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ABSTRACT 

One of the main issues associated with the exploitation of geothermal energy is the durability 

of the cement that is used downhole to cement the steel casing to the formation. Cement 

durability can have a major impact on the lifetime of geothermal wells, which do not usually 

last as long as desirable. The cement formulations used in the construction of geothermal 

wells are designed to provide mechanical support to the metallic well casings and protect 

them against the downhole harsh environment, which often leads to corrosion. 

This research is focused on the way that these formulations interact with the surrounding rock 

formation in geothermal environments, and aims to understand whether these are likely to 

affect the cement durability and, consequently, the geothermal well lifetime. 

The experimental work in this thesis consists of examining the changes in the interfacial 

transition zone (ITZ) that forms between geothermal cements and the volcanic rocks, after 

hydrothermal treatment. Holes were drilled in blocks of volcanic rocks and cement slurries 

with distinct formulations were poured into the cavities. The assemblages were autoclaved 

under typical geothermal conditions. The main variables under study were the cement 

formulation, the temperature of curing (150oC and 290oC), the presence of drilling mud, CO2 

exposure and the type of rock. 

The results show that with all the Portland cement based systems a series of chemical 

reactions occur at the interface between the cement and the rock, the ITZ, where migration of 

Ca2+ and OH- ions occurs from the cement into the rock pores. These reactions are ongoing, 

which occur faster during the first days/few weeks of curing, mostly driven by physical 

process of cement movement into the rock, followed by a slower second stage, controlled 

mostly by chemical driving forces. 

This work highlights the interdependence between the chemical and physical interactions 

between geothermal cements and volcanic rocks which are complex. Variables such as 

temperature and time of curing and silica addition affect the cement phases that form, while 

the amount of amorphous silica and rock permeability dictate the extent of rock interaction. 

The presence of carbon dioxide influences the extent of rock/cement interaction and this can 

be controlled by the rock permeability and cement formulation. Consequently, most of the 

above mentioned variables were found to have an impact on the geothermal cement 

durability, which depends on the way these factors are combined. 



  



 

 

AKNOWLEDGEMENTS 

 

There are a great number of people who have been extremely important and supportive 

(personally and/or scientifically) to whom I would like to thank. 

 

Firstly, my parents, who have always supported me unconditionally. My mother has always 

been my main source of encouragement; my father has always helped me in what he could. 

My grandmother, M.a Madalena, who has helped my parents to raise me and has also always 

supported me unconditionally. 

My grandfather João, who will always be one of the most important persons in my life and 

will never be forgotten. 

My aunt Carla, uncle Victor and cousins Rodrigo and Tomás, for the great support they have 

given to me and, especially, to my parents and grandmother during my absence. 

My grandfather José and my grandmother Dieia for everything they mean to me. 

 

My primary supervisor, Neil Milestone, for accepting me to be part of this project, his 

patience and extremely dedicated supervision. 

My secondary supervisor, Jim Johnston, for supporting my PhD project. 

Andrew Durant, Matt Sharp and Geoff Smith for their great reception in the cement team, B 

block and New Zealand in general. 

Martin Ryan for his great availability and help with the XRD, thin sections and any other 

issue - although a very busy person, he is extremely kind, always ready to help. 

Other past and present members of the Advanced Materials Group (B block from IRL), for 

either technical aid, personal support and/or friendship, namely Anne-Hélène Puichaud, Bill 

Owers, David Grant-Taylor, Diego Del Puerto, Campbell McNicoll, Jeremy Wu, Jonathan 

Tailby, Katrina Teu, Marion Schmidt, Neville Baxter, Laureline Kilman, Pauline Calloch, 

Sophie Cailliet and Vlatko Materić. 

Prof. Pat R. Browne for his care and concern with helping me within his field of expertise. 



Prof. John Gamble for helping me with analysing the thin sections. 

Michael Rosenberg for the help he provided me with collecting the rocks in the Oharuri 

geothermal field for my experimental work. 

Prof. Julie Vry and her team for letting me attend their Petrology and Microscopy classes, as 

well as for helping me with the analysis of the thin sections. 

 

Other people, other than the ones referred previously, which were also very important during 

my stay in New Zealand due to their great friendship: Nancy Flores, Bastien Lefèuvre, Sudhir 

Singh and Josef Rettelbach. 



 

 

TABLE OF CONTENTS 

I. GLOSSARY, ACRONYMS AND ABBREVIATIONS 1 

I.1 Cement Notation (Oxide Nomenclature) 1 

I.2 Others 1 

II. INTRODUCTION 7 

II.1 Rationale 7 

II.2 Research Project 9 

II.3 Objectives 10 

II.4 Thesis Structure 10 

III. LITERATURE REVIEW 13 

III.1 Geothermal Environments 13 

III.1.1 Temperature 14 

III.1.2 Hydrothermal Fluids 17 

III.1.3 Downhole CO2 18 

III.1.3.1 CO2 in geothermal environments 19 

III.1.3.2 CO2 in CCS 22 

III.1.4 Stratigraphy 23 

III.1.4.1 Mineralogy 26 

III.1.4.2 Porosity and Permeability 28 

III.1.5 Hydrothermal Alteration 29 

III.1.6 CO2/Formation Interaction 31 

III.1.7 Drilling Fluids 34 

III.2 Cement 36 

III.2.1 Introduction 36 

III.2.2 Portland Cement 36 

III.2.3 Hydration at Elevated Temperatures 38 

III.2.4 Alternative Cements: Calcium Aluminate Cements 40 

III.2.5 Oilwell Cement 41 

III.2.5.1 Geothermal Cements 44 

III.2.6 Carbonation of Cement 44 

III.2.6.1 Carbonation in Geothermal Environments 47 

III.2.7 Calcium Carbonate Forms 48 

III.2.7.1 Crystalline Calcium Carbonate 48 

III.2.7.2 Calcium Carbonate Hydroxide/Hydrate Phases 49 

III.2.7.3 Amorphous Calcium Carbonate 49 

III.2.8 Durability 51 

III.2.8.1 Corrosion of Cement 51 

III.2.8.2 Diffusion Process and Reaction Rims 53 

III.2.9 Natural analogues 57 



III.3 Cement-Rock Interactions 59 

III.3.1 Interfacial Transition Zone in Concrete 59 

III.3.1.1 Physical Features 59 

III.3.1.2 Chemical Features 60 

III.3.2 Alkali Aggregate Reaction 62 

III.3.2.1 Types of Reaction 62 

III.3.2.2 Factors Influencing ASR 63 

III.3.3 Cement-Rock Interaction in Extreme Environments 70 

III.3.3.1 Effect of Temperature 70 

III.3.3.2 Effect of Drilling Fluid (Mud) 73 

III.3.3.3 Effect of CO2 and Brine 74 

IV. METHODOLOGY 81 

IV.1 Justification for the paradigm and methodology 81 

IV.2 Raw Materials 83 

IV.2.1 Rocks 87 

IV.2.1.1 Ongatiti ignimbrite (IGN) 87 

IV.2.1.2 Unaltered Ignimbrite (UNI) 91 

IV.2.1.3 Ignimbrite with kaolinite alteration (KAO) 93 

IV.2.1.4 Ignimbrite with mordenite alteration type (MOR) 95 

IV.2.1.5 Whakaroa rhyolite (RHY) 98 

IV.2.2 Cements 100 

IV.2.2.1 API Class G 100 

IV.2.2.2 API Class A 101 

IV.2.2.3 HAC 102 

IV.2.2.4 White 103 

IV.2.2.3 Admixtures 104 

IV.2.2.3.1 Silica Flour 104 

IV.2.2.3.2 Microsilica 600 105 

IV.2.2.4 Bentonite 106 

IV.3 Research procedures 108 

IV.3.1 XRD 111 

IV.3.2 OM 112 

IV.3.3 SEM/EDS 113 

IV.3.4 Acid test 118 

IV.3.5 TGA/DTG 118 

IV.3.6 Mass Spec 119 

IV.4 Sample labelling 120 

V. RESULTS: 1 MONTH CURE 125 

V.1 150oC cure 125 

V.1.1 No drilling mud 125 



 

 

V.1.2 With drilling mud (bentonite) 138 

V.2 290oC cure 151 

VI. RESULTS: 3 MONTHS CURE 165 

VI.1 150oC cure 165 

VI.1.1 No CO2 exposure 165 

VI.1.1.1 IGN 165 

VI.1.2 With CO2 exposure 175 

VI.1.2.1 IGN 175 

VI.1.2.2 UNI 209 

VI.1.2.3 KAO 218 

VI.1.2.4 MOR 227 

VI.1.2.5 RHY 236 

VI.2 290oC cure 245 

VI.2.1 With CO2 exposure 245 

VI.2.1.1 IGN 245 

VII. DISCUSSION OF THE RESULTS 255 

VII.1 Portland cement based systems 258 

VII.1.1 API Class G 258 

VII.1.1.1 Standard: IGN/G(150.28d) 258 

VII.1.1.2 Curing time: IGN/G(150.84d) 259 

VII.1.1.3 Drilling mud: IGN/G(150.b.28d) 260 

VII.1.1.4 Curing temperature: IGN/G(290.28d) 261 

VII.1.1.5 CO2 exposure 262 

VII.1.1.6 Rock type 266 

VII.1.2 G20SF 270 

VII.1.2.1 Standard: IGN/G20SF(150.28d) 270 

VII.1.2.2 Curing time: IGN/G20SF(150.84d) 271 

VII.1.2.3 Drilling mud: IGN/G20SF(150.b.28d) 271 

VII.1.2.4 Curing temperature: IGN/G20SF(290.28d) 272 

VII.1.2.5 CO2 exposure 273 

VII.1.2.6 Rocktype 275 

VII.1.3 G40SF 278 

VII.1.3.1 Standard: IGN/G40SF(150.28d) 278 

VII.1.3.2 Curing time: IGN/G40SF(150.84d) 278 

VII.1.3.3 Drilling mud: IGN/G40SF(150.b.28d) 279 

VII.1.3.4 Curing temperature: IGN/G40SF(290.28d) 280 

VII.1.3.5 CO2 exposure 280 

VII.1.3.6 Rocktype 282 

VII.1.4 G20MS 284 

VII.1.4.1 Standard: IGN/G20MS(150.28d) 284 



VII.1.4.2 Curing time: IGN/G20MS(150.84d) 284 

VII.1.4.3 Drilling mud: IGN/G20MS(150.b.28d) 284 

VII.1.4.4 Curing temperature: IGN/G20MS(290.28d) 285 

VII.1.4.5 CO2 exposure 285 

VII.1.4.6 Rocktype 286 

VII.1.5 API class A 288 

VII.1.5.1 Standard: IGN/A(150.28d) 288 

VII.1.5.2 Drilling mud: IGN/A(150.b.28d) 288 

VII.1.5.3 Curing temperature: IGN/A(290.28d) 289 

VII.1.6 White cement 290 

VII.1.6.1 Standard: IGN/W(150.28d) 290 

VII.1.6.2 Drilling mud: IGN/W(150.b.28d) 290 

VII.1.6.3 Curing temperature: IGN/W(290.28d) 290 

VII.2 Alternative cementing system 292 

VII.2.1 Calcium Aluminate Cement 292 

VII.2.1.1 Standard: IGN/HAC(150.28d) 292 

VII.2.1.2 Drilling mud: IGN/HAC(150.b.28d) 292 

VII.2.1.3 Curing temperature: IGN/HAC(290.28d) 293 

VII.3 Overall discussion 294 

VIII. CONCLUSIONS AND FUTURE WORK 299 

VIII.1 Conclusions 299 

VIII.2 Future Work 303 

IX. PRESENTED AND PUBLISHED WORK 305 

IX.1 Conference Presentations 305 

IX.2 Publications 305 

X. APPENDICES 323 

X.1 XRD quantitative information 323 

X.2 Mercury Porosometry 341 

X.3 XRD patterns 352 

X.4 Further SEM/EDS work 407 

X.5 Mass Spec: comparison of Mass Spec results 415 

REFERENCES 417 

Bibliography 417 

Standards 444 

Websites 444 



 

 

LIST OF FIGURES 

Figure II.1 - Champagne pool, Rotorua, New Zealand 7 

Figure II.2 - Taupo Volcanic Zone (TVZ) 7 

Figure II.3 - Rig utilized in the construction of a geothermal well 8 

Figure II.4 - Schematic cross section of a geothermal well 8 

Figure II.5 - Schematic cross section of the system rock-cement-casing 9 

Figure II.6 - Well head with valve and control equipment on the top of a geothermal well 9 

Figure III.1 - Map of New Zealand Geothermal Fields (New Zealand Geothermal Association, 2012) 15 

Figure III.2 - Map of Geothermal Fields in the TVZ (New Zealand Geothermal Association, 2012) 15 

Figure III.3 - CO2 pressure-temperature phase diagram 18 

Figure III.4 - CO2 solubility as a function of the total dissolved solids (TDS) 20 

Figure III.5 - Values of the Henry’s Law constant K for the solution of CO2 in water and sodium chloride 

solutions, as a function of temperature (Ellis et al., 1963) 21 

Figure III.6 - Values of the Ostwald distribution coefficient λ  for the solubility of CO2 in water and sodium 

chloride solutions, as a function of temperature (Ellis et al., 1963) 21 

Figure III.7 - Solubility of CO2 in pure water 22 

Figure III.8 - Northwest-southeast cross section through the Broadlands system showing stratigraphy and 

isotherms and interfered (schematic) distribution of CO2-rich steam-heated waters, as well as general 

patterns boiling and dilution 24 

Figure III.9 - North northeast-south southwest cross-section through West Bank wells (in Ohakii- Broadlands 

system), 25 

Figure III.10 - SEM/BSE image of class H cement cured for 28 days at 50oC and 30.3 MPa and exposed for  9 

days to CO2-saturated brine under the same conditions (Kutchko et al., 2008) 55 

Figure III.11  - Original cement (top) and cement exposed to CO2 after 9 days (bottom) (Kutchko et al., 2008) 56 

Figure III.12 – SEM/BSE image of Class H neat cement cured for 28 days at 50°C and 30.3 MPa and exposed 

for 61 days to supercritical CO2 under the same conditions shows the formation of a single carbonated 

zone in the cement. Dashed line approximates boundary of degradation (Kutchko et al., 2008) 56 

Figure III.13 - sectioned schematic of stone-cement sample prior to slicing (A) 75 

Figure III.14 - Photos of the sandstone samples reacted over a year at pH 3 and 20oC (Duguid, 2009) 75 

Figure III.15 - Reaction depth data versus the square root of time divided by the shortest distance, r, to the 

outside of the sample for all measurements points (Duguid, 2009). 76 

Figure III.16 - X-ray maps of the 20oC - pH 3 sample at 6 months showing white grains outlined by the 

rectangular boxes in the calcium map (left) and showing no corresponding grains in the iron map (center) 

and the silicon map (right) (Duguid, 2009). 77 

Figure III.17 - Small section of an abandoned well used for CCS purposes: (A) CO2 migration through the pores 

or pathways of the well cement; (B) CO2 migration through  annuli or defects that exist between the casing 

and the cement; (C) CO2 travelling through an annulus or pathway at the interface between the cement and 

the formation; (D) CO2 entering the wellbore through a damaged casing and travelling up the inside of the 

well (Duguid et al., 2006) 78 



Figure IV.1 - Scheme of the crushers utilized to crush the rock samples for XRD quantitative analysis 84 

Figure IV.2 - Type of riffler used to get a representative sample of the rock for XRD quantitative analysis 84 

Figure IV.3 - Bouncing ball used for milling the rock for XRD quantitative analysis 84 

Figure IV.4 - Precision scale used to measure the dry, wet and submersed weights of the sample 86 

Figure IV.5  - Vacuum system used to replace the water with air in order to fully saturate the sample with water

 86 

Figure IV.6 - Block of IGN 87 

Figure IV.7 - Optical microscope images: IGN 90 

Figure IV.8 - Block of UNI 91 

Figure IV.9  - Optical microscope images: UNI 93 

Figure IV.10 - Block of KAO 93 

Figure IV.11 - Optical microscope images: KAO 95 

Figure IV.12 - Block of MOR 96 

Figure IV.13 - Optical microscope images: MOR 97 

Figure IV.14 - Block of RHY 98 

Figure IV.15 - Optical microscope images: RHY 100 

Figure IV.16 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Class G cement 101 

Figure IV.17 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Class A cement 102 

Figure IV.18 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the HAC 103 

Figure IV.19 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the White cement 104 

Figure IV.20 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Silica Flour 105 

Figure IV.21 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Microsilica 600 106 

Figure IV.22 - Cavities being drilled into rock 108 

Figure IV.23 - Rock blocks in the container with geobrine solution, just before being exposed to 90oC in the 

oven 108 

Figure IV.24 - Mixing the cement paste in the blender 109 

Figure IV.25 - The cement/rock system, just after pouring the cement paste into the cavities 109 

Figure IV.26 - Assemblages in the containers, pre-cured in brine for two days in the oven at 90oC 110 

Figure IV.27 - Assemblages transferred to the autoclave, at either 150oC or 290oC, without or with CO2 

injection 110 

Figure IV.28 - Samples after being removed from the autoclave 110 

Figure IV.29 - Big (left) and small diamond (right) saws 110 

Figure IV.30 - Collection of a XRD sample (ITZ-C) with the aid of a small driller 112 

Figure IV.31 - Preparation of the XRD sample: placing the powder in the sample holder 112 

Figure IV.32 - Desiccator  attached to the house vacuum, used for degassing the epoxy resin used to impregnate 

the samples 114 

Figure IV.33 - Grinding and shaping an impregnated sample in the cup wheel 114 

Figure IV.34 - Water polishing of the impregnated samples 115 

Figure IV.35 - Samples after being impregnated in resin and polished, ready for SEM/EDS work 115 

Figure IV.36 - Thermogravimeter used in the current work 119 



 

 

Figure IV.37 - Wire attached to the thermogravimeter to collect the gases lost during the TG run for the Mass 

Spec 119 

Figure IV.38 - Illustration of the nomenclature utilised to distinguish the four different zones under analysis 124 

Figure V.1 - Photos of the cross section of the IGN/CEM assemblages exposed at 150oC for 28 days in brine 125 

Figure V.2 - IGN/G(150.28d) OM images 127 

Figure V.3 - IGN/G20SF(150.28d) OM images 127 

Figure V.4 - IGN/G40SF(150.28d) OM images 128 

Figure V.5 - IGN/G20MS(150.28d) OM images 128 

Figure V.6 - IGN/A(150.28d) OM images 129 

Figure V.7 - IGN/HAC(150.28d) OM images 129 

Figure V.8 - IGN/W(150.28d) OM images 130 

Figure V.9 - IGN/G(150.28d) SEM/EDS images 131 

Figure V.10 - IGN/G20SF(150.28d) SEM/EDS images 132 

Figure V.11 - IGN/G40SF(150.28d) SEM/EDS images 133 

Figure V.12 - IGN/G20MS(150.28d) SEM/EDS images 134 

Figure V.13 - IGN/A(150.28d) SEM/EDS images 135 

Figure V.14 - IGN/HAC(150.28d) SEM/EDS images 136 

Figure V.15 - IGN/W(150.28d) SEM/EDS images 137 

Figure V.16 - Photos of the cross section of the IGN/CEM assemblages with drilling mud simulation, 138 

Figure V.17 - IGN/G(150.b.28d) OM images 140 

Figure V.18 - IGN/G20SF(150.b.28d) OM images 140 

Figure V.19 - IGN/G40SF(150.b.28d) OM images 141 

Figure V.20 - IGN/G20MS(150.b.28d) OM images 141 

Figure V.21 - IGN/A(150.b.28d) OM images 142 

Figure V.22 - IGN/HAC(150.b.28d) OM images 142 

Figure V.23 - IGN/W(150.b.28d) OM images 143 

Figure V.24 - IGN/G(150.b.28d) SEM/EDS images 144 

Figure V.25 - IGN/G20SF(150.b.28d) SEM/EDS images 145 

Figure V.26 - IGN/G40SF(150.b.28d) SEM/EDS images 146 

Figure V.27 - IGN/G20MS(150.b.28d) SEM/EDS images 147 

Figure V.28 - IGN/A(150.b.28d) SEM/EDS images 148 

Figure V.29 - IGN/HAC(150.b.28d) SEM/EDS images 149 

Figure V.30 - IGN/W(150.b.28d) SEM/EDS images 150 

Figure V.31 - Photos of the cross section of the IGN/CEM assemblages exposed at 290oC for 28 days in brine

 151 

Figure V.32 - IGN/G(290.28d) OM images 153 

Figure V.33 - IGN/G20SF(290.28d) OM images 153 

Figure V.34 - IGN/G40SF(290.28d) OM images 154 

Figure V.35 - IGN/G20MS(290.28d) OM images 154 

Figure V.36 - IGN/A(290.28d) OM images 155 



Figure V.37 - IGN/HAC(290.28d) OM images 155 

Figure V.38 - IGN/W(290.28d) OM images 156 

Figure V.39 - IGN/G(290.28d) SEM/EDS images 157 

Figure V.40 - IGN/G20SF(290.28d) SEM/EDS images 158 

Figure V.41 - IGN/G40SF(290.28d) SEM/EDS images 159 

Figure V.42 - IGN/G20MS(290.28d) SEM/EDS images 160 

Figure V.43 - IGN/A(290.28d) SEM/EDS images 161 

Figure V.44 - IGN/HAC(290.28d) SEM/EDS images 162 

Figure V.45 - IGN/W(290.28d) SEM/EDS images 163 

Figure VI.1 - Photos of the cross section of the IGN/CEM assemblages exposed at 150oC for 84 days in brine

 165 

Figure VI.2 - IGN/G(150.84d) OM images 167 

Figure VI.3 - IGN/G20SF(150.84d) OM images 167 

Figure VI.4 - IGN/G40SF(150.84d) OM images 168 

Figure VI.5 - IGN/G20MS(150.84d) OM images 168 

Figure VI.6 - IGN/G(150.84d) SEM/EDS images 169 

Figure VI.7 - IGN/G20SF(150.84d) SEM/EDS images 170 

Figure VI.8 - IGN/G40SF(150.84d) SEM/EDS images 171 

Figure VI.9 - IGN/G20MS(150.84d) SEM/EDS images 172 

Figure VI.10 - TGA result of IGN/G(150.84d) ITZ-C 173 

Figure VI.11 - Mass Spec result of IGN/G(150.84d) ITZ-C 174 

Figure VI.12 - Photos of the cross section of the IGN/CEM assemblages exposed at 150oC for 84 days in brine, 

with CO2 injection 175 

Figure VI.13 - IGN/G(150.CO2.84d) OM images 177 

Figure VI.14 - IGN/G20SF(150.CO2.84d) OM images 177 

Figure VI.15 - IGN/G40SF(150.CO2.84d) OM images 178 

Figure VI.16 - IGN/G20MS(150.CO2.84d) OM images 179 

Figure VI.17 - IGN/G(150.CO2.84d) SEM/EDS images - Region 1 180 

Figure VI.18 - IGN/G(150.CO2.84d) SEM/EDS images - Region 2 181 

Figure VI.19 - IGN/G(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part I) 182 

Figure VI.20 – IGN/G(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 183 

Figure VI.21 - IGN/G(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part III) 184 

Figure VI.22 - IGN/G20SF(150.CO2.84d) SEM/EDS images - Region 1 186 

Figure VI.23 - IGN/G20SF(150.CO2.84d) SEM/EDS images - Region 2 187 

Figure VI.24 - IGN/G20SF(150.CO2.84d) SPOT analysis in Region 2 (Part I) 189 

Figure VI.25 - IGN/G20SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 189 

Figure VI.26 - IGN/G20SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part III) 190 

Figure VI.27 - IGN/G40SF(150.CO2.84d) SEM/EDS images - Region 1 193 

Figure VI.28 - IGN/G40SF(150.CO2.84d) SEM/EDS images - Region 2 194 

Figure VI.29 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part I) 195 



 

 

Figure VI.30 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 196 

Figure VI.31 - IGN/G40SF(150.CO2.84d) SEM/EDS images - Region 3 197 

Figure VI.32 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 3 (Part I) 198 

Figure VI.33 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 3 (Part II) 199 

Figure VI.34 - IGN/G20MS(150.CO2.84d) SEM/EDS images - Region 1 200 

Figure VI.35 - IGN/G20MS(150.CO2.84d) SEM/EDS images - Region 2 201 

Figure VI.36 - IGN/G20MS(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part I) 202 

Figure VI.37 - IGN/G20MS(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 203 

Figure VI.38 - TGA result of IGN/G(150.CO2.84d) ITZ-C 204 

Figure VI.39 - Mass Spec result of IGN/G(150.84d) ITZ-C 205 

Figure VI.40 - TGA result of IGN/G20SF(150.CO2.84d) ITZ-C 205 

Figure VI.41 - Mass Spec result of IGN/G20SF(150.84d) ITZ-C 206 

Figure VI.42 - TGA result of IGN/G40SF(150.84d) ITZ-C 206 

Figure VI.43 - Mass Spec result of IGN/G40SF(150.84d) ITZ-C 207 

Figure VI.44 - TGA result of IGN/G20MS(150.84d) ITZ-C 207 

Figure VI.45 - Mass Spec result of IGN/G20MS(150.84d) ITZ-C 208 

Figure VI.46 - Photos of the cross section of the UNI/CEM assemblages exposed at 150oC for 84 days in brine, 

with CO2 injection 209 

Figure VI.47 - UNI/G(150.CO2.84d) OM images 211 

Figure VI.48 - UNI/G20SF(150.CO2.84d) OM images 211 

Figure VI.49 - UNI/G40SF(150.CO2.84d) OM images 212 

Figure VI.50 - UNI/G20MS(150.CO2.84d) OM images 213 

Figure VI.51 - UNI/G(150.CO2.84d) SEM/EDS images 214 

Figure VI.52 - UNI/G20SF(150.CO2.84d) SEM/EDS images 215 

Figure VI.53 - UNI/G40SF(150.CO2.84d) SEM/EDS images 216 

Figure VI.54 - UNI/G20MS(150.CO2.84d) SEM/EDS images 217 

Figure VI.55 - Photos of the cross section of the KAO/CEM assemblages exposed at 150oC for 84 days in brine, 

with CO2 injection 218 

Figure VI.56 - KAO/G(150.CO2.84d) OM images 220 

Figure VI.57 - KAO/G20SF(150.CO2.84d) OM images 220 

Figure VI.58 - KAO/G40SF(150.CO2.84d) OM images 221 

Figure VI.59 - KAO/G20MS(150.CO2.84d) OM images 222 

Figure VI.60 - KAO/G(150.CO2.84d) SEM/EDS images 223 

Figure VI.61 - KAO/G20SF(150.CO2.84d) SEM/EDS images 224 

Figure VI.62 - KAO/G40SF(150.CO2.84d) SEM/EDS images 225 

Figure VI.63 - KAO/G20MS(150.CO2.84d) SEM/EDS images 226 

Figure VI.64 - Photos of the cross section of the MOR/CEM assemblages exposed at 150oC for 84 days in brine, 

with CO2 injection 227 

Figure VI.65 - MOR/G(150.CO2.84d) OM images 229 

Figure VI.66 - MOR/G20SF(150.CO2.84d) OM images 229 



Figure VI.67 - MOR/G40SF(150.CO2.84d) OM images 230 

Figure VI.68 - MOR/G20MS(150.CO2.84d) OM images 231 

Figure VI.69 - MOR/G(150.CO2.84d) SEM/EDS images 232 

Figure VI.70 - MOR/G20SF(150.CO2.84d) SEM/EDS images 233 

Figure VI.71 - MOR/G40SF(150.CO2.84d) SEM/EDS images 234 

Figure VI.72 - MOR/G20MS(150.CO2.84d) SEM/EDS images 235 

Figure VI.73 - Photos of the cross section of the RHY/CEM assemblages exposed at 150oC for 84 days in brine, 

with CO2 injection 236 

Figure VI.74 - RHY/G(150.CO2.84d) OM images 238 

Figure VI.75 - RHY/G20SF(150.CO2.84d) OM images 238 

Figure VI.76 - RHY/G40SF(150.CO2.84d) OM images 239 

Figure VI.77 - RHY/G20MS(150.CO2.84d) OM images 240 

Figure VI.78 - RHY/G(150.CO2.84d) SEM/EDS images 241 

Figure VI.79 - RHY/G20SF(150.CO2.84d) SEM/EDS images 242 

Figure VI.80 - RHY/G40SF(150.CO2.84d) SEM/EDS images 243 

Figure VI.81 - RHY/G20MS(150.CO2.84d) SEM/EDS images 244 

Figure VI.82 - Photos of the cross section of the IGN/CEM assemblages exposed at 290oC for 84 days in brine, 

with CO2 injection 245 

Figure VI.83 - IGN/G(290.CO2.84d) OM images 247 

Figure VI.84 - IGN/G20SF(290.CO2.84d) OM images 247 

Figure VI.85 - IGN/G40SF(290.CO2.84d) OM images 248 

Figure VI.86 - IGN/G20MS(290.CO2.84d) OM images 248 

Figure VI.87 - IGN/G(290.CO2.84d) SEM/EDS images 249 

Figure VI.88 - IGN/G20SF(290.CO2.84d) SEM/EDS images 250 

Figure VI.89 - IGN/G40SF(290.CO2.84d) SEM/EDS images 251 

Figure VI.90 - IGN/G20MS(290.CO2.84d) SEM/EDS images 252 

Figure VI.91 - TGA result of IGN/G(290.CO2.84d) ITZ-C 253 

Figure VI.92 - Mass Spec result of IGN/G(290.CO2.84d) ITZ-C 254 

 

 

 

 

 



1 

 

I. GLOSSARY, ACRONYMS AND ABBREVIATIONS 

 

I.1 Cement Notation (Oxide Nomenclature) 

A - Al2O3. 

C - CaO. 

Ĉ - CO2. 

F - Fe2O3. 

H - H2O. 

K - K2O. 

M - MgO. 

N - Na2O. 

S - SiO2. 

Ŝ - SO3. 

T - TiO2. 

 

I.2 Others 

A (cement) - API class A cement. 

AAR - alkali aggregate reaction. 

ACR - alkali carbonate reaction. 

Alkali metasomatism - geological process occuring widely in nature accompanied with 

multimetallic mineralization that is studied extensively by many geologists. 

Amphibole - dark coloured inosilicate mineral, with either igneous or metamorphic origin. 

Andesitic - mostly composed of andesite. 

Andesite - extrusive igneous rock of intermediate composition, typically with 55-65% of 

silica (SiO2). 

Apatite - phosphate mineral. 

API - American Petroleum Institute. 

Argillite - fine-grained sedimentary rock composed predominantly of indurated clay particles. 
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Argillic alteration - hydrothermal alteration of wall rock which produces clay 

minerals including kaolinite, smectite and illite. The process generally occurs at 

low temperatures and may occur in atmospheric conditions. Argillic alteration is 

representative of supergene environments where low temperature groundwater 

becomes acidic. 

ASR - alkali silica reaction. 

B (cement) - API class B cement. 

Biotite - sheet silicate (phyllosilicate) mineral (mica group) found in a wide variety of 

igneous and metamorphic rocks. 

C (cement) - API class C cement. 

D (cement) - API class D cement. 

Dacite - extrusive igneous rock, typically intermediate in composition between andesite and 

rhyolite. 

DTG - Differential thermogravimetry. 

E (cement) - API class E cement. 

EDS - Energy Dispersive Spectrometry. 

Embayed - an embayed crystal in an igneous rock is a crystal with an irregular cavity 

penetrating a crystal face. The embayment is often filled with groundmass or another mineral. 

EMPA - electron microprobe analysis. 

F (cement) - API class F cement. 

Felsic - term used in geology to refer to silicate minerals, magma, and rocks which are 

enriched in the lighter elements such as silicon and oxygen (over 69% of 

SiO2), aluminium, sodium, and potassium; the term "felsic" combines the words "feldspar" 

and "silica". 

G (cement) - API class G cement. 

G10MS - class G cement plus 10% (in weight) of Microsilica 600. 

G20MS - class G cement plus 20% (in weight) of Microsilica 600. 

G30MS - class G cement plus 30% (in weight) of Microsilica 600. 
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G40MS - class G cement plus 40% (in weight) of Microsilica 600. 

G30MS20SF - class G cement plus 30% (in weight) of Microsilica 600 and 20% (in weight) 

of silica flour. 

G20SF - class G cement plus 20% (in weight) of silica flour. 

G40SF - class G cement plus 40% (in weight) of silica flour. 

Geobrine - fluid found in hydrothermal environments, especially in geothermal well zones. 

GNS - (Institute of) Geological and Nuclear Sciences. 

Graben -  depressed block of land bordered by parallel faults. 

Greisenisation - postmagmatic process associated with the origin of leucocratic high silica 

granites; in its course feldspars and Fe-micas are decomposed. 

Greywacke - sedimentary rock (variety of sandstone), which contains abundant quartz and 

feldspar in a very fine matrix of clay. 

H (cement) - API class H cement. 

HAC (cement) - High Alumina cement. 

Hornblende - dark amphibole. 

Hydrothermally cured  - cured in hydrothermally simulated conditions in the lab. 

Hydrothermally altered (or just altered) - altered in situ, over the years, through a 

hydrothermal process. 

Hypersthene - inosilicate mineral which belongs to the group of pyroxenes. 

Ignimbrite - extrusive igneous rock of felsic composition, typically with over 65% of silica 

(SiO2). 

Ilmenite - weakly magnetic titanium-iron oxide mineral. 

Inosilicates - chain silicates, have interlocking chains of silicate tetrahedra with either SiO3, 

1:3 ratio, for single chains or Si4O11, 4:11 ratio, for double chains. 

IRL - Industrial Research Limited. 

ITZ - Interfacial Transition Zone. 

ITZ-C - Cement zone adjacent to the ITZ. 
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ITZ-R - Rock zone adjacent to the ITZ. 

Lapilli - material that falls out of the air during a volcanic eruption. 

Mafic - term used in geology to refer to a silicate mineral or rock that is rich 

in magnesium and iron and has between 45-52% of SiO2; the term is a combination of the 

words "magnesium" and "ferric". 

Magnetite - mineral composed of iron oxide which has magnetic properties.  

Mass Spec - Mass Spectrometry. 

Metasomatism alteration - is the chemical alteration of a rock by hydrothermal and other 

fluids; metasomatism can occur via the action of hydrothermal fluids from 

an igneous or metamorphic source. 

Microsilica 600 - highly reactive pozzolan. It is processed from a natural, white, silica deposit 

found in New Zealand. Like silica fume, it is a very fine amorphous silica and falls in the 

microsilica family of products. 

MS or MS600 - Microsilica 600. 

OPC - Ordinary Portland Cement. 

Orthosilicates - minerals that have isolated (insular) [SiO4]
4− tetrahedral that are connected 

only by interstitial cations. 

Phenocrysts - relatively large and usually conspicuous crystals distinctly larger than the 

grains of the rock groundmass of (aporphyritic) igneous rock. 

Phonolite - rare extrusive volcanic rock of intermediate chemical composition between felsic 

and mafic. 

Phyllic alteration - hydrothermal alteration typically resulting from removal of sodium, 

calcium, and magnesium from calc-alkalic rocks, with pervasive replacement of silicates, 

muting the original rock texture. It is a common style of alteration in porphyry base-metal 

systems around a central zone of potassic alteration. 

Potassium silicate alteration -  hydrothermal alteration type, which forms water-soluble 

and glass-forming silicate salt of general formula K2SiO3. 
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Propylitic alteration - is the chemical alteration of a rock, caused by iron and 

magnesium hydrothermal fluids, altering e.g. biotite or amphibole groundmass material; it 

typically results in epidote-chlorite-albite alteration. 

Pumice - extrusive igneous light porous rock, typically with over 69% of silica in its 

composition.  

Pyroxene - Group of important inosilicate minerals found in many igneous and metamorphic 

rocks. 

Rhyolite - extrusive volcanic rock, typically with over 69% of SiO2. 

SEM - Scanning Electron Microscopy. 

Sericitic alteration - process which causes the rock to be converted to the mineral sericite, 

which is a fine white mica; it forms through the decomposition of feldspar. 

SF - Silica Flour (pure ground fine quartz). 

SCM - Supplementary Cimentitious Materials. 

TG/TGA - Thermogravimetry or Thermogravimetric Analysis. 

TVZ - Taupo Volcanic Zone or Taupo Geothermal Region. 

VUW - Victoria University of Wellington. 

W (cement) - White cement. 

XRF - X-ray Fluorescence. 

XRD - X-ray diffraction. 

Zircon - belongs to the group of orthosilicate minerals. 
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II. INTRODUCTION 

II.1 Rationale 

New Zealand is a country rich in geothermal resources, with some of the largest and most 

spectacular examples of geothermal activity in the world. Many are untapped and provide a 

tourist attraction (Figure II.1). Most of the New Zealand geothermal energy exploitation has 

been developed in the Taupo Volcanic Zone (TVZ), due to its highest geothermal potential 

(Figure II.2). There is a plan to expand this country’s geothermal production of electricity over 

the next 15-20 years to double the present level.  This demands an improvement in capacity 

of both existing and new geothermal power plants along with advances in technology from 

drilling the well to electricity production. 

 
Figure II.1 - Champagne pool, Rotorua, New Zealand Figure II.2 - Taupo Volcanic Zone (TVZ) 

One of the main issues associated with exploitation of these resources has been the durability 

of the cement that is used downhole and its impact on the lifetime of wells, which do not 

usually last as long as desirable. For this reason, the Ministry of Science and Innovation 

(MSI, formerly Foundation for Research, Science and Technology (FRST)) let a contract to 

Industrial Research Limited (IRL) for a research programme to improve the understanding of 

how the current cement formulations perform in the high temperature, high CO2 

concentration/pressure and low pH ground waters found within New Zealand’s geothermal 

systems and to develop alternative cement formulations which might have more durability. 

The cementing job is part of the well’s drilling process and is intercalated with the actual 

drilling of the well (Figure II.3). The well is drilled in stages with each stage cased and 
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cemented in place separately. In a typical production geothermal well, the first casing to be 

placed is the surface casing, with a diameter of under 22in (~56cm) which is placed from the 

surface down to ca. 40m depth. The intermediate casing, also known as anchor casing is 

13⅜in (~34cm) in diameter and goes from the surface down to ca. 100m depth. The final 

casing, the production casing through which the production fluid (2 phase mixture) is 

collected, has a diameter of ~8⅝in (22cm) and can extend up to several km in depth (Figure 

II.4). 

  
Figure II.3 - Rig utilized in the construction of a 

geothermal well 

Figure II.4 - Schematic cross section of a 

geothermal well 

 

Well cement grouts are pumpable formulations designed to be pumped downhole and when 

hardened, provide several roles in geothermal wells. These are: 

• to provide a seal between the steel casing and rock formation (Figure II.5); 

• to protect the steel against corrosion; 

• to support the casing against vibration. 

Acidic hydrothermal fluids can cause corrosion of the cement, leaving the steel casing subject 

to its own attack and corrosion, which can lead to failure of the integrity of the well and 

ultimate abandonment. This is expensive, as each well costs around $NZ 12M to complete. 

As the cements have to stand aggressive environments downhole, several studies on 

specialised cementing formulations have been conducted (Sugama, 2006). New systems have 

been developed with different chemistries to those of the conventional Portland cement based 

grouts (Sugama, 2006). Notwithstanding the cement itself, the way in which cement interacts 

with the surrounding rock formation as well as with the steel casing are also important factors 

that contribute to the durability of the well. 
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Figure II.5 - Schematic cross 

section of the system rock-

cement-casing 

Figure II.6 - Well head with valve and control equipment on the top of a 

geothermal well 

 

II.2 Research Project 

The research in this thesis considers the cement-rock interaction, which has rarely been 

studied but usually assumed to be low.  Most of the thermal waters tapped for power 

generation lie in pervious acid silicate rocks such as rhyolite, andesite or ignimbrite. These 

rocks have all been used as aggregates in concrete, where they have been shown to interact 

with alkalis from the cement to give rise to the phenomenon of alkali silica reaction or ASR, 

which causes expansion and cracking, particularly when present in the sand fraction 

(Chaterji, 2005). Preliminary experiments conducted by the IRL Cement Team with the 

conventional grouts cured in ignimbrite at elevated temperatures, showed that the acidic 

volcanic formation through which the wells were drilled, reacted with the cement to form 

layers of altered rock and cement. 

To date, very few investigations related to this specific field of expertise have been 

conducted. The IRL Cement Team has a long history of research on cement formulations 

used in geothermal wells using conventional oilwell cements. Additionally, a large number of 

investigations have been undertaken on cement-rock interactions in concrete or mortar 

(cement-aggregate reactions) for civil construction purposes. Many of these were presented 

and published in the Alkali-Aggregate Reaction in Concrete conferences proceedings. 

Although these are at completely different conditions to those found in geothermal 

environments, the results are relevant for the current research. It cannot be assumed that 
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under hydrothermal conditions, the volcanic formation will be inert. Hence this research 

project aims to study interactions of cement with the rock. 

 

II.3 Objectives 

The overall goal of this investigation is to enhance the understanding of the chemical and 

physical interactions between cements and the most common rock formations within the New 

Zealand geothermal environments by: 

� Identifying and characterizing the main factors and variables affecting the 

cement/rock interaction in geothermal wells; 

� Understanding which conditions can directly affect the performance of the cement; 

� Determining whether these interactions contribute to the failure of the cement 

annulus and, consequently, to the shortening of well life; 

� Providing recommendations on the requirements for geothermal cements. 

This study involves the combination of several fields of expertise, namely chemistry, physics 

and geology, together with an understanding of drilling engineering procedures. 

 

II.4 Thesis Structure 

This thesis is composed of ten chapters. The first chapter is the Glossary, where most 

technical terms utilized in the current work are mentioned.  The second chapter, Introduction, 

aims to introduce the topic, with some general background, objectives and explaination of the 

thesis structure.  The third chapter, Literature Review, reviews the most relevant state-of-the-

art knowledge on the topic and is divided into three main sections: Geothermal environments, 

Cement and Cement-rock Interactions. The first of these considers all the geothermal 

variables which are expected to participate in this research, including the rock itself.  The 

second one focuses mostly on Portland based cements, the ones most commonly used in 

geothermal wells, and their behaviour when exposed to extreme environments (high 

temperatures, high pressures and high CO2 concentrations) while the third compiles the most 

significant studies on the interactions between cement and rock. 

The fourth chapter, Methodology, describes, explains and justifies the methods, procedures 

and materials utilized in the experimental work.  The Results are divided between chapters 

five and six. The fifth chapter represents the first stage of the experimental work, in which the 
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samples were cured for only one month. The sixth chapter presents the second and last stage, 

with three months curing time. 

In the seventh chapter, Discussion of the Results, the results are interpreted, evaluated and 

compared along with those from other studies. This chapter is organized in two main 

sections: Portland based systems and alternative cementing systems. Each section is divided 

in distinct sub-sections, as a function of the specific cement formulation. 

The eighth chapter, Conclusion and Future Work, presents the main deductions achieved 

during the discussion of the results, by pointing out patterns featuring several samples from 

which relevant conclusions were obtained. 

The nineth chapter, Presented and Published Work, contains the papers that have been orally 

presented in international conferences and published in peer reviewed proceedings. 

Finally, the tenth chapter, Appendices, provides further detailed information regarding the 

results presented in the Methodology and Results chapters. 
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III. LITERATURE REVIEW 

This literature review is divided in three sub-chapters. The first focuses on geo/hydrothermal 

environments, and introduces the main factors within these environments that affect the 

current research, as these conditions will affect the cement performance and, consequently, 

the cement-rock interaction. It refers the most common types of rock found within these 

environments, some of which were chosen for the experimental work. The second presents 

the current cement types and their respective behaviour when used in geothermal wells, so-

called “oilwell” or, simply, well cements. The features of each type of the most common 

cement formulations (including additions) within geothermal well exploitation are discussed, 

as well as a few alternative cements. Finally, the third sub-chapter introduces what is known 

regarding cement-rock interactions, mostly based on previous concrete studies of the alkali-

aggregate interaction. This last sub-chaper also refers to studies related to cement/rock 

interaction at conditions closer to the geothermal ones, e.g. Carbon Capture and Storage 

(CCS), as the papers in this specific field are scarce. 

 

III.1 Geothermal Environments 

Geothermal resources have been used for the last 2000 years, either for mineral extraction or 

for cultural purposes. However, it was only in 1856 that the first deep bore (over 100 meters) 

was drilled (Grant and Bixley, 2011). From then on, the utilisation of geothermal resources 

has been slow, when compared with petroleum or ground water resources’ exploitation 

(Zinszne and Pellerin, 2007). 

The characteristics of geothermal systems vary widely, but three components are essential for 

their exploitation (New Zealand Geothermal Association, 2012): 

• a subsurface heat source that may be igneous magma or heat stored in other rocks;  

• a fluid to transport the heat; 

• faults, fractures or permeability within sub-surface rocks that allow the heated fluid to 

flow from the heat source to the surface or near-surface. 

Geopressured geothermal reservoirs are generally deep, so that to tap the geothermal 

reservoir temperatures over 100ºC, wells may need to be drilled to ~ 2km. The origin of these 

reservoirs is explained by a fluid caught in a permeable stratigraphic trap, followed by a 

raising of the lithostatic pressure by crustal movement over the years (Zinszne and Pellerin, 
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2007). At Wairakei, the wells were relatively shallow, ~600 to ~800m. In the Kawerau 

geothermal field, the typical production well depth is between 950m and 2100m with 

injection wells varying from 300m to 3000m. The production at Rotokawa is made from 

wells around 2.0km to 2.5km depths (New Zealand Geothermal Association, 2012). 

In geothermal systems, several variables need to be considered for assessment: 

• A high temperature (up to 320ºC) hydrothermal fluid; in New Zealand these are often 

CO2-enriched brines with >40,000ppm CO2 and sometimes very acidic environments; 

• The rock formation itself; some of the main factors to consider are stratigraphic 

distribution, mineral composition, permeability, porosity and hydrothermal alteration;  

• Finally, the fluids used during the drilling of the well, must be considered as a 

relevant/important factor, as they may affect the rock properties and, therefore, further 

cement-rock interactions. 

 By the 1980’s, all of the easily accessible New Zealand's high temperature geothermal 

resources had been identified (Figure III.1). Most of the high temperatures New Zealand 

geothermal fields are located in the Taupo Volcanic Zone (TVZ) (Figure III.2) which extends 

from White Island (in the Bay of Plenty) southwest to Mt Ruapehu  (New Zealand 

Geothermal Association, 2012). 

 

III.1.1 Temperature 

In non-geothermal areas, there is an average downward temperature gradient of 30ºC/km, 

which, in certain areas, can reach 60ºC/km. However, in geothermal wells, temperatures up to 

320ºC are often found at around 1 km depth (Zinszne and Pellerin, 2007; Sugama, 2006).  

Depending on the temperature, geothermal resources can be classified into three categories 

(New Zealand Geothermal Association, 2012): 

• High temperature, usually magmatic-related resources, with temperatures of 200- 

350°C at an economically-drillable depth; 

• Moderate to low temperature resources, of non-magmatic origin, usually associated 

with deep faults, with maximum temperatures at drillable depth that do not exceed 

140°C; 
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• Very low temperature resources, which are widespread but close to ambient 

temperature. 

 

Of New Zealand's identified geothermal areas, 14 lie in the 70-140ºC range (low temperature 

geothermal energy), 7 in the 140-220ºC range and 15 in the >220ºC range. In the Taupo 

Volcanic Zone (TVZ), magma intruded into the stretched and fractured crust of the zone has 

resulted in temperatures of at least 350ºC at depths of less than 5 km (New Zealand 

Geothermal Association, 2012). In Table III.1 the localisation and temperatures of several 

New Zealand geothermal systems/fields are presented. 

 

 

 

 

 

 

Figure III.1 - Map of New Zealand Geothermal 

Fields (New Zealand Geothermal Association, 

2012) 

Figure III.2 - Map of Geothermal Fields in the TVZ 

(New Zealand Geothermal Association, 2012) 
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Table III.1 – Location and temperatures of some NZ geothermal wells (mostly in TVZ) 

(Contact Energy, 2007; New Zealand Geothermal Association, 2012) 

Geothermal field Localization Temperature features 

Wairakei 

(Wairakei-Tauhara 

geothermal system) 

E of Taupo township 

From 1960 to 1970, decreased from ca. 255°C to ca. 235°C 

(2°C/year) 

From 1970 to 1985, slow decline at about 0.5°C/year 

After 1985, increase in the feed water temperatures 

Tauhara 

(Wairakei-Tauhara 

geothermal system) 

E of Taupo township 

Reservoir base temperature approx. 260-265oC 

Maximum temperature recorded is 279°C 

Production temperature is about 250 °C 

Rotokawa 
14 km NE of Taupo 

9 km E of Wairakei 

 

High-temperature resource of up to 320°C 

Atiamuri 40 km north of Taupo 
Maximum temperature of 165°C (between 350 m and 600 

m) 

Horohoro 
15 km SW of Rotorua 

City 

Geothermometry suggests temperatures  150-160°C in the 

aquifer 

 

Kawerau E of Kawerau township Maximum temperatures 250-310°C 

Mangakino E of Mangakino township 
Deepest wells reaching a temperature of 254°C 

Conductive temperature gradient of about 75°C/km 

Mokai 20 km N of Taupo 
Has some of the hottest geothermal wells in New Zealand 

Recorded downhole temperatures of up to 326°C 

Ngatamariki 17km NE of Taupo Resource temperature ranges from 255°C up to 290°C 

Ngawha 

(not in the TVZ) 

Northland, 6 km E of 

Kaikohe 

 

Gas ratios suggest that a deeper reservoir at 300-320°C 

Orakeikorako 

23 km N of Taupo 

37 km S-SW of Rotorua 

City 

Temperatures of up to 265°C in the wells 

Rotoma 30 km E of Rotorua Reservoirs temperatures 220-250 °C 

Rotorua Rotorua City 
90 wells are less than 200 m deep with geothermal fluid at 

temperatures of 120 to 200°C 

Tikitere 18 km NE of Rotorua City Estimated at 140-190°C 

Tokaanu-Waihi 
S of Lake Taupo 

10 km NW of Turangi 

2 shallow wells with 154°C at 76 m and 169°C at 107 m 

Geothermometer indicate a deep hot fluid of at least 250°C 

Waiotapu 
23 km S-SE of Rotorua 

City 

Wells drilled in the 1950s and 1980s recorded high 

temperatures up to 295°C 
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III.1.2 Hydrothermal Fluids 

Pirajno (2010) defines hydrothermal fluids as a hot (ca. 50oC to >500oC) aqueous solution, 

containing solutes that are frequently precipitated as the solution changes its physical 

properties. These fluids are subject to variations in temperature, pressure and density, three 

very important variables in hydrothermal systems. Hydrothermal solutions usually are a mix 

of waters from several origins and can contain volatiles, like H2O, CO2, H2S, HCl, SO2 and 

CH4. 

The reservoir fluids in the Rotokawa, Ohaaki and Kawerau geothermal fields are gas-rich. In 

the Kawerau field the shallow reservoir fluids consist of mixtures of a near neutral chloride 

fluid, an acid sulfate condensate and a sodium bicarbonate fluid (Christenson, 1997). The 

deep fluids within the Broadlands-Ohaaki geothermal system, prior to the initiation of boiling 

at depths of 1500m, have temperatures above 300°C. As the West Bank production well 

fluids begin to ascend, they boil and cool and quickly shift from the Na-K feldspar 

equilibrium. In contrast, the ascent of fluids in the East Bank involves relatively deep (> 1000 

m) mixing with steam-heated waters prior to their discharge to production wells. This dilution 

shifts the deep fluid from the Na-K feldspar equilibrium, where the diluent has a relatively 

low Na+/K+ ratio, when compared to the feldspar equilibrium. It is likely that equilibria other 

than that involving the feldspars, control the lower temperature Na+/K+ ratios of the steam-

heated waters (Hedenquist, 1990). 

The shift of the Broadlands mineral-fluid composition equilibria from a "full equilibrium" 

assemblage of Na-feldspar/K-feldspar into the K-mica equilibrium field is mainly due to the 

dilution of the deep fluid by marginal steam-heated waters, as boiling by the ascending fluid 

generally favors K-feldspar stability. The shift to illite (and even kaolinite) stability at 

Broadlands is hastened by the fact that the diluent is steam-heated and CO2-rich (Giggenbach, 

1984, 1988). 

According to Wolley and Carroll (2010), the high levels of CO2 found in Broadlands-Ohaaki 

are from CO2-rich waters flowing up from fractures in the low permeability basement 

greywacke into the overlying reservoir, which is dominated by rhyolites, dacite, pyroclastics, 

and some lake sediments. Hedenquist (1990) stated the best approximation to the “parent 

fluid” contained 2.7 wt% CO2 (or 0.6 mol/kg), based on a sample from a specific well in the 

TVZ. Furthermore, this author estimated a corresponding H2S content of 0.015 wt% (or 

0.0044 mol/kg). These were combined in a model where the temperature was 300oC. 
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Ambient total pressure at the top of the basement is in the range 100-250 bars (normal 

hydrostatic), depending on location, which, in geothermal wells is commonly within the 

range 10-100 bars, with a CO2 overpressure of 6 bars (Wolley and Carroll, 2010; 

Henneberger, 1983) 

 

III.1.3 Downhole CO2 

Depending on the downhole conditions, CO2 may be present as a gaseous compound (CO2 

(g)) in dry steam, as an aqueous solute (HCO3
--CO2 (aq)) in ground waters or as supercritical 

CO2 (Figure III.3) (Milodowski et al., 2011). The gaseous and aqueous states are commonly 

found in geothermal fields, whereas supercritical CO2 is mostly associated with Carbon 

Capture and Storage (CCS) operations. Any one of these phases is a potential source of 

carbonation, although low CO2 solubility may substantially limit the kinetics of cement 

alteration, as less CO2 is then available in the system to react with cement (Rimmele et al., 

2008). 

 

Figure III.3 - CO2 pressure-temperature phase diagram 

 

The effects of supercritical CO2 have been considered despite its conditions of lower 

temperature and higher pressures when compared to geothermal environments. There is 

significant information available in this field on its effect on cement carbonation where the 

products are similar. 
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III.1.3.1 CO2 in geothermal environments 

Most geothermal plants utilise hydrothermal systems with temperatures within the 100oC to 

300oC range.  Over this range, neutral pH decreases with temperature, from 6.14 at 100oC, to 

5.83 at 150°C reaching a minimum of 5.6 around 250°C. As the temperature increases, CO2 

becomes less soluble and a weaker acid.  While dissolved CO2 levels in production fluids are 

typically around 0.064 moles/kg with a pHT of 6.00 (neutral pHT is 5.83), beneath caprocks 

and impermeable zones where gases boiled off in the production zone dissolve in the cooler 

fluid, the dissolved CO2 concentration can be greater than 0.34 moles/kg giving a pHT of 

~4.59 which is mildly acidic.  Total ambient pressure at the top of the basement is probably 

in the range 100-250 bars (normal hydrostatic), depending on location, translating into 

pressures in geothermal wells within the range 10-100 bars, with a CO2 overpressure of 6 

bars (Wolley and Carroll, 2010; Henneberger, 1983; Ellis, 1959). 

CO2 normally dissolves in the hydrothermal fluid as a separate phase, becoming ‘carbonic 

acid’, H2CO3, which dissociates (Equation III.1) (Duguid, 2009; Brandvoll, 2009). 

 

��� + ��� ↔ ����� ↔ �� + ����
	 ↔ 2�� + ���

�	 Equation III.1 

 

This dissolution process depends on several factors including the solubility of CO2 in water 

which increases with pressure, decreases with salinity and decreases with temperature up to 

100-200oC, increasing hereupon (Milodowski et al., 2011; Hangx, 2005).  The specific 

composition of the fluid (e.g. hydrothermal brine) also affects the way the carbon dioxide 

reacts with it, as there is a general trend of decreasing CO2 solubility with increasing ionic 

strength (Figure III.4) and with decreasing pH (Rochelle et al., 2004). The hydrothermal brine 

(geobrine) chemistry, in turn, depends on several factors, including the chemical interaction 

with the rock formation. Therefore, the rates of mineral reaction also have an impact on CO2 

solubility. Other factors that influence CO2 solubility are the degree of CO2-water mixing or 

contact surface with CO2 and water (Rochelle et al., 2004). 
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Figure III.4 - CO2 solubility as a function of the total dissolved solids (TDS) 

(based upon data at 20-250
o
C, 3-85MPa, Enick and Klara, 1990 in Rochelle et al., 2004) 

Ellis et al. (1963) studied the solubility of CO2 as a function of the sodium chloride (NaCl) 

content, commonly present in appreciable amounts in the hydrothermal fluid at temperatures 

up to 350oC and salt (NaCl) concentrations up to 3 molal. Values of pc (partial pressure of 

CO2) ranging from 15 to 90 atm were used in the solubility determinations. 

In order to correlate all these variables, they used the Henry’s Law coefficient, K (Equation 

III.2 and Figure III.5), as well as the Ostwald coefficient, λ (Equation III.3 and Figure III.6) (Ellis 

et al., 1963). 

 

� =

�
�
=
∝. ��
�

 
Equation III.2 

 

with,  


� the fugacity of CO2; 

 ∝, the fugacity coefficient; 

 ��, the partial pressure of CO2; 

x, the ratio of the moles of carbon dioxide to the sum of moles of carbon dioxide and 

water in the solution. 
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Figure III.5 - Values of the Henry’s Law constant K for the solution of CO2 in water and sodium chloride 

solutions, as a function of temperature (Ellis et al., 1963) 

 

λ =

�����	���
��

(�� !�"	�ℎ$%&)
�����	���

��
(($�)!*	�ℎ$%&)

 Equation III.3 

 

 

Figure III.6 - Values of the Ostwald distribution coefficient λ  for the solubility of CO2 in water and 

sodium chloride solutions, as a function of temperature (Ellis et al., 1963) 
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III.1.3.2 CO2 in CCS 

In a CCS context, the injected supercritical CO2 is usually relatively dry, as this reduces 

corrosion of infrastructure. Initial reactions are likely to involve dissolution into water and 

vice-versa, according to the Equation III.4, where significant CO3
2- will probably be only 

found in highly alkaline environments (e.g. cement pore water) (Rochelle et al., 2004; Hangx, 

2005). 

 

���(+) + ��� ↔ ���($ ) + ��� ↔ ����� ↔ �� + ����
	 ↔ 2�� + ���

�	 Equation III.4 

 

This series of reversible reactions is influenced by temperature and pressure (which control 

the solubility of CO2) and by the ability of the host aquifer to buffer pH, as the dissociation 

reaction involves generation of H+ (Rochelle et al., 2004). 

For supercritical CO2 at temperatures between 37oC and 100oC and pressures below 300 bars 

(≈304 atm), its solubility in water decreases with increasing temperature and increases with 

increasing pressure. At higher temperatures and pressures, however, CO2 solubility increases 

with increasing temperature (Figure III.7) (Rochelle et al., 2004). 

 

Figure III.7 - Solubility of CO2 in pure water 

(based upon data Wiebe & Gaddy (1940) and Wiebe (1941) in Rochelle et al., 2004) 

The density of supercritical CO2 varies depending on pressure and temperature, but it is less 

dense than water so will rise until it reaches an overlying aquiclude where it will be 

physically trapped. 
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III.1.4 Stratigraphy 

The crust of the Earth is composed by several different rock formations, the compositions of 

which also depend on the depth. This distribution of rock type as function of the depth is 

termed stratigraphy. Each rock type has its own distinct mineralogic characteristics, and even 

the same rock type can have slightly different properties, depending on its origin, age and 

surrounding environment. This section presents typical stratigraphies of a geothermal zone. 

The Ohaaki-Broadlands geothermal system near the eastern fault margin of the Taupo 

Volcanic Zone (TVZ) (Figure III.8 and Figure III.9) comprises a principal andesitic arc and, 

further west, a marginal basin, with welded pyroclastic flows, plus airfall tufts and pumice 

breccias, overlying a block-faulted Mesozoic greywacke and argillite basement. There are 

also several interbedded (laterally discontinuous) rhyolite and dacite flows. These rocks 

originally contained an assemblage of quartz and andesine phenocrysts set in a glassy to fine 

grained groundmass. Minor amounts of hornblende, biotite, hypersthene, magnetite, ilmenite, 

apatite and zircon are also present (Hedenquist, 1990; Browne and Ellis, 1970; Browne, 

1973a).  According to the New Zealand Geothermal Association (2012), the Ohaaki-

Broadlands geothermal field stratigraphy can be generally explained with the following 

layers: 

• Huka Falls Formation: a mudstone cap which overlies much of the field; 

• Ohaaki Rhyolite: a lava with high horizontal permeability and hydraulically 

connected to groundwater aquifers; 

• Waiora Formation: the main producing aquifer, with heterogeneous uncompacted 

pumice and lapilli tuffs; 

• Rautawiri Breccia: the second important aquifer composed of coarse breccias; 

• Rangitaiki Ignimbrite, Ohakuri Group volcanics and Waiora Formation 

conglomerates: rocks of poorly known material; 

• Greywacke: permeability will exist in fractures. 

 

For the Rotokawa geothermal system it was concluded that the subsurface is composed of 

basement greywacke, which is overlain by the Rotokawa Andesite (a sequence of andesitic 
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lava flows and breccias up to 2000m thick). Overlying the Rotokawa Andesite, and infilling 

the graben, are the volcaniclastic and sedimentary deposits (Tahorakuri and Waikora 

formations - members of the Reporoa Group), which are in turn overlain by the Wairakei 

Ignimbrite. Overlying the Wairakei Ignimbrite are the rhyolitic tuffs, ashes and breccias of 

the Waiora Formation. Haparangi Rhyolite lavas and breccias occur within the Waiora 

Formation, which is then overlain by mudstones, siltstones and sandstones of the Huka 

Formation intercalated with the Parariki hydrothermal eruption breccias (New Zealand 

Geothermal Association, 2012). According to Rae (2007), the most commonly found rock 

formations in Rotokawa are rhyolites, ignimbrites, andesites and sediments. A typical 

stratigraphy of a Rotokawa well is shown in Table III.2. 

 

 

Figure III.8 - Northwest-southeast cross section through the Broadlands system showing stratigraphy and isotherms and 

interfered (schematic) distribution of CO2-rich steam-heated waters, as well as general patterns boiling and dilution 

(Hedenquist, 1990) 

 



25 

 

 

Figure III.9 - North northeast-south southwest cross-section through West Bank wells (in Ohakii- Broadlands system), 

showing stratigraphy and isotherms and interfered (schematic) distribution of CO2-rich steam-heated waters, 

as well as general patterns boiling and dilution (Hedenquist, 1990) 

 

The reservoir of the Kawerau geothermal field (located at the northern end of the Taupo 

Volcanic Zone) is composed of volcanic lavas, pyroclastics and sediments, lying on basement 

greywackes. The existing volcanic rocks range from andesite to rhyolite in composition, with 

silicic ignimbrite (Christenson, 1997).  In accordance with Bignall et al. (1996), the 

stratigraphy of the Orakeikorako geothermal field comprises a complex sequence of 

interbedded ignimbrites, airfall tuffs, lavas and hydrothermal eruption breccias, which are all 

silica-rich (> 72 wt.% SiO2) when fresh and usually more so when altered. 

From the literature review, together with recommendations by Browne (2011) and the IRL 

cement research team, ignimbrite, rhyolite, andesite, greywacke and pumice were considered 

as the most relevant rocks in order of decreasing importance. 
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Table III.2 - Typical stratigraphy of a Rotokawa geothermal well (Rae, 2007) 

Thickness range (m) Lithology 

10 to 30 Unaltered/termally oxidized pumice tuff, rhyolite lava 

Unaltered quartz and feldspar crystals 

15 to 150 Fine sandstone and siltstone with pumice rich subunits 

20 to 220 Strongly altered quartz-feldspar rich tuffaceous breccia with a silty-clay matrix 

90 to 550 Crystal-rich, hornblende bearing vitric tuff 

110 to 660 Crystal-poor, rhyolite lava and breccia 

200 to 390 White, crystal-rich, not too densely welded ignimbrite 

Large quartz crystals are often heavily embayed 

10 to 250 Rounded to sub-rounded greywacke and argillite gravels 

20 to 250 White, crystal-vitric-lithic tuff 

865 to 2190 Mottled, pale green and reddish purple, pyroxene-bearing andesite lava 

- Dark to pale grey, weakly metamorphosed argillite and fine silty sandstone 

 

 

 

III.1.4.1 Mineralogy 

Ignimbrite, rhyolite, andesite and pumice are fine grained igneous rocks, whereas greywacke 

is a sedimentary rock of marine origin with fine to medium sized grains. 

Ignimbrite is a volcanic rock that consists of crystal and rock fragments held in a matrix of 

glass shards which are usually welded together in a matrix of volcanic ash (tephra) made up 

of shards and fragments of volcanic glass, pumice fragments, and anhedral crystals. The 

phenocrysts are biotite (K(Mg,Fe)3AlSi3O10(F,OH)2), quartz, SiO2, feldspars (XAl(1-2)Si(3-

2)O8, where X represents a combination of Na and/or K and/or Ca), and occasionally 

hornblende ((Ca,Na)2–3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2), but rarely pyroxene (XY(Si,Al)2O6 , 

where X represents Ca and/or Na and/or Fe2+ and/or Mg and Y represents ions of smaller 

size, such as Cr and/or Al and/or Fe3+). In the case of phonolite tuffs, the feldspathoid 
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minerals are nepheline (Na3KAl4Si4O16) and leucite (K[AlSi2O6]). Chemically, the ignimbrite 

composition is generally over 65 wt% SiO2, with varying contents of sodium, potassium, and 

calcium, and lesser amounts of iron and magnesium (Pellant, 2000; Henneberger, 1983). 

Most of the current research will be mostly focused on this rock, which is the most common 

one found in geothermal fields in New Zealand. 

Rhyolite is an extrusive volcanic rock, typically over 69% SiO2, with varying textures. The 

mineral assemblage is typically composed of quartz, alkali feldspar and plagioclase, with 

biotite and hornblende as the most common accessory minerals (Pellant, 2000). 

Andesite is an intermediate (between basalt and dacite) volcanic rock, within a range of 55 to 

65% SiO2. Its mineral assemblage is typically dominated by plagioclase feldspars (andesine 

or oliogoclase) and hornblende (dark amphibole) with alkali feldspars present in minor 

amounts. Magnetite, zircon, apatite, ilmenite, biotite and garnet are common accessory 

minerals (Pellant, 2000). 

Pumice is a light, porous rock with a silica-rich composition (typically over 69% SiO2). It 

may contain a variety of minute crystals of silicate minerals, such as feldspar and 

ferromagnesians, but contains a considerable amount of glass (Pellant, 2000). Due to its 

similarity to ignimbrite (in chemical composition), the pumice is not a priority for further 

studies in the current research programme. 

Finally, greywacke, which contains abundant quartz, feldspar and rock fragments in a very 

fine matrix of clay (aluminosilicate), chlorite ((Mg,Fe)3(Si,Al)4O10(OH)2·(Mg,Fe)3(OH)6), 

quartz and pyrite (FeS2), where the minerals are too small to be seen with the unaided eye 

(Pellant, 2000). 

Bignall et al. (1996) studied three different types of ignimbrites in the Orakeikorako 

geothermal field (in the TVZ) the Paeroa, Te Kopia and Akatarewa ignimbrites. These 

ignimbrites were distinguished from each other by their stratigraphy, origin and degree/type 

of alteration but were mineralogically, physically and chemically similar to one another.  The 

Paeroa ignimbrite occurred at the surface, east of Orakeikorako and in drillholes at Waiotapu 

(22 km to the northeast) and was found to be over 300m thick in some areas. The Te Kopia 

ignimbrite, was hard, crystal-rich and welded (where fresh) and up to 360m thick in some 

wells. Finally, the Akatarewa ignimbrite was the oldest and deepest unit encountered by 

drilling at Orakeikoro with a thickness exceeding 440m. It comprised at least two subunits 
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separated by up to 80m of rhyolitic lava and is one of the important older units in the central 

segment of the TVZ.  From their studies Bignall et at. (1996) drew the following conclusions: 

• the three ignimbrites contain similar assemblages of primary minerals; 

• there is a wide range in the proportions of the primary minerals present in all three 

ignimbrites; 

• the variation in primary mineral proportions is clearly an inherited feature that 

depends on several factors including the homogeneity of the magma and its eruption 

characteristics; 

• the degree of welding will affect the proportions of phenocrysts and clasts to 

groundmass within a cooling unit because shards fuse and rock porosity reduces as 

welding occurs; 

• the sizes and shapes of the phenocryst phases are not diagnostic of each ignimbrite. 

• petrographic characteristics of these ignimbrites made it difficult for them to be 

distinguished from one another, with confidence, even where they were little altered.  

Although the whole-rock ignimbrite compositions are influenced by the initial magma 

chemistry and contamination by lithic fragments (the pumice  represents a better primary 

magma composition than does the host rocks), using that correlation to understand the origin 

of the ignimbrite through the pumice composition is an almost impossible task in geothermal 

fields, since the pumice alters very quickly in those environments. 

 

III.1.4.2 Porosity and Permeability 

Porosity is an important variable used in the formulation and calculation of the mathematical 

models of the rocks.  In Rotokawa, it ranges from 5 to 33%, with an average of 10% for 

rhyolites, ignimbrites, andesites and sediments (Rae, 2007). However, pumice has an 

average porosity of 90%, and has density <1 (Pellant, 2000).  

Permeability is intimately connected with porosity as it is given by the amount of fluid 

flowing through the rock pores per unit of time. Permeability is a very important factor to 

consider in the cementing of geothermal wells and is controlled by three factors (Rae, 2007):  

• distribution of primary permeable zones, related to the texture and mode of formation 

of the geological unit; 
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• distribution of secondary permeable zones, related to brittle faulting and fractures 

generated by earthquakes, thermal stresses and/or regional strain; 

• distribution of secondary permeable zones, related to effects of prolonged 

hydrothermal alteration causing either dissolution of fluid pathways and/or mineral 

deposition.  

In the context of the current research programme, two of the above mentioned permeability 

types are considered: the primary one, related to the texture and mode of formation of the 

geological unit, and the one related to the hydrothermal alteration of the rocks. The above 

mentioned secondary permeable zone related to brittle faulting is not an important variable in 

the context of this research programme, so it will be neglected when simulating the downhole 

conditions. 

It will be assumed that the rocks used in the experimental work have standard porosity and 

permeability properties, similar to that found in geothermal environments, which also depend 

on the hydrothermal alteration of the rock (the alteration may increase or decrease the 

permeability, depending on the respective chemical reactions) (Hodgkinson and Hughes, 

1999). 

 

III.1.5 Hydrothermal Alteration 

Hydrothermal alteration is a complex process involving mineralogical, chemical and textural 

changes in the rocks as a consequence of the interaction of the rock with hydrothermal fluids. 

The alteration can be classified according to the nature, chemistry, temperature and pressure 

of the circulating fluids and the nature and composition of the resulting rocks. In simple 

terms, the hydrothermal fluids chemically attack the mineral constituents of the wall rocks, 

re-equilibrating to form new mineral assemblages that are in equilibrium with the new 

conditions. It is a form of metasomatism, i.e., an exchange of chemical components between 

the fluids and the wall-rocks. The main variables in the rock alteration process are the nature 

of the wall-rock, composition and concentration of the fluid components, in particular H+, 

CO2, O2, K
+, H2S and SO2 (Pirajno, 2010). 

Hydrothermal alteration can be classified either as a function of recognised mineral 

assemblages and/or chemical changes. The first is carried out through extensive thin section 

studies (Pirajno, 2010).  Grifkins et al. (2005) suggested the alteration could be classified 
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using a combination of four variables: the extent of mineral modification, distribution, texture 

and mineral assemblage. The modification can be subtle, weak, moderate, strong or intense, 

while the distribution variable can be local or regional, on the footwall, hanging wall, pipe, 

stratabound, etc.; the texture (hand specimen or thin section) includes shape, grainsize, fabric 

and can be selective, pervasive or vein halo; while the mineral assemblage lists the minerals 

in order of decreasing abundances. The main types of alteration can be called “pervasive” 

(replacement of most original rock forming minerals), “selectively pervasive” (replacement 

of specific original minerals) and “non-pervasive” (only certain portions of the rock have 

been affected) (Pirajno, 2010). 

In general terms, the interactions of hydrothermal solutions with wall rock are dependent on 

the variations in the aK+/aH+ ratio; i.e., the activities of the K+ and H+ ions in the system. This 

ratio decreases as the system tends towards lower temperatures and pressures, i.e., with 

increasing [H+], alteration processes move from alkali to argilic in a theoretically continuous 

evolving system. From the highest to the lowest rate aK+/aH+ (lowest to highest 

metasomatism), the types of alteration suggested by Pirajno (2010) are: 1) alkali 

metasomatism and potassium silicate alteration, 2) propylitic 3) phyllic or sericitic alteration 

and greisenisation, 4) intermediate argillic, and 5) advanced argillic. 

Prince et al. (2000) considered there were two different processes often involved in the rock 

alteration: direct conversion of the initial minerals into another mineral and the hydrolysis of 

the initial mineral constituents in the surrounding water, which gradually becomes saturated 

with silica, alumina and various cations. 

According to Henneberger (1983), there are seven alteration types of ignimbrite in the 

Ohakuri field, each the product of a particular hydrothermal environment. Each one of these 

alteration types is reflected in the mineralogy which corresponds to a particular range of 

alteration rank and intensity. The rank of alteration is determined by the assemblage of 

hydrothermal minerals formed: higher rank assemblages generally reflect higher 

temperatures, but may in part reflect higher water-to-rock ratios. 

In the Broadlands-Ohaaki hydrothermal system, quartz and apatite have been little affected 

by the hydrothermal alteration, whereas the other primary minerals have reacted to varying 

degrees, with the highly porous and permeable Breccia Formations generally being 

completely altered (Browne, 1978). Within this field, the principal hydrothermal mineral 

assemblage at 260°C (600-800m depth) is quartz-albite-illite-adularia-calcite-chlorite-pyrite. 
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Calcite is common and abundant and present in the core from all wells. It forms as a 

replacement mineral and also occurs as a groundmass and fracture filling. Quartz is one of the 

most abundant minerals, both as a coarsely crystalline fracture filling (to 2cm), as well as a 

fine grained product (including cristobalite at lower temperatures) (Browne and Ellis, 1970). 

It is not clear whether a rock alteration will result in net dissolution or net precipitation of 

material. The former leads to higher porosity and higher permeability, whereas the 

consequence of precipitation depends on several factors. In their experiments/models on the 

study of the evolution of rock porosity when exposed to a cementitious alkaline environment, 

Bradney et al. (1993) and Eikenberg and Lichtner (1992) observed a porosity decrease and, 

eventually, a permeability decrease.  The fractures are repaired within decades (Rochelle et 

al., 1992) due to precipitation of high density phases, whereas low density phases might 

cause expansion and consequent micro-cracking which increases permeability (Hughes et al., 

1995). Expansion mechanisms can be either due to the reaction of alkali feldspars with 

calcium hydroxide, resulting in the formation of tetra-calcium aluminate hydrate (or AFm 

phases, which cause expansion in concrete by altering to sulfate/carbonate-bearing phases 

such as ettringite, although this mineral decomposes at 60oC) and alkali silicate gels (which 

are commonly known as very prejudicial to the concrete, since they take in water, expand and 

thereby fracture) (Hodgkinson and Hughes, 1999). 

 

III.1.6 CO2/Formation Interaction 

There have been several studies on the geology and geochemistry within the New Zealand 

TVZ, where the existent CO2-rich fluid interacts with felsic rocks (namely greywackes, 

rhyolites and ignimbrites) at temperatures up to 300-400oC (Wolley and Carroll, 2010). 

The interaction of the geothermal fluid with the rocks in which it occurs depends on the 

temperature, pressure, amount of CO2 (and other acid gases, like H2S and SO2), amount of 

H2O, fluid phase compositions, host rock type and physical properties of the rock (namely 

permeability and porosity) (Wolley and Carroll, 2010).  Generally, CO2 (as well as other 

brine components) is expected to react (by dissolution/precipitation) in a lower degree with 

rocks of a more felsic nature (such as granite and many sandstones), when compared with 

rocks of a more mafic nature (e.g. andesite, basalt, peridotite), due to the less reactive nature 

of the felsic rocks’ dominant minerals (Wolley and Carroll, 2010; Duguid, 2009; Brandvoll, 

2009). 
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The potential host rocks for CCS storage will be either carbonate or sandstone formations 

(Rochelle et al., 2004), whereas in geothermal environments igneous rocks are predominant, 

e.g. ignimbrite, rhyolite and andesite. The most common/predominant minerals in any of 

these rocks are feldspars and quartz, with exception of carbonate formations where calcite is 

the predominant compound. 

Some of the chemical equations representing reactions between CO2 and carbonate and some 

feldspars minerals in an aqueous CCS environment are given below. The reaction between 

carbon dioxide and the carbonate rock (CaCO3) is similar to that between CO2 and the 

carbonate from cement (Gunter et al., 1993). This reaction involves some calcium leaching 

within a carbonate host formation and is expressed in the Equation III.5: 

 

���(�,) + ��� + �$���(-$�-�.&) 	↔ �$�� + 2����
	 

 Equation III.5 

 

With feldspathic rocks, the precipitation of calcite is mainly limited by Ca-rich plagioclase 

content and water content (Hangx, 2005). Between CO2 and anorthite, Gunter et al. (1997) 

predicted the reaction represented in the Equation III.6: 

 

�$/��0���1($2)*.ℎ�.&) + ���(�,) + 2���	 →

�$���(-$�-�.&) + /��0���4(��)5(6$)��2�.&)	 
Equation III.6 

 

Whereas for a Na-rich plagioclase feldspar, Gunter et al. (1997) considered the Equation III.7 

applied. 

 

78$/�0���1($�9�.&) + 6���(�,) + 6���	 →

8$-%<&-.�.& + 6����
	 + 	68$� + 100���( !$*.?) 

Equation III.7 
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For K-rich feldspar in saline solutions Johnson et al. (2001) have postulated the precipitation 

of a different carbonate mineral, dawsonite, according to the Equation III.8. 

 

�/�0���1@�-
&�"%�$*A + 8$� + ���(�,) + ���	 →

8$/����(��)�("$B%)2�.&) +

30���( !$*.?, -ℎ$�-&")2E	)*	-*�%.)9$��.&)	 

Equation III.8 

 

From their model simulating a CCS environment, Rochelle et al. (2004) concluded that 

albite, biotite and K-feldspar would dissolve, whereas calcite, dolomite, kaolinite, muscovite, 

quartz and siderite would be precipitated. Also, the major CO2-trapping reactions were the 

precipitation of calcite and siderite, and the formation of aqueous bicarbonate ions. 

There are, however, other factors that have to be considered, as several variables are 

interlinked. For instance, as CO2 solubility decreases with decreasing pH, more dissolved 

CO2 can be 'trapped' in an aquifer that can maintain (buffer) the pH of the formation water 

compared to one where formation water pH decreases (Rochelle et al., 2004). 

The temperature, pressure and salinity may also affect the rate of reaction, by affecting the 

feldspars dissolution rate. For instance, the dissolution rate of anorthite is enhanced by ≈1.5 

orders of magnitude when the temperature is raised from room temperature to 100oC, ≈2.75 

orders of magnitude when raised to 200oC and ≈3.5 of magnitude when raised to 300oC. The 

pressure appears to significantly affect the reaction rate by increasing the CO2 dissolution 

(rather than affecting the feldspar dissolution) as pressure increases. Salinity decreases the 

dissolution rate of plagioclase feldspars at both near neutral and acid pH (Hangx, 2005). 

The porosity-permeability evolution of the formation during the reaction with CO2 may be 

dependent on the dissolution mechanism, as well as the location of precipitation (Hangx, 

2005). 

Although there is some uncertainty in the rates of reaction, it appears that CO2-trapping 

reactions under CCS conditions (54oC and 260 bars) would take hundreds of years to 

complete (Rochelle et al., 2004). 
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III.1.7 Drilling Fluids 

Another factor that has to be considered before cementing the well (although not belonging to 

the natural geothermal environment) are the changes caused by drilling. The most relevant 

one is due to fluids used during the drilling of the well, which have several functions (Culver, 

1998; IPIECA and OGP, 2009): 

• provides a barrier for well control; 

• removes cuttings from the well bore as they are produced;  

• maintains drill cuttings in suspension when drilling circulation is stopped; 

• transmits hydraulic power to the drilling bit; 

• maintains formation stability; 

• maintains pressure on the formation; 

• minimizes fluid losses to the formation; 

• minimizes formation fluid migration into the hole; 

• cools and lubricates the mud pump, bit and the annulus between the drill string and 

the hole; 

• reduces drill string corrosion; 

• assists in collection and interpretation of samples and borehole geophysical logs and 

release cuttings in the mud tank or pit. 

There are 3 classes of drilling fluids: water-based, air-based and oil-based.  The latter two 

classes can be used in petroleum drilling, but are not appropriate for low to moderate 

temperature geothermal drilling because of the danger of contamination of aquifers. 

Therefore, mud is the most common drilling fluid and, while useful for the purposes listed 

above, presents many of the problems encountered in geothermal drilling (Culver, 1998). 

There are numerous cases where just pure water is used, as the drilling mud can be expensive. 

One of the most important issues encountered during drilling is the phenomenon called lost 

circulation, which is characterised by the loss of drilling fluid from the borehole through 

cracks, crevices, or porous formations. It can be partial or complete, depending on the 

conditions, with consequential loss of expensive fluid components and loss of drilling time. 

Use of potentially expensive lost circulation materials to keep the losses from plugging 
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possible production zones can lead to cementing problems (Culver, 1998). The only drilling 

fluid that concerns the current investigation is the use of mud to maintain minimum weight, 

viscosity, and filtration and whether it has an effect on the cement-rock interaction. 

Currently, drilling muds are primarily mixtures of western bentonite (sodium 

montmorillonite) and water. Additionally, organic polymers, dispersants, wetting agents, 

weighting materials, thinners and lubricants are used to modify properties of drilling mud to 

meet changing hole conditions or counteract changes previously made by the driller. When 

bentonite is added to the water, the density and viscosity of the slurry increase, improving the 

carrying capacity of cuttings up the hole.  Gelation, lubricity, and filtration properties can 

also be added. Moreover, as the mud is used, it gains density, which has both positive and 

negative consequences. The positive properties are an increase of its buoyancy effect 

(carrying capacity for cuttings) and increased borehole pressure (consequently, the ability to 

prevent caving and flow into the hole). The negative consequence is a decreased settling rate 

in the mud pit. Other relevant bentonite properties are sand content (which affect the mud 

density and apparent viscosity) and thixotropy (its ability to gel) (Culver, 1998).  While it is 

common practice to wash the annulus between the casing and formation before cementing, 

much of the mud adheres to the formation and, consequently, interacts with the cement, 

playing a relevant role on the way that the cement interacts with the rock, by modifying the 

reaction products when compared to the ones obtained from a pure cement-rock interaction. 
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III.2 Cement 

 

III.2.1 Introduction 

Oil, gas and geothermal well cements are intimately interrelated. There has been limited 

research on geothermal wells, particularly in the materials’ properties whereas use and 

conditions in oil and gas wells have been studied for a longer time, mainly because of the fast 

cash return (in contrast to geothermal projects). Consequently, most available data is based 

on low temperature exposure.  The result of this is that geothermal well cementing still does 

not have its own distinct character, as much of it is based on the oil and gas industry. One can 

clearly understand this affirmation, as oilwell cements are classified by the American 

Petroleum Institute (API) regulations. Geothermal well cementing engineers have adopted the 

same nomenclature and standards as those used for oil and gas wells. 

Initially, conventional well cement formulations focussed on the use of Portland based 

cements where the binder consists of calcium silicate hydrates (CaO-SiO2-H2O system) and 

calcium aluminium silicate hydrates (CaO-Al2O3-SiO2-H2O system).  However, serious 

concerns, associated with the vulnerability of these hydrates to attack at elevated 

temperatures in geothermal conditions by corrosive CO2 and H2SO4 have been raised. The 

damaged wells needed to be repaired as soon as possible to avoid catastrophic collapse of the 

wells.  Hence, the susceptibility of cements to these harsh environments has been a major 

impediment to the development of geothermal energy resources (Sugama, 2006). 

For over a hundred years, deep drilling has only been associated with the oil and gas industry. 

With the advent of Hot Dry Rock (HDR) geothermal exploitation, deep drilling also became 

a requirement for geothermal activities (Teodoriu and Falcone, 2008) and the concern over 

materials properties at high temperatures and pressures has come to prominence. 

 

III.2.2 Portland Cement 

Portland cement clinker is made by heating a homogeneous mixture of raw materials to a 

sintering temperature of about 1450°C in a rotary kiln. The raw feed consists mainly of 

limestone (mostly composed of CaCO3) and clay (aluminosilicate, Al2O3.2SiO2). The 

aluminium oxide (Al2O3) and iron oxide (Fe2O3) present work as a flux, so the material 

partially melts or clinkers. 
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The cement chemists often utilize their own chemical notation, which is based on the oxide 

nomenclature1, also given in the beginning of the glossary. The understanding of this notation 

is essential to fully comprehend the chemical composition of the Portland based cements 

given hereafter. The main clinker compounds are alite (tricalcium silicate, C3S - approx. 

55%), belite (β-dicalcium silicate, C2S - approx. 20%), aluminate (tricalcium aluminate, C3A 

- approx. 12%) and ferrite (tetra-calcium aluiminoferrite, C4AF - approx. 8%) (Bensted and 

Hewlett, 2008; Milestone, 2008). The clinker is mixed up with gypsum to make up the 

powdered Ordinary Portland Cement (OPC). 

Compressive strength is mainly derived from a binder formed from the reaction of the silicate 

phases with water to form calcium silicate hydrate (C-S-H). C3S is the principal cementing 

phase, while β-C2S reacts at a much slower rate to form similar hydration products. Whereas 

C3S is largely responsible for the early strength, the C2S contributes to strength at later ages 

(28 days and beyond) (Bensted and Hewlett, 2008). 

The chemical formulae representing the silicate reactions with water to form an amorphous 

calcium silicate hydrate, at ambient temperatures (or just above) can be expressed according 

to the Equation III.9 and Equation III.10. 

 

 Equation III.9 

 Equation III.10 

 

The poorly crystalline C-S-H is non-stoichiometric so these reactions are only approximate.  

The Ca/Si ratio of a typical C-S-H gel varies with temperature from ~ 2.00 at -40oC, ~1.72 at 

20oC to about 1.52 at 85oC (Milestone, 2008). However, according to Bensted and Hewlett 

(2008), the hydration of alite and belite phases at up to approximately 100oC, does not differ 

greatly from that at ambient temperature. In their experimental work, Cowan and Hale (1992) 

did not find any changes in the mechanism of hydration from ambient temperature to 90oC, 

although more polysilicates hydrates in relation to the dimer were found in the calcium 

                                                           
1 Cement chemical nomenclature: 

A - Al2O3; C - CaO; Ĉ - CO2; F - Fe2O3; H - H2O; K - K2O; M - MgO; N - Na2O; S - SiO2; Ŝ - SO3; T - TiO2. 

 

22723253 )(3'3.'62 OHCaOHOSiCaOHSiOCa +→+

22723242 )('3.'42 OHCaOHOSiCaOHSiOCa +→+
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silicate hydrate pastes at 65oC than at 25oC. Nonetheless, at elevated temperatures, the 

hydration of the belite is accelerated in relation to the alite, which may be related to the 

higher solubility of the silica and lower solubility of calcium hydroxide under these 

conditions (Skalny and Young, 1980). 

The gypsum added to control setting will react with the aluminate and the ferrite phases, 

forming ettringite, according to the Equation III.11 and Equation III.12. 

 

 Equation III.11 

 Equation III.12 

 

In fact, only one form of ettringite is formed, since the ettringite derives from the aluminate 

and ferrite mixed together with some impurities to produce one continuous mass (Bensted 

and Hewlett, 2008). 

 

III.2.3 Hydration at Elevated Temperatures 

At elevated temperatures and pressures, a series of different hydration reactions occur in 

Portland cement. The hydrates no longer lose water but change their characteristics and form 

new compounds depending on temperature. Continuous exposure to hydrothermal conditions 

induces a gradual compressive strength loss in hardened Portland cement. This phenomenon 

of strength retrogression was investigated by Kalousek and his co-workers (1951, 1954, 

1955), and has been shown to be caused by the formation and slow growth of new crystalline 

phases, associated with increased porosity and permeability, as the crystals enlarge and 

densify leaving a rather porous matrix that has little strength (Milestone, 2001). 

At temperatures above 120oC in wells, crystalline α-di-calcium silicate hydrate (αC2SH) may 

form, causing a high permeability and low (compression) strengths, when compared with any 

other hydration product. This compound readily forms at about 150oC. At the same time, 

Ca(OH)2 is also generated, ensuring the Ca/Si ratio in the crystalline calcium silicate hydrates 

that forms remains high (Milestone, 2011). Pure quartz flour is often used as strength 

retrogression inhibitor. Kalousek (1954) found that by adding >30wt% silica flour (pure 

}{ [ ] ) OHSOOHAlCaOHOHCaSOOAlCa 234266224623 26.()(262.3 →++

}{ [ ] OHSOOHFeAlCaOHOHCaSOOHCaAlFeOCa 234265.05.06224252 26.)()(252.3)( →+++
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quartz which decreases the overall Ca/Si ratio in the binder), strength retrogression could be 

avoided through the formation of yet further crystalline phases tobermorite and xonotlite, 

depending on the temperature.  Below 100oC quartz will not react readily. Even higher 

amounts of silica are now being considered to counter the loss in strength at high 

temperatures (Iverson et al., 2010). 

If no addition is made to the cement, above about 200oC, the pure OPC pastes transform still 

further to new, high Ca/Si ratio crystalline compounds, namely reinhardbraunsite (C5S2H), 

jaffeite (C6S2H3) or kilchoanite (C3S2), which, again exist alongside with Ca(OH)2. These 

products do not act as binders, giving very low strength and high porosity to the grout 

(Milestone, 2011). 

On the other hand, with the addition of quartz, tobermorite (C5S6H) is formed at about 150oC 

(Ca/Si ratio between 0.8 and 1.0). This is a desirable crystalline binder, with low permeability 

and good compressive strength. Additionally, above about 180oC, tobermorite transforms into 

two further crystalline phases, namely xonotlite (C6S6H) and gyrolite (C6S7H2) (this latter one 

is rare in geothermal wells) with Ca/Si ratios close to 1.00. Both have higher permeability 

(though still acceptable for the well cementing needs) and acceptable compressive strength.  

Finally, at about 250oC , gyrolite can transform to a weaker and more permeable material, 

truscottite (C14S24H2) (Bensted and Hewlett, 2008; Ramachandran and Beaudoin, 1999). This 

transformation is characterized by a change of Ca/Si ratio from approximately 1.2 to 0.6 

(Milestone, 2011). 

The equilibrium reaction between the C-S-H gel and the Ca(OH)2 is a characteristic of 

Portland cement hydration with the Ca/Si ratio of the gel dependent on temperature. 

However, in hydrothermal conditions Ca(OH)2 is not usually found due to the reaction 

between it and the added silica, to form more C-S-H gel (Bensted and Hewlett, 2008) so it is 

difficult to define the Ca/Si ratios at elevated temperatures. 

Two further substituted crystalline calcium silicate hydrates are often found, where the 

calcium is substituted. Pectolite (sodium substituted calcium silicate hydrate – NaCa2HSi3O9) 

and scawtite (calcium silicate carbonate hydrate - Ca7(Si6O18)CO3.2H2O) (Bensted and 

Hewlett, 2008) can occur. Pectolite is formed above 150oC, through exposure of tobermorite 

to sodium salt solutions, and is characterised by its higher permeability and similar 

compressive strength when compared with xonotlite, although combinations of pectolite and 

truscottite usually have permeabilities slightly lower than that of xonotlite (Eilers et al., 
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1983). Scawtite is found mainly in high temperature wells, and in small amounts improves 

the performance of the cement, though its formation seems to be restricted by the presence of 

aluminium and alkali metal salts. Scawtite seems to have its origin when carbon dioxide 

solutions enter the pores of hydrating cement and react on cement surface, releasing silica 

which may seal some small fractures and pores. On the other hand, when present in large 

quantities, scawtite shows poor performance and brittleness. Scawtite forms from cements 

with ~35% silica and less than 10% sodium carbonate, sodium hydrogen carbonate or finely 

ground calcium carbonate, from 215 to 315oC (Bensted and Hewlett, 2008). According to 

Eilers et al. (1983) and Taylor and Roy (1980), scawtite is a xonotlite structure in which 

about 5% of CO2 replaces part of the silica. 

The reactions with silica depend critically on the form of silica present. For instance, the use 

of a coarse silica sand gives rise to the formation of poor cementitious products, whereas the 

use of silica flour enhances the formation of tobermorite which, as we have already seen, is a 

favourable mineral for cement performance. With silica fume (specific surface of about 

20,000 m2/kg), the silica reacts faster than the lime, forming an amorphous hydrate, which 

then reacts with spare lime to form gyrolite and truscottite, without the intermediate 

formation of tobermorite (Bensted and Hewlett, 2008). 

However, the conditions in wells are not ideal (Langton et al., 1980), and standard 

equilibrium conditions are rarely found (Babushkin et al., 1985). Therefore, the actual 

hydration products that form depend on the particular conditions in each well. 

 

III.2.4 Alternative Cements: Calcium Aluminate Cements 

High-Alumina Cement (HAC) or Calcium Aluminate Cement (CAC), was produced as a 

cement resistant to sulfate attack and it also has better performance than OPC in 

characteristics such as rapid hardening, chemical and fire resistance, with good refractory 

performance. The hydration of CAC is greatly influenced by the temperature. Below 23oC, 

the hydration products are mostly CAH10 with C2AH8 forming above 25oC.  These hexagonal 

phases are metastable. Hydrogarnet (C3AH6) tends to form above 35oC. The hexagonal 

hydrates (CAH10 or C2AH8) slowly convert to cubic hydrogarnet (C3AH6) and AH3 with a 

consequent strength loss and increased porosity (reversion) which has restricted in its use in 

construction. It is believed that high temperature and high relative humidity are critical for 

the conversion reaction (Ding, 1995; Scrivener et al., 2008). 
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To overcome this problem of reversion, a number of studies have been undertaken to prevent 

it occurring, one of them being the use of siliceous additives, which leads to formation of 

gehlenite hydrate, also as known as Strätlingite (C2ASH8), a stable mineral at ambient 

temperatures when compared to the metastable hexagonal hydrates (Scrivener et al., 2008). 

These cements offer an alternative to the Portland based well cements as they do not rely on 

formation of calcium silicates and the concerns about the durability associated with 

calcium/silicon ratios. 

 

III.2.5 Oilwell Cement 

From the beginning of oil exploitation, it was clear that construction cements designed for 

satisfactory early compression strength were not always suitable for use in well cementing.  

Well cements need to be prepared as low-viscosity slurries, which remain pumpable to 

considerable depths but which rapidly can change from a fluid to a hardened state, once they 

are pumped into place (Bensted and Hewlett, 2008).  All this must occur under different 

conditions, particularly increased temperature and pressure as well as chemical attacks 

(Milestone, 2011). 

Bensted and Hewlett (2008) believe that the primary function of a well cement was one of 

sealing to prevent the flow of fluids other than where this is specifically required in the well.  

The major application is in primary cementing, the process whereby at several stages during 

drilling of the well, the borehole is lined with a steel casing down which the cement slurry is 

pumped and then displaced up into the annular space between the casing and the borehole 

wall to provide a seal (Arens and Akstinat, 1982). 

Initially, the main differences between oil well and construction cements were lower amounts 

of the fast setting components, such as C3A and C3S, as well as lower alkali content 

(Milestone, 2011). 

The American Petroleum Institute (API) has developed a standard for operating procedures 

for well cements, known as API Specification 10A or BS EN ISO 10426-1:2009, now 

adapted by most countries.  Eight classes of oilwell cements are specified for use at different 

depths, Classes A-H.  These cements are based on Portland cement, consisting essentially of 

hydraulic calcium silicates, to which no additions other than set-modifying agents have been 

interground or blended during manufacture. The API specifications are accepted as an 

international standard (ISO) (Bensted and Hewlett, 2008). Definitions related to oil well 
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cementing are specified in the API Bulletin on Well Cement Nomenclature (API BULL 10C). 

Several countries have developed their own oil well cement standards and their requirements 

are highlighted elsewhere (Bensted, 1987). 

The API Class A cement classification was originally given to OPC, and this was the cement 

used in the initial wells at Wairakei (Milestone, 2011). However, not all current Portland 

cements may be classified as Class A cements, as compositions have changed, which may or 

may not be in accordance with the API classification for Class A cements (Bensted and 

Hewlett, 2008).  Many contain up to 10% minor constituents as allowed by various standards, 

such as the European Standards EN197-1 (typically flyash or limestone). 

Cement classes B to F were introduced as alternatives to Class A, in response to the 

difficulties found in deeper wells but they are not commonly used today since the conditions 

found in geothermal wells are more demanding. 

Class B cement is similar to G cement (the most common one used nowadays in well 

cements), with cementing requirements less strict as those for Class G.  Class C cement, is a 

rapid-hardening (or ASTM type III) Portland cement and essentially a more finely ground A. 

Classes D, E and F cements are pre-retarded cements, with D the least retarded and F the 

most retarded, with the additive (retarder, which is typically sodium or calcium salts of 

lignosulfonic acid, aka lignosulfates) added to the clinker and gypsum. 

The most common cements, Classes G and H are manufactured as basic cements with their 

chemical and cementing properties more strictly controlled with the aim of providing 

consistent properties. Both cements are available as moderately or highly sulfate-resistant 

types. Class H cement is more coarsely-ground, giving a specific surface of approx. 220-250 

m2/kg. Iron oxide is added to the raw feed to reduce C3A content to below 3% so C4AF 

content is typically 10-14%.  For the sulfate resisting API Classes B-H, ettringite is mainly 

formed from the aluminoferrite phase, which means that the main reaction to form ettringite 

is the one represented by Equation III.12, which is slow compared to that represented in 

Equation III.11. After gypsum is completely used up (after several hours), ettringite changes to 

the monosulfoaluminate hydrate (Ca4[(Al,Fe)(OH)6)]2SO4.6H2O), which readily enters into 

solid solution with the calcium aluminate hydrate Ca2(Al,Fe)(OH)7.3H2O formed at this stage 

from aluminate and aluminoferrite reacting with water (Bensted, 1983).  Most oilwell 

cements used today are sulfate resisting for two different reasons: sulfates are commonly 
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found in ground waters and with the substitution of C4AF for C3A, the cement becomes more 

workable and, consequently, more appropriate for use in wells. 

There are only small quantities of alkali in oilwell cements, present either as alkali sulfates or 

incorporated in the main clinker phases. In the API Specification 10A for the G and H 

cements, there is a limit of 0.75% equivalent Na2O (see Equation III.27 in the page 67), 

ensuring thickening times are sufficient for the cement to flow downhole (Bensted and 

Hewlett, 2008). 

Class H cement hydrates at a slower rate than class G because of its increased coarseness. 

According to the API Specification 10A, to achieve acceptable thickening and compressive 

strength, in a Class H cement, the water/cement ratio (0.38) is much lower when compared 

with class G cement (0.44) (Bensted and Hewlett, 2008). However, in situ, these API 

indicators are not strictly applied. Also, oilwell cements generally hydrate at high 

temperatures and pressures, which results in different products from those obtained in 

ordinary hydration, where the C-S-H products are usually amorphous (Bensted and Hewlett, 

2008). 

The API test methods have 3 main features: physical, chemical and cementing properties 

tests. The the latter ones were created specifically for the purpose, as the conditions found 

downhole are quite different from those found in civil construction, even though some 

standard tests, like thickening time and compressive strength standards, could already be 

found (Bensted, 1987). 

To create the API standards (API Specification 10, and later on, modifications for 

Recommended Practice 10B), the wells used as references to determine the well conditions 

were those situated in the Gulf of Mexico and south-western USA. The chemical limits for 

the API oilwell cements were mainly taken from ASTM C150 for construction Portland 

cements with some modifications, while the physical limits used ASTM C115 or ASTM 

C204 (this last one only for Class A, B and C cements). Regarding the cement properties 

themselves, they involve compressive strength, thickening (or setting) time and free water 

determinations. However, we should always bear in mind that while API testing standards 

may be adapted for use in actual downhole conditions we must take into account that the 

conditions downhole also vary within the same well (Bensted and Hewlett, 2008). 
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III.2.5.1 Geothermal Cements 

As mentioned previously, the well cements used for geothermal applications nowadays are 

essentially those devised for oil and gas wells. This section compiles information exclusively 

directed for well cements used in a geothermal environment. 

Sugama’s opinion (Sugama, 2006) is that the principal application of geothermal well 

cementing materials is to mechanically support the metallic well casings as well as to protect 

them against hot brine-initiated corrosion at brine temperatures up to 320°C. 

In geothermal wells, the hardened cement performs four main roles (Milestone, 2011): 

• Providing a seal between the casing and the formation, which contains the high 

pressure steam; 

• By forming a bond to the steel, it anchors the casing to the formation, allowing a 

valve fixed to the top of the casing to control the steam outlet; 

• Supporting the casing, to prevent buckling and vibration which could cause metal 

fatigue; 

• Protection against corrosion, due to its alkaline nature. 

Besides high-hydrothermal temperature stability, geothermal well cements must be inert and 

resistant to very harsh geothermal environments involving CO2-enriched brine (> 40,000 ppm 

CO2) encountered at a bottomhole depth of ~1700 m and temperature of ~ 320°C, often with 

high concentrations of H2SO4 (pH <1.5).  The cement is also exposed in brine containing at 

least 5000 ppm CO2 in the upper well region between the surface and ~ 1000 m depth at 

temperatures of up to 200°C (Sugama, 2006). 

 

III.2.6 Carbonation of Cement 

Generally, the commonly used Portland cement based systems carbonate when exposed to 

CO2, either through reaction with HCO3
-/CO2 dissolved in ground waters, direct reaction with 

supercritical CO2 or reaction with gaseous CO2 (Milodowski et al., 2011) to form calcium 

carbonate (CaCO3) from both portlandite (Ca(OH)2) and calcium silicate hydrates (C-S-H). 

In civil construction, carbonation of Portland cement systems is an expansive reaction that 

occurs rapidly, where a cement often forms a protective, low porosity sheath of calcite 

(CaCO3), due to the reaction between the atmospheric CO2 and the Ca(OH)2. However, when 
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siliceous additives are added to the cement, carbonation might be a concern, as these 

additions reduce the amount of Ca(OH)2 and, consequently, CO2 will attack the hydration 

products, C-S-H, rather than the Ca(OH)2 (Milestone et al., 2012). 

Cement carbonation might occur through different chemical reactions, depending on the 

reactants (Ca(OH)2 vs C-S-H and CO3
- vs HCO3

-) (Equation III.13-Equation III.16) (Duguid, 

2009). 

�$(��)�(%) + 2�� + ���
	 → �$���(%) + 2��� Equation III.13 

��,5 − 0� −�1(%) + 2�� + ���
	 → �$���(%) + 0��G��G Equation III.14 

�$(��)�(%) + �� + ����
	 → �$���(%) + 2��� Equation III.15 

��,5 − 0� −�1(%) + �� +����
	 → �$���(%) + 0��G��G Equation III.16 

These carbonation reactions, however, do not occur simultaneously for each of the cement 

phases, with calcium hydroxide (CH) reacting earlier than C-S-H (Duguid, 2009). Despite the 

initial rapid CH carbonation (rather than C-S-H), this situation reverses because of the 

formation of a layer of CaCO3 microcrystals at the surface of CH (Groves et al., 1991).  

However, the CO2 only reacts with cement hydrates when there is sufficient water to dissolve 

it in pore water. The optimal relative humidity for carbonation to take place is an intermediate 

level, around 50-70%. So cement pastes dried at low relative humidity have little reaction 

with carbon dioxide, while in a fully saturated paste or concrete the carbonation reaction, 

which is governed by rate of diffusion of CO2, is slow (Borges et al., 2012). 

Portlandite carbonation 

At lower temperatures, the direct carbonation mechanism of Ca(OH)2 is greatly accelerated 

by the presence of adsorbed water on the surface of Ca(OH)2 and it is very slow in its 

absence. For a given value of relative humidity, carbonation proceeds to a given extent.  An 

increase in the relative humidity around the Ca(OH)2 can restart a stalled carbonation (Beruto 

and Botter, 2000). 

When Ca(OH)2 is heated in CO2, slow direct carbonation of Ca(OH)2 is expected to occur 

(Equation III.19) until the temperature reaches about 350-400oC when rapid dehydration of 

Ca(OH)2 occurs (Equation III.17) and the CaO formed continues reacting with CO2 (Equation 

III.18) until maximum carbonation is reached (Materic and Smedley, 2011). 
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�$(��)� → �$� + ��� Equation III.17 

�$� + ��� → �$��� Equation III.18 

�$(��)� + ��� → �$���(%) + ��� Equation III.19 

 

However, experiments conducted with hydroxides heated in CO2 (Materic et al., 2010; 

Materic and Smedley, 2011) did not report the expected sequence of reactions (Equation III.19 

up to 400oC then Equation III.17 and Equation III.18). Carbonation of Ca(OH)2 usually means a 

volume increase, as the molar volume of calcium carbonate (normally calcite) formed is 11-

12% greater than that of Ca(OH)2. This results in heavier, less porous and stronger 

carbonated samples (Borges et al., 2010).  In the Borges et al. (2010) experiments, the 

calcium carbonate (CC) phase formed appeared to be determined by the amount of available 

CH. 

Calcium silicate hydrate carbonation 

When paste porosity permits constant CO2 diffusion, the CH is further depleted and the 

interlayer calcium from C-S-H also reacts with carbon dioxide. The removal of interlayer 

Ca2+ ions creates an excess of negative charges, which are balanced through subsequent 

formation of Si-OH groups with neighbouring Si-OH groups condensing to Si-O-Si linkages 

and formation of silica gels. This condensation increases the mean silicate chain length and 

forms bridges between neighbouring regions, pulling them closer together and leading to 

shrinkage. As a result, CO2 attack causes polymerisation of the silicate chains in C-S-H 

which may cause a volumetric decrease (decalcification of C-S-H increases the mean pore 

diameter) and cracking (Borges et al., 2010; Borges et al., 2012). 

The extent of carbonation of C-S-H is a function of the CaO:SiO2 (C/S) ratio, i.e., pastes with 

different C/S ratio have distinct C-S-H anion polymerisation (Black et al. 2008), with an 

accelerated carbonation rate when the C/S molar ratio is reduced below 1.2 (Borges et al., 

2010). In their experiments on cement with added blast-furnace slag (BFS), Borges et al. 

(2010) realized that the extent of C-S-H carbonation increased as the initial amounts of CH 

present before carbonation decreased, due to pozzolanic reaction.  On the other hand, 

carbonation of the low C/S ratio C-S-H might not be an issue when the blended pastes have 
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low permeability to hinder the CO2 ingress. In the same experimental work, Borges et al. 

(2010) found lower carbonation rates and decreased levels of both total carbonation and C-S-

H carbonation in samples cured at a higher temperature (60oC), rather than ambient 

conditions (20oC). According to these authors, the increased curing temperature promoted the 

hydration of blast-furnace slag (BFS) forming a denser microstructure, which reduced 

diffusion of CO2 into the matrices, improving the durability of these pastes to carbonation 

(Borges et al., 2010). 

 

III.2.6.1 Carbonation in Geothermal Environments 

In a geothermal environment where the fluids are enriched with dissolved CO2, carbonation is 

a common issue due to the dissolved CO2 interacting with the calcium silicate or calcium 

aluminium silicate hydrates present in conventional cements. This carbonation results in the 

formation of CaCO3, the exact form depending on the exposure conditions. 

Generally, at 150oC, Ca(OH)2 carbonates to calcite, while carbonation of C-S-H is slower and 

forms metastable aragonite, which slowly converts to calcite (Milestone et al., 1986). 

Carbonation of Ca(OH)2 is expansive so the carbonated layer occupies more volume than that 

from where it has come and it can separate (Milestone et al., 2012). On the other hand, 

carbonation of C-S-H causes volumetric decrease. For instance, tobermorite carbonation may 

result in a contraction of 33% and with a consequent increase in porosity (Milodowski et al., 

2011). 

Milestone et al. (1986) concluded that the rate of carbonation of a cementitious binder varied 

considerably, depending on the addition of silica flour (SF), normally added to counter the 

strength retrogression at high temperatures (over 100oC). In their experiments, they showed 

that the crystalline low Ca/Si ratio phases tobermorite and xonotlite that form with addition of 

ca. 40% SF and give low permeability and high strength to the cement, carbonated rapidly 

and became porous when exposed to CO2. This contrasted with the samples with neat 

Portland cement, with high Ca/Si ratio phases, αC2SH at 150oC and reinhardbraunsite or 

kilchoanite at 260oC, that behave better when exposed to CO2. Despite being poor binders, 

these high Ca/Si ratio phases carbonated slowly, and formed a dense protective carbonation 

sheath with low permeability and high strength. Carbonation rate is very dependent on the 

volume of available Ca in any unit volume, particularly if any Ca(OH)2 was present. Thus the 
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impact of the CO2 on the cement is extremely dependent on the overall Ca/Si ratio (Milestone 

and Aldridge, 1990). 

Carbonation and subsequent corrosion of cement are the direct consequences on the cement 

exposed to high levels of CO2. During the corrosion process, the cement becomes more 

permeable and allows ions such as Cl- and H2S, which may also be present in geothermal 

fluid, to penetrate the cement sheath and attack the casing.  This has apparently happened in 

the CO2-rich Broadlands field in New Zealand, where rapid corrosion of cement occurred 

within a few months (Milestone et al., 1986). In this hydrothermal system, the problem was 

noted not in the production zone, but in a CO2-rich zone above the production zone that is 

penetrated and cemented off. Temperatures are approximately 150oC, with CO2 levels of 

approximately 10,000 ppm, so the fluid is acidic and moves through the zone. Downhole 

testing with samples containing 30% silica were completely carbonated in a few months with 

considerable corrosion. While these conditions are not likely to be encountered in a direct use 

well, there are scattered springs and wells with several hundred ppm of CO2 that are slightly 

acidic. Because carbonation of cement is time and concentration dependent, and a direct use 

well should last at least several decades, well drillers and designers should be aware of the 

potential problem (Zinszne and Pellerin, 2007). 

 

III.2.7 Calcium Carbonate Forms 

Borges et al. (2010) found different forms of CaCO3 depending on the phases being 
carbonated. 
 

III.2.7.1 Crystalline Calcium Carbonate 

 According to Sawada (1997), and Plummer and Busenberg (1982) there are three crystalline 

CaCO3 polymorphs: calcite, aragonite and vaterite. Calcite (solubility product: log Ksp=-8.48 

at 25oC) is the thermodynamically most stable form and the most common in nature. 

Aragonite (solubility product: log Ksp=-8.34 at 25oC), is mainly found in biosynthetic CaCO3 

such as shells and corals whereas vaterite (solubility product: log Ksp=-7.91 at 25oC) is the 

most unstable crystalline polymorph, and rarely occurs in nature, but plays an important role 

in the calcium carbonate formation from solution. 

The formation of vaterite and aragonite might represent different stages of carbonation in 

different pH conditions (high pH seemed to favour the formation of vaterite over aragonite) 

(Cole and Kroone, 1960) or distinct C/S ratio of the C-S-H phases (with vaterite forming 
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when C-S-H C/S ≥0.67 and aragonite when C-S-H C/S≤0.50) (Breen et al., 2007). While 

aragonite formation appears to be a good indicator for C-S-H carbonation (Borges et al., 

2010), vaterite forms preferentially on CH because of similarities in their symmetries and 

their positive surface charge (Black et al. 2008). 

Well-crystalized calcite decomposition happens within the 780oC-990oC temperature range, 

whereas vaterite and aragonite decompose at slightly lower temperatures (680oC<T<780oC). 

Although often metastable, aragonite has been shown to undergo an endothermic 

transformation into calcite at approx. 400oC-420oC (Thiery et al., 2007; Galan et al., 2003). 

 

III.2.7.2 Calcium Carbonate Hydroxide/Hydrate Phases 

There are a number of calcium carbonate hydroxide/hydrate phases reported in the literature.  

Stepkowska et al. (2007) stated that portlandite carbonation may proceed through 

intermediate steps of calcium carbonate hydroxide/hydrate (CCH), accommodating besides 

carbon dioxide, water molecules, which in turn are gradually lost resulting in pure (or almost 

pure) calcium carbonate. CCH-1 (calcium carbonate hydroxide, Ca3(CO3)2(OH)2) and CCH-3 

(calcium carbonate hydroxide hydrate, Ca3(CO3)2(OH)2.1.5H2O) are probably poorly 

crystalline/amorphous compounds and have origins in lime hydration and its carbonation; 

CCH-2 (defernite, Ca6(CO2.65)2(OH0.657)7(H2O)2) has a fractional stoichiometry, indicating a 

continuous reaction; CCH-4 (ikaite, CaCO3(H2O)6) is a low temperature species, containing 

high amount of water; CCH-5 (monohydrocalcite, CaCO3(H2O)) forms in solution or 

suspension (Stepkowska et al., 2007). 

 

III.2.7.3 Amorphous Calcium Carbonate 

There is also the possibility that relatively stable amorphous calcium carbonates (ACC) form, 

rather than crystalline ones. Amorphous calcium carbonate (ACC) is the thermodynamically 

least stable form among calcium carbonates, which forms in vitro only from a supersaturated 

solution. ACC is usually metastable, tends to dissolve easily and transforms rapidly into a 

crystalline stable phase (Kellermeier et al., 2010; Raz et al., 2002). 

ACC formation is kinetically favoured and thus it is frequently observed first in the course of 

precipitation from solution, to subsequently transform more or less rapidly toward phases of 

higher stability (Kellermeier et al., 2010). Mineral frameworks in which calcite and ACC 
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coexist in separate domains have also been reported (Aizenberg et al., 2002; Aizenberg et al., 

1996).  Similar to other amorphous minerals, ACC is isotropic in polarized light; and is 

particularly difficult to identify and characterise when a crystalline mineral is also present 

(Raz et al., 2002). The decomposition of ACC is within the 550oC-680oC range (Thiery et al., 

2007). 

Although not fully understood to date, there are some ACC stabilisation mechanisms, which 

seem to inhibit ACC transformation by hindering dissolution, delimiting exchange with the 

surrounding solution, or selectively impeding crystal growth.  The degree of hydration and 

the particular short range order of the amorphous phase are important factors for ACC 

stabilization (Levi-Kalisman et al., 2002; Radha et al. 2010). Stable forms of biogenic ACC 

were found to incorporate appreciable amounts of water, typically 1 mol per mol of CaCO3 

(Taylor et al., 1993; Levi-Kalisman, 2000). This structural water probably hampers 

transformation into any of the anhydrous crystalline polymorphs (Addadi, 2003). Conversely, 

when serving as a transient intermediate, ACC contains little/no water or transforms to a 

dehydrated state prior to crystallization (Beniash, 1997; Politi, 2004; Raz, 2003). 

Additionally, previous work has already shown that the lifetime of ACC in solution can be 

prolonged by addition of magnesium ions (Loste, 2003), triphosphate (Clarkson, 1992), 

polyphosphonate species (Sawada, 1997) or silica (Kellermeier et al., 2010). 

The presence of sodium silicate during precipitation of CaCO3 from supersaturated solutions 

at elevated pH produced temporary or permanent storage of metastable ACC and seemed to 

delay gradual transformation to crystalline polymorphs and promote the coexistence of 

amorphous and crystalline phases, all based on the spontaneous deposition of siliceous skins 

around growing ACC particles (Kellermeier et al., 2010). 

This seems to be in accordance with Black et al. (2008), who observed that the 

decalcification of C-S-H led to ACC until free silica was formed, whereupon the carbonate 

was converted into aragonite, meaning the ACC was kept stabilized while associated with 

silica. Also Martinez et al. (1998) seems to be in agreement, as they concluded that the 

particles formed incipiently upon precipitation of CaCO3 in silica-containing solutions are 

composites consisting of ACC and hydrated amorphous silica. 

Besides wrapping single ACC nanoparticles, the presumed silica skins seem to favour 

aggregation and interconnect grains by spanning a continuous envelope over multiple 

individuals (Kellermeier et al., 2010).  Depending on the amount of silica added, Kellermeier 
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et al. (2010) observed both total inhibition of calcite formation (ACC material is effectively 

cemented in a siliceous matrix, for values well above 1000ppm SiO2) and the coexistence of 

both ACC and calcite, even 1 year after the initial CaCO3 precipitation. They ended up 

concluding that these compounds may coexist over time scales of years. Moreover, 

Kellermeier et al. (2010) suspect that the ACC formed in their experiments is hydrated to a 

certain, yet unknown degree, meaning the role of stabilising the amorphous particles may not 

be confined to just acting as a barrier which limits the release of ions into the solution and 

hence restrains dissolution of ACC. They reckon it may also prohibit the expulsion of water 

molecules from the core, preventing possible transformations of hydrated ACC to anhydrous 

crystalline polymorphs inside the particles. 

 

III.2.8 Durability 

The main concern with the cement for geothermal purposes is its durability. Even if the 

strengths are considerably lower than those found in a civil construction context, it will not be 

an issue, as long as the cement is able to keep its properties for several decades. The cement 

response to CO2 exposure is one of the main concerns for the durability of these cements, 

which will depend on the different exposure conditions (pressure, temperature, pH, CO2 

phase, etc.). 

 

III.2.8.1 Corrosion of Cement 

In high CO2 content solutions the carbonate is converted into water-soluble calcium 

bicarbonate, Ca(HCO3)2, and leached from the cement hydrate phases (Equation III.20). This 

leaching process continues in the presence of excess CO2 which forms ‘carbonic acid’ 

(H2CO3) thereby producing a large amount of an amorphous silica and aluminum silicate gels 

which dissociate from the Ca-depleted hydrate phases, e.g. Ca(OH)2 and calcium silicate 

hydrate (C-S-H). As the calcium hydroxide and alkali phases are depleted, the pH of the pore 

solution will fall, and carbonate will no longer be the dominant species, and be replaced by 

bicarbonate (HCO3
-) (Equation III.21-Equation III.23) (Duguid, 2009; Kutchko et al., 2008; 

Sugama and Carciello, 1992). 
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CaCO3 + H2O + CO2 → Ca(HCO3)2 Equation III.20 

��� + ��� +	�$���(%) ↔ �$�� + 2����
	 Equation III.21 

2�� + �$���(%) ↔ �$�� + ���	 + 	���  Equation III.22 

2�� 	+ � − 0 − �	(%) → �$��($ ) + ���($ ) + $< − 0���(%) Equation III.23 

 

As consequence of the Ca leaching process, several carbonated well cements have failed in 

less than a year, and in the worst case, well casings have collapsed within three months 

(Sugama, 2006). On the other hand, when the hydrates from conventional cement come in 

contact with H2SO4, the Ca2+ cations are rapidly leached from the cement hydrates, and react 

with the SO4
2- ions from H2SO4 to deposit a gypsum (CaSO4.2H2O) scale as the acid-

corrosion product on the surface of the cements. Firstly, the gypsum scale clings to the 

cements and serves as a primary barrier layer against a further acid attack from the exterior.  

However, further gypsum crystal growth from the cement can promote acid erosion of the 

cement. Additionally, an excessive growth of this corrosion product may cause undesirable 

expansion and swelling phenomena of the cements, following the development of weakening 

cracks or complete failure (Sugama, 2006). 

At present, published guidelines regarding the CO2 concentrations that cause various degrees 

of attack or estimated corrosion rates at given CO2 concentrations are only general. 

Considerable work has been performed investigating cement corrosion, both in geothermal 

wells and CO2-enhanced recovery in oil wells. Unfortunately, most of the work was 

performed at lower temperatures and/or higher CO2 partial pressures than are usually found 

in direct use geothermal wells.  

Bruckdorfer (1985), using micro cylindrical cement samples 0.275 in. diameter by 0.5 in. 

long, found there was only a 5 to 10% decrease in strength loss of samples at 125oF (ca. 

50oC) compared to samples at 175oF (ca. 80oC). This indicates that, at least below 230oF (ca. 

100oC), the corrosion is not temperature sensitive. There is good agreement in the industry 

literature that nonporous, high-density cements made with low water-to-cement ratios are 

more resistant to attack, with the addition of diluents such as lost circulation materials and 

silica decreasing resistance. Silica additions above 10 to 20%, even at temperatures above 

230oF, and the addition of bentonite at only 3%, decrease resistance (Milestone et al., 1985). 
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Downhole conditions obviously have an important part in the corrosion rate. If there is no 

water flux around the cement, the carbonic acid would soon be neutralised and the corrosion 

rate would diminish; however, if there is a continuing supply of CO2 rich fluid, corrosion will 

continue. Cements high in calcium hydroxide are more resistant to corrosion by CO2 because 

an impervious layer of calcite forms on the outside, slowing attack by CO2 and other species 

(Milestone et al., 1986). 

 

III.2.8.2 Diffusion Process and Reaction Rims 

The cement degradation usually starts from the outermost layer moving progressively into the 

interior layers, and is controlled by diffusion, which is proportional to the square root of time. 

Ficks second law of diffusion with constant concentration boundary condition is often used to 

estimate the depth of ordinary carbonation in cement (Kutchko et al., 2008), and is given by 

the Equation III.24. 

 

L=αt1/2 
Equation III.24 

where, 

L - depth of carbonation; 

t - time of exposure; 

α - constant related to the rate of diffusion of ionic species through the cement matrix 

and depends on the cement permeability, porosity, tortuosity and chemical 

composition. 

 

There are several studies in which either experimental or theoretical models were built in 

order to predict the durability of the cement downhole. 

Using a simple diffusion model at 90oC, Barlet-Gouedard et al. (2006) created their own 

penetration prediction for Portland cement (w/c=0.44) as a function of the CO2 phase, based 

on Fick’s second law of diffusion: for CO2 dissolved in water (exposed to HCO3
-), L=0.22t1/2 

(8mm penetration after 3 months); for water saturated supercritical CO2,  L=0.26t1/2 (12 mm 

radius sample was totally penetrated after 3 months). After 20 years the depth of penetration 
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depth was estimated as 90 mm for the samples exposed to HCO3
- and 110 mm for samples 

exposed to water-saturated supercritical CO2. Within the same project, for the CO2 resistant 

cement these authors did not report any carbonation reactions. 

By extrapolating his results, Duguid (2009) estimated the time for a 25mm thick layer of 

class H well cement to react as function of the temperature and pH. He predicted that for a 

well with good zonal isolation submitted to temperatures up to 50oC, the rate of degradation 

would be between 30,000 (pH 3) and 700,000 years (pH 5) for 25 mm of neat paste in a 

sandstone reservoir, and possibly longer to destroy the cement which passed through the cap 

rock. 

Duguid (2009) and Kutchko et al. (2008) reckoned their cement degradation extrapolations 

based on previous lab works were conservative, with real diffusion being slower, as some 

previous studies based in cements exposed to a CO2 in situ exposure did not show as much 

degradation as the one usually seen in laboratory. By comparing their work with observations 

of Carey et al. (2007), Kutchko et al. (2008) found that the reaction layer (penetration depth) 

of the cement exposed to real conditions was similar to their lowest penetration estimation for 

30 years, which ranged from 1 to 10mm. 

In several cases, the diffusion process gave rise differentiated layers/rims, which correspond 

to different carbonation/corrosion stages. After six months cured in CO2 sequestration 

conditions (supercritical CO2, at 90oC and 290 bar), Rimmele et al. (2008) observed that class 

G cement samples exhibited 3 distinct altered zones: a carbonated zone (outermost altered 

rim, with calcium carbonate, silica gel and calcium depleted calcium silicate phases); a 

carbonation front (thin layer with 50-200µm wide of very low porosity); and a dissolution 

front (innermost altered rim of high porosity where cement phases progressively dissolve to 

form calcium carbonates backwards). This is similar to that reported by Milestone et al. 

(1986a) and Grant-Taylor et al. (1996). 

 Rimmele et al. (2008) observed that the concentric reaction fronts translate towards the 

central part of the samples, and relicts of these fronts are commonly observed backwards 

through the carbonated zone. According to them, these “paleofronts” are made of zones with 

low amounts of silica gel and well crystalised calcium carbonate, intercalated by silica gel-

rich zones that contain only micrometre-scale calcium carbonate nodules.  From their 

experiments on Class H neat cement (w/c=0.38) cured for 28 days at 50oC and 30.3 MPa and 

only then exposed to either CO2-saturated brine or supercritical CO2 under similar conditions 
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for 9 and 61 days respectively, Kutchko et al. (2008) noticed that the differentiated rims 

depended on the CO2 phase. For the cement exposed to the CO2 saturated brine, they 

observed an orange smooth textured altered cement. In a similar way to that observed by 

Rimmele et al. (2008), the altered cement had 3 distinct zones: carbonated zone (degraded 

zone), carbonation front (CaCO3 barrier) and Ca(OH)2 depleted zone  (Figure III.10). The 

initial carbonation rate was rapid followed by a decrease in rate. The rate of cement 

carbonation is diffusion limited because the rate of acid-base carbonation reactions is much 

faster than the diffusion of ionic species through the cement matrix. This is a non-linear 

process, meaning that the cement alteration process is complex, as the rate of diffusion, α, is 

not constant, probably due to the precipitation of a dense CaCO3 (s) rich layer, which has a 

protective effect. As this phase (CaCO3) grows faster than it is dissolved, slower diffusion 

rates are observed over time, i.e. α decreases with time (Kutchko et al., 2008; Duguid et al., 

2005). Kutchko et al. (2008) described the scenario observed for cement degradation from 

exposure to CO2-saturated brine as identical to an acid attack by carbonic acid (Figure III.11). 

The maximum alteration depths after one year for any sample were 1 mm. 

 

 

Figure III.10 - SEM/BSE image of class H cement cured for 28 days at 50
o
C and 30.3 MPa and exposed 

for  9 days to CO2-saturated brine under the same conditions (Kutchko et al., 2008) 
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Figure III.11  - Original cement (top) and cement exposed to CO2 after 9 days (bottom) (Kutchko et al., 

2008) 

 

There are studies in which only one altered rim was reported in the cement. In other studies, 

several altered rings were reported in the cement.  For instance, in their work on cement 

samples exposed for 61 days to supercritical CO2, Kutchko et al. (2008) observed a light grey 

rough textured, with one single altered ring/reaction front. This ring was composed of CaCO3 

(s) distributed throughout the reacted portion (Figure III.11 and Figure III.12). 

 

 

Figure III.12 – SEM/BSE image of Class H neat cement cured for 28 days at 50°C and 30.3 MPa and 

exposed for 61 days to supercritical CO2 under the same conditions shows the formation of a single 

carbonated zone in the cement. Dashed line approximates boundary of degradation (Kutchko et al., 2008) 

 

In their work Kutchko et al. (2007), described a degradation front 440 µm wide after 90 days, 

which included two differentiated rings: an outermost ring, with depletion of calcium from 

cement grains, followed by the hardest zone, a ring with increased Ca. 

Andac and Glasser (1999) reported five individual degraded layers, with a total leached depth 

of 600 to 800 µm after 3 months. These authors have described the different layers mostly 

based on their calcium content (from exterior to the center):  1) 200-300 µm wide, low in 
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calcium (≈20%); 2) cracked zone; 3) 100-200 µm wide, low in calcium (≈20%); 4) 80 µm 

wide, lower in calcium than unleached cement, but richer in Ca than the outer leached layers 

(≈30%); 5) transition between layer four and the unleached portion of the sample (≈35%). 

Unexpectedly, the results obtained by Rimmele et al. (2008) with supercritical CO2 are 

similar to those obtained by Kutchko et al. (2008) in CO2-saturated brine, rather than 

supercritical CO2. This emphasises the complexity of these reactions, which seem to be 

dependent on several variables. The main differences between these two studies which 

considered together, could justify the similar results for the different CO2 phases, are the 

curing time (6 months v’s 28 days), exposure time (6 months v’s 9 days), exposure timing 

(exposed to CO2 from the beginning v’s exposed to CO2 only after 28 days) and the type of 

cement (class G v’s class H). 

Based on observations of a 30-year-old production well from a natural CO2 reservoir, and 

after comparing them with earlier studies, Crow et al. (2010) justified the distinct results by 

highlighting variables such as timing (the moment in which the cement started being exposed 

to CO2), CO2 concentration and the type of rock in the reservoir (which provides less 

buffering of the potential corrosive effects of CO2 on the barrier system than a carbonate 

reservoir). Nonetheless, the actual rate of cement degradation in the field will also depend on 

the quality of the cement and the quality of the cementing job within the well. 

 

III.2.9 Natural analogues 

Natural analogue systems can provide an insight into the long term behaviour of cement. 

There are a few studies based on natural minerals where an understanding of the cement 

behaviour when exposed to CO2 on a long timescale can be obtained. 

Examination of natural CSH minerals and gels similar to those found in hydrated OPC-based 

cements shows that they carbonate readily on reaction with bicarbonate containing 

groundwaters or atmospheric CO2 to form a range of minerals, including: calcite, aragonite, 

vaterite, scawtite and hydrotalcite (Alexander, 1992; Linklater 1998; McConnell, 1960; 

Milowdowski et al. 1989; Smellie, 1998). Rochelle (2004) and Milodowski et al. (2011) 

showed that moderately sized nodules of CSH phases present in rock formations had not 

undergone total carbonation, even after several thousand years. They suggested that similar 

minerals in well cements may possibly have significant longevity. Rochelle (2004) justified 

that by the dense carbonate reaction rim which had formed in the outermost layer, which 
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appears to have restricted further reaction, allowing the CSH mineral to be preserved beneath 

the carbonate rim. In similar work, Milodowski et al. (2011) concluded that natural CSH 

minerals do not react with the high concentration of CO2 in supercritical CO2. 
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III.3 Cement-Rock Interactions 

There is little published literature on cement/rock interaction under hydrothermal conditions. 

However, references and investigations on cement-rock aggregate interactions which occur in 

concrete for civil construction are extensive and form the bulk of this review. These show 

that reaction can be extensive. 

 

III.3.1 Interfacial Transition Zone in Concrete 

The processes responsible for the formation of the microstructure of the cement-aggregate 

ITZ2 in concrete are still not well understood. The forces of adhesion of coarse aggregate 

grains to cement paste are commonly believed to have a twofold nature. On the one hand, 

there are physical forces whose magnitude depends on the topography of aggregate grain 

surface and on the grain shape and are believed to have a considerably strong influence on the 

cement-aggregate bonding. On the other hand, there are chemical driving forces created at the 

aggregate-cement paste interface, which are dependent on the chemical potential of the rock 

(Prokopski and Halbiniak, 2000; Scrivener, 1999; Xing et al., 2011). 

 

III.3.1.1 Physical Features 

In concrete, the microstructure of the ITZ2 is determined by the packing of the anhydrous 

cement grains against much larger particles. The so-called “wall effect” leads to a depletion 

of anhydrous cement in the ITZ, approaching zero at the aggregate surface. As a result there 

is an increase in the amount of porosity in the ITZ. The thickness of the zone affected by the 

packing of the cement grains extends to at least the size of the largest cement particles, which 

may be up to 100µm. However, as large areas filled with water are available in the vicinity of 

the aggregate particles, the hydration mostly follows Le Chatelier’s principle. After the 

dissolution of anhydrous compounds, the more mobile ions move under the influence of 

concentration gradients, i.e. from bulk to the interface. In OPC, the more mobile ions, Na+, 

K+, SO2
-4, Al(OH)4

- and Ca2+, diffuse faster, whereas the mobility of silicate ions is lower and 

they diffuse more slowly from the silicate grains to the aggregate surface (Maso, 1980). This 

results in a preferential deposition of hydration products in the more open ITZ, which 

ameliorates the effects of cement packing. Consequently, the distance over which there is a 

                                                           
2 ITZ: Interfacial Transition Zone 
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significant porosity increase has been reported to be only around 35-50µm (Scrivener and 

Nemati, 1996; Ollivier et al., 1995; Prokopski and Halbiniak, 2000; Stroeven and Stroeven, 

2001). 

The concentration of C3S in the ITZ has been studied by Ollivier (1981) using the composite 

model and X-ray diffraction analysis, where he observed an exponential decrease in C3S 

within 45µm around the aggregate as the OPC paste approaches it. Srivener and Pratt (1994) 

calculated the amounts of CH and C-S-H were in excess of the amounts expected if all the 

hydration products were precipitated in the immediate vicinity of the anhydrous cement from 

which they have formed. From this work, they concluded the portlandite/anhydrous cement 

ratio is much higher in the ITZ than in the bulk paste. Furthermore, they observed a still 

higher C-S-H/anhydrous cement ratio in the ITZ, although not as clear as with portlandite, 

due to the lower mobility of the silicate ions. These authors also studied the CaO/SiO2 ratio 

(C/S) in the ITZ between C3S paste and marble, from which they have observed that the C/S 

is much higher in the vicinity of the aggregate than in the bulk paste. According to these 

authors, this was due to a Ca2+ and OH- ions migration process. 

 

III.3.1.2 Chemical Features 

In concrete, the reactions which occur between the pore fluid (cement paste) and aggregate 

may affect the mechanical performance and the durability if the reaction causes a volume 

change after the setting of the cement, which causes mechanical fracture (Giuovambattista et 

al., 1986). Conversely, in some aggregates, these reactions, which take place at the interfaces, 

are helpful as they increase cement paste-aggregate bond strength. This results in making 

high strength concrete with improved chemical resistance (Tasong et al., 1998-a). The 

concentration of the pore fluid in mortar or concrete can be affected by the aggregate type 

and it is believed that the use of reactive aggregates significantly affects the amount and the 

degree of orientation of Ca(OH)2 crystals in the ITZ. Reaction of Ca(OH)2 with the aggregate 

was suggested to be responsible for a considerable portion of the ITZ strength (Tasong et al., 

1998-a). Studies undertaken by Monteiro et al. (1985), Maso (1980), Bernes (1978), Brenton 

and Carles-Gibergues (1993) and Struble (1988) explained this by differential ion diffusion 

caused by the zone’s high porosity, which resulted from the arrangement of the cement grains 

in contact with the aggregate (rock). According to these authors, calcium hydroxide 
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(Ca(OH)2) precipitates on the aggregate surface by heterogeneous nucleation and 

subsequently grows and crystallises. 

Cement composition 

The cement blend grain size distribution is an important factor controlling the ITZ 

characteristics (Scrivener, 1999). The properties of the ITZ seem also to depend on the 

amount and nature of the hydration products formed in the ITZ (Tasong et al., 1998-a; Yuan 

and Guo, 1987; Bentur et al., 1987), whereas the water/cement ratio (w/c) has been 

considered to have only small effect on the ITZ microstructure (Scrivener, 1999). 

Mineral admixtures and other additives may influence the development of the microstructure 

in the ITZ because of two main factors: modification of the hydration process and 

densification of the particle packing if the size of the additions is much finer than the size of 

the cement grains. These two factors may act simultaneously making it difficult to analyse 

their individual effect (Ollivier et al., 1995). Silica fume, for instance, reduces the porosity of 

the cement paste by filling its micropores, thereby improving the mechanical properties of the 

paste within the inter transition zone and enhancing the quality of aggregate-cement paste 

interface. When the ITZ is densified by means of silica fume additions, for example, the w/c 

ratio gradient is lowered and the diffusion is reduced as well. The hydration products 

however, are also dependent on the amount of silica fume added, which may affect the 

porosity of the cement paste, which decreases with age due to filling by hydrates (Ollivier et 

al., 1995; Prokopski and Halbiniak, 2000). Aquino et al. (1995) observed that the bond 

properties between the cement paste and aggregate were substantially improved by additions 

of latex and silica fume, with both leading to a decreased porosity in the ITZ. 

Aggregate type 

It is usually assumed that the cement-aggregate bonding mechanism depends on the 

mechanical interlocking aided by the aggregate surface texture, as it has been indirectly 

shown to increase for the rougher surfaces (Tasong et al., 1998-b). These assumptions are 

based on comparisons between the bond strength of fractured rock surfaces with that of 

polished rock surfaces. However, the true surface area of the aggregate is either not 

considered or poorly estimated (Tasong et al., 1998-b). They concluded that the interfacial 

bond strength for a given cement paste depends not only on the aggregate roughness, but also 

on the parent rock structure and strength, both of which determine the topography and 

fracture properties of aggregates at the ITZ. 
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Elsharied et al. (2003) found that reducing the aggregate size from 2.36-4.75mm range to 

150-300µm range tends to reduce the porosity and increase the content of unhydrated cement 

particles in the cement surrounding the aggregate. Furthermore, although not noticeable with 

the larger aggregates, the w/c reduction from 0.55 to 0.40 appeared to reduce the porosity in 

the vicinity of the 150-300µm range aggregates. 

According to Xing et al. (2011), calcareous aggregate concretes show better performance at 

high temperatures than the siliceous aggregate concretes. This fact is generally attributed to 

the higher thermal expansion of siliceous aggregates and to the volume increase due to the 

phase transition (at 573oC) from α-quartz to β-quartz. 

 

III.3.2 Alkali Aggregate Reaction 

III.3.2.1 Types of Reaction 

Hobbs (1988) initially differentiated two different kinds of cement aggregate reactions and 

later work by Okada et al. (1989), sub-divided them further into three groups - alkali-silicate, 

alkali-carbonate and alkali-silica reactions (Park et al., 1996; Freitag et al., 2003): 

• The alkali-silicate reaction is believed to be a reaction between the alkali ions in the 

pore water of a concrete and an interlayered precipitate in phyllosilicates (which are 

often present in greywackes, phyllites or argillites); this precipitate is a mineral 

related to vermiculite and, after being removed, the phyllosilicate is then able to 

expand by taking up water and, consequently, causing expansive stresses, which may 

cause expansion and cracking of the concrete (Hobbs, 1988); 

• The alkali-carbonate reaction is the reaction between certain dolomitic limestones 

(containing clay impurities) and the metal hydroxides in the pore solution of a 

concrete (dedolomitisation reaction) and is uncommon (Hobbs, 1988); 

• The alkali-silica reaction is the reaction between the alkaline pore solution (hydroxyl 

ions) in the pore water of a concrete and certain forms of silica minerals (such as opal, 

chalcedony, micro and cryptocrystalline quartz, cristobalite and tridymite and volcanic 

glasses), rather than a primary reaction between sodium and potassium ions and 

reactive silica. Alkali-silica reaction (ASR) is the most common cause of deterioration 

of concrete and a better understood process when compared with the other two 

processes (Hobbs, 1988; Park et al., 1996; Freitag et al., 2003). For this reason, this is 
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the most important to be considered also in a cement-rock interaction within a 

geothermal context (despite the low OH- solubility at high temperatures). The New 

Zealand Construction Industry often refers to AAR instead of ASR. 

 

III.3.2.2 Factors Influencing ASR 

ASR is a very complex reaction between silica and alkalis from the pore solution, which, in 

some conditions may be similar to the pozzolanic reaction3, giving hydrates close to that of 

cement paste, C-S-H or tobermorite (cation exchanges between calcium and sodium or 

potassium) (Okada et al., 1989). However, this reaction is dependent of several 

factors/conditions, including the reactants themselves. 

ASR variables 

The requirements for the development of an ASR are: reactive siliceous component (a 

component of the aggregate which can react with hydroxyl ions to produce a new reaction 

product which can absorb water); alkalis (sodium and potassium hydroxides derived 

principally from the cement); a source of moisture; sufficient time; and is facilitated by 

conductive temperature and humidity of the environment. Despite the increase of the alkali-

silica-reaction with the increasing temperature, long-term expansion due to alkali-silica 

reaction is lower at high temperatures. Variables like reactant quantities, environmental 

conditions, cement quality and action of pozzolans should also be taken into account for 

better understanding of the ASR. Nevertheless, the main controlling factor is the cement-

aggregate-pore system (Vivian, 1992; Shrimer, 1996; Lombardi et al., 1996; Chatterji, 2005). 

ASR mechanism 

The alkali metal ions in Portland cement are usually present as soluble sulfates (Na2SO4 and 

K2SO4). When water is added to Portland cement, these alkali sulfates readily dissolve and 

the sulfate ions react with the hydrating tricalcium aluminate and calcium hydroxide to 

precipitate ettringite, releasing the alkalis as sodium and potassium ions into the pore 

solution, which are taken up by the cement hydrates as they form. The resulting pore solution 

contains considerable amounts of sodium and potassium ions and very low concentrations of 

calcium, sulfate and chloride. This results in a significant hydroxyl concentration (pH 

between 13 and 14) which originates the ASR (Freitag et al., 2003). 
                                                           
3 Pozzolan reaction: chemical reaction that occurs in hydraulic cement, calcium hydroxide with amorphous 
silicious materials (namely, pozzolans), forming calcium silicate hydrates, according to the following formula: 
Ca(OH)2 + H4SiO4 → Ca2+ + H2SiO4

2- + 2 H2O → CaH2SiO4 ·  2 H2O 
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Diamond et al. (1981) considered that silica distress in concrete arose from two processes, 

chemical and physical, which could be distinguished: the chemical reaction produced the 

reaction product gel which eventually expanded and cracked the concrete. They and Poole 

(1992-a) divided ASR in the two stages: initially, a chemical reaction between reactive silica 

and the alkalis in the cement paste, which produces a gel reaction product (normally taking 

place within the boundary of the reacting aggregate); subsequently, a physical or 

physicochemical sorption of fluid by this gel, which may produce local swelling. 

Glasser and Katoaka (1981) also explained ASR as a two-step process: first, an acid base 

reaction in which OH- groups from the alkali solution react with the acid silanol groups 

(Equation III.25), where the charge on the terminal oxygen is balanced by Na+; afterwards, 

further OH- attacks the siloxane (Si-O-Si) bridge within the structure (Equation III.26). This 

process loosens and breaks up the structure, leading to the formation of an alkali-silica gel 

polymer. 

 

≡ 0� − �� + ��	 	→	≡ 0� − � + ��� Equation III.25 

≡ 0� − � − 0�	 ≡ +2��	 	→	≡ 0� − �	 + �	 − 0� ≡ 	+��� Equation III.26 

 

This acid/alkali reaction occurs at the accessible surfaces of the silica, where a hydrous 

silicate is formed. Hydroxyl ions (OH-) are absorbed into the silica particle and some of the 

silicon oxygen linkages are attacked, weakening the local bonding. Consequently, the free K+ 

and Na+ ions (from the NaOH and KOH) diffuse and attract water to form a gelatinous metal 

alkali ion hydrous silicate (Hobbs, 1988; Park et al., 1996; Freitag et al., 2003). It has been 

also shown that the rate of ASR is increased by raising the ionic strength of the ambient 

solution (Chatterji and Thaulow, 2000; Chatterji, 2005). 

French (1989) suggested that the migration of water and alkalis to reacting aggregate 

particles depends on the ‘hygroscopic’ nature of the silicon ions produced by the reaction, as 

the silicon ions remain within or close to the reacting material to form a gel which will not 

migrate away until it has become fluid enough through absorption of water into the gel 

network. The more open the structure and the greater its hydration state, the more rapidly it is 

attacked. Calcium ions, because of their double charge and large envelope of water 
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molecules, tend to remain near the surface of the developing gel as a C-S-H phase, which is 

less soluble in alkali solution than sodium or potassium gels (Poole, 1992-a). 

The formation of the alkali silicate gel consumes alkali and reduces pH.  

Significant reaction occurs only when there is sufficient alkali in the pore solution, giving an 

initial pH of 13.65 (Freitag et al., 2003). 

ASR products 

The reaction products observed in concrete structures altered by ASR appear as gels and 

rarely crystals and they can be characterized taking into account different factors such as their 

location around the aggregates, their microstructure (massive/textured gel and rose/lamella 

crystals), their elemental composition (alkalis, silicon, calcium and other minor elements such 

as aluminium or iron) and their coexistence with secondary products (eg. ettringite and 

carbonates) (Okada et al., 1989).  According to several studies by Lombardi et al. (1996), the 

product of alkali reactions was a hydrated gel containing silica, calcium and alkali gels which 

were present in variable proportions: SiO2 (S) from 28 to 86%, CaO (C) from 0.1% to 60%, 

K2O (K) from 0.4 to 19% and Na2O from 0% to 20%. The most important constituents were 

SiO2 and CaO, which defines CaO/SiO2 (C/S) ratio and the composition. These usually 

dictate the chemical properties of this gel as well as the physical ones of adsorption and 

swelling (Lombardi et al., 1996). They found the variation of values of CaO and SiO2 with 

natural and synthetic alkali-silica gels were similar for both natural and synthetic alkali-silica 

gels. Moreover, whatever the original C/S value was, the representative points of the 

synthetic gels were grouped around C/S of 0.48, which was close to the characteristic average 

(0.43) of the natural gels.  Their observations made them believe that there was an 

instantaneous mechanism of formation by precipitation of calcium and silica ions from 

solution. Generally, they concluded that the Si-Ca structures of gels did not incorporate alkali 

cations. They reckoned that the sodium and potassium present were simply the result of the 

trapping of the solution of precipitation into the texture of gels (Lombardi et al., 1996).  

Nevertheless, Dron and Brivot (1996) believe that the alkali-silica products should not be 

characterised by its C/S (and/or K/C) ratio, as it was a complex system, with four 

independent constituents (CaO, K2O, SiO2, H2O). Rather than a solid comparable to a mineral 

grain or crystal, the alkali silica products were the result of drying of a two phase product 

initially saturated with water like a sponge. It was not possible to assume a unique 

composition of ASR products, as compositions varied depending on the composition of the 

final liquid phase. Generally, if the ratio [K]/[SiO2] was greater than 4, the solid appeared in 
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the form of precipitate; otherwise, when lower than 4, the solid consisted of a gel. They 

believed that the final value of the ratio [K]/[SiO2] was related to the initial chemical 

conditions, i.e., relative quantity of the reagents. In a system where the silica is consumed as 

it goes into the solution, this ratio tends to increase; otherwise, in a system where silica can 

accumulate locally because of diffusion barriers, gels will form. 

Diamond (2000) defended the proposition that there are at least two distinct ASR products or 

phases, one relatively rich in Ca and trending toward an alkali-bearing C-S-H of limited (or 

non-existent) swelling capacity, the other the traditional “swelling gel” composed primarily 

of potassium (or sodium) silicate hydrate with only a little calcium.  Other authors consider 

that the influence of calcium content on swelling of the alkali silica gel component is not due 

to a separate phase. Monteiro et al. (1997) considered that these two different behaviours 

were due to the fact that the divalent calcium ions reduce swelling by not forming a diffuse 

double layer responsible for swelling, while Lombardi et al. (1996) explained this 

phenomenon by proposing that ASR gels formed a series defined structurally only by 

CaO/SiO2 ratios where the alkalis present were the result of the trapping of the solution of 

precipitation into the texture of gels (Diamond, 2000).  The main point is that the variation of 

Ca content in ASR products is associated with the physical location of the ASR gel. Close to 

a reacting grain the calcium content is low whereas in one that migrates along the cracks 

(away from the reacting grain) the CaO content tends to be progressively higher. It has been 

suggested that this is a mechanism of regeneration of alkalis within the cement paste, 

allowing continued alkali-aggregate reaction and modifying the viscosity of the gel initially 

formed. In addition, the ASR gel tends to change composition over time, usually 

accumulating calcium from the surrounding cement paste (Diamond, 2000; French, 1989; 

Poole, 1992-a; Scrivener, 1994). 

ASR potential 

Even though ASR potential is given by the concentration of hydroxyl ions of the pore 

solution, the alkali content of concrete is expressed as the concentrations of oxides of the 

alkali metal ions sodium and potassium which are easily measured. Calcium hydroxide in the 

cement hydrate dissolves to balance these ions in solution, so their concentration reflects the 

amount of hydroxide ions that will be produced. Therefore, the “alkali content” is actually the 

content of sodium and potassium ions (rather than pH or hydroxyl ion content) (Freitag et al., 

2003). 
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Durand (2000) noted that several papers have identified the contribution of alkalis in concrete 

from other than the cement; for instance, there are alkalis in the supplementary cementitious 

materials (SCM), in the chemical admixtures and also in the aggregates themselves (albeit in 

very low quantities). In this sub-section, the main alkali sources are introduced: cement, 

admixtures and aggregates. 

 

Alkali sources 

In Portland cement, the sodium and potassium alkalis originate from the raw materials used 

in its manufacture, and are usually present in clinker as alkali metals sulfates (Jawed, 1977).  

As soon as the cement is mixed with water, the water soluble alkali metals sulfates are 

converted into alkali hydroxides, increasing the hydroxyl concentration in the liquid phase 

(Hobbs, 1980).  When high amounts of clinker SO3 are present in the cement, a higher 

fraction of the total alkali gets dissolved into the solution within a few minutes, followed by 

an increase in the alkali concentration for the next 28 days, when almost the whole alkali is 

already in the solution (Hobbs, 1980; Hobbs, 1988). According to Hobbs (1988) and Freitag 

et al. (2003), there is a conventional methodology to calculate the equivalent sodium oxide 

(reference) content of a Portland cement, which is expressed by the Equation III.27. 

 

  Equation III.27 

 

Besides their main goal of improving various aspects of concrete performance, SCM4 can be 

also utilised to reduce ASR expansion. This improvement can be explained by several factors 

(which depend on the SCM): reduction of total alkali content if SCM has a lower available 

alkali content than the cement it replaces; reaction of the SCM with calcium hydroxide 

reducing the available Ca(OH)2 that keeps the high pH necessary for ASR and forming a 

product that binds alkalis so that they are unavailable to participate in the ASR. The lower 

permeability of the concrete also reduces ingress of moisture slowing diffusion of alkalis to 

reactive minerals, and ultimately the expansive forces the cement can withstand without 

cracking (Freitag et al., 2003). 

                                                           
4 Supplementary Cementitious Materials 

][658.0][][ 222 OKONaONa equivalent ×+=
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Although the main source of alkali in concrete comes from cementitious materials, chemical 

admixtures such as water reducing, air entraining, superplasticising, high early strength early 

plasticising, set accelerating, set retarding, pump aid and shrinkage reduction may also make 

a relevant contribution. Moreover, the alkalis added to the cement to disperse any pigments 

also need to be considered (Freitag et al., 2003).  

In well cements, the formation water is often used for mixing the cement which will 

incorporate the alkali from the brine. The alkaline pore solutions of the cement may dissolve 

these minerals along accessible intergranular surfaces, causing a release of alkaline material 

into the pore solution (Freitag et al., 2003).  Grinding aggregate particles containing reactive 

silica below 20µm in size can also have the similar effect of microsilica, i.e., promoting the 

alkali-silica reaction while the slurry is in the fresh state (Diamond and Thaulow, 1974; 

Asgeirsson and Gudmandsson, 1979).  Goguel and Milestone (2000) observed that high 

concentrations of alkali can be released by sand derived from nepheline basanite, a type of 

basalt, particularly when the mortars were cured under conditions of high humidity. As a 

consequence, the pore solution pH was high, even if a low alkali cement was used.  At 

Industrial Research Limited (IRL), an investigation concluded that alkalis released by acidic 

rocks (rhyolites, granites and dacites) imbedded in concrete did not add to the alkalinity of 

the pore solutions, but were taken up by solid silicate phases.  For ASR to occur through 

alkali release from aggregates, three conditions are necessary: presence of alkali releasing 

mineral phases; readily accessible surfaces of the alkali releasing phases in the sand fraction; 

and high humidity (Freitag et al., 2003). 

Silica sources (reactivity of the aggregate/rock) 

The only source of silica in ASR is the aggregate/rock where the reactivity depends on 

several factors. Aggregates of the same general type from different regions can have quite 

different alkali reactivity. Reactive aggregates receive different classifications (deleterious, 

potentially deleterious and potentially reactive) depending on the test method used to 

determine reactivity (Freitag et al., 2003). 

According to French (1992), the amount of the component in each type of rock which reacts 

is quite small as only about 1% of the silica in the rocks is converted into gel. Additionally, 

the gel outside the aggregate has usually much less alkali than that in the aggregate, but there 

is usually remnant alkali in the surrounding cement paste. Thus, the silica consumption 

during the reaction between the rock and the cement paste is a very small fraction of the total 

mass of the aggregate. It is particularly difficult to identify the reactive components. French 
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(1992) also believed that reactions normally took place inside the aggregate so the reactive 

silica had to be accessible to both the alkalis and to the moisture.  He suggested that the 

reactivity of each rock depends on a range of characteristics. These include microporosity, 

fracturation (or protofracturation), particle size and silica content, accessible dislocations in 

quartz, evidence of specifically reactive phases, identification (by X-ray) of amorphous or 

exceptionally fine material and traces of gel produced when particles over 0.5mm in diameter 

were treated with molar NaOH/KOH solution. He also asserted that the potential for reaction 

may be infered simply from the first observation, when the particle size is too fine for the 

particles to be resolved with a high quality petrological microscope. 

According to Tasong et al. (1998-a), insufficient studies have been made on the influence of 

the aggregate on the interfacial transition zone (ITZ), since it had been widely believed that 

the rock aggregates are chemically inert. From their studies of reactivity of basalt, limestone, 

quartzite and silica sand aggregates, they concluded that basalt is, by far, the most reactive 

when exposed to a OPC solution. Basalt absorbed very significant amounts of OH-, SO2-, 

Ca2+ and K+ and released significant amounts of Si4+, Na+, Mg2+ and Al3+ to a cement 

solution. According to these authors, the absorption of Ca2+, OH- and SO4
2- is due to the 

formation of hydrated calcium silicates as well as sulfates on the hydrating surface layer of 

the aggregate particles. 

Amongst the New Zealand rocks, Freitag et al. (2003) suggested that the following 

aggregates are generally non-reactive: greywacke, argillite, basalt (if under 50% SiO2), 

phonolite, granite, schist, quartz, quartz-feldspar, limestone and lightweight aggregates such 

as rhyolitic pumice, perlite and vermiculite; whereas aggregates made of basalt (if over 50% 

SiO2), andesite, dacite, rhyolite, quartzite, volcanic glass, cristobalite, tridymite, alluvial 

gravels and sands and amorphous and cryptocrystalline silicas including opal and chalcedony 

were generally reactive.  ASR reactivity is also characterised by combinations between 

different aggregates. From the studies to date, it was found that there is a certain proportion 

(under 100%) of a reactive aggregate that results in the greatest expansion due to ASR. This 

is called pessimum proportion, which can only be defined with empirical methodologies, 

based on reaction of the aggregate with mortar and/or concrete (Freitag et al., 2003). 
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III.3.3 Cement-Rock Interaction in Extreme Environments 

The quality of a cement job and, therefore, the cement-rock bond, is heavily dependent on 

how good the cement job design was. Information about the wellbore configuration and 

environment are crucial to a cement job design as they affect the cement slurry design and 

determine the cement placement technique to be utilized (Agbasimalo, 2012). 

The geothermal environment will modify the way that the cement-rock interaction takes 

place. The most important environmental variables include the temperature, the CO2 

exposure/pressure and the composition of the hydrothermal fluids (geobrine). Relevant 

studies on cement-rock interactions under hydrothermal conditions are scarce. A few works 

on cement-rock interaction at high temperatures have been found that are relevant to the 

current research, and these are presented in this section. Although at lower temperatures 

(under 60oC) and much higher pressures than the ones encountered in geothermal wells, a 

few studies on the effect of CO2 and brine in the context of CCS are also presented in the 

current section. 

 

III.3.3.1 Effect of Temperature 

Generally, and in accordance with several references (Poole, 1992-a; Criaud et al., 1994; 

Andrei et al., 1994; Criaud and Defausse, 1995), it is possible to assume that there is some 

similarity of reaction products in ASR between a normal and high temperature cure, 

regardless of the cement hydrates and the microstructure of the cement-rock system. On the 

other hand, silica gel is more viscous at high temperature, with a decrease of its migration 

rate. According to Jones and Poole (1989), the cut-off humidity below which ASR does not 

occur is proportional to temperature. Diamond et al. (1981) and Herr and Wieker (1992) 

showed that the temperature has an opposite and significant effect in the expansion attributed 

to the ASR. Initially, the expansion proceeds faster at elevated temperatures, but the rate 

declines more rapidly at higher temperatures and the final values of the expansions are 

inversely proportional to the temperature. 

Hodgkinson and Hughes (1999) tested the reaction at 85ºC between a selection of rock-

forming minerals and calcium hydroxide, used as a simple representative of the cement pore 

fluid. After about 1 month (800 hours), they observed as expected, calcite and/or portlandite 

had precipitated. Because of the presence of calcite in most of the samples, they concluded 

that most of the calcium hydroxide had easily carbonated. The samples of quartz, albite and 
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anorthite underwent dissolution (often along preferred crystallographic directions, to form 

etch pits visible by SEM). New calcium aluminosilicate phases precipitated in high yield in 

the anorthite, chlorite and muscovite samples. The product of muscovite contained high 

levels of Al3+ and was located almost within the zeolite compositional field. In the anorthite 

tests, katoite was formed at about 4 days old, at about 8 days, kaotite and poorly ordered 

fibrous C-A-S-H phase had formed; and at about 1 month, katoite and well-ordered fibrous 

C-A-S-H phase were present. For quartz and albite, only a very minor precipitation of new 

phases was observed. The fluid products were, in general, in agreement with the solid 

products of the anorthite. The chlorite and muscovite tests indicated dissolution of Al and Si 

bearing material with indication of a decrease in pH and with the Al buffered to a roughly 

constant level, possibly caused by precipitation of aluminous material. 

Up to 110ºC with calcium hydroxide present in the reactant fluid, the precipitating phases 

were CSH amorphous/poorly crystalline gels (though stoichiometrically related to the fully 

crystalline CSH ones, such as tobermorite and jennite) and other cement minerals 

(hydrogarnet, hydrocalumite, zeolites, feldspars,…) (Bateman at al., 1998; Rochelle et al., 

1992; Savage and Rochelle, 1993; van Aardt and Visser 1977a,b; Hodgkinson and Hughes, 

1999). 

From the extensive literature review they conducted, Hodgkinson and Hughes (1999) 

concluded that the main reactions up to 110ºC were the formation of calcium silicate hydrate 

(CSH) gels, while the main products at higher temperatures over 110ºC were zeolites and 

feldspars (especially, in the presence of NaOH or KOH). 

Andrei and Criaud (1996) concluded that the products of reaction obtained at 150ºC had a 

similar texture (amorphous and polyamorphous gels) to the ones at ambient conditions, which 

have a broad range of chemical composition. At temperatures above 150ºC, experiments 

conducted with alkali hydroxides (NaOH and KOH), rapidly formed zeolites and feldspars 

with the high pH, causing the alteration of smectite to illite or illite/smectite interlayers 

(Chermak, 1992, 1993; Inoue, 1983; Komarneni and White, 1981, 1983; Johnston and Miller, 

1984; Hodgkinson and Hughes, 1999). 

Langton et al. (1980), aiming to understand the relationship between the chemical and 

physical properties of the interfacial region formed between cement paste and rock, 

undertook some hydrothermal cement-rock interaction experiments at temperatures of 200ºC 

and 250ºC, at 51.7MPa pressure. They used an API class J cement, with tuscarora quartzite 
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(95% quartz) and Valentine limestone (99.9% calcium carbonate), which they considered 

unreactive. 

From the shear strength measurements, they observed that: 

o the cement-quartzite bond seemed dependent on temperature for the first 7 days of 

curing, as the 200ºC sample achieved much higher shear strength compared with that 

at 250ºC. However, after seven days, the shear strengths were closer, with the 250ºC 

higher than the 200ºC sample; 

o the cement-limestone sample was more stable and the shear strength was not 

dependent on the temperature (200/250ºC) or on the curing time, although it did not 

achieve as high shear strengths as the quartzite sample. 

From chemical analysis across the cement-rock interface, after only one day of curing, they 

observed that: 

o cement-quartzite sample: there was a relatively sharp decrease in silicon up to 50µm 

into the cement, and a sharp decrease in calcium over about the same range in the 

rock, which they attributed to the volume of sample excited by electrons during the X-

ray emission. Additional silica was also detected further inside the cement, which 

could be due to quartz grains that made up part of the composition of the class J 

cement. There was also some calcium rich areas, explained by the authors as a high 

concentration of calcium hydroxide crystals; 

o cement-calcite sample:  as with the cement-quartzite sample, there was a sharp 

gradational change for calcium and silicon, across the interfacial region. 

They concluded that the both shear strength and hydration changes for both samples 

depended on the temperature and on curing time. Moreover, they believed that the degree of 

paste hydration (in normal cement pastes) or of belite (C2S)-quartz reaction (in hydrothermal 

cements) increased with the degree of crystallinity of calcium silicate hydrates in the 

interfacial region and the paste, which increased with time and temperature. 

It was suggested that the shear bond strength that developed between ‘unreactive’ wall rock 

and cement reasonably approximated, within experimental error, the tensile strength of the 

hydrothermally cured cement itself. They concluded that mechanical bonding was primarily 

responsible for the shear strength of the unreactive wall rock-cement contact, rather than any 

chemical bonding. 
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III.3.3.2 Effect of Drilling Fluid (Mud) 

The bond between the cement and the rock is defined by the mechanical interlocking of 

cement hydration products with the rock grains and the chemical reaction between the cement 

paste and rock grains. The contamination of cement by drilling fluid alters the mechanical 

and chemical properties of the cement and this in turn affects the character of the bond 

between the cement and the rock (Agbasimalo, 2012). 

When a well is being drilled, partially dehydrated-gelled drilling fluid and mud cake are 

deposited on the wall of the wellbore (Ravi et al., 1992). The presence of mud channels has 

been shown to reduce cement-formation bond strength and create pathways for fluid 

migration. Scratchers in conjunction with casing movement are usually used to remove the 

mud before cement placement but they do not remove all the mud (Agbasimalo, 2012).   

Peterson (1963) evaluated the effect of mud cake and mud contamination of cement on the 

cement-formation bond. Shear bond experiments were performed using cement-sandstone 

composites with either the presence of mud cake at the interface or the contamination of the 

cement by mud. The interface was tested in four different modes: with the presence of the 

mud cake; with mud cake scraped off; with the mud cake scraped off plus the surface washed 

with water; and mud cake scraped off plus the surface washed with surfactant5. The mud 

thinkness was one mm. The bond strength of the cement mudstone composite without mud 

cake was 1.27 MPa with no significant bond strength measured in the presence of the mud 

cake. For the mud cake treatments, the highest bond strength was recorded with mud cake 

scraped off plus the surface washed with surfactant (1.02 MPa), while the lowest bond 

strength was obtained with mud cake scraped off only (0.5 MPa). 

Ladva et al. (2005) investigated the effect of the mud cake on porous formations as well as 

the effect of mud treatment on shale. These authors concluded that the presence of mud cake 

reduced the cement-sandstone bond strength drastically, from over 0.8 MPa to 10-3 MPa. 

Additionally, they observed that the bond strength was 3 times greater when the mud cake 

was washed out compared to the unwashed mud cake. 

Oyibo and Radonjic (2014) have also investigated the effect that both physical and chemical 

drilling mud contamination have on the cement-rock interface.  They considered the mud 

                                                           
5 Surfactants are compounds that lower the surface tension (or interfacial tension) between two liquids or 
between a liquid and a solid. 
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cake forming between the cement and the rock, provides physical contamination which acts 

as physical barrier. The chemical contamination consists of 5-10% of the drilling mud 

(bentonite) mixing with the cement outermost layer, i.e. bentonite is incorporated in the 

cement outermost layer during the hydration stage. From this study, these authors concluded 

that physical contamination (mud cake) has the most negative impact on cement-formation 

shear bond strength and the mud cake was considered detrimental to bonding. 

 

III.3.3.3 Effect of CO2 and Brine 

Besides affecting the natural rock formation and the engineered materials (cement and steel 

casing), the brine along with the presence of CO2 also plays a key role on how the rock and 

materials interact with one another. Hodgkinson and Hughes (1999) recognised the 

significance of the effect that the CO2 had in the cement-rock system: CSH gels and 

portlandite have a tendency to become carbonated and calcite readily precipitates whenever 

the calcium hydroxide comes into contact with a carbonate source. 

Duguid and his co-workers (2009, 2011) used an experimental set up consisting of sandstone 

cylinders filled with class H neat paste (W/C=0.38) (Figure III.13), cured for 7 months in a 

SiO2 saturated 0.5 M NaCl brine, at different temperature/pH combinations, e.g. 20oC/pH 3, 

20oC/pH 4, 20oC/pH 5 and 50oC/pH 3. Following curing in a CO2 free environment, the filled 

cylinders were sliced into discs with the faces sealed (so that diffusion only occurred in the 

radial direction), and cured in the CO2 saturated brine and checked every month for 1 year. 

The design of the experiment and the samples forced the degradation to be controlled by 

diffusion through the pores of the sandstone, a relatively permeable rock when compared 

with most of the rocks found downhole. 
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Figure III.13 - sectioned schematic of stone-cement sample prior to slicing (A) 

and measurement locations (B) (Duguid et al., 2011) 

 

They observed a general degradation pattern with a single visible reaction zone formed, 

which progressed over time. After 1 month the colour was cream. After 2 months, light 

orange with bright orange at the interface, becoming lighter towards the centre of the cement. 

Visible degradation of the front showed a change in rate after 2 to 3 months. This was 

attributed to the precipitation of calcium carbonate in the larger cement pores and a switch 

from the degradation of Ca(OH)2 (and C-S-H) to the degradation of CaCO3 (Figure III.14). 

 

 

Figure III.14 - Photos of the sandstone samples reacted over a year at pH 3 and 20
o
C (Duguid, 2009) 
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The depth of reaction was measured from the outer edge of the invaded zone (and not from 

the cement-sandstone interface) and at different locations, with variable rock section 

thicknesses.  In the 50oC experiments, the cement invaded the stone to a depth of 0.8-1mm. 

The maximum depths of the visible reaction zone for 20oC was 0.310mm (pH 3), 0.307mm 

(pH 4) and 0.270mm (pH 5), whereas at 50oC it was 0.577mm (pH 3) (Figure III.15). 

 

 

Figure III.15 - Reaction depth data versus the square root of time divided by the shortest distance, r, to 

the outside of the sample for all measurements points (Duguid, 2009). 

[A] = 20
o
C-pH 3;       [B] = 20

o
C-pH 4 ;       [C] = 20

o
C-pH 5;       [D] = 50

o
C-pH 3 

 

The EDX maps of calcium, iron and silicon for one of these samples are presented in Figure 

III.16. The map for the cement region shows iron and silicon are homogeneously distributed. 

The map for calcium shows two regions: the bottom of the map, extending up between 600 

µm and 800 µm, shows a higher intensity (more white) than the 1000-micron-wide region 

starting between 600 µm and 800 µm extending to the interface with the sandstone. 
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Some calcium deposits could be seen by X-ray mapping at the leading edge of the visible 

(orange) reaction front.  These calcium deposits have no corresponding features for iron and 

silica in the X-ray maps so these authors postulated they were not unhydrated cement phases. 

Furthermore, due to the long (6 months) exposure to carbonic acid, the calcium grains were 

not likely to be calcium hydroxide, which should be the first calcium phase in the cement to 

be destroyed. 

 

 

Figure III.16 - X-ray maps of the 20
o
C - pH 3 sample at 6 months showing white grains outlined by the 

rectangular boxes in the calcium map (left) and showing no corresponding grains in the iron map (center) 

and the silicon map (right) (Duguid, 2009). 

 

Whilst some interactions are expected (e.g. contact of CO2 with the cement outermost layer), 

others are consequences of relatively unpredictable leakages.  Leakages can occur along 

micro-annuli present at the cement-formation or cement-casing interfaces due to poor 

bonding between these materials (Crow et al., 2009). The cement-rock and the cement-steel 

interfaces represent particularly important features, and may represent zones of preferential 

fluid movement should chemical changes in the cement alter its physical properties (Figure 

III.17). Additionally, Rochelle (2004) reckons that a good cement-to-formation or cement-to-

casing seal relies strongly on a physical rather than a chemical bond. 
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Figure III.17 - Small section of an abandoned well used for CCS purposes: (A) CO2 migration through 

the pores or pathways of the well cement; (B) CO2 migration through  annuli or defects that exist 

between the casing and the cement; (C) CO2 travelling through an annulus or pathway at the interface 

between the cement and the formation; (D) CO2 entering the wellbore through a damaged casing and 

travelling up the inside of the well (Duguid et al., 2006) 

Most of these leakages are due to: 1) deficient well construction (e.g. most of the wells are 

only partially cemented and there is often no cement behind the borehole casing between the 

top of the production interval and the uppermost few hundred metres of well); 2) improperly 

abandoned wells; or 3) geochemically or geomechanically compromised barrier system 

(Crow et al., 2009; Rochelle, 2004).  While the steel casing is not a concern within the 

current work, the way the CO2 interacts with the well cement assumes an extremely 

important role on the cement performance, durability and, consequently, on the way it 

interacts with the surrounding rock formation. 

Carey et al. (2007) studied a core of metal casing, well cement and shale caprock, which had 

been in CO2-rich brine at 54oC and 18MPa for 30 years. Besides the alteration depths of the 

cement, one of the main conclusions was that CO2 migrated along a pre-existing gap along 

the cement-shale interface. This seems to highlight the importance of the cementing job to 

avoid leakage pathways; something that is not usually considered in laboratory work. These 

authors have also reported a potential “self-healing” by deposition of carbonate in the cement 

fractures as well as in the interface defects. These defects may exist because of inadequate 

removal of drill cuttings, formation of a drilling mud filter cake, formation damage during 

drilling or geomechanical stresses. Aiming to better understand the importance of these 

defects, Newell and Carey (2013) have commenced a laboratory experiment in order to 

evaluate the evolution of the Portland cement-caprock deficient interface (mix of 20% 

crushed hydrated cement with 80% siltstone) during CO2 leakage. The simulated downhole 

environment was 60oC at a confining pressure of 18MPa, with posterior co-injection of a 

mixture of scCO2 and brine into the sample. While the rock seemed not to be affected, the 
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cement has carbonated up to 5mm away from the gap, with a 100µm dense carbonation front, 

which is in accordance with the previously mentioned carbonation sheath that protects the 

cement from further CO2 intrusion through the deposition of dense carbonate. Additionally, 

there was a significant decrease in the permeability in the interface (defect), despite the 

calcite-undersaturated conditions. According to these authors, this might have been a 

consequence of migration of fines and redistribution of dissolved cement phases in the defect 

(e.g. alumina hydroxides and amorphous silica), rather than the carbonate deposition reported 

by Carey et al. (2007). 
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IV. METHODOLOGY 

IV.1 Justification for the paradigm and methodology 

This work examines the changes in composition and properties of the Interfacial Transition 

Zone (ITZ) that develops between formation and cement in a simulated geothermal 

environment. To simulate a real geothermal well cement/formation interface, cavities were 

drilled/cored within rock blocks and cement grouts were set into the holes, after which the 

whole assembly was exposed to simulated downhole conditions in an autoclave. 

New Zealand geothermal wells are commonly drilled through acid silicate rocks such as 

ignimbrite, andesite, rhyolite, pumice and greywacke. Following discussions with the 

IRL/Callaghan Innovation cement research team, as well as recommendations from Browne 

(2011) the most relevant rocks for the current study were considered. These include, from the 

most to the least relevant, ignimbrite, rhyolite, andesite, greywacke and pumice. Due to time 

restrictions, this work has focused only on ignimbrite and rhyolite, with four ignimbrites 

(including two hydrothermally altered ones) and one rhyolite being tested. 

The cements currently used in geothermal applications are predominantly API oilwell 

cements. This research has used an API Class A, an API Class G, white cement and high 

alumina cement (HAC). The API class G cement has been modified with 

additions/replacements used to improve the cement performance, namely Silica Flour (pure 

quartz) and Microsilica 600 (amorphous silica). These additions are common within the 

geothermal industry, as they have already been tested and proved satisfactory. The selected 

combinations of cements and admixtures were: 

� API class G cement (G): the most commonly used cement in geothermal wells, which 

is currently a reference for any kind of well cementing. 

� API class G + 20% MS600 (G20MS): addition of 20% (in weight) of Microsilica 600 

to the reference well cement. This mixture has already been proved successful in 

geothermal well cementing due to added properties imparted by the amorphous silica. 

� API class G cement + 20% Silica Flour (G20SF): addition of 20%  

(in weight) of silica flour to the reference well cement, aiming to compare it with 

G20MS and G40SF. 

� API class G cement + 40% silica flour (G40SF): addition of 40% (in weight) of Silica 

Flour (quartz) to the reference well cement in order to form tobermorite, a desired 

hydration product which forms with over 30% quartz addition. 
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� API class A cement (A): despite belonging to the API range, it is basically an 

Ordinary Portland Cement (OPC) and was chosen as a reference because most of the 

studies within the cement research field are based on OPC. 

� White cement (W): this Portland based cement lacks tetra-calcium alumina ferrite 

(C4AF), which provides lower workability and lower resistance to sulphates when 

compared with A and G. Consequently, W may also show interesting changes in the 

way it interacts with the rock formation when compared with A and G. 

� High Alumina cement (HAC): contains, which, during the hydration, may release 

some Al3+ ions from the alumina content and, possibly, have a different interaction 

with the rock. 

Simulation of the geothermal environment has been made in large autoclaves, with 

hydrothermal fluids exposure and varying temperature and CO2 concentration. 

The hydrothermal solution (geobrine) utilised is that used in the experimental work 

undertaken by the IRL/Callaghan Innovation cement research team. The recipe is based on a 

geothermal fluid assay based on NZ typical geothermal fluid, supplied by Mighty River 

Power in 2009, and confirmed by GNS Science in February 2010.  It consists of 0.19 g 

sodium sulfate (NaSO4), 0.05 g calcium chloride dihydrate (CaCl2.2H2O), 15.6 g colloidal 

silica (SiO2), 4.1 g potassium chloride (KCl), 15.8 g sodium chloride (NaCl). These are well 

mixed and made up to 20 litres with distilled water. 

Two different temperatures have been found to be the most relevant to simulate the 

conditions downhole: 

� 150°C: this temperature was chosen to mimic conditions in the lowest temperature 

wells, and the middle of the highest temperature wells. Two new crystalline phases 

(not expected at lower temperatures) form when silica flour is added, both with lower 

permeability and improved compressive strength, when compared to the equivalent 

product at temperatures lower than 150oC. This temperature also represents the 

temperature where the levels of dissolved CO2 and corrosion are highest. 

� 290°C: at over 220oC, a transformation to a weaker and more permeable material 

occurs at both high and low Ca/Si ratio formulations. Additionally, this is close to the 

maximum temperature measured in geothermal wells in New Zealand, which is above 

300oC. Nevertheless, as a safety procedure, the maximum temperature currently 

utilized now in the IRL autoclaves is 290oC. 
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Regarding the CO2 concentration, the literature (Henneberger, 1983; Wolley and Carroll, 

2010) states that the total ambient pressure in geothermal environments is situated within the 

range 10-100bars, with a CO2 overpressure of 6bars. At 150oC, the autoclave pressures were 

approximately 11bars, whereas at 290oC the pressure went up to about 74bars, both with a 

CO2 overpressure of approximately 6 bars. 

 

IV.2 Raw Materials 

The different materials utilised in the current experimental work: the rocks; the powdered 

cement; the admixtures; and powdered bentonite used to simulate the drilling fluid are 

characterised in this section. The tests undertaken on these materials include X-ray 

fluorescence analysis (XRF), X-ray diffraction analysis (XRD), optical microscopy (OM) and 

scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), particle size, 

density/porosity and mercury porosometry. The procedures for these tests were: 

� XRF: this test identifies the major elements present in the sample and was carried out 

on all the raw materials. The material to be examined was ground with a mortar and 

pestle to obtain a powder as fine as possible. It was then sent to CRL Energy Ltd 

(Spectrachem), for analysis using a Siemens (Bruker) SRS3000 sequential 

wavelength-dispersive X-ray fluoresence spectrometer, equipped with a 3kW 

Rhodium x-ray tube. The data were presented in major oxide format, a standard 

geological analysis protocol. Samples were analysed on an oven-dried basis (110°C), 

with Ignition loss (LOI) determined for one hour at 1000°C, and all data are corrected 

back to the “oven-dried” basis. The resulting ‘ignited material’ is combined with a 

proprietary fluxing agent (mixture of lithium tetraborate and metaborate x-ray flux) in 

known ratios. The sample is then mixed and heated to 1100°C, producing a glass 

melt, that is annealed to form a flat glass disc for analysis. Data for all oxides are 

considered ‘total’ present, rather than ‘extractable’ or ‘recoverable’. 

� XRD: this test identifies all the crystalline components present in the rocks and in the 

admixtures. The rock samples were submitted for Rietveld XRD quantitative analysis, 

which required a distinct and more accurate sample preparation. Firstly, in order to 

obtain a representative sample of the rock, over one dm3 of rock was crushed (Figure 

IV.1), ground with a milling machine and riffled (Figure IV.2). A small amount of 

sample (approx. one gram) was further ground with the bouncing ball equipment 

(Figure IV.3) and 33,(3)% (by weight) of corundum was added as reference. This 
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mixture was then scanned for ca. five hours within the diffraction range from 4o to 80o 

2θ, with cobalt (Co) as X-ray diffraction source. This result was analysed using the 

powder diffraction data software TOPAS, which calculates the amount (in percentage) 

of each crystalline material present in the rock by comparison with the reference 

sample for which the amount is previously known (addition of 33,3% is equivalent of 

25% of the total weight). A complementary analysis was made by considering the 

XRF results, the stoichiometric compositions and the element weights. From these 

results an approximate estimation of the amount of silica present in the volcanic glass 

was obtained. 

 

Figure IV.1 - Scheme of the 

crushers utilized to crush the 

rock samples for XRD 

quantitative analysis 

Figure IV.2 - Type of riffler 

used to get a representative 

sample of the rock for XRD 

quantitative analysis 

Figure IV.3 - Bouncing ball 

used for milling the rock 

for XRD quantitative 

analysis 

 

� Particle size: The particle size distribution of all the cements and admixtures was 

measured by using a Shimadzu Sald 2001 laser diffraction particle size analyser, with 

a 0.1µm to 700 µm measurement range. This method relies on the variations between 

the emission and reception of a scattered laser trough a small transparent chamber 

where the particles of the sample stand. The variations between the light waves that 

are emitted by the laser and the ones that are detected in the sensor provide the size of 

the particles present in the chamber. The procedure consists in dispersing a small 

amount (approximately 100 mg) of powdered sample into the small glass cup with 

100 mL of dry isopropyl alcohol (which does not react with the cements) or distilled 

water (for the admixtures). The particles in the colloidal solution are dispersed by 

stirring and ultrasonic treatment. The suspension is pumped through the instrument 
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starts which does not stabilise until all the sample particles are dispersed. The final 

data is collected once the measurements stabilise. 

� Density and porosity: the density and porosity were obtained for all the rock samples. 

This method calculates the bulk density as well as the apparent porosity, through the 

measurement of the dry, submersed and saturated surface dry (SSD) weights of the 

sample, at a carefully controlled temperature (18oC), as the density of water slightly 

changes depending on its temperature (Figure IV.4 and Figure IV.5). After measuring 

the mass of the samples using a high precision scale, the bulk density, apparent 

density and apparent porosity are calculated for each of the rock types according to, 

respectively, Equation IV.1, Equation IV.2 and Equation IV.3: 

 

eightSubmersedWWetWeight

DryWeight
yBulkDensit

−
=  Equation IV.1 

 Equation IV.2 

 Equation IV.3 

where, 

Dry Weight - the mass of the object at the ambient conditions (room humidity 

and temperature) (g); 

  Submersed Weight - the mass of the object immersed in water at 18oC (g); 

Wet Weight - the weight of the object measured while fully saturated with 

water at 18oC (SSD) (g); 

Bulk.Density - the mass of the material divided by the total volume it occupies 

(this volume includes particle volume, inter-particle void volume and internal 

pore volume) (kg/dm3); 

Apparent.Density - the mass of the material divided by the volume it occupies, 

(this volume excludes the amount of volume occupied by open voids/pores) 

(kg/dm3); 
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Apparent.Porosity - the amount of void (or pores) within a volume of 

sediment or porous solid (the real porosity includes the volume of the sealed 

pores also, but it is much more difficult to obtain) (%). 

 

Figure IV.4 - Precision scale used to 

measure the dry, wet and 

submersed weights of the sample 

Figure IV.5  - Vacuum system used to replace the water with air 

in order to fully saturate the sample with water 

 

� Mercury porosometry was performed for all the rock samples and measures the pore 

size distribution through mercury intrusion. The samples were sent to the external 

Australian company Particle and Surface Sciences Pty. Limited, for analysis. The 

pressure required to intrude mercury into the sample’s pores is inversely proportional 

to the size of the pores. The instrument used was a Micromeritics Autopore 9520 – 

Pore Size Range 350um – 0.003um (60,000psi). The procedure comprises the 

following steps: 1) 0.8 to two grams of sample were loaded into the penetrometer, 

which consists of a sample cup connected to a metal clad, precision-bore, glass 

capillary stem; 2) the penetrometer is sealed  and placed in low pressure port, where 

the sample is evacuated to remove air and moisture; 3) the penetrometer’s cup and 

capillary stem are then automatically backfilled with mercury, with the excess 

mercury being automatically drained back into the internal reservoir; 4) as pressure on 

the filled penetrometer increases, mercury intrudes into the sample’s pores, beginning 

with those pores of larger diameter; 5) the penetrometer is moved to the high pressure 

chamber, where high pressure measurements are taken; 6) the data are automatically 
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reduced using the low and high pressure data points, along with values entered by the 

operator, such as the weight of the sample and the weight of the penetrometer loaded 

with mercury. 

� OM: a transmitted light microscope was used for petrographic analysis. More details 

about this test and procedure are given in the section III.3 (research procedures) 

section of the current chapter. 

 

IV.2.1 Rocks 

The rocks chosen for the experimental work were ignimbrite and rhyolite. Ignimbrite is the 

predominant rock in geothermal environments in New Zealand, whereas rhyolite, although 

not as common as ignimbrite, was chosen as it has significantly different properties to 

ignimbrite. Different hydrothermal alteration types of ignimbrite were tested. The rocks were 

all analysed by XRF, XRD, density and porosity assessment, OM and SEM/EDS analysis. 

The rocks tested were Ongatiti Ignimbrite (IGN), Unaltered Ignimbrite (UNI), Ignimbrite 

with Kaolinite alteration (KAO), Ignimbrite with Mordenite Alteration (MOR) and Whakaroa 

Rhyolite (RHY). Their origin and composition is given in the following sub-sections. 

 

IV.2.1.1 Ongatiti ignimbrite (IGN) 

This rock is also known as Hinuera Stone, as it is quarried at Hinuera in the Waikato region 

(Figure IV.6). After quarrying, this rock is sawn and cleaned (washed with water) by the 

company, Hinuera Natural Stone, for comercialisation. This rock was used as a reference as it 

was available from the start of the experimental work and in sufficient amounts to cover all 

the combinations under evaluation. 

 
Figure IV.6 - Block of IGN 
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XRF analysis: 

The major oxides composition of IGN are presented in the Table IV.1. 

Table IV.1 - XRF analysis of the rocks 

ROCK 
Major oxides composition (weight % on oven dried [110oC] basis) 

SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI* SUM 

IGN 70.56 13.80 2.81 0.04 0.36 1.90 3.75 3.30 0.31 0.07 2.62 99.53 

UNI 71.16 13.57 2.27 0.08 0.34 1.59 3.21 3.45 0.27 0.02 3.74 99.69 

KAO 69.74 16.42 2.13 0.06 0.17 0.87 0.77 1.62 0.36 0.02 7.61 99.78 

MOR 70.87 13.72 2.23 0.03 0.21 2.53 2.41 3.47 0.30 0.05 4.11 99.93 

RHY 74.09 13.46 2.34 0.06 0.50 2.02 4.54 2.27 0.30 0.07 0.08 99.72 
*LOI = loss on ignition at 1000°C 

 

Rietveld XRD/quantitative analysis: 

The XRD difractogram shows distinctive peaks as well as some large humps attributed to the 

amorphous material in this rock (composed of amorphous volcanic glass). The minerals 

identified by XRD analysis were ca. 15 wt% feldspars (mostly plagioclases ranging from 

albite to anorthite - typically andesine) and ca. 1.5 wt% quartz (SiO2). No other crystalline 

minerals were identified so it can be inferred that the rock is ≈83.5 wt% amorphous (further 

XRD quantitative information on spiked samples is presented in the appendix X.1 (XRD 

quantitative information). 

Considering only 15wt% of feldspars are present (from the quantitative XRD analysis) and 

assuming that calcium, sodium and potassium oxides (CaO, Na2O and K2O) are evenly used 

to form the end member feldspars (anorthite, albite and orthoclase, respectively), the silica 

necessary to form these feldspars is approximately 10wt%. This implies, however, that only 

ca. 40wt% of the calcium, sodium and potassium oxides are being used to form feldspars, i.e. 

the rest of these oxides, ca. 60wt%, are present in the rock as constituents of the glass. 

Furthermore, by subtracting the silica present in the crystalline materials (10wt% present in 

the feldspars and 1.5wt% from the quartz) from the total amount of silica present, ca. 

70.5wt% (obtained in the XRF), it can be concluded that ca. 59wt% of silica is present in the 

volcanic glass of the rock (see appendix X.1). 

 

Density and porosity: 

The results obtained for the density and porosity of IGN are presented in the Table IV.2. 
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Table IV.2 - Density and porosity results of the rocks 

 

ROCK 

Dry weight 

(g) 

Submersed 

weight (g) 

Wet weight 

(g) 

Bulk 

density 
(kg/dm

3
) 

Apparent 

density 

(kg/dm
3
) 

Apparent 

porosity (%) 

IGN 9.202 5.327 11.088 1.595 2.372 32.737 

UNI 16.973 9.922 22.740 1.322 2.404 44.991 

KAO 26.097 14.772 36.535 1.198 2.301 47.962 

MOR 32.183 18.288 40.454 1.450 2.313 37.314 

RHY 43.431 26.220 46.001 2.193 2.520 12.992 

 

 

Mercury porosometry: 

The most relevant results regarding the mercury porosimetry are presented in the Table IV.3 

and Table IV.4. Detailed analysis is presented in the appendix X.2. IGN is the second least 

porous rock, with only 32.94% porosity. This result is in very good agreement with the 

apparent porosity calculated above (32.74%). The total mercury intrusion was 0.2869 mL/g, 

which is the third highest amongst all the rocks. The mercury intrusion in pores with a 

diameter above 0.5 µm is 0.2066 mL/g. Considering the bulk density given above for this 

rock (1.595 kg/dm3 = 1.595 g/mL), it corresponds to 0.3295 mL of mercury intrusion per mL 

of rock, which is the highest for pores with a diameter above 0.5 µm. 

 

Table IV.3 - Mercury Intrusion as a function of the Pore Size (volume of pores per weight of sample) 

ROCK 

 

TOTAL 

Intrusion 

(mL/g) 

Intrusion 

in ØØØØ* > 

0.1µm 

pores 

(mL/g) 

Intrusion 

in ØØØØ > 

0.5µm 

pores 

(mL/g) 

Intrusion 

in ØØØØ > 

1µm pores 

(mL/g) 

Intrusion 

in ØØØØ > 

5µm pores 

(mL/g) 

Intrusion in 

ØØØØ > 10µm 

pores 

(mL/g) 

Intrusion in 

ØØØØ > 50µm 

pores 

(mL/g) 

Intrusion in 

ØØØØ > 100µm 

pores 

(mL/g) 
 

IGN 0.2869 0.2410 0.2066 0.1578 0.0109 8.6070E-03 5.7380E-03 4.8773E-03 

UNI 0.2294 0.2019 0.1636 0.1145 0.0156 1.1241E-02 6.8820E-03 5.5056E-03 

KAO 0.3938 0.2008 0.0985 0.0764 0.0197 1.5752E-02 9.4512E-03 7.0884E-03 

MOR 0.2983 0.2178 0.0835 0.0567 0.0200 1.6407E-02 8.3524E-03 6.2643E-03 

RHY 0.0615 0.0517 0.0461 0.0421 0.0286 2.3985E-02 1.0148E-02 6.7650E-03 

*    ØØØØ =diameter 
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Table IV.4 - Mercury Intrusion as a function of the Pore Size (volume of pores per volume of sample) 

ROCK 

 

Bulk 

density 

(g/mL) 

 

TOTAL 

Intrusion 

(mL/mL) 

Intrusion 

in ØØØØ > 

0.1µm 

pores 

(mL/mL) 

Intrusion 

in ØØØØ > 

0.5µm 

pores 

(mL/mL) 

Intrusion 

in ØØØØ > 

1µm 

pores 

(mL/mL) 

Intrusion 

in ØØØØ > 

5µm 

pores 

(mL/mL) 

Intrusion 

in ØØØØ > 

10µm 

pores 

(mL/mL) 

Intrusion 

in ØØØØ > 

50µm 

pores 

(mL/mL) 

Intrusion 

in ØØØØ > 

100µm 

pores 

(mL/mL)   

IGN 1.595 0.4576 0.3844 0.3295 0.0520 0.0006 4.8785E-06 2.7993E-08 1.3653E-10 

UNI 1.322 0.3033 0.2669 0.2162 0.0248 0.0004 4.3401E-06 2.9869E-08 1.6444E-10 

KAO 1.198 0.4718 0.2406 0.1179 0.0090 0.0002 2.7947E-06 2.6413E-08 1.8723E-10 

MOR 1.450 0.4325 0.3158 0.1211 0.0069 0.0001 2.2508E-06 1.8799E-08 1.1776E-10 

RHY 2.193 0.1349 0.1133 0.1012 0.0043 0.0001 2.9229E-06 2.9660E-08 2.0065E-10 

 

OM (thin section): 

This rock is mostly glassy, with a eutaxitic texture, i.e. a matrix of glass shards welded 

together with fine ash (glass), and containing lithic (rock) fragments and pieces of pumice. 

The predominant minerals are plagioclase (strongly zoned and with Na/Ca composition ratio 

in between albite and anorthite - typically andesine) and quartz. Very small amounts of 

amphibole noted (hornblende: high relief and strong pleochroism). This rock is not altered 

(Figure IV.7). 

 

  

i. Plane Polarised Light (PPL) ii. Cross Polarised Light (XPL) 

Figure IV.7 - Optical microscope images: IGN 
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IV.2.1.2 Unaltered Ignimbrite (UNI) 

A second ignimbrite was collected from Ohakuri, in the TVZ, based on the data provided by 

Henneberger (1983) (Figure IV.8). This rock was selected for the current work because it 

represents the unaltered ignimbrite from the TVZ. 

 

 
Figure IV.8 - Block of UNI 

 

 

XRF analysis: 

The major oxides composition of UNI is presented in the Table IV.1. It has a very similar 

composition to IGN. 

 

Rietveld XRD/quantitative analysis: 

The XRD diffractogram contains a few  distinctive peaks superimposed on several large 

humps distributed over a wide range due to the amorphous nature of this rock. The minerals 

identified by XRD analysis were ca. 16 wt% feldspar (plagioclases range from albite to 

anorthite) and ca. three wt% quartz (SiO2). No other crystalline minerals were identified by 

XRD, from which can be inferred that the rock is ≈81 wt% amorphous (further XRD 

quantitative information on spiked samples in the appendix X.1). 
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Considering the same procedure adopted to IGN, it was found that, from the total amount of 

silica present in the rocks, ca. 11 wt% is present in the feldspars and ca. 57 wt% is present as 

a component of the volcanic glass (see appendix X.1). 

 

Density and porosity: 

The results obtained for the density and porosity of UNI are presented in the Table IV.2. This 

material has a higher apparent porosity and slightly higher apparent density than IGN. 

 

Mercury porosometry: 

The most relevant results from mercury porosimetry are presented in Table IV.3 and Table IV.4. 

The detailed analysis is presented in appendix X.2. UNI is the second most porous rock, with 

43.62% porosity. This result is in excellent agreement with the apparent porosity calculated 

above (44.99%). Total mercury intrusion was 0.2294 mL/g, which is the second lowest of all 

the rocks studied with intrusion into pores above a diameter of 0.5 µm is 0.1636 mL/g. 

Considering the bulk density given above for this rock (1.322 kg/dm3 = 1.322 g/mL), this 

corresponds to 0.2162 mL of mercury intrusion per mL of rock, which is the second highest 

for pores with a diameter above 0.5 µm. 

 

OM (thin section): This ignimbrite shows a matrix of glass shards welded together with fine 

ash (glass). The predominant minerals are plagioclase and quartz. A few pumice fragments 

are also present, as well as spherulites (radiating cristobalite/tridymite) that are indicative of 

devitrification. Orthopyroxene and Fe-Ti oxides (magnetite) are also identified. This rock 

shows almost no alteration, except for minor glass devitrification (Figure IV.9). 
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i. PPL ii. XPL 

Figure IV.9  - Optical microscope images: UNI 

 

 

IV.2.1.3 Ignimbrite with kaolinite alteration (KAO) 

This rock was also collected from Ohakuri, in the TVZ, based on the data provided by 

Henneberger (1983) (Figure IV.10). It was selected for the current work because it represents 

an altered ignimbrite from the TVZ. It is important to understand the role that hydrothermal 

alteration may play as many of the rocks present in hydrothermal systems have suffered some 

degree of alteration. 

 

 

 
Figure IV.10 - Block of KAO 
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XRF analysis: 

The major oxide composition of KAO is presented in the Table IV.1. 

 

Rietveld XRD/quantitative analysis: 

The XRD diffractogram shows distinctive peaks as well as superimposed on some large 

humps distributed over a wide range, due to the amorphous nature of the glass. The minerals 

identified by XRD analysis are ca. 15wt% feldspar (mostly plagioclases range from albite to 

anorthite - typically andesine), ca. 2.2wt% quartz (SiO2) and kaolinite. No other crystalline 

minerals were identified by XRD, from which it can be inferred that the rock is ≈75.8wt% 

amorphous (further XRD quantitative information on spiked samples in the appendix X.1. 

Considering the same procedure adopted for IGN, it was found that from the total amount of 

silica present in the rocks, ca. 9wt% is present in feldspars.  Moreover, assuming all the 

weight left in the feldspars is composed of alumina, then ca. 2.8wt% alumina is present in the 

form of feldspars. Thus, considering that all the alumina left is used to form kaolinite, there is 

approximately 7wt% kaolinite, of which ca. 3wt% is silica. 

By subtracting the silica present in the crystalline materials (9wt% present in the feldspars, 

2.2wt% from the quartz and 3wt% present in the kaolinite) from the total amount of silica 

present, ca. 70wt% (obtained in the XRF), it can be concluded that ca. 56wt% of silica is 

amorphous and is the volcanic glass (see appendix X.1). 

 

Density and porosity: 

The results obtained for the density and porosity of KAO are presented in the Table IV.2. This 

material has a higher apparent porosity and slightly lower apparent density compared to IGN. 

 

Mercury porosometry: 

The most relevant results from mercury porosimetry are presented in the Table IV.3 and Table 

IV.4 with the detailed analysis presented in appendix X.2. KAO is the most porous rock 

studied, with 47.68% porosity. This result is in very good agreement with the apparent 

porosity calculated above (47.96%). The total mercury intrusion was 0.3938 mL/g, which is 

the highest amongst all the rocks. Intrusion into pores above 0.5 µm diameter is 0.0985 mL/g. 
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Considering its bulk density of 1.198 kg/dm3 = 1.198 g/mL, this corresponds to 

approximately 0.1179 mL of mercury intrusion per mL of rock, making it the second lowest 

for pores with a diameter above 0.5 µm. 

 

OM (thin section): 

This rock has a eutaxitic texture with glass shards welded together within a fine ash matrix of 

glass. The predominant minerals are compositionally zoned plagioclase (albite - anorthite – 

typically andesine) and quartz. Kaolinite was not identified by optical microscope analysis. 

The degree of alteration is higher than IGN or UN as a new mineral is forming, kaolinite 

(confirmed by XRD) (Figure IV.11). 

  

i. PPL ii. XPL 

Figure IV.11 - Optical microscope images: KAO 

 

 

IV.2.1.4 Ignimbrite with mordenite alteration type (MOR) 

Similarly to UNI and KAO, this rock was collected from Ohakuri, in the TVZ, based on the 

data provided by Henneberger (1983) (Figure IV.12). This rock was selected as it has the 

highest type of alteration among all the ignimbrites studied in the current work. 
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Figure IV.12 - Block of MOR 

 

XRF analysis: 

The major oxide composition of MOR is presented in the Table IV.1. 

 

Rietveld XRD/quantitative analysis: 

The XRD diffractogram has some distinctive peaks as well as some large humps distributed 

over a wide range. The minerals identified by XRD analysis are ca. 25wt% feldspars, ca. 

3.2wt% quartz (SiO2) and 25wt% mordenite. No other crystalline minerals were identified by 

XRD, from which it can be inferred that the rock is composed of ≈46.8wt% amorphous 

(further XRD quantitative information on spiked samples in the appendix X.1. 

Considering the same procedure adopted to IGN, it was found that, from the total amount of 

silica present in the rocks, ca. 15wt% is present in the feldspars.  Moreover, from the 25wt% 

of mordenite present, ca. 17wt% is silica. 

By subtracting the silica present in the crystalline materials from the total amount of silica 

present, ca. 71wt%, it can be concluded that ca. 36wt% of silica is present in the glass (see 

appendix X.1). 

 

Density and porosity: 

The results obtained for the density and porosity of MOR are presented in the Table IV.2. It 

has a slightly lower apparent density and slightly higher apparent porosity than IGN. 
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Mercury porosometry: 

Results are presented in Table IV.3 and Table IV.4 with the detailed analysis presented in 

appendix X.2. MOR is the third most porous rock, with 41.11% porosity, reasonably close to 

the apparent porosity of 37.31%. The total mercury intrusion was 0.2983 mL/g, which is the 

second highest amongst all the rocks. Intrusion into pores with a diameter above 0.5 µm is 

0.0835 mL/g. The bulk density 1.450 kg/dm3 = 1.450 g/mL, corresponds to approximatelly  

0.1211 mL of mercury intrusion per mL of rock, which is the third lowest for rocks with 

pores above 0.5 µm  in diameter. 

 

OM (thin section): 

Although the phenocryst minerals show almost no alteration, the matrix is strongly altered. 

The minerals present are plagioclase (strongly zoned), quartz and mordenite. Much of the 

primary glass has been replaced by finely crystalline mordenite (Figure IV.13). 

  

i. PPL ii. XPL 

Figure IV.13 - Optical microscope images: MOR 
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IV.2.1.5 Whakaroa rhyolite (RHY) 

This rock was selected due to its considerably different composition and porosity when 

compared to all the other rocks under study, to explore the effect that these features have on 

the way the formation interacts with the cement. This rock was obtained from the northwest 

end of Whakaipo Bay, Lake Taupo (Figure IV.14). 

 

 
Figure IV.14 - Block of RHY 

 

 

XRF analysis: 

The major oxide composition of RHY is presented in the Table IV.1. It contains a slightly 

higher amount of silica than IGN. 

 

Rietveld XRD/quantitative analysis: 

The XRD diffractogram shows distinctive peaks as well as some large humps distributed over 

a wide range, due to the amorphous nature of this rock. The minerals identified by XRD 

analysis are ca. 50wt% feldspars, ca. 14.5wt.% cristobalite (SiO2) and ca. 4.5wt.% tridymite 

(SiO2) (further XRD quantitative information on spiked samples in the appendix X.1). 

No other crystalline minerals were identified by XRD, from which it can be inferred that the 

rock is composed of ca. 100-50-14.5-4.5=31wt% amorphous material. 
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If 50wt% of feldspar is present and that calcium, sodium and potassium oxides (CaO, Na2O 

and K2O) are evenly used to form the end member feldspars (anorthite, albite and orthoclase, 

respectively), the silica used to form these feldspars is approximately 30wt%. However, the 

calcium, sodium and potassium oxides present in the rock are only enough to form a total of 

ca. 40wt% feldspars, which would mean that only ca. 24wt% silica is present in the form of 

feldspars. 

Furthermore, by subtracting the silica present in the crystalline materials (24-30wt% present 

in the feldspars, 14.5wt% from the cristobalite and 4.5wt% from tridymite) from the total 

amount of silica present, ca. 74wt% (obtained in the XRF), it can be concluded that ca. 25-

29wt% of silica is present in the amorphous volcanic glass (see appendix X.1). 

 

Density and porosity: 

The results obtained for the density and porosity of IGN are presented in the Table IV.2. It has 

a significantly higher apparent density and a considerably lower porosity than IGN. 

 

Mercury porosometry: 

The most relevant results regarding the mercury porosimetry are presented in the Table IV.3 

and Table IV.4 with the detailed analysis presented in the appendix X.2. RHY is the least 

porous rock, with only 13.09% porosity. This result is in very good agreement with the 

apparent porosity calculated above (12.99%). The total mercury intrusion was 0.0615 mL/g, 

which is the lowest of all the rocks. The mercury intrusion into pores with a diameter above 

0.5 µm is 0.0461 mL/g. Considering the bulk density of 2.193 kg/dm3 = 2.193 g/mL), this 

corresponds to 0.1012 mL of mercury intrusion per mL of rock, which is the lowest for pores 

with a diameter above 0.5 µm. 

 

OM (thin section): This rock is not as glassy as the ignimbrites. It shows a cryptocrystalline 

matrix due to the advanced devitrification of matrix glass. The devitrification is present as 

cristobalite, albite and tridymite (Figure IV.15). 
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i. PPL ii. XPL 

Figure IV.15 - Optical microscope images: RHY 

 

IV.2.2 Cements 

All the cement powders were submitted to XRF analysis, respectively, to identify their major 

oxides composition and all the crystalline materials. 

 

IV.2.2.1 API Class G 

The API class G cement was chosen as it is the most commonly used well cement. As 

referred at the start of the current chapter, it was utilised as both neat and with admixtures. 

The brand used for this cement was Holcim. 

 

XRF analysis: 

The major oxides composition of G is presented in the Table IV.5. 

Table IV.5 - XRF analysis of the cements  

CEM 
Major oxides compositon (weight % on oven dried [110oC] basis) 

SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 SO3 LOI* SUM 

G 21.19 3.80 5.34 0.05 1.82 63.20 0.07 0.47 0.95 <0.01 2.08 0.89 99.86 

A 20.30 4.32 2.52 0.16 0.87 64.20 0.19 0.61 0.52 0.09 3.00 2.82 99.60 

HAC 3.88 39.46 13.92 0.04 0.59 38.94 0.03 0.05 1.90 0.05 <0.01 0.21 99.06 

W 21.87 3.54 0.49 0.01 0.97 65.59 0.11 0.46 0.18 0.04 3.45 2.96 99.68 
*LOI = loss on ignition at 1000°C 
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Particle size distribution: 

The incremental and cumulative particle size distributions for the API class G cement are 

given in Figure IV.16. From this diagram, it can be observed that almost all the API Class G 

cement particles have a diameter within the 0.5 to 90 µm diameter range. The average 

particle diameter is 16.569 µm. 

 

Figure IV.16 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Class G cement 
 

 

IV.2.2.2 API Class A 

The API class A cement is an OPC and was chosen because of the extremely high impact that 

the OPC assumed in the cement industry and, subsequently, in cement research. The brand 

used for this cement was Holcim and the XRF results are presented below. 

 

XRF analysis: 

The major oxides composition of A is presented in the Table IV.5. As expected, it contains 

significantly lower amounts of iron compared to G. 

 

Particle size distribution: 

The incremental and cumulative particle size distributions for the API class A cement are 

given in Figure IV.17. From this diagram, it can be observed that almost all the API Class A 

cement particles lie in the 0.5 to 90 µm diameter range, with a particle size distribution very 

similar to the one observed for API Class G cement. The average particle diameter is 15.927 

µm, which is very close to the one observed for class G cement. 
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Figure IV.17 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Class A cement 
 

 

IV.2.2.3 HAC 

High Alumina cement (HAC) is known as an alternative to the Portland based cements. It 

does not depend on the calcium silicate hydrates as the binder. 

 

XRF analysis: 

The major oxide composition of HAC is presented in the Table IV.5. It contains much lower 

amounts of silica and higher amounts of alumina than G or A. 

 

Particle size distribution: 

The incremental and cumulative particle size distributions for the HAC are given in Figure 

IV.18. From this diagram, it can be observed that the HAC cement is coarser than Portland 

cement with almost all particles having a diameter within the 0.3 to 250 µm range. The 

average particle diameter is 28.573 µm, which is significantly higher than observed for any 

other cement or admixture. 
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Figure IV.18 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the HAC 
 

 

IV.2.2.4 White 

As mentioned at the beginning of the current chapter, the White cement (W) was chosen to 

study the effect reduced C4AF and, consequently, increased C3A, has on the cement/rock 

interaction, i.e. to understand how the reduced setting time affects the cement/rock 

interaction. 

 

XRF analysis: 

The major oxides composition of W is presented in the Table IV.5. It contains much lower 

amounts of iron than G or A. 

 

Particle size distribution: 

The incremental and cumulative particle size distributions for the White cement are given in 

Figure IV.19. From this diagram, it can be observed that almost all the White cement particles 

lie within the 0.5 to 90 µm diameter range. This cement shows a very similar particle size 

distribution to the API class G cement. The average particle diameter is 14.308 µm, which is 

very close to the class A and class G cements. 
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Figure IV.19 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the White cement 
 

IV.2.2.3 Admixtures 

The admixtures, Silica Flour (SF) and Microsilica 600 (MS), were both submitted to XRF 

and XRD analysis. 

 

IV.2.2.3.1 Silica Flour 

Silica Flour (SF) is almost pure quartz and is obtained by grinding pure silica sand to a very 

fine powder. When used in geothermal cements at 40wt% it forms tobermorite and avoids 

strength retrogression. 

 

XRF analysis: 

The major oxides composition of SF are presented in the Table IV.6. 

Table IV.6 - XRF analysis: Admixtures  

Admix 
Major oxides compositon (weight % on oven dried [110oC] basis) 

SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 SO3 LOI* SUM 

SF 99.73 0.13 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.10 >99.9 

MS 86.22 4.93 0.46 0.02 0.08 0.30 0.19 0.66 0.69 0.04 0.03 5.31 98.93 
*LOI = loss on ignition at 1000°C 

 

Particle size distribution: 

The incremental and cumulative particle size distributions for the Silica Flour are given in 

Figure IV.20. From this diagram, it can be observed that almost all the Silica Flour particles 

have a diameter within the 0.5 to 100 µm diameter range. The average particle diameter is 

20.673 µm., slightly higher than the average particle size for API class G cement. 
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Figure IV.20 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Silica Flour 
 

XRD analysis: 

The XRD analysis of SF (diagram in the appendix X.3) shows the presence of very well 

defined peaks of quartz (SiO2). 

 

IV.2.2.3.2 Microsilica 600 

Microsilica 600 (MS) is a highly reactive pozzollan processed from a natural, white, silica 

deposit found in Rotorua, New Zealand. It is a very fine amorphous silica and falls in the 

microsilica family of products. 

 

XRF analysis: 

The major oxides composition of MS are presented in the Table IV.6. It shows considerably 

less silica and significantly more aluminium than SF. 

 

Particle size distribution: 

The incremental and cumulative particle size distributions for the Microsilica 600 are given 

in Figure IV.20. From this diagram, it can be observed that most of the Microsilica 600 

particles have a diameter within the 0.5 to 80 µm range. The average particle diameter is 

5.717 µm. This admixture has a significantly lower average particle size when compared with 

any of the other cements or admixtures under study. 
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Figure IV.21 - Incremental (bars) and Cumulative (line) Particle Size Distribution for the Microsilica 600 
 

XRD analysis: 

The XRD analysis of the MS (diagram in the appendix X.3) shows a relatively high 

background hump which indicates the presence of a significant amount of amorphous 

material, together with small amounts of quartz (SiO2), cristobalite (SiO2), tridymite (SiO2) 

and alunite (KAl3(OH)6(SO4)2). 

 

IV.2.2.4 Bentonite 

Western bentonite was obtained from Opta Minerals Inc.. This is a sodium based 

bentonite and it swells approximately 15 times their un-wetted volume. It was mixed with 

water to simulate drilling mud, as it is the most common drilling fluid utilised in the 

construction of geothermal wells. This raw material was also submitted to XRF and XRD 

analysis. 

XRF analysis: the major oxides composition of Bentonite are presented in the Table IV.7. 

Table IV.7 - XRF analysis: Bentonite  

Drilling 

mud 

Major oxides compositon (weight % on oven dried [110oC] basis) 

SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 SO3 LOI* SUM 

Bentonite 51.50 14.99 12.98 0.09 3.32 2.39 2.42 0.29 2.57 0.14 0.05 8.76 99.50 
*LOI = loss on ignition at 1000°C 

 

 

XRD analysis: 

The large humps observed in the XRD curve indicate the presence of a lot of amorphous 

material. Minerals identified by XRD analysis were quartz and a mixture of different clay 

minerals (hydrous aluminium phylosilicates), mostly from smectite group 



107 

 

((Ca,Na,H)(Al,Mg,Fe,Zn)2(Si,Al)4O10(OH)2•nH2O, i.e. montmorillonite, nontronite, 

sauconite, stevensite and saponite. Titanium oxide (Ti8O15), anatase (TiO2) and hydrobiotite 

([K(Mg,Fe)3(Al,Fe)Si3O10(OH,F)2]•[(Mg,Fe2+,Al)3(Si,Al)4O10(OH)2•4(H2O)]: a clay mineral 

from the illite group) are present as well. 
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IV.3 Research procedures 

This section describes the methodology for the preparation and analysis of each one of the 

studied combinations (cement mixture, rock type, temperature, CO2-exposure), aiming to 

simulate a real cement/rock interactions in a geothermal well. Most of the experimental work 

was undertaken at IRL/Callaghan Innovation at Gracefield, using their facilities. The optical 

microscopy was done using the petrographic microscope with a camera from the School of 

Geography, Environment and Earth Sciences, at Victoria University of Wellington. 

The procedure undertaken for the preparation of each one of the hydrothermally cured 

cement/rock assemblages was as follows: 

1. The rock block was cut and shaped so that it could fit in the autoclave. 

2. ≈25mm diameter cylindrical cavities were cored into the top of the rock block (Figure 

IV.22). 

3. The block was washed with tap water and placed in the oven at 90oC in the syntetic 

geobrine6 solution for a couple of days to allow the rock to absorb the brine (Figure 

IV.23). 

 

Figure IV.22 - Cavities being 

drilled into rock 

Figure IV.23 - Rock blocks in the container with geobrine 

solution, just before being exposed to 90
o
C in the oven 

 

                                                           
6

 Recipe for geobrine: 0.19 g sodium sulfate (NaSO4), 0.05 g calcium chloride dehydrate (CaCl2.2H2O), 15.6 g liquid precipitated silica 

(SiO2), 4.1 g potassium chloride (KCl), 15.8 g sodium chloride (NaCl) are well mixed and filled with water to make up 20 litres. 
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4. Where the effects of drilling fluid were simulated, a bentonite slurry7 was injected 

into each cavity several days before the addition of the cement by using the following 

method: 

a. Each rock cavity was capped with a cork/rubber cap with a small hole on it. 

b. The bentonite was injected through the cap hole with a syringe, so that the 

bentonite could penetrate into the walls of the cavity. 

c. After soaking the bentonite was topped out and the rock allowed to drain. 

5. About 444,(4) g of solids (powdered cement plus admixtures when applicable) was 

mixed with 200 ml of water in a juice blender (used for small amounts of cement 

pastes) for about one minute to obtain a paste with the water/solids ratio (in weight) of 

0.45 (Figure IV.24). 

6. The paste was poured in each one of the cavities immediately after being mixed 

(Figure IV.25). 

 

  
Figure IV.24 - Mixing the cement paste in the 

blender 

Figure IV.25 - The cement/rock system, just after 

pouring the cement paste into the cavities 

 

7. The whole system was cured in brine for two days in the oven at 90ºC (Figure IV.26). 

This stage simulates the first few days after the cementing job, when the well is still at 

cementing temperature before it heats up. 

8. The whole system was transferred from the oven to the autoclave, for 26 days (total: 

28 days cure) or 82 days (total: 84 days cure), at either 150ºC or 290ºC, with or 

                                                           
7

 Recipe for Bentonite: 100 g of sodium bentonite powder, per 1L of water and mix it in the blender for 1 minute. 
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without carbon dioxide injection. The total pressure was approximately 17 bars at 

150oC and 80bars at 290oC, including 6 bars of CO2 partial pressure, monitored by a 

computorized system. (Figure IV.27). This stage simulates the normal operating 

temperature of the well. 

 

  
Figure IV.26 - Assemblages in the containers, pre-

cured in brine for two days in the oven at 90
o
C 

Figure IV.27 - Assemblages transferred to the 

autoclave, at either 150
o
C or 290

o
C, without or 

with CO2 injection 

 

9. After being removed from the autoclave (Figure IV.28), the samples were dried out in a 

40oC room and 60oC oven, cut in halves (in order to obtain cross sections of cement 

rock) with a saw (Figure IV.29). The photos of samples just after being cut in half are 

presented in the Results chapters and prepared for each one of the desired analyses. 

 

 

Figure IV.28 - Samples after being 

removed from the autoclave 

Figure IV.29 - Big (left) and small diamond (right) saws 

used to cut the samples 
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The samples under study involve distinct combinations of the previously mentioned 

variables: cement mixture, curing temperature, drilling fluid, CO2-exposure and rock type. 

Two curing times were used. The first corresponds to one month cured samples, whereas the 

second, the samples were cured for three months. All the combinations tested are referred in 

the section III.4 (Sample labelling). 

Each of the samples/combinations under study were analysed by X-ray diffraction analysis 

(XRD), optical microscopy (OM), scanning electron microscopy with energy dispersive 

spectroscopy (SEM/EDS). Some complimentary tests were undertaken on samples, in order 

to clarify some of the results obtained. These were the hydrochloric acid test (Acid test), the 

Thermogravimetry (TG) and the Mass Spectrometry (Mass Spec). 

 

IV.3.1 XRD 

This identified the minerals present in the tested material (powder). It cannot identify the 

minerals present in very minor amounts (under 5%) or the amorphous material. 

X-ray diffractometers consist of three basic elements: an X-ray tube, a sample holder, and an 

X-ray detector. X-rays are generated in a cathode ray tube by heating a filament to produce 

electrons which are accelerated toward a target by applying a voltage, bombarding the target 

material with electrons. When electrons have sufficient energy to dislodge inner shell 

electrons of the target material, characteristic X-ray spectra with specific wavelengths 

characteristic of the target material are produced. The instrument used is a Philips PW1700 

series diffractometer running Co K alpha radiation Long Fine Focus tube with tube power 

settings of 40kV and 35mA.  The instrument is equipped with an automatic divergence slit 

maintaining 12mm square irradiated region on the sample, 0.2mm receiving slit, no 

antiscatter slit, incident and diffracted beam soller slits, graphite diffracted 

beam monochromator and Xe-filled gas proportional counter.   

Cobalt (Co) radiation is used to avoid fluorescence with iron containing samples. As the 

sample and detector are rotated, the intensity of the reflected X-rays is processed and 

recorded by the detector. Each one of the crystalline materials has a unique and well-marked 

XRD pattern, making it easy to distinguish between them all. 

Four different XRD samples were collected from each one of the combinations mentioned 

above. The four distinct zones (illustrated in the Figure IV.38) are: 
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1) ROCK: the rock itself (IGN, UNI, KAO, MOR or RHY). 

2) ITZ-R: the interfacial transition zone adjacent to the rock. 

3) ITZ-C: the interfacial transition zone adjacent to the cement. 

4) CEM: the cement itself (A, G, G20SF, G40SF, G20MS, HAC, W or GEOI/II). 

It was essential to very accurately collect the powder from the ITZ-R and ITZ-C, as these two 

zones consist of a very fine line. A small driller was used as an aid for the sample collection 

(Figure IV.30). This step was extremely challenging due to its demanding accuracy. 

In a similar way to the preparation method for the XRF analysis, samples are reduced to a 

fine powder (through the use of mortar and pestle) with 250mg of sample compacted in a 

17mm diameter well in an aluminium holder (Figure IV.31), to be then scanned in the XRD 

instrument. The typical XRD scan was a 0.04 degree step interval between 10o 2θ and 100o 

2θ.  The sample was not spun. 

The aim was to identify and interpret the differences in phases between each one of the four 

zones, namely by comparing the ITZ-C with the cement and the ITZ-R with the rock. 

 

  
Figure IV.30 - Collection of a XRD sample (ITZ-C) 

with the aid of a small driller 

Figure IV.31 - Preparation of the XRD sample: 

placing the powder in the sample holder 

 

IV.3.2 OM 

The OM thin section preparation of the cement/rock hydrothermally cured systems was made 

at GNS (Institute of Geological and Nuclear Sciences). The procedure utilised by the GNS 

technician was to impregnate the sample in epoxy resin and cut a 30 µm (0.03 mm) thin 

section, which was placed on a microscope slide and covered with a cover slip. 
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After being prepared, the thin sections were analysed by a petrographic (transmitted light) 

optical microscope and images of the interfacial transition zones were taken with the camera 

incorporated in the microscope. 

 

IV.3.3 SEM/EDS 

Sample preparation for SEM consisted of cutting a small cement/rock section using a small 

diamond precision saw, to fit inside a resin cup mould (which is 25 mm diameter X 20 mm 

height). It was then submitted to the following procedure: 

Impregnation in resin 

1. Epoxy resin (EpoFix from Struers) was mixed with hardener at 25:3 ratio in a 

disposable jar. 

2. The mix was evacuated for 20 minutes using the house vacuum (Figure IV.32), after 

which the air was slowly released into the dessicator. 

3.  Step 2 was repeated and the jar was removed from the desiccator. 

4. The sample was placed at the bottom of a resin mould with the face to be scanned 

(and, thus, polished) facing down. 

5. The degassed resin was poured into the cup mould, over the sample. 

6. The cup mould went into the desiccator and Step 2 was repeated three times. 

7. The samples were left to set overnight. 

8. The samples were taken from the mould and the sharp edges and surface were ground 

and smoothened with the cup wheel to give an impregnated sample with a disc shape 

(Figure IV.33). 
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Figure IV.32 - Desiccator  attached to the house vacuum, used 

for degassing the epoxy resin used to impregnate the samples 

Figure IV.33 - Grinding and shaping 

an impregnated sample in the cup 

wheel 

 

Water polishing 

9. The impregnated samples (three per run) were fitted in the polishing instrument 

sample holder and the polishing pressure was adjusted for the all the three samples 

(Figure IV.34). 

10. The water tap was turned on and the water flow was directed to the center of the disc. 

11. The samples were polished with the Struers Gekko system at 150 r.p.m. for 10 

minutes with a #1200 SiC polishing pad. 

12. The previous step was repeated for the #1000, #800, #500, #220, #180, #120 and #80 

SiC polishing pads to give samples suitable for SEM (Figure IV.35). 
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Figure IV.34 - Water polishing of 

the impregnated samples 

Figure IV.35 - Samples after being impregnated in resin and 

polished, ready for SEM/EDS work 

 

A Scanning Electron Microscope (SEM) is an instrument that produces images of a sample 

by scanning it with focused electron beams. These electrons interact with the atoms in the 

sample, producing signals that give information about the samples’ surface topography and 

composition. The SEM is commonly associated with a EDS (Energy Dispersive 

Spectroscopy) which is a system that provides information about the elemental composition 

of a specimen, obtained from the interaction of X-rays and the sample. The unique atomic 

structure of each element, gives a unique set of peaks in its X-ray spectrum. 

SEM images were taken on a Quanta 450 SEM equipped with a tungsten filament.  The 

backscatter electron images were acquired operating the Quanta SEM, typically at 20 keV 

using a spot size of 7.  Under these conditions an EDAX Energy Dispersive X-ray 

Spectroscopy (EDS) detector attached to the SEM was used for elemental analysis using 

Texture & Elemental Analytical Microscopy (TEAM) software (version V3.1). 

A series of line scans were undertaken in order to determine the element combination and 

migration trends in the ITZ. These are presented in appendix X.4. According to the 

information presented, the line scans within the same region of the sample are very variable, 

and do not provide an overall picture of the sample, particularly across the ITZ. This is a 

consequence of the very heterogeneous nature of the materials being studied: the cement and, 

especially, the rock. 

Therefore the SEM/EDS work in the current study have been mostly based on the element 

and generated Ca/Si ratio  maps, which provide much clearer information about the overall 

trends in the interfacial transition zone, which is the aim of the current work. The EDS 
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element maps of the interfacial transition zone (ITZ) were obtained at magnifications of 

100X and 250X. Several EDS spot analyses were made in order to complement the 

information give in the EDS maps. 

In the aluminium (Al) and sodium (Na) maps presented in appendix X.4, little relevant 

information regarding the trends of these elements across the ITZ of the samples. Unlike Al 

and Na, the maps for calcium (Ca) and silicon (Si) provide very relevant information 

regarding changes in the ITZ. The Ca ion is an extremely mobile cation in which the Portland 

based cements are rich. The Si map is an extremely helpful image which allows the cement  

to be distinguished from the siliceous rocks. Comparison between the Ca and Si element 

maps provides a very good evidence for the extent of Ca mobility across the ITZ. Moreover, 

the carbon (C) map is helpful to characterize the carbonate present in the sample, whereas 

that for iron (Fe) could be useful to understand the Fe dissolution, migration and precipitation 

processes within the sample.  

After obtaining the individual calcium (Ca) and silicon (Si) maps, a map of Ca/Si ratio zones 

or phases was built up by using the EDS software available. To identify the way that calcium 

and silicon combine across the ITZ, having a knowledge of the calcium-silicon (Ca/Si) ratios 

in the phases present is essential. There is software supplied with the SEM that is available to 

use the results to produce relative scans. During the EDS scan, the software automatically 

generates spectra and consequently phases, by combining the chemical elements in different 

proportions, based on the number of the EDS counts.  These automatically generated phases 

are created based on an unknown algorithm that was completely unsatisfactory for the current 

work.  The built in software created random phases which were not consistent across a set of 

samples and did not permit the creation of spectrum/phases based on theoretical data. So it 

was necessary to prepare reference samples with different Ca/Si ratios, in order to create their 

equivalent phases and apply these to the cement/rock combined samples. Some 

considerations and assumptions had to be made, and this has a strong influence on the phase 

maps obtained.  The actual Ca/Si ratio (theoretical) is actually not equivalent to the Ca/Si 

ratio measured from the raw counts generated from the EDS (empirical). This can be 

attributed to several reasons. 

∗ Firstly, the theoretical Ca/Si ratio is the Ca/Si chemical element ratio, whereas the 

empirical one uses the number of counts from each element obtained by EDS. The 

lighter, larger atoms such as Si tend to have lower counts when compared to heavier, 

more compact atoms such as Ca. 
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∗ Secondly, the EDS software data processing is dependent on an unknown algorithm 

which does not seem to be consistent for every phase map.  This empirical 

methodology is obviously not as accurate as if the theoretical data had been used as an 

input. The phases obtained in the reference samples are the result of experimental 

work, prepared under non-perfect conditions and based on non-perfectly 

homogeneous cement mixtures. 

Rather than representing a specific Ca/Si ratio, each of the generated phases represents a 

range of Ca/Si ratios, which is also dependent on the software which generates a transition 

point between two Ca/Si ratios.  For example where Ca/Si≈2.45 and Ca/Si≈1.70 it was 

assumed that this range was the midpoint between the ratios represented by these two 

consecutive phases, i.e. ≈2.08. 

To overcome some of these issues, a correlation between the theoretical (calculated) and 

empirical (measured by EDS counts) data (Table IV.8) was created, in which the empirical 

Ca/Si ratios are correlated with the theoretical Ca/Si ratios. This correlation was based on the 

reference samples (G10MS, G20MS, G30MS, G40MS and G30MS20SF), for which the 

theoretical Ca/Si ratio was known and the empirical Ca/Si ratio was assumed to be the 

arithmetic mean of the software automatically generated phases, for each sample. 

 

Table IV.8 - Correlation of the actual Ca/Si of the samples with the Ca/Si obtained in the software 

OPC SiO2 
(by weight of cement) 

Theoretical Ca/Si ratio 
(obtained by calculation) 

Empirical Ca/Si ratio 
(obtained by EDS counts) 

100% 10% 2.25 approx. >3.5 

100% 20% 1.70 approx. 1.9-3.5 

100% 30% 1.37 approx. 1.3-1.9 

100% 40% 1.14 approx. 1.0-1.3 

100% 50% 0.98 < 1.0 

 

Nonetheless, the phase maps presented in the results chapter do not match with the ratios 

presented in the Table IV.8 as these were not fixed values and seemed to be flexible, changing 

with each sample to which it was applied. Thus the Ca/Si ratios eventually still had to be 

properly interpreted as they failed to accurately represent the actual calcium-silicon ratio in 

each sample, although still providing a good indication of how the Ca/Si ratio around the 

sample changed, particularly along the ITZ. Considering this, a new phase diagram was 

created and is presented in the results chapter (“key” for each phase map). 
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Even when using this approach, the software development and interpretation was not fully 

stable and some of the maps that were rebuilt could not be saved and had to rely on a “print 

screen” in order to record the desired map. 

 

IV.3.4 Acid test 

The procedure was simple and consisted of placing a drop of dilute HCl (10% solution) on 

the sample and checking whether there was any effervescence (fizz). Any effervescence 

indicates the presence of carbonate minerals caused by the reaction between the calcium 

carbonate minerals (CaCO3) and HCl, according to Equation IV.4. 

 

CaCO� + 2HCl → CO� ↑ +H�O + Ca�� + 2Cl�	 Equation IV.4 

 

 

IV.3.5 TGA/DTG 

Thermogravimetric analysis (TG) provides a continuous recording of mass changes as a 

function of temperature with time, by using a thermobalance (Figure IV.36). Each compound 

decomposes at a specific temperature allowing differentiation of distinct chemical 

compounds. A TGA plot provides a mass loss versus temperature. This information can be 

complemented with differential thermogravimetry (DTG), which outputs the differential TG 

curve, i.e. the rate of mass loss versus temperature curve. This data provides clearer 

information than that from TG on when the weight loss occurs. The TG was used to identify 

the presence of calcium carbonate minerals (CaCO3), which decompose into CaO (solid) and 

CO2 (gas) within a known decomposition range. 

The instrument used in the current work was a TA Instruments SDT Q600 V8.2 Build 100. 

Over 10 mg powdered sample (after being finely ground with mortar and pestle, similarly to 

XRF and XRD) was placed in aluminium crucibles. These were heated from ambient 

temperature up to 1000oC, at a heating rate of 20oC/minute in argon (Ar), with a flow of 

20ml/min. Ar was chosen as it is not expected to interfere in the decomposition reaction. 
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IV.3.6 Mass Spec 

The mass spectrometer is an instrument which collects and identifies the composition of the 

gases lost during the thermogravimetry (Figure IV.37). The relative quantities of gas species in 

the carrier gas stream were analysed using a Dycor quadrupole mass spectrometer system 

(Ametek). This test was made in order to complement the information given by the TGA, by 

measuring the amount of CO2 released during the CaCO3 decomposition.  

 

Figure IV.36 - Thermogravimeter used in the current work Figure IV.37 - Wire attached to the 

thermogravimeter to collect the gases lost 

during the TG run for the Mass Spec 
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IV.4 Sample labelling 

Due to the large number of combinations involved in this study, it was necessary to create a 

non-exaustive but still efficient sample labelling which distinguishes the samples from one 

another. The reference to the abbreviations used for each material and condition are firstly 

introduced. This information is followed by the way they are combined along the current 

work. 

Five types of rock were used with abbreviations summarized in Table IV.9. 

 

Table IV.9 - Abbreviations used for the rocks under study 

Type of rock Abbreviation 

Ongatiti ignimbrite (Hinuera stone) IGN 

Ohakuri unaltered ignimbrite UNI 

Ohakuri ignimbrite with kaolinite alteration KAO 

Ohakuri ignimbrite with mordenite alteration MOR 

Whakaroa rhyolite RHY 

 

 

Eight cement mixtures were studied and their abbreviations are summarized in Table IV.10. 

The water/cement ratio (in weight) utilised was always 0.45. 

 

Table IV.10 - Abbreviations used for the rocks under study 

Type of cement mixture Abbreviation 

API class A cement A 

API class G cement G 

API class G cement + 20% wt. Silica Flour  G20SF 

API class G cement + 40% wt. Silica Flour G40SF 

API class G cement + 20% wt. Microsilica 600 G20MS 

High Alumina cement HAC 

White cement W 

 

 

The curing variables are: curing temperature (150oC and 290oC); curing time (either 28 days 

or 84 days cure); drilling mud (through the use of bentonite); and CO2 exposure (creation of 

CO2 enriched environment through injection of CO2 during the curing). These are 

summarized, respectively, in Table IV.11-Table IV.14. 
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Table IV.11 - Abbreviations used 

for the variable curing temperature 

 Table IV.12 - Abbreviations used for 

the variable curing time 

Curing temperature Abbreviation  Curing time Abbreviation 

150oC 150  28 days 28d 

290oC 290  84 days 84d 

 

Table IV.13 - Abbreviations used 

for the variable drilling mud 

 Table IV.14 - Abbreviations used for 

the variable CO2 exposure 

Drilling mud 

simulation 

 

Abbreviation 

  

CO2 injection 

 

Abbreviation 

no bentonite N/A  no CO2 inject. N/A 

bentonite b  with CO2 inject. CO2 

 

The combination of the above nomenclature is made in the following way: firstly, rock type 

(ROCK); then cement type (CEM) separated by a dash; then, between brackets, the curing 

conditions, with a full stop separating each condition, starting with temperature (temp), 

followed by the drilling mud (b, when present), CO2-exposure (CO2, when exposed to carbon 

dioxide) and the curing time (time). 

In summary, 

• samples without bentonite layer or CO2-exposure: ROCK/CEM(temp.time). 

• samples with bentonite layer: ROCK/CEM(temp.b.time). 

• samples exposed to CO2: ROCK/CEM(temp.CO2.time). 

In the first stage (1 month cure), the variables under study were type of cement (CEM), 

curing temperature (temp) and drilling mud (b, when present). At this stage, only one type of 

rock was tested (ROCK=IGN), CO2-exposure was not tested and the samples were cured for 

only 28 days (time=28d). For example, IGN/HAC(150.28d) represents the sample with 

Ongatiti ignimbrite and high alumina cement cured at 150oC for 28 days, whereas 

IGN/HAC(150.b.28d) refers to the equivalent sample, with drilling mud simulation 

(b=bentonite layer). A total of 24 combinations/samples were tested in this stage (Table IV.15). 
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Table IV.15 - Combinations tested in the first stage (1 month cure) 

Rock 

type 

Cement 

mixture 

Curing 

temperature (
o
C) 

Drilling mud 

(bentonite layer) 

Curing 

time (days) 

IGN 

G 

150 

N/A* 
 

(no drilling mud 
simulation) 

28d 

G20SF 

G40SF 

G20MS 

A 

HAC 

W 

G 

150 

 
b 
 

(use of bentonite 
to simulate 

drilling mud) 

G20SF 

G40SF 

G20MS 

A 

HAC 

W 

G 

290 

N/A* 
 

(no drilling mud 
simulation) 

G20SF 

G40SF 

G20MS 

A 

HAC 

W 

*No abbreviation was used, as there was no simulation of drilling mud 

 

In the second stage (3 months cure), there were two more variables considered: CO2-exposure 

and type of rock. Hence it became necessary to exclude some variables previously considered 

from further experimental work in order to focus on the new variables. Due to their lower 

relevancy, the variable drilling fluid along with three cement mixture types (A, HAC and W) 

were excluded from this stage, as they have poorer performance than the API class G based 

mixtures, in geothermal applications. Therefore, the cements selected for the 3 months curing 

experiments were G, G20SF, G40SF and G20MS. These are the most common cement 

mixtures within the geothermal industry, and previous studies have shown that their 

performance in geothermal applications is relatively successful. 

The variables under study were type of cement (CEM), curing temperature (temp), CO2-

exposure (“CO2” when curing conditions included CO2-exposure), type of rock (ROCK) was 

not tested and the samples were cured for 84 days (time=84d). For example, 

KAO/G20SF(290.CO2.84d) refers to the sample with Ohakuri ignimbrite with kaolinite 
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alteration, class G plus 20% (in weight) silica flour, cured at 290oC for 84 days with CO2 

exposure. A total of 28 combinations/samples were tested during this stage (Table IV.16). 

The reference variables/conditions used in the control samples are: API class G cement (G), 

one month curing time (28d), no drilling mud simulation (no bentonite layer), 150oC curing 

temperature (150), no CO2 exposure simulation and Ongatiti ignimbrite (IGN). In addition to 

the control samples, other references were used in order to better assess the effect of a certain 

variable. For example, for the G40SF formulation, the G20SF is also considered reference, as 

the 20% quartz addition is half way between the control formulation (G) and the one under 

study (G40SF). 

 

Table IV.16 - Combinations tested in the second stage (3 months cure) 

Rock 

type 

Cement 

mixture 

Curing 

temperature 

CO2 

exposure 

Curing 

time 

IGN 

G 

150 
N/A* 

 
(no CO2 exposure) 

84d 
G20SF 

G40SF 

G20MS 

IGN 

G 

150 

CO2 

 
(carbon dioxide injected 

during the cure) 

84d 

G20SF 

G40SF 

G20MS 

UNI 

G 

G20SF 

G40SF 

G20MS 

KAO 

G 

G20SF 

G40SF 

G20MS 

MOR 

G 

G20SF 

G40SF 

G20MS 

RHY 

G 

G20SF 

G40SF 

G20MS 

IGN 

G 

290 
CO2 

(when carbon dioxide is 
injected during the cure) 

84d 
G20SF 

G40SF 

G20MS 
*No abbreviation was used, as there was no CO2 exposure 

 

Finally, it is often necessary to mention the specific area within the interfacial transition zone 

(ITZ). Besides the rock (ROCK) and the cement (CEM) themselves, the areas under study 
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are: the rock side of the interfacial transition zone (ITZ-R) and the cement side of the 

interfacial transition zone (ITZ-C) (Figure IV.38). 

 

 

 
Key 

 

ROCK - the rock under analysis 

 

CEM - cement under analysis 

 

Blue line: rock zone adjacent to the 

interfacial transition zone (ITZ-R) 
 

Orange line: cement zone adjacent to the 

interfacial transition zone (ITZ-C) 

Figure IV.38 - Illustration of the nomenclature utilised to distinguish the four different zones under 

analysis 
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V. RESULTS: 1 MONTH CURE 

The results presented below for each of the curing conditions are arranged as follows: 

a) Cut surface photographs 

b) X-Ray diffraction 

c) Optical Microscopy 

d) Electron microscopy/Energy Dispersive Spectroscopy 

 

V.1 150
o
C cure 

V.1.1 No drilling mud 

a) Mesoscopic Images 

Samples of cut surfaces are shown at approximately 50% of actual size in Figure V.1. 

    
i. IGN/G(150.28d) ii IGN/G20SF(150.28d) iii IGN/G40SF(150.28d) iv IGN/G20MS(150.28d) 

 

 

   

 

v. IGN/A(150.28d) vi. IGN/HAC(150.28d) vii. IGN/W(150.28d)  

Figure V.1 - Photos of the cross section of the IGN/CEM assemblages exposed at 150
o
C for 28 days in brine 
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b) XRD 

Table V.1 details the phases detected by XRD within each of the zones of the ITZ. 

Table V.1 - compounds identified by XRD analysis for samples exposed at 150
o
C for 28 days in brine 

Sample Zone Identified peaks and other relevant features 

IGN/G 

(150.28d) 

CEM Largely amorphous, portlandite, unhydrated cement. Traces of 
calcite. 

ITZ-C Reduced portlandite from CEM. 

ITZ-R Reduced quartz and feldspars from IGN. 

IGN/G20SF 

(150.28d) 

CEM 
Largely amorphous, quartz. Traces of calcite, tobermorite, αC2SH and 

unhydrated cement. 

ITZ-C Increased quartz from CEM. 

ITZ-R Reduced quartz and feldspars from IGN. 

IGN/G40SF 

(150.28d) 

CEM Amorphous, quartz, tobermorite. Traces of unhydrated cement. 

ITZ-C Increased quartz from CEM. 

ITZ-R Reduced feldspars (no reduced quartz). 

IGN/G20MS 

(150.28d) 

CEM Mostly amorphous. Traces of calcite, αC2SH and unhydrated cement. 

ITZ-C Slightly reduced calcite from CEM. 

ITZ-R 
Reduced quartz and feldspars from IGN. Traces of calcite and 

hibschite. 

IGN/A 

(150.28d) 

CEM 
Largely amorphous, portlandite, calcite. Traces of unhydrated 

cement. 

ITZ-C Reduced portlandite from CEM. 

ITZ-R Reduced quartz and feldspars from IGN. 

IGN/HAC 

(150.28d) 

CEM Amorphous, katoite, bohmite and kaotite silicatian. 

ITZ-C Slight reduced katoite, bohmite and kaotite silicatian from CEM. 

ITZ-R Reduced feldspars from IGN. 

IGN/W 

150 (28d) 

CEM 
Largely amorphous, portlandite. Traces of calcite and unhydrated 

cement. 

ITZ-C Reduced portlandite from CEM. 

ITZ-R Reduced feldspars and quartz from IGN. Traces of calcite. 

IGN/GEOI 

(150.28d) 

CEM Totally amorphous. No minerals identified by XRD. 

ITZ-C Similar to CEM. 

ITZ-R Reduced feldspars and quartz from IGN. 
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c) OM 

Thin section micrographs for each sample are shown in Figure V.2-Figure V.8.  The cement is 

on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

IGN/G(150.28d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure V.2 - IGN/G(150.28d) OM images 

CEM: Under the optical microscope, the cement (CEM) is brownish with dark spots in plane polarized 
light (PPL) which show as very bright pleochroic grains / crystals in crossed-polarized light (XPL). 

ITZ: In PPL, a ≈300µm darker plus a ≈200µm lighter (total=500µm) wide brown ITZ-R rims are seen, 
whereas a ≈300µm wide beige ITZ-C rim is distinguishable. Both ITZ-R and ITZ-C show, respectively, 
increasing amount of milky material (from IGN) closer to the CEM and sharply reduced 
grains/crystals (from CEM). Additionally, the area of the ITZ-R close to the IGN has more bright spots 
(crystals, grains) than IGN. 

 

IGN/G20SF(150.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.3 - IGN/G20SF(150.28d) OM images 

CEM: Compared to IGN G 150 (28d), the most noticeable differences by OM are the lighter colour in 
PPL and the presence of quartz crystals: colourless in PPL and a 90o extinction angle in XPL. 

ITZ: In PPL, a ≈250µm wide darker brown plus ≈250µm wide lighter brown ITZ-R rims are observed, 
whereas the cement side seems to have been quite affected, with a light ≈500µm wide ITZ-C rim. 
Although in much smaller amounts than in the IGN/G(150.28d), the XPL shows some milky material. 
There is also an increase in small and medium sized bright grains in the ITZ-R from IGN. The XPL 
image also shows a bright fine line splitting the ITZ-R/ITZ-C and a sharp increase in the number of 
crystals the ITZ-C from CEM. 
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IGN/G40SF(150.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.4 - IGN/G40SF(150.28d) OM images 

CEM: The most noticeable difference to IGN/G20SF(150.28d) is the larger amount of bright spots, 

which are quartz crystals. 

ITZ: A relatively thin ≈100µm wide dark brown ITZ-R rim is easily seen in PPL. No differences were 

found between the ITZ-C and the CEM, by optical microscope. 

 

IGN/G20MS(150.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.5 - IGN/G20MS(150.28d) OM images 

CEM: Under the optical microscope, the cement (CEM) looks light brown with amorphous in PPL and 
shows a very bright colour in XPL, which seems to be composed mostly of pleochroic grains. 

ITZ: In PPL, a ≈150µm wide dark brown ITZ-R rim can be observed, with a high concentration of bright 

spots in the line between the ITZ-R and the rest of the rock. Regarding the ITZ-C, it can barely be 

distinguished from CEM, except for slightly higher concentration of dark spots. 
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IGN/A(150.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.6 - IGN/A(150.28d) OM images 

CEM: Under the optical microscope, the cement (CEM) looks beige (very light brown) with dark spots 

in plane polarized light (PPL) and shows very bright pleochroic grains and small sized crystals in 

crossed-polarized light (XPL). 

ITZ: In plane polarized light (PPL), a ≈200µm wide brown ITZ-R rim is seen, which seems to be 

extended in some regions. A ≈400µm wide ITZ-C rim is distinguishable by XPL, with slight increase of 

bright spots in the ITZ-C from CEM. Similarly to IGN/G(150.28d), the ITZ-R shows more bright spots 

(crystals, grains) than IGN as well as some milky material. 

 

IGN/HAC(150.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.7 - IGN/HAC(150.28d) OM images 

CEM: Under the optical microscope, the cement (CEM) looks very dark with even darker spots in PPL. 

This cement has different colour tones than the Portland based cements and shows areas with brown milky 

material mixed with bright grains / crystals in crossed-polarized light (XPL). 

ITZ: The ITZ is difficult to distinguish by OM. 
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IGN/W(150.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.8 - IGN/W(150.28d) OM images 

CEM: Under the OM the cement (CEM) looks beige (very light brown) in PPL. This grout exhibits the 

lowest number of dark spots within all the Portland based cement mixtures. Also, very bright pleochroic 

grains and small sized crystals can be seen in XPL. 

ITZ: In PPL, a ≈200µm wide dark brown plus ≈200µm wide light brown ITZ-R rims are observed. The 

≈400µm wide ITZ-C rim is characterized by significant increase in the amount of bright grains/crystals 

from CEM. Similarly to the other samples where Portland cement grouts were used, the ITZ-R shows 

some milky material (from IGN) closer to ITZ-C and more bright spots (from IGN) closer to the IGN. 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure V.9-Figure V.15. The phase map 

showing approximate Ca/Si ratios has been created from a short software package developed 

as part of this work as the supplied analytical package was unsuitable. 

In the phase maps, the cement shows the highest Ca/Si ratio (blue/green colours) and the rock 

shows the lowest Ca/Si ratio (red), with the ITZ showing intermediate Ca/Si compositions. 

In the element maps, the cement is typically Ca rich (green side) and the rock is typically Si 

rich (lilac side). The cement with silica addition also shows high amounts of Si present, 

although in lower amounts than the rock. 

IGN/G(150.28d) 

 

Key* 

= 100 µm 
i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.9 - IGN/G(150.28d) SEM/EDS images 

Phase map: Gradual Ca/Si ratio change across the ITZ can be seen. There are variations within the 

cement and the rock as these materials are not homogeneous. 

Element maps: Ca penetrated in up to 100 µm plus a lower but still clear migration up to about 200 µm 

into the rock (total=300 µm). Highest concentration of Si in the ITZ-R. When comparing the Ca and Si 

map, it is obvious that the migration happens mostly through the rock pores, as the Ca areas within the 

rock mostly match with the lowest concentration of Si. 
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IGN/G20SF(150.28d) 

 

Key* 

 

  i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.10 - IGN/G20SF(150.28d) SEM/EDS images 

 

Phase map: gradual phase change across the ITZ, although not as obvious as for the IGN/G(150.28d) 

sample. The cement phase is closer (in Ca/Si ratio) to the rock phase due to the silica addition (silica 

flour). 

Element map: Similar Ca
 migration when compared with the IGN/G(150.28d). Again, the concentration 

of Si in the ITZ-R is higher than in the rock or in the cement. 
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IGN/G40SF(150.28d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.11 - IGN/G40SF(150.28d) SEM/EDS images 

 

Phase map: The phase change is abrupt, without obvious intermediate Ca/Si ratio phases between the 

rock and the cement. 

Element map: when compared with the samples IGN/G(150.28d) and IGN/G20SF(150.28d), there is a 

much shallower Ca migration (≈50µm) from ITZ-C into ITZ-R. There are high levels of both Ca and Si 

in the cement from the silica flour, less homogeneous in the cement due to the unreacted quartz crystals. 

The ITZ has the highest concentration and more uniform distribution of Ca, Si and O in the ITZ, rather 

than in the rock or in the cement. 
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IGN/G20MS(150.28d) 

 

Key* 

 
i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.12 - IGN/G20MS(150.28d) SEM/EDS images 

 

Phase map: gradual phase change across the ITZ, although not as obvious as the IGN/G(150.28d) 

sample. The cement phase is closer to the rock phase due to the silica addition (MS). 

Element map: lower Ca
 migration compared with the IGN/G(150.28d). Again, the concentration of Si in 

the ITZ-R is higher than in the rock or in the cement. As opposed to the samples where silica flour was 

added, there is little or no unreacted silica in the cement. 
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IGN/A(150.28d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase mapping 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.13 - IGN/A(150.28d) SEM/EDS images 

 

Phase map: From the Ca/Si phase map, similarly to the IGN/G(150.28d), a gradual Ca/Si ratio change 

across the ITZ can be seen, with the cement and the rock varying between two main phases. 

Element maps: In the ITZ, similarly to the IGN/G(150.28d), Ca seems to penetrate in high amounts up to 

100 µm plus a lower but still clear migration up to about 150 µm into the rock (total=250 µm). When 

comparing the Ca and Si map, the migration happens mostly through the rock pores, as the Ca areas do 

not coincide with the highest concentration of Si. 
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IGN/HAC(150.28d) 

 

 Key 
Al/Ca/O/Si 
 

Si/Al/Ca/O 
 

Si/Al/O/K 
 

Si/Al/O/Ca/K/Fe 
 

Unallocated 
 

Ca/Al/O/Si 
 

O/Si/Al/Ca/K 
 

Fe/Si/Ca/Co/K 
 

Si/Fe/Ca/K/O/Al 

i. ITZ phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

 

  
iv. ITZ Al map v. ITZ Na map 

Figure V.14 - IGN/HAC(150.28d) SEM/EDS images 

Phase map: Abrupt phase change from CEM to ROCK.  

Element maps: Little Ca migration detected across the ITZ. 
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IGN/W(150.28d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.15 - IGN/W(150.28d) SEM/EDS images 

 

Phase map: From the Ca/Si phase map, similar to the IGN/G(150.28d), a gradual Ca/Si ratio change 

across the ITZ can be seen with the cement and rock varying between two main phases. This may mean 

that these materials are not as homogeneous as it could be expected. 

Element maps: In the ITZ, similar to the IGN/G(150.28d), Ca seems to penetrate in high amounts up to 

100 µm plus a lower but still clear migration up to about 100 µm into the rock (total=200 µm). 
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V.1.2 With drilling mud (bentonite) 

a) Mesoscopic Images 

Samples of cut surfaces are shown at approximately 60% of actual size in Figure V.16. 

 

    
i. IGN/G(150.b.28d) ii. IGN/G20SF(150.b.28d) iii. IGN/G40SF(150.b.28d) iv. IGN/G20MS(150.b.28d) 

 

 

 

   

   

 

v. IGN/A(150.b.28d) vi. IGN/HAC(150.b.28d) vii. IGN/W(150.b.28d)  

 

Figure V.16 - Photos of the cross section of the IGN/CEM assemblages with drilling mud simulation, 

exposed at 150
o
C for 28 days in brine 
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b) XRD 

Table V.2 details the phases detected by XRD within each of the zones of the ITZ. 

 

Table V.2 - compounds identified by XRD analysis for samples with drilling mud simulation 

exposed at 150
o
C for 28 days in brine 

Sample Zone Identified peaks and other relevant features 

IGN/G 

(150.b.28d) 

CEM 
Largely amorphous, portlandite and calcite. Traces of 

unhydrated cement. 

ITZ-C 
Reduced portlandite from CEM. Traces of  aragonite and 

gehlenite. 

ITZ-R Reduced feldspars and quartz from IGN. Traces of gehlenite. 

IGN/G20SF 

(150.b.28d) 

CEM 
Largely amorphous, quartz and calcite. Traces of tobermorite, 

unhydrated cement, kilchoanite and aragonite. 

ITZ-C Slightly increased quartz from CEM. Traces of gehlenite. 

ITZ-R Reduced feldspars and quartz from IGN. Traces of gehlenite. 

IGN/G40SF 

(150.b.28d) 

CEM 
Amorphous, quartz. Traces of calcite, tobermorite, kilchoanite, 

aragonite and unhydrated cement. 

ITZ-C 
Increased calcite and slightly increased quartz from IGN. Traces 

of gehlenite. 

ITZ-R Reduced feldspars and quartz from IGN. Traces of gehlenite. 

 

IGN/G20MS 

(150.b.28d) 

CEM 
Largely amorphous, calcite. Traces of unhydrated cement, 

kilchoanite and aragonite. 

ITZ-C Increased calcite from CEM. 

ITZ-R Reduced feldspars and quartz from IGN. Traces of gehlenite. 

IGN/A 

(150.b.28d) 

CEM 
Largely amorphous, portlandite and calcite. Traces of 

unhydrated cement. 

ITZ-C Reduced portlandite, increased calcite and gehlenite. 

ITZ-R Similar to IGN. Traces of gehlenite. 

IGN/HAC 

(150.b.28d) 

CEM Largely amorphous, katoite, boehmite and kaotite silicatian. 

ITZ-C Reduced katoite and boehmite. Traces of calcite and aragonite. 

ITZ-R Similar to IGN. 

IGN/W 

(150.b.28d) 

CEM 
Largely amorphous, portlandite and calcite. Traces of 

unhydrated cement. 

ITZ-C Decreased portlandite from CEM. Traces of aragonite. 

ITZ-R Similar to IGN. Traces of gehlenite. 
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c) OM 

Thin section micrographs for each sample are shown in Figure V.17-Figure V.23.  The cement is 

on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

IGN/G(150.b.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.17 - IGN/G(150.b.28d) OM images 

CEM: The cement looks similar to the equivalent sample without bentonite, IGN/G(150.28d). 

ITZ: The ITZ looks also similar to the one observed in the sample IGN/G(150.28d), except for the 

homogeneous light brown ≈150µm wide rim (bentonite) in between the ITZ-R and ITZ-C and slightly 

wider ITZ-R and ITZ-C with, respectively ≈400-500µm and ≈400µm. 

 

IGN/G20SF(150.b.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.18 - IGN/G20SF(150.b.28d) OM images 

CEM: The cement looks similar to the equivalent sample without bentonite, IGN/G20SF(150.28d). 

ITZ: The ITZ has several differences from the one observed in IGN/G20SF(150.28d). The main 

differences are the homogeneous light brown rim ≈100µm in between the ITZ-R and ITZ-C and a 

generally much wider ITZ-R, with ≈400-500µm. 
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IGN/G40SF(150.b.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.19 - IGN/G40SF(150.b.28d) OM images 

CEM: The cement looks similar (although slightly darker) to the equivalent sample without bentonite, 

IGN/G40SF(150.28d). 

ITZ: The ITZ shows several differences from the one observed in IGN/G40SF(150.28d). The main 

differences are the homogeneous light brown ≈50µm wide rim in between the ITZ-R and ITZ-C and a 

generally significantly wider ITZ-R, with ≈200 µm darker brown rim, plus a ≈300µm lighter brown rim 

(total≈500µm). Some slight changes in the ITZ-C (≈400µm rim) from CEM are observed as well, 

namely a darker colour and an increase in bright grains, most of them quartz crystals. 

 

IGN/G20MS(150.b.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.20 - IGN/G20MS(150.b.28d) OM images 

CEM: The cement looks darker than the equivalent sample without bentonite, IGN/G20MS(150.28d). 

ITZ: The ITZ shows several differences from the one observed in IGN/G20MS(150.28d). The main 

differences are the homogeneous light brown ≈200µm wide rim in between the ITZ-R and ITZ-C and a 

significantly wider (≈400µm) ITZ-R. Although not easily distinguishable from CEM, the ITZ-C seems 

to be slightly darker with a slight increase in bright small and medium sized grains (in XPL). A narrow 

fissure in between the cement and the rock can also be observed, as these materials started detaching 

from each other. 
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IGN/A(150.b.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.21 - IGN/A(150.b.28d) OM images 

CEM: The cement looks similar to the equivalent sample without bentonite, IGN/A(150.28d). 

ITZ: The ITZ looks similar to the one observed in the sample IGN/A(150.28d), except for the 

homogeneous light brown ≈200µm wide rim in between the ITZ-R and ITZ-C and slightly wider ITZ-R, 

with ≈400-500µm. Additionally, a fissure in between the cement and the rock can also be observed. 

 

IGN/HAC(150.b.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.22 - IGN/HAC(150.b.28d) OM images 

CEM: The cement looks similar to the equivalent sample without bentonite, IGN/HAC(150.28d). 

ITZ: The ITZ looks similar to the one observed in the sample IGN/HAC(150.28d), except for the 

homogeneous light brown ≈200µm wide rim in between the ITZ-R and the fissures around it, as the 

cement and the rock detached from each other. 
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IGN/W(150.b.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.23 - IGN/W(150.b.28d) OM images 

CEM: The cement looks similar to the equivalent sample without bentonite, IGN/W(150.28d). 

ITZ: The ITZ looks similar to the one observed in the sample IGN/W(150.28d), except for the 

homogeneous light brown ≈100µm wide rim in between the ITZ-R and ITZ-C and slightly wider ITZ-R, 

with ≈250-400µm. Additionally, a narrow fissure in between the cement and the rock can also be 

observed, as these materials started detaching from each other. 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure V.24-Figure V.30. The phase map 

showing approximate Ca/Si ratios has been created from a short software package developed 

as part. 

These maps are presented in accordance with the description given in the section V.1.1 d). 

 

IGN/G(150.b.28d) 

 

Key* 

 
= 100 µm 

i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.24 - IGN/G(150.b.28d) SEM/EDS images 

 
Phase map: Similar to the IGN/G(150.28d), a gradual Ca/Si ratio change across the ITZ is observed. 

Element maps: In the ITZ, similarly to IGN/G(150.28d), Ca penetrates in high amounts up to 100 µm into 

the rock. There is, however, further Ca migration in slightly lower amounts, which goes up to 500 µm into 

the rock (total=600 µm). 

IGN/G20SF(150.b.28d) 
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Key* 

 

i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.25 - IGN/G20SF(150.b.28d) SEM/EDS images 

 

Phase map: relatively gradual phase change across the ITZ, similarly to IGN/G20SF(150.28d).  

Element map: further Ca
 migration when compared with the IGN/G20SF(150.28d). 
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IGN/G40SF(150.b.28d) 

 

Key* 

 
 

i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.26 - IGN/G40SF(150.b.28d) SEM/EDS images 

 

Phase map: Similar to the equivalent sample without bentonite, IGN/G40SF(150.28d), the phase change is 

sudden, without obvious intermediate Ca/Si ratio phases between the rock and the cement. 

Element map: the Ca migration (over 300µm) from ITZ-C into ITZ-R in this sample seems to be 

significantly deeper than the one observed in the equivalent sample without bentonite, 

IGN/G40SF(150.28d). 
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IGN/G20MS(150.b.28d) 

 

Key* 

 
= 100 µm 

i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.27 - IGN/G20MS(150.b.28d) SEM/EDS images 

 

Phase map: Gradual phase change across the ITZ, similarly to IGN/G20MS(150.28d). 

Element map: deeper Ca
 migration compared with the equivalent sample without bentonite addition, 

IGN/G20MS(150.28d). 
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IGN/A(150.b.28d) 

 

Key* 

 
= 100 µm 

i. ITZ Ca/Si phase map 

 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.28 - IGN/A(150.b.28d) SEM/EDS images 

 

Phase map: Similar to the IGN/A(150.28d), a gradual Ca/Si ratio change across the ITZ is observed. 

Element maps: In the ITZ, similarly to the IGN/A(150.28d), Ca seems to penetrate in high amounts up to 

100 µm plus a lower but still clear migration up to about 200 µm into the rock (total=300 µm). There is a 

micro fissure across the ITZ-C. 
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IGN/HAC(150.b.28d) 

 

Key* 

 
= 100 µm 

i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

  

  

iv. ITZ Al map v. ITZ Na map 

Figure V.29 - IGN/HAC(150.b.28d) SEM/EDS images 

Phase map: From the Ca/Si phase map we can see only 2 main phases: one for the rock and another for the 

cement, with the sudden phase change. 

Element maps: Little Ca migration detected across the ITZ. 
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IGN/W(150.b.28d) 

 

Key* 

 
= 100 µm 

i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.30 - IGN/W(150.b.28d) SEM/EDS images 

 

Phase map: From the Ca/Si phase map, similarly to the IGN/W(150.28d), a gradual Ca/Si ratio change 

across the ITZ can be seen. 

Element maps: In the ITZ Ca seems to penetrate in high amounts up to 200 µm plus a lower but still clear 

migration up to about 100 µm into the rock (total=300 µm). This is bit further than the equivalent sample 

without bentonite addition (IGN/W(150.28d). 
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V.2 290
o
C cure 

a) Mesoscopic Images 

Samples of cut surfaces are shown at approximately 70% of actual size in Figure V.31. 

    
i.. IGN/G(290.28d) ii IGN/G20SF(290.28d) iii IGN/G40SF(290.28d) iv IGN/G20MS(290.28d) 

 

 

  

 

v. IGN/A(290.28d) vi. IGN/HAC(290.28d) vii. IGN/W(290.28d)  

 

Figure V.31 - Photos of the cross section of the IGN/CEM assemblages exposed at 290
o
C for 28 days in brine 

 

The most noticeable features from this 290oC samples is the colour changes in the rock and in 

most of the cements.  
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b) XRD 
 

Table V.3 details the phases detected by XRD within each of the zones of the ITZ. 

 

Table V.3 - compounds identified by XRD analysis for samples exposed at 290
o
C for 28 days in brine 

Sample Zone Identified peaks and other relevant features 

IGN/G 

(290.28d) 

CEM 
Amorphous, portlandite, reinhardbraunsite. Traces of 

jaffeite, killalaite, unhydrated cement and calcite. 

ITZ-C Reduced Portlandite from CEM. 

ITZ-R Similar to IGN. Traces of reinhardbraunsite and calcite. 

IGN/G20SF 

(290.28d) 

CEM 

Amorphous, kilchoanite, xonotlite, reinhardbraunsite and 

unhydrated calcium silicates. Traces of calcite, killalaite, 

portlandite, quartz and unhydrated cement. 

ITZ-C 
Increased quartz and xonotlite. Reduced kilchoanite and 

unhydrated calcium silicates. 

ITZ-R Reduced feldspars from IGN. 

IGN/G40SF 

(290.28d) 

CEM Amorphous, quartz, xonotlite, killalite, unhydrated cem. 

ITZ-C Increased quartz and reduced xonotlite from CEM. 

ITZ-R Reduced feldspars from IGN. 

IGN/G20MS 

(290.28d) 

CEM 
Amorphous, kilchoanite, killalaite, calcite and xonotlite. 

Traces of reinhardbraunsite and unhydrated cement. 

ITZ-C 
Increased killalaite and reduced kilchoanite from CEM. 

Traces of jaffeite and aragonite. 

ITZ-R 
Similar to IGN. Traces of jaffeite, reinhardbraunsite and 

calcite. 

IGN/A 

(290.28d) 

CEM 
Amorphous, portlandite, reinhardbraunsite, calcite, katoite 

silicatian. Traces of unhydrated cement and killalaite. 

ITZ-C 
Reduced portlandite and increased calcite and killalaite from 

CEM. Traces of kilchoanite. 

ITZ-R Similar to IGN. Traces of katoite silicatian and kilchoanite. 

IGN/HAC 

(290.28d) 

CEM 
Amorphous, boehmite, katoite, calcium aluminium oxide 

hydrate, kaotite silicatian. 

ITZ-C Reduced kaotite and kaotite silicatian from CEM. 

ITZ-R 
Similar to IGN. Traces of calcium aluminium oxide hydrate 

and katoite silicatian. 

IGN/W 

(290.28d) 

CEM 
Amorphous, portlandite, reinharbraunsite, calcite. Traces 

of jaffeite, kilchoanite and unhydrated cement. 

ITZ-C 
Increased calcite, reduced reinharbraunsite and sharply 

reduced portlandite from CEM. Xonotlite present as well. 

ITZ-R Similar to IGN. Traces of reinhardbraunsite. 
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c) OM 

Thin section micrographs for each sample are shown in Figure V.32-Figure V.38.  The 

cement is on the left and the rock on the right.  Micrographs under plane polarised light 

are the left figure and crossed polars on the right. 

IGN/G(290.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.32 - IGN/G(290.28d) OM images 

CEM: Under optical microscope, this cement exhibits a darker and more homogeneous brown tone (in 
PPL) than the class G exposed at 150oC. In XPL shows some bright white and reddish spots (although 
different red tones by XPL and naked eye). 

ITZ: As expected, there is a fissure splitting the ITZ-C and the CEM. A ≈50 µm wide ITZ-R dark brown 
ITZ-R rim is seen in PPL, with an extension into the rock of a much lighter up to ≈200µm wide rim, 
barely distinguishable from the rock. In XPL, the ITZ-R seems to be mostly composed of milky 

material and a ≈300µm ITZ-C rim is distinguishable due to its reduction in bright white/increased red 
spots. 

 

IGN/G20SF(290.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.33 - IGN/G20SF(290.28d) OM images 

CEM: As seen for the class G cement under same conditions, also this exhibits a darker and more 
homogeneous brown tone than its equivalent exposed at 150oC. In XPL this cement shows few bright 
white and reddish spots (although different red tones by XPL and naked eye). 

ITZ: There is a fissure splitting the ITZ-C and the ITZ-R and a ≈100 µm wide ITZ-R dark brown ITZ-R 
rim (in PPL), which also extendes further into the rock in a lighter colour that is almost undistinguishable 
from the rock. In XPL, the ITZ-R seems to be mostly composed of milky material and a ≈200-400µm 
ITZ-C rim is distinguishable due to its lighter reddish colour, reduction in small bright white spots 
and presence of medium sized bright grains. 
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IGN/G40SF(290.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.34 - IGN/G40SF(290.28d) OM images 

CEM: Although red coloured to the naked eye, the colour of this cement doesn’t change much when 

compared with the same cement exposed to 150oC in PPL. In XPL, however, similarly to the G20SF 

exposed to 290oC, this cement shows bright white and reddish spots, not seen in the 150oC one. 

ITZ: There is a fissure splitting the ITZ-C and ITZ-R. In PPL, a ≈100 µm wide dark ITZ-R rim, with 

another similar rim delimiting ITZ-C from CEM. In XPL, the ≈500µm ITZ-C rim is distinguishable due 

to a significant increase in medium sized bright grains (quartz). 

 

IGN/G20MS(290.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.35 - IGN/G20MS(290.28d) OM images 

CEM: Under optical microscope, the colour and texture of this cement do not change much when 

compared with the same cement exposed to 150oC in PPL (although slightly darker). In XPL, however, 

similarly to the G20SF exposed to 290oC, this cement shows several red spots, not seen in the 150oC one. 

ITZ: Again, a fissure splitting the ITZ-C from the ITZ-R is observed. In PPL, a ≈50 µm wide ITZ-R, 

with another similar rim delimiting ITZ-C from CEM. In XPL, the ≈500µm ITZ-C rim is distinguishable 

due to a significant decrease in small sized bright grains. 
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IGN/A(290.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.36 - IGN/A(290.28d) OM images 

CEM: Under optical microscope, this cement exhibits a darker and more homogeneous brown tone (in 

PPL) than the class A exposed at 150oC. Some white spots can be distinguished. In XPL this cement 

shows some bright spots with a brownish colour. 

ITZ: The fissure splits the ITZ-R and the rock. A ≈200 µm wide ITZ-R dark brown ITZ-R rim is seen in 

PPL. In XPL, the ITZ-R seems to be mostly composed of milky material. 

 

IGN/HAC(290.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.37 - IGN/HAC(290.28d) OM images 

CEM: Under optical microscope, this cement exhibits a darker colour (in PPL) than the HAC exposed at 

150oC. In XPL this cement shows some bright spots/zones with a reddish colour. 

ITZ: The fissure splits the ITZ-R and the rock. The very dark colour of the cement makes it very difficult 

to distinguish the cement from the ITZ, which is also extremely dark. It seems the ITZ-R is about ≈100 

µm wide which, in PPL is slightly darker than the surrounding area and in XPL seems to be mostly 

composed of milky material. The CEM and the ITZ-C are extremely difficult to distinguish. 
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IGN/W(290.28d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure V.38 - IGN/W(290.28d) OM images 

CEM: Similarly to the class G one, this cement exhibits a darker and more homogeneous brown tone (in 

PPL) than the white cement exposed at 150oC. In XPL this cement shows some bright white spots. 

ITZ: The fissure splits the ITZ-R and the rock. A ≈200 µm wide ITZ-R dark brown ITZ-R rim is seen in 

PPL. This ITZ-R is connected with the ITZ-C through a zone where little cement is present. Still in PPL, 

a ≈50µm ITZ-C rim is distinguishable due to its dark colour. In XPL, the ITZ-R seems to be mostly 

composed of milky material. 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure V.39-Figure V.45. The phase map 

showing approximate Ca/Si ratios has been created from a short software package developed 

as part of this work as the supplied analytical package was unsuitable. 

These maps are presented in accordance with the description given in the section V.1.1 d). 

 

IGN/G(290.28d) 

 

Key* 

 
i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.39 - IGN/G(290.28d) SEM/EDS images 

Phase map: There is a gradual Ca/Si ratio change across the ITZ. 

Element maps: In the ITZ, Ca penetrates up to ≈100 µm, which is significantly less than the migration 

observed in the equivalent sample exposed to a 150oC, IGN/G(150.28d). 
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IGN/G20SF(290.28d) 

 

Key* 

 
i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure V.40 - IGN/G20SF(290.28d) SEM/EDS images 

 

Phase map: Gradual phase change across the ITZ, although not as obvious as for the IGN/G(290.28d). 

Element maps: Similarly to IGN/G(290.28d), the Ca penetrates only about 50µm into the rock, which is 

considerably less than the Ca penetration observed in the equivalent sample exposed at 150oC, 

IGN/G20SF(150.28d). 
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IGN/G40SF(290.28d) 
Key* 

i. ITZ-C Ca/Si phase map (CEMENT SIDE) ii. ITZ-R Ca/Si phase map (ROCK side) 

 

  
iii. ITZ-C Ca map (CEMENT side) iv. ITZ-R Ca map (ROCK side) 

 

  
v. ITZ-C Si map (CEMENT side) vi. ITZ-R Si map (ROCK side) 

Figure V.41 - IGN/G40SF(290.28d) SEM/EDS images 

Phase maps: The phase change is relatively abrupt, with little intermediate Ca/Si ratio phases between the 

rock and the cement. 

Element maps: little Ca migration (<50µm) from cement into the rock. 
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IGN/G20MS(290.28d) 
Key* 

i. ITZ-C Ca/Si phase map (CEMENT SIDE) ii. ITZ-R Ca/Si phase map (ROCK side) 

 

  
iii. ITZ-C Ca map (CEMENT side) iv. ITZ-R Ca map (ROCK side) 

 

  
v. ITZ-C Si map (CEMENT side) vi. ITZ-R Si map (ROCK side) 

Figure V.42 - IGN/G20MS(290.28d) SEM/EDS images 

Phase map: the ITZ phases are not obvious as the cement has detached from the cement across the line 

between ITZ-R and ITZ-C. 

Element map: difficult to access from these maps whether the depth of Ca
 migration, as the detachment zone 

is very rough. 
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IGN/A(290.28d) 

 

Key* 

 
 

i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. Si map 

Figure V.43 - IGN/A(290.28d) SEM/EDS images 

 

Phase map: From the Ca/Si phase map, similar to the IGN/A(150.28d), a gradual Ca/Si ratio can be seen 

change across the ITZ. 

Element maps: In the ITZ the Ca seems to penetrate in low amounts up to 100µm, which significantly 

lower than IGN/A(150.28d). 
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IGN/HAC(290.28d) 

 

Key* 

 
= 100 µm 

i. ITZ Ca/Si phase map 
 

  
ii. ITZ Ca map iii. Si map 

  

  

iv. ITZ Al map v. ITZ Na map 

Figure V.44 - IGN/HAC(290.28d) SEM/EDS images 

Phase map: From the Ca/Si phase map a relatively abrupt phase change is observable. 

Element maps: Similar to the equivalent sample exposed at 150oC, IGN/HAC(150.28d), no significant Ca 

migration is evident across the ITZ. 
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IGN/W(290.28d) 
Key* 

i. ITZ-C Ca/Si phase map (CEMENT SIDE) ii. ITZ-R Ca/Si phase map (ROCK side) 

 

  
iii. ITZ-C Ca map (CEMENT side) iv. ITZ-R Ca map (ROCK side) 

 

  
v. ITZ-C Si map (CEMENT side) vi. ITZ-R Si map (ROCK side) 

Figure V.45 - IGN/W(290.28d) SEM/EDS images 

Phase map: Similar to the IGN/W(150.28d), a gradual Ca/Si ratio change across the ITZ can be observed. 

Element maps: In the ITZ the cement Ca penetrates in low amounts up to 100 µm into the rock, which 

considerably lower than IGN/W(150.28d). 
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VI. RESULTS: 3 MONTHS CURE 

The results presented below for each of the curing conditions/rock type combinations are 

arranged as follows: 

a) Cut surface photographs 

b) X-Ray diffraction 

c) Optical Microscopy 

d) Electron microscopy/Energy Dispersive Spectroscopy 

e) HCl test 

f) Thermogravimetry and Mass Spectrometry 

VI.1 150
o
C cure 

VI.1.1 No CO2 exposure 

VI.1.1.1 IGN 

a) Mesoscopic Images 

Samples of cut surfaces are shown in Figure VI.1. 

  
i.  IGN/G(150.84d) ii.  IGN/G20SF(150.84d) 

  
iii. IGN/G40SF(150.84d) iv. IGN/G20MS(150.84d) 

Figure VI.1 - Photos of the cross section of the IGN/CEM assemblages exposed at 150
o
C for 84 days in brine 
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b) XRD 

Table VI.1 details the phases detected by XRD within each of the zones of the ITZ. 

Table VI.1 - compounds identified by XRD analysis: 150
o
C, no CO2-exposure, 84 days cure 

Sample Zone Identified peaks and other relevant features 

IGN/G 

(150.84d) 

CEM 
Largely amorphous. Portlandite and unhydrated cement. Traces 

of αC2SH, kilchoanite and calcite. 

ITZ-C Similar to CEM, with reduced portlandite and increased calcite. 

ITZ-R 

Similar to IGN, with reduced feldspars and quartz and presence of 

calcite, aragonite and unhydrated cement. Traces of portlandite, 

kilchoanite, hillebrandite and killalaite. 

IGN/G20SF 

(150.84d) 

CEM 

Largely amorphous. Quartz, unhydrated cement and αC2SH. 

Traces of hillebrandite, killalaite, kilchoanite, aragonite, calcite 

and tobermorite. 

ITZ-C 
Similar to CEM, with increased amorphous material and sharply 

reduced quartz. Calcite and aragonite increase. 

ITZ-R 
Similar to IGN, with reduced feldspars and quartz. Traces of 

aragonite, unhydrated cement, hillebrandite and killalaite. 

IGN/G40SF 

(150.84d) 

CEM 

Largely amorphous. Quartz and tobermorite. Traces of calcite, 

aragonite, calcite, unhydrated cement, hillebrandite and 

killalaite. 

ITZ-C Similar to CEM, with slight calcite and aragonite increase. 

ITZ-R 
Similar to IGN, with reduced feldspars and quartz. Traces of 

hillebrandite and unhydrated cement. 

IGN/G20MS 

(150.84d) 

CEM 
Largely amorphous. Calcite. Traces of aragonite, αC2SH, 

unhydrated cement, killalaite and kilchoanite. 

ITZ-C Similar to CEM, with reduced calcite. 

ITZ-R 
Similar to IGN, with reduced feldspars and quartz. Traces of 

calcite, aragonite and unhydrated cement. 
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c) OM 

Thin section micrographs for each sample are shown in Figure VI.2-Figure VI.5.  The 

cement is on the left and the rock on the right.  Micrographs under plane polarised light 

are the left figure and crossed polars on the right. 

IGN/G(150.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.2 - IGN/G(150.84d) OM images 

CEM: Large numbers of small sized grains/crystals which are portlandite. 

ITZ: In PPL, a ≈450µm wide ITZ-R brown rim is observed. In XPL, a ≈300µm wide ITZ-C rim can 

be seen, with fewer small sized bright grains/crystals than the rest of the cement (CEM). Most of 

these crystals seem to be concentrated in the line between ITZ-C and ITZ-R.  

 

IGN/G20SF(150.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.3 - IGN/G20SF(150.84d) OM images 

CEM: small and large sized grains/crystals. 

ITZ: In PPL, a ≈500µm wide dark ITZ-R rim can be seen which is likely to be amorphous as it is 

isotropic, whereas the ITZ-C is a ≈300µm wide rim, barely distinguishable. 
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IGN/G40SF(150.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure VI.4 - IGN/G40SF(150.84d) OM images 

CEM: In PPL, it is similar to IGN/G20SF(150.84d), with small and large sized grains/crystals. In 

XPL it is noticeable that it has considerably fewer bright spots than in IGN/G20SF(150.84d). 

ITZ: In PPL, there is a ≈400µm wide dark ITZ-R rim, which is narrower than those in 

IGN/G(150.84d) or IGN/G20SF(150.84d). The ITZ-C cannot be distinguished from the rest of the 

cement (CEM). 

 

IGN/G20MS(150.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure VI.5 - IGN/G20MS(150.84d) OM images 

CEM: It is similar to that observed for IGN/G20SF(150.84d), with a large number of bright spots (in 

XPL). 

ITZ: The ITZ-R is a ≈600µm wide dark ITZ-R rim, wider than any other IGN/CEM(150.84d) 

combination. The ITZ-C cannot be distinguished from CEM. 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure VI.6-Figure VI.9. The phase map 

showing approximate Ca/Si ratios has been created from a short software package developed 

as part of this work as the supplied analytical package was unsuitable. 

These maps are presented in accordance with the description given in the section V.1.1 d). 

 

IGN/G(150.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure VI.6 - IGN/G(150.84d) SEM/EDS images 

Phase map: Relatively gradual/broad phase change. 

Element maps: Ca migration (≈300µm) relatively uniform from the cement into the rock with pockets of 

concentration in rock pores. 
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IGN/G20SF(150.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.7 - IGN/G20SF(150.84d) SEM/EDS images 

 

Phase map: Relatively broad but not as gradual phase change as for IGN/G(150.84d). 

Element maps: Ca has migrated over 300µm, from the cement into the rock, and is mostly concentrated in 

the rock voids. 
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IGN/G40SF(150.84d) 

 

Key* 

 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.8 - IGN/G40SF(150.84d) SEM/EDS images 

 

Phase map: Almost no high Ca/Si ratio phases due to the high amount of silica added to the cement. No 

obvious intermediate Ca/Si ratio phase. 

Element maps: Ca has migrated ≈200µm and in significantly lower amounts than any other 

IGN/CEM(150.84d) combination. 
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IGN/G20MS(150.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.9 - IGN/G20MS(150.84d) SEM/EDS images 

 

Phase map: Almost no high Ca/Si ratio phases, probably due to the fast reaction rate of the silica added to 

the cement. Relatively broad but not as gradual phase change as in IGN/G(150.84d). 

Element maps: Ca has penetrated over 350µm into the rock. 
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e) HCl test 

This test was undertaken on the ITZ-C of IGN/G(150.84d) and significant effervescence was 

observed, indicating presence of carbonates. 

 

f) TGA and Mass Spec 

The TGA was undertaken on the ITZ-C of IGN/G(150.84d) and shows material decomposing 

within the range 450oC to 650oC (Figure VI.10). From the Mass Spec, it can be seen that some 

CO2 was released over this temperature range (although it appears at a higher temperature, as 

the detection of released CO2 during the TG is delayed due to the time the gases take to get to 

the mass spectrometer) (Figure VI.11). These results indicate carbonate decomposition over 

this temperature range. There is other carbonate decomposing at higher temperatures, which 

is probably calcite and, perhaps, small amounts of aragonite (which decomposes at slightly 

lower temperatures than calcite). In the appendix X.5, the comparison of the CO2 released in 

this sample with the other ones and with calcite (the reference calcium carbonate) can be 

found. 

 

Figure VI.10 - TGA result of IGN/G(150.84d) ITZ-C 
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Figure VI.11 - Mass Spec result of IGN/G(150.84d) ITZ-C 
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VI.1.2 With CO2 exposure 

VI.1.2.1 IGN 

a) Mesoscopic Images 

Samples of cut surfaces are shown in Figure VI.12. 

  

i. IGN/G(150.CO2.84d) ii. IGN/G20SF(150.CO2.84d) 

  

iii. IGN/G40SF(150.CO2.84d) iv. IGN/G20MS(150.CO2.84d) 

Figure VI.12 - Photos of the cross section of the IGN/CEM assemblages exposed at 150
o
C for 84 days in 

brine, with CO2 injection 

Although more or less uniform all around the G40SF interior outermost layer, the carbonation 

rim observed seems to be dependent on the surrounding rock thickness. The top of the 

cement, for instance, has a thicker carbonation layer which is probably associated with the 

absence of surrounding rock.  
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b) XRD 

Table VI.2 details the phases detected by XRD within each of the zones of the ITZ. 

Table VI.2 - compounds identified by XRD analysis: 150
o
C, with CO2-exposure, 84 days cure 

Sample Zone Identified peaks and other relevant features 

IGN/G 

(150.CO2.84d) 

CEM 
Largely amorphous with portlandite, unhydrated cement, hillebrandite 

and calcite. Traces of calcite, kilchoanite and αC2SH. The traces of calcite 

in CEM indicate a slight carbonation rate in the cement core. 

ITZ-C 

Similar to CEM, with sharply reduced portlandite and slight increase in 

hillebrandite and calcite. Traces of aragonite. The reduced portlandite 

along with the increased calcium carbonates indicates a higher carbonation 

rate in the cement outermost layer. 

ITZ-R Similar to IGN. 

IGN/G20SF 

(150.CO2.84d) 

CEM 

Largely amorphous with quartz, unhydrated cement, hillebrandite, 

kilchoanite, killalaite. Traces of aragonite, calcite and tobermorite. The 

traces of aragonite and calcite in CEM indicate a slight carbonation rate in 

the cement core. 

ITZ-C 

Similar to CEM, with a slight increase in amorphous material and 

aragonite. The aragonite increase in ITZ-C seems to confirm a higher 

carbonation rate in the cement outermost layer, whereas the increase in 

amorphous material might, again, mean that some ACC is forming in 

addition to crystalline calcium carbonate. 

ITZ-R 
Similar to IGN, with traces of calcite. The traces of calcite in the ITZ-R 

seem to indicate Ca
2+

 and OH
- 

migration into the rock and subsequent 

carbonation. 

IGN/G40SF 

(150.CO2.84d) 

CEM 

Largely amorphous with quartz and unhydrated cement. Traces of 

aragonite, calcite, hillebrandite, kilchoanite, αC2SH, tobermorite and 

killalaite. As expected, the addition of over 30% quartz to Portland based 

cement caused the formation of tobermorite, although in low amounts. The 

traces of aragonite and calcite in CEM indicate a slight carbonation rate in 

the cement core. 

ITZ-C 

Considerably different from CEM, due to a sharp increase in aragonite and 

quartz. The amount of amorphous material seems to have increased as 

well. The sharp aragonite and amorphous material increase in the ITZ-C 

indicate higher carbonation rate in the outermost layer, when compared to the 

cement core. The increase in amorphous material may indicate the formation 

of ACC. 

ITZ-R Similar to IGN. 

IGN/G20MS 

(150.CO2.84d) 

CEM 
Largely amorphous with calcite and unhydrated cement. Traces of 

kilchoanite, αC2SH and hillebrandite. The presence of calcite in CEM 

indicate a slight carbonation rate in the cement core. 

ITZ-C 

Similar to CEM, with increased calcite, aragonite and amorphous 

material. The calcite and amorphous material increase in the ITZ-C indicate 

higher carbonation rate in the outermost layer, when compared to the cement 

core. The increase in amorphous material may indicate the formation of 

ACC. 

ITZ-R 
Similar to IGN, with traces of calcite. The traces of calcite in the ITZ-R 

seem to indicate Ca
2+

 and OH
- 

migration into the rock and subsequent 

carbonation. 
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c) OM 

Thin section micrographs for each sample are shown in Figure VI.13-Figure VI.16.  The cement 

is on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

IGN/G(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.13 - IGN/G(150.CO2.84d) OM images 

CEM: Many small crystals. 

ITZ: While a ≈300µm wide ITZ-R rim can barely be distinguished in PPL, in XPL it is evident. A 

≈200µm wide bright ITZ-C rim can be distinguished, with a slightly brighter colour in comparison 

with the rest of the cement (CEM). A thin dark line splits the ITZ-R and ITZ-C. 

 

IGN/G20SF(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.14 - IGN/G20SF(150.CO2.84d) OM images 

CEM: There is a number of small grains/crystals with a few bigger crystals. Under XPL a few 

orange/reddish/brownish (Fe) spots can be seen. 

ITZ: A ≈450µm wide ITZ-R is barely distinguishable in PPL, whereas in XPL it appears extremely 

bright (brighter than either CEM or IGN). The ITZ-C is not distinguishable from the rest of the 

cement (CEM) by OM. 



178 

 

IGN/G40SF(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

 

 

 

iii. Carbonation rim in PPL iv. Carbonation rim in XPL 

Figure VI.15 - IGN/G40SF(150.CO2.84d) OM images 

CEM: Similar to IGN/G20SF(150.CO2.84d), with small sized grains/crystals and a few larger sized 

crystals with plenty of orange/reddish spots seen in XPL. 

ITZ: A ≈200µm wide ITZ-R is barely distinguishable in PPL.  In XPL it appears as bright colours 

(white and orange) (as bright as in CEM), but not as bright as the same zone in the 

IGN/G(150.CO2.84d) and G20SF(150.CO2.84d). From the carbonation rim image, it can be seen 

over 2mm carbonation rim in the ITZ-C. 
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IGN/G20MS(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure VI.16 - IGN/G20MS(150.CO2.84d) OM images 

CEM: Similar to IGN/G20MS(150.84d), with a few orange/reddish spots.                                                                

ITZ: The ITZ-R is barely distinguishable in PPL, whereas in XPL it has distinctive bright colours (brighter 

than either CEM or IGN). The ITZ-C is distinguishable by its darker colour in comparison to CEM. 
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d) SEM/EDS 

Detailed below are the SEM images, elementa dna phase maps ands spot analysis in Figure 

VI.17-Figure VI.37. The phase map showing approximate Ca/Si ratios has been created from a 

short software package developed as part of this work as the supplied analytical package was 

unsuitable.  

These maps are presented in accordance with the description given in the section V.1.1 d). 

 

IGN/G(150.CO2.84d) - SEM/EDS - Region 1 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure VI.17 - IGN/G(150.CO2.84d) SEM/EDS images - Region 1 

Phase map: Relatively gradual/smooth phase change. 

Element maps: Ca migration has penetrated more or less uniformly about 300µm into the rock. 
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IGN/G(150.CO2.84d) - SEM/EDS - Region 2 

  
i. ITZ SEM image ii. ITZ SEM backscattered image 

  
iii. ITZ Ca map iv. ITZ Si map 

  
v. ITZ C map vi. ITZ Fe map 

Figure VI.18 - IGN/G(150.CO2.84d) SEM/EDS images - Region 2 

Element maps: Ca has penetrated over 300µm into the rock. A carbon rim is observed in the ITZ. This C 

rim is more concentrated in the fissure that has formed in the outermost layer of the cement. 

CEMENT 

ROCK ROCK 

CEMENT 
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i. ITZ EDS SPOT 1 

 

 
ii. ITZ EDS SPOT 2 

 
iii. ITZ EDS SPOT 3 

Figure VI.19 - IGN/G(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part I) 
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i. ITZ EDS SPOT 4 

 

 
ii. ITZ EDS SPOT 5 

 

 
iii. ITZ EDS SPOT 6 

Figure VI.20 – IGN/G(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 
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i. ITZ EDS SPOT 7 

 
Figure VI.21 - IGN/G(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part III) 

 

The EDS SPOT analysis for the Region 2 of the IGN/G(150.CO2.84d) is mapped in the Figure 

VI.18 and the results are presented in the Figure VI.19-Figure VI.21. 

SPOT 1 is located in the ITZ-R. Si and O are the prevalent elements, with some Al, Ca, K 

and Na present. This composition indicates that this region is mostly composed of volcanic 

glass. The presence of Ca is probably due to calcium migrating from the cement into the rock. 

On the other hand, the considerable amounts of Al along with the small amounts of Ca, K and 

Na may indicate the presence of a small feldspar crystal. The presence of C is not obvious, as 

the C K peak is coincident with the Si L peak. Nevertheless, the presence of C indicates some 

degree of carbonation. 

SPOTs 2 and 3 are located in the ITZ-C and have similar compositions. Ca and O are the 

prevalent elements with considerable amounts of C, Si and Al also detected. This 

composition indicates that this region is mostly composed of cement. The relatively high 

amounts of of Si and O suggest that small amounts of volcanic glass from the rock are 

present as well, as Si is not typically present in this cement formulation in such high amounts. 

The prescence of C indicates the presence of a carbonate. The relatively large amounts of C 

(compared to Ca) suggest that this is calcium carbonate, CaCO3. Nevertheless, considering 

that Si and O are present as well, scawtite, Ca7Si6(CO3)O18•2(H2O), could be present, 

although this mineral needs much less C than the CaCO3 (only ≈1.5% in weight). Dawsonite, 

NaAlCO3(OH)2, is not present as no Na was detected. 
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SPOT 4 is also located in the ITZ-C. Ca and O are the prevalent elements, with considerable 

amounts of C.  Small amounts of Al and Si and minor amounts of Fe were also detected. This 

composition indicates that this region is mostly composed of cement hydrates, along with 

considerable amounts of carbonate. The relatively large amounts of C (compared to Ca) 

suggest that this is calcium carbonate, CaCO3. This carbonate needs just over 3 times more 

Ca than C (in weight), whereas scawtite, Ca7Si6(CO3)O18•2(H2O), would need over 23 times 

more Ca than C to form. This means that even if all the Ca present was present as scawtite, it 

would not be enough to use up most of the C present. 

SPOT 5 is also located in the ITZ-C, next to a micro-crack. Ca, C and O are the prevalent 

elements, with considerable amounts of Si present as well. Small amounts of Al and small 

amounts of K were also detected. This composition indicates that this region is likely to be 

composed of a mix of cement, carbonated cement and volcanic glass from the rock. On the 

other hand, the sharp increase in Si, C and O compared to SPOT 4 seems to be a consequence 

of the micro-crack, which may have enhanced the presence of silica and carbon dioxide in 

this zone. 

SPOT 6 is located in the ITZ-C and has a similar chemical composition to SPOT 4 with Ca 

and O as the prevalent elements. C is also present in considerable amounts. This composition 

indicates that this region is mostly composed of cement. Again, the relatively high amounts 

of C indicate the presence of large amounts of calcium carbonate. Similar to SPOT 4, while 

large amounts of Ca combined with the relatively high amounts of C compared to Ca suggest 

this is calcium carbonate, CaCO3. 

SPOT 7 is also located in the inner region of the ITZ-C. Again Ca is the prevalent element 

with O present in considerable amounts but Si and C are present in small amounts. The 

relative amounts given in the quantitative analysis (Ca / C / O = 40.91 / 11.45 / 43.10) are 

very similar to those observed for CaCO3 (40.04 / 12.00 / 47.96).  This also indicates that this 

region is mostly composed of CaCO3.  
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IGN/G20SF(150.CO2.84d) - SEM/EDS - Region 1 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.22 - IGN/G20SF(150.CO2.84d) SEM/EDS images - Region 1 

Phase map: Phase change similar to the one observed in IGN/G(150.CO2.84d). 

Element maps: ≈350µm Ca migration is detected, unevenly distributed in the ITZ-R, it is mostly 

concentrated in the bigger rock voids. 
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IGN/G20SF(150.CO2.84d) - SEM/EDS - Region 2 

  
i. ITZ SEM image ii. ITZ SEM backscattered image 

  
iii. ITZ Ca map iv. ITZ Si map 

  
iii. ITZ C map iv. ITZ Fe map 

Figure VI.23 - IGN/G20SF(150.CO2.84d) SEM/EDS images - Region 2 

Element maps: Ca has penetrated over 300µm into the rock. Some C was detected in both the cement 

outermost layer (ITZ-C) and the rock side of the ITZ (ITZ-R). This carbon is unevenly distributed within 

these zones. This is a consequence of the heterogeneous nature of the materials involved, particularly the 

rock. 

CEMENT CEMENT 

ROCK ROCK 
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i. ITZ EDS SPOT 1 

 

 
ii. ITZ EDS SPOT 2 

 

 
iii. ITZ EDS SPOT 3 
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Figure VI.24 - IGN/G20SF(150.CO2.84d) SPOT analysis in Region 2 (Part I) 

 

i. ITZ EDS SPOT 4 

 

 
ii. ITZ EDS SPOT 5 

 

 

iii. ITZ EDS SPOT 6 
 

Figure VI.25 - IGN/G20SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 
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i. ITZ EDS SPOT 7 

 

 
ii. ITZ EDS SPOT 8 

 

iii. ITZ EDS SPOT 9 
 

Figure VI.26 - IGN/G20SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part III) 
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The EDS SPOT analysis for the Region 2 of the IGN/G20SF(150.CO2.84d) is mapped in the 

Figure VI.23 and the results are presented in the Figure VI.24-Figure VI.26. 

SPOT 1 is located in the ROCK. Si and O are the prevalent elements, with considerable 

amounts of Al. This composition indicates that this region is mostly composed of volcanic 

glass. 

SPOT 2 is located in the ITZ-R. O, Si, Ca and C are all present in relatively high amounts. 

This composition indicates that this region is composed of a mix of volcanic glass and 

carbonated cement. The high amounts of Ca have originated from cement that has penetrated 

the rock. The levels of Si and O suggest the presence of cement (with 20% quartz) or the 

formation of silica gel. The considerable amounts of C indicate the presence of a carbonate  

likely to be CaCO3, which needs only ≈3.3 times more Ca than C (in weight). Scawtite, 

Ca7Si6(CO3)O18•2(H2O), is not likely to be present as  it needs ≈23.4 times more Ca than C 

(in weight) in its composition. 

SPOT 3 is located in the ITZ-R, next to the bright white area, which is amorphous. C, O, Si 

and Ca are all present in considerably high amounts. This composition indicates that this 

region is composed of volcanic glass (or/and, perhaps, silica gel) mixed with some cement. 

The fact that the C K peak coincides with the Si L peak makes it hard to assess the exact 

amount of C present. Nevertheless, the high amounts of C indicate the presence of high 

amounts of carbonate. The relatively low amounts of Ca compared to C suggest that the Ca is 

present only as carbonate. 

SPOT 4 is located in the ITZ-R, next to the bright white area, which is amorphous. O, Ca, Si 

and C are present in relatively high amounts. This composition indicates that this region is 

mostly composed of cement hydrates and carbonated cement. The high amount of Ca along 

with large amounts of Si and O suggest that this silica rich cement formulation has penetrated 

into the rock and formed calcium silicates, likely to be a consequence of the migration by 

capillarity of the unhydrated cement. Some of the Si, O and Al is probably from the volcanic 

glass, whereas some of the Ca has been used up to form CaCO3. 

SPOT 5 is located in the ITZ-R, just besides the bright area located between the ITZ-R and 

ITZ-C. It has a similar composition to the one observed in SPOT 4, i.e. presence of cement 

hydrates and carbonated cement. This confirms the penetration of cement into the rock. 

The reduced Ca from SPOT 4 to SPOT 5 may be a consequence of Ca being leached from 

this region (dissolution front/depleted zone) and moving outwards during the carbonation 



192 

 

process, which end up being part of the calcium carbonate composition in the carbonation 

front. A similar phenomenon was observed in other studies (Rimmele et al., 2008; Milestone 

et al., 1986; Grant-Taylor et al., 1996). 

SPOT 6 is located in the bright white area, between the ITZ-R and ITZ-C. This has a similar 

composition to the one observed for SPOTs 4 and 5, but with even more reduced Ca.  The 

gradual Ca reduction (from SPOT 4 to SPOT 5 and from SPOT 5 to SPOT 6) confirms the 

existence of a dissolution front, from which the Ca is being depleted to form CaCO3 in the 

outer layers. The distinct amorphous texture of this region indicates that silica gel is present. 

This compound could have formed as a product of corrosion of the cement (loss of Ca in the 

dissolution front) or/and as a product of the alkali-silica reaction (between the cement and the 

rock). 

SPOT 7 is located in the fine line between the ITZ-C and the bright area that splits the ITZ-R 

and ITZ-C. This composition indicates that this region is mostly composed of hydrated 

cement, with some carbonated cement. 

SPOT 8 is located in the fine line between the ITZ-C and the bright area that splits the ITZ-R 

and ITZ-C. O, Ca, C and Si are all present in relatively high amounts. This composition is 

similar to that observed for SPOT 7 and indicates that this region is mostly composed of 

cement hydrates, with even higher amounts of carbonated cement than in SPOT 7. 

SPOT 9 is located in the ITZ-C, close the cement core. This seems to have a similar 

composition to SPOT 7, but with even lower amounts of C, which suggests a lower amount 

of carbonated cement. 
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IGN/G40SF(150.CO2.84d) - SEM/EDS - Region 1 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.27 - IGN/G40SF(150.CO2.84d) SEM/EDS images - Region 1 

Phase map: Phase change more abrupt than in IGN/G(150.CO2.84d). 

Element maps: Ca has migrated ≈250µm, but is unevenly distributed through the ITZ, mostly being 

concentrated in the bigger rock voids. 

 



194 

 

IGN/G40SF(150.CO2.84d) - SEM/EDS - Region 2 

  
i. ITZ SEM image ii. ITZ SEM backscattered image 

  
iii. ITZ Ca map iv. ITZ Si map 

  
v. ITZ C map vi. ITZ Fe map 

Figure VI.28 - IGN/G40SF(150.CO2.84d) SEM/EDS images - Region 2 

Element maps: Ca has penetrated over 250µm into the rock. Significant amounts of carbon were detected 

in ITZ-R and, mainly, ITZ-C. This indicates that carbonate has formed and that it is heterogeneously 

distributed within these zones. This is a consequence of the heterogeneous nature of the materials 

involved, especially the rock. 

ROCK ROCK 

CEMENT CEMENT 
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i. ITZ EDS SPOT 1 

 
ii. ITZ EDS SPOT 2 

 
iii. ITZ EDS SPOT 3 

Figure VI.29 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part I) 
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i. ITZ EDS SPOT 4 

Figure VI.30 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 
 

The EDS SPOT analysis for the Region 2 of IGN/G40SF(150.CO2.84d) is mapped in the 

Figure VI.28 and the results are presented in Figure VI.29 and Figure VI.30. 

SPOTs 1 and 2 are located in the ITZ-R, close to the ROCK. Si and O are the prevalent 

elements. This composition indicates that this region is mostly composed of volcanic glass. 

The minor peak observed for C K may mean that there is a small amount of C present as 

carbonate, combined with O and perhaps the small amount of Ca present. 

SPOT 3 is located on the line between the ITZ-R and ITZ-C. Si and O are the prevalent 

elements with Ca and C present in considerable amounts. This composition indicates that this 

region is mostly composed of volcanic glass. The relatively low amounts of Ca compared to 

C suggests that the Ca is present as carbonate, likely to be CaCO3, which needs only ≈3.3 

times more Ca than C (in weight). Scawtite, Ca7Si6(CO3)O18•2(H2O), is not likely to be 

present as  it needs ≈23.4 times more Ca than C (in weight). 

SPOT 4 is located in the ITZ-C. Si and O are present in large amounts. The composition in 

this region indicates that this is mostly silica from the cement so is probably a small quartz 

crystal. Again, the small amounts of Ca and C suggest that these are also present in the form 

of calcium carbonate, CaCO3. This is supported by the XRD analysis which detected 

considerable amounts or aragonite (CaCO3) in this zone. 
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IGN/G40SF(150.CO2.84d) - SEM/EDS - Region 3 

  
i. Carbonation rim SEM image ii. Carbonation rim SEM backscattered image 

  
i. Carbonation rim Ca map ii. Carbonation rim Si map 

  
iii. Carbonation rim C map iv. Carbonation rim Fe map 

Figure VI.31 - IGN/G40SF(150.CO2.84d) SEM/EDS images - Region 3 

 
Element maps: The carbon observed in this C map is from the aragonite detected by XRD analysis. 
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i. ITZ EDS SPOT 5 

ii. ITZ EDS SPOT 6 
 

 

iii. ITZ EDS SPOT 7 
Figure VI.32 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 3 (Part I) 
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i. ITZ EDS SPOT 8 
Figure VI.33 - IGN/G40SF(150.CO2.84d) SEM/EDS SPOT analysis in Region 3 (Part II) 

 

The EDS SPOT analysis for the Region 3 of IGN/G40SF(150.CO2.84d) is mapped in the 

Figure VI.31 and the results are presented in the Figure VI.32 and Figure VI.33. 

SPOT 5 is located in the ITZ-R, close to the ROCK. The relatively high amounts of Si, O, Al 

along with the considerable amounts of Na and Ca mean that this SPOT is composed of a 

plagioclase. According to the XRD analysis, this is probably andesine, as this mineral is part 

of the rock composition. 

SPOTs 6 and 7 are located in the core of the carbonation rim. Ca and O are present in high 

amounts with slightly less C and Si present. This composition indicates that this region is 

mostly composed of calcium silicate hydrates from the cement. 

SPOT 8 is located at the in the region between the carbonation rim and the cement core, i.e. 

in the inner layer of the carbonation rim. Si, Ca and O are all present in relatively high 

amounts. This composition is similar to that observed for SPOTs 6 and 7, but with a 

significant decrease in the amount of Ca. 
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IGN/G20MS(150.CO2.84d) - SEM/EDS - Region 1 

 

Key* 

 

i. ITZ Ca/Si phase map 

 

 

 

 

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.34 - IGN/G20MS(150.CO2.84d) SEM/EDS images - Region 1 

 

Phase map: Phase change a bit more abrupt than in IGN/G(150.CO2.84d). 

Element maps: ≈300µm Ca migration, unevenly distributed across the ITZ, mostly concentrated in the 

rock voids. 
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IGN/G20MS(150.CO2.84d) - SEM/EDS - Region 2 

  
i. ITZ SEM image ii. Carbonation rim SEM backscattered image 

  
i. ITZ Ca map ii. ITZ Si map 

  
iii. ITZ C map iv. ITZ Fe map 

Figure VI.35 - IGN/G20MS(150.CO2.84d) SEM/EDS images - Region 2 

Element maps: Ca migration has penetrated over 300µm into the rock. Relatively high amounts of carbon 

were detected in the ITZ, especially in the ITZ-R. Most of the C detected in the ITZ-R is located in the 

rock pores, as the C rich zones coincide with the Si free zones, i.e. the rock pores. 
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i. ITZ EDS SPOT 1 

 
ii. ITZ EDS SPOT 2 

iii. ITZ EDS SPOT 3 
Figure VI.36 - IGN/G20MS(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part I) 
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iv. ITZ EDS SPOT 4 
Figure VI.37 - IGN/G20MS(150.CO2.84d) SEM/EDS SPOT analysis in Region 2 (Part II) 

 

The EDS SPOT analysis for the Region 2 of the IGN/G20MS(150.CO2.84d) is mapped in the 

Figure VI.35 and the results are presented in the Figure VI.36 and Figure VI.37. 

SPOT 1 is located in the ITZ-R. Si and O are present in high amounts. This composition 

indicates that this region is mostly composed of volcanic glass. The presence of C and Ca 

suggests that there is some carbonate present. 

SPOT 2 is located in the amorphous bright area in the ITZ. Si and O are the prevalent 

elements, with Ca present in considerable amounts as well. This composition along with the 

texture observed in the SEM image indicates that this region is mostly composed of silica gel, 

which may have formed either from the alkali-silica reaction or from the loss of calcium in 

the calcium silicate hydrates. The significant amounts of Ca and C indicate the presence of 

calcium carbonate, CaCO3. 

SPOTs 3 and 4 are located in the ITZ-C. O and Ca are the prevalent elements, which 

indicates these spots are mostly composed of cement hydrates with the presence of C 

indicating the presence of considerable amounts of carbonate. Nevertheless, this cement 

outermost layer shows the lowest carbonation degree compared to the other class G based 

cements. 
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e) HCl test 

This test was undertaken on the ITZ-C of IGN/G(150.CO2.84d), 

IGN/G20SF(150.CO2.84d),  IGN/G40SF(150.CO2.84d) and IGN/G20MS(150.CO2.84d). 

Significant effervescence was observed in all of them, indicating presence of carbonates 

in these samples. 

 

f) TGA and Mass Spec 

 

 

Figure VI.38 - TGA result of IGN/G(150.CO2.84d) ITZ-C 
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Figure VI.39 - Mass Spec result of IGN/G(150.84d) ITZ-C 

 

 

Figure VI.40 - TGA result of IGN/G20SF(150.CO2.84d) ITZ-C 



206 

 

 

Figure VI.41 - Mass Spec result of IGN/G20SF(150.84d) 

ITZ-C 

 

 

 

Figure VI.42 - TGA result of IGN/G40SF(150.84d) ITZ-C 
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Figure VI.43 - Mass Spec result of IGN/G40SF(150.84d) ITZ-C 

 

 

Figure VI.44 - TGA result of IGN/G20MS(150.84d) ITZ-C 
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Figure VI.45 - Mass Spec result of IGN/G20MS(150.84d) ITZ-C 

 

 

Generally, these four TGs show material decomposing within the range 450oC to 650oC. 

From the Mass Specs, it can be seen that CO2 was released over this temperature range 

(Figure VI.38-Figure VI.45). These results indicate carbonate decomposition occurs over this 

temperature range. Other carbonate also decomposes at higher temperatures, which is calcite 

and perhaps small amounts of aragonite. From G to G20SF and from G20SF to G40SF the 

amount of crystalline material decomposing at lower temperatures seems to increase, 

probably associated with the increasing amounts of aragonite in the sample, which forms 

mostly from C-S-H and tobermorite, as opposed to calcite which forms mostly from 

portlandite. There is some water released just before the CO2 decomposition which indicates 

dehydration, meaning these 2 compounds could be associated in the same phase, e.g. an 

amorphous calcium carbonate hydroxide. In the appendix X.5 the comparison of the CO2 

released in these samples with the other ones and with calcite (the reference calcium 

carbonate) is shown. 
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VI.1.2.2 UNI 

a) Mesoscopic Images 

Samples of cut surfaces are shown in Figure VI.46. 

  

i. UNI/G(150.CO2.84d) ii. UNI/G20SF(150.CO2.84d) 

  

iii. UNI/G40SF(150.CO2.84d) iv. UNI/G20MS(150.CO2.84d) 

Figure VI.46 - Photos of the cross section of the UNI/CEM assemblages exposed at 150
o
C for 84 days in 

brine, with CO2 injection 

The less uniform carbonation rim width (when compared with the other ignimbrites under 

study) observed in the outermost layer of the G40SF is probably due to the heterogeneous 

nature of this rock in both composition and texture. 
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b) XRD 

Table VI.3 details the phases detected by XRD within each of the zones of the ITZ. 
Table VI.3 - compounds identified by XRD analysis: 150

o
C, with CO2-exposure, 84 days cure 

Sample Zone Identified peaks and other relevant features 

UNI/G 

(150.CO2.84d) 

CEM 

Largely amorphous, with portlandite, unhydrated cement and calcite. Traces of 
kilchoanite, killalaite and hillebrandite. Calcite is forming in higher amounts, whereas 
portlandite seems to be present in lower amounts, when compared with 
IGN/G(150.CO2.84d). The high amounts of calcite present in the CEM may mean that 
the carbonation rate is a bit higher in the current sample, due to its higher porosity and, 
consequently, higher permeability of the rock when compared with IGN, allowing a 
higher CO2 flow rate into the cement. 

ITZ-C 

Similar to CEM, with sharply reduced portlandite and increased calcite. Perhaps with a 
small increase in amorphous material. The sharply reduced portlandite and increased 
calcite in ITZ-C confirm the hypothesis previously put forward about a higher 
carbonation rate in the grout outermost layer, where the portlandite replacement rate by 
calcite is higher than in the cement core. The increased amorphous material in the ITZ-C 
might be due to the amorphous material forming in the ITZ, perhaps amorphous calcium 
carbonate. 

ITZ-R 

Similar to UNI, with traces of calcite and hillebrandite. The presence of calcite and 
hillebrandite seem to confirm the idea of cement compounds moving into the rock, 
where most of them seem to be replaced by calcium carbonates (have to check if there is 
not amorphous material forming in the samples without CO2 exposure, otherwise this 
may be silica gel, rather than ACC). 

UNI/G20SF 

(150.CO2.84d) 

CEM 

Largely amorphous, with quartz, αC2SH, unhydrated cement and calcite. Traces of 
kilchoanite, hillebrandite, killalaite and tobermorite. The presence of traces of 
tobermorite in CEM confirms the previously put forward about zones where the Ca/Si 
ratio dropped low enough for this mineral to form. 

ITZ-C 

Similar to CEM, with slightly increased calcite and slightly reduced kilchoanite, 
killalaite and tobermorite. Traces of aragonite. The decreased amounts of C-S-H and 
aragonite presence (although in traces) confirms the idea previously put forward about a 
higher carbonation rate in the grout outermost layer, where the C-S-H replacement rate 
by calcium carbonates is higher than in the cement core. Considering the theoretical high 
carbonation rate of tobermorite, this mineral could be initially forming in higher amounts 
(as some Ca migration and carbonate formation lowers the Ca/Si ratio) and being then 
replaced by calcium carbonates. 

ITZ-R 
Similar to UNI, with traces of hillebrandite and aragonite. The presence of calcite and 
hillebrandite seem to confirm the idea of cement compounds moving into the rock, 
where some of them seem to be then replaced by calcium carbonates. 

UNI/G40SF 

(150.CO2.84d) 

CEM 
Largely amorphous, with quartz. Traces of aragonite, unhydrated cement, tobermorite, 
killalaite and hillebrandite. As expected, the addition of over 30% quartz to Portland 
based cement caused the formation of tobermorite, although in low amounts. 

ITZ-C 

Considerably different to CEM, due to the aragonite sharp increase. Quartz and 
amorphous material seem to increase as well, whereas unhydrated cement, tobermorite, 
killalaite and hillebrandite seem to be reduced. The aragonite sharp increase along with 
the C-S-H increase seems to confirm an extremely high replacement rate of cement 
crystals by aragonite in the outermost layer, i.e. extremely high carbonation rate in the 
outermost layer of the cement. As previously seen for other samples, the sharp increase 
in quartz may be a consequence of Ca2+ and OH- migration into the rock, leaving bigger 
amounts of unreacted quartz than in the cement core. 

ITZ-R Similar to UNI. No traces of cement compounds, perhaps due to the lower migration rate 
of this cement, which is not to be enough to be detected by the XRD analysis. 

UNI/G20MS 

(150.CO2.84d) 

CEM Largely amorphous, with calcite, unhydrated cement and kilchoanite. Traces of 
hillebrandite and killalaite.  

ITZ-C 
Similar to CEM, with increase in calcite and slight decrease in killalaite and 
hillebraunsite. The calcite increase along with the C-S-H decrease seems to confirm a 
higher replacement rate of cement crystals by calcium carbonates. 

ITZ-R Similar to UNI, with slight increase in hillebrandite. The presence of hillebrandite seems 
to confirm the idea of cement compounds moving into the rock. 
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c) OM 

Thin section micrographs for each sample are shown in Figure VI.47-Figure VI.50.  The cement 

is on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

UNI/G(150.CO2.84d) 

  
ITZ in PPL ITZ in XPL 

Figure VI.47 - UNI/G(150.CO2.84d) OM images 

CEM: The cement does not look as bright as the one observed in IGN/G(150.CO2.84d). 

ITZ: The bright ITZ doe not look as wide as in IGN/G(150.CO2.84d). 

 

UNI/G20SF(150.CO2.84d) 

  

ITZ in PPL ITZ in XPL 

Figure VI.48 - UNI/G20SF(150.CO2.84d) OM images 

CEM: The cement looks similar to that observed in IGN/G20SF(150.CO2.84d).  

ITZ: The bright ITZ-R (in XPL) has some orange tones and does not look as wide as in 

IGN/G20SF(150.CO2.84d). 
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UNI/G40SF(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

 

  

iii. Carbonation rim in PPL iv. Carbonation rim in XPL 

Figure VI.49 - UNI/G40SF(150.CO2.84d) OM images 

CEM: Looks similar to the one observed in IGN/G40SF(150.CO2.84d). 

ITZ: Similar to the one observed in IGN/G40SF(150.CO2.84d), with a slightly wider carbonation 

rim. 
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UNI/G20MS(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure VI.50 - UNI/G20MS(150.CO2.84d) OM images 

CEM: Looks similar to the one observed in IGN/G20MS(150.CO2.84d). 

ITZ: The ITZ-R has some orange tones and is not as bright (in XPL) and as wide as in 

IGN/G20MS(150.CO2.84d). 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure VI.51-Figure VI.54. The phase map 
showing approximate Ca/Si ratios has been created from a short software package developed 
as part of this work as the supplied analytical package was unsuitable. 
These maps are presented in accordance with the description given in the section V.1.1 d). 

 

UNI/G(150.CO2.84d) 

 

Key* 

 

i. ITZ Ca/Si phase map 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure VI.51 - UNI/G(150.CO2.84d) SEM/EDS images 

Phase map: The cement/rock phase transition is more abrupt than the one observed in 

IGN/G(150.CO2.84d). 

Element maps: The calcium does not seem to migrate as much as in IGN/G(150.CO2.84d). 

UNI/G20SF(150.CO2.84d) 
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Key* 

 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.52 - UNI/G20SF(150.CO2.84d) SEM/EDS images 

 

Phase map: The phase transition is more abrupt than the one observed in IGN/G20SF(150.CO2.84d). 

Element maps: The calcium doesn’t seem to migrate from ITZ-C to ITZ-R as much as in 

IGN/G20SF(150.CO2.84d). 
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UNI/G40SF(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.53 - UNI/G40SF(150.CO2.84d) SEM/EDS images 

 

Phase map: Similar phase change to the one observed in IGN/G40SF(150.CO2.84d). 

Element maps: Lower calcium migration than the one observed in IGN/G40SF(150.84d). 

 

  



217 

 

UNI/G20MS(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.54 - UNI/G20MS(150.CO2.84d) SEM/EDS images 

 

Phase map: Phase change similar to the one observed for IGN/G20MS(150.CO2.84d). 

Element maps: Ca migration shallower than IGN/G20MS(150.CO2.84d). 
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VI.1.2.3 KAO 

a) Mesoscopic Images 

Samples of cut surfaces are shown in Figure VI.55. 

  

i. KAO/G(150.CO2.84d) ii. KAO/G20SF(150.CO2.84d) 

  

iii. KAO/G40SF(150.CO2.84d) iv. KAO/G20MS(150.CO2.84d) 

Figure VI.55 - Photos of the cross section of the KAO/CEM assemblages exposed at 150
o
C for 84 days 

in brine, with CO2 injection 

The G40SF carbonation pink layer looks slightly wider than the one observed for 

IGN/G40SF(150.CO2.84d). 
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b) XRD 

Table VI.4 details the phases detected by XRD within each of the zones of the ITZ. 

Table VI.4 - compounds identified by XRD analysis: 150
o
C, with CO2-exposure, 84 days cure 

Sample Zone Identified peaks and other relevant features 

KAO/G 

(150.CO2.84d) 

CEM 

Largely amorphous, with portlandite, unhydrated cement and 

hillebrandite. Traces of calcite and killalaite. The traces of calcite in CEM 

indicate a slight carbonation rate in the cement core. 

ITZ-C 

Similar to CEM, with decreased portlandite. Slight increase in 

hillebrandite and calcite. The reduced portlandite in the ITZ-C, as 

previously put forward, is probably a consequence of Ca2+ and OH- into 

the rock, leaving lowers amounts of these elements to form portlandite. 

ITZ-R Similar to KAO. 

KAO/G20SF 

(150.CO2.84d) 

CEM 

Largely amorphous with quartz. Traces of αC2SH, calcite, unhydrated 

cement, kilchoanite, killalaite and hillebrandite. The traces of calcite in 

CEM indicate a slight carbonation rate in the cement core. 

ITZ-C 

Similar to CEM, with increased quartz. The increased quartz in the ITZ-

C, as previously seen, is probably a consequence of Ca2+ and OH- into the 

rock, leaving here larger amounts of unreacted quartz than observed in 

the core. 

ITZ-R 

Similar to KAO, with traces of calcite. The traces of calcite in the ITZ-R 

confirm the idea of Ca2+ and OH- migration into the rock and subsequent 

carbonation. 

KAO/G40SF 

(150.CO2.84d) 

CEM 
Largely amorphous with quartz. Traces of kilchoanite, hillebrandite, 

killalaite and tobermorite. 

ITZ-C 

Substantially different to CEM, due to the presence of aragonite (in 

considerably high amounts). The amount of amorphous material seems to 

increase as well. The high amounts of aragonite present in the ITZ-C (as 

opposed to the absence of aragonite in CEM) confirm the idea previously 

put forward about the highest carbonation rate in the outermost layer, 

when compared to the cement core. The increase in amorphous material 

may confirm the formation of amorphous calcium carbonate. 

ITZ-R Similar to KAO. 

KAO/G20MS 

(150.CO2.84d) 

CEM 

Largely amorphous, with calcite and kilchoanite. Traces of killalaite and 

hillebrandite. The calcite in CEM indicates a considerable carbonation 

rate in the cement core. 

ITZ-C 

Similar to CEM, with increase in calcite and amorphous material.  

Again, the increased calcite in the ITZ-C confirms the higher carbonation 

rate in the cement outermost layer, when compared with the core. Again, 

the increase in amorphous material may indicate that there is some ACC 

forming as well. 

ITZ-R 

Similar to KAO, with traces of calcite. Again, the traces of calcite in the 

ITZ-R confirm the idea of Ca2+ and OH- migration into the rock and 

subsequent carbonation. 
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c) OM 

Thin section micrographs for each sample are shown in Figure VI.56-Figure VI.59.  The cement 

is on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

KAO/G(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.56 - KAO/G(150.CO2.84d) OM images 

CEM: Similar to the one observed in IGN/G(150.CO2.84d). 

ITZ: The ITZ-R is similar to the one observed in IGN/G(150.CO2.84d), although this one looks 

slightly narrower and more uniform. 

 
KAO/G20SF(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.57 - KAO/G20SF(150.CO2.84d) OM images 

CEM: Similar to the one observed in IGN/G20SF(150.CO2.84d). 

ITZ: More uniform and narrower ITZ-R in comparison to the one observed in 

IGN/G20SF(150.CO2.84d). 
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KAO/G40SF(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

 

  

iii. Carbonation rim in PPL iv. Carbonation rim in XPL 

Figure VI.58 - KAO/G40SF(150.CO2.84d) OM images 

 

CEM: Similar to IGN/G40SF(150.CO2.84d). 

ITZ: Slightly wider carbonation rim when compared to the one observed in 

IGN/G40SF(150.CO2.84d). 
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KAO/G20MS(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure VI.59 - KAO/G20MS(150.CO2.84d) OM images 

 

CEM: Similar to the one observed in IGN/G20MS(150.CO2.84d). 

ITZ: More uniform and narrower bright ITZ-R in comparison with the one observed in 

IGN/G20MS(150.CO2.84d). It assumes an orange tone, not so obvious in 

IGN/G20MS(150.CO2.84d). 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure VI.60-Figure VI.63. The phase map 

showing approximate Ca/Si ratios has been created from a short software package developed 

as part of this work as the supplied analytical package was unsuitable. 

These maps are presented in accordance with the description given in the section V.1.1 d). 

 

KAO/G(150.CO2.84d) 

 

Key* 

= 100 µm 
i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure VI.60 - KAO/G(150.CO2.84d) SEM/EDS images 

Phase map: Slightly narrower phase transition zone in comparison to the one seen in 
IGN/G(150.CO2.84d). 
Element maps: Slightly shallower and more uniform Ca migration when compared to 
IGN/G(150.CO2.84d). 
 

  



224 

 

KAO/G20SF(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.61 - KAO/G20SF(150.CO2.84d) SEM/EDS images 

 

Phase map: More abrupt phase transition compared to the one seen in IGN/G20SF(150.CO2.84d). 

Element maps: Lower and more uniform Ca migration than in IGN/G20SF(150.CO2.84d). 
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KAO/G40SF(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.62 - KAO/G40SF(150.CO2.84d) SEM/EDS images 

 

Phase map: Similar phase change to the one seen in IGN/G40SF(150.CO2.84d). 

Element maps: Similar Ca migration to the one observed in IGN/G40SF(150.CO2.84d). 
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KAO/G20MS(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.63 - KAO/G20MS(150.CO2.84d) SEM/EDS images 

Phase map: Phase change similar to the one seen in IGN/G20MS(150.CO2.84d). 

Element maps: The Ca migration is lower than in IGN/G20MS(150.CO2.84d). 
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VI.1.2.4 MOR 

a) Mesoscopic Images 

Samples of cut surfaces are shown in Figure VI.64. 

  

i. MOR/G(150.CO2.84d) ii. MOR/G20SF(150.CO2.84d) 

  

iii. MOR/G40SF(150.CO2.84d) iv. MOR/G20MS(150.CO2.84d) 

Figure VI.64 - Photos of the cross section of the MOR/CEM assemblages exposed at 150
o
C for 84 days 

in brine, with CO2 injection 

The carbonation rim observed for the G40SF seems to be the narrowest compared to the other 

equivalent ignimbrite assemblages.  
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b) XRD 

Table VI.5 details the phases detected by XRD within each of the zones of the ITZ. 

Table VI.5 - compounds identified by XRD analysis: 150
o
C, with CO2-exposure, 84 days cure 

Sample Zone Identified peaks and other relevant features 

MOR/G 

(150.CO2.84d) 

CEM 
Largely amorphous, with portlandite, unhydrated cement and hillebrandite. 

Traces of calcite and aragonite. 

ITZ-C 

Similar to CEM, with reduced portlandite and unhydrated cement, and slight 

increase in calcite, aragonite and hillebrandite. The reduced portlandite in the 

ITZ-C, again, may be justified with the Ca2+ and OH- migration into the rock, 

leaving less of these to form portlandite. The calcite and aragonite increase in 

the ITZ-C seem to support the idea of a higher carbonation rate in this zone. 

ITZ-R 
Similar to MOR, with traces of calcite. The traces of calcite in the ITZ-R 

confirm the idea of Ca2+ and OH- migration into the rock and subsequent 

carbonation. 

MOR/G20SF 

(150.CO2.84d) 

CEM 
Largely amorphous, with quartz, αC2SH and unhydrated cement. Traces of 

kilchoanite, hillebrandite, calcite and aragonite. 

ITZ-C 

Similar to CEM, with reduced quartz and slightly increase in aragonite and 

amorphous material. Despite the quartz reduction (which goes against the idea 

previously put forward about higher amounts of unreacted quartz in the 

outermost layer of the cement as a consequence of Ca2+ and OH- migration into 

the rock – this may be justified by a quartz crystal from the rock falling into the 

the ITZ-C XRD sample), the increase in aragonite seems to confirm a higher 

carbonation rate in the cement outermost layer, whereas the increase in 

amorphous material might, again, mean that some ACC is forming in addition to 

crystalline calcium carbonate. 

ITZ-R 
Similar to MOR, with traces of calcite. The traces of calcite in the ITZ-R 

confirm the idea of Ca2+ and OH- migration into the rock and subsequent 

carbonation. 

MOR/G40SF 

(150.CO2.84d) 

CEM Largely amorphous with quartz. Traces of killalaite and hillebrandite. 

ITZ-C 

Considerably different to CEM, mainly due to the presence of high amounts of 

aragonite as well as some calcite. There is a reduction in killalaite and 

hillebrandite and increase in quartz and amorphous material. The high 

amounts of aragonite present in the ITZ-C (as opposed to the absence of 

aragonite in CEM) confirm the idea previously put forward about the highest 

carbonation rate in the outermost layer, when compared to the cement core. The 

quartz increase support the idea of higher amounts of unreacted quartz in the 

outermost layer of the cement as a consequence of Ca2+ and OH- migration into 

the rock, reducing the amount of these elements to react with the quartz. The 

increase in amorphous material may confirm the formation of amorphous 

calcium carbonate. 

ITZ-R 
Similar to MOR, with traces of calcite. The traces of calcite in the ITZ-R 

confirm the idea of Ca2+ and OH- migration into the rock and subsequent 

carbonation. 

MOR/G20MS 

(150.CO2.84d) 

CEM Largely amorphous, with calcite and unhydrated cement. Traces of aragonite. 

ITZ-C 
Similar to CEM, with calcite and aragonite increase. The calcite and aragonite 

increase in the ITZ-C seem to support the idea of a higher carbonation rate in this 

zone. 

ITZ-R 
Similar to MOR, with traces of calcite and hillebrandite. The traces of calcite in 

the ITZ-R confirm the idea of Ca2+ and OH- migration into the rock and 

subsequent carbonation. 
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c) OM 

Thin section micrographs for each sample are shown in Figure VI.65-Figure VI.68.  The cement 

is on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

MOR/G(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.65 - MOR/G(150.CO2.84d) OM images 

CEM: Similar to that observed in IGN/G(150.CO2.84d). 

ITZ: Narrower bright ITZ-R than that observed in IGN/G(150.CO2.84d). 

 

MOR/G20SF(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.66 - MOR/G20SF(150.CO2.84d) OM images 

CEM: Similar cement to the IGN/G20SF(150.CO2.84d). 

ITZ: Similar width but less homogeneous bright ITZ-R than that observed in 

IGN/G20SF(150.CO2.84d). 
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MOR/G40SF(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

  

iii. Carbonation rim in PPL iv. Carbonation rim in XPL 

Figure VI.67 - MOR/G40SF(150.CO2.84d) OM images 

CEM: Similar to that observed in IGN/G40SF(150.CO2.84d). 

ITZ: Narrower carbonation rim compared to that observed in IGN/G40SF(150.CO2.84d). 
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MOR/G20MS(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure VI.68 - MOR/G20MS(150.CO2.84d) OM images 

CEM: Similar to that observed in IGN/G20MS(150.CO2.84d). 

ITZ: More uniform and slightly narrower bright ITZ-R. Unlike in the IGN/G20MS(150.CO2.84d), 

some brownish tones seem to appear in the ITZ-R. 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure VI.69-Figure VI.72. The phase map 

showing approximate Ca/Si ratios has been created from a short software package developed 

as part of this work as the supplied analytical package was unsuitable. 

These maps are presented in accordance with the description given in the section V.1.1 d). 

 

MOR/G(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure VI.69 - MOR/G(150.CO2.84d) SEM/EDS images 

Phase map: More abrupt phase change than the ones observed in IGN/G(150.CO2.84d). 

Element maps: Lower Ca migration than the one observed in IGN/G(150.CO2.84d). 
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MOR/G20SF(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.70 - MOR/G20SF(150.CO2.84d) SEM/EDS images 

 

Phase map: More abrupt phase changes than those observed in IGN/G20SF(150.CO2.84d). 

Element maps: Lower Ca migration than that observed in IGN/G20SF(150.CO2.84d). 
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MOR/G40SF(150.CO2.84d) 

 

Key* 

 

i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure VI.71 - MOR/G40SF(150.CO2.84d) SEM/EDS images 

 

Phase map: Similar phase change to that observed in IGN/G40SF(150.CO2.84d). 

Element maps: Similar Ca migration to that observed in IGN/G40SF(150.CO2.84d). 

 

  



235 

 

MOR/G20MS(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  
ii. ITZ Ca map iii. ITZ Si map 

Figure VI.72 - MOR/G20MS(150.CO2.84d) SEM/EDS images 

 

Phase map: Similar phase change to that seen in IGN/G20MS(150.CO2.84d). 

Element maps: Similar Ca migration extent, but in lower amounts, when compared to that observed in 

IGN/G20MS(150.CO2.84d). The Ca is clearly concentrated in the rock voids. 
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VI.1.2.5 RHY 

a) Mesoscopic Images 

Samples of cut surfaces are shown in Figure VI.73. 

  
i. RHY/G(150.CO2.84d) ii. RHY/G20SF(150.CO2.84d) 

 

  
iii. RHY/G40SF(150.CO2.84d) iv. RHY/G20MS(150.CO2.84d) 

Figure VI.73 - Photos of the cross section of the RHY/CEM assemblages exposed at 150
o
C for 84 days 

in brine, with CO2 injection 

 

Little pink carbonation was found in the outermost layer of G40SF.  
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b) XRD 

Table VI.6 details the phases detected by XRD within each of the zones of the ITZ. 

Table VI.6 - compounds identified by XRD analysis: 150
o
C, with CO2-exposure, 84 days cure 

Sample Zone Identified peaks and other relevant features 

RHY/G 

(150.CO2.84d) 

CEM Largely amorphous with portlandite and unhydrated cement. Traces of 
hillebrandite, kilchoanite and killalaite. Perhaps small traces of calcite. 

ITZ-C 

Similar to CEM, with reduced portlandite and increased amorphous material. 
Perhaps, small traces of calcite. The reduced portlandite confirms the migration of 
Ca2+ and OH- and, consequently, restricting portlandite formation in the cement 
outermost layer. There are no obvious traces of calcite. This seems to be due to the 
low permeability of this rock, as a consequence of its low porosity (lower than any of 
the other rocks under study). This low permeability reduces the CO2 flow into the 
cement. The significant increase in amorphous material, however, may mean some 
amorphous calcium carbonate forming, rather than crystalline calcium carbonate. 
This could mean that this lower CO2 flow may be forming less calcium carbonates 
and/or enhancing the formation of ACC rather than CC. 

ITZ-R 
Similar to RHY, perhaps with small traces of calcite. The presence of calcite 
(although in very low amounts) seems to indicate migration of the cement 
compounds into the rock (mostly Ca2+), and subsequent carbonation. 

RHY/G20SF 

(150.CO2.84d) 

CEM Largely amorphous with quartz. Traces of kilchoanite, αC2SH, unhydrated 

cement, kilchoanite, killalaite, hillebrandite and, perhaps, calcite and aragonite. 

ITZ-C 

Similar to CEM. Perhaps some very small increase in amorphous material. The 
XRD results couldn’t identify obvious presence of calcium carbonates, although the 
slight increase in amorphous material might be due to the presence of small amounts 
of ACC. Anyway, the lower amounts of calcium carbonates are, again, probably due 
to the low permeability of this rock, as a consequence of its low porosity. 

ITZ-R Similar to RHY. 

RHY/G40SF 

(150.CO2.84d) 

CEM 

Largely amorphous with quartz and tobermorite. Traces of kilchoanite, killalaite 
and unhydrated cement. The presence of significant amounts of tobermorite along 
with absence of calcium carbonate in the CEM (more than in the G40SF in the same 
conditions and combined with the other rocks) may mean that the tobermorite is not 
carbonating as faster as observed for the others. This seems to support the idea of a 
reduced carbonation rate, when compared with the cement combined with the 
ignimbrites, due to the lower permeability of this rock. 

ITZ-C 

Similar to CEM, with reduced tobermorite and slight increase amorphous material. 
Traces of aragonite. The reduced tobermorite along with the traces of aragonite (not 
detected in the CEM) seem to indicate some small carbonation in the ITZ-C, whereas 
the slight increase in amorphous material may mean that some ACC is forming as 
well. 

ITZ-R 

Similar to RHY. Perhaps some small traces of aragonite and increase in amorphous 

material. The traces of aragonite and the increase in amorphous material in the ITZ-
R seem to confirm some Ca2+ and OH- migration and subsequent carbonation, where 
some ACC may be forming as well (besides aragonite). 

RHY/G20MS 

(150.CO2.84d) 

CEM Largely amorphous with killalaite, kilchoanite, hillebrandite and unhydrated 

cement. Perhaps some traces of calcite. 

ITZ-C 

Similar to CEM. Perhaps some decrease in unhydrated cement and slight increase 
in amorphous material. There are no obvious traces of calcite. Again, this is 
probably due to the low permeability of this rock, as a consequence of its low 
porosity (lower than any of the other rocks under study). This low permeability 
reduces the CO2 flow into the cement. The significant increase in amorphous 
material, however, may mean some amorphous calcium carbonate forming, rather 
than crystalline calcium carbonate. 

ITZ-R 

Similar to RHY. Perhaps some increase amorphous material and traces of aragonite 
and hillebrandite. The traces of hillebrandite and aragonite seem to confirm some 
Ca2+ and OH- migration and subsequent carbonation, whereas the increase in 
amorphous material in the ITZ-R may indicate the formation of ACC. 
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c) OM 

Thin section micrographs for each sample are shown in Figure VI.74-Figure VI.77.  The cement 

is on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

RHY/G(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.74 - RHY/G(150.CO2.84d) OM images 

CEM: Similar to IGN/G20SF(150.CO2.84d). 

ITZ: This is much narrower bright ITZ-R than the one observed in IGN/G(150.CO2.84d). 

 

RHY/G20SF(150.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.75 - RHY/G20SF(150.CO2.84d) OM images 

CEM: Similar to IGN/G20SF(150.CO2.84d). 

ITZ: This is a much narrower (almost unnoticeable) bright ITZ-R than the one observed in 

IGN/G20SF(150.CO2.84d). 
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RHY/G40SF(150.CO2.84d) 

  

i. ITZ in PPL 
ii. ITZ in XPL 

 

  

iii. Carbonation spot in PPL iv. Carbonation spot in XPL 

Figure VI.76 - RHY/G40SF(150.CO2.84d) OM images 

CEM: Similar to the one observed in IGN/G40SF(150.CO2.84d). 

ITZ: There are just a few random spots in the ITZ-C that are fully carbonated, in which the cement 

shows a different pattern to the rest. 
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RHY/G20MS(150.CO2.84d) 

  

i. ITZ in PPL ii. ITZ in XPL 

Figure VI.77 - RHY/G20MS(150.CO2.84d) OM images 

CEM: Lighter colour than the one observed in IGN/G20MS(150.CO2.84d) 

ITZ: Much narrower bright ITZ-R than the one observed in IGN/G20MS(150.CO2.84d). 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure VI.78-Figure VI.81. The phase map 
showing approximate Ca/Si ratios has been created from a short software package developed 
as part of this work as the supplied analytical package was unsuitable. 
These maps are presented in accordance with the description given in the section V.1.1 d). 

 

RHY/G(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.78 - RHY/G(150.CO2.84d) SEM/EDS images 

Phase map: More abrupt cement/rock phase change than that observed in IGN/G(150.CO2.84d). 

Element maps: Much lower Ca migration in comparison with that observed in IGN/G(150.CO2.84d). 

RHY/G20SF(150.CO2.84d) 
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Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.79 - RHY/G20SF(150.CO2.84d) SEM/EDS images 

Phase map: More abrupt phase change than the one observed in IGN/G20SF(150.CO2.84d). 

Element maps: Very reduced and shallower Ca migration in comparison with the one observed in 

IGN/G20SF(150.CO2.84d). 
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RHY/G40SF(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.80 - RHY/G40SF(150.CO2.84d) SEM/EDS images 

 

Phase map: More abrupt phase change than IGN/G40SF(150.CO2.84d). 

Element maps: Much shallower Ca migration in comparison with the one observed in 

IGN/G40SF(150.CO2.84d). 
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RHY/G20MS(150.CO2.84d) 

 

Key* 

= 100 µm 

i. ITZ Ca/Si phase map 

 

  

ii. ITZ Ca map iii. ITZ Si map 

Figure VI.81 - RHY/G20MS(150.CO2.84d) SEM/EDS images 

Phase map: More abrupt phase change than the one observed in IGN/G20MS(150.CO2.84d). 

Element maps: Much shallower Ca migration than the one observed in IGN/G20MS(150.CO2.84d). 



245 

 

 

VI.2 290
o
C cure  

VI.2.1 With CO2 exposure 

VI.2.1.1 IGN 

a) Mesoscopic Images 

Samples of cut surfaces are shown in Figure VI.82. 

  
i. IGN/G(290.CO2.84d) ii. IGN/G20SF(290.CO2.84d) 

 

  
iii. IGN/G40SF(290.CO2.84d) iv. IGN/G20MS(290.CO2.84d) 

 

Figure VI.82 - Photos of the cross section of the IGN/CEM assemblages exposed at 290
o
C for 84 days in 

brine, with CO2 injection 

The most noticeable features are the reddish colour in both the rock and the cements, except 

for the G20MS.  
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b) XRD 

 

Table VI.7 details the phases detected by XRD within each of the zones of the ITZ. 

Table VI.7 - compounds identified by XRD analysis: 290
o
C, with CO2-exposure, 84 days cure 

Sample Zone Identified peaks and other relevant features 

IGN/G 

(290.CO2.84d) 

CEM 

 
Largely amorphous, with portlandite, calcite and 
reinhardbraunsite. Traces of unhydrated cement. 
 

ITZ-C 
 
Similar to CEM. 
 

ITZ-R 
 
Similar to IGN. 
 

IGN/G20SF 

(290.CO2.84d) 

CEM 
 
Large amounts of calcite. Traces of xonotlite. 
 

ITZ-C 
 
Similar to CEM. 
 

ITZ-R 
 
Similar to IGN. 
 

IGN/G40SF 

(290.CO2.84d) 

CEM 

 
Large amounts of calcite and quartz. Traces of xonotlite. 
 
 

ITZ-C 
 
Similar to CEM with quartz increase. 
 

ITZ-R 
 
Similar to IGN. 
 

IGN/G20MS 

(290.CO2.84d) 

CEM 
 
Large amounts of calcite and xonotlite. 
 

ITZ-C 

 
Similar to CEM, perhaps with a slight increase in amorphous 
material. 
 

ITZ-R 
 
Similar to IGN. 
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c) OM 

Thin section micrographs for each sample are shown in Figure VI.83-Figure VI.86.  The cement 

is on the left and the rock on the right.  Micrographs under plane polarised light are the left 

figure and crossed polars on the right. 

IGN/G(290.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.83 - IGN/G(290.CO2.84d) OM images 

CEM: In PPL this cement looks similar to the IGN/G(290.28d) one, whereas by XPL is brighter. 

ITZ: Like in IGN/G(290.28d), a fissure has formed along the ITZ-C. The ITZ-C looks extremely 

bright in XPL, whereas the ITZ-R is not easily noticeable. 

 

IGN/G20SF(290.CO2.84d) 

  
ITZ in PPL ITZ in XPL 

Figure VI.84 - IGN/G20SF(290.CO2.84d) OM images 

CEM: In PPL this cement looks darker than the IGN/G20SF(290.28d), whereas in XPL looks 
brighter. 
ITZ: Like in IGN/G20SF(290.28d), a fissure has formed, splitting the ITZ-C and ITZ-R. The ITZ-C 
looks extremely bright in XPL, whereas the ITZ-R is not easily noticeable. 
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IGN/G40SF(290.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.85 - IGN/G40SF(290.CO2.84d) OM images 

CEM: This cement is substantially darker when compared with the IGNG40SF(290.28d). 

ITZ: No obvious differences between ITZ-C and CEM. Like in IGN/G40SF(290.28d), a fissure has 

formed between ITZ-C and ITZ-R. 

 

IGN/G20MS(290.CO2.84d) 

  
i. ITZ in PPL ii. ITZ in XPL 

Figure VI.86 - IGN/G20MS(290.CO2.84d) OM images 

CEM: This cement is substantially darker when compared with the IGN20MS(290.28d). 

ITZ: No obvious differences between ITZ-C and CEM. Like in IGN/G20MS(290.28d), a fissure has 

formed between ITZ-C and ITZ-R. 
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d) SEM/EDS 

Detailed below are the phase and elemental maps in Figure VI.87-Figure VI.90. The phase map 
showing approximate Ca/Si ratios has been created from a short software package developed 
as part of this work as the supplied analytical package was unsuitable. 
These maps are presented in accordance with the description given in the section V.1.1 d). 

 

IGN/G(290.CO2.84d) 

 

Key* 

 
i. ITZ Ca/Si phase map 

 

 

  
ii. ITZ Ca map iii. ITZ Si map 

 
Figure VI.87 - IGN/G(290.CO2.84d) SEM/EDS images 

 
Phase map: Relatively sudden phase change from cement (blue) to the rock (red). 

Element maps: There is not much Ca migration, which goes only up to 100µm.  
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IGN/G20SF(290.CO2.84d) 

 

Key* 

 

i. ITZ Ca/Si phase map 

 

 

 

 

 

 
ii. ITZ Ca map iii. ITZ Si map 

 
Figure VI.88 - IGN/G20SF(290.CO2.84d) SEM/EDS images 

 
Phase map: This phase map shows an odd ITZ, which may be consequence of the stressed induced in the 

sample during the cure and/or during the sample preparation. 

Element maps: The Ca migration is not visible in this image. 
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IGN/G40SF(290.CO2.84d) 
Key* 

i. ITZ-C Ca/Si phase map (CEMENT side) ii. ITZ-R Ca/Si phase map (ROCK side) 

 

  
iii. ITZ-C Ca map (CEMENT side) iv. ITZ-R Ca map (ROCK side) 

 

  
v. ITZ-C Si map (CEMENT side) vi. ITZ-R Si map (ROCK side) 

Figure VI.89 - IGN/G40SF(290.CO2.84d) SEM/EDS images 

Phase maps: Relatively abrupt phase change. 

Element maps: Ca migration lower than in IGN/G40SF(150.CO2.84d). 
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IGN/G20MS(290.CO2.84d) 

 

Key* 

i. ITZ-C Ca/Si phase map (CEMENT side) ii. ITZ-R Ca/Si phase map (ROCK side) 

 

  
iii. ITZ-C Ca map (CEMENT side) iv. ITZ-R Ca map (ROCK side) 

 

  
v. ITZ-C Si map (CEMENT side) vi. ITZ-R Si map (ROCK side) 

Figure VI.90 - IGN/G20MS(290.CO2.84d) SEM/EDS images 

Phase maps: There is a relatively abrupt phase change between the rock and the cement. 

Element maps: Shallower Ca migration than IGN/G20MS(150.CO2.84d). 
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e) HCl test 

This test was undertaken on the ITZ-C of IGN/G(290.CO2.84d) and significant effervescence 

was observed, indicating presence of carbonates in this sample. 

 

f) TGA and Mass Spec 

 

 

Figure VI.91 - TGA result of IGN/G(290.CO2.84d) ITZ-C 
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Figure VI.92 - Mass Spec result of IGN/G(290.CO2.84d) ITZ-C 

 

This sample also shows material decomposing within the range 450oC to 650oC, where CO2 

is being released (Figure VI.91 and Figure VI.92). This may mean that also here there is 

formation of significant amounts of other carbonates, rather than crystalline calcium 

carbonates (namely calcite and aragonite). In the appendix X.5 it can be found the 

comparison of the CO2 released in this sample with the other ones and with calcite (the 

reference calcium carbonate). 
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VII. DISCUSSION OF THE RESULTS 

The requirements for a suitable geothermal cementing system were first enunciated over 30 

years ago by the API task force when geothermal development first started to become 

popular.  (API Task Force, 1985).  These are: 

• Compressive strength, > 1000 psi 24 hours after placement; 

• Permeability to water, < 0.1 m Darcy; 

• Bond strength to steel casing, > 10 psi; 

• Stability, no significant reduction in strength or increase in permeability after 

prolonged exposure at 400°C to 25% brine solutions, flashing brine, or dry steam; 

• Placement ability, capable of 3 to 4 hr retardation at expected placement 

temperatures; 

• Compatibility of the cement with drilling mud; 

• Noncorrosive to steel well casing. 

These are still cited as desirable properties, despite a better understanding of the reactions 

that occur downhole (Herianto and Fathaddin, 2005).  Surprisingly, a corresponding set of 

requirements regarding the mechanical and chemical interaction between the cement 

formulation and the rock formation in geothermal wells have not been developed, despite 

considerable work being conducted on well integrity.  Work on shear stress analysis is now 

appearing (Oyibo and Radinjic, 2014; Agbasimalo and Radonjic, 2011), Herianto and 

Fathaddin (2005) and a revival of the cement bond logging which was largely discontinued in 

New Zealand wells. The literature review presented in this thesis has raised several issues 

which are associated with distinct variables, some of which have been examined.  Above all, 

it can be inferred that a good mechanical bond between the cement and the formation is 

crucial to the performance of the whole well system and could extend the life time of the 

well.  Any gaps that occur between the cement and the formation are undesirable, as these are 

potential pathways for the geothermal fluids, which are usually prove detrimental for the 

cement. 

The API Task Force (1985) recommended a “Placement ability” of a cement, which should 

be capable of 3 to 4 hour retardation at the expected placement temperatures for wells.  This 

suggests a relatively slow rather than a rapid setting is required for geothermal cements, in 

order to allow sufficient time for the cement to be able to flow down the well, before it 

reaches its ultimate destination.  It would also allow time for fine cement particles to 
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penetrate the porous formation enabling a good bond to form.  From the literature review, it 

could be anticipated that the physical migration of cement into the rock improves the bonding 

between the cement and the rock. The experimental results have reported migration of Ca2+ 

ions towards the rock, driven by chemical gradient, which will reduce the Ca/Si ratio of the 

cement. This may affect the phases formed in the outermost layer of the cement and, 

consequently, decrease the bonding properties of the cement in this zone. Anything which 

detracts from that bond formation will lead to an inferior performance.  The results obtained 

in this work show that both CO2 and the presence of a drilling mud layer will affect this 

migration. 

This chapter focuses on the analysis and interpretation of the interactions occurring in the 

Interfacial Transition Zones (ITZ’s), tying in the experimental results and addressing these 

two important issues. The cement (CEM) and the rock are also analysed when necessary 

along with their respective ITZ’s, as these materials are used as reference for ITZ-C and ITZ-

R respectively. Results are discussed as a function of the cement formulation, and divided in 

three main sections: 1) Portland based cements; 2) Alternative Cementing System: Calcium 

aluminium cement; and 3) Overall discussion. The latter one summarizes the main findings 

and, based on these along with the literature review, proposes some recommendations for 

geothermal well cements. 

In the first two sections, several comparisons are made, in order to understand the effect of 

each one of the variables on the way that the cement interacts with the rock formation. 

Control reference samples have been exposed at the same conditions as the studied specimens 

and are further explained in the section III.4 (sample labelling). 

In order to discuss the effect of each variable, the formulations are presented in the following 

sequence: 

 Standard: IGN/CEM(150.28d) - Evaluation and interpretation of the main features in 

the ITZ between the cement formulation under study and IGN, exposed at 150
o
C for 

28 days in brine. When necessary, it is compared with other cement formulations. 

 Curing time: IGN/CEM(150.84d) - Assessment and analysis of the main features in 

the ITZ between the cement formulation under study and IGN, exposed at 150
o
C for 

84 days in brine. The most relevant differences between the current sample and the 

control one (IGN/CEM(150.28d): same conditions, but cured for only 28 days) are 
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discussed as well. This analysis is only available for the API class G based cements, 

as the other cements have only been cured for 28 days. 

 Drilling mud (bentonite): IGN/CEM(150.b.28d) - Discussion of the main features in 

the ITZ between the cement formulation under study and IGN with a bentonite layer, 

exposed at 150
o
C for 28 days in brine. The results are compared to the control 

(IGN/CEM(150.28d): same conditions, but without drilling mud simulation). 

 Curing temperature: IGN/CEM(290.28d) - Evaluation and interpretation of the main 

features in the ITZ between the cement formulation under study and IGN, exposed at 

290
o
C for 28 days in brine. The most relevant differences between the current sample 

and the control one (IGN/CEM(150.28d): same conditions, but exposed to 150oC) are 

discussed as well. 

 CO2 exposure: Only the API class G based formulations were exposed to CO2. This 

section is divided in two sub-sections: a) 150oC and b) 290oC. 

a) 150oC: IGN/CEM(150.CO2.84d) - Assessment and analysis of the main features in 

the ITZ between the cement formulation under study and IGN, exposed at 150
o
C 

for 84 days in CO2 enriched brine. The most relevant differences between the 

current sample and the control one (IGN/CEM(150.84d): same conditions, but 

without CO2 injection) are also discussed. 

b) 290oC: IGN/CEM(290.CO2.84d) - Discussion of the main features in the ITZ 

between the cement formulation under study and IGN, exposed at 290
o
C for 84 

days in CO2 enriched brine. As opposed to all the other samples, these do not 

have ideal control samples, as the ones cured at 290oC without CO2 exposure have 

another variable changing, i.e. curing time (28 days rather than 84 days). 

Therefore, both variables (CO2 exposure and curing time) will be taken into 

consideration in the discussion of the most relevant differences between the 

current sample and the control one (IGN/CEM(290.28d): same conditions, but 

without CO2 exposure and exposed for only 28 days). 

 Rock type: This analysis is only available for the API class G based cements, as the 

other ones were only tested with IGN. This section is divided in four sub-sections: a) 

UNI; b) KAO; c) MOR and d) RHY. 

a) UNI: UNI/CEM(150.CO2.84d) - Evaluation and interpretation of the main 

features in the ITZ between the cement formulation under study and UNI, exposed 

at 150
o
C for 84 days in CO2 enriched brine. The results are compared to the 

control (IGN/CEM(150.CO2.84d): same conditions with different rock type). 
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b) KAO: KAO/CEM(150.CO2.84d) - Similar to a). The similarities in apparent 

porosity and amorphous silica content make it also relevant to compare it with 

UNI/CEM(150.CO2.84d). 

c) MOR: MOR/CEM(150.CO2.84d) - Similar to a). 

d) RHY: RHY/CEM(150.CO2.84d) - Similar to a). As this is the only non-ignimbrite 

under study, general comparisons between this rock type and all the other studied 

ignimbrite rocks are made. 

 

VII.1 Portland cement based systems 

 

VII.1.1 API Class G 

 

VII.1.1.1 Standard: IGN/G(150.28d) 

XRD shows the crystals seen in CEM by OM are mostly portlandite (Ca(OH)2), with small 

amounts of unhydrated cement, along with isotropic material that is mostly amorphous. Small 

quantities of calcite were also detected in the cement. The lower amount of crystals in the 

ITZ-C seen by XPL compared to CEM is due to the reduced amount of portlandite. This is a 

consequence of migration of Ca2+ and OH- ions from the cement into the ITZ-R and perhaps 

into the bulk of the ignimbrite. Although not confirmed by XRD, the increase of bright spots 

from IGN to ITZ-R is most probably due to portlandite that has formed from migrating Ca2+ 

and OH-. 

The very distinctive dark ITZ zone seen by OM indicates a reaction rim at the interface where 

new compounds may form. No new compounds were detected in the ITZ by XRD, despite 

the marked decrease in the amount of portlandite in the ITZ-C compared to the CEM. The 

milky material seen under XPL suggests that amorphous silica gel has formed in the ITZ-R, 

confirmed by the homogeneous Si concentration across the whole ITZ-R. 

The SEM/EDS phase and element maps show that the migration of Ca2+ ions occurs mainly 

through the rock pores. Additionally, the Si concentration seems to be the highest in the ITZ-

R, particularly where it is closest to the cement, meaning that a Si containing material is also 

filling the rock pores, complementing the high Si content in the rock. This observation, 

combined with the two distinct ITZ-R rims in OM (darker and lighter brown in PPL), 
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suggests that cement migration occurs in two distinct stages/processes: an initial/physical one 

and a final/chemical one, already been reported by Duguid et al. (2011). 

The physical migration happens initially before the cement has set, so all the cement 

constituents flow together in an aqueous suspension (by capillarity), into the rock pores. The 

fact that the rock has pores which are larger than the unhydrated class G cement particles is in 

agreement with this idea. Consequently, there is a significant presence of additional Si (from 

the cement) in the rock pores and a distinguishable darker ITZ-R rim. Duguid (2011) stated 

that the penetration of the cement particles into the formation is a good thing, as the cement 

that invades the stone blocks some of the rock pores and reduces the the amount of CO2 

enriched brine able to contact the cement. He suggests this will prevent the damage of the 

cement in the outermost layer and therefore delay the development of a gap at the interface. 

The chemical migration occurs after the cement has set, but the chemical elements (mostly 

Ca2+ and OH-) continue to migrate into the rock through a chemical driving gradient. The 

final stage is characterized by a slower migration of mostly Ca (no significant amounts of Si 

available in the rock pores), forming the second ITZ-R rim (lighter brown in PPL). 

The amorphous silica gel formation mentioned above could be a consequence of an alkali-

silica reaction which occurs due to the presence of SiO2 coming from either the cement by 

physical migration and lodging in the rock pores of the ITZ-R zone closest to the cement, or 

from the rock itself solubilised by OH- ions migrating from the cement into the rock. The 

zeolites and feldspars reported by Hodgkinson and Hughes (1999) were not detected here. 

Their formation may have been inhibited or transformed by the prescence of calcium, through 

a pozzolanic reaction to form other calcium aluminosilicates, rather than zeolites. The 

feldspars were impossible to track as they are also present in the heterogeneous rock. 

 

VII.1.1.2 Curing time: IGN/G(150.84d) 

In a similar way to the one month cured sample, there is a decrease in portlandite and an 

increase in calcite going from CEM to ITZ-C due to migration of Ca2+ and OH- ions into the 

ITZ-R with carbonation of the outermost exposed layer fixing Ca2+ ions as insoluble 

carbonate. Portlandite, hillebrandite and killalaite, along with calcite seem to be present in the 

ITZ-R, indicating that the migrating Ca2+ and OH- ions may be reacting with the siliceous 

glass in the rock to form these compounds, although in much lower amounts than in the 

cement. 
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OM shows a very distinctive ITZ rim, which is wider than in the equivalent one month cured 

sample. In the ITZ, these crystals are mostly concentrated along the line between ITZ-C and 

ITZ-R, which could be explained by formation of small amounts of calcite (detected by 

XRD) from the reaction between the migrating Ca2+ with CO2 from the air during the setting 

of the cement. It is possible that the interaction with the geobrine at the cement surface 

enhances this reaction. 

The lighter and darker ITZ-R rims distinguished in the IGN/G(150.28d) sample by OM, have 

coalesced into one single uniform and slightly wider, dark rim. This may indicate that during 

the second and third months of cure, the Ca2+ and OH- migration is still happening, although 

slower than during the first month and only through chemical driving forces (rather than 

physical forces). This is in agreement with the SEM/EDS results, which show that Ca has 

penetrated further and in higher amounts into the rock than after 28 days curing. 

 

VII.1.1.3 Drilling mud: IGN/G(150.b.28d) 

The presence of the bentonite layer, which can be easily seen by OM, changes the reaction 

sequence, which occurs over a wider ITZ. From XRD, a new mineral forms, mostly in ITZ-R. 

This is gehlenite, Ca2Al2SiO7, which is due to an interaction of cement with bentonite.  

Milestone et al. (1987b) showed bentonite reacted readily and affected the phases formed. 

This suggests that the calcium and silica from the cement, and, perhaps the silica from the 

rock as well, may react with aluminium from the bentonite (likely to be more reactive than 

the ignimbrite) to form gehlenite or that compound may crystallise directly from the mixture 

of ions in an alkaline environment. It is unusual to see this compound which is normally 

associated with slag cements. 

The addition of a bentonite layer decreases the bonding between the cement and the rock, in 

other words a weak zone seems to form in the ITZ. This may be due to the formation of more 

crystalline phases, probably due to the ready availability of aluminium as the bentonite reacts.  

Bensted and Hewlett (2008) examined hydrogarnet-type cements, where the predominant 

strätlingite or gehlenite hydrate, Ca2Al2(SiO2)(OH)10•2.5(H2O), binder had high compressive 

strengths (ca. 110-136 MPa) and low porosities (1-10 %). However, these cements are 

unstable above 100°C forming gehlenite, which may be the reason for the poor cement-rock 

bonding performance of samples with bentonite, as the specimens were cured at 150°C. 
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The decreased bond between the cement and the rock as a consequence of the use of drilling 

mud has been reported in several studies (Agbasimalo, 2012; Ravi et al., 1992; Peterson, 

1963; Ladva et al.; 2005; Oyibo and Radonjic, 2014). These studies have concluded that both 

physical (formation of mud cake in the ITZ) and chemical (formation of different hydrates in 

the cement outermost layer) are detrimental to the bond between the cement and the rock. 

Oyibo and Radonjic (2014) compared these two types of drilling mud contamination and 

have concluded that the formation of the mud cake was the most detrimental one. The current 

work has focused on the physical contamination and is consistent with the above mentioned 

references. The formation of a thin physical barrier (comparable to the mud cake) between 

the cement and the rock has drastically reduced the bond between the cement and the rock. 

When compared with the equivalent sample without bentonite, IGN/G(150.28d), Ca 

penetrates significantly deeper into the rock. This further migration might be driven by cation 

exchange as when Al from bentonite is substituted into a silicate network, it requires a 

counter cation. 

 

VII.1.1.4 Curing temperature: IGN/G(290.28d) 

The most noticeable feature of this cement sample is the reddish colour seen by the unaided 

eye which is likely due to the iron oxidation, i.e. dissolution of the iron present and 

subsequent precipitation as a red coloured iron oxide, perhaps hematite, with iron as Fe(III). 

A similar process seems to have happened in the rock, where the interior zones have also 

turned red, probably indicating a high concentration of iron oxide, whereas the external zones 

became light green, losing their light brown colour, which has been ascribed to the 

homogeneous presence of oxidised Fe (Henneberger, 1983). This suggests the iron is 

dissolving under the hydrothermal conditions, which are harsher in the external areas of the 

rock, and moving and precipitating in the interior areas of the rock, where the conditions are 

not as harsh as in the exterior. The traces of hematite detected in the IGN red zone by XRD 

support this idea. 

The increased temperature of curing leads to the formation of other minerals in the cement, 

namely reinhardbraunsite and jaffeite. These are the high temperature, high Ca/Si ratio phases 

not present in the 150°C specimens, forming along with portlandite and considerably less 

amorphous material. 
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Although both Ca2+ and SiO2 penetrate into the rock, there is a fissure in the ITZ which splits 

the cement from the rock, and indicates a loss of bonding. The calcium silicate phases formed 

at 290oC are weak and loss of Ca2+ and OH- due to migration could have weakened the binder 

still further. This fissure seen by OM, may have been caused by stresses induced in the ITZ 

during cooling due to the differential thermal expansion/contraction between the cement and 

the rock. This break has happened in the ITZ-C, splitting the outermost layer of the cement 

from the rest of the cement, and may be a consequence of Ca2+ and OH- migration into the 

rock, which would have weakened the binder in the ITZ-C. 

The Ca migration is shallower compared to the 150°C specimens. This could be due to faster 

setting/cure of the cement at 290oC, restricting further migration. Additionally, the above 

mentioned fissure might have worked as a physical constraint, preventing Ca2+ migration. 

 

VII.1.1.5 CO2 exposure: 

 

a) 150
o
C: IGN/G(150.CO2.84d) 

The feature that stands out in this sample is the increased amount of calcium carbonates in 

ITZ-C, the zone most exposed to CO2 and, especially, HCO3
- (dissolved CO2).  According to 

Duguid (2009), this result is predictable due to the high porosity and permeability of the rock 

which allows CO2 (aq) to be in permanent contact with the exterior layer of the cement.  

Furthermore, any possible gaps in the ITZ (between the rock and cement) may increase the 

amount of dissolved CO2 in the ITZ, as seen by Carey et al. (2007). They realized that CO2 

could migrate along a pre-existing gap in the interface between a well cement and shale 

caprock that was exposed to CO2-rich brine at 54oC. 

The outermost layer of the cement itself seems to restrict the CO2 from penetrating further 

into the cement, due to its very low permeability after carbonation.  This is in accordance 

with several studies undertaken at lower temperatures, where differentiated layers formed. 

The exterior ones being more carbonated than the interior ones, due to a diffusion mechanism 

(Andac and Glasser, 1999; Milestone et al., 1986 a, b; Kutchko et al., 2007, 2008; Carey et 

al., 2007; Barlet-Gouedard et al., 2006; Duguid et al., 2005; Duguid, 2009). The 

differentiated layers found in some of these studies are not obvious in the current research. 

Rimmelé et al. (2008) suggested this distinct banding was probably due to different exposure 

conditions. Most of the studies were made in EGS-CO2 or CO2 sequestration conditions, 
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where the CO2 overpressure is significantly higher than in the current study, where the 

carbonation rate is slower. 

The extremely bright ITZ seen by OM indicates the presence of new compound(s), likely to 

be a product of carbonation. The considerably high amounts of C detected by EDS and shown 

in the map and spot analyses, confirm the presence of a carbonate. The relatively large 

amounts of C (compared to Ca) suggest that this is calcium carbonate, CaCO3, which has 

formed according to the Equation III.13, Equation III.14, Equation III.15 and/or Equation III.16. 

This carbonate needs just over 3 times more Ca than C (in weight), whereas scawtite, 

Ca7Si6(CO3)O18•2(H2O), would need over 23 times more Ca than C to form. Moreover, the 

composition of SPOT 7 (Ca=40.91wt.%; C=11.45wt.%; O=43.10wt.%) shows a very similar 

composition to the characteristic composition of CaCO3 (Ca=40.04wt%; C=12.00wt.%; 

O=47.96wt.%). This confirms that significant amounts of CaCO3 are present in the ITZ. 

Thermogravimetry (TGA) showed a relatively broad temperature range (450-800oC) for 

CaCO3 decomposition. Large amounts of material decomposed at temperatures under 650oC, 

which is well below that for calcite (or any other crystalline CaCO3 polymorph), while the 

Mass Specrometry (Mass Spec) detected significant amounts of CO2 released over this 

decomposition range. Several studies (Cole and Kroone, 1960; Sauman, 1971; Villain and 

Platret, 2006; Thiery et al., 2007; Galan et al., 2003) also reported the existence of a 

relatively broad thermal decomposition of CaCO3, some of which agreed with the distinction 

of three modes of decomposition of CaCO3, as a function of the temperature, T: mode I 

(780oC<T<990oC), mode II (680oC<T<780oC) and mode III (550oC<T<680oC). These modes 

correspond to different carbonation products and can coexist in the ultimate state of 

carbonation (Thiery et al., 2007). Suman (1971) stated that these modes of decomposition 

progressively rise as the level of carbonation increases. According to this author, mode I is 

due to the decomposition of well crystallised calcite, whereas mode II is the consequence of 

the decomposition of a poorly crystalline calcite. He felt this thermally less stable “calcite” 

associated with the mode II was a product of the transformation of the metastable polymorphs 

vaterite and aragonite, when heated to 440-470oC. Mode III has been more difficult to 

characterise. 

Cole and Kroone (1960) demonstrated that the amount of CO2 measured by TGA over the 

temperature range 650-950oC (modes I and II) largely underestimated all the chemically fixed 

CO2 in carbonated Portland cement. Furthermore, Kondo et al. (1969) demonstrated that the 

total amount of crystallized CaCO3 determined by XRD underestimated the carbon dioxide 
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quantified by chemical analysis. These authors justified this discrepancy by the presence of 

amorphous calcium carbonate (ACC). In addition, ACC had been previously characterized 

(Brecevic and Nielsen, 1959) and, according to Thiery et al. (2007), could be associated with 

thermal mode III. In their work, Thiery et al. (2007) found the mode III to be a consequence 

of high CO2 concentration which accelerated the carbonation rate. These authors felt this 

rapid carbonation process did not allow enough time for the Ca2+ ions to migrate to form a 

well ordered crystalline CaCO3, namely calcite. Instead, they suggested that metastable 

(vaterite and aragonite) and amorphous CaCO3 were present. 

The references above along with the fact that little material decomposes at temperatures 

above 780oC (corresponding to the decomposition mode I) indicates that there is little well 

crystallised (the most thermally stable) calcite present in the ITZ-C of this sample. This is 

consistent with the XRD results, which have detected only traces of (well crystallised) 

calcite. Moreover, the previously cited decomposition modes II and III are also in good 

agreement with the two main TGA/Mass Spec decomposition stages observed in the current 

work. This suggests that the material that decomposed at temperatures over 650oC 

(corresponding to mode II) is likely to be poorly crystalline CaCO3 (perhaps calcite) whereas 

the one that decomposed at temperatures under 650oC (corresponding to mode III) may well 

be amorphous calcium carbonate (ACC). Furthermore, carbonation of calcium-rich phases 

(such as those present in class G cement) has been shown previously to result in formation of 

ACC, vaterite and hydrated silica (Black et al., 2007). 

There is extensive literature on amorphous calcium carbonate (ACC), most in the 

biomineralisation field. Many of these studies have presented stabilisation mechanisms for 

the ACC. For instance, the presence of silica helps to stabilise the material which may coexist 

with crystalline polymorphs in the presence of sodium silicate and elevated pH (Kellermeier 

et al., 2010; Black et al., 2007; Black et al., 2008; Martinez et al., 1998). In the current work, 

the silica liberated from the rock may have analogously enhanced the stabilisation of the 

ACC formed in the ITZ. Several authors (Stepkowska et al., 2007; Kellermeier et al., 2010; 

Taylor et al., 1993; Kalisman et al., 2002; Radha et al. 2010; Addadi, 2003) suggested that 

some of these forms of ACC also have structural water in their composition, which may 

restrict the transformation of amorphous into crystalline calcium carbonate, i.e., stabilise the 

ACC (Thiery et al., 2007). The relatively high amounts of water released just before the first 

CaCO3 decomposition observed in this sample suggests that this may also be the case. 
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Considering that Ca, Si, O and C coexist in considerable amounts in several spots, poorly 

crystalline scawtite, Ca7Si6(CO3)O18•2(H2O), could be present as well, although this mineral 

needs much less C than the CaCO3 (only ≈1.5% C in weight). Scawtite is a calcium silicate 

carbonate hydrate that forms sporadically in calcium silicate or cement systems when 

exposed to carbonate temperature. It is similar to tobermorite with ≈5% of CO2 replacing 

silica and has been reported in several well cement studies (Eilers et al., 1983; Taylor and 

Roy, 1980;  Gallus et al., 1979). 

Dawsonite, NaAl(CO3)(OH)2, which has been identified in traces in carbonated well cement 

(Carey et al., 2007), could also be present in the ITZ. Johnston (2001) predicted formation of 

dawsonite from the reaction of K-rich feldspar (from the rock) with CO2, in the presence of 

an aqueous solution with sodium ions. According to Huggins and Green (1973) the dawsonite 

decomposes in two steps. The first, between 300oC and 375oC, where all the hydroxyl water 

and two-thirds of the carbon dioxide are given off, leaves a residue which shows no 

crystalline structure by X-ray diffraction. The second is a slower step, in which the balance of 

the carbon dioxide is released over the range of 360oC to 650oC, producing crystalline 

sodium aluminate. This second decomposition step seems to match with the decomposition 

process observed in the current work. The first step coincides with the mass loss and water 

release observed in the TG and Mass Spec respectively. However, the spots analysed by EDS 

have little or no Na in their composition, which does not support this hypothesis. 

The current work indicates carbonation is a very complex system where several products may 

form, including poorly crystalline and amorphous calcium carbonates as well as scawtite. 

These findings are in accordance with Rimmelé et al. (2008), who described carbonation as a 

complex series of reactions giving multiple zones of carbonation and dissolution which could 

possibly explain the extremely bright colour of ITZ. 

 

b) 290
o
C: IGN/G(290.CO2.84d) 

Like IGN/G(290.28d), this cement shows a reddish colour which could be due to the iron 

leaching from the ignimbrite, but might also be associated with the carbonation of the 

cement, which, unlike the equivalent 150oC sample, is almost totally carbonated. The higher 

carbonation rate at 290oC was surprising, as the lower solubility of Ca(OH)2 at these 

temperatures was expected to slow its dissolution and therefore, the carbonation of 

portlandite. Another factor that might have accelerated the carbonation is the higher 
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permeability of the calcium silicate hydrate phases formed at these temperatures, although the 

ones at 150oC are quite permeable as well. Finally, it could be due to a faster reaction at 

290oC compared to 150oC, as the increase in temperature is known to accelerate the chemical 

reactions. 

The fissure seen by OM may be the consequence of stresses induced in the ITZ due to the 

differential thermal expansion/contraction between the cement and the rock. As in 

IGN/G(290.28d), this breakdown along the ITZ-C may be due to the  Ca2+ and OH- migration 

from ITZ-C to ITZ-R, which has weakened the binder in the ITZ-C. 

 

VII.1.1.6 Rock type: 

Generally, reactions in the assemblages in this section seem to be consistent with what has 

already been found for the equivalent assemblage with IGN, namely the presence of high 

amounts of calcium carbonates in the outermost layer of the cement and possible formation of 

perhaps, amorphous calcium carbonate. 

It was anticipated that the most relevant variables which could affect the interaction of the 

cement with the rock would be its porosity, composition and volcanic glass content. The 

porosity and, consequently, the permeability, seem to play a key role in some of the samples 

previously analysed. Volcanic glass is known to react quickly with the Portland based 

cements because it is mostly composed of reactive silica. The cement/rock alkali silica 

reaction has been extensively investigated in several papers presented and published in 

several international conferences on alkali aggregate reaction (AAR) in concrete. 

 

a) UNI: UNI/G(150.CO2.84d) 

This rock’s volcanic glass content is comparable to IGN. Thus the lower porosometry of UNI 

compared to IGN, was expected to reduce the penetration of cement into the pores of this 

rock. The OM showed a narrower ITZ-R bright rim than the comparable sample with IGN, 

which indicates that the cement has not migrated as far as in IGN. This is confirmed by the 

phase and element maps. 

This is a consequence of a lower penetration of the cement particles into the rock pores, i.e. 

reduced physical migration of the unhydrated cement into the rock. This was predictable as 

the total volume of pores into which the cement particles can readily penetrate (i.e. pores with 
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diameter above 0.5 µm), this rock with only 0.2162 mL of pores/mL of rock is significantly 

lower than for IGN (0.3295 mL/mL). This is also true for pores with diameter above one and 

5 µm. The volume of mercury intrusion for pores above 10 µm is not significant because it is 

extremely low. 

 

b) KAO: KAO/G(150.CO2.84d) 

This rock has a similar volcanic glass content to that observed for IGN and UNI.  KAO is the 

most porous amongst the rocks under study. However, this porosity is mostly very fine pores, 

i.e. it has a relatively low volume and amount of pores in which the unhydrated cement can 

penetrate. The pores with diameter above 0.5 µm occupy only a volume of 0.1179 mL per 

mL of rock (0.3295 mL/mL for IGN and 0.2162 for UNI). For larger pores, it shows a 

volume of 0.0090 mL/mL for pores with diameter above one µm and 0.0002 mL/mL for 

pores with diameter above five µm. Similar to the other rocks, the volume of mercury 

intrusion for pores above 10 µm is not significant because it is extremely low. 

Therefore, the narrower bright ITZ-R and lower Ca migration compared to 

IGN/G(150.CO2.84d) is in agreement with the idea that the pore size distribution of the rock 

plays a key role in the interaction between the cement and the rock. Accordingly with what 

was previously said, the reduced amount of pores in which the cement can penetrate was the 

cause for this shallower penetration of cement particles into the rock compared to IGN. 

Nevertheless, when compared to UNI/G(150.CO2.84d), this sample shows a slightly wider 

ITZ-R by OM, and the EDS maps suggest that Ca has penetrated further into the rock. This is 

surprising, as the amount and volume of pores into which the unhydrated cement particles 

can penetrate (diameter above 0.5 µm) is considerably lower than for UNI. On the other 

hand, the values of mercury intrusion for smaller pores are much higher than for pores above 

0.5 µm. For example, for pore diameters above 0.1 µm, the values of mercury intrusion of 

KAO (0.2406 mL/mL) are very similar to UNI (0.2669 mL/mL). Moreover, the mercury 

intrusion in even smaller pores is higher for KAO than for UNI. This indicates that although 

the pores in which the unhydrated cement particles cannot penetrate (under 0.5 µm) are 

reduced, the increased number of fine pores may significantly enhance the migration of 

cement elements into the rock. In this case, the migration is likely to be driven by the 

chemical gradient, as only the dissolved chemical elements are able to penetrate in these 

smaller pores. 
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c) MOR: MOR/G(150.CO2.84d) 

This rock has significantly lower amounts of volcanic glass in comparison to the other 

ignimbrites (IGN, UNI and KAO). This was expected to enhance the understanding of the 

role of the volcanic glass content on the cement rock interaction.  However, the porosometry 

of this rock is considerably different to the other ones, particularly IGN and UNI. 

Similar to KAO, the amount and volume of pores in which the unhydrated cement particles 

can penetrate (with diameter above 0.5 µm) is considerably less than IGN or UNI. This is 

because its relatively high porosity is mostly composed of very fine pores, i.e. it has a 

relatively low volume and amount of pores in which the unhydrated cement can penetrate. 

Pores with a diameter above 0.5 µm occupy only 0.1211 mL/mL of rock as opposed to 

0.3295 mL/mL for IGN, 0.2162 mL/mL for UNI and 0.1179 mL/mL for KAO. It only shows 

a volume of 0.0069 mL for pores with diameter above one µm and 0.0001 mL/mL for pores 

with diameter above 5 µm with nothing significant above 10 µm.  

In summary, the lower amounts of volcanic glass along with the lower porosity for pores 

where cement can penetrate were expected to reduce the interaction between the cement and 

MOR. This is true compared to IGN as the OM and EDS maps show respectively a narrower 

ITZ-R and lower Ca migration. But when compared to UNI as reference, the 

MOR/G(150.CO2.84d) OM images show a slightly wider the ITZ-R, whereas the EDS 

element maps show a deeper Ca penetration into the rock. 

The relatively wide ITZ-R observed in KAO is attributed to the impact of the pores where the 

unhydrated cement particles cannot penetrate (with a diameter under 0.5 µm) and the reaction 

is driven by the chemical gradient through the fine pores.  

While the volume of pores with diameter above 0.5 µm are similar for MOR and KAO 

(0.1211 mL/mL and 0.1179 mL/mL, respectively), the volume of pores with diameter above 

0.1 µm is significantly higher in MOR (0.3158 mL/mL for MOR and 0.2406 mL/mL for 

KAO). While this fact is likely to have facilitated the chemical migration into the smaller 

rock pores, the lower volcanic glass content of the MOR was expected to reduce the chemical 

reaction between the cement and the rock. In this case, the glass content seems to be the 

prevailing variable, as the MOR shows a slightly narrower ITZ-R along with a slightly lower 

Ca penetration compared to the KAO/G(150.CO2.84d). 
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d) RHY: RHY/G(150.CO2.84d) 

This rock has the lowest overall volume of pores (0.1349 mL of pores per mL of rock), the  

lowest volume of pores in which the cement can penetrate (pores with a diameter above 0.5 

µm: 0.1012 mL/mL), the lowest volume of pores with a diameter above 0.1 µm: 0.1133 

mL/mL) and the lowest amount of volcanic glass.  The combination of all of the above 

mentioned variables has drastically reduced the reaction extent between the cement and the 

rock. Hence, these results seem to support the theory that features such as porosimetry and 

volcanic glass content play a key role in the way the cement interacts with the rock 

formation. 
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VII.1.2 G20SF 

 

VII.1.2.1 Standard: IGN/G20SF(150.28d) 

The low intensity peaks in XRD indicate that the cement matrix remained largely amorphous, 

but the added silica flour has restricted the formation of portlandite. Its presence is confirmed 

by XRD analysis and OM/XPL images. 

Small amounts of tobermorite have formed in the cement zone, indicating the Ca/Si ratio has 

dropped low enough through Ca migration, and the availability of additional Si. There is 

more quartz in the ITZ-C than CEM, suggesting that Ca leaching into and through the ITZ is 

rapid, leaving less available Ca to react with the quartz in the interior of the binder matrix. In 

addition to this, the quartz might also dissolve in the alkaline environment of the cement core, 

with the resulting silica moving from CEM to ITZ-C and finally precipitating in the 

outermost layer, where the pH is lower than in the cement core. 

The increase in bright grains from IGN to ITZ-R, is probably again due to migration of 

cement compounds from the cement into the rock, some of which are trapped between the 

ITZ-R and the ITZ-C, which explains the fine bright line. Although not confirmed by XRD 

analysis, these compounds are probably cement matrix minerals, namely calcite, tobermorite, 

αC2SH, unhydrated cement and quartz. 

The ITZ-R width (by OM) and Ca penetration depth (by SEM) are similar to that found in the 

IGN/G(150.28d).  This indicates that the addition of Silica Flour has little effect on the 

physical or chemical migration stages of this formulation compared to pure class G cement. 

The physical migration was predictable, as the particle size distribution of this admixture and 

therefore of this formulation is very similar to the that of class G cement. It also suggests that 

the added quartz has not reduced the migration of Ca2+ ions across the ITZ into the rock by an 

expected Ca/SiO2 reaction. Hence 20wt% of silica flour addition is not been enough to 

significantly change the migration process of the cement mixture. The OM and SEM/EDS 

work indicate that the milky material found in the ITZ is silica gel, a typical product of the 

alkali-silica reaction, i.e. it is likely to be a consequence of the resulting reaction of the 

volcanic glass with migrating OH-. 

Like IGN/G(150.28d), the ITZ-R is composed of two distinct rims, one beside the ITZ-C 

with a darker colour and other with a lighter brown colour. These may have originated from 

physical and chemical migration respectively. 
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VII.1.2.2 Curing time: IGN/G20SF(150.84d) 

The feature which stands out compared to the class G cement is the complete absence of 

portlandite which has reacted with the added quartz (20wt% SF), a feature also observed for 

the equivalent 1 month cured sample.  

The calcite and aragonite content increases going from CEM to ITZ-C, supporting the idea 

that the carbonation rate (although still low) is faster in the outermost layer of the cement. As 

in IGN/G20SF(150.28d), there are some unexpected trace amounts of tobermorite that might 

be explained by random sites where the Ca/Si ratio was low enough for this mineral to form.  

According to Kalousek (1954), over 30% fine quartz addition to cement is needed to give a 

Ca/Si ratio of around one for this mineral to form. 

The XRD analysis detected small amounts of calcium carbonates and calcium silicates in the 

ITZ-R, confirming that cement constituents have migrated into the rock, in accordance with 

that observed in the equivalent one month cured sample. 

By OM, the cement matrix (CEM) contains both small and large sized crystals, the bigger 

ones might be quartz or/and non-hydrated cement grains. 

The ITZ-R is considerably wider than the equivalent one month cured sample, indicating the 

current system has kept reacting during the second and/or third months. The ITZ-C, however, 

seems to be narrower than in IGN/G(150.84d), meaning the migration processes within this 

cement mixture may be less affected than for pure class G cement. 

The SEM/EDS results support the OM results where the Ca migration observed at 84 days is 

considerably greater than at 28 days.  Furthermore, unlike the 1 month cured samples, there is 

a minor difference between the ITZ-R and Ca migration between G and G20SF. The ITZ-R 

looks slightly wider and the Ca migrated in higher amounts, which may mean the G20SF has 

penetrated a little further into the rock than the G within the second and/or third months of 

cure. 

 

VII.1.2.3 Drilling mud: IGN/G20SF(150.b.28d) 

As in IGN/G(150.b.28d), the bentonite layer can be observed as a homogeneous light brown 

rim by OM (PPL). Gehlenite has formed here as a product of a reaction of Ca migrating from 

the cement with the Al oxide present in the bentonite, as well as with the SiO2 present in the 
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bentonite and, perhaps, in the cement (silica flour). Again, there is a wider ITZ-R and a 

weaker cement/rock bond. 

The aluminium may have enhanced the formation of tobermorite. As explained by Klimesch 

and Ray (1998), the ready availability of Al makes the formation of tobermorite easier. In the 

current sample, Al can be supplied into solution from both bentonite and the glass in the 

ignimbrite as migrating OH- ions react along with soluble SiO2. Tobermorite will then 

precipitate in the ITZ. 

The seemingly narrower bentonite layer, when compared with IGN/G(150.b.28d), suggests 

an increased reaction of the bentonite with silica flour present in the cement. On the other 

hand, the thickness of the bentonite layer seen by the optical microscope may be relatively 

random. It depends on the way it has adhered to the rock after being injected in and washed 

out from the rock cavity. 

The OM images and SEM/EDS maps support further the greater migration of some cement 

components into the rock compared to the equivalent sample without bentonite, 

IGN/G20SF(28d), confirming the suggestion put forward for IGN/G(150.b.28d) that Ca 

migration is being driven by cation exchange with Al from bentonite. 

 

VII.1.2.4 Curing temperature: IGN/G20SF(290.28d) 

Unlike IGN/G20SF(150.28d), there is little quartz present, indicating that most has reacted at 

this temperature, i.e., the reaction of quartz with the cement is faster at 290oC than at 150oC. 

There are some red coloured spots in the ITZ-C which, in a similar way to IGN/G(290.28d), 

are the consequence of iron dissolution/precipitation process within the cement. 

The fissure seen by OM, again, may be the consequence of stresses induced in the ITZ due to 

the differential thermal expansion/contraction between the cement and the rock. This break 

happened at the contact between ITZ-C and ITZ-R. This could mean that, unlike in the 

IGN/G(290.CO2.28d) sample, this line splits the outermost layer of the cement from the 

outermost layer of the rock where it is the weakest. This could be also caused by the slower 

Ca2+ migration from the cement into the rock caused by the added SF. This results in poorer 

bonding properties between these materials in comparison to the equivalent sample where 

Class G cement was used. This could mean that unlike at 150oC, the 20% quartz addition 

restricts the Ca2+ migration in a significant way. 



273 

 

The other most noticeable changes from IGN/G(290.28d) is the formation of kilchoanite 

along with xonotlite and the disappearance of portlandite. This will be due to the reaction 

with SF. 

Xonotlite was detected by XRD in significant amounts. This is unexpected at this Ca/Si ratio 

and probably results from extensive leaching of Ca2+ ions, effectively lowering the Ca/Si 

ratio in the matrix. Accordingly, the bright grains in the ITZ-C are unreacted quartz crystals 

from SF, which might be due to lack of Ca2+ ions to react with them. 

The narrower ITZ compared to the 150oC sample (seen by either OM and SEM/EDS) may, 

again, be attributed to the faster setting/cure of the cement at 290oC and/or the fissure 

between the ITZ-C and the rest of the cement. While the faster cement setting decreases the 

amount of available Ca, the fissure/discontinuity might have stopped the Ca supply to the 

ITZ-C from the inner cement, as there was no physical interface for further Ca to move to the 

outermost layer. In both cases, the amount of free Ca in the ITZ-C is reduced. 

 

VII.1.2.5 CO2 exposure: 

 

a) 150
o
C: IGN/G20SF(150.CO2.84d) 

Similar to IGN/G20SF(150.84d), no portlandite was observed in this sample.  The amount of 

aragonite increased from CEM to ITZ-C, meaning there is more carbonation in the outmost 

layer of the cement. The traces of tobermorite formed could be expected. Milestone et al. 

(2012) showed that the low Ca/Si ratio tobermorite formed as Ca2+
 was removed by 

formation of CaCO3 during the early curing process before the final silicate phases can form. 

The extremely bright wide ITZ-R may mean that significant calcium carbonate (CaCO3) is 

present, although again that is not consistent with the XRD analysis where little calcite or 

aragonite is identified. This may, again, be justified by the presence of amorphous calcium 

carbonate.  Both the TGA and Mass Spec results show significant amounts of material 

decomposing at temperatures well under 650oC (significantly below that of calcite or 

aragonite) with significant amounts of CO2 released over this decomposition range. When 

compared with the IGN/G20SF(150.CO2.84d), the TGA and Mass Spec results show a 

considerable higher amount of carbonate decomposing at lower temperatures (under 700oC). 

This is consistent with the work undertaken by Thiery et al. (2007), who concluded that 

poorly crystallised and thermodynamically metastable forms of CaCO3 correspond to the 
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carbonation of C-S-H, which is expected to be present in greater amounts in G20SF than in 

G. 

The relatively high amounts of C detected by EDS map and spot analyses, and similarly 

observed for the comparable sample with class G cement, indicate relatively high amounts of 

carbonate present which are likely to be CaCO3, rather than scawtite, Ca7Si6(CO3)O18•2(H2O) 

as CaCO3 needs only ≈3.3 times more Ca than C (in weight), whereas scawtite needs ≈23.4 

times more Ca than C (in weight) in its composition. 

Ca is gradually reduced, going from the outermost to the innermost ITZ-C (SPOTs 4, 5 and 

6), and is a consequence of Ca being leached from this region (dissolution front/depleted 

zone) and moving outwards during the carbonation process. Eventually, this Ca reacts with 

the CO2 or HCO3
- to form calcium carbonate at the carbonation front. A similar phenomenon 

was observed in other studies (Rimmele et al., 2008; Milestone et al., 1986; Grant-Taylor et 

al., 1996). The composition along with the distinct amorphous texture of some areas in the 

ITZ region indicate that silica gel is present. This compound could have formed as a product 

of corrosion of the cement, i.e. loss of Ca in the dissolution front (Equation III.23) or/and as a 

product of the alkali-silica reaction between the cement and the rock (Equation III.25 and 

Equation III.26). 

The ITZ-C is not as easily distinguishable as that observed in IGN/G(150.CO2.84d), which 

may be explained by the distinct carbonation processes and products of C-S-H and 

portlandite, that occur at these conditions. While calcite (the most common portlandite 

carbonation product) is usually white to the unaided eye, aragonite, the most common 

product of carbonation of C-S-H according to Milestone et al. (1986), shows a reddish 

colour, similar to observed in the work by Milestone et al. (2012). This suggests distinct 

carbonation processes, where the reddish ITZ-C indicates the presence of aragonite/pseudo-

aragonite/non-crystalised aragonite (ACC) combination, whereas the ITZ-R seems to show 

brighter carbonation products, i.e. calcite/pseudo-calcite/non-crystalized calcite (ACC). This 

could be explained by the absence of portlandite in the ITZ-C with a possible portlandite 

formation in the ITZ-R due to the migration of Ca2+ and OH- (where insufficient free silica is 

present to restrict the formation of portlandite). 

The SEM/EDS results are in agreement over the wider ITZ-R carbonation rim seen by OM, 

as the element mapping shows calcium has migrated further into the rock, compared to 

IGN/G(150.CO2.84d). This fact might be explained by the faster carbonation of portlandite 
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present in IGN/G(150.CO2.84d) ITZ-C but not in IGN/G20SF(150.CO2.84d) ITZ-C. 

Carbonation seals the surface to further migration when exposed to CO2, whereas the calcium 

silicate hydrates take longer to react with CO2 and, consequently, do not, or take longer to, 

form a CaCO3 barrier. The Ca2+ seems to migrate unevenly into the rock and is mostly 

localized in rock pores, whereas in the IGN/G(150.CO2.84d) ITZ-R it is more uniformly 

distributed. This might be due to the formation of CaCO3 in pockets in the rock pores as no Si 

is present from the EDS mapping. 

 

b) 290
o
C: IGN/G20SF(290.CO2.84d) 

Unlike the equivalent 150oC sample, the quartz has fully reacted with the cement, supporting 

an increase in the cement/quartz reaction rate going from 150oC to 290oC. 

Like IGN/G20SF(290.28d), the cement in this sample is reddish in colour and due to the iron 

dissolution/precipitation/oxidation processes within the cement. Similar to 

IGN/G(290.CO2.84d), it might also be partially associated with the carbonation of the 

cement, which, unlike in the equivalent 150oC sample is fully carbonated all the way through 

from the outermost layer to the cement core. 

As described above, the fissure seen by OM may be the consequence of stresses induced in 

the ITZ due to the cement shrinkage and/or differential thermal expansion between the 

cement and the rock. As in IGN/G20SF(290.28d), this breakdown has happened in the line 

between ITZ-C and ITZ-R. This could mean that, unlike in IGN/G(290.CO2.84d), this line 

splits the outermost layer of the cement from the outermost layer of the rock. This weakness 

could be a consequence of a slower Ca2+ migration from the cement into the rock due to the 

added silica, which would have reduced the cement/rock bonding. 

 

VII.1.2.6 Rocktype: 

These assemblages seem to be consistent with what has already been found for the equivalent 

IGN samples, namely the absence of portlandite and increased aragonite in ITZ-C from CEM 

and, perhaps, the presence of amorphous calcium carbonate. 
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a) UNI: UNI/G20SF(150.CO2.84d) 

As observed for the equivalent assemblage with class G formulation, the ITZ-R is narrow 

along with a shallower Ca penetration into the rock in comparison to 

IGN/G20SF(150.CO2.84d). Analogous to UNI/G(150.CO2.84d), this is likely to be due to the 

lower amount and volume of pores into which the cement can penetrate, which implies a 

penetration of lower amounts of cement particles into the rock pores, i.e. reduced physical 

migration of the unhydrated cement formulation constituents into the rock. 

 

b) KAO: KAO/G20SF(150.CO2.84d) 

In a similar way to the equivalent assemblage with G formulation, the bright ITZ-R seems to 

be narrower and the Ca penetration is shallower in comparison to IGN/G20SF(150.CO2.84d), 

due to the lower amount and volume of pores in which the unhydrated cement mixture 

particles can penetrate (with diameter above 0.5 µm). 

Nonetheless, when compared to UNI/G20SF(150.CO2.84d), this sample shows a slightly 

wider ITZ-R by OM, whereas the EDS maps suggest that Ca has penetrated further into the 

rock. This is in agreement with that observed for the KAO/G(150.CO2.84d), and supports the 

idea that the high amount and volume of fine pores into which the unhydrated cement 

particles cannot penetrate (under 0.5 µm) facilitate the migration driven by chemical gradient. 

 

c) MOR: MOR/G20SF(150.CO2.84d) 

Again, the lower amounts of volcanic glass, along with the lower porosity of pores into which 

cement can penetrate compared to IGN, have reduced the interaction between the cement and 

the rock. Also, when compared to UNI/G20SF(150.CO2.84d), the smaller pores seem to have  

facilitated the migration of the dissolved cement mixture particles into the rock, driven by 

chemical gradient. 

However, this sample shows a relatively wide, although heterogeneous ITZ-R. When 

compared to KAO/G20SF(150.CO2.84d), the amount of ITZ-R reaction observed by OM 

appears lower, which is in agreement with the idea that the lower volcanic glass content 

reduces the chemical reaction between the cement and the rock. 

On the other hand, the extension of penetration seems to be greater than for 

KAO/G20SF(150.CO2.84d). This is likely to be a consequence of the higher volume of pores 
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with diameter above 0.1 µm significantly higher in the MOR (0.3158 mL/mL for MOR and 

0.2406 mL/mL for KAO), which may be allowing further penetration of dissolved cement.  

 

d) RHY: RHY/G20SF(150.CO2.84d) 

The results obtained for this sample also agree with what has previously been stated about the 

role of porosity and amorphous silica content, i.e. when both of these variables are 

significantly reduced, the extent of reaction of this cement with this rock is also considerably 

reduced. 
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VII.1.3 G40SF 

 

VII.1.3.1 Standard: IGN/G40SF(150.28d) 

The greater number of medium and large sized bright spots seen by XPL in the cement 

compared to both IGN/G(150.28d) and IGN/G20SF(150.28d) appears due to the larger 

amount of unreacted quartz crystals together with tobermorite formation, which has been 

enhanced by 40wt% silica flour addition resulting in complete removal of portlandite. 

However, the bulk of the binder still remains amorphous indicating tobermorite 

crystallization is slow. 

By OM, the ITZ-C is barely distinguishable from CEM and the ITZ-R is significantly 

narrower than for any other Portland type cement mix tested, at the same conditions. This is 

not likely to be a consequence of a distinct physical migration compared to G or G20SF as 

the particle size distribution for these three formulations is very similar. Instead, this seems to 

be a consequence of the relatively rapid reaction of the large amount of added quartz with the 

available Ca which partially restricts the migration of Ca into the rock compared to the 

samples with lower Silica Flour additions. Although present in smaller amounts than in 

IGN/G(150.28d), the milky material found in the ITZ-R of the current sample is also 

probably silica gel. 

The abrupt change in the cement/rock interface phase map, rather than the gradual change 

seen for both IGN/G(150.28d) and IGN/G20SF(150.28d), may be due to a combination of 

two factors: the slower migration of Ca resulting in less Ca present in the ITZ-R, and the 

reduced difference in the Ca/Si ratio between the cement and the rock. 

 

VII.1.3.2 Curing time: IGN/G40SF(150.84d) 

The addition of 40wt% silica flour restricts the formation of portlandite and enhances the 

formation of tobermorite in the cement matrix, consistent with the idea put forward for the 

equivalent sample cured for 1 month.  Both calcite and aragonite increase going from CEM to 

ITZ-C, meaning this cement mixture also shows a higher carbonation rate in the outermost 

layer.  Only slight traces of calcium silicates and calcium carbonates are found in the ITZ-R 

(even lower than in the IGN/G20SF(150.84d)), which confirms that 40wt% SF addition slows 

the migration of cement constituents into the rock. This is supported by the OM results, 
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which show a considerably narrower ITZ-R than that observed in both IGN/G(150.84d) and 

IGN/G20SF(150.84d). 

The SEM/EDS data is in accordance with the details mentioned above, as the Ca2+ has not 

migrated as far into the rock as for IGN/G(150.84d) or IGN/G20SF(150.84d), again 

consistent with the idea that large additions of silica flour slow the migration of Ca2+ ions 

across the ITZ. 

The ITZ-R is considerably wider compared to IGN/G40SF(150.28d), which means that 

ongoing cement/rock interaction occurs during the second and/or third months of cure. 

 

VII.1.3.3 Drilling mud: IGN/G40SF(150.b.28d) 

Like IGN/G(150.b.28d) and IGN/G20SF(150.b.28d), gehlenite forms in the ITZ, where a 

bentonite layer is observed, widening the ITZ-R and weakening the cement/rock bond. 

The increased number of bright spots in the ITZ-C are mostly quartz, which suggests that 

with the larger amounts of added silica flour, the outermost areas of the cement remain 

unreacted, as significant amounts of Ca2+ and OH- move into the rock, reducing the amount of 

these constituents left to react with the quartz from the cement formulation. On the other 

hand, the small bright grains are probably calcite, which XRD showed was greater in ITZ-C 

than CEM. 

The bentonite layer is narrower than for either IGN/G(150.b.28d) or IGN/G20SF(150.b.28d), 

which again, may be the consequence of the bentonite being consumed in the reaction 

between the silica flour present in the cement and rocks. Following this line of thought, the 

more quartz added to the cement, the more will react with the bentonite. However, the width 

of the bentonite layer also depends on other factors such as its initial width, which was 

probably not the same for all the samples or even for different zones within the same sample. 

The optical microscope images and the element map analyses support the idea that the Ca 

migration is driven by cation exchange with Al from the bentonite, as the cement seems to 

migrate further and in higher amounts into the rock, when compared with the equivalent 

sample without the bentonite layer, IGN/G40SF(150.28d). 
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VII.1.3.4 Curing temperature: IGN/G40SF(290.28d) 

The large addition of silica flour ensures complete reaction of portlandite and the Ca/Si ratio 

is low enough that xonotlite readily forms at the expense of other calcium silicate hydrates. 

The ITZ is mostly composed of ITZ-C, as the ITZ-R is narrow. The wide ITZ-C is easily 

distinguished due the increased amount of quartz crystals and its different colour and texture 

and increased iron content (similar to that seen for the other Portland cement types), which 

might be migrating from the rock into the cement and precipitating. Like the 150oC samples, 

the narrower ITZ-R compared to IGN/G(290.28d) or IGN/G20SF(290.28d) is probably due 

to the overall reduced amounts of free Ca in the cement matrix, most of which is consumed in 

the reaction with the large amount of added silica flour. When compared to the equivalent 

sample at 150oC, the shallower Ca migration might due to the faster setting and the fissure 

observed at 290oC. 

The fissure seen by OM may be the consequence of stresses induced in the ITZ due to the 

differential thermal expansion/contraction between the cement and the rock. This break down 

has happened at the contact between ITZ-C and ITZ-R. This could mean that, like for the 

G20SF, the added quartz weakens the bonding between the cement and the rock by restricting 

Ca2+ migration from the cement into the rock. 

 

VII.1.3.5 CO2 exposure: 

 

a) 150
o
C: IGN/G40SF(150.CO2.84d) 

The carbonation layer is easily noticeable with the unaided eye, as a pink, thick outer-layer 

formed in the cement. Duguid (2009) has reported a similar colour in his experiments, which 

he attributed to the precipitation of CaCO3. This layer is well distinguishable by OM, and 

ranges from ca. 2 to 4 mm thick and depends on the thickness of the surrounding rock. This is 

in accordance with the work by Duguid et al. (2011), who observed a decrease in the cement 

degradation rate with the increase of the surrounding rock thinckness. 

The EDS map and spot analyses suggest that calcium carbonate, CaCO3, is present in 

considerable amounts. The XRD analysis confirms this and indicates that the most prevalent 

crystalline calcium carbonate is aragonite, which increases sharply going from CEM to ITZ-
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C.  This is probably due to the faster rate of carbonation of tobermorite (rather than 

portlandite or other calcium silicate hydrates), making the carbonated sample more porous. 

Calcium silicate hydrates and calcium carbonates are not identified by XRD in ITZ-R, 

probably because of the slower migration of calcium from cement to the rock.  This may be 

due to the formation of tobermorite, as this mineral seems to carbonate faster than the other 

calcium silicates so the chemical driving forces are reduced.  A number of 

orange/reddish/brownish spots seen by XPL in CEM are the consequence of carbonation as 

this effect has been previously reported (Milestone et al., 1987a). 

Similar to that observed in the comparable sample with G20SF as well as in other studies 

(Rimmele et al., 2008; Milestone et al., 1986; Grant-Taylor et al., 1996), the Ca reduction 

across the ITZ-C (going inwards) may be a consequence of Ca being depleted and moving to 

outwards to the carbonation front. 

The bright (white and orange) colour of ITZ-R indicates carbonation of the migrating cement 

constituents, including formation of ACC. The narrower ITZ-R compared to 

IGN/G(150.CO2.84d) or IGN/G20SF(150. CO2.84d) is due to the rapid carbonation of 

tobermorite (Milestone et al., 1986), which might be creating an early carbonation barrier in 

ITZ-C, restricting further migration of cement constituents into the rock. This idea seems to 

be supported by the SEM/EDS, which shows a slower migration of Ca2+ than the comparable 

samples G and G20SF. Like in IGN/G20SF(150.CO2.84d), the Ca2+ is concentrated in 

‘pockets’ in the rock voids, emphasising the importance of the rock permeability in the 

migration process. 

 

b) 290
o
C: IGN/G40SF(290.CO2.84d) 

Like IGN/G40SF(290.28d), this cement also shows a reddish colour which is due to the iron 

dissolution/precipitation processes, which might also be partially associated with the 

carbonation of the cement. Unlike the equivalent 150oC sample, the cement seems to be fully 

carbonated all the way through from the outermost layer to the cement core. 

The amount of xonotlite in the cement phase was low compared to that found for the G20SF, 

which suggests that most of the xonotlite that had formed, has carbonated. 

Again there is a fissure seen by OM, which is in accordance with the hypothesis previously 

put forward, i.e. a consequence of stresses induced in the ITZ due to the differential thermal 
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expansion/contraction between the cement and the rock. Like IGN/G40SF(290.28d), this 

break has occurred at the contact between ITZ-C and ITZ-R, meaning that the added quartz 

has weakened the bonding between the cement and the rock by restricting Ca2+ migration 

from the cement into the rock. 

 

VII.1.3.6 Rocktype: 

The assemblages of the different rocks are consistent with what has already been found for 

the equivalent samples with IGN, namely the pink aragonite carbonation layer is noticeable 

with the unaided eye (except for the RHY) and lower migration of Ca (when compared to the 

other API class G based cements). 

 

a) UNI: UNI/G40SF(150.CO2.84d) 

Although less homogeneous than the comparable IGN assemblage, the pink carbonation layer 

observed in this sample with the unaided eye is wider and confirmed by OM. The higher 

variability in its width is due to the more heterogeneous nature of the rock. This feature, 

although not obvious in the XRD, OM and SEM/EDS results, might also be affected by the 

region of the rock over which these tests have been undertaken as the rock is very 

heterogeneous. This might reduce the reliability of these tests, in particular migration and 

carbonation depths. 

 

b) KAO: KAO/G40SF(150.CO2.84d) 

The slightly wider pink carbonation layer compared to IGN/G40SF(150.CO2.84d) indicates 

that the overall higher porosity of the rock enhances the CO2 enriched brine availability 

around the cement and causes a higher carbonation rate in the outermost layer of the cement. 

Nevertheless, another variable that might also enhance the amount of CO2 around the sample 

is the width of the rock around the cement. Unfortunately, the impact of this variable cannot 

be precisely analysed because this variable was not accurately monitored, although the 

samples varied little in size. 
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c) MOR: MOR/G40SF(150.CO2.84d) 

The similarity between this and the IGN/G40SF(150.CO2.84d) pink carbonation layer width 

are also in agreement with the major role of the rock porosity in the carbonation rate of the 

cement sample. Again, it was not possible to accurately measure the impact of the width of 

surrounding rock layer has on the carbonation rate of the outermost layer. 

 

d) RHY: RHY/G40SF(150.CO2.84d) 

The results obtained for this sample is also in agreement with what has previously been said 

about the role of porosity. The pink carbonation layer is only evident in a few small spots in 

the ITZ-C.  Thus, the reduction of the rock porosity and, consequently, permeability, has 

reduced the carbonation in the cement in comparison with all the other rocks. This is due to 

the reduced availability of CO2 enriched brine in the outermost layer of the cement, due to the 

lower permeability of the rock compared to the other rocks. The few pink spots, however, 

indicate some areas to which the CO2 has been able to access the cement, although still in 

lower amounts than in any of the other rocks. 
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VII.1.4 G20MS 

 

VII.1.4.1 Standard: IGN/G20MS(150.28d) 

Like the samples with silica flour additions, portlandite reacts with the added silica but more 

rapidly. However, unlike the other class G cement based mixtures, G20MS has a higher 

carbonation resistance, especially when compared with the samples with silica flour addition. 

The larger number of bright spots observed by OM are amorphous silica. According to the 

OM and SEM/EDS work, the milky material found in the ITZ of the current sample is silica 

gel, formed as a product of the alkali-silica reaction between the cement and the rock. 

The ITZ is relatively narrow, indicating less cement/rock reaction compared to 

IGN/G(150.28d) or IGN/G20SF(150.28d), but it is still wider than IGN/G40SF(150.28d). 

This reduced overall migration compared to G and G20SF is likely to be a consequence of the 

fast reaction of MS with the cement restricts the Ca2+ chemical migration. 

This formulation has a slightly lower average particle size due to the lower particle size of the 

admixture. This variable seems not to have significantly affected the physical migration 

process. This cement mixture is thickest when fresh, which might have partially restricted 

physical movement of this into the rock. 

 

VII.1.4.2 Curing time: IGN/G20MS(150.84d) 

This sample confirms the higher carbonation resistance found for the 1 month cured sample, 

as the XRD does not detect any calcium carbonate increase going from CEM to ITZ-C. 

The ITZ-R is much wider and Ca penetration into the rock is much deeper than for the 

equivalent 1 month cured sample, which means this cement has reacted much further with the 

rock during the second and/or third months of cure. 

 

VII.1.4.3 Drilling mud: IGN/G20MS(150.b.28d) 

Similar to the other samples with bentonite addition, the bentonite barrier is easily 

distinguishable by OM, in which formation of gehlenite occurs, widening the ITZ-R and 

weakening the cement/rock bond. The darker colour of the ITZ-C might have to do with the 

bentonite reacting with the cement and therefore extending the ITZ-C reaction zone. This is 
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in accordance with the idea previously put forward that Ca migration is driven by cation 

exchange as Al from bentonite is substituted into the silicate structure, as the cement migrates 

further and in higher amounts into the rock, compared to the equivalent sample without the 

bentonite layer (IGN G20MS 150 (28d)). 

The increased light grains in the ITZ-C from CEM (observed by OM and XRD) are silica, 

suggesting that larger amounts of silica from the outermost areas of the cement remain 

unreacted, as significant amounts of Ca and OH- move towards the rock, leaving lower 

amounts of these constituents to react with the quartz from the cement grout. 

The bentonite layer in this sample is the widest from all the other class G cement based 

grouts, which seems to refute the previously discussed hypothesis that the silica from the 

cement reacts with the bentonite. The amorphous silica added to this cement mix is much 

more reactive than the silica flour, which means this silica should react further with the 

bentonite than the silica flour from the other cement mixtures. The width of the bentonite 

layer is random, as it depends on factors which cannot be thoroughly monitored, e.g. the 

width of the bentonite layer before pouring the cement. 

 

VII.1.4.4 Curing temperature: IGN/G20MS(290.28d) 

This was the only Portland based cement system which remained grey at this temperature. 

This might be due to the presence of sulphur in the MS600, which restricts the transformation 

of Fe(II) to Fe(III). 

Once again the fissure seen by OM may have been the consequence of stresses induced in the 

ITZ due to the differential thermal expansion/contraction between the cement and the rock. 

Similar to the equivalent samples with silica flour addition, this break happened at the contact 

between ITZ-C and ITZ-R. This is in agreement with the idea previously put forward that 

silica addition slows Ca2+ migration into the rock and, thus, good bonding with the rock does 

not occur. 

 

VII.1.4.5 CO2 exposure: 

a) 150
o
C: IGN/G20MS(150.CO2.84d) 

The EDS map and spot analyses indicate that a significant amout of carbonate is present. This 

is seemingly not consistent with the XRD analysis where little calcite or aragonite is 
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identified. This suggests that amorphous calcium carbonate is present. This is confirmed by 

TGA/Mass Spec and, perhaps, XRD, where the increase in amorphous material (in ITZ-C 

from CEM) may indicate presence of an amorphous material, which could be silica gel and/or 

amorphous calcium carbonate. 

The ITZ-R and the Ca migration into the rock looks similar to that observed in 

IGN/G20SF(150.CO2.84d). This, again, seems to be due to the predominant carbonation 

reaction (C-S-H), process and final products (aragonite/pseudo-aragonite/non-crystalized 

aragonite). The sharply reduced amount of small bright spots in the ITZ-C from CEM may 

indicate either absence of C-S-H or its carbonation. 

 

b) 290
o
C: IGN/G20MS(290.CO2.84d) 

Surprisingly, xonotlite is present in this cement. This compound is expected to form only 

when higher amounts of quartz are added to the mixture. Like the other class G cement 

mixtures, this cement shows similar carbonation which penetrates all the way through from 

the outermost layer to the core. 

The fissure seen by OM may have been the consequence of stresses induced in the ITZ due to 

the differential thermal expansion/contraction between the cement and the rock. Like in 

IGN/G20MS(290.28d), this break down has happened at the contact between ITZ-C and ITZ-

R, meaning that the added silica weakens the bonding between the cement and the rock by 

restricting Ca2+ migration from the cement into the rock. 

 

VII.1.4.6 Rocktype: 

These assemblages are consistent with what has already been found for the equivalent with 

IGN, namely there is higher carbonation in the outermost layer and perhaps, formation of 

amorphous calcium carbonate. 

 

a) UNI: UNI/G20MS(150.CO2.84d) 

Like that observed for the equivalent assemblages with G and G20SF formulations, this 

sample has a narrower and bright orange ITZ-R along with shallower Ca penetration into the 

rock in comparison to IGN/G20SF(150.CO2.84d). This is in agreement with the idea that the 
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physical migration is very dependent on the volume and amount of pores in which the 

unhydrated formulation particles can penetrate. 

 

b) KAO: KAO/G20MS(150.CO2.84d) 

The wider ITZ-R compared to UNI/G20MS(150.CO2.84d) is in accordance with the idea 

previously put forward for the G and G20SF formulations, which highlights the importance 

of the smaller pores (where the unhydrated particles cannot penetrate) in the chemical 

migration of the dissolved cement into the rock. 

 

c) MOR: MOR/G20MS(150.CO2.84d) 

Again, the extension of penetration of Ca into the rock seems to longer than for the 

comparable sample with KAO. This is in agreement with what was previously said for 

MOR/G20SF(150.CO2.84d) where the pores with diameter above 0.1 µm are facilitating 

further penetration of dissolved cement, i.e. enhancing the chemical migration.  

 

d) RHY: RHY/G20MS(150.CO2.84d) 

The results obtained for the current sample also indicate that the decreased porosity and 

reduction in volcanic glass are the main causes for the reduced reaction extent of the cement 

with this rock.  
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VII.1.5 API class A 

 

VII.1.5.1 Standard: IGN/A(150.28d) 

The light colour of the cement observed under PPL compared to IGN/G(150.28d) is due to 

the lower amounts of iron than in the class G cement. The narrower ITZ-R observed is a 

consequence of the faster setting time associated with class A cement, due to the presence of 

higher amounts of C3A. As the cement hardens, Ca2+ and OH- become fixed in new products, 

an idea that is confirmed by the element maps, as the second/chemical stage of migration of 

Ca2+ ions is slightly lower than that observed in IGN/G(150.28d) (150µm and 200µm 

respectively). The physical migration looks similar to that observed for class G cement. The 

very similar particle size distribution between class A and class G unhydrated cements 

explains the similar degree of penetration of their respective particles into the pores of the 

rock. 

Although present in smaller amounts than in IGN/G(150.28d), the amorphous material found 

in the ITZ-R is also silica gel. 

As opposed to IGN/G(150.28d), there is a slight increase of bright spots in the ITZ-C from 

CEM. If these spots are mostly portlandite formed from the higher C3S content, the XRD 

results disagrees with the OM analysis, which shows there is portlandite reduction in going 

from CEM to ITZ-C. 

 

VII.1.5.2 Drilling mud: IGN/A(150.b.28d) 

Similar to the other samples with bentonite addition, the bentonite barrier is easily 

distinguishable by optical microscopy, gehlenite forms and widens the ITZ-R but weakens 

the cement/rock bond. The fissure in the ITZ-C is obvious in this specimen, where most of 

the bentonite remained attached to the rock. This could be due to the lower amounts of Ca in 

the inner ITZ-C when compared with the rest of the cement, reducing the cementing 

properties and thus weakening this zone of the cement. It should be noted, however, that the 

bonding seemed to have decreased equally in all the samples in which bentonite was added, 

as it does not seem to depend much on the type of cement. Otherwise, there are few 

significant differences in comparison with the equivalent sample without bentonite. 



289 

 

Regarding the ITZ width (optical microscope) and the Ca migration (element maps), the 

analysis of this sample also supports the idea that bentonite enhances the cement migration 

into the rock due Ca/Al cation exchange. 

 

VII.1.5.3 Curing temperature: IGN/A(290.28d) 

In a similar way to the class G based formulations, there is a homogenous reddish tone along 

with white spots seen in PPL, which is the consequence of the iron dissolution and further 

precipitation all around the specimen. 

The contrast between the ITZ and the rest of the sample is much higher here than in the 

equivalent sample with class G cement. 

As for the other Portland cement type samples, the narrowed ITZ and shallower Ca migration 

at 290oC compared to that at 150oC (seen by both optical microscopy and element mapping) 

may be attributed to the faster setting/cure of the cement at 290oC and/or the fissure between 

the ITZ-C and the rest of the cement. 
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VII.1.6 White cement 

 

VII.1.6.1 Standard: IGN/W(150.28d) 

The lighter colour of this cement and the lowest number of dark spots observed under PPL (in 

comparison with any other Portland based mixture) is due to the low amounts of iron, where 

little C4AF is present. 

Similar to IGN/A(150.28d), the ITZ-R is narrower than IGN/G(150.28d). Although not 

obvious by optical microscopy, the element map results show a lower Ca chemical migration 

(second stage migration) than that observed in IGN/A(150.28d), with 100 µm and 150 µm 

thickness respectively. This is probably due to the faster setting associated with the white 

cement, due to the presence of higher amounts of C3A, rather than C4AF (low iron content). 

As the cement hardens, its components become unavailable to migrate as they form new 

products within the cement matrix. The physical migration stage is likely not to have been 

significantly affected compared to all the other Portland based cements, as they all have a 

similar particle size distribution. 

Although present in smaller amounts than in IGN/G(150.28d), the milky material found in 

the ITZ-R of the current sample is also probably silica gel. 

Like IGN/A(150.28d) and as opposed to IGN/G(150.28d), the XPL image shows an increase 

in bright spots in the ITZ-C over CEM, but with a portlandite reduction by XRD analysis. 

 

VII.1.6.2 Drilling mud: IGN/W(150.b.28d) 

Similar to the other samples with bentonite addition, the bentonite barrier is easily 

distinguishable (by optical microscope image) and causes formation of gehlenite, widening 

the ITZ-R and weakening of the cement/rock bond. 

From the SEM/EDS results, it seems that the Ca has migrated in higher amounts, further 

evidence that bentonite enhances cement migration into the rock due Ca/Al cation exchange. 

 

VII.1.6.3 Curing temperature: IGN/W(290.28d) 

As for the other Portland cement type samples, the narrower ITZ and shallower Ca 

penetration compared to the 150oC sample (seen by both optical microscopy and element 
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mapping) are attributed to the faster setting/cure of the cement at 290oC and/or the fissure 

between the ITZ-C and the rest of the cement.  
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VII.2 Alternative cementing system 

 

VII.2.1 Calcium Aluminate Cement 

 

VII.2.1.1 Standard: IGN/HAC(150.28d) 

This cement forms different compounds compared to Portland cement, which are not based 

on the calcium-silica combination, but, instead, the cementitious properties rely mostly on 

calcium aluminate hydrates. At these temperatures, this is due to katoite, C3AH6, and the 

aluminium oxide hydroxide, boehmite, AlO(OH). The absence of calcium silicate minerals 

(the calcium aluminate silicate, katoite silicatian, C3ASH4, is present in small amounts) 

drastically reduces the cement/rock reaction, as the ITZ is barely distinguished by OM and is 

confirmed by the element maps, which show little Ca migration. 

Compared to Portland cement blends, this cement hardens quicker, which also justifies the 

lower amount of reaction of the cement with the rock. The rapid reaction of the cement 

compounds has probably restricted Ca migration into the rock. This HAC rapid hardening is 

not desirable, as a longer workability/slow setting is one of the most desirable properties of 

any well cement. Another factor that might have contributed to a lower migration is the 

distinct particle size distribution compared to any other cement or admixture. The 

significantly higher average particle size is likely to have reduced the physical migration of 

cement into the rock, as the larger cement particles are less likely to penetrate in the rock 

pores. 

 

VII.2.1.2 Drilling mud: IGN/HAC(150.b.28d) 

Similarly to the other samples with bentonite addition, the bentonite barrier is easily 

distinguishable (by optical microscope image) and weakens the cement/rock bond. The 

gehlenite did not form due to the absence of significant amounts of silica in the cement. 

Otherwise, there is little change in ITZ-R and ITZ-C zones when compared with that found in 

the equivalent sample without bentonite, IGN/HAC(150.28d). 

The Ca/Al cation exchange reported for the Portland based cements is not happening in this 

calcium aluminate cement, perhaps due to the high amounts of Al, which is fixed as 

aluminate hydrate in the cement. 
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VII.2.1.3 Curing temperature: IGN/HAC(290.28d) 

This sample has a very thin ITZ. As stated for the 150oC sample this may be due to the sharp 

reduction of calcium silicate minerals but katoite silicatian is present in small amounts. This 

seems to drastically reduce the cement/rock reaction extent. 

The milky material that is forming suggests the presence of amorphous silica gel, a 

consequence of the reaction of the calcium aluminiate silicates with the silica in the rock. 
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VII.3 Overall discussion 

 

The overall discussion aims to summarize the discussion as a function of the main variables 

studied in the current work. 

 

• Cement formulation: 

Physical and chemical interaction with the formation was observed in all the cement 

formulations under study. The milky material seen under XPL suggests that silica gel forms 

in ITZ as a consequence of an alkali-silica reaction between the cement and the rock. The 

SEM/EDS phase and element maps show that the cement/rock reaction is an ongoing reaction 

where there is migration of Ca2+ ions occurs, mainly through the rock pores. 

Two main stages can be distinguished in the migration of cement into the rock: an 

initial/physical and a final/chemical one, a phenomenon also reported by Duguid et al. 

(2011). 

The physical migration happens initially before the cement has set, so all the cement 

constituents flow together in an aqueous suspension (by capillarity), into the rock pores. This 

physical penetration of cement into the rock tends to improve the bond by increasing the 

mechanical interlocking between the two materials (Agbasimalo, 2012). Duguid et al. (2011) 

postulated that the penetration of the cement particles into the formation is a good thing, as 

the cement that invades the stone blocks some of the rock pores and reduces the the amount 

of harmful brine in contact with the cement. This will prevent the damage of the cement in 

the outermost layer and delaying the development of a gap in the ITZ. These gaps are not 

desirable as they represent zones of preferential fluid movement by enhancing the amount of 

brine in contact with the cement and, subsequently, causing a more rapid damage to the 

outermost layer of the cement (Crow et al., 2009; Duguid et al., 2006; Carey et al., 2007). 

The chemical process occurs after the cement has set, with the chemical ions (mostly Ca2+ 

and OH-, which are the most mobile) migrating into the rock through a chemical driving 

gradient. This stage is characterized by a slower migration of mostly Ca2+ (no significant 

amounts of Si available in the rock pores), forming the second ITZ-R rim (lighter brown in 

PPL). It is not clear whether the migration of Ca2+ and OH- from the cement into the rock is 

beneficial to the quality and/or durability of the ITZ. It is, however, anticipated that the loss 
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of high amounts of Ca2+ may have a negative impact on the ITZ, as it may ultimately alter the 

hydration products that form in the outermost layer of the cement. 

With addition of 20wt.% quartz (SF), the physical migration stage was not expected to be 

significantly affected as the particle size distribution of the admixture is very similar to the 

cement. On the other hand, the chemical migration was expected to slow down, as the added 

silica is expected to fix higher amounts of Ca2+ and OH- in the cement, limiting the 

avaiability of migrating ions. Nonetheless, the addition of 20wt.% SF proved to have little 

effect on both the physical and chemical interactions of the cement with the rock, as it shows 

a similar reaction extent as the comparable sample with pure class G cement. 

However, the addition of 40wt.% SF to the class G cement was sufficient to significantly 

reduce the reaction extent. This indicates that, unlike in the G20SF, the addition of 40wt.% of 

quartz to the cement is high enough to partially restrict the chemical migration of Ca2+ and  

OH- into the rock. This formulation is very well regarded in the geothermal industry due to 

the good mechanical performance provided by its hydration products. 

Like the sample with 40wt.% SF addition, the addition of 20wt.% microsilica 600 (MS) to the 

class G also caused a reduction in the  reaction extent between the cement and the rock. This 

suggests that, unlike the G20SF, the relatively low amount of silica addition (20wt.% MS) is 

enough to fix the Ca2+ and OH-, and limit their migration into the rock. This is justified by the 

considerably faster reaction of the Portland based cements with MS (mostly amorphous SiO2) 

compared to SF (mostly quartz, i.e. crystalline SiO2). 

The class A and white cements showed a relatively narrower reaction extent with the rock, 

which  is likely to be a consequence of their faster setting, associated with the higher amounts 

of C3A, compared to G. The higher the C3A, the faster the setting is. The faster setting will 

also fix the ions faster than in the class G cement, restricting the migration of these into the 

rock. The faster setting of these two formulations is not desirable in geothermal wells as they 

do not allow enough workability for the cement to be placed downhole. 

HAC has the narrowest reaction rim with the rock, compared to all the Portland cement 

blends. This is due to the different chemical and physical composition of this cement. Firstly, 

it hardens quicker, limiting the time in which the ions are available to migrate. Secondly, the 

lower amount of mobile ions (such as Ca2+) has certainly constricted the amount of reaction 

compared to the Portland based cements. Lastly, the significantly higher average particle size 

of HAC compared to the Portland based formulations is likely to have reduced the physical 
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migration of cement into the rock, as the larger cement particles are less likely to penetrate in 

the rock pores. In any case, the HAC rapid hardening is not desirable, as a longer 

workability/slow setting is one of the most desirable properties of any well cement. 

 

• Temperature: 

There are obvious differences between the cements cured at 150oC and 290oC. Most of the 

Portland based formulations showed a red colour after the cure at 290oC, whereas at 150oC 

they kept their greyish colour. The rocks also acquired a partially reddish colour after 

exposed to 290oC in brine. In both cases, this was due to the oxidation of the iron present in 

these materials. 

The increased temperature of curing from 150oC to 290oC has also affected the minerals 

formed in the cement. The phases formed at 290oC are generally known for their higher 

permeability and lower strength than those formed at 150oC. All the 290oC cured speciments 

showed a fissure in the ITZ, which indicates that the cement/rock bond was drastically 

reduced compared with the 150oC samples. This suggests that the weaker phases formed at 

this temperature, along with the loss of migrating Ca2+ and OH- in the outermost layer of the 

cement, are the mainly responsible for the extremely low bond. 

These clearly indicate that the performance and durability of the cement and, consequently, 

the ITZ is drastically reduced at 290oC compared to 150oC. 

 

• Drilling mud: 

Bentonite used as drilling mud alters the mechanical and chemical properties of the ITZ and, 

consequently, reduces the bond between the cement and the rock. This finding is supported 

by several studies (Agbasimalo, 2012; Ravi et al., 1992 Peterson, 1963; Ladva et al., 2005; 

Oyibo and Radonjic, 2014), who concluded that the formation of a mud cake as a 

consequence of the use of drilling mud, has a detrimental effect on the bond between the 

cement and the rock. Some of these authors have compared different types of drilling fluid 

contamination, namely the physical (mud cake) and chemical contamination, from which 

they have agreed that the physical barrier imposed by the mud cake has the most negative 

effect on the bond between the cement and the rock. 
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• CO2 exposure: 

This work confirms that the presence of high concentrations of CO2 cause relatively rapid 

carbonation of geothermal cements, which will eventually corrode. Thus it has a negative 

impact on the outermost layer of the cement and, consequently, on the ITZ between the 

cement and the rock formation. However, the rate of carbonation is also a function of the 

formulation. 

The API class G cement tends to have a better carbonation resistance than the ones where 

silica is added. This is due to the due to its lower permeability after carbonation caused by the 

expansive carbonation of portlandite (that is not present in the cements with silica addition) in 

the outermost layer of the G cement, which restrict the CO2 from penetrating further into the 

cement. The sample with highest amount of silica (G40SF) showed a higher carbonation rate. 

Thus, despite the good mechanical performance provided by its hydration products, the 

G40SF has an extremely reduced durability in CO2 enriched fields. 

The XRD, SEM/EDS and TGA/Mass Spec results along with several studies (Cole and 

Kroone, 1960; Sauman, 1971; Villain and Platret, 2006; Thiery et al., 2007; Galan et al., 

2003) indicate the presence of a poorly-crystallised and/or amorphous calcium carbonate 

(ACC) in the cement in which CO2 was injected. According to some of these authors, these 

different CaCO3 phases can co-exist in a complex carbonation system. 

 

• Rock type: 

The study of the different rock types has enhanced the knowledge of the physical and 

chemical interactions occurring between the cement and the rock. Besides improving the 

understanding of the physical and chemical migration processes, comparing the results for 

each distinct rock has permitted confirmation of the physico-chemical migration. 

As stated above, the physical penetration consists of the migration of the cement particles 

(particularly the unhydrated ones) into the rock pores by capillarity. This was shown to be 

very dependent on the number of bigger rock pores into which the cement particles can 

penetrate. IGN is the rock with the greatest amount of these pores, which justifies the fact that 

this is the rock with the widest ITZ-R. It indicates that this is the dominant migration process. 

The chemical interaction is based on the reactivity of the rock, which strongly depends on its 

volcanic glass content. Rhyolite (RHY) showed a much narrower reaction band than any of 
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the ignimbrites. This is likely to be a consequence of the combination of two different factors: 

the significantly reduced porosity (physical) and the considerably reduced amount of volcanic 

glass (chemical). 

The physico-chemical migration relies mostly on the smaller pores, through which the 

dissolved cement species (namely Ca2+ and OH-) penetrate. This type of migration is more 

significant in the rocks (KAO and MOR) with a porosity mostly composed of smaller pores, 

i.e. pores where the unhydrated cement is not able to penetrate. 

The porosity of the rock also dictates the amount of CO2 / HCO3
- that can come in contact 

with the outermost layer of the cement. The higher the porosity, the higher amount of carbon 

dioxide in contact with the cement and, therefore, the higher the carbonation rate. However, 

the rock porosity might not be directly proportional to its permeability, which can depend on 

other factors such as the mechanism of dissolution of the rock minerals and pore size (Hangx, 

2005; Soler and Mader, 2010).  
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VIII. CONCLUSIONS AND FUTURE WORK 

This chapter aims to compile the most relevant findings during the current work, as well as 

suggest future work within this field. Some final observations and general recommendations 

are provided, for the drilling engineers to take into account before and during the cementing 

job. It also presents the difficulties encountered during the experimental work, which should 

be considered in future analogous experiments. 

 

VIII.1 Conclusions 

This work highlights the importance of understanding both the chemical and the physical 

processes associated with the way that the cement and the formation interact in geothermal 

environments, where both processes are interdependent. Regardless of the environmental 

conditions, a good chemical bond must be preceded by a good physical interaction/contact 

between these materials, which strongly depends on the quality of the cementing job. 

Several variables were found to have an impact on the way that cement interacts with the 

rock formation in a geothermal environment and, consequently, on the geothermal cement 

durability. These variables are: 

• Cement formulation 

All the cement formulations tested have undergone significant chemical reactions as 

well as forming a good bond with the rocks at 150oC. All the Portland cement based 

systems show migration of Ca2+ and OH- ions from the cement into the rock, a 

process which happens mostly through the rock pores. These are ongoing reactions, 

occurring faster during the first days/few weeks of cure. Initially they are driven 

mostly by a physical process (mainly capillarity) of cement movement into the porous 

rock, and a slower second migration stage, mostly driven by chemical gradient. New 

compounds (including silica gel) are formed in the rock side of the interfacial 

transition zone. For the neat API class G and A cements, there was a decrease in 

portlandite content in the outermost layer of the cement. This compound was not 

formed at all in the formulations with silica addition. 

The addition of silica to API class G cement tends to reduce the amount of reaction 

between the cement and the rock due to its relatively rapid reaction with Ca2+ and OH- 

which end up being retained in the cement. However, this reduction of migration 
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seems to be strongly dependent on the type and amount of silica added, with the 

amorphous silica reducing the reaction further due to its faster reaction with the 

cement compounds. 

For the other cement formulations, the reduced reaction extent of API class A (OPC) 

and White cement compared to class G cement seems to be consequence of the 

decreased setting time. The higher amounts of aluminate (C3A) in the class A and 

white cements induces a faster setting reaction, reducing permeability of the cement 

matrix and leaving lower amounts of available cement compounds to migrate. The 

almost complete absence of calcium silicate minerals in the HAC cement, drastically 

reduces the cement/rock reaction, which it is also likely to be a consequence of the 

significantly larger particle size as well as the reduced setting time. 

• Drilling mud 

The presence of a bentonite barrier (mud cake) such as that formed from drilling mud 

has a number of consequences on the cement/rock interactions. The most relevant are 

the formation of a new compound, gehlenite, and enhancement of the cement/rock 

reaction. The presence of gehlenite was identified in small amounts in the ITZ of each 

one of the samples with Portland based cement where bentonite had been injected.  

The presence of the bentonite layer, despite seemingly to enhance the chemical 

reaction between the Portland based cements and the rock, resulted in a significantly 

reduced bond between the cement and rock at 150°C. This is due to the chemical 

reaction (formation of gehlenite) and, mostly, the physical barrier formed between 

cement and rock, i.e. the so-called mud cake. 

• Temperature 

The reddish colour found in both the cement and some areas of the ignimbrites in 

samples cured at 290oC was due to the dissolution/precipitation process plus oxidation 

of the iron present in both materials. The increased temperature of curing results in 

weakened hydration products which end up opening a fissure in the outermost layer of 

the cement, due to a general loss of bonding. The losses of migrating Ca2+ and OH- 

(from cement to the rock) have weakened the cement phases further and 

consequently, the cement/rock bonding. 

• CO2 exposure 

In the presence of dissolved CO2, there is a significant increase in carbonation in the 

outermost layer of the cement for all the API class G based (Portland cement based) 
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formulations. This carbonation process is complex, with both crystalline and poorly 

crystalline/amorphous calcium carbonates appearing to form as well as perhaps, 

scawtite. The extent of the carbonation reaction is regulated by the carbonation of the 

various cement minerals present, as they have possibly blocked the cement and/or 

rock pores and therefore restricted further migration. The neat API class G cement 

reaction with the rock seems to be slowed by the portlandite carbonation, known to be 

a relatively fast carbonation reaction compared to that of the calcium silicate hydrate 

minerals. This early carbonation causes an early carbonation barrier.  In the sample 

with 20% silica flour addition, the reaction rim is wider, due to the absence of 

portlandite. The extreme carbonation of tobermorite in the sample with 40% silica 

flour addition reduces the amount of free calcium and consequently shows the lowest 

reaction extent. Despite the formation of calcium carbontates, CO2 exposure at 150oC 

makes little change to the cement/rock bonding. 

The carbonation of the samples exposed at 290oC was much faster than at 150oC, due 

to the higher permeability of the cementing phases formed at these conditions 

combined with the faster chemical reactions at 290oC. This is compromising the 

durability of the cement and, consequently, affecting the bonding with the rock. 

• Rock type 

The volcanic glass content and, especially, the pore size distribution of the rock play a 

key role in the cement/rock interaction. While the pore size distribution of the rock 

affects the physical and physico-chemical migration processes, the volcanic glass 

content enhances the chemical reactions between the cement and the rock formation. 

Nonetheless, the bond between the cement and the rock depends mostly on the 

physical characteristics of the rock itself (such as porosity) rather than on the 

chemical composition of the rock or the cement. The cement paste penetrates into the 

rock pores by capillarity, creating a bond which relies mostly on the mechanical 

interlocking between these two materials. 

 

While the optimum conditions for formation of a “good” cement rock bond remain unknown, 

some final observations and recommendations can be drawn from the current research work, 

as function of each variable. In any case, the durability of the ITZ and subsequently the 

cement, is strongly dependent on the quality of the bond between the cement paste and the 
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rock formation. Any gaps formed between the cement and the rock will be detrimental for the 

durability of the whole system.  

• Cement formulation: generally, in a CO2 free environment, the cement that shows 

better mechanical performance is the one where 40% quartz is added, as it avoids 

“strength retrogression”, which is a gradual loss of strength. 

• Drilling mud: The use of bentonite as drilling fluid should be avoided if possible, as it 

creates a barrier which drastically reduces the bond between the cement and the rock. 

Despite its inferior properties, the use of water as drilling fluid should be considered 

as an alternative to replace bentonite drilling mud. 

• Temperature: The bond between the cement and the rock is drastically reduced when 

the curing temperature increased from 150oC to 290oC. This is a consequence of the 

reduced performance and durability of the cement itself, as the hydration products 

formed at temperature above 200oC have low strength along with the faster chemical 

(deleterious) reactions that occur as the temperature rises. 

• CO2: CO2 enriched fields are not desirable, regardless of the conditions and materials 

involved. However, when CO2 is not avoidable, the addition of SF must be avoided, 

as it will form low Ca/Si phases, which carbonate more rapidly, due to the porosity of 

their carbonation products. 

• Rock type: Amongst the rock features, the pores in which the unhydrated cement can 

penetrate were shown to have a dominant role in the bond between the cement and the 

rock. The rock with the greater number of relatively big pores (bigger than the 

smallest unhydrated particles, i.e. typically above 5 µm) tends to perform a better 

bond with the cement. This is due to a better mechanical interlocking between these 

materials, as a consequence of the penetration of cement into the rock pores. 

All this information should be assessed by the drilling engineers during the well design and 

construction stages. They should take into account the pros and cons associated with each 

variable. However, variables like temperature, CO2 concentration and rock type are usually 

not controlable. In any case, a study of the life cycle cost of a geothermal well is 

recommended. 
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VIII.2 Future Work 

This work provides a new insight on this specific topic. It highlights that further 

understanding of how each variable studied affects the cement performance and the way it 

interacts with the surrounding environment is needed. Other geothermal cementing 

formulations should be tested as well. 

In order to better understand the relation between the actual bond between the cement and the 

rock, it is recommended to complement the chemical and physical analysis with a mechanical 

one. This will be useful to assess how the bonding (measured through the mechanical 

strengths, e.g. pull out test) is related with the physical (capillarity) and chemical (phases 

formed in ITZ) migrations. 

Further study of the compounds formed in the ITZ should be made. The amorphous material 

forming in this zone should be further investigated, namely amorphous calcium carbonate 

and silica gel, in order to better understand those chemical reactions which occur in a similar 

way to the alkali-silica reaction in concrete. The reactions which do occur are shown to be 

extremely complex. 

However, some precautions should be taken. For instance, the collection of samples for XRD 

analysis is a challenge when collecting samples from both sides of the ITZ (ITZ-C and ITZ-

R), as these zones are very narrow. Moreover, the amorphous nature of both the rock 

formation and cement formulation make it extremely hard to accurately analyse the XRD 

results, as for many of them the trace obtained contains many small peaks which are very 

difficult to distinguish from the background of the amorphous material typified by a large 

hump. In order to increase the reliability of the XRD results and subsequent analysis, 

considerable effort should be put in the collection and analysis of samples from the ITZ. 

Some other alternative formulations such as geopolymer cements should be investigated in 

the context of geothermal applications. Additional work carried out by IRL/Callaghan 

Innovation suggests that typical geopolymer formulations may experience some problems 

(e.g. unable to set, shrinkage) when exposed to geothermal environments. Geopolymer 

cements are generally formed by reaction of an aluminosilicate powder with an alkaline 

silicate solution at ambient conditions. Metakaolin, generated by thermal activation of 

kaolinite clay, is a commonly used starting material for laboratory synthesis of geopolymers 

but much work has been conducted using flyash which is more readily available. The 

published literature on geopolymers is extensive with many review papers, e.g. Majidi (2009) 
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and Lloyd and Rangan (2010).  Some authors defend that Geopolymer cement is more 

chemically resistant and/or more temperature stable, which would make it an attractive option 

for geothermal wells, in a corrosive environment. However, it has not been used for these 

purposes yet. The binder is essentially a cross-linked aluminosilicate with an amorphous 

structure similar to that found in zeolites. Extensive leaching of sodium hydroxide can occur 

if all the flyash precursor does not react. 

The present work has been conducted under static conditions where solution saturation can 

readily occur.  Corrosion of the carbonated species cannot occur under such conditions where 

a barrier may be formed and testing in a flowing situation is required to fully understand what 

can happen in the field.  The protective carbonation barriers may not be stable where there is 

the potential to be dissolved. This fact combined with the limitations of laboratory simulated 

geothermal environment suggests that in situ (downhole) testing should be undertaken. 
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IX. PRESENTED AND PUBLISHED WORK 

 

Some of the work presented in the current thesis was presented and published in peer 

reviewed International Conference Proceedings. 

 

IX.1 Conference Presentations 

▪ Geothermal Research Council meeting 2013 - Las Vegas, Nevada, USA. Presentation 

entitled “The Effect of CO2-exposure and curing time on the Cement-Rock Interaction in 

Geothermal Wells”. 

▪ Geothermal Research Council meeting 2012 - Reno, Nevada, USA. Presentation entitled 

“The Effect of Drilling Fluid and Temperature on the Cement-Rock Interaction in 

Geothermal Wells”. 

 

IX.2 Publications 

▪ Silva, João R. M. C.; Milestone, Neil B.; Johnston, James H. (2013): “The Effect of CO2-

exposure and curing time on the Cement-Rock Interaction in Geothermal Wells”, Geothermal 

Resources Council Transactions 37, pp. 75-82. 

▪ Silva, João R. M. C.; Milestone, Neil B.; Johnston, James H. (2012): “The Effect of Drilling 

Fluid and Temperature on the Cement-Rock Interaction in Geothermal Wells”, Geothermal 

Resources Council Transactions 36, pp. 277-285. 

 

A copy of the above mentioned publications is provided below. 
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X. APPENDICES 

X.1 XRD quantitative information 

IGN 

 
 

IGN: sample 1 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.075 
   Spacegroup                                R-3c 
   Scale                                     0.00523234409 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.16351 
   Wt% - Rietveld                            66.366 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               51.5 
   Crystal Linear Absorption Coeff. (1/cm)   217.155 
   Crystal Density (g/cm^3)                  3.981 
   Preferred Orientation (Dir 1 : 1 1 3)     1.099063 
   Lattice parameters 
      a (Å)                                  4.7609828 
      c (Å)                                  12.9985443 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   7.371 
   Spacegroup                                P3221 
   Scale                                     0.00202402896 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.03581 
   Wt% - Rietveld                            3.351 
   Wt% in Spiked sample                      1.140 
   Wt% in Original sample                    1.473 
   Crystallite Size  
      Cry size Lorentzian (nm)               303.1 
   Crystal Linear Absorption Coeff. (1/cm)   163.063 
   Crystal Density (g/cm^3)                  2.648 
   Preferred Orientation (Dir 1 : 0 1 0)     0.841214 
   Lattice parameters 
      a (Å)                                  4.9141461 
      c (Å)                                  5.4049202 
Structure 3  

60 102 56 62 94.2

SAMPLE SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI SUM

IGN - Ongatiti ignimbrite 70.56 13.80 2.81 0.04 0.36 1.90 3.75 3.30 0.31 0.07 2.62 99.53

Feldspars (40% CaO, Na2O and K2O used 

in order to match the XRD quantitative) MWt
Silica (estimation)

Al NaAlSi3O8 3.75 6.347010978 262 4.360541894

Or KAlSi3O8 3.30 5.928493278 278.1 3.837212477

An CaAl2Si2O8 1.90 3.770809464 278 1.627687539

16.04631372 9.82544191

Total Feldspars 15 > Silica in the feldspar 10

Total Quartz 1.5

Na 23 Total Amorphous material 83.5 > Amorphous silica 59

Ca 40 TOTAL 100

K 39.1

Si 28

O 16
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   Phase name                                Andesine 
   R-Bragg                                   11.277 
   Spacegroup                                C-1 
   Scale                                     0.000518599182 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.43565 
   Wt% - Rietveld                            30.283 
   Wt% in Spiked sample                      10.303 
   Wt% in Original sample                    13.308 
   Crystallite Size  
      Cry size Lorentzian (nm)               203.1 
   Crystal Linear Absorption Coeff. (1/cm)   182.551 
   Crystal Density (g/cm^3)                  2.663 
   Preferred Orientation (Dir 1 : 0 0 1)     0.7153091 
   Lattice parameters 
      a (Å)                                  8.1735950 
      b (Å)                                  12.8733866 
      c (Å)                                  7.1164730 
      alpha (°)                              93.46693 
      beta  (°)                              116.3556 
      gamma (°)                              90.02335 
 

IGN: sample 2 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   1.783 
   Spacegroup                                R-3c 
   Scale                                     0.00533539673 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.06201 
   Wt% - Rietveld                            65.204 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               53.0 
   Crystal Linear Absorption Coeff. (1/cm)   217.241 
   Crystal Density (g/cm^3)                  3.983 
   Preferred Orientation (Dir 1 : 1 1 3)     1.155282 
   Lattice parameters 
      a (Å)                                  4.7605966 
      c (Å)                                  12.9954814 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   8.430 
   Spacegroup                                P3221 
   Scale                                     0.00221176629 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         112.98919 
   Wt% - Rietveld                            3.528 
   Wt% in Spiked sample                      1.222 
   Wt% in Original sample                    1.578 
   Crystallite Size  
      Cry size Lorentzian (nm)               206.2 
   Crystal Linear Absorption Coeff. (1/cm)   163.130 
   Crystal Density (g/cm^3)                  2.649 
   Preferred Orientation (Dir 1 : 0 1 0)     0.8850511 
   Lattice parameters 
      a (Å)                                  4.9144135 
      c (Å)                                  5.4021030 
Structure 3  
   Phase name                                Andesine 
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   R-Bragg                                   5.949 
   Spacegroup                                C-1 
   Scale                                     0.000555624873 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.30217 
   Wt% - Rietveld                            31.267 
   Wt% in Spiked sample                      10.828 
   Wt% in Original sample                    13.986 
   Crystallite Size  
      Cry size Lorentzian (nm)               127.8 
   Crystal Linear Absorption Coeff. (1/cm)   182.587 
   Crystal Density (g/cm^3)                  2.663 
   Preferred Orientation (Dir 1 : 0 0 1)     0.856891 
   Lattice parameters 
      a (Å)                                  8.1711290 
      b (Å)                                  12.8727158 
      c (Å)                                  7.1158123 
      alpha (°)                              93.47007 
      beta  (°)                              116.3261 
      gamma (°)                              90.0306 
 

IGN: sample 3 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.519 
   Spacegroup                                R-3c 
   Scale                                     0.00532527437 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.17204 
   Wt% - Rietveld                            62.775 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               51.6 
   Crystal Linear Absorption Coeff. (1/cm)   217.147 
   Crystal Density (g/cm^3)                  3.981 
   Preferred Orientation (Dir 1 : 1 1 3)     1.166043 
   Lattice parameters 
      a (Å)                                  4.7610902 
      c (Å)                                  12.9983924 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   6.592 
   Spacegroup                                P3221 
   Scale                                     0.00211712541 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.04323 
   Wt% - Rietveld                            3.258 
   Wt% in Spiked sample                      1.172 
   Wt% in Original sample                    1.513 
   Crystallite Size  
      Cry size Lorentzian (nm)               255.7 
   Crystal Linear Absorption Coeff. (1/cm)   163.052 
   Crystal Density (g/cm^3)                  2.648 
   Preferred Orientation (Dir 1 : 0 1 0)     0.8400647 
   Lattice parameters 
      a (Å)                                  4.9160660 
      c (Å)                                  5.4010539 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   8.046 
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   Spacegroup                                C-1 
   Scale                                     0.00062597703 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.38213 
   Wt% - Rietveld                            33.968 
   Wt% in Spiked sample                      12.218 
   Wt% in Original sample                    15.782 
   Crystallite Size  
      Cry size Lorentzian (nm)               132.1 
   Crystal Linear Absorption Coeff. (1/cm)   182.566 
   Crystal Density (g/cm^3)                  2.663 
   Preferred Orientation (Dir 1 : 0 0 1)     0.8350383 
   Lattice parameters 
      a (Å)                                  8.1727251 
      b (Å)                                  12.8729241 
      c (Å)                                  7.1148347 
      alpha (°)                              93.44998 
      beta  (°)                              116.3231 
      gamma (°)                              90.04194 
 

IGN: sample 4 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   3.508 
   Spacegroup                                R-3c 
   Scale                                     0.00559699933 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.20054 
   Wt% - Rietveld                            62.039 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               50.7 
   Crystal Linear Absorption Coeff. (1/cm)   217.123 
   Crystal Density (g/cm^3)                  3.981 
   Preferred Orientation (Dir 1 : 1 1 3)     1.251994 
   Lattice parameters 
      a (Å)                                  4.7615478 
      c (Å)                                  12.9973457 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   13.963 
   Spacegroup                                P3221 
   Scale                                     0.00273318712 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.10104 
   Wt% - Rietveld                            3.956 
   Wt% in Spiked sample                      1.440 
   Wt% in Original sample                    1.860 
   Crystallite Size  
      Cry size Lorentzian (nm)               285.6 
   Crystal Linear Absorption Coeff. (1/cm)   162.969 
   Crystal Density (g/cm^3)                  2.646 
   Preferred Orientation (Dir 1 : 0 1 0)     0.8529974 
   Lattice parameters 
      a (Å)                                  4.9134041 
      c (Å)                                  5.4096729 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   14.372 
   Spacegroup                                C-1 
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   Scale                                     0.000665876352 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         670.02654 
   Wt% - Rietveld                            34.005 
   Wt% in Spiked sample                      12.376 
   Wt% in Original sample                    15.986 
   Crystallite Size  
      Cry size Lorentzian (nm)               164.6 
   Crystal Linear Absorption Coeff. (1/cm)   182.390 
   Crystal Density (g/cm^3)                  2.661 
   Preferred Orientation (Dir 1 : 0 0 1)     0.805678 
   Lattice parameters 
      a (Å)                                  8.1722743 
      b (Å)                                  12.8808949 
      c (Å)                                  7.1204809 
      alpha (°)                              93.54504 
      beta  (°)                              116.3609 
      gamma (°)                              89.94117 
 

IGN: sample 5 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   1.809 
   Spacegroup                                R-3c 
   Scale                                     0.005371743 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.04160 
   Wt% - Rietveld                            63.148 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               53.7 
   Crystal Linear Absorption Coeff. (1/cm)   217.258 
   Crystal Density (g/cm^3)                  3.983 
   Preferred Orientation (Dir 1 : 1 1 3)     1.162165 
   Lattice parameters 
      a (Å)                                  4.7605506 
      c (Å)                                  12.9946930 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   5.237 
   Spacegroup                                P3221 
   Scale                                     0.00167124002 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.09125 
   Wt% - Rietveld                            2.567 
   Wt% in Spiked sample                      0.918 
   Wt% in Original sample                    1.186 
   Crystallite Size  
      Cry size Lorentzian (nm)               315.9 
   Crystal Linear Absorption Coeff. (1/cm)   162.983 
   Crystal Density (g/cm^3)                  2.647 
   Preferred Orientation (Dir 1 : 0 1 0)     0.8507591 
   Lattice parameters 
      a (Å)                                  4.9151230 
      c (Å)                                  5.4054220 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   9.430 
   Spacegroup                                C-1 
   Scale                                     0.000633284282 
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   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.35756 
   Wt% - Rietveld                            34.286 
   Wt% in Spiked sample                      12.260 
   Wt% in Original sample                    15.835 
   Crystallite Size  
      Cry size Lorentzian (nm)               128.0 
   Crystal Linear Absorption Coeff. (1/cm)   182.572 
   Crystal Density (g/cm^3)                  2.663 
   Preferred Orientation (Dir 1 : 0 0 1)     0.8714045 
   Lattice parameters 
      a (Å)                                  8.1719843 
      b (Å)                                  12.8741694 
      c (Å)                                  7.1163325 
      alpha (°)                              93.43985 
      beta  (°)                              116.354 
      gamma (°)                              90.04011 

 

UN 

 
 

UN: sample 1 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.529 
   Spacegroup                                R-3c 
   Scale                                     0.00545565919 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.13389 
   Wt% - Rietveld                            59.871 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               52.6 
   Crystal Linear Absorption Coeff. (1/cm)   217.180 
   Crystal Density (g/cm^3)                  3.982 
   Preferred Orientation (Dir 1 : 1 1 3)     1.227997 
   Lattice parameters 
      a (Å)                                  4.7612882 
      c (Å)                                  12.9953682 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   13.544 
   Spacegroup                                P3221 
   Scale                                     0.00491770268 

60 102 56 62 94.2

SAMPLE SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI SUM

UN - unaltered 71.16 13.57 2.27 0.08 0.34 1.59 3.21 3.45 0.27 0.02 3.74 99.69

Feldspars (45% CaO, Na2O and K2O used 

in order to match the XRD quantitative) MWt
Silica (estimation)

Al NaAlSi3O8 3.21 6.101223083 262 4.191679981

Or KAlSi3O8 3.45 6.959440016 278.1 4.504491919

An CaAl2Si2O8 1.59 3.551627032 278 2.299614625

16.61229013 10.99578652

Total Feldspars 16 > Silica in the feldspar 11

Total Quartz 3

Na 23 Total Amorphous material 81 > Amorphous silica 57

Ca 40 TOTAL 100

K 39.1

Si 28

O 16
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   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.01725 
   Wt% - Rietveld                            7.044 
   Wt% in Spiked sample                      2.657 
   Wt% in Original sample                    3.431 
   Crystallite Size  
      Cry size Lorentzian (nm)               278.4 
   Crystal Linear Absorption Coeff. (1/cm)   163.090 
   Crystal Density (g/cm^3)                  2.648 
   Preferred Orientation (Dir 1 : 0 1 0)     0.8576583 
   Lattice parameters 
      a (Å)                                  4.9140395 
      c (Å)                                  5.4042671 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   6.446 
   Spacegroup                                C-1 
   Scale                                     0.00065456169 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.66800 
   Wt% - Rietveld                            33.085 
   Wt% in Spiked sample                      12.478 
   Wt% in Original sample                    16.117 
   Crystallite Size  
      Cry size Lorentzian (nm)               104.4 
   Crystal Linear Absorption Coeff. (1/cm)   182.488 
   Crystal Density (g/cm^3)                  2.662 
   Preferred Orientation (Dir 1 : 0 0 1)     0.893867 
   Lattice parameters 
      a (Å)                                  8.1746531 
      b (Å)                                  12.8731517 
      c (Å)                                  7.1175540 
      alpha (°)                              93.46563 
      beta  (°)                              116.3471 
      gamma (°)                              90.00865 
 

UN: sample 2 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.039 
   Spacegroup                                R-3c 
   Scale                                     0.00544124715 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.15373 
   Wt% - Rietveld                            60.698 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               53.0 
   Crystal Linear Absorption Coeff. (1/cm)   217.163 
   Crystal Density (g/cm^3)                  3.981 
   Preferred Orientation (Dir 1 : 1 1 3)     1.21041 
   Lattice parameters 
      a (Å)                                  4.7611632 
      c (Å)                                  12.9970608 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   6.780 
   Spacegroup                                P3221 
   Scale                                     0.00403250199 
   Cell Mass                                 180.252 
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   Cell Volume (Å^3)                         113.05355 
   Wt% - Rietveld                            5.873 
   Wt% in Spiked sample                      2.185 
   Wt% in Original sample                    2.822 
   Crystallite Size  
      Cry size Lorentzian (nm)               268.9 
   Crystal Linear Absorption Coeff. (1/cm)   163.037 
   Crystal Density (g/cm^3)                  2.648 
   Preferred Orientation (Dir 1 : 0 1 0)     0.7614518 
   Lattice parameters 
      a (Å)                                  4.9141010 
      c (Å)                                  5.4058678 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   8.416 
   Spacegroup                                C-1 
   Scale                                     0.000650738625 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.61631 
   Wt% - Rietveld                            33.429 
   Wt% in Spiked sample                      12.436 
   Wt% in Original sample                    16.063 
   Crystallite Size  
      Cry size Lorentzian (nm)               122.4 
   Crystal Linear Absorption Coeff. (1/cm)   182.502 
   Crystal Density (g/cm^3)                  2.662 
   Preferred Orientation (Dir 1 : 0 0 1)     0.8449235 
   Lattice parameters 
      a (Å)                                  8.1732486 
      b (Å)                                  12.8745107 
      c (Å)                                  7.1174882 
      alpha (°)                              93.46186 
      beta  (°)                              116.3469 
      gamma (°)                              90.02335 
 

 

KAO 

 
 

KAO: sample 1 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.708 
   Spacegroup                                R-3c 

60 102 56 62 94.2

SAMPLE SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI SUM

KAO - Kaolinite alteration 69.74 16.42 2.13 0.06 0.17 0.87 0.77 1.62 0.36 0.02 7.61 99.78

Feldspars (100% CaO, Na2O and K2O 

usedCaO, Na2O and K2O used in order to 

match the XRD quantitative) MWt

Silica (estimation)

Alumina (left overs estimation)

Al NaAlSi3O8 0.77 3.263100275 262 2.241824617 0.25

Or KAlSi3O8 1.62 7.257106545 278.1 4.69715634 0.94

An CaAl2Si2O8 0.87 4.335327456 278 1.87136437 1.59

TOTAL 14.85553428 Matches w/ Quant. XRD 8.810345326 2.78

Kaolinite (estimation using all the alumina 

left over from feldspars)

Kao Al2O3·2SiO2·2H2O 2.78 7.03629776 258 3.272696632

Total Feldspars 15 > Silica in the feldspar 9

Total Quartz 2.2

Total Kaolinite 7 > Silica in the kaolinite 3

Na 23 Total Amorphous material 75.8 > Amorphous silica 55.5

Ca 40 TOTAL 100

K 39.1

Si 28

O 16
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   Scale                                     0.00565745029 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.09053 
   Wt% - Rietveld                            62.214 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               57.8 
   Crystal Linear Absorption Coeff. (1/cm)   217.217 
   Crystal Density (g/cm^3)                  3.982 
   Preferred Orientation (Dir 1 : 1 1 3)     1.197094 
   Lattice parameters 
      a (Å)                                  4.7606842 
      c (Å)                                  12.9964560 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   12.072 
   Spacegroup                                P3221 
   Scale                                     0.00327883797 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.03717 
   Wt% - Rietveld                            4.708 
   Wt% in Spiked sample                      1.709 
   Wt% in Original sample                    2.207 
   Crystallite Size  
      Cry size Lorentzian (nm)               402.0 
   Crystal Linear Absorption Coeff. (1/cm)   163.061 
   Crystal Density (g/cm^3)                  2.648 
   Preferred Orientation (Dir 1 : 0 1 0)     0.5933327 
   Lattice parameters 
      a (Å)                                  4.9145574 
      c (Å)                                  5.4040808 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   0.743 
   Spacegroup                                C-1 
   Scale                                     0.00065246789 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         670.17100 
   Wt% - Rietveld                            33.078 
   Wt% in Spiked sample                      12.005 
   Wt% in Original sample                    15.507 
   Crystallite Size  
      Cry size Lorentzian (nm)               2.0 
   Crystal Linear Absorption Coeff. (1/cm)   182.351 
   Crystal Density (g/cm^3)                  2.660 
   Preferred Orientation (Dir 1 : 0 0 1)     3.372094 
   Lattice parameters 
      a (Å)                                  8.1808912 
      b (Å)                                  12.8716989 
      c (Å)                                  7.1184261 
      alpha (°)                              93.33744 
      beta  (°)                              116.3556 
      gamma (°)                              90.19659 
 

KAO: sample 2 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.414 
   Spacegroup                                R-3c 
   Scale                                     0.00564228132 
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   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.15309 
   Wt% - Rietveld                            64.143 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               56.7 
   Crystal Linear Absorption Coeff. (1/cm)   217.163 
   Crystal Density (g/cm^3)                  3.981 
   Preferred Orientation (Dir 1 : 1 1 3)     1.170255 
   Lattice parameters 
      a (Å)                                  4.7611052 
      c (Å)                                  12.9973447 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   9.360 
   Spacegroup                                P3221 
   Scale                                     0.00322148156 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.05145 
   Wt% - Rietveld                            4.781 
   Wt% in Spiked sample                      1.683 
   Wt% in Original sample                    2.174 
   Crystallite Size  
      Cry size Lorentzian (nm)               362.4 
   Crystal Linear Absorption Coeff. (1/cm)   163.040 
   Crystal Density (g/cm^3)                  2.648 
   Preferred Orientation (Dir 1 : 0 1 0)     0.9021693 
   Lattice parameters 
      a (Å)                                  4.9150389 
      c (Å)                                  5.4037042 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   0.714 
   Spacegroup                                C-1 
   Scale                                     0.00059310192 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         670.17100 
   Wt% - Rietveld                            31.076 
   Wt% in Spiked sample                      10.940 
   Wt% in Original sample                    14.130 
   Crystallite Size  
      Cry size Lorentzian (nm)               2.0 
   Crystal Linear Absorption Coeff. (1/cm)   182.351 
   Crystal Density (g/cm^3)                  2.660 
   Preferred Orientation (Dir 1 : 0 0 1)     4.37529 
   Lattice parameters 
      a (Å)                                  8.1808912 
      b (Å)                                  12.8716989 
      c (Å)                                  7.1184261 
      alpha (°)                              93.33744 
      beta  (°)                              116.3556 
      gamma (°)                              90.19659 
 
 

 

 

MOR 
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MOR: sample 1 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.384 
   Spacegroup                                R-3c 
   Scale                                     0.00525226538 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.28283 
   Wt% - Rietveld                            34.761 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               52.8 
   Crystal Linear Absorption Coeff. (1/cm)   217.053 
   Crystal Density (g/cm^3)                  3.979 
   Preferred Orientation (Dir 1 : 1 1 3)     1.213393 
   Lattice parameters 
      a (Å)                                  4.7617303 
      c (Å)                                  13.0005398 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   9.073 
   Spacegroup                                P3221 
   Scale                                     0.00461356552 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.13622 
   Wt% - Rietveld                            3.987 
   Wt% in Spiked sample                      2.590 
   Wt% in Original sample                    3.345 
   Crystallite Size  
      Cry size Lorentzian (nm)               205.9 
   Crystal Linear Absorption Coeff. (1/cm)   162.918 
   Crystal Density (g/cm^3)                  2.646 
   Preferred Orientation (Dir 1 : 0 1 0)     0.8286498 
   Lattice parameters 
      a (Å)                                  4.9149604 
      c (Å)                                  5.4079291 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   11.238 
   Spacegroup                                C-1 
   Scale                                     0.000562579396 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         670.05967 

60 102 56 62 94.2

SAMPLE SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI SUM

MOR - mordenite alteration 70.87 13.72 2.23 0.03 0.21 2.53 2.41 3.47 0.30 0.05 4.11 99.93

Feldspars (65% CaO, Na2O and 

K2O used in order to match the 

XRD quantitative) MWt Silica (estimation)

Al NaAlSi3O8 2.41 6.61104588 262 4.541939918

Or KAlSi3O8 3.47 10.12056405 278.1 6.550526893

An CaAl2Si2O8 2.53 8.168598375 278 3.526013687

24.90020831 14.6184805

Kaolinite (from XRD quantitative)

Mor Na1.1Ca0.5K0.1Al2.2Si9.8O24•5.9(H2O) 25 873.21 17.17799842

Total Feldspars 25 > Silica in the feldspar 15

Total Quartz 3.2

Total Mordenite 25 > Silica in the mordenite 17

Na 23 Total Amorphous material 46.8 > Amorphous silica 36

Ca 40 TOTAL 100

K 39.1

Si 28

O 16

Al 27
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   Wt% - Rietveld                            17.149 
   Wt% in Spiked sample                      11.140 
   Wt% in Original sample                    14.389 
   Crystallite Size  
      Cry size Lorentzian (nm)               238.5 
   Crystal Linear Absorption Coeff. (1/cm)   182.381 
   Crystal Density (g/cm^3)                  2.660 
   Preferred Orientation (Dir 1 : 0 0 1)     0.7054276 
   Lattice parameters 
      a (Å)                                  8.1757389 
      b (Å)                                  12.8787360 
      c (Å)                                  7.1191635 
      alpha (°)                              93.50006 
      beta  (°)                              116.3683 
      gamma (°)                              89.97149 
Structure 4  
   Phase name                                Mordenite 
   R-Bragg                                   4.825 
   Spacegroup                                Cmcm 
   Scale                                     7.57773612e-005 
   Cell Mass                                 3459.110 
   Cell Volume (Å^3)                         2788.71745 
   Wt% - Rietveld                            30.978 
   Wt% in Spiked sample                      20.122 
   Wt% in Original sample                    25.991 
   Crystallite Size  
      Cry size Lorentzian (nm)               50.0 
   Crystal Linear Absorption Coeff. (1/cm)   112.614 
   Crystal Density (g/cm^3)                  2.060 
   Preferred Orientation (Dir 1 : 0 1 0)     1.041371 
   Lattice parameters 
      a (Å)                                  18.1170755 
      b (Å)                                  20.4706620 
      c (Å)                                  7.5194233 
Structure 5  
   Phase name                                Sanidine 
   R-Bragg                                   5.251 
   Spacegroup                                C12/m1 
   Scale                                     0.00038570065 
   Cell Mass                                 1113.325 
   Cell Volume (Å^3)                         721.23740 
   Wt% - Rietveld                            13.125 
   Wt% in Spiked sample                      8.525 
   Wt% in Original sample                    11.012 
   Crystallite Size  
      Cry size Lorentzian (nm)               65.0 
   Crystal Linear Absorption Coeff. (1/cm)   215.644 
   Crystal Density (g/cm^3)                  2.563 
   Lattice parameters 
      a (Å)                                  8.6100985 
      b (Å)                                  13.0219356 
      c (Å)                                  7.1667694 
      beta  (°)                              116.1588 
 

MOR: sample 2 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   2.875 
   Spacegroup                                R-3c 
   Scale                                     0.00518463042 
   Cell Mass                                 611.768 
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   Cell Volume (Å^3)                         255.18398 
   Wt% - Rietveld                            34.572 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               54.8 
   Crystal Linear Absorption Coeff. (1/cm)   217.137 
   Crystal Density (g/cm^3)                  3.981 
   Preferred Orientation (Dir 1 : 1 1 3)     1.117729 
   Lattice parameters 
      a (Å)                                  4.7613578 
      c (Å)                                  12.9975394 
Structure 2  
   Phase name                                Quartz 
   R-Bragg                                   10.080 
   Spacegroup                                P3221 
   Scale                                     0.00440665674 
   Cell Mass                                 180.252 
   Cell Volume (Å^3)                         113.02401 
   Wt% - Rietveld                            3.835 
   Wt% in Spiked sample                      2.505 
   Wt% in Original sample                    3.235 
   Crystallite Size  
      Cry size Lorentzian (nm)               300.9 
   Crystal Linear Absorption Coeff. (1/cm)   163.080 
   Crystal Density (g/cm^3)                  2.648 
   Preferred Orientation (Dir 1 : 0 1 0)     0.7938567 
   Lattice parameters 
      a (Å)                                  4.9139725 
      c (Å)                                  5.4047377 
Structure 3  
   Phase name                                Andesine 
   R-Bragg                                   9.339 
   Spacegroup                                C-1 
   Scale                                     0.000571951305 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.60457 
   Wt% - Rietveld                            17.561 
   Wt% in Spiked sample                      11.470 
   Wt% in Original sample                    14.815 
   Crystallite Size  
      Cry size Lorentzian (nm)               175.9 
   Crystal Linear Absorption Coeff. (1/cm)   182.505 
   Crystal Density (g/cm^3)                  2.662 
   Preferred Orientation (Dir 1 : 0 0 1)     0.7321235 
   Lattice parameters 
      a (Å)                                  8.1727461 
      b (Å)                                  12.8752354 
      c (Å)                                  7.1171110 
      alpha (°)                              93.48456 
      beta  (°)                              116.3414 
      gamma (°)                              89.98426 
Structure 4  
   Phase name                                Mordenite 
   R-Bragg                                   4.853 
   Spacegroup                                Cmcm 
   Scale                                     7.47743637e-005 
   Cell Mass                                 3459.110 
   Cell Volume (Å^3)                         2785.65862 
   Wt% - Rietveld                            30.776 
   Wt% in Spiked sample                      20.101 
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   Wt% in Original sample                    25.963 
   Crystallite Size  
      Cry size Lorentzian (nm)               50.0 
   Crystal Linear Absorption Coeff. (1/cm)   112.738 
   Crystal Density (g/cm^3)                  2.062 
   Preferred Orientation (Dir 1 : 0 1 0)     1.028293 
   Lattice parameters 
      a (Å)                                  18.1099604 
      b (Å)                                  20.4662550 
      c (Å)                                  7.5157445 
Structure 5  
   Phase name                                Sanidine 
   R-Bragg                                   4.988 
   Spacegroup                                C12/m1 
   Scale                                     0.000386770878 
   Cell Mass                                 1113.325 
   Cell Volume (Å^3)                         720.68337 
   Wt% - Rietveld                            13.255 
   Wt% in Spiked sample                      8.657 
   Wt% in Original sample                    11.182 
   Crystallite Size  
      Cry size Lorentzian (nm)               65.0 
   Crystal Linear Absorption Coeff. (1/cm)   215.810 
   Crystal Density (g/cm^3)                  2.565 
   Lattice parameters 
      a (Å)                                  8.6074107 
      b (Å)                                  13.0202727 
      c (Å)                                  7.1653700 
      beta  (°)                              116.1743 
 

RHY 

 
 

RHY: sample 1 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   3.059 
   Spacegroup                                R-3c 
   Scale                                     0.00471163713 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         254.93012 
   Wt% - Rietveld                            29.180 
   Wt% in Spiked sample                      22.580 

60 102 56 62 94.2

SAMPLE SiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O TiO2 P2O5 LOI SUM

RHY - rhyolite 74.09 13.46 2.34 0.06 0.50 2.02 4.54 2.27 0.30 0.07 0.08 99.72

Feldspars (considering a 

Quantitative XRD 

overestimation) MWt Silica (estimation)

Al NaAlSi3O8 4.54 24.00000438 262 16.48855263

Or KAlSi3O8 2.27 12.70953512 278.1 8.226236323

An CaAl2Si2O8 2.02 12.52386351 278 5.40598425

49.23340301 30.1207732

Total Feldspars 50 > Silica in the feldspar 30

Total Cristobalite 14.5

Total tridymite 4.5

Na 23 Total amorphous material31 > Amorphous silica 25

Ca 40 TOTAL 100

K 39.1

Si 28

O 16
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   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               58.0 
   Crystal Linear Absorption Coeff. (1/cm)   217.353 
   Crystal Density (g/cm^3)                  3.985 
   Preferred Orientation (Dir 1 : 1 1 3)     1.214243 
   Lattice parameters 
      a (Å)                                  4.7599599 
      c (Å)                                  12.9922372 
Structure 2  
   Phase name                                Andesine 
   R-Bragg                                   9.649 
   Spacegroup                                C-1 
   Scale                                     0.00129718669 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.37799 
   Wt% - Rietveld                            37.016 
   Wt% in Spiked sample                      28.644 
   Wt% in Original sample                    36.998 
   Crystallite Size  
      Cry size Lorentzian (nm)               53.9 
   Crystal Linear Absorption Coeff. (1/cm)   182.567 
   Crystal Density (g/cm^3)                  2.663 
   Preferred Orientation (Dir 1 : 0 0 1)     0.9547244 
   Lattice parameters 
      a (Å)                                  8.1728483 
      b (Å)                                  12.8653307 
      c (Å)                                  7.1175748 
      alpha (°)                              93.45473 
      beta  (°)                              116.2964 
      gamma (°)                              90.11107 
Structure 3  
   Phase name                                Cristobalite low 
   R-Bragg                                   6.531 
   Spacegroup                                P41212 
   Scale                                     0.00880849685 
   Cell Mass                                 240.336 
   Cell Volume (Å^3)                         173.45300 
   Wt% - Rietveld                            14.582 
   Wt% in Spiked sample                      11.284 
   Wt% in Original sample                    14.575 
   Crystallite Size  
      Cry size Lorentzian (nm)               50.0 
   Crystal Linear Absorption Coeff. (1/cm)   141.686 
   Crystal Density (g/cm^3)                  2.301 
   Preferred Orientation (Dir 1 : 0 1 1)     0.5864178 
   Lattice parameters 
      a (Å)                                  4.9885643 
      c (Å)                                  6.9699661 
Structure 4  
   Phase name                                Tridymite 
   R-Bragg                                   8.835 
   Spacegroup                                C1c1 
   Scale                                     1.78687776e-005 
   Cell Mass                                 2884.037 
   Cell Volume (Å^3)                         2077.95293 
   Wt% - Rietveld                            4.252 
   Wt% in Spiked sample                      3.291 
   Wt% in Original sample                    4.250 
   Crystallite Size  
      Cry size Lorentzian (nm)               50.0 
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   Crystal Linear Absorption Coeff. (1/cm)   141.924 
   Crystal Density (g/cm^3)                  2.305 
   Lattice parameters 
      a (Å)                                  18.4972359 
      b (Å)                                  4.9804566 
      c (Å)                                  23.5453857 
      beta  (°)                              106.6697 
Structure 5  
   Phase name                                Sanidine 
   R-Bragg                                   7.528 
   Spacegroup                                C12/m1 
   Scale                                     0.000477629081 
   Cell Mass                                 1113.325 
   Cell Volume (Å^3)                         708.92545 
   Wt% - Rietveld                            14.970 
   Wt% in Spiked sample                      11.584 
   Wt% in Original sample                    14.963 
   Crystallite Size  
      Cry size Lorentzian (nm)               65.0 
   Crystal Linear Absorption Coeff. (1/cm)   219.389 
   Crystal Density (g/cm^3)                  2.608 
   Lattice parameters 
      a (Å)                                  8.4864787 
      b (Å)                                  12.9652468 
      c (Å)                                  7.1542479 
      beta  (°)                              115.764 
 

RHY: sample 2 
Structure 1  
   Phase name                                Corundum 
   R-Bragg                                   3.506 
   Spacegroup                                R-3c 
   Scale                                     0.00463460555 
   Cell Mass                                 611.768 
   Cell Volume (Å^3)                         255.12036 
   Wt% - Rietveld                            30.570 
   Wt% in Spiked sample                      22.580 
   Wt% in Original sample                    0.000 
   Crystallite Size  
      Cry size Lorentzian (nm)               57.7 
   Crystal Linear Absorption Coeff. (1/cm)   217.191 
   Crystal Density (g/cm^3)                  3.982 
   Preferred Orientation (Dir 1 : 1 1 3)     1.182027 
   Lattice parameters 
      a (Å)                                  4.7610844 
      c (Å)                                  12.9957911 
Structure 2  
   Phase name                                Andesine 
   R-Bragg                                   8.655 
   Spacegroup                                C-1 
   Scale                                     0.00115184872 
   Cell Mass                                 1073.520 
   Cell Volume (Å^3)                         669.50624 
   Wt% - Rietveld                            34.988 
   Wt% in Spiked sample                      25.843 
   Wt% in Original sample                    33.380 
   Crystallite Size  
      Cry size Lorentzian (nm)               56.6 
   Crystal Linear Absorption Coeff. (1/cm)   182.532 
   Crystal Density (g/cm^3)                  2.663 
   Preferred Orientation (Dir 1 : 0 0 1)     0.914026 
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   Lattice parameters 
      a (Å)                                  8.1745125 
      b (Å)                                  12.8692410 
      c (Å)                                  7.1162159 
      alpha (°)                              93.41232 
      beta  (°)                              116.3148 
      gamma (°)                              90.14501 
Structure 3  
   Phase name                                Cristobalite low 
   R-Bragg                                   6.556 
   Spacegroup                                P41212 
   Scale                                     0.00839243843 
   Cell Mass                                 240.336 
   Cell Volume (Å^3)                         173.58634 
   Wt% - Rietveld                            14.797 
   Wt% in Spiked sample                      10.930 
   Wt% in Original sample                    14.117 
   Crystallite Size  
      Cry size Lorentzian (nm)               50.0 
   Crystal Linear Absorption Coeff. (1/cm)   141.578 
   Crystal Density (g/cm^3)                  2.299 
   Preferred Orientation (Dir 1 : 0 1 1)     0.5864473 
   Lattice parameters 
      a (Å)                                  4.9901851 
      c (Å)                                  6.9707937 
Structure 4  
   Phase name                                Tridymite 
   R-Bragg                                   7.743 
   Spacegroup                                C1c1 
   Scale                                     1.85191678e-005 
   Cell Mass                                 2884.037 
   Cell Volume (Å^3)                         2080.73382 
   Wt% - Rietveld                            4.697 
   Wt% in Spiked sample                      3.469 
   Wt% in Original sample                    4.481 
   Crystallite Size  
      Cry size Lorentzian (nm)               50.0 
   Crystal Linear Absorption Coeff. (1/cm)   141.734 
   Crystal Density (g/cm^3)                  2.302 
   Lattice parameters 
      a (Å)                                  18.4863711 
      b (Å)                                  4.9866539 
      c (Å)                                  23.5640495 
      beta  (°)                              106.6909 
Structure 5  
   Phase name                                Sanidine 
   R-Bragg                                   7.645 
   Spacegroup                                C12/m1 
   Scale                                     0.000447110492 
   Cell Mass                                 1113.325 
   Cell Volume (Å^3)                         710.54374 
   Wt% - Rietveld                            14.948 
   Wt% in Spiked sample                      11.041 
   Wt% in Original sample                    14.261 
   Crystallite Size  
      Cry size Lorentzian (nm)               65.0 
   Crystal Linear Absorption Coeff. (1/cm)   218.889 
   Crystal Density (g/cm^3)                  2.602 
   Lattice parameters 
      a (Å)                                  8.4955133 
      b (Å)                                  12.9797986 
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      c (Å)                                  7.1561698 
      beta  (°)                              115.7846 
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X.2 Mercury Porosometry 

The calculations for the most relevant results regarding the mercury porosimetry are 

presented below. These are obtained by the multiplication of the fraction of pores over the 

diameter under consideration (ØØØØ: 0.5, 1, 5, 10, 50 or 100 µm) with the total porosity of the 

rock under analysis. 

Calculation of the Mercury Intrusion as a function of the Pore Size (volume of pores per weight of sample 

 

ROCK 

Total 

Mercury 

Intrusion 

(mL/g) 

Intrusion 

in  ØØØØ*>0.1µm 

pores (mL/g) 

Intrusion 

in  ØØØØ >0.5µm 

pores (mL/g) 

Intrusion in 

ØØØØ >1µm pores 

(mL/g) 

Intrusion in 

ØØØØ >5µm pores 

(mL/g) 

Intrusion in 

ØØØØ >10µm 

pores (mL/g) 

Intrusion in 

ØØØØ >50µm 

pores (mL/g) 

Intrusion in 

ØØØØ >100µm 

pores (mL/g) 

IGN 0.2869 ≈0.84*0.2869 ≈0.72*0.2869 ≈0.55*0.2869 ≈0.038*0.2869 ≈0.03*0.2869 ≈0.02*0.2869 ≈0.017*0.2869 

UNI 0.2294 ≈0.88*0.2294 ≈0.713*0.2294 ≈0.499*0.2294 ≈0.068*0.2294 ≈0.049*0.2294 ≈0.03*0.2294 ≈0.024*0.2294 

KAO 0.3938 ≈0.51*0.3938 ≈0.25*0.3938 ≈0.194*0.3938 ≈0.05*0.3938 ≈0.04*0.3938 ≈0.024*0.3938 ≈0.018*0.3938 

MOR 0.2983 ≈0.73*0.2983 ≈0.28*0.2983 ≈0.19*0.2983 ≈0.067*0.2983 ≈0.055*0.2983 ≈0.028*0.2983 ≈0.021*0.2983 

RHY 0.0615 ≈0.84*0.0615 ≈0.75*0.0615 ≈0.685*0.0615 ≈0.465*0.0615 ≈0.39*0.0615 ≈0.165*0.0615 ≈0.11*0.0615 

        ØØØØ =diameter 
 

Results of the Mercury Intrusion as a function of the Pore Size (volume of pores per weight of sample): 

ROCK 

 

TOTAL 

Intrusion 

(mL/g) 

Intrusion 

in ØØØØ * > 

0.1µm 

pores 

(mL/g) 

Intrusion 

in ØØØØ > 

0.5µm 

pores 

(mL/g) 

Intrusion 

in ØØØØ > 

1µm pores 

(mL/g) 

Intrusion 

in  ØØØØ > 

5µm pores 

(mL/g) 

Intrusion in 

ØØØØ > 10µm 

pores 

(mL/g) 

Intrusion in 

ØØØØ > 50µm 

pores 

(mL/g) 

Intrusion in 

ØØØØ > 100µm 

pores 

(mL/g) 
 

IGN 0.2869 0.2410 0.2066 0.1578 0.0109 8.6070E-03 5.7380E-03 4.8773E-03 

UNI 0.2294 0.2019 0.1636 0.1145 0.0156 1.1241E-02 6.8820E-03 5.5056E-03 

KAO 0.3938 0.2008 0.0985 0.0764 0.0197 1.5752E-02 9.4512E-03 7.0884E-03 

MOR 0.2983 0.2178 0.0835 0.0567 0.0200 1.6407E-02 8.3524E-03 6.2643E-03 

RHY 0.0615 0.0517 0.0461 0.0421 0.0286 2.3985E-02 1.0148E-02 6.7650E-03 

*����=diameter 

 

Below, the bulk density is multiplied with the values obtained above in order to obtain the 

values of mercury intrusion per volume (mL) rather than per weight (g) of rock. 

Results of the Mercury Intrusion as a function of the Pore Size (volume of pores per volume of sample) 

ROCK 

Bulk 

density 

(g/mL) 

TOTAL 

Intrusion 

(mL/mL) 

Intrusion in 

ØØØØ * > 0.1µm 

pores 

(mL/mL) 

Intrusion in 

ØØØØ * > 0.5µm 

pores 

(mL/mL) 

Intrusion in 

ØØØØ > 1µm 

pores 

(mL/mL) 

Intrusion 

in ØØØØ > 

5µm pores 

(mL/mL) 

Intrusion in 

ØØØØ > 10µm 

pores 

(mL/mL) 

Intrusion in 

ØØØØ > 50µm 

pores 

(mL/mL) 

Intrusion in 

ØØØØ > 100µm 

pores 

(mL/mL)     

IGN 1.595 0.4576 0.3844 0.3295 0.0520 0.0006 4.8785E-06 2.7993E-08 1.3653E-10 

UNI 1.322 0.3033 0.2669 0.2162 0.0248 0.0004 4.3401E-06 2.9869E-08 1.6444E-10 

KAO 1.198 0.4718 0.2406 0.1179 0.0090 0.0002 2.7947E-06 2.6413E-08 1.8723E-10 

MOR 1.450 0.4325 0.3158 0.1211 0.0069 0.0001 2.2508E-06 1.8799E-08 1.1776E-10 

RHY 2.193 0.1349 0.1133 0.1012 0.0043 0.0001 2.9229E-06 2.9660E-08 2.0065E-10 

*    ØØØØ =diameter 

The detailed data for the mercury porosimetry for each rock is given below.  
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X.2.1 IGN 

 

 

The overall porosity of the IGN is 0.2869 mL/g. Approximately 72% of this porosity is made up of 

pores with over 0.5 µm diameter, ≈55% with over 1 µm, ≈3.8% with over 5µm, ≈3% with over 10µm, 

≈2% with pores over 50µm and ≈1.7% of pores with over 100µm.  
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X.2.2 UNI 

 

 

 

The overall porosity of UNI is 0.2294 mL/g. Approximately 71.3% of this porosity is made up of pores 

with over 0.5 µm diameter, ≈49.9% with over 1 µm, ≈6.8% with over 5µm, ≈4.9% with over 10µm, 

≈3.0% with pores over 50µm and ≈2.4% of pores with over 100µm.  
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X.2.3 KAO 

 

 

 

The overall porosity of KAO is approximately 0.3938 mL/g. Approximately 25% of this porosity is 

made up of pores with over 0.5 µm diameter, ≈19.4% with over 1 µm, ≈5.0% with over 5µm, ≈4.0% 

with over 10µm, ≈2.4% with pores over 50µm and ≈1.8% of pores with over 100µm diameter.  
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X.2.4 MOR 

 

 

 

The overall porosity of MOR is approximately 0.2983 mL/g. Approximately 28% of this porosity is 

made up of pores with over 0.5 µm diameter, ≈19% with over 1 µm, ≈6.7% with over 5µm, ≈5.5% 

with over 10µm, ≈2.8% with pores over 50µm and ≈2.1% of pores with over 100µm.  
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X.2.5 RHY 

 

 

 

The overall porosity of RHY is approximately 0.0615 mL/g. Approximately 75% of porosity is made up 

of pores with over 0.5 µm diameter, ≈68.5% with over 1 µm, ≈46.5% with over 5µm, ≈39% with over 

10µm, ≈16.5% with pores over 50µm and ≈11% of pores with over 100µm.  
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X.3 XRD patterns 

 

The first few scans are the ones related to the raw materials: bentonite, microsilica, silica 

flour and the ignimbrite, after being exposed to either 150oC or 290oC. 

Afterwards, the scans of each one of the samples under study are presented, with the ITZ-C 

and CEM presented in the same graph and ITZ-R and ROCK in another one, in order to make 

it easier to compare the changes CEM/ITZ-C and ROCK/ITZ-R. The key used for these latter 

ones is the following: 

 

Key 

Brown line: XRD peaks obtained from a sample collected from the rock. 

Black line: XRD peaks obtained from a sample collected from the cement core. 

Blue line: XRD peaks obtained from a sample collected from the rock zone adjacent to the 

interfacial transition zone (ITZ-R). 

Orange line: XRD peaks obtained from a sample collected from the cement zone adjacent to 

the interfacial transition zone (ITZ-C). 
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Bentonite

 

Microsilica 

 

Sodium Aluminum Sili
Aluminum Phosphate 
Nitrogen Oxide - alph
Sodium Oxide Nitrate 

Titanium Oxide - Ti8O
Sodium Aluminum Sili
Anatase, syn - TiO2
Iron Nitride - FeN

Sodium - Na
Aluminum Silicon Oxi
Montmorillonite - MgO
Montmorillonite (bent

Montmorillonite - Nax(
Hydrogen Aluminum 
Sodium Bismuth Oxid
Cobalt Oxide - CoO

Iron Nitride - FeN
Calcium Strontium Su
Sauconite-15A - Na0.
Stevensite-15A - Ca0.

Hydrobiotite - K(Mg,F
Nontronite-15A - Na0.
Quartz, syn - SiO2
Bentonite

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Alunite - KAl3(OH)6(SO4)2

Tridymite - SiO2
Cristobalite, syn - SiO2
Quartz alpha - SiO2
MS600 underflow 2011

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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Silica Flour 

 

IGN

 

Quartz - SiO2
silica flour

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60

Hematite, syn - Fe2O3
Quartz, syn - SiO2
Anorthite, ordered - CaAl2Si2O8

Albite, ordered - NaAlSi3O8
IGN150
IGN290
IGN290(RED)

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G(150.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Portlandite, syn - Ca(OH)2

Calcium Silicate Hydrate - Ca2SiO4·H2O/2CaO
Aragonite - CaCO3
Calcite, syn - CaCO3
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G20SF(150.28d) 

 

 

Calcium Aluminum Silicate Hydroxide Hydrate -
Tobermorite - Ca2.25(Si3O7.5(OH)1.5)(H2O)

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Calcium Silicate Hydrate - Ca2SiO4·H2O/2CaO

Calcite, syn - CaCO3
Quartz, syn - SiO2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G40SF(150.28d) 

 

 

Calcium Aluminum Silicate Hydroxide Hydrate -

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Tobermorite - Ca2.25(Si3O7.5(OH)1.5)(H2O)

Calcite, syn - CaCO3
Quartz, syn - SiO2
ITZ-R
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G20MS(150.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3

Calcium Silicate Hydrate - Ca2SiO4·H2O/2CaO·SiO2·H2O
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Hibschite - Ca3Al2(SiO4)1.25(OH)7
Calcite, syn - CaCO3
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/A(150.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3

Portlandite, syn - Ca(OH)2
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/W(150.28d) 

 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3

Portlandite, syn - Ca(OH)2
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Calcite, syn - CaCO3
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/HAC(150.28d) 

 

 

Bohmite, syn - AlO(OH)

Katoite, syn - Ca3Al2(OH)12
Katoite, silicatian - Ca3Al2(SiO4)(OH)8
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/GEOI(150.28d) 

 

 

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G(150.b.28d) 

 

 

Calcium Silicate - Ca2SiO4

Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Gehlenite, syn - Ca2Al2SiO7
Portlandite, syn - Ca(OH)2

Aragonite - CaCO3
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Gehlenite, syn - Ca2Al2SiO7
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70



364 

 

IGN/G20SF(150.b.28d) 

 

 

Tobermorite - Ca2.25(Si3O7.5(OH)1.5)(H2O)
Calcium Aluminum Silicate Hydroxide Hydrate -
Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3

Calcium Silicate - Ca3(SiO3)3
Gehlenite, syn - Ca2Al2SiO7
Kilchoanite, syn - Ca6(SiO4)(Si3O10)
Aragonite - CaCO3

Calcite, syn - CaCO3
Quartz, syn - SiO2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Gehlenite, syn - Ca2Al2SiO7
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G40SF(150.b.28d) 

 

 

Calcium Aluminum Silicate Hydroxide Hydrate -
Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3

Tobermorite - Ca2.25(Si3O7.5(OH)1.5)(H2O)
Gehlenite, syn - Ca2Al2SiO7
Kilchoanite, syn - Ca6(SiO4)(Si3O10)
Aragonite - CaCO3

Calcite, syn - CaCO3
Quartz, syn - SiO2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Gehlenite, syn - Ca2Al2SiO7
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G20MS(150.b.28d) 

 

 

Calcium Silicate - Ca2SiO4

Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Gehlenite, syn - Ca2Al2SiO7
Kilchoanite, syn - Ca6(SiO4)(Si3O10)

Aragonite - CaCO3
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Gehlenite, syn - Ca2Al2SiO7
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/A(150.b.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca2SiO4
Gehlenite, syn - Ca2Al2SiO7

Portlandite, syn - Ca(OH)2
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Gehlenite, syn - Ca2Al2SiO7
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/W(150.b.28d) 

 

 

Calcium Silicate - Ca2SiO4

Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Gehlenite, syn - Ca2Al2SiO7
Portlandite, syn - Ca(OH)2

Aragonite - CaCO3
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Gehlenite, syn - Ca2Al2SiO7
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/HAC(150.b.28d) 

 

 

Bohmite, syn - AlO(OH)
Katoite, syn - Ca3Al2(OH)12
Gehlenite, syn - Ca2Al2SiO7
Katoite, silicatian - Ca3Al2(SiO4)(OH)8

Aragonite - CaCO3
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/GEOII(150.b.28d)

 

 

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Gehlenite, syn - Ca2Al2SiO7
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G(290.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3

Calcium Silicate - Ca3(SiO3)3
Killalaite - Ca3.2(H0.6Si2O7)(OH)
Reinhardbraunsite, syn - Ca5(SiO4)2(OH)2
Jaffeite, syn - Ca6(Si2O7)(OH)6

Portlandite, syn - Ca(OH)2
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Reinhardbraunsite, syn - Ca5(SiO4)2(OH)2
Calcite, syn - CaCO3
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G20SF(290.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Xonotlite, syn - Ca6Si6O17(OH)2

Killalaite - Ca3.2(H0.6Si2O7)(OH)
Kilchoanite, syn - Ca6(SiO4)(Si3O10)
Reinhardbraunsite, syn - Ca5(SiO4)2(OH)2
Portlandite, syn - Ca(OH)2

Calcite, syn - CaCO3
Quartz, syn - SiO2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G40SF(290.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3
Xonotlite, syn - Ca6Si6O17(OH)2

Killalaite - Ca3.2(H0.6Si2O7)(OH)
Quartz, syn - SiO2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G20MS(290.28d) 

 

 

Xonotlite, syn - Ca6Si6O17(OH)2
Killalaite - Ca3.2(H0.6Si2O7)(OH)

Kilchoanite, syn - Ca6(SiO4)(Si3O10)
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Reinhardbraunsite, syn - Ca5(SiO4)2(OH)2
Jaffeite, syn - Ca6(Si2O7)(OH)6
Calcite, syn - CaCO3
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/A(290.28d) 

 

 

00-029-0369 (I) - Calcium Silicate - Ca2SiO4
01-087-1720 (C) - Calcium Aluminum Silicate - 
01-089-6485 (C) - Calcium Silicate - Ca3(SiO3)

00-029-0332 (C) - Killalaite - Ca3.2(H0.6Si2O7)
00-038-0368 (I) - Katoite, silicatian - Ca3Al2(Si
00-029-0370 (I) - Kilchoanite, syn - Ca6(SiO4)(
00-029-0380 (I) - Reinhardbraunsite, syn - Ca5(

00-044-1481 (*) - Portlandite, syn - Ca(OH)2
00-005-0586 (*) - Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Katoite, silicatian - Ca3Al2(SiO4)(OH)8
Kilchoanite, syn - Ca6(SiO4)(Si3O10)
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/W(290.28d) 

 

 

Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate - Ca3Al2(SiO4)3
Calcium Silicate - Ca3(SiO3)3

Xonotlite, syn - Ca6Si6O17(OH)2
Kilchoanite, syn - Ca6(SiO4)(Si3O10)
Reinhardbraunsite, syn - Ca5(SiO4)2(OH)2
Jaffeite, syn - Ca6(Si2O7)(OH)6

Portlandite, syn - Ca(OH)2
Calcite, syn - CaCO3
ITZ-C
CEM

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Reinhardbraunsite, syn - Ca5(SiO4)2(OH)2
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/HAC(290.28d) 

 

 

Bohmite, syn - AlO(OH)
Calcium Aluminum Oxide Hydrate - Ca4Al6O13·3H2O
Bohmite, syn - AlO(OH)

Katoite, syn - Ca3Al2(OH)12
Katoite, silicatian - Ca3Al2(SiO4)(OH)8
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80

Calcium Aluminum Oxide Hydrate - Ca4Al6O13·3H2O
Katoite, silicatian - Ca3Al2(SiO4)(OH)8
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/GEOII(290.28d) 

 

 

Muscovite-2M2 - (K,Na)Al2(Si,Al)4O10(OH)2
Sodium Aluminum Phosphate Silicate Hydrate - Na13Al24Si13P11O96·16H2O
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Sodium Aluminum Phosphate Silicate Hydrate -

Muscovite-2M2 - (K,Na)Al2(Si,Al)4O10(OH)2
Aragonite - CaCO3
Calcite, syn - CaCO3
Quartz, syn - SiO2

Anorthite, ordered - CaAl2Si2O8
Albite, ordered - NaAlSi3O8
IGN
ITZ-R

In
te

ns
ity

2Theta angle / degrees

4 10 20 30 40 50 60 70 80
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IGN/G(150.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Killalaite - Ca6.43Si4O16H3.17
Calcium Silicate - alpha'-Ca2SiO4

Calcium Silicate - Ca2SiO4
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
Kilchoanite, syn - Ca6(SiO4)(Si3O

Calcite, syn - CaCO3
Portlandite, syn - Ca(OH)2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Calcite, syn - CaCO3
Portlandite, syn - Ca(OH)2
Albite, ordered - NaAlSi3O8

Quartz, syn - SiO2
Anorthite, ordered - CaAl2Si2O8
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G20SF(150.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Aragonite - Ca(CO3)

Larnite, syn - Ca2SiO4
Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4

Tobermorite - Ca2.25(Si3O7.5(OH
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8

Calcium Silicate Hydrate - Ca2SiO
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Quartz, syn - SiO2

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G40SF(150.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Aragonite - Ca(CO3)
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate Hydrox

Killalaite - Ca6.43Si4O16H3.17
Tobermorite - Ca2.25(Si3O7.5(OH
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8

Anorthite, ordered - CaAl2Si2O8
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Hillebrandite - Ca2(SiO3)(
Aragonite - Ca(CO3)
Larnite, syn - Ca2SiO4
Calcium Silicate - Ca2(SiO

Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Calcium Aluminum Silicate
Calcium Iron Oxide - Ca2F

Killalaite - Ca6.43Si4O16H
Tobermorite - Ca2.25(Si3O
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O

Anorthite, ordered - CaAl2
Calcium Silicate Hydrate - 
Kilchoanite, syn - Ca6(SiO
Reinhardbraunsite, syn - C

Calcite, syn - CaCO3
Portlandite, syn - Ca(OH)2
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70



382 

 

IGN/G20MS(150.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Aragonite - Ca(CO3)
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Killalaite - Ca6.43Si4O16H3.17

Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
Calcium Silicate Hydrate - Ca2SiO

Calcite, syn - CaCO3
Portlandite, syn - Ca(OH)2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Aragonite - Ca(CO3)
Quartz, syn - SiO2
Calcite, syn - CaCO3

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G(150.CO2.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Aragonite - Ca(CO3)
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Quartz, syn - SiO2

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
Calcium Silicate Hydrate - Ca2SiO
Kilchoanite, syn - Ca6(SiO4)(Si3O

Calcite, syn - CaCO3
Portlandite, syn - Ca(OH)2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Quartz, syn - SiO2

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G20SF(150.CO2.84d) 

 

 

Aragonite - Ca(CO3)
Hillebrandite - Ca2(SiO3)(OH)2
Aragonite - Ca(CO3)
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Killalaite - Ca6.43Si4O16H3.17

Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
Calcium Silicate Hydrate - Ca2SiO

Kilchoanite, syn - Ca6(SiO4)(Si3O
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70 80

Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8

Anorthite, ordered - CaAl2Si2O8
Calcite, syn - CaCO3
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G40SF(150.CO2.84d) 

 

 

Calcite, syn - CaCO3
Aragonite - Ca(CO3)
Hillebrandite - Ca2(SiO3)(OH)2
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Killalaite - Ca6.43Si4O16H3.17

Tobermorite - Ca2.25(Si3O7.5(OH
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8

Calcium Silicate Hydrate - Ca2SiO
Kilchoanite, syn - Ca6(SiO4)(Si3O
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Hillebrandite - Ca2(SiO3)(OH)2
Quartz, syn - SiO2

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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IGN/G20MS(150.CO2.84d) 

 

 

Aragonite - Ca(CO3)
Hillebrandite - Ca2(SiO3)(OH)2

Larnite, syn - Ca2SiO4
Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4

Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
Calcium Silicate Hydrate - Ca2SiO

Kilchoanite, syn - Ca6(SiO4)(Si3O
Calcite, syn - CaCO3
CEM
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Hillebrandite - Ca2(SiO3)(OH)2
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8

Anorthite, ordered - CaAl2Si2O8
Calcite, syn - CaCO3
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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UNI/G(150.CO2.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Killalaite - Ca6.43Si4O16H3.17

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
Calcium Silicate Hydrate - Ca2SiO
Kilchoanite, syn - Ca6(SiO4)(Si3O

Calcite, syn - CaCO3
Portlandite, syn - Ca(OH)2
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Hillebrandite - Ca2(SiO3)(OH)2
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8

Anorthite, ordered - CaAl2Si2O8
Calcite, syn - CaCO3
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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UNI/G20SF(150.CO2.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Aragonite - Ca(CO3)
Larnite, syn - Ca2SiO4
Calcium Silicate - Ca2(SiO4)

Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Killalaite - Ca6.43Si4O16H3.17
Tobermorite - Ca2.25(Si3O7.5(OH

Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
Calcium Silicate Hydrate - Ca2SiO

Kilchoanite, syn - Ca6(SiO4)(Si3O
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Hillebrandite - Ca2(SiO3)(OH)2
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8

Anorthite, ordered - CaAl2Si2O8
Calcite, syn - CaCO3
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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UNI/G40SF(150.CO2.84d) 

 

 

Aragonite - Ca(CO3)
Hillebrandite - Ca2(SiO3)(OH)2

Aragonite - Ca(CO3)
Larnite, syn - Ca2SiO4
Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5

Calcium Silicate - Ca2SiO4
Killalaite - Ca6.43Si4O16H3.17
Tobermorite - Ca2.25(Si3O7.5(OH
Quartz, syn - SiO2

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Quartz, syn - SiO2

Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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UNI/G20MS(150.CO2.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2

Larnite, syn - Ca2SiO4
Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4

Killalaite - Ca6.43Si4O16H3.17
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8

Kilchoanite, syn - Ca6(SiO4)(Si3O
Calcite, syn - CaCO3
CEM
ITZ-C

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70

Hillebrandite - Ca2(SiO3)(OH)2
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8

Anorthite, ordered - CaAl2Si2O8
Calcite, syn - CaCO3
ROCK
ITZ-R

In
te

ns
ity

2Theta angle / degrees

5 10 20 30 40 50 60 70
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KAO/G(150.CO2.84d) 

 

 

Hillebrandite - Ca2(SiO3)(OH)2
Larnite, syn - Ca2SiO4

Calcium Silicate - Ca2(SiO4)
Calcium Silicate - Ca3SiO5
Calcium Silicate - Ca2SiO4
Killalaite - Ca6.43Si4O16H3.17

Kaolinite - Al2(Si2O5)(OH)4
Quartz, syn - SiO2
Albite, ordered - NaAlSi3O8
Anorthite, ordered - CaAl2Si2O8
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X.4 Further SEM/EDS work 

X.4.1 IGN/G(150.CO2.84d) 

  
i. ITZ SEM image ii. ITZ SEM backscattered image 

Location of the line scans 

The red line scan (diagram with red border, in the next page) shows that significant amounts 

of Ca are present in the rock, up to ≈550µm. The Ca has penetrated much further and in 

higher amounts than observed for the green and yellow ones (other ones). 

The green and yellow scans (diagrams with, respectively, green and yellow border lines, in 

the next page) show that Ca is present in the rock up to ≈400µm and in lower concentrations 

than in the red one, with only one relatively high peak. 

The green and yellow line scans are very similar due to their proximity. On the other hand, 

despite being close to the yellow and green lines, the red line scan is considerably different to 

the other ones. This is due to the heterogeneity of the materials under study, namely the rock. 

  
i. ITZ Al map ii. ITZ Na map 

EDS element maps 

Regarding the Al and Na maps (same region as the SEM images presented above), they do 

not provide any relevant information regarding the trends in the ITZ. These maps are mostly 

useful to differenciate the feldspars (rich in Al and Na) from the quartz crystals (no Al or Na). 
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Red line scan: 

 

Green line scan: 

 

Yellow line scan: 
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X.4.2 IGN/G20SF(150.CO2.84d) 

  
i. ITZ SEM image ii. ITZ SEM backscattered image 

Location of the three line scans 

These two line scans (diagrams in the next page) are also a good example of the heterogeneity 

of the materials involved, especially the rock. Despite of their proximity, the red and the green 

line scans show significantly different trends. 

The red line scan shows a Ca penetration into the rock up to 350µm, whereas the green one 

shows a Ca penetration of up to 500µm. 

 

i. ITZ Al map ii. ITZ Na map 

EDS element maps 

 

Regarding the Al and Na maps (same region as the SEM images presented above), these 

again do not provide any relevant information regarding the trends in the ITZ between the 

cement and the rock. 
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Red line scan: 

 

 

Green line scan: 

 

  



411 

 

X.4.3 IGN/G40SF(150.CO2.84d) 

 
i. ITZ SEM image ii. ITZ SEM backscattered image 

Location of the line scans 

 

Despite of their proximity, the red and the green line scans (diagrams in the next page) show 

considerably different Ca penetration depth into the rock. The red line scan shows a Ca 

penetration into the rock up to 350µm, whereas the green one shows a Ca penetration of 

under 300µm. 

Therefore these two line scans are also a good example of the heterogeneity of the materials 

involved, especially the rock. 

 

i. ITZ AL map ii. ITZ Na map 

EDS element maps 

 

Again, the Al and Na maps (same region as the SEM images presented above) do not provide 

any relevant information regarding the trends in the ITZ between the cement and the rock. 
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Red line scan: 

 

 

Green line scan: 
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X.4.4 IGN/G20MS(150.CO2.84d) 

 

i. ITZ SEM image ii. ITZ SEM backscattered image 

Location of the line scans 

 

These three line scans (red, green and yellow diagrams represented in the next page) are also 

in agreement with the idea put forward for the previous samples, i.e. the line scans are not 

enough reliable to work with due to the heterogeneous nature of the sample. 

 

 

i. ITZ Al map ii. ITZ Na map 

EDS element maps 

 

Again, the Al and Na maps (same region as the SEM images presented above) do not provide 

any relevant information regarding the trends in the ITZ between the cement and the rock. 
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Red line scan: 

 
 
Green line scan: 

 

Yellow line scan: 
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X.5 Mass Spec: comparison of Mass Spec results 
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