6×104 spectra at 80 K

from the maps shows a distinct peak at approximately the same energy,

but slightly narrower compared to room temperature (due to the sharp-

ening effect of temperature on anharmonic contributions). It is worth

noting that the inhomogeneous broadening of the peak in this case has

its main contribution from the isotopic spread of the molecule, rather

than interactions with the surface (which is the more classic contribution

studied in Ref. [51]. By carefully going through the data it is possible

to recover tens of single-molecule spectra per map. Examples of these

spectra are given at the bottom of Fig. 5.12. The average of these sharp

SM-SERS events for all the maps recovers the average spectrum, and

they span in frequency over the entire ∼ 20 cm−1 range where SM-SERS

spectra are expected. In Fig. 5.12 the SM-SERS spectra have been nor-

malized in intensity, but in reality they span a range of intensities that

can be quantified into a SERS differential cross section (by comparison

to a standard), and can be transformed into a SERS enhancement fac-

tor (EF) with the help of the bare differential cross section; this will be

the topic of the next section. In addition, the SM-SERS spectra show
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characteristic widths of ∼ 4 − 5 cm−1 and this turns out to be much

broader (by a factor of ∼ 2) compared to SM-SERS spectra of natural

C60 on the experiments conducted before in Section 5.5.1 where most of

the time a molecule of pure 12C60 is detected. We attribute this inter-

esting fact to an isotopic-disorder induced homogeneous broadening of

the peak. Isotopic-disorder induced broadening is well known in crystals;

including diamond which involves also combinations of 12C and 13C [128].

In short, our interpretation is that the isotopic disorder is a second order

correction for the frequency (which only depends on the total mass), but

it becomes the leading correction for the broadening by “turning on”

anharmonic interactions.

As a concluding remark, these SM-SERS experiments on isotopically

enriched C60 reveal an interesting and unique aspect of spectroscopy. In

the vast majority of cases, natural (and even artificial) isotopic effects

have a very small contribution to the inhomogeneous broadening of a

peak in SERS conditions, which is dominated by other environmental

factors like the interaction with the surface as we have seen in Chapter 4

and Ref. [51] and in that framework it is possible to get from the statistics

of signals a small minority of cases where two or three molecules are seen

simultaneously within the inhomogeneous broadening of a peak. Hence,

these minority signals represent the simultaneous observation of a few

single molecules which are distinguished in the case of Ref. [51] by the

different environmental conditions. In a way, the case at hand here is

on the opposite extreme: the main contribution to the inhomogeneous

broadening of the average SERS peak in Fig. 5.12 is the isotopic spread

of the molecules. But except for that difference, the same phenomenol-

ogy applies; i.e. it should be possible to observe more than one molecule

simultaneously which are differentiated not so much by their environ-

mental differences but rather by different isotopic compositions. This is

shown explicitly in Fig. 5.13 where minority signals from two and three

molecules can be observed.
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Figure 5.13: SERS spectra displaying cases with different number of
molecules. Cases with one (top), two (middle) and three (bottom)
molecules can be identified in SERS maps. Cases with two or three
molecules are much rarer than single molecule ones, but can be eventu-
ally identified with sufficient sampling.

5.5.3 Enhancement factors

In addition to the discussion of the previous section, it is always worth

evaluating the enhancement factors (EF) for the observed SM signals to

see whether they fall within an acceptable range with respect to what is

known from electromagnetic theory [1]. Finding SM-EFs which would be
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orders of magnitude larger than 108 − 109 would be indicative of many

molecule spectra (the signal does not come from a single molecule but

a large collection of them). The way to quantify them is to compare

the integrated intensity of individual SM-SERS events with respect to

a signal of known Raman differential cross section, under the same ex-

perimental conditions. This is be done by characterizing the effective

scattering volume Veff of the objective and using nitrogen (in air) as a

reference [19].

Characterization of the ×100 LWD objective scattering volume

We have to compare the SERS intensity coming from one C60 molecule,

ideally at the center of the focal plane, with the Raman intensity ITot
ref

coming from N reference molecules at a concentration c within the scat-

tering volume Veff. Veff is defined as the volume from which the same

Raman signal would be observed if the excitation (considered here to

be Gaussian) and detection efficiency (of the spectrometer) were both

uniform and equal to their maximum I0 (intensity at the center of the

focal plane) and η0 (detection efficiency maximum when the scatterer is

a point source at the center of the focal plane). For reference molecules

with concentration c, The total Raman signal is:

ITot
ref = cNAσd

∫ +∞

ρ=0

2πρ

∫ +∞

z=−∞
I(ρ, z)η(ρ, z)dρdz (5.17)

where σd is the Raman cross section of the reference molecule over the

whole detection solid angle ∆Ωdet (determined by the numerical aperture

of the objective), z is the distance along the optical axis and ρ is the radial

distance from the optical axis.

I(ρ, z) is the Gaussian excitation profile:

I(ρ, z) = I0
w0

2

w(z)2 exp

(
− 2ρ2

w(z)2

)
(5.18)
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where w(z) is the spot size, w0 is the waist of the Gaussian beam. The

total power P0 of the Gaussian beam is:

P0 =
πw0

2

2
I0 = AeffI0 (5.19)

Aeff is called the effective surface area of the Gaussian excitation.

The detection efficiency profile η(ρ, z) depends mainly on the size and

shape of the entrance slit. The dimension of the image on the entrance slit

is related to the actual dimension of the sample by a factor X (Objective

magnification and other magnification parameters). For the Labram and

a ×100 objective, X = 56.

η(x, y, z) =

η⊥(z) if − L/X ≤ x, y ≤ L/X

0 otherwise
(5.20)

where η⊥(z) is the axial detection efficiency, L is the half dimension of the

square pinhole. When the pinhole size is much larger than w0X, which

is easily the case when the pinhole is totally open (on the Labram this is

354µm), we can neglect the effect of the lateral detection efficiency and

we define an effective detection depth Heff such as:

Heff =

∫ z=+∞

z=−∞

η⊥(z)

η0

dz (5.21)

Eq. 5.17 then becomes:

ITot
ref = cAeffHeffNAσdI0ηspec

1

1 + ρk
(5.22)

where ρk is the depolarization ratio and ηspec is a factor describing the

overall efficiency of the Labram spectrometer. To know the scattering

volume of the ×100 LWD objective, we need to know Heff and Aeff.

To get Aeff, we measure w0 by measuring the slit (pinhole) size depen-

dence of the integrated intensity of the 520 cm−1 mode of Si with the Si

sample being in the focal plane of the objective. The integrated intensity
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of the peak as a function of L is given by:

I(L)

Imax

=
1

4

[
erf

(√
2

W0

(xc + L)

)
− erf

(√
2

W0

(xc − L)

)]

×

[
erf

(√
2

W0

(yc + L)

)
− erf

(√
2

W0

(yc − L)

)] (5.23)

where xc and yc are the coordinates of the center of the pinhole with

respect to the origin (intersection between optical axis and pinhole) if

the latter is slightly misaligned and W0 = w0X.

Figure 5.14: Slit size dependence of the integrated intensity of the
520 cm−1 of Si (red dots) and fit of the data according to Eq. 5.23 (black
line).

Figure 5.14 shows the data from Si. The fit yields: (xc, yc) = (30, 30)

in µm (the slit was slightly misaligned that day) and W0 = 28 µm, hence

w0 = 0.5 µm. Then Aeff = 0.392 µm2.

To get Heff we measure the axial detection efficiency η(z) by recording
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the integrated intensity of the 520 cm−1 peak of Si as a function of z

(focal depth) with the slit (pinhole) fully open. As the focusing adjust-

ment knob on our system does not have a stepper motor fitted to it, we

manually scanned through 120 z positions and recorded at each position

the Raman spectrum around the 520 cm−1 mode. Fig. 5.15 shows the

experimental data points. The pinhole being fully open:

Heff =

∫ +∞

−∞

η⊥(z)

η0

dz

=

∫ +∞

−∞

I(z, L)

Imax

dz

=

∑
i I(zi, L)∆zi
Imax

(5.24)

Eq. 5.24 yields Heff = 24 µm. Thus the scattering volume Veff for the

×100 LWD objective is Veff = 9.4 µm3.

Figure 5.15: z- dependence of the integrated intensity of the 520 cm−1

mode of Si with ×100 LWD objective.
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Single-molecule enhancement factors of the SM events of C60

There are 1.8× 108 nitrogen molecules in Veff (at room temperature and

normal pressure). Knowing that the 2230 cm−1 peak of N2 has a differ-

ential cross section (at 633 nm excitation) of 1.6× 10−32 cm2/sr [1], and

normalizing by integration times with respect to the actual experiments

in C60, we can put numbers to the SERS cross sections of individual sin-

gle molecule events. Finally, by using the experimentally determined bare

cross section for the pentagonal pinch mode
dσ

dΩ

)(Ag(2))

633 nm

= 7.2× 10−29 cm2/sr,

we can transform the SERS cross sections into SERS enhancement fac-

tors (EFs). The EFs depend obviously on the specific SM-SERS event we

are analyzing. The enhancement factors for the cases shown in Fig. 5.12,

for example, range from 6.5×107 to 1.2×108. These are perfectly reason-

able SM-SERS enhancement factors, comparable to those found in dyes

for similar experimental conditions [19]. SM-SERS enhancement factors

close to ∼ 1010 − 1011 (which are the maximum known to be compatible

with electromagnetic theory) are not seen for C60, but we believe it is a

real effect which is either related to the photostability of the molecule

or its inability to find the highest-enhancement hot-spots; based on its

much less favorable interaction with metallic colloids (compared to dyes)

or its larger size. Similar enhancement factors were also found for single-

molecule C60 events in the bi-analyte experiments with BPE. Overall,

the range of enhancement factors, plus the spectral characteristics, and

the frequency spread of the signals, all confirm and reinforce their iden-

tification as SM-SERS events of C60.

5.6 Conclusion

Besides the demonstration of single molecule detection for the iconic

molecule which is C60, we believe the results here highlight one more time

the universal character of SM-SERS as a technique, which has already

been demonstrated for extreme opposites in the range of cross sections

(spanning from resonant dyes [19] to non-resonant and biologically rele-

vant molecules [25]). In addition, our results show, as seen in Chapter 4
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the beauty and simplicity of single molecule spectra to reveal funda-

mental aspects of spectroscopy of molecules that would not be accessible

otherwise. An example of the latter is the observation of isotopic-induced

homogeneous broadening [128] in single molecule spectra. The full the-

oretical explanation of the isotopic-induced broadening goes beyond the

harmonic approximation and is not available at present. SM-SERS pro-

vides then the experimental motivation to explain phenomena like this,

that would remain hidden by ensemble averages in less sensitive types of

spectroscopies.
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Chapter 6

Photostability of dyes under

SERS conditions

This chapter presents the experiments investigating the photobleaching

dynamics of Nile blue adsorbed onto regular arrays of gold nanoparticles

under typical SERS conditions. Over time, we expect that both the Ra-

man and fluorescence intensities will decrease as the molecules are photo-

bleached; by measuring the time evolution of the SERS intensity we hope

to gain insight on how the photobleaching rate is modified by the metallic

substrate. Furthermore, as we will see in this chapter, with the presence

of the metallic nanostructures, the molecules that experience the high-

est local field enhancements should, on average, photobleach first. Thus,

in theory, measuring the time evolution of the Raman and fluorescence

intensities could ultimately give information on the enhancement factor

distribution.

6.1 Background and motivation

Photobleaching is a well documented subject in dye spectroscopy espe-

cially because of its relevance when one deals with fluorescent dyes as

probes. Fluorophores are typically used to stain tissues, cells or mate-

rials in a variety of analytical methods especially in biochemistry [129]

but are also used in Organic Light Emitting Diodes (OLED), solar pan-
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els, etc. Most dyes, under relatively strong resonant excitation tend to

photobleach, i.e. they undergo irreversible chemical alteration after some

time and hence stop fluorescing (or scattering Raman photons). As many

experiments involve the monitoring of a large number of molecules at a

time, this results in the decrease of the fluorescence/Raman intensity over

time as can be seen in Fig. 6.1 in the case of Nile blue in SERS conditions.

The effects of photobleaching of dyes are not always unwelcome; they are

indeed at the core of the Fluorescence Recovery After Photobleaching

(FRAP) and related techniques which are capable of quantifying the two

dimensional lateral diffusion of molecular thin films containing fluores-

cent dyes by monitoring the extinction of the fluorescence signal due to

bleaching and its recovery when still fluorescing probes diffuse through

the sample and replace the bleached ones [130].

Figure 6.1: Example of the decrease of the SERS signal of Nile blue over
time under continuous illumination by the laser. There is a fast initial
decay, then the decrease tapers off. Eventually (not shown), the signal
disappears.

The exact mechanisms which govern photobleaching are still not well
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understood in all their detail. There is however a conventional explana-

tion for photobleaching which involves inter-system crossing from the first

excited singlet state (S1) to the triplet state (T1) of the dye which has a

relatively long lifetime. From there on, the dye can bleach through inter-

action with another dye in its triplet state or with an oxygen molecule for

example[131, 132]. When one ignores saturation effects, the photobleach-

ing rate increases linearly with the incident power and, at a given power,

the observed decay in intensity of the signal (when monitoring a popula-

tion of equivalent molecules) is exponential with a single photobleaching

decay rate.

Figure 6.2: Schematics of the system studied in this chapter. A molecule
close to the gold surface at (1) will experience a different decay rate than
a molecule far from the metal and close to the ITO at (2).

It is then naturally interesting to investigate which changes in the pho-

tobleaching effects and rates are brought by the vicinity of a metallic sur-

face as it is relevant to the two growing fields that are SERS and Surface

Enhanced Fluorescence (SEF). SEF is the modification (enhancement or

quenching) of the fluorescence intensities and lifetimes for molecules ad-

sorbed on or close to (by a few nm) a metal surface [1]. A few studies

have been dedicated to this problem; metal-modified non-radiative decay

rates [27], spectral modifications in SEF [133], influence of photostability

in determining enhancement factors [29, 134, 135], single molecule pho-
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tobleaching [136] and photobleaching under SERS conditions [137, 138].

But a study focusing particularly on the photobleaching dynamics in

SERS and SEF has yet to be done. Our hypothesis is that, within the

model of photobleaching rates proportional to incident power (through

absorption rate and in the case where enhanced non-radiative electro-

magnetic decay is predominant), the molecules experiencing the highest

local field enhancement through the excitation of localized surface plas-

mons in the metal will have a higher probability of photobleaching than

the molecules which are not in the vicinity to a hot spot. The distribu-

tion in enhancement felt by different molecules is then expected to be

reflected in the intensity dynamics by a distribution of photobleaching

rates within the sample. We hope to be able to test this hypothesis by

measuring the time evolution of the SERS and SEF intensities of the dye

Nile blue adsorbed on gold nanodots arrays which constitute an ‘ordered’

SERS system, as uniform as possible. Figure 6.2 illustrates schematically

the experiment we carry out in this chapter. Nile blue is homogeneously

deposited on the gold nanoarrays SERS substrate. The incident laser at

λexc = 633 nm excites Nile blue resonantly as well as the localized sur-

face plasmons (LSP) of the arrays which have been chosen for their LSP

resonance to be in this spectral region. The size of the illuminated area

(which also produces the SERS signal) is ≈ 2 µm (in red on Fig. 6.2) and

is ten times larger than the typical diameter of a nanodot; hence the col-

lected signal will arise from molecules at a variety of distances from the

electromagnetic hot spots of the substrate, consequently experiencing a

variety of enhancement factors.

6.2 Photobleaching rate and modified pho-

tobleaching rate

6.2.1 A simple model for photobleaching

At low or moderate power, the conventional explanation for photobleach-

ing is via the inter-system crossing phenomenon, i.e. a transition between

the singlet and triplet states [131]. Let us consider a simple two-singlet
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Figure 6.3: Jablonski diagram representing the photobleaching process
in a simplified model. Possible relaxation of the electron from T1 to the
ground state S0 is ignored for simplicity.

states + one triplet state system representing the electronic states of the

molecule as shown on Fig. 6.3.

Let us define the following rates, expressed in s−1:

• Γ0
abs: the absorption rate; it is the number of photons absorbed

by the molecule per unit time. Γ0
abs is proportional to the in-

cident power density and to the absorption cross-section of the

molecule. Thus if Sinc is the excitation density (photon s-1m-2),

Γ0
abs = Sincσabs.

• Γ0
rad: the radiative decay rate; it corresponds to the probability per

unit time of emission of a photon through spontaneous emission by

the molecule in its electronic excited state S1.

• Γ0
NR: the non-radiative decay rate; the probability per unit time

for the molecule to undergo a non-radiative transition from S1 to

S0. Spontaneous emission is not the only relaxation path for an

electron from S1 to S0, there are non-radiative transitions from S1

to S0 and they may have several origins [1]. Their overall effect is

described by Γ0
NR. This is an intrinsic property of the molecule and

its solvent and there is no photon emission involved.

• Γ0
Tot: the total decay rate. It represents the true decay rate of the

excited state S1. Γ0
Tot = Γ0

rad + Γ0
NR.
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• Γ0
ISC: probability of inter-system crossing per unit time. Typically,

Γ0
ISC � Γ0

rad.

Let us define furthermore the fluorescence quantum yield Q0:

Q0 =
Γ0

rad

Γ0
Tot

=
Γ0

rad

Γ0
rad + Γ0

NR

(6.1)

The quantum yield is the proportion of excited electrons that decays

radiatively to the ground state. The quantum yield of Nile blue is Q0 =

0.27 in ethanol and 0.04 in water [7].

When the molecule is excited in S1, the probability of photobleaching

through inter-system crossing is then:

p0
B =

Γ0
ISC

Γ0
Tot

=
Γ0

ISC

Γ0
radQ

−1
0

(6.2)

When we ignore saturation effects, the number of excitation/relaxation

cycles per unit time is given by Γ0
abs. For each of these cycles, there is a

probability p0
B that the molecule crosses to the triplet state and photo-

bleaches. The total number of molecules N then decreases exponentially

with a photobleaching rate Γ0
PB:

N(t) = N0e
−Γ0

PBt with Γ0
PB = p0

BΓ0
abs = αSinc (6.3)

α being some proportionality constant.

Hence the photobleaching rate increases linearly with power and we

can give a phenomenological formula for the time evolution of the Raman

intensity:

I(t, Sinc) = I0e
−Γ0

PBt = I0e
−αSinct (6.4)

Equation 6.3 is valid when the excitation is uniform and all the molecules

experience the same power density; in practice this is not true for typical

laser beams and their non uniformity will result in a different ΓPB for
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different molecules.

6.2.2 Modified photobleaching rate in the presence

of the metallic surface

Under typical SERS conditions, the polarizable molecule radiates, not

in an infinite dielectric medium, but in close proximity to a metallic

surface. Absorption and spontaneous emission are modified. In order to

know how it affects the photobleaching rate defined above, let us take a

closer look at the several enhancement factors we can define for the local

field intensity and the emitted, radiated and total powers experienced by

the molecule when in the presence of the metal with respect to free-space

(molecule in an infinite dielectric medium) [1].

• The local electric field ~Eloc at the molecule’s position near to the

surface is modified and different from the incident field ~Einc. The lo-

cal field intensity enhancement factor is Mloc =
| ~Eloc|2

| ~Einc|2
. Absorption

is subject to the local field enhancement and then Γabs = MlocΓ
0
abs

for a molecule randomly oriented on the surface.

• The radiated power emitted in all directions by spontaneous emis-

sion is modified by a factor Mrad. The modified radiative decay

rate is then Γrad = MradΓ0
rad. Because of the optical reciprocity

theorem, we can assume that Mrad ≈Mloc.

• The enhancement in the total electromagnetic energy extracted

from the dipole (emitting molecule) is characterized by the total

electromagnetic enhancement factor MTot. It encompasses two sit-

uations from the point of view of modified spontaneous emission;

part of the electromagnetic energy will be emitted in the far field

(radiative) and part of this energy will be directly absorbed by the

metallic substrate, hence undetectable (non-radiative, even if me-

diated by photon emission). Hence, the modified total decay rate

for the excited state is now: ΓTot = MTotΓ
0
rad + Γ0

NR, where the

intrinsic (non-electromagnetic, non-modified) non-radiative decay

rate of the molecule Γ0
NR is added.
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With these definitions in mind, we can define the SERS and SEF

enhancement factors with their dependence on the excitation (λL) and

emission (λS) wavelengths [27]:

MSERS = Mloc(λL)Mrad(λS) , MSEF =
Mloc(λL)Mrad(λS)

Q0MTot

(6.5)

Within the |E|4-approximation of the enhancement factor [11], we can

consider that:

MSERS = M2
loc. (6.6)

The study of the ratio

REF =
MSERS

MSEF

= Q0MTot (6.7)

(through the ratio of SERS and SEF intensities), can give experimental

access to the total electromagnetic enhancement factor MTot [27].

We suppose that ΓISC is not changed by the presence of the metallic

surface as no emission/absorption of a photon is involved. Let us call

pB and ΓPB the modified photobleaching probability for a molecule in S1

and the modified photobleaching rate respectively.

pB =
Γ0

ISC

ΓTot

=
Γ0

Tot

ΓTot

p0
B

=
p0

B

Q0Mtot + 1−Q0

(6.8)

because we can write ΓTot = (MTot + Q−1
0 − 1)Γ0

rad. Hence, once the

molecule is in the excited state S1, the probability of photobleaching is

mainly governed and often reduced by an amount ≈ Q0MTot (which can

be large under SERS conditions).

However the modified photobleaching rate also contains contributions

from the enhanced absorption, i.e. many more excitation/relaxation cy-
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cles per unit time:

ΓPB = pBΓabs

= pBMlocΓ
0
abs

(6.9)

The modified photobleaching rate is still proportional to the incident

power through the dependence in Γabs. The modification of the photo-

bleaching rate then takes the form:

ΓPB

Γ0
PB

= Mloc
pB

p0
B

=
Mloc

Q0MTot + 1−Q0

(6.10)

For most dyes with a non-small Q0, the modified total electromagnetic

decay rate MTotΓ
0
rad will be much larger than the intrinsic non-radiative

decay rate Γ0
NR = (Q−1

0 − 1)Γ0
rad provided that Mloc � Q0. For Nile blue

in ethanol, Q−1
0 ≈ 4 and single molecule SERS gains of 106 are easily

achieved which means Mloc ≈ 103 � 4. Hence, Eq. 6.10 becomes:

ΓPB

Γ0
PB

≈ Mloc

Q0MTot

(6.11)

Two important remarks can be made here:

• If Mtot is dominated by radiative emission, then MTot ≈ Mrad ≈
Mloc and the modified photobleaching rate does not depend on Mloc

any more; different molecules experiencing different local enhance-

ment will exhibit the same photobleaching dynamics, within the

approximations of this model.

• If MTot is dominated by non-radiative emission of photons to the

metal (which is the case for Nile blue), Mloc � MTot and ΓPB can

be greatly reduced compared to the free-space case. Moreover, ΓPB

is then proportional to Mloc, which means that the photobleaching

rate will be larger for molecules subject to larger enhancement.

Similarly to Eq. 6.4, we can write a phenomenological formula for the

time-evolution of the SERS intensity for one molecule close to a metallic
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surface:

ISM(t, Sinc,Mloc) = I t=0
SM e−ΓPBt ∝ SincM

2
loce
−βMlocSinct (6.12)

β being some proportionality constant. Therefore, when many molecules

with different enhancements contribute to the signal, the time evolution

of the total SERS intensity will show a non-exponential decay:

ITot(t, Sinc) = I0
Tot

∫
ΓPB

f(ΓPB)e−ΓPBtdΓPB

∝ Sinc

∫ ∞
0

f(Mloc)M
2
loce
−βMlocSinctdMloc

(6.13)

with f(Mloc)dMloc the probability distribution of enhancement factors

on the surface [13].

The aims of the study presented in this chapter are to:

• Design the experimental methods: data acquisitions and back-

ground measurements.

• Check the model described in this section against the experimental

data.

• Determine whether the decay of the signal intensity reveals infor-

mation on the form of f(Mloc).

6.3 Experimental methods

This section presents the SERS substrate used for the study, the sample

preparation and the necessary steps which had to be taken in order to

analyze the data.

6.3.1 The SERS substrate: gold nanoparticle arrays

To carry out this study, a uniform and reproducible SERS substrate

was desirable. We used gold nanoparticle arrays which have been fab-

ricated by electron beam lithography at the ITODYS laboratory (In-
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terfaces, Traitements, Organisation et Dynamique des Surfaces) by Dr

Johan Grand in Université Paris-Diderot (France).

Figure 6.4: 50 nm gold nanodots on ITO arrays fabricated by e-beam
lithography. Each zone corresponds to a particular pitch.

The substrates consist of gold nanodots 50 nm thick on Indium Tin

Oxide (ITO) arranged in arrays of variable pitch: ITO is chosen for

Diameter [nm] Pitch [nm]
Zone 1 150 300
Zone 2 130 280
Zone 3 110 260
Zone 4 90 240
Zone 5 70 220
Zone 6 50 200

Table 6.1: Theoretical values of the particle diameter and array pitch for
each zone.

its optical transparency and electrical conductivity required for electron

beam exposure and Scanning Electron Microscopy (SEM) imaging. The

fundamental mechanisms of SERS on ordered arrays of gold nanoparti-

cles have been studied in detail in [139, 140], especially how varying the

size, shape and spacing of such particles influences their optical near field

properties (SERS enhancement) and far field properties (extinction spec-

tra). According to the Weitz’s phenomenological relationship [141] and

the work published in [139] for arrays of gold nanoparticles, the desired

maximum of the localized surface plasmon (LSP) resonance wavelength

λmax should be related to the excitation wavelength λexc and Raman
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scattering wavelength λRS for this excitation by (assuming there is great

regularity in the particles size and shape) :

λmax =
λexc + λRS

2
(6.14)

Thus, when exciting Nile blue resonantly at λmax = 633 nm and focusing

on the Raman mode at 590 cm−1 (λRS ≈ 658 nm), the LSP resonance of

the gold arrays should ideally be located at or near λmax ≈ 645.5 nm.

This is why, out of the 6 zones available on the substrate, zones 1 and

2 are particularly suited for SERS on the 590 cm−1 mode of Nile Blue

at 633 nm as can be seen in Fig. 6.5 with LSP resonances for zone 1 at

680 nm and zone 2 at 650 nm.

6.3.2 Sample preparation

The gold nanonarrays were cleaned in ethanol then dipped into a solution

of Nile blue A 1.2 µM then rinsed (by dipping) into ultrapure water and

dried under N2 flow.

6.3.3 Acquiring Raman and SERS spectra with the

1 MHz standard mode of the CCD detector

The CCD detector

The experiments of this chapter were made using the CCD (charge-

coupled device) detector in the 1 MHz standard mode (whereas the mea-

surements of the previous chapters were all recorded with the CCD de-

tector in the 20 kHz mode). Our CCD detector is a Symphony CCD

detection system LN2 series from Horiba-Jobin Yvon. The data conver-

sion speed can be set to 20 kHz or 1 MHz via the software Labspec. In

order to access the dynamics of the SERS signal of Nile blue, we need to

collect data as a function of time and the speed and accuracy of the data

collection is hence crucial.

The spectrometer is set to a specific grating position by the software

(Labspec); when the experiment is running, the CCD collects data only
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(a) SEM images of zones 1 and 2. The scale bar is 100 nm on the left and
200 nm on the right.

(b) UV-visible extinction spectra of Zones 1 and 2

Figure 6.5: In (a), the real diameters of the particles were measured to
be ≈ 165 nm for zone 1 and ≈ 140 nm for zone 2. In (b), the difference in
extinction resonance position between the two zones can be appreciated.
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from the range of wavelengths that reach the detector for a length of time

IT (integration time). Each column of pixels (or binned columns) of the

CCD is then mapped to a single wavelength (the step between these

wavelengths or resolution is set by how dispersive the grating is). The

resulting data is a spectrum with a signal intensity value for each column

of pixels. In a time dependent experiment, the experiment is repeated

throughout a specific time period with a time step between acquisitions

δt′. The data is stored as a list of spectra as a function of time. When the

chosen step between 2 acquisition is small enough (typically ≤ 0.1 s), the

CCD runs in the so-called kinetic mode; the shutter in front of the CCD

opens at the beginning of the time-dependent experiment and closes once

all the spectra have been recorded.

When carrying out such a time-dependent experiment, one has to set

up some parameters via the software:

* The integration time IT′, which is the amount of time the CCD is

exposed to light AND acquires data. The knowledge of the accurate

integration time corresponding to a spectrum enables one to make

meaningful comparisons between spectra.

* The time interval ∆t′ between the start of one accumulation to the

start of the next accumulation. ∆t′ has to be larger than IT′+ tread

where tread is the read-out time of the CCD. When ∆t′−IT′ ≤ 0.1 s

the CCD runs automatically in kinetic mode.

The data is saved via Labspec in a text file containing a series of

spectra with the corresponding times t′ at which their recording has

begun. We expect that the time evolution of the SERS/fluorescence

signal of Nile blue on the gold nanoarrays substrates will involve many

decay rates (see Sec. 6.2.2) and the characteristic decay times experienced

by each molecule likely span several orders of magnitude (from ns to

s). As our set-up (in 1 MHz mode) does not allow for integration times

smaller than 0.027 s, if we want to access the dynamics at full incident

power P during the first 0.03 s, then, within the model presented in

Sec. 6.2 it should be equivalent to study the dynamics of the system at
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P/10 for the first 0.3 s, etc. To be able to compare spectra at different

powers and integration times between each other we need to know:

• What the real integration times are. Are the values saved in the

data files reliable?

• What the actual incident power is when optical density filters are

used.

Integration times and CCD latency in the 1 MHz mode Standard

: Labspec versus Reality

The Analog to Digital Conversion (ADC) speed can be set by choosing

the rate at which the data is read off the CCD detector. For maximum

signal-to-noise ratio, the ADC speed was set to 20 kHz for the experi-

ments presented in the previous chapters; however, for the study of the

present chapter, the use of the maximum frame rate (1 MHz) is desirable

as it reduces the latency between the acquisition of consecutive spectra.

When carrying out time series of measurements with Labspec in ki-

netic mode, several issues appear: firstly the measurement does not start

exactly when the shutter opens (the acquisition starts after a certain tin

after the shutters opens). Then, the Labspec times for each spectrum are

incorrect (there is a dilatation factor r between the real times t and the

times given by Labspec in the data file t′. Finally, the Labspec integra-

tion times are incorrect and governed by the time interval ∆t′; in short,

for the same specified integration times IT′ for each spectrum but two

different time intervals ∆t′, two time-series experiments will in fact have

two different real integration times IT. Labspec times are not reliable.

A quick experiment consisting of recording Raman time-series on the

520 cm−1 mode of silicon for different integration times and different time

intervals between spectra and comparing the intensity of the peak each

time yielded the following result: in the 1 MHz Standard kinetic mode

of the CCD, Labspec ignores the user specified step size between spectra

(∆t′) and the real integration time IT for each spectrum will be:

IT = ∆t = IT ′ + 0.016 s (6.15)
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where ∆t is the real interval time between two consecutive spectra in a

time-series, IT ′ is the integration time set by the user via the software and

tread = 0.016 s in the high frame rate 1 MHz mode. Eq. 6.15 enables us

then to set up the time-series properly and accordingly scale the spectra

by integration times when analyzing the data.

Moreover, the quick study above also enabled us to get tin for each

configuration. It takes around a second for the data acquisition to start

when the shutter was opened. Thus we started each time-series for the

NB dynamics study with the laser off and turned it on after about 2

seconds.

6.3.4 Optical density filters comparison

Beside the real integration times, the knowledge of the incident power on

the sample is important, especially when one wants to compare spectra

between each others. In order to modulate the incident power on the

sample, optical density (OD) filters are placed on the optical path at the

exit from the laser. Table 6.2 shows the effect of the available OD filters

on our system.

Optical Density Intensity [counts/s] − log(I/Iref) I/Iref

D0 a 210425 b 0 1
D0.3 119468 0.25 0.57
D0.6 58133 0.56 0.28
D1 20754 1.0 0.099
D2 1999 2.02 0.0095
D3 335 2.8 0.0016

Table 6.2: Optical density filter effect on the incident power at 633 nm.

aStandard notation of the filters: D followed by the log10 of the nominal factor by
which the power is decreased.

bThis value was used as Iref.

These values were obtained with the He-Ne excitation λinc = 633 nm,

the ×50 LWD objective on a silicon wafer. A fit of the 520 cm−1 peak

of silicon to a Lorentzian profile was done for each power to get the

intensities. Experiments were done at D3 to D0 with different integration
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times (given in Table 6.3).

Table 6.3 summarizes the scaling factors regarding integration times

and incident powers on the sample which will be use to analyze the data.

When the spectra are rescaled (time and intensity) they will be as to be

equivalent to D0 incident power with 1 s acquisition time.

Power Real IT (s) Power factor Total scaling factor: D0 for 1 s
D3 1.02 628.13 615.44
D2 0.515 105.23 204.21
D1 0.117 10.14 87.17
D0 0.026 1 38.46

Table 6.3: Power and time scaling factors used for the experiments of
this chapter.

6.3.5 Background corrections

Notch filter response function
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Figure 6.6: Notch response function over the range of wavenumbers of
interest.
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We measured the notch filters response function as the ratio:

Notch response function =
white light spectrum with notch

white light spectrum without notch
(6.16)

All the data were corrected by the notch response function, the latter

being measured on the same day the SERS experiments were done.

ITO+Au background

Figure 6.7: Bare zones 1 and 2 background signal. λinc = 633 nm, Pinc =
2.5 mW, 1 s acquisition, averaged over 5 spectra.

We then measured the background created by the bare gold and ITO

(before Nile Blue deposition) for zone 1 and zone 2; see Fig. 6.7. These

backgrounds affect the total background of the SERS signals of NB, es-

pecially at high powers and need to be subtracted from the data.

6.4 Preliminary experiments and results

As a large part of the work was dedicated to developing experimental

methods, only preliminary studies of photobleaching were carried out
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and they are presented in the following section.

The experiments consist of recording time series of SERS spectra of

Nile blue deposited on the gold nanostructures presented in Sec. 6.3.1 at

different incident powers. We focus particularly on the time evolution of

the 590 cm−1 and 1650 cm−1 modes’ average SERS intensities and that

of the fluorescence background.

Figure 6.8: Evolution of the SERS intensity of the 590 cm−1 mode of Nile
blue at D0. The step between two consecutive spectra was 0.03 s. The
decay in intensity is non-exponential.

The excitation wavelength used is the 633 nm line from the He-Ne

laser. For the purpose of these experiments, the Labram spectrometer

is equipped with a double notch filter to remove stray light coming from

reflections and scattering of the sample and access the true background

of the signal. The CCD is run in the 1 MHz Standard mode. We use the

lower resolution 300 l/mm gratings in order to visualize the 590 cm−1 and

1650 cm−1 peaks of NB in the same spectrum. The light is focused on

the sample and collected by the ×50 LWD objective (N.A. 0.35) which

corresponds to an illumination diameter of≈ 2 µm at focus on the sample.
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In this section the incident power on the sample at D0 (no filter)

is always PD0 = 6.5 mW and hence Sinc ≈ 1 mWµm−2. The laser was

focused on different points of Zone 2 and several time-series of spectra

were recorded for powers from D3 (PD0/1000) to D0.

Figure 6.9: Time evolution of the ratio R1650/590 of SERS intensities
measured at D2.

Fig. 6.8 shows the typical evolution of the SERS intensity of the

590 cm−1 mode of Nile blue at maximum incident power. In order to

get the values for the SERS intensities, the spectra were corrected for

the notch filter response, then a linear fit of all the spectra of the series

was performed (see Sec. 3.2) with the average spectrum of the time-series

used as reference. These very fast fits yield for each time-series, the

SERS intensities of the 590 cm−1 and 1650 cm−1 modes together with

the background height (approximated to being linear over the width of

the peaks) underneath the peaks. We can can see on Fig. 6.8 that the

decay in intensity is strongly non-exponential; it confirms what we ex-

pected, i.e. that the global photobleaching dynamics of the molecules

consist of many decay rates.

The ratios of the SERS intensities R1650/590 = ISERS(1650)
ISERS(590)

were found
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to be constant over time and for the four different powers; this is a sign

that the plasmon resonance does not change over time, so the nanodots

do not change their shape significantly over laser excitation (see Fig. 6.9),

as expected.

In Fig. 6.10 the evolution of the ratios RSERS/SEF = ISERS

ISEF
for the

590 cm−1 and 1650 cm−1 modes for the four powers is plotted. This ratio

is proportional to the ratio of enhancement factors REF defined in Eq. 6.7:

RSERS/SEF =
REF

RRaman/Fluo

(6.17)

where RRaman/Fluo is the ratio of Raman over fluorescence intensities

for the bare molecule. Hence, according to Eq. 6.7, the evolution of

RSERS/SEF reflects the evolution of MTot, the total decay rate enhance-

ment. We can see on Fig. 6.10 that the ratios of intensities vary by just

a factor of 2-3 for the four considered powers. According to Eq. 6.11, if

MTot was dominated by radiative emission (i.e. the plasmon resonance

mainly affects the radiative processes), then MTot would be of the or-

der of Mloc; in that case we would see a strong decay of many orders of

magnitude of RRaman/Fluo over time. The evolution of RRaman/Fluo rather

suggests that MTot is dominated by non-radiative enhancement. More

experiments are needed to understand which phenomena are causing the

secondary variations of MTot at D3, D2, D1 powers but not at D0. This

could be caused by an orientation effect of the molecule or by a multilayer

effect for example.

Because of experimental limitations such as the fact that our CCD

does not allow for integration times smaller than 0.027 s ( which would

be necessary to access faster decays) and the fact that, on the other

hand, we do not want to (or can not) carry out experiments for 104, 105,

106, (etc.) seconds, we will use low power excitation to access the fast

initial photobleaching dynamics and high power excitation to access the

slowest rates of the distribution. Our model of photobleaching of decay

rates proportional to the incident power (see Eqs. 6.4 and 6.13), implies

indeed that the photobleaching dynamics at, say, 10Sinc should be 10
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Figure 6.10: Dynamics of the ratio of SERS and SEF intensities for the
590 cm−1 (blue) and 1650 cm−1 (green) modes for the four powers D3-D0.
The integration times for each power are given in Table 6.3.

times faster than the dynamics at Sinc, etc... In other words, taking into

account the real power factors between the OD filters given in Table 6.2,

the four intensities I0, I1, I2 and I3 defined by:

I0(t,D0) = I(t,D0)

I1(t,D0) = 10.14× I(10.14t,D1)

I2(t,D0) = 105.23× I(105.23t,D2)

I3(t,D0) = 628.13× I(628.13t,D3)

(6.18)

should be equal, the intensities being all expressed in number of photons

(or counts) per second. Figure 6.11 presents the 4 intensities of Eq. 6.18

on the same graph. While I3, I2 superimpose well, we can see that for

higher incident powers (I1 and especially I(t,D0)) the model starts to

fail (the intensity at D0 does not satisfy Eq. 6.18); the step down which

is observed at D0 suggests that there is another effect which is not taken
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into account by our simple two-level model. The existence of a thresh-

old in the incident power above which all molecules are instantaneously

destroyed would explain such a shift. More experiments are needed in

order to elucidate such a phenomenon.

Figure 6.11: Comparison between I(t,D0), I1, I2 and I3.

As a concluding remark, in analogy with the expression of the in-

tensity decay rate of the bare molecule (Eq. 6.4), we can define a phe-

nomenological instantaneous decay rate Γ(t) for the decay of the total

SERS intensity:

If ISERS = I0e
−Γ(t)t, then ln(I/I0) = −Γ(t)t

Γ(t) =
−d(ln I(t))

dt

(6.19)

Figure 6.12 shows a plot of Γ(t) for all four powers. The measurements

were done at different points on the sample for different powers. The

times and intensities were all scaled with respect to D0, 1 s integration

time. We can see that the system presents photobleaching rates spanning

3-4 orders of magnitude; this constitutes a very peculiar photobleaching

behavior and it is the first time it has been observed.
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Figure 6.12: Instantaneous intensity decay rates Γ(t). The times and
intensities were scaled with respect to the times and intensities at D0.

6.5 Conclusions and future work

In conclusion, our simple two-level model and formalism for the photo-

bleaching modified in the presence of a metallic substrate seems to be

satisfactory for low powers (D3, D2 and D1 to some extent) excitations;

i.e. the photobleaching rate ΓPB of a molecule near to a metallic surface is

proportional to the local field enhancement factor Mloc and the incident

power. From there, it means there is an integral relationship between the

time evolution of the total SERS (or SEF) intensity and the enhancement

factor distribution f(Mloc) (Eq. 6.13). So, in principle, it should be pos-

sible to convert the intensity profile we get experimentally to a decay

rate/enhancement factor distribution. However some numerical pitfalls

are to be expected due to the integral form of the intensity.

Our model seems however to fail at describing the phenomena occur-

ring at D0, maximum power (1 mWµm−2). There seems to be some kind

of threshold effect that our simple model does not take into account.

This could be due to the heating of the gold nanodots or there could

be a maximum local field intensity that a molecule at a hot spot could
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sustain without breaking. Further experiments will be needed in order

to address this issue.
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Conclusion and outlook

The work presented in this thesis shows how SM-SERS can be a powerful

tool to access subtle spectroscopic phenomena of molecules and in the

last chapter paves the road to the understanding of photostability of

probes under SERS conditions.

In Chapter 4, we see that SM-SERS spectra contain information

about the homogeneous broadening of the vibrational modes of molecules

which is lost in the average SERS spectrum. Due to the different inter-

actions with the metallic substrate and the environment each molecule

participating in the signal experiences, the central frequencies of each fin-

gerprint mode “wanders” and is detected at slightly different positions.

This results in a general broadening of the detected peaks, which can be

much larger than the intrinsic homogeneous broadening. In the case of

the fingerprint mode of the widely used dye Nile blue, the effect of these

frequency variations is dramatic. It also provides an argument for the

detection of single molecules; indeed if some events are much sharper in

width than the average spectrum, they have to be single molecule events.

Being able to measure the intrinsic broadening of the 590 cm−1 mode of

individual Nile blue molecules by SERS has enabled us to unravel the

strong temperature dependence of the width of single molecule events,

temperature dependence which was absent on the overall average spec-

trum, hence completely masked by ensemble-averaging. Our temperature

dependent measurements were consistent with the vibrational energy ex-

change theory of the broadening and suggest that the 590 cm−1 mode of

Nile blue likely relaxes its population or phase through the excitation of

vibrations in the silver substrate.

From here, future work could consist in the study of the homogeneous
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broadening of other molecules of interest and of other modes as it can

ultimately be linked to the interactions of the mode with the metallic

surface or with other intramolecular modes. There are also some out-

standing issues: what is the influence of the electronic resonance on the

homogeneous broadening, if any? Are there situations in which the ho-

mogeneous broadening of modes in the anti-Stokes part of the spectrum

is different from the Stokes one?

In Chapter 5, we prove that the detection of the iconic C60 at the

single molecule level is feasible by SERS. Our method can be seen as an

extension of the bi-analyte method on isotopically edited partners as it

relies on the dramatic effects that isotopic substitution of one or more
12C by 13C has on the Raman spectrum of C60. The frequency shift of

the Raman active mode Ag(2) of C60 induced by isotopic substitution

is substantial and proportional to the number of 12C atoms which have

been replaced. Hence, in the case of the sample of C60 we studied whose

isotopic content has been enriched, the resulting frequency shifts broaden

dramatically the width of the Ag(2) mode on the average Raman spec-

trum, in a similar manner to the inhomogeneous broadening described in

Chapter 4. Single molecule events thus have a distribution of frequencies

for this mode spanning a large spectral window, are all much sharper

than the broad average and ultimately give us the ability to resolve dif-

ferent isotopic versions of C60, one by one, at the individual molecule

level.

Generally, in SERS, homogeneity is very often obtained at the expense

of electromagnetic SERS gain. Most of the SM-SERS studies rely on the

statistical likelihood individual molecules will find the places of highest

enhancement in the sample, hence rely on the “disorder” of systems such

as colloids. Many spectra in the experiments of Chapter 4 were events

sharper than the average but still much larger than the “threshold” width

we found at each temperature. Some of these larger events may have been

single molecule events but no statistical argument has enabled us to label

them as such. In that case, these larger homogeneous widths could be

interesting to study, but some more control over the SERS substrates is

needed.
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Once more control of the substrate is achieved in the future, if SM-

SERS is to be widely used, one critical aspect will be that of the stability

of molecules. Photobleaching is the main shortcoming of fluorescence

but it has also a major bearing on SERS experiments on resonant probes

as it affects the apparent SERS cross-section. In Chapter 6, we applied

a simple two-level model of photobleaching together with the formalism

for the different kinds of enhancement in SERS and SEF that have been

developed by our group to the photostability of Nile blue under SERS

conditions. For the aim of the study, Nile blue was deposited onto arrays

of gold nanodots which constitutes a more homogeneous system than the

SERS substrates we used in the two previous chapters. By analyzing the

dynamics of the decay in the SERS intensity, we found that, in the limit

of low incident power density, our model was satisfactory. The surface-

modified photobleaching rates of the different molecules contributing to

the signal are proportional to the incident power and to the local field

enhancement factor these molecules experience. These rates span four

orders of magnitude and their distribution should reflect the distribution

of enhancement factors on the surface.

Single molecule SERS is still a very young technique and the field has

already grown enormously since 1997 and the heated debates of the last

10 years. It will soon reach a more established stage and be used to unveil

phenomena that were out of our reach with measurements of ensemble-

averaged signals. Understanding the spectroscopic nature and behavior

of molecules adsorbed onto metallic surfaces is important to SERS as it

can lead to a better understanding of the mechanisms underlying it but

is also of tremendous value to surface sciences in general.
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