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Abstract

The purpose of agile software development is to enable the software de-
velopment team to respond to change and learn from change so that it
can better deliver value to its customer. If an agile software development
team spends too much time planning and designing architecture up-front
then the delivery of value to the customer is delayed or otherwise com-
promised, and responding to change can become extremely difficult. Not
doing enough architecture design increases exposure to risk and increases
the chance of failure. The balance between architecture and agility is not
well understood by agile practitioners or researchers.

This thesis is based on grounded theory research involving 44 partici-
pants from 36 organisations, all working in agile software development and
who are either experienced in architecture design or are closely involved
with architecture. The thesis presents a theory that describes how agile soft-
ware teams design an agile architecture with reduced up-front design and
which is able to respond to change, helping teams find a balance between
architecture and agility.

The theory describes six forces that affect the agility of the architecture
and up-front design, and five strategies that teams use in response to those
forces to determine how much effort they put into up-front design.

Understanding these forces and strategies helps agile teams to deter-
mine how much up-front design is appropriate in their contexts.
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Chapter 1

Introduction

“Software development is not a relay sport” (Simon Brown [57])

This thesis presents a theory of agile architecture that describes how
teams design an architecture that is modifiable and tolerant of change,
and explains how teams determine how much architecture they design
up-front.

1.1 The balance between architecture and agility

The purpose of agile software development is to better deliver value to the
customer by being able to manage change in the environment – particularly
requirements – during development.

Agile methods use a feedback loop in which the customer provides
feedback to the team about changed or new requirements, and the devel-
opment team responds to that change by adapting the system. The more
agile the team, the shorter the feedback loop: the quicker the customer can
provide feedback, and the quicker the team can respond to that feedback.
Conversely, a less agile team has a longer feedback loop.

The values and principles of the Agile Manifesto discourage excessive
planning because planning increases the time before the customer can start

1



2 CHAPTER 1. INTRODUCTION

providing feedback, and makes it more likely the team will need to make
changes to the plans when requirements change.

Software architecture is the set of design decisions that the expert
developers of the development team need to understand, and are difficult
to change during development. Architecture is important for satisfying
the architecturally significant requirements (ASRs), consisting mainly of
the quality attributes such as performance, security and scalability, and
is particularly important when there is a small solution space, difficult
requirements or a high risk of failure. Because they are difficult to change,
architectural decisions are made early, typically before the development of
the functional requirements begins.

To increase agility, the planning time – including up-front architecture
design – is reduced, so that the customer can start providing feedback ear-
lier. This leads to a more emergent and implicit architecture, but reducing
the amount of architecture design too far could lead to an accidental archi-
tecture which fails to meet ASRs, and requires more time to fix problems. If
the team spends too much time fixing problems then its ability to respond
to change and hence its agility is reduced. Thus, less architecture design
does not necessarily mean more agility.

To maximise agility, a team must find a suitable balance or trade-off
between a full up-front architecture design and a totally emergent design.

1.2 The research problem

The trade-off between architecture and agility is not well understood. In
practice, there are a number of schemes that specify up-front architec-
ture design in agile development, such as extreme programming’s system
metaphor [26], iteration zero [153], the research ‘spike’[181], Agile Mod-
eling [18], risk-based design [91] and Real Options [32]. These schemes
generally offer little guidance as to which decisions should be made up-
front.



1.3. STRUCTURE OF THESIS 3

There has been very little empirical research on the relationship between
software architecture and agile development to date, yet it has become an
important issue.

The study presented in this thesis helps to fill this research gap. The
research used grounded theory, a qualitative research strategy that gener-
ates theory inductively, to explore and explain how practitioners treat the
relationship between architecture and agile in practice. The result of the
research is a theory, ‘a theory of agile architecture,’ which explains how
much effort agile software teams put into architecture design, with a focus
on how teams determine which architecture decisions to make up-front
and what influences those decisions.

1.3 Structure of thesis

The structure of this thesis is as follows:

Chapter 1: Introduction has provided a rationale for the research and
this introduction to the thesis.

Chapter 2: Background provides a background to the problem. The
chapter introduces software engineering and the reason for the advance-
ment of agile software development methodologies. The chapter then
describes agile methodologies and what it means to be agile, and describes
software architecture and why architecture is important. The chapter then
discusses architecture in agile development: how architecture and agile
affect each other and what the research gap is. The chapter closes by
presenting the research objective.

Chapter 3: Research design describes the research design. It presents
the research approach, and discusses a number of potential research strate-
gies. It then describes the selected research strategy, grounded theory, and
the procedures used to implement it in this research.

Chapter 4: Data collection and analysis describes how the data was
collected and analysed using the grounded theory methodology. The
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chapter describes how the theory was developed, providing a link between
the description of the research design in Chapter 3 and the presentation of
the findings in Chapter 5.

Chapter 5: A theory of agile architecture introduces the findings of the
research: a theory of agile architecture. It gives an overview of each of the
main parts of the theory: the forces, which make up the team’s and system’s
context; the strategies, which teams choose in response to the context; and
the agile architect.

Chapter 6: The agile architecture forces is the second findings chapter.
It discusses in more detail the forces that make up the project’s context. The
forces affect the strategies that a team chooses when designing their agile
architecture, described in the next chapter.

Chapter 7: The agile architecture strategies is the third findings chap-
ter. It discusses in more detail the strategies that a team uses to help design
an architecture that is able to respond to change and to determine how
much architecture to design up-front.

Chapter 8: The agile architect is the fourth and final findings chapter.
It discusses who makes architecture decisions in an agile project, and what
other roles the architects have in an agile team.

Chapter 9: Discussion discusses the theory of agile architecture from
an external perspective. It reflects on the presentation of the theory, its
boundaries and on how to evaluate the theory. It then discusses the theory
in the context of the literature.

Chapter 10: Conclusion The final chapter concludes this research. It
outlines the thesis’s contributions and implications for practice, discusses
the theory’s limitations and suggestions for future work. It closes with a
conclusion to the thesis.



Chapter 2

Background

“The hardest thing is what does architecture mean in agile? Agile

architecture, it’s almost an oxymoron.” (P35, design engineer)

This chapter provides a background to agile development and soft-
ware architecture, and presents the research objective. This research uses
grounded theory; the justification for grounded theory is provided in Chap-
ter 3. Significantly, grounded theory does not have a major literature review
before the research begins [104]. Instead, an initial minor literature review
provides the background to the research. The minor literature review
should be sufficient for the researcher to understand the research problem
and the knowledge gap, but not enough to give the researcher preconceived
ideas or theories about the solution to the problem being investigated. The
major literature review starts in the later stages of the research, and relates
the findings to the literature. Both the minor and the major literature re-
views contribute to this chapter, and provide a background to the research
problem. Section 3.3.6 explains the role of the literature review in more
detail.

In this chapter, section 2.1 introduces software engineering and the
problems that software engineers had with traditional plan-driven method-
ologies that led to the advancement of agile software development method-
ologies. Agile software development is described and defined in section 2.2.

5
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Software architecture is introduced in section 2.3, and the balance needed
between architecture and agility is described in section 2.4.

The chapter concludes with the research objective, presented in section
2.5.

2.1 Early software engineering and the empirical

process control model

Software engineering is a relatively recent engineering discipline that origi-
nated at two NATO software engineering conferences held in the late 1960s
[157, 172]. At these conferences the term software engineering was used to
imply a need for software development to have theoretical foundation and
practical disciplines like those found in other branches of engineering [172].

The earliest methodologies to emerge were modelled on traditional engi-
neering disciplines, which were often based on defined process control models
[199, 230]. In a defined process, every part of the work is completely under-
stood and the design completed in advance of manufacturing. The product
can be built sequentially using pre-defined phases and standardised tasks,
and if necessary can use a Fordist-style production system [193] to produce
identical products multiple times [230]. To manage the project’s risks, the
designers attempt to anticipate specification variation and potential prob-
lems, and thus require large quantities of documentation to be handed
over to the development team (often referred to being “thrown over the
wall,” alluding to the one-way relationship between the designers and the
developers) for implementation. In software, these defined processes are
the traditional plan-driven big design up-front (BDUF) methodologies such
as the unmodified waterfall method [195] and formal processes aligned
with the CMM (capability maturity model)/CMMI (capability maturity
model integration) [67]. The postmodern software development viewpoint
describes these early software development methods as having modernist
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characteristics [193] because their structured development methods as-
sumed everything can be clearly understood in advance. The third issue of
the IEEE Software magazine (1984) [124] features the photo of a car assembly
line on its cover, shown in Figure 2.1, consistent with a common view of
software development at the time.

Figure 2.1: Cover of IEEE Software 1, 3

More recently software engineers have recognised that often software
cannot be thought of as a defined process because the specifications often
cannot be fully understood in advance; development is frequently subject
to change both in requirements and in the implementation technology [230].
Parnas and Clements (1996) summed up this realisation:
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• “In most cases the people who commission the building
of a software system do not know exactly what they want
and are unable to tell us what they know.

• “Even if we knew the requirements [...] many of the details
only become known to us as we progress in the implemen-
tation [...]

• “Even if we knew all of the relevant facts before we started,
experience shows that human beings are unable to compre-
hend fully the plethora of details that must be taken into
account in order to design and build a correct system [...]

• “Even if we could master all of the detail needed, all but
the most trivial projects are subject to change for external
reasons” [180].

Rather than a defined process, software development is often more
suited to an empirical process control model [199, 230] which requires inter-
action between design and manufacturing through frequent inspection,
feedback and adaptation.

This recognition of software development as an empirical process has
led to the advancement of agile development methodologies. Agile develop-
ment methodologies closely involve the customer, with the specifications
being developed simultaneously with the product. Agile development
methodologies are able to respond to rapidly changing requirements, and
purportedly require less effort, produce software of higher quality, and
improve customer satisfaction [41]. Beedle (2011) believed that in the future
agile development methodologies will simply be called ‘software develop-
ment’ [29] – that is, will become the prevailing development methodologies.
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2.2 Agile development

Agile development methods are based on a philosophy and a set of princi-
ples that allow the development team to manage changing and unknown
requirements. Agile methods frequently use an iterative and incremental
development (IID) approach [31] where development takes place iteratively
and incrementally in parallel with requirements gathering. To manage
change, agile methods are light on defined processes [2] and discourage
detailed planning. Rather, only a small amount of planning should be in-
cluded, with most of the architecture design emerging during development
[27]. Agile methods attempt to improve customer satisfaction through
high levels of customer involvement, improve the quality of code through
practices such as test-driven development and improve productivity through
self-organising and motivated teams [41].

This section describes the Agile Manifesto, which defines the agile phi-
losophy (section 2.2.1), lists some of the main agile methodologies (section
2.2.2) and defines agility (section 2.2.3). The section then discusses the
agile feedback cycle (section 2.2.4), the agile characteristic of responding to
change (section 2.2.5) and finally learning from change (section 2.2.6).

2.2.1 The Agile Manifesto

The Agile Manifesto (2001) [28] introduced the software world to the term
agile, bringing what were then known as lightweight methodologies to-
gether under one umbrella with a common philosophy. The Manifesto
does not define any methodologies or practices itself, but rather outlines a
philosophy in the form of a set of values and principles that methodologies
and agile software engineers adhere to.

The agile values

The introduction to the Agile Manifesto lists four values:
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“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

• “Individuals and interactions over processes and tools

• “Working software over comprehensive documentation

• “Customer collaboration over contract negotiation

• “Responding to change over following a plan.

“That is, while there is value in the items on the right, we value
the items on the left more.” [28]

The items on the right – processes and tools, comprehensive documen-
tation, contract negotiation, and following a plan – are all characteristics
of traditional defined process methodologies that are based on knowing
the requirements in advance, so that a development team’s architects could
design the system in full before handing over to the team’s developers.
In contrast, the items on the left – individuals and interactions, working
software, customer collaboration and responding to change – emphasise
communication, collaboration, flexibility, and – perhaps most importantly –
working software, the end product.

It is worth emphasising the philosophy does not put no value in the
items on the right; it simply puts more value in the items on the left. This is
a misconception with agile methodologies [166].

The agile principles

In addition to the four values, the Agile Manifesto lists twelve principles:

“We follow these principles:

• “Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.
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• “Welcome changing requirements, even late in develop-
ment. Agile processes harness change for the customer’s
competitive advantage.

• “Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter time scale.

• “Business people and developers must work together daily
throughout the project.

• “Build projects around motivated individuals. Give them
the environment and support they need, and trust them to
get the job done.

• “The most efficient and effective method of conveying in-
formation to and within a development team is face-to-face
conversation.

• “Working software is the primary measure of progress.

• “Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain
a constant pace indefinitely.

• “Continuous attention to technical excellence and good
design enhances agility.

• “Simplicity – the art of maximizing the amount of work
not done – is essential.

• “The best architectures, requirements, and designs emerge
from self-organizing teams.

• “At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behaviour accord-
ingly.” [28]

The main themes of these principles are the value of working software,
the ability to cope with changing requirements, the importance the team
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members and the customer collaborating and communicating, and the
importance of the quality of the work performed. There should be no big
design up-front, because a system designed in detail makes it harder to
deliver software early (contravening the first principle), welcome change
(contravening the second principle), and risks doing work that will not
be required when requirements change (contravening the tenth principle).
Architects should not be separate from the team: the architecture should
be designed by the development team itself (in line with the eleventh
principle), because the team best understands how the architecture should
be implemented.

2.2.2 Mainstream agile methodologies

The Agile Manifesto itself does not define any practices or methodologies.
Rather, there are a number of mainstream agile development methodologies
that implement the agile practices, with differing degrees of agility [41]. The
most popular mainstream agile methods (sometimes called ‘commercial’
methodologies [3, 74]) include Scrum [199], extreme programming (XP) [26]
and lean development [150].

Generally each methodology has its own focus with its own set of
practices and principles; some overlap but others do not. Teams sometimes
mix and match the practices they choose to follow – for example, the
technical aspects of XP are often used with the management aspects of
Scrum (for example [186]), and pair programming is often dropped in XP
development [156].

The most popular agile methodologies and their key practices are out-
lined in the following sections.

Scrum

Scrum is a management methodology that deals with how the development
is managed, such as using self-organising teams and the management
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of requirements [88, 159, 226]. Scrum does not define the engineering
processes that the developers use to actually build the software.

To allow for changes in requirements, development is structured into
fixed length iterations called sprints. Sprints last no longer than one month.
Each sprint should produce code that is potentially shippable – tested and
integrated. At the end of each sprint, the team holds a sprint review in
which the team reviews the product and demonstrates it to the customer.
The team also holds a sprint retrospective in which the team reviews, and if
necessary adapts, its process and environment.

The requirements are kept in a prioritised list called a product backlog,
and those to be implemented are chosen by the team on a sprint-by-sprint
basis – the sprint backlog. Requirements cannot change during a sprint;
any changes must wait for the next sprint. The product owner, a customer
representative on the team, is responsible for keeping the backlog up to
date. Choosing the requirements to be developed on a sprint-by-sprint
basis, and taking into account customer feedback and suggestions, allows
the development to inspect and adapt to changing requirements.

The team is self-organising: it manages itself with a very high degree of
autonomy and accountability. Every day the team examines its progress in a
scrum (or stand up meeting) and reviews its progress. The team itself decides
what it will commit to, and decides how to achieve that commitment.
There is no specific mention of architecture in Scrum, although many teams
include a sprint zero phase at the start of development, which is dedicated
to defining a high-level design and does not produce deliverable software.

The canonical Scrum guide is considered to be Schwaber and Beedle
(2002) [199], although there are a number of guides that summarise Scrum’s
rules, such as [83] and [200].

Figure 2.2 summarises the key steps and definitions in Scrum.
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Figure 2.2: The Scrum process. Figure c©Mountain Goat Software; used
under creative commons licence.

Extreme programming

Extreme programming (XP) is an agile methodology that is based on five val-
ues: simplicity, communication, feedback, courage and respect [27]. These
values are fairly abstract, and are supported by practices that give specific
guidance on how to use XP [27].

The practices are the things that the team will be doing each day [27],
and are given purpose by the values. A number of the practices relate
to the management of the project, and are very similar to the practices of
Scrum, such as small regular releases, there being a customer represen-
tative remaining on-site during development, self-organising teams and
requirements being defined in advance of each iteration. There are also a
number of technical practices, such as pair programming – two developers
per keyboard and screen; test driven development – every unit of develop-
ment must pass a pre-defined test before it can be accepted; and constant
refactoring the code design – to prevent the quality of the code degenerating
through an evolving design [27]. Continuous integration means the team
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merges development streams and produces a working copy of the software
several times a day.

The original XP book by Beck (2000) contained a system metaphor which
“helps everyone on the project understand the basic elements and their
relationships” [26] and represents the early architecture design.

An emergent architecture design (where architecture design takes place
during development) coupled with refactoring (changing the system to im-
prove its structure without changing its external behaviour [95]) is prefer-
able to up-front design wherever possible. Up-front design is only allowed
if required to ensure success of the software. Beck (2005) described refac-
toring as “a sensible, low-risk way to develop software” [27], even though
some consider refactoring to potentially increase cost [36] (at least up to
a certain point [69]) and create unnecessary overhead [210]. Refactoring
(including refactoring at the architectural level, when required) ensures the
system always meets its requirements at that point in time, including the
quality requirements.

Lean software development

Lean software development is a software version of lean production that
was originated by Toyota as the Toyota Production System (“the Toyota
Way”) in the mid-1900s [79]. Poppendieck and Poppendieck (2003) [184]
brought lean to the software world and is considered the definitive lean
software development guide.

Many of the lean development principles follow the agile philosophy
laid out in the Agile Manifesto. For example, lean emphasises continuous
process improvement through the reduction of waste and bottlenecks (the
agile principle of simplicity), delaying decisions until the last minute (to
ensure as much is known about the inputs as possible when the decision is
made) and increasing speed of delivery (to give the team more opportunity
to delay decisions) [184]. Coplien and Bjørnvig (2010) highlighted a number
of differences between lean and other agile methodologies [79], which are
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presented in Table 2.1, although some of these differences, such as bringing
decisions forward, are at odds with Poppendieck and Poppendieck (2003)
[184], and appear to be derived from a comparison with lean production
rather than lean software development. Ballard (2010) described lean
production as making decisions at the ‘last responsible moment’; the last
responsible moment requires careful planning so that the lead-time to that
decision can be properly understood [24].

Lean Agile

Thinking and doing Do-inspect-adapt

Feed-forward and feedback (de-
sign for change and respond to
change)

Feedback (react to change)

High throughput Low latency

Planning and responding Reacting

Focus on process Focus on people

Teams (working as a unit) Individuals (and interactions)

Complicated systems Complex systems

Embrace standards Inspect and adapt

Rework in design adds value, in
making is waste

Minimize up-front work of any
kind and rework code to get qual-
ity

Bring decisions forward (deci-
sion structure matrices)

Defer decisions (to the last re-
sponsible moment)

Table 2.1: Differences between lean development and the agile philosophy,
from Coplien and Bjørnvig (2010) [79].
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Other agile methods

Other agile development methods include:

Crystal Light, a family of methods developed by Manifesto signatory
Alistair Cockburn [69]. Crystal focuses on people, and has different versions
for different team sizes (named after colours: Crystal Clear, Crystal Yellow,
Crystal Orange, Red, Magenta, Blue and so on). There are also variations
that take into account system criticality and project priorities.

Adaptive Software Development (ASD), which focuses mainly on the prob-
lems of developing complex, large systems [2, 116]. ASD encourages incre-
mental and iterative development with constant prototyping and a focus
on components rather than tasks. The ASD process involves cycles of
three steps: speculate, which involves planning for the cycle, collaborate, the
development phase, in which there may be a number of tasks under con-
current development, and learn, which involves quality-reviews in which
the functionality to date is reviewed with the customer.

Feature driven development (FDD) is a method that focuses on the design
and building phases [2, 178]. As the name suggests, planning is driven
by the features to be included. FDD follows these five steps: develop an
overall model, write the features list, plan by feature, design by feature and
build by feature [2]. The last two steps are iterative, with the functionality
developed in each iteration being reviewed by the users and sponsors of
the system for validity and completeness [2].

Kanban is related to lean and just-in-time production [21]. Kanban does
not prescribe a large methodology; it revolves around reducing the amount
of work in progress through limiting the number of tasks in the ‘to do’ list
and the ‘in progress’ list. Like lean, Kanban aims to make processes more
efficient. The Kanban philosophy includes making decisions at the last
moment, strict prioritisation and short lead times.
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2.2.3 Defining agility

This section discusses a number of definitions of agility, and presents a
definition adopted in this thesis.

There is little agreement on how to define agility or on what form a defi-
nition should take. Some definitions disagree with each other [74, 189], and
others are vague. Two possible ways to define agility are listed by Kruchten
(2007) [140]: by enumeration (as one of a set of defined methodologies, such
as XP, Scrum, and feature-driven development), or by some predicate (such
as the degree of adherence to the Manifesto). Attempts at defining agility
by practitioners and consultants often take an empirical perspective based
on experiences in a particular context [146] rather than taking a theoretical
or conceptual perspective [74]. Different types of definitions follow.

Agility as adherence to the Agile Manifesto

A simple way to define agility is by adherence to the values and principles
laid out in the Agile Manifesto. Authors who defined agility this way
include Coplien and Bjørnvig (2010) [79]:

“By Agile, we mean the values held up by the Agile Manifesto.”

– and the practitioners Caneiro and Barazi (2010) [62]:

“Today, the Agile Manifesto is widely regarded as the canonical
definition of agile development.”

Lindvall et al. included adherence to the Manifesto as part of their
definition [155]:

“Agile methods are: iterative, incremental, self-organising, emer-
gent. All Agile methods follow the four values and twelve
principles of the Agile Manifesto.”
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Adherence to the Manifesto is not a suitable definition for agility. Many
consider the Manifesto’s principles vague [15, 76, 112], and repetitive [112].
Séguin, Tremblay and Bagane (2012) determined that seven of the twelve
principles did not qualify as software engineering principles [202]; one of
the five that did qualify only did so after being reworded. Conboy and
Fitzgerald (2004) noted the Manifesto has no basis in management theory
[76].

Agility as a set of methodologies

Agility is sometimes defined as the set of methodologies that claim to be
agile, such as Scrum, XP, lean development, Crystal and feature driven
development. Poppendieck and Poppendieck (2003) [184] and Jacobs (2006)
[128] used such definitions.

Defining agility as a set of methodologies is not satisfactory because not
only do agile methodologies vary greatly in values and practices [221], but
some define engineering practices (such as XP), some define management
practices (such as Scrum), and some define philosophical principles (such
as lean development) [74]. Nor does this definition provide guidance on
how to determine if a new methodology is agile.

Agility as a set of practices

Another definition of agility specifies certain practices or methods [155,
228], such as having iterations, daily meetings and frequent customer
demonstrations. According to these definitions, if a development team is
not following the specified practices then it is not agile [70, 162]. Some have
devised tests or metrics for agility based on adherence to these practices,
such as the ‘Nokia Test’ [215], which tests for a team’s adherence to the
Scrum practices, or the 4-DAT test [188], which tests a methodology’s
adherence to a particular set of practices and values.

Agile as a set of practices is not a good definition, because simply per-
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forming a set of practices does not necessarily make a team or methodology
agile – one can use agile practices and still not be agile [75, 146, 162, 206].
In particular, teams need to be aware that agile methodologies must be
customised to a team and its context [206]: “one size fits nobody” [5], “one
size fits one” [72] and “context is key” [140]. Cockburn and Highsmith
(2001) wrote that “every process must be selected, tailored, and adapted
to the individuals on a particular project team” to make the most of each
individual’s and each team’s strengths [72]. Indeed, adapting the process
is a central feature of Cockburn’s Crystal methodologies [69].

Like the previous definition, this definition does not provide guidance
on how to determine if new practices are agile or not.

Agility as a general concept

Defining agility as a general concept considers the purpose of agility, rather
than focusing on operational matters such as methodologies and practices
[74]. The purpose of software, like any product or service, is to provide
value in some form to the customer; delivering value is the reason for the
production of the software, and agile is a means to that end. The first
Agile Manifesto principle recognises this: “Our highest priority is to satisfy
the customer through early and continuous delivery of valuable software”
[28]. In an unpredictable postmodern world, determining how to maximise
value (or how to deliver value the most efficiently) cannot be determined
in advance, so software development – specifically, agile software develop-
ment – benefits from an empirical process control model (section 2.1). An
empirical process allows a development team to respond to the changing
environment [230] by involving the customer in the development process.
Managing change is one of the core values of the Agile Manifesto: “[We
have come to value] responding to change over following a plan” [28].

Ultimately, the purpose of agile software development’s values and
principles (such as those defined in the Manifesto) and practices (such as
those defined in specific agile methodologies) is to support this need to
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respond to change to increase the delivery of customer value.
Various Manifesto authors have highlighted the importance of respond-

ing to change. Highsmith and Cockburn (2001) wrote that the ultimate
purpose of agility was “creating and responding to change” [118], and
explained that teams cannot be agile if they have long iteration cycles
(long periods between customer feedback). Creating change means that
agility encourages the customer to continually redefine the product so
that it provides them with more value – a process that is contrary to tra-
ditional plan-driven development methods. Responding to change means
that the product being developed is changed to take into account changing
requirements. The title of Williams and Cockburn’s paper, Agile software
development: it’s about feedback and change [230], echoed this purpose. “Em-
brace change” is also part of the title of Kent Beck’s original XP book [26].

A number of authors defined agility based on the need to adapt to
change [6, 74, 117, 133, 146]. For example, Highsmith (2002) defined agility
as:

“Agility is the ability to both create and respond to change in
order to profit in a turbulent business environment.” [117]

Highsmith also noted that agility is only an advantage when comparing
competitors – “a copper mining company doesn’t need to be as agile as a
biotechnology firm” – and that an agile organisation must balance struc-
ture and flexibility – “if everything changes all the time, forward motion
becomes problematic.” [117]

Conboy (2009) derived a similar but more extensive definition of agility
from first principles, considering the definitions of agility, flexibility and
leanness from other disciplines:

“[Agility is] the continual readiness of an ISD [information
systems development] method to rapidly or inherently create
change, proactively or reactively embrace change, and learn
from change while contributing to perceived customer value
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(economy, quality, and simplicity), through its collective compo-
nents and relationships with its environment.” [74]

As well as creating change and embracing (or responding to) change, this
definition includes learning from change so that a team adapts its process
to better manage change, to try to maximise the rate at which it delivers
customer value. In other words, improve both the product and the process.

Adolph (2006) used the ‘maverick fighter pilot’ tale of US Air Force
Colonel John Boyd to define agility:

“A project is agile if it is able to execute its reorienting and
action-taking cycle faster than the changes occurring in its envi-
ronment” [6].

Kruchten favoured this definition [146].
These general definitions of agility address the weakness of plan-driven

methodologies in unstable environments: because plan-driven methodolo-
gies are unable to welcome change during development, teams are unable
to provide full value to their customers.

This thesis uses a definition of agility that is derived from these general
concept definitions and reflects the benefit that empirical process develop-
ment methods provide:

DEFINITION OF AGILITY

Agility is a software development team’s ability to create change, re-
spond to change and learn from change so that it can better deliver
value.

The most important part of this definition is the ability to respond to
change. Creating change is pointless if the team cannot then respond to
that change, and learning from change means improving the ability of the
team to respond to change.

Lean development is considered agile by this definition. Not all authors
include lean as an agile methodology: Coplien and Bjørnvig (2010) [79],
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for example, outlined what they considered the differences were (listed in
Table 2.1).

This definition of agility also means that software engineers do not
necessarily have to use one of the recognised agile methodologies (section
2.2.2) to be agile. Indeed, software engineers and teams who have never
even heard of the term ‘agile’ can be agile if they satisfy this definition.

2.2.4 The agile feedback cycle

Responding to change requires agile development methodologies to have a
feedback loop in which the customer provides feedback to the development
team about any required changes to the product, and then addresses those
required changes. A shorter period means a team is more agile; a longer
period means less agility – Highsmith and Cockburn (2001) noted that
teams cannot be agile if they have long iteration cycles [118], and the
central theme of Ries’s Lean Startup book is reducing the length of the
feedback cycle [192]:

“We need to focus our energies on minimising the total time
through this [build – measure – learn] feedback loop.” [192]

Lean development also stresses the importance of many short feedback
(learning) cycles [150, 184].

Boehm’s well-known studies show that the cost of fixing a defect rises
exponentially the longer the period until detection [34]; Ambler used this
to demonstrate the effect that detecting requirements defects (that is, re-
sponding to requirements that change or are otherwise not what there were
initially thought to be) sooner has on cost [12], using the model shown in
Figure 2.3. In this figure we can compare the extremes of customer feedback:
the cost of finding requirements defects when using active stakeholder par-
ticipation (frequent feedback) in the bottom left is orders of magnitude
lower than the cost of finding requirements defects when using traditional
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acceptance testing (no feedback until development has been completed),
top right.

Figure 2.3: The effect of the feedback cycle on the cost of finding defects,
after Ambler [12]

With iteration-based agile methodologies such as XP and Scrum, the
period of the feedback loop is the iteration length, with acceptance testing
at the end of each XP iteration [27] and sprint reviews at the end of each
Scrum sprint [199]. XP suggests a one- to three-week iteration [27], while
Scrum prefers one to four weeks [83, 201]. In lean development, acceptance
tests are run throughout development [184].

It is not enough to simply increase the frequency of feedback and make
more emergent decisions to become more agile: the team must also be able
to effectively respond to change, as described below.
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2.2.5 Responding to change

A team can more effectively respond to change if it can make decisions
more rapidly and reduce the elapsed time between making a decision and
seeing the result of that decision [72].

Many of the practices, principles and values of the agile methodologies
support the teams in reducing this cost and time. For example, these
activities or features reduce the feedback cycle time:

• Continuous integration [27] allows the team to immediately see how
each developer’s work affects the application, reduces the time re-
quired to find flaws, and gives the opportunity for more frequent
customer feedback.

• A customer representative being a part of the team [200] allows collabora-
tion while defining and prioritising requirements, and the opportu-
nity for more frequent demonstrations.

• Test driven development [27] allows testing to be completed faster, find
problems earlier and hence provide the opportunity for earlier cus-
tomer demonstrations and earlier feedback.

These activities or features improve the team’s ability to respond to
change:

• Minimising documentation and simplicity [28] helps the team to better
respond to change by reducing the unnecessary non-code ‘baggage.’

• Simplicity is essential [28] means simpler code and less waste, making
the system easier to change.

• Collective ownership of code [27] means better code quality and better
knowledge of the system; anyone can make changes without having
to wait for the single owner of the code to become available.

These activities or features support the more efficient delivery of value:
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• Prioritise requirements [27, 199] to ensure the most valuable require-
ments are implemented first.

• Eliminate waste [79, 184] to ensure that the team works as efficiently
as possible.

• A people-focused, collaborative culture [72] to reduce the feedback cycle
by moving people physically closer together, replacing written doc-
umentation with face-to-face communication, improving the team’s
‘amicability’ and shortening the time required to relay information.

While these practices and activities increase agility, it should also be
noted that reducing the feedback cycle can have a cost: where a team sits on
the agility scale is a trade-off that depends on how much they can benefit
from this cost. For example, pair programming is an important practice
of XP [27], but it has the cost of two developers sitting at one keyboard.
An effective agile team will reap the benefit of this additional cost, but
an ineffective team may have the personnel department frowning at the
wasted costs. Revisiting Adolph’s and Highsmith’s definitions of agility
[6, 117] in section 2.2.3, it is sufficient for an agile team to respond to change
faster than the environment can change: in a slow-changing environment,
being highly agile is unnecessary.

2.2.6 Learning from change

Part of the definition of agility is learning how to better respond to change:
adapting the process or methodology so that the team can respond to change
faster, and hence deliver value more efficiently. To adapt, teams must be-
come learning organisations [203] that can judge their environment, and
change their processes to fit their context [116, 120]. This is sometimes
referred to as the learning loop [116]. Highsmith (2000) called learning the
adaptive software development cycle, distinguishing it from a normal feedback
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cycle because of its complex human interactions [116]. Most agile method-
ologies include the ability to adapt the process. For example, XP encourages
local adaptation: “Adopting XP does not mean I get to decide how you
develop” [27]. Lean development refers to adaptation as kaizen [150], a
Japanese term meaning continuous improvement. Customising and adapt-
ing the process is a core element of the Crystal family of methodologies [69],
called on-the-fly tuning. Even Scrum, which has a very strict definition of
what can be called Scrum, requires developers to inspect and adapt [83, 216]
their process through the use of sprint retrospectives (as distinct from the
sprint review which is used to inspect and adapt the product), as long as any
changes to the process are contained within the Scrum framework [201].
(Scrum co-inventor Ken Schwaber recognised that the Scrum framework
could limit a team’s agility and proposed the name ‘Scrum and’ to signify
versions of Scrum adapted beyond the defined Scrum framework [198].)

2.3 Software architecture

Software design is “the activity of determining what the parts of some larger
whole should be, and how those parts will fit together” [223]. Most authors
describe two levels of design in a system: the architecture – the whole-
system design decisions – and the design [91, 205] – the decisions about the
algorithms and data structures. The distinction between architecture and
design is not always clear. Reeves (1992) described the levels of design as
overlapping [190] , and Hollander (2010) described it as a continuum:

“It is futile to try to distinguish between architecture and design!
It’s a continuum, the coarser being architecture, the fine-grained
being design.” [123]

This section defines software architecture and describes some of its
characteristics.
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2.3.1 Defining software architecture

There are many definitions of software architecture [208], none of which is
universally accepted [97]. Definitions vary according to their focus, from
those that have a technical focus, to those that consider the value of the
decisions made, and to those that take a practical perspective by defining
architecture according to its impact on the development team. Examples of
each type are discussed below.

Technical definitions

Technical definitions define software architecture by specifying an architec-
ture as the high-level design of the system being built. These definitions
usually mention the software system’s high-level concepts or structure and
include the specification of its elements or components, and how those
elements communicate or interact. One such definition is the popular (but
recently superceded) ANSI/IEEE Std 1471:2000 definition:

“[Software architecture is] the fundamental organisation of a
system embodied in its components, their relationships to each
other, and to the environment, and the principles guiding its
design and evolution.” [126]

There are many similar and related definitions [25, 138, 205, 207]. These
definitions are independent of the designers and development team, and
have the disadvantage of potentially meaning different things to different
people according to their context [61]. Fowler (2003), quoting colleague
Ralph Johnson, even described these definitions as ‘bogus’ because “there
is no highest level concept of a system. Customers have a different con-
cept than developers. Customers do not care at all about the structure of
significant components.” [97]

Ambiguity may be introduced because larger systems are built from
smaller subsystems [48, 77], each of which have their own fundamental
organisation or high level structure.
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The 1471 definition has been superceded by the recent ANSI/IEC/IEEE
Std 42010:2011 definition:

“[Software architecture is] the fundamental concepts or prop-
erties of a system in its environment embodied in its elements,
relationships, and in the principles of its design and evolution.”
[127]

– which addresses a number of concerns about the 1471 definition. For
example, the term ‘concept’ introduced in the new definition implies an
architecture requires human understanding.

Value-based definitions

Another type of definition of architecture takes a value-based approach.
Booch (2008) referred to the cost of making changes to design decisions:

“A system’s architecture is defined by its significant design
decisions, where in my experience, ‘significant’ is measured by
the cost of change.” [46]

Architecture decisions are ‘significant’ because they have wide reaching
effects, and correcting defects requires large amounts of effort [1, 175]. This
type of definition implies that architecture decisions should be made as
early as possible and that changes to architecture should be avoided or
minimised.

Fowler (2003) quoted a similar definition:

“Architecture is the set of design decisions that must be made
early in a project.” [97]

– and Brown (2013) summarised architecture decisions as those decisions
that cannot be reversed without considerable effort:

“...they’re the things that you can’t easily refactor in an after-
noon.” [57]
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The extent of the cost of such architectural change has been quantified
by Boehm (2002):

“For very large systems, our Pareto analysis of rework costs [...]
indicated that the 20 percent of the problems causing 80 percent
of the rework came largely from “architecture-breakers,” such
as architecture discontinuities to accommodate performance,
fault-tolerance, or security problems, in which no amount of
refactoring could put Humpty Dumpty back together again.”
[36]

The cost of change is an important consideration in agile software
development, because agile encourages change (section 2.2.3).

Practical definitions

Definitions with a more practical focus define architecture by its relation-
ship with the team rather than its role in the system. Fowler, again quoting
Johnson, provided a definition that gives practical guidance to the develop-
ment team by describing architecture as the senior team members’ shared
understanding of the system design:

“In most successful software projects, the expert developers
working on that project have a shared understanding of the
system design. This shared understanding is called ‘architec-
ture.’ This understanding includes how the system is divided
into components and how the components interact through
interfaces.” [97]

Their definition also refers to the level of detail that is important to the
system being built:

“These components are usually composed of smaller compo-
nents, but the architecture only includes the components and
interfaces that are understood by all the developers.” [97]
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In other words,

“architecture is about the important stuff. Whatever that is.”
[97]

Kruchten, Obbink and Stafford (2006) presented a similar definition that
refers to the properties that are best considered at the system level:

“[Software architecture involves:]

• “the structure and organization by which modern system
components and subsystems interact to form systems, and

• “the properties of systems that can best be designed and
analyzed at the system level.” [148]

These definitions can include architectural decisions that are, by nature,
low-level and embedded within the code [91], rather than being purely
high-level. They can also include decisions such as the programming
language which would not be considered architectural using a technical
definition [97].

Boehm (2011) included all planning activities in his definition of archi-
tecture:

“ ‘Architecting’ refers to [...] the overall set of concurrent front-
end activities (site surveys, operations analysis, needs and op-
portunities analysis, economic analysis, requirements and ar-
chitecture definition, planning and scheduling, verifying and
validating feasibility evidence) that are key to creating and sus-
taining a successful building or software project.” [37]

– although this research does not consider these other activities.
For the purpose of this research, a definition that considers the economic

impact of architecture and the impact of the architecture on the team (and
vice versa) is most useful, because the cost of change and the role of the
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development team are highly pertinent to agile software development. This
research is not investigating specific architecture decisions or the technical
aspects of architecture, and therefore does not require a definition that takes
a technical perspective.

The definition of software architecture used in this thesis therefore
considers both the impact of change and recognises the role of the team:

DEFINITION OF SOFTWARE ARCHITECTURE

A software architecture is the set of design decisions of a software
system that the expert developers of the development team need to
understand, and are difficult (and hence expensive) to change during
development.

2.3.2 Architecture artefacts

An architecture is a set of decisions, rather than a tangible product:

“[An architecture] is in the human mind. An architecture may
exist without ever being written down.” [127]

Artefacts may be used to record or express those decisions, whether they are
in textual form, are hand-sketched, use a formal architecture description
language such as UML, or use some combination of those forms.

Artefacts are the physical output of the architectural design process:
they may include the description of the documentation of the architecture
and the decision-making process that lead to the architecture [50]. This
may include models of the system to be built and documentation such as
the software architecture document (SAD):

Software architecture models

Architecture models are abstract representations of the system, and can
range from the informal use of paper, cards or whiteboard diagrams
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through to a rigorous and formal process using a specialised modeling
language and software. Ambler (2009) compiled an extensive list of model
types [19]; one popular formal modeling language is the Unified Modeling
Language (UML), a standardised modeling language originally developed
by Rumbaugh, Jacobson and Booch [196], while Kruchten’s 4+1 view model
[137] creates four (plus one) views that represent the system from different
perspectives.

Software architecture documents (SADs)

SADs provide a written record of the architecture, and may include the
requirements specifications, an explanation of the drivers of the architecture
(justification of the decisions made) and justification of how the architecture
satisfies the drivers [50, 54]. The SAD therefore has a broader scope than
an architecture model.

The requirements specification is a description of the behaviour of the
system, and includes both functional requirements (what the system is to
be built for) and quality attributes (or architecturally significant requirements,
ASRs) [50]. ASRs are discussed further below in section 2.3.4.

The SAD may also provide guidance to the development team in the
form of principles and conventions. For example the architecture may
define strategies for dealing with error handling, memory management
and data storage, as described by Booch (1994): “it is important to explicitly
design these policies; otherwise we will see developers inventing ad hoc
solutions to common problems, thus ruining our strategic architecture
through software rot.” [43]

Bosch (2000) gave three other uses for an architecture artefact [50]:

• early assessment of the quality attributes: the artefact allows the design
to be assessed to determine whether or not quality attributes (or ASRs)
are met. The relationship between architecture and ASRs is discussed
in more detail in section 2.3.4.
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• communication between stakeholders: the artefact allows trade-offs to be
discussed and the architecture to be agreed upon.

• the artefact defines the shared components for product lines.

2.3.3 The human aspect of architecture

The definition of architecture at the end of section 2.3.1 is notable in that
it refers to the developers’ understanding of the design decisions and
thus recognises the human and social aspect of architecture. People design
architectures – quoting Booch (2010):

“Architecting is a social issue because people conceive of, build,
evolve, and use such systems.” [49]

– and it is people who decide what is considered architectural. According
to Fowler (2003):

“...architecture is a social construct (well, software is too, but
architecture is even more so) because it doesn’t just depend on
the software, but on what part of the software is considered
important by group consensus.” [97]

Similarly, Buschmann and Henney (2013) described architecture as
an expression of knowledge [61], and the recent ISO/IEC/IEEE 42010
definition, significantly, includes the word ‘concept’, implying human
understanding:

“[Architecture is] the fundamental concepts or properties of a
system in its environment embodied in its elements, relation-
ships, and in the principles of its design and evolution.” [127]

Taylor (2007) noted architecture is more a product of the members of
the development team themselves and human factors than the product of
processes, methods or frameworks:
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“The design of software architecture by professional software
engineers and architects (or the quality of software architecture)
is driven more by an individual designer or design leader than
by individual or collective adherence to externalised methods,
processes or frameworks.” [218]

and:

“Secondly, in many cases (in the author’s experience) software
design outcomes are shaped as much by factors and forces in the
immediate design situation as they are by objective constraints
(such as problem requirements, platform or product constraints).
This second observation suggests that ‘human’ factors have as
much weight in the design of quality software architecture as
do methodological or technological ones.” [218]

The human factors that affect architecture design include the back-
ground, experience, intuition and judgement of the architects [23, 25]. In-
deed, Booch (2007) and Fairbanks (2010) noted that a particular system may
have more than a single correct architecture [45, 91], and two architects
are likely to produce different architectures for the same problem with the
same boundaries [25].

2.3.4 The importance of architecture

An important characteristic of architecture is that it is critical to the soft-
ware’s ability to satisfy the system’s architecturally significant requirements
(ASRs)) [66, 177]. ASRs consist mainly of non-functional requirements,
or quality attributes, such as performance, security, scalability and main-
tainability [50, 65, 90, 91], which are very difficult to implement during
development. The Software Engineering Institute (SEI) noted that:

“The architecture is the primary carrier of system qualities, such
as performance, modifiability, and security, none of which can
be achieved without a unifying architectural vision.” [207]
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For example, an architecture may use a layered style for maintainability
or portability, or it may use a particular database technology for efficiency
[20].

Having an architecture that is not well designed is a major source of
technical risk [138], as the development teams work around the poorly
designed architecture to meet ASRs. Architecture planning reduces techni-
cal risk to a level that is acceptable to the team and stakeholders [91, 182];
without an architecture explicitly designed to meet the required ASRs, it is
difficult to determine if the ASRs can be met without testing the completed
system [50].

On the other hand the functional requirements have a much smaller im-
pact on the architecture, and are largely left to the developers to implement
[90]. Fairbanks (2010) described quality and functional requirements as
being largely orthogonal, because architecture and functionality can be
mixed-and-matched to a certain extent [91]. He used the example of a
system that may be built with the same functionality using either a 3-tier
architecture or as a peer-to-peer system, both of which offer quite different
qualities. Booch (2007) used a metaphor of a lift [45]: it does not matter to
the passenger whether the lift is software-enabled or entirely electrome-
chanical – or even powered by a team of well-trained elephants – as long
as the passenger is delivered to the correct floor in a suitable timeframe.

Other reasons for having an well-defined architecture [50, 91, 138] in-
clude providing a framework for development, communicating and pro-
viding a common understanding between stakeholders, and enabling reuse.
Architecture can also be used to provide a basis for project management
activities [138], such as cost estimation and risk management [58].

While Broy and Reussner (2010) described architecture as being “valu-
able and useful in nearly all phases of the software lifecycle” [58], having a
well-defined architecture is more important in some situations than others.
Both Shaw and Garlan (1996) [205] and Fairbanks (2010) [91] noted that
architecture design becomes more of a significant issue as the size and com-
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plexity of the software system increases. Fairbanks described five specific
cases when architecture is important [91]:

• Small solution space – when it is difficult to come up with a solution
that works

• High failure risk – when the probability or impact of failure is high
(such as medical equipment)

• Difficult quality attributes – when the quality attributes (ASRs) are
difficult to meet

• New domain – when the architect team has little experience in the
domain of the software

• Product line – when the architecture is going to be used in a number
of products.

2.4 The balance between architecture and agility

In section 2.2.3, agility was defined as the ability to respond to changing
requirements to better deliver value:

Agility is a software development team’s ability to create change,
respond to change and learn from change so that it can better
deliver value.

In addition to the period of the feedback loop affecting agility (section
2.2.4), the planning phase – how much time is required between project
kick-off and development starting – also affects agility. Figure 2.4 shows
the feedback cycle with the planning phase.

The planning phase, often called iteration zero or sprint zero [153, 174],
usually includes architecture design. In section 2.3.1 architecture was
defined as the design decisions that affect the system as a whole and
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Figure 2.4: The feedback cycle, including planning. The arrows show the
order of the activities.

are difficult to change; because of this, architecture design decisions are
generally made in this up-front phase, along with other planning activities.
In plan-driven development, all architecture design takes place up-front.

The term ‘up-front’ refers to architecture design effort that takes place
before the implementation of functional requirements (‘development’) com-
mences. Up-front architecture design effort includes architectural activities
such as research, modelling and experiments, and includes any develop-
ment required to verify the architecture design. Verification may be, for
example, in the form of throwaway prototypes, in which code written does
not go into production, or skeletal systems, which do become production
code but provide minimal functionality (see section 2.4.2). Once develop-
ment has started for the purpose of implementing functional requirements
rather than verifying architectural decisions, the up-front phase is complete
and the development phase has begun. Any architectural decisions made
during this phase are emergent decisions (see the following section).

Boehm (2002) described agile methods as fitting on “a spectrum of
increasing level of emphasis on plans” [36]. Figure 2.5 illustrates this
spectrum, with no planning, such as hacking or cowboy coding (referring
to undisciplined development with no process and no planning [197]), at
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one extreme and the big design up-front with an ironbound contract at the
other extreme.

Figure 2.5: The planning spectrum, after Boehm (2002) [36]. Unplanned
and undisciplined hacking occupies the extreme left, while micromanaged
milestone (‘inch-pebble’) planning occupies the extreme right.

The more planning and up-front architecture design a team does, the
longer it takes before the customer is able to start providing feedback, and
the less agile the team is. At the other extreme is the totally unplanned
design, the no up-front design, which agile software engineers may equate
with being agile [1, 174], because they see architecture and agility as an
‘all or nothing’ dichotomy: architecture design belongs to plan-driven
development methodologies [1, 174]. Instead of up-front planning, these
agile software engineers rely on refactoring to maintain code quality.

There are two reasons software engineers may consider agile devel-
opment to be incompatible with architecture design: first, by definition,
architecture is difficult to change, and hence is difficult to change in re-
sponse to changing requirements, and second, because architecture has
little impact on the functional requirements, it appears to deliver little value
to the customer [142, 223], and hence is often given lower priority than
functionality. Booch (2007) described software architecture as being largely
irrelevant to its end users [45].

The no up-front design approach is a naive reaction according to Hol-
lander (2010) [123]. The no up-front design approach results in an emergent
architecture in which all architecture decisions are emergent; the design
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evolves from the “aggregation of a bunch of ad-hoc tactical decisions” [96]
– potentially leading to a big ball of mud architectural pattern [94] or an
accidental architecture [44] – rather than being explicitly thought-out and
designed up-front. An emergent architecture is typically one where all
decisions are implicit – the decisions are made without any conscious ef-
fort or decision-making process and there is no document that describes
design, but rather the code needs to be inspected to discover the design
[223]. Problems caused by this aggregation of ad-hoc decisions can cause
projects to not satisfy their ASRs and hence gradually fail – in the words of
Booch (2009), “die the death of a thousand cuts” or be “nibbled to death by
ducks” [47]. If not a straight out failure, they leave a project exposed to the
risk of missed milestones and exceeding budget constraints.

Cowboy coding is an example of development that produces an emer-
gent architecture. Software built by cowboy coders is frequently unmain-
tainable and of poor quality [78]. Cowboy coders ultimately spend more
time fixing code [78], making it more difficult and ultimately potentially
impossible to respond to change, no matter how often the customer pro-
vides feedback. In this sense, cowboy coding certainly cannot be described
as being agile.

Thus while a customer may be able to provide feedback earlier, less
design does not necessarily make the team more agile.

The amount of planning an agile team requires is a balance or trade-off
between the two extremes: a team must do some architecture design to
ensure the team has sufficient architectural guidance for it to proceed with
development, but without premature commitment [48]. Further architec-
ture decisions are made during the iterative development as required.

Finding this balance is not well understood. Agile methods are silent
on how to determine how much architecture design a team requires.

Section 2.4.1 introduces terminology for when architecture decisions
are made, and section 2.4.2 discusses various methods used in practice for
recommending how much up-front design a team should do.
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2.4.1 When architecture decisions are made

Architecture decisions are often made up-front, but may also be made after
development begins; architecture decisions made after development begins
comprise an evolving architecture. An evolving architecture consists of
emergent decisions, in which the architecture emerges as architecture design
decisions are made, and refactored decisions, in which previous architecture
decisions (whether up-front or emergent) are changed.

Whether up-front or emergent, architecture decisions may be either ex-
plicit (the decisions are consciously or intentionally defined or documented
using architectural design processes) or implicit (the decisions are made
without any conscious effort or decision-making process, in isolation from
other decisions and without regard to the overall architecture) [44, 46].
Refactored decisions are always explicit.

The relationship between up-front, evolving and emergent decisions
and explicit and implicit decisions is shown in Figure 2.6.

2.4.2 Architecture and agility in practice

There are a number of proposed schemes for architecture design in agile
development, which are a compromise between plan-driven big up-front
designs and no up-front emergent designs. Many of these schemes allow
software engineers to do just enough design to advance development with-
out premature commitment [48]. In general, the planning of the project
includes some up-front design [153, 174], with ongoing architectural re-
finement during the iterative development. Examples of schemes that
implement architecture in agile development are described below.

Even when up-front design is included, there is little guidance as to
how much architecture to design [1].

XP and the system metaphor: Architecture in an XP project is replaced by
the system metaphor, which is a ‘story’ on the system as a whole [26, 163], and
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Figure 2.6: Relationship between up-front, evolving and emergent deci-
sions, and explicit and implicit decisions. Arrows show subsets of decisions.
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is used to ensure that everyone on the team has a coherent understanding
of what they are building.

The system metaphor is poorly understood and frequently ignored in
XP [220]. XP creator Kent Beck omitted the system metaphor from the
second edition of his book [27], with no replacement practice. It is now
often known as “the lost XP practice” [89].

The architecture spike: An architecture spike is an investigation or exper-
iment that allows the software engineers to explore an unknown aspect
of a requirement or user story, so that they can determine a satisfactory
solution and estimate how much time to allocate to it [181]. A spike is often
a prototype that will be thrown away, built with just enough detail for the
software engineers to obtain a solution to the unknown.

The architecture spike will often occur during iteration zero, and can
lead to an architecture in the form of, for example, a system metaphor [18]
or a walking skeleton [181] (both described elsewhere in this section).

Risk-based: Fairbanks (2010) proposed a risk-based approach [91] where
the architect evaluates and ranks the developmental risks, and mitigates
them in order of rank. This approach uses three steps: identifying risks,
mitigating the risk through architecture design, and evaluating the level of
risk reduction.

Architects only design when there is an associated risk. They should
focus on project-threatening risks and not waste time on low-impact risks
and low-impact techniques:

“When you are unconcerned about security risks, spend no time
on security design. However, when performance is a project-
threatening risk, work on it until you are reasonably sure that
performance will be okay.” [91]
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Agile modeling: Agile modeling (or ’Agile Model Driven Development’)
is an agile methodology that uses models to support architecture design
[18]. Agile modeling requires “just enough high-level modeling at the
beginning of a project to understand the scope and potential architecture of
the system” [18], with additional modeling at the start of each subsequent
iteration. The initial modeling takes place in iteration zero, and its aim is to
give the developers a basic understanding of the high-level requirements
and of a potential architectural solution [18]. The length of iteration zero
depends on the size of the project.

Real options: ‘Real options’ theory lets developers delay decision-making
(and hence design) until more information is known [32, 161]. Based on this
is ‘responsibility-driven architecture’ [32] in which architecture decisions
are mapped out in the order in which they need to be made, from up-
front to late in development. For external parties that need sign-off on
the architecture (for example, for assurance the application was developed
with due process) it proposes incremental sign-off that follows the decision
making. Real options assume there are three decisions that a team can
make: “a ‘right decision,’ a ‘wrong decision,’ and ‘no decision’ ” [161]. If a
team does not have enough information to know whether a decision is the
right one or the wrong one, the best decision is to not make that decision
until information (gathered by the team during development) is available
and makes the correct decision clear.

Related to delaying decisions is including a range of options for architec-
tural direction, which can be narrowed down as development progresses
and solutions become apparent [156].

Skeletal system: The skeletal system (walking skeleton [71] or vertical slice
[123]) is the first incarnation of the system that links the main architec-
tural components. The skeletal system would typically implement a small
amount of end-to-end functionality [71] that acts as a frame for further
development.
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Architectural backlog: Madison (2010) also proposed a scheme that uses
an initial architecture phase and an ongoing architecture development
phase, with the architects being part of the ongoing iteration process [156].
He maintains separate logical backlogs for architectural concerns and de-
velopment concerns.

2.4.3 Architecture, agility and context

The methods for designing architecture in agile development methodolo-
gies described above all attempt to reduce the level of up-front design but
still maintain the benefits that architecture brings. Many of these methods
are silent on how to identify the ASRs that should be included in iteration
zero, how to perform incremental architecture design, and how to validate
architectural features [1]. Determining the most appropriate amount of
architecture is not a simple matter and depends on context [1] – which
includes, among other things, the organisation, the domain, the project size,
how stable the architecture is and the business model. Possible factors that
make up the context are shown in Figure 2.7.

A focus of this research is to investigate what the architecture trade-off
depends on, and when architecture design takes place.

2.5 The research objective

There has been very little empirical research on the relationship between
software architecture and agile development to date [52]. Just prior to the
start of this research, Breivold et al. published the results of a survey of the
literature and concluded that studies have been small, diverging, and in
some cases, performed in an artificial setting [52]. Dybå and Dingsøyr also
noted the need for more knowledge of software development in general,
particularly through empirical studies [88]. This lack of research does
not mean that it is not an important issue: at the XP2010 conference in
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Figure 2.7: The factors that make up a project’s context, after Abrahamsson,
Ali Babar and Kruchten (2010) [1] and Kruchten (2013) [146]

Norway, how to determine how much architecture design is enough was
rated as the second-equal most burning question of more than sixty that
agile practitioners face [99] (Table 2.2).

This research will help to address this gap. The goal of this research is
presented as an objective rather than as a hypothesis; defining a hypothesis
is very difficult due to the paucity of prior research.

RESEARCH OBJECTIVE

The objective of this research is to explore how much effort agile soft-
ware teams put into architecture design, with a focus on how teams
determine which architecture decisions to make up-front and what
influences those decisions.

This research will address the question “how do agile teams determine
how much architecture to design up-front?”
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Priority Research issue

1 Agile and large projects

2= What factors can break self-organisation?

2= Do teams really need to always be collocated to collaborate
effectively?

2= Architecture and agile – how much design is enough for
different classes of problem?

5= Hard facts on costs of distribution

5= The correlation between release length and success rate

5= What metrics can we use with minimal side-effects?

8= Distributed agile and trust – what happens [at] around 8–12
weeks?

8= Statistics and data about how much money/time is saved
by agile

8= Sociological studies – what were the personalities in success-
ful/failed agile teams?

Table 2.2: The top ten burning research questions faced by practitioners,
from Freudenberg and Sharp (2010) [99].
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Chapter 3

Research design

“We think that larger studies, based on defined metrics, performed in

the industrial domain, are necessary in order to increase our under-

standing of how agile and architecture interrelate.” [52].

This chapter presents the research design. Section 3.1 discusses the
research position and perspective, and determines a qualitative strategy is
the most appropriate. Section 3.2 presents a number of possible qualitative
research strategies, selecting grounded theory as the most suitable. Section
3.3 outlines the research methodology: the techniques and practices of
grounded theory. Section 3.4 discusses the role of the researcher, and
section 3.5 closes the chapter with a discussion on how ethical issues and
threats to validity were treated.

3.1 Adopting an appropriate research strategy

There are a number of considerations that must be taken into account before
selecting an empirical research strategy [113]: the relationship between
theory and research, epistemological issues, ontological issues, and issues
of qualitative versus quantitative research [59]. This section describes these
considerations.

49
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3.1.1 Relationship between theory and research

Two approaches can be taken when considering the relationship between
theory and research: research can either be deductive, in which the research
is used to prove (or disprove) a hypothesis or hypotheses, or it can be
inductive, in which a theory is derived from the research [59] (Figure 3.1).

(a) Deductive approach (b) Inductive approach

Figure 3.1: Deductive and inductive approaches to the relationship between
theory and research, after Bryman (2008) [59]

The goal of this research is in the form of an objective (section 2.5), noting
that defining a hypothesis would be difficult. An inductive approach is the
most appropriate, with theory being developed from the research guided
by the objective. The scope of the objective is very broad, and hence the
theory is likely to be a general macro-level (high-level) theory [81] that
explains broad, overall insights into many phenomena [227].

3.1.2 Epistemological considerations

Epistemological issues concern the question of what is regarded as accept-
able knowledge in a discipline [59] and how theory is defined. A central
issue to research of this nature is whether the social world (based on the
experience, knowledge and judgement of agile team members) can be
studied using the same principles and procedures as the natural sciences.
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The three main epistemological positions are positivism, realism and inter-
pretivism. Positivism is the position that believes knowledge is obtained
using measurable observations from a neutral perspective [64, 168], and
is typically used in scientific research when proving hypotheses. Bryman
(2008) described positivism as entailing five principles:

1. “Phenomenalism: only phenomena and hence knowledge
confirmed by the senses can genuinely be warranted as
knowledge.

2. “Deductivism: the purpose of theory is to generate hypothe-
ses that can be tested and that will thereby allow explana-
tions of laws to be assessed.

3. “Inductivism: knowledge is arrived at through the gather-
ing of facts that provide the basis for laws.

4. “Objective: Science must (and presumably can) be con-
ducted in a way that is value free.

5. “There is a clear distinction between scientific statements
and normative statements (implying a norm or a standard)
and a belief that the former are the true domain of the
scientist.

“This last principle is implied by the first because the truth or
otherwise of normative statements cannot be confirmed by the
senses.” [59]

From these principles it can be seen that positivism has elements of both
deductive and inductive research.

Related to positivism is realism, which believes that there is a reality
that is separate from our observations or descriptions of it [59]. Realism
can be one of two types: empirical realism or critical realism. Empirical
realism asserts that reality can be understood through the use of appropriate
methods, and critical realism asserts that understanding the real world
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requires the identification of the structures that generate that world. The
identification of the structures allows researchers to change them. Unlike
positivism, critical realism accepts that the structures may not be detected
by the senses.

In contrast to positivism and realism is interpretivism, which is based on
understanding and meaning, and interpreting the data and its context. The
key difference between interpretivism and positivism is the former requires
the research to interpret and understand the behaviour of the actors from
their perspective [64], rather than the neutral perspective of the latter. If
positivism tries to explain human behaviour, then interpretivism tries to
understand human behaviour (the philosophy of hermeneutics).

In the context of this research, the effort an agile team puts into architec-
ture design cannot be mapped out in advance independently of the team:
architecture design depends on the experience, knowledge and judgement
of the architects and the development team, the way that the agile team
works together and how it follows the agile philosophy and principles, and
what the team members themselves believe the appropriate amount of ar-
chitecture for the minimum effort will be for their particular circumstances.
This research will investigate and interpret these factors and related data
to determine how much effort teams put into up-front architecture design,
and what affects that effort, and thus requires an interpretivist perspective.

3.1.3 Ontological considerations

Ontology relates to the nature of social world: whether the world is external
to those participating in the research, or whether they are a part of the
world. There are two ontological positions: objectivism, in which social
entities are considered objective entities that have a reality external to the
participants, and constructivism, in which social entities are considered
social constructions built up from the perceptions and actions of the partici-
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pants [59]. Objectivism is a position where phenomena are independent
of the actors; they are beyond our reach or influence. For example, an
organisation may be considered an object that has rules and regulations,
procedures and structure. The individuals within that organisation con-
form to the organisation’s rules, its hierarchy and its social order. The
organisation’s features are independent of the individuals within it.

Constructivism, on the other hand, refers to social phenomena that are
defined by the actors, and continue to be shaped by them. The entities in
this research are agile software development teams. Agile teams are not
plan-driven; they are self-organising and self-committing (see section 2.2):
the work to be completed by the team is decided by the team. Therefore
the teams and hence the systems they are building are shaped by the
team members, and evolve with them as their skills develop and team
members come and go. The success of the teams reflect the abilities and the
performances of the team members.

A constructivist ontology is therefore the most appropriate for this
research.

3.1.4 Qualitative and quantitative research

Empirical research can be categorised into two types: qualitative and quan-
titative. The data from qualitative research comes from words, and the
data for quantitative research comes from numbers – the quantification and
measurement of data and analysis [187].

Qualitative and quantitative research strategies are strongly linked to
the considerations discussed above – research and theory, the epistemologi-
cal perspective and the ontological position [59], as summarised in Table
3.1.

This research is inductive, uses an interpretivist position and construc-
tivist ontology, and therefore a qualitative strategy is the most appropriate.
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Quantitative Qualitative

Principal orientation to the

role of theory in relation to re-

search:

Deductive;

testing of theory

Inductive;

generation of theory

Epistemological orientation: Natural science model;

in particular positivism

Interpretivism

Ontological orientation: Objectivism Constructivism

Table 3.1: Fundamental differences between quantitative and qualitative
research strategies [59]

3.2 Adopting an appropriate research strategy

There are a number of popular qualitative research strategies. These in-
clude action research, in which the solution to a problem of the participant is
developed and tested with that participant, case study research, a detailed
and intensive analysis of a small number of cases, ethnography, which re-
quires researcher participation for an extended period of time, and grounded
theory, which generates theory out of the research data using iterative data
collection and analysis.

This section describes these strategies and their suitability for this re-
search. Grounded theory is chosen as the most appropriate strategy.

3.2.1 Action research

Action research is a strategy that sets out to influence or change the subject
of the research [194]. The purpose is often to develop a solution to a problem
that the participant has, in a collaboration between the researcher and
participant. The steps of action research are defining a concern, planning a
change to address that concern, implementing the change, then observing
the effects of the change, and repeating if necessary [135].
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While action research would be a suitable strategy for researching archi-
tecture design in agile development, it does not meet the broad, high-level
goals of the research as defined by its objective. Action research requires a
significant time commitment from the participant or participants, which is
often a difficulty for participants working in commercial organisations.

Therefore action research was considered not to be suitable for this
research.

3.2.2 Case study research

Case study research is used when the researcher is looking for a deep
understanding of the phenomenon being explored [232], and involves
detailed and intensive analysis of a small number of related cases [81, 194]
within a particular context (or situations, organisations or groups).

Case study research usually requires data collection from multiple
sources, such as observations, interviews, documents and audiovisual
material [80].

Case study research would be ideal for exploring in detail the effects of
team members on architecture design in one, two or three agile software
teams, but does not produce a high-level theory as suggested by the re-
search objective. Like action research, it also requires a significant time
commitment from participants, which again may be difficult for teams in a
commercial environment.

Case study research was therefore considered not to be the most appro-
priate for this research.

3.2.3 Ethnography

Ethnography requires researcher participation for an extended period of
time with a particular cultural group [80]. The purpose of ethnography
is to describe and interpret the culture, social structure and way of life of
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the group (its values, behaviours, beliefs and language) [187, 194]. The
researcher is immersed in the group, and participates in its daily activities.

While ethnography has been used successfully for agile software devel-
opment research [204], it is not considered suitable for this research because
like case study research, does not generate a theory, whereas the aim of
this research is a high-level theory that requires a much broader range of
groups.

3.2.4 Grounded theory

Grounded theory is a strategy that generates theory out of data rather than
describing phenomenon: “grounded theory discovers theory from data
systematically obtained from social research” [111].

Grounded theory is useful for exploring new areas of research or new
perspectives where there is no prior theory available, or when existing
theory is incomplete or was developed for different populations [81].

Grounded theory involves gathering data from a large number of indi-
viduals (authors suggesting various ranges from 20 to 60 may be sufficient
[80, 81, 212]), who have all experienced the phenomenon being explored,
and who are selected to ensure wide coverage of all the aspects of the
phenomenon.

Grounded theory has been described as the most popular strategy
for conducting qualitative research [11, 59, 219]. Despite its popularity,
grounded theory has a number of limitations. These include the need for
researchers to put aside their awareness of relevant related theories until
late in the analysis, the inability to tightly define the research question and
process to be used in advance (such as defining the sample size), the time
required to transcribe interviews, whether or not grounded theory actually
generates a theory, the vagueness of the grounded theory terminology
and procedures, an over-emphasis on coding data, and the presence of
competing grounded theory variations [11, 59]. These limitations are either
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accepted characteristics of grounded theory or can be addressed while
designing the research or performing the analysis.

Grounded theory was selected for this research because it most closely
fits the goals of the research. Grounded theory is also becoming increasingly
popular in the field of software engineering, and in particular agile software
development (for example, [7, 84, 93, 119, 160]). The prior work to develop
the use of grounded theory in software engineering means there are better
resources and support for its use in this field.

As well as being a research strategy, grounded theory also has a specific
set of procedures for systematically and rigorously deriving theory from
data (explained below).

3.3 The grounded theory methodology

Grounded theory is both a research strategy (described in the previous
section) and, unlike other strategies, a well-defined set of techniques and
procedures for systematically and rigorously analysing data and devel-
oping theory [64, 111, 187]. Grounded theory was developed in 1967 by
Glaser and Strauss [111] to address a lack of sociological theory-generating
qualitative research strategies at that time [64, 194].

The theory produced by grounded theory is “a set of integrated concep-
tual hypotheses systematically generated” [109] which produces a “formal,
testable explanation of some events that includes explanations of how
things relate to one another” [233]. The theory is not a description or repre-
sentation of experiences or perspectives [212]. A grounded theory can be
presented as a well-codified set of propositions or as a running theoretical
discussion [108]. Because it is based on observations (such as interviews), it
is described as being grounded in the data being studied. The theory is called
a substantive theory because it is ‘from the data’ – empirical [108] – and is
only appropriate to the study conducted. The theory can be extended with
further grounded theory research or combined with the results of other
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grounded theory research in other substantive areas, in which case it may
become part of a formal or general theory [10, 80, 104].

It is important that the researcher does not have a preconceived hypoth-
esis about the subject under study as this may bias and influence analysis,
leading the researcher to prejudge or ‘force’ the results and miss important
factors that may affect the emergent theory [9, 64].

Grounded theory is highly iterative: analysis gives direction to subse-
quent data collection to ensure a wide coverage of all variations.

3.3.1 Versions of grounded theory

There are broadly two versions of grounded theory, both originating in the
classic 1967 grounded theory book by Barney Glaser and Anselm Strauss
[111], and which arose from a disagreement between the two authors.
The first and original version of grounded theory, Glaserian (or classic)
grounded theory [109], is described in Glaser and Strauss (1967) [111] and
Glaser (1978) [104]. The second type, Straussian grounded theory [211], is
described primarily in Strauss and Corbin (1998) [213].

Glaserian grounded theory is a more emergent or ‘pure’ grounded
theory that Glaser claimed is more in line with grounded theory’s original
intention of generating substantive theory [194]. Straussian grounded
theory has a more defined procedure [7, 81] which puts more weight on
the researcher’s preconceived views [11], but which Glaser claimed gives it
more opportunity to force the results [105].

A third and less common version of grounded theory is Charmaz’s
constructivist grounded theory [64]. Constructivist grounded theory is
based on the belief that traditional grounded theory methodologies actually
take more of an objectivist ontological orientation, and hence takes an
orientation that is more constructivist [64]. Constructivist grounded theory
researchers believe that their role is to create the theory rather than be a
conduit for the research process (that is, ‘discover’ the theory [111]), and
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thus the theory is dependent on the researcher’s view.
While Straussian grounded theory often appeals to software engineering

researchers because of the more defined procedures [7], this research uses
Glaserian because of the experience and resources that this school’s agile
research group has in Glaserian grounded theory [10, 84, 119].

3.3.2 The research question

Grounded theory is an inductive research strategy, and hence does not
start with a specific preconceived question or hypothesis [104]. Glaser
considered preconceived problems as risking ‘filtering’ the data accord-
ing to those problems rather than letting the problems emerge from the
data (from the participants) [109, 212]. A question for a grounded theory
research proposal is therefore general; it is vague and global [212], and is
used to simply guide the area of research [104].

The objective for this research (defined in section 2.5 and repeated
here) is very general and is suitable for a grounded theory objective: “The
objective of this research is to explore how much effort agile software
teams put into architecture design, with a focus on how teams determine
which architecture decisions to make up-front and what influences those
decisions.”

3.3.3 Data collection

Data for qualitative research can be gathered in a number of ways, includ-
ing interviews, observations and documentation. Interviews are the most
common method of data collection in grounded theory [9, 194]; types of
interviews are structured interviews, semi-structured interviews and unstruc-
tured interviews [168].

Semi-structured interviews best suit this type of research because they
are based on a set of open questions that can be re-ordered or added to
investigate issues further and draw out more information if required [59,
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168]. Questions evolve as the emerging theory points to new directions for
investigation and emerging gaps [111].

Open questions allow the participant to respond however they wish,
according to their own knowledge and experience, enriching the data and
enabling new areas to be explored [59].

On the other hand structured interviews follow a strict set of closed
questions to ensure each participant receives the same stimulus, and are
often used for surveys. These methods are not considered suitable for this
research because they restrict the answers to choices the interviewer has
already selected and are not useful for exploring new areas. Unstructured
interviews proceed like everyday conversations [168] and provide the
interview participant with significant freedom to discuss the issues that are
important to them [82]. The interviewer provides limited prompting and is
guided only by a list of topics or issues.

It is impossible to determine in advance exactly how many participants
are required; data collection continues until theoretical saturation [111], at
which point the data yields no further insights. As noted above, sample
sizes typically vary from 20 to 60.

The participants in this research were agile practitioners who have ex-
perience with architecture design (such as architects and senior developers)
or have experienced the impact of architecture (such as team managers and
customers). I did not interview those without knowledge or awareness of
the architecture.

I selected participants through existing industry contacts, industry user
groups, email lists and snowball sampling [194]: participants were asked to
suggest further participants. The location of participants was not restricted:
I selected participants from New Zealand and other countries as travel
permitted.

The semi-structured interviews were all face-to-face rather than by
telephone or video conference to maximise rapport with the participants,
and so that body language could be observed and nuances picked up.
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Where possible, I interviewed more than one participant from a single
project to get multiple viewpoints.

Interviews covered seven broad topics: the participant, the agile project
and the development methodology to provide background, and the ar-
chitecture, success factors, problems faced, and other issues to uncover
architectural concerns.

Questions in early interviews were very general to ensure coverage of
all possible themes. As the research progressed and as themes started to
emerge that required further investigation through more specific questions,
the question schedule evolved and become more focused. This evolution
is discussed in more detail in section 4.1.2. The initial and final question
schedules are included in Appendix B.

All interviews were recorded and transcribed. While some researchers –
notably Glaser [104] – prefer not to record interviews, analysing the data
as they gather it, recording and transcribing ensured accuracy and com-
pleteness, and also allowed the participant to confirm the transcript was an
accurate record of the interview, which was part of the application to the
Human Ethics Committee for approval to do this research (see Appendix
A). All transcribing was completed personally, which, while time consum-
ing, meant that analysing could start immediately during transcription, as
suggested by Kvale (2009) [149], rather than having to wait for a third party
to finish transcribing.

3.3.4 Data analysis

This section describes the steps and processes of Glaserian grounded theory
that were used in this research. These steps are not prescriptive: they
provide an explanation of the methodology rather than a ‘codification’ of
procedures [187]. How I applied these steps in this research is explained in
Chapter 4.

The main goal of grounded theory analysis is to produce a high-level
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abstraction called the core category which accounts for the key concerns and
variations in the data [187]. This high-level abstraction is achieved with
two intertwined activities: coding, which is used at a number of levels to
create higher levels of abstraction, and constant comparison, which finds and
relates concepts at each level of abstraction. Both activities play important
roles in generating theory.

Open coding

The first activity of data analysis is open coding, which the researcher uses to
raise the data to a first level of abstraction. The researcher identifies events,
or incidents [104], in the data, and assigns them codes (or labels) that reflect
what is happening, and thus are analytical rather than descriptive [187].
To show a code represents a process, it is often (or includes) a gerund [104]
(a present participle of a verb ending in -ing). The objective of coding is
to conceptualise the data, rather than to summarise the data or restate the
data in a different way [187].

The coded incidents can be single words, phrases, lines, sentences
or paragraphs [9], depending on the type and richness of the data [105]:
looking for codes line-by-line in the data is useful for interviews [104],
word-by-word is useful for documents and other ephemera, and incident-
by-incident is useful for observations [64]. Using smaller blocks of data
can ensure more rich theory but using blocks that are too small is very
time consuming and can cause the research to lose focus [9]. Codes are not
predefined; they are defined to fit the data as analysis progresses, to ensure
the direction of the analysis is not restricted in any way [104].

Constant comparison

Constant comparison is used to generate a theory that is integrated, consistent,
plausible and close to the data [111]. There are three levels of constant
comparison: incidents are compared with incidents, concepts (recurring
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patterns of social behaviour [7]) are compared with incidents, and concepts
are compared with concepts [109].

Comparing incidents with incidents starts at the same time as open
coding starts. As incidents are coded, the researcher compares each new
incident with previously coded incidents to establish the similarities and
differences between the incidents [104]. Related incidents are coded with
the same codes; the groups of related incidents and their similarities and
conditions become generated concepts and hypotheses [104, 109].

As coding and constant comparison progress, the researcher compares
generated concepts with new incidents as they are coded to generate new
theoretical properties of the concept [104]. Using constant comparison,
concepts evolve as new incidents are added and as themes emerge [10].

When a concept leads to no new insights and no longer evolves, it
has become saturated; the code becomes known as a substantive code [104]
(that is, a code based on data), and the incidents, using grounded theory’s
concept-indicator model [104], become known as indicators [104].

Finally, concepts are compared with other concepts; relationships be-
tween the concepts are explored which develop themes that eventually
lead to the theory.

Categories and the core category

During the concept-to-concept stage of constant comparison, some concepts
will become more important and more central to the emerging themes, and
thus become categories [109, 111]. Related concepts may be aggregated
under the umbrella of a category [9], which expands to describe the broader
overarching concept.

A research project should have no more than four or five categories,
otherwise the research may lose focus [10].

Eventually, a core category will emerge. The core category is one category
that appears to account for most of the variation around the problem that
is the focus of the study [109]. The researcher links other categories to the
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core category, either as conceptual properties or sub-categories of the core
category or as related categories.

The characteristics of the core category are it is central (related to as
many other categories and their properties as possible), it reoccurs fre-
quently in the data, it takes longer to saturate than other categories because
it relates to so many other categories, it relates easily and meaningfully
with the other categories, and it has clear and grabbing implication for
formal theory [104].

Dimensions are theoretical codes that emerge from a category or prop-
erty [108].

Theoretical sampling

While the procedures above are described as the ‘steps’ of grounded theory,
they are not a sequential process. Analysis is iterative, occurring simultane-
ously with data gathering.

Grounded theory recommends that each interview is analysed before
the next participant is interviewed: this allows the interview questioning
to evolve to investigate different themes, to ensure holes in the data do
not develop, to uncover bias, and, as noted above, allow the results of the
analysis to guide future interviews using theoretical sampling [167, 168].

As the theory evolves and starts to emerge, the researcher explicitly
searches for data that fills in gaps in the data and brings the categories
to saturation, a procedure known as maximum variation sampling [167] or
theoretical sampling [111]. Theoretical sampling guides the researcher to
groups that are of interest to the research, which can be used to collect data
to help develop underdeveloped themes, and find and explain outlier cases.
(Grounded theory does not attempt to obtain statistical significance from
the data [167].)

While grounded theory is described as being inductive, theoretical
sampling is a deductive activity, with the emerging theory driving the data
collection and analysis to further develop that theory [59, 104].
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Selective coding

Once the core category has emerged, open coding ceases and is replaced
with selective coding.

Like open coding, selective coding is a form of substantive coding – it
codes the data – but only codes to the core category [104], and only codes
incidents that further develop the core category, to further explain the
emerging theory and its variations. Selective coding identifies the recurring
problem [212] and is used with theoretical sampling to ensure that only
data that is relevant and useful is collected and analysed.

Theoretical coding

Once the core category has reached saturation, theoretical coding may be used
to conceptualise the relationships between the substantive codes (concepts,
properties and categories) and the core category [104]. (Unlike substantive
codes which come from comparing incidents in the data.) Theoretical codes
help provide a framework for the emerging theory, putting back together
the data that was split apart by open coding [194], or, in Glaser’s words,
“weave the fractured story back together again” [104].

Glaser defined a number of theoretical coding families that provide a
structure for the theoretical codes, with eighteen in Glaser (1978) [104], nine
in Glaser (1998) [106], and a further 23 in Glaser (2005) [108]. Examples of
coding families include the ‘6 Cs’, which identifies the properties of a core
category as causes, contexts, contingencies, consequences, covariances and
conditions [104], ‘basics,’ which describe a basic social process (a process
describing social change [106] such as “cultivating, defaulting, centering,
highlighting or becoming” [110]), and ‘causal,’ which describes cause and
effect relationships [108].

Figure 3.2 summarises the relationships between grounded theory con-
cepts and the different types of coding. The coded data (incidents) are
labelled during open coding; the open code labels are known as indicators.
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The indicators evolve during coding, and become substantive codes once
saturated. Related substantive codes are grouped together into higher
levels of abstraction, becoming categories or properties of categories (sub-
categories). One category emerges as a core category; once this happens,
open coding stops and is replaced with selective coding, which focuses on
the emergent core category. Finally, theoretical coding finds the relation-
ships between the categories and sub-categories. In contrast to substantive
coding, theoretical coding does not deal with data; rather, coding is based
on the memos (see below) attached to the categories and sub-categories.

Memos and sorting

Memos are notes that the researcher writes in parallel to data analysis
[109] to aid the generation of concepts and categories [59]. Memos are the
important stepping stone between analysis and writing up the theory [64]
and can be used to explain concepts where the code itself is not sufficient,
to describe the relationships between concepts, to record ideas that the
researcher has during analysis, and to force the researcher to develop the-
oretical codes [104]. They record thoughts, comparisons and connections;
they are used for thinking aloud and help give direction to future analysis
[64]. Memos vary in length: anywhere, for example, from a brief sentence
to a five page article. Memos are crucial to the development and the writing
of the theory [109], and should be written throughout the analysis process,
starting with the emergence of the first concepts.

Glaser (1978) listed five benefits of the ideas that develop through writ-
ing memos;

• “It raises the data to a conceptualisation level.

• “It develops the properties of each category which begin to define it
operationally.

• “It presents hypotheses about connections between categories and/or
their properties.
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Figure 3.2: The grounded theory coding process. Black arrows show sub-
stantive coding (open coding and selective coding) towards higher levels
of abstraction of the data: abstracting incidents (grey) to substantive codes
(blue) and to then sub-categories (green) and categories (red). Red arrows
show theoretical coding between categories and sub-categories.
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• “It begins to integrate these connections with clusters of other cate-
gories to generate the theory.

• “It begins to locate the emerging theory with other theories with
potentially more or less relevance.” [104]

Once the core category has saturated and data collection and analysis
has nearly been completed, the next step is to sort the memos. Sorting
memos integrates the categories theoretically [64], creating a “theoretical
outline, or conceptual framework, for the full articulation of the grounded
theory through an integrated set of hypothesis” [109]. Sorting memos can
spark new ideas and new memos.

Some of Glaser’s important rules of sorting are [104]:

• Sorting starts anywhere with the memos; sorting finds its own start,
beginning and end.

• Theory is generated for the core variable, so each category and prop-
erty should only be sorted on how it relates to the core category. If a
concept does not relate to the core category then it is not included in
the theory.

• If there are two core variables, one should be demoted so that sorting
focuses on one core variable: the theory relates to one core variable
only.

• Constant comparison between the memos may introduce new ideas
and hence new memos.

Glaser (2005) recommended physically sorting the memos on a surface
such as a table, using first the memo labels and then the memos themselves
[108] to better grasp the relationships between memos.
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Writing the theory

The final step of grounded theory research is to write up the theory using
the theoretical outline developed using the theoretical codes and the sorted
memos [104]. Each sorted memo may become a section or a subsection of
the draft write-up of the theory [64].

3.3.5 Emergence and forcing

The explicit purpose of grounded theory is to generate theory entirely from
the data [111].

This purpose has several very important implications: firstly, the re-
searcher must not have any preconceived ideas about the findings; any
preconceived ideas may cause the researcher to subconsciously filter the
data and analysis, leading to concepts that are not connected to the data
and missing important issues [105]. Secondly, the researcher must not force
the data out of impatience; codes, concepts and categories must be allowed
to emerge from the data. The codes must be emergent and ‘earn’ their way
in [104]; they must not be predefined. While coding, the researcher method-
ically codes line-by-line, asking the neutral question “what is happening
here?” [104] rather than looking for evidence of some idea that they may
already have. To avoid preconceiving ideas, the researcher avoids a full
literature review prior to research.

3.3.6 The role of the literature review

Literature is treated differently in grounded theory from other research
methodologies, and is based on the principle that the theory emerges from
the data, rather than from preconceived ideas, studies or theory [104] (see
above).

When using grounded theory, there is no major literature review before
research begins. Instead, the initial literature review is a minor review
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whose purpose is no more than to provide the researcher with an under-
standing of the research problem and to determine that the problem has
not already been solved [212]. An exhaustive review may lead to the re-
searcher to forming premature ideas about the problem that would unduly
influence (or contaminate [105]) the emergence of the theory from the data
and “violate the basic premise of grounded theory” [109].

Once the theoretical directions of the research have formed, the re-
searcher can start the main literature review. At this stage the literature is
treated as any other data to feed into the analysis process [187] – “all is data”
[104]. The purpose is to relate the emerging theory to previous research,
and to identify the contributions of this research [212].

The main literature review fulfils the role of theoretical integration [222],
comparing the generated theory with other research, and is included in the
discussion chapter, Chapter 9.

The initial literature review introduces this research, and thus forms the
basis of Chapter 2.

3.4 The role of the researcher

Because this research takes an interpretivist position, the researcher is
important to the interpretation of the data, although is also a source of bias
[81, 212].

I have a Bachelor of Electrical and Electronic Engineering (First Class
Honours) and a Master of Electrical and Electronic Engineering, both from
the University of Canterbury in Christchurch in New Zealand. For these
degrees, my main interests were communications and software engineering.
In the time between completing my Master’s degree and commencing this
doctoral research I worked in the telecommunications field, spending more
than ten years as a strategy consultant. In contrast, this research allowed
me to pursue my other academic interest, software engineering.

My background fitted this research well: being new to the software
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industry but at the same time having an understanding of the technical
and commercial worlds means that I could act as a neutral bystander, with
neither preconceived ideas to affect my ability to explore different issues
or explain observations [104]. My background helped me to take the role
of ‘student’ and avoid the risk of interview participants perceiving me as
judging their actions and decisions [64, 212], which could lead them to not
being open about their experiences, particularly when discussing projects
that did not go well. Thus my background helped minimise researcher bias
and reduce participant bias [194].

3.5 Ethical issues and threats to validity

This section describes how I designed the research to address ethical issues
and threats to the research’s validity.

3.5.1 Ethical issues

This research considered ethical concerns such as those listed by Miles and
Huberman (1994) [167] and Robson (2002) [194], relating to privacy and
confidentiality, informed consent, rights, fairness, sensitivity, and benefits.

One of the most important issues was the privacy of the participants.
No names of individuals or companies, or any other information that might
identify the participants or companies (including specific project details)
were used. If participants were confident that their identity, company or
project will not be identified, they would be more likely to be open and free
with information during interviews.

All participants were given an information sheet that summarised the
purpose of this research to ensure they had a full understanding of what
the research entailed and what their contribution would be. They had to
provide written consent of their participation, and were given the oppor-
tunity to read transcripts of the interviews afterwards so that they could
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confirm they are an accurate record of what was discussed. They were also
given the opportunity to withdraw if they wished.

This study received approval from the Victoria University Human Ethics
Committee (see Appendix A).

3.5.2 Threats to validity

Threats to validity may come from a number of sources. Participants may
not have described their experiences accurately; their recollections may
have been incorrect or they may have missed important details about their
experiences. Participants were all volunteers who wanted to contribute
to the research; they identified themselves as being agile, and hence were
typically enthusiastic agile supporters who were interested in agile research
and theory about agile processes. They were therefore more likely to be
experienced and have higher-than-average agile skills; practitioners with
average and less-than-average skills were less interested in sharing experi-
ences and are therefore probably under-represented in the research. Below
average practitioners and practitioners who are not sure about their agility
may have different issues and problems from above-average practitioners
– although, on the other hand, the abilities of above-average practitioners
may enable them to better understand the true causes of issues they face.

It is implicitly assumed that the experiences described by participants
can be used to make recommendations to other teams on how to design an
agile architecture (see the implications for practice in section 10.2). While it
is possible that every participant ‘got it wrong,’ leading to inappropriate
implications, this is unlikely. Some participants getting it wrong should
be picked up through theoretical sampling (section 3.3.4), which ensures
varying cases are explored and explained. The interview questions gave
participants the opportunity to describe anything they would do differently
in hindsight, so if the participants were aware that they ‘got it wrong’ then
they could describe what they should have done. Several participants did
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indeed use this opportunity to describe what they would do differently.
Given the experience of the participants and the number of participants,
the chance that all teams got it wrong, and were unaware that they got it
wrong, is very small.

Other threats to validity include:

• an inaccurate or incomplete description of the data [194]. This can be
prevented by recording interviews, or by taking high-quality notes. I
recorded all interviews in this research.

• an invalid interpretation of the data, which can be prevented by pro-
viding a clear chain of evidence of the research findings that prove
the validity of the interpretations [194]. The chain of evidence for this
research is provided in the analysis chapter (Chapter 4).

• not considering alternative explanations or understandings of the
phenomena that lead to the theory [194]. Alternative explanations
and understandings that did not support the emerging theory were
actively sought as part of the theoretical sampling process.

Tactics that minimise threats to validation are data triangulation (using
multiple sources of data), member checking (findings were sent to partici-
pants for verification and comment), audit trail (all transcripts, notes and a
research journal were kept) and negative cases/outliers (negative cases were
presented and explained in the theory) [81, 167, 194].

Glaser (2002) recommends not asking participants to review the theory:

“They may or may not understand the theory, or even like the
theory if they do understand it. Many do not understand the
summary benefit of concepts that go beyond description to a
transcending bigger picture. GT [grounded theory] is generated
from much data, of which many participants may be empirically
unaware. GT is applicable to the participants as an explanation
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of the preponderance of their ongoing behaviour which is how
they are resolving their main concern, which they may not be
aware of conceptually, if at all. It is just what they do! GT is
not their voice: it is a generated abstraction from their doings
and their meanings that are taken as data for the conceptual
generation.” [107]

Member checking was therefore used with caution.



Chapter 4

Data collection and analysis

“I’ve never been in a project where we’ve got to the end and gone,

‘yep, what we wrote on day one was primo, and we had it right.’ ”

(P24, customer)

This chapter describes how the grounded theory methodology, de-
scribed in section 3.3, was used to generate theory from this research.
Section 4.1 describes the data collection and summarises the participant
details, and section 4.2 describes the data analysis using the grounded
theory methodology.

4.1 Data collection

This section describes the participants in the research and how I collected
the data.

4.1.1 Participants

This research included forty four participants in thirty seven first interviews
and six follow-up interviews. Participants were mainly architects, senior
developers, team leads and managers; there were also a smaller number of
customers, business analysts and agile coaches.

75
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First interviews were labelled uniquely P1 to P37; subsequent interviews
were numbered with suffixes (such as P6#2 and P6#3).

In most instances participants were from different companies and worked
on different projects, although in a number of instances there were multiple
participants from the same company who were interviewed separately
(such as P15 and P24, and P33 to P36).

I did not seek participants who used specific agile methodologies. I did
not believe that participants using different methodologies would affect
the findings, as long as the methodologies participants used satisfied the
definition of agility in section 2.2.3.

On four occasions there were multiple participants in a single interview.
I did not request multiple participants: on one occasion, the participants
changed the schedule from two individual interviews to one shared inter-
view at the start of the session, while on other occasions the lead participant
(with whom I had set up the meeting) brought in extra participants to pro-
vide additional viewpoints. The advantages of group interviews are they
are an efficient method for gathering the views of a lot of participants, they
provide natural quality control on the data, and it is easy to gauge consis-
tent and shared views. The disadvantages are more difficult facilitation, a
risk of domination by one or two people, and not having sufficient time
to get everyone’s responses to the questions [194]. While having sufficient
time to interview each participant separately would have been preferable, I
believe that the benefits outweighed the disadvantages in these cases. Dif-
ferent participants in the same interview were not given unique numbers,
but were differentiated by appending different letters (such as P11a and
P11b).

Nearly half of the interviews took place in my home town of Wellington
in New Zealand, while another eight participants were interviewed in
other cities within New Zealand: Dunedin, Christchurch and Auckland.
The remaining data gathering took place in the United Kingdom, Sweden,
Austria and India. The participants themselves were from (and discussed
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projects based in) New Zealand, Australia, India, the United Kingdom, the
United States and Brazil.

As the research progressed, theoretical sampling meant more specific
types of participants were recruited where possible to fill in gaps in the
emerging theory. For example, P33–P36 were recruited because architects
working in product line-type systems were under-represented.

Recruiting participants was generally more difficult and time consum-
ing than expected; suitable candidates were not always available to meet
face-to-face at the time I was interviewing and, particularly initially, some
potential participants ruled themselves out because they did not think they
were suitably qualified (they did not think they were expert enough). For
example, one large independent software vendor (ISV) only offered P4,
their most senior architect (‘Director of Architecture’), as a participant when
other architects may also have made useful contributions. I overcame this
to some extent by emphasising during recruitment that questions were
not technical, and that everybody’s opinions were valuable. In some in-
stances confidentiality was a problem; one participant requested I sign a
non-disclosure agreement so that he could more openly share his experi-
ences.

Table 4.1 contains a summary of each participant, including their role
(or job title), how much experience they had in professional software devel-
opment, the type of organisation they worked for (for example, ISV or a
government department), and the domain they worked in (or the domain
their sample project was from), such as telecommunications, healthcare or
finance.

Table 4.2 provides information about the team and the project the par-
ticipant was involved with. The table includes the agile methods that the
team used, the size of the team, the duration of the project, and a very
high-level description of the system or architecture that they were building
or designing.
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Participant role Experience Organisation type Domain

P1 Developer >15 years Government agency Health

P2 Developer/
architect

20 years ISV (independent
software vendor)

E-commerce

P3 Development
manager

6 years
(agile)

ISV Personnel

P4 Director of
architecture

More than
20 years

ISV Digital archiving

P5 Coach/dev.
manager

20 years Start-up Entertainment

P6 Managing dir./
lead developer

20 years Service provider Telecoms

P7 Business analyst 5–6 years ISV Telecoms

P8 Lead developer 6 years ISV Digital archiving

P9 Developer 40 years Financial services Telecoms

P10 Coach 25 years Hardware & services Transport

P11a Dev. manager 10 years Government Government services
P11b Architect 15+ years department

P12 Senior developer 10 years Financial services Financial services

P13 Architect 16 years ISV Medical

P14 Architect 10 years ISV Animal health

P15 Customer 4 years Start-up service
provider

Retail (electricity)

P16a CEO/chief
engineer

>10 years ISV Retail (health)

P16b Head of
engineering

10 years

P17 Manager/ coach >10 years Government dept. Statistics

Table 4.1: Summary of participants
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Participant role Experience Organisation type Domain

P18 Development
manager

10 years Multinational
hardware vendor

Health

P19 Development
manager

6–7 years Start-up service
provider

Retail (travel)

P20 Coach and trainer 20 years Independent
consultant

n/a

P21a Manager/coach 20 years ISV Retail (publishing)
P21b Architect n/a
P21c Team leader n/a
P21d Team leader n/a

P22 Senior manager 14 years ISV Contact manage-
ment/marketing

P23a Engineering n/a Service provider Pharmaceutical
manager

P23b Product lead 6 years
P23c Team lead n/a

P24 Customer >10 years Start-up service
provider

Retail (electricity)

P25 Team lead 10 years ISV Banking

P26 Team lead 8 years ISV Water management

P27 CEO/coach 16 years Start-up service
provider

Retail (electricity)

P28 Technical lead 13 years Service provider Broadcasting

P29 Dev. manager 20 years Banking Banking

P30 Consulting
architect

25 years Service provider Telecoms

P31 Enterprise
architect

25 years Government agency Transport

Table 4.1, cont.
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Participant role Experience Organisation type Domain

P32 Software dev.
director

>15 years ISV Government

P33 Product
architecture

15 years Medical service
provider

Medical

team leader
P34 Development unit 15 years

manager
P35 Design Engineer n/a
P36 Development unit

manager
12 years

P37 Consultant/free-
lance software
developer/
architect

13 years Service provider Broadcasting

Table 4.1, cont.
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Agile methods Team size/
no. of teams

Duration System description

P1 Single
developer

1 team
member

6 months Web-based, .NET

P2 Scrum 3 team
members

Ongoing .NET, cloud-based

P3 Scrum 3 teams Ongoing Web-based, .NET

P4 Scrum 5 developers Ongoing Java, rich client, suite
of standalone tools

P5 Scrum/kanban Various N/A Various

P6 Iterative 1–3
developers

Ongoing Suite of standalone
applications

P7 Scrum 12 team
members

1 year+ Suite of web-based
services

P8 Scrum 4–14 team
members

1 year+ Ruby on Rails with
Java back-end

P9 Bespoke 2–24 team
members

3 years Web-based system

P10 Scrum/XP 500–800
developers

Several years Large distributed
web-based system

P11
a, b

Scrum 8 team
members

Several years Web-based, .NET

P12 Scrum 6–7
developers

7 months Web-based, .NET

P13 Scrum 12 developers 4 years Monolithic .NET app

P14 Scrum 6–8 team
members

18 months .NET, large GIS
component

P15 Scrum 7 developers Ongoing (3
years to date)

Ruby On Rails web
application

Table 4.2: Summary of participants’ agile methods and project details
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Agile methods Team size or
no. of teams

Duration System description

P16
a, b

XP 5 team
members

5 months Ruby On Rails

P17 Scrum 6 developers +
admin

2–3 years Web-based, PHP using
DAO pattern

P18 Scrum 15 team
members

Ongoing (>2
years)

Web-based, Java
platform

P19 Lean 4 developers Ongoing (<1
year)

PHP/Symfony,
Javascript/Backbone

P20 Scrum N/A N/A N/A

P21
a–d

Scrum 3 teams with
40 total

Several years .NET, Websphere
Commerce, SAP,
others.

P22 Scrum/XP More than 40
total

N/A .NET

P23
a–c

Own methods 3 teams Ongoing Various web-based,
client/server

P24 Scrum 7 developers Ongoing (3
years to date)

Ruby On Rails web
application

P25 Scrum 1 team Ongoing .NET, single tier web

P26 Scrum 8 team
members

1 year .NET, web-based, 7 tier

P27 Scrum 7 developers Ongoing (3
years to date)

Ruby On Rails web
application

P28 Scrum 42 team
members

N/A Python, Django, CMSs
for multiple websites

P29 Kanban 2 teams with
20 team
members total

Ongoing Web based, AJAX,
interface to mainframe

Table 4.2, cont.
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Agile methods Team size/no.
of teams

Duration System description

P30 Scrum 7 team
members

2 years+ Python with Django
and Twisted, NoSQL

P31 Bespoke 7 team
members

13 week pilot Web services, SOA
using .NET/WCF

P32 FDD, kanban N/A N/A N/A

P33–
P36

Scrum, kanban 18 teams Ongoing Multiple products;
SOA

P37 Bespoke/XP 15–20 team
members

Ongoing Java, embedded

Table 4.2, cont.

4.1.2 Interviews

The main source of data was face-to-face interviews. I did not know the
vast majority of participants in advance of the interviews, so face-to-face
interviews helped build rapport. All participants talked openly and freely
about their experiences; I do not believe that telephone interviews or video
conference interviews would have been nearly as successful.

As the research progressed and as themes started to emerge that re-
quired further investigation through more specific questions, the question
schedule evolved and became more focused. The original question sched-
ule used for the initial interviews in May 2010 was very general, and is
included in Appendix B.

The schedule was updated for P12 in November 2011. The purpose
of this update was to probe in more detail some of the questions that
had proven to be the most significant, such as asking the participants to
define the architecture levels and asking how and why they had made their
architecture decisions.

The next update was for P27 in April 2012. This update included asking
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the participants what activities they did in the start-up phase, and how
they determined what those activities were. It also included asking the
participants if being agile affected the architecture.

The schedule was updated again for P29 in July 2012. This update
included specifically asking what factors affect how much design is done
up-front.

The final update was for P37 in May 2013. This update asked specific
questions designed to test the validity of the findings that had emerged
so far, such as what the impact of complexity and size on the up-front
architecture design is, what the impact of frameworks is and what the
impact of the type of product is. This final schedule is included in Appendix
B.

At the same time as focusing on more specific issues, the question-
ing became more unstructured to allow the participants to fully lead the
discussion around the issue, as recommended by Stern and Porr (2011)
[212].

For example, I asked P1 the following general question, before any ideas
about what affected up-front architecture design had emerged:

Interviewer: “Did the architecture change or evolve during develop-

ment?”

– while much later, when the research was focused on the core category, I
asked P37 the following question:

Interviewer: “What I’m going to do, instead of going through these

questions, I’m just going to ask you about what you think affects up-

front architecture design effort – what determines how much you do,

and if you can perhaps squeeze in these words: complexity and size,

bespoke components and libraries, legacy integration, level of agility

perhaps, type of project, experience.”

On a number of occasions, I asked participants to give second and
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even third interviews to explain statements they had given in their original
interviews, or to give their views on ideas that emerged later.

The average length of the interviews was about one hour and ten min-
utes. Many of the early interviews were upwards of one and a half hours
as participants discussed all issues (and more). Most of the final interviews
were less than one hour as I focused on the important themes that were
emerging from the research.

4.1.3 Data triangulation

In addition to interviews, where possible I used documentation and other
written material provided by participants where possible to verify what
was said in interviews. Material included records of architectural decisions
(such as software architecture documents), which were able to confirm
which architecture decisions were made and why, and copies of architec-
ture models, which provided overviews of the architectures. This is data
triangulation [81, 194] and is used to counteract participant bias and increase
the reliability of the data.

Documentation was generally only available from participants who did
more up-front design, such as P4, P7, P9, P14 and P17. The documentation
typically defined the ASRs and the architecture, perhaps diagrammatically
or by listing the architecture decisions made, and often confirmed why
decisions or changes were made. I used the documentation to confirm
the level of detail of architecture decision-making and how decisions were
made. It was generally difficult to determine when decisions were made
because the documents represented a snapshot in time, although some did
record changes to decisions made.

While many grounded theory researchers also use observations as a
data source, I did not use observations for this research. I interviewed most
participants away from their offices, where observations were not possible.
Most participants had also finished working on the projects they discussed,
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and no participant was in the up-front phase. Architecture design is an
ongoing activity, and observations would be more suited to a research
strategy with more sustained involvement (such as case study research) so
that architecture decisions can be seen in context of the whole architecture
and system being built. Observations would have been difficult to set up,
would have been very time consuming and would not have provided data
that was as rich as the interview data.

4.1.4 Saturation

Theoretical saturation determines when data collection stops. Recognising
theoretical saturation can be difficult [9] and may be subjective [100]. Sud-
daby (2006) described recognising saturation as needing tacit knowledge
rather than some a priori criteria [214]. Because of the broad objective of
this research, it was sometimes difficult to know to what depth to take the
study; I could have easily continued searching for more and more specific
and richer data from more and more targeted participants, generating a
theory with more and depth and more detail. More participants, however,
would likely have resulted in an overly complex theory that lacked parsi-
mony [227]. Furniss (2011) commented that saturation could be dependent
on a “looming deadline” [100], and similarly, I declared the research satu-
rated when the data gathering reached a natural plateau at a level of detail
sufficient for a PhD thesis.

4.2 Data analysis

This section describes how I analysed the data using the steps of grounded
theory (section 3.3.4), and shows how the theory emerged from the data.
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4.2.1 Data analysis tools

I used the popular computer-based tool NVivo for the disciplined activities
of managing the interview transcripts, open coding, for recording memos
and for some constant comparison of codes and concepts.

Glaser is strongly opposed to the use of computers in grounded theory
research because they can promote process over visibility of emerging
theory, but according to Robson (2002) they do have certain benefits:

• “They provide an organised single location storage system
for all stored material,

• “they give quick and easy access to material,

• “they can handle large amounts of data very quickly,

• “they force detailed consideration of all text in the database
on a line-by-line (or similar) basis,

• “they help the development of consistent coding schemes.”
[194]

Similarly, the disadvantages are:

• “Proficiency in their use takes time and effort,

• “there may be difficulties in changing, or reluctance to
change, categories of information once they have been
established,

• “particular programs tend to impose specific approaches
to data analysis.” [194]

I avoided these disadvantages by only using NVivo for low level analy-
sis.

Suddaby (2006) suggested that it is best to restrict computer-based
tools to organising and coding [214]. Following this advice, I used various
manual methods such as sticky notes, whiteboards and index cards for
conceptual analysis such as finding the relationships between concepts



88 CHAPTER 4. DATA COLLECTION AND ANALYSIS

and categories and sorting, which gave better visibility of the concepts and
made it easier to see their relationships.

At no stage did I use any automatic analysis functionality such as
automatic coding.

4.2.2 Open coding

Table 4.3 on the following pages shows a small selection of the coded data
and codes and concepts that emerged from the interview with P29.
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Data/incident Code/concept

“...architects should be active coders in the team who are

just seniors...”

architect being
über-developer and
leader

“...ideally that pool of seniors in your team act as a kind of

proxy architecture committee, and we don’t have to go to

someone who’s supposedly got the title sitting in an ivory

tower, and has never actually built that thing in the last ten

years because they’ve been thinking high-level...”

senior developers
making decisions

“At an application level I think that those architects are a

waste of time. I really don’t think they know what they’re

talking about nowadays.”

architects out of
touch

“And I think that’s immediately where they lose their value,

if they don’t have to code with the team, then they

generally don’t have the pain of the team and they don’t

know what the latest frameworks are doing, and maybe

that’s design, maybe that’s architecture – that’s where some

architects out of
touch

of the debate comes in but when they’re starting to look at

what the best way of putting the fundamental construction

backbone of whatever you’re building in place... if you’ve

never tried to flesh it out then you’re never going to know if

it’s going to work. And I think there’s a significant problem

with places that separate those roles.”

“It means we have to go and justify ourselves. And so

doing experiments is very hard.”

doing BUFD

“That is where agile seems to be leading us in the lean

world.”

customising
process

Table 4.3: The emergence of open codes from participant P29
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Data/incident Code/concept

“So if we’re going to have to do a heavy architecture which

plans for a year or two or five years into the future on every

one of those experiments, we’re screwed. We cannot be

agile.”

maximising agility,
BDUF means not
agile

“...we want to be able to put in the smallest, simplest,

minimum viable experiment, prove an assumption, beef it

up if we want to or follow it wherever it goes, pivot and

follow it wherever it goes. That means our entire

architecture is going to be emergent based on where we

want to go.”

maximising agility

“Every experiment we have to make a call whether it’s an

A/B test or whether it’s a single thing that’s going to create

a feedback loop and we’re going to refactor it or adjust it

or... so there’s many different testing models – sometimes

we use A/B, sometimes we use canary and sometimes we

use more of a big-bang, here’s an MVP, let’s see how people

react to it, hopefully adjust it... But that’s a business

decision”

maximising agility;
maximising value

“We don’t want to have to go through an architectural

approval board for every one of those instances.”

spurning
bureaucracy

“...we’ve got a lot of smart design people who know more

than the architects in our application space.”

being familiar with
technology,
having a capable
team

“...what we’re trying to say to them is, ‘look, we can

actually go out with something that we haven’t architected

for future reuse for the next two years, because we’re not

sure whether it’s even going to exist in two weeks.’ ”

avoiding
overengineering

Table 4.3, cont.
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As the analysis developed, some open codes in each interview became
higher level concepts, and some concepts were aggregated into categories .
Other codes and concepts did not progress the analysis any further.

Figure 4.1 shows codes written on sticky notes very early on in the
analysis, after about ten interviews. The notes are being used to com-
pare codes and relationships and to look for concepts. Some higher level
codes representing concepts (red ink) are emerging, but there are very few
relationships defined and there is very little order.

For later interviews, the priority for data collection and analysis was
to consolidate earlier ideas and look for exceptions to earlier ideas; in
particular the interview with P29 (Table 4.3) was focused on the relationship
between complexity, size and up-front design. As a result of this priority,
broader ideas – often consisting up to several sentences – were coded
against each open code, rather than shorter phrases as was usual in earlier
interviews.

4.2.3 Emerging concepts

A concept is the underlying meaning or pattern of an incident or group
of incidents [105]. I labelled concepts with a high-level code and usually
attached a memo to explain what was going on in the concept.

Figure 4.2 shows the codes written on sticky notes after about twenty
interviews. This is still early in the analysis; concepts and relationships
are starting to form but no definite categories have emerged. Groupings of
notes indicate related concepts, while lines show potential relationships.

Table 4.4 below shows an example of how a high-level code and concept
evolved from seven constituent codes. The seven constituent codes all had
a similar theme, describing different parties making architecture decisions.
Using constant comparison, they were aggregated into a concept architecture
decision makers which described the different people and groups who make
architecture decisions in agile software development. This table shows that
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Figure 4.1: Open codes and concepts at an early stage of analysis
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Figure 4.2: Open codes and concepts at an intermediate stage of analysis
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Open code Source

architecting as a group activity P17, P22, P23, P29, P31, P35

customer architect making decisions P21, P22, P26

disparate groups making architecture decisions P8

having external design review P2, P11, P14, P29, P33

having the last word on architecture decisions P8, P12, P13, P17, P19, P22,

P28, P30

senior developers making decisions P29

whole team making decisions P17, P28

Table 4.4: An example of the concept architecture decision makers evolving
from constituent codes

P29 contributed to three of these codes, architecting is a group activity, having
external design review and senior developers making decisions. The latter code
is included in the sample list of coded data in Table 4.3 on page 89.

As low-level codes were aggregated into higher level codes and concepts
through constant comparison, data was typically coded directly against the
high level code. Any further contribution made by new data is captured in
the memo that is attached to the concept (described in section 4.2.4). For ex-
ample, the code and concept guiding decisions has a number of participants
coded directly against it as well as constituent codes that were merged into
it, shown in Table 4.5. Incidents were sometimes still coded against the
constituent codes themselves after they were aggregated, because the codes
were frequently moved around as the concepts evolved, and thus it was
sometimes more appropriate to code against individual codes.

Typically, codes that emerged later in the analysis do not include data
from early interviews, because the interviews were not revisited, to ensure
analysis kept moving forward. Codes were sometimes also aggregated into
more than one concept.
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Open code Source

providing guidance (concept) P8, P10, P11, P12, P22, P30

creating a reference architecture for teams P33

enforcing architectural principles P4

enforcing coding guidelines P4, P5, P10, P31

experienced practitioners providing guidance P10

giving high level guidance P3, P4, P5

providing architectural principles P3, P4, P7, P10, P14

providing assistance to decision making P4

teaching the team P30

writing SAD in parallel to development P4, P7, P10

Table 4.5: An example of the concept providing guidance with codes directly
coded against it

4.2.4 Memos

Memos record ideas about concepts and categories, and the relationships
between them, as they evolve. An extract from a memo, belonging to the
concept architecture decision makers listed in Table 4.4 above, is:

Some customers need to review the team’s architectural decisions,

or even make the decisions on its behalf. There are many reasons

for this: the customer does not want to give the team the power to

make their own decisions (i.e. command and control or non-agile cus-

tomer), they need to ensure the decisions are compatible with other

systems (e.g. an enterprise system) (i.e. the team doesn’t know the

big picture), they don’t trust the team (yet) (perhaps also a non-agile

customer).

Usually these reviews are before development starts, because the

customer wants to ensure that the architecture is correct before devel-

opment starts. This sort of customer is typically non-agile – they do

not trust the team, they do not want to empower the team, and/or they
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require them to do a big part of the design up-front so they can do the

review.

An agile team that has an agile customer (i.e. the customer has a

culture compatible with its own) will either make its own architecture

decisions, or will have team representatives on an architecture team

that is familiar with the bigger picture (e.g. P10 with his communities

of practice, P23 with his informal architecture meetings, P33–36 and

their product architecture teams, P8 with leadership duties across two

teams)

[...]

After theoretical coding and sorting, the memos were used to form the
basis of the written theory.

4.2.5 Categories

Eight categories emerged from the data, which were candidates for being
made the core category.

(a) The emergent categories

The eight categories that emerged from the data were:

• making architecture decisions

• architecting up-front (making up-front decisions)

• architecting during development (making emergent decisions)

• architecting strategies (agile architecture strategies)

• architecture decision makers

• architecture timing drivers

• non-architecting roles (other roles of the architect)

• defining requirements
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Each category is, in turn, a concept that has been promoted and ex-
panded to encompass a number of other concepts. For example, the cate-
gory making architecture decisions describes how teams make architecture
decisions: considering constraints, guiding decisions, mapping require-
ments, understanding the big picture, and so on. Figure 4.3 shows how
the category was formed by promoting the lower-level concept of the same
name making architecture decisions (itself an aggregation of the substantive
codes analysing, modelling, researching and experimenting – not shown) to
category level and merging in the six other related concepts shown in the
figure.

Figure 4.3: A category (red box) emerging from aggregated concepts (green
boxes)
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(b) Selecting the core category

A common theme among a number of these categories was architecting,
representing the concept of designing an agile architecture. An agile ar-
chitecture is one that allows changing requirements (more specifically, the
architecturally significant requirements, or ASRs) to be more easily man-
aged, by either being more easily modifiable or by being tolerant of change.
I renamed the category, making architecture decisions to architecting and pro-
moted it to core category. Four other categories that were closely related
to architecting became properties of the core category: architecting up-front,
architecting during development, architecting strategies and architecture decision
makers. The three other categories, architecture timing drivers, non-architecting
roles and defining requirements remained as separate categories, because they
were not directly about making architecture decisions.

The categories are shown graphically in Figure 4.4.

(c) The relationship of the categories to the core category

The core category architecting describes the process of designing an agile
architecture, and describes how some decisions are made up-front, before
development starts.

The property of the core category architecting strategies represents the
strategies that agile teams use to determine how much effort to put into
up-front architecture design and how agile the architecture is.

Also in the core category, architectural decision makers – loosely called
‘architects’ or ‘agile teams’ in this research – represent those who perform
the process of ‘architecting’ in an agile software development project, or
who approve the decisions once they have been made. The architecture
decision makers may be the whole team, may be a subset of the team, or
may even be outside the team.

Outside the core category, architecture timing drivers describe the forces
(using design pattern terminology [101]) that affect the strategies teams use
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Figure 4.4: The core category (red), its sub-categories (properties) (green)
and other categories (blue)

to determine how much architecture to design up-front. By recognising
these forces, agile teams can determine how much effort to put into up-front
architecture design and how much effort to put into emergent design.

The category non-architecting roles describes non-architecture decision-
making roles that the architect in a team is often responsible for.

The category defining requirements describes the ASRs that must be
defined up-front, before any up-front architecture design takes place.

4.2.6 Theoretical coding

It was not immediately clear which of Glaser’s theoretical code family
fitted these codes. Initially several seemed suitable, at least in part: process
family (representing a process or processes), type family (representing



100 CHAPTER 4. DATA COLLECTION AND ANALYSIS

types or classes of phenomenon), strategy family (representing a strategy or
strategies), models family [104] (representing a model shown graphically)
and causal family (representing cause and effect) [108].

Eventually it became clear that the strategy family was the best frame-
work for the codes because it accounted for most of the relationships be-
tween categories, and that a central theme of the emergent theory was a
set of strategies for designing an agile architecture and determining how
much architecture to design up-front.

Figure 4.5 shows a representation of the categories and their relation-
ships drawn on a whiteboard after theoretical coding.

Figure 4.5: Categories after theoretical coding

∗
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The categories and their relationships to the core category, as defined
by the theoretical coding, constitute the theory of agile architecture. This
theory is the topic of chapters 5 to 8.
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Chapter 5

A theory of agile architecture

“The key thing is [the architecture] is not going to be documented

and put it in a glass case and hung on the wall and [we] say, ‘that’s

the architecture, let’s look at it and keep developing’ – no, that’s not

it.” (P22, senior manager)

This chapter introduces a theory of agile architecture that describes how
teams determine how much architecture to design up-front, and how they
design an architecture that is able to manage change. An agile architecture is
both an architecture that supports a team’s agility by being easily modifi-
able and tolerant of change, and the outcome of an agile process that has a
more emergent design with a shorter planning period. Section 9.2 discusses
the definition of agile architecture in further detail.

The theory of agile architecture is a high-level theory that explains how
teams design an agile architecture, and how they decide how much design
to do up-front and how much to leave emergent. The theory is descriptive
because it describes the experiences of the research participants, rather than
prescriptive, written as instructions to guide practitioners. While descriptive,
it is implicitly assumed that these experiences are also applicable to other
teams (see the discussion in section 10.3), and thus it is assumed the theory
can be used by other practitioners to help them determine how much
architecture to design up-front and how to design an agile architecture,

103
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without providing explicit instructions on the steps to take to design an
agile architecture (such as in the form of a decision tree). The amount
of up-front design effort varies between two extremes, from an entirely
emergent architecture with no explicit architecture decision-making up-
front to a full architecture designed up-front. Usually the architecture
effort is somewhere between these two extremes, with some architecture
decisions made up-front and some emergent. An agile team cannot simply
make an ad hoc decision to put less effort into up-front architecture design
and be sure of having sufficient architectural guidance. The extent to which
a team can successfully reduce up-front architecture design effort depends
on the system’s context, consisting of agile architecture forces, the attributes
that a team must consider when designing an agile architecture. The agile
architecture strategies determine how a team designs the agile architecture
and how much effort it puts into up-front design; which strategies a team
uses depends on the forces.

Figure 5.1 shows the high-level relationship between the forces, strate-
gies and architecture design. The agile team (architect) determines which
strategies are used according to the forces. The strategies affect the architec-
ture design: how much effort the team puts into up-front architecture design
decision and how much into emergent architecture design decisions. Certain
requirements – particularly high-level architecturally significant requirements
– must also be defined up-front to enable the team to make any necessary
up-front architecture decisions.

The theory of agile architecture is introduced in this chapter and de-
scribed in more detail in chapters 6 to 8. In this chapter, section 5.1 defines
context and the forces that make up context. Section 5.2 introduces the agile
architecture strategies that teams use to design an agile architecture and
which determine how much up-front architecture design they do. Section
5.3 discusses how designing an agile architecture affects the architecture
design processes. Section 5.4 discusses gathering the project’s requirements
before development starts, and, finally, section 5.5 discusses the role of the
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architect in an agile development: who makes the architectural decisions
and what other roles the architect plays.

Following this chapter, Chapter 6 describes each of the forces in more
detail and chapter 7 describes each of the strategies. Chapter 8 discusses
the agile architect role in more detail.

5.1 Context and agile architecture forces

The context of a software system is the set of conditions that affect the agile
architecture and which teams must consider when designing an agile archi-
tecture. The conditions are defined by a set of agile architecture attributes
or forces:

• F1: REQUIREMENTS INSTABILITY

• F2: TECHNICAL RISK

• F3: EARLY VALUE

• F4: TEAM CULTURE

• F5: CUSTOMER AGILITY

• F6: EXPERIENCE

REQUIREMENTS INSTABILITY (F1) refers to the project having some or
all of its requirements undefined at the start of development or changing
during development. This force is the main motivation for using agile
development methods and for designing an agile architecture.

TECHNICAL RISK (F2) is the presence of technical risk – exposure to a
potentially negative outcome because of uncertainty with the technology,
the design or the system itself. Technical risk is often caused by architec-
tural complexity brought about by demanding architecturally significant
requirements or ASRs (section 2.3.4), and is mitigated by more up-front
design to reduce uncertainty.

EARLY VALUE (F3) is the customer’s need to derive commercial value
from the system being developed before it would otherwise be ready,
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perhaps in the form of a minimum viable product (MVP) (section 6.3).
To provide early value, a team reduces the planning horizon and spends
less time on up-front architecture design.

TEAM CULTURE (F4), CUSTOMER AGILITY (F5) and EXPERIENCE (F6) all
impact upon the team’s agility, rendering it more or less able to design an
agile architecture. F4 is a collaborative and people-focused culture based
on trust. An agile team culture increases the team’s ability to communicate
rapidly and hence reduces the time needed to respond to change. F5 is
an agile environment, such as the agility of the customer or the team’s
own organisation and any other stakeholders. As well as the team being
agile, the environment must support the team’s agility. F6 refers to the
team’s architectural and technical experience. Experienced team members
are more able to use tacit knowledge to make faster and fewer explicit
decisions, and so can reduce up-front effort and respond to change faster.

The impacts of forces F2, F4, F5 and F6 are continuously variable –
they represent values on a continuum. F1 and F3, on the other hand,
simply represent the presence or absence of the force: whether or not the
requirements are unstable, and whether or not the customer requires early
value, respectively.

The forces are described in detail in Chapter 6.

5.2 The agile architecture strategies

Teams use a selection of agile architecture strategies to determine how they
design an agile architecture and to guide the team as to which architecture
decisions should be made up-front and which should be left as emergent.
Teams choose the most appropriate strategies to address the forces that
make up the system’s context.

The strategies are:

• S1: RESPOND TO CHANGE
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• S2: ADDRESS RISK

• S3: EMERGENT ARCHITECTURE

• S4: BIG DESIGN UP-FRONT

• S5: USE FRAMEWORKS AND TEMPLATE ARCHITECTURES

RESPOND TO CHANGE (S1) is the key strategy for designing an agile
architecture, which is modifiable and tolerant of change. Teams increase
modifiability by keeping designs simple, proving the architecture with
code iteratively and following good design practices. Teams increase the
architecture’s tolerance of change by delaying decisions and planning for
options.

Up-front effort can be reduced by keeping design simple, proving the
architecture with code iteratively, and by delaying decisions.

ADDRESS RISK (S2) is a strategy that uses more up-front design to miti-
gate technical risk as early as possible. S2 is in tension with S1’s tactic of
delaying decisions: teams have to balance mitigating risk with the architec-
ture’s ability to respond to change.

EMERGENT ARCHITECTURE (S3) is a strategy that results in an emergent
architecture, with as few decisions made up-front as possible – typically
simply selecting the technology stack and the top level architectural styles
and patterns. S3 is a strategy that takes RESPOND TO CHANGE (S1) to the
extreme, with all decisions delayed, whether or not the requirements are
likely to change. S3 does not mitigate any risk up-front, and is therefore
less suitable for complex systems with demanding ASRs.

BIG DESIGN UP-FRONT (S4) is a strategy in which most architecture
decisions are made up-front. S4 is most likely used by agile teams that have
a non-agile customer (or manager) who requires the team to complete the
design before development starts. S4 reduces the team’s ability to respond
to change, and is mutually exclusive with S3 (EMERGENT ARCHITECTURE).

USE FRAMEWORKS AND TEMPLATE ARCHITECTURES (S5) reduces the ef-
fort required for architectural design by providing ‘precooked’ architectural
solutions in the form of frameworks, templates, reference architectures and
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standard off-the-shelf libraries and plug-ins. Frameworks also reduce com-
plexity and hence risk, and make it easier to change subsidiary architectural
decisions. This is particularly important for agile development because the
reduced effort allows a team to respond to change more quickly and hence
become more agile.

The strategies are described in detail in Chapter 7.

5.3 Architecture design

No matter which strategies are used and how emergent the design is,
there are certain architecture decisions that must be made up-front, before
development starts; they cannot be changed later without major rework.
Examples of decisions that must be made up-front include selecting the
technology stacks and the highest level architectural patterns. These mini-
mum up-front architecture decisions are described in the discussion on S3
(EMERGENT ARCHITECTURE) in section 7.3.

If the project is a green field (new) application, up-front decisions simply
mean those that are made before any code to produce functionality is writ-
ten; if the project is extending an existing application (such as developing
for a new release) then up-front means any architecture decisions that are
made for this release before development on features for this release starts;
any earlier decisions and development act as constraints on the current
project or are prior decisions that need to be reviewed and potentially
updated.

Often, the architecture design practices and techniques (such as de-
composition, partitioning and modelling) used in agile development are
similar to those used in plan-driven methods; they are not discussed in
any detail in this thesis. There are a couple of important differences how-
ever: firstly, the agile architecture is designed with responding to change in
mind (through modifiability and being tolerant of change), and secondly,
because many architecture decisions are emergent, teams often prove their
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architecture by building it and seeing if it works, rather than proving it in
advance through analysis. This means less modelling and analysis when
designing an agile architecture. For example, proving a design with code
iteratively is a tactic of S1 where the first cut of a design is one that could
work, not necessarily will work.

5.4 Up-front requirements

While it is usually very difficult to define all requirements in detail before
starting development, a team would usually have an understanding of
certain requirements up-front. At the highest level, teams must have an
understanding of the business’s vision or the problem the system is ad-
dressing, and must have the system-wide ASRs defined, so that the team
can make the highest level architectural decisions. The more effort a team
puts into up-front architecture design, the more requirements the team
must know.

REQUIREMENTS INSTABILITY (F1) is related to up-front requirements.
When requirements are unstable, the team uses RESPOND TO CHANGE

(S1) to design its agile architecture. One of the tactics of S1 is to delay
decisions until the last possible moment, when the requirements are better
understood.

5.5 The agile architect

The role of the architect is that of architecture decision maker – designing
the architecture and choosing the agile architecture strategies to be used.

5.5.1 The architecture decisions makers

In an agile development team, the architecture decision maker is usually
a shared role, varying according to the needs of the team, their customer,



110 CHAPTER 5. A THEORY OF AGILE ARCHITECTURE

the relationship between the team and the customer, the system being built,
and system’s relationship with other systems. Architecture decisions may
be made with:

• WHOLE TEAM CONSENSUS

• APPROVAL WITHIN THE TEAM

• APPROVAL OUTSIDE THE TEAM

• DECISIONS MADE OUTSIDE THE TEAM

WHOLE TEAM CONSENSUS: Decisions may be made by team democracy,
with the whole team agreeing on the architecture by consensus. This option
of architecture decision-making is often used by very small teams where
agreement is possible and where all software engineers are skilled and
experienced enough to understand the architectural issues. Consensus has
the advantage that the whole team has full understanding and buy-in of
the architecture.

APPROVAL WITHIN THE TEAM: The whole team or most of the team is
part of the architecture design process, but decisions may require approval
within the team by a single team member who understands the business
problem and the overall architecture, and can take a casting vote to sort out
any disagreement between team members. Having a single team member
approve design decisions is useful where consensus is not practical and
where not all of the team is sufficiently skilled or experienced to make
architecture decisions.

APPROVAL OUTSIDE THE TEAM: Teams that are developing a system
that is part of a larger system – such as an enterprise system or a product
line – may be required to have their decisions approved outside the team.
The team still does the architecture design, but the design must be approved
by architects outside the team. These external architects have an overview
of the overall business objective and the overall system architecture that
the team may not have.
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DECISIONS MADE OUTSIDE THE TEAM: Finally, architecture decisions
may be made outside the team, out of the hands of the team altogether.
This most often happens when the team’s customer is not agile and does
not support the team’s agility. Customers may also make architectural
decisions such as the technology stack and high-level architectural styles
when they specify certain requirements, such as requiring compatibility
with existing systems or by selecting ISVs who are aligned with a particular
technology vendor.

5.5.2 Other roles of the architect

A member of an agile team who makes architecture decisions is also an
active member of the team; they often also play a number of other roles.
These roles may include:

• being the TECHNICAL LEAD/‘ÜBER DEVELOPER’

• knowing the BIG PICTURE

• creating a SHARED MINDSET

• creating and enforcing DEVELOPMENT GUIDELINES

• driving the DEVELOPMENT METHODOLOGY

Being a TECHNICAL LEAD/‘ÜBER DEVELOPER’: the architect is typi-
cally a senior software engineer, and is therefore able to solve the team’s
development problems and do the ‘tricky bits.’

Knowing the BIG PICTURE: knowing how the system fits with the needs
of the customer allows the architect to better understand the architecture
that is needed. This role shares a lot in common with the business analyst
role.

Creating a SHARED MINDSET: the architect needs to communicate the
architecture to the team and other stakeholders, so that they have a good
understanding of what is being built.

Creating and enforcing DEVELOPMENT GUIDELINES: development guide-
lines ensure consistent style and quality across the system.
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Driving the DEVELOPMENT METHODOLOGY: architects understand the
relationship between the architecture and the development process, and
therefore may be able to perform an agile coaching role, driving the devel-
opment process and methodology.

The architect role is described in more detail in Chapter 8.
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Figure 5.1: The relationships between the forces, strategies, requirements
and architecture design. Arrows represent dependencies between the
elements.
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Chapter 6

The agile architecture forces

“It just really depends on the context” (P17, manager/coach)

The agile architecture forces describe attributes that agile teams must
consider when designing an agile architecture and deciding how much
effort to put into up-front architecture design. The particular combination
of forces that acts upon the system forms that system’s context.

There are six forces described in this thesis:

• F1: REQUIREMENTS INSTABILITY

• F2: TECHNICAL RISK

• F3: EARLY VALUE

• F4: TEAM CULTURE

• F5: CUSTOMER AGILITY

• F6: EXPERIENCE.

These forces may be external to the team, such as EARLY VALUE (F3), or
they may be resultant of the team itself, such as EXPERIENCE (F6).

The relationships between the forces and the agile architecture strate-
gies, the actions the teams take to address these forces and which affect
architecture effort, are summarised in Figure 6.1. Each force and its rela-
tionships are described in this chapter, while the strategies are discussed in
Chapter 7.
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Figure 6.1: The relationships between the forces and strategies. The blue-
coloured boxes represent forces, and the green-coloured boxes strategies.
Arrows represent dependencies or causal relationships: a change in the
independent force or strategy causes either a positive change (solid black
line) or a negative change (solid red line) in the dependent force or strategy.
A dotted line represents a trigger dependence: the presence of the force is
a trigger for the corresponding strategy. The symbol ⊕ represents mutual
exclusion.
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6.1 F1: Requirements instability

DEFINITION OF F1: REQUIREMENTS INSTABILITY

Requirements instability is some or all of the requirements of the soft-
ware system being unknown when development starts or changing
during development.

F1 refers to unknown requirements or changing requirements. Teams
with unstable requirements generally prefer to do less up-front design be-
cause that effort is wasted when ASRs change or become better understood.

Participants all reported unstable requirements to some extent, whether
they were part of a team working on a relatively stable redevelopment
project or a start-up with a change-driven business plan:

“Even within a week there’s a lot of fluidity about [the customer].”

(P27, CEO/founder/agile coach)

Teams know and accept that requirements will change and evolve:

“It was almost as if one of the requirements was we need to be able

to change the requirements.” (P8, lead developer)

Developers of business systems in particular are often subject to a con-
tinuously changing environment:

“Business is going on and new ideas are coming up and new things

are being done.” (P30, consulting architect)

In fact, one organisation’s whole business case revolved around continu-
ously changing and improving:

“We market ourselves as [being] a whizzy online power company –

you have to keep on being whizzy, you have to keep being new and

exciting and changing.” (P24, customer)



118 CHAPTER 6. THE AGILE ARCHITECTURE FORCES

Unstable requirements can be caused by incomplete requirements – per-
haps where the customer has not decided what they want before develop-
ment starts – and by changing requirements – where the customer changes
their mind about what they want.

6.1.1 Incomplete requirements

Incomplete requirements are those that cannot be not fully defined prior to
development starting. They are often caused by the customer not knowing
what they want, or coming up with new ideas about what they, or their
end users, want:

“So the customer would come up with the greatest [idea]... ‘How

about we do this? This is a great idea!’ We’d go, ‘yes, that’s a great

idea,’ and add it to the backlog.” (P17, manager/coach)

Requirements may be fairly stable, but it may not be possible to de-
velop a complete understanding of those requirements or what would be
involved in implementing them until after development has started. A full
understanding comes later during development:

“It would certainly be the case that they [the requirements] would

often be better understood [as development progressed].” (P25, team

lead)

Frequently it is simply not possible for a team to have a full understand-
ing of the requirements prior to starting development because the customer
does not know what they want:

“And sometimes what happens is the customer doesn’t know what

they want, the product owner doesn’t know, so we develop something

and show [them]...” (P23a, engineering manager)

– or they may not be able to clearly describe what they want:
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“No matter what you write down on a piece of paper, until you actu-

ally see it in front of you, you cannot imagine it in enough detail to

get it right.” (P24, customer)

and

“It was only after mocking something up, saying, ‘we are pretty sure

this is what you [the customer] are after,’ and then going through

that review process, maybe each week or something, that you’d really

understand, ‘no, we actually wanted that bit to be over there, or we

wanted this feature in Flash’... and it was only through that [process]

we were able to say, ‘ok, now that we understand the finer detail we

can actually build that and satisfy a series of tests with that, knock

that one out then move on to the next bit.’ ” (P25, team lead)

– or because they are ambiguous or not clearly defined:

“Well essentially they [the customer] threw every feature that they

could remember from any of these fifty systems [that we were replac-

ing] at us, and they weren’t really well understood, really. [...] You

overlay them and realise that some of them conflict and some things

are just different ways of doing the same thing.” (P30, consulting

architect)

Even if requirements can be defined up-front, they may change dur-
ing development (section 6.1.2), wasting any earlier attempts to define
requirements.

Some agile software engineers dislike the term ‘project’ because of its
connotations of a well-defined scope with a fixed delivery date:

“I’m deliberately trying to eradicate the idea of a project; I think it’s

defunct in the agile world. I think that the idea of batch size is key and

by doing large pieces of work that we think of as a ‘project’ we break

one of the key [agile] paradigms.” (P29, development manager)
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Rather, agile work could perhaps be viewed as a continuous stream or
flow of work delivering regular value:

“We tend to think from a value-flow perspective, to say, how well do

we understand the most valuable features, or feature sets, for the user

community. Do we understand what’s truly most valuable to them?

And the answer to that is yes, we know what they care most about.

They care about this, this and this.” [...] “And essentially with these

value streams you end up with a value network, and that gives you an

idea of, if that is the flow of value, which way you should structure

your work.” (P10, coach)

With this view of agile workflow, even defining a full set of requirements
– much less defining a full set up-front – is often not possible:

“You [the interviewer] are framing the question as if ‘the require-

ments’ are a total set that can even be known.” (P10, coach)

(Note the term ‘project’ is also often used to loosely denote agile work
flows, and is used in this way in this thesis.)

This situation is frequently true even when requirements are relatively
stable. P13’s team was redeveloping a system, with the new system being
a very similar copy of the old system functionally. They were not able to
understand the intricacies of the system and its work flow rules before
starting development, even though they did not change much:

“I don’t know if the actual requirements ever changed but our under-

standing of them changed enormously.” (P13, architect)

P13’s team, working in the medical industry, was not able to understand
the requirements in advance of development:

“[The] problem was there wasn’t documented requirements for the

old system, and – perhaps more problematically – is the detailed

wrinkled little business rules. Their previous vendor said to us at
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one point, there’s stuff in here, stuff in the logic that affects only two

or three doctors out of the fourteen thousand that work in here, so

there’s little wrinkly bits of the logic, and originally the plan was that

the [customer] would get their old vendor to document these rules.

That never happened...” (P13, architect)

This situation was made worse by the development team not being able to
examine the old system due to data confidentiality...

“...and so that made it quite difficult!” (P13, architect)

Demonstrating early and releasing frequently provides more opportu-
nity for the customer and end users to determine the requirements at that
time.

6.1.2 Changing requirements

Requirements frequently change during development, perhaps because the
customer changes their mind or because of feedback from end users:

“An agency [customer] can do a U-turn and say, ok, I am going to do

this from now on.” (P23, engineering manager)

and

“Maybe that one client that was yelling out loudest for a particular

piece of functionality has moved on, or is happy, or God knows what.”

(P3, development manager)

Sometimes changes are brought about by the addition of new features:

“So that’s when the sales team will see an opportunity and they’ll

push for this change.” (P23, engineering manager)

A number of participants noted changes were frequently imposed upon
them by third parties such as regulators:
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“You’ve got your taxation changes coming in to specific dates through-

out the year, so those are generally around our release dates, because

we have to stay compliant with that” (P3, development manager)

Changing usage patterns can have a big impact on development. Higher
usage patterns often mean performance suffers unless the system is re-
designed to ensure it can maintain the required performance levels under
that load. Often it is impossible for the team or their customer to know
how their system will be used once it goes live:

“[Planning up-front] assumes you know to begin with the usage pat-

terns that your system is going to be put through... and you don’t. You

have to play it out in real life. You can’t afford to have like a second

life where, you know like Second Life the system, you deploy it virtu-

ally and see how people interact with it there, and only then deploy it

in real life!” (P10, coach)

If successful, usage of the system will be higher than anticipated:

“Since we were working with a more popular travel website, it turned

out there was more traffic.” (P21, manager/coach)

and

“The new requirement was a higher volume of traffic.” (P8, lead

developer)

Sometimes the requirements themselves do not change, but their priori-
ties do:

“[Changing priorities] often mean that stuff that we thought we were

going to do we ended up not doing, other things had to come in.” (P7,

business analyst)

and



6.1. F1: REQUIREMENTS INSTABILITY 123

“There are many occasions where something really important last

week has been swapped out for something that’s even more important

now.” (P15, customer)

and

“They [the customer] have got to have this feature in at this time to

coincide with a whole lot of marketing that’s going to be on TV that

nobody’s told us about, and so we’re going to do that now. That would

totally throw the cat amongst the pigeons [in a non-agile methodol-

ogy]. But you’d still have to react to that and fit things into your

cycle.” (P25, team lead)

Most participants did not invest a lot of time on gathering requirements
prior to development starting, because when requirements change this
effort is wasted. Participants would therefore only define the highest level
requirements, defining the details when they are needed.

Delays caused by gathering detailed requirements increases the chance
those requirements will change:

“The moment that you do that [put too much detail into your require-

ments] you fall into the trap of trying to do all the requirements anal-

ysis upfront. [If you do] there’s a fat chance that by the time you get

around to starting the work your world has changed.” (P3, develop-

ment manager)

By starting development and demonstrating the product to the cus-
tomer early in development, developers are able to get feedback from the
customer early:

“So we have the quick feedback cycle, and every week they tell us

what’s been working, what these providers [end users] are asking

for, so that’s where we get a lot of our feedback from.” (P22, senior

manager)
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and

“Because it’s more important for the customer to see [a demonstra-

tion] within a week, rather than for us to go and spend a month or

three more weeks building the same thing, but the customer not even

being sure in the first place whether anyone actually wants the fea-

ture.” (P16a, CEO/chief engineer)

Early feedback from the customer means the team can increase delivered
value by responding to that feedback.

∗
Figure 6.2, a subset of Figure 6.1, shows the relationships between F1 and

other forces and strategies. F1 motivates the use of RESPOND TO CHANGE

(S1) – that is, having unstable requirements is a trigger for designing an
agile architecture – and S1 is in turn required if the team wishes to design
an EMERGENT ARCHITECTURE (S3). This relationship does not imply a
relationship between the level of requirements instability and the level of a
team’s ability to respond to change.

On the other hand, the BIG DESIGN UP-FRONT (S4) has a negative impact
on the team’s ability to RESPOND TO CHANGE (S1).

6.2 F2: Technical risk

DEFINITION OF F2: TECHNICAL RISK

Technical risk refers to exposure to potentially negative outcomes
caused by problems and uncertainty due to the technology suite, the
architecture design or the system itself.

Risk is exposure to potential negative outcomes. Technical (or engineer-
ing) risk is the risk of failure caused by problems within the technology
suite, the architecture design, or the system itself [17, 91].
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Figure 6.2: The relationships between REQUIREMENTS INSTABILITY (F1)
and other forces and strategies.

Technical risk has a big impact on how much architecture design teams
do, and is caused by having demanding architecturally significant require-
ments (ASRs, section 2.3.4) that lead to a complex architecture, by unique
problems that have not previously been solved, and by unknown or new
technology:

“If there’s high complexity, integration, there’s high risk.” (P32, soft-

ware development director)

and

“Risk comes from complexity.” (P33, product architecture team leader)

and

“Is it something that’s new? How well did we understand it as an or-

ganisation in that functional area?” (P33, product architecture team

leader)
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The most significant contribution to risk is complexity, which has a
direct impact on teams’ up-front design effort:

“Complexity in terms of how complicated the code and the solution

underneath it are going to be does influence how much planning we’re

going to do.” (P33, product architecture team leader)

and

“Fundamentally though the smallest amount [of up-front architecture

planning] possible is still quite a lot, so it really depends on how

complex the thing is you’re trying to build.” (P36, development unit

manager)

Complexity is discussed in the remainder of this section.

6.2.1 Causes of complexity

Complexity can be caused by the system having demanding ASRs, by
having many integration points and by having to interact with legacy
systems.

“So if [the requirements] are architecturally significant, every single

one of them, then that’s complex.” (P32, software development direc-

tor)

These causes are explored below.

Demanding ASRs

Demanding or challenging ASRs mean it is more critical to make correct
architecture decisions, because there is a small solution space or because
they require many trade-offs. Multiple stakeholders can also lead to de-
manding ASRs and trade-offs if they have conflicting needs. Demanding
ASRs increase complexity and the technical risk. Participants described
demanding ASRs leading to a complex architecture:
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“Highly demanding NFRs [non-functional requirements, or ASRs]

are in my mind a direct driver of complexity and will require more

effort to address, particularly as there are trade-offs between them

– for example, performance versus security.” (P31, enterprise archi-

tect)

and

“Demanding QAs [quality attributes] can put a lot of stress on a sys-

tem’s architecture and introduce considerable complexity without it

necessarily being a ‘big’ system.” (P31, enterprise architect)

Demanding ASRs therefore increase the up-front architecture design
effort required.

Legacy systems

Legacy systems are older systems that were created using now outdated
techniques and technology [30], and are no longer being engineered or
actively maintained but rather are simply patched as requirements change
[165] without consideration of the technical debt being incurred [1]. These
patches and technical debt add to the system’s complexity [151]:

“Systems become more complex with age. Just the burden of code –

entropy over time and all that.” (P32, software development director)

and

“The systems are quite antiquated, so we need to figure out how to

interact with them.” (P36, development unit manager)

Good design practices such as simplicity, modularity and high cohesion
are eroded, and continuing to develop, or even interfacing with, these en-
tropic legacy systems is a source of complexity that requires more up-front
exploration and proofs of concept to ensure that integration is possible.
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Integration

Participants identified integration points, or interfaces to external systems,
as a major source of complexity in the systems being developed, particularly
when the other systems are legacy or are built from different technologies:

“Today’s systems tend to be more interconnected – they have a lot

more interfaces to external systems than older systems which are typ-

ically standalone. They have a lot higher level of complexity for the

same sized system.” (P14, solutions architect)

and

“[Complexity] is usually to do with the complexity of the interactions

between the parts of the things in the domain [...] It’s when you’ve got

a lot of moving pieces in place that it becomes more complex. If it’s

a relatively small number of moving pieces, then it’s not so complex.”

(P36, development unit manager)

Integration with other systems require data and communications to be
mapped between the systems, which adds to the up-front effort to ensure
integration is possible with the technologies being used.

6.2.2 Size and complexity

The size of a system may be measured directly by using a metric such
as lines of code, number of components or function points, or indirectly
using a metric such as the project’s budget or development time. The
size of a system is frequently considered by the literature as a factor in
determining how much up-front architectural effort is required (section
2.4.3). Participants in this research however did not consider size to be a
direct factor in the amount of up-front design required:

“In my experience, the complexity of an organisation’s systems land-

scape has a greater influence on the amount of fore-thought required
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than the budget or size of any particular initiative.” (P10, agile

coach)

and

“If we have size that just extends the time, it’s of little concern to

us [architecturally]. It’s just a slightly larger backlog, management

overhead.” (P32, software development director)

A system that does not have demanding ASRs, does not require a lot of
integration and does not involve legacy systems is not likely to be complex,
and therefore will require less up-front architecture effort, independent of
size.

Specifically, a large system that can be implemented entirely using a
framework’s standard components and libraries with an acceptable level
of risk will require less effort than a similar sized complex system. For
example, P27’s team was building a large system that could be implemented
entirely using Ruby on Rails. They were therefore able to build the system
with very little up-front design:

“We talk to a lot of systems, we interface with a lot of systems, we’ve

got customer web requests coming in, we’ve got iPhone requests com-

ing in, from a software point of view there’s a lot of moving parts. The

[functionality] is very, very complex – but the physical architecture it-

self that it sits on is nice and standard. [...] It’s a just well adopted

Ruby On Rails stack. We deliberately try not to do anything different.

Go with what’s proven, go with what works. [...] We don’t have ar-

chitectural discussions – we don’t need to – the problem’s [already]

been solved.” (P27, CEO/agile coach)

Another participant, P26, described a .NET system that he built as hav-
ing an ‘enterprise-grade architecture’ that was ‘too big’ for the system being
built: it had more layers and levels of abstraction than required. Despite
this extra size, he believed the extra complexity was minor, describing the
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additional up-front effort required for this larger architecture designed for
a larger system as being minimal, with most of the extra effort coming
during development when getting new team members up to speed with
the architecture.

Conversely, even a small system may require a lot of planning if it is
complex:

“It could have been a very small thing that created a big iteration

zero.” (P29, development manager)

The impact of complexity is therefore more important than the impact
of size on architecture effort.

∗
The relationships between F2 and other forces and strategies are shown

in Figure 6.3. The risk associated with complexity is mitigated with in-
creased up-front design (ADDRESS RISK, S2). USE FRAMEWORKS AND TEM-
PLATE ARCHITECTURES (S5) reduces complexity, simplifying the design
and reducing the risk and effort required for common problems. The
figure also shows the three contributors to risk: complexity (caused by de-
manding ASRs, integration and legacy systems), having to build a unique
solution, and using unknown (or unfamiliar) technology. Size is not a direct
contributor.

6.3 F3: Early value

DEFINITION OF F3: EARLY VALUE

The early value force refers to a customer’s need to gain value from a
system or product by using that system before the system is commer-
cially viable or complete.

F3 refers to a customer’s need to gain value (rather than simply pro-
vide feedback) from a system or product’s highest priority requirements
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Figure 6.3: The relationships between TECHNICAL RISK (F2) and other
forces and strategies

before enough functionality has been implemented to make the product
commercially viable. Teams who deliver early value reduce the time to
the first release and hence spend less time on up-front architecture design;
the extreme case of reducing up-front architecture design is the EMERGENT

ARCHITECTURE (S3) – perhaps as a working prototype or a minimum viable
product (MVP) [192], a marketing experiment that has limited functionality
and is designed to determine which features are desirable, rather than be a
fully functional version of the software.

Early value is frequently required by businesses operating in a dynamic
commercial environment whose business plan cannot wait for the full
product to be developed:

“Today they’ve got an opportunity for a business idea that might make

them some money – if they don’t pounce on it it’s gone regardless of



132 CHAPTER 6. THE AGILE ARCHITECTURE FORCES

how clever they think they are.” (P26, team lead)

and

“If they [build] the big system, then they will never reach their end

customer and make their money.” (P22, senior manager)

Early value is also important for start-ups with limited cash who do
not have the ability to pay for lengthy up-front architecture design and
development prior to the first commercial release. If the product or service
being developed is (or will be) a mass market product with many end-users
(rather than an internal product), the customer can start generating value
in the form of cash flow by releasing the product or service early to early
adopters:

“We’re a start-up. We didn’t have twenty million dollars to spend on

day one.” [...] “So then you know it [the system] is not perfect, and

you accept that it’s not perfect, but then you say, well, that got me off

the ground.” (P15, customer)

and

“Our business is based on first add value then the revenue comes in.”

(P16a, CEO/chief engineer)

Teams reduce up-front design effort by reducing the planning horizon –
how far ahead the team considers (high level) requirements for the purpose
of architecture planning. In the extreme, the planning horizon is reduced
to the current iteration only – the team does not make any allowance for
requirements beyond the current iteration. In this case the architecture
design is effectively totally emergent – an EMERGENT ARCHITECTURE (S3).
F3 is a motivator, or trigger, for S3.

F3 is not usually relevant to systems that do not have paying end-users,
such as internal and non-commercial systems.

∗
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Figure 6.4 shows the relationships between F3 and other forces and
strategies. F3 triggers the team to build an EMERGENT ARCHITECTURE

(S3). As noted above, for a team to build a system or product with an
emergent design, the architecture should be highly responsive to change
(RESPOND TO CHANGE, S1), and therefore must avoid risk that increases
up-front design (ADDRESS RISK, S2); the system cannot both address risk
and deliver early value (S2 and S3, respectively) at the same time. Thus a
system being delivered early should have a simple and known solution,
without demanding ASRs, many integration points and interaction with
legacy systems. EMERGENT ARCHITECTURE (S3) and BIG DESIGN UP-FRONT

(S4) are mutually exclusive.

Figure 6.4: The relationships between EARLY VALUE (F3) and other forces
and strategies
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6.4 F4: Team culture

DEFINITION OF F4: TEAM CULTURE

The team culture force refers to the agile culture of the development
team. A highly agile team culture helps the team become more ag-
ile (that is, respond to change faster), while a non-agile team culture
impedes the team’s agility.

A team culture that is people-focused and collaborative lies at the heart
of agile methodologies, because it greatly reduces the feedback cycle by
reducing the time required to relay information [72]. A team with a highly
agile culture will almost certainly have team members who are physically
close together, will use face-to-face communication instead of written docu-
mentation, and will have team members who are trusting and ‘amicable’
[72]. For example, P12’s team had a very open and communicative culture:

“There was a very good culture; we would often go out after work and

have a beer together. We got on very well. We could be full and frank

in our discussions and planning and nobody would get too offended.

Nothing that couldn’t be sorted out over a beer after work.” (P12,

senior developer)

A team’s agility is determined by its ability to respond to change; a more
agile team will have a shorter feedback cycle, and will do less planning to
reduce the delay in getting initial feedback.

6.4.1 The people-focused and collaborative team culture

A people-focused and collaborative culture consists of team members who
are able to work closely together and communicate freely with the cus-
tomer:

“You need people who will ask questions, will welcome feedback, who

are happy to get on Chat and literally have a chat, who aren’t scared

of talking to the client, who think really well.” (P15, customer)
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P29 and P31 believed that team culture has a much greater impact on
productivity than technical ability and knowledge of agile practices:

“But the actual productivity changer is the actual teaming thing.”

(P29, development manager)

and

“You could have as much technical knowledge [as you like] about

how to build something, but if you can’t get the people working to-

gether then you may as well give up. You’re not going to get the

outcomes you expect. The technical aspects are dead easy to deal

with.” (P31, enterprise architect)

Likewise, P30 saw communication skills as a key skill:

“One thing we were seeking was good written and verbal communi-

cation skills. The written skills I took as an indicator into the ability

to think and express themselves clearly. Of course being able to talk

to somebody is a fundamental skill!” (P30, consulting architect)

In contrast, a poor agile culture is one where everyone is working as an
individual with their assigned tasks and their own output. This can lead to
misunderstandings, conflict and a blame culture when things go wrong:

“We tell people, don’t worry about it, nobody’s going to blame you,

even if we make a mistake. [...] ‘He changed my code, it was right,

he changed my code and the defect came.’ Why weren’t we going and

asking him, ‘why did it cause the defect?’ This is one of the cultural

problems. [In agile] who caused it or whose mistake it is doesn’t

make a difference. There’s no blame. If the defect is there, pick it up

and fix it!” (P22, senior manager)

To help avoid these problems, an agile team focuses on the output of
the team as a whole rather than the output of the individual:
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“That’s sometimes a challenging dynamic to work with, [...] there

is still in many places this emphasis on individual rather than team

performance and assessment and reward.” (P10, coach)

A people-focused and collaborative team culture plays an important
role in the team’s agility.

6.4.2 Trust

Trust is hugely important for a people-oriented and collaborative culture:

“Trust is 99.9 per cent of [success]” (P15, customer)

Trust holds the team together and enables it to work together and to
produce team-oriented results:

“Trust is a really powerful glue for the fabric of the team... that’s a

fundamentally critical thing that you have to get right.” (P30, con-

sulting architect)

and

“You need good people who have got buy-in to that [agile] process,

trust, and I think you need to run a good tight technical ship.” (P27,

CEO/coach)

Without trust, teams tend to operate as a collection of individuals, with
little team focus and relying on more explicit forms of communication.

6.4.3 Team size

Collaboration works best in small teams, where every team member can
be directly involved in all discussion; large teams require more formal
communication methods, more structure and more planning than small
teams [155]:
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“I was talking about hundreds of people – you’re not just going to

throw them in a great hall and say, ‘go do work.’ You’re going to

have some sort of structure.” (P10, coach)

and

“And the team has been going, ‘[we’re] too big, can’t communicate,

hate the meetings.’ [...] It definitely takes more effort and negotiation

in iteration zero. I don’t think it changed the complexity of the archi-

tecture or the way we attack the architecture – it’s just comms time.”

(P29, development manager)

and

“The thing that is problematic with bigger teams is establishing ev-

eryone on a common page, because there are more people to talk to,

more ideas on the table, and so there’s a cost in the communication

of the team.” (P29)

More formal communication requires more time and effort, reducing
the ability of the team to be responsive to change and hence its agility.

6.4.4 Agile experience

The agile experience of the team members can affect team agility and how
much architecture design the team does: a people-focused and collaborative
agile culture does not come instantaneously; it comes with experience and
practice as the team becomes more experienced working together:

“You can learn agile [processes] but thinking agile is not so easy. It

comes as part of culture. It’s a continuous journey, people have to get

accustomed to the culture.” (P20, coach and trainer)

Converting a whole company to agile and spreading the agile culture
also takes time:
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“You really need to have an agile mind-set throughout the organisa-

tion, and that takes years.” (P3, development manager)

A team new to agile will usually struggle to be successful without
the guidance of a predefined architectural plan, but as the team becomes
more experienced and develops an agile mind-set, team members should
become more comfortable working in an unpredictable environment and
less planning:

“It’s very difficult for [inexperienced developers] to think in that model.

The culture will be different. They will find it very difficult to start

without having a concrete design in place. [...] They always want to

follow what is already laid out. [...] An experienced set of develop-

ers or members in the team will make it easier to actually [form and

evolve] the design.” (P22, senior manager)

Conversely, one participant (P23) reported they would do more plan-
ning if they were more experienced in agile, but his team had come to
agile from an ad hoc, process-free methodology background rather than
a traditional plan-driven background. He believed more planning would
have solved some of the technology problems they were facing.

∗
Figure 6.5 shows the relationships between F4 and other forces and

strategies. F4, along with being in an agile environment (F5, CUSTOMER

AGILITY) and having architectural and technical experience (F6, EXPERI-
ENCE), increases the team’s ability to design an architecture that can RE-
SPOND TO CHANGE (S1): a team is more able to respond to change if it has
an agile team culture. On the other hand, a non-agile culture may increase
the team’s need to do a BIG DESIGN UP-FRONT (S4), which in turn has a
negative impact on the team’s ability to use S1.

S1 is a prerequisite of EMERGENT ARCHITECTURE (S3): for a team to
design a totally emergent architecture, it must be highly agile.
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Figure 6.5: The relationships between TEAM CULTURE (F4) and other forces
and strategies

6.5 F5: Customer agility

DEFINITION OF F5: CUSTOMER AGILITY

Customer agility refers to the relationship between the development
team and its environment – the customer or manager and other stake-
holders – and how that affects the team’s agility and helps the team
become more agile.

The team’s environment, such as the customer’s organisation, has an
important impact on the team’s ability to be agile. The customer needs to
be sympathetic with and support the team’s agile needs, such as its need
for regular feedback and to be self-organising; a customer that is agile will
greatly improve the team’s agility:

“We’ve become the same team.” (P27, CEO/coach)
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– while a non-agile environment (such as a customer used to process and
traditional styles of management) can hinder a team’s ability to be agile:

“There is the expectation that, ‘I’ve given you the requirements, I’m a

busy person, go away and tell me when it’s done.’ ” (P25, team lead)

6.5.1 The relationship between the customer and the agile

development team

Ideally there will be a good cultural match between the team and the rest
of the customer organisation: as well as the team needing a people-focused,
collaborative culture that encourages agile (F4, TEAM CULTURE), the cus-
tomer organisation – whether an external customer or the organisation the
team is part of – needs a similar culture that supports the team:

“We’ve become the same team. That removes a lot of the tension,

streamlines the process massively.” (P27, CEO/coach)

Conversely, a highly-agile team will be less effective in a highly-process
oriented organisation [203] that prefers extensive planning and formal
communication [72]:

“I’ve always said customer organisations need to look at their ven-

dors and determine the cultural compatibility.” (P31, enterprise ar-

chitect)

Participants suggested large organisations tend to prefer more tradi-
tional process driven methods, while small organisations prefer to avoid
process. Thus the relative sizes of the organisation is a strong indicator of
whether or not their cultures match:

“Some places just cannot do a ‘small scale’ project, they just seem

to have to do everything large scale. Likewise big corporates such

as IBM or HP always seem to need a lot of process, however your
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average ‘back of the garage’ vendors will often struggle to do a lot of

planning.” (P14, architect)

and

“Scale is one factor in [cultural compatibility]. So dealing with a

300 000-person multinational when you’ve got a thousand people, it’s

a David and Goliath... it’s a bit like a mouse and an elephant. They’ve

got different ways of behaving, different internal structure and all the

rest of it. I think I would struggle to have confidence that a big vendor

would actually be able to participate in [the agile approach] fully.”

(P31, enterprise architect)

An example of a customer who had a culture highly compatible with the
agile development team is that of participants P15, P24 and P27. The team’s
methodology is Scrum-based, modified so that changes could be made
within their one-week sprint, to decrease the feedback cycle time. As noted
above in section 6.1, the customer P24’s business case revolved around
continuous change, and the development team’s highly agile culture was
a good match for this business case. The development team had constant
access to the customer, and vice versa, so they could discuss requirements
whenever needed and could demonstrate new features of the software as
required:

“Even Monique, who is our legal person, has full access to the guys

[in the development team]” (P24, customer)

The team and its customers collaborated very closely, to the point where
in some instances specifications of the requirements were not written down
at all; instead the team worked off verbal instructions and used early
implementations to get feedback from the customer:

“Last Thursday in our sprint meeting at eleven o’clock in the morn-

ing, we [the customer] said it’d be really helpful if we could have a
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way to view future pricing. I want to know how those prices are go-

ing to change over the next twelve months, because every month has

a different price. Five o’clock on Thursday – I didn’t even know a

Beetil [feature request] had been raised – I just thought we were go-

ing, that’s a really cool thing to have, but we’ve got quite a lot going

on so it’s not going to happen. Five o’clock I get an email alert say-

ing, ‘how does this look?’ ‘Great! Can you just swap [the display]

around?’ ‘Yep, sure, no worries!’ And we got that released into test

Monday afternoon. Our requirements were: ‘hey, it’d be very nice if

could see this!’ ” [ ...] “They’ve literally gone and done it, and done

it in the developer environment and sent us the screen shot [rather

create a mock-up].” (P24, customer)

The team had such a close relationship with the customer the boundary
between team and customer sometimes blurred:

“Sometimes it’s hard to tell who the customer is, but ultimately it

doesn’t matter. Some of the developers are more passionate about

this than my team.” (P15, customer)

This team had used S3 (EMERGENT ARCHITECTURE) successfully since
its inception several years earlier.

Each of the participants P15, P24 and P27 from this project considered
trust to be the most important success factor:

“I think that trust has been massive for us. [...] They [the customer]

trust you and you deliver.” (P27, CEO/coach)

Like trust within a team, trust between the customer and the team is
important to help the customer become part of the team and break down
formal processes, improving agility and the ability to respond to change:

“Once you’ve built up to that level [of trust], what we started finding

is that our customers then start breaking down their own processes,

and start making processes [agile] for us.” (P27, CEO/coach)
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In contrast, P29 described a previous role where he had trouble getting
his customer to commit to regular involvement. To compensate they spent
more time on up-front design:

“So we’d try to drive out as many assumptions as possible at the start.

And that was our answer to [the client organisation] not giving us

customers. So we probably did a lot more architecture there up-front,

on several big projects.” (P29, development manager)

P22 and P25 also had trouble getting feedback from their customer,
leading to delays in the feedback cycle:

“When we [the team] say, ‘oh, we want you [the customer] all the

time, available,’ they say, ‘oh no, we cannot, we have a lot of other

work to do also, we’ll meet once a week’; we say, ‘no, we need to talk

every day.’ Then we explain why it is like that, because you’re not

going to make a one-time decision on what we are going to do for the

next six months.” (P22, senior manager)

and

“There is the expectation that, ‘I’ve given you the requirements, I’m

a busy person, go away and tell me when it’s done.’ And there was

a lot of time involved in going back and saying, ‘here it is for you to

look at, please look at it.’ It would often be a road block – you’d often

be stuck waiting unworkable lengths of time sometimes.” (P25, team

lead)

There are a number of reasons for customers not being able to match
the development team’s agility and being non-agile. These reasons are
discussed in the following section.
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6.5.2 Types of non-agile customer

Participants mentioned a number of reasons for customers not being agile,
which typically resulted in the team having to do more up-front design
than they would otherwise need to do or prefer. These reasons include
being a process-bound customer, the need for approval of the architecture
design, requiring a fixed-price contract, requiring approval from the Board,
and being time-poor.

(a) The process-bound customer

If a non-agile organisation is not able or willing to empower the team or
provide them with feedback, then that team will have difficulty being agile:

“Not only did a lot of key players not get it [agile], there was a push

back to keep the status quo because that was what was familiar and

comfortable and has always been done.” (P25, team lead)

For example, P18’s organisation structure did not suit agile develop-
ment: their developers and testers were in different teams with different
managers, and so they were unable to implement common agile processes
such as test-driven development or regression testing. Thus they were
unable to manage changing requirements. P18 commented that they felt it
might have been easier to fix the requirements in advance and use a more
plan-driven approach:

“...so having all the requirements up-front would have helped.” (P18,

development manager)

P32 commented that some of their planning was simply because their
customer expected it and preferred to see the developers perform tradi-
tional planning:
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“We have learned that a lot of the planning we’ve done up-front has

been more a planning art or a planning play or some sort of produc-

tion because there’s some air of respectability around it. It’s neces-

sary – people demand it.” (P32, software development director)

Other participants reported customers who would not relinquish control
and allow the teams to talk directly to end users, and IT departments who
were not able to deploy the system at the end of each iteration.

(b) The design benediction

Frequently a team will be building a system that is part of a larger system,
and the customer may wish to approve or ‘bless’ the architectural design
prior to development to ensure it is compatible with the architecture of the
overall system or with company policy (for example, P17, P25, P29).

P7 described how their architecture has to be compatible with other
teams’ work:

“For those parts of the project which other projects have to work on

to get working, we’ll work this more waterfall-y way, so that these

requirements and all that kind of stuff is by agreement between the

different teams.” (P7, business analyst)

For work that was not part of a larger system, P7’s team was able to bypass
the coordinating programme management and talk directly to the customer:

“But parts of the project which are self-contained, where it’s just us,

we’re allowed to work with the business [customer] direct and work

in a more agile way and they can change their mind.” (P7, business

analyst)

See section 8.1.3 for a discussion on design approval given from outside
the team.
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(c) Approval from the Board

A number of participants talked about non-agile customers who need to fix
a budget and scope in advance so that they can get approval from the CFO
or the Board for the work:

“A lot of customers [...] need to go to the Board with some answers

[proposed list of features], and they need to go to the Board with some

numbers [proposed cost], and they’re not going to go to the Board

until they’ve got both of those things.” (P26, team lead)

and

“Here’s the shopping list of features, how much is it going to cost?

OK, cool, two million dollars... I’ll get two million dollars for that.”

(P14, architect)

To calculate cost, teams must fix the scope and do more planning – the
‘envisioning’ phase – so that they are in a better position to understand the
effort (and cost) required to deliver a relatively fixed set of features.

(d) The untrusting customer and the fixed price contract

The ‘untrusting customer’ is a traditional customer that does not have the
trust that is so important to agile development, and who prefers to provide
the team with a predefined tick-list of requirements, so that they can hold
the team accountable if the requirements are not all met.

If the development team is an independent software vendor (ISV) then
the customer will most likely provide them with a fixed price contract that
requires a fixed scope and fixed delivery dates, perhaps with penalties if
milestones are not met:

“[With agile] they feel they [the customers] don’t have the bargaining

chip of the requirements; ‘you had agreed...,’ because that’s a great
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bargaining chip to say, ‘this is out of scope, that’s out of scope, we’re

going to go live with what you agreed four months ago because you

agreed on that...’ ” (P7, business analyst)

and

“They’ve mandated quite a draconian liquidated damages kind of risk

contract, about [what happens] if you miss a milestone.” (P32, soft-

ware development director)

Similar situations also occur in government projects in which a high
level of accountability is required:

“Our customer still does elaborate requirements documents and that’s

because they’re obviously in a government context, they need to clearly

state what they’re going to be doing.” (P32, software development di-

rector)

Like when requiring approval from the board, teams must do more
planning to understand the cost of delivering the list of features.

(e) The time-poor customer

Sometimes the customer simply cannot commit to ongoing time with the
development team.

“There is the expectation that, ‘I’ve given you the requirements, I’m a

busy person, go away and tell me when it’s done.’ ” (P25, team lead)

Teams solved this problem by spending more time designing up-front:

“So we’d try to drive out as many assumptions as possible at the start.

And that was our answer to [the client organisation] not giving us

customers. So we probably did a lot more architectural there up-front,

on several big projects.” (P29, development manager)
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∗
The environment in which an agile team operates affects how agile it

can be, and therefore how much up-front design it does. A match between
the team’s culture and the customer’s culture will greatly enhance the
team’s ability to be agile, while a less agile customer will force the team to
do more planning and up-front design.

Figure 6.6 shows the relationships between F5 and other forces and
strategies. Like F4, F5 is a success factor of RESPOND TO CHANGE (S1), and
therefore also of EMERGENT ARCHITECTURE (S3). On the other hand, a
non-agile environment may increase the team’s need to use BIG DESIGN

UP-FRONT (S4), which in turn has a negative impact on the team’s ability to
use S1.

Figure 6.6: The relationships between CUSTOMER AGILITY (F5) and other
forces and strategies
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6.6 F6: Experience

DEFINITION OF F6: EXPERIENCE

Experience refers to the built-up knowledge and skill that the team has
in architecture design and the technologies it is using. An experienced
team is able to make more implicit decisions based on tacit knowledge,
while an inexperienced team must make their decisions more explicit
to ensure the decisions are appropriate.

F6 describes the impact that a software engineer’s architecture and tech-
nical experience has on the time that an agile team spends planning. While
an experienced software engineer can use tacit knowledge and make some
decisions implicitly, an inexperienced software engineer relies more on
explicit decisions that are written down and hence require more effort. (In
contrast to F6, TEAM CULTURE (F4) includes agile development experience
as a factor.)

Experienced architects have a breadth of knowledge; they are more
likely to be aware of suitable options for implementing a solution and
better understand what will work and what will not work. Hence they can
make better and quicker decisions:

“I was drawing on the twelve years’ experience and some mental

models of what maintainable architectures would look like.” (P13,

architect)

and

“Some of [our architectural decisions were] from experience... so

things like single server versus dual server or multiple server, that

sort of thing.” (P14, architect)

When the software engineer does not tacitly know the most suitable
solution, experience helps them research and select the most appropriate
solutions:
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“Figuring out whether there’s something out there appropriate that

already does it – that sort of thing – that’s where experience and

knowledge really come into play.” (P36, development unit manager)

and

“I think it’s also important to have a degree of experience to know

what you are reading is reputable and does this match with everything

else that you already know.” (P14, architect)

Participants described experienced architects as being important for all
development methods – not just agile:

“I think everybody has to be better, and they’re not. That’s the big

and main problem in most big companies.” (P8, lead developer)

While important for all method types, experience is more important in
agile development than in plan-driven methods because the tacit knowl-
edge and the implicit decision-making ability support agile methods’ re-
duced process and documentation [68], and hence reduce up-front effort:

“If you have a team of really, really experienced professionals then

you can get away with a lot less [design up-front] because a lot of it

is going to be implicit anyway.” (P3)

and

“You implement certain patterns without thinking [...] you’ve done

this kind of pattern for solving this kind of a problem, without even

thinking that this is the way that you are going.” (P16b, head of

engineering)

and

“I don’t think it [the architecture design] was particularly contentious,

it became the obvious choice; I don’t know how to explain that. [...]

Most of us, I think we knew it was going to happen that way.” (P12,

senior developer)
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Inexperienced architects rely more on explicit decisions that are writ-
ten down and which need more effort, in the form of proofs of concept,
experiments and research.

Knowledge of the technology helps the team to speed up design and
use the technology’s strengths (and avoid its weaknesses):

“The architect we had working on this worked on another project or

two using this framework, plus also other portal ones, and has definite

opinions on pitfalls to avoid.” (P7, business analyst)

– although on the negative side, being too familiar with a technology can
lead a software engineer to developing a too-narrow vision and an unwill-
ingness or laziness to learn new technologies that may be more suitable.

If a team does not have the required experience, they can compensate
through extra research:

“They also went out to find people who’d done similar systems, [some-

one] in Australia had done something not quite the same but similar

processes, so we were able to go them and [ask], ‘what’s your archi-

tecture, can we have a look at it, why have you made these decisions,’

which was very useful.” (P8, team lead)

– or they may bring in someone with suitable experience to join the team.
On the other hand, P2 ran into problems on which they blamed their

unfamiliarity with the chosen architecture:

“Oh, you can always say it’s because we didn’t think about it enough,

but I think the reality is we haven’t done precisely this ever before,

and not with this particular tool set, so it’s unfamiliarity.” (P7)

Interestingly, one of the participants provided a contrary example where
his lack of breadth of experience also simplified his decision making, with
his options restricted to just one:

“With the prototype I chose ASP because I knew it, I could do VB-

Script, I didn’t know C#.” (P1, developer)
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He then noted that if he knew C# he would have used it, implying the
older technology (ASP/VBScript) was probably not the best solution.

∗
Figure 6.7 shows the relationships between F6 and other forces and

strategies. An experienced team is better able to use techniques such as
keeping designs simple and using good design practices, which allow a
team to design an architecture than can RESPOND TO CHANGE (S1). F6,
with the other success factors for S1 – TEAM CULTURE (F4) and CUSTOMER

AGILITY (F5) – and along with an absence of TECHNICAL RISK (F2), may al-
low a team to reduce their up-front effort to the point where the architecture
is fully emergent, EMERGENT ARCHITECTURE (S3).

Conversely, a lack of experience may increase the team’s need to do a
BIG DESIGN UP-FRONT (S4), which in turn has a negative impact on the
team’s ability to use S1.

Figure 6.7: The relationships between EXPERIENCE (F6) and other forces
and strategies



Chapter 7

The agile architecture strategies

“You’ve got to think about big things while you’re doing small things,

so that all the small things go in the right direction.” (Alvin Toffler)

There are five agile architecture strategies that teams use to address the
agile architecture forces (Chapter 6) when designing an agile architecture.
Agile teams use the strategies to determine which architecture decisions
need to be made up-front and which can be left emergent. The strategies
are labelled S1 to S5:

• S1: RESPOND TO CHANGE

• S2: ADDRESS RISK

• S3: EMERGENT ARCHITECTURE

• S4: BIG DESIGN UP-FRONT

• S5: USE FRAMEWORKS AND TEMPLATE ARCHITECTURES

S1 increases the architecture’s ability to manage and respond to change
by increasing its modifiability (its ability to evolve) and its resilience to
change. S1 generally decreases the up-front design effort that teams do.
Conversely, S2 increases up-front design, and thus S1 and S2 are in tension
with each other: teams have to balance the ability to manage change with
mitigating risk.

153
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S3 is an extreme case of S1 with no up-front design, while S4 may be
considered an extreme example of S2 with no emergent design, although
the forces they address are different. S3 and S4 are thus mutually exclusive.
S5 can be used with all other strategies.

Figure 6.1 is repeated in Figure 7.1. The figure shows the relationships
between the forces (Chapter 6) and the strategies. Each strategy and its
relationships are described in this chapter.

7.1 S1: Respond to change

DEFINITION OF S1: RESPOND TO CHANGE

Responding to change is a strategy in which a team designs an evolving
architecture that is modifiable and is tolerant of change.

Designing an architecture that can RESPOND TO CHANGE means making
decisions so that the architecture can evolve and is tolerant of change. An
architecture that evolves can be easily modified when requirements change;
an architecture that is tolerant of change is less likely to need to be changed
when requirements change.

An evolving architecture allows a team to ensure the architecture contin-
uously represents the best solution to the problem as the team understands
it as requirements evolve:

“The key thing is [the architecture] is not going to be frozen. It’s not

going to be documented and put it in a glass case and hung on the

wall and [we] say, ‘that’s the architecture, let’s look at it and keep

developing’ – no, that’s not it.” (P22, senior manager)

and

“It’s not a matter of architecture as a static representation to say,

‘Ah! Us architects are phenomenal, we’re like gods, we’ve foreseen

everything!’ Nah, it doesn’t happen that way.” (P10, coach)
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Figure 7.1: The relationships between the forces and strategies (Figure 6.1 re-
peated). The blue-coloured boxes represent forces, and the green-coloured
boxes strategies. Arrows represent dependencies or causal relationships: a
change in the independent force or strategy causes either a positive change
(solid black line) or a negative change (solid red line) in the dependent
force or strategy. A dotted line represents a trigger dependence: the pres-
ence of the force is a trigger for the corresponding strategy. The symbol ⊕
represents mutual exclusion.
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Teams proactively review their architecture to ensure it stays up to date:

“...so it’s very much evolving and living with the system in response

to, what have we learned, what are the things we need to do now?”

(P10, coach)

and

“We constantly try to revisit these things, but periodically we’ve made

fairly major decisions, and those decisions have always been based

upon an evaluation of where we’re at, what are our needs, what do we

need to achieve going forward, and what’s the best way to do that.”

(P36, development unit manager)

Agile teams use S1 because of REQUIREMENTS INSTABILITY (F1). There
are five tactics (methods used to implement the strategy) that teams can
use to enable them to design an architecture that can respond to change.

Three tactics increase the modifiability of the architecture so that when
requirements change or become known, the architecture can be easily
updated. These three tactics are keeping the design simple, proving the
architecture with code iteratively and following good design practices.

Two tactics increase the architecture’s tolerance of uncertainty (its re-
silience to change), so that any changes to the requirements have less impact
on the architecture. These tactics are delaying decisions and planning for
options.

Keeping the design simple, proving the architecture with code and de-
laying decisions all reduce up-front effort. Following good design practices
and planning for options may slightly increase the architecture effort.

Keeping the design simple, following good design practices and plan-
ning for options all affect the architecture itself: the use of these tactics
may be determined a posteriori by inspecting the architecture. These three
tactics are not dependent on an agile process. On the other hand, proving
the architecture with code and delaying decisions are features of the agile
process, and not the architecture itself.
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These characteristics of the tactics are summarised in table 7.1. The
tactics are described in the remainder of this section.

Tactic
Impact on
responsiveness
to change

Affects
architecture or
architecting?

Reduces
up-front
effort?

Keep designs simple Increases modifiability Architecture Yes

Prove the architecture
with code iteratively

Increases modifiability Architecting
process

Yes

Use good design
practices

Increases modifiability Architecture No

Delay decision making Increases tolerance
of change

Architecting
process

Yes

Plan for options Increases tolerance
of change

Architecture No

Table 7.1: A comparison of the RESPOND TO CHANGE tactics

7.1.1 Keep designs simple

Agile teams aim for simplicity in their designs: they only design for what
is immediately required; no gold plating and no designing for what might
be needed or for what can be deferred. Keeping designs simple avoids
over-engineering: as well as causing waste during the initial design and
development if requirements change (“it’s a waste of time and effort” —P27,
CEO and coach), an over-engineered design is harder to understand and
reduces modifiability.

For example, P2 and P10 always designed with simplicity in mind,
saying there is always a simple way of achieving results:

“So architecturally, we use the XP mantra: the simplest thing that

would possibly do. So we’ve actually aggressively taken complex
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bits out and replaced them with not-quite-so-performing but easier-

to-understand bits. It’s just easier.” (P2, developer/architect)

and

“The one thing we’ve learned is there is always a better way. There is

no excuse for complexity. There is always a simple way of achieving

good results.” (P10, coach)

Using simplicity means a team will need to change its design later as
requirements evolve and new functionality is implemented, but by the time
they need to make the change they have a better understanding of what
is required and are more likely to get it right than if they had predicted
requirements and designed it earlier:

“The flipside of that [trying to build the simplest thing possible] is

you will eventually find that is not enough, and you will eventually

need to redo it. And you have a choice then – you simply know a lot

more about what the business really needs at that stage, so it may be

that you say, yes, now we do need to make this configurable, and I’ve

seen that case emerge, or perhaps the original feature was the wrong

one, and another one will supercede it. [...] There’s a lot of effort

gone down the tubes if you’re trying to be predictive about where the

thing will go.” (P30, consulting architect)

Simplicity and avoiding over-engineering reduce the cost of modifying
the architecture, meaning it is less critical to get architecture decisions
correct up-front. Teams can use techniques such as proving the design
through code iteratively (section 7.1.2) to help keep the design simple and
avoid predicting requirements and detailed up-front design.

7.1.2 Prove the architecture with code iteratively

Proving an architecture with code iteratively is a tactic used to help pro-
duce a simple design and reduce up-front effort, used when the team does
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not fully understand whether or not its initial design decisions will meet
requirements. This tactic, possible because architecture design and devel-
opment can take place simultaneously, proves the design by building it and
testing it in real life rather than through analysis, and refines the design if
it is not suitable.

The team starts designing what it believes is the simplest solution that
may work – but not necessarily will work, because what will work is not
known until implementation, testing or even until deployment. If the initial
design proves inadequate the team will redesign the architecture – perhaps
repeatedly – until it has a solution that is suitable.

For example, P2’s original proposed authentication system turned out
to authenticate too slowly in the system’s operating environment; extra
effort was required to implement a new authentication system that would
greatly reduce the authentication time:

“Our hypothesis was, by changing the way we do our authentication

we can reduce the number of round-trips and this will roughly halve

our [call] duration. And we found we did. We changed to using an

Oasis security standard, rather than using another standard because

it meant that we could reduce the number of round trips for the authen-

tication challenge process which in a high latency [environment like]

New Zealand... we could reduce the call duration by 100 milliseconds.

[...] We said to the customer, ‘look, by using this Oasis standard and

investing this time, we’ll reduce by 20 per cent the duration of the

calls.’ And he said, ‘yep, that’s worth it.’ ” (P2, developer/architect)

In some instances, the team may not initially fully understood the
limitations of the technology being used:

“He [a developer] thought he could get [the password] from a creden-

tial vault, but it turns out you can only access that credential vault if

you’re coming in from a portlet, so we had to rewrite this to sit inside

a portlet.” (P7, business analyst)
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Proving the design iteratively is also useful when requirements such
as user demand or system load cannot be understood in advance. Teams
release an early version to test what the system load is and then refine the
design in response to what the team has learned:

“The problem with planning up-front is it assumes you know to begin

with the usage patterns that your system is going to be put through.

[...] And you don’t. You have to play it out in real life” (P10, agile

coach)

The alternative to proving the architecture with code is more up-front
effort to accurately determine requirements and the architecture, which is
less desirable in agile development:

“So additional analysis up-front I don’t think would have helped at

all. Probably would have hindered as well, because we wouldn’t have

been able to be so adaptive.” (P17, manager/coach)

– or over-engineering to ensure the design is able to cope with unexpected
demand.

Proving a design iteratively can reduce the up-front effort of ADDRESS

RISK (S2); proving a design with code are experiments (section 7.2.2) per-
formed on production code.

7.1.3 Use good design practices

Good design practices that improve the architecture’s modifiability are very
important for agile architecture. While important for all development meth-
ods whether agile or not, they are more important in agile development
because they make it easier for teams to make changes to the architecture
and software as requirements evolve.

For example, separation of concerns refers to the division of a software
system so that each part addresses one particular concern and has minimal
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effect on the behaviour of another part [43, 179]. Separation of concerns
makes software systems easier to understand and change and therefore be
more agile.

Encapsulated modules (modularity) are an implementation of sepa-
ration of concerns, in which related concerns are grouped together into
modules [179]. The interfaces between modules hide details of how the
modules are designed. Change can be limited to the modules themselves,
and not the interfaces between modules.

“Part of [making a design modifiable] obviously comes down to mak-

ing your design as modular as you can... now this is a very old word,

but it still makes heaps of sense which is that if you can break your

design up into little pieces then you minimise the impact of a design

revision completely killing everything. Because if it’s modular with

a bit of luck you’ll only have to change one bit but the rest will be

completely the same.” (P6, managing director/lead developer)

and

“They’re going to move everybody off the Microsoft stuff for the front-

facing sites and put them on Java-based Sun/Oracle [...] but you can

set yourself up in a way that if you’ve architected it well enough and

you’ve followed the good design principles [...] it’s structured such

that the risk is mitigated as much as it can be without knowing exactly

what’s going to happen down the road.” (P25, team lead)

In contrast are systems where modules perform many unrelated tasks
and have many connections between them. These systems can result in
the ‘Big Ball of Mud’ architecture [94], which is devoid of structure, or the
‘Dirk Gently’ architecture (after Adams (1987) [4]), in which “everything in
the code is connected to everything else in mysterious ways” [171], and is
difficult to change and update.

Good design practices extend to the class level. Some participants (for
example, P4 and P10) mentioned using quality management tools such
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as Sonar and Structure 101 to calculate software metrics that can be used
to check the dependencies between modules and classes, so they can be
redesigned if necessary:

“Some of the tools we ran over it also identified things like high cou-

pling, if you’ve got cross dependencies. One of the tools I used is

a thing called Structure 101 which was essentially at the class level,

package level, in Java, just analyse all the source code and identify

dependencies between classes, and it would identify acyclic depen-

dencies, so you could know, ‘we’re in a cyclic relationship here, what

do we need to move to break the cyclic relationship?’ ” (P4, director

of architecture)

and

“Sonar [is] a code analysis tool that gives you all sorts of interesting

metrics in terms of code complexity. It gives you an instant view of

the code health, and you can see trends and coupling of classes. That

way you can see – ‘oh, that module there is being really naughty,

look at the complexity spikes there showing up’ – all of a sudden the

architecture community can zoom in and say, ‘Oh! What are you guys

up to? How come your cyclomatic complexity is so high these days?

What have you been doing these last couple of weeks?’ ” (P10, coach)

Similarly, teams building larger systems (for example, P33–P36) used a
service oriented architecture (SOA) to hide the implementation of services
behind application programming interfaces (APIs):

“So the other reason for SOA is [it] allows us to effectively chunk

things up [...] we can component-ise stuff and that helps us with

changing requirements.” (P33, product architecture team leader)

One participant (P37) also noted the importance of the whole infrastruc-
ture – including the software system and its tools – being modular, so that
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even the tools can be changed without affecting the architecture, and vice
versa: the architecture can be changed without affecting the choice of tools:

“It’s modularity inside the system but also modularity between the

system and all the infrastructure around the development tools, all

the testing tools, and normally you’re going to build your own test-

ing infrastructure – specially at the system level because it’s always

different, and you have to be careful that they don’t tie you into a par-

ticular choice of architecture.” [...] “You can’t consider the system

as just the hardware and software components that you’re going to

deploy.” (P37, consultant/freelance software developer/architect)

Participant P29 noted that having a team that was smart enough to be
able to do good modular design ‘on the fly’ (without explicit design) can
reduce the amount of planning they need to do:

“I do believe in the team having enough brains to be able to think

on the fly and if they’re building simple, emergent modular design as

they go, then every bolt-on or every change should only affect one

encapsulated piece.” (P29, development manager)

Good design practices reduce the cost of architecture refactoring and
hence increase the modifiability of the architecture.

7.1.4 Delay decision making

Delaying decisions reduces the impact of change by making decisions as
late as possible. Delaying decisions reduces the up-front effort and reduces
rework because decisions are made based on the most recent understanding
of the requirements. For example:

“Yeah, so we were deciding, we were making concrete decisions as

late as possible and only building what we absolutely needed to to

deliver the feature that was being requested at that time, and trying
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to minimise the amount of rework we had to do for any particular

features.” (P25, team lead)

and

“What you don’t want to do is be committed to a development.” (P6,

managing director/lead developer)

Delaying decisions helps prevent over-engineering caused by attempt-
ing to define too many requirements up-front, by only building what is
needed as it is needed:

“But in general you don’t want to plan for anything that is too far

in advance, because you come back to the whole minimising waste...

build that knowledge as and when you require it.” (P3, development

manager)

P15 described how his team delayed decisions, incrementally improving
their design and the system over time in response to requirements as they
evolved:

“So there’s a guy whose job becomes more and more mundane be-

cause it’s manual. When we had a thousand customers it was fine;

when we have fifty thousand customers, he starts to really struggle.

So I go there and I go, ‘so ok, I can speed this up for you, I can au-

tomate this a little bit, I can improve things for you there.’ A week’s

work – bang, he’s now happy for another year. And if you didn’t do

agile you couldn’t do that.” (P15, customer)

Delaying decisions can benefit the team even if requirements are stable
because it avoids knowledge being learned too far in advance and subse-
quently becoming lost or forgotten. For example, P29 delayed decisions so
they did not miss out on opportunities to use new tools that came available:
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If you design a year ahead, for all of that stuff that we have to do, then

we betray the option of having new tools up our sleeves in a year’s

time when we actually get to the place to [build it]. This is effectively

an opportunity cost of choosing to decide when you could do last

responsible moment, which is one of the tenets of lean [development]

and agile.” (P29, development manager)

7.1.5 Plan for options

Planning for options reduces the impact of change by making decisions
that avoid closing off possible future requirements and reducing the need
for future refactoring. To plan for options the team needs an understanding
of the general direction development will take, without trying to predict
requirements – a practice strongly discouraged in agile development. This
tactic means that the architecture is not unnecessarily constrained and the
team can avoid ‘painting itself into a corner’:

“And so having a notion of where you’re going, having a notion of the

sorts of things you could be expected to support makes it much more

likely that what you’re doing is going to be much more amenable to

being extended.” (P9, developer)

and

“The star quality of a software architect is the magical ability to have

invested some generality into the platform you build for your software,

such that you appear to have magically foreseen what changes are

going to be required.” (P6, managing director/lead developer)

Planning for options retains a flexible architecture which is able to cope
with a range of possible future requirements for as long as possible during
development and thus reduces expensive architectural rework:



166 CHAPTER 7. THE AGILE ARCHITECTURE STRATEGIES

“It’s a real bummer when you design something clever and then find

that it needs to be extended in a fashion that you didn’t provide for,

and you have to rewrite it from scratch. Refactoring is wonderful,

except when your refactoring tool is rm [remove].” (P9, developer)

Some teams determine the extremes the system could be required to
operate at. P9 described this as ‘bounding the design’:

“You didn’t complete the design – you bounded the design. The point

being you only took the design as far as you needed to go to know

where the solution was going to be. You don’t have to have the whole

solution, you just have to see to it that you know where the solution is

and you don’t close off access to it.” (P9, developer)

P2 and P10 described examples of how they planned for options:

“You know how you have ‘cut along the dotted line’-type things? We

had dotted lines where we could insert caches for additional perfor-

mance.” [...] “[And] we could take our database and ‘shard’ it by

geography or by client. So we had all the bits in there but the cus-

tomer wasn’t willing to pay for it [just yet]. So that’s how we’ve

made it agile. Cut along the dotted lines.” (P2, developer/architect)

and

“So rather than attempting to be too forward looking, we’ll add an

indirection here because it’ll be extensible.” (P10, coach)

Similarly, P26 built a system with more layers of abstraction than was
necessary:

“In my opinion it was probably an architecture slightly too big for

the requirement, but it didn’t hamper us in that regard. It was an

enterprise-scale architecture, and we had a New Zealand version of

an enterprise scale app, not a truly global enterprise app.” [...] “This
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was more of a seven-tier system where perhaps four would have done,

if you like.” [...] “There was often a lot of perception that these things

may be needed; that architecture supported them in case you did need

them.” (P26, team lead)

No participant admitted that planning for options increases the effort
required – which would break the simplicity principle – although P26 said
their system with extra layers of abstraction took new team members longer
to learn.

Like delaying decisions, planning for options allows a team to reduce
the up-front architecture effort required and design a more emergent archi-
tecture.

7.1.6 Not designing for change

P28 noted a problem caused by not using good design practices. He noted
that their architecture did not have good modularity and appropriate ab-
straction layers, and so the system became very difficult to change. He
gave an example of not abstracting the solution’s messaging even though
they knew the queue technology was going to change:

“But everybody knew that in six months we’d be changing our queue

technology. So coupling directly to the libraries and not enabling an

abstraction layer to the messaging was a bad business decision; you

should have built an abstraction layer.” (P28, technical lead)

This poor design decision meant that the system was difficult to change
later when the technology changed.

Part of the reason for these poor design practices was the teams under-
estimated the effort required to refactor and they did not understand the
benefits that good design practices would provide:
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“People at the time didn’t see value in doing that [implementing the

abstraction layer] because, oh, it’s ok to stop and refactor your code

when you need to!” (P28, technical lead)

He also noted poor design practices can be caused by inexperienced
developers:

“But if you have different qualities of programmers working with that,

it’s a real mess to refactor because you’ve got to stop to clean up the

mess [first].” (P28, technical lead)

The impact of experience is captured in EXPERIENCE (F6), in section 6.6.
∗

Figure 7.2 shows the relationship between S1 and the forces and other
strategies.

REQUIREMENTS INSTABILITY (F1) is a trigger for S1, while TEAM CUL-
TURE (F4), CUSTOMER AGILITY (F5) and EXPERIENCE (F6) are all success
factors: the more agile the team, the more the team is able to use S1’s tactics,
the more agile the architecture will be, and the more successful they will be
at reducing up-front design.

These relationships mean that up-front design effort depends on a
team’s ability to design an architecture that can RESPOND TO CHANGE, and
not how unstable the requirements are. An agile team usually does not
know a priori which requirements are going to change; the team behaves
as if any of the requirements can change. If the team does not know how
unstable the requirements will be, and which requirements will change, it
cannot determine how much up-front design to do.

For example, P27 (CEO and agile coach) could minimise his team’s
up-front design because they were a highly agile and experienced team
with an agile customer (F4, F6 and F5, respectively) and not because the
requirements were highly unstable, although the highly unstable require-
ments did motivate the team to become highly agile. A less agile team may
attempt to reduce up-front design, but having less ability to RESPOND TO
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CHANGE and evolve the architecture, over time the architecture is likely to
no longer meet current requirements and become unsuitable.

S1 is also a prerequisite for EMERGENT ARCHITECTURE (S3): the more
agile the architecture, the more successful the team will be designing an
entirely emergent architecture. BIG DESIGN UP-FRONT (S4) decreases the
team’s ability to use S1, because while it may be able to design an archi-
tecture that is modifiable, it cannot delay decisions. USE FRAMEWORKS

AND TEMPLATE ARCHITECTURES (S5) reduces the effort required to make
changes and therefore increases the team’s ability to use S1.

Figure 7.2: The relationships between RESPOND TO CHANGE (S1) and other
forces and strategies
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7.2 S2: Address risk

DEFINITION OF S2: ADDRESS RISK

Addressing risk is a strategy in which the team does sufficient architec-
ture design to reduce technical risk to a satisfactory level.

Mitigating risk reduces its impact before it can become a problem, and
is usually done up-front, particularly for risk relating to system-wide deci-
sions (for example, risk in selecting the technology stack).

More TECHNICAL RISK (F2) means more up-front architecture design,
which creates a tension between S2 and RESPOND TO CHANGE (S1): to
reduce risk, a team must sacrifice some of the architecture’s ability to
respond to change. A team normally finds a balance by reducing risk to a
level that is satisfactory to itself and to the customer, and delaying decisions
using S1’s tactics where risk is low.

A team designs the architecture in sufficient detail that the team is
comfortable that it is actually possible to build the system with the required
ASRs with a satisfactory level of risk.

“That’s essentially what you’re doing in the technical design/planning

phase, is trying to reduce the risk of the whole thing going off the rails

and not achieving what you want it to achieve. [...] It’s very much a

risk-based process.” (P36, development unit manager)

and

“[Risk] was managed by making sure we’d done an appropriate amount

of research up-front.” (P25, team lead)

The higher the impact of the risk, the more important it is to mitigate
that risk early:

“It makes sense to focus on the risks in the first couple of weeks be-

cause [if] you make [a change with] a one per cent deviation or two
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per cent deviation, two months down the line it will be thirty per cent

or forty per cent.” (P16a, CEO/chief engineer)

Indeed, teams prioritise architecture effort according to the level of
risk, so that they can reduce risk as quickly as possible while the level of
committed effort is still small:

“So what you’re doing in prioritising work is you’re de-risking the

system as rapidly as possible.” (P10, coach)

and

“I think higher risk means higher importance.” (P30, consulting ar-

chitect)

If a team does insufficient mitigation then risk of failure will be higher.

TECHNICAL RISK (F2) is increased in complex systems with demanding
ASRs that result in a complex architecture, and include unique features that
are not part of any existing framework or library. Demanding ASRs are
hard to produce a design for and may require major trade-offs:

“A lot of [up-front architecture] is the design of critical aspects of the

system, so things that are unique to the systems – the thing about the

role-based security being correlated to your location in the country

was quite a unique aspect to [our] system, so I’d probably consider

the design of how that was going to work part of the [up-front] archi-

tecture of the system.” (P14, architect)

For example, P12, a senior developer, needed to prove that his team
could meet their primary goal of being able to process a financial ‘trade’
in less than one second. This constraint was a key ASR for the system.
The team’s high-level design showed how the system could meet that
requirement:
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“Once we’d come up with the fact that one of our top priorities was

to make a trade go through the system in sub-one second, then that

became our top priority and we produced documents and architecture

diagrams to show how that trade would flow through the individual

systems at a higher level, broken down into lower levels.” (P12, se-

nior developer)

7.2.1 Criticality and appetite for risk

The team’s and the customer’s appetite for risk – how much cost the team or
customer is willing to bear when something goes wrong – is an important
consideration. For critical projects with a high cost of failure, such as the
possibility of losing lives or people being harmed, the tolerance for risk
is low and more effort to reduce risk is required, while for non-critical
projects such as simple websites, tolerance of risk is higher and so less
effort is required. For example, P33’s system had clinical and security
risks that meant the design had to undergo additional scrutiny prior to
development:

“Anything that is deemed to relate to either a clinical risk or a se-

curity risk is actually assessed by a separate independent team, who

will tell you how bad it is.” (P33, product architecture team leader)

– while P2’s customer was willing to risk a financial loss under certain
circumstances to get a cheaper system:

“The customer has said to us he is quite willing to trade the risk of

accidentally redeeming the same voucher twice, once in a blue moon

[...] so if two different people in different geographies within a tenth

of a second of each other try to redeem the same voucher there’s low-

ish odds that they’ll redeem it twice.” (P2, developer/architect)

P2 often gave the customer the option of choosing their level of risk:
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“I said [to the customer], are you willing to spend some money to

reduce this risk? And he said, ‘how can we do that?’ And I said,

‘well, we see quite a risk here in performance in this particular area.

We could knock something up in a day which we could then give death

to see if it scales,’ and he went, ‘if you could do it in six hours I’d be

up for it.’ And we said, ‘ok, six hours, we’ll knock that bit out, that’s

not important,’ and we did it.” (P2, developer/architect)

While some participants reported they did not always know whether or
not they could solve the problem when they started development, in these
cases the team and its customer clearly determined the level of risk to be
acceptable.

Addressing risk is balanced with responding to change (S1): a low risk
system allows greater delay in decision-making, and hence allows a team
to be more agile, while a high risk system requires more certainty, more
up-front design and hence less agility.

7.2.2 Techniques for addressing risk

Teams use a combination of design techniques to find the most appropriate
solution for the problem at that time to mitigate technical risk. Techniques
include desk research, modeling, estimation, and experiments:

“We do investigations. We don’t put any real constraints on how

people go about those investigations, but typically they would be a

combination of research and spike prototyping.” [...] “We do formal

modelling in some specific areas.” (P36, development unit manager)

(a) Research

If developers do not know the solution to a problem, they can do desk
research to find solutions. Desk research can include searching reference
resources (such as websites and books) and seeking help from the develop-
ment community:
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“I certainly spent a lot of time reading about how you’d apply differ-

ent frameworks and ways that you could address some of the particu-

lar problems that we had, so there was a bunch of reading that I did.”

(P14, architect)

and

“We follow the books. CQRS [command query responsibility segrega-

tion] and the WAG [Windows Azure Guidelines] and P and P – Pat-

terns and Practices. Microsoft has a whole site dedicated to Patterns

and Practices. Very few people read it. And there’s also ALT.NET, the

open source community’s equivalent. And InfoQ has the same. So we

just hoover up those.” [...] “It means we are less likely to screw up.”

(P2, developer/architect)

and

“The team also went out to find people who’d done similar systems.

[Someone] in Australia had done something not quite the same but

similar processes, so we were able to go them and [ask], ‘what’s your

architecture, can we have a look at it, why have you made these de-

cisions?’, which was very useful. Unfortunately they had the budget

and we didn’t so we had to make some compromises.” (P8, lead de-

veloper)

(b) Modelling and analysis

Agile teams reported very little use of formal modelling, tools and analysis.
Teams would sometimes model subsets of the system by creating data
models or models of interactions:

“For the large implementations we have used modelling tools.” (P21a,

manager/coach) [...] “It’s more the system level. How jPOS interacts

with Websphere and how it interacts with SAP. So that level, very high

level representation is what we do.” (P21b, architect)
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and

“So what we did do though, when we built the services we took a

contract-first approach, focused on the data model, driving it out of

the canonical data model, schemas were driven off that.” (P31, enter-

prise architect)

Some software engineers favour running thought experiments to deter-
mine architectural solutions that best meet requirements:

“I have always credited either myself or the people I work with with

enough intelligence to think sufficiently far through the process – I

guess just based on having sufficient years of experience to be able

to see the issues coming – to be able to pretty much figure out in

advance – not always immediately but with enough thought – to do a

thought experiment at the end of which you can probably already junk

the other [architectural approaches] and actually only invest time in

coding one of them.” (P6, managing director/lead developer)

(c) Experiments

Many software engineers believe that modelling and analysis is not suffi-
cient for designing an architecture: the only way to prove that an architec-
ture design really works is to prove the design by coding it in the form of a
prototype, proof of concept or spike: “get your hands dirty and get your
feet wet” (P7, business analyst):

“You can estimate till the cows come home, before actually trying it

out in the flesh, and when you try it out in the flesh then you learn

uh-oh, all sorts of things are [causing problems] – there’s only so

much you can do as a thought experiment, and you can’t afford to try

and do everything as a thought experiment because the criticality of

the system is such that you really need to know if you have enough

headroom to support peak load.” (P10, coach)
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and

“Regarding the architecture, basically proof of concepting the actual

technology, so from our perspective that was probably the highest risk,

using bleeding edge, leading edge technology, especially after the...

not ‘debacle,’ but the previous generations of Microsoft Workflow not

being quite so great. So in order to de-risk that we did the proof of

concept, we also did initial performance testing, very roughly to get

a feel for, is this engine actually going to deliver the kind of perfor-

mance that we need?” (P3, development manager)

and

“[Technical problems] would only become evident once you start dig-

ging into the code. These types of things I really don’t think you could

catch with a waterfall [development process]. You really have to do it

to catch the problems. When you’re doing waterfall you have to make

this big fancy plan and you hit a roadblock somewhere, then you have

to completely alter course. And then what do you do with the rest of

this massive plan that you’ve made?” (P19, development manager)

Some prefer to discard a proof of concept after it has provided the
required answer:

“So prototypes should be throwaway. The whole idea in the [research

and development] project is nothing should be dependent on it except

an outcome. So no R&D programme will deliver a piece of technol-

ogy, it’ll just come up with an outcome saying we can do this and we

should do it this way, or we can’t do that.” (P11b, architect)

– while others preferred to build on the prototypes and migrate them to the
production system:

“They evolved. We added more and more functionality.” (P18, devel-

opment manager)
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Spikes are time-boxed research and experiments [181]:

“Anything unknown has a spike at first.” (P22, senior manager)

and

“The whole notion of having architectural spikes is, ‘whoops, we

know what is coming up, we don’t quite know how to deal with it –

let’s have a spike to explore the domain, and find out what the op-

timal counter-measure is at this time, and have it in place.’ ” (P10,

coach)

Spikes have clear boundaries of time spent and cost, and have clear
goals to be achieved to avoid the research sidetracking development:

“We set short targets for each of the spikes, and say don’t spend more

than one or two days for one target. So if you’re not able to get it, just

look at alternatives or try to see a different way of implementing it.

Or go to another target and come back to that previous target another

time.” (P21a, manager/coach)

and

“[The prototyping was] quite time-boxed, quite focused. We go, ‘we’re

going to spend half a day mocking up the database and loading some

data into it.’ So we learn a lot about the data and the nature of what

it is.” (P2, developer/architect)

Proving the architecture with code iteratively, described in section 7.1.2,
is a form of experiment in which the experiment is performed iteratively
on production code, allowing decisions to be delayed.

(d) Walking skeleton

Some teams build a thin slice or walking skeleton [205] to prove their archi-
tecture meets requirements. A thin slice is an end-to-end implementation
of the architecture with minimal functionality:
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“One guy always called it an ‘executable architecture.’ And only once

you’ve got that, so you’ve described the architecture in code, shown

that it works to some extent, then you write up what worked. And

that’s way better because if you just write it up in theory then you may

be making decisions that are impractical.” (P7, business analyst)

and

“I put a skeleton up and let everyone test it and argue about it, and it

morphed into the form it needed to at each stage.” (P30, consulting

architect)

Once proven, the skeleton is fleshed out as more functionality is added.
Like experiments above, the skeleton is similar to proving the design with
code iteratively (section 7.1.2), but may differ in that proving the design
iteratively does not prove the architecture before implementation.

7.2.3 Not enough architecture

This section discusses examples of participants who did not design enough
architecture up-front to sufficiently mitigate risk.

One participant who believed his teams did insufficient design was
P28, a member of one team of many who were developing multiple web-
based systems. He believed that the teams took the agile philosophy of
minimising up-front design too far:

“This fear of doing up-front design has become just like a dogma.”

(P28, technical lead)

Insufficient design meant that P28’s teams made the wrong decision
with the web development framework they were using, selecting one that
was not designed to be used the way they were using it, which meant some
functionality was difficult to build:



7.2. S2: ADDRESS RISK 179

“Django was built for something that is not exactly what we are work-

ing on, so we have some clash with its design, what it was designed

for, and what we need. [...] Sometimes we have to struggle with it to

do things that are difficult to do with Django.” (P28, technical lead)

The teams therefore had to spend significant amounts of time forcing the
technology to fit, leaving less time for developing functionality:

“Whenever you have a good software [technology] and you’re pro-

gramming, if everything’s fine you just need to be concerned about

the business. Whenever you stop caring about the business [because

you have] to care about the software, you have a problem. So when-

ever we’re developing a new feature in Django, a reasonable amount

of time, we have to care about Django and not the business, so for

me that’s the biggest indicator that it wasn’t the right choice.” (P28,

technical lead)

In another example of not enough design, P21 selected their technology
before completing performance testing, later found it was the wrong choice,
and eventually had to replace the technology:

“Even after doing spikes [time-boxed experiments] we had still not

done our performance benchmarking before we [made] our decision.”

[...] “I must confess that later on we found that we might have picked

the wrong decision!” [...] “Maybe after one or two years, I came

to replace [the original choice of] Hibernate with some other frame-

work.” (P21, manager/coach)

P21 commented that if he were doing the project again today he would do
the performance testing up-front to check the technology could actually do
what was required.

∗
Figure 7.3 shows the relationship between S2 and the forces and other

strategies. More TECHNICAL RISK (F2) requires more risk mitigation. Be-
cause addressing risk is largely an up-front activity – particularly for
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system-wide risk – S2 is in tension with RESPOND TO CHANGE (S1) and is
therefore unlikely to be used with an EMERGENT ARCHITECTURE (S3).

Figure 7.3: The relationships between ADDRESS RISK (S2) and other forces
and strategies

7.3 S3: Emergent architecture

DEFINITION OF S3: EMERGENT ARCHITECTURE

An emergent architecture is an architecture in which the team makes
only the bare minimum architecture decisions up-front, such as select-
ing the technology stack and the high-level architectural patterns. In
some instances these decisions will be implicit or will have already
been made, in which case the architecture is totally emergent.

S3 produces an emergent architecture in which no decisions are made
up-front. S3 is similar to S1, but delays all architectural decisions apart from
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the bare minimum, such as selecting the system-wide technology stack and
the top-level architectural styles and patterns, which affect the whole of the
architecture and must be made before development starts. These up-front
decisions are frequently implicit and require no effort, in which case S3
effectively produces a totally emergent design. (If these decisions are made
explicitly, then the architecture is nearly emergent, but is still included in
this strategy.)

The emergent architecture strategy is most successful when the team
is very agile and can design an agile architecture that can RESPOND TO

CHANGE (S1) and when there is no risk that needs mitigating up-front
(ADDRESS RISK, S2).

When using S3, the team only considers the requirements that are im-
mediately needed for its design, ignoring even high-level requirements
that are to be implemented in the longer term.

For example, P29 looked no further than a few weeks ahead:

“We’re doing bugger all [practically no up-front design] actually.

Most of the time we’re working a couple of iterations ahead, we’re

looking at the design, things that might have to go through to commit-

tee, so we tend not to plan a year or two out – we’re planning a few

weeks out.” (P29, development manager)

P27 only knew the requirements in detail two weeks out:

“The developers don’t really know what’s coming at a specific level

for probably more than two weeks out. [...] We don’t have a month’s

worth of work in there because it’ll change!” (P27, CEO/coach)

P16a and P16b also used an emergent architecture strategy:

“You can’t really go ahead and say that you’re architecting, you’re

architecting, you’re architecting, and you don’t release anything for

a month. That doesn’t make any sense to me. We try to go ahead,

for once we’ve actually signed the contract with the customer, we get



182 CHAPTER 7. THE AGILE ARCHITECTURE STRATEGIES

into this mode where we push something out to the customer so we

can have a demo within a week. Within a week of having signed the

contract! No later than that! So this is something that is a big part of

our company.” (P16a, CEO/chief engineer)

P16a, P16b and P27’s systems were implemented entirely using stan-
dard framework libraries, and so had very little technical risk (see TECH-
NICAL RISK, F2; ADDRESS RISK, S2 and USE FRAMEWORKS AND TEMPLATE

ARCHITECTURES, S5):

“So we don’t have architectural discussions – we don’t need to – the

problem’s been solved [in the framework]. Don’t try to solve it again.

So we have very, very little discussion. I won’t say we don’t have dis-

cussion, but this stuff has been done a thousand... it’s been done a

million times [before]. On sites fifty times bigger. There is no discus-

sion to be had really.” (P27, CEO/coach)

If the system has demanding architecturally significant requirements
(ASRs) or unique requirements, it may need a more complex solution that
requires bespoke components or multiple frameworks that require more
up-front design to ADDRESS RISK (S2), precluding an emergent design.

7.3.1 Minimum up-front activities

The EMERGENT ARCHITECTURE has a minimum level of planning that a
team must do before development can begin, including both architecture
design activities and non-design activities.

Non-design up-front activities

Before a team can start development, it must carry out a number of planning
activities in addition to the minimum architecture design, such as:

• bring the team together
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• understand the business domain (and particularly understand the
business problem or vision) and define or elicit any early requirements

• determine the development process

• select the development tools and environments such as the devel-
opment suite, the testing framework and the continuous integration
delivery set up

• release planning

• decide upon any programming guidelines.

For example,

“We went, ok, what’s every task we can possibly think of that will put

us in a position where the team could start coding and deliver features

effectively, then we could mark a start. So that would be things like,

getting environments up, getting everyone’s PCs reset to whatever

tooling we had, making decisions about any tooling that was going to

change, making sure there was enough stories through our analysts

to actually get on with the first iteration. All those kinds of things.”

(P29, development manager)

and

“You should have your vision, your design should be ready, roughly,

you should get your team together, get your resources together, get

your backlog together [...] Make sure your environments are there,

do a few – if you need any – preliminary sessions, training, get that

in.” (P11a, architect)

and

“Sprint zero was figuring out what the actual brief was, bringing out

the important parts of the brief, what parts were going to take pri-

ority, which parts we were going to focus on, figuring out whether it

was possible, figuring out which parts of the system we had to talk
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to, whether we had the correct expertise in the team to do what we

wanted to do, get to know the Scrum master...” (P12, senior devel-

oper)

The team must also make some minimum architecture decisions up-
front.

Minimum up-front architecture design

Before development starts, a team must make certain minimum architecture
decisions. These decisions would normally relate to matters that have a
system-wide impact and cannot be changed after development has started
without discarding all or most of the work completed to date: the technol-
ogy stack (the suite of technologies, products or frameworks that it will
use) and the top-level architectural styles or patterns. For example:

“[We chose] the basic tech stack – PHP, Backbone and the databases.

That was made up-front, and that took a lot of pulling back and forth

between myself and [the team], just doing a lot of research to make

sure that piece is solid.” (P19, development manager)

and

“There were lots of decisions I guess. Are we going to use HTML5

and CSS1, are we going to put a unit testing framework and Backbone-

type MVC into our Javascript so it’s now a first tier language in the

game?” (P29, development manager)

Some proportion of these decisions may be implicit due to the team’s
experience with the technology and tacit knowledge, and therefore do not
require any effort. These decisions may also be made externally, out of the
control of the team, perhaps by the customer for strategic reasons or in
line with other systems or projects or work streams. In these situations the
decisions are constraints on the architecture. If these up-front decisions are
all implicit, the architecture is totally emergent.
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High-level requirements

While it is usually very difficult to define all requirements in detail up-front,
agile software engineers need to know a certain level of detail so they can
make the minimum high-level architectural decisions.

At the highest level, the team needs a description of the business prob-
lem or knows the business’s vision or business plan, so that team members
understand what they have been engaged to build and why they are build-
ing it. The business problem can be described in many ways; perhaps as
conversations between the team and the customer and stakeholders, or as
a project brief, a statement of work, or recorded in more detail in a tender
document:

“The project sponsor gave us a brief – maybe a page and a half –

maybe not even that much – and that essentially detailed the outcomes

that they wanted.” (P12, senior developer)

For a team contracted to a one-off project the business problem is likely to
be fixed for that project, while for ongoing development, such as a mass
market product or service, it will be continually evolving as it looks forward
over a certain period of time:

“The general direction that we’re heading in over the next year, we

pretty much know what that is, roughly. We’re not going to have to do

a complete about-turn. Things that are on the periphery may change.”

(P33, product architecture team leader)

How far the team looks ahead – the planning horizon – will vary greatly
depending on the organisation or business, and particularly the volatility
of the environment or the market it is in; the planning horizon could be
the next release or it could be several years out. For example, P33 (above)
anticipated requirements a year out, while P15 looked ahead six months:

“So yesterday we had a senior management team meeting, and we

discussed what it is that we want to deliver in the next six months.
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And there were six major items. That’ll result in about four hundred

changes probably.” (P15, Head of Operations/customer)

A longer planning horizon does not necessarily mean more up-front
design; rather, it provides the team with information about what is probably
coming so that it can plan for options, one of the RESPOND TO CHANGE

tactics:

“We try to get [P15] to help set the scene to give us an idea of where

we’re generally headed, but the developers don’t really know what’s

coming at a specific level for probably more than two weeks out.”

(P27, CEO/coach)

The business problem must include the system-wide ASRs and con-
straints. In P12’s case, there was a single system-wide ASR that related to
performance:

“It was taking sometimes up to two minutes for a trade to flow through

the whole [existing] system, and our brief was to get that to sub-one

second” (P12, senior developer)

In other cases, there may be many system-wide ASRs. These ASRs will
guide up-front architecture design and will later be expanded to guide
ongoing architectural design:

“[You’ll] often think of doing a breadth-first coverage of the require-

ments to try and get the architecturally significant requirements, so

that the broad architecture framework can be established. And then

go into iteration one to drill down in detail of a particular area and

get it implemented.” (P7, business analyst)

Without understanding the key ASRs the team may not know whether
or not they can solve the business problem:



7.3. S3: EMERGENT ARCHITECTURE 187

“We knew sufficient requirements to be confident that we could solve

the problem [...] Quite often we go into it not confident we can solve

the problem.” (P2, developer/architect)

If a team does not know if it can solve the business problem, then
technical risk is high. This would normally require the team to ADDRESS

RISK (S2), which precludes the use of S3, unless the team and customer
accept that risk.

P17 described a problem caused by not understanding the business
problem sufficiently: they did not consult all the stakeholders to ensure
they understood all the system’s constraints. His team had implemented
their system using a DAO (data access object)-based architecture. When
they came to release to production after nine months, the organisation’s
security department announced that they were not able to deploy it be-
cause it contravened their policy that required it to be based on an MVC
architecture. Because of the high cost of changing to an MVC-based system
at this late stage, the only solution was to purchase a separate security
appliance to install between the application server and the outside world.
This workaround required time to obtain the extra budget, procure and
install. The error was caused by lack of communication with the project’s
stakeholders:

“More analysis up-front wouldn’t have helped; more communication

up-front would have.” (P17, manager/coach)

P17 noted however that if they had a quicker release cycle then they
could have found the error earlier and could have avoided having to use
the appliance workaround:

“It took more than eight weeks to get that Juniper device in” ... “if we

could have first released in, let’s say eight weeks, and we discovered

[then], oh no, it’s got to be MVC architecture – in hindsight it would

have been better to refactor the architecture and throw away those

eight weeks of work, and start again.” (P17, manager/coach)
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He then talked about the point of no return with architecture decisions –
where the amount of time to correct an incorrect decision is more than the
time required to work around it:

“There is a point of no return with architecture. Somewhere between

eight weeks [time to implement the workaround] and nine months

[time to start again] is that point of no return! Where the cost of

refactoring that core architecture is too great.” (P17, manager/coach)

This example clearly shows one of the benefits of early and regular
deployment into production.

P28 also had to consider the option of replacing their wrong web devel-
opment framework with working around the problem. They decided they
could not replace the framework without starting development again from
scratch:

“I don’t think that [replacing Django] is possible without rewriting

the whole project. Since we have so many projects built up on it... it’s

too late.” (P28, technical lead)

7.3.2 The minimum viable product

S3 is likely to be used when developing a minimum viable product, or MVP
(see F3, EARLY VALUE). An MVP is a marketing strategy or experiment in
which teams release versions of the software that contain marketing tests
or experiments, so that the team can discover preferred potential features
for development:

“We want to be able to put in the smallest, simplest, minimum viable

experiment, prove an assumption, beef it up if we want to or pivot and

follow it wherever it goes. That means our entire architecture is going

to be emergent based on where we want to go.” (P29, development

manager)
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An example is the ‘A/B test’, in which the team develops a version (or
versions) of its system that presents alternative options or features. The
end users’ responses to those alternatives guide further development:

“Every experiment we have to make a call whether it’s an A/B test or

whether it’s a single thing that’s going to create a feedback loop and

we’re going to refactor it or adjust it or... so there’s many different

testing models – sometimes we use A/B, sometimes we use canary and

sometimes we use more of a big-bang, here’s an MVP, let’s see how

people react to it, hopefully adjust it...” (P29, development manager)

The aim of the MVP is to maximise learning by getting as much feedback
about what end users want as early as possible, and is particularly useful
in new and immature markets.

∗
Figure 7.4 shows the relationship between S3 and other forces and strate-

gies. The need for the customer to get early value from the product (F3,
EARLY VALUE) motivates the use of S3, and being highly successful at re-
sponding to change (S1) is crucial. ADDRESS RISK (S2) increases the up-front
effort, and is therefore reduces the team’s ability to design an EMERGENT

ARCHITECTURE. A system with a successful emergent architecture design
will have low technical risk TECHNICAL RISK (F2) and low complexity (for
example a simple business website), whereas a complex system with high
risk is not likely to be able to suitable for S3.

7.4 S4: Big design up-front

DEFINITION OF S4: BIG DESIGN UP-FRONT

The big design up-front requires that the team acquires a full set of
requirements and completes a full architecture design before develop-
ment starts.
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Figure 7.4: The relationships between EMERGENT ARCHITECTURE (S3) and
other forces and strategies

Strategy S4 is a full up-front design (known as BDUF, or ‘big design up-
front’) of the system. There are no emergent design decisions, although the
architecture may evolve during development. While S4 may be considered
the case of ADDRESS RISK (S2) taken to the extreme, in reality the use of
S4 is driven primarily by the presence of non-agile customers (CUSTOMER

AGILITY, F5) rather than by the presence of TECHNICAL RISK (F2).

S4 requires the customer to define a relatively detailed set of require-
ments up-front, sufficient for the team to complete its design:

“Our customer still does elaborate requirements documents and that’s

because they’re obviously in a government context, they need to clearly

state what they’re going to be doing.” (P32, software development di-

rector)
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A big design up-front is undesirable in agile development because it
reduces the architecture’s ability to RESPOND TO CHANGE (S1) by increas-
ing the chance of over-engineering and increasing the time to the first
opportunity for feedback. Despite this undesirability, an agile team may
be compelled to use S4 because they are in a non-agile environment with
a non-agile customer (CUSTOMER AGILITY, F5) who requires the team to
spend more time on design up-front than they would if they had an agile
customer. There are a number of reasons for a customer (whether internal
or external) being non-agile, such as preferring a traditional development
process, wanting to approve the design before implementation, needing
to know the total cost of the development before it starts so they can get
funding approval or for a competitive tender selection process, and not
having the time to commit to ongoing interaction with the team.

The up-front design in S4 is sufficient to satisfy the customer’s need for
non-agility: either sufficient to prove that the team knows how to solve the
problem before starting, or sufficient that the team can estimate the cost of
the system for the given requirements for a competitive tender, or sufficient
that they are able to complete the design without ongoing interaction with
their customer:

“There’s a definite need to estimate and there’s a definite need to give

confidence on the functional scope at a big level.” (P32, software

development director)

and

“A lot of our key architectural decisions we’re making as part of our

sales process and RFP responses, and things like that – you’re choos-

ing your key platforms that you’re going to run on as part of your re-

sponding to a RFP, so when it comes around to delivery, those major

aspects of the project have already been determined.” (P14, architect)

S4 and the inability to delay decisions does not necessarily mean the
team is not agile; they may still be able to evolve the architecture when
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requirements change. For example,

“We did have to come up with these tentative [cost] figures for the

full programme [...] We did have to give them a confidence in what

we could achieve in that year, and that was the tricky bit.” [...] “At

a whole end-to-end level, [requirements were understood] quite well.

As in breadth, not depth:” [...] “[I mean] there was a lot of new stuff

introduced as well – it wasn’t just, ‘there’s your requirement, build

that.’ Because then there would scarcely be need for iteration, apart

from a phasing perspective. There was legislation in progress and

that in itself was quite changing – or had the potential to change – so

[we were] delivering what we could when we could and phasing and

moving things in and out.” (P26, team lead)

P32’s company, who often needed to provide customers with cost es-
timates in advance, adopted a policy of only committing to deliver half
of the required features that they estimated they could achieve within a
period time, leaving the remainder of the features out of the equation to
evolve in an agile manner:

“We’ve taken to committing to at least fifty per cent of the features

we’re [expecting]... if our current velocity says we should nail all of

that based on the T-shirt sizing of the stories or features as we’d call

them... we’d be nuts to go in there knowing that the planning cone of

uncertainly and all that sort of stuff at that stage, so we do try to get

fifty per cent in. [...] [We] commit to doing fifty per cent of the story

size, because of all the uncertainty. [...] We don’t contract to a fixed

scope.”

While the team cannot fully implement S1 – for example, they cannot
use the ‘delay decisions’ tactic – they may be able to use other S1 tactics,
such as good design practices and planning for options. Not being able to
delay decisions will compromise their ability to be agile:



7.4. S4: BIG DESIGN UP-FRONT 193

“So if we’re going to have to do a heavy architecture which plans

for a year or two or five years into the future on every one of those

experiments, we’re screwed. We cannot be agile.” (P29, development

manager)

Larger independent software vendors (ISVs) often fall into this category,
because their customers are often larger process-driven organisations who
require more financial accountability:

“Big corporates such as IBM or HP always seem to need a lot of

process.” (P14, architect)

Larger ISVs therefore often struggle to become as agile as smaller organisa-
tions.

Some teams put up a traditional front, hiding their agility, so that to
the customer they appear to be using a traditional process, but they use
agile processes internally, such as using iterations and regular practices
meetings:

“So if you’ve got a customer that’s a government department you

have to incorporate some sort of waterfall method in it; you have to!

We call it ‘wagile.’ What we do is internally, internally for those sorts

of projects, internally, we absolutely run it like this [agile]. From a

reporting to the customer point of view, when we first sign up with

them, we absolutely report it in waterfall.” (P27, CEO/coach)

and

“So what we tend to do is put up a bit of a fake model over the top of

ourselves to protect ourselves from the arbitrary bureaucracy.” (P29,

development manager)

A team may also find S4 useful when they have a non-agile team cul-
ture (TEAM CULTURE, F4), so that the team can make use of the explicit
architectural guidance, and when the team has little architecture experience
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or technology experience (EXPERIENCE, F6), so that they can provide the
team with a set of explicit architectural decisions.

∗
Figure 7.5 shows the relationship between S4 and the forces and other

strategies. A team typically uses S4 when one or more of S1’s success fac-
tors are absent: an agile TEAM CULTURE (F4), CUSTOMER AGILITY (F5), or
architecture or technical EXPERIENCE (F6). In these instances, BIG DESIGN

UP-FRONT provides explicit team guidance to the team with a non-agile cul-
ture, provides comfort to a non-trusting, non-agile customer and provides
explicit decisions for teams with little architecture or technology experience
(EXPERIENCE, F6).

Figure 7.5: The relationships between BIG DESIGN UP-FRONT (S4) and other
forces and strategies
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7.5 S5: Use frameworks and template architec-

tures

DEFINITION OF S5: USE FRAMEWORKS AND TEMPLATE ARCHITECTURES

Using frameworks and template architectures is a strategy in which
teams use standard architectures such as those found in development
frameworks, template or reference architectures, and off-the-shelf li-
braries and plug-ins. Standard architectures reduce the team’s architec-
ture design and rework effort, at the expense of additional constraints
applied to the system.

Software frameworks such as the Java platform, .NET, Hibernate and
Ruby on Rails are infrastructures that support the development of soft-
ware systems through the use of predefined libraries, components, tools
and abstractions. Frameworks typically include default or template ar-
chitectures (or architectural patterns); many even constrain the system to
a particular architecture or pattern. For example, Oracle and Microsoft
recommend certain architectural patterns for different application types
built using Java and .NET, respectively. Hibernate inserts an additional
layer between the application and database and Ruby on Rails, like many
website frameworks, imposes a model-view-controller (MVC) pattern.

Template and reference architectures are predefined architectures or
architectural patterns, sometimes sourced from a particular framework
vendor to be used with that framework. Software engineers can use these
templates to solve specific problems. Examples include Microsoft’s ‘Model
View ViewModel’ architecture for use in .NET, and CQRS (‘command
query responsibility segregation’), used to keep data synchronised between
different databases.

S5 can be used at the same time as any of the other strategies, S1–S4.
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7.5.1 The benefit of frameworks and template architectures

The benefit of using frameworks and template architectures is they provide
standard solutions to standard problems. Standard solutions mean software
engineers do not need to make as many architecture decisions:

“A lot of vendors now have what they call candidate or template ar-

chitectures, it’s just going to be one of those: here it is, you run with

it.” (P4, director of architecture)

and

“...those kinds of [architectural] things are there in [Ruby on] Rails,

so you don’t have to think, ‘what should I do in this kind of situation,’

because it’s already there in Rails.” (P16b, head of engineering)

Thus frameworks greatly reduce the effort required to design a system
and get it up and running:

“Getting a web app working in Rails, I don’t think requires more than

a day for a guy who has done some development before.” (P16b, head

of engineering)

Architectural changes can also be made with a lot less effort when using
frameworks [224]: what used to be considered architecture decisions in the
past are now sometimes considered design (non-architecture) decisions, or
even simply configuration decisions:

“What used to be architectural decisions ten years ago can now al-

most be considered design decisions because the tools allow you to

change these things more easily.” (P4, director of architecture)

– which means that fewer decisions have to be set in stone:

“Those [structural] decisions can be very emergent nowadays; I don’t

think they’re nearly as intractable.” (P29, development manager)
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A framework that provides a standard architecture – particularly those
that follow the ‘convention over configuration’ paradigm – also greatly
reduces the complexity of the architecture because many of the architectural
decisions are embedded in the framework:

“You don’t really need anyone to look at the database structure and

design and SQL anymore.” (P29, development manager)

Frameworks provide less opportunity for the software engineer to make
mistakes and fail:

“[Ruby on Rails] is a template. There’s not much really to choose.

People make a lot more mistakes when they’re asked to make more

choices. So why provide more options, why ask a programmer to

make more choices than are necessary? That’s my opinion from a

business standpoint, it reduces the risk of us making bad decisions

based on programmer bias.” (P16a, CEO/chief engineer)

While frameworks and templates are hugely beneficial to all develop-
ment methods, the ability to change architecture decisions easier is most
useful to agile development methods.

7.5.2 When frameworks are not enough

While immensely important – and used almost ubiquitously throughout
both the agile and plan-driven development worlds – teams must be aware
that frameworks cannot always provide a complete solution. If the problem
is not standard, if the requirements are critical and the required architecture
design is sufficiently complex or unique, there may be no suitable frame-
works or existing libraries that a team can use to implement a design, either
in part or as a whole. In these situations a team needs to design and build
bespoke components or libraries and, for those bespoke components, miss
out on the benefits that frameworks can provide.
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Teams do extra design as they first identify the parts of the system that
cannot be implemented using pre-built components, and then perform
analysis and experiments to come up with satisfactory solutions:

“We had a lot of issues using Microsoft’s off the shelf workflow prod-

uct for this, and this was dragging on and on and it was looking really

ugly and the customer looked horrified when they saw the prototype,

and in the end we had no budget to do anything else in terms of in-

vestigating it, and I said, ‘this is ridiculous. Sorry to do this, but I’m

going to take a Saturday, a Saturday that I should be spending with

the kids, and I’m going to sit here and write a prototype of how we

could do our own workflow,’ which is what I did and which is the path

we ended up going down.” [...] “In the workflow engine the funda-

mental principles remained in line with what we learned in line with

the original prototype, but the level of complexity to make that work

was beyond what we’d expected.” (P13, architect)

and

“We had enormous problems with printing, because we discovered

part way through the project that Microsoft offers no supported way

to print from .NET code from a server. It took me a month to even

get them to give me a straight answer to that. They just don’t! You

can print from desktop apps, or you can serve a page to the browser

and the user can print it. But if you want the server to talk directly to

the printer there’s actually no supported way of doing that with pure

.NET code. So we have a hybrid that makes some non-native calls at

one point. And that was staggering, I had not anticipated that would

be a problem at all. The .NET framework, very rich framework, we

never examined that as a possibility! So that was a big surprise. [...]

If we’d known that server-side printing was not supported we proba-

bly would not have built a web app. It probably would have tipped us

to the other decision, then built a desktop app.” (P13, architect)
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The need for bespoke components increases the complexity of the ar-
chitecture decisions that need to be made and technical risk – and hence
increases the up-front effort required.

Alternatively, a solution may require multiple frameworks or technolo-
gies to implement the required features and functionality. Not only does
selecting these frameworks require extra planning, but setting up automatic
testing platforms, continuous integration delivery and other related set up
activities become more difficult and require more effort:

“If it’s really horribly complex and you’ve got to request all sorts of

bits of infrastructure from all over the show to get it to work then it

definitely slows down iteration zero.” (P29, development manager)

Extra effort is also required to ensure the technologies are able to com-
municate with each other efficiently.

∗
Figure 7.6 shows the relationship between S5 and the other forces and

strategies. S5 can be used with any of the other strategies, S1–S4, and
reduces architectural and development effort. However, most significantly,
S5 increases the architecture’s agility by increasing its ability to respond to
change (RESPOND TO CHANGE, S1), and provides standard architecture so-
lutions that reduce complexity and risk (TECHNICAL RISK, F2). S5 therefore
allows teams to reduce their up-front effort and increase the agility of the
architecture.
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Figure 7.6: The relationships between USE FRAMEWORKS AND TEMPLATE

ARCHITECTURES (S5) and other forces and strategies



Chapter 8

The agile architect

“Emergent structural design may be achieved by facilitating collabo-

rative design, by delegating to individuals, or by using a mixture of

both. The quality and coherence of the software architecture is largely

dependent on how well this is done.” (Paul Taylor [218])

In agile software development, the architecture is not the responsibility
of a single designated architect (or team of architects). Architecture de-
cisions are usually made collaboratively within the team. Collaborative
decisions and a wide understanding of the architecture help improve the
communication within the team, and help make the team more agile (F4,
TEAM CULTURE). When the scope of the system the team is building ex-
tends beyond the team to other teams, additional input into architecture
decision-making is required, by architects who have an understanding of
the overall business problem being solved and the ASRs. If this wider
architecture is designed collaboratively with the team then, like having
an agile-friendly customer, the team’s agility is improved (F5, CUSTOMER

AGILITY).
Section 8.1 examines who makes the architecture design decisions for a

team. In addition to making architecture decisions, the architect in an agile
team may also perform other roles. Section 8.2 examines some of these
roles.

201
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8.1 The architecture decision makers

Responsibility for architecture decisions varies between teams. In all cases,
it is important that the architects are active members of the team – usually
the team’s experienced developers:

“One of my fundamental beliefs is [...] architects should be active

coders in the team who are just seniors and ideally that pool of seniors

in your team act as a kind of proxy architecture committee.” (P29,

development manager)

– rather than so-called ivory tower architects with one-way relationships
with the development team:

“...someone who’s supposedly got the title [of ‘architect’] sitting in

an ivory tower, and has never actually built that thing in the last ten

years because they’ve been thinking high-level.” (P29, development

manager)

Agile teams can use consensus-driven decision making, they can have
decisions approved by a single, nominated team member, they can have de-
cisions approved by non-team members, and, when appropriate, decisions
may be made outside the team.

8.1.1 Whole team consensus

When the team is small and consists entirely of senior software engineers,
decisions can be made democratically or by consensus, with the whole team
planning the architecture together and coming to a team-wide agreement.
This method of making architecture decisions was used by P2’s team of
three developers and P19’s team of four developers. These teams made
decisions using a mixture of group discussions and individual research or
analysis:
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“We had some discussions, the team, and we’d break and say, why

don’t you research this, why don’t I research this, and why don’t you

research that, and then we’d do our independent research, come back

and have this discussion again. And [negotiate] over what paradigm

we’re going to take or what technology we’re going to adopt.” (P19,

Manager)

While more effective in small teams, this method is rarely successful in
medium or large teams because of the difficulty in a large number of
software engineers reaching agreement. For example, P12’s team consisted
of seven senior developers who made architecture decisions by mutual
agreement and found coming to a consensus very time consuming:

“There was no leader, so a decision was a democracy” [...] “All

six or seven of us were involved with all architecture decisions. We

often had planning meetings which went on for a long time, and every

single person was involved, and we used a lot of whiteboards, we used

a lot of sessions which involved one person being nominated to go out

and draw it up [...] and then we’d come back together and go over all

of it again.” (P12, senior developer)

Allocating responsibility for decisions to everyone has the risk that no
agreement will be reached at all:

“Most of the time it worked.” (P12, senior developer)

In contrast, P13 was not able to share architecture decision-making
responsibilities between even two architects:

“We actually had two architects, and in hindsight we had foolishly

said to the boss, no, don’t make one of us the lead, we’ll co-lead it,

and we had great difficulty with that.” (P13, architect)

His team changed partway through the project after one architect moved
on, so that decisions were approved by a single team member (below),
which they found much more successful.
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P29, with a team of fourteen, had more success with team democracy:

“As issues that are going to affect the whole teams’ standards or

model or structure come up, which I see as the design and architec-

ture decisions, then the rules are that there’s a joint ownership of

those, there shouldn’t be a single [hat] making a rule, so everyone

comes together to the table, nut it out as quickly as they can, decide

if there’s stories to go on the board about proof of concept, assign

any research that’s needed to someone – the team should assign that

responsibility to someone – and then make a call and move on.” (P29,

development manager)

A common factor among the teams making decisions by consensus are
all the team members have similar levels of experience with the technology
and all have a good domain knowledge and understanding of the busi-
ness problem; there are no junior developers who do not have sufficient
understanding to make the required architectural decisions.

The need to have an understanding of the business problem is consistent
with the definition of architecture in section 2.3: those who make the
architecture decisions are those who have a good understanding of the
ASRs and how they fit into the context of the business. Consensus decision-
making works best on single-team projects; there are no other teams they
need to coordinate with.

8.1.2 Decision approval within team

Large teams can avoid the problem of having to reach a team-wide consen-
sus by having a designated architect who makes the final decisions or has
a ‘casting vote’. The architect is effectively the architecture owner [14] or
coordinator [79], and as such does not make architecture decisions on their
own: they use their experience and knowledge of the business problem to
confirm (or overrule) the decisions made by the team, or, in the case of lack
of agreement, make the final decision:
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“[The architect’s role is] to make sure all the decisions are in line with

the goal and fine tune to suit the thing [being built].” (P22, senior

manager)

and

“If there are long discussions that don’t seem to get anywhere then

somebody has to make a decision, so that’s [where I step in] but apart

from that it’s very democratic.” (P19, development manager)

P30 summed up the role of the architect as a guidance and sanity check-
ing role.

Having a single architecture owner within the team means the team
does not need agreement from each team member. Certain members, such
as team members inexperienced with the technology, can be excluded from
the decision-making process if necessary.

While a team may largely comprise members with the title of ‘developer’
or ‘software engineer,’ the title of the team member who has responsibility
for the architecture is typically ‘architect’ (e.g. P14), ‘lead developer’ (e.g.
P8), ‘senior developer’ (e.g. P12) or ‘technical lead’ (e.g. P28). Despite
the different titles, they carry out similar roles and thus the titles could be
considered synonyms:

“My role is Java architect, and I’m leading a team of about ten peo-

ple.” (P21b, architect)

The architecture owner’s title may also be ‘team leader’ (e.g. P21c, P25,
P26) or ‘team manager’ (P18, P19, P21a), perhaps contrary to the agile
practice of teams being self-organising.

It is important to have someone with overall responsibility for the ar-
chitecture when the project spans two or more teams, and it is not possible
for the whole team to have an understanding of the overall business prob-
lem and architecture. For example, P8, lead developer (and team lead),
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discussed a problem that a two-team development project had which illus-
trates the importance of having an architecture owner role in larger projects.
Prior to P8 joining the project the teams did not have an overall leader
who understood how the different parts should fit together to address the
business problem. He described the problems this caused:

“One of the problems was that the decisions weren’t made at the be-

ginning by somebody leading, they were kind of made by disparate

groups [...]. By them not having someone there at the beginning who

says ‘this is my vision’ – and I’m not saying somebody should be

completely controlling but they would obviously take input from all

the teams – essentially [they needed] one person coming out and say-

ing ‘ok, I’ve listened to what everybody’s said and I can now see how

the whole thing’s going to be laid out’ and by not doing that, it was

something of a setback.” (P8, lead developer)

This lack of architecture owner meant each team designed their sub-system
architecture in isolation, rather than designing for the overall system, which
led to the overall system’s performance requirements not being met and
being hard to debug:

“...We noticed that the indexing was very slow. They [one of the

teams] were doing work to speed it up [...] but they just hadn’t no-

ticed that they were looking in the wrong place because they didn’t

think they had any reason to look in the place that wasn’t their re-

sponsibility. So it was only when I was just sitting there watching the

queries come in, ‘Why is it doing that? That’s why it’s taking so long.’

All the optimisation is happening in a different place, but we could in-

crease the speed ten-fold by making one tiny change in a place which

previously they hadn’t been looking at.” (P8, lead developer)

The need to understand the architecture across multiple teams becomes
more important as the size and complexity of the system being built in-
creases.
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As the number of teams increases, it may become more appropriate to
have decisions approved or made outside the team.

8.1.3 Decision approval outside team

In some cases, particularly within larger projects, a team makes the archi-
tecture decisions, but they must be approved by an architect or architects
from outside the team before they can be implemented. Often the system
being built by the development team is part of a much larger system, and
the team does not have a detailed understanding of the architecture of the
overall system and the business problem being solved. Therefore a single
team cannot be sure that the architecture decisions it makes are appropriate
in the context of the bigger system. In these instances, any architecture
decisions that the team makes must be approved or reviewed by architects
who are outside the team and are across the full context of the system being
built, and understand how the team’s architecture fits in with that system.
These external architects may belong to the organisation with the overall
responsibility for building the larger system or the customer itself.

External architects typically take the form of a dedicated architecture
team (for example, P33–P36), an architecture review board (P23) or an archi-
tecture governance committee (P29). These groups have the responsibility
for ensuring architectural consistency across the system – or across multiple
systems, such as a product line.

Two participants from the banking industry, P25 and P29, both had their
architecture decisions reviewed by company architects. The motivation
behind these reviews was consistency across the company:

“The company architects also have a lot of power and they are the

ones who essentially decide the overall architecture – not just of your

system but also of all systems. So given the size of the company, they

wanted to standardise as much as they possibly could. Our site didn’t

have a database, but if they did decide to give us one, it would have
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been a SQL Server database, because that’s what we use for the .NET

side of things.” (P25, team lead)

and

“We are assigned an architect from the central bank pool who mon-

itors everything that is going across our team, and decides when we

have to put a paper to that central [architectural governance] com-

mittee or not. We do our best every time to convince him that we

don’t have to, and he’s pretty flexible and realistic on that.” (P29,

development manager)

P23, an engineering manager working for a company developing soft-
ware for the pharmaceutical research industry, was a team member who
was also a member of an architecture review board that reviewed architec-
ture decisions to ensure consistency across their entire suite of products:

“How we go forward for changing architecture is we have an archi-

tecture review board – we are the key members involved in a couple

of [products]” [...] “We all sit together and review every week any

changes that are happening in any of the products. And everyone will

have their opinion and a lot of things get discussed.” (P23, engineer-

ing manager)

Participants P33–P36 worked for a company that develops a suite of
healthcare management products customised for individual customers.
Their organisation has an evolving high level reference architecture that
is common to all products and which ensures consistency across these
products. This reference architecture describes “the functional architec-
ture, the deployment architecture and the component architecture” (P33,
product architecture team leader). An architecture team approves each
team’s architecture designs, ensuring that they are in line with the reference
architecture and that the high-risk ASRs such as privacy and security are
met:
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“Before [the development teams] start developing they have to have

a number of sign-offs, and one of them is [...] a technical review, so

that’s basically members of my [architecture] team and a bunch of

other senior technical people – they [the developers] have to tell us

what they’re going to do, we say, ‘yep, that’s all good,’ or ‘no, we’re

not happy with that, you need to change that because it doesn’t line

up with the reference architecture,’ or, ‘why are you doing that?’ And

either they might explain why that is, and we go, ‘oh, ok, now you’ve

explained it it makes sense.’ [Or] we go, ‘no, we’re not quite happy

with that’; some of them might have to go and revisit the technical

design.” (P33, product architecture team leader)

P33 encouraged the teams to have complete designs before the review
process, so that the review is little more than a rubber-stamping or approval
exercise:

“We try to turn it very much into a rubber-stamping exercise, so we

encourage the teams to get other people – members of my team and

other senior technical people – to get involved in the actual design

process when they’re working through workshopping things and mak-

ing those [architecture] decisions so that when we get to the tech re-

view, it’s not really a tech review, it’s more, ‘yep, that all make sense,

away you go.’ ” (P33, product architecture team leader)

The clinical and privacy requirements of this project are technically
challenging, and have a high level of risk associated with them. The clinical
risks are assessed in parallel to the architecture approval by an independent
team to ensure the integrity of patient data will be maintained:

“I think from a doctor’s point of view, the thing they fear the most is

that they are making decisions about people’s lives every day. And

the information that we display on our screens helps them make those

decisions.” [...] “I think that’s more serious than patient privacy.
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If someone finds out something about you, well, you’re a bit embar-

rassed, but you’re still going to live! But if someone doesn’t receive

news or receives the wrong news, we are actually talking about harm.”

(P34, development unit manager)

Challenging requirements are an important contributor to architectural
complexity – see F2 (TECHNICAL RISK). Addressing the risk associated
with these requirements is an important strategy in up-front design – see
S2 (ADDRESS RISK).

In other instances, it may be the customer who has the oversight of
the overall architecture, and thus makes or approves the architectural
decisions. For example, P7’s team was one of many from different ISVs
building software as part of the customer’s enterprise system; no single
team had a complete vision of the overall system, and thus the customer
made the architecture decisions:

“The customer’s got architects galore. Given that this involves other

teams for these back-end systems and other teams for this and that,

each team has their own component architects. Then there are ar-

chitects that look at it end-to-end, and there are architects who look

across-to-across, so there is a lot of consulting and socialisation go-

ing on.” (P7, business analyst)

While P7’s team did not make the important architecture decisions, they
did most of the architecture analysis and research behind those decisions,
and put together recommendations for the customer:

“We developed a routine that in one iteration we would do a discovery

task, which was normally find the high level architecturally significant

requirements and produce an options paper on the architectural op-

tions for this.” [...] “At the end of that [discovery phase] we aim to

have it agreed with the client which architectural approach to take.”

(P7, business analyst)
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The options paper was a document that included the following infor-
mation for each architecture decision to be made:

• the decision to be made

• the issue or problem

• assumptions

• motivation

• alternatives

• the recommended decision

• justification for decision

• implications.

In addition to decisions being approved outside the team, there were
also instances of architecture designs being reviewed by third parties before
development started to confirm the quality of the architecture designs. In
one such case this was to give the customer reassurance of the ability of the
development team:

“I think we were winning the customer’s trust to a degree [...] so she

wanted some independent QA of the project.” (P14, architect)

P14 noted that because of the need for this review, they had to do more
design up-front than otherwise necessary – see F5 (CUSTOMER AGILITY).
An independent QA assessment is most useful after the up-front design has
been completed and before any development has been started, so that if any
changes are required, no development effort is wasted. P14 did note that
he had been subject to architecture reviews after the project had finished –
at which point any changes are very difficult:

“How the hell are you going to make it better if it’s already done?”

(P14, architect)

and
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“There is a point of no return with architecture.” (P17, manager/coach)

In another example, the team itself arranged an external review to give
the team comfort that its designs were satisfactory:

“I had a design review with one of the programme managers [at Mi-

crosoft] earlier last week. It was good! On the topic of architecture

it was a good design review because I was worried we didn’t have

enough architecture [...] So I sat down with this guy from the SQL

Azure team, and said, ‘look, this is our architecture, we’re using this,

this, this and this, our database model is tiny, you know, less than two

dozen tables, that’s what the customer wants!’ [...] Basically then

we went through the design and reviewed it. That was good.” (P2,

developer/architect)

8.1.4 Decisions made outside team

In this situation, architecture decisions are made by architects who are not
day-to-day members of the development team. Only one of the participants,
P11b, was an architect who was not a coding member of a team. P11b was
a member of the ‘architecture team’ that was responsible for the high-level
architecture designs for a number of development teams, and collaborated
closely with them, but was not a member of those teams. More detailed
architecture designs were the responsibility of the teams themselves.

“Initially we’ll have a high-level, very abstract... we work in our

[architecture] team and we had an external review last year to say

that that was a sound approach. But when we get into the detail of

how we’ll actually build it or what it’s going to look like then we

start working with the people with the expertise in that area.” (P11b,

architect)

Agile teams generally view non-coding architects as undesirable be-
cause these architects are often disconnected from the system being built
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and therefore are not in the best position to design the architecture:

“If they [the architects] don’t have to code with the team, then they

generally don’t have the pain of the team and they don’t know what

the latest frameworks are doing... if you’ve never tried to flesh it out

then you’re never going to know if it’s going to work. And I think

there’s a significant problem with places that separate those roles [of

developer and architect].” (P29, development manager)

Many teams have constraints on their architectures which are imposed
by the customer. These constraints may be high-level architecture decisions,
such as the technology stack to be used. For example, P7’s customer made
platform decisions based on strategic partnerships:

“[The platform] was a [customer] decision. They’ve got a strategic

partnership with IBM.” (P7, business analyst)

P8’s customer made platform decisions when they split the develop-
ment between different ISVs, each who specialised in different technologies:

“The customer decided the architecture when they went out and con-

tracted all the parts.” (P8, lead developer)

P14’s customer made platform decisions based on their own ability to
support the technology:

[The platform] was probably almost determined already for me, be-

fore then! They [the customer] had already gone down the path of

.NET, they’d built a bunch of applications in .NET already, so it would

have been a bit of a silly decision to change completely, given that

they had to support it. They were going to bring on support internally,

they weren’t going to have anyone contracted to do it, so they needed

to have their own resources that could support all their applications.”

(P14, architect)



214 CHAPTER 8. THE AGILE ARCHITECT

8.1.5 Decisions made at the inappropriate level

It is important to have the architecture decisions made at the most ap-
propriate level. A number of participants described problems caused by
multi-team systems not having anyone with oversight of the common
architecture.

For example, each of P28’s teams designed and built their own solutions.
Similar websites had different architectures and became very difficult to
maintain when changes had to be made across all websites:

“But if you’re trying to deliver a [website media] gallery and it needs

to have the same [construct across all websites] as you can see, you’ve

got to abstract to a common set. So you don’t duplicate. [...] You’ve

got to do some architecture because twenty teams are developing their

own sets of behaviour – and by behaviour I mean following the exact

same [content] life cycle – content, title, subtitle, publishing date, is-

sue date. They all have to be published, they all have to be scheduled.

They all generate static files for them. [...] So with no design up-front

[...] you have more than twenty [different] models following the same

behaviour [and] you know that in six months you’re going to have

three hundred people working [on different versions of] the same ba-

sic model; not doing some architecture is insane!” (P28, technical

lead)

He believed the cause of this problem was the teams not doing enough
architecture – they took the agile philosophy of minimising up-front design
too far.

In another example, P8 described a team that made a wrong technology
decision (prior to him joining the team), which led to a lot of refactoring
to try to make it work. In the end the technology was dumped for a better
solution:

“That [CMS solution] was probably the wrong decision” [...] “So we

had to do lots and lots of work, refactoring work, in order to enable us
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to upgrade the underlying libraries. That was a huge problem.” [...]

“It didn’t work in the end and I think a lot of that work was eventually

abandoned, better solutions were found.” (P8, lead developer)

This architecture design problem was caused (or exacerbated) by having
two siloed teams lacking in experienced leadership that did not communi-
cate their architecture needs with each other sufficiently.

Both of these examples could have been avoided if the teams had their
architecture decisions approved by somebody with oversight of all teams’
systems.

8.1.6 Summary

All participants in this research described architectural decisions as being
either made by members of the development teams or in agreement with
members of the teams. No architects made decisions in isolation of the
team. Decisions are either made and approved by the teams themselves, are
made by the teams and approved by external architects, or were researched
by the teams themselves and the decisions made by the external architects.
In the latter cases the external architects ensured the architectures of the
teams’ sub-systems met system-wide requirements or constraints that were
perhaps not clearly visible to the teams themselves.

Having the whole team involved with the architecture design process
ensures the whole team has an understanding of the architecture, its ratio-
nale and its importance. This understanding improves the team’s ability
to communicate and collaborate, and hence its team culture (F4, TEAM

CULTURE) and its ability to use S1 (RESPOND TO CHANGE).

8.2 Other roles of the architect

Teams using agile methodologies prefer architects who are coding members
of the team. As such, architects in agile teams often have other responsi-
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bilities or roles within the team, in addition to their architecture design
responsibilities. These roles, typically informal, may include being the tech-
nical lead or ‘über developer’, knowing the ‘big picture’, creating a shared
mindset for the team, creating (and enforcing) development guidelines, and
driving the development methodology. These roles are described below.

8.2.1 Technical lead/‘über developer’

The architect in an agile team is not usually a full-time architect: they
are often a member of the team who also makes architecture decisions.
Architects are likely to be experienced software engineers (section 8.1.2)
who write code alongside the non-architecting team members:

“Architects should be active coders in the team who are just seniors.”

(P29, development manager)

Because of their experience, architects often have advanced develop-
ment skills; the architects use their experience and skills to solve the team’s
development problems and make the best decisions:

“I was wearing the hats of architect, BA, and also coder of tricky bits

– being one more of the senior people on the team, that sort of stuff

came my way.” (P13, architect)

Many of the architecture decisions made by external architects (for ex-
ample, architecture teams), described in section 8.1.3, were made following
recommendations by team members. In some cases the members of the
teams making these architecture decisions are selected from the develop-
ment teams themselves (e.g. P23, P33–P36).

8.2.2 Knowing the big picture

An architect who understands the big picture is able to relate the devel-
opment to the business needs, and is better able to understand what the



8.2. OTHER ROLES OF THE ARCHITECT 217

customer actually needs and why they need it – one of the important
differences between agile and traditional development methods:

“Not only does he or she [the architect] need to be knowledgeable

about the technical part of it but also the business part of it. I think

that’s a big change that agile brings in to the picture.” (P21, man-

ager/coach)

and

“[When using agile methods] you’re more, you know, working with

the business more, you’ve got demos and generally it’s more positive

because they’re getting more of what they want instead of waiting

three months and getting a turkey.” (P11a, development manager)

In this regard, the architect has a lot in common with the business
analyst (BA) role; some architects do indeed carry out the functions of a
BA:

“I was architect, I was in effect lead BA, I seemed to be the person

who had the unified view of what the customer was after in terms of

functionality.” (P13, architect)

and

“[Team member’s name] is the business analyst and plays a part lead

in the architect role.” (P21, manager/coach)

and

“I think architects need to understand [engaging with the customer]

– they need to seek support, lobbying, champion for the business what

they can get out of doing this role, they’ve got to coach the business

in what it’s going to cost them, how much effort, what expectations

they need to have, we can get really powerful outcomes that you need,
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rather than building all this stuff that you thought you needed back

then but turns out to be something different.” (P30, consulting archi-

tect)

A number of participants involved with outsourced work described
having architects provided by the customer in their team (for example, P21,
P22 and P26), because of their better knowledge of the business problem.

8.2.3 Creating a shared mindset

This thesis defined architecture as the high level design decisions that the
expert developers need to understand (section 2.3) – a shared mindset. It is
the responsibility of the architect to create that shared mindset:

“The architect [is] the builder of a shared mindset, a shared under-

standing, and to me that’s the architect’s role.” (P5, coach/development

manager)

– and to communicate decisions so everyone knows what they are building:

“The important thing about architecture is, is it communicatable?”

(P5, coach/development manager)

As well as communicating decisions as they are made, the architect
brings new team members up to speed with the project:

“It [the architecture document] helped new people coming in to un-

derstand what the objectives were.” (P30, consulting architect)

and

“We’re not necessarily writing this documentation for you, we’re writ-

ing it for the person who’s going to... pretend you’re a new program-

mer who’s just arrived and you’ve been pointed towards the project

and Subversion and told to maintain it... what would you like?” [...]

“Think of it [the Software Architecture Document] as an aid to the new

person who’s going to start.” (P4, director of architecture)
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8.2.4 Creating and enforcing development guidelines

The role of the architect includes providing development guidelines to the
team. Guidelines ensure that the team follows good design and coding
practices, that they maintain consistency of coding styles, and that system
quality is maintained.

For example, P5 talked about the architect making decisions on coding
styles:

“When I think of architecture I expect there to be a definitive answer

to the question: should you use C++-style exceptions or C-style error

routine codes? [...] At a very fine grained level, you know I’m writing

a function. Do I throw an exception or do I return an error code?”

(P5, coach/development manager)

P4 and P10 mentioned using tools to measure the quality of modules
and classes:

“One of the tools I used [...] is a thing called Structure101 which es-

sentially at the class level, package level, in Java, just analyse all the

source code and identify dependencies between classes, and it would

identify cyclic dependencies, so you could know, we’re in a cyclic re-

lationship here, what do we need to move to break the cyclic relation-

ship?” [...] “Just ensure that they were following good approaches.”

(P4, director of architecture)

and:

“Sonar gives you an instant view of the code health, and you can

see trends and coupling of classes. That way you can see – ‘oh, that

module there is being really naughty, look at the complexity spikes

there showing up’ – all of a sudden the architecture community can

zoom in and say, ‘Oh! What are you guys up to? How come your

cyclomatic complexity is so high these days?’ ” (P10, coach)
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8.2.5 Driving the development methodology

Team members who make the architectural decisions are also often in a po-
sition to drive the development process and methodology. They need to be
aware of how the agile methodology they are using affects the architecture
design, and they need to be aware of how the methodology is affected by
the design:

“Architects need to help agile teams work well, [they] need to under-

stand how agile processes work, and they need to understand what

agile teams need over and above more traditional approaches.” (P30,

consulting architect)

Because the architect is aware of the business goals and the best way for
the software system to be built to satisfy those goals, they also need to be
aware of the best processes to build that software:

“Architects are influencers in this [world] and they need to be actu-

ally promoting and understanding the real value that [for example]

bringing functional testing right into the iterations offers, and under-

standing that deployment, automation of testing, is really a fundamen-

tal need and it takes a lot more work than people give it credit for, and

it needs that extra support to make that happen. At least in the early

stages.” (P30, consulting architect)

This role is similar to an agile coach or Scrum Master role [119].

8.2.6 Summary

Team members responsible for architecture decision making often perform
many other roles in the team, usually informally. These roles include being
the problem solver (über developer), knowing the big picture, creating a
shared mindset with the rest of the team, creating and enforcing develop-
ment guidelines, and driving the development methodology. These roles
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show that the architect is an important member of the development team
and contributes to team culture (F4, TEAM CULTURE).
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Chapter 9

Discussion

“If you only foresee risks in your project that can be handled by refac-

toring then you would not do any architecture design.” (George Fair-

banks [91])

This chapter discusses the theory of agile architecture in the context of
related work. First, section 9.1 discusses the theory’s presentation and its
boundaries, and evaluates the theory. The remaining sections in the chapter
discuss the theory in light of the literature. Section 9.2 discusses what
the literature says about agile architecture, and its relationship with the
theory of agile architecture. Section 9.3 discusses what the literature says
about what affects the up-front architecture design, and compares it with
the research findings about the forces in Chapter 6. The section includes
discussions on context, size and complexity, the architectural effort ‘sweet
spot,’ team culture and architectural experience. Section 9.4 discusses the
twin peaks model of requirements and architecture. Section 9.5 discusses
what the literature says about the role of the architect, and its relationship
with the research findings. Finally, section 9.6 provides additional insights
into the findings.

223
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9.1 The theory of agile architecture in context

9.1.1 Presenting a grounded theory

A grounded theory is a formal explanation of events being researched
[233]. It is not, as Adolph et al. wrote, “an inventory of concepts annotated
with quotes from research participants” [8]. Suddaby (2006) wrote that
presenting the research data (for example, quotes from interviews) is a sign
that the researcher has not lifted the data to a conceptual level [214]. While
the theory presented in this thesis is annotated with direct quotes, this is to
highlight the traceability between the data and the theory, as recommended
by Miles and Huberman (1994) [167] (see Table 9.5 below). These quotes do
not form part of the theory, which could stand alone without the quotes.

9.1.2 Theory boundaries

A grounded theory can only be applied to the substantive area from which
it was generated, and therefore the boundaries must be well defined [227].
The boundaries of this research were determined by the choice of partici-
pants and their contexts. The boundaries are:

• Agile software development – the theory only includes software de-
veloped using an agile development methodology, which welcomes
or responds to change. Non-agile methods, such as plan-driven meth-
ods, or systems where the requirements do not change, are excluded
from this theory.

• Software architecture – the theory only includes software architecture.
There are many types of architecture within the IT industry – Brown
lists seventeen [57]; examples include higher level architectures such
as enterprise, business and IT architecture, and lower level architec-
tures such as data, information and security architectures. This theory
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only includes software architecture (sometimes referred to as solution
architecture), the architecture of software systems.

• Application software – the theory only includes application software
running on general purpose computers or servers. Other types of soft-
ware such as embedded software, compilers and operating systems
are not included in this theory. Games are also not included.

The application software may be mass market products or services
with ongoing development, or specialised one-off systems. They may
also be new (green field) systems or the redevelopment of existing
systems.

The theory does not examine any particular techniques for making archi-
tecture decision or for generating architecture models (including defining
requirements and analysing the architecture), beyond those that are specific
to agile methodologies and which affect up-front design effort, such as
spikes (section 7.2.2).

The theory does not attempt to determine how much architecture teams
should design; rather, its purpose is to determine what affects how much
architecture teams design (section 2.5). In other words, it answers the
question “how do teams determine how much architecture?” rather than
“how much architecture?”

9.1.3 Evaluating the theory

Traditional methods of evaluating research intended for quantitative, de-
ductive research strategies are not suitable for qualitative strategies [81, 113].
Quantitative research evaluation requires ensuring the findings are well
grounded in the data rather than verifying the reliability and accuracy of
research procedures and tools and interpreting results [81].

There is still much discussion on how to evaluate qualitative research
[80, 81, 113], and many possible approaches. One approach is to use criteria
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that are counterparts of quantitative research criteria. Lincoln and Guba
(1986) is a frequently-cited reference that proposed the trustworthiness set
of criteria that parallels the quantitative rigour set of criteria. These criteria
are summarised alongside the concerns they address in Table 9.1.

Concern [81, 167] Rigour criteria
for quantitative
research [154]

Trustworthy
criteria for
qualitative
research [154]

Truth value: are the conclusions

drawn from the research accurate?

internal validity credibility

Applicability: are the conclusions

applicable to other settings?

external validity transferability

Consistency: is the methodology

consistently applied?

reliability dependability

Neutrality: are the conclusions free

from unacknowledged bias?

objectivity confirmability

Table 9.1: The quantitative rigour criteria and Lincoln and Guba’s parallel
trustworthy criteria for assessing qualitative research [154]

While convenient, Lincoln and Guba had reservations about their trust-
worthiness criteria, because they are derived from quantitative criteria.
They also proposed an alternative set of criteria, the authenticity criteria,
which are intended to be more suitable for qualitative strategies. The
authenticity criteria include fairness, ontological authenticity, educative
authenticity, catalytic authenticity and tactical authenticity [154]. These five
criteria are not well defined, but, roughly, fairness refers to the researcher
treating differences in the participants fairly, ontological authenticity refers
to the participants having a better understanding of their situation after the
research, educative authenticity refers to the participants having a better
understanding of others’ situations after the research, catalytic authentica-
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tion means the research must facilitate and stimulate action, and tactical
authenticity means the research must empower action [113, 154].

I have referred to other sources for suggestions on evaluating qualita-
tive research to augment Lincoln and Guba. Frequently cited researchers
include Miles and Huberman (1994) [167] and Creswell (2014) [81]; Char-
maz (1986) [64] and Glaser (1978) [104] both published criteria specific to
grounded theory. Several of these sources drew on the work of Lincoln
and Guba. Miles and Huberman (1994) and Charmaz (2006) each had extra
categories not included in Lincoln and Guba’s set of four trustworthy crite-
ria: these are originality, resonance and usefulness [64], and application [167].
Usefulness and application are similar to Lincoln and Guba’s authenticity
criteria.

These criteria are examined below, each summarised in a table that con-
tains techniques that can be followed to help meet its respective criterion,
or queries that can be answered to help check whether or not the criterion
is followed. Miles and Huberman’s criteria included fifty procedures or
checks; for brevity, they are only included in the tables where they are the
same as other sources, or where they are significantly different from the
other sources and are pertinent. Each technique or query also contains my
own assessment as to whether or not the theory presented in this thesis
meets the criterion.

Credibility

The credibility criterion is used to determine if the conclusions drawn from
the research are accurate: do the findings make sense? Do we have an
‘accurate portrait’ of the research subject [167]? Techniques for helping
meet this criterion and queries to help determine whether the criterion has
been met are listed in Table 9.2, along with my assessment of that criterion.
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Technique Comment

Prolonged engagement: “lengthy and
intensive contact with the phenomena (or
respondents) in the field to assess possible
sources of distortion and especially to
identify saliencies in the situation.” [154];
also [81], intimate familiarity [64]

This research included 44 participants
in 37 first interviews, at an average of 1
hour 10 minutes per interview (section
4.1). This is lengthy and intensive
contact.

Persistent observation: “in-depth pursuit
of those elements found to be especially
salient through prolonged engagement.”
[154], sufficient data [64]

Yes: data collection continued until
saturation (section 4.1.4).

Triangulation of data: “by use of different
sources, methods, and, at times, different
investigators.” [154]; also [81, 167]

Data triangulation was achieved
through interviews and documentation
(section 4.1.3). I did not have the
resources for methodology
triangulation or additional
investigators.

Peer debriefing: “exposing oneself to a
disinterested professional peer to ‘keep
the inquirer honest,’ assist in developing
working hypotheses, develop and test the
emerging design, and obtain catharsis.”
[154]; also [81]

Peer debriefing was limited to my
academic supervisors. I did not have
the resources for additional peer
debriefing.

Negative case analysis: “the active search
for negative instances relating to
developing insights and adjusting the
latter continuously until no further
negative instances are found; assumes an
assiduous search.” [154]; also [81, 167]

Negative cases (problems and issues)
were actively sought (see the interview
questions in Appendix B).

Table 9.2: Techniques and queries for assessing the credibility criterion
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Technique Comment

Member checks: “the process of
continuous, informal testing of
information by soliciting reactions of
respondents to the investigator’s
reconstruction of what he or she has been
told or otherwise found out and to the
constructions offered by other
respondents or sources, and a terminal,
formal testing of the final case report with
a representative sample of stakeholders.”
[154]; also [81, 167]

Noting Glaser’s advice on now asking
participants to review the theory (see
section 3.5.2), member checking was
used with caution. Later interview
questions were formulated specifically
to elicit views on the developing
theory.

Comparisons: “have you made
systematic comparisons between
observations and between categories?”
[64]; also [167]

Yes: constant comparison was
continued throughout the analysis
(section 4.2).

Wide range: “do the categories cover a
wide range of empirical observations?”
[64]; also [167]

Yes: the wide range can be seen in the
range of participants (section 4.1).

Logical links: “are there strong logical
links between the gathered data and your
argument and analysis?” [64]; also [167]

Yes: see the direct quotes in the
findings chapters (chapters 5 to 8).

Evidence of claims: “has your research
provided enough evidence for your claims
to allow the reader to form an
independent assessment – and agree with
your claims?” [64]; also [167]

Yes: see the dependability and
confirmability criteria (tables 9.4 and
9.5, respectively).

Clarify the bias: “clarify the bias the
researcher brings to the study. This
self-reflection creates an open and honest
narrative that will resonate well with
readers.” [81]; also [167]

Sources of bias are presented in section
3.4.

Table 9.2, cont.

Glaser has four criteria for evaluating the rigour of a grounded theory:
fit, work, relevance and modifiability [104]. These four criteria all concern
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truth value (Table 9.1), because they all judge whether or not the conclusions
drawn from the research are accurate, and hence fit within the credibility
criterion.

Fit means the categories of the theory must fit the data – the categories
must not be forced to fit preconceived concepts. A grounded theory that
is carefully induced should automatically meet the criteria of fit [105].
The theory presented in this thesis fits the data: it was not based on any
preconceived concepts. For example, I did not deliberately look for the
concept describing the design of an agile architecture (defined in Chapter
5) in the data, or any of the strategies for designing an agile architecture; I
found them through constant comparison of the incidents and concepts.

Work means that the categories interpret and predict the major variations
in the area being investigated. A grounded theory should also automatically
meet the criteria of work [104]. Findings of this research have received
positive feedback from participants and supervisors. I have presented two
conference papers on the early findings of this research [224, 225], which
were well received by conference attendees.

Relevance means the theory must be relevant to the area being investi-
gated, and the core category indeed identifies the core issue [212]. A theory
that meets the criteria of fit and work has also achieved relevance [105].
This theory is relevant because it identifies the core category, architecting
(section 4.2.5), which covers the essential concerns of agile teams pertaining
to architecture and architecture design.

A theory must be able to be modified as new data that presents new
variations is obtained [105]: there should be no need for the existing theory
to be discarded. Generating a grounded theory is an evolving process that
plays out through the iterations of data collection and analysis; the concepts
and categories continuously evolve as new relevant data is added. The
theory presented in this thesis was continuously modified as it evolved,
and it evolved continuously through the analysis: as previously noted, the
core category did not emerge until very late in the analysis. The theory
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evolved from focusing solely on up-front architecture decision-making
to wider theory of agile architecture that more completely described the
architectural design processes and activities of agile teams. The theory can
also be modified to account for any future data. Thus, this thesis presents
a theory that is credible and meets Glaser’s requirements for a rigorous
theory.

Transferability

The transferability criterion is used to help a reader determine if the conclu-
sions drawn from the research are applicable to other settings. Techniques
for helping meet this criterion and queries to help determine whether the
criterion has been met are listed in Table 9.3, along with my assessment of
each technique or query applied to this research’s theory. This table shows
that the theory is transferable.

Dependability

The dependability criterion is used to help a reader determine if the pro-
cess of the study is applied consistently and is reasonably stable [167].
Techniques for helping meet this criterion and queries to help determine
whether the criterion has been met are listed in Table 9.4, along with my
assessment of each technique or query applied to this research’s theory.
This table shows that the theory is dependable.

Confirmability

The confirmability criterion is used to ensure the study is free from un-
acknowledged bias: “do the conclusions depend on the subjects and the
conditions of the inquiry rather than on the inquirer?” [167]. Queries to
help determine whether the criterion has been met are listed in Table 9.5,
along with my assessment of each query applied to this research’s theory.
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Technique Comment

Thick descriptive data: “narrative
developed about the context so that
judgements about the degree of fit or
similarity may be made by others who
may wish to apply all or part of the
findings elsewhere.” [154]; also [81, 167]

Multiple participants allow for thick
description. The context is well defined
by the boundaries of the research
(section 9.1.2).

Descriptions: “Are the characteristics of
the original sample of persons, settings,
processes (etc) fully described enough to
permit adequate comparisons with other
samples?” [167]

The participants are summarised in
section 4.1; the boundaries are
described in section 9.1.2.

Threats to generalizability: “Does the
report examine possible threats to
generalizability?” [167]

The threats are described in section
3.5.2.

Sampling diversity: “Is the sampling
theoretically diverse enough to encourage
broader applicability?” [167]

Yes: the theory developed through this
research is high-level (Chapter 5) with
a very broad sample of participants
(section 4.1).

Boundaries: “Does the researcher define
the scope and the boundaries of
reasonable generalization from the study?”
[167]

Yes: the boundaries are described in
section 9.1.2.

Table 9.3: Techniques and queries for assessing the transferability criterion
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Technique Comment

Audit trail, External audit: “...both the
establishment of an audit trail and the
carrying out of an audit by a competent
external, disinterested auditor. That part
of the audit that examines the process
results in a dependability judgement,
while that part concerned with the
product (data and reconstructions) results
in a confirmability judgement.” [154]; also
[81, 167]

The external audit was performed by
my academic supervisors, as is
appropriate for PhD research.
The audit trail is included in the
analysis chapter of this thesis (Chapter
4), and in the findings chapters,
chapters 5 to 8, in the form of direct
quotes from the data.

Transcripts: “check transcripts to make
sure that they do not contain obvious
mistakes made during transcription.” [81]

All transcripts were personally
checked after transcribing, and then
sent to the participants for verification.
(A few participants made corrections;
one even corrected some spelling
mistakes!)

Code drift: “make sure that there is not a
drift in the definition of codes, a shift in
the meaning of the codes during the
process of coding. ” [81]; also [167]

The constant comparison method
meant there was a continuous shift in
the meaning of codes (concepts). This
shift was captured in the memos
attached to the codes (section 4.2.3).

Team research and code cross-check:
[81, 167]

Not applicable – I was the only
researcher.

Research questions: “are the research
questions clear, and are the features of the
study design congruent with them?” [167]

The questions (listed in Appendix B)
are high-level and general,
characteristic of semi-structured
interviews. The questions evolved over
time as the research evolved.

Researcher’s role: “is the researcher’s role
and status within the site explicitly
described?” [167]

Yes: my role is described in section 3.4.

Table 9.4: Techniques and queries for assessing the dependability criterion
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This table shows that the theory in this thesis meets the confirmability
criterion.

Application and usefulness

The application or usefulness criterion (Miles and Huberman (1994) [167]
and Charmaz (2006) [64], respectively) are used to determine if the re-
search’s findings make worthy contributions. Queries to help determine
whether the criterion has been met are listed in Table 9.6, along with my
response to the queries as applied to this research’s theory. This thesis and
the theory presented are useful, accessible and applicable.

Originality

The originality criterion used by Charmaz (2006) [64]) is used to assess the
contributions that the theory makes. Queries to help determine whether
the criterion has been met are listed in Table 9.7, along with my response
to each query as applied to this research’s theory. The theory presented in
this thesis make significant contributions to theory and to practice.

Resonance

Table 9.8 presents Charmaz’s resonance criterion [64], its techniques and
queries, and my assessment of this research’s theory.

Resonance is used to assess whether or not the findings engage and
meaningfully affect the reader. Queries to help determine whether the
criterion has been met are listed in Table 9.8, along with my response to
each query as applied to this research’s theory. The theory presented in this
thesis has resonance.

∗
Using these criteria, the theory of agile architecture is a trustworthy and

good quality theory.



9.1. THE THEORY OF AGILE ARCHITECTURE IN CONTEXT 235

Technique Comment

External audit: see Table 9.4 [154]; also
[81, 167]
Methodology description: “are the
study’s general methods and procedures
described explicitly and in detail: do we
feel that we have a complete picture,
including ‘backstage’ information?” [167]

Yes: the grounded theory methodology
is described in detail in section 3.3.

Audit trail: “can we follow the actual
sequence of how data were collected,
processed, condensed/transformed, and
displayed for specific conclusion
drawing?” [167]; see also Table 9.4.

Yes: the data collection and analysis
procedures are described in Chapter 4.

Conclusion links: “are the conclusions
explicitly linked with exhibits of
condensed/displayed data?” [167]

Yes: the findings in chapters 6 to 8
contain direct quotes from the data to
illustrate the theory and to provide
links between data and findings.

Researcher role: “has the researcher been
explicit and as self-aware as possible
about personal assumptions, values and
biases, affective states – and how they may
have come into play during the study?

Yes: my role is described in section 3.4.

Competing hypotheses: “were
competing hypotheses or rival conclusions
really considered? At what point in the
study? Do other rival conclusions seem
plausible?” [167]

While competing hypotheses were not
specifically considered, the core
category and theory emerged very late
in the analysis. When they did emerge,
it was clear that they were the most
plausible.

Retained study data: “are study data
retained and available for reanalysis by
others?” [167]

In accordance with this research’s
Human Ethics Committee research
approval (Appendix A), the research
data will be kept for two years. Due to
privacy requirements, any identifying
data are only available to myself and
my academic supervisors.

Table 9.5: Techniques and queries for assessing the confirmability criterion
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Technique Comment

Usefulness: “does your analysis offer
interpretations that people can use in their
everyday worlds?” [64]

Yes: this thesis provides contribution to
software engineering practice (section
10.2).

Generic processes: “do your analytic
categories suggest any generic processes?”
[64]

No, I believe the categories are specific
to software architecture design in agile
development.

“If so, have you examined these generic
processes for tacit implications?” [64]

N/A.

Further research: “can the analysis spark
further research in other substantive
areas?” [64]

Yes: there is potential for significant
future work (section 10.4).

Contribution: “how does your work
contribute to knowledge? How does it
contribute to making a better world?” [64]

This thesis provides contributions to
theory (section 10.1) and implications
for practice (section 10.2).

Accessibility: “are the findings
intellectually and physically accessible to
potential users?” [167]

Two conference papers have been
published with early results from this
research [224, 225]. This thesis will be
publicly available at the Victoria
University of Wellington library upon
publishing. Other forms of publishing
to make the theory more accessible to
industry may be considered.

Working hypotheses: “do the findings
stimulate ‘working hypotheses’ on the
part of the reader as guidance for future
action?” [167]

Yes: the findings are presented in the
form of a set of strategies that are
associated with different contexts,
which readers can use to determine
what is appropriate for their situation.

Level of knowledge: “what is the level of
usable knowledge offered? It may range
from consciousness-raising and the
development of insight or
self-understanding to broader
considerations: a theory to guide action,
or policy advice. Or it may be local and
specific.” [167]

The findings are in the form of a set of
strategies that agile software engineers
can use to determine how much
architecture to design up-front (that is,
guide their actions).

Table 9.6: Techniques and queries for assessing the application
[167]/usefulness [64] criterion
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Technique Comment

Insight: “are your categories fresh? Do
they offer new insights?” [64]

Yes: the research categories are both
fresh and offer new insights. These are
discussed in the remaining sections of
this chapter.

New rendering: “does your analysis
provide a new conceptual rendering of the
data?” [64]

Yes: it presents the theory in the form
of a set of strategies, which is novel
(see Chapter 7).

Significance: “what is the social and
theoretical significance of this work?” [64]

This theory of agile architecture is the
only theory I am aware of to date that
explains the relationship between
architecture and agility, and helps fill a
crucial knowledge gap in empirical
software engineering research.

Contribution: “how does your grounded
theory challenge, extend or refine current
ideas, concepts and practices?” [64]

In addition to generating the only
theory I am aware of on the
relationship between architecture and
agility, it also extends several other
ideas such as the impact of size,
complexity and minimising cost on
up-front architecture design.

Table 9.7: Techniques and queries for assessing the originality criterion
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Technique Comment

Fullness: “do the categories portray the
fullness of the studied experience?” [64]

Yes: the theory explains most of the
concerns that were raised in the data.

Meanings: “have you revealed both
liminal and unstable taken-for-granted
meanings?” [64]

Yes: for example, the term ‘agile
architecture,’ defined in this thesis, is
an example of a term that is widely
used but appears to have been given
little meaningful thought.

Links: “have you drawn links between
larger collectivities or institutions and
individual lives, when the data so
indicate?” [64]

Yes: the theory explains the impact of
different types of companies, projects
and the environment on agile
architecture.

Participant acceptance: “does your
grounded theory make sense to your
participants or people who share their
circumstances? Does your analysis offer
them deeper insights about their lives and
worlds?” [64]; also Ring true: “does the
account ‘ring true,’ make sense, seem
convincing or plausible, enable a
‘vicarious presence’ for the reader?” [167]

Yes: papers with early results from this
research presented at conferences
[224, 225] were well received by
conference attendees and participants.
See also comments on member checks
in Table 9.2.

Table 9.8: Techniques and queries for assessing the resonance criterion
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9.2 Agile architecture

The term agile architecture was defined at the start of Chapter 5 as an ar-
chitecture that supports a team’s agility by being easily modifiable and
tolerant of change, and which has a more emergent design with a short
planning period.

In contrast, the term agile architecture is most commonly used in the
literature to refer to an evolving software architecture that is produced by
the agile development process [114, 125, 156]. Kruchten (2013) preferred to
refer to such as architecture as agile architecting, defining it as follows:

“an agile way to define an architecture, using an iterative lifecy-
cle, allowing the architectural design to tactically evolve gradu-
ally, as the problem and the constraints are better understood.”
[144]

Kruchten and a small number of other authors prefer to use the term
agile architecture to describe an architecture that is designed to be modifi-
able [57, 131, 136], a definition that satisfies the definition of agility (section
2.2.3) and is similar to the definition used in this thesis. Kruchten defined
agile architecture as:

“A system or software architecture that is versatile, easy to
evolve, to modify, flexible in a way, while still resilient to changes.”
[144]

Brown (2013) also defined agile architecture in this sense:

“An architecture that can react to change within its environment,
adapting to the ever changing requirements that people throw
at it.” [57]

Brown and Kruchten both emphasised that an agile architecture defined
in this way is not necessarily the same as an architecture designed by
agile architecting, with Brown highlighting the difficulty in producing an
architecture that is modifiable:
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“Delivering software in an agile way doesn’t guarantee that
the resulting software architecture will be agile. In fact, in my
experience, the opposite typically happens because teams are
more focused on delivering functionality rather than looking
after their architecture.” [57]

The use of the term agile architecture to mean an architecture that is
modifiable, as defined by Brown and Kruchten, does not specify the use
of agile processes, and thus it is possible that it could be designed using a
plan-driven methodology [144]. Indeed, maintainability (similar to mod-
ifiability but more about tweaks and less about evolution) is a common
requirement for architecture [25, 50] whether agile or not. For example,
maintainability is referred to in the Software Engineering Institute’s de-
scription of architecture:

“the architecture is the primary carrier of system qualities, such
as performance, modifiability, and security, none of which can
be achieved without a unifying architectural vision.” [207] (em-
phasis added)

Good design practices, an important tactic for designing an architecture
that can respond to change, are good design practices no matter what
processes are used [25, 43, 179].

The term agile architecture is also frequently applied to enterprise archi-
tecture [16, 33, 170, 231] which is designed to cope with an organisation’s
dynamic structures and processes [16] and improve business agility [33].
Enterprise architecture is beyond the scope of this thesis.

Importantly, however, this thesis also recognises that the architecture
of a software system developed using an agile methodology is not a static
set of design decisions: an agile architecture evolves as the system is de-
veloped, and therefore also requires an agile architecting process. An agile
architecture is therefore both an output of the architecting process (that
is, a set of design decisions that can be described as being modifiable and
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tolerant of change) and is a part of the architecting process (that is, deci-
sions are timed or made in such a way as to make the evolving design
modifiable and tolerant of change). This means that an agile architecture
is produced with less up-front design and more emergent decisions, and
is able to respond to change by being modifiable and tolerant of change
(Chapter 5).

The five tactics of S1 are used to improve the ability of the architecture
to RESPOND TO CHANGE. The first three tactics increase modifiability:
keeping the design simple, proving the design with code iteratively and
using good design practices. The last two increase tolerance to change:
delaying decision making and planning for options.

Three of the five tactics are characteristics of the architecture itself:
keeping the design simple, using good design practices and planning for
options are not exclusive to agile methodologies, and may be confirmed or
discovered a posteriori by inspecting the architecture. The other two tactics,
proving the design with code iteratively and delaying decisions, require an
agile process (agile architecting). It may not be possible to determine their
use by inspecting the architecture.

Keeping the design simple, proving the architecture with code and
delaying decisions all reduce up-front effort, while following good design
practices and planning for options may initially slightly increase the ar-
chitecture effort, but have the benefit of lower architectural refactoring
costs.

How the literature relates to each of S1’s tactics is described below in sec-
tions 9.2.1 to 9.2.5. Section 9.2.6 then describes other ways for determining
up-front design effort.

9.2.1 Keeping designs simple

Simplicity is an important part of agility; ‘simplicity is essential’ is one of
the twelve principles listed in the agile manifesto (section 2.2.1). Simplicity
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means only designing for what is immediately required: no gold plating
and no designing for what might be needed or for what can be deferred [27].
In XP, simplicity is referred to as YAGNI (‘you ain’t gonna need it’) [96].
Simplicity reduces the effort required to make changes to the architecture,
and therefore makes the architecture more easily adapted to change.

Developers are often encouraged to refactor existing designs into sim-
pler designs when possible (for example, Beck [27]).

9.2.2 Proving the design with code iteratively

Proving that a design or model works by coding it is a core practice of Scott
Ambler’s agile modelling [18] practice-based methodology for modelling
and documenting systems [13].

Proving that a design works with code acknowledges that models and
theoretical abstractions may not work in practice, and ultimately can only
be proven to work by coding the solution and testing it. Modelling is only
one task of the iterative development process [18]; building and testing are
an important part of the cycle.

This tactic is possible because architecture design and development
can take place simultaneously in agile development (see also delaying
decisions, described below).

9.2.3 Good design practices

An agile architecture is more easily modified than a non-agile architecture.
Brown noted that an agile architecture should be designed using small,
loosely coupled components or services that can be easily modified and
tested in isolation, and even entirely replaced if necessary [57]. A poorly
designed architecture is very difficult to refactor [91].

Kavis (2012) specified that for an architecture to be agile, it should have
some or all of these qualities: open, configurable, modular, independent,
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elastic and abstract [131], all which increase its modifiability or tolerance of
change.

Coplien and Bjørnvig (2010) suggested separating components accord-
ing to their rates of change [79] and ‘shearing layers’ [51, 94].

Designing an architecture that it is modifiable may require more archi-
tectural and development effort than one that is not because (for example)
creating extra APIs and levels of indirection requires more effort and disci-
pline [57, 79].

9.2.4 Delaying decision making

Up-front design can be minimised by delaying architecture decisions where
possible until after development begins (that is, by making more emergent
decisions).

Many authors recommend delaying architecture decisions where possi-
ble, until just before the decision is required – the “last responsible moment”
[1, 147, 184] or the “most appropriate time” [79]. Only the decisions that
cannot be deferred are made up-front. Malan and Bredeyer (2002) described
the minimum up-front design as the minimum required to achieve the most
strategic architectural goals [158], while Coplien and Bjørnvig (2010) de-
scribe the minimum up-front design as the minimum that contributes to
solving the long-term problem [79]. Brown (2013) used the term just enough
architecture [57] – just enough to allow the team to understand the structure,
create a shared vision and identify and mitigate the highest priority risks.
Fairbanks (2010) focused on risk, with the minimum being just enough to
reduce risk to satisfactory level [91]: “your effort should be commensurate
with your risk of failure.”

Minimising up-front design and delaying decisions is important to
ensure the architecture is designed with only the most accurate and up-to-
date information, and hence reducing waste. This is similar to Boehm’s cone
of uncertainty [42], in which uncertainty is reduced over time as decisions
are made and the system evolves.
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9.2.5 Plan for options

A feature of Madison’s ‘agile architecting’ is it allows for options [156]:
the team defines ranges and bounds – a bounded range of solutions that
is narrowed down as more information becomes available, rather than
specifying a solution too early. Distinct from delaying decisions, allowing
for options means architectural direction can be defined earlier.

9.2.6 Up-front architecture design effort

Fairbanks (2010) proposed a risk-driven approach similar to ADDRESS RISK

(S2), in which the architecture is designed in sufficient detail up-front to
mitigate risk to a satisfactory level [91] – suggesting a balance between
RESPOND TO CHANGE (S1) and ADDRESS RISK (S2).

He also listed four alternative ways to determine how much architecture
to design up-front: no design, which includes some implicit design decisions,
similar to an EMERGENT ARCHITECTURE (S3); documentation package, similar
to the BIG DESIGN UP-FRONT (S4), in which the architecture is recorded
in a document so that someone else can understand the architecture and
recreate it; yardsticks, in which some fixed amount of time or proportion
of total effort is spent architecting, perhaps based on past experience or
determined by models such as Boehm’s (section 9.3.3); and ad hoc, in which
the architects make the decisions that they feel are the most appropriate at
the time, and which is perhaps an informal risk-driven approach [91].

9.3 The impact of context on up-front effort

This section presents different perspectives from the literature on how
context affects up-front architecture design and compares them with the
findings of this thesis. It includes a general review of the forces (or factors)
that affect up-front architecture design (section 9.3.1), then more specific
comments on the relationship between size and complexity (section 9.3.2)
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and the architectural effort ‘sweet spot’ (section 9.3.3). It then discusses the
impact of team culture (section 9.3.4), customer agility (section 9.3.5) and
architecture and technical experience (section 9.3.6).

9.3.1 Context and the forces that comprise context

Abrahamsson, Ali Babar and Kruchten (2010) listed eight factors (or forces)
that they suggested can affect the level of up-front architecture design [1].
These factors are size, stable architecture, business model, team distribution,
rate of change, age of system, criticality and governance. These factors are
shown in Figure 9.1, which repeats Figure 2.7.

Figure 9.1: The factors that make up a project’s context, after Abrahamsson,
Ali Babar and Kruchten (2010) [1] and Kruchten (2013) [146] (Figure 2.7
repeated)
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Size: Kruchten (2013) described the overall size of the system under de-
velopment as the greatest factor affecting agility [146]. Size drives the size
of the team, the number of teams, communication and coordination needs
and the impact of change. This thesis has determined that size was not
a direct driver of up-front architecture design; rather, complexity is – see
TECHNICAL RISK (F2). The relationship between size and complexity and
their impact upon up-front architecture design is discussed in more detail
below in section 9.3.2. The impact of the number (and size) of teams is
considered part of TEAM CULTURE (F4).

Stable architecture: The second factor is stable architecture. Many soft-
ware systems do not require novel architectural solutions; a stable architec-
ture can be defined at the start of development using existing tools [146].
The impact of this factor is included within the TECHNICAL RISK force
(F2) and the USE FRAMEWORKS AND TEMPLATE ARCHITECTURES strategy
(S5). Kruchten (2013) noted that 75 per cent of the time, the high level
architecture choices – technology and platform – can be made implicitly
[145]. Section 7.3.1 noted that these highest-level decisions are often made
implicitly, particularly by teams using EMERGENT ARCHITECTURE (S3).

Business model: The business model, representing the money flow of the
customer, can impact upon the up-front design effort. For example, is the
system an internal system, a commercial product, or a component of a
larger system [146]? Larger organisations often prefer to follow process,
and generally prefer the development teams to spend more time on up-
front design [122]. Similarly, many also have to get budgets approved
in advance. ISVs (independent software vendors) often have to submit
competitive tenders, which require more up-front design. Multi-team
systems require more architectural oversight and coordination. The effects
of these scenarios are all included within CUSTOMER AGILITY (F5). Some
organisations – for example, government departments – are inherently



9.3. THE IMPACT OF CONTEXT ON UP-FRONT EFFORT 247

risk averse, which compels more up-front design to ADDRESS RISK (S2).
Finally, some organisations – particularly start-ups in a dynamic domain or
industry – need cash flow as early as possible, and cannot afford the delay
caused by any up-front design beyond the bare minimum (EARLY VALUE,
F3).

Team distribution: The team distribution is closely linked to size of the
project, as noted by Kruchten [146]. Team distribution affects the team’s
ability to communicate, and is thus included within TEAM CULTURE (F4).

Rate of change: Rate of change refers to the stability of the environment
[146]. This research found that rate of change did not affect the amount of
up-front design: teams are often prepared for any requirement to change.
Indeed, changes are not known a priori. Rather, the team’s ability to RE-
SPOND TO CHANGE (S1) affects up-front design. S1 depends on a number of
forces: REQUIREMENTS INSTABILITY (F1), TEAM CULTURE (F4), CUSTOMER

AGILITY (F5), and architecture and technical EXPERIENCE (F6). F1 triggers
the use of S1, while F4, F5 and F6 are success factors: teams that are more
able to respond to change are able to do less up-front design. Agile teams
can even use S1 when requirements are stable, although they may find
the overhead of some agile practices which help reduce the feedback cy-
cle make those practices unnecessary and even costly, and omitting those
practices may therefore improve the team’s efficiency.

Age of system: The age of system refers to teams working on legacy sys-
tems [146]. TECHNICAL RISK (F2) includes legacy systems as a factor that
affects up-front design because of its effect on complexity.

Criticality: Criticality refers to the impact of failure of the system [146].
Criticality leads to higher technical risk exposure, and therefore is included
as part of ADDRESS RISK (S2). A highly critical system has a low tolerance
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of risk, and is likely to have demanding ASRs, a complex architecture, and
an associated high level of TECHNICAL RISK (F2). Complexity and low
tolerance of risk lead to high risk exposure which requires more up-front
design to mitigate the risk to a satisfactory level.

Governance: Governance refers to the management of the project and
project team [146, 217]. Governance and its impact upon agility is reflected
in TEAM CULTURE (F4) and CUSTOMER AGILITY (F5).

∗
In addition to Abrahamsson et al.’s and Kruchten’s eight factors that

affect up-front architecture design, Boehm and Turner (2003) identified five
factors that could be used to determine whether or not a team should use an
agile development method or a plan-driven method [40]: personnel, culture,
dynamism (of requirements), team size and criticality. While the authors did
not discuss the impact of these factors on architecture design, they all map
to forces presented in this thesis and hence can affect architecture design:
personnel, culture and team size affect TEAM CULTURE (F4); dynamism af-
fects REQUIREMENTS INSTABILITY (F1), and criticality affects risk exposure
in the forms of F2 and S2 (as above).

Cockburn (2007) used team size and criticality to determine which of
the Crystal family of methodologies teams should use [69], which vary
according to how much process they involve. Smaller teams building less
critical systems are suited to the more lightweight Crystal Clear, and larger
teams or more critical systems require more process in the form of Crystal
Yellow, Orange, Red and so on.

Kruchten (2004) used the term agile ‘sweet spot’ [139], which described
the ideal context for an agile project. The ideal agile context would be a
small group with a co-located team, would have high customer availability,
would be a business application, a new development, have a RAD (rapid
application development) programming environment and a short life cycle.
In other words, a project in the sweet spot is more likely to have a team
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with an agile culture, have an agile customer and be building a system with
low risk. Conversely, the agile ‘bitter spot,’ which makes agile development
difficult, has large groups and distributed teams (which negatively impact
upon the agile culture), no empowered customer representation (which
negatively impacts the customer agility), long delivery cycle and inefficient
programming environment (which impact upon the team’s ability to RE-
SPOND TO CHANGE, S1), and different development cultures (which also
negatively impacts the agile culture). Projects at the ‘bitter spot’ can still be
agile; however, their ability to reduce up-front architecture design and to
respond to change will be reduced.

Boehm (2002) suggested that a rate of change of requirements of 1 per
cent per month is the point at which it is better to use agile methods than
to do a big up-front design [36]. This thesis’s theory of agile architecture
describes F1 as a trigger for S1 – that is, requirements instability is a trigger
for designing an architecture that can respond to change. Boehm’s value of
1 per cent per month value perhaps quantifies the threshold for triggering
S1.

9.3.2 Size and complexity

The contexts identified by Kruchten [1, 146], Boehm and Turner [40], and
Cockburn [69] all include size as a factor that affects up-front architecture
design. Boehm (2011) also used size to find the ‘sweet spot’ of architecture
effort (see section 9.3.3) [37]. Size as a factor is at odds with this thesis,
which found that complexity, and not size, is a force (section 6.2.2).

Complexity refers to the interconnectivity and relationships between
elements in a system [22]. In a complex system, a decision or action in one
element will affect (to some degree) many or all other elements.

There are three facets, or attributes, that contribute to complexity: scale
(the number of ‘things’ in the system), diversity (how many different ‘things’
there are in the system), and connectivity (how many relationships there
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are between the things) [143, 164]. These three facets each contribute to
complexity; in particular, scale in itself is not a problem if the structure
is regular, although it does emphasise problems caused by diversity and
connectivity [164]. Thus a small system is usually not very complex, and
a large system has the potential for a high level of complexity. Diversity
increases the number of elements that have to be designed or analysed,
and connectivity increases the relationships between the elements [164].
Kruchten described connectivity as the bottom line driver of complexity
[143].

Abrahamsson et al. (2010) noted that the importance of architecture
increases as the complexity of the system increases [1], despite being omit-
ted from the list of factors from the same paper, shown in Figure 9.1. This
importance is backed up by a survey of developers at the IBM Software
Lab in Rome conducted by Falessi et al. [92]. When asked when developers
should focus on architecture and given the options ‘always’, ‘never’, and
‘when the system is complex,’ 50 per cent of survey respondents selected
complexity. A further question asked what the leading cause of complexity
is, with the options of ‘number of requirements or lines of code’ (selected
by 33% of respondents who selected complexity in the previous question),
‘number of stakeholders’ (29%), ‘geographic distribution’ (19%) and ‘other’
(19%). The high proportion of ‘other’ causes (19%) suggests that the causes
of complexity in the list in the survey question are representative rather
than exhaustive.

The symptoms of a complex architecture have been described as having
decisions that are intertwined, cross-cutting and having multiple depen-
dences [129] – that is, have demanding ASRs (TECHNICAL RISK, F2). Com-
plexity is also increased when design rules and constraints are violated,
and when obsolete design decisions are not removed – a phenomenon
captured by Lehman’s second law of program evolution: “as an evolving
program is continually changed, its complexity, reflecting deteriorating
structure, increases unless work is done to maintain or reduce it” [151].
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These problems all increase the cost of maintenance and therefore make it
more difficult to RESPOND TO CHANGE (S1).

As discussed in the previous section, size is widely considered in the
literature as affecting the up-front architecture design required. Size is,
however, one facet of complexity, and hence authors are perhaps using size
as a proxy for complexity.

The strategy ADDRESS RISK (S2) increases the up-front design required
to mitigate risk caused by complex architectures. S2 notes that often the
only way to fully understand an architectural solution is to build the system
and see if it works. Similarly, many teams take the approach of proving
an architecture design by building it (section 7.1.2). Gall (1978) wrote that
complex systems are more likely to work if they evolve from simple systems
that have been proven to work:

“A complex system that works is invariably found to have
evolved from a simple system that worked. The inverse propo-
sition also appears to be true: a complex system designed from
scratch never works and cannot be made to work.” [102]

This is sometimes dubbed Gall’s Law. Gall’s Law emphasises the impor-
tance of the techniques such as prototypes and spikes (used in S2) and
proving the design by coding (used in S1), and confirms that a big design
up-front is often simply not sensible or even possible.

9.3.3 Early value and the architectural effort ‘sweet spot’

S3 is an EMERGENT ARCHITECTURE, used by some organisations who need
EARLY VALUE (F3) from their software. Summarising F3, early value is
achieved by releasing a version of the product or service as early as pos-
sible, so that the organisation – typically a start-up in a dynamic industry
– benefits from early adopters. An example of an early release is the min-
imum viable product (MVP) [192], a marketing experiment to determine
the end users’ biggest needs.
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Boehm (2011) [37] undertook a study using the COCOMO II cost model
[38] in which he demonstrated a relationship between the level of architec-
tural effort and the overall development effort – and hence cost. Boehm’s
study showed that architecture effort is a compromise between the amount
of time spent planning and the amount of time spent on rework (refactor-
ing) caused by doing too little planning, with a ‘sweet spot’ at the overall
minimum cost (Figure 9.2). This sweet spot has been referenced by oth-
ers writing about architecture in agile development, such as Coplien and
Bjørnvig (2010) [79] and Fairbanks (2010) [91]. Poort and van Vliet (2011)
also used the sweet spot in their strategy for minimising architectural effort
[182]1.

The location of this sweet spot is highly dependent on the context of the
system; Boehm’s study illustrated the impact of the size of the system, with
a larger system requiring more time spent resolving architectural issues
than a smaller system for any given level of up-front design effort. This
difference is due to the diseconomies of scale of software development
[37]. Building a two-module system costs more than twice that of a one-
module system because of the additional effort required to implement
communication between the two modules. For example, Figure 9.3 shows
that an increase in size from 100 KSLOC (thousand equivalent source lines
of code) to 10,000 KSLOC increases the up-front design sweet spot from
around 20 per cent of the total effort to around 40 per cent of the total effort.

Figure 9.4 illustrates the effect of rapid change (volatility) on the sweet
spot. Volatility of 50 per cent moves the sweet spot left (less time spent
architecting up-front) because of the extra effort required to revisit decisions
when requirements change, but also increases the overall architecture effort.

In a critical (high risk) project, the cost of rework is higher due to the
higher cost of failure. Figure 9.5 shows the effect of a project with 50 per cent
higher cost of rework on the sweet spot: the project has the same amount
of architecture design effort, so the sweet spot moves to the right (requiring

1This sweet spot is not related to the sweet spot used by Kruchten to determine a
project’s suitability for agile, referred to in section 9.3.1.
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Figure 9.2: Locating the up-front architecture design sweet spot, after
Boehm (2011) [37]

more effort), with an increase in the total because of the increased amount
of rework. Too little architecture effort can also reduce the organisation’s
operational effectiveness and productivity [37].

It should be noted that the COCOMO II model and hence Boehm’s
study are not based on agile projects. They assume that all architectural
effort is up-front, as per Boehm’s definition of architecture: “ ‘Architecting’
refers to [...] the overall set of concurrent front-end activities [...] that are
key to creating and sustaining a successful building or software project”
[37]. Boehm did comment in this study [37] and in earlier, similar studies
[36, 39] that projects which require less up-front planning are more suited
to agile, on the basis that agile software engineers prefer less up-front effort.
Boehm did not consider in any detail, beyond comments made in passing,
the tactics used to RESPOND TO CHANGE (S1) that are characteristic of agile
projects or agile architectures, such as delaying decisions, planning for
options and proving the design with code.
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Figure 9.3: The effect of system size on the up-front architecture design
sweet spot, after Boehm (2011) [37]

The theory of agile architecture presented in this thesis diverges from
Boehm’s study in four regards.

Firstly, this thesis’s theory does not support Boehm’s study’s relation-
ship between size and effort. TECHNICAL RISK (F2) notes that risk derived
from complexity has an important impact on determining architecture ef-
fort. In particular, section 6.2.2 and section 9.3.2 discuss the relationship
between size and complexity, noting that size is just one component of
complexity. Section 9.3.2 suggests that many authors use system size as a
proxy for complexity.

Secondly, in some situations teams do not aim to minimise the cost of
architecting: maximising the delivery of value is often more important to
the customer than purely minimising cost. If the customer requires EARLY

VALUE (F3), and if the team designs an EMERGENT ARCHITECTURE (S3),
the team will release software early at the expense of architecture rework
later – that is, at higher cost. The teams fully understand that they will
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Figure 9.4: The effect of 50 per cent requirements volatility on the up-front
architecture design sweet spot, after Boehm (2011) [37]

have to redo the design later when they come to design or build the longer
term features. Therefore the team is aiming to the left of the sweet spot.
F3 causing higher cost is discussed in section 6.3. For example, a team
may deliberately choose flat file persistence instead of a database, or omit
performance or security considerations, even though they know doing so
means that in three or six months they will need those features and they
will have to rework the architecture. However, balancing the higher cost
is the benefit that comes from minimising over-engineering – teams can
prove the design using code iteratively (section 7.1.2) and ensure that the
system exactly meets its requirements without any over-engineering, so
that the design can be simpler and the cost can be reduced. On the other
hand, if the customer is not sympathetic to agile (CUSTOMER AGILITY, F5),
the team may need to design BIG DESIGN UP-FRONT (S4), which is to the
right of the sweet spot. While rework costs due to lack of architectural
guidance may be low with S4, the requirements gathering and architectural
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Figure 9.5: The effect of 50 per cent higher failure cost on the up-front
architecture design sweet spot, after Boehm (2011) [37]

decision-making process is lengthy and costly.

Thirdly, while volatile requirements do increase architecture effort as
decisions need to be changed, it is the team’s ability to design an architec-
ture that can RESPOND TO CHANGE (S1) that affects how much architecture
a team designs up-front. Section 9.3.1 also discusses the impact of require-
ments volatility (‘stable architecture’). S5, the USE FRAMEWORKS AND

TEMPLATE ARCHITECTURES strategy, greatly reduces architecture effort,
flattening the sweet spot curve.

Finally, rather than simply increasing the rework cost, criticality also
increases architecture effort, as teams reduce risk to an acceptable level
(S2, ADDRESS RISK). This effort may be up-front or after development has
started (emergent), depending on the impact of the risk on the system, in
line with S1. Increased design effort caused by increased risk may also
impact the cost of rework, to mitigate the risk involved with that rework.
While the overall architecture effort is higher, the impact upon the sweet
spot is dependent on the relative impacts on architecture design and rework.
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9.3.4 The importance of team culture on agility and up-front

design

This section expands upon the effect that team culture, one of the con-
stituent forces that make up the team’s context, has on up-front design
effort.

TEAM CULTURE (F4) – and in particular trust – is important for reducing
the feedback cycle and hence increasing agility. The importance that team
culture has on agility is well recognised in the literature [40, 72, 229], as
is trust for teams in general [152] and agile software teams in particular
[72, 85, 116].

With a short feedback cycle enabled by a trusting people-focused and
collaborative culture – both with the team and the customer organisation –
a team can rely less on documentation for communication and formal plans
to guide development, whereas a team that does not have this culture has
to rely more on documentation and plans. Coplien and Bjørnvig (2010)
summarised the benefit of good communication on a change involving
the architecture that took six months to make: “It isn’t unreasonable to
compress these six months down to one or two weeks if communication
between team members is great” [79].

An agile team also requires a culture that is comfortable with or even
thrives on uncertainty, in which the team gains comfort and empowerment
from degrees of freedom, as opposed to plan-driven development which
requires a team to gain comfort and empowerment from having its roles
defined by policies and procedures [40]. A team that has a highly agile
culture or attitude will feel more comfortable operating with the uncertainty
that agile brings and the absence of up-front plans.

This dependency also works the other way: the ‘ceremony’ of architec-
ture – the diagrams, the documentation and even the vocabulary – may
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suffocate collaboration [132], and actually hinder the end goal rather than
help it.

Malan and Bredemeyer (2002) wrote that an organisation is less likely to
be supportive of an over-architected solution: an over-architected solution
will be harder for a team to understand, and each additional decision in the
architecture’s decision set dilutes the impact of the other decisions [158].

Hoda (2010) noted that it takes time for team members to gain the
experience required to become truly self-organising and hence agile. In
particular, it takes time for a team to properly learn self-evaluation and
self-improvement, two qualities required to reach ‘self-transcendence’ and
the ‘peak of self-organisation’ [119]. TEAM CULTURE (F4) also noted the im-
portance of experience in agile development in acquiring an agile mindset.

9.3.5 The importance of customer agility

CUSTOMER AGILITY (F5) described the effect of the environment, and in
particular the team’s customer, on the team’s agility.

While the agile organisation is about trust, leadership and collaboration
[72, 87], a traditional process-driven organisation frequently has a command
and control management style [22, 173], is non-learning [203] and prefers
extensive planning and formal communication [72]. CUSTOMER AGILITY de-
scribes process-driven customers as often being large organisations; Hoda,
Noble and Marshall (2010) had a similar finding [122].

Process-driven customers usually require fixed price contracts, in line
with their need for planning. Fowler (2004) described fixed price contracts
as a ‘mirage’ because they force the customer to focus on cost rather than
value (see the discussion on value in section 2.2.3), and they force the
developer to agree in advance to requirements they cannot understand –
and hence cannot put a legitimate price on [98]. Thus, while in theory the
contract allows the development team to be held accountable when things
go wrong, in reality both parties may suffer [184].
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9.3.6 The importance of experience on agility and up-front

design

This section provides more discussion on the effect of architectural and
technical experience, another constituent force of context that has an impor-
tant impact on software development in general, and on agile development
in particular.

Cockburn (2007) described competent and experienced people as a
critical success factor in any methodology, whether agile or plan-driven
[69]. Boehm (1984) believed it so important that he showed the effect of
personnel and team capability in a graph on the cover of his book (Figure
9.6) [42].

Other authors have also written about the importance of experience on
architecture design in general [25, 50, 174] (and inexperience [94]).

Boehm and Turner (2003) studied experience in the context of agile
development. They categorised development ability using a scale of five
levels of software method understanding [40], of which experience is a
component. Ability ranges from the expert level – “able to revise a method,
breaking its rules to fit an unprecedented new situation” down to the
less able and agile-unfriendly “may have technical skills, but unable or
unwilling to collaborate or follow shared methods.” They believed that
agile development requires a critical mass of experts throughout the project
and it is risky to use the low-rated personnel, while plan-driven methods
only require a critical mass of experts during project definition; fewer are
required once the project has been established [40].

The benefit of experience is explained by Dreyfus and Dreyfus’s five-
stage learning model, which included the following levels: novice, compe-
tence, proficiency, expertise and mastery [86]. In this model, as a learner of
an activity passes from proficiency to expertise, they must have gained
sufficient experience that their decision-making ability changes from re-
quiring analytic thought to being an intuitive response (Table 9.9). The expert
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Figure 9.6: The cover of Software Engineering Economics [42], published in
1984, showing the importance of personnel/team capability (bottom bar)
on software productivity, the x-axis. Product complexity is the second to
bottom bar.

does not consciously apply rules, guidelines or maxims; instead, they have
an intuitively appropriate response. In agile, this means decisions can be
made more quickly with less need for analysis or explicit models.

Concerning the experience and the role of software architect, Taylor
(2007) wrote: “the most experienced designers assemble the holistic context
of the design engagement to allow design activity to be performed tacitly,”
and added that this is why an expert designer can make complex software
design look easy [218].
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Mental
function

Skill level

Novice Competent Proficient Expert Master

Recollection Non-

situational

Situational Situational Situational Situational

Recognition Decomposed Decomposed Holistic Holistic Holistic

Decision Analytical Analytical Analytical Intuitive Intuitive

Awareness Monitoring Monitoring Monitoring Monitoring Absorbed

Table 9.9: The Dreyfus and Dreyfus five-stage learning model [86]

9.4 The Twin Peaks of requirements and archi-

tecture

Defining requirements fully in advance of development is very difficult [53]
– particularly in agile development methods, where change in welcomed
and even encouraged [28]. Agile development methods therefore use
current requirements in which detail is only defined close to the time of
implementation [83], rather than current and future requirements [52, 73].
Requirements, like architecture, are therefore emergent [36, 130, 199].

Nuseibeh (2001) presented a model called Twin Peaks that represents
the relationship between requirements and architecture [176]. The Twin
Peaks model recognises that the relationship between requirements and
architecture design is not simply a one way relationship with requirements
driving the architecture (as in traditional plan-driven development [66]),
but is a two way relationship developed iteratively, with not only the re-
quirements driving the architecture, but also with the architecture affecting
requirements, as shown in Figure 9.7. For example, architecture designs
frequently impose constraints upon requirements according to what it is
possible technically, and impose time and budget restrictions [103].

Twin Peaks progressively develops more detailed requirements and
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Figure 9.7: The Twin Peaks model of the relationship between requirements
and architecture, after Nuseibeh (2001) [176]

architecture as the process proceeds [176], and therefore addresses three
concerns earlier raised by Boehm (2000) [35]. The first concern is IKIWISI
(“I’ll know it when I see it”): the customer or users can only describe what
they want after they have seen architectural models or prototypes. The
second concern comes from the use of COTS (commercial off-the-shelf)
software: the capabilities of COTS (perhaps in the form of frameworks
– USE FRAMEWORKS AND TEMPLATE ARCHITECTURES, S5) constrain the
system and hence its requirements. While it is always possible to build
bespoke libraries or routines to meet requirements that a framework can-
not, doing so increases the complexity of the solution (contributing to the
team’s need to ADDRESS RISK, F2), and therefore increases the architectural
and development effort. This increased effort may increase the cost too
much and lead the customer to abandoning that requirement: “it’s not a
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requirement if you can’t afford it” [35]. The third concern is rapid change: as
is the case of a highly plan-driven development method, it is very difficult
to respond to changing requirements if the requirements are fixed before
any architecture design (and development) is started.

An EMERGENT ARCHITECTURE (S3) describes how agile developers
define the highest level requirements (such as the business problem that
needs to be solved) up-front, and then design the highest level architecture
(such as the technology stack and high level architectural styles that affect
the whole system and any system-wide risk concerns) up-front. This is
consistent with Twin Peaks, because requirements are only determined or
elicited as required. In addition, once the up-front phase is complete and
development starts, teams continue to elicit requirements and design the
architecture, which gives the developers, customers and users a better un-
derstanding of the system and its capabilities as it evolves. Demonstrations
of the system itself, rather than just models of the architecture, give the
customers opportunities to provide better feedback and give the developers
proof that the technologies and architecture do indeed perform as expected.

There are variations on the Twin Peaks model. One variation is an
extension for product lines [103], shown in Figure 9.8. This extension
includes a third peak for the shared product line architecture, similar to
P33–P36’s reference architecture (see page 208). In this variation, the core
requirements that are common to all products must be satisfied by the
product line architecture and all products in the product line, and the
variable requirements represent variation points in requirements which
may or may not be implemented in a concrete product of the product line
[103]. The model iterates over the core requirements and product line
architecture, over the variable requirements and product line architecture,
and both the core and variable requirements and the product architecture.
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Figure 9.8: The Twin Peaks model in the context of software product line
engineering, after Galster et al. (2013) [103].

9.5 The role of the architect

The agile literature universally recommends that anyone involved with
architecture design is a hands-on architect who is closely involved with the
development team, rather than an ivory tower architect who hands a com-
pleted architecture blueprint over to the development team to implement
[1, 57, 79, 123, 142, 191].

In agile development it is less common to have a designated architec-
ture role than in plan-driven development methods. Scrum teams are cross
functional with all team members having responsibility for architecture
[83], while Ambler’s agile modeling [18] recommended that teams building
larger systems have an architecture owner role, allocating the responsibility
for coordinating the team’s architectural design efforts to a technically ex-
perienced person on the team [14]. Ambler cited two problems of everyone
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being responsible for the architecture (that is, having decisions made by
consensus): people do not always agree, and the method does not scale.
These problems are discussed in section 8.1. Fairbanks (2010) recommended
that all software developers, not just the architects, understand the system’s
architecture [91]. This is consistent with the definition of architecture in
section 2.3, which states the architecture is the shared understanding that
the expert developers have of the system.

Coplien and Bjørnvig (2010) avoided both using the role of ‘architect’
and the term ‘architect’ itself [79], because of the connotations that the
architecture is solely their responsibility and that they are too far removed
from coding. The contributions to the architecture by other roles are also
important. Like Ambler, they instead urged an architecture coordination
function. Similarly, Fowler (2004) wrote that design needs just one or two
people to make an evolutionary architecture converge [96] – to “keep the
design whole.”

This thesis’s theory of agile architecture includes the importance of
having someone with overall responsibility for architecture in all but the
smallest teams (section 8.1).

Buschmann (2012) described all architecture stakeholders as being con-
tributors to the architecture, rather than simply receivers of the finished
design [60].

Brown (2010) discussed the non-design roles of the agile architect. He
divided the roles into two types: the definition of the software architecture
and the delivery of the software architecture [56], which correspond to ‘the
architecture decision makers’ (section 8.1) and ‘other roles of the architect’
(section 8.2), respectively. He listed the following architecture delivery
roles, all of which have equivalents in this thesis: ownership of the big
picture (section 8.2.2); technical leadership, which includes both creating
a shared mindset (section 8.2.3) and creating and enforcing development
guidelines (section 8.2.4); coaching and mentoring, which includes helping
team members with their coding problems (section 8.2.1); quality assurance,
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which also includes creating and enforcing development guidelines; and
design, development and testing, which nearly all architects in this research
were involved with; even the architects that did not develop or test (such
as P11b) were still closely engaged with the development team.

Kruchten (2009) also listed a number of roles that architects perform
[142]. These include being the visionary, who considers the big picture of
the system and guides its long term evolution (section 8.2.2); the designer
which is the architecture decision making role; the communicator, which
includes creating a shared mindset amongst the architecture stakeholders
(section 8.2.3); the troubleshooter, which includes helping solve other de-
velopers’ technical problems (section 8.2.1); the herald, which requires an
understanding the big picture and how it relates to the business problem
(section 8.2.2), and the janitor, who cleans up after the project manager and
team.

Fowler (2003) described two types of architect: the architectus oryzus
‘species’ of architect [97], who collaborates closely with the team and is ei-
ther a coding member of the team or otherwise has a very close relationship
with the developers, and the architectus reloadus, who is more removed from
the team: a ‘maker and keeper’ of the big decisions, because “a single mind
is needed to ensure a system’s conceptual integrity” [97]. Kruchten de-
scribed both types of architect as being needed on large projects, at different
stages of development [147].

Kruchten (2013) described three types of relationships, or ‘boundaries,’
across which the architect must communicate [145]: that of the business
analyst (in which the architect deals with issues such as requirements
and priorities), the project manager (in which the architect deals with
management and with issues such as release plans, risks and costs) and
the developers (in which the architect deals with the team and technology
vendors, and with issues such as constraints and prototype evaluation).
The architect must also translate terminology, abstraction level, volume and
emphasis between the business analysts, project managers and developers.
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These relationships are summarised in Figure 9.9.

Figure 9.9: The three main communication boundaries for the architect,
after Kruchten (2013) [145]

Similarly, Hoda (2010) identified a translator role in self-organising agile
teams [121] which translates the language and jargon of the customer into
something the team can understand, although this role was not specifically
assigned to the architect.

In contrast with the hands-on agile architect, the so-called ivory tower
architect, generally considered undesirable by agile teams, dictates archi-
tecture decisions without any knowledge or experience of the code being
written (or the team writing it) [55, 97, 123]. The role of the ivory tower
architect is consistent with the plan-driven methodologies that have en-
tirely separate design and development activities [191]. Kruchten (2008)
described the ivory tower architect as an anti-pattern [141].

9.6 Other insights

This section presents some miscellaneous insights.
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9.6.1 Technical risk

Ambler (2013) identified five categories of risk in software development:
business risk, technical risk, operational risk, process risk and organisa-
tional risk [17]. Fairbanks (2010) considered a narrower scope, with two
categories: project management risk and engineering risk [91]. Technical
(or engineering) risk (F2) is the risk of failure caused by problems within
the technology suite, the architecture design, or the system itself [17, 91].

Demanding architecturally significant requirements (ASRs) lead to a
small solution space [91], and therefore have more risk that needs to be
mitigated with increased architecture design effort through the use of the
ADDRESS RISK strategy (S2).

Daniel Dvorak, the lead for the NASA software architecture review
board, described the concept of driving requirements, which “drive the
architecture towards new territory,” and lead to novel solutions [169] – that
is, demanding ASRs. He commented that “we focus more attention on
driving requirements because they entail more risk” – in other words, they
ADDRESS RISK S2 because of TECHNICAL RISK (F2).

This theory of agile architecture only identified technical risk as affecting
up-front architecture effort.

9.6.2 Agile undercover

Hoda, Noble and Marshall (2010) described the practice of an agile team
hiding its agility from its customer by presenting the customer with a
process-driven front [122]. The authors called this practice agile undercover.
Teams use agile undercover for a number of reasons: customer scepticism
about agile, team distribution, lack of time commitment, a large customer
organisation and ineffective customer representation.

This theory of agile architecture confirms this practice. Teams using the
BIG DESIGN UP-FRONT strategy (S4) sometimes put on an process-driven
front to the customer because of the lack of CUSTOMER AGILITY (F5).
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9.6.3 Frameworks and template architectures

Mirakhorli and Cleland-Huang (2013) noted the benefits of reference ar-
chitectures: agile is “more effective when there are known architectural
solutions, perhaps in the form of reference architectures” [169]. These refer-
ence architectures are the frameworks and template architectures referred
to in the USE FRAMEWORKS AND TEMPLATE ARCHITECTURES strategy (S5).

Kruchten, Obbink and Stafford (2006) called frameworks precooked ar-
chitectures [148] because a lot of the architecture is already defined within
the framework. They make agile more effective because they simplify
the design and reduce the architectural (and development) effort required
[209, 225].

This simplified design and reduced effort increases the architecture’s
ability to RESPOND TO CHANGE (S1), reduces TECHNICAL RISK (F2), and
hence reduces the need to ADDRESS RISK (S2).

Cervantes, Velasco-Elizondo and Kazman (2013) also commented on
the use of frameworks, noting that the framework functionality may need
to be extended if it does not provide the required functionality out of the
box [63]. This increases risk and effort, addressed by S2.

9.6.4 ‘Projects’ and continuous flow

Most software engineers describe the work they do as belonging to a project,
which, traditionally, is defined as a well-defined block of work with a fixed
delivery date [115, 185]. Because agile teams deliver working software at
regular intervals, and the scope is not fixed, some prefer not to describe
agile software development as projects. For example, Poppendieck and
Cusumano (2012) wrote:

“When software is delivered quickly, thinking about software
development as a project is an inappropriate metaphor. It’s
much better to think of software as a flow system where soft-
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ware is designed, developed, and delivered in a steady flow of
small changes.” [183]

Facetiously, Kelly (2014) likened this continuous flow to a waterfall
[134].

The discussion on REQUIREMENTS INSTABILITY force (F1) noted that
when developing using a continuous workflow, not only does defining
a set of requirements up-front (and hence designing architecture in full
up-front) become very difficult, even the notion of a set of requirements
may not be valid. The architecture must have emergent decisions and must
evolve.

(Note the term ‘project’ is also often used to loosely denote agile work-
flows, and is used in this way in this thesis.)



Chapter 10

Conclusion

“My goal is not following my design. My goal is to build the right ap-

plication that meets my customer’s needs. That’s the purpose.” (P22,

senior manager)

This thesis has presented research in which a theory of agile architecture
was developed to explain how agile software teams design a software
architecture that is able to respond to change, and which explains how agile
teams determine how much architecture to design up-front.

This chapter concludes the thesis. Section 10.1 lists this research’s con-
tributions to theory and section 10.2 describes the implications for practice.
Section 10.3 discusses the limitations of the research and the theory, and
section 10.4 discusses how the research could be extended in the future.
Finally, section 10.5 concludes the chapter.

10.1 Contributions

This research makes four contributions to software engineering theory.
The main contribution is a theory of agile architecture that describes how
agile teams design an agile architecture and explains how teams determine
how much up-front architecture they design. The other contributions are

271
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an explanation of the impact of requirements stability on up-front design
effort, the impact of size and complexity on up-front design effort, and the
impact of cost on up-front design effort.

10.1.1 A theory of agile architecture

The main contribution of this thesis is a theory of agile architecture.
An agile architecture is a software architecture that satisfies the defi-

nition of agility: an architecture that is designed so that it can respond to
change by being modifiable and tolerant of change (see Chapter 5). An
agile architecture is not a static set of design decisions; an agile architecture
evolves as the system is developed. An agile architecture is therefore both
an output of the architecting process (that is, a set of design decisions that
can be described as being modifiable and tolerant of change) and is a part
of the architecting process (that is, architecture decisions are timed or made
in such a way as to make the evolving design modifiable and tolerant of
change). An agile architecture has less up-front design and more emergent
decisions than a plan-driven up-front architecture. Section 9.2 contains a
more detailed discussion on agile architecture.

Designing an agile architecture

To increase an agile architecture’s modifiability, teams use a number of
tactics: teams ensure the design is simple, they prove the design with code
iteratively and they use good design practices. To increase tolerance, teams
delay decisions and plan for options.

Three of the tactics, delaying decisions, simplicity and proving the
design with code, all decrease the up-front effort and make the architecture
more emergent; the other two tactics, using good design practices and
planning for options, may initially increase effort, but this effort is saved
later through reduced refactoring when requirements change.

Three of the tactics affect the architecture itself: keeping the design
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simple, using good design practices and planning for options are all char-
acteristics of the architecture; their use can be determined a posteriori by
inspecting the architecture. The other two tactics affect the design process,
but not necessarily the final design itself. These tactics are proving the
design with code and delaying decisions. Proving the design with code
helps keep a design simple by reducing over-engineering, and delaying
decisions increases the tolerance to change by only making decisions at the
last possible moment before the decision is required, and when uncertainty
is lowest. Section 7.1 describes the tactics that teams use in more detail.

Determining how much architecture to design up-front

A team’s ability to design an agile architecture is affected by the team’s
culture, the customer’s agility and the team’s experience in architecture
design and the technology.

Reducing up-front effort increases a team’s ability to respond to change;
however, this reduction must be balanced with the need to mitigate techni-
cal risk (section 7.2): technical risk is reduced through additional up-front
architecture design, to a level that the team and the customer are comfort-
able with. A system with a high level of uncertainty or a high cost of failure
will require far more risk mitigation than a system that is well understood,
has low risk and a low cost of failure. For example, a medical system used
to record diagnostic data will require more up-front design than a business
website used for marketing. Not sufficiently mitigating risk may mean
requirements cannot be met, increasing later rework effort – and thereby
reducing the team’s ability to respond to change.

If a customer requires early value from the system being built – perhaps
in the form of cash flow from early adopters or if they wish to carry out a
minimum viable product (MVP) marketing experiment – and if the system
is low risk, the team may be able to eliminate all up-front architecture
design, and have an architecture that is totally emergent (section 7.3).

On the other hand, the team’s customer may not support the team’s
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agile practices: they may prefer traditional plan-driven processes, they may
require a fixed-scope, fixed-price contract, or they may need to approve
architecture decisions before development begins. In these circumstances
the team may need to take the big design up-front (BDUF) approach, and
perhaps put on an ‘agile undercover’ front for the customer (section 7.4).
More design is also beneficial to teams that do not have an agile culture
and are inexperienced.

Standard frameworks and template architectures greatly reduce tech-
nical risk for standard problems and hence greatly reduce the up-front
design effort required. Frameworks make it easier to make changes when
requirements change and make it less critical to get decisions right up-front
(section 7.5).

A full discussion on how teams determine how much architecture they
design up-front is provided in chapters 6 and 7.

The role of ‘architect’ varies between agile teams and the system being
built. Architecture is designed collaboratively by the team; in small teams,
this may be done by consensus. In a larger team where consensus is not
possible, a number of team members may participate in the architecture
design process, but a single team member normally has overall respon-
sibility for architecture decisions. In larger systems that span multiple
teams, decisions may be made by the team but approved outside the team
– perhaps by external architects or by a group of representatives from the
teams. This approval ensures the architecture is suitable for the overall
system rather than each team individually. In some circumstances the ar-
chitecture decisions are made outside the team: decisions may be made by
architects who are not team members or by customers themselves, perhaps
for strategic reasons. Decisions are usually made outside the team when
the customer is not agile.

A full discussion on the role of the architect is provided in Chapter 8.
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10.1.2 The impact of requirements instability on up-front

design effort

This research has found that the amount of effort a team puts into up-
front architecture design depends on the team’s ability to design an agile
architecture. The more agile the architecture is, the less up-front design
the team needs to do, which in turns allows the team to respond to change
sooner.

It is frequently stated in the literature that up-front design effort depends
on the instability of the requirements: the less stable the requirements, the
less up-front effort, and the more stable, the more effort (see section 9.3.1).
The theory of agile architecture suggests this assumption is not correct.
Requirements instability triggers a team to use agile methodologies and
to design an agile architecture, but does not directly affect the amount of
effort. In other words, when requirements are unstable, teams use agile
methodologies. How much up-front design the team does depends on its
ability to design an agile architecture and the presence of technical risk.

This is not to say that requirements instability and up-front effort are
independent: a team in a highly changeable environment may be motivated
to become more agile so that it can better respond to change and design
a more agile architecture, while a team in a less changeable environment
may not need to be as agile.

A full discussion on the impact of requirements instability is provided
in section 6.1. Section 7.1 discusses how teams design an architecture that
can respond to unstable requirements, and sections 9.3.1 and 9.3.3 provides
a further discussion of requirements instability in the context of related
work.
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10.1.3 The impact of size and complexity on up-front de-

sign effort

This research has found that complexity is more important than size in
determining how much architecture teams design up-front. Complexity
increases risk which, in turn, requires more architecture design. On the
other hand, size, frequently regarded in the literature as having a direct
impact on up-front design effort, does not directly increase technical risk,
and does not directly affect up-front architecture design.

Size, however, may have an indirect impact: size magnifies the effect of
diversity and connectivity, which increases complexity and hence up-front
effort. If there is very little diversity within the system and little connectivity
with other systems, then size has very little impact on complexity and hence
up-front effort.

Complexity is caused by demanding architecturally significant require-
ments (section 2.3.4), by many integration points with other systems, and
by interaction with legacy systems (those that are no longer being actively
engineered) (section 6.2).

A full discussion on the impact of size and complexity is provided in
section 9.3.2.

10.1.4 Designing an architecture to minimise cost

This research has found that maximising the delivery of value is often
more important to the customer than purely minimising cost, which means
that in some situations, agile teams do not try to minimise the overall cost
of development. If a team designs an emergent architecture to provide
a customer with early value (through early cash flow), the team releases
software early at the expense of architectural rework later and higher cost.
The early release version is simple and is only capable of supporting the
early adopters of the system. The teams fully understand that they will
have to redesign the architecture later as the system grows, but this rework
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comes at a time when the customer has cash flow and is more able to pay
for that work. Designing the large system from the start may avoid the
rework and reduce the overall cost, but it will delay the initial release,
leading to a delay in income for the customer. The customer has to fund
more design and development work prior to release, and risks not being
able to follow their business plan.

The impact of cost on up-front design is described in section 6.3, and in
context of related work in section 9.3.3.

10.2 Implications for practice

The theory of agile architecture is intentionally presented in a form that can
be applied to software engineering practice: it defines a set of tactics that
teams can use to design an agile architecture, and a set of strategies they
can use to determine how much architecture to design up-front.

Agile software teams may use these tactics, where applicable, to help
them design an agile architecture which is able to respond to change and
reduce their up-front design effort. Reducing up-front design helps reduce
the time before the customer can provide the first feedback on the system
being developed, and reduces rework if requirements change, and hence
increases agility.

Teams must trade-off reducing up-front design effort with mitigating
technical risk. Teams must understand their customer’s and their own
appetite for risk, and reduce risk to a satisfactory level through additional
design. Teams should only have a totally emergent design if the risk of
such a design is acceptable, and if the customer can benefit from an early
release of the system, such as through early cash flow from early adopters
or by being able to carry out minimum viable product (MVP) marketing
experiments. The team needs to be aware that the overall cost of designing
an emergent architecture that only addresses today’s requirements may be
higher than when designing a more future-proof architecture that requires
more up-front effort.
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Teams must also be aware that while development frameworks and
template architectures can greatly reduce the up-front effort required, they
are only of benefit where the predefined libraries, components and tools
satisfy the system’s ASRs, without being forced to fit. If the team needs to
design its own libraries or components, then some of the benefits are lost.
Risk may be increased and more up-front design may be needed.

This research also has implications for team managers and customers.
Team managers and customers need to be comfortable with how much
planning and design their teams do up-front, before the first demonstration
of progress. The managers and customers need reassurance that the teams
are not spending more time planning than they need to, which could lead
them to being less responsive to change, and reassurance they are not
spending too little time planning, which increases the risk of failure by not
capturing all the quality attributes (section 2.4).

This research can be used by the group of agile practitioners who believe
a dichotomy exists between architecture and agility, and that architecture
is ‘all or nothing’ (section 2.4). The findings show that up-front architecture
design is a trade-off between designing an architecture that can respond
to change and addressing risk: the more risk or the lower the tolerance of
risk, the more up-front effort is required (Chapter 7). Ignoring this trade-off
may leave the system exposed to high rework costs or failure and, perhaps
ironically, reduced agility.

This research is useful to non-agile architects: it highlights the differ-
ences between an architecture built by an agile team using an agile process
and which is specifically designed to be responsive to change, and an archi-
tecture built up-front using a process-driven methodology which may be
updated with small corrections, but is not generally designed specifically
to be modifiable and tolerant of change.
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10.3 Limitations

There are a number of limitations in this research.

The grounded theory methodology may limit the research. Grounded
theory produces a substantive (empirical) theory that describes the par-
ticipants under study and cannot necessarily be applied to other contexts.
The theory of agile architecture is therefore only applicable within the re-
search boundaries defined in section 9.1.2. While the forces and strategies
identified in this theory may exist in other contexts, such as in embedded
systems and enterprise systems, we cannot be sure that other forces and
strategies do not exist, and that the relationships are the same.

The research design may also limit the research. I sought practitioners
who were accessible to me, who were either local or were in places I was
visiting. This limited the range of participants to those areas, which in turn
may have restricted the practices, projects, experiences and practitioner
characteristics included.

In section 4.1 I noted that I did not seek specific agile methodologies.
Rather, I judged participants’ agility based on whether or not their descrip-
tions of the methodologies they used met the definition of agility offered in
section 2.2.3. While many participants did describe how they responded to
change and were clearly agile, others described specified particular method-
ologies and practices. As noted in section 2.2.3, following the practices of
a particular methodology does not necessarily make a team agile. Indeed,
some participants were clearly less agile, and this was identified in the
interviews, and explained according to their context using appropriate
forces (Chapter 6).

The data was biased towards data obtained from interviews (section
4.1.3). I obtained some written data in the form of software architecture
documentation and models. I did not obtain data in other forms such as
observations. Observations of architecture decisions would have needed
to have been over an extended period of time to have been useful; this
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would have been difficult to set up, would have been very time consuming
and may not have provided data that was as rich as the interview data.
No participants were in the start-up phase of a project when I interviewed
them.

While interview data was very rich, there may have been some limita-
tions due to time constraints. Out of respect for participants’ time, I tried
to limit interviews to one hour. I failed almost universally to keep to this
limit; the average interview length was one hour and ten minutes (section
4.1.2) and many early interviews were more than one and a half hours long.
Even so, in many cases I did not finish my interview schedule and more
time would have been useful to ensure all issues were covered. The im-
pact of not finishing the interview schedule was not major: because of the
semi-structured nature of the interviews, many participants answered later
questions while discussing earlier questions; drawing interviews to a close
was a judgement call based on further questioning yielding diminishing
returns.

Another limitation may be in my ability as a researcher. I am a beginner
grounded theorist; this research was my first grounded theory research
project. It took me a lot of time to develop an understanding of grounded
theory sufficient to undertake this project, and I took several backwards
steps during analysis before progressing again. It took a long time for the
categories and core category to emerge, which may (or may not) have been
caused by my inexperience.

I am also new to the software industry. While this was an advantage
overall because I could undertake this research from a neutral position
(section 3.4), it also took some time for me to become fully comfortable with
architecture terminology used by participants.

10.4 Future work

This research presents a number of opportunities for future work.
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10.4.1 More in-depth understanding

The theory of agile architecture is a high-level theory that addresses a very
broad objective (section 3.1.1). There is potential for further grounded
theory research to continue to explore agile architecture in the same context
with a more specific research objective. For example, further research could
explore a selection of the forces, strategies or their relationships in more
detail, linking them more tightly to specific scenarios, such as building on-
going mass market products and services versus one-off bespoke products,
or green field development versus redevelopments.

Further work could examine the tactics used to design an agile architec-
ture in more detail, or search for more tactics.

10.4.2 Different research approaches and methodologies

Further research into agile architecture could use a different qualitative
approach to gain a more detailed understanding of certain aspects of agile
architecture. For example, case study research could be used to study a
small number of cases in more detail or action research could be used to
investigate and solve a particular problem of a single participant.

A deductive quantitative approach, such as surveys or the analysis of
architecture artefacts, could be used to test the theory of agile architecture.
Quantitative research could, for example, be used to identify the relative
significance of each of the forces identified in this research, and determine
how widely each strategy is used.

An objective of this research was to address the question “how do agile
teams determine how much architecture to design up-front?” (section 2.5);
an interesting objective for further research would be to quantify this by
investigating how much design teams actually do in different situations:
“how much architecture do agile teams design up-front?”
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10.4.3 Deriving a formal theory

This substantive grounded theory could be extended to form a formal
grounded theory. A substantive grounded theory is limited to the domain
in which it was derived (section 9.1.2); a formal grounded theory con-
nects different areas of substantive research and is more general and more
abstract [64].

A formal theory could, for example, be derived by expanding this
substantive theory using comparative data from other areas, or could be
compared with other new substantive theories from other areas [104].

10.5 Conclusion

This thesis commenced by introducing the need for balance between soft-
ware architecture and agility. Architecture is the set of decisions that is
difficult and expensive to change during development, and therefore is
usually made up-front, before development begins. Agility is a software de-
velopment team’s ability to respond to change during development. Agile
methods use a feedback loop in which the customer provides feedback to
the team about changed or new requirements, and the development team
responds to that change by adapting the system. The more agile the team,
the shorter the feedback loop: the quicker the customer can provide feed-
back, and the quicker the team can respond to that feedback. Conversely, a
less agile team has a longer feedback loop.

To increase agility, the planning time – including up-front architecture
design – is reduced, so that the customer can start providing feedback
earlier. This leads to a more emergent and implicit architecture. Reducing
the architecture too far could lead to an accidental architecture which fails
to meet the quality requirements, and requires more time to fix problems.
A failed architecture reduces the team’s ability to respond to change and
hence reduces its agility.
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To maximise agility, a team must find a suitable trade-off between a full
up-front architecture design and a totally emergent design.

This thesis then introduced the research gap and the research problem.
The trade-of between architecture and agility is not well understood. Vari-
ous schemes of up-front architecture design offer little guidance as to how
much architecture to design up-front and which decisions should be made
up-front. There has been very little empirical research into the relationship
between architecture and agility. This thesis aimed to help address this
research gap with an objective to explore how much effort agile software
teams put into architecture design, and discover how teams determine how
much architecture to design up-front.

This research used a qualitative approach so that it could explore how
architecture design decisions are affected by the experience, knowledge
and judgements of the teams, how the teams work together and what they
believe are the most appropriate decisions to make up-front. Grounded
theory was chosen as the methodology so that a theory that explains how
teams determine which decisions to make up-front could be generated.
The research design included forty four participants in thirty seven first
interviews and six second interviews. Additional data was also obtained
in the form of documentation. Participants, who were all architects, senior
developers or were otherwise involved with architecture, were from a
number of different countries and represented a large spread of projects
and domains.

The findings of the research formed a theory of agile architecture. The
theory describes how teams design an agile architecture – an architecture
that supports the team’s agility by being able to respond to change. The
theory also describes a set of strategies that teams use to determine how
much architecture to design up-front.

This research makes four contributions. The main contribution is the
theory of agile architecture. The second contribution describes the impact
of requirements stability on up-front design effort. The third contribution
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explains the impact of size and complexity on up-front design effort, and
the fourth contribution describes the impact of cost on up-front design
effort.



Appendix A

Human ethics approval

The following documents were part of the approved human ethics applica-
tion for conducting interviews for this research.
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Researcher: Michael Waterman (Michael.Waterman@ecs.vuw.ac.nz, +64 4 463 5233 x8486)
Supervisors: Prof. James Noble (kjx@ecs.vuw.ac.nz; +64 4 463 6736)

Dr. George Allan (George.Allan@ecs.vuw.ac.nz, +64 4 463 6741)

This research is being conducted as a part of studies towards a PhD degree in the School of
Engineering and Computer Science at Victoria University of Wellington, New Zealand.

Introduction

This study is examining architecture design in agile software development projects. I am inter-
viewing agile practitioners involved in the high level design of software, in which we discuss agile
projects that the practitioner has worked on.

Research results

The data gathered in interviews and documentation will form the basis for the research. It is
expected that the research will be published in the form of a thesis (deposited in the University
Library) and academic research papers.

If requested the participant will be provided with any research publications that arise from this
research.

Treatment of data and confidentiality

All data obtained by each participant will be treated as confidential. In particular, the names,
companies, customers and any commercial information will not be released or published.

• The participant will be given the opportunity to check the transcript of the interview and will
have a period of one month in which to submit error corrections or to withdraw themselves
or any data they have provided without having to give reasons and without penalty.

• Any results published will be anonymised so that it is not possible to identify the participant,
his or her employer, the project or the project’s customer.

• In keeping with the Privacy Act 1998, any data provided will only be used for the purpose
stated, and will be destroyed (or returned) two years after the completion of the research.

• I am able to sign non-disclosure agreements if required.

This research has obtained ethics approval for research projects involving human participants,
as required by the university.

If you have any questions or would like to receive further information about the research, please
contact me or one of my supervisors.

Michael Waterman
School of Engineering and Computer Science
Victoria University of Wellington
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Researcher: Michael Waterman (Michael.Waterman@ecs.vuw.ac.nz,
+64 4 463 5233 x8486)

Supervisors: Prof. James Noble (kjx@ecs.vuw.ac.nz; +64 4 463 6736)
Dr. George Allan (George.Allan@ecs.vuw.ac.nz, +64 4 463 6741)

This research is being conducted as a part of studies towards a PhD degree in the School
of Engineering and Computer Science at Victoria University of Wellington, New Zealand.

General Information

This study is examining architecture design in agile software development projects. I am
interviewing agile practitioners involved in the high level design of software, in which we
discuss agile projects that the practitioner has worked on.

Interview schedule

The interview will be semi-structured. The schedule will include the following topics and
types of questions:

1. Participant background – for example, role in the project team, and a brief overview
of selected software development projects previously worked on and responsibilities.

2. A description of the project(s), including any factors that made the project unusual or
difficult.

3. The development methodology used – for example, completely agile, partially agile, or
not agile at all? What were the roles of the members of the development team?

4. The architecture of the project, including architecture design process, architecture de-
sign language, models and tools used.

5. Success factors, including whether or not the functional requirements and the non-
functional requirements were met, and whether or not it was completed on time and
on budget.

6. A discussion of any problems that arose.

7. Any other issues or comments.
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Consent to Participate in Research

Michael Waterman

Researcher: Michael Waterman (Michael.Waterman@ecs.vuw.ac.nz, +64 4 463 5233 x8486)
Supervisors: Prof. James Noble (kjx@ecs.vuw.ac.nz; +64 4 463 6736)

Dr. George Allan (George.Allan@ecs.vuw.ac.nz, +64 4 463 6741)

This research is being conducted as a part of studies towards a PhD degree in the School of
Engineering and Computer Science at Victoria University of Wellington, New Zealand.

General Information

This study is examining architecture design in agile software development projects. I am inter-
viewing agile practitioners involved in the high level design of software, in which we discuss agile
projects that the practitioner has worked on.

Consent

This form allows us to record participants’ consent to participate in this study. Consent is standard
practice and is a requirement of the University.

The participant agrees that they:

• have been given and have understood an explanation of this research project,

• have had an opportunity to ask questions and have them answered to their satisfaction,

• understand that any information they provide will be kept confidential to the researcher and
the supervisors, the published results will not use their name, and that no opinions will be
attributed to them in any way that will identify them, their employer, their client(s) or the
project(s) discussed,

• understand they will have the opportunity to check a transcript of the interview and have a
period of one month in which to submit error corrections or to withdraw themselves or any
data they have provided without having to give reasons and without penalty,

• understand that the data they provide will not be used for any other purpose or released to
others without their written consent, and that all personal information will be destroyed two
years after the completion of the research.

The participant consents to:

• being interviewed by the researcher,

• the interview being sound recorded to reduce the risk of misinterpretation.

Do you wish to receive copies (or notification) of publications that arise from this research:
Yes / No

Name:

Signature: Date:

If you have any questions or would like to receive further information about the research, please
contact me or one of my supervisors.
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Appendix B

Interview schedule

The following document contains two versions of the question schedule
used in the interviews. The first schedule, on the following page, is the
initial schedule used at the start of the data gathering process. The second
schedule is a later version (version 7) used at the end of the data gathering
process, and was developed in response to the changing focus of data
gathering as the research progressed.

The differences are first version asks very general questions about the
agile team, the agile project, the development methodology, the architecture
and how it evolved, and any success factors or problems. The later version
also asked many of these questions, but was looking more for information
about specific themes, such as up-front architecture drivers: complexity
and size, frameworks, agility and experience.
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Michael Waterman

24 May 2010

Researcher: Michael Waterman (Michael.Waterman@ecs.vuw.ac.nz,
+64 4 463 5233 x8486)

Supervisors: Prof. James Noble (kjx@ecs.vuw.ac.nz; +64 4 463 6736)
Dr. George Allan (George.Allan@ecs.vuw.ac.nz, +64 4 463 6741)

Research topic: Reconciling Architecture and Agile: How Much Architecture?

This research is being conducted as a part of studies towards a PhD degree in the School
of Engineering and Computer Science at Victoria University of Wellington, New Zealand.

General Information

This study is examining architecture design in agile software development projects. I am
interviewing agile practitioners involved in the high level design of software, in which we
discuss agile projects that the practitioner has worked on.

Interview schedule

The interview will be semi-structured. The schedule will include the following topics and
types of questions:

1. Participant background

• Please describe your role in the project team, and how long you have performed
that role.

• Give a brief overview of selected software development projects you’ve previously
worked on, and your responsibilities.

2. A description of the project(s)

• Please give a brief overview of the project, including its domain, whether it was
internal or external, its size (duration/team size/budget).

• How well were the requirements understood in advance?

• Did the requirements change during the project?

• Were there any factors that made the project unusual or difficult, such as a dis-
tributed team or unfamiliarity with domain?

3. The development methodology used

• Please describe the overall development methodology used. Was the project com-
pletely agile, partially agile, or not agile at all?

• What were the roles of the members of the development team?

• What agile experience do the members of the team have?

• To what extent did the customer and other stakeholders buy-in to the methodol-
ogy?

4. The architecture of the project
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• What was the architecture?

• What architecture design process was used? How much of the architecture design
was up-front and how much was developed during implementation?

• What architecture design language, models and tools were used?

• Were any architectural patterns used?

• Did the architecture change or evolve during development?

• Please tell me about any interactive and iterative methods that were used in the
architecture design and coding processes.

• Describe any risk management or risk assessment undertaken.

• Did the architecture follow any standards (either in-house or external)?

• Was the architecture documented?

5. Success factors

• Please describe the level of success of the project. Include (but don’t limit to) the
following success measures:

– Describe to what extent the functional requirements were met and the cus-
tomer was satisfied.

– To what extent were the non-functional requirements met?

– Was it completed on time and on budget?

• Please note any success factors, such as staff experience or expertise, client inter-
action, tools used, etc

6. A discussion of any problems or issues, and to what they can be attributed

• Please describe any problems relating to the design of the software that arose
during its development. These may include going over budget, missing milestones,
excessive refactoring or even needing to re-design the architecture.

• Describe what you believe caused these problems.

• Was there anything you or the team could have done to have prevent or mitigate
the problem(s)?

• Were any of the problems addressed – or not addressed – by risk management or
risk assessment?

• What would you do differently with the benefit of hindsight?

7. Are there any other issues you’d like to raise or comments you’d like to make?

• For example, if the degree of agile methodology used reflects an expected level of
up-front architecture design that is required.

• Is there anyone else I can talk to?
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Interview Schedule

Michael Waterman

24 May 2010; Updated 31 May 2013 (Version 7)

Researcher: Michael Waterman (Michael.Waterman@ecs.vuw.ac.nz,
+64 4 463 5233 x8486)

Supervisors: Prof. James Noble (kjx@ecs.vuw.ac.nz; +64 4 463 6736)
Dr. George Allan (George.Allan@ecs.vuw.ac.nz, +64 4 463 6741)

Research topic: Reconciling Architecture and Agile: How Much Architecture?

This research is being conducted as a part of studies towards a PhD degree in the School
of Engineering and Computer Science at Victoria University of Wellington, New Zealand.

General Information

This study is examining architecture design in agile software development projects. I am
interviewing agile practitioners involved in the high level design of software, in which we
discuss agile projects that the practitioner has worked on.

Interview schedule

The interview will be semi-structured. The schedule will include the following topics and
types of questions:

1. Participant background

• Please describe your role in the project team, and how long you have performed
that role.

• Give a brief overview of selected software development projects you’ve previously
worked on, and your responsibilities.

2. A description of the project(s)

• Please give a brief (1 minute!) overview of the project, including its domain,
type of application, whether it was internal or external, its size (duration/team
size/budget).

• Were there any factors that made the project unusual or difficult, such as a dis-
tributed team or unfamiliarity with domain?

3. The development methodology used

• Please describe the overall development methodology used and what agile prac-
tices were used. (For example: timeboxing/sprint planning, backlogs, continuous
integration, self-organising, interactive customer, daily stand-ups, retrospectives,
sprint 0, TDD/unit testing, peer programming...)

• What were the roles of the members of the development team?

• What agile experience do the members of the team have?

• To what extent did the customer and other stakeholders buy-in to the methodol-
ogy?

1



• How well were the requirements understood in advance? Did the requirements
change during the project?

4. The architecture of the project

• What was the architecture? (Please describe your architecture or its characteris-
tics and the levels of architecture) (That is, what is architecture?)

• How (and why) did you choose your architecture?

5. How would you describe the relationship between complexity, size and up-front archi-
tecture planning?

6. In your experience, what affect do bespoke components and libraries, multiple frame-
works, legacy and integration have on complexity and up-front planning, and why?

7. In your experience, what affect does your level of agility have on up-front planning, and
why?

8. In your experience, how does the type of product you’re building affect the up-front
planning? (e.g. redevelopment vs green fields; one-off vs ongoing; in-house vs external)

9. In your experience, is there anything else that affects up-front planning? (such as
requirements stability, team size)

10. Who makes the architectural decisions?

11. What (else) does the person who makes the architectural decisions do?

12. How do you manage architectural tasks?(e.g. architectural task backlog)

13. Are there any other issues you’d like to raise or comments you’d like to make?

2
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