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Abstract

In this thesis we shall present a collection of research results about phenomena that

lie at the interface between quantum physics and general relativity. The motivation

behind our research work is to find alternative ways to tackle the problem of a

quantum theory of/for gravitation.

In the general introduction, we shall briefly recall some of the characteristics

of the well-established approaches to this problem that have been developed since

the beginning of the middle of the last century. Afterward we shall illustrate why

one would like to engage in alternative paths to better understand the problem of

a quantum theory of/for gravitation, and the extent to which they will be able to

shed some light into this problem.

In the first part of the thesis, we shall focus on formulating physics without

Lorentz invariance. In the introduction to this part we shall describe the motiva-

tions that are behind such a possible choice, such as the possibility that the physics

at energies near Planck regime may violate Lorentz symmetry. In the following part

we shall first consider a minimalist way of breaking Lorentz invariance by renouncing

the relativity principle, that corresponds to the introduction of a preferred frame,

the aether frame. In this case we shall look at the transformations between a generic

inertial frame and the aether frame still requiring the transformations to be linear.

The second step is to establish the transformations for the energy and momentum

in order to define some dynamics and design possible experiments to test such as-

sumptions. As an application we shall present two compelling models that minimally

break Lorentz invariance, the first one only in the energy-momentum sector, the sec-

ond one in the transformation between inertial frames. Following along the line of

physics without Lorentz invariance, we shall next explore some threshold theorems

in both scattering and decay processes by considering only the existence of some

energy momentum relation E(p), without making any further assumption. We shall

see that quite a lot can be said and that 3-momenta can behave in a complicated

and counter-intuitive manner.

In the second part of the thesis we shall address the thermodynamics of space-

time and the important role played by entropy. In the introduction we shall outline

the idea of induced gravity, which is the motivation behind this possible interpre-



tation of general relativity as a mean field theory of some underlying microscopic

degrees of freedom. In the next chapter we shall partially review Jacobson’s thermo-

dynamic derivation of the Einstein equations and generalise it to a generic birfucate

null surface. The interesting result we shall see is that, given the construction of the

thermodynamic system via some virtual constantly accelerating observers, we can

assign a “virtual” definition of Clausius entropy to essentially arbitrary causal hori-

zons. To conclude this part we shall present some of the mathematical properties of

entropy. In particular we shall focus on the simpler case of single-channel Shannon

entropy and study under which conditions it is infinite, even though the probability

distribution is normalisable.

In the last part, we shall describe a proposal for a space-base experiment to test

the effects of acceleration and gravity of quantum physics. In principle, the results

of such an experiment could shed some light on fundamental questions about the

overlap of quantum theory and general relativity; at the same time, they may enable

experimentalists interested to implement quantum communication into space based

technology, to correct adverse gravitational effects.

We conclude with a brief discussion of lessons learned from these different ap-

proaches.



c©2014, Valentina Baccetti
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The journey is long

and the path is pathless

and one has to be alone.

There is no map and no one to guide.

But there is no alternative

One cannot escape it,

one cannot evade it.

One has to go on the journey.

The goal seems impossible

but the urge to go on it is intrinsic.

The need is deep in the soul.

Really, you are the urge, you are the need

and consciousness cannot be otherwise

because of this challenge

and because of this adventure.

So do not waste time – begin.

Do not calculate – begin.

Do not hesitate – begin.

Do not look back – begin

And always remember old Lao Tzu’s words:

A tree that takes both arms to encircle

grows from a tiny rootlet.

A many-storied pagoda

is built by placing one brick upon another brick.

A journey of three thousand miles

is begun by a single step.

OSHO - A Cup of Tea

v



vi



Acknowledgments

And here it comes, the moment to thank all the people who helped me to achieve

this great goal that a PhD is. First things first, I would like to thank Matt, my

supervisor, for all the support and guidance you have given me in the last three

years. I have truly appreciated all the scientific discussions we have had and all

the work we have done together. I hope I have been able to grab even the tiniest

amount of your passion for science and for research, and your huge knowledge. I

am profoundly grateful to my officemates, Prado and Kyle. We have shared part of

this journey together, with its ups and downs. I wish you good luck for your future

careers, but knowing you guys, I am sure your future will be bright. Another key

ingredient in the completion of this thesis is the RQI group in Nottingham. Ivette,

Carlos, Nico, Ant, Gerardo, Mehdi, David, Jason, Giannis, Angela, thank you guys

for having welcomed me in your group of “metrology boys and space girls” so quickly.

I have learned so much about physics, team work and friendship in the six months I

have spent with you. I hope I can visit you soon again. I also want to thank Nicolas

Menicucci for all the scientific discussions we have had, for all the physics you have

taught me, and for the support you gave me when I needed it more. I want to

thank all the staff members at the School of Mathematics, Statistics and Operations

Research at Vic, in particular my secondary supervisor Mark McGuinness; Prema,

Kelsey, Ginny and Tania, and all the members of the school office, your help was

always more than appreciated and your smily faces made several of my mornings at

Uni. I also want to thank Steven Archer for the nice support you have given me for

the tutoring and marking, and Radek for being such a nice guy.

I also want to thank Vladimir, Xenia and Sviatoslav Pestov, for the Irene Pestov’s

Memorial Scholarship, set up in memory of their late wife and mother Irene Pestov,

of which I am a humble recipient.

And now let us go to all the friends who have supported me with their company

and laughs during these three long years. The biggest thank you goes to Filippo and

Giulia S., for basically being my family here in Wellington. All the movie nights we

vii



have had together, the holiday in Coromandel under the tropical typhoon with your

amazing families, the Weta party, the Sundays at the farmers market, all the simple

moments we have shared, have been incredible for me. I am more than glad to see

you both succeeding in your dreams. Also I need to thank Patato and Kali; without

you little silly creatures, life would not be as entertaining at Rodrigo Rd. A big hug

and thank you go to Elisa and Raphael, with whom I have had delicious dinners and

interesting conversations based on physics and rum (at some stage more rum than

physics). Thank you Elisa for making me laugh with your blog every time I needed.

Also a big thank you to Cristina, Lorena, Marcello, Sonja, Giulia M. and Rachele,

for all the time we have spent together, and for reminding me that there is a world

outside; Marcello for the beautiful experience on the Milford track and the motto

“stai sereno”. Roberto for the amazing fresh pasta and pizza you make at Merkato

Fresh and for the spirit of Rome you brought to Wellington, every time I visit you I

feel at home. Marco Z., I am very glad to see you pursuing your dreams, and I am

more than thrilled for you, I hope I can help you find some interesting science that

you can show in one of your documentaries. Daniel and Juan, my friends of many

chats and coffees, your latin warmth made me feel like at home, your friendship is

very dear to me.

Lia, for being my family in Nottingham, I really appreciated all the times we

went to Tesco around midnight, just because we wanted. The time we spent together

was some of the best in my life. I hope you have enjoyed it too. Manuel, Kai,

Wilhelm, Giannis, Benito, Anna, Rowan, Gael, Richard, Nico, Hugo, Giulia G.,

Silvio, Simona, Michalis, Sid, Sara, Ant, Luis, Cristiano, Daniele and Federica for

all the parties, improvised dinners and picnics in Wollaton park. You made me

spend a phenomenal summer in the UK, I really want to meet you all at some stage

and I deeply miss you. Do not worry Giannis, I will start Salsa classes as soon as

I finish this thesis. (Thank you Daniele for your pressure cooker, the cast iron pot,

and the bike, I think I have lost count of all the things you lent us.) A big thank you

for all my rock climbing friends in Nottingham and in Wellington. Anna, Rowan,

Lia, Manuel, Gael, Daniel, Richard, Michalis, Wilhelm, Ellie, Gemma, Gabriela,

Francesco, Achim, Romain, Fabrizio, Marco and Anya, for being awesome fellows in

my attempts to defy gravity also in the outdoor. I have loved our trips to the gym,

to the Peak District, and Turakirae Head, I would love to climb with all of you one

day. Thank you for the great example and the inspiration. And Vacho, for our silly

conversations on Skype, thank you for all the times you were there for me, and for

contradicting each and every single thing I said (and the fantastic music you have

given me in these years). I’m very grateful to my very dear friends and mentors

viii



Lorenzo Sindoni and Gabriele Palombo. The endless conversations we have had,

have always been a source of inspiration to me and have deeply shaped my path and

thoughts.

Lastly the most important people in my life. Mum and dad, thank you for all

your support in these years that I have been so far away from you. I would not

be here without all the things you have taught me, without all the love you have

given me. I hope I can show you the New Zealand beautiful landscape and rough

sea one day. Also I need to thank my brothers, Claudio and Fabrizio, for being ...

awesome brothers, for sharing several passions with me, and for all the times you

had made me laugh. And a big thank you to your wife Bea and fiancé Veronica.
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Chapter 1

Introduction

The historical development of science is characterised by several revolutions, to which

one can refer as paradigm shifts1. As is inherent in their definition the two last

paradigm shifts, that had occurred at the beginning of the last century, had com-

pletely changed not only the interpretation of the physics world, but also the entire

worldview within which it exists.

The theory of general relativity (GR) formulated by Albert Einstein in 1915, and

the theory of quantum mechanics formulated during the first half of the twentieth

century, could be considered the two greatest achievements of physics of the past

century. Both describe in a comprehensive way the physical phenomena that fall

under their domains, respectively cosmology and atomic and subatomic particles

physics, and both do so to an astonishing degree of accuracy.

Yet they offer us strikingly different pictures of physical reality in which the de-

scription of “reality” given by the two theories seems to be quite in contradiction.

Indeed, quantum mechanics and general relativity consist of two paradigms them-

selves. Quantum mechanics and its relativistic counterpart, quantum field theory,

are formulated using quantities called dynamical fields on a fixed background, called

Minkowski space-time, and they have an intrinsic probabilistic nature.

On the other hand the main and most interesting features of general relativity

are the completely background independent formulation and the interpretation of

gravity as a geometric property of space-time; GR is also a classical theory —

1A paradigm shift is the definition of scientific revolution given by the epistemologist and historian

of science Thomas Kuhn in his book The Structure of Scientific Revolutions [190]. According to

Kuhn, a paradigm shift occurs when the universally accepted theories, or paradigms, show anomalies

that cannot be explained within paradigm itself. Kuhn identifies the paradigm not simply with the

current theory, but the entire worldview in which it exists, and all of the implications which come

with it.
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CHAPTER 1. INTRODUCTION

meaning it does not have any probabilistic/quantum behaviour.

For these reasons, these two theories turn out to be logically incompatible when

applied to systems where they are both non-negligible, such as particle-physics pro-

cesses at energy scales of the order of the Planck energy Ep ∼ 1019 GeV, therefore

excluding the possibility of describing the very first moments of the Universe or the

reality beyond the event horizon of a black hole2.

In principle one could keep this schizophrenic attitude and use the precise, geo-

metric picture of general relativity while dealing with cosmological and (certain)

astrophysical phenomena, while switching to the probabilistic theory of quantum

mechanics when working with atomic and subatomic particles. Indeed — and rather

unfortunately — the highest energy reached by our current technology, in the LHC

particle accelerator, is of “only” 14 TeV (14 × 103 GeV), while the highest energy

particles in nature ever registered, the trans-GZK cosmic rays3, can only reach

energies of the order of 1011 GeV, still eight orders of magnitude less that the Planck

scale, and consequently excluding any experimental access to energy regimes when

both theories come into play. (Furthermore the trans-GZK particles are extremely

rare, the total number of observed events between 1962 and 2008 ranging at a few

dozen at the most, hence making the possibility of understanding any new physics

rather difficult).

Nevertheless this picture is highly unsatisfactory from a conceptual point of view

as the two theories consist of two paradigms that live in contradiction to one another.

Certainly the successful quantum formulation and unification of three of the four

fundamental interactions (electromagnetic, strong and weak, excluding gravity) led

to the search of a theory of everything, of which the two pictures we are currently

using can be considered approximations in their respective domains. This would

be the provisional theory that we can use when faced with phenomena where the

worlds of general relativity and quantum mechanics must unavoidably meet.

Quite remarkably, Einstein himself had already pointed out the necessity, if not

of a quantum theory of gravity, at least of a theory that could take into account

2General relativity’s configuration space is defined as diffeormophism invariant, i.e. invariant

under active diffeormorphisms. However, whether the theory itself is invariant under this kind of

diffeomorphism (especially “on shell”) is still a matter of debate. However, when introducing matter

degrees of freedom, the theory certainly loses such invariance, therefore allowing for the meaningful

introduction of explicit energy scales such as the Planck energy.
3In astroparticle physics, an ultra-high-energy cosmic ray (UHECR) is a cosmic ray particle with

a kinetic energy greater than 1018 eV = 109 GeV, far beyond both its rest mass and energies typical

of other cosmic ray particles. An extreme-energy cosmic ray (EECR) is an UHECR with energy

exceeding 5× 1010 GeV, the so-called Greisen–Zatsepin–Kuzmin limit (GZK limit).

2



quantum mechanics and his theory of gravitation at the same time. For instance

in his 1916 article [104], published in the Preussische Akademie Sitzungsberichte, he

wrote the following assertion:

• Nevertheless, due to the inneratomic movement of electrons, atoms would have

to radiate not only electromagnetic but also gravitational energy, if only in tiny

amounts. As this is hardly true in Nature, it appears that quantum theory

would have to modify not only Maxwellian electrodynamics but also the new

theory of gravitation.

The attempts in finding such an ultimate and unified theory have been ongoing,

leading to several possible ways of addressing this quest. Already in the thirties,

Bronstein, Rosenfeld and Dirac had produced some results, and more detailed work

started to appear in the in the 1960s with the geometrodynamics (and quantum

geometrodynamics) program, developed by Dirac, Bergmann, Arnowitt, Deser and

Misner and others. For more details see for instance [42, 66, 177, 189], and Wheeler

[299, 300].

Historically speaking, the great success of the quantisation of the electromagnetic

field had led to the idea that gravity could be dealt with in the same way. However,

in general relativity, with the metric playing the double role of fundamental dynam-

ical field and space-time background, there is no definite separation between the

kinematical part and dynamics, and already at the classical level substantial efforts

are required to formulate physical questions. When moving to the quantum theory,

the presence of the uncertainty principle would further complicate the matter, since

after evolving an initial state one would not obtain a unique space-time.

In spite of all these difficulties, over more than fifty years several approaches

have been developed that have used and modified some of the varied quantisa-

tion techniques originally developed for quantum field theories. For instance we

can observe that to a good approximation the canonical quantisation approach was

pursued by relativists while the covariant one by particle physicists, adopting com-

pletely different attitudes to facing the technical problems. Here we summarise some

characteristics of the most relevant approaches.

• Geometrodynamics follows the canonical quantisation path, with the GR

Hamiltonian generating a time evolution. In this case the emphasis is on pre-

serving the geometrical character of GR. The canonical variable is the 3-metric

on a spatial slice, and in this formulation GR can be interpreted as the dy-

namical theory of 3-geometries (hence the name). Unfortunately the quantum
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theory developed using this formalism encountered some theoretical difficulties

associated with an infinite number of degrees of freedom, and created a split

between general relativity and the theory of elementary particles. Neverthe-

less this approach is pivotal for the consequent development of the whole field,

[299, 300].

• Loop quantum gravity (LQG) follows the same line and makes use of the

canonical quantisation method; in this case though the canonical variables

are the spin-connections, required to parallel propagate spinors, and GR can

be regarded as dynamical theory of connections [49]. The main advantage of

such approach is that the phase-space of the theory is the same as for a gauge

theory, so that techniques that had been implemented in the quantisation of

the gauge theories can now be transferred to general relativity. In the case

of 3 + 1-dim the quantum states are taken to be suitable functions of Wilson

loops, or graphs, on the 3-manifold, from which the theory takes its name

[240, 242, 243].

• Spin foam models had been initially developed as attempt to provide LQG

with an appropriate path integral formalism. Following the lessons of quantum

field theory, the transition amplitudes are calculated as a sum over paths in-

terpolating between two states. However the spin foam framework had already

arisen in the context of many of the known topological quantum field theo-

ries, like Ponzano-Regge model of gravity in three dimensions, or BF theory

[50, 225, 226, 231].

• Causal dynamical triangulation is a modification of quantum Regge calcu-

lus where smooth space-time is discretised with a process called triangulation.

In other words it is approximated by a network of triangulation nodes (or sim-

plices), where space is locally flat but globally curved, as with the individual

faces and the overall surface of a geodesic dome. The crucial development,

which makes this a relatively successful theory, is that the network of sim-

plices is constrained to evolve in a way that preserves causality. This allows a

path integral to be calculated non-perturbatively, by summation of all possible

(allowed) configurations of the simplices, and correspondingly, of all possible

spatial geometries [15, 16, 202].

• Hořava-Lifshitz gravity [156] is an approach to quantum gravity that breaks

Lorentz invariance at ultra-high (presumably trans-Planckian) energies, to re-

gularise the infinities of the theory. It is defined as a traditional (point-particle)
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quantum field theory, therefore it is not a string theory, nor loop quantum

gravity. The novelty of this approach is the use of concepts from condensed

matter physics such as quantum critical phenomena, to give a measure of the

degree of anisotropy between space and time.

• String theory can be included within those approaches that use the co-

variant formalism for the quantisation process; however its origin is slightly

different than that of the models listed so far, in that it was first introduced

to study the strong interactions. In particular point-particles are replaced by

one-dimensional extended objects — strings — and particle-like states are as-

sociated with various modes of excitation of the string. In this model gravity is

somehow automatically incorporated since in addition to spin-1 modes, associ-

ated with gauge theories, it included a spin-2 massless excitation, the graviton

[60, 229, 230].

All these approaches have produced a huge quantity of results and insights;

unfortunately, given the lack of any experimental evidence that could provide us

with a conclusive and definite theory, we may be forced to take other routes.

As we have seen, the motivation behind several of the models presented above

lies in the successful quantisation of electromagnetism starting from the classical

theory. However, it may well be that electromagnetism is the only case in nature

for which the quantisation leads to the actual quantum degrees of freedom. Even

in quantum chromodynamics the fundamental particles are the quarks, while the

emergent degrees of freedom are hadrons and mesons.

For this reason, it would be worth trying to address the problem by searching for

some plausible microscopic theory whose asymptotic, classical limit is the Einstein

theory of gravitation. Since there is no gravity correspondent for the Stern-Gerlach

experiment or double slit experiment, one may want to use, as a starting point,

some of the theoretical results upon which hard core theories, as those listed above,

agree. For instance, both covariant and canonical theories agree on the fact that

space-time becomes somehow fuzzy or discrete at the Planck scale, possibly leading

to the breaking of the Lorentz symmetry.

In this thesis work we shall focus on some of those physics phenomena that

probe the quantum/gravity regime and which could unveil the next theoretical or

experimental steps in this quest. We do not directly expect to find the ultimate

theory that will unify all the four interactions in physics, neither a quantum theory

of gravitation. Instead we would like to follow the lesson learned from the derivation
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of the thermodynamic nature of black holes. In this case, three fundamental parts

of physics had been brought to work together: general relativity, quantum theory

and statistical mechanics.

This thesis is divided in three main parts. In the first part, we shall introduce

the subject of physics without Lorentz invariance. Lorentz symmetry is well

established for the energy regimes that we are able to test; however there have been

repeated theoretical suggestions that it may not be an exact symmetry at all energies.

For instance four dimensional Lorentz violation has been investigated in different

quantum gravity models — string theory, loop quantum gravity, warp brane worlds,

Hořava-Lifshitz gravity, etc. — leading to different theoretical frameworks within

which Lorentz symmetry might be modified or even broken. In general, the notion

is that there is strong Lorentz violation at the Planck scale that decreases at lower

energies. For this reason, it is worth exploring possible theories that contemplate

the possibility of Lorentz violation.

In particular in chapter 4 we shall investigate the case of Lorentz symmetry

breaking when one renounces the relativity principle. In 1910 von Ignatowsky gave

a mathematical description of special relativity that established a very tight connec-

tion between the group structure implied by the relativity principle and the rules

for the transformation of space-time coordinates [285–288]; a connection that, com-

bined with the basic and fundamental physical assumptions of locality, linearity,

and isotropy, leads almost uniquely to either the Lorentz transformations of special

relativity — or to Galileo’s transformations of classical Newtonian mechanics —

without making any a priori appeal to the constancy of the speed of light.

Therefore, if one wishes to abandon Lorentz symmetry within the context of

the class of local physical theories, then it seems likely that one will have to either

modify or even discard the relativity principle. Our purpose is to redefine the notion

of space-time transformations between inertial frames in the absence of the relativity

principle; we shall argue that the choice of inertial frame implies at least linearity

for the coordinate transformations — to map straight lines into straight lines.

Under these circumstance we shall demonstrate that the set of coordinate trans-

formations now form a groupoid/pseudo-group, i.e. closed only under partial-pro-

ducts, and it is exactly this technical difference that permits one to evade the von

Ignatowsky argument. Even in the absence of a relativity principle we can never-

theless deduce clear and compelling rules for the transformation of space and time

and rules for the composition of 3-velocities.

The next step in our derivation regards the definition of the transformations for

energy and momentum, necessary concepts if one wants to go from the kinematic to
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dynamic regime and set up some models within which to test the theoretical results.

In section 4.3 we shall show that energy-momentum transformations are in general

affine — linear plus an inhomogeneous offset — but may be chosen to be linear.

As an application of the results we have found for space-time and energy-momen-

tum transformations, we shall illustrate two physically compelling models imple-

menting “minimalist” violations of Lorentz invariance. In the first one all Lorentz

violations are confined to carefully delineated particle physics sub-sectors; that is

the space-time coordinates transform with Lorentz transformations, while the trans-

formations for energy and momentum are of the kind mentioned above. The second

minimalist Lorentz-violating model, space-time transformations depend on one free

function of absolute velocity, but otherwise preserve as much as possible of standard

Lorentz invariant physics.

In chapter 5 we shall continue along the line of investigating Lorentz symmetry

breaking by considering thresholds for decay and scattering processes. For these

kinds of processes the analysis becomes considerably more complicated and ex-

tremely subtle, with many new and naively unexpected effects. Based only on

the assumption of the existence of some dispersion-relation between energy and mo-

mentum E(p), we shall develop several threshold theorems without assuming any

isotropy or monotocity for the relation E(p). Indeed several physically interesting

situations exist where such a level of generality is called for, some examples are lat-

tice QFT regularisations, leading to energy-momentum relations that are similar to

energy-momentum relations for quasi-particles propagating through atomic lattices.

In the various parts of the chapter we shall show that even in this most general of

settings, at threshold all final state particles move with the same 3-velocity, while

initial state particles must have 3-velocities parallel/anti-parallel to the final state

particles. Quite remarkably, we shall see that, contrary to the behaviour of the 3-

velocities, the various 3-momenta can behave in a complicated and counter-intuitive

manner.

In the second part we shall introduce the subject of thermodynamics of space-

time. With this definition we mean the possible interpretation of general relativity

as a mean field theory that arises from some underlying microscopic degrees of free-

dom. This point of view on GR, known as induced gravity, was first formulated

by Andrei Sakharov in 1967, and interprets space-time geometry as an emergent

property similar to hydrodynamics emerging from molecular physics [247, 277]. As

we shall see in chapter 6, the thermodynamic interpretation is brought about by

considering the special case of black hole physics and the strict analogy between

7



CHAPTER 1. INTRODUCTION

the four laws of thermodynamics and those of black hole mechanics [58, 62, 142].

Another result that seems to reinforce this interpretation is the derivation of the

Einstein field equation as an equation of state by Ted Jacobson in 1995 [157]. In

this case the author begins by considering the area law for a Rindler horizon —

that is the proportionality of the entropy of the horizon to its area rather than its

volume — and some heat flux across it that perturbs the underlying metric. Using

this assumption, the Clausius definition of the entropy d̄Q = TdS, and the fact

that the flux at the bifurcation point4 needs to be zero — implying that the null

geodetics need to focus in that point — Jacobson obtained Einstein equations from

thermodynamic relations.

In chapter 7 we shall consider part of Jacobson’s derivation particularly focus-

ing on the definition of the thermodynamic system, and generalising it to a generic

bifurcate null surface. Given this general construction, that utilises virtual accel-

erating observers, the question arises concerning the ontological nature of the en-

tropy, i.e. if entropy is objectively “real” or if it is in some sense subjective and

observer-dependent. This matter is deep-rooted in the fact that there exist several

definitions of entropy such as Clausius entropy, thermodynamic entropy, statisti-

cal entropy (Shannon or von Neumann entropy), or Bekenstein entropy, and their

equivalence is less than clear. In this chapter we shall assign a notion of Clausius

entropy to arbitrary bifurcate null surfaces — effectively defining a “virtual Clausius

entropy” for arbitrary “virtual (local) causal horizons”. As an application, we see

that we can implement a version of the generalised second law [63] for this virtual

Clausius entropy. As the reader will see, we have taken some effort in being careful

and explicit in developing our framework, given the subtle concepts utilised in the

derivation.

Entropy seems to play a critically important role in the study of the thermo-

dynamic nature of space-time; however several definitions coexist in the literature,

and the extent to which they are equivalent is far from definite. For this reason

we think it is relevant to start by studying the mathematical characteristics of the

entropy to which we shall dedicate chapter 8. For the time being we shall consider

single-channel Shannon entropy in the information theoretic sense, not entropy in

a stochastic field theory or quantum field theory (QFT) defined over some config-

uration space, on the grounds that this simple problem is a necessary precursor to

understanding infinite entropy in a field theoretic context.

In particular what we shall demonstrate is that even though a probability dis-

4The bifurcation point, that we shall later indicate with P, is a point on a two dimensional

space-like surface upon which one attaches the null surface.
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tribution is properly normalisable, its associated Shannon (or von Neumann) en-

tropy can easily be infinite. Roughly speaking, this happens when arbitrarily small

amounts of probability are dispersed into an infinite number of states. In particular,

we shall see that large entropies cannot be localised in state space; large entropies

can only be supported on an exponentially large number of states.

In the third part of this thesis we shall introduce an experimental proposal to

test the effects of acceleration and gravity on quantum physics. Following the line of

what we have said above, one would like to find alternative ways to understand the

quantum nature of space time. In this case we would like to reverse the usual logic,

i.e. studying quantum effects at large scales. Indeed this seems to be experimentally

achievable in the near future as cutting-edge quantum experiments are reaching

relativistic regimes, where the effects of gravity and motion on quantum properties

can be experimentally tested — see for instance the experiments proposed in [201,

213, 237, 251, 306] or the successful teleportation protocol that was performed across

144 km by the group led by A. Zeilinger [272].

In this respect, there are some previous theoretical works that had already ad-

dressed these fundamental questions by showing that gravity, motion and space-time

dynamics can create and degrade entanglement [14], and that acceleration produces

observable effects on quantum teleportation [125]. However, current experimental

space-based designs are yet to consider these findings. In this chapter we propose

a space-based experiment to test the effects of gravity and motion on quantum en-

tanglement. The novelty of the experiment we shall talk about in chapter 9, with

respect to the other proposals that have been developed in the framework of quantum

mechanics, is the use of the quantum field theory, therefore incorporating Lorentz

invariance and causality.

In this chapter we shall demonstrate that the gravitational field of the earth and

accelerated motion can induce experimentally observable effects on quantum entan-

glement — that constitutes the basic resource for quantum information and quantum

communication tasks. In principle, these results could shed some light on fundamen-

tal questions about the overlap of quantum theory and relativity and, at the same

time, they may enable experimentalists interested to implement them into space-

base technology, to correct negative gravitational effects on quantum technologies

on satellites.

In more detail, a recent result has shown that the entanglement between field

modes of localised systems, such as cavities, is sensitive to changes in acceleration

[74]. Via the equivalence principle, this means that entanglement may be affected
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by changes in gravitational field strengths. In order to demonstrate this experimen-

tally we shall consider the entanglement between the phononic excitations of two

Bose-Einstein condensates (BECs), each one of them prepared in a separate satel-

lite. These excitations obey, under certain circumstances, a massless Klein-Gordon

equation with a very slow speed of propagation [227]. As we shall explain in more

detail, a low propagation speed is the key element to enable the observation of the

effect we describe within realistic experimental regimes.

The next step will be to entangle the two BEC modes, one in each BEC, while

the BECs are into two nano satellites5 that move close to each other along the

same circular earth orbit. One of the satellites will then undergo a non-uniform

motion to change to an orbit subject to a different gravitational field potential. The

interesting result is that the entanglement degradation between the BEC phononic

modes is a periodic function of the change in gravitational field potential in the

orbit. Moreover this effect is significant already for typical parameters involved in

microsatellite manoeuvres.

As usual, in the final part of the thesis we shall draw conclusions for all the

topics we have discussed in the previous chapters, as well as outline possible future

research paths one can undertake and the expected results. In appendices A to

F the reader can find a few mathematical tools that have been used in chapter 4,

chapter 7, chapter 8, and 9, along with some in-depth sections about notions that

have been only briefly mentioned. Appendix G lists the publications and conference

proceedings articles that have not been included in this thesis work.

Distribution of credits

The scientific results included in this thesis work are the product of three years of

PhD research I have carried out with my supervisor and other colleagues in the

School of Mathematics, Statistics and Operations Research at the Victoria Univer-

sity of Wellington, New Zealand, and while visiting the relativistic quantum informa-

tion group in the School of Mathematical Sciences at the University of Nottingham,

UK. The results of chapter 4 and chapter 5 are the outcome of a joint effort of my-

self, my supervisor, Prof. Matt Visser and my colleague and friend Kyle Tate. Each

of us gave a substantial contribution in terms of discussions, exchanges of ideas and

careful calculations. The results have been published in [45] and [46].

The results of chapter 7 and 8 have been obtained by me and my supervisor,

5A nanosatellite is an artificial satellite whose wet mass spans from 1 to 10 kilograms, with a

size of about 10 centimetres per side.
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Prof. Visser. As for the results in chapters 4 and 5, both of us had give a substantial

contribution in terms of discussions, exchanges of ideas and careful calculations.

These results have been published in [48] and [47].

The experimental proposal that I shall present in chapter 9 is the result of

a collaboration with the relativistic quantum information group at the school of

mathematical sciences of University of Nottingham, the UK. My main contribution

can be found in section 9.3, while the rest has been a collaborative effort developed

by Dr. David Edward Bruschi, Dr. Carlos Sab́ın, Dr. Angela White, Dr. Daniel Oi,

Prof. Ivette Fuentes and partially by myself. A publication based on this project

can be found in [75].
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Chapter 2

Notation

Throughout this thesis work we shall use the following notation. For the Minkowski

metric we use the convention:

ηab =




− 1

1

1

1



. (2.1)

We use a, b = (0, . . . , n) with n = 3 for a 3 + 1 space (such as in this case); we shall

use the letter i, j for the spatial components of vectors matrices i, j = (1, . . . , n).

For Lorentzian metric we shall consider the signature (−,+,+,+). In general we

shall utilise natural units c = ~ = G = kB = 1, unless specified in the chapter.
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Part I

Physics without Lorentz

invariance
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Chapter 3

Lorentz symmetry breaking

overview

In this part of the thesis we shall present the topic of Lorentz symmetry breaking.

In particular we shall focus onto two aspects: breaking Lorentz symmetry by re-

nouncing the relativity principle, and analysis of thresholds in both scattering and

decay processes in the case Lorentz invariance is violated.

One may wonder why we would want to abandon such an experimentally well-

tested symmetry as Lorentz invariance. After all special relativity has been one of

the most successful theories of the last century and it can be considered a cornerstone

of modern physics.

Certainly, there exist several reasons behind this argument, based on a variety

of considerations. There are purely theoretical considerations, mainly related to a

theory of quantum gravity (see below), and there are more pragmatic ones such

as the need for a phenomenological framework within which to formulate empirical

tests of Lorentz invariance, and formulate appropriate questions.

Over the last decade significant progress along these lines has been made. See

for instance work by Coleman and Glashow [88, 89], Amelino-Camelia, Ellis, Mavro-

matos, Nanoplous, and Sarkar [22], Gambini and Pullin [126], Kifune [174], Aloisi,

Blasi, Ghia, and Grillo [12], Amelino-Camelia and Piran [27], plus that by Jacob-

son, Liberati, and Mattingly [158–165, 198, 211], and especially the Living Review

by Mattingly [210].

The net result of all these efforts is the considerable quantity of observational

bounds, some of them very stringent observational bounds, constraining the possi-

bility of Lorentz symmetry breaking — although it should perhaps be noted that

these analyses are typically performed in the preferred (aether) frame.
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However, related more to the purpose of this thesis work is the theoretical point of

view. Indeed there have been numerous and long-standing suggestions that Lorentz

invariance may not be an exact symmetry at all energies; in other words several the-

ories of quantum gravity have predicted an eventual violation of Lorentz invariance

at the Planck scale.

This possibility has been investigated, for instance, in the string-inspired theore-

tical framework developed by Kostelecky and collaborators for characterizing pos-

sible violations of Lorentz invariance [59, 91, 180–186]. More recently, the Hořava

gravity framework [156] naturally includes Lorentz violation [261, 262, 279–281, 297].

The “analogue space-time” programme also very naturally leads to models where

Lorentz invariance is violated at one level or another [55, 56, 276, 283]. There

is also the flat-space non-gravity framework developed by Anselmi [28–40], where

Lorentz invariance breaking is used to partially regulate QFT ultraviolet divergences.

Further afield, Nielsen and collaborators have studied the renormalization group

flow of Lorentz symmetry violating operators in generic QFTs, demonstrating that

Lorentz invariance is often an infrared fixed point of a generic Lorentz violating

QFT [80, 214–217].

For the above-mentioned reasons, it should be clear to the reader why it is

interesting to study possible Lorentz violations. In particular, we know that, if

Lorentz symmetry is violated by quantum gravity, one would expect to set the

Planck energy of Ep ≈ 1019 GeV to be the natural scale at which strong violation

effects become manifest. Unfortunately, this range of energies resides far beyond the

capability of our current experiments (LHC can reach energies of “only ” 14 TeV),

and even beyond the highest known energy particles, the trans-GZK cosmic rays of

1011 GeV.

However, one would expect to see some remnant of the interpolation between the

Lorentz-violating Planck scale, and the low-energy, Lorentz-invariant world we live

in — with a small amount of Lorentz violation present at all energies. Furthermore,

great advances in technology and observational techniques have effectively improved

the precision of the experimental test to the point where small residual effects of

Planck scale Lorentz violation could be detected.

For this reason, in chapter 4, we shall explore the modification of the transforma-

tions of time and space between inertial frames when Lorentz symmetry breaking is

induced by renouncing the relativity principle. Indeed, given this level of interest in

the topic, we have feel that it is interesting, useful, and timely to perform a careful

analysis of the general and very basic notion of inertial frames in the absence of

Lorentz invariance. We shall focus particularly on “preferred frame” (aether) ver-
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sions of Lorentz symmetry breaking — that is, we shall study inertial frames in the

absence of the relativity principle, but while retaining usual notions of local physics.

In chapter 5 we shall investigate what happens to threshold theorems for scattering

and decay processes when Lorentz symmetry is no longer fulfilled.

In appendix A the reader can find a few comments regarding the applicability

of our results to different Lorentz symmetry breaking schemes (e.g double special

relativity). Useful mathematical identities for the results in chapter 4 are also pre-

sented.
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Chapter 4

Inertial frames without the

relativity principle

4.1 Introduction

In this chapter we shall illustrate what is the most suitable method of minimally

breaking Lorentz symmetry, should one want to preserve some basic concepts such as

that of inertial frame and local physics. At the same time we shall explore how this

would affect the well-known results of special relativity, and how fundamental physics

phenomena are consequently changed. Even more crucial, we shall investigate if

some meaningful physics can still be carried out.

Before starting to tackle this matter, we would like to illustrate why we want

to minimally break Lorentz symmetry. The reason lies in a lesson learned from

experimental physics, that is one should “only adjust one parameter at a time”.

The theorist’s equivalent is that one should “only adjust one theoretical assumption

at a time”. Controlled restraint in relaxing one’s input assumptions is essential if

one is to develop a pragmatically useful framework that is sufficiently well-defined to

make definite statements that can in principle be confronted with empirical reality.

For this reason, our attempts started by singling out the pivotal components of

special relativity. In order to do that we focused on the von Ignatowsky mathemat-

ical description of special relativity (1910), that established a very tight connection

between the group structure implied by the relativity principle and the rules for the

transformation of space-time coordinates [285–288].

In particular, von Ignatowsky’s formulation attests that, under suitable hypothe-

ses — such as locality, linearity and isotropy — the relativity principle almost

uniquely leads to either the Lorentz transformations of special relativity, or Galileo’s
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transformations of classical Newtonian mechanics. Moreover this result makes no

a priori appeal to the constancy of the speed of light. Over the last century this

same result has been repeatedly rediscovered, expanded upon, and re-analyzed, with

significant pedagogical efforts being expended; see for instance [67, 68, 114, 120, 121,

132, 133, 166, 192, 194, 196, 199, 204, 223, 238, 255, 265–267, 269, 301].

The relevance of von Ignatowsky’s analysis for our current purposes comes from

reversing the logic: If for whatever reason one wishes to speculate about a possible

breakdown of Lorentz invariance at ultra-high energies, then as long as one continues

to work within the framework of classical local physics one is almost certain to be

forced to abandon, or at the very least grossly modify, the relativity principle —

and in particular one will in general be forced to abandon the group structure for

the set of transformations that connect space and time in different inertial frames.

The specific question we shall answer is the following: Within the framework

of local physics, what happens to inertial frames, and the transformations between

inertial frames, if you do not have the relativity principle? We shall see that quite a

lot can still be said. Under suitable hypotheses, it is possible to argue that the space

and time transformation rules between inertial frames should at least be linear. (We

shall subsequently have a few words to say about situations where these transfor-

mations might not be linear.) For linear transformations between inertial frames,

rather general formulae for the transformation of 3-velocities, and in particular the

composition of 3-velocities, can then be derived.

In this case, the set of transformations between inertial frames forms a groupoid/

pseudogroup. (In this particular sub-branch of mathematics the mathematical termi-

nology is not 100% settled.) It is exactly the distinction between a groupoid/pseudo-

group and a group that will allow us to evade von Ignatowsky’s argument.

The subsequent step is explore the possibility of going beyond the most basic of

kinematics, that is, develop some notion of dynamics in the specific framework of

local theories without the relativity principle. To do so requires one to develop some

notion of energy and momentum — thereby implying the ability to construct some

Lagrangian or Hamiltonian mechanics. Specifically, to understand the dynamics in

Lorentz violating theories it is necessary to understand how energy and momentum

transform, and to understand how the Lagrangian and Hamiltonian transform. In

the context we are considering — local theories with linear transformations between

inertial frames — the generic situation is that energy and momentum transform in

an affine manner (that is, linear plus an inhomogeneous offset term).

We shall show that it is possible, but not always desirable, to choose conventions

and parameters in such a way as to force the offset to be zero — in which case energy
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and momentum transform in a homogeneous linear manner. In fact, if this is done,

then with our conventions the 4-component vector P = (E,−pT ), the 4-momentum,

is a row vector. P is an element of the vector space dual to the 4-component vector

X = (t,xT )T , the 4-position, which is a column vector. (We shall see that the offset

term in the affine transformation is needed if one wishes to recover the usual naive

form of Newtonian mechanics in a suitable limit, but that there is a somewhat non-

standard formulation of Newtonian mechanics in which energy-momentum can be

made to transform linearly.)

Finally, since our main purpose is to develop some tests that can give us a

hint of where and what to look in an experimental setting, we shall focus on two

particularly elegant and compelling models implementing a minimalist violation of

Lorentz invariance. The first minimalist Lorentz-violating model confines all Lorentz

violating physics to some suitable sub-sector of the particle physics spectrum (most

typically taken to be the neutrino sector). The second minimalist Lorentz-violating

model preserves as much as possible of standard Lorentz invariant physics, but

the transformations additionally depend on one extra function, an arbitrary free

function of absolute velocity. Consequently, when studying possible violations of

Lorentz invariance, these two models in many ways serve as examples of “least-

damage” violations of Lorentz invariance. Indeed, the considerations we have drawn

up will be essential to almost any form of violation of Lorentz invariance that respects

locality and encodes “preferred frame” (aether frame) effects.

4.2 General transformations between inertial frames

As is well known, an essential feature one wants to preserve when formulating a

physics theory is the possibility of comparing its predictions with some experimental

results. In order to do that one needs to be able to compare results between different

observers, establishing how clocks and rulers change when going from one reference

frame to another.

For this reason, the first step is to define the kind of reference frame we want to

consider and how space and time are related among them.

4.2.1 Definition of an inertial frame

Since we would like to modify only a few features at a time, we shall begin by

considering inertial frames; in this way we shall avoid introducing any possible

exotic effect from the very beginning. Generally speaking, everyone would agree on

this characterization of inertial frames:
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1. All inertial frames are in a state of constant, rectilinear motion with respect

to one another; they are not accelerating, in the sense of proper acceleration

that would be detected by an accelerometer.

2. In an inertial reference frame, the laws of mechanics take their simplest form.

3. In an inertial frame, Newton’s first law (the law of inertia) is satisfied: Any free

motion has a constant magnitude and direction, implying a linear relationship

between the space and time coordinates assigned to any free particle.

In order to obtain the usually accepted formulation of physics, one would intro-

duce the additional and extremely stringent condition of the relativity principle that

states:

Laws of physics take the same form in all inertial frames.

But, as we have argued above, and as we shall show in the following, one can

renounce the relativity principle and still be able to deduce some meaningful results.

And that is the topic we shall now explore.

4.2.2 Argument for linearity

Even in the absence of the relativity principle, we shall still want the transformations

between reference frames to be linear. As we shall see, such requirement fulfils the

definition of rectilinear motion in inertial frames (necessary to satisfy Newton’s first

law).

In particular, by definition a freely moving particle, in an inertial frame, is not

accelerating
d2x

dt2
= 0; x(t) = x0 + v0t. (4.1)

Since we want to preserve such kind of motion in any other inertial frame, the

particle is again by definition not accelerating

d2x̄

dt̄2
= 0; x̄(t̄) = x̄0 + v̄0t̄. (4.2)

Whatever the transformation is between the two sets of time and space coordi-

nates {t,x} and {t̄, x̄}, the transformation has to map straight lines into straight lines

— which forces the transformation to be, at the very worst, projective [114, 238].

By additionally requiring that events in a bounded region (of space-time) map into a

bounded region (of space-time) this is actually enough to force the transformations

to be linear [114, 238].
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Some technical considerations

If one is only interested in implementing Newton’s first law, then one could get

away with using an arbitrary abstract vector space defined over an arbitrary abstract

number field. Newton’s first law would still require straight lines to map into straight

lines, and so would naturally lead to projective transformations. By considering

bounded regions of a normed vector space it becomes natural to restrict attention

to linear transformations between inertial frames. But as soon as one wishes to

implement Newton’s second law, one needs to be able to discuss non-zero variable

acceleration, which requires some notion of differentiability, which naturally leads

one to consider a vector space defined over the real numbers.

For our purposes we write the 4-position as a column vector

X =

(
t

x

)
, (4.3)

and we want it to transform in the following guise

X → X̄ = M X. (4.4)

We adopt the conventions where both 3-vectors x and 4-vectorsX are column vectors

to minimize the number of special case notational fiddles we have to adopt later on

in the discussion.

Some considerations on inertial frames and linearity

On a technical note, we want to stress that the primary physics input is the observa-

tion that inertial frames exist, and from extremely basic notions of kinematics this

is enough to argue for linearity. If one additionally wants to develop some notion of

Lagrangian/Hamiltonian dynamics — as we shall see later on — then the observa-

tion that free inertial particles exist, coupled with Noether’s theorem, can be used

to argue for the homogeneity of space and time. Some authors prefer to start from

homogeneity, and thereby deduce linearity. There are minor technical issues, but for

all practical purposes space-time homogeneity implies and is implied by linearity of

the transformations between inertial frames.

We emphasise how basic and fundamental the argument for linearity is — if the

transformation law between inertial frames is not linear, then it is really the whole

notion of inertial frame that is being undermined.
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4.2.3 General representation of inertial transformations

Now that we have reviewed that the concept of inertial frame and linearity are

strongly intertwined, we shall briefly recall what is their implication with respect

to the transformations between different reference frames in some well-known (and

less-known) physics theories.

Newtonian physics: If one considers the special case of Newtonian physics (Gali-

lean relativity) we have that space and time transform as

M =


 1 0T

− v I


 . (4.5)

Einstein physics: In the case of special relativity we recall the familiar form for

the transformation of the 4-positions

M =


 γ −γvT /c2

− γv γnnT + [I − nnT ]


 , (4.6)

with v = vn and γ = (1− v2/c2)−1/2. One can also write this as

M =


 γ −γvT /c2

− γv γn⊗ n + [I − n⊗ n]


 . (4.7)

As is well known, this can be reduced to a product of a spatial rotation and a

boost in an arbitrary direction.

Carroll kinematics: This kind of kinematics is also knowns as “Alice in won-

derland kinematics”. It is a rarely encountered and somewhat unphysical limit of

the Lorentz group where one takes c → 0 and v → 0 while keeping the “slowness”

u = v/c2 fixed. The resulting transformations

M =


 1 −uT

0 I


 (4.8)

correspond to [95, 103, 134, 155, 195]:

t→ t̄ = t− u · x; x→ x̄ = x. (4.9)

We will have very little to say concerning this particular option.
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A more general scenario

In the case where we do not have any relativity principle, we shall consider the

transformation M to be some matrix which we can, without loss of generality, write

in the form

M =


 γ −uT

−w Σ


 . (4.10)

We shall also introduce the inverse transformation since we want to define a theory

where one can transform back from one reference frame to the other:

M−1 =


 (γ − uTΣ−1w)−1 (uT /γ)(Σ−wuT /γ)−1

(γ − uTΣ−1w)−1Σ−1w (Σ−wuT /γ)−1


 . (4.11)

The matrix M is the most generic kind of transformation that preserves linearity

and specifically, we are not at this stage assuming any notion of isotropy. Note that

the object wuT = w ⊗ u is a 3× 3 matrix, while uTw = u ·w is a scalar.

There are several possible forms that one can choose to describe the matrix M .

For instance, by replacing u→ γu, we could write this in the completely equivalent

form

M =


 γ −γuT

−w Σ


 ; (4.12)

and its inverse

M−1 =


 γ−1(1− uTΣ−1w)−1 uT (Σ−wuT )−1

γ−1(1− uTΣ−1w)−1Σ−1w (Σ−wuT )−1


 . (4.13)

Alternatively, by now replacing w → Σw,

M =


 γ −γuT

− Σw Σ


 ; (4.14)

M−1 =


 γ−1(1− uTw)−1 uT (I −wuT )−1Σ−1

γ−1(1− uTw)−1w (I −wuT )−1Σ−1


 . (4.15)

These three ways of parameterizing the 4 × 4 matrix M are completely equivalent

and mathematically acceptable, and which one we adopt is simply a matter of taste.

(It is easy to explicitly carry out the matrix multiplications and so to verify that

MM−1 = I.)
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4.2.4 Aether frame and moving frame

By renouncing the relativity principle — that is, saying that the laws of physics are

not the same in all the inertial reference frames — we have introduced a preferred

rest frame, that we shall call aether.

We shall indicate the aether frame F with coordinates X, and a generic moving

frame F̄ with coordinates X̄. Then for definiteness we will choose M to map from

the aether frame to the moving frame, and M−1 to map from the moving frame to

the aether frame, so that

X̄ = M X; X = M−1 X̄. (4.16)

As we have not specified any particular characteristics that can, at this stage, dis-

tinguish between the aether and any other reference frame, choosing which of the

frames is the aether and which is moving is merely a matter of convention.

We shall now rename things slightly and shall henceforth adopt the specific

convention and nomenclature that:

M =


 γ −γuT

− Σv Σ


 ; (4.17)

M−1 =


 γ−1(1− uTv)−1 uT (I − vuT )−1Σ−1

γ−1(1− uTv)−1v (I − vuT )−1Σ−1


 . (4.18)

With these conventions both γ and Σ are dimensionless, while v has the dimensions

of velocity, and u has dimensions of “slowness” = 1/(velocity). It is again easy to

verify that MM−1 = I. It is important to stress that the factor γ must not be

confused with the Lorentz factor of special relativity — at least as long as we do

not impose isotropy and the principle of relativity. We can simplify the notation by

noticing that (see appendix A.3)

uT (I − vuT )−1 = (1− uTv)−1uT = (1− u · v)−1uT , (4.19)

and so the matrix M is still

M =


 γ −γuT

− Σv Σ


 ; (4.20)

while the inverse becomes:

M−1 =


 γ−1(1− u · v)−1 (1− u · v)−1 uTΣ−1

γ−1(1− u · v)−1v (I − v ⊗ u)−1Σ−1


 . (4.21)
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Note that there is a kinematic singularity if u · v = 1; in the particular case of

special relativity this would correspond to an infinite boost to a frame traveling at

lightspeed. But the possible occurrence of these kinematic singularities is a much

more general phenomenon, and is not limited to special relativity. Indeed, since

with our conventions the matrix M factorizes

M =


 γ 0T

0 Σ




 1 −uT

− v I


 , (4.22)

we see that

det(M) = γ det(Σ) det


 1 −uT

− v I


 = γ det(Σ) [1− u · v]. (4.23)

So the existence of the kinematic singularity is equivalent to the non-invertibility

of the transformation matrix, a possibility that should (generically) be excluded on

physical grounds.

Reciprocal velocities

We shall now see that, with the set of transformation we have introduced in (4.17),

we can start to observe some of the peculiarities that characterise the physics without

the relativity principle.

For instance, an object that is at rest in the moving frame follows the worldline

X̄ =

(
t̄

0

)
, (4.24)

which in the aether frame coordinates maps into

X = M−1 X̄ = t̄ γ−1(1− u · v)−1

(
1

v

)
. (4.25)

This implies x = vt. That is, with these conventions the moving frame has 3-velocity

vmoving = v as viewed by the aether, and this is our physical interpretation of the

parameter v appearing in the matrix M . But what about the aether frame as seen

by the moving frame? An object at rest in the aether frame follows the worldline

X =

(
t

0

)
, (4.26)

which in the moving frame coordinates maps into

X̄ = M X = t

(
γ

−Σv

)
. (4.27)
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This implies x̄ = −(Σv/γ)t̄. That is, as viewed in the moving frame, the aether is

moving with 3-velocity

vaether = −Σv

γ
. (4.28)

Note that vmoving and vaether are generally not equal-but-opposite velocities. In fact,

without additional assumptions, in the general case they need not even be collinear,

a result that is completely counterintuitive from the point of view of, for example,

special relativity.

4.2.5 Transformation of 3-velocity

We now want to explore how the transformations of 3-velocities are modified with

respect to classical newtonian kinematics and special relativity.

From X̄ = M X we have dX̄ = M dX, whence with the conventions adopted

above we see

dt̄ = γ(dt− u · dx); dx̄ = Σ(dx− vdt), (4.29)

so that

˙̄x ≡ dx̄

dt̄
=

Σ(ẋ− v)

γ(1− u · ẋ)
. (4.30)

This is the general combination of velocities rule. Specifically one can easily see

that it is a natural generalisation of the usual special relativistic combination of

velocities, with current conventions being chosen to make this transformation as

simple as possible. Note in particular that an object at rest in the aether frame,

with ẋ = 0, moves at 3-velocity −Σv/γ in the moving frame, while an object at rest

in the moving frame, with ˙̄x = 0, moves at 3-velocity v in the aether frame.

Similarly, from dX = M−1 dX̄ we have

dt = γ−1(1− u · v)−1dt̄+ (1− u · v)−1uTΣ−1dx̄, (4.31)

and

dx = (I − v ⊗ u)−1Σ−1dx̄ + γ−1(1− u · v)−1vdt̄, (4.32)

so that

ẋ ≡ dx

dt
=

(I − v ⊗ u)−1Σ−1 ˙̄x + γ−1(1− u · v)−1v

γ−1(1− u · v)−1 + (1− u · v)−1uTΣ−1 ˙̄x
. (4.33)

We can simplify this to obtain

ẋ =
γ(1− u · v)(I − v ⊗ u)−1Σ−1 ˙̄x + v

1 + γuTΣ−1 ˙̄x
. (4.34)

But (see appendix A.3)

(1− u · v)(I − v ⊗ u)−1 = (1− u · v)I + v ⊗ u, (4.35)
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and so

ẋ =
γ[(1− u · v)I + v ⊗ u] Σ−1 ˙̄x + v

1 + γuTΣ−1 ˙̄x.
. (4.36)

Finally

ẋ =
γ(1− u · v) Σ−1 ˙̄x

1 + γuTΣ−1 ˙̄x
+ v. (4.37)

This last formula seems to be the best one can do. Attempting to change conventions

to simplify this particular formula leads to problems elsewhere. Note in particular

that with the conventions we have chosen something at rest in the moving frame, so

that ˙̄x = 0, moves at velocity v in the aether frame.

4.2.6 Groupoid/pseudogroup structure

Physically the matrix M need not be a function of v only — it can also depend

on the orientation of the moving inertial frame with respect to the preferred frame,

and worse the quantities γ, u, and Σ, are (potentially) free parameters in their own

right. It is useful to write M(F̄ ), to emphasise that the matrix M(F̄ ) is potentially

a function of all the parameters characterizing the moving inertial frame F̄ . (We

could furthermore write the various pieces of M(F̄ ) as γ(F̄ ), v(F̄ ), u(F̄ ), and Σ(F̄ );

while technically more correct, this is so cumbersome as to be impracticable, and

the frame dependence of these quantities will always be implicitly understood.)

In addition, one should keep in mind that in general the transformation matrices

M(F̄ ) could also depend on the internal structure of the particular type of rulers

and clocks one is using; it is only for situations of very high symmetry — essentially

amounting to adoption of the relativity principle — that the notion of time and

distance can be abstracted to have a meaning that is independent of the internal

structure of one’s choice of clocks and rulers.

Note that in general the set {M(F̄ )}, (where M(F̄ ) is the transformation matrix

from the aether inertial frame F to the moving inertial frame F̄ ), need not form

a group; and similarly the set {M−1(F̄ )} need not form a group. There is no

need for these sets to be closed under matrix multiplication. Nor are these sets

generally closed under matrix inversion. There does not seem to be any specialized

mathematical terminology for such objects — they are not semigroups, they are not

groupoids, they are not pseudogroups, they are not monoids, they are not cosets,

they are not magmas; they are just sets of matrices.

However to transform from one arbitrary inertial frame F1 to another arbitrary

inertial frame F2, figure 4.1, the appropriate transformation is

M(F2, F1) = M(F2)M(F1)−1. (4.38)
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F1 F2

F
M−1

F1

MF2

Figure 4.1: A transformation from an arbitrary inertial frame F1 to another arbitrary inertial

frame F2. Since we know how to perform a transformation only between the aether frame F and

any other inertial frame, we need to transform from F1 to F first, using the transformation matrix

M−1
F1

and afterwards perform the transformation between F and F2 using the transformation matrix

MF2 .

The set {M(F2, F1)} = {M(F2)M(F1)−1} certainly forms a groupoid/pseudo-

group, in the sense that the set is closed under the restricted set of compositions

(so-called partial-products) of the form

M(F3, F2)M(F2, F1) = M(F3, F1). (4.39)

(The relevant mathematical terminology is not 100% standardized, and different

sources prefer to call this mathematical structure either a groupoid or a pseudogroup.)

Note that M(F, F ) = I, so an identity certainly exists, and that M(F2, F1)−1 =

M(F1, F2) so that inverses also exist. Associativity is automatic because matrix

multiplication is associative. In general this is the most you can say. The technical

difference between a group and a groupoid/pseudogroup is in this context extremely

important. It is this technical mathematical distinction that ultimately allows us to

side-step the usual von Ignatowsky theorems (and their variants) that under normal

circumstances lead almost uniquely to the Lorentz group or the Galileo group — the

physics reason for this extra generality is because while we have assumed linearity

of the transformations we have not assumed the relativity principle. (Nor have we

at this stage assumed isotropy, but that is not important for this particular issue.)

The key physics point is that without the relativity principle M(F1, F2) need

not depend merely on the relative velocities between the frames F1 and F2, but is
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instead allowed to depend on the separate absolute velocities of the frames F1 and

F2.

4.3 Transformations of energy and momentum

Defining energy and momentum, as opposed to purely kinematical notions of velocity

and position, requires at least some notion of dynamics. Pick some arbitrary but

fixed inertial frame. To study dynamics in that frame, one should at a minimum

be able to formulate all three of Newton’s laws, and one should at a minimum

be able to formulate notions of energy and momentum. Since both Hamiltonian

and Lagrangian dynamics are essentially just a reformulation of Newton’s three

laws, and implicitly of the notions of energy and momentum, one should in each

individual inertial frame be able to develop some version of Hamiltonian/Lagrangian

dynamics. (Furthermore, we note that any attempt at developing usual notions of

quantum physics requires one to first develop Hamiltonian/ Lagrangian dynamics

— either to insert into the path integral formulation, or to serve as the basis for a

quantum Hamiltonian underlying the Schroedinger equation.) The natural question

then arises as to how the Hamiltonian/Lagrangian dynamics in different inertial

frames are related to each other.1 Understanding this will tell us how energy and

momentum in different inertial frames are related to each other.

4.3.1 Defining energy and momentum

Ignoring interactions for now, in view of the homogeneity of space-time we shall

assume that each particle has associated with it some Lagrangian L(ẋ) which leads

to a momentum p(ẋ) = ∂L/∂ẋ, and hence to a Hamiltonian H(p), which we shall

typically just write as E(p). Because of space-time homogeneity and the Hamil-

tonian/Lagrangian framework, Noether’s theorem implies energy and momentum

conservation: ∑

in

Ei =
∑

out

Ei;
∑

in

pi =
∑

out

pi. (4.40)

Now the inertial equations ẍ = 0 will be satisfied for any arbitrary L(ẋ). (Note the

absence of any explicit t or x dependence.) To operationally determine a specific

1Some interesting questions can nevertheless be dealt with by working within a fixed but arbi-

trary inertial frame and not worrying about the transformation rules. For instance, scattering and

decay thresholds in Lorentz violating theories can usefully be dealt with in such a manner, see for

instance [87–89, 158–165, 198, 205, 210, 211]. We shall present our considerations about this matter

in chapter 5.
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L(ẋ) that can usefully characterize a specific particle, one will want to perform a

large number of collisions at various 3-velocities, compare input and output states,

and data-fit to extract suitable Ei(ẋ) and pi(ẋ) corresponding to the various particles

in your universe of discourse. Once this is done you can build a model for the Li(ẋ)

using

Li(ẋ) = Li(0) +

∫ ẋ

0
p( ˙̃x) · d ˙̃x. (4.41)

Note that, in modelling the pi(ẋ), one would have to take into account the consis-

tency condition ∇ẋ×pi(ẋ) required for this construction to be path independent in

velocity space.

But even after one has done this, the construction cannot be unique — for any

set of constants εi and πi such that
∑

in εi =
∑

out εi and
∑

in πi =
∑

out πi we see

that the assignments

Ei ↔ Ei + εi; pi ↔ pi + πi (4.42)

are physically indistinguishable. But that means the Lagrangians

Li(ẋ)↔ Li(ẋ)− εi + πi · ẋ (4.43)

are physically indistinguishable. In terms of the action this means the quantities

Si =

∫
Li(ẋ)dt↔ Si =

∫
Li(ẋ)dt− εi(tF − tI) + πi · (xF − xI) (4.44)

are physically indistinguishable — which is physically and mathematically obvious

in view of the fact that the two actions differ only by boundary terms. This intrinsic

ambiguity in the definition of energy and momentum will (perhaps unfortunately)

turn out to be important. One could try to resolve these ambiguities in a number

of different ways:

• For instance, the ambiguity in momentum could be fixed by setting the mo-

mentum at zero velocity to be zero: p(ẋ = 0) = 0. Sometimes this works well,

sometimes it does not.

• The ambiguity in energy is equivalent to an ambiguity in rest energy E(ẋ = 0);

attempting to set the rest energy to zero is often severely problematic.

In general it is best to keep this freedom available in the calculation as long as

possible.
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4.3.2 Affine versus linear transformations

What can we now say about energy and momentum, and their transformation prop-

erties, using only linearity of the transformations between inertial frames? (Recall

that we very specifically do not assume isotropy or any form of the relativity prin-

ciple.)

Consider a single particle, but multiple inertial frames. To even begin to talk

about energy and momentum, in each frame one must be able to set up a suitable

Lagrangian and Hamiltonian, and there should be some as yet unspecified relation-

ship between the Lagrangians and Hamiltonians in these distinct inertial frames.

Furthermore, extrema of the action as calculated in one inertial frame must coincide

with extrema of the action calculated in any other inertial frame.

That is, in complete generality we should demand that for any two inertial frames

the action calculated in these frames should be equal up to boundary terms, and in

each individual frame we know the action is ambiguous up to boundary terms. In

view of the groupoid structure of the transformations between inertial frames there

is no loss of generality in considering one moving frame F̄ plus the aether frame F

for which we can write
∫
L̄ dt̄+ (boundary terms) =

∫
Ldt+ (boundary terms). (4.45)

In view of our previous discussion this implies
∫ {

L̄− ε̄+ π̄ · (dx̄/dt̄)
}
dt̄ =

∫
{L− ε+ π · (dx/dt)} dt. (4.46)

But since L = −(E − p · ẋ) this implies

∫ {
(Ē + ε̄)− (p̄+ π̄) · (dx̄/dt̄)

}
dt̄ =

∫
{(E + ε)− (p+ π) · (dx/dt)} dt. (4.47)

Therefore

(Ē + ε̄) dt̄− (p̄+ π̄) · dx̄ = (E + ε) dt− (p+ π) · dx. (4.48)

So now in complete generality we have

(Ē + ε̄,−p̄T − π̄T )

(
dt̄

dx̄

)
= (E + ε,−pT − πT )

(
dt

dx

)
. (4.49)

But (
dt̄

dx̄

)
= M

(
dt

dx

)
, (4.50)

therefore implying both

(E + ε,−pT − πT ) = (Ē + ε̄,−p̄T − π̄T )M, (4.51)
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and

(Ē + ε̄,−p̄T − π̄T ) = (E + ε,−pT − πT )M−1. (4.52)

These are affine transformation laws for energy and momentum, (that is, linear

plus an inhomogeneous offset), with the affine piece only depending on the intrinsic

ambiguities
(
ε,−πT

)
and

(
ε̄,−π̄T

)
in the energy and momentum. Note that P =

(E,−pT ) transforms in the dual space to 4-position X = (t,xT )T . To be explicit

about this

E → Ē =
E − pTv
γ(1− uTv)

+
ε− πTv

γ(1− uTv)
− ε̄, (4.53)

and

p→ p̄ = (Σ−1)T (I − uvT )−1(p− Eu) + (Σ−1)T (I − uvT )−1(π − εu)− π̄. (4.54)

In terms of dot and tensor products we can rewrite this as

E → Ē =
E − p · v
γ(1− u · v)

+
ε− π · v

γ(1− u · v)
− ε̄, (4.55)

and

p→ p̄ = (Σ−1)T (I −u⊗v)−1(p−Eu) + (Σ−1)T (I −u⊗v)−1(π− εu)− π̄. (4.56)

(One can now begin to see how the Lorentz and Galilean transformations might

emerge as special cases of this very general result.) The inverse transformations are

somewhat simpler

Ē → E = γĒ + p̄TΣv + γε̄+ π̄TΣv − ε, (4.57)

and

p̄→ p = γĒu+ ΣT p̄+ γε̄u+ ΣT π̄ − π. (4.58)

Suppose we now consider the same particle at two different 3-velocities, but

working with the same two inertial frames F and F̄ ; then in terms of energy and

momentum differences, we can write a homogeneous linear transformation law of

the form

(
[Ē1 − Ē2],−[p̄1 − p̄2]T

)
=
(
[E1 − E2],−[p1 − p2]T

)
M−1. (4.59)

That is:

∆E → ∆Ē =
∆E −∆p · v
γ(1− u · v)

, (4.60)

and

∆p→ ∆p̄ = (Σ−1)T (I − u⊗ v)−1(∆p−∆Eu). (4.61)
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We need to compare the same particle at two different velocities, since otherwise

there is no particular reason for the
(
ε,−πT

)
and

(
ε̄,−π̄T

)
to be the same for

the two situations. Note that for two otherwise identical particles one could in

principle choose differing values for the parameters
(
ε,−πT

)
and

(
ε̄,−π̄T

)
, thereby

making them distinguishable. This does not appear to be what happens in our

universe, so we shall assume that the quantities
(
ε,−πT

)
and

(
ε̄,−π̄T

)
, while they

might depend on the inertial frame one is working in, are at least universal for any

particular particle species.

Note that in terms of energy-momentum differences the inverse transformations

are

∆Ē → ∆E = γ∆Ē + ∆p̄TΣv, (4.62)

and

∆p̄→ ∆p = γ∆Ēu+ ΣT ∆p̄. (4.63)

As a consistency check on the general formalism we can readily verify that these

energy-momentum transformation laws are compatible with, and permit us to re-

cover, the purely kinematical velocity combination rules. See appendix A.4 for

details.

4.3.3 Summary (Energy-momentum)

Let us now summarise the results we have obtained so far for the transformation of

energy and momentum in order to make the next stages more understandable. We

have seen that for each individual particle species we have

E → Ē =
E − p · v
γ(1− u · v)

+
ε− π · v

γ(1− u · v)
− ε̄, (4.64)

and

p→ p̄ = (Σ−1)T (I −u⊗v)−1(p−Eu) + (Σ−1)T (I −u⊗v)−1(π− εu)− π̄, (4.65)

while the inverse transformations are

Ē → E = −ε+ γĒ + p̄ · (Σv) + γε̄+ π̄ · (Σv), (4.66)

and

p̄→ p = −π + γĒu+ ΣT p̄+ γε̄u+ ΣT π̄. (4.67)

We have a certain amount of freedom to choose ε and π, and ε̄ and π̄. One obvious

choice would be to always make the transformation laws linear; however as we shall

soon see this is not always the best thing to do.
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4.4 Examples

Now that we have found the general rules for the transformation of energy and

momentum between the aether and an arbitrary (inertial) frame, we shall consider

the very standard cases of Galilean invariance and Lorentz invariance — comparing

affine and linear transformation laws for energy-momentum for these two cases — to

understand how to properly choose the offset parameters in a more general scenario.

4.4.1 Galileo group (affine version)

For Galilean kinematics we have

M =


 1 0T

− v I


 , (4.68)

so

t̄ = t; x̄ = x− vt; ˙̄x = ẋ− v. (4.69)

Now one natural choice is to choose the particularly simple and standard La-

grangians (we are considering non-interacting particles)

L =
1

2
m||ẋ||2; L̄ =

1

2
m|| ˙̄x||2. (4.70)

(We shall soon see that there are also other choices one can make.) Then

L̄ =
1

2
m|| ˙̄x||2 =

1

2
m||ẋ− v||2 =

1

2
m||ẋ||2 −mv · ẋ +

1

2
m||v||2. (4.71)

That is

L̄ = L+
1

2
m||v||2 −mv · ẋ. (4.72)

Now note

p̄ = mẋ−mv = m ˙̄x; (4.73)

H̄ = p̄ · ˙̄x− L̄ =
||p̄||2
2m

. (4.74)

So working explicitly, with these particular conventions, we have affine transforma-

tions for energy-momentum:

Ē = E − p · v +
1

2
m||v||2; (4.75)

p̄ = p−mv. (4.76)

In contrast, working directly from the general transformation laws derived above,

and taking γ = 1, u = 0, and Σ = I, we have

E → Ē = −ε̄+ E − p · v + [ε− π · v] = E − p · v +
1

2
m||v||2, (4.77)
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and

p→ p̄ = −π̄ + p+ π = p−mv, (4.78)

from which we deduce that this particular way of implementing Galilean mechanics

corresponds to the choices

ε̄ = −1

2
m||v||2; π̄ = mv; ε = 0; π = 0. (4.79)

(Remember that by convention F̄ is the moving frame while F is the “aether” frame.

Note that it is the quantities {ε̄, π̄} associated with the moving frame that are non-

zero, and that these quantities depend on the velocity v of the moving frame.) The

inverse transformations are

Ē → E = −ε+ Ē + p̄ · v + ε̄+ π̄ · v = Ē + p̄ · v +
1

2
m||v||2, (4.80)

and

p̄→ p = −π + p̄+ π̄ = p̄+mv. (4.81)

This is the “usual” way of doing Galilean dynamics, which unavoidably leads to

affine transformations for energy and momentum.

A somewhat subtle message to be taken from the discussion is this: Since affine

transformations arise so naturally in this extremely straightforward setting, it seems

unlikely that the affine features of the energy-momentum transformations could

always be completely eliminated in more general settings.

4.4.2 Lorentz group (linear version)

In this case the Lorentz transformations are

M =


 γ −γvT /c2

− γv γn⊗ n + [I − n⊗ n]


 (4.82)

with v = vn and γ = (1− v2/c2)−1/2. The usual form of the relativistic Lagrangian

is

L = −mc2
√

1− ||ẋ||2/c2, (4.83)

so

p =
mẋ√

1− ||ẋ||2/c2
; H = p · ẋ− L =

mc2

√
1− ||ẋ||2/c2

. (4.84)

Furthermore

L̄ = −mc2
√

1− || ˙̄x||2/c2, (4.85)
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so

p̄ =
m ˙̄x√

1− || ˙̄x||2/c2
; H̄ = p̄ · ˙̄x− L̄ =

mc2

√
1− || ˙̄x||2/c2

, (4.86)

and in fact

L̄ dt̄ = L dt, (4.87)

implying both ε = 0 and π = 0, and ε̄ = 0 and π̄ = 0. Then the energy-momentum

transformations are just the usual linear Lorentz transformations

(E,−pT ) = (Ē,−p̄T )M, (4.88)

and

(Ē,−p̄T ) = (E,−pT )M−1. (4.89)

This is the standard way of implementing Lagrangian and Hamiltonian mechanics

in the presence of Lorentz symmetry.

4.4.3 Lorentz group (affine version)

We could have chosen a slightly different normalization for L and H. If we take

L = mc2
{

1−
√

1− ||ẋ||2/c2
}
, (4.90)

then

p =
mẋ√

1− ||ẋ||2/c2
; H = p · ẋ− L =

mc2

√
1− ||ẋ||2/c2

−mc2. (4.91)

Furthermore

L̄ = mc2

{
1−

√
1− || ˙̄x||2/c2

}
, (4.92)

so

p̄ =
m ˙̄x√

1− || ˙̄x||2/c2
; H̄ = p̄ · ˙̄x− L̄ =

mc2

√
1− || ˙̄x||2/c2

−mc2. (4.93)

In fact with this normalization

[L̄−mc2] dt̄ = [L−mc2] dt, (4.94)

whence

ε̄ = mc2; π̄ = 0; and ε = mc2; π = 0. (4.95)

We can rephrase this in terms of the 4-velocities of the “aether” and moving frames

as ( ε̄
π̄

)
= mc2 V̄ ;

( ε
π

)
= mc2 V ; (4.96)

40



4.4. EXAMPLES

With these choices the energy-momentum transformations look slightly unusual.

Taking v ‖ p for simplicity (the non-collinear case does not teach us anything new)

we now have

E → Ē = γ([mc2 + E]− p · v)−mc2, (4.97)

and

p→ p̄ = γ(p− [mc2 + E]v/c2). (4.98)

The inverse transformations are

Ē → E = γ([mc2 + Ē] + p̄ · v)−mc2, (4.99)

and

p̄→ p = γ([mc2 + Ē]v/c2 + p̄). (4.100)

These affine transformations make perfectly good physical sense once you realise

that, with the conventions of this subsection, the E’s in question are just the rela-

tivistic kinetic energies — quantities that are normally denoted by K:

Ehere = Etotal −mc2 = K. (4.101)

Then

K → K̄ = γ([mc2 +K]− p · v)−mc2, (4.102)

and

p→ p̄ = γ(p− [mc2 +K]v/c2), (4.103)

while

K̄ → K = γ([mc2 + K̄] + p̄ · v)−mc2, (4.104)

and

p̄→ p = γ([mc2 + K̄]v/c2 + p̄). (4.105)

These are manifestly just a disguised form of the usual Lorentz transformations.

Note that the formal c→∞ limit of these (slightly nonstandard) affine equations is

K → K̄ = K − p · v +
1

2
m||v||2; p→ p̄ = p−mv; (4.106)

and

K̄ → K = K̄ + p̄ · v +
1

2
m||v||2; p̄→ p = p̄+mv. (4.107)

These are the (affine) transformation laws for (the usual form of) the Galileo group.

Again, the somewhat subtle message to take from this is that since the affine

parameters ε and π, and ε̄ and π̄, are already so important in situations of extremely

high symmetry (the Lorentz group, the Galileo group), then they are also likely to

be important in any situations where these symmetries are broken.
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4.4.4 Galileo group (linear version)

The previous discussion suggests that there might be some (perhaps nonstandard)

set of conventions that would make the energy and momentum transform linearly

for the Galileo group. That is, there might be some way of arranging things so that

for the Galileo group

E → Ē = E − p · v; p→ p̄ = p. (4.108)

How would we do that? It will have to be something rather unusual. Choose the

following Lagrangians:

L =
1

2
m||ẋ||2; L̄ =

1

2
m|| ˙̄x + v||2. (4.109)

Then the momenta are

p = mẋ; p̄ = m( ˙̄x + v) = mẋ = p. (4.110)

The energy in the aether frame is (as usual)

E = p · ẋ− L =
1

2
m||ẋ||2. (4.111)

However with these conventions the energy in the moving frame is

Ē = p̄ · ˙̄x− L̄ = m( ˙̄x + v) · ˙̄x− 1

2
m|| ˙̄x + v||2 (4.112)

= mẋ · (ẋ− v)− 1

2
m||ẋ||2 (4.113)

=
1

2
m||ẋ||2 −mẋ · v = E − p · v. (4.114)

Now L̄ = 1
2m|| ˙̄x+v||2, is certainly an “odd” and “unusual” Lagrangian to choose for

a free non-relativistic particle in the moving frame, but it is by no means “wrong” —

it certainly does the job. One certainly has the correct equations of motion ¨̄x = 0,

and for this definition of energy and momentum, albeit “odd” and “unusual”, the

energy-momentum transformation laws are explicitly linear :

p̄ = p; Ē = E − p · v. (4.115)

Note that we have made the quantities {ε,π} and {ε̄, π̄} simple, in fact zero, at the

price of making the moving-frame Lagrangian complicated. (For some comments in

a similar vein, see section II.A of reference [219].)
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4.4.5 Considerations regarding affine versus linear

When looking at how this general framework and formalism applies to the Lorentz

group we saw that there were good choices for ε and π, and ε̄ and π̄, and also “bad”

(or rather, sub-optimal) choices. There seems to be considerable freedom in how

one picks ε and π, and ε̄ and π̄, and so considerable freedom in choosing affine

versus linear transformations for the 4-momentum. Can this freedom be used to

improve things? If one is working in a region of parameter space that is “close”

to special relativity (a “perturbative” deviation from special relativity) then linear

transformations for the 4-momentum would seem to be the most appropriate choice.

If one is working in a region of parameter space that is “close” to Galillean relativity

(a “perturbative” deviation from Newtonian mechanics) then affine transformations

for the 4-momentum would seem to be the most appropriate choice. The general

situation is somewhat unclear, but it seems advisable to retain the generality of the

full affine transformations as long as possible.

4.5 On-shell relations for energy and momentum

In any particular inertial frame if one measures the energy E and momentum p

of an on-shell particle then there will be some relation between them; an on-shell

energy-momentum relation E = E(p). One normally expects a very tight connection

between the functional form of these energy-momentum relations and the functional

form of the transformations between inertial frames — unfortunately this very tight

connection is intimately related with adopting the relativity principle, and will in

general fail once the relativity principle is abandoned. That is, in Lorentz-violating

theories the functional form of the energy-momentum relations and the functional

form of the transformations between inertial frames can be (and often are) indepen-

dent of each other.

For this reason, one important matter to address is to understand what happens

to quantities that are considered as intrinsic properties of a particle in a special

relativistic scenario, such as the rest-mass, when the relativity principle is dropped.

4.5.1 Rest energy without the relativity principle

To see how this comes about, consider the preferred (aether) frame F , and in that

frame suppose you measure the energy E and momentum p of the same particle in

a number of different kinematic states to map out the energy-momentum relation

E = E(p) in the aether frame. To each momentum p we associate a 3-velocity
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v = ∂E/∂p. Now go to the rest frame F̄ of the particle (of course the rest frame

of the particle is moving with respect to the aether). In the rest frame the particle

will by definition have 3-velocity zero v̄ = 0, and will have some energy, call it the

rest-energy Ē = E0 and some momentum, call it the rest-momentum p̄ = p0.

If the relativity principle holds then the rest-energy and rest-momentum must

be intrinsic properties of the particle that cannot depend on its velocity with respect

to the aether — and in particular the rest-momentum is most typically chosen to be

zero. But once one has preferred frame effects the rest-energy and rest-momentum

can very definitely depend on the state of motion with respect to the aether. That

is, generally we will have Ē = E0(F̄ ) and p̄ = p0(F̄ ).

Transforming back to the aether frame we now see

E = γE0(F̄ ) + p0(F̄ )T Σv + γε̄+ π̄T Σv − ε, (4.116)

and

p = γE0(F̄ )u+ ΣT p0(F̄ ) + γε̄u+ ΣT π̄ − π. (4.117)

In general, unless further assumptions are made, this is the best one can do.

We now use the freedom to choose the quantities {ε,π} and {ε̄, π̄} to make life

as simple as possible. Without any real loss of generality we can choose π̄ = −p0(F̄ )

in which case

E = γE0(F̄ ) + γε̄− ε, (4.118)

and

p = γE0(F̄ )u+ γε̄u− π. (4.119)

(This is equivalent to choosing conventions so that in the rest frame the total “ef-

fective” rest momentum p0 + π̄ = 0.) Let us now for definiteness choose ε = 0 and

π = 0, then

E = γ[E0(F̄ ) + ε̄], (4.120)

and

p = γ[E0(F̄ ) + ε̄]u = Eu. (4.121)

(We have done things in this manner so that it becomes clear just how general the

relation p = Eu really is.) Finally choose ε̄ = 0, then with these choices we can

write

E = γE0(F̄ ), (4.122)

and

p = γE0(F̄ )u = Eu. (4.123)
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Introduce an arbitrary but fixed constant c with the dimensions of velocity (not

necessarily the speed of light), and some arbitrary function $(F̄ ) which is completely

at our disposal. Then in the aether frame we can write

E2 −$||p||2c2 = γ2(1−$c2||u||2)E2
0(F̄ ). (4.124)

Two particularly useful (but by no means inevitable) choices are to take:

• Choose $ → 1 so that

E2 − ||p||2c2 = γ2(1− c2||u||2)E2
0(F̄ ). (4.125)

• Choose $ → ||v||2/(||u||2c4) so that

E2 − ||v||2
||u||2c2

||p||2 = γ2(1− v2/c2)E2
0(F̄ ). (4.126)

In the case of exact Lorentz invariance we most usefully choose $ → 1, with the

constant c being interpreted as the speed of light, and γ → 1/
√

1− v2/c2, while

u = v/c2. Furthermore E0 is then independent of v, so in this case one recovers

the usual kinematic relation E2 − ||p||2c2 = E2
0 , while (as expected) E = γE0

and p = γE0v/c
2 = Ev/c2. In the absence of Lorentz invariance one generically

has to live with the more complicated kinematics presented above. The notion of

rest energy E0 still makes perfectly good sense, but the rest energy can depend

on the particle’s state of motion through the aether, E0(F̄ ), and the relation to

4-momentum is considerably more subtle than one might have expected.

The key point here is that the energy-momentum relation E(p) and the trans-

formation matrix M are in general independent of each other; knowing one does not

necessarily give you the other (except when Lorentz invariance is assumed, or some

similar restriction is imposed). There are two additional special cases of considerable

interest, which we now discuss.

4.5.2 Invariant rest energy without the relativity principle

One can speculate or hypothesise that for unknown reasons the internal structure

of elementary and composite particles self-regulates so that rest energies are inde-

pendent of one’s state of motion through the aether. One still has rather unusual

behaviour in that

E = γE0; p = γE0u = Eu; (4.127)

while

E2 −$||p||2c2 = γ2(1−$c2||u||2)E2
0 . (4.128)
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(Remember u is not necessarily parallel to v, neither does ||u|| equal ||v||, they do

not even have the same dimensions. In addition, all three of the functions $(F̄ ),

γ(F̄ ), and u(F̄ ) can depend on the particle’s state of motion with respect to the

aether. In fact $ is entirely arbitrary and can be adjusted to taste — we will have

cause to use this freedom below.) So even with an invariant rest mass (and this is a

rather strong assumption) the 4-momentum of a moving particle is rather definitely

non-trivial.

Starting from this assumption, we shall now proceed to introduce the first of the

two minimally Lorentz-violating models.

4.5.3 First minimalist Lorentz-violating model

Another important special case to consider is to assume that the transformations be-

tween inertial frames are the usual Lorentz transformations but the energy-momen-

tum relation — for at least some of the particles — is not Lorentz invariant, see

figure 4.2. This is less bizarre than one might at first glance suspect. The point is

that the physical clocks and rulers we use in our laboratories satisfy the Lorentz inva-

riant physics rather accurately — and we have good phenomenological/observational

evidence that (apart possibly from the neutrino sector) Lorentz invariance is an ex-

tremely good approximation to empirical reality. So it makes good sense to work

in an approximation where all physical clocks and rulers are exactly Lorentz in-

variant, and the only Lorentz violations are hiding in some specific particle sector

(e.g. the neutrinos). In contrast, if there are significant Lorentz violations in the

physics underpinning one’s clocks and rulers, then using the Lorentz transformations

to inter-relate the space and time coordinates determined by those clocks and rulers

would be a very bad and physically unjustified approximation.

More generally let us consider a model where Lorentz-violating physics is confined

to a specific sub-sector of the particle physics spectrum. In this situation the rest

energy of the Lorentz-violating particles can still depend on their state of motion

with respect to the aether. In the aether frame we then have

E = γ E0(F̄ ); p = γ E0(F̄ )v/c2 = Ev/c2; (4.129)

while

E2 − ||p||2c2 = E2
0(F̄ ). (4.130)

Again, even in this simplified situation, the 4-momentum and the kinematic relation

are rather definitely non-trivial. If we now transform to a third inertial frame ¯̄F ,
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Figure 4.2: In this first Lorentz-violating model the transformations between two inertial frames

F and F̄ are the usual Lorentz transformations Λ in which we assume that the physics of clock and

rulers fulfils Lorentz symmetry. The Lorentz-violating sector is the energy-momentum relation of

some particle species that does not contribute significantly to the physics of clocks and rulers.

then certainly
¯̄E2 − ||¯̄p||2c2 = E2 − ||p||2c2 = E2

0(F̄ ) (4.131)

is a Lorentz invariant, but the specific value of this Lorentz invariant quantity de-

pends on the absolute state of motion of the Lorentz-violating particle as viewed

from the aether frame. The way we have currently set things up, this rest energy

could even be direction dependent — no isotropy assumption (at least in the Lorentz-

violating sector) has yet been made. If we now add the additional assumption that

the Lorentz-violating physics is isotropic in the aether frame then

E = γE0(v); p = γE0(v)v/c2 = Ev/c2; (4.132)

while

E2 − ||p||2c2 = E2
0(v). (4.133)

So we rather explicitly see the manner in which absolute speed with respect to

the aether would formally affect on-shell particle energy-momentum relations. We

emphasise that in this model, even though the Lorentz-violating particles do not

have a Lorentz invariant energy-momentum relation, their energies and 3-momenta

nevertheless transform in the usual manner under Lorentz transformations. To make

this look more relativistic, one could introduce a 4-velocity Vaether for the aether,
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and another 4-velocity Vparticle for the Lorentz-violating particle. The speed v of

the Lorentz violating particle with respect to the aether is then the usual explicit

function of the 4-inner-product η(Vaether, Vparticle) and the kinematic relation takes

the form

E2 − ||p||2c2 = E2
0(η(Vaether, Vparticle)). (4.134)

This model is the first of the “minimalist” models of Lorentz violation we refer to

in the introduction.

Broadly speaking, something along the lines of this minimalist model is often im-

plicitly adopted in currently extant analyses of Lorentz violating models, but often

without the relevant assumptions being clearly and explicitly laid out. Many cur-

rent analyses implicitly treat Lorentz violation perturbatively, modelling reality by a

Lorentz invariant “core” subject to Lorentz-violating “perturbations”. (This is true

for instance in the Kostelecky et al. Standard Model Extension [59, 91, 180–186],

the Coleman–Glashow analyses [88, 89], see also [87], and the Jacobson–Liberati–

Mattingly analyses [158–165, 198, 210, 211], see also [205].) Typically, to a first

approximation one ignores the effect of any (presumably small) Lorentz-violating

physics on the internal structure one’s clocks and rulers, thereby implicitly justify-

ing the use of ordinary Lorentz transformations for one’s experimentally measured

energy and momenta, and focuses attention on subtle deviations from Lorentz in-

variance that might be probed by suitably designed null experiments. However it

should be very much emphasised that if the effect of Lorentz-violating physics ever

has non-perturbatively large effects on the internal structure one’s clocks and rulers,

then one can no longer safely use the ordinary Lorentz transformations for experi-

mentally determined energy and momenta — and instead of adopting some version

of the minimalist model above one must then resort to the full power of the preceding

analysis.

4.5.4 Considerations regarding on-shell energy-momentum

We emphasise that we have gone to all this trouble in setting up a very general

formalism in order to have a coherent and consistent framework to operate in once

we begin to entertain possible departures from Lorentz invariance. Many of the

results derived so far are quite unexpected when one has been trained to always

think in a Lorentz invariant (or even Galilean invariant) and relativity principle

respecting manner.
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4.6 Adding more constraints

Let us now see what extra conditions we would have to add to obtain standard

physics.

4.6.1 Linearity plus isotropy

Now let us add the assumption of isotropy — specifically that physics is isotropic in

the preferred frame, the aether frame. In particular this means that in the inertial

transformation matrices

M =


 γ −γuT

− Σv Σ


 ; (4.135)

M−1 =


 γ−1(1− u · v)−1 uT (I − v ⊗ u)−1Σ−1

γ−1(1− u · v)−1v (I − v ⊗ u)−1Σ−1


 ; (4.136)

all vectors and matrices should be constructible only using the vector v and its mag-

nitude — there are now assumed to be no preferred principal axes for the universe.

We are also assuming that the frames F and F̄ are “aligned” (not rotated with

respect to each other). Then isotropy amounts to

u||v; Σ = aI + bv ⊗ v. (4.137)

In fact it is now useful to introduce an arbitrary but fixed unspecified constant c

with the dimensions of velocity, and a dimensionless parameter ζ, to write

u = ζv/c2. (4.138)

Similarly, let us introduce dimensionless variables χ and ξ to write

Σ = γχn⊗ n + ξ[I − n⊗ n]. (4.139)

Recall v = vn. By appealing to isotropy, the four quantities γ, χ, ζ, and ξ are

arbitrary dimensionless functions of the dimensionless variable v2/c2. By combining

linearity with isotropy in this manner we have obtained a variant of the Robertson–

Mansouri–Sexl framework; see [206, 239], and section 3.2 of [210]. (The RMS for-

malism invokes several other technical assumptions not relevant to the current dis-

cussion, and is not quite identical to our own framework.) Note that the quantities

γ, χ, ζ, and ξ can still depend on the internal structure of one’s clocks and rulers.

We now have

M =


 γ −γζvT /c2

− γχv γχn⊗ n + ξ[I − n⊗ n]


 . (4.140)
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An intermediate step in calculating the inverse transformation is

M−1 =


 γ−1(1− ζv2/c2)−1 ζvT (I − ζvvT /c2)−1Σ−1/c2

γ−1(1− ζv2/c2)−1v (I − ζvvT /c2)−1Σ−1


 . (4.141)

But

Σ(I − ζvvT /c2) = (γχn⊗ n + ξ[I − n⊗ n])(I − [ζv2/c2]n⊗ n)

= γχ[1− ζv2/c2]n⊗ n + ξ[I − n⊗ n], (4.142)

whence

(I − ζvvT /c2)−1Σ−1 = γ−1χ−1[1− ζv2/c2]−1n⊗ n + ξ−1[I − n⊗ n]. (4.143)

So the inverse transformation matrix simplifies to

M−1 =


 γ−1(1− ζv2/c2)−1 γ−1(1− ζv2/c2)−1ζχ−1vvT /c2

γ−1(1− ζv2/c2)−1v γ−1χ−1[1− ζv2/c2]−1n⊗ n + ξ−1[I − n⊗ n]


 .

(4.144)

By a specialization of our previous discussion:

• The velocity of the moving frame with respect to the aether is v.

• The velocity of the aether with respect to the moving frame is −χv.

• These are now at least collinear, and in fact anti-parallel, but can still differ

in magnitude; they are still not equal-but-opposite.

If we rotate to align v along the x̂ axis this looks a little simpler:

M =




γ −γζv/c2 0T

− γχv γχ 0T

0 0 ξI


 , (4.145)

and

M−1 =




γ−1(1− ζv2/c2)−1 γ−1(1− ζv2/c2)−1ζχ−1v/c2 0T

γ−1(1− ζv2/c2)−1v γ−1χ−1[1− ζv2/c2]−1 0T

0 0 ξ−1I


 . (4.146)

This is as far as you can get with linearity plus isotropy — you still have four

arbitrary functions γ(v2/c2), χ(v2/c2), ζ(v2/c2), and ξ(v2/c2) to deal with, but at
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least it is no longer an arbitrary 4 × 4 matrix with 16 free components. The set of

transformations is still not a group, just a groupoid/pseudogroup.

In view of the isotropy assumption particle rest masses E0 should depend only

on the speed with respect to the aether, hence be of the form E0(v). Specializing our

earlier discussion, with $, γ, and ζ being velocity dependent, in the aether frame

we would have

E = γE0(v); p = γζE0(v)v/c2; (4.147)

with

E2 −$||p||2c2 = γ2
[
1−$ζ2v2/c2

]
E0(v)2. (4.148)

Note that Lorentz invariance corresponds to setting χ = ζ = ξ = 1, with γ =

1/
√

1− v2/c2, (and in addition demanding $ → 1 and that E0 be constant).

The Galilean limit is somewhat delicate: Physically we want to be looking at

some sort of low velocity limit. When moving at zero velocity through the aether we

expect M → I (corresponding to the trivial transformation), so we must have χ(0) =

γ(0) = ξ(0) = 1. In contrast ζ(0) should be finite but is otherwise unconstrained.

However c is at this stage just some constant with the dimensions of velocity, it does

not yet have any deeper physical interpretation, so one can simply absorb ζ(0) into

a redefinition of c and so effectively set ζ(0)→ 1.

• In the transformation matricesM andM−1, this low-velocity limit corresponds

to ζ = χ = γ = ξ = 1, with ||v|| � c.

• Because of isotropy, in the low-velocity limit we must have both

γ(v) ≈ 1 +
1

2
γ2v

2/c2 + . . . , and ζ(v) ≈ 1 +
1

2
ζ2v

2/c2 + . . . . (4.149)

Furthermore

E0(v) = E0(0)

{
1 +

1

2
κ2v

2/c2 + . . .

}
, (4.150)

so that:

E ≈ E0(0) +
1

2
[E0(0)/c2]{γ2 +κ2}v2 + . . . ; p ≈ [E0(0)/c2]v+ . . . (4.151)

• If we define the low-velocity effective mass by meff = E0(0)/c2 then

E ≈ meffc
2 + {γ2 + κ2}

||p||2
2meff

+ . . . ; p ≈ meff v + . . . (4.152)

So there is a sensible low-velocity limit, though it is perhaps more subtle than one

might have thought.
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4.6.2 Linearity plus isotropy plus reciprocity

It is sometimes useful to restrict attention to situations where M−1(v) = M(−v).

Note that this is an additional axiom beyond homogeneity and isotropy.

• This is (one version of) the so-called reciprocity principle. It is still weaker

than the relativity principle.

• This version of the reciprocity principle, because it also makes assumptions

about the transverse directions, is very slightly stronger than asserting that

the velocity of any inertial frame as seen from the aether is minus the velocity

of the aether as seen from that inertial frame [67].

• The way we have formulated it, reciprocity implies both χ = 1 and ξ = 1, and

in addition imposes the constraint

γ =
1√

1− ζv2/c2
. (4.153)

To see this, compare M with M−1 above, and note that M−1(v) = M(−v) implies

the three relations:

γ = γ−1(1− ζv2/c2)−1; (4.154)

γχ = γ−1χ−1(1− ζv2/c2)−1; (4.155)

ξ = ξ−1. (4.156)

Solving, we see

ξ = 1; χ = 1; γ2(1− ζv2/c2) = 1. (4.157)

Then

M =




γ −γζv/c2 0T

− γv γ 0T

0 0 I


 ; (4.158)

M−1 =




γ γζv/c2 0T

γv γ 0T

0 0 I


 ; (4.159)

subject to the constraint

γ =
1√

1− ζv2/c2
. (4.160)

Note that you now only have one free function ζ(v2/c2), everything else is deter-

mined.
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• Working along a somewhat different route, it has been shown [67] that com-

bining relativity+homogeneity+isotropy implies (at least one version of) the

reciprocity principle.

• Note that adopting the principle of reciprocity implies the set {M(v)} is now

closed under matrix inversion, though it is still not a group.

• This is not quite special relativity [or even Galilean relativity], but it is getting

awfully close.

4.6.3 Second minimalist Lorentz-violating model

Since the model above (linearity plus isotropy plus reciprocity) is a simple one-

function violation of special relativity, it holds a special place in the set of all Lorentz

violating (relativity principle violating) theories — this is arguably the simplest

violation of special relativity one can have at the level of the transformations between

inertial frames. At the level of the coordinate transformations

t→ t̄ =
t− ζ(v)vx/c2

√
1− ζ(v)v2/c2

; (4.161)

x→ x̄ =
x− vt√

1− ζ(v)v2/c2
; (4.162)

y → ȳ = y; z → z̄ = z. (4.163)

The closest one can get to a notion of “interval” is to observe

c2(∆t)2

ζ(v)
− ||∆x||2 =

c2(∆t̄ )2

ζ(v)
− ||∆x̄||2. (4.164)

Recall that ζ(v) depends on the absolute speed of the moving frame through the

aether, so this is only a 2-frame invariant, it is not a general invariant for arbitrary

combinations of inertial frames. To be explicit about this, let F1 and F2 be two

moving frames, then

c2(∆t)2

ζ(v1)
− ||∆x||2 =

c2(∆t1 )2

ζ(v1)
− ||∆x1||2, (4.165)

and
c2(∆t)2

ζ(v2)
− ||∆x||2 =

c2(∆t2 )2

ζ(v2)
− ||∆x2||2. (4.166)

But (ultimately due to the lack of the relativity principle, and the consequent lack

of group structure for the transformations) there is, under the current assumptions,
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Figure 4.3: In this second Lorentz-violating model the transformations M and M−1 between the

aether frame F and another inertial frame F̄ depends only on one parameter, the absolute speed v of

the moving frame through the aether. Due to the lack of the relativity principle, when considering

on-shell particle energy-momentum relations, the invariant masses E0(v) can depend on absolute

velocity with respect to the aether.

no simple relationship of this type connecting the measurements in inertial frame

F1 with those in inertial frame F2, see figure 4.3.

When we turn to on-shell particle energy-momentum relations we still have in-

variant masses E0(v) that can depend on absolute velocity with respect to the aether.

Therefore, in view of our previous discussion, in the aether frame we would have

E =
E0(v)√

1− ζ(v)v2/c2
; p =

ζ(v)E0(v)v/c2

√
1− ζ(v)v2/c2

= Ev/c2; (4.167)

with

E2 −$(v)||p||2c2 =

[
1−$(v)ζ2(v)v2/c2

1− ζ(v)v2/c2

]
E0(v)2. (4.168)

But $(v) is a completely arbitrary function that is entirely at our disposal, so in

the current context it makes sense to choose $ = 1/ζ in which case

E2 − ζ−1(v) ||p||2c2 = E0(v)2. (4.169)

Even if we make the additional and rather stringent assumption that rest masses

are invariant, independent of absolute velocity through the aether, (and this is very

definitely an extra assumption beyond reciprocity), one still picks up non-trivial
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physics via the v-dependent function ζ(v):

E =
E0√

1− ζ(v)v2/c2
; p =

ζ(v)E0v/c
2

√
1− ζ(v)v2/c2

= Ev/c2; (4.170)

with

E2 − ζ−1(v) ||p||2c2 = E2
0 . (4.171)

This model is the second of the “minimalist” models of Lorentz violation we refer to

in the introduction. It is particularly useful in that it gives one a very clean specific

“target” to take aim at.

4.6.4 Linearity plus isotropy plus reciprocity plus relativity

If we now (finally) adopt the relativity principle, then for arbitrary v1 and v2 the

object M(v2,v1) must equal M(w) for some w(v1,v2) (with w being interpreted

as the relative velocity of the two inertial frames). But this then implies that the

set {M(v)} forms a group, not merely a groupoid/pseudogroup. We shall see that

this group condition implies ζ = 1, whence finally γ = 1/
√

1− v2/c2. But c was

some arbitrary quantity with the dimensions of velocity, it was not pre-judged to

be the physical speed of light. Finite c gives you the Lorentz group, infinite c

gives the Galileo group. (And the exceptional case c2 < 0 actually means one is in

Euclidean signature, and one obtains the SO(4) rotation group. This exceptional

case is normally excluded by appeal to a “pre-causality” principle [199].)

As an explicit check, assuming linearity+isotropy+reciprocity we have for two

transformations M1 and M2

M1 =




γ1 −γ1ζ1v1/c
2 0T

− γ1v1 γ1 0T

0 0 I


 ; (4.172)

M2 =




γ2 −γ2ζ2v2/c
2 0T

− γ2v2 γ2 0T

0 0 I


 ; (4.173)

subject to the constraint

γi =
1√

1− ζiv2
i /c

2
. (4.174)

Then the group property requires the existence of some v12 such that

M1M2 = M12. (4.175)
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Explicitly:




γ1γ2(1 + ζ1v1v2/c
2) −γ1γ2(ζ1v1 + ζ2v2)/c2 0T

− γ1γ2(v1 + v2) γ1γ2(1 + ζ2v1v2/c
2) 0T

0 0 I




=




γ12 −γ12ζ12v12/c
2 0T

− γ12v12 γ12 0T

0 0 I


 . (4.176)

But by comparing the diagonal elements this can be true only if ζ1 = ζ2 for all values

of v1 and v2. That is, ζ(v1) = ζ(v2) for all values of v1 and v2, so that there exists

some velocity independent constant ζ0 such that

ζ(v) = ζ0. (4.177)

This now implies

M1 =




γ1 −γ1ζ0v1/c
2 0T

− γ1v1 γ1 0T

0 0 I


 ; (4.178)

M2 =




γ2 −γ2ζ0v2/c
2 0T

− γ2v2 γ2 0T

0 0 I


 . (4.179)

The statement M1M2 = M12 becomes




γ1γ2(1 + ζ0v1v2/c
2) −γ1γ2ζ0(v1 + v2)/c2 0T

− γ1γ2(v1 + v2) γ1γ2(1 + ζ0v1v2/c
2) 0T

0 0 I




=




γ12 −γ12ζ0v12/c
2 0T

− γ12v12 γ12 0T

0 0 I


 . (4.180)

But now we can simply absorb ζ0 into a redefinition of c. After all, c is at this

stage just an arbitrary but fixed constant with the dimensions of velocity. Taking

c2 → c2/ζ0 we have

M1 =




γ1 −γ1v1/c
2 0T

− γ1v1 γ1 0T

0 0 I


 ; (4.181)
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M2 =




γ2 −γ2v2/c
2 0T

− γ2v2 γ2 0T

0 0 I


 . (4.182)

Therefore

M1M2 =




γ1γ2(1 + v1v2/c
2) −γ1γ2(v1 + v2)/c2 0T

− γ1γ2(v1 + v2) γ1γ2(1 + v1v2/c
2) 0T

0 0 I




=




γ12 −γ12v12/c
2 0T

− γ12v12 γ12 0T

0 0 I


 . (4.183)

If c2 is finite and positive, we have the Lorentz transformations. If c2 is infinite we

have Galileo’s transformations. This is (essentially) von Ignatowsky’s result. (Note

that c2 = 0 is hopelessly diseased,2 while c2 < 0 actually corresponds to Euclidean

signature space-time, with the set {M} being the group SO(4) of Euclidean rota-

tions.)

4.7 Conclusions regarding the relativity principle

We have seen that once one for any reason moves away from Lorentz invariance, and

specifically once one discards the relativity principle, then many of the intuitions one

has been trained to develop in a special relativistic setting need to be significantly

and carefully revised. In the next chapter we shall consider threshold phenomena,

also appearing in [46], which can be studied by picking and working in a particular

arbitrary but fixed inertial frame. In this chapter we have carefully analysed what

happens to the transformation properties between inertial frames once the relativity

principle is abandoned. A key message to take from the above is that the situation is

not hopeless — even in the absence of a relativity principle quite a lot can still be said

regarding the transformation properties between inertial frames, the combination of

3-velocities, the transformation of 4-momenta, and the interplay between the energy-

momentum relations for on-shell particles and the transformation properties between

inertial frames.

2It is at this stage, setting c2 → 0, that one could if desired obtain Carroll kinematics [95, 103,

134, 155, 195] by enforcing the particular limit c2 → 0, while v → 0, but holding the slowness

u = v/c2 fixed. The relevance to “real world” physics seems somewhat tenuous.
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Key features of the analysis are the groupoid/pseudogroup structure of the set

of transformations, the fact that 4-momentum transforms affinely as a dual vector,

the fact that there are a number of distinct stages by which Lorentz invariance can

be recovered — by successively imposing linearity, then isotropy, then reciprocity,

and finally the relativity principle. The net result is a coherent framework within

which Lorentz symmetry breaking can be explored in a controlled and internally

consistent manner, while retaining usual notions of local physics. Overall the results

of this chapter and of the following one, provide general techniques of interest when

analysing the specific sector of physics that could present some Lorentz symmetry

breaking (e.g. the neutrinos). These results provide general techniques of interest

for handling large classes of Lorentz-violating but local physical models.
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Chapter 5

Lorentz violating kinematics:

Threshold theorems

5.1 Introduction

An important technical issue that considerably complicates detailed calculations in

a Lorentz symmetry breaking scenario, is that once this invariance is violated the

analysis of thresholds in both scattering and decay processes becomes extremely sub-

tle, with many new and naively unexpected effects. In the current chapter we develop

several extremely general threshold theorems that depend only on the existence of

some energy momentum relation E(p), eschewing even assumptions of isotropy or

monotonicity. We shall argue that there are physically interesting situations where

such a level of generality is called for, and that existing (partial) results in the litera-

ture make unnecessary technical assumptions. Even in this most general of settings,

we show that at threshold all final state particles move with the same 3-velocity,

while initial state particles must have 3-velocities parallel/anti-parallel to the final

state particles. In contrast the various 3-momenta can behave in a complicated and

quite counter-intuitive manner.

Regarding this matter, the reader would certainly remember the results presented

by the OPERA collaboration concerning some indications of “faster than light” neu-

trinos [5], (see also earlier more tentative results from the MINOS collaboration [6]).

Even though proved to be caused by a flaw in the experimental apparatus, neverthe-

less this result reinvigorated the field and prompted the production of a few hundred

theoretical papers. Notable contributions include [9, 10, 25, 69, 76, 79, 87, 92, 93,

102, 131, 136, 173, 175, 176, 205, 249, 293, 303]. In addition to these very recent

efforts, it is important to recognize that there is an older and extensive literature
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placing significant experimental and observational bounds on any possible violation

of Lorentz invariance. See for instance work by Coleman and Glashow [88, 89], Ja-

cobson and collaborators [158–165, 198, 211], and especially the Living Review by

Mattingly [210]. Other theoretical frameworks for characterizing possible violations

of Lorentz invariance include those of Nielsen and collaborators [80, 214–217], Koste-

lecky and collaborators [59, 91, 180–186], and the flat-space non-gravity framework

developed by Anselmi [28–40]. Additionally, the Hořava gravity framework [156]

naturally includes Lorentz violation [261, 262, 279–281, 297].

One of the key results in the literature devoted to possible violations of Lorentz

invariance is that the normal intuition one develops regarding threshold pheno-

mena requires significant modification. See for instance the articles by Coleman

and Glashow [88, 89], and Jacobson, Liberati, and Mattingly [161, 211] — and the

more recent follow-ups by Cohen and Glashow [87], and Liberati, Mattingly, and

Maccione [205], focussing specifically on the OPERA results.

Some assumptions

In this chapter we shall generalise the analysis of threshold phenomena presented in

the above mentioned works. We shall consider both single-particle decay processes,

and two-particle scattering processes (possibly inelastic), taking care to make an

absolute minimum of technical assumptions — thus greatly generalising previous

analyses. Specifically:

• We will explicitly assume a normal space-time manifold based on R4.

(This excludes, for instance, both non-commutative space-times and certain

versions of DSR [172, 200].)

• We shall explicitly assume conservation of both energy and momentum.

• Furthermore we shall explicitly assume a Hamiltonian/Lagrangian framework,

so that in view of Noether’s theorem (combined with energy-momentum con-

servation) we are working in a homogeneous space-time. Specifically, we as-

sume the free-particle energy to be some function of the 3-momentum, E(p),

and that this can be related to a 3-velocity via Hamilton’s equations

ẋ =
∂E

∂p
; ṗ = 0. (5.1)

(This is again a purely pragmatic decision based on the fact that we want to

have a sufficiently well-defined framework in which to be able to say something

reasonably concrete.)
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• We shall eschew any particular functional form for E(p), though we will impose

smoothness and differentiability constraints as needed.

• We shall explicitly not assume isotropy.

– Even if physics happens to be isotropic in the preferred (“aether”) frame

implicit in many specific Lorentz violating theories, there is no particular

reason to assume isotropy of the energy-momentum relation in generic

inertial frames. And since we do not necessarily know what the observer’s

3-velocity is with respect to the preferred frame, it is more useful to

develop threshold analysis for generic observers in an explicitly observer-

dependent manner.

– Even as early as the 1980’s attempts were made to take lattice physics

seriously as a physical cutoff — with proton decay taking place with

outgoing decay products preferentially aligned along the principal axes of

the universe. In such a situation one would not have isotropy even in the

preferred frame.

– Many of the “analogue space-time” models permit energy-momentum

relations that have odd and possibly anisotropic behaviors at ultra-high

energies [56, 276].

– Consider a generic quasiparticle propagating in a generic atomic lattice.

(For instance, a conduction-band dressed electron.) The band structure

will typically not be isotropic, even in the rest frame of the lattice. So if

you are a condensed matter physicist, you will have no choice, you will

simply have to acknowledge that non-isotropy of the energy-momentum

relation is quite common, which will unavoidably influence your ability

to analyze reaction thresholds.

• We shall also be extremely cautious concerning “monotonicity” assumptions

— carefully formulating an appropriate concept of monotonicity, and carefully

analyzing what can and cannot be extracted from such an assumption.

Because of the generality of these assumptions, our results will have considerably

wider validity than the results currently extant in the literature. Even in this most

general of frameworks, several rigorous theorems can be extracted. We shall show

that at threshold all final state particles move with the same 3-velocity, while initial

state particles must have 3-velocities parallel/anti-parallel to the final state particles.

In contrast the various 3-momenta can behave in quite complicated and counter-

intuitive fashion, and the 3-momenta need not even be collinear.
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5.2 General background

In this section we shall review some of the models already existing in the field, in or-

der to comprehend which are their characteristics and limitations. In the Coleman–

Glashow analysis [89], most of the discussion is explicitly limited to the rather spe-

cial case of single-particle decay processes where the initial and final state particles

(i ∈ {1, 2, . . . , n}) all have energies of the form

Ei(pi) =
√
E2
i,0 + ||pi||2c2

i . (5.2)

Here the “speed of light” can be particle dependent. (See especially equation (2.19)

in reference [89]. A similar assumption is implicitly made in [88].) But it is reasona-

bly clear that much of the discussion of thresholds in [89] would work for any generic

Ei(pi). In contrast, in the OPERA-related analysis of [87], this specific choice of

energy-momentum relation is implicit, not explicit, but is absolutely essential to

that discussion — see [205] for a generalization.

The Mattingly, Jacobson, and Liberati threshold analysis [211] focusses on energy-

momentum relations that are (even in their most general setting) taken to be both

isotropic and monotonic. Specific examples are taken to be of the form

Ei(pi) =
√
E2
i,0 + ||pi||2c2 + ηi (||pi|| c)nE2−n

∗ . (5.3)

Here ηi is a dimensionless parameter and E∗ is an energy scale characterizing the

deviations from Lorentz invariance. The special case n = 2 corresponds to the

Coleman–Glashow energy-momentum relation. If ηi < 0 and n > 2 then these

energy-momentum relations can in principle exhibit a maximum — the energy “satu-

rates” — this is a specific example of a much more general phenomenon:

• In lattice QFT regularizations energy-momentum relations are typically of the

form

E(p) =

√
E2

0 +

(
~c
a

)2 {
sin2

(pxa
~

)
+ sin2

(pya
~

)
+ sin2

(pza
~

)}
, (5.4)

or, (for “massless” particles),

E(p) =
~c
a

√
sin2

(pxa
~

)
+ sin2

(pya
~

)
+ sin2

(pza
~

)
, (5.5)

and typically exhibit a maximum energy Emax =
√
E2

0 + 3~2c2/a2 in terms of

the lattice spacing a. (One usually considers “small” momenta, ||p||a/~ � 1,

where Lorentz invariance is approximately recovered. Herein the focus will be

on deviations from Lorentz invariance.)
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• Qualitatively similar effects occur for quasiparticles propagating through atomic

lattices — momentum space [the first Brillouin zone] is now compact, and so

(assuming continuity) the energy will be bounded by some maximum.

• In DSR-inspired models, insofar as they can be incorporated into the current

framework, one often has individual particle energies saturating at or around

the Planck energy [172, 200].

• For a specific example (physically unmotivated but mathematically tractable)

of saturation behaviour one might take

E(p) =

√
E2

0 + E2
∗ tanh

( ||p||2c2

E2
∗

)
. (5.6)

At low momentum this is approximately Lorentz invariant

E(p) ≈
√
E2

0 + ||p||2c2 +O(||p||4), (5.7)

but at high momentum it exponentially saturates

E(p) ≈
√
E2

0 + E2
∗ +O(exp(−2||p||2c2/E2

∗)). (5.8)

• Neither the usual Lorentz invariant energy-momentum relation, nor even the

Galilean invariant energy-momentum relation, saturate with a maximum en-

ergy. For that matter, neither does the Coleman–Glashow energy-momentum

relation (5.2) saturate.

Since our purpose is to generalise threshold analysis as far as possible to situations

where Lorentz invariance is broken, we will for generality entertain the possibility

of energy-momentum relations that saturate to some maximum energy — with the

understanding that this maximum energy might, in specific situations, be infinite.

With this general framework in place we are now ready to begin detailed analysis.

5.3 Cautionary comments

Some cautionary comments are in order:

• For the lattice-like energy-momentum relation of equation (5.4) we have

v =
∂E

∂p
=

~c
2Ea

(
sin

(
2pxa

~

)
, sin

(
2pya

~

)
, sin

(
2pza

~

))
. (5.9)

The key point is that 3-velocity v and 3-momentum p need not be parallel.

Additionally v can exhibit non-trivial zeros for non-zero momentum p, and
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even once one specifies a particular particle the inverse function p(v) can

easily be (and typically is) multivalued. Such phenomena are not limited to

the specific energy-momentum relation of equation (5.4), but rather are generic

to any quasiparticle propagating through a regular lattice (for example, a

conduction-band dressed electron).

• Non uniqueness of the inverse function p(v) is also generic for (higher than

quadratic) polynomial or rational polynomial energy-momentum relations — it

is the unique invertability of the Lorentz invariant energy-momentum relation

E =
√
E2
∗ + ||p||2c2 that is non generic in this regard. (Details depend on the

precise values of the coefficients as the possibility of multi-valued behaviour

depends on the root structure.)

• For the tanh-like energy-momentum relation of equation (5.6) we have

v =
∂E

∂p
= c sech2

( ||p||2c2

E2
∗

)
pc

E
. (5.10)

While 3-velocity v and 3-momentum p are now parallel, zero 3-velocity can

correspond either to zero 3-momentum or to infinite 3-momentum (with finite

energy
√
E2

0 + E2
∗). Low-velocity physics can thus be grossly misleading —

two particles with the same 3-velocity may have wildly differing 3-momenta.

Such phenomena are not limited to the specific energy-momentum relation

of equation (5.6), but rather are generic to any situation where the energy

saturates as a function of 3-momentum. Note in particular that the energy-

momentum relation of equation (5.6) is monotonic — monotonicity is not

enough to prevent this sort of behaviour. Similar behaviour also occurs when-

ever lim||p||→∞ ∂E/∂p → 0, corresponding to a sub-linear asymptotic growth

in the energy-momentum relation.

• Other unusual possibilities include energy minima occurring at non-zero 3-

momentum, (by definition an energy minimum must always occur at zero

3-velocity). Let n be an arbitrary unit vector and consider for instance

E =
√
E2

0 + ||p||2c2 + k4(p · n)4 + k6(p · n)6. (5.11)

This energy-momentum relation is not only anisotropic, but by taking k4 < 0

and k6 > 0 one can arrange for a global minimum energy at some pmin =

pminn 6= 0. The 3-velocity is

v =
pc2 + 2k4(p · n)3n + 3k6(p · n)5n

E
, (5.12)
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and p and v are generally not collinear (unless one happens to be considering

motion parallel or perpendicular to the preferred axis n.)

• As a final pedagogical example consider the isotropic energy-momentum rela-

tion

E =
√
E2

0 + ||p||2c2 + k4||p||4 + k6||p||6 (5.13)

By taking k4 < 0 and k6 > 0 one can arrange for a global minimum energy at

some finite ||pmin|| = pmin 6= 0. The 3-velocity is

v =
||p||c2 + 2k4||p||3 + 3k6||p||5

E
p̂. (5.14)

In this situation p and v are generally collinear, but whenever there is a global

energy minimum at some finite ||pmin|| = pmin 6= 0 there will also be a non-

empty range of momenta for which p and v are anti-parallel.

These are merely five specific examples of the unusual behaviour one might poten-

tially encounter, and the types of issues we shall potentially need to consider in our

analysis.

5.4 Decay thresholds

Consider the decay process

X0 → X1 +X2 + . . . Xn, (5.15)

where for each individual particle we have the 4-momenta

Pi = (Ei(p),pi). (5.16)

pi and Ei are respectively the out-going three-momentum and energy for each par-

ticle. We shall now study the kinematics of this decay process.

5.4.1 Kinematically allowed region

Let us define

Eout(p1,p2, . . . ,pn) =
n∑

i=1

Ei(pi), (5.17)

and

Pout(p0) =

{
(p1,p2, . . . ,pn) :

n∑

i=1

pi = p0

}
. (5.18)
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Then Pout(p0) is a collection of three individually connected hyperplanes in Rn, one

hyperplane for each Cartesian component of p0, corresponding to the set of all pos-

sible outgoing 3-momenta for fixed total 3-momentum p0. Thus Pout(p0) is a 3n−3

dimensional plane (affine subspace) of co-dimension 3 in R3n, and is both convex and

connected as a subset of R3n. But the individual Ei(pi) are by assumption differen-

tiable and continuous, so Eout(p1,p2, . . . ,pn) is also differentiable and continuous.

In particular, since Pout(p0) is connected, this implies the image Eout(Pout(p0)) is a

connected interval in R.

For specified initial 3-momentum p0, the decay process (5.15) is kinematically

allowed if and only if

E0(p0) ∈ Eout(Pout(p0)). (5.19)

That is, the decay is allowed if and only if among the set of all possible output

3-momenta {p1,p2, . . . ,pn} that conserve total 3-momentum, there is at least one

configuration that also conserves total energy. We could also phrase the kinemati-

cally allowed region in terms of an allowable set of output momenta by considering

the inverse image

E−1
out (E0(p0)) ∩ Pout(p0), (5.20)

a set which, for given p0, may or may not be empty. Alternatively one can ask the

question

p0 ∈ E−1
0 (Eout(Pout(p0)))? (5.21)

But these approaches in terms of inverse images can be somewhat clumsy.

As a more practical way to better characterize the kinematically allowed region,

it is useful to introduce the two quantities

Emin(p0) = minEout(Pout(p0)) = min

{
n∑

i=1

Ei(pi) :

n∑

i=1

pi = p0

}
, (5.22)

and

Emax(p0) = maxEout(Pout(p0)) = max

{
n∑

i=1

Ei(pi) :

n∑

i=1

pi = p0

}
. (5.23)

A more technically precise statement would use the concepts of supremum and

infimum, but as long as we understand that statements made below might sometimes

have to be interpreted in terms of suitable limits, such a level of precision is, for our

purposes, unnecessary.

Then the decay process (5.15) is kinematically allowed if and only if

Emin(p0) ≤ E0(p0) ≤ Emax(p0). (5.24)
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A decay threshold is now defined to be the edge of the kinematically allowed region.

Specifically, an enabling threshold is defined by the condition

Emin(p0) = E0(p0), (5.25)

and a saturation threshold is defined by the condition

E0(p0) = Emax(p0). (5.26)

These thresholds are typically 2-surfaces in 3-momentum space.

• Note that Emax(p0) might trivially be infinite if any one of the energy-momen-

tum relations does not saturate at large 3-momentum, in which case no useful

upper bound, and hence no saturation threshold, would be obtained. This

is the case for instance in standard special relativity, in standard Galilean

kinematics, in the Coleman–Glashow energy-momentum relation (5.2), and for

η > 0 in the Mattingly–Jacobson–Liberati energy-momentum relation (5.3.)

• Note that in standard special relativity the enabling threshold is also trivial —

one need merely go into the centre-of-momentum frame to see that the decay

is kinematically allowed if and only if

m0 ≥
n∑

n=1

mi. (5.27)

That is, decay thresholds are trivial in the case of exact Lorentz invariance, (see fig-

ure 5.1) and only become interesting if there are deviations from Lorentz invariance.

5.4.2 Thresholds in momentum space

For a graphical understanding of the situation it is useful to pick some (arbitrary

but fixed) direction p̂ in momentum space, write p0 = p0 p̂, and for each direction

p̂ consider the three curves:

C+(p̂) = {Emax(p0 p̂), p0}; (5.28)

C0(p̂) = {E0(p0 p̂), p0}; (5.29)

C−(p̂) = {Emin(p0 p̂), p0}. (5.30)

Note that if the individual energy-momentum relations are isotropic, (rotationally

invariant, spherically symmetric), then these curves C+/0/− will be independent of

the direction p̂. If Lorentz invariance is violated, isotropy would at best occur
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Figure 5.1: The shaded area shows the kinematically accessible region for a Lorentz invariant

particle of mass m (lower black line), and a Lorentz invariant particle of mass 4m (upper black

line), decaying to two identical particles of mass m (red line). Note absence of decay thresholds:

The process is either allowed or forbidden in a momentum-independent manner.
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only in the preferred (aether) frame, so in general it is safer to not make any such

assumption.

The kinematically accessible region for the decay products (assuming only conser-

vation of 3-momentum) is the region between the curves C− and C+. Kinematically

allowed decays correspond to that portion of C0 that lies in the region between the

curves C− and C+. Enabling thresholds occur whenever the curve C0 intersects the

curve C−, saturation thresholds occur whenever the curve C0 intersects the curve C+,

see figure 5.2.

Figure 5.2: The kinematically accessible region for a Lorentz invariant particle of mass m (lower

black line), and a Lorentz invariant particle of mass 4m (upper black line), decaying to two identical

particles with “tanh-like” energy-momentum relation E =
√
E2

0 + E2
∗ tanh (p2c2/E2

∗) (red lines).

For the mass m particle note the presence of both enabling and saturation thresholds (respectively

the two points where the red lines and the lower black line cross). For the mass 4m particle only

the saturation threshold survives (where there upper black line and upper red line cross).

It is additionally useful to distinguish lower and upper thresholds. A lower

threshold occurs when, as a function of increasing p0, the curve C0 enters the kine-

matically accessible region, and an upper threshold occurs when, as a function of

increasing p0, the curve C0 leaves the kinematically accessible region.

There are some quite general results for the curves C± that are not too difficult

to establish. Consider for simplicity a 2-particle final state, or a 2-particle subsystem
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Figure 5.3: The kinematically accessible region for initial particles with a “lattice-like” energy-

momentum relation E = (~c/a)| sin(pa/~)|, (with two distinct values of the “lattice spacing” a,

black lines), decaying to two identical particles with “tanh-like” energy-momentum relation E =√
E2

0 + E2
∗ tanh (p2c2/E2

∗) (two red lines). For small lattice spacing (the upper sine curve) note the

presence of four thresholds: In order they are lower enabling, upper saturation, lower saturation,

and upper enabling thresholds. For larger lattice spacing (the lower sine curve) only the lower

enabling and upper enabling thresholds survive.
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Figure 5.4: The kinematically accessible region for a particle with a mass m and a polynomial

energy-momentum relation (black line), decaying to two identical Lorentz invariant particles of

mass m (red line). Note presence of both lower and upper enabling thresholds, but no saturation

thresholds.
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Figure 5.5: The kinematically accessible region for a particle of mass m with a complicated

but monotonic energy-momentum relation (black line), decaying to two identical Lorentz invariant

particles of mass m (red line). Note presence of both lower and upper enabling thresholds, but no

saturation thresholds.
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of a n-body final state. Then consider the (restricted) set of curves

Cε(p̂) =
{
E1(εp0p̂) + E2([1− ε]p0p̂), p0

}
∀ε ∈ R, (5.31)

and (now with p̂ · p̂⊥ = 0) the more general set of curves

Cε,δ(p̂, p̂⊥) =
{
E1(εp0p̂+ δ p̂⊥) + E2([1− ε]p0p̂− δ p̂⊥), p0

}
∀ε, δ ∈ R. (5.32)

All of these curves lie between C− and C+, and can be used to quickly sketch out

the kinematically allowed region. In particular the curve

{
E1(p0p̂/2) + E2(p0p̂/2), p0

}
(5.33)

corresponds to sharing momentum equally between the two particles, and so auto-

matically lies between C− and C+. Perhaps less obviously the two curves

{
E1(p0p̂) + E2(0), p0

}
and

{
E1(0) + E2(p0p̂), p0

}
(5.34)

correspond to putting all available 3-momentum into particle 1 or particle 2 respec-

tively, and both these curves automatically lie between C− and C+. By considering

the limits ε→ ±∞ we also see that the two horizontal lines

{
E1(±∞p̂) + E2(∓∞p̂), p0

}
(5.35)

lie in the kinematically allowed region. (These last two curves are most useful when

the energy-momentum relations saturate at large 3-momentum.) Finally note that

the vertical line {
E1(p0p̂) + E2(−p0p̂), 0

}
(5.36)

also lies entirely within the kinematically allowed region. These observations allow

one to quickly sketch key features of the kinematically allowed region. Some graph-

ical experiments (see for instance figures 5.3, 5.4, and 5.5) will quickly convince one

that in general the kinematically allowed region need not be convex, nor need the

curves C± necessarily be monotonic. If one is willing to make more specific assump-

tions concerning the energy-momentum relations, only then can much more be said

about C± and Emax/min(p0). For instance:

• For the lattice energy-momentum relation of equation (5.4) we have Ei(pi) ≤
~c/a, so provided all final state decay products see the same lattice, we have

Emax(p0) ≤ n~c/a, and so the curve C+ will be nontrivial.

73



CHAPTER 5. THRESHOLD THEOREMS

• For the tanh-type energy-momentum relation of equation (5.6) it is easy to

check that

Emax(p0) =

n∑

i=1

√
E2

0,i + E2
∗,i. (5.37)

Then C+ is a simple horizontal line. C− is however quite nontrivial, see figure

5.2.

Once one abandons isotropy — in particular azimuthal isotropy around the chosen

direction p̂ in momentum space — then a fuller analysis using the curves Cε,δ(p̂, p̂⊥)

will be necessary. Formally

C−(p̂) = min
ε∈R

min
p̂⊥

min
δ∈R
Cε,δ(p̂, p̂⊥), (5.38)

and

C+(p̂) = max
ε∈R

max
p̂⊥

max
δ∈R
Cε,δ(p̂, p̂⊥). (5.39)

Typically the curves C±(p̂) will piecewise consist of segments of some specific curves

chosen from the Cε,δ(p̂, p̂⊥). The key message to extract from the discussion is this:

Once exact Lorentz invariance is lost the kinematically allowed region can become

extremely complicated.

5.4.3 Lagrange multiplier techniques

Further technical progress can best be made by introducing Lagrange multipliers

and considering extrema (at fixed p0) of the function

E(p0;pi,λ) =
n∑

i=1

Ei(pi)− λ ·
(

n∑

i=1

pi − p0

)
. (5.40)

All minima used to determine Emin(p0), or maxima used to determine Emax(p0),

will be extrema of the function E(p0;pi,λ) (though not necessarily vice versa). So

extrema of E(p0;pi,λ) will provide information concerning thresholds.

But all extrema of E satisfy
∂Ei
∂pi

= λ. (5.41)

In view of the specific Hamilton equation v = ẋ = ∂E/∂p, this implies that at any

extremum vi = λ = vout — all output velocities for the decay products are equal

at any extremum, so in particular all output velocities are equal for the specific

configuration of decay product 3-momenta pi that define Emin(p0) and Emax(p0).
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That is, we have the very general result that at threshold all final state particles

move with the same 3-velocity. Furthermore for any extremum we also have

∂E(p0;pi,λ)

∂p0
= λ = vout, (5.42)

so in particular this will also be true for Emin(p0) and Emax(p0). That is: For

the specific configuration of decay product 3-momenta pi that define Emin(p0) and

Emax(p0) we have

∂Emin

∂p0
= vout,min =

∂Ei
∂pi

, (5.43)

and

∂Emax

∂p0
= vout,max =

∂Ei
∂pi

, (5.44)

respectively. Physically this implies that at any threshold (regardless of whether it

is an enabling threshold or a saturation threshold, or a lower or upper threshold)

all decay products will be moving at the same physical 3-velocity. This does not

necessarily imply that the 3-momenta be related in any simple way, in general the

3-momenta need not even be collinear. At threshold we can define the incoming

3-velocity as

∂E0

∂p0
= vin, (5.45)

but with the techniques currently at hand there is in general no simple relation

between vin and vout. The best we can currently do is this: If we look along a

particular direction p̂ in 3-momentum space (with p0 = p0 p̂) then:

• At a lower enabling threshold p̂ · vin(p0) ≥ p̂ · vout(p0).

• At an upper enabling threshold p̂ · vin(p0) ≤ p̂ · vout(p0).

• At a lower saturation threshold p̂ · vin(p0) ≤ p̂ · vout(p0).

• At an upper saturation threshold p̂ · vin(p0) ≥ p̂ · vout(p0).

• If p̂ · vin(p0) = p̂ · vout(p0) then the curve C0(p̂) touches the kinematically

allowed region tangentially. One should look at higher derivatives to determine

the nature of the threshold. If the curve C0(p̂) touches the kinematically

allowed region only at an isolated point, then we would hesitate to call this

any kind of threshold. (These isolated points could nevertheless be interesting

in their own right.)

75



CHAPTER 5. THRESHOLD THEOREMS

In the case of an isotropic energy-momentum relation this discussion simplifies. The

momentum p is then parallel (or at worst anti-parallel) to the velocity v and so:

• At a lower enabling threshold vin(p0) ≥ vout(p0).

• At an upper enabling threshold vin(p0) ≤ vout(p0).

• At a lower saturation threshold vin(p0) ≤ vout(p0).

• At an upper saturation threshold vin(p0) ≥ vout(p0).

• The special case vin(p0) = vout(p0) should be analyzed carefully by looking at

higher derivatives. This might correspond to an “isolated point at which the

decay is allowed”; we would then hesitate to call this any kind of threshold.

5.4.4 Thresholds in terms of energy

With some additional technical machinery we can rephrase the decay thresholds in

terms of energy rather than 3-momentum. Some aspects of the analysis are more

complicated, but we will now be able to deduce (at threshold) that vin and vout are

parallel/anti-parallel. Let us now define

Pin(E0) =
{
p0 : E0(p0) = E0

}
, (5.46)

which is the set of all possible total 3-momenta given the input energy E0. Now

consider

Pout(Pin(E0)). (5.47)

This is the set of planes (affine subspaces) of co-dimension 3 in R3n consisting of all

possible output 3-momenta compatible with the specified input energy E0. Then

Eout(Pout(Pin(E0))) (5.48)

is the set of all possible 3-momentum-conserving output energies for input energy

E0. This will be a connected interval in R. The decay process is then kinematically

allowed if and only if

E0 ∈ Eout(Pout(Pin(E0))). (5.49)

That is

Emin(Pout(Pin(E0))) ≤ E0 ≤ Emax(Pout(Pin(E0))), (5.50)

where by this we mean

min
p0∈Pin(E0)

Emin(p0) ≤ E0 ≤ max
p0∈Pin(E0)

Emax(p0). (5.51)
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Notice now that we are also extremizing over the 3-momenta p0 compatible with

the fixed initial energy E0. Enabling thresholds will then occur at

min
p0∈Pin(E0)

Emin(p0) = E0, (5.52)

and saturation thresholds at

E0 = max
p0∈Pin(E0)

Emax(p0). (5.53)

Either one of these thresholds can be characterized in terms of extrema of the related

function

E(E0;pi,p0,λ, ζ) =

n∑

i=1

Ei(pi)− λ ·
[

n∑

i=1

pi − p0

]
− ζ [E0(p0)− E0] , (5.54)

where we now introduce two Lagrange multipliers, λ and ζ, and we extremize over

(pi,p0,λ, ζ) while keeping E0 fixed. Extremality with respect to the pi yields

vi = λ = vout, (5.55)

whereas extremality with respect to p0 yields

ζ vin = λ. (5.56)

Since the sign and magnitude of ζ is unconstrained, this implies that at threshold

the input velocity vin is either parallel or anti-parallel to the common vout of all the

output particles:

ζ vin = vout. (5.57)

Note that we have gotten at least this far without assuming either spherical sym-

metry or any form of monotonicity.

5.4.5 Asymmetric thresholds

A particularly peculiar feature of Lorentz violating thresholds is the potential oc-

currence of asymmetric thresholds, where two identical decay particles might at

threshold have unequal 3-momenta while traveling at the same 3-velocity. (This

phenomena was noted, in a more limited context, in reference [211].) The point is

that while ẋ(p) is by assumption well defined, the inverse function p(ẋ) may be

multi-valued. If this happens at threshold then two identical particles in the decay

channel will have equal velocities but unequal momenta. Of course such multi-valued

behaviour implies a multi-valued Lagrangian L(ẋ) = p(ẋ) · ẋ− E(p(ẋ)), which one
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may wish to exclude from any fundamental theory on physical grounds. (Such be-

haviour in an effective field theory is not particularly problematic.) To characterize

when this can and cannot happen, note that local invertability of ẋ(p) requires the

Jacobian matrix
∂ẋ

∂p
(5.58)

to be nonsingular. Equivalently the Hessian matrix

∂2E

∂p ∂p
(5.59)

should be nonsingular.

Global invertability of ẋ(p) requires global non-singularity of the Hessian matrix.

If we now add the extremely mild constraint that the Hessian matrix be positive

definite at zero momentum (which is required to have any sensible Newtonian or

Lorentzian limit at low momentum) then global invertability of ẋ(p) requires the

Hessian matrix to be globally positive definite. But a globally positive definite

Hessian matrix implies convexity of the energy-momentum relation E(p).

Thus the existence (or not) of asymmetric thresholds is ultimately related to

failures (or not) of the convexity of the energy-momentum relation E(p). (For

isotropic energy-momentum relations, this condition was phrased in terms of a posi-

tive curvature condition in reference [211].) This is why we can never get asymmetric

thresholds in standard (non-tachyonic Lorentz invariant) special relativity, and why

we do run the risk of asymmetric thresholds with (for example) lattice-type, tanh-

type, and polynomial or rational polynomial energy-momentum relations. Thus the

asymmetric threshold phenomena encountered by Mattingly, Jacobson, and Liberati

in reference [211] is seen to have much wider applicability than the situations they

considered.

5.4.6 Some examples

As an example of what can happen with asymmetric thresholds, it is quite possible

for two identical particles to be emitted with almost all the momentum going into

one particle, and almost none into the second particle. For instance if one takes two

decay product particles obeying the tanh-type energy-momentum relation of (5.6),

and shares the input momentum p0 in the fractions (1
2 ± ε)p0, then the final state

energy is

E(p0, ε) =

√√√√E2
0 + E2

∗ tanh

(
[1
2 + ε]2p2

0c
2

E2
∗

)
+

√√√√E2
0 + E2

∗ tanh

(
[1
2 − ε]2p2

0c
2

E2
∗

)
.

(5.60)
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Depending on the precise ratios between E0, E∗, and p0, this can be minimized at

ε = 0 or near ε = 1/2. See figure 5.6.

Figure 5.6: Energy as a function of ε for equation (5.60) holding E0 and E∗ fixed and for five

distinct values of p0. Note how the location of the minimum (and hence the threshold) shifts from

ε = 0 (a symmetric threshold) to ε ≈ ±1/2 (an asymmetric threshold). When the minimum occurs

at ε ≈ ±1/2 almost all of the output momentum goes into one of the two identical particles, and

almost none into the other.

Another highly nontrivial example, based roughly on equation (5.11), is to take

E =

√
E2

0 + c2(p2
x + p2

y) +
c2

3p4
∗
{(p2

z − p2
∗)

3 − p6
∗}. (5.61)

This energy momentum relation is carefully chosen to be isotropic at low momentum,

to have nice behaviour in the x and y directions, and to behave “interestingly” in

the z direction. Consider now a particle that moves in the x direction so its original

momentum is (p0, 0, 0). Let it now decay into two identical particles of the type

discussed above. Imposing 3-momentum conservation, the energy of the final state

will be minimized when the final state particles have 3-momenta (p0/2, 0,±p∗). So

at threshold the initial state and two final state 3-momenta are pointing in three

different directions. The 3-velocities of the two final state particles will however be

equal, and will point along the x axis.

These examples should be viewed as illustrations of the unusual phenomena that

can occur once strict Lorentz invariance is violated.
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5.4.7 Monotonicity

What, if anything, can we say about monotonic energy-momentum relations? (This

is a common but not universal simplifying assumption.) Consider a set of fixed

directions p̂i and take

Ei(pi) = Ei(pi p̂i). (5.62)

For each individual direction p̂i we can define monotonicity in terms of the magni-

tude pi. Monotonicity means
dEi(pi p̂i)

dpi
> 0, (5.63)

but by the chain rule this implies

dEi(pi)

dpi
· p̂i > 0. (5.64)

That is

vi(pi) · pi > 0. (5.65)

But then, by our previous arguments

dEmin/max

dp0
· p0 = vout · p0 = vout ·

(
n∑

i=1

pi

)
=

n∑

i=1

vout · pi =
∑

i

vi · pi > 0. (5.66)

That is, as long as the individual Ei(pi p̂i) are monotonic functions of the pi, then

Emin/max(p0 p̂0) is also monotonic as a function of p0, and so the curves C± bounding

the kinematically allowed region will be monotonic. (Monotonicity of the boundary

curves C± can fail, and quite often will fail, if even one of the final state particles

has a non-monotonic energy-momentum relation.)

5.4.8 Isotropy

If all the energy-momentum relations are isotropic (in the preferred (aether) frame)

then

vi ∝ pi; and vin ∝ p0. (5.67)

So all the 3-momenta pi and p0 are either parallel or anti-parallel to their corre-

sponding 3-velocities at threshold. Consequently, in view of the more general results

deduced above,

pi ∝ p0. (5.68)

That is, all 3-momenta are either parallel or anti-parallel to each other at threshold.

80



5.5. SCATTERING THRESHOLDS

5.4.9 Monotonicity plus isotropy

Only if we assume both isotropy and monotonicity can we deduce that the propor-

tionality constants in the previous subsection are positive. In this case all 3-momenta

and 3-velocities are parallel at threshold. (This particular theorem was proven by

Mattingly, Jacobson, and Liberati in [211].)

5.5 Scattering thresholds

Much of the previous discussion of decay thresholds carries over into the discussion

of scattering thresholds, but there are just enough differences to make some separate

discussion worthwhile.

5.5.1 2-particle collisions

Consider a 2-particle scattering process of the form

XA +XB → X1 +X2 + . . . Xn (5.69)

involving particles of incoming momenta pA and pB. Set p0 = pA + pB. We can

still define both Pout(p0) and Eout(Pout(p0)), and so construct both Emin(p0) and

Emax(p0). The scattering is kinematically allowed if and only if

EA(pA) + EB(pB) ∈ Eout(Pout(pA + pB)). (5.70)

That is, it is kinematically allowed if and only if

Emin(pA + pB) ≤ EA(pA) + EB(pB) ≤ Emax(pA + pB). (5.71)

Thresholds occur at the boundaries of these regions, that is, at:

Emin(pA + pB) = EA(pA) + EB(pB), (5.72)

and at

EA(pA) + EB(pB) = Emax(pA + pB). (5.73)

To make further progress let us now define

Pin(EA, EB) =
{
p0 = pA + pB : EA(pA) = EA, EB(pB) = EB

}
, (5.74)

which is the set of all possible total input 3-momenta given the input energies EA

and EB. In terms of the notation (5.46) developed for decay processes we can write

Pin(EA, EB) = Pin(EA) + Pin(EB). (5.75)
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Now consider

Pout(Pin(EA, EB)). (5.76)

This is the set of planes (affine subspaces) of co-dimension 3 in R3n consisting of

all possible output 3-momenta compatible with the specified input energies EA and

EB. Then

Eout(Pout(Pin(EA, EB))) (5.77)

is the set of all possible 3-momentum-conserving output energies for input energies

EA and EB. This will be some connected interval in R. The 2-particle scattering

process is then kinematically allowed if and only if

EA + EB ∈ Eout(Pout(Pin(EA, EB))). (5.78)

That is

Emin(Pout(Pin(EA, EB))) ≤ EA + EB ≤ Emax(Pout(Pin(EA, EB))), (5.79)

where by this we mean

min
p0∈Pin(EA,EB)

Emin(p0) ≤ EA + EB ≤ max
p0∈Pin(EA,EB)

Emax(p0). (5.80)

Thresholds will then occur at the edges of the kinematically allowed region.

Specifically, enabling thresholds will then occur at

min
p0∈Pin(EA,EB)

Emin(p0) = EA + EB, (5.81)

and saturation thresholds at

EA + EB = max
p0∈Pin(EA,EB)

Emax(p0). (5.82)

Either one of these thresholds can be characterized in terms of extrema of the related

function

E(EA, EB;pi,pA,pB,λ, ζA, ζB), (5.83)

where we now introduce three Lagrange multipliers, λ, ζA, and ζB, and set

E =

n∑

i=1

Ei(pi)− λ ·
[

n∑

i=1

pi − pA − pB
]
− ζA [EA(pA)− EA]− ζB [EB(pB)− EB] .

(5.84)

We now hold (EA, EB) fixed, and extremize with respect to (pi,pA,pB,λ, ζA, ζB).

Extremality with respect to the pi yields

vi = λ = vout, (5.85)
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whereas extremality with respect to pA and pB yields

ζA vA = λ = ζB vB. (5.86)

Since the signs (and magnitudes) of ζA and ζB are unconstrained, this implies that

at threshold the two input velocities vA and vB are either parallel or anti-parallel,

both to each other and to the common vout of all the output particles:

ζA vA = −vout = ζB vB. (5.87)

Note that we have gotten at least this far — parallel/anti-parallel input velocities —

without assuming either spherical symmetry or any form of monotonicity. Without

additional assumptions we can go no further.

5.5.2 Incoming 3-velocities

In reference [211] Mattingly, Jacobson, and Liberati argue that assuming spherical

symmetry and monotonicity of the energy-momentum relations the incoming 3-velo-

cities must actually be anti-parallel at (enabling) threshold. Note that in the absence

of exact Lorentz invariance spherical symmetry can at best only be expected to hold

in the preferred (aether) fame.

Certainly if we assume spherical symmetry and monotonicity this result is now

simple: Assuming spherical symmetry of the individual energy-momentum relations

Ei(pi) = Ei(pi) for the decay products, we have Emin(p0) = Emin(p0). Furthermore

assuming monotonicity of the individual Ei(pi p̂i) we have already seen that this

implies monotonicity of the Emin(p0 p̂). Then for enabling thresholds the quantity

min
p0∈Pin(EA,EB)

Emin(p0) (5.88)

is minimized when ||p0|| is minimized. Now assuming spherical symmetry for the

incoming particles, so that EA/B(pA/B) = EA/B(pA/B), this occurs when when pA

and pB are anti-parallel. Assuming spherical symmetry further implies E(p) =

f(1
2p

2) so v = dE/dp = f ′(1
2p

2)p. That is, v and p are either parallel or anti-

parallel. But monotonicity in turn implies f ′(1
2p

2) > 0. That is, the individual v

and p are parallel. This, in turn, implies the two incoming 3-velocities vA and vB

are anti-parallel at enabling thresholds.

In contrast, for saturation thresholds we need to consider

max
p0∈Pin(EA,EB)

Emax(p0). (5.89)
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Assuming spherical symmetry and monotonicity for the decay products this quantity

is now maximized when ||p0|| is maximized. But following the argument above,

by assuming spherical symmetry and monotonicity for the input particles, this in

turn implies that the incoming 3-momenta pA and pB are parallel at saturation

thresholds, which in turn implies that the incoming 3-velocities vA and vB are

parallel at saturation thresholds.

Both spherical symmetry and monotonicity are essential to these results. That

is: Merely deducing that the incoming velocities are parallel/antiparallel at thresh-

old is a generic result common to all Hamiltonian-based particle kinematics in a

(Lorentz violating) homogeneous space-time. To go further and assert that incom-

ing 3-velocities are anti-parallel at enabling thresholds, and parallel at saturation

thresholds, requires the very much stronger assumptions of spherical symmetry and

monotonicity. Our results are briefly summarized in tables 5.1–5.3.

Summary of threshold behaviour: Final state particles

generic isotropic isotropic+monotonic

3-velocities equal equal equal

3-momenta uncorrelated collinear parallel

Table 5.1: Behaviour at threshold for the 3-velocities and 3-momenta of outgoing

final-state particles (compared to each other) under various assumptions.

Summary of threshold behaviour: Decay — Initial state particle.

generic isotropic isotropic+monotonic

3-velocity collinear collinear collinear

3-momentum uncorrelated collinear parallel

Table 5.2: Behaviour at threshold for the 3-velocity and 3-momentum of the initial

decaying particle (as compared to the final state decay product particles) under

various assumptions.

84



5.6. CONCLUSIONS REGARDING THRESHOLD THEOREMS

Summary of threshold behaviour: Scattering — Initial state particles.

generic isotropic isotropic+monotonic

3-velocities (enabling) collinear collinear anti-parallel

3-momenta (enabling) uncorrelated collinear anti-parallel

3-velocities (saturation) collinear collinear parallel

3-momenta (saturation) uncorrelated collinear parallel

Table 5.3: Behaviour at threshold for the 3-velocities and 3-momenta of the two

initial state (incoming) particles (as compared to each other) under various assump-

tions.

5.6 Conclusions regarding threshold theorems

As we have seen, abandoning Lorentz invariance carries a very high price. The

kinematically allowed region, and consequent threshold structure coming from the

boundaries of the kinematically allowed region, for both decay processes and 2-par-

ticle (elastic or inelastic) scattering, is much more complicated than in the Lorentz

invariant case. There are some limited number of truly general statements that

one can make, but most of one’s intuition has to be reassessed on a case by case

basis. We have tried to carefully delineate exactly which assumptions are central

to which results, concentrating on those results that depend only on the existence

of a homogeneous space-time, and adding extra assumptions only when essential to

obtaining specific specialised results.

The resulting framework is useful both in (an extremely wide class of) Lorentz

violating extensions of the standard model of particle physics, and is also potentially

of interest in quasi-particle settings where violations of Lorentz invariance (and even

rotational invariance) are the norm rather than the exception.

Note that in the spirit of classical particle physics we have taken the Hamil-

tonian framework as being more fundamental, and the Lagrangian framework as

derivative. As a side effect, the Lagrangians that typically arise for non-Lorentz-

covariant free-particle Hamiltonians are often quite messy and unnatural. If one

adopts the view that it is the Lagrangian framework that should be viewed as being

more fundamental, this suggests that modified energy-momentum relations should

be most naturally interpreted as effective phenomena rather than as fundamental

physics. It is ultimately for this reason that one commonly focusses on perturbative

deviations from Lorentz symmetry. A central theme of our discussion is that such
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a simplification is not always the most useful thing to do, and that there is merit

to analysing thresholds in as general a setting as possible. One can surely consider

that any serious attempt at phenomenological analysis of putative Lorentz violating

observations will need to adopt a theoretical framework along the lines we have

presented above.
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Thermodynamics of space-time
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Chapter 6

Thermodynamics of space-time

An overview

We have seen that, historically speaking, the quest for a quantum theory of gravita-

tion has followed many different paths. One of the first approaches was the quantum

geometrodynamics program, developed by Dirac, Bergmann, Arnowitt, Deser, Mis-

ner and others in the early sixties [299, 300], an approach that utilised the canonical

quantisation procedure [189].

Other models have followed, such as for instance:

• The covariant approach [98, 101] where more field-theoretic techniques were

used — the metric is split into a kinematical, fixed background part plus a

dynamical perturbation;

• String theory - this was initially introduced to analyse the strong interactions

from a novel angle. It was realised (after the great reinterpretation of the

early 1980’s1) that it automatically presented a spin-2 massless excitation, a

graviton [60, 229, 230];

• The so-called connection-dynamics models, that include loop quantum gravity

and spin foam models, and that follow the geometrodynamics program — that

is, more from a relativistic point of view — but considering connections as the

basic object [44, 50, 226, 242];

• Causal dynamical triangulation (CDT) [16, 17, 202] which can be seen as a

modification of quantum Regge calculus [233];

1The presence of a spin-2 massless excitation was already discovered in 1974 by Scherk and

Schwarz [252]; however, the full acceptance of this discovery by what became the modern string

community occurred only a decade or so later.
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• Hořava - Lifshitz gravity which is a traditional quantum field theory that

breaks Lorentz invariance at ultra-high energies [156, 281, 297].

All these models are conceptually different and utilise different quantisation

mechanisms — either the canonical or the covariant; however they present one com-

mon feature: The Einstein theory of general relativity is considered to be the starting

point2. In other words the quantisation process is top-down, starting with a classical,

well-established theory (the Einstein-Hilbert action) and the microscopic degrees of

freedom are found consequently.

Other models instead establish some hypothetical fundamental, microscopic de-

grees of freedom and investigate the emergent properties when the system evolves,

e.g. quantum graphity [178, 179, 236]. At the origin of the last approach there is the

idea of induced gravity developed in 1967 by Andrei Sakharov [247, 277], in which

space-time background emerges as some sort of mean field approximation of un-

derlying microscopic degrees of freedom, related to what happens to Bose-Einstein

condensate systems when one considers the fluid mechanics approximation.

In Sakharov’s original formulation, general relativity arises as an emergent proper-

ty from quantum field theory in roughly the same sense that hydrodynamics or

continuum elasticity theory emerges from molecular physics [277].

The analogue models of space-time programme follows a similar line. One ex-

ploits the similarity between the equations describing the physics of some systems

— Bose-Einstein condensates, pulses of light into filaments, and induced surface

waves on a flume — and the curved space-time of general relativity, to gain some

insight into the nature of the peculiar phenomena of GR [56, 197, 270, 298]. In

these models, the movement of the bulk (water, BEC, etc.) is approximated with

a mean field theory, while the ripples propagate into an effective, emergent, curved

metric.

The idea that gravitation may have a “thermodynamic” behaviour was initially

raised by noticing the similarity between the equations describing some phenomena

in condensed matter and general relativity. However it received more attention

after the discovery of the proportionality of the area of a black hole horizon and its

entropy [62], as well as the Hawking radiation [142]. Given these two results, the

four laws of black holes mechanics and the four laws of thermodynamics were not

just analogous but became identical. Therefore the question is “How does classical

2Technically speaking string theory does not consider general relativity as the starting point;

however the string is at least defined within a special relativistic framework.
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general relativity know that horizon area would turn out to be a form of entropy,

and that surface gravity is a temperature?”.

In 1995 Ted Jacobson addressed this matter by reversing the usually followed

logic, by trying to obtain the Einstein equations from thermodynamics equations

[157] — thermostatic if one wants to be more precise. In particular, the author

starts by assuming the validity of the area law, that is the proportionality between

the entropy and the area of a causal horizon, and the Clausius relation d̄Q = TdS

for the entropy, and works his way back to the Einstein equations by considering

how the heat flux through a causal horizon would affect the space-time metric.

Even though some have argued that this derivation already implicitly contains

the implications for the Einstein equation, hiding in the assumptions, the possibility

to regard the Einstein equation as an equation of state is interesting and worth

exploring — it could be an important starting point to shed some light into the

microscopic nature of space-time.

For this reason, in chapter 7 we shall retrace some of the steps of Jacobson’s

argument, thoroughly analysing the definition of the thermodynamic system one

wants to consider, firstly in the timelike setting and afterwards, by taking the limit

to the null surface. For now our purpose is to generalise such argument to the case

of generic bifurcation surfaces 3while putting aside the full derivation of the Einstein

equation.

In particular the goal is to give a proper definition of the Clausius entropy for

bifurcate null surfaces when the bifurcation surface is no longer flat. At the end of

the day what we shall obtain is a generalisation of the thermodynamics system used

in Jacobson’s argument.

We shall see that this more general construction sharply brings into focus some

questions about the objective “reality” of entropy, or if it may be in some sense

subjective and observer-dependent. These innocent questions open a Pandora’s box

of often inconclusive debate. A consensus opinion, though certainly not universally

held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clau-

sius relation dS =d̄Q/T ) should be objectively real, but that the ontological status

of statistical entropy (Shannon or von Neumann entropy) is much more ambigu-

ous, and much more likely to be observer-dependent. This question is particularly

pressing when it comes to understanding Bekenstein entropy (black hole entropy).

For this reason, and given the pivotal role that entropy plays in Jacobson’s

derivation of the Einstein equation, we think it is relevant to thoroughly study the

3For a definition of bifurcation surface refer to the footnote 1, chapter 7.
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mathematical characteristics of entropy, to which we shall dedicate chapter 8. This

way one can gain a deeper view into the matter of the equivalence among different

definitions of entropy, a matter that is central to the solution of, for instance, the

information loss paradox. Other attempts along these lines include [71, 90, 112, 168,

169, 232, 263, 268].
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Chapter 7

Clausius entropy for arbitrary

bifurcate null surfaces

7.1 Introduction

Jacobson’s thermodynamic derivation of the Einstein equations [157] has had, and

continues to have, a profound influence on our understanding of the interface between

thermodynamics and geometry. Jacobson’s original construction associated heat

fluxes and entropies only to local Rindler horizons [157], but left open the question

as to whether some suitable notion of entropy could meaningfully be assigned to a

broader class of null causal surfaces.

The construction we shall present in this chapter addresses this point, and is

considerably more general than Jacobson’s approach. We shall soon see that while

the bifurcate nature of the local Rindler horizon is essential to the construction, other

Rindler-specific features can easily be discarded. In particular, any null surface can

be viewed as an observer-dependent causal boundary, a “virtual” causal boundary

or virtual local horizon — and our construction can be viewed as providing a notion

of virtual entropy for matter crossing arbitrary bifurcate virtual causal horizons.

Ultimately, we will argue that for arbitrary bifurcate null surfaces in curved

space-time, at arbitrary cross-section S of the null surface, it is meaningful to define

a Clausius entropy (d̄Q/T entropy) in terms of the bifurcation two-surface B1, and

the affinely parameterised null generators. Since this is argued to hold for arbitrary

1A bifurcation surface is defined in relation to some Killing horizon. That is, if we consider a

Killing vector K and its associated Killing horizon H(p), a null hypersurface, with p a point of the

manifold M, the bifurcation surface of H(p) is the set {K(p) = 0}. Therefore it is a surface where

the Killing vectors vanish. For a more detailed explanation the reader can refer to [61].
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“virtual” null surfaces, this can be viewed as thereby undermining the ontological

reality of Clausius entropy; modulo some technical assumptions that we shall be

very careful to make explicitly clear.

Indeed, the ontological status of entropy continues to generate much heated and

inconclusive debate. Key questions are: Is entropy objectively “real”? Or is entropy

in some sense subjective and observer-dependent? Part of the issue is that there

are many different notions of entropy, and the extent to which they are universally

equivalent is less than clear. At a minimum, one might wish to consider:

• Clausius entropy (dS =d̄Q/T ); often called thermodynamic entropy [86].

• Bekenstein entropy; black hole entropy [62].

• Statistical entropy; (Shannon [256, 257], von Neumann [289, 290], or entangle-

ment entropy).

The extent to which these three notions can universally be identified is still a matter

of debate, though in certain special cases they can be (and often are) degenerate.

Other related notions of entropy include Gibbs entropy, Boltzmann entropy,

Srednicki entropy, Kolmogorov–Sinai entropy, and the Tsallis and Renyi entropies.

Multiple attempts have been carried out in order to reconcile these different defini-

tions, see for instance [71, 90, 112, 168, 169, 232, 263], and also to separate out and

distinguish equilibrium and non-equilibrium notions of entropy [193]. (See also [85].)

For additional general background see [43, 47, 78, 105, 106, 170, 235, 282, 294, 304,

305]. The existence of all these definitions of entropy is what has inspired us to

thoroughly studying its mathematical definition; these results will be presented in

chapter 8.

Typically, but not universally, the Clausius entropy is viewed as the most objec-

tively real of these entropies. The Clausius entropy will be the central focus of this

chapter, but even there the situation is extremely subtle. These ontological issues are

central to Jacobson’s “thermodynamic” derivation of the Einstein equations [157],

where one part of the argument is based on an entanglement entropy interpretation

of (a variant of) the Bekenstein entropy, and another part of the argument is based

on (a variant of) the Clausius entropy applied to “local Rindler horizons”. (These

“local Rindler horizons” also arise in other situations such as those considered in [85]

and [82–84], and it may prove interesting to see to what extent those constructions

could also be generalised.) We shall also see that a version of the generalised sec-

ond law (GSL)2 [63] can be formulated for this virtual Clausius entropy, and can

2For the reader not familiar with the definition of the generalised second law, see appendix C.
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be related to certain (nonstandard) integral variants of the null energy condition

(NEC).

Strategy

Instead of addressing Jacobson’s “thermodynamic” derivation directly we shall in

the current chapter address a more modest goal: To what extent can a Clausius-

type notion of entropy be associated with matter crossing arbitrary bifurcate null

surfaces? We shall first work with exact Rindler horizons in flat Minkowski space,

systematically and carefully extending the framework until we can successfully deal

with arbitrary bifurcate null surfaces in curved space-time. This way we shall have

a precise definition of the thermodynamic system we are dealing with.

Building on this construction, in future work we plan to more directly address

the issue of the extent to which Bekenstein and Clausius entropies can universally be

inter-related. Specifically: For which subset of causal horizons (virtual or otherwise)

should they be inter-related? Under what situations should these concepts carefully

be kept distinct?

Jacobson’s derivation of Einstein equation

In this subsection we shall briefly summarise Jacobson’s thermodynamic derivation

of the Einstein equation. For a full description the reader can refer to [157]. Jacobson

derived the Einstein equation by considering as a starting point the area law, the

proportionality law of entropy and null surface (causal horizon) area, dS = ηd̄A —

here d̄A is related to dA that we shall use in the following — together with Clausius

definition of the entropy d̄Q = TdS, that connects heat, temperature and entropy,

and it is defined for a system at the equilibrium. The thermodynamic system is

defined through a local Rindler causal horizon, whose temperature is given through

the Unruh effect — that we shall define in 7.2.1 — as seen by an accelerated observer

just inside the horizon. Similarly, the heat d̄Q is interpreted as the energy flux seen

by the same observer. The key idea is to demand that this picture/description

holds for all the local Rindler causal horizons through each space-time point p —

therefore invoking the equivalence principle to view a small neighbourhood of each

space-time point p as a piece of flat space-time. In this way, the system is at the

equilibrium and one can apply the relations introduced above — and that we shall

describe in more details below. The geometric part is introduced into the picture

by considering that the Clausius relation for the entropy, d̄Q = TdS, together with

dS = ηd̄A, requires that the presence of the energy flux is associated with a focussing
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of the horizon generators, imposing a condition on the curvature of space-time. This

will distort the causal structure of space-time in just such a way for the Einstein

equation to hold, since a different entropy functional would produce field equations

with a different dependance on the Ricci scalar and tensor. Viewed in this way, the

Einstein equation is an equation of state.

7.2 Flat Minkowski space-time

To start the calculation is best to work in flat Minkowski space-time. That is, for

now we are working in the framework of special relativity, not general relativity. This

is not in contradiction with our purpose since, at this stage, we are not interested

yet in finding how the heat-flux may affect the geometry of space-time.

7.2.1 Heat flux, temperature, Clausius entropy

In this section we shall introduce the thermodynamic quantities required to describe

our system in terms of special relativistic concepts, such as timeline hypersurfaces,

trajectories and observers.

Heat flux. To get a handle on the notion of heat flux d̄Q it is convenient to start

with an infinitesimal segment of timelike hypersurface, (ruled by a congruence of

future-pointing timelike vectors V a, with outward spacelike normal na, and with

hypersurface area element d3Σ), and define a future-pointing flux vector

F a = −T ab Vb. (7.1)

It is then appropriate to define an infinitesimal heat flux d̄Q by setting

d̄Q = F a (d3Σ)a = −Tab V anb d3Σ. (7.2)

For finite segments of hypersurface we set

d̄Q = −
∫
Tab V

anb d3Σ. (7.3)

This is our version of Jacobson’s equation (1), see reference [157], currently applied

to timelike hypersurfaces. There would be universal agreement that this quantity

defines the net energy flux across the segment of timelike hyper-surface, but perhaps

less agreement that this energy flux can be equated with a heat flux. (For instance,

some authors prefer to identify this quantity with dU , the change in internal energy,

while yet others might argue that this quantity should be identified with dH, the
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change in enthalpy. For current purposes this subtlety is immaterial.) Following

Jacobson [157], let us accept the above definition for the sake of argument and

see where this identification leads. In particular one could assume that since in

thermodynamics, heat is energy that flows between degrees of freedom that are not

macroscopically observable, when considering space-time thermodynamics, one can

interpret heat as energy that flows across a causal horizon. It can be felt via the

gravitational field it generates, but its particular form or nature is unobservable from

outside the causal horizon. Note that due to the (−; + + +) signature of space-time

this is, perhaps counter-intuitively, the flux of energy in the direction of the normal

na.

We shall now consider a sequence of timelike hypersurfaces, and construct an

appropriate null limit. From the way this limit is set up it will soon be clear that we

cannot deal with completely arbitrary null surfaces — the construction intrinsically

is set up so that the null limit automatically yields bifurcate null surfaces. One of the

advantages of Minkowski space is that it is possible to develop some exact results,

many of which will even hold globally. We will subsequently invoke local flatness

to extract more limited approximate results in curved space-times; approximate

results which nevertheless hold up to an explicitly controlled level of accuracy in

the vicinity of the bifurcation 2-surface. Ultimately we shall develop a construction

valid in arbitrary curved space-times.

Temperature - Invoking the Unruh effect. A key physics step in the com-

putation is to invoke the Unruh effect, that is acceleration radiation. In its orig-

inal incarnation, this is a flat-space special-relativistic quantum-field-theory result

whereby an accelerated observer will detect a thermal bath of quantum excitations

with a temperature [271]:

kBT =
~a
2π
, (7.4)

when an inertial observer, for which the QFT is in its usual Minkowski ground state,

would observe none. This is due to the fact that the notion of vacuum depends on

the trajectory of the observer through space-time [271].

Clausius entropy. We shall use the Unruh effect to define the differential Clausius

entropy for the matter crossing any timelike hypersurface segment swept out by

timelike observers of 4-acceleration a by:

dS =
d̄Q

T
=

2πkB
~a

d̄Q = −2πkB
~a

Tab V
anb d3Σ. (7.5)
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For a finite segment of hypersurface we could in principle allow the acceleration a

to vary from generator to generator of the timelike hypersurface, (for the time being

the acceleration is to be kept constant along each generator, though later on we shall

see how to relax this requirement), and would then have

dS = −2πkB
~

∫
Tab
a

V anb d3Σ. (7.6)

In all explicit calculations below the hypersurfaces will be set up in such a manner

that the acceleration a is a constant over the hypersurface, so that

dS = −2πkB
~a

∫
Tab V

anb d3Σ. (7.7)

A subtle and tricky point is that the Tab being used here is purely classical,

whereas the Unruh temperature is associated with quantum fluctuations in the

quantum ground state. (Jacobson refers to this as considering the “thermodynamic

limit” [157].) In the presence of excitations above the quantum ground state it can

be argued that the Unruh effect provides a lower bound on the physical tempera-

ture [1–4], and so an upper bound on |d̄Q|/T . Furthermore the dS defined above is

a “virtual” quantity; there is no actual need for the timelike observers to be objec-

tively real and physically present — the dS defined above is what would be seen by

an imaginary swarm of timelike observers skimming along the timelike hypersurface.

In view of these issues, (identification of the heat flux, identification of the tem-

perature, virtual status of the quantity dS), some may refuse to call the quantity dS

a Clausius entropy, and prefer to introduce yet another notion — perhaps “Jacob-

son entropy” might be appropriate? Be that as it may, provided one accepts this

definition, and we hope the reader will agree this is a very plausible and physically

interesting object to calculate, most of the technical computations of our derivation

boil down to taking appropriate limits as the acceleration a tends to infinity and the

timelike surface becomes null.

7.2.2 Rindler wedges

We shall now begin to build our thermodynamical system. For this purpose we shall

pick an arbitrary spacelike 2-plane in Minkowski space and choose coordinates so

that this plane is

xa(x, y) = (0; x, y, 0). (7.8)

Now add past and future light sheets, for convenience in the +z direction. The

resulting bifurcate null surface is

xa(t, x, y) = (t; x, y, |t|). (7.9)
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The two null 3-d half-planes are joined by the spacelike bifurcation 2-plane at t = 0.

Now pick a sheet of hyperbolic timelike observers “close” to that null surface:

xa(τ ;x, y) =

(
1

a
sinh(aτ); x, y,

1

a
cosh(aτ)

)
. (7.10)

(Eventually we will want to take a→∞.) These observers have 4-velocity

V a(τ ;x, y) = (cosh(aτ); 0, 0, sinh(aτ)) ; ||V || = 1; (7.11)

and 4-acceleration

Aa(τ ;x, y) = a (sinh(aτ); 0, 0, cosh(aτ)) ; ||A|| = a; (7.12)

while the hyperbolic timelike sheet they sweep out has 4-normal

na(τ ;x, y) = − (sinh(aτ); 0, 0, cosh(aτ)) ; ||n|| = 1. (7.13)

Here we have chosen the 4-normal to point towards the Rindler horizon; that is,

away from the “observable” region containing the virtual timelike observers.

Figure 7.1: Rindler wedge with virtual hyperbolic timelike observer and 4-normals.

Note that the 4-normals point towards the Rindler horizon and asymptote to minus the 4-tangent

at extremely late and extremely early proper times.

Note that on the time-like shell we have the restriction

Tab(x
a)→ Tab(τ, x, y). (7.14)
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Then, setting d2A = dx dy we have

d̄Q = −
∫
Tab V

anb dτ d2A, (7.15)

and so
d̄Q

dτ
= −

∫
Tab V

anb d2A, (7.16)

whence
d̄Q

dt
= −

∫
Tab V

anb
dτ

dt
d2A. (7.17)

With current conventions this is the flux of matter crossing the time-like shell in the

direction of the Rindler horizon.

Figure 7.2: Formal direction of the heat flux d̄Q.

Now compute (note the two minus signs cancel):

d̄Q

dt
=

∫ {
[T00 + T33] sinh aτ cosh aτ + T03[sinh2 aτ + cosh2 aτ ]

} dτ

dt
d2A. (7.18)

Substituting

sinh(aτ) = at; cosh(aτ) =
√

1 + (at)2, (7.19)

and

cosh(aτ)dτ = dt;
dτ

dt
=

1√
1 + (at)2

, (7.20)
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we see that we have

d̄Q

dt
=

∫ {
[T00 + T33]at

√
1 + (at)2 + T03[1 + 2(at)2]

} 1√
1 + (at)2

d2A, (7.21)

thereby implying

d̄Q

dt
= a

∫ {
[T00 + T33]t+ T03

[
1 + 2(at)2

a
√

1 + (at)2

]}
d2A. (7.22)

If at this stage we let a become large (this is mathematically somewhat ill-

advised, but close to Jacobson’s original construction) then

d̄Q/dt → a

∫
{[T00 + T33] t+ 2T03 |t|}d2A+O(1/a)

= a t

∫
{[T00 + T33] + 2T03 sign(t)} d2A+O(1/a). (7.23)

Note that the 2-d integral is to be evaluated on the transverse 2-plane (the x-y

plane) at time t. Now defining the null vectors

ka± = (1; 0, 0, sign(t)) , (7.24)

which are the null normals on the two segments of the null surface, we have

d̄Q/dt = a t

∫ {
Tab k

a
±k

b
±

}
d2A+O(1/a). (7.25)

This is as close as we can get to a direct analogue of Jacobson’s equation (2) as

presented in reference [157]. (Note that because a is merely large, not infinite, we

are still dealing with timelike trajectories and timelike observers.)

It is mathematically safer to instead proceed in a slightly different manner as

follows: Invoking the Unruh effect, relating the temperature T to magnitude of the

4-acceleration a, and explicitly using kBT = ~a/(2π), we have

d̄Q/dt

T
=

2πkB
~

d̄Q/dt

a
=

2πkB
~

∫ {
[T00 + T33]t+ T03

[
1 + 2(at)2

a
√

1 + (at)2

]}
d2A.

(7.26)

The key point is that it is this quantity that now has a completely well-defined limit

as a→∞.

Indeed

d̄Q/dt

T
→ 2πkB

~

∫
{[T00 + T33] t+ 2T03 |t|}d2A

=
2πkB
~

t

∫
{[T00 + T33] + 2T03 sign(t)} d2A. (7.27)

101



CHAPTER 7. CLAUSIUS ENTROPY

Therefore
d̄Q/dt

T
→ 2πkB

~
t

∫ {
Tab k

a
±k

b
±

}
d2A. (7.28)

This is a mathematically safer version of Jacobson’s equation (2). It is important to

realise this is an exact result, valid globally for all time. Note that both d̄Q and T

are diverging as a → ∞, that is when approaching the null surface, while the ratio

dS =d̄Q/T remains finite. That is

dS

dt
=

2πkB
~

t

∫ {
Tab k

a
±k

b
±

}
d2A. (7.29)

Under normal circumstances the null energy condition [NEC]3 is satisfied [57], then{
Tab k

a
±k

b
±
}
≥ 0 and the flux is inwards and positive for t > 0. On the other hand,

the inward flux is negative for t < 0, indicating that it should be reinterpreted as a

positive outward flux. That is: The NEC implies a variant of the GSL (generalized

second law) holds for this version of Clausius entropy.

Figure 7.3: Physical direction of the heat flux d̄Q, (and the entropy flux dS), assuming the GSL,

(which is implied by the NEC), holds. Assuming the GSL, entropy can only emerge from the past

null sheet and enter the future null sheet.

The only potentially naively unexpected part of this result is that it is explicitly

linear in t. Technically that feature can ultimately be traced back to three facts:

3For the interested reader, more information about the energy conditions can be found in ap-

pendix B.
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1. That the location of the bifurcation 2-surface picks out a particular preferred

origin for the time coordinate.

2. That symmetry enforces the flux to be zero at the bifurcation 2-surface.

3. That:
1

a

dτ

dt
=

√
1 + (at)2

a
=

√
1

a2
+ t2 → |t|. (7.30)

Note that the limiting procedure is utterly essential to get the explicit factor of t

above. Also, the use of the limiting procedure (starting from a timelike sheet) is

needed for us to be able to invoke the Unruh effect — since the Unruh effect really

makes sense only for timelike observers. We can now unambiguously write down

Clausius entropy differences for arbitrary times (both positive or both negative) on

the Rindler sheets:

∆SClausius(t1, t2) =
2πkB
~

∫ t2

t1

t̄

∫
Tab(t̄, x, y) ka±k

b
± d2A dt̄. (7.31)

Perhaps more tellingly we can (in Minkowski space) usefully define the Clausius

entropy of the Rindler wedge at time t as:

SClausius(t) = SB +
2πkB
~

∫ t

0
t̄

∫
Tab(t̄, x, y) ka±k

b
± d2A dt̄, (7.32)

where SB is the entropy to be associated with the bifurcation 2-plane itself, a quantity

which is not constrained by the current argument. Again we emphasise that this

variant of Jacobson’s equation (2) is an exact result, valid globally for all time.

We shall now bootstrap this construction away from exact Rindler horizons in

flat Minkowski space. We shall first deal with more complicated causal null surfaces

in Minkowski space, and then extend the discussion to curved space-times.

7.2.3 Causal null cones

It is now easy to see that the construction above is not limited to Rindler wedges and

flat null sheets. We are going to change the thermodynamic system by considering

for instance causal null cones defined as follows: Choose a spacelike 2-sphere of

radius r0, with attached light cones expanding to both future and past. Adopt

spherical polar coordinates so that the spacelike 2-sphere is

xa(θ, φ) = (0; r0, θ, φ), (7.33)

while the null surface is:

xa(t; θ, φ) = (t; r0 + |t|, θ, φ). (7.34)
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Now pick a spherical sheet of timelike observers

xa(τ, θ, φ) =

(
1

a
sinh(aτ); r0 +

1

a
cosh(aτ), θ, φ

)
, (7.35)

now with 4-velocity

V a(τ, θ, φ) = (cosh(aτ); sinh(aτ), 0, 0) ; ||V || = 1, (7.36)

and 4-acceleration

Aa(τ, θ, φ) = a (sinh(aτ); cosh(aτ), 0, 0) ; ||A|| = a, (7.37)

and 4-normal

na(τ, θ, φ) = − (sinh(aτ); cosh(aτ), 0, 0) ; ||n|| = 1. (7.38)

Then

d̄Q = −
∫ (

r0 +
1

a
cosh(aτ)

)2

Tab V
anb dτ d2Ω. (7.39)

Note that this is an inwards entropy flux; towards the null cone.

Figure 7.4: Bifurcate double null cone based on a spherical bifurcation 2-surface. Typical timelike

observers indicated by red lines.

Now compute:

d̄Q

dt
=

∫ (
r0 +

1

a
cosh(aτ)

)2

×
{

[T00 + T11] sinh aτ cosh aτ + T01[sinh2 aτ + cosh2 aτ ]
} dτ

dt
d2Ω. (7.40)
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Strategically it is now best to substitute

sinh(aτ) = at; cosh(aτ) =
√

1 + (at)2, (7.41)

and

cosh(aτ)dτ = dt; dτ =
dt√

1 + (at)2
. (7.42)

Then

d̄Q

dt
=

∫ (
r0 +

√
1 + (at)2

a

)2

×
{

[T00 + T11]at
√

1 + (at)2 + T01[1 + 2(at)2]
} 1√

1 + (at)2
d2Ω, (7.43)

and so

d̄Q

dt
=

∫ (
r0 +

√
1 + (at)2

a

)2{
[T00 + T11]at+ T01

[1 + 2(at)2]√
1 + (at)2

}
d2Ω. (7.44)

Therefore, again invoking the Unruh effect,

d̄Q/dt

T
=

2πkB
~

d̄Q/dt

a
(7.45)

=
2πkB
~

∫ (
r0 +

√
1 + (at)2

a

)2{
[T00 + T11]t+ T01

[1 + 2(at)2]

a
√

1 + (at)2

}
d2Ω.

(7.46)

This quantity now has a well-defined limit as a → ∞. Indeed we have the exact

result

d̄Q/dt

T
→ 2πkB

~

∫
(r0 + |t|)2 {[T00 + T11] t+ 2T01 |t|}d2Ω (7.47)

=
2πkB
~

(r0 + |t|)2 t

∫ {
Tab k

a
±k

b
±

}
d2Ω. (7.48)

Here

ka± = (1; sign(t), 0, 0), (7.49)

and the angular integral is to be carried out over the 2-sphere at time t. Pulling the

factor (r0 + |t|)2 inside the integral we obtain the exact result

d̄Q/dt

T
→ dS

dt
=

2πkB
~

t

∫ {
Tab k

a
±k

b
±

}
d2A. (7.50)

The integral is now over the area of the 2-sphere at time t. Formally the final

result is completely equivalent to that obtained for the Rindler wedge, even though
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various intermediate steps were somewhat different. This observation is particularly

important, in that it will now allow us to greatly extend the range of validity of our

previous result. In particular for any causal null cone (light cone) we now have

SClausius(t) = SB +
2πkB
~

∫ t

0
t̄

∫
Tab (t̄,x(θ, φ, t̄ )) ka±k

b
± d2A dt̄. (7.51)

Here SB is now the Clausius entropy to be associated with the bifurcation 2-sphere

of radius r0 located at t = 0.

Figure 7.5: Direction of physical entropy fluxes, (assuming the GSL, which is implied by the

NEC), for the bifurcate double null cone based on a spherical bifurcation 2-surface. Assuming the

GSL, entropy can only emerge from the past null cone and enter the future null cone.

7.2.4 Convex-base null conoids

Consider now an arbitrary convex spacelike 2-surface. Choose Cartesian coordinates

xa in Minkowski space, and generic coordinates ξi on the 2-surface. Then we can

write

xa(ξi) =
(
0; x(ξi)

)
. (7.52)

Because the surface is convex, its outward pointing normals n(ξ) never intersect,

so we can attach outward pointing past and future light rays to each point on the
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surface, and in turn these light rays will never intersect — so they define null surfaces.

Then for these null sheets

xa(t; ξi) =
(
t; x(ξi) + |t| n(ξi)

)
. (7.53)

The resulting null conoids intersect at the original spacelike 2-surface, which is there-

fore a bifurcation 2-surface. Along each one of these normal directions we can now

simply repeat the calculation for causal null cones as presented above — which is

why we put the effort into an explicit calculation for those simple cases. We again

see
d̄Q/dt

T
→ dS

dt
=

2πkB
~

t

∫ {
Tab k

a
±k

b
±

}
d2A. (7.54)

The integral is now over the cross-sectional area of the conoid at time t. The result

is again exact and valid globally for all time. We now see

SClausius(t) = SB +
2πkB
~

∫ t

0
t̄

∫
Tab(t̄,x(ξ, t)) ka±k

b
± d2A dt̄, (7.55)

with the integral running over the null conoid.

7.2.5 Causal diamonds

To understand what happens if the bifurcation 2-surface is concave, (even partially

concave), it is best to start with the highly-symmetric causal diamond configuration.

Choose a spacelike 2-sphere of radius r0, but now with attached light cones con-

tracting to both future and past. The null surface is now

xa(t; θ, φ) = (t; r0 − |t|, θ, φ). (7.56)

The null curves generating the null surface now all collide at two points, at tcollision =

±r0. A suitable class of timelike observers is now

xa(τ, θ, φ) =

(
1

a
sinh(aτ); r0 −

1

a
cosh(aτ), θ, φ

)
, (7.57)

with the timelike observers colliding at

τcollision = ±1

a
cosh−1(r0a), (7.58)

corresponding to

tcollision = ±
√
r2

0 −
1

a2
. (7.59)
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Figure 7.6: Causal diamond configuration. Typical timelike observers indicated by red lines.

Note timelike observers now collide at finite time.

As long as we restrict attention to the finite interval where these timelike curves do

not intersect4, then the previous computation for causal null cones can be carried

over, and taking the appropriate limit we see that in the finite interval t ∈ (−r0, r0)

we still have
d̄Q/dt

T
→ dS

dt
=

2πkB
~

t

∫ {
Tab k

a
±k

b
±

}
d2A. (7.60)

The only minor quirk is that the timelike observers now reside inside the null surface,

and that the timelike observers have 4-normal

na(τ, θ, φ) = (− sinh(aτ); cosh(aτ), 0, 0) ; ||n|| = 1. (7.61)

This implies one is now calculating an outward entropy flux. If one assumes the

NEC this corresponds to a positive outwards flux for t > 0 and a negative outwards

(positive inwards) flux for t < 0, which is compatible with the GSL. Again

SClausius(t) = SB +
2πkB
~

∫ t

0
t̄

∫
Tab (t̄,x(θ, φ, t̄ )) ka±k

b
± d2A dt̄. (7.62)

Though historically Jacobson’s construction was first applied to Rindler horizons,

(and curved space local Rindler horizons), the causal diamond construction, (and its

curved space analogue), can plausibly be argued to be more natural. In particular

the causal diamond construction makes it clear that “local” causal horizons are

4We take this measure in order to keep the definition of the null surface clear.

108



7.2. FLAT MINKOWSKI SPACE-TIME

already sufficiently interesting — there is no need to continue the causal surfaces of

interest all the way to (past or future) null infinity.

Figure 7.7: Direction of the physical entropy fluxes, (assuming the GSL, which is implied by the

NEC), for the causal diamond configuration. Assuming the GSL, entropy can only enter the causal

diamond from the past null cone and leave the causal diamond via the future null cone.

7.2.6 Generic null conoids

Now consider arbitrary null conoids in flat Minkowski space. We start with some

arbitrary 2-surface at time t = 0,

xa(ξi) =
(
0; x(ξi)

)
, (7.63)

but now with no constraint on the convexity of the 2-surface. All the real work has

already been done — the only obstruction comes from intersecting null normals. We

see that over some finite interval t ∈ (−t∗, t∗), where t∗ is determined by the time

of first intersection of the null normals, we still have the exact result

d̄Q/dt

T
→ dS

dt
=

2πkB
~

t

∫ {
Tab k

a
±k

b
±

}
d2A. (7.64)

Consequently, for the Clausius entropy, at as long as t ∈ (−t∗, t∗), we still have the

exact result

SClausius(t) = SB +
2πkB
~

∫ t

0
t̄

∫
Tab (t̄,x(ξ, t̄ )) ka±k

b
± d2A dt̄. (7.65)
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(Note again that we do not need to extrapolate the null causal surfaces all the way

to past or future null infinity in order to have an interesting notion of Clausius

entropy. Indeed, in the presence of null caustics, such an extension might, apart

from being unnecessary, be outright impossible.) While the discussion started out

with a straightforward computation for Rindler horizons, we have now bootstrapped

it to a large class of bifurcate null surfaces — the only limitation at this stage is

that there be an inertial frame in which the bifurcation surface can be chosen to lie

on the hyperplane t = 0.

7.2.7 Generic bifurcate null surfaces

As a penultimate step, we are now ready to address the situation for generic bifur-

cate null sheets in flat Minkowski space. We start with some completely arbitrary

spacelike 2-surface,

xa(ξi) =
(
t0(ξi); x(ξi)

)
, (7.66)

but now with no constraint on the convexity of the 2-surface, nor with any constraint

that the 2-surface be contained in a hyperplane. Picking normals n(ξ) to the spatial

part of this 2-surface, so we can attach outward pointing past and future light rays

to each point on the surface — thereby defining null surfaces. Then for these null

sheets one convenient parameterization is

xa(t; ξi) =
(
t0(ξi) + t; x(ξi) + |t| n(ξi)

)
= xa(ξi) + t ka±(ξi). (7.67)

Again, all the real work has already been done — the only significant obstruction

comes from intersecting null normals. We see that over some finite interval t ∈
(−t∗, t∗), where t∗ is determined by the time of first intersection of the null normals,

we still have the exact result

d̄Q/dt

T
→ dS

dt
=

2πkB
~

t

∫ {
Tab (x(ξ) + t k±(ξ)) ka±k

b
±

}
d2A. (7.68)

One subtlety is that this is not precisely dS/dt “at physical time t”; rather this

dS/dt is obtained by propagating the bifurcation surface B forward by time t in

some arbitrarily chosen rest frame and calculating the flux as a function of this

evolution parameter. Consequently, for the Clausius entropy we can still write down

an exact result

SClausius(t) = SB +
2πkB
~

∫ t

0
t̄

∫
Tab (x(ξ) + t̄ k±(ξ)) ka±k

b
± d2A dt̄. (7.69)

As a final step we note that we could independently pick distinct affine parameters

λ on each null generator and write

xa(λ; ξi) = xa(ξi) + λ ka±(ξi); ka±(ξi) =
dxa(λ, ξi)

dλ
. (7.70)
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Then taking S to be any spacelike cross-section of the bifurcate null surface we have

SClausius(S) = SB +
2πkB
~

∫ S

B
λ Tab (x(ξ) + λ k±(ξ)) ka±k

b
± d2A dλ. (7.71)

Here the integral now runs over the entire null surface between B and S. Note

that the construction is manifestly independent of the way the affine parameter is

normalised on each null generator.

We emphasize that while the discussion started out with a straightforward com-

putation for exact Rindler horizons, we have now bootstrapped it to essentially

arbitrary bifurcate null surfaces. We shall now perform a consistency check on the

reasonableness of the construction, and then generalise the construction to curved

space-times.

7.3 Compatibility with the Bekenstein bound

Before moving toward the next step, the case of curved space-time, we shall first

check our proposal for the Clausius entropy for compatibility with the Bekenstein

bound [64]:

S ≤ kB
2πMR

~
. (7.72)

This bound defines an upper limit on the entropy S that can be contained within

a given finite region of space which has a finite amount of energy—or conversely,

the maximum amount of information required to perfectly describe a given physical

system down to the quantum level. This inequality was argued by Bekenstein to

apply to weakly bound and weakly interacting systems. Since our Clausius notion

of entropy is at this stage purely a Minkowski space result, the system is certainly

weakly bound. But how are we to take this quantity,

SClausius(t) = SB +
2πkB
~

∫ t

0
t̄

∫
Tab(t̄,x(t̄)) ka±k

b
± d2A dt̄, (7.73)

and relate it to Bekenstein’s bound? Certainly some extra assumptions will be

required. (Such as, which bifurcate null surfaces will we consider?)

Let us first choose the bifurcation surface to be a single point, and the null

surface to be its future light cone. When the bifurcation surface is a single point it

is plausible to set SB → 0. For simplicity, let us first take the stress-energy to be

that of a spherically symmetric perfect fluid, then

SClausius(t) =
2πkB
~

4π

∫ t

0
t̄3 (ρ+ p) dt̄. (7.74)
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Further note that t → R, the radius of the light-sphere at time t. (We have set

c→ 1.) For the specific case of a constant density fluid we then have

SClausius(R) =
2πkB
~

4π(ρ+ p)
R4

4
. (7.75)

But the Bekenstein bound is asserted to apply to weakly interacting systems, so it

is for current purposes acceptable to take p ∈ (0, ρ/3). This is equivalent to the so-

called “trace energy condition”. The TEC is one of the oldest of the classical energy

conditions, which was subsequently abandoned as fundamental physics, though it is

certainly a useful characterization for weakly interacting matter [57]. Under these

conditions ρ+ p < 4
3ρ, and so we have

SClausius(R) <
2πkB
~

4πρR3

3
R = kB

2πMR

~
, (7.76)

as required. Consequently the notion of Clausius entropy defined in this chapter is

indeed compatible with the Bekenstein bound. This gives us additional confidence

that the construction developed above is physically interesting.

If the density and pressure are not constant (but are at least spherically sym-

metric) a minor variant of the above argument considers the quantity

X = 4π

∫ R

0
r3(ρ+ p) dr < 4π

∫ R

0
r3(4ρ/3) dr =

∫ R

0
r dm(r) +

1

3

∫ R

0
r dm(r).

(7.77)

But then by integration by parts

X < MR−
∫ R

0

[
m(r) dr − 1

3
r dm(r)

]
= M R+

1

3

∫ R

0
r4 d[m(r)/r3]

dr
dr. (7.78)

If we now assume the average density is decreasing as one moves outwards, then

d[m(r)/r3]/dr < 0, and the last term is negative. This falloff condition on the aver-

age density is one of the specific conditions Chandrasekhar uses in his investigations

of non-relativistic stellar structure [81]. Then X < MR, and we again see that our

construction for the Clausius entropy is at least compatible with Bekenstein’s bound

for weakly interacting systems.

7.4 Curved space-time

Now that we have carried out this exact calculation for flat Minkowski space, and

checked for compatibility with wider notions of what we expect entropy to be, the

generalisation to curved space-time is straightforward.
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7.4.1 Near the bifurcation 2-surface

First, consider an approximate calculation for curved space-time in the vicinity of the

bifurcation 2-surface. Pick a bifurcate null surface in some curved space-time. Pick

a point on that bifurcation 2-surface. In the vicinity of that point adopt Riemann

normal coordinates xa, see figure 7.8, so that

gab = ηab +O([xa]2). (7.79)

P

Figure 7.8: On a generic bifurcation surface in some curved space-time we pick a point P ; in the

vicinity of that point we adopt Riemann normal coordinates xa, and the metric can be defined as

gab = ηab + O([xa]2); here we have the special case of a Rindler horizon, with P representing the

bifurcation 2-surface.

Then to the appropriate level of accuracy the null curves emanating from this

point on the bifurcation 2-surface can be represented by

xa(t) = (t; 0, 0, |t|) +O(t2). (7.80)

An appropriate timelike observer is

xa(τ) =

(
1

a
sinh(aτ); 0, 0,

1

a
cosh(aτ)

)
+O(τ2). (7.81)

Equivalently

xa(t) =

(
t; 0, 0,

√
t2 +

1

a2

)
+O(t2). (7.82)

Differentiating, the 4-velocity and 4-normal are determined up to terms of O(t), and

the 4-acceleration up to terms of O(1). Furthermore, note that Tab(t) = Tab(0) +

O(t).

113



CHAPTER 7. CLAUSIUS ENTROPY

There is a subtlety that one needs to take into account, that is the timelike

observers are no longer exactly hyperbolic for all time. This would imply that the

temperature of the system cannot be defined through the standard invocation of

the Unruh effect. However there exists an adiabatic argument [51] demonstrat-

ing that the the Unruh effect will still hold adiabatically as long as the region

over which the motion is close to hyperbolic, (the size of this region being deter-

mined by the space-time curvature), is large compared to the distance scale 1/a.

We emphasise that there is now a considerable body of work on what might be

called the “finite-time Unruh effect”, wherein the original simplifying assumptions

of eternal-constant-acceleration observers [271] is dispensed with. See for instance

references [99, 187, 203, 218, 250, 253, 264]. (Similarly, in a black hole situation

the existence of the Hawking effect is not dependent on the presence of an exact

stationary [event] horizon, an approximate horizon satisfying a suitable adiabaticity

condition is quite sufficient for the emission of a Planckian spectrum of Hawking

photons [52–54, 278].)

Inserting all this into the previous computation, and taking the limit a → ∞,

we now get the approximate result

d̄Q/dt

T
→ dS

dt
=

2πkB
~

t

∫

B

{
Tab(0) ka±k

b
±

}
d2A+O(t2), (7.83)

where to the relevant level of approximation the integral now runs over the bifurca-

tion 2-surface B. A subtlety here is that the Riemann normal coordinate construc-

tion implies that one is free to choose the t coordinate independently on each null

generator of the bifurcate null surface. This is equivalent to the ability to choose an

arbitrary affine parameter λ for each null generator, and to make this more explicit

we can write

d̄Q/dλ

T
→ dS

dλ
=

2πkB
~

λ

∫

B

{
Tab(0) ka±k

b
±

}
d2A+O(λ2). (7.84)

If we restrict attention to “locally Rindler” bifurcate null surfaces then this expres-

sion is one of the key steps in Jacobson’s thermodynamic derivation of the Einstein

equations [157] — this is essentially Jacobson’s equation (2) — but it is now clear

from the present discussion that at least this aspect of Jacobson’s argument is much

more general, applying to essentially arbitrary bifurcate null surfaces. Note that

this is the inward entropy flux. For positive t and matter satisfying the NEC the

flux is positive inwards. The sign flip for negative t indicates the entropy flow is

then positive outwards. Consequently, for the Clausius entropy we now have

SClausius(t) = SB +
2πkB
~

t2

2

∫

B

{
Tab(0) ka±k

b
±

}
d2A+O(t3). (7.85)
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The constant term SB is again undetermined by this argument. It is to be empha-

sized that this construction is to be applied to bifurcate null surfaces, not spacelike

volumes, and the construction is both qualitatively and quantitatively different from

entropy estimates built up by integrating up the thermodynamic entropy associated

with small individual lumps of matter [1–4]. If we choose to work with arbitrary

affine parameters and arbitrary spacelike sections S of the bifurcate null surface then

we can rewrite the result as

SClausius(S) = SB +
2πkB
~

∫

B

{
λ2

2
Tab(0) ka±k

b
±

}
d2A+O(λ3). (7.86)

Here S is now the 2-surface defined by propagating an affine distance λ along each

null generator emanating from the bifurcation 2-surface B.

7.4.2 General formula for curved-space Clausius entropy

In view of the above discussion we can now simply postulate that for arbitrary

bifurcate null surfaces in curved space-time, at arbitrary cross-section S of the null

surface

SClausius(S) ≡ SB +
2πkB
~

∫ S

B
λ Tab (x(ξ, λ)) ka±k

b
± d2A dλ. (7.87)

Note that λ is an affine null parameter, that this integral is well-defined in the sense

that it is invariant under rescaling of the affine null parameter, and that in view of

the preceding discussion this construction passes all the consistency tests one might

reasonably wish to impose. The only real restriction on the construction is that one

should stop using it as soon as the null surface develops self-intersections.

7.4.3 Generalized second law

Note in particular that imposing the classical null energy condition — the NEC —

would guarantee positivity of the Clausius entropy flux, and imply a version of the

GSL. Thus the NEC is a sufficient condition for the GSL to hold. (While there are

certainly quantum-induced violations of the energy conditions [57], we would argue

that they can be neglected in the thermodynamic limit.)

Note that a rather weaker sufficient condition for the GSL to hold, (for this

definition of Clausius entropy), is that on all closed (or at worst edgeless) spacelike

2-surfaces ∫

S
Tab (x(ξ)) ka±(ξ)kb±(ξ) d2A(ξ) ≥ 0. (7.88)

A slightly different sufficient condition for the GSL to hold asymptotically, (at suffi-

ciently late or early times, for this particular definition of Clausius entropy), is that
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on all future-pointing null half-geodesics we have

∫ ∞

0
λ Tab (x(λ)) ka+(λ)kb+(λ) dλ ≥ 0, (7.89)

and that on all past-pointing null half-geodesics we have

∫ 0

−∞
λ Tab (x(λ)) ka−(λ)kb−(λ) dλ ≤ 0. (7.90)

These conditions are certainly implied by the NEC, but are very much weaker than

the NEC. Thus the GSL is seen to hold under very much weaker conditions than

the NEC.

These integral variants of the NEC are also qualitatively very different from the

standard averaged null energy condition (ANEC)5, see for instance [109, 113, 122,

275], or the Ford–Roman quantum inequalities [115, 117–119], or their variants [108,

110, 111, 116], or even the recent non-linear energy conditions explored in [207, 208].

This strongly suggests these nonstandard integral variants of the NEC are well worth

additional scrutiny.

7.5 Conclusions regarding Clausius entropy

The net result of this calculation, and the construction it inspires, is that one can

associate an observer-dependent notion of entropy, very closely related to the Clau-

sius entropy (thermodynamic entropy, d̄Q/T entropy) [86], and a generalization

of Jacobson’s local-Rindler entropy [157], to any arbitrary bifurcate null surface.

That is, there is a certain sense in which even Clausius entropy (d̄Q/T entropy)

is observer-dependent, with a “virtual Clausius entropy” being associated with ar-

bitrary bifurcate “virtual causal horizons”. (See also, for instance, the discussion

in references [220–222].) This construction, because it generalizes one part of Ja-

cobson’s “thermodynamic” derivation of the Einstein equations, cuts to the heart

of the issue of the putative universal equality of thermodynamic and entanglement

entropy and into the matter of the very nature of the microscopic degrees of freedom

of space-time.

5For a brief review regarding the average energy conditions see appendix B.

116



Chapter 8

Infinite Shannon entropy

We have seen that in the literature there exist several notions of entropy — that span

from the thermodynamic, originally defined, Clausius entropy, to the statistical and

quantum mechanical Shannon entropy and von Neumann entropy, to the information

theoretic Rényi entropy and Tsallis entropy. Entropy seems to have an essential role

in studying some of the phenomena of general relativity — see for example the

equivalence between the four laws of thermodynamics and those for black holes —

and to understand the microscopic nature of space-time. However it is important

to understand the degree of equivalence among all the definitions of the entropy

utilised to solve these problems.

In this chapter we shall present our contribution to this effort by studying some

of the characteristics of the Shannon (and some specific cases of von Neumann)

entropy. In particular we shall consider the case of a probability distribution that

is properly normalisable, and we shall demonstrate that its associated Shannon (or

von Neumann) entropy can easily be infinite. Roughly speaking, this happens when

arbitrarily small amounts of probability are dispersed into an infinite number of

states; we shall quantify this observation and make it precise. Specifically, we shall

see that large entropies cannot be localised in state space; large entropies can only

be supported on an exponentially large number of states. We are, for the time being,

interested in single-channel Shannon entropy in the information theoretic sense, not

entropy in a stochastic field theory or QFT defined over some configuration space,

on the grounds that this simple problem is a necessary precursor to understanding

infinite entropy in a field theoretic context.
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8.1 Introduction

The classical Shannon entropy, (and closely related quantum von Neumann entropy),

is a general purpose theoretical tool with a vast number of applications ranging from

engineering to demographics to quantum information theory and other branches of

theoretical physics [43, 235, 256, 257, 294, 305]. Stripped to its essentials, one

considers a set of normalized probabilities
∑

n pn = 1, and analyzes the properties

of the quantity:

S = −
∑

n

pn ln pn. (8.1)

Two major cases are of interest, when the index set {n} characterizing the various

“states” of the system is finite, and when it is countably infinite. A third case,

when the index set {n} is uncountably infinite, requires an integral formulation of

the entropy, and we shall not presently have anything specific to say about this

uncountable case. One way of justifying such a restriction is via an appeal to quan-

tum mechanics where, in terms of a normalized density matrix tr[ρ] = 1, the von

Neumann entropy is:

S = −tr[ρ ln ρ]. (8.2)

If, (as is usual), quantum physics is formulated on a separable Hilbert space, then

the density matrix can be diagonalized over a countable basis, and the von Neumann

entropy reduces to the Shannon entropy over a countable (or possibly even finite)

set of states. For this reason we shall restrict attention to the finite or countably

infinite cases.

If the total number of states is finite, N =
∑

n 1 <∞, then by using the Jensen’s

inequality1 one obtains the upper bound:

S ≤ lnN. (8.3)

More subtly, even if the total number of states is infinite, N =
∑

n 1 = ∞, then as

long as the total number of states of non-zero probability is finite, N ′ =
∑

n:pn>0 1 <

∞, an equally elementary computation leads to the upper bound

S ≤ lnN ′. (8.4)

These simple observations demonstrate that to obtain infinite Shannon entropy, an

infinite number of states must have non-zero probability, in particular:

N ′ ≥ expS. (8.5)

1For a definition of the Jensen’s inequality and its application to obtain inequality (8.3) the

reader can refer to appendix D.
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But then, since the sum of the probabilities is unity, an infinite number of states

must have non-zero but arbitrarily small probability. We shall now seek to quantify

these observations in a straightforward and transparent manner. Some earlier rather

technical work along these lines can be found in [259]. Our own interest in these

issues was prompted by the more general issues raised in [62, 71, 78, 105, 106, 157,

263, 295, 296, 304]2. In the long run we would like to study infinite entropies that

can arise in stochastic field theories and QFTs, but the single channel information

theoretic context of the current chapter already provides some interesting subtleties.

8.2 Some examples of infinite Shannon entropy

To show that situations of infinite Shannon entropy can indeed occur perhaps the

simplest example is to consider the sum:

Σ(u) =
∞∑

n=dee

1

n (lnn)1+u
; (converges for u > 0, diverges for u ≤ 0). (8.6)

Variants of this series are discussed for instance in Hardy [139], Hardy and Riesz

[138, see esp p 5], and Shilov [258, see esp §6.15.c on p 192]. Here dxe is the “ceiling”

function, the smallest integer ≥ x. The perhaps somewhat unexpected lower limit

of summation dee is designed to ensure that lnn > 0 for all terms in the sum, so

that one never has to raise a negative number to a real power. The corresponding

probabilities (defined only for n ≥ dee) are

pn =
1

Σ(u) n (lnn)1+u
. (8.7)

These are well defined and properly normalised for u > 0. But then

S =
∑

n

1

Σ(u) n (lnn)1+u
ln{Σ(u) n (lnn)1+u} (8.8)

= ln Σ(u) +
1

Σ(u)

∑

n

1

n (lnn)u
+

1 + u

Σ(u)

∑

n

ln lnn

n (lnn)1+u
(8.9)

= ln Σ(u) +
1

Σ(u)

∑

n

1

n (lnn)u
− dΣ(u)/du

Σ(u)
. (8.10)

The first and third terms converge for u > 0, but the second term converges only for

u > 1. So this probability distribution is convergent but has infinite Shannon entropy

2In order to avoid the occurrence of infinite entropy, the QFT models that contemplate the

existence of the area law for the entropy introduce a cut-off length. This more or less corresponds

to introducing a probability gap, i.e. establishing that probabilities for certain states are zero. In

the future we would like to explore the case in which such cut-off length is no longer present.
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over the entire range u ∈ (0, 1]. The particular case n = 1, where pn ∝ 1
n(lnn)2

has

previously been considered in a number of specific situations [65, 296]. Apart from

the entire range u ∈ (0, 1] above, there are many more examples along similar lines.

For instance one could consider the sums

Σ2(u) =
∞∑

n=deee

1

n lnn (ln lnn)1+u
; (8.11)

Σ3(u) =

∞∑

n=deeee

1

n lnn ln lnn (ln ln lnn)1+u
; (8.12)

both of which converge for u > 0 and diverge for u ≤ 0, and the obvious infinite

chain of generalizations thereof. Thereby (following the analysis above) one can

easily construct an infinite chain of probability distributions that are convergent

(and so are properly normalized) for u > 0 but whose Shannon entropy converges

only for u > 1. These probability distributions are all convergent but have infinite

Shannon entropy over the entire range u ∈ (0, 1]. Even more baroque examples are

possible, (but perhaps not desirable).

To briefly summarise, we have found a bound for the Shannon entropy in terms of

the logarithm of the number of states with non-zero probability, therefore implying

that infinite Shannon entropy occurs only with an infinite number of states with

non-zero probability. Moreover, the condition that the sum of the probabilities is

unity, dictates that an infinite number of states must have non-zero but arbitrary

small probability .We shall now make these results more precise.

8.3 Probability gap

As a first step towards analyzing and quantifying the conditions under which infinite

Shannon entropy can occur, let us define a notion of “probability gap” when there is

a minimum non-zero probability. (The idea is to mimic the notion of “mass gap”.)

More precisely, let

p∗ = inf{pn : pn > 0}. (8.13)

If p∗ > 0 then, (since 1 =
∑

n pn ≥ N ′ p∗), we have N ′ ≤ 1/p∗ ≤ ∞. We see that

only a finite number of the pn can then be non-zero, and in fact the infimum can be

replaced by a minimum:

p∗ = min{pn : pn > 0}. (8.14)
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So for all practical purposes the presence of a probability gap means the state space

is effectively finite. Conversely if only a finite number of probabilities are non-zero

then there is a probability gap. In particular it is elementary that

S = −
∑

n

pn ln pn ≤ −
∑

n

pn ln p∗ = − ln p∗ <∞, (8.15)

though a slightly stronger result is also available

S ≤ lnN ′ ≤ − ln p∗ <∞. (8.16)

So we see very explicitly that for infinite Shannon entropy one cannot have a proba-

bility gap.

8.4 Elementary bound leading to the Gibbs inequality

Let us now try to be more quantitative. Based on the fact that for positive x we

have [x lnx]′′ = 1/x > 0, by using again Jensen’s inequality3, we can state that for

positive numbers

x ln(x/a) + y ln(y/b) ≥ (x+ y) ln

(
x+ y

a+ b

)
, (8.17)

with equality only when x/a = y/b. See [140, p 97 §117].

Proof: Since the second derivative is positive

a

a+ b
x̃ ln x̃+

b

a+ b
ỹ ln ỹ ≥ ax̃+ bỹ

a+ b
ln

(
ax̃+ bỹ

a+ b

)
, (8.18)

with equality only when x̃ = ỹ. Therefore

ax̃ ln x̃+ bỹ ln ỹ ≥ (ax̃+ bỹ) ln

(
ax̃+ bỹ

a+ b

)
. (8.19)

Now rename ax̃→ x and bỹ → y to obtain the desired result. �

(It is worth explicitly verifying this since the justification is so elementary, and the

payoff will be immediate.) Now iterate this result:

x ln(x/a) + y ln(y/b) + z ln(z/c) ≥ (x+ y + z) ln

(
x+ y + z

a+ b+ c

)
. (8.20)

More generally, for positive xn and an:

∑

n

xn ln(xn/an) ≥
(∑

n

xn

)
ln

(∑
n xn∑
n an

)
. (8.21)

3See appendix D for an proof of the following inequality.
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When
∑

n pn =
∑

n qn = 1 the above gives an elementary proof that

∑

n

pn ln(pn/qn) ≥
(∑

n

pn

)
ln

(∑
n pn∑
qn

)
= 0. (8.22)

That is ∑

n

pn ln pn ≥
∑

n

pn ln qn, (8.23)

so

S ≤ −
∑

n

pn ln qn. (8.24)

This result is of course extremely well known, typically being referred to as the

Gibbs inequality, (or the positivity theorem for relative entropy), with proofs most

typically involving a less than elementary appeal to Jensen’s inequality. We shall

now apply this result to the matter at hand.

8.5 Partial counts, partial probabilities,

partial Shannon entropies

Let us now consider the effect of summing only over some restricted subset X of the

total state space {n}. Define

NX =
∑

n∈X
1; PX =

∑

n∈X
pn; SX = −

∑

n∈X
pn ln pn. (8.25)

In particular, using the inequality demonstrated above, we have

∑

n∈X
pn ln pn ≥

(∑

n∈X
pn

)
ln

(∑
n∈X pn∑
n∈X 1

)
= PX ln(PX/NX). (8.26)

Therefore

SX ≤ PX [lnNX − lnPX ]. (8.27)

Though this looks very similar to the entropy bound derived for the total entropy

over a finite state space, there are significant differences — the current bound now

tells you something deeper about the extent to which entropy can be localised in

the state space. Indeed we can recast the bound as:

NX ≥ PX exp(SX/PX). (8.28)

That is, packing a finite amount of entropy SX into a region containing total proba-

bility PX requires an exponentially large number of states NX .
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Another way of interpreting this bound is to define the average probability per

state, and average entropy per state, over the set X by:

P̄X =
PX
NX

; S̄X =
SX
NX

. (8.29)

Then

S̄X ≤ −P̄X ln P̄X . (8.30)

A slightly weaker but perhaps more intuitive bound is obtained if we vary the RHS of

equation (8.27) with respect to PX while holding NX fixed (assume NX ≥ dee = 3).

Then
∂ RHS

∂PX
= ln(NX/PX)− 1 > 0. (8.31)

So the maximum of the RHS occurs for PX = 1, and we see (for NX ≥ 3)

SX < lnNX . (8.32)

Similarly if we vary the RHS of equation (8.28) with respect to PX while holding

SX fixed (assume SX ≥ 1). Then

∂ RHS

∂PX
= exp(SX/PX) {1− SX/PX} < 0. (8.33)

So the minimum of the RHS occurs for PX = 1, and we see (for SX ≥ 1)

NX > expSX . (8.34)

The message to take from the logarithmic and exponential bounds is again that

large Shannon entropies cannot be tightly localized in state space, large Shannon

entropies must invariably come from exponentially large (NX > expSX) regions of

state space.

8.6 Asymptotic estimates

Let us now consider the effect of adding some extra order-based structure, by sum-

ming only over the high-probability sector of the total state space {n}. Define the

quantities:

N(p) =
∑

n:pn≥p
1; P (p) =

∑

n:pn≥p
pn; S(p) = −

∑

n:pn≥p
pn ln pn. (8.35)

These are “probability cutoff” sums where the low probability events are excluded.

Note

lim
p→0

N(p)→ N ; lim
p→0

P (p)→ 1; lim
p→0

S(p)→ S; (8.36)
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where N and S may be infinite. It may sometimes be useful to define

N ′ = limp→0+ N(p) (which may again be infinite) in order to explicitly exclude the

zero modes. Now

S(p) ≤
∑

n:pn≥p
pn[− ln p] = −P (p) ln p ≤ − ln p. (8.37)

That is

S(p) ≤ − ln p, (8.38)

so in some sense the total Shannon entropy can never be worse than “logarithmically

divergent” in the probability cutoff. Similarly

1 ≥ P (p) ≥ pN(p); that is N(p) ≤ P (p)

p
≤ 1

p
. (8.39)

We also have

S(p) ≤ P (p)[lnN(p)− lnP (p)]. (8.40)

Combining these results we regain

S(p) ≤ −P (p) ln p ≤ − ln p. (8.41)

We again see that to get infinite Shannon entropy one needs an infinitely large

number of arbitrarily low probability events.

8.7 Entropy bounds from the Gibbs inequality

Let us now obtain several explicit bounds directly from the Gibbs inequality. Con-

sider the quantities qn = n−z/ζ(z) where ζ(z) is the Riemann zeta function. Then

we have
∑∞

n=1 qn = 1 for z > 1. The Gibbs inequality becomes

S ≤ −
∞∑

n=1

pn ln qn = ln ζ(z) + z
∞∑

n=1

pn lnn. (8.42)

Thus a sufficient condition for the Shannon entropy to be finite is

〈lnn〉 =

∞∑

n=1

pn lnn <∞. (8.43)

A number of quite similar results can easily be obtained:

• Consider for instance the quantity Σ(ε) =
∑∞

n=1 exp(−nε). This sum is con-

vergent when ε > 0. Then set qn = exp(−nε)/Σ(ε), and note
∑∞

n=1 qn = 1

provided ε > 0. Then the Gibbs inequality becomes

S ≤ −
∞∑

n=1

pn ln qn = ln Σ(ε) +

∞∑

n=1

pn n
ε. (8.44)
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Thus a sufficient condition for the Shannon entropy to be finite is that there

exist some ε > 0 such that

〈nε〉 =
∞∑

n=1

pn n
ε <∞. (8.45)

This is of course part of a general phenomenon.

• Let En be a collection of numbers such that Z(β) =
∑∞

n=1 exp(−βEn) con-

verges for some at least one value of β. Now define qn = exp(−βEn)/Z(β),

then
∑∞

n=1 qn = 1 provided β is such that the sum Z(β) converges. Then the

Gibbs inequality becomes

S ≤ −
∞∑

n=1

pn ln qn = lnZ(β) + β
∞∑

n=1

pnEn. (8.46)

Thus a sufficient condition for the Shannon entropy to be finite is that there

exist some set of numbers En, and some β, such that the corresponding Z(β)

converges and such that

〈En〉 =

∞∑

n=1

pnEn <∞. (8.47)

On the other hand, deriving a necessary condition requires rather different tools. Let

us first re-order (if necessary) the pn so they are in non-increasing order (pn+1 ≤ pn).

Then

1 ≥
m∑

n=1

pn ≥
m∑

n=1

pm = mpm. (8.48)

That is, with this choice of ordering, we are guaranteed pn ≤ 1/n. But then

S = −
∞∑

n=1

pn ln pn ≥
∞∑

n=1

pn lnn. (8.49)

Thus a necessary condition for the Shannon entropy to be finite, when the probabi-

lities are sorted into non-increasing order, is that

〈lnn〉 =

∞∑

n=1

pn lnn <∞. (8.50)

We can eliminate the need for explicit re-ordering as follows: Using the previously

defined object N(p) =
∑

n:pn≥p 1 we can define the quantities

p̃n = max{p : N(p) ≥ n}. (8.51)
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Then p̃n is automatically a rearrangement of the pn in non-increasing order, and a

necessary condition for the Shannon entropy to be finite is that defining

〈lnn〉∼ ≡
∞∑

n=1

p̃n lnn, (8.52)

we have

〈lnn〉∼ <∞. (8.53)

The mathematical tools used so far have been extremely basic inequalities and series;

the analysis has been minimal. We shall now use some slightly more sophisticated

analysis in the form of Dirichlet series.

8.8 Dirichlet series

Define the generalized zeta function, a particular type of Dirichlet series [138], by

ζS(z) =
∞∑

n=1

(pn)z. (8.54)

One could think of the S as standing either for Shannon or for entropy. A minor

improvement is to explicitly exclude any states of zero probability and take

ζS(z) =
∑′

n
(pn)z =

∑

n:pn>0

(pn)z. (8.55)

By construction ζS(1) =
∑∞

n=1 pn = 1, so this particular Dirichlet series certainly

converges (absolutely) for z ≥ 1. The interesting question is whether it converges

for any z less than 1. Note that

S = − d ln ζS(z)

dz

∣∣∣∣
z=1

. (8.56)

If we now view z as a complex number then, (in contrast to the usual situation for

Taylor series where there is a radius of convergence), for Dirichlet series there is an

abscissa of convergence σ such that the series converges over the complex half-plane

defined by [138]

<(z) > σ, (8.57)

and diverges over the complex half plane defined by

<(z) < σ. (8.58)
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The line <(z) = σ has to be treated delicately, in a manner somewhat analogous

to the fact that that Taylor series behavior on the radius of convergence has to be

treated delicately [138, see esp p 10]. The fact that the series is clearly convergent

for real z > 1 guarantees that σ ≤ 1, the abscissa of convergence is bounded above

by unity. The relevance of this observation lies in the following fact:

A sufficient condition for the entropy to be finite is that σ < 1. (8.59)

For a finite state space this is automatic. If we take the definition where zero

probability states are excluded then the abscissa of convergence is σ = −∞. (Even

if we somewhat foolishly keep the zero probability states in the Dirichlet series, we

still have σ = 0.) For a countably infinite state space there is something to be

proved. In particular, because all the coefficients in the generalized zeta function

ζS(z) are positive, the real point on the abscissa of convergence is known to be a

singular point of the function ζS(z). See [138, see p 10]. The word “singular” is used

in the sense of “not analytic”, so that there is no convergent Taylor series around

the point z = σ. This happens if (for sufficiently large m) one of the derivatives

diverges:

ζ
(m)
S (σ) =

∞∑

n=1

pσn(ln pn)m =∞. (8.60)

If this happens for m = 1 (the first derivative) then the entropy is infinite. However,

this might not happen until m > 1, perhaps even much greater than 1. That is:

Unfortunately σ < 1 is not a necessary condition for finite entropy. (8.61)

Example 1: As an explicit example of this phenomenon, recall that we had pre-

viously seen that the particular choice

pn =
1

Σ(u) n (lnn)1+u
; Σ(u) =

∞∑

n=dee

1

n (lnn)1+u
; (8.62)

leads to both finite entropy and normalizable probability for u > 1. But the genera-

lized zeta function corresponding to this particular pn is

ζS(z) = Σ(u)−z
∞∑

n=dee

1

nz (lnn)(1+u)z
. (8.63)

And for this particular zeta function it is very easy to see that the abscissa of

convergence is σ = 1. (See for instance related discussion in Hardy [139], Hardy and

Riesz [138], or Shilov [258]; the key point is that for <(z) 6= 1 the nz term dominates
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and controls convergence/divergence of the series. For <(z) = 1 one has to look

carefully at the exponent of the lnn term.) Furthermore, for this particular pn we

see

ζ
(m)
S (1) =

∞∑

n=dee

pn(ln pn)m = ln Σ(u) +
1

Σ(u)

∞∑

n=dee

(lnn+ (1 + u) ln lnn)m

n(lnn)(1+u)
.

(8.64)

The dominant term in this last sum comes from the (lnn)m in the numerator, so

convergence of ζ
(m)
S (1) for the specific probability distribution presented in equation

(8.62) is equivalent to convergence of

∞∑

n=dee

1

n(lnn)(1+u−m)
. (8.65)

But this series converges only for u > m. So even if the probabilities converge

(u > 0), and even if in addition the entropy converges (u > 1), for any finite u

there will always be a sufficiently high derivative (m > u) that fails to converge.

This verifies by explicit example that σ < 1 is not a necessary condition for finite

entropy.

Example 2: On the other hand, let us now consider the following situation: Let

z0 > 1, and define quantities

p̃n =
(pn)z0

ζS(z0)
. (8.66)

Then by construction
∑

n p̃n = 1 is absolutely convergent. The generalized zeta

function associated with p̃n is

ζ̃S(z) =
∑′

n

(
(pn)z0

ζS(z0)

)z
=
ζS(z0 z)

ζS(z0)z
. (8.67)

But this implies ζ̃S(z) is convergent for z0z ≥ 1, that is z > 1/z0. Therefore the

abscissa of convergence for the p̃n satisfies σ̃ ≤ 1/z0 < 1, which implies that the p̃n

are guaranteed to have finite Shannon entropy. Now

ln ζ̃S(z) = ln ζS(z0 z)− z ln ζS(z0). (8.68)

A brief computation yields

S̃ = − dζ̃S(z)

dz

∣∣∣∣∣
z=1

= −z0
d ln ζS(z)

dz

∣∣∣∣
z=z0

+ ln ζS(z0). (8.69)

This is certainly finite for any z0 > 1. So it is extremely easy to construct a very

large class of probability distributions which have both finite Shannon entropy and

and an abscissa of convergence strictly less than unity: σ < 1.
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8.9 Discussion regarding infinite entropy

To summarise the results, in this chapter we have considered situations of infinite

entropy defined over a countably finite state space. Primarily we have focused on

Shannon entropy, though the modifications required for dealing with von Neumann

entropy are straightforward. We have considered single-channel information theo-

retic entropy, and the additional subtleties encountered in stochastic field theories

and QFT are deferred for now. We have developed a number of very simple bounds

and asymptotic estimates to probe the onset of infinite Shannon entropy, with an

emphasis on keeping technical computations as simple as possible. Key results are

that to obtain infinite Shannon entropy an infinite number of states must have non-

zero but arbitrarily small probability, that the Shannon entropy can never be too

divergent, and that in a suitable technical sense infinite Shannon entropy is never

worse than logarithmic in the cutoff. The message to take from this logarithmic

bound is that large Shannon entropies cannot be tightly localised in state space,

large Shannon entropies must invariably come from exponentially large regions of

the state space.
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Chapter 9

Observing gravitational effects

on quantum physics

9.1 Introduction

In this last part of the thesis, we shall introduce an experimental proposal for testing

the possible effects that motion — specifically acceleration — and curved space-time

can have on quantum physics. The purpose of such testing is two-fold. On the one

side it can be considered as an alternative approach to the quest for a quantum theory

of/for gravitation — as we shall explain more in the following. On the other side,

it raises interesting questions and gives some answers about implementing quantum

technology for space-based communication, e.g. for satellites.

As we have seen in the introduction, chapter 1, the main problem with a quantum

theory of gravitation is the lack of experimental evidence that could give some

hints as to which direction to take1. The experiment we are about to describe

would instead look at this problem from a different perspective, that is, investigating

quantum physics and quantum effects at large scales. Indeed this promises to be

experimentally achievable in the near future. For instance, in [237], the authors

made several proposals of direct tests of quantum theory to larger and larger length

scales — in some case approaching that of the radius of curvature of space-time, to

probe the interaction between gravity and quantum phenomena — while in [251]

the authors proposed to implement some quantum optics experiments in a ground-

to-space scenario using the International Space Station (ISS).

Indeed, we already have the technology for this kind of implementation, as

1 This is due to the fact that the technology we have at our disposal does not allow us to probe

energy regimes for which gravity has to be taken into account when analysing quantum processes.
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cutting-edge quantum experiments are reaching relativistic regimes, where the ef-

fects of gravity and motion on quantum properties can be experimentally tested.

One major example is the remarkable result obtain in 2012 by the group led by

A. Zeilinger in the Canary islands, where a teleportation protocol was successfully

performed across 144 km between La Palma and Tenerife [272], by using entan-

gled pairs of photons. With this experiment, the authors have shown that quantum

entanglement can survive global distances, as predicted by quantum theory, and

have therefore demonstrated the feasibility of quantum communication in space (for

instance with the ISS).

This success, as well as related experimental developments [201, 213, 306], has

convinced major space agencies, e.g. in Europe and Canada, to invest resources for

the implementation of space-based quantum technologies [72, 274, 292], such as using

satellites to distribute entanglement for quantum cryptography and teleportation

(e.g. Space-QUEST project), and to install quantum clocks in space (e.g. Space

Optical Clock project).

Given the importance that these experiments may have in the near future, it is

crucial to address the matter of how relativistic effects will modify quantum entan-

glement — which lies at the base of those quantum phenomena such as quantum

teleportation, quantum cryptography, etc. Indeed, already at the classical level, it

is well-known that the Global Positioning System (GPS), a system of satellites used

for time dissemination and navigation, requires both special and general relativistic

corrections to determine time and positions accurately. Previous theoretical work

has already addressed these fundamental questions by showing that gravity, mo-

tion, and space-time dynamics can create and degrade entanglement [14]; and that

acceleration produces observable effects on quantum teleportation [125]. However,

current experimental space-based designs are yet to consider these findings.

Quantum field theory arena

Most proposals to implement quantum technologies in space have been developed

within the framework of quantum mechanics where the effects of acceleration and

gravity have been added ad-hoc. However the correct arena in which to look for

relativistic effects is relativistic quantum field theory (QFT), which describes the

behaviour of quantum fields in space-time. QFT is a semiclassical description in

the sense that matter and radiation are quantised but the space-time is treated as

a classical background — therefore there is no Einstein equation in the sense that

space-time is not a dynamic quantity. However, unlike quantum mechanics, rela-

tivistic QFT naturally incorporates Lorentz invariance, as required by the postulates
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of relativity theory, and subsequently the concept of relativistic causality. Indeed,

QFT successfully merges quantum theory and special relativity in the framework of

the standard model of elementary particles. Moreover, QFT in curved space-time

provides some partial answers to questions about the overlap of quantum mechanics

and general relativity [70]. Very recently we have started to see some of its predic-

tions be experimentally verified in [167, 244, 302] where the framework of analogue

models of space-time has been exploited2. Therefore, in order to correctly account

for effects that take place at increasing length and shorter time scales, quantum

information techniques must be extended to a fully relativistic setting.

For this reason, in our proposal we have used a QFT framework to show that the

gravitational field of the earth, and accelerated motion, can induce experimentally

observable effects on the basic resource for quantum information and communication

tasks — namely quantum entanglement. Furthermore, our research program aims,

not only to characterise relativistic effects so that they can be corrected for, but

also to learn how to exploit them in order to improve the performance of quantum

technologies in space.

9.2 The experimental proposal

Recent work has shown that quantum entanglement between the field modes of lo-

calised systems, such as cavities, is sensitive to changes in acceleration [74]. Via the

equivalence principle, this means that entanglement should be affected by changes

in gravitational field potential, consequently affecting quantum communications be-

tween distant satellites. The purpose of our experiment is to demonstrate the effects

of acceleration — and indirectly gravitation — by considering the entanglement be-

tween the excitations of two Bose-Einstein Condensates (BECs), each one of them

prepared in a separate satellite. The BEC excitations we consider are known as

quasiparticles or phonons that obey, under certain circumstances, a massless Klein-

Gordon equation with a very slow speed of propagation [227]. Low propagation

speeds are the key element to enable the observation of the effect we describe be-

low within realistic experimental regimes. We propose to entangle two BEC modes,

one in each BEC, while the BECs move close to each other along the same circular

earth orbit. One of the satellites will then undergo non-uniform motion to change

2As we shall see later on in this chapter, all three experiments have employed analogue systems,

such as Bose-Einstein condensates, superconducting circuits or optic filaments, to build an effective

curved space-time upon which some quantum field propagate, to test some QFT effects such as

dynamical Casimir effect or Hawking radiation.
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Figure 9.1: Experimental proposal. Two BECs inside separate satellites are entangled while both

are in the same circular LEO orbit. Then one of them undergoes acceleration during a finite time

in order to change to a different circular orbit, by means of a Hohmann transfer obit.

to an orbit subject to a different gravitational field strength, as shown in fig. 9.1.

Our analysis shows that the entanglement degradation between the BEC modes is

a periodic function of the change in gravitational field strength in the orbit. This

effect is significant already for typical parameters involved in microsatellite maneu-

vers, which is a great advantage since experiments involving such satellites have

relatively low costs.

In the following part of chapter we shall give a description of all the pieces

of the problem we would like to consider. For this reason we shall begin with

a description of the Bose-Einstein condensate system we want to use as well as

the motivation behind such choice. In the following parts we shall introduce some

quantum-information notions, such as negativity and squeezing parameters. In the

end, we shall describe the actual experimental set-up with the description, and

motivation, of the satellites we want to use and the orbit changes we would like

them to perform.
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9.3 The Bose-Einstein condensate and acoustic metric

We have explained above that the system we would like to consider for this ex-

periment is composed of two Bose-Einstein condensates (BECs). There are mainly

two reasons behind this choice and these are the very slow speed of propagation

for the excitations — the speed of sound in BEC falls in the following interval

cs = 10−3 − 10−2m/s — that should enhance the effects we want to see, and se-

condly the possibility, under certain conditions, to describe the system as an analogue

model with an effective, emergent metric, upon which the excitations live. This sec-

ond aspect is essential for the purpose of our experiment as we shall explain in this

section.

In the absence of atomic collisions, a BEC can in principle reach absolute zero

temperature and be described by a classical mean field. However, collisions are

always present and therefore, in the superfluid regime, the condensate is better

described by a mean field classical background plus quantum fluctuations. The

fluctuations, for length scales larger than the so-called healing length3, behave like

a phononic quantum field.

If the BEC system is homogenous, irrotational and inviscid one can consider the

analogue model approximation for which the classical background energy density,

pressure and number density play the role of an effective space-time metric which in

principle can be curved. We present the details from which this approximation arises

in appendix E. The phononic field Π(ξ) can be expanded in terms of the Bogoliubov

modes φ(ξ) [227],

Π(ξ) =
∑

k

(
φk(ξ) ak + φ∗k(ξ) a

†
k

)
. (9.1)

where ξ denotes arbitrary coordinates. The operators ak and a†k associated with the

modes are annihilation and creation operators, respectively, which obey the standard

canonical commutation relations

[
ak, a

†
k′

]
= δk,k′ . (9.2)

The dispersion relation for these phononic modes is given by ωk = cs |k|, with cs is

the speed of sound.

3The healing length, also known as coherence length, for a one-dimensional BEC describes the

distance over which the wave function tends to its bulk value when subjected to a localised pertur-

bation.
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In the approximation we are considering for the BEC, see appendix E, the

phononic modes obey a massless Klein-Gordon equation

�Π (ξ) = 0. (9.3)

The d’ Alembertian operator (possibly in curved space-time) is defined as

� =
1√−g

∂

∂xa

(√−g gab ∂

∂xb

)
(9.4)

and it depends on an effective space-time metric gab — with g = det gab. The

effective, emergent metric gab is defined as [107, 284]

gab =

(
n2

0 c
−1
s

ρ0 + p0

)[
gab +

(
1− c2

s

c2

)
VaVb

]
. (9.5)

Note that the acoustic metric gab is a function of background mean field properties

of the BEC, such as the number density n0, the energy density ρ0 and the pressure

p0. The effective curvature naturally arises from decoupling the field equations of

the background mean field and the quantum fluctuations. Va is the BEC 4 - velocity

with respect to the laboratory reference frame, while gab is the background, physical

four-dimensional space-time metric that in general may be curved.

Strictly speaking, in the experiment we propose, the BECs move in a Schwarz-

schild metric. However, due to the smallness of the Schwarzschild radius of the earth,

rs ' 9× 10−3m, it is reasonable to assume that the space-time is flat, i.e. that one

can ignore tidal effects. The BECs are inertial while they free fall in a circular orbit,

and in this case we use Minkowski coordinates (t, ~x). In order to change the orbit of

one of them, so that it undergoes a change in gravitational potential, acceleration is

required. We consider the satellite to undergo a single change in velocity, that is a

single period of uniformly accelerated motion. The direction, intensity and duration

uniquely determines the new orbit.

Therefore, we consider a Rindler transformation of the Bogoliubov modes since

Rindler coordinates are suitable to describe periods of uniformly accelerated motion

(see Appendix B). We choose the comoving frame Va = (1; 0, 0, 0) since we want to

describe the effects in the rest frame of the BEC. Under these conditions we obtain

an effective metric gab which is conformally flat.

We would like to remark here that, in our derivation of the acoustic metric we

have considered a 3 + 1-dimensional, background physical metric gab from the very

beginning — that is we are considering a relativistic BEC [107]. This is not, in

general, the case in the analogue models programme, where one starts with some
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system defined in the usual Euclidean three-dimensional metric, and obtains, after

suitable approximations, a set of equations defined in four dimensions [56]. By

contrast, we have chosen to have a background four-dimensional metric so that

we could directly implement a Rindler transformation for the coordinates — when

one of the two BECs undergoes a constant accelerated motion — and, through the

acoustic metric, this accelerated motion can affect the phononic modes, that, to all

intents and purposes, experience only the acoustic metric.

Given the approximations we are considering, the effective metric, as experienced

by a phononic, in Minkowski coordinates, is

gab =

(
n2

0 c
−1
s

ρ0 + p0

)




− c2s
c2

1

1

1



. (9.6)

9.3.1 Inertial and accelerated motion

Having a description of the BEC on a space-time metric enables us to describe it

while it undergoes inertial and uniformly accelerated motion. In the inertial case,

we consider Minkowski coordinates (t, x) where the line element is given by

ds2 = gµνdx
µdxν = −c2dt2 + dx2. (9.7)

As we have seen in equation E.8, if gab is flat, the effective metric gabis also flat when

the spatial flow velocities vanish. In this case the phonons obey a flat-space Klein-

Gordon equation which takes the form of a wave equation in Minkowski coordinates

with propagation velocity cs. The solutions to the equation, denoted φn(t, x) with

n ∈ N, form an orthonormal set of modes in terms of which the field Π(t, x) can be

expanded,

Π(x) =
∑

n

[φn(t, x)an + h.c.] . (9.8)

Here an, a
†
n are the annihilation and creation operators associated to the modes φn.

For the sake of simplicity, we consider a quasi one dimensional BEC. Suitable

close to hard-wall boundary conditions [127, 137, 212] allow us to consider a spectrum

similar to the well-known spectrum of an optical cavity given by
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ωn = 2π × n cs
L
, (9.9)

where L is the length of the cylinder.

For periods of uniform acceleration, Rindler coordinates (η, χ) are a convenient

choice of coordinates [70]. They are related to the Minkowski coordinates by the

following transformation

t =
χ

c
sinh η , x = χ cosh η, (9.10)

where χ > 0 has dimension length and η ∈ R is the dimensionless Rindler time. The

line element in these coordinates is ds2 = −χ2dη2 + dχ2. A uniformly accelerated

observer follows a trajectory of constant χ = χo and its proper time is given by

τ = c
aη, where a = c2

χo
is its proper acceleration.

If the acceleration is such that to keep the density of the BEC homogeneous, as

it is in our case4, we can still define acoustic metric in terms of Rindler coordinates.

Therefore, when the BEC undergoes uniform acceleration, the phononic BEC field

obeys again a Klein-Gordon equation which takes the form in this case of a wave

equation in Rindler coordinates. The Rindler solutions are denoted by φ̃n(η, χ) with

n ∈ N and the field expansion is given by

Π(η, χ) =
∑

n

[
φ̃n(η, χ)ãn + h.c.

]
. (9.11)

The operators ãn, ã
†
n are now the annihilation and creation operators associated to

the Rindler modes φ̃n.

9.4 Bogoliubov transformations, the covariance matrix

formalism and entanglement

In our work we consider a condensate that is initially inertial, then undergoes a

change in the gravitational field potential as it changes into a different orbit, and

is finally inertial again. The change in field potential corresponds to a period of

uniform acceleration. The creation and annihilation operators in the initial and

final regions are respectively denoted by a, a† and â, â†, and are related through a

Bogoliubov transformation [70],

(
â

â†

)
=

(
α β

β∗ α∗

)
·
(
a

a†

)
, (9.12)

4See appendix E, section E, for detailed discussion.
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where αnm = (φn, φ̂m) and βnm = −(φn, φ̂
∗
m) are Bogoliubov coefficients. Here

(·, ·) denotes the inner product. φ and φ̂ are Minkowski mode solutions in the

initial and final regions, respectively. These Bogoliubov coefficients are functions

of the Bogoliubov coefficients between the Rindler and Minkowski modes given by

0αnm = (φn, φ̃m) and 0βnm = −(φn, φ̃
∗
m) and of phases acquired during the period

of uniform acceleration where the condensate undergoes free evolution (for more

details see [74]). The coefficients 0αmn account for mode mixing within the moving

condensate, while 0βmn account for particle pair production.

The Bogoliubov coefficients can be computed analytically in terms of the para-

meter

h = aL/c2
s, (9.13)

where a is the acceleration of the BEC, L is the dimension of the trap, and cs is the

speed of sound. For the system we are considering, we have that a ∼ 10−3m/s2,

L ∼ 10−3m and cs ∼ 10−2m/s (however the speed of sound depends on the specific

BEC one wants to consider). If h� 1, as it is in our case, the Bogoliubov coefficients

(9.12) can be expanded in series as

αmn = α(0)
mn + α(1)

mn + α(2)
mn +O(h3) (9.14)

and

βmn = β(1)
mn + β(2)

mn +O(h3), (9.15)

where the superscript (n) denotes quantities that are proportional to hn [74, 124].

In the case we consider here, the Bogoliubov coefficients to first order in h are given

by [74, 124]

Zeroth order: α(0)
mn = δmne

−iΩn∆τ ;

β(0)
mn = 0. (9.16)

First order: α(1)
mn = e−i(Ωn−Ωm)∆τ

0α
(1)
mn

= e−i(Ωn−Ωm)∆τ (−1 + (−1)(m−n))
√
mn

π2 (m− n)3
;

β(1)
mn = ei(Ωn−Ωm)∆τ

0β
(1)
mn

= ei(Ωn−Ωm)∆τ (1− (−1)m−n)
√
mn

π2 (m+ n)3
. (9.17)

Here Ωn are the frequencies of the modes as measured by a comoving accelerated

observer, and ∆τ is the proper time spent while accelerating.

141



CHAPTER 9. GRAVITATION AND QUANTUM PHYSICS

9.4.1 Covariance matrix

Let us now consider the covariance matrix formalism, in which all the relevant

information about the state is encoded in the first and second moments of the

field. In particular, the second moments are described by the covariance matrix

σij = 〈XiXj +XjXi〉− 2〈Xi〉〈Xj〉, where 〈 . 〉 denotes the expectation value and the

quadrature operators Xi are the generalized position and momentum operators of

the field modes given by X2n−1 = 1√
2
(an+a†n) and X2n = −i√

2
(an−a†n). In appendix

F the reader can find a more thorough description of the covariance matrix. Every

unitary transformation in Hilbert space that is generated by a quadratic Hamiltonian

can be represented as a symplectic matrix S in phase space. These transformations

form the real symplectic group Sp(2n,R), the group of real (2n× 2n) matrices that

leave the symplectic form Ω invariant, i.e., SΩST = Ω, where Ω =
⊕n

i=1 Ωi and

Ωi =

(
0 1

−1 0

)
. (9.18)

The time evolution of the field, as well as the Bogoliubov transformations, can be

encoded in this symplectic structure (for details see [123]). The covariance matrix,

after a symplectic transformation, is given by σ̃ = SσST . In our proposal two

space experimentalists, let us call them Valentina and Yuri, are initially inertial and

prepare an entangled two-mode squeezed state5 of their phononic modes k and k′,

each one of them in their respective condensate. We assume that all other modes in

both condensates are in the vacuum state. Since the trace operation over a set of

modes is implemented in this formalism by deleting the rows and columns associated

to those modes, we find that the covariance matrix of the reduced state for the modes

k and k′ is given by

σkk′ =

(
cosh(2r)12 φkk′

φkk′ cosh(2r)12

)
. (9.19)

Here

φkk′ =

(
sinh(2r) 0

0 − sinh(2r)

)
, (9.20)

and r > 0 is the squeezing parameter of the state. The matrix 12 is the 2 × 2

identity matrix. During inertial and uniformly accelerated segments of motion, the

field modes only undergo free evolution. Therefore, the transformation in this case is

simply composed of local rotations with angles ωkt and ωk′t, where ωk and ωk′ are the

5A brief definition of squeezed state can be found in appendix F.
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angular frequencies of the modes k and k′ respectively. The covariance matrix after

Valentina remains inertial and Yuri undergoes a single period of uniform acceleration

to move to a different orbit is given by6

σ̃k,k′ =

(
Ckk Ckk′

CTkk′ Ck′k′

)
, (9.21)

where Ckk = cosh(2r)12, Ckk′ = φkk′MT
k′k′ and

Ck′k′ = cosh(2r)Mk′k′MT
k′k′ +

∑

n 6=k′
Mk′nMT

k′n . (9.22)

The 2× 2 matrices M encode the Bogoliubov coeffcients given by Eq. (9.16),

Mnm =

(
Re(α

(0)
mn + α

(1)
mn − β(1)

mn) Im(α
(0)
mn + α

(1)
mn + β

(1)
mn)

−Im(α
(0)
mn + α

(1)
mn − β(1)

mn) Re(α
(0)
mn + α

(1)
mn + β

(1)
mn)

)
. (9.23)

Here Re and Im denote the real and imaginary parts, respectively.

9.4.2 Measurement of the entanglement - Negativity

A number of computable measures of entanglement exist for Gaussian states in terms

of the smallest symplectic eigenvalue ν− of the partial transposition of σ̃. Here we

are interested in computing the negativity7 of the state σ̃kk′ to understand how

entanglement is affected when Yuri has changed his condensate into an orbit with

different gravitational potential. In this case the negativity is given by

N = max

[
0,

1− ν−
2 ν−

]
, (9.24)

where

ν± =

√
∆(σ̃kk′)±

√
∆2(σ̃kk′)− 4 det σ̃kk′

2
, (9.25)

and ∆(σ̃kk′) = detCkk + detCk′k′ − 2 detCkk′ .

The negativity for this particular state we are considering is given by [7]

N (0) = max

[
0,

1

2
(e2r − 1)

]
, (9.26)

6In general, the initial covariance matrix σ, that includes all the modes, is transformed after the

change in orbit into σ̃ = SσST , where S is a symplectic matrix that encodes the time evolution of

the system.
7An extensive definition of the negativity measure can be found in appendix F.
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where the condensate undergoes free evolution. After the change of orbit, and

using equations (9.15) to (9.25), we find that the entanglement is now given by

N = N (0) +N (2) h2 +O(h4). More specifically:

N = max
[
0, N (0)(1− e2r(fαk′ + fβk′)h

2)− e2rfβk′ h
2
]
, (9.27)

and

fαk′ =
∑

n

|α(1)
k′n|2 , fβk′ =

∑

n

|β(1)
k′n|2. (9.28)

Here fαk′ , f
β
k′ are functions of the Bogoliubov coefficients that depend periodically

on the difference of the gravitational field strength8 , see fig. 9.2. Note that N (0) is

the entanglement of the initial state given by equation (9.26). N is always smaller

than N (0), since the entanglement is degraded by mode mixing and particle creation

[125, 302]. This degradation effect becomes observable for large enough, but still

perturbative, values of h, h2 ' 0.05 [125].

In optical cavities, these values of h are obtained with accelerations of 1023m/s2

— see equation (9.13) — while in superconducting cavities, the corresponding order

of magnitude is 1017m/s2, which can be achieved by non-mechanical means [125,

302]. In the case under study here namely, BECs, the typical values L ' 100 µm

and cs = 1 mm/s give rise to a ' 10−3m/s2. In figure 9.2 we can see the behaviour

of the negativity when the system undergoes a change of gravitational potential.

The different lines represents different accelerations, all within the parameter values

that allow us to define an effective, emergent metric.

9.5 Experimental setup

We now assess the feasibility of testing the degradation of entanglement due to orbit

changes with a space-based experiment using a pair of nanosatellites. Nanosatel-

lites are fully functional spacecraft with a mass of 1 to 10kg. The use of conven-

tional off the shelf (COTS) parts, component miniaturization, and standardized

systems means that they are a comparatively low cost avenue to space. Capabilities

such as power, attitude and position control, propulsion, optics, communication,

and autonomous operation are under active development which greatly expands the

missions which may be undertaken within the mass and volume envelope of the

8A full calculation for the coefficients fαk′ and fβk′ can be found in [74], sec. II, equations (3) and

(4). The periodicity of the negativity with respect to the acceleration is a general feature that holds

beyond perturbation theory for the scalar massless field in (1 + 1)-dimension, as explained in [74].
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Figure 9.2: Negativity N vs. difference in gravitational field strength between initial and final

orbits δφ, after the first change in velocity ∆vl. The acceleration of the satellite is a = 10−3 m/s2

(solid, blue), a = 2 · 10−3 m/s2 (red,dashed), a = 3 · 10−3 m/s2 (black, dotted) while L = 100 µm,

c = 1 mm/s, giving rise to h2 ' 0.05 and Ω1 = 2π× 50 Hz. The initial squeezing is r = 1/2 and the

duration of the acceleration is of the order of 0.1s.
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nanosatellite platform. At the same time, quantum experiments have also become

more compact which makes it feasible to place them on small satellites [201].

The nanosatellites

An example of the capability required for such an experiment is the pair of CanX-4

and CanX-5 [41, 248] satellites due to launch in 2014. These are built according to

the Generic Nanosatellite Bus (GNB) specification which consists of a 20cm a side

cube with a mass of approximately 7.5kg. Typically, such a spacecraft has a mission

payload volume of 1.8 litres and mass of 2kg. The CanX-4/5 pair will demonstrate

formation flying in orbit and are each equipped with high precision differential GPS

receivers for centimetre accuracy relative positioning determination, and a single axis

thruster allowing orbit changes. The latter consists of the Canadian Nanosatellite

Advanced Propulsion System (CNAPS) and has a rated thrust of 20 mN and an Isp

of 35 s resulting in a ∆V of 11.1 m/s. Therefore the satellites can accelerate with

the constant acceleration a ' 10−3 m/s2 necessary to make the predicted effects

observable. Figure 9.3 illustrates the satellites’ layout9.

Figure 9.3: Illustration of the CanX-4 and -5 nanosatellites — shown in opposing views. Image

courtesy of UTIAS/SFL.

9For the interested reader, we recommend the following webpages:

https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/canx-4-5

http://www.utias-sfl.net
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Preparing the BEC

Let us consider a pair of satellites, such as CanX4 and CanX5, moving along the same

circular orbit. Each satellite contains a BEC with initially entangled phonon modes.

Such an entangled state can be prepared in several ways. For instance, the BECs can

be made to interact through Bragg scattering with two separated laser beams that

excite quasi-particles of specific momenta in each condensate. Entanglement is then

produced by performing projective measurements on the scattered light beams [96].

Atom-light entangling techniques can also be used, where via electromagnetically

induced transparency and subsequent projective measurements, the entanglement

is transferred from two probe laser beams to two spatially separated BECs [188].

Similar techniques can also be applied by considering two separate BECs in two

distinct, high-finesse optical cavities, on which two quantum correlated light fields

are incident, hence transferring their quantum correlated state to the two BECs,

[191]. If the BEC is in an initial thermal state instead of the vacuum state, the

amount of initial squeezing and entanglement that can be generated will be lower

[73]. In order to generate a squeezing r = 1/2 and frequencies of 100 Hz, the BEC

should be cooled down to a few nK. Finally, notice that the experimental setup

required to create and hold the BEC can be as small as 0.5 L [100]. Important

efforts are currently taking place to load and maintain a BEC on a chip device in

space [245].

Change of orbit

The effects predicted in this work arise when a satellite undergoes a change of circular

orbit, determined by the difference in gravitational field strength between the initial

and final orbits. As an example, the change of orbit can be achieved in an efficient

and elegant manner by means of a Hohmann transfer orbit [144, 145] (see Fig.1).

The procedure is the following. First a change of velocity ∆ vl moves the satellite to

an elliptic orbit. Then the satellite navigates half of this new orbit, before finally a

second velocity kick ∆ vh puts the satellite back into a circular orbit. The difference

between the radius of the initial orbit rl and the radius of the final orbit rh determines

the magnitude of the velocity kicks through the relations

∆vl =

√
GM

rl

(√
2rh

rl + rh
− 1

)
, ∆vh =

√
GM

rh

(
1−

√
2rl

rl + rh

)
; (9.29)

where G is Newton’s gravitational constant and M is the mass of the earth. In

particular, assuming a small change of altitude rh = rl + δ r with δ r � rl, we find
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∆ vl ' ∆ vh '
√
GM

rh

δ r

4 rh
'
√

rh
GM

δ φ

4
' 3× 10−3 m/s (9.30)

for a Low Earth Orbit (LEO) of rh = Re + 400 km — Re being the radius of the

earth and δ φ the difference in gravitational field strength between the initial and final

orbits. Therefore, for constant acceleration, each radial distance between circular

orbits is related to a different duration of the acceleration. The whole manoeuvre

takes a half-period P/2 of the elliptical transfer orbit P ' 2π
√
r3
h/GM ' 5000 s

which is larger than the average lifetime of a BEC. However, the degradation of the

entanglement takes place immediately after the first change in velocity, and can be

observed during the navigation of the transfer orbit. Equations (9.27) and (9.29)

imply that the entanglement oscillates with the radial distance between the initial

and final orbit, or equivalently, with the difference in the gravitational strength. In

figure (9.2) we show that, for realistic experimental parameters, oscillations have a

significant amplitude and a period of around 2 m, meaning that almost any change of

orbit would lead to an observable effect on the initial quantum entanglement. Note

that the duration of the acceleration in the plot is of the order of 0.1 s. The maximum

change of velocity is ∆vl ' 10−3 m/s well within reach of current technologies

since CanX4 and CanX5 are capable of achieving maximum changes of velocities

of ∆v = 11.1 m/s. Much larger changes of orbit can be considered for which the

behaviour of entanglement as a function of difference in gravitational strength is

shown in Fig. (9.2). Since CanX4 and CanX5 are designed to determine positions

with an accuracy in the centimetre range, they seem ideal devices to analyse the

dependence of entanglement with the radial distance.

Experiment readout

The readout of the quantum correlations might be performed in a manner similar

to the experiment in [167], where upon releasing the condensate trapping potential,

each quasi-particle deposits its momentum on an atom and velocities are measured

by a position sensitive single-atom detector. Unfortunately this technique is destruc-

tive and many shots of the experiment would be necessary to achieve the required

statistics. An alternative method consists in using atomic quantum dots or optical

lattices coupled to each condensate to probe the reduced field states of each con-

densate [246]. This method enables one to perform several thousands of correlated

measurements within the coherence time of the entangled state we considered.
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9.6 Conclusions regarding the possible effects of motion

and gravity on quantum physics

In conclusion, we have shown that changes in the gravitational field potential produce

effects on quantum entanglement that are in principle observable in space-based

experiments. In particular, we have shown that entanglement between two BECs

inside separate satellites can be degraded when one of them undergoes a change

of orbit. Entanglement oscillates periodically with the difference in gravitational

potential of the orbits. Therefore, by accurately controlling the satellite positions,

it is possible to find situation in which entanglement is conserved. Our results shed

light on fundamental aspects in the overlap between quantum theory and relati-

vity by working within QFT, a framework which incorporates appropriately these

theories in regimes where satellites operate. These results will inform future space-

based quantum technologies, including quantum key distribution and other quantum

cryptographic experiments. A comprehensive understanding of relativistic effects on

quantum properties will enable us not only to make the necessary corrections to the

technologies they affect, but also opens up the possibility of using relativistic effects

as resources.

In honour of Valentina Tereshkova and Yuri Gagarin, who were the first woman

and man to go to space.
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Chapter 10

Summary and discussion

In this thesis work we have presented some results that are related to the quest

of a quantum theory of gravity. As we have seen, besides the orthodox ways of

addressing this problem, other viable ways include testing those phenomena that lie

at the interface between quantum physics and general relativity (or curved space-

time). We have explained that the motivation behind this alternative approach is

trying to find the next step to take toward a quantum theory of/for gravitation1.

In the first part of thesis we have briefly addressed the possibility that, at energies

much higher that those reachable by current technology, physics may break Lorentz

invariance. We have then addressed this matter in the context of local physics, by

considering transformations between inertial frames. We have seen that the von Ig-

natoswki argument established a close relation between the relativity principle and

the group structure for the set of transformations between inertial frame (Lorentz

group). By reversing this logic, we have seen that, in order to break Lorentz sym-

metry, the key step in is to renounce the relativity principle, de facto introducing

a preferred frame that we have called the aether frame. Even when renouncing the

relativity principle, we have found that substantial physics can still be predicted.

For instance we have seen that the set of transformations between generic inertial

frames form a group/pseudogroup.

We have therefore established the transformation rules for energy and momentum

to be, in general, affine — that is linear plus an offset term. By comparison with

the standard case of Galileo group and Lorentz group, we have seen that the offset

plays a different role when considering different regimes.

1As the reader may have noticed, throughout this thesis work we have used the expression

quantum theory of/for gravitation. With this we mean to say that a theory that describes the

microscopic states of space and time may not arise from general relativity, while these microscopic

degrees of freedom may be defined in a completely independent way.
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With these tools, we have developed two minimalist Lorentz violating models.

In the first one, we have assumed the physics of clock and rulers to be Lorentz

symmetric, implying that space and time transform with the usual Lorentz transfor-

mations, while the energy-momentum relation, for at least some of the particles, is

not Lorentz invariant. The second model presents the simplest violation of Lorentz

invariance at the level of the transformations between inertial frames. In this case,

we have imposed linearity, isotropy and reciprocity for the transformations between

inertial frames but not the relativity principle.

Following along these lines, we have also developed some decay and scattering

threshold theorems in a Lorentz symmetry breaking scenario. In particular, the

only assumption we have made is the existence of some relation E(p) between the

energy and the momentum, without assuming its isotropy and monotonicity. Our

analysis has been carried out by solely considering the kinematically allowed region,

and consequent threshold structure coming from the boundaries of the kinematically

allowed region, and has turned out to be much more complicated than in the Lorentz

invariant case. In particular we could still make some limited number of truly

general statements. We have tried to carefully delineate exactly which assumptions

are central to which results, concentrating on those results that depend only on the

existence of a homogeneous space-time, and adding extra assumptions only when

essential to obtaining specific specialised results.

In the second part we have presented an alternative way, in some sense, to

approach the investigation of a quantum theory of gravity: The space-time ther-

modynamics. In this case space-time is intended as being an emergent mean-field

approximation of underlying microscopic degrees of freedom, a hypothesis developed

in 1964 by Andrei Sakharov. This conjecture was reinforced after the formulation

of Hawking radiation, and the realisation that the four laws of black hole dynamics

were actually identical to those of thermodynamics. Following this path, in 1995 Ted

Jacobson showed that the Einstein equation can be obtained as an equation of state

when considering the proportionality between the entropy and the area of a local

causal horizon (a Rindler horizon in his derivation) and the Clausius relation for

the entropy. In this part of the thesis, we have considered a similar thermodynamic

system to that considered by Jacobson in his derivation, and instead of proceeding

with the derivation of the Einstein equation, we have generalised the system itself

to a generic bifurcate null surface. In this way, we have not only paved the way

for exploring the potential derivation of the Einstein equation in the case of a more

generic causal horizon; in addition we have established the virtual nature of Clausius
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entropy for bifurcate null surfaces.

Given the importance that entropy seems to have, together with very little clarity

concerning the equivalence of its several definitions existing in the literature, we

have explored some of its properties in the simplified case of single-channel Shannon

entropy — in the information theoretic sense. The results we have found are that to

obtain infinite Shannon entropy an infinite number of states must have non-zero but

arbitrarily small probability, that the Shannon entropy can never be too divergent,

and that in a suitable technical sense infinite Shannon entropy is never worse than

logarithmic in the cutoff. For this reason, large Shannon entropies cannot be tightly

localised in state space and must invariably come from exponentially large regions

of the state space.

In the last part of the thesis we have described a proposal for an experiment

that would test the effect of acceleration and curved space-time on quantum physics.

As we have explained in more detail, this kind of approach may be considered as

an alternative way to find some phenomenological evidence of quantum gravity in

which we can investigate the behaviour of typical quantum physics phenomena —

such as entanglement — at large scales. A second purpose lies in the opportunity

to implement quantum technology for space-based communication.

In particular, the system we have considered is composed of two BECs, set into

two nano-satellites, that at first follow the same geodesic. Afterwards, one of the

two undergoes an accelerated motion before it settles back into a geodesic orbit.

We have explained that the reason behind the choice of BECs lies in the existence

of an effective, acoustic metric for the phonons — in the range of acceleration we

are considering — and the fact that the very slow interaction propagation seems to

enhance the effect we want to see. The final result we have found is that the quan-

tum entanglement between two phononic modes in two separated BECs is degraded

when one of them undergoes a change of orbit, and oscillates periodically with the

difference in gravitational potential of the orbits.

153



CHAPTER 10. SUMMARY AND DISCUSSION

154



Part IV

Appendices

155





Appendix A

Lorentz symmetry breaking

A.1 Double special relativity and its applicability to our

model

Regarding the possibility of working with DSR (doubly special relativity, distorted

special relativity), it will soon become clear that DSR falls outside our framework.

(For general background see [18, 19, 21, 172, 200].) For DSR-like models a key

issue is that after a decade of work on this topic, and despite significant ongoing

efforts, there is still no clear universally accepted consensus as to how space and

time transform between inertial frames [8, 11, 13, 77, 97, 129, 130, 135, 143, 147–

152, 234, 241, 254, 260] — there is not even any clear consensus on whether or not

photon velocities are momentum-dependent in general DSR frameworks [94, 128].

There are also suggestions to the effect that the “D” in DSR should be attributed

to adopting a modified theory of measurment [200].

However, there is reasonable consensus that the energy-momentum transforma-

tions of DSR-like theories are generically of the form [172]

P → P̄ = f(Lf−1(P )), (A.1)

for L an ordinary linear Lorentz transformation and f(P ) some nonlinear function

on energy-momentum space. Since these energy-momentum transformations are not

affine, the considerations we have found in 4.3 imply that DSR-like theories (insofar

as they are internally consistent), must at the very least exhibit other oddities — such

as a breakdown in locality, or a breakdown in linearity, (which implies a breakdown

in the usual notion of inertial frame), or a breakdown of the existence of any notion

of Hamiltonian/Lagrangian mechanics — any of which would then undermine the

very notions of energy and momentum used to define the DSR energy-momentum

157



APPENDIX A. LORENTZ SYMMETRY BREAKING

transformations in the first place.

A.2 Relative locality

Additionally, there have recently been some speculations (and some significant dis-

agreements) in the literature regarding non-local models based on so-called “relative

locality” [20, 23, 24, 26, 153, 154]. Currently, these models are still being developed

and investigated. Certainly, they very explicitly fall outside the framework we are

considering in this article.

Roughly speaking, in relative locality models it is momentum space that is taken

to be primary, with single-particle phase space being the tangent bundle to momen-

tum space — the various tangent spaces [indexed by the 4-momentum] then corre-

spond to logically distinct space-times indexed by the 4-momentum of the particle

being observed. More generally, in multi-particle contexts these relative locality

models appear to generalize/modify the notion of inertial frame in such a way that

it depends not only on the state of motion of the observer, but also on the collection

of 4-momenta of the various objects being observed.

A.3 Some matrix identities

Herein we collect some useful matrix identities of a purely technical nature. First

note that

(I −v⊗u)−1 = I +

∞∑

n=1

(v⊗u)n = I + (v⊗u)

∞∑

n=1

(u ·v)n−1 = I +
v ⊗ u

1− u · v , (A.2)

with this particular derivation holding for |u · v| < 1, though the result itself

(I − v ⊗ u)−1 = I +
v ⊗ u

1− u · v , (A.3)

holds for u ·v 6= 1, as can easily be verified by multiplying both sides of the equation

above by (I −v⊗u) and noting that det(I −v⊗u) = 1−v ·u. (The case u ·v = 1

is the kinematic singularity alluded to previously.) Therefore

uT (I − v ⊗ u)−1 = uT +
(u · v)uT

1− u · v =
uT

1− u · v , (A.4)

at least for u · v 6= 1. Similarly

(1− u · v)(I − v ⊗ u)−1 = (1− u · v)I + v ⊗ u, (A.5)
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for u · v 6= 1. Secondly observe

(I − v ⊗ u)(I − ẋ⊗ u)−1 = (I − v ⊗ u)

(
I +

∞∑

n=1

(ẋ⊗ u)n

)

= I − v ⊗ u
( ∞∑

n=0

(ẋ · u)n

)
+ ẋ⊗ u

( ∞∑

n=0

(ẋ · u)n

)

= I − v ⊗ u
1− ẋ · u +

ẋ⊗ u
1− ẋ · u

= I +
(ẋ− v)⊗ u

1− ẋ · u , (A.6)

with this particular derivation holding for |ẋ · u| < 1, though the result itself holds

for ẋ · u 6= 1. Therefore, for ẋ · u 6= 1, we have

(I − v ⊗ u)(I − ẋ⊗ u)−1(ẋ− v) =

(
I +

(ẋ− v)⊗ u
1− ẋ · u

)
(ẋ− v)

= (ẋ− v) +
(ẋ− v)u · (ẋ− v)

1− ẋ · u
= (ẋ− v)

{
1− ẋ · u+ u · (ẋ− v)

1− ẋ · u

}

= (ẋ− v)

{
1− u · v
1− ẋ · u

}
. (A.7)

A.4 Consistency of dynamics and kinematics

Note that from Hamilton’s equations we know ẋ = ∂H/∂p, so to first order (which

is all we require) ∆E = ẋ ·∆p. Then from our discussion of the energy-momentum

transformation laws, and specifically the fact that energy-momentum differences

transform linearly, we have

ẋ ·∆p = γ ˙̄x ·∆p̄+ ∆p̄TΣv = ∆p̄ · (γ ˙̄x + Σv), (A.8)

and

∆p = γ ( ˙̄x ·∆p̄)u+ ΣT∆p̄ = (γ u⊗ ˙̄x + ΣT )∆p̄. (A.9)

But then, for arbitrary ∆p̄

{
ẋT (γ u⊗ ˙̄x + ΣT )− (γ ˙̄xT + ΣvT )

}
∆p̄ = 0, (A.10)

implying

ẋT (γ u⊗ ˙̄x + ΣT ) = (γ ˙̄xT + vTΣT ). (A.11)

That is

(γ ˙̄x⊗ u+ Σ)ẋ = (γ ˙̄x + Σv) (A.12)
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whence

ẋ = (γ ˙̄x⊗ u+ Σ)−1(γ ˙̄x + Σv). (A.13)

This is equivalent to the velocity transformation law we previously derived. (Note

that ˙̄x = 0 implies ẋ = v, while ẋ = 0 implies ˙̄x = −Σv/γ.)

To find the inverse transformations ˙̄x(ẋ) is perhaps easier to start from the

inverse transformations for energy and momentum

∆E → ∆Ē =
∆E −∆p · v
γ(1− u · v)

, (A.14)

and

∆p→ ∆p̄ = (Σ−1)T (I − u⊗ v)−1(∆p−∆Eu). (A.15)

The energy transformation equation implies

˙̄x ·∆p̄ =
(ẋ− v) ·∆p
γ(1− u · v)

, (A.16)

while the momentum transformation equation yields

∆p̄ = (Σ−1)T (I − u⊗ v)−1(∆p− [ẋ ·∆p]u) (A.17)

= (Σ−1)T (I − u⊗ v)−1(I − u⊗ ẋ)∆p. (A.18)

But then
{

˙̄xT (Σ−1)T (I − u⊗ v)−1(I − u⊗ ẋ)− (ẋ− v)T

γ(1− u · v)

}
∆p = 0, (A.19)

whence

˙̄xT (Σ−1)T (I − u⊗ v)−1(I − u⊗ ẋ) =
(ẋ− v)T

γ(1− u · v)
. (A.20)

Therefore

(I − ẋ⊗ u)(I − v ⊗ u)−1Σ−1 ˙̄x =
ẋ− v

γ(1− u · v)
, (A.21)

and we see

˙̄x = Σ(I − v ⊗ u)(I − ẋ⊗ u)−1 (ẋ− v)

γ(1− u · v)
. (A.22)

But (see appendix A.3)

(I − v ⊗ u)(I − ẋ⊗ u)−1 = I +
(ẋ− v)⊗ u

1− ẋ · u . (A.23)

Furthermore (see appendix A.3)

(I − v ⊗ u)(I − ẋ⊗ u)−1(ẋ− v) = (ẋ− v)

{
1− u · v
1− ẋ · u

}
. (A.24)
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So finally

˙̄x =
Σ(ẋ− v)

γ(1− u · ẋ)
, (A.25)

which is the 3-velocity transformation law we had previously derived. (Note that

˙̄x = 0 implies ẋ = v, while ẋ = 0 implies ˙̄x = −Σv/γ.) This verifies the internal

consistency of the manner in which our Hamiltonian/Lagrangian mechanics interacts

with the generic transformation laws between inertial frames.
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Appendix B

Energy conditions

In this appendix we shall present some of the background material that had been

briefly alluded to in chapter 7. In particular we shall present the energy conditions

and average energy conditions.

In general relativity, and more generically in relativistic classical field theories of

gravitation, the energy conditions are applied to the matter content of the theory

when it is either not possible or desirable to specify this content explicitly. They

also provide the theory with a criterion to select the physically interesting solutions

of the Einstein equation, and discard those that are unphysical. Mathematically

speaking, the most apparent distinguishing feature of the energy conditions is that

they are essentially restrictions on the eigenvalues and eigenvectors of the matter

tensor.

In order to define the energy conditions one first considers the energy-momentum

tensor T ab to be of Hawking-Ellis type I, so that in a suitable orthonormal frame it

has components

T ab =




ρ 0 0 0

0 p1 0 0

0 0 p2 0

0 0 0 p3



, (B.1)

These components are the energy density and the three principal pressures. This

is the form of the energy-momentum for all observed fields with non-zero rest-mass

and also for all zero rest-mass field except in the special case when it is of type II,

see [141]. There exist three more types of stress energy tensor:
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1. Type II. This kind of energy-momentum tensor corresponds to the case of

zero rest-mass fields when they represent radiation, all of which is travelling

in the direction E3 + E4, where E3 + E4 is a double null energy eigenvector.

2. Type III. This is the special case in which the energy-momentum tensor has

a triple null eigenvector E3 + E4. There are no observed fields with such

energy-momentum tensor.

3. Type IV. This is the general case in which the energy-momentum tensor has

no timelike or null eigenvector. There are no observed fields with such an

energy-momentum tensor.

The last three types of energy-momentum tensor are not used in the derivation

of the energy conditions and for this reason we shall not specify any other of their

properties.

Null energy condition (NEC). This condition is the assertion that for any null

vector ka

Tab k
akb ≥ 0. (B.2)

In terms of the principal pressures it becomes

∀j, ρ+ pj ≥ 0. (B.3)

Weak energy condition (WEC). This condition is the assertion that for any

timelike vector V a

Tab V
aV b ≥ 0. (B.4)

If this is true for any timeline vector, it will also by continuity imply the null

energy condition. The physical meaning of this condition is that it forces the local

energy density as measured by any timelike observer to be positive. In terms of the

principal pressures it becomes

ρ ≥ 0 and ∀j, ρ+ pj ≥ 0. (B.5)
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Strong energy condition (SEC). This condition is the assertion that for any

timelike vector V a

(
Tab −

T

2
gab

)
V aV b ≥ 0, (B.6)

where T is the trace of the stress-energy tensor, T = Tab g
ab. By continuity, the

strong energy condition implies the null energy condition, but it does not imply, in

general, the weak energy condition. In terms of the principal pressures we have

T = −ρ+
∑

j

pj , (B.7)

and the SEC becomes

∀j, ρ+ pj ≥ 0, and ρ+
∑

j

pj ≥ 0. (B.8)

Dominant energy condition (DEC). This condition is the assertion that for

any timelike vector V a

Tab V
aV b ≥ 0, and TabV

a is not spacelike. (B.9)

This condition implies that the locally measured energy density is always posi-

tive, and that the energy flux is timelike or null. The dominant energy condition

implies the weak energy condition, and hence the null energy condition, but does not

necessarily imply the strong energy condition. In terms of the principal pressures it

becomes

ρ ≥ 0 and ∀j, pj ∈ [−ρ,+ρ]. (B.10)

B.1 Average energy conditions

Each of the above-mentioned conditions has an averaged version, in which the pro-

perties noted above are to hold only on average along the flow-lines of some appro-

priate vector field (Γ).

Average null energy condition (ANEC). This condition is said to hold on a

null curve Γ if

∫

Γ
Tab k

akbdλ ≥ 0, (B.11)
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where λ is a generalised affine parameterisation of the null curve and ka is the

corresponding tangent vector. There are some technical points:

1. If Γ is a null geodesic then the generalised affine parameter specialises to the

ordinary affine parameter, see for example [141].

2. Arbitrary parameterisations are not allowed, otherwise the ANEC would be

equivalent to the ordinary NEC.

3. Because of the multiplicative arbitrariness of the generalised affine parame-

ter and ordinary affine parameter, it is only meaningful to define the ANEC

integral up to an overall positive multiplicative constant.

In order to phrase this condition in terms of the principal pressures, one can use

a normalisation function ξ, and direction cosines cosψi, defined by

ka ≡ ξ (1; cosψi) . (B.12)

The ANEC can then be written as

∫

Γ


ρ+

∑

j

cos2 ψj pj


 ξ2dλ ≥ 0. (B.13)

Usually one typically requires the ANEC to hold on some suitable class Γ of inex-

tendible null geodesics.

Average weak energy condition (AWEC). This condition is said to hold on

a timelike curve Γ if

∫

Γ
Tab V

aV bd s ≥ 0. (B.14)

Here s denotes the proper time parameterisation of the curve Γ, whose corresponding

tangent vector is V a. With the choice of s as the proper time one has

V a = γ(1;β cosψj). (B.15)

Hence

∫

Γ

γ2


ρ+ β2

∑

j

cos2 ψj pj


 d s ≥ 0. (B.16)

When applied, one usually requires the AWEC to hold on some suitable class Γ of

inextensible timelike geodesics. Some technical points are:
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1. If this class of timelike geodesics is suitably large, its boundary ∂Γ may contain

limit points (limit curves) consisting of null geodesics. In this sense, AWEC

(on the set Γ) can be said to imply ANEC (on the null geodesics in the set

∂Γ).

2. In a general space-time there may be null geodesics that are not obtained as

the limit of any sequence of timelike geodesics. In general, AWEC and ANEC

are independent conditions.

Average strong energy condition (ASEC). This condition is said to hold on

a timelike curve Γ if

∫

Γ

(
Tab V

aV b +
1

2
T

)
d s ≥ 0. (B.17)

In terms of the principal pressure this gives the constraint

∫

Γ



γ

2


ρ+ β2

∑

j

cos2 ψjpj


− 1

2
ρ+

1

2

∑

j

pj



 d s ≥ 0. (B.18)

If β → 1, then γ → ∞ , while γd s → d λ and d s → 0. In this limit ASEC reduces

to the ANEC — up to an irrelevant infinite multiplicative factor.

B.2 Some applications

The energy conditions, in one form or another, are used in the various classical

singularity theorems and theorems of classical black hole thermodynamics. We shall

report here just a few examples.

• The Penrose singularity theorem invokes the weak energy condition, see [141].

• The Hawking-Penrose singularity theorem invokes the strong energy condition,

see [141] and [291].

• The proof the zeroth law of black hole thermodynamics (the constancy of

surface gravity over the event horizon) relies on the dominant energy condition

[291].

• The proof of the second law of black hole thermodynamics (the area increase

theorem) uses the null energy condition [291].

For other applications and an exhaustive list of all the known violations refer to

[141] and [275].
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Generalised second law

The generalised second law was introduced by Jacob Bekenstein in 1973 [63], after

it was noticed that, if one restricts the attention to the matter outside the black

hole, one can decrease its entropy when falling inside the black hole itself, violating

the second law of thermodynamics — that states that the total entropy of matter

in the universe never decreases.

Indeed it is now established, at least at a theoretical level, that there exists an

analogy between the laws of thermodynamics and the laws of black hole physics,

derived from classical general relativity. This analogy can be considered an equiva-

lence if one takes into account quantum effects, identifying energy E and mass M ,

temperature T and surface gravity κ, entropy S and even horizon area A (up to

some multiplicative factors).

In order to avoid such a violation of the second law, Bekenstein defined the

generalised entropy

S′ = S +
1

4
k
c2A

G~
, (C.1)

where S is the entropy of the matter falling into the black hole, k is Boltzmann’s

constant, G the gravitational constant and A the horizon area. The fact that a

decrease in S seems always to be compensated by an increase in A and, similarly,

a decrease in A seems always to be compensated by an increase in S, suggests that

the generalised second law

δS′ ≥ 0. (C.2)

In the case described in chapter 7, we are considering an energy-momentum ten-

sor T ab that satisfies the null energy condition (NEC). This guarantees the positivity

of the total Clausius entropy flux, that includes the entropy of the bulk SB and the
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entropy of the bifurcate null surface, implying that the total entropy of the systems

obeys

δSClausius ≥ 0. (C.3)
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Appendix D

Jensen’s inequality and Shannon

entropy bounds

In this appendix we shall give a brief introduction to Jensen’s inequality and its

application to the cases that lead to inequalities (8.3) and (8.17) in chapter 8.

D.1 Definition of Jensen’s inequality

Jensen’s inequality [171] relates the value of a convex/concave function of an integral

to the integral of the convex/concave function, and it generalises the statement that

the secant line of a convex function lies above the graph of the function —Jensen’s

inequality for two points. In the finite case, if f(x) is a convex function, numbers

x1, x2, . . . , xn in its domain, and positive weights ai, Jensen’s inequality can be stated

as

f

(∑
aixi∑
aj

)
≤
∑
aif(xi)∑
aj

(D.1)

and the inequality is reversed if the function is concave, as it is in our case:

f

(∑
aixi∑
aj

)
≥
∑
aif(xi)∑
aj

. (D.2)

In the following subsections we shall carefully explain how to obtain the inequalities

(8.3) and (8.17).

D.1.1 Shannon entropy bounds

Regarding inequality (8.3) for the case with a finite number of states with probability

different from zero we have that:
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S = −
∑

n

pn ln pn =
∑

n

pn ln

(
1

pn

)
. (D.3)

If we now consider that logarithm function is a concave function, we can apply eq.

(D.2), with
∑

i ai =
∑
pi = 1, and obtain:

S ≤ ln

(∑

n

pn
pn

)
= lnN, (D.4)

that is the inequality we were looking for.

Regarding inequality (8.17), we know that for the function f(x) = x lnx, f ′′ =

1/x > 0 for x > 0, therefore f(x) is always convex for the interval of x we are

considering. Applying the inequality (D.1) to our case

2∑

i=1

pi (xi lnxi) ≥
∑

i

pixi ln

(∑

i

pixi

)
, (D.5)

where xi = x̃, ỹ and pi = a
a+b ,

b
a+b , therefore leading to

(
ax̃

a+ b
+

bỹ

a+ b

)
ln

(
ax̃

a+ b
+

bỹ

a+ b

)
=

(
ax̃+ bỹ

a+ b

)
ln

(
ax̃+ bỹ

a+ b

)
, (D.6)

that is the inequality we were looking for.
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Bose-Einstein condensate and

analogue space-time

In this appendix we shall explain in more detail some of the characteristics of the

analogue model of space-time that we have used in section 9.3; such as definition

of an effective metric for a relativistic BEC and the validity of this approximation

when the system undergoes an acceleration. For a review in the subject refer to the

Living Review by Barceló, Liberati, and Visser [56] and references therein.

E.1 Effective space-time for a relativistic Bose-Einstein

condensate

The Lagrangian density of a Bose-Einstein condensate on a space-time metric gab

trapped by an external potential V (xµ) is given by [107],

L̂ =
√−g gab ∂aΦ† ∂bΦ−

(
m2c2

~2
+ V (xµ)

)
Φ†Φ− U(Φ†Φ;λi). (E.1)

where c is the speed of light, ~ Planck’s constant and g = det gab. The atomic field

Φ consists of N atoms of mass m that interact with each other through U(φ̂†φ̂;λi).

The interaction strengths λi can in principle depend on the coordinates xµ of the

background space-time. In the regime below the critical temperature Tc, the atomic

field can be approximated by Φ = Φ0(1 + Π), where Φ0 is a classical background

field and Π is a quantum field corresponding to fluctuations known as phonons. In

this regime, the background field obeys the non-linear Klein-Gordon equation

�gΦ0 −
(
m2c2

~2
+ V (xµ)

)
Φ0 − U ′(ρ;λi)Φ0 = 0 (E.2)
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where ρ := Φ∗0Φ0 is the background density and

�g :=
1√−g∂a

√−g ∂a, (E.3)

is the d’Alembertian operator. The superscript in U ′ denotes the derivatives with

respect to ρ. Equation (E.2) reduces to the standard Gross-Pitaevskii equation in

the Newtonian limit c2 →∞ [107]. On the other hand, the quantum fluctuations Π

obey the field equation

�gΠ + 2gab (∂a ln Φ0) ∂bΠ− ρU ′′(ρ;λi) = 0. (E.4)

Writing Φ0 =
√
ρeiθ we define the generalized kinetic operators as

Tρ ≡ −
~2

2m

(
�g + gab ∂a ln ρ ∂b

)
, (E.5)

and the effective speed of phonon propagation c2
0 ≡ ~2

2m2 ρU
′′(ρ;λi), and the four-

velocity vectors ua ≡ ~
mg

ab∂bθ. We can then rewrite the equation as

{
[i~ua∂a + T ρ]

1

c2
0

[
−i~ub∂b + T ρ

]
− ~2

ρ
gab∂aρ∂b

}
Π = 0. (E.6)

The quantity Tρ can be neglected when the dispersion relation for the perturbations

is ω2 = c2
sk

2 and if one is working in the eikonal approximation [107]. That is

when the background quantities vary slowly in space and time on scales comparable

with the wavelength and the period of the perturbations, respectively [107]. This

assumption is equivalent to neglecting the quantum pressure term in the Gross-

Pitaevskii equation obtained in the Newtonian limit. In this case equation (E.6)

becomes the Klein-Gordon equation

�gΠ =
1√−g∂a

√−g ∂aΠ = 0, (E.7)

where the effective metric gab is defined as

gab =
ρ√

1− udud/c2
0

[
gab

(
1− udu

d

c2
0

)
+

(
uaub
c2

0

)]
. (E.8)

By defining the four-velocity va ≡ c
‖u‖u

a and the scalar speed of sound

c2
s =

c2c2
0/‖u‖2

1 + c2
0/‖u‖2

, (E.9)

the effective metric can be written as

gab =
c

cs

n0

%0 + p0

[
gab +

(
1− c2

s

c2

)
vavb

]
(E.10)

The conformal factor in the last equation (E.10) can be found by considering the

hydrodynamical description for a BEC [107].
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E.2 Effective metric and accelerating BEC

One important point one needs to take into account is the fact that, when the BEC

undergoes acceleration, the background density can become inhomogeneous. This

implies that it is not possible to neglect the generalised kinetic operator in equation

(E.6) that describes the motion of the quantum fluctuations Π(x). Therefore it is

not possible to use the analogue model approximation and describe the motion of

the quantum fluctuations with quantum field theory in a curved space-time.

Fortunately, in the acceleration regimes we consider a ' 10−3m/s2, these effects

are negligible. Indeed, mimicking the acceleration by an external potential of the

form V (x) = m · a · x [209], with m the atomic mass, and x a measure of the

BEC displacement due to the acceleration, we find that the term associated to the

quantum pressure Tρ can be safely neglected as long as

∂x ρ

ρ
' h

L
� mc

~
. (E.11)

Here h is not the Planck constant but h = aL
c2 2

, and L is the length of the BEC

trap. Given the values for a and cs mentioned above, we have that h/L ' 103 m−1

while mc/~ is larger than 1015 m−1. Therefore the condition is satisfied and we can

still define an effective metric.
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Appendix F

Quantum information tools

In this appendix we shall present a few quantum information tools that we have used

in chapter 9, section 9.4 to describe the evolution of the quantum states and the

entanglement when one of the two BEC systems undergoes a constant acceleration

while the other continues on an inertial trajectory.

F.1 Covariance matrix formalism

The covariance matrix is a general tool used in probabilistic theory and statistics.

Also known as the dispersion matrix or variance-covariance matrix, it is a matrix

whose element (i, j) is the covariance between the i-th and j-th elements of a random

vector, each element of which is a scalar random variable, either with a finite number

of observed empirical values or with a finite or infinite number of potential values

specified by a theoretical joint probability distribution of all the random variables.

General definition

If we define the random vector as

X =




X1

...

Xn


 , (F.1)

where Xi are random variables, each with finite variance, then we can define the

(i, j) element of the covariance matrix σ as

σij := E [(Xi − µi) (Xj − µj)] . (F.2)

The values
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µi = E(Xi), (F.3)

are the expected value of the i-th entry in the vector X.

In the area of interest of quantum information, the covariance matrix is very

useful when considering Gaussian states — that is states with Gaussian characteris-

tic functions and quasi-probability distributions. Such distributions are completely

described by the mean and the variance, i.e. they are determined by the vector of

first moments

X := (q̂1, p̂1, q̂2, p̂2, . . . , q̂n, p̂n)T , (F.4)

and the real, symmetric covariance matrix σ, that in this case has components

σij := 〈XiXj +XjXi〉ρ − 2〈Xi〉ρ〈Xj〉ρ. (F.5)

Here 〈 . 〉ρ is the expectation value in the state ρ and q̂j and p̂j are the quadrature

phase operators defined as

q̂j :=
1√
2

(
aj + a†j

)

p̂j :=
−i√

2

(
aj − a†j

)
. (F.6)

The operators ai and a†i are the usual annihilation and creation operators for the

mode i. The expectation value 〈 . 〉ρ is defined in terms of the density matrix as

〈A〉ρ = Tr (Aρ) , (F.7)

with A being an operator.

F.2 Squeezed coherent states

A squeezed coherent state is any state in a Hilbert space such that the uncertainty

principle is saturated. That is, the product of the corresponding two operators takes

on its minimum value:

∆X∆P =
~
2
. (F.8)

The simplest such state is the ground state |0〉 of the quantum harmonic oscilla-

tor. Indeed, we shall use the quantum harmonic oscillator to give the basic idea of
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squeezing. In particular let us consider the vacuum state wave function in position

basis and momentum basis

ψ0 =
1

π1/4
e−X

2/2 , ψ̃0 =
1

π1/4
e−P

2/2. (F.9)

(Here we are assuming that ~ = 1) The variance of the position and momentum

observables in the vacuum state is 〈0|∆X2|0〉 = 〈0|∆P 2|0〉 = 1/2. The squeeze-

vacuum state |sqr〉, with squeezing parameter r, is obtain from the vacuum state by

means of a scaling transformation, that for the wave function is

ψr(X) =

√
r

π1/4
e−(r X)2/2 , ψ̃r(P ) =

1

π1/4
√
r
e−(P/r)2/2 . (F.10)

In this state, the variances of the two canonical observables become

〈∆X2〉 =
1

2 r2
, 〈∆P 2〉 =

r2

2
. (F.11)

If r > 1, the position variance is below that of the vacuum state, so |sqr〉 is position-

squeezed ; for r < 1 the state is momentum-squeezed. Therefore, the measurements

of the squeezed observable on each copy of |sqr〉 will exhibit less a variance than if

performed on multiple copies of the vacuum state.

In general, a state of a single harmonic oscillator exhibits (quadrature) squeez-

ing if the variance of the position, momentum, or any other quadrature X̂θ =

X̂ cos θ + P̂ sin θ — with θ a real angle known as quadrature angle — in that state

exhibits variance below 1/2. In accordance with the uncertainty principle, both po-

sition and momentum observables, or in fact any two quadratures associated with

orthogonal angles, cannot be squeezed at the same time. For instance, for position

and momentum we still have 〈∆X2〉〈∆P 2〉 = 1/4 for the vacuum state.

In general, a single-mode squeezed state |α, ξ〉 is generated by a single-mode

squeezing operator S(ξ), defined as

S(ξ) = exp

(
ξ∗

2
a2 − ξ

2
a†2
)
, (F.12)

with ξ = r eiθ a complex number, r ≥ 0, 0 ≤ θ ≤ 2π in the following way

|α, ξ〉 = D(α)S(ξ)|0〉, (F.13)

and D(α) = exp
(
αa† − α∗a

)
is the coherent state displacement operator with α =

|α|eiφ.

The annihilation operator is transformed by the squeezing operator as follows
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S−1(ξ)aS(ξ) = a cosh r − a†eiθ sinh r. (F.14)

The variance of the position and momentum becomes

〈∆X2〉sq =
1

2

(
e−2r cos2 θ

2
+ e2r sin2 θ

2

)
,

〈∆P 2〉sq =
1

2

(
e−2r sin2 θ

2
+ e2r cos2 θ

2

)
, (F.15)

therefore

〈∆X2〉sq〈∆P 2〉sq =
1

4

(
1 + sin2 θ sinh2 2r

)
≥ 1

4
. (F.16)

When θ = 0 we recover the minimum uncertainty relation and, depending on the

sign of r, either 〈∆X2〉sq or 〈∆P 2〉sq can be smaller than 1/2.

In a similar way, it is possible to generate two-mode squeezed state as

|α1, α2, ξ〉 = D1(α1)D2(α2)S1,2(ξ)|0〉, (F.17)

with D1 and D2 the displacement operators, and S1,2(ξ) the two-mode squeezing

operator defined as

S1,2 = exp
(
ξ∗a1a2 − ξa†1a†2

)
. (F.18)

1, 2 represent the two particles. The creation and annihilation operators for 1, 2

transform accordingly to (F.14).

The generalised quadrature operators are defined by

X1,2 =
1

23/2

(
a1 + a†1 + a2 + a†2

)
,

X1,2 =
1

23/2

(
a1 − a†1 + a2 − a†2

)
. (F.19)

The variances are

〈∆X2
1,2〉sq =

1

2

(
e−2r cos2 θ

2
+ e2r sin2 θ

2

)
,

〈∆P 2
1,2〉sq =

1

2

(
e−2r sin2 θ

2
+ e2r cos2 θ

2

)
. (F.20)
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Therefore, the variance of one of the quadrature operators can decrease while the

other one simultaneously increases to satisfy the uncertainty principle. Similarly as

before, for θ = 0 we recover the minimum uncertainty relation and, depending on

the sign of r, either 〈∆X2
1,2〉sq or 〈∆P 2

1,2〉sq can be smaller than 1/2.

F.3 Negativity as a measure of entanglement

Negativity is one of the possible measures of entanglement of a mixed state. Gene-

rally speaking the requirements that one imposes on entanglement measures E(ρ)

are

Definition: Entanglement measure:

An entanglement measure E(ρ)is a map from density operators ρ to the non-

negative real numbers E(ρ) ∈ R+
0 that satisfies:

(i) E(ρ) = 0 for all separable states.

(ii) E(ρ) is non-increasing under local operations and classical communication.

An extensive review of the various available entanglement measures, entangle-

ment monotones, and their connections can be found in [228, 273].

Definition: Negativity

Negativity is based on the positive partial transpose criterion (PPT), or Peres-

Horodecki criterion, a criterion established by A. Peres and M., P. and R. Horodecki

to detect entanglement [146, 224]. The PPT criterion states the following

• A bipartite state ρAB ∈ C2 ⊗ C2 or C2 ⊗ C3 is separable if, and only if, the

partial transposition of ρAB is positive,i.e.

ρTBAB = (1⊗ TB) ρAB ≥ 0. (F.21)

This is based on the fact that, since the transposition preserves the positivity of

operators, one can show that that separable states remain positive under partial

transposition, see [146, 224, 228].

Going into more detail, we first write a general bipartite mixed state ρ ∈ HAB
in terms of local bases |m〉 ∈ HA and |n〉 ∈ HB as
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ρ =
∑

m,m′,nn′

ρm,n,m′,n′ |m〉〈m′| ⊗ |n〉〈n′|. (F.22)

The partial transposition is obtained by exchanging the indices of the operators on

one of the subspaces

ρTB = (1⊗ TB) ρ =
∑

m,m′,nn′

ρm,n,m′,n′ |m〉〈m′| ⊗ |n′〉〈n|. (F.23)

In terms of these quantities the negativity N(ρ) of a bipartite state ρ is defined as

N(ρ) :=
1

2

∑

i

(|λi| − λi) (F.24)

where λi ∈
[
−1

2 , 1
]

are the eigenvalues of ρTB . The negativity can also be defined in

terms of the trace norm || . ||1 as

N(ρ) :=
1

2

(
||ρTB ||1 − 1

)
, (F.25)

with ||ρ||1 = Tr
√
ρ†ρ.

182



Appendix G

Publications not included in this

thesis

G.1 Massive gravity from bimetric gravity

Valentina Baccetti, Prado Martin Moruno, Matt Visser

Electronic preprint ArXiv: 1205.2158 [gr-qc]

Published in Classical and Quantum Gravity 30 (2013) 015004

DOI: 10.1088/0264-9381/30/1/015004

We discuss the subtle relationship between massive gravity and bimetric gravity,

focusing particularly on the manner in which massive gravity may be viewed as

a suitable limit of bimetric gravity. The limiting procedure is more delicate than

currently appreciated. Specifically, this limiting procedure should not unnecessarily

constrain the background metric, which must be externally specified by the theory

of massive gravity itself. The fact that in bimetric theories one always has two

sets of metric equations of motion continues to have an effect even in the massive

gravity limit, leading to additional constraints besides the one set of equations of

motion naively expected. Thus, since solutions of bimetric gravity in the limit

of vanishing kinetic term are also solutions of massive gravity, but the contrary

statement is not necessarily true, there is not complete continuity in the parameter

space of the theory. In particular, we study the massive cosmological solutions which

are continuous in the parameter space, showing that many interesting cosmologies

belong to this class.
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G.2 Null Energy Condition violations in bimetric

gravity

Valentina Baccetti, Prado Martin Moruno, Matt Visser

Electronic preprint ArXiv: 1206.3814 [gr-qc]

Published in JHEP 1208 (2012) 148

DOI: 10.1007/JHEP08(2012)148

We consider the effective stress-energy tensors for the foreground and background

sectors in ghost-free bimetric gravity. By considering the symmetries of the theory,

we show that the foreground and background null energy conditions (NECs) are

strongly anti-correlated. In particular, the NECs can only be simultaneously ful-

filled when they saturate, corresponding to foreground and background cosmological

constants. In all other situations, either the foreground or the background is subject

to a NEC-violating contribution to the total stress-energy.

G.3 Gordon and Kerr-Schild ansatze in massive and

bimetric gravity

Valentina Baccetti, Prado Martin Moruno, Matt Visser

Electronic preprint ArXiv: 1206.4720 [gr-qc]

Published in JHEP 1208 (2012) 108

DOI: 10.1007/JHEP08(2012)108

We develop the ”generalized Gordon ansatz” for the ghost-free versions of both

massive and bimetric gravity, an ansatz which is general enough to include almost all

space-times commonly considered to be physically interesting, and restricted enough

to greatly simplify calculations. The ansatz allows explicit calculation of the matrix

square root γ =
√
g−1f appearing as a central feature of the ghost-free analysis.

In particular, this ansatz automatically allows us to write the effective stress-energy

tensor as that corresponding to a perfect fluid. A qualitatively similar “general-

ized Kerr-Schild ansatz” can also be easily considered, now leading to an effective

stress-energy tensor that corresponds to a null fluid. Cosmological implications are
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considered, as are consequences for black hole physics. Finally we have a few words

to say concerning the null energy condition in the framework provided by these

ansatze.

G.4 Massive gravity as a limit of bimetric gravity

Prado Martin Moruno, Valentina Baccetti, Matt Visser

Electronic preprint ArXiv: 1302.2687 [gr-qc]

13th Marcel Grossmann Meeting, Conference Proceedings: C12-07-01.1

Massive gravity may be viewed as a suitable limit of bimetric gravity. The lim-

iting procedure can lead to an interesting interplay between the “background” and

“foreground” metrics in a cosmological context. The fact that in bimetric theories

one always has two sets of metric equations of motion continues to have an effect

even in the massive gravity limit. Thus, solutions of bimetric gravity in the limit

of vanishing kinetic term are also solutions of massive gravity, but the contrary

statement is not necessarily true.

G.5 Inertial frames without the relativity principle:

breaking Lorentz symmetry

Valentina Baccetti, Kyle Tate, Matt Visser

Electronic preprint ArXiv: 1302.5989 [gr-qc]

13th Marcel Grossmann Meeting, Conference Proceedings: C12-07-01.1

We investigate inertial frames in the absence of Lorentz invariance, reconsid-

ering the usual group structure implied by the relativity principle. We abandon

the relativity principle, discarding the group structure for the transformations bet-

ween inertial frames, while requiring these transformations to be at least linear

(to preserve homogeneity). In theories with a preferred frame (aether), the set of

transformations between inertial frames forms a groupoid/pseudogroup instead of a

group, a characteristic essential to evading the von Ignatowsky theorems. In order

to understand the dynamics, we also demonstrate that the transformation rules for

energy and momentum are in general affine. We finally focus on one specific and

compelling model implementing a minimalist violation of Lorentz invariance.
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Curriculum vitæ

H.1 Education

Bachelor’s thesis

• Title: Correlation Function for a Catalog of Infrared Galaxies

• Supervisor: Prof. Enzo Branchini

• Date and Place: October 2004, Dipartimento di Fisica, “E.Amaldi”, Univer-

sità “RomaTre”

• Final Grade: 110/110 cum laude (first class honours degree)

Master’s thesis

• Title: The particle interpretation of N = 1 supersymmetric spin

foams

• Supervisors: Dr. James Ryan (Perimeter Institute), Prof. Orlando Ragnisco

(RomaTre)

• Date and Place: September 2010, Dipartimento di Fisica, “E.Amaldi”, Uni-

versità “RomaTre” (Thesis work undertaken at Perimeter Institute)

• Final Grade: 110/110 cum laude (first class honours degree)
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PhD thesis

• Title: Phenomena at the border between quantum physics and gen-

eral relativity

• Supervisor: Prof. Matt Visser

• Date and Place: April 2014 (thesis submission), School of Mathematics, Statis-

tics and Operations Research, Victoria University of Wellington

H.2 Scholarship and prizes

• Victoria PhD Scholarship for doctoral study at Victoria University of

Welling-ton, December 2010.

• Best talk in the applied mathematics session at the New Zealand Mathema-

tics and Statistics Postgraduate Conference, Auckland, November 2012.

• Hartle award for one of the best student presentations at the 20th Inter-

national Conference of General Relativity and Gravitation (GR20), Warsaw,

July 2013.

• Irene Pestov Memorial Scholarship for 2014 that aims to assist female

students in the area of mathematical sciences or geosciences to complete their

MSc or PhD thesis at Victoria University of Wellington, November 2013.

• Kerr Prize (shared) for the best student presentation at the Seventh Aus-

tralasian Conference on General Relativity and Gravitation (ACGRG7), Hamil-

ton Island, Queensland, December 2013.

H.3 Other publications

• The Redshift-Space Two Point Correlation Function of ELAIS-S1 Galaxies,

V. D’Elia, E. Branchini, F. La Franca, V. Baccetti, I. Matute, F. Pozzi, C.

Gruppioni, Mon. Not. Roy. Astron. Soc. 359 (2005), 1077-1082.

• The particle interpretation of N = 1 supersymmetric spin foams, V. Baccetti,

E. R. Livine, J. P. Ryan, Class. Quant. Grav., 27 (2010), 225022.
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