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Abstract

The unifying theme of this thesis is that of light scattering by particles, using com-

putational approaches. This contributions here are separated into two main areas.

The first consists of examining the behaviour of the extended boundary-condition

method and T -matrix method, and providing a modified set of equations to use to

calculate the relevant integrals. From this, some linear relations between integrals

were found, which hint at the possibility of a more efficient means of performing

these calculations. As well as this, the severe numerical problems associated with

this method were investigated, and the primary source of these problems was iden-

tified in the case of two commonly-used shapes, spheroids and offset spheres. The

cause of these numerical problems is that dominant, leading terms in the power series

expansion of the integrands integrate identically to zero, but in practice, numerical

calculations have insufficient precision to compute this exactly, and the overwhelm-

ing errors from this lead to drastically incorrect results. Following this identification,

a new formulation of the integrals for spheroids is presented, which allows the much

easier treatment of spheroids, approaching the level of ease of calculations for spheres

in Mie theory. This formulation replaces some terms in the integrands with modi-

fied terms, that do not contain the parts of the power series that cause problems.

As these should integrate to zero, we are able to remove them from the integrand

without affecting the correct result.

The second area of this thesis is concerned with calculations of the near-field

for systems of interest in plasmonics, and specifically in surface-enhanced Raman

spectroscopy. Here, the enhancement of the electric field in the vicinity of a metallic

surface has a large effect on measured signals. The contribution of this thesis is to

study the geometric parameters that influence the distribution of the field enhance-

ment at the particle’s resonance, specifically focusing on different effects caused
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by the overall shape of the particle, as opposed to those effects due to the local

shape of the particle in regions of high enhancement. It is shown that the over-

all shape determines the location of the resonance, while the local shape determines

how strongly the enhancement is localised. Understanding the factors that influence

the enhancement localisation will help in guiding the design of suitable plasmonic

substrates.
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1 Introduction

This thesis presents a collection of results, all having the unifying theme of light

scattering by particles. The results may broadly be categorised in two groups, firstly

improvements to the extended boundary-condition method (EBCM), and secondly

the study of electromagnetic enhancement in the vicinity of metal particles.

Most of the content of this thesis has already been published. It may be found

in Refs. [1–7]. Throughout this thesis, all instances of references in this range (7 or

less) are to works that form part of this thesis.

1.1 Motivation and Goals

The field of computational light scattering finds many uses, but the types of prob-

lems that are able to be treated is invariably limited by computational constraints.

These may take the form of time constraints, or numerical limitations on the specifics

of the problems that may be solved. Irrespective of the method used to consider the

light scattering, there is always some limitation. The extended boundary-condition

method, which is the subject of much of this thesis, is a fairly general light scatter-

ing method that promises to be one of the best choices for solving light scattering

problems, especially by axisymmetric particles. This is due to its ability to easily

consider all orientations of the problem, and to treat multiple scattering configura-

tions. In addition, the range of shapes it can in principle treat is broad. Of course,

it has its own limitations, one of which is a loss of numerical precision, which limits

the numerical convergence of results, and in practice, the size and aspect ratio of

particles that may be studied. Thus, it was desired to examine these convergence

issues, to see where they arise from, and if possible to resolve them. In addition,

1



1 Introduction

the calculation of certain results, such as local fields, present greater numerical diffi-

culty that other (far-field) quantities, and hence when near-field results are required,

attaining convergence can be more challenging.

One particular area where light scattering calculations are of great importance

is the field of plasmonics, which concerns light interacting with metal surfaces. The

subset of plasmonics of particular interest to this thesis is surface-enhanced Raman

spectroscopy (SERS), where the Raman signal is enhanced approximately to the

fourth power of the electric field enhancement. This can allow the Raman signal

from single molecules to be observed in some cases, which is an active area of re-

search in this research group, which was led by the late Pablo Etchegoin, along with

Eric Le Ru. In order to make sense of SERS signals, it is necessary to have an

understanding of the surface distribution of the SERS enhancement factors, which

is best understood through numerical simulations. One question that is difficult to

answer experimentally is how many molecules contribute to a given signal. If the

distribution of enhancement factors is better understood, then substrates with more

favourable distribution for the specific experiment being carried out can be sought.

This would usually relate to how localised the regions of large enhancement are,

which leads to one of the primary aims of this work, to understand the factors that

effect the localisation of SERS hot-spots.

1.2 Outline

Light scattering is the main topic of this thesis, and fittingly Chapter 2 begins by

introducing that field, covering both the uses of studying light scattering, as well as

various methods that are used. Following that, Chapter 3 includes some detailed

background of Mie theory, the EBCM and the T -matrix method. The latter of these

are the prime focus of theoretical results in this work.

The first chapter of results is Chapter 4, which presents new forms of the integral

expressions used in the EBCM for axisymmetric particles. This also contains linear

relations between matrix elements from the EBCM, which might allow faster, more

efficient calculation of the T -matrix. The work in this chapter on the integral expres-
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1.2 Outline

sions was published in Ref. [1], and the work on the linear relations was the subject

of a talk at the New Zealand Institute of Physics Conference, 2011, in Wellington,

but still requires more work to be applied.

The second chapter of results, Chapter 5, focuses almost exclusively on light

scattering by spheroids. The EBCM has long been known to suffer from numerical

problems, and here we study and identify the cause of these problems for spheroids

(and offset spheres), and provide a method to remove the cause of these problems.

This work was the focus of Refs. [3, 6], and was presented at the 6th International

Conference on Surface Plasmon Photonics, 2013, Ottawa, Canada.

The third and final chapter of results is Chapter 6. This covers the applica-

tion of light-scattering calculations to plasmonic systems. This is both to sup-

port experimental results, as well as to examine the behaviour of field enhancement

factors in the vicinity of hot-spots, which are regions of high enhancement. The

experimentally-based projects for which some computational support was provided

are published in Refs. [2, 5], while the work on hot-spot behaviour has been presented

at the 9th Australasian Conference on Vibrational Spectroscopy, 2011, Wellington,

the 12th International Conference on Nanotechnology IEEE NANO, 2012, Birming-

ham, England[4], and the 6th International Conference on Advanced Materials and

Nanotechnology, 2013, Auckland.

Chapter 7 presents a brief discussion of the importance of the results, and future

work that might stem from this body of work, and concludes the body of this thesis.
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2 Light Scattering

The field of light scattering has a long history, and finds application in many areas of

science, along with consequent differences in approach and notation. In this thesis,

we focus only on understanding light scattering by particles, for the most part single

particles, but with some consideration to scattering by collections of particles. While

the term light is used, the results are applicable to all scattering by electromagnetic

radiation, not just that which falls in the visible range.

This chapter begins by considering light scattering by particles, and concludes

by looking at particular aspects of light scattering of interest in surface-enhanced

Raman spectroscopy (SERS). There are many excellent books on these topics, and

this chapter provides only an overview of topics relevant to this thesis. For a more

detailed and exhaustive explanation of light scattering by particles, the works of

Bohren and Huffman[8] and Mishchenko, Travis and Lacis[9] are excellent resources.

For the SERS component, aspects of light scattering of interest to SERS (but exclud-

ing the mechanics of Raman scattering) are briefly discussed, and for more detail,

references such as Le Ru and Etchegoin[10] should be consulted.

2.1 Applications

Among the many possible applications of light scattering, a few are presented briefly

here. One common use is atmospheric measurements, where scattering of visible to

Pavlova Preheat oven to 150 ◦C. Beat 4 egg whites in a bowl until soft peaks have formed.
Slowly add 1 cup white sugar while beating, until glossy. Sift 3 tsp of cornflour over this, and
fold through with 1 tsp vinegar. Place on a baking tray on baking paper, in a heaped pile.
Place in oven, and set temperature to 120 ◦C. Cook for 1 h, then turn off and let cool in oven.
Top with whipped cream and seasonal fruit.
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2 Light Scattering

infrared light by mainly water droplets and ice crystals in clouds provides informa-

tion about the size of droplets and location of the clouds[11, 12]. Equally, radio waves

reflecting off objects may be used to locate objects, as in radar. While this primarily

focuses on analysing the reflection of the incident light, that is not always the case.

In astronomical measurements, the observed light must pass through interstellar re-

gions that contain cosmic dust, which scatters the light, and attenuates it[13]. Thus,

modelling how light from distant objects is affected by this dust is important for

astronomers to obtain correct intensities for these objects. Light-scattering methods

are also used to examine how light propagates through the branches and leaves of

trees[14]. As well as these far-field effects, it is possible to consider near-field ef-

fects, or the combination of the two. The modelling of how a mobile phone operates

near a person’s head is one such case[15]. Here, both the influence of something in

the near-field on the transmitted and received signal is considered, as well as the

intensity of the fields in the near field. It is also possible to model light scattering

by red blood cells[16]. Another example of near-field interest is in surface-enhanced

spectroscopies, where the influence of a metallic surface on the electric field leads to

enhanced light scattering by molecules of interest[17, 18]. While the reason for the

enhanced scattering is not covered in this thesis, studying the field enhancement is

a prime area of focus.

2.2 General Light Scattering

The basis for considering light scattering is to solve for the electric and magnetic

fields at points in and around the particle of interest, for some incident electric

and magnetic fields. Typically, the incident fields correspond to some propagating

electromagnetic radiation, satisfying the wave equation.

2.2.1 Field Expressions

We begin by making the assumption, appropriate for light scattering problems, that

the solution is time-harmonic. That is, the field has a sinusoidal dependence in time
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with angular frequency denoted ω. We may then write some field ~X(~r, t) as

~X(~r, t) = Re
(
~X(~r, ω)e−iωt

)
(2.1)

where ~X(~r, ω) represents a complex field, and we make use of the e−iωt convention

for the time dependence. Physical quantities, however, make use of the real field
~X(~r, t). For non-harmonic fields, these may be composed from the harmonic fields

by taking the superposition of harmonic fields, following Fourier analysis. That is,

we may consider the complex field to be the Fourier components of the real field,

such that the real field may be expressed as

~X(~r, t) =
1√
2π

∫ ∞
−∞

~X(~r, ω)e−iωtdω (2.2)

with the requirement that ~X(~r,−ω) = ~X(~r, ω)∗, where ∗ represents complex con-

jugation. Similarly, the complex components may be obtained from the real field

as

~X(~r, ω) =
1√
2π

∫ ∞
−∞

~X(~r, t)e+iωtdt. (2.3)

The result of the above is that in this thesis fields are treated as monochromatic,

harmonic ones, but other forms of field may be constructed from them, with results

following from the linearity of Maxwell’s equations, and the assumed linear response

of the materials we are using.

2.2.2 Maxwell’s Equations

The solutions to the light-scattering problem must obey Maxwell’s Equations, which

may be written (in SI units) as

∇ · ~E =
ρ

ε0

(2.4)

∇× ~E +
∂ ~B

∂t
= 0 (2.5)

∇ · ~B = 0 (2.6)
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∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
. (2.7)

These contain several terms, namely the electric field ~E, the magnetic induction
~B, the permittivity of free space ε0, and the permeability of free space µ0. ρ is

the charge density, and ~J is the current density. These equations are valid on a

microscopic scale (the so-called “microscopic Maxwell’s equations”). It is, however,

challenging to apply these to complicated matter made of atoms, with local charge-

and current-density. In this case, it is preferable to instead make use of the “macro-

scopic Maxwell’s equations”,

∇ · ~D = ρf (2.8)

∇× ~E +
∂ ~B

∂t
= 0 (2.9)

∇ · ~B = 0 (2.10)

∇× ~H = ~Jf +
∂ ~D

∂t
. (2.11)

Here the fields ~D and ~H are the electric displacement and magnetic field respectively.

These take into account the contribution of the internal charges, that is, the response

of the material to the incident field. These are related to the electric field ~E and

the magnetic induction ~B by

~D = ε0
~E + ~P (2.12)

~H =
~B

µ0

− ~M (2.13)

where ~P is the electric polarisation and ~M is the magnetisation. The quantities ρf

and ~Jf are the charge density and current density that are associated with external

charges (that is, the ones that generate the incident field, and so are zero in the

regions that we consider), while ρ and ~J (as in Eqs. (2.4) and (2.7) respectively)

include the internal charges also.

It is possible to write these Maxwell’s equations in terms of the Fourier compo-
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nents of the field, as

∇ · ~D = ρ
f

(2.14)

∇× ~E − iωµ0
~H = 0 (2.15)

∇ · ~H = 0 (2.16)

∇× ~H = ~Jf − iω~D, (2.17)

where here we work with the frequency-dependent complex fields.

In order to make use of the macroscopic Maxwell’s equations, we must be able

to relate the response of the material ~P , ~M with the excitation ~E and ~H. For this

we use the so-called constitutive relations,

~B(ω) = µ0µ(ω)~H(ω) (2.18)

~P (ω) = ε0χ(ω)~E(ω) (2.19)

with the permeability µ and the electric susceptibility χ being material properties of

the medium. Thus the fine details of the response of the material, the polarisation

and the magnetisation, are included in the susceptibility and permeability. The

regime being considered here assumes that the response (that is, ~B, ~P ) is linear with

respect to the field, and so µ and χ are independent of the field. This assumption

does rule out some materials from consideration (such as those with large second-

order responses), but it covers the vast majority of materials, including those of

interest to this thesis (gold and silver primarily). We also assume that the response

is local in space (independent of the field at other points), but non-local in time

(with proper consideration to the time-harmonic nature of the fields). We note that

by using the expression for the polarisability, we may write the expression for the

electric displacement as

~D = ε0

(
~E + χ~E

)
= ε0ε(ω)~E (2.20)

where we define the relative dielectric function (often referred to simply as the
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dielectric function)

ε(ω) = 1 + χ(ω). (2.21)

It is worth noting that the dielectric function is in general a function of frequency,

and can have a strong frequency dependence. We make the assumption that the

materials we use are non-magnetic, that is, both µ = 1 and ~M = ~0, and so the

permeability is not frequency dependent. We also assume that the particles are

embedded in a homogeneous, isotropic, non-absorbing medium.

The charge and current terms in Eqs. (2.14)–(2.17) are the external ones, and

so are zero in the region of interest. These equations then reduce to the Helmholtz

equation[8] (or vector wave equation) for the divergence-less electric field,∇2 ~E(~r, ω) + k2 ~E(~r, ω) = ~0

∇ · ~E = 0
(2.22)

which is valid only on the complex fields as discussed earlier. Here, the value k is

the wave vector, and is given by

k2 =
ω2

c2
ε(ω), (2.23)

where c is the speed of light in vacuum. In the surrounding (and non-absorbing

medium), the speed of the wave propagation is given by

v =
ω

k
√
ε(ω)

. (2.24)

where
√
ε(ω) = n(ω), the refractive index. For materials with absorption (which

might include the material of the particle, but excludes the surrounding medium),

then instead we have the complex refractive index√
ε(ω) = n(ω) + iκ(ω) (2.25)

where n(ω) represents the speed of propagation through the medium, and κ(ω)
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represents the absorption of light in the medium. We restrict ourselves to non-

active media, so that κ(ω) ≥ 0.

2.2.3 Plane Waves

In the case of incident fields, we work with plane waves. Other incident waveforms

may be constructed by considering superpositions of plane waves, and again making

use of the linearity of Maxwell’s equations. Plane waves are waves which vary along

some incident wavevector ~k, but do not vary perpendicular to ~k. We have, for the

incident waves, only real ~k. With the requirement that these waves are harmonic in

both space and time, we may write an equation for these waves as

~X(~r) = ~X0e
i~k·~r (2.26)

(the time-dependence is introduced when obtaining the real field). Here ~X0 is a

complex constant vector. If we assume that the electric field is defined as

~E = ~E0e
i~k·~r (2.27)

then by using Eq. (2.15) we can obtain ~H as

~H = ~H0e
i~k·~r. (2.28)

Note that here, ~H0 is not independent of ~E0.

Now that we have some incident wave, we need to consider the situation of inter-

est. That is, these incident waves must be incident on some scatterer. Schematically,

this may be seen in Fig. 2.1. Here we have a plane wave incident on a single, arbi-

trary scatterer. We shall assume for simplicity that the scatterer is homogeneous,

and the response of it (that is, ε(ω)) is isotropic, which is an assumption used in all

of this thesis.

The polarisation of the incident wave is described by the constant vectors ~E0 and
~H0. In general, the response of the system will depend on the polarisation of the

incident radiation. The problem that we wish to solve is to determine the electric
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Figure 2.1: A schematic showing a plane wave incident on a scatterer. Here the
incident plane wave (in red) with wavevector ~k is incident on the scatterer
(here a kiwi). The field is scattered, with some of the scattered field
depicted as outgoing spherical waves.

field at various points, given some incident field. Using Eq. (2.22), it is sufficient

to solve for only the electric field, and then Eq. (2.15) may be used to obtain the

magnetic field as required. Different techniques that are commonly used to solve

light scattering problems are discussed in Section 2.4.

2.2.4 Boundary Conditions

As with many problems in physics, it is the boundary conditions of the problem that

make it interesting and challenging to solve. In this case, the boundary conditions

are supplied by Maxwell’s equations. We have in general a discontinuity in the value

of ε at the boundary (and for magnetic media, not considered here, there is also a
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discontinuity in µ). The requirements are that(
~E1 − ~E2

)
× n̂ = 0 (2.29)(

~H1 − ~H2

)
× n̂ = 0 (2.30)

at points on the surface of the particle, where n̂ is the (outward) unit normal to the

surface. These statements are that the components of the electric and magnetic fields

that are perpendicular to the normal (or parallel to the surface) are continuous. As

we are more interested in dealing only with the electric components, we may instead

used a different expression, (
~D1 − ~D2

)
· n̂ = 0 (2.31)

(2.32)

which is the requirement that the normal component of the electric displacement

must be continuous across the boundary. As we have a relation between ~E and ~D,

we may express this requirement in terms of ~E, which is not shown here.

It is common to solve for the scattered field ~ESca (in the region outside the

particle). From this, the total external field is obtained as the sum of the scattered

and incident fields, ~EExt = ~ESca+ ~EInc. We require that the scattered field must obey

the Sommerfeld radiation condition, that the fields must decay as eikr/r as r goes

to ∞, meaning that the field at large distances from the particle should look like

outgoing spherical waves[19]. Causality excludes the possibility of incoming waves

at infinity in the scattered field.

2.2.5 Scattering Quantities

While the light scattering problem involves in principle solving for the fields, there

are other quantities of interest that are often calculated.

Many of the terms of interest, and arguments used to derive them, are concerned

with energy, and energy conservation. The starting point for looking at energy flow

13



2 Light Scattering

is the time-averaged Poynting vector, which is

~S = Re
(
~E × ~H

∗)
/2 (2.33)

and in the case of a plane wave this reduces to

~S =
~k

2ω

∣∣∣~E∣∣∣2 . (2.34)

We may use this Poynting vector to consider the flow of energy in the system. If

we consider the quantity

WAbs = −
∫
A

~S · n̂AdA (2.35)

on some surface A that fully encloses our particle, and where n̂A is the unit normal

on the surface A, WAbs represents the net energy flow rate into the area enclosed

by A. As the medium that we are using is non-absorbing, that means that WAbs is

equal to the rate of energy absorption by the particle.

It is also possible to consider the rate of energy scattering by the particle. This

is energy that is “lost” from the incident beam, but not absorbed by the particle.

Instead, it is scattered by the particle. We may write this

WSca =

∫
A

~SSca · n̂AdA (2.36)

where ~SSca is the appropriate Poynting vector for the scattered field.

The combination of power that is absorbed and energy that is scattered is the

energy that is extinguished from the beam, called the extinction. Thus,

WExt = WAbs +WSca. (2.37)

All of these quantities are often referred to by their cross sections, that is, the

equivalent area of the incident beam that provides the same amount of power as is

absorbed, scattered or extinguished. These are given the symbols σAbs, σSca and σExt
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respectively. The relation between the power absorbed, scattered or extinguished

and the cross sections is, for the example of scattering

WSca = σScaSInc (2.38)

where SInc is the incident power density, which in the case of a plane wave is

SInc =
1

2
ε0cn

∣∣∣ ~EInc

∣∣∣2 . (2.39)

Here c is the speed of light in vacuum, and n is the refractive index of medium.

Other commonly-used metrics are the absorption, scattering or extinction ef-

ficiencies, denoted QAbs, QSca and QExt respectively. These are simply the cross

sections normalised by the geometric cross section of the particle perpendicular to

the incident plane wave. These then measure what fraction of the area of the par-

ticle scatters, absorbs, or extinguishes, the total (incident + scattered) wave. This

may be more that one, perhaps non-intuitively, as it is possible for the particle to

have an effect that extends outside its geometric extent.

Following on from the cross sections above, it is worth mentioning another set of

quantities, the orientation-averaged cross sections. While the cross sections above

depend in general on the orientation of the particle relative to the incident wave, the

orientation-averaged values take into account all incident orientations. This might

represent measurements taken on a single particle that is rotating on a timescale

much faster than the measurements, or a collection of particles with random orien-

tations, so long as the particles are sufficiently well separated that the scattering

processes may be considered independent.

In some cases, rather than an orientation-averaged cross section, it is desirable

to have the cross section for some specific angle. In the context of radar, the back-

scatter cross section is important, including for meteorological studies[20]. One

matrix that is of interest is the scattering matrix[9], which is able to characterise

the complete far-field scattering problem for a given scatterer, but is not a quantity

used in near-field studies.

15



2 Light Scattering

2.2.6 Far-Field Measurements

In this section we briefly cover typical scattering measurements that may be per-

formed. The most common one is the extinction measurement, where light is shone

through a sample, and the intensity of the transmitted light is measured, as depicted

in Fig. 2.2. Note that the light that is collected on the other side of the sample will

include some component of scattered light as well as the unscattered light, but the

quantity that falls upon a sufficiently small detector is negligible. This measures

the combination of scattering and absorption by the sample, though it is in some

contexts referred to (incorrectly) as an absorption measurement, as in the case of

small molecules the scattering is negligible.

It is also possible to measure the scattering intensity from a sample. This may

be achieved by placing a detector at some angle from the incident beam (except in

the exact forward direction, where it is not possible to distinguish the scattered and

unscattered light). In this way, it is common to map out the angular dependence of

the scattering intensity. A schematic of this method is given in Fig. 2.3.

Another possible means of observing scattering is dark-field microscopy, which is

used to visualise scatterers. In this technique, depicted in Fig. 2.4, light is incident

on some scatterer from a large angle, and the collected light excludes the incident

light, so that only scattered light is observed. This allows us to differentiate between

strong scatterers and a typical substrate with a low scattering cross section. It is

worth noting that in most experiments, it would be expected that any particles

being measured in solution would be rotating, and so results would correspond to

orientation-averaged ones. However, if the scatterer is deposited on a substrate then

its orientation may be fixed.

Aside from scattering and extinction, it is also possible to measure absorption.

This may be done by collecting all of the scattered and transmitted light, and

simply taking the difference. An additional tool is to use an integrating sphere,

where, the sample is enclosed in a high-reflectivity cavity, and light is shone in one

port, and collected out another. The principle is that the light passes through the

sample many times, which provides a spectral measurement of the absorption of the

sample. Another option is to measure the temperature change of a sample when
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2.2 General Light Scattering

Figure 2.2: Schematic of a typical of extinction measurement. Here some plane
wave (depicted as incident from the left) interacts with a collection of
scatterers (from top to bottom, the North Island, the South Island, and
Stewart Island), leading to some scattering (depicted to the North and
South), as well as transmission of the wave. The detector measures
the transmitted intensity of this wave, and hence deduces the amount
extinguished from the beam.
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2 Light Scattering

Figure 2.3: Schematic of an angular-dependent scattering measurement. Here the
same scatterer as in Fig. 2.1 was used, except now the intensity of the
light at some angle θ with respect to the incident field direction is mea-
sured. The detector is collimated, such that the incident field is not
collected, and only the scattered field is measured. The prevents mea-
surements near θ = 0 from being taken, as here the incident and scattered
waves are colinear.

light is shone onto it, using calorimetry. Energy that is absorbed will increase the

temperature of the sample. However, with this method, it is not possible to get any

frequency resolution, so monochromatic light sources must be used to obtain that

information.

2.3 Surface-Enhanced Raman Spectroscopy

We now turn to consider the light scattering problem from the perspective of surface-

enhanced Raman spectroscopy (SERS). This couples both far-field and near-field

considerations. We begin by looking briefly at Raman scattering, and then examine

aspects of scattering by particles that are relevant for SERS.
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2.3 Surface-Enhanced Raman Spectroscopy

Figure 2.4: Schematic of the dark-field scattering experiment. Here the incident
(green) rays incident on the sample fall outside the angle that is directed
into the detector. The scattered light (here shown in red) is collected by
the lens, and directed into the detector. This allows for the detection of
scattering by the object while removing the signal of reflection from the
sample or substrate.

2.3.1 Raman Scattering

Raman scattering is a variety of inelastic scattering of light, either by molecules or

by crystals. In the context of SERS, it is almost exclusively used in the context

of molecular scattering, whereby incident light excites vibrations in the molecules

and is scattered with a lesser energy, in so-called Stokes scattering. There is also a

process, anti-Stokes scattering, where an existing vibration in the molecule gives up

its energy to a photon, and the photon energy increases. The energies of the Stokes

and anti-Stokes lines are symmetric about the incident energy, but the intensities

differ owing to the need to have vibrational states populated to observe anti-Stokes
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lines.

These energy differences correspond to various vibrational modes of the molecule,

and the resulting spectrum provides a fingerprint of the molecule, which may be used

for identification, or to study the bonds in the molecule which are responsible for

the vibrations.

Raman scattering is typically a weak process, and competes with fluorescence,

which is often a much stronger process, especially in the case of resonant molecules.

Here, the energy of the Raman vibration corresponds to an electronic transition of

the molecule, leading to both a stronger Raman intensity and a stronger fluorescence

intensity. The fluorescence might arise from the molecule that is being studied itself,

or from impurities in the sample, which in either case can overwhelm the Raman

signal. Typical cross sections are of the order of 10−15 cm2 sr−1 for fluorescence,

10−30 cm2 sr−1 for non-resonant Raman scattering, and 10−24 cm2 sr−1 for resonant

Raman. A proper description of the mechanisms and intricacies of Raman spec-

troscopy is well outside the scope of this work, and interested readers are directed

to more specialised works, such as that of Long[21].

2.3.2 Surface-Enhanced Raman Spectroscopy

The relative weakness (in terms of intensity) of Raman scattering is one motivation

for the use of surface-enhanced Raman scattering. This technique, discovered in

1974[22], makes use of the enhancement of the electromagnetic field that may be

observed near a metallic surface. This has two effects. Firstly, and of most interest,

is that the Raman scattering cross section of the molecules is altered, and can

increase by many orders of magnitude, up to 1011[23]. This allows, for example, the

spectrum from a single molecule to be observed[24–26]. The other area of interest

is in studying the interaction of molecules with the surface. As SERS requires the

molecules to be near the surface for large enhancements, the signal comes primarily

from molecules adsorbed to the surface, and as the Raman effect examines bonds,

the bonds with the surface influence the spectra obtained[27, 28].

The mechanism of SERS enhancement is a matter of some contention[29, 30].
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2.3 Surface-Enhanced Raman Spectroscopy

Primarily, however, the effect is electromagnetic, and this will be assumed to be

responsible for the entire enhancement in this thesis. The electromagnetic enhance-

ment was suggested by Moskovits[31], and results from couplings between the inci-

dent field and the substrate, and the excited Raman field and the substrate. Briefly,

the incident field ~EInc is modified by the surface to produce some local field ~ELoc.

This local field excites a Raman dipole, which would in the total absence of the

surface emit with a power proportional to
∣∣∣ ~ELoc

∣∣∣2. From the point of view of the

excitation, this power in the presence of the surface increases by a factor of

MLoc =

∣∣∣ ~ELoc

∣∣∣2∣∣∣ ~EInc

∣∣∣2 , (2.40)

the local field intensity enhancement factor. However, that is not the entire story.

The emission is also affected, by reciprocity arguments by the same factor, with one

difference. As the emission is at a different frequency, MLoc is different. Thus, with

frequency-dependence introduced, the enhancement may be written

F (ωR, ωL) = MLoc(ωR)MLoc(ωL) =

∣∣∣ ~ELoc(ωR)
∣∣∣2 ∣∣∣ ~ELoc(ωL)

∣∣∣2∣∣∣ ~EInc

∣∣∣4 (2.41)

where ωL is the frequency of the incident light, and ωR is the frequency of the

Raman mode being considered. For simplicity, it is often assumed that the Raman

enhancement is simply

F (ω) = MLoc(ω)2 =

∣∣∣ ~ELoc

∣∣∣4∣∣∣ ~EInc

∣∣∣4 (2.42)

which is approximately true for Raman modes close in frequency to the incident

light. In fact, all of these equations are at best an approximation, and a more

detailed discussion of factors that influence the enhancement factor can be found in

Ref. [32].

The result of the above is that the Raman signal is roughly proportional to the
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fourth power of the electric field enhancement, which can lead to significant gains

in sensitivity. In order to calculate expected enhancement factors, it is necessary to

calculate electric fields near the surface of our scatterers. In this instance, ‘near’ is

within a few nanometres of the surface, as SERS signals originate primarily from

molecules adsorbed to the surface. As a result, the area of interest in SERS calcula-

tions is much more focused near the particle than other light-scattering calculations

(as discussed in previous sections), which are principally concerned with far-field

measurements.

2.4 Computational Techniques

In this section, a brief overview of a variety of computational techniques used to

solve the light scattering problem is presented. For a more complete and in-depth

examination of this topic, other works are recommended[33]. In this section, only a

brief overview is given for the most part, with more detail provided for the methods

that were used for this thesis, namely Mie theory, the T -matrix method, and finite-

element modelling.

Method Category
Mie theory Analytical

T -matrix method/EBCM Semi-analytical
Surface-integral equation method Specialised numerical

Discrete-dipole approximation Specialised numerical
Finite-element method General numerical

Finite-difference time-domain General numerical

Table 2.1: Classes of different methods for solving light scattering problems

Broadly, the various different techniques can be classed into four groups, though

the boundaries between these may be a bit blurry. A categorisation of some tech-

niques is given in Table 2.1. The first two categories, analytical and semi-analytical,

do not require discretising the particles under study. They are in principle fast

techniques, that are only used for solving electromagnetic problems. The reason

that the T -matrix is categorised as semi-analytical here is that while the theory is
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2.4 Computational Techniques

analytical, the need to numerically evaluate integrals and invert matrices removes

the ability to treat it fully analytically. Both Mie theory and the T -matrix method

require surfaces that are defined analytically, which restricts the shapes that they

are able to model.

Among the numerical methods, there are two categories. The specialised numer-

ical methods are specifically for solving electromagnetic scattering problems, and

involve discretising the surface (such as the surface integral equation method) or

volume (discrete-dipole approximation) into small elements. This allows the shapes

considered to be general. They then make use of known properties of the light-

scattering problem to obtain a solution (by making use of Green’s functions), and

perform this faster than the general numerical solvers. They also, by making use

of some properties of the problem, are able to avoid discretising the medium sur-

rounding the particle, and also to ensure that the radiation condition at infinity is

satisfied.

The last category of solver is the general numerical solver, which is not specialised

to solving electromagnetic problems, but instead is a differential equation solver,

capable of treating many different problems. These discretise both the particle and

a region of the surrounding medium, which must be large enough so that the field

at the edges of the simulation volume is behaving as in the far-field, so that the

finite size of the volume does not affect the results. This allows for arbitrary shapes

to be simulated, though owing to the lack of specialisation to the light-scattering

problem, the time and memory requirements for this method can be large.

2.4.1 Mie Theory

In this section only the basic principles of Mie theory are explained. More detail is

found in Chapter 3. Mie theory (also called Lorenz-Mie theory), was published in

1908 by Mie[34]. This solves the light scattering problem in the case of a spherical

scatterer.

The starting point of Mie theory is to express the electric fields in terms of a basis

of vector spherical wavefunctions. The scattered and incident fields are expanded
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in terms of irregular wavefunctions (that satisfy the Sommerfeld radiation condition

that the field goes as eikr/r as r goes to ∞), while the internal field is expressed

in terms of regular wavefunctions (that are finite at the origin). The coefficients

of these series, obtained by applying the boundary conditions, are then related to

each other by the Mie coefficients. These Mie coefficients are simply composed of

spherical Bessel functions, and are not computationally demanding. The various

cross sections are computed as appropriate sums over the Mie coefficients.

Mie theory is able to (with some modification) treat collections of spheres, as

well as layered spheres.

2.4.2 T -matrix Method

The T -matrix method is similar to Mie theory, in that the fields are expanded in

terms of a basis of vector spherical wavefunctions. However, this theory allows for

non-spherical scatterers, and reduces to Mie theory for spherical scatterers. The

eponymous T -matrix relates the coefficients of the expansion of the incident and

scattered fields, and there is another matrix (which we will call R) which relates

the incident and internal fields. One of the benefits of this method is that, as the

T -matrix relates the coefficients of the fields, any incident field may be used, and so

different field orientations are easy to model once the matrix has been calculated.

The same is true for Mie theory, but owing to the spherical symmetry in that case it

is not significant. A more thorough description of the T -matrix method is provided

in Chapter 3.

The T -matrix is usually calculated using the extended boundary-condition method

(EBCM) (also known as the null-field method), which involves integrals on the sur-

face of the scatterer. In the case of particles with symmetry of revolution, these

surface integrals reduce to line integrals, which are much simpler. There is also a

matrix inversion step in order to obtain the T matrix.

It is possible to obtain the T -matrix through other methods, such as the discrete-

dipole approximation[35] or point-matching method[36], though the EBCM is the

most common approach. There are also implementations of the EBCM which take
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finite symmetries into account, allowing more efficient calculation in that case[37].

As with Mie theory, the T -matrix method is also able to model scattering by

multiple scatterers, as well as layered particles. The T -matrix method is able to

calculate scattering properties for any incident direction, and it is also possible to

perform analytical orientation averaging of far-field scattering properties.

2.4.3 Finite-Element Method

The finite-element method (FEM) is a method for solving Maxwell’s equations (or

other differential equations) for “arbitrary” geometries. In this section, the focus is

on the commercial software package COMSOL[38], which makes use of the finite-

element method. COMSOL is able to solve arbitrary differential equations, and has

several sets, including Maxwell’s equations in media, pre-configured.

The basic principle of operation is to define the simulation geometry, and then

to divide it up into a mesh of many smaller elements (which may be irregular). The

simulation (for only one incident orientation) then solves Maxwell’s equations on

each mesh element. The solution on each element uses a quadratic approximation,

so the mesh needs to be fine enough that this approximation is good. The simula-

tion geometry here refers to the particle and surrounding medium, which must be

large enough that the incident field is not appreciably affected by the edge of the

simulation volume.

It is possible to carry out a range of different simulations, and of interest in

this work are 3D, full-wave problems, 3D electrostatic problems, and 2D problems,

including 2D axisymmetric ones (which are a 3D problem where there is no φ-

dependence), though other situations are possible. The memory and time require-

ments to simulate a 3D case are substantially higher than for 2D, and so in some

cases the 2D simulation is preferred. In that case, the electrostatics approximation

must be used (the k-vector of the full-wave simulation breaks the rotational symme-

try, precluding the use of full-wave solutions), and the range of incident orientations

is restricted to only the two directions along the axis of revolution.

COMSOL is able to simulate arbitrary geometries, and hence can simulate mul-
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tiple particles as well as layered particles. However, with small gaps or regions of

high curvature, the meshing requirements become higher and so memory and time

requirements increase. Sufficiently challenging geometries are then not able to be

solved by some given computer, and a more capable machine may be required. How-

ever, with these limitations excepted, the finite element method presents the most

general, brute-force method of solving Maxwell’s equations for arbitrary geometries.

An alternative to the frequency-domain calculations is to solve in the time do-

main. This entails modelling an incident pulse, which contains all frequencies, and

solving in steps of time[39]. This also requires modelling the particle and the re-

gion surrounding, and the dielectric function of both must be known for a wide

wavelength range, which in practice can be limiting.

One of the benefits of the finite-element method as compared to other numerical

techniques is that the mesh elements do not need to be the same size, so that in

regions with rapidly-changing fields, the mesh can be made finer, so the results

in that region better approximate the real field. This allows for regions of high

curvature to be modelled without imposing the required finer mesh on the entire

geometry, with the associated computational cost. This is particularly important

when considering the near-field.

2.4.4 Other Methods

There are a plethora of other methods that have been developed to solve the light-

scattering problem. While they have not been used in the works involved in this

thesis, nonetheless they are widely employed in a variety of fields, and a selection of

them are briefly presented here.

Discrete Dipole Approximation

The discrete dipole approximation (DDA) has long been used in light-scattering

calculations[40, 41], initially for use in dielectrics but also now applied to metallic

particles[42]. This method begins by discretising the particle into small elements,
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each of which is represented as a dipole with some polarisability. The interaction of

all of the dipoles with the incident light and each other is then solved to calculate

the electric field. This method works well for arbitrarily shaped particles, and can

calculate scattering by collections of particles. However, the calculations must be

recalculated for different incident orientations.

The accuracy of the results using the DDA is typically good for far-field proper-

ties, where a collection of dipoles closely approximates the response of the scatterer.

However, for the near-field, the field is not well modelled by a collection of dipoles,

and the accuracy becomes reduced, and so the number of dipoles being considered

must be increased, substantially in some cases. It is, however, possible to model the

near-field using the DDA[43].

Surface Integral Equation Method

While the discrete dipole approximation is based on discretising the volume, the

surface integral equation method (SIE) discretises the surface of the particle into

triangles[44]. This allows particles of arbitrary shape to be modelled. The method

solves for surface electric and magnetic currents that produce the same field as are

produced by the particle volume. The field in the region around (and inside) the

particle may then be calculated. SIE has historically found use in the microwave

scattering community, but has more recently found favour in the light-scattering

community as well[44–46].

This technique, while a recent addition to the light-scattering arsenal, promises

to be an efficient technique for computing near-field properties of arbitrarily-shaped

scatterers. However, where it is possible to use one of the (semi-)analytical tech-

niques, then these will tend to be faster and more accurate.
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Method

This chapter provides more details about Mie theory, the T -matrix method, and

the extended boundary-condition method (EBCM), as a background to methods

used in this thesis. Mie theory and the T -matrix method are able to treat scattering

by both vector or scalar waves, which in practice means either electromagnetic[47] or

acoustic[48] scattering respectively. While Mie theory may be considered a special

case of the T -matrix method (for the case of spheres), it is presented first in line

with the historical order of the methods, as well as to present some of the concepts

on the simpler Mie theory. Both of these methods have a long history, with Mie

theory introduced in 1908[34], and the T -matrix method in 1965[49]. The following

chapters contain improvements to the T -matrix method, and represent the progress

made in this thesis.

3.1 Helmholtz Equation in Spherical Coordinates

The light scattering problem involves solving the Helmholtz equation. Typically

light-scattering problems are solved in spherical coordinates, so outgoing waves can

Carrot Cake Preheat oven to 180 ◦C. Place in a bowl 1.25 cup brown sugar and 0.75 cup vegetable
oil. Beat with an electric mixer for 2–3 min. Add 3 eggs gradually, and beat well. Sift in 1.5 cup
plain flour, 1.5 tsp baking powder, 1 tsp baking soda, 1 tsp ground cinnamon, and 0.5 tsp ground
ginger. Add 2.5 cup grated carrot, 0.5 cup sultanas, and optionally 0.5 cup chopped pecan nuts
or walnuts. Pour into a 22 cm cake tin lined with baking paper. Bake for 55–60 min, or until
skewer indicates that it is cooked. Ice when cool with cream-cheese frosting.
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be easily viewed as outgoing spherical waves, which is a natural way to view them,

especially in the far-field. As we assume that we are solving the problem in a region

without sources, we are after divergence-free
(
∇ · ~E = 0

)
solutions for ~E, and we

will solve for ~E only, and realise that ~H may be obtained from this, as discussed in

Chapter 2. The Helmholtz equation is, for complex ~E,

∇2 ~E + k2 ~E = ~0. (3.1)

In spherical coordinates, the Laplacian (∇2) operator may be written

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (3.2)

It is possible to show that if some function f(~r) is a solution to the scalar

Helmholtz equation, then the field

~M = ∇× (~rf) (3.3)

is a solution to the vector Helmholtz equation, and is also divergence-free, as the

divergence of a curl is zero[8]. It is also possible to define

~N =
∇× ~M

k
(3.4)

which is also divergence-free and an independent solution to the Helmholtz equation.

In the spherical polar coordinate system, we would like separable solutions, of

the form

f(~r) = R(r)Θ(θ)Φ(φ) (3.5)

where

∇2f + k2f = 0 (3.6)
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which, by applying Eq. (3.2), leads to

d2Φ

dφ2
+m2Φ = 0 (3.7)

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

[
n(n+ 1)− m2

sin2 θ

]
Θ = 0 (3.8)

d

dr

(
r2 dR

dr

)
+
[
k2r2 − n(n+ 1)

]
R = 0, (3.9)

with separation constants n and m. For the first equation, the solutions are sinu-

soids, eimφ, and we require that the solution is 2π-periodic in φ, so m must be an

integer. The second equation has solutions that are associated Legendre functions

Pm
n (cos θ)[50], as defined in Appendix B. From this, we require that n is an integer,

and that |m| ≤ n.The third equation may be rewritten

x
d

dx

(
x

dZ

dx

)
+

[
x2 −

(
n+

1

2

)2
]
Z = 0 (3.10)

where x = kr and Z =
√
xR. The solutions to this are spherical Bessel functions

of the first kind jn(kr), the second kind yn(kr), and linear combinations of these,

the Hankel functions of the first kind h
(1)
n (kr) = jn(kr) + iyn(kr) and second kind

h
(2)
n (kr) = jn(kr)− iyn(kr)[50]. The solutions that we use are jn(kr) and h

(1)
n (kr),

with the other functions constructable as a linear combination of these. The Hankel

function corresponds to outgoing spherical waves, which diverge at the origin, while

the Bessel function corresponds to the solution that is finite at the origin. More

detail on the form of the Bessel and Hankel functions is provided in Appendix A.

These functions f may give us the electric fields by using Eqs. (3.3) and (3.4).

This leads to two different varieties of ~M that we may obtain. These are

~M (1)
nm(kr, θ, φ) = ∇×

(
~reimφPm

n (cos θ)jn(kr)
)

(3.11)

~M (3)
nm(kr, θ, φ) = ∇×

(
~reimφPm

n (cos θ)h(1)
n (kr)

)
(3.12)

where ~M (1) corresponds to regular (finite at the origin) solutions, and ~M (3) corre-
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spond to outgoing spherical waves. Following from this, we also have

~N (1)
nm(kr, θ, φ) =

1

k
∇× ~M (1)(kr, θ, φ) (3.13)

~N (3)
nm(kr, θ, φ) =

1

k
∇× ~M (3)(kr, θ, φ). (3.14)

These functions ~M and ~N are referred to as vector spherical wavefunctions (VSWFs).

There are two other varieties, with superscripts (2) and (4), which correspond to the

Bessel functions yn(kr) and h
(2)
n (kr) respectively. These may be constructed by

linear combination of the other two VSWFs, as with the Bessel functions. There is

more discussion of how to obtain the VSWFs provided in Appendix C.

The use of these VSWFs provides some physical meaning. In particular, we may

associate the solutions ~M
(3)
nm and ~N

(3)
nm with the fields created by multipoles. Here

the ~M (3) solutions correspond to magnetic multipoles at the origin, while the ~N (3)

solutions correspond to electric multipoles.

Instead of working with the associated Legendre functions for the angular func-

tions, we instead follow the example of Ref. [9] and work with some related func-

tions, for reasons of numerical stability. We may write a special case of the Wigner

d-function as

dnm(θ) = dn0m(θ) = (−1)m

√
(n−m)!

(n+m)!
Pm
n (cos θ) (3.15)

where we make use of the simpler notation dnm(θ) for simplicity. From this, the

functions πnm(θ) and τnm(θ) are defined as

πnm(θ) =
mdnm(θ)

sin θ
(3.16)

τnm(θ) =
d

dθ
dnm(θ). (3.17)

More information about these angular functions is provided in Appendix B.

The indices n and m that were introduced into the solutions of Φ, Θ and R

represent the total angular momentum of the solution, and the projection of the
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angular momentum along the z-axis (in our coordinate system), respectively. The

values that these indices may take are 0 ≤ n < ∞ and −n ≤ m ≤ n (which is

equivalent to 0 ≤ |m| ≤ n).

The expressions for ~M and ~N are

~Mnm(k~r) = (−1)m

√
(n+m)!

(n−m)!
γnmzn(kr)~Cnm(θ)eimφ (3.18)

~Nnm(k~r) = (−1)m

√
(n+m)!

(n−m)!
γnm

(
n(n+ 1)

kr
zn(kr)~Pnm(θ) +

z′n(kr)

kr
~Bnm(θ)

)
eimφ

(3.19)

where we have the vectors

~Bnm(θ) = θ̂τnm(θ) + φ̂iπnm(θ) (3.20)

~Cnm(θ) = θ̂iπnm(θ)− φ̂τnm(θ) (3.21)

~Pnm(θ) = r̂dnm(θ), (3.22)

and

γnm =

√
(2n+ 1)(n−m)!

4πn(n+ 1)(n+m)!
. (3.23)

The function zn(kr) is one of the spherical Bessel functions, jn(kr) for the regular

functions, and yn(kr) for the irregular functions.

3.2 Plane-Wave Expansion

Now that we are able to obtain solutions of the Helmholtz equation, we must be able

to express the fields we wish to work with, which in general will not be convenient

multipolar fields. Depending on the incident field of our situation, the field will be

made up of the sum of a series of the individual multipoles. We may express the

field in terms of a series with either coefficients anm, bnm or cnm, dnm, associated
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3 Mie Theory and the T -matrix Method

with the regular or irregular vector spherical wavefunctions. That is,

~E(~r) =
∞∑
n=0

n∑
m=−n

(
anm ~M (1)

nm(k~r) + bnm ~N
(1)
nm(k~r)

)
(3.24)

~E(~r) =
∞∑
n=0

n∑
m=−n

(
cnm ~M (3)

nm(k~r) + dnm ~N
(3)
nm(k~r)

)
, (3.25)

where the choice of which series to use is based on the desired behaviour of the

functions (finite at the origin, or behaving as outgoing spherical waves at infinity)

in the domain of interest. In the case of the incident wave, the expansion with

coefficients anm and bnm is used. The internal field uses the same series (though

with a different set of coefficients, labelled αnm and βnm), and the scattered field

makes use of the second series.

It is possible to express any incident wave (within the time-harmonic formalism

that underpins all of the work in this thesis) as a series such as that in Eq. (3.24),

because the vector spherical wavefunctions form a basis for the divergence-free so-

lutions of the Helmholtz equation. It is possible to calculate the coefficients of the

series for any incident wave, and the expressions for plane waves are provided here,

without justification. A derivation of this may be found in other sources[8, 9]. The

coefficients are

anm = 4π(−1)mindn ~E0 · ~C∗nm(θp)e
−imφp (3.26)

bnm = 4π(−1)min−1dn ~E0 · ~B∗nm(θp)e
−imφp (3.27)

where we use the values

dn =

√
2n+ 1

4πn(n+ 1)
(3.28)

~Bnm(θp) = θ̂τnm(θp) + φ̂iπnm(θp) (3.29)

~Cnm(θp) = θ̂iπnm(θp)− φ̂τnm(θp). (3.30)

In these expressions, the values of θp and φp correspond to the direction of the

incident plane wave. The polarisation information is contained in the vector ~E0,
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3.2 Plane-Wave Expansion

and ~E and ~k1 are defined as

~E = ~E0e
i~k1·~r (3.31)

~k1 = kxx̂+ kyŷ + kz ẑ. (3.32)

In the case of incidence along the ẑ-axis, with the electric field polarised along x̂ (so

θp = 0, φp = 0), this may be expressed as

~E = ~E0e
ik1z (3.33)

~E0 = E0x̂ (3.34)

~B∗nm = x̂τnm(0)− ŷiπnm(0) (3.35)

~C∗nm = − x̂iπnm(0)− ŷτnm(0), (3.36)

and hence

~E0 · ~B∗nm = E0τnm(0) (3.37)

~E0 · ~C∗nm = − iE0πnm(0). (3.38)

For this we note the values of πnm and τnm at θ = 0, which are for m 6= 0

πnm(0) =

√
n(n+ 1)

2
(3.39)

τnm(0) =
m

n

√
n(n+ 1), (3.40)

and when m = 0 they are

πn0(0) = 0 (3.41)

τn0(0) = 0. (3.42)

For this incident field all values of m where |m| 6= 1 lead to coefficients of zero,
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3 Mie Theory and the T -matrix Method

and the values of the coefficients anm and bnm are then

an,1 = in+1
√
π(2n+ 1) (3.43)

bn,1 = in+1
√
π(2n+ 1) (3.44)

an,−1 = in+1
√
π(2n+ 1) (3.45)

bn,−1 = − in+1
√
π(2n+ 1). (3.46)

(3.47)

3.3 Mie Theory

Mie theory provides a means to relate the coefficients of the incident and scattered

fields, as used in the field expansions (3.24) and (3.25). In the case of a sphere, all

incident directions are equivalent, and so by choosing the incident direction with an

x-polarised electric field and with ~k1 along ẑ, only the cases where |m| = 1 must be

considered. There are simple relations between m = 1 and m = −1 terms, and so

where possible we will only focus on the m = 1 terms.

The field expansions that we use for Mie theory are for the incident, scattered

and internal fields respectively given by

~EInc(~r) =
∞∑
n=0

n∑
m=−n

(
anm ~M (1)

nm(~r) + bnm ~N
(1)
nm(~r)

)
(3.48)

~ESca(~r) =
∞∑
n=0

n∑
m=−n

(
cnm ~M (3)

nm(~r) + dnm ~N
(3)
nm(~r)

)
(3.49)

~EInt(~r) =
∞∑
n=0

n∑
m=−n

(
αnm ~M (1)

nm(~r) + βnm ~N
(1)
nm(~r)

)
(3.50)

where here the external field is obtained as

~EExt = ~EInc + ~ESca. (3.51)
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3.3 Mie Theory

3.3.1 Boundary Conditions

The starting point for relating the coefficients is to consider the boundary conditions

on the particle surface r = a. These are(
~EInc + ~ESca

)
· θ̂ = ~EInt · θ̂ (3.52)(

~EInc + ~ESca

)
· φ̂ = ~EInt · φ̂ (3.53)(

~HInc + ~HSca

)
· θ̂ = ~HInt · θ̂ (3.54)(

~HInc + ~HSca

)
· φ̂ = ~HInt · φ̂ (3.55)

which arise from Eqs. (2.29) and (2.30). These may be worked to arrive at

cnm = Γnanm (3.56)

dnm = ∆nbnm (3.57)

where

Γn =
sψn(x)ψ′n(sx)− ψn(sx)ψ′n(x)

ψn(sx)ξ′n(x)− sξn(x)ψ′n(sx)
(3.58)

∆n =
ψn(x)ψ′n(sx)− sψn(sx)ψ′n(x)

sψn(sx)ξ′n(x)− ξn(x)ψ′n(sx)
(3.59)

where we make use of the Riccati-Bessel functions ψn(x) and ξn(x), as described in

Appendix A, for convenience, s is the (possibly complex) relative refractive index s =

n2/n1, n1 and n2 are the refractive indices of the medium and particle respectively,

and x is the size parameter x = k1a. Here Γn relates the coefficients anm to the

coefficients cnm, while ∆n relates bnm to dnm.

It is also possible to express the coefficients for the series of the internal field in

terms of the coefficients of the incident field, though these are not reproduced here.

37



3 Mie Theory and the T -matrix Method

3.3.2 Scattering Quantities

The series expansions provide a means of calculating the electric fields at points in

space, but these are not the only quantities of interest in light-scattering problems.

As seen in Section 2.2.5, there are a selection of cross sections that are of great

interest. Within the Mie formalism, these may be analytically computed from the

values Γn and ∆n, as sums over all values of n. In the case of Mie theory, we are

only concerned with cases where |m| = 1, and there is an easy relation between the

coefficients of m = 1 and m = −1.

The expressions for the cross sections are

σSca =
2π

k2
1

∞∑
n=1

(2n+ 1)
(
|cn|2 + |dn|2

)
(3.60)

σExt =
2π

k2
1

∞∑
n=1

(2n+ 1) Re (cn + dn) (3.61)

σAbs = σExt − σSca. (3.62)

For both series these are only valid for plane-wave excitation, but by symmetry for

any incident orientation.

3.4 T -matrix Principles

Mie theory works very well for solving the light-scattering problem, with the main

drawback being that it is only valid in the case of spheres. However, there is another

method that follows a similar approach that works for a much larger class of shapes,

the T -matrix method. This method was first presented in 1965 by Waterman[49] for

the case of perfectly-conducting scatterers, and it was later extended to other cases,

such as non-perfect conductors[47], and dielectric scatterers[51]. This method is

able to model arbitrary shapes, but some shapes, especially those with sharp edges,

may present numerical difficulties. The formulation is similar to that of Mie theory,

except now all values of m (with |m| ≤ n) must be considered in general (as not all

incident directions are equivalent, we can not always exclude all other m-values).
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3.4 T -matrix Principles

Now, instead of the field coefficients being related by the vectors ~Γ and ~∆, they are

linearly related by the matrix T. That is,(
~c
~d

)
= T

(
~a
~b

)
. (3.63)

Thus coupling between different orders of n and m is possible, which is not the case

in Mie theory. In the case of a sphere, the T -matrix method reduces to be the same

as Mie theory, in which case the T -matrix is diagonal, with the diagonal entries

being

diag(T) =
(
~Γ, ~∆

)
. (3.64)

The coefficients maintain the same meaning in the series expansion of the fields as

for Mie theory.

Within the T -matrix formalism, the expressions used to calculate desired scat-

tering quantities are similar to Mie theory, and the forms are given here. As for Mie

theory, the field is expanded in terms of VSWFs, as

~EInc(~r) = E0

∑
n,m

(
anm ~M (1)

nm(k1~r) + bnm ~N
(1)
nm(k1~r)

)
(3.65)

~EInt(~r) = E0

∑
n,m

(
αnm ~M (1)

nm(k2~r) + βnm ~N
(1)
nm(k2~r)

)
(3.66)

~ESca(~r) = E0

∑
n,m

(
cnm ~M (3)

nm(k1~r) + dnm ~N
(3)
nm(k1~r)

)
, (3.67)

and as before the external field is calculated as the sum of the incident and scattered

fields,

~EExt = ~EInc + ~ESca. (3.68)

The cross sections are given by[8]

σSca =
1

k2
1

∑
n,m

(
|cnm|2 + |dnm|2

)
(3.69)
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3 Mie Theory and the T -matrix Method

σExt =
−1

k2
1

∑
n,m

(c∗nmanm + d∗nmbnm) (3.70)

σAbs = σExt − σSca. (3.71)

Additionally, orientation-averaged cross sections may be obtained as[9]

〈σSca〉 =
2π

k2
1

∑
n,k,m

(∣∣T 11
nkm

∣∣2 +
∣∣T 12
nkm

∣∣2 +
∣∣T 21
nkm

∣∣2 +
∣∣T 22
nkm

∣∣2) (3.72)

〈σExt〉 =
−2π

k2
1

∑
n,m

Re
(
T 11
nnm + T 22

nnm

)
. (3.73)

where this now depends on entries in T instead of coefficients of the electric field.

This exemplifies one of the main benefits of the T -matrix approach: once the T -

matrix has been calculated, then that matrix may be used to determine the scatter-

ing from any incident wave/particle orientation, with only the tasks of calculating

the coefficients of the incident wave, and the multiplication in Eq. (3.63) needing

to be performed again to obtain the new coefficients of the scattered field. This is

in contrast to, for example, the discrete-dipole approximation, where each incident

orientation must be separately simulated (though it may be used to calculate the

T -matrix, this involves simulating many different incident conditions.)

The most common means of calculating the T -matrix is that which was provided

by Waterman, the extended boundary-condition method (EBCM)[49]. This method

is well described in other places[9], and so the full derivation is not provided here.

A brief description is provided in the next section.

There are various other methods that may be used to calculate the T -matrix.

Among those that make use of the EBCM are the iterative EBCM[52], the null-

field method with discrete sources (NFM-DS, null-field method is another term for

EBCM)[53]. These approaches are both attempts to extend the practical range of

validity of the modelling to higher aspect-ratio particles. The downside of these

other methods is that they become more complicated, and lose the benefits of the

T -matrix method. Taking a different approach than the the EBCM, it is also

possible to calculate the T -matrix via other methods, such as the discrete-dipole

approximation[35, 54], point-matching methods[36] or finite-difference time-domain
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3.4 T -matrix Principles

method[55]. However, in order to encode all of the scattering information in the

T -matrix, it is necessary to model light incident from all directions, which is com-

putationally demanding. These other methods also typically have higher time re-

quirements than the EBCM, and so their benefit arises from the extended range of

shapes that they are able to consider.

3.4.1 Implementation Details

In the most general case, within the EBCM formalism, T is obtained as

T = −PQ−1, (3.74)

where the matrices P and Q will be described shortly. These matrices are structured

as block matrices, such as

T =

(
T11 T12

T21 T22

)
, (3.75)

and similarly for the other matrices. Here then we may relate T11 as coupling the

~a and ~c coefficients, T12 as coupling ~a and ~d, T21 as coupling ~b and ~c, and T22 as

coupling ~b and ~d.

Following the formalism of Mishchenko, P and Q are calculated through the J

and RgJ matrices.1 By using a surface-integral equation, the null-field equation

(also called the extended boundary condition), the surface currents may be related

to the incident and scattered fields, by expanding the currents and the fields on a

basis of VSWFs. The coefficients of these series are related by the matrices P (for

the scattered fields and surface currents) and Q (for the incident fields and surface

currents). These may then be used to related the incident and scattered fields.

1Here we defer to Mishchenko’s notation, and use the Rg prefix to denote that the matrix contains
the regular terms, that is those that are finite at the origin. For the most part a different
notation will be used, such as P instead of RgQ, for ease of both reading and typing.
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3 Mie Theory and the T -matrix Method

These are related by the matrix Q, given explicitly here as(
~a
~b

)
= Q

(
~α
~β

)
, (3.76)

and this is obtained from J with

Q =

(
Q11 Q12

Q21 Q22

)
= −ik2

1

(
sJ21 + J12 sJ11 + J22

sJ22 + J11 sJ12 + J21

)
. (3.77)

The J-matrix is defined as

J11
nkmm′ = (−1)m

∫
S

dSn̂ ·
(
~M

(1)
km′(k2r, θ, φ)× ~M

(3)
n,−m(k1r, θ, φ)

)
(3.78)

J12
nkmm′ = (−1)m

∫
S

dSn̂ ·
(
~M

(1)
km′(k2r, θ, φ)× ~N

(3)
n,−m(k1r, θ, φ)

)
(3.79)

J21
nkmm′ = (−1)m

∫
S

dSn̂ ·
(
~N

(1)
km′(k2r, θ, φ)× ~M

(3)
n,−m(k1r, θ, φ)

)
(3.80)

J2
nkmm′ = (−1)m

∫
S

dSn̂ ·
(
~N

(1)
km′(k2r, θ, φ)× ~N

(3)
n,−m(k1r, θ, φ)

)
(3.81)

and the matrix RgJ is similar, except that the irregular functions ~M (3) and ~N (3)

are replaced by their regular versions, ~M (1) and ~N (1) respectively. Here k1 is the

wavenumber in the medium, and k2 is the wavenumber in the particle.

The matrix P is calculated in a similar way, except that it makes use of RgJ

instead of J. P relates the coefficients of the internal and scattered fields, as(
~c
~d

)
= −P

(
~α
~β

)
. (3.82)

From Eqs. (3.76) and (3.82) we are able to relate the coefficients of the incident and

scattered fields. This involves inverting the relationship between the internal and

incident fields, and is (
~c
~d

)
= −PQ−1

(
~a
~b

)
= T

(
~a
~b

)
(3.83)
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which is the canonical T -matrix equation.

It is also possible to calculate the internal fields, which depend only on Q. These

are calculated as (
~α
~β

)
= R

(
~a
~b

)
(3.84)

where we have defined R = Q−1.

We introduce here the matrix U, which is the irregular part of Q[7]. Thus, Q

may be constructed as

Q = P + iU. (3.85)

This follows from the construction of the Riccati-Hankel function ξ, which is

ξn(x) = ψn(x) + iχn(x). (3.86)

The matrices P, Q and U differ only in the radial functions used, with P using

ψn(x)ψk(sx), Q using ξn(x)ψk(sx), and U using χn(x)ψk(sx). It is common to

instead use Q instead of U, but we have recently suggested that by using U there

are some benefits[7].

3.4.2 Axisymmetric Particles

In many cases, particles with some specific symmetry are modelled. The most com-

mon case, and that which is the focus of all of the work in this thesis, is axisymmetric

particles, which have symmetry of revolution. The convention used in this work is

that the particle is rotated about the z-axis. Commonly-used particles with this

symmetry include spheres, spheroids (which are the focus of much of this thesis),

right-circular cylinders, and many others.

There are several simplifications that arise from considering axisymmetric parti-

cles. In terms of the T -matrix, one of these simplifications is related to the indices

m and m′. For axisymmetric particles, entries of the various matrices are zero unless
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m = m′, and hence in the rest of this thesis, the index m′ is dropped, and should be

considered equal to m. A result of this is that the entries for different ms are decou-

pled. This means that the matrices for different m may be inverted independently,

which greatly reduces time and memory requirements. As well as this, the integrals

become simplified, from surface integrals to line integrals. The normal to the surface

has no φ-component, and the surface element times the unit normal becomes

dSn̂ = 2πr2 sin θdθ
(
nrr̂ + nθθ̂

)
(3.87)

n̂ = nrr̂ + nθθ̂ (3.88)

where

nr =
r√

r2 + r2
θ

(3.89)

nθ =
−rθ√
r2 + r2

θ

. (3.90)

One of the most commonly used codes for EBCM calculations of axisymmetric

particles is that of Mishchenko[9]. In Mishchenko’s formalism, the matrices T, Q

and P, as well as J and RgJ, are expressed as block matrices, as in Eq. 3.75. These

matrices are the same as those described earlier in this chapter, and the explicit

axisymmetric forms of the J-matrices are provided in Appendix D.

3.4.3 Surface Fields

Often when the fields on the surface are desired, it is more numerically stable to

calculate them by using the series expansion for the internal field, and then make

use of the boundary conditions to calculate the external surface field. Here we make

use of the requirement that the tangential components of the electric field, and the

normal components of the electric displacement, are continuous. That is,(
~E− − ~E+

)
× n̂ = ~0 (3.91)(

ε1
~E− − ε2

~E+

)
· n̂ = 0 (3.92)
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where ~E− is the field immediately inside the particle surface, and ~E+ is the field

immediately outside the surface. Here we have n̂ = nrr̂ + nθθ̂ is the unit-normal

vector on the surface (expressions provided in the previous section), and the φ-

component is zero when working with axisymmetric particles. This leads to the

relations

Er+ = Eθ−nrnθ
(
s2 − 1

)
+ Er−

((
s2 − 1

)
n2
r + 1

)
(3.93)

Eθ+ = Eθ−
((
s2 − 1

)
n2
θ + 1

)
+ Er−nrnθ

(
s2 − 1

)
(3.94)

Eφ+ = Eφ− (3.95)

where s is the relative refractive index, and so s2 = ε2/ε1.

3.5 Extensions and Limitations

The T -matrix method, mainly by virtue of its semi-analytical nature, allows several

extensions, such as scattering by layered particles[56] or collections of particles[57].

These are briefly explained in the following sections, but for more detail other sources

are available[58].

The T -matrix method also suffers from some limitations, which are present both

in the EBCM and the T -matrix formalism itself. These are discussed in following

sections. For the most part these are numerical problems in calculating T with the

EBCM, though there are also some problems in expanding the field in a VSWF basis

in some regions.

3.5.1 Multiple Scattering

Multiple scattering in the case of the T -matrix method was introduced by Peterson

and Ström[57]. Multiple scattering refers to the scattering of light off multiple par-

ticles that are close enough that the particles affect the light scattering of the other

particles[59]. Widely separated particles may be considered independent scatterers.
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The basis for this method is translating the vector spherical wavefunctions used

in the expansions of each particle from some global coordinate system (where at least

one of the particles is not centred at the origin) to the local coordinate system of each

particle. The coefficients of the incident field are re-written for each particle with the

appropriate transformation, and then a T -matrix for each particle is constructed. It

is then possible to calculate the scattered field due to each particle, which includes

the effect of scattered light from other particles. From this, it is possible to construct

a T -matrix for the entire system. This T -matrix is treated the same as if it was for

only one particle, as it simply relates coefficients of the incident and scattered fields.

The T -matrix method has been used to consider collections of large numbers

of randomly-oriented particles[60], as well as finding application in considering col-

lections of particles with a varying size or shape distribution[61]. There have also

been reports of using the T -matrix method to consider the near-field in the case of

multiple-particle scattering[62].

3.5.2 Layered Scattering

Layered scattering in the T -matrix formalism was introduced by Peterson and

Ström[56]. Briefly, this involves expanding the field using a series with both the

regular and irregular VSWFs in the layers which do not contain the origin. Then,

the T -matrix obtained from this system takes into account the internal coupling be-

tween the layers, and still represents the coupling between the incident and scattered

fields.

3.5.3 Numerical Problems

The source of many of the numerical problems has been attributed to inversion

of the system of P and Q to obtain T[63–65]. This is a difficult step for several

reasons. Firstly, any inversion will accumulate numerical error, and this can lead

to significant errors in the result, even assuming that the matrix being inverted

is correct. Secondly, errors in the matrix being inverted will propagate into the

inverted system, leading to further errors. Thirdly, the matrices being considered
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are infinite matrices, but in real-world implementations, they must be truncated to

finite sizes. There is some assumption that inverting one of these finite matrices, if

it is sufficiently large, will lead to correct values for the entries that exist in that

matrix.

One method that is able to counter these numerical problems, with the possible

exception of the finite matrix size, is to compute values with increased numerical

precision[64]. By using a higher precision to compute values, and truncating the

result back to standard double precision for analysis, it is possible to avoid problems

associated with numerical integration or matrix inversion, and obtain reliable results.

More discussion of this technique is provided in Section 5.2. This approach is useful

for studying the behaviour of the method, but owing to the decrease in speed and

lack of ease of modifying these codes, actual results are best obtained using other

means.

Other errors arise from numerical problems associated with the summation in-

volved in integrating oscillatory functions. More discussion about this is provided

in Chapter 5.

3.5.4 Fundamental Problems

Aside from purely numerical problems, there is one main concern with the T -matrix

method which is much more fundamental in nature, and in this case does not depend

on the method used to generate the T -matrix. The problem, applies even when the

T -matrix is known perfectly, and it relates to calculating the near-field. The expan-

sion of the scattered field in terms of outgoing spherical waves centred at the origin

is the basis of the T -matrix method, yet this expansion is only guaranteed to be

valid in the region outside the circumscribing sphere[66, 67]. The assumption that

the field may be expressed in terms of this series everywhere is referred to as the

‘Rayleigh hypothesis,’ and it is commonly accepted that it is not valid everywhere.

The effect of this is that for some shapes, it is not possible to calculate a converged

value of the field everywhere in the vicinity of the particle, however far-field proper-

ties are believed to remain correct. It is worth stressing again that this occurs even

when the values in the T -matrix are correct. It is possible to obtain surface fields by
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making use of the boundary-conditions of the problem, and using the internal field,

but to calculate the fields in the region between the surface, and the region where

the series converges, is an outstanding problem[68, 69]. It is worth noting that the

region of non-convergence is not typically the entire region inside the circumscribing

sphere, but some subset of this[67]. It is also predicted that the field expansion

inside the particle fails for some geometries, outside the inscribing sphere, but this

is not the case for spheroids, the focus of most of this thesis.

There have been some attempts to improve the behaviour of the T -matrix method

for calculating near-fields in the case of elongated (high aspect-ratio) particles[70,

71]. This uses a range of different sources about which to expand the field, however

by using these methods many of the benefits (regarding the analytic nature of the

method) are lost.

3.6 Overview of this Work

This work is motivated largely by SERS, and so the interest in light scattering is

mainly in the area of calculating near- and surface-fields of plasmonic nanoparti-

cles. When using the T -matrix method, calculating near-fields typically requires the

consideration of higher-order multipoles, with the subsequent increase in numerical

error and potential problems with the Rayleigh hypothesis, as compared to calcu-

lation of far-field properties. As a result, we are interested in removing sources of

numerical error in the T -matrix method, which is the focus of the following chapters.

The following two chapters concern modifications made to the EBCM and T -

matrix method. In Chapter 4 are presented some techniques, the first related to the

integral forms, and the second to some linear recursion relations between the matrix

entries, that while of some value, do not remove all of the numerical problems that

trouble the T -matrix method. The integral forms allow for simpler manipulation,

and remove some small sources of numerical error. These sources of error are not the

primary cause of numerical problems, though they do present a simpler implementa-

tion. The simpler manipulation was, however, invaluable in working with the linear

recursion relations, and the more substantial improvements discussed in Chapter 5.
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3.6 Overview of this Work

The recursion relations, while promising, are an as-yet unfinished work, and require

more development to improve calculation of the T -matrix.

Chapter 5 presents a more detailed examination of the problems that afflict cal-

culation of the T -matrix in the case of spheroids. This chapter demonstrates the

cause of the problems (for spheroids and offset spheres), and presents a method

of overcoming these in the case of spheroids. The problem turns out to be severe

numerical cancellations in the computation of the integrals, which may be removed

by modifying the radial (Bessel function) parts of the integrals. By doing this, the

integrals may be computed efficiently and without the numerical problems normally

encountered. A solution for offset spheres is not provided, or of particular interest,

as by using Mie theory and translating the results, this case may be treated without

much difficulty.

Chapter 6 uses both the T -matrix method, and the finite-element method, to ex-

plore near-field light scattering near plasmonic nanoparticles. The T -matrix calcula-

tions focus on examining the relative distribution (as opposed to absolute intensity)

of the field on the surface of particles.
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4 T -matrix Formalism and the

Extended Boundary-Condition

Method

This chapter begins with a derivation of the new integral expressions used in this

work, which provide benefits over more commonly-used expressions[1]. Following

that, we develop some linear relations between elements in the P and Q matrices.

This work, not yet finished, shows that there are linear relations between the matrix

elements, and presents expressions for some of these relations. It is hoped that,

when completed, this will allow for more efficient calculation of the T -matrix.

The expressions for the various L- and K-matrices are a product of this thesis,

and have been presented in Refs. [1] and [6]. They are derived from (as shown in

this chapter) the expressions found in Ref. [9].

4.1 New Integral Expressions

We wish to re-write the integral expressions of Mishchenko, given in Appendix D,

into a different form, for two main reasons. Firstly, we wish to have simpler expres-

White Chocolate Cake Preheat oven to 160 ◦C. Put 185 g butter, 1 cup milk, 1.5 cups white
sugar, and 150 g chopped white chocolate in a saucepan and melt over a low heat, stirring until
smooth. Into a bowl add 2 cups sifted plain flour, 1.5 tsp baking powder, 2 eggs and 1 tsp vanilla
essence. Add melted mixture and whisk until it is smooth. Pour into a 22 cm cake tin lined
with baking paper. Bake for 50 min, or until a skewer indicates it is cooked. Best iced with a
chocolate glaze.
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4 T -matrix Formalism and the Extended Boundary-Condition Method

sions to work with, and secondly our new expressions are separable into a product

of functions that depend on the index n and functions that depend on k. This al-

lows the n- and k-dependent parts to be computed separately, and then the entire

matrix of integrands may be computed by appropriate products of the two sets. We

shall also see that these simplifications lead to an improvement in the numerical

performance of the integrals.

4.1.1 Simplified Expressions

We will obtain some different expressions for the integrals. Superficially, we work

with the matrix U instead of Q, which simply involves replacing ξn by χn[7]. In

addition, by a process of integration by parts, the integrals may be reformulated,

and put into a more convenient form[1]. This results in some different integrals.

The derivation is presented in the next section, and the results are presented for

convenience here:

K1
nk =

∫ π

0

dθmdndkxθχnψ
′
k (4.1)

K2
nk =

∫ π

0

dθmdndnxθχ
′
nψk (4.2)

L1
nm =

∫ π

0

dθ sin θxθτndkχnψk (4.3)

L2
nk =

∫ π

0

dθ sin θxθdnτkχnψk (4.4)

L3
nk =

∫ π

0

dθ sin θdkψ
′
k [xθτnχ

′
n − n(n+ 1)dnχn] (4.5)

L4
nk =

∫ π

0

dθ sin θdnχ
′
n [sxθτkψ

′
k − k(k + 1)dkψk] (4.6)

L5
nk = n(n+ 1)L2

nk − k(k + 1)L1
nk

=

∫ π

0

dθ sin θ [n(n+ 1)dnτk − k(k + 1)τndk]xθχnψk
(4.7)

L6
nk = n(n+ 1)L8

nk − k(k + 1)L7
nk (4.8)

L7
nk =

∫ π

0

dθ sin θτndkxθ

(
χ′nψ

′
k + n(n+ 1)

χnψk
sx2

)
(4.9)
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4.1 New Integral Expressions

L8
nk =

∫ π

0

dθ sin θdnτkxθ

(
χ′nψ

′
k + k(k + 1)

χnψk
sx2

)
. (4.10)

These integrals take the two different labels L and K, with the distinction between

them being in the parity they take in the case of particles with a plane of symmetry.

The L-matrices have the same parity requirements as the diagonal blocks T11 and

T22, which is that for particles with a plane of symmetry the values are zero when

n + k is odd. The K-matrices share their parity requirements with T12 and T21,

which is that for such particles the entries are zero when n + k is even. Hence the

L-matrices are involved in the diagonal blocks of P and U, while the K-matrices

are used in the off-diagonal blocks.

From these K- and L-integrals, we are able to construct the U -matrix as

U11
nk =

ianak (s2 − 1) /s

n(n+ 1)− k(k + 1)
L5
nk (4.11)

U12
nk = anak

s2 − 1

s
K1
nk (4.12)

U21
nk = anak

1− s2

s
K2
nk (4.13)

U22
nk =

ianak (s2 − 1) /s

n(n+ 1)− k(k + 1)
L6
nk (4.14)

where the expressions for U11 and U22 are valid only for entries not on the diagonal

(n 6= k). For those entries, we use the expressions

U11
nk = ianak

(
sL1

nk − L3
nk −

L2
nk − L4

nk

s

)
(4.15)

U22
nk = ianak

(
−L2

nk + L4
nk − L1

nk −
L3
nk

s

)
, (4.16)

which are actually valid for all entries. As before, to calculate the regular matrix

(P), we perform the same calculations, but we replace the irregular Bessel functions

χn(x) with the regular Bessel functions ψn(x). Using this notation, T is calculated

as

T = −P (P + iU)−1 = −PQ−1. (4.17)
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4 T -matrix Formalism and the Extended Boundary-Condition Method

In order to derive these expressions, we start from the expressions of Mishchenko[9],

Eqs. (D.5)–(D.8) (see Appendix D for the expressions). We also make use of some

properties of the angular and radial functions, in order to allow some simplifications.

In all of the following, we consider elements that form the matrix U. Clearly the

matrix P must also be calculated, but as the results for P (or Q) may be trivially

derived from those of U, they are not presented separately. In order to transform

these expressions into ones applicable to P, simply replace all instances of χn(x) with

ψn(x). As all of the relations on these functions are simply based on the differential

equation which they both obey, they may be interchanged and all the results will

remain unchanged.

4.1.2 Useful Relations

We provide here some relations that are useful for the derivation, both involving the

angular functions, and involving the radial functions.

The derivation of the relations between the various angular functions is not pro-

vided here. Instead, it is included in Appendix B. Here are provided the final results

for convenience, using the reduced notation omitting the index m and the argument

θ of most functions.

[πnτk + τnπk] sin θ = m (dndk)
′ (4.18)

[πnπk + τnτk] sin θ = (dnτk sin θ)′ + k(k + 1)dndk sin θ (4.19)

[πnπk + τnτk] sin θ = (τndk sin θ)′ + n(n+ 1)dndk sin θ. (4.20)

(τndk sin θ)′ = sin θ (τnτk + πnπk − n(n+ 1)dndk) (4.21)

(dnτk sin θ)′ = sin θ (τnτk + πnπk − k(k + 1)dndk) (4.22)

There are also relations between the radial (Bessel) functions, which must be

understood in order to simplify the integrals. The differential equation which defines

the Riccati-Bessel functions is ([50], Eq. (10.3.1))

x2w′′ +
[
x2 − n(n+ 1)

]
w = 0 (4.23)
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4.1 New Integral Expressions

where n is an integer, and w(x) is one of the Riccati-Bessel functions. This allows

us to express the second derivative of these functions in terms of just the function,

its argument and its order, as (by simple rearranging)

w′′ = w

(
n(n+ 1)

x2
− 1

)
. (4.24)

The two functions that we are primarily concerned with are ψk ≡ ψk(sx) = sxjk(sx)

and χn ≡ χn(x) = xyn(x), given here in terms of the spherical Bessel functions of

the first and second kinds, j and y respectively.

It is possible to write an expression between some differentiated and non-differentiated

terms, using simple differentiation, as

[
n(n+ 1)s2 − k(k + 1)

]
xθχnψk =

d

dθ
[k(k + 1)χ′nψk − n(n+ 1)sχnψ

′
k]

+ [n(n+ 1)− k(k + 1)] sxθχ
′
nψ
′
k.

(4.25)

4.1.3 Derivation of U12 and U21

Here we present the derivation of the expressions for the off-diagonal blocks U12 and

U21. Starting with U12, we may combine the expressions for J11 and J22 to arrive

at

U12
nk = − ik2

1

(
sJ11

nk + J22
nk

)
= − anak

∫ π

0

dθ sin θ

[(
χnψk +

χ′nψ
′
k

s

)
[πnτk + τnπk]

+

(
n(n+ 1)χnψ

′
k +

k(k + 1)

s
χ′nψk

)
xθ
sx2

πndk

]
.

(4.26)
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4 T -matrix Formalism and the Extended Boundary-Condition Method

Making use of Eq. (4.18), this may be rewritten as

−U12
nk

anak
=

∫ π

0

dθm

[(
χnψk +

χ′nψ
′
k

s

)
(dndk)

′

+

(
n(n+ 1)χnψ

′
k +

k(k + 1)

s
χ′nψk

)
xθ
sx2

dndk

]
.

(4.27)

We then can see that, using integration by parts,∫ π

0

dθm (dndk)
′
(
χnψk +

χ′nψ
′
k

s

)
= mdndk

(
χnψk +

χ′nψ
′
k

s

)∣∣∣∣π
0

−
∫ π

0

dθmdndkxθ

(
χ′nψk + sχnψ

′
k +

χ′′nψ
′
k

s
+ χ′nψ

′′
k

) (4.28)

and using the fact that d(θ = 0) = d(θ = π) = 0, we exclude the first term. By also

making use of Eq. (4.24), we then have∫ π

0

dθm (dndk)
′
(
χnψk +

χ′nψ
′
k

s

)
=

−
∫ π

0

dθmdndkxθ

(
χ′nψk + sχnψ

′
k +

χ′′nψ
′
k

s
+ χ′nψ

′′
k

)
(4.29)

= −
∫ π

0

dθmdndkxθ

(
χnψ

′
k

(
n(n+ 1)

sx2
− 1

s
+ s

)
+ χ′nψk

k(k + 1)

s2x2

)
(4.30)

Substituting this back in to our expression for U12
nk, Eq. (4.26), several of the terms

cancel with each other, leaving the simpler expression

−U12
nk

anak
=

∫ π

0

dθmdndkxθχnψ
′
k

(
1

s
− s
)
, (4.31)

and hence finally

U12
nk = anak

s2 − 1

s

∫ π

0

dθmdndkxθχnψ
′
k. (4.32)

The derivation of U21 follows similar lines, as the only difference in the definition
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4.1 New Integral Expressions

is that the positions of J11 and J22 are interchanged. We start again from the

definition of U21,

U21
nk

anak
= −

∫ π

0

dθ sin θ

[(
χnψk
s

+ χ′nψ
′
k

)
[πnτk + τnπk]

+

(
n(n+ 1)χnψ

′
k +

k(k + 1)

s
χ′nψk

)
xθ
x2
πndk

]
. (4.33)

As before, we may use Eq. (4.18) in order to simplify things, giving

U21
nk

anak
= −

∫ π

0

dθm

[(
χnψk
s

+ χ′nψ
′
k

)
(dndk)

′

+

(
n(n+ 1)χnψ

′
k +

k(k + 1)

s
χ′nψk

)
xθ
x2
dndk

]
. (4.34)

Again, this may be modified using integration by parts, using∫ π

0

dθm

(
χnψk
s

+ χ′nψ
′
k

)
(dndk)

′ = −
∫ π

0

dθmdndkxθ

(
χ′nψk
s

+ χnψ
′
k + χ′′nψ

′
k + sχ′nψ

′′
k

)
,

(4.35)

and by substituting in the expressions for the second derivatives, Eq. (4.24), we

obtain∫ π

0

dθm

(
χnψk
s

+ χ′nψ
′
k

)
(dndk)

′ = (4.36)

−
∫ π

0

dθmdndkxθ

(
n(n+ 1)

x2
χnψ

′
k + χ′nψk

(
k(k + 1)

sx2
− s+

1

s

))
.

Placing this back into Eq. (4.34), we end up with the expression

U21
nk = anak

1− s2

s

∫ π

0

dθmdndkxθχ
′
nψk, (4.37)

which has the same form as that for U12, differing only in sign and which of the

Bessel functions is differentiated.
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4.1.4 Derivation of U11 and U22

The derivation of alternate forms for the diagonal blocks of U does not yield expres-

sions that are as simple as those of the off-diagonal blocks. However, the expressions

used do offer some advantages over the expressions of Mishchenko, which will be dis-

cussed later.

Here will be shown the derivation of the integral expressions, first in the general

case which is valid for all entries, and then in the case valid only for off-diagonal

entries.

We start here by simple looking at J12. Firstly, we note that by using Eq. (4.19),

and also making use of Eq. (4.24), and realising that dn(θ = 0) = dn(θ = π) = 0, we

may write part of the expression of J12 as∫ π

0

dθ sin θχ′nψk [πnπk + τnτk] =

∫ π

0

dθχ′nψk
[
(dnτk sin θ)′ + k(k + 1) sin θdndk

]
=

∫ π

0

dθ sin θ

[
k(k + 1)dndkχ

′
nψk

− dnτkxθ
(
sχ′nψ

′
k +

(
n(n+ 1)

x2
− 1

)
χnψk

)]
,

(4.38)

and by including the other term from J12, then we end up with

sk2
1J

12
nk

anak
=

∫ π

0

dθ sin θ
(
k(k + 1)dndkχ

′
nψk + xθdnτkχnψk − sxθdnτkχ′nψ′k

)
= L2

nk − L4
nk (4.39)

where L2
nk and L4

nk are as defined in Eqs. (4.4) and (4.6) respectively.
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4.1 New Integral Expressions

We may do something similar to J21, this time using Eq. (4.20), to see that∫ π

0

dθ sin θχnψ
′
k [πnπk + τnτk] =

∫ π

0

dθχnψ
′
k

[
(τndk sin θ)′ + n(n+ 1) sin θdndk

]
=

∫ π

0

dθ sin θ

[
n(n+ 1)dndkχnψ

′
k

− τndkxθ
(
χ′nψ

′
k +

(
k(k + 1)

sx2
− s
)
χnψk

)]
,

(4.40)

and combining with the other part of the expression for J21 we are left with

−sk2
1J

21
nk

anak
=

∫ π

0

dθ sin θ
(
n(n+ 1)dndkχnψ

′
k + sxθτndkχnψk − xθτndkχ′nψ′k

)
= sL1

nk − L3
nk (4.41)

where L1
nk and L3

nk are as defined in Eqs. (4.3) and (4.5) respectively.

From these expressions for J12 and J21, it is now easy to write expressions for

U11 and U22. These are

U11
nk = ianak

(
sL1

nk − L3
nk −

L2
nk − L4

nk

s

)
(4.42)

U22
nk = ianak

(
−L2

nk + L4
nk − L1

nk −
L3
nk

s

)
. (4.43)

These expressions are valid for all matrix entries. However, other expressions are

preferred over these, as they require calculating fewer integrals, and have slightly

improved numerical performance.
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In the case of off-diagonal elements, then we make use of Eq. (4.25) to see that

L1
nk − L2

nk =

∫ π

0

dθ sin θxθχnψk (τndk − dnτk)

=

∫ π

0

dθ sin θ (τndk − dnτk)
n(n+ 1)s2 − k(k + 1)

[
(k(k + 1)χ′nψk − sn(n+ 1)χnψ

′
k)
′

+ s (n(n+ 1)− k(k + 1))xθχ
′
nψ
′
k

]
=

∫ π

0

dθ sin θ (n(n+ 1)− k(k + 1))

n(n+ 1)s2 − k(k + 1)

{
sτndkχ

′
nψ
′
k

+ sxθn(n+ 1)dndkχnψ
′
k − xθk(k + 1)dndkχ

′
nψk

− s (n(n+ 1)− k(k + 1)) dnτkχ
′
nψ
′
k

}

=
n(n+ 1)− k(k + 1)

n(n+ 1)s2 − k(k + 1)

[
sL3

nk − L4
nk

]
. (4.44)

Using this relation, we are able to write the expressions for U11 and U22 as

U11
nk = ianak

(
sL1

nk −
L2
nk

s
− L3

nk +
L4
nk

s

)
= ianak

(
sL1

nk −
L2
nk

s
− L1

nk − L2
nk

s
× n(n+ 1)s2 − k(k + 1)

n(n+ 1)− k(k + 1)

)
=

ianak (s2 − 1) /s

n(n+ 1)− k(k + 1)

(
n(n+ 1)L2

nk − k(k + 1)L1
nk

)
(4.45)

and

U22
nk = ianak

(
L1
nk − L2

nk −
(
L3
nk

s
− L4

nk

))
= ianak

(
L1
nk − L2

nk +
s2 − 1

s
L3
nk −

(
n(n+ 1)s2 − k(k + 1)

n(n+ 1)− k(k + 1)

)(
L1
nk − L3

nk

))
= ianak

(
s2 − 1

)
/s

(
L3
nk +

n(n+ 1)s (L1
nk − L2

nk)

n(n+ 1)− k(k + 1)

)
. (4.46)
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From these expressions, we define more integrals

L5
nk = n(n+ 1)L2

nk − k(k + 1)L1
nk

=

∫ π

0

dθ sin θ [n(n+ 1)dnτk − k(k + 1)τndk]xθχnψk
(4.47)

L6
nk = n(n+ 1)L8

nk − k(k + 1)L7
nk (4.48)

where

L7
nk =

∫ π

0

dθ sin θτndkxθ

(
χ′nψ

′
k + n(n+ 1)

χnψk
sx2

)
(4.49)

L8
nk =

∫ π

0

dθ sin θdnτkxθ

(
χ′nψ

′
k + k(k + 1)

χnψk
sx2

)
(4.50)

These expressions, valid only when n 6= k (that is the off-diagonal elements), elimi-

nate the need to calculate L4
nk, and also reduce the effect of numerical cancellations.

The expressions for the off-diagonal elements of U11 and U22 are now

U11
nk =

ianak (s2 − 1) /s

n(n+ 1)− k(k + 1)
L5
nk (4.51)

U22
nk =

ianak (s2 − 1) /s

n(n+ 1)− k(k + 1)
L6
nk. (4.52)

It is also possible to re-write the expressions Eqs. (4.42) and (4.43) in a valid

form for the diagonal elements, as

U11
nn = L̃1

n (4.53)

U22
nn = L̃2

n + L̃3
n (4.54)

where

L̃1
n = − ia2

n

s

∫ π

0

dθ sin θ (πnπn + τnτn) (χ′nψn − sχnψ′n) (4.55)

L̃2
n = − ia2

n

s

∫ π

0

dθ sin θ (πnπn + τnτn) (sχ′nψn − χnψ′n) (4.56)

61



4 T -matrix Formalism and the Extended Boundary-Condition Method

L̃3
n = − ia2

nn(n+ 1) (s2 − 1)

s

∫ π

0

dθ sin θxθdnτn
χnψn
sx2

. (4.57)

These are trivially arrived at by application of Eq. (3.77), using the expressions

(D.6) and (D.7), for the case where n = k.

4.1.5 Benefits of the New Expressions

Now that we have arrived at these new expressions, one obvious question is to ask

if they provide any benefits over the starting expressions. One benefit is that they

enable us to separate the n- and k-dependent parts of the integrals. This allows the

two parts to be calculated separately, and then easily combined to populate the entire

matrix, which can lead to speed gains. The main benefit, however, comes from the

reduction in the number of cancellations from combining the integrals. This is most

apparent for the off-diagonal blocks, which are the expressions which simplified the

most. In the case of a cylinder, with refractive index n2 = 0.09+4i (corresponding to

silver) in water (n1 = 1.33), with a radius of 20 nm and height 80 nm, at an incident

wavelength of 633 nm, we compared the matrix Q12 for m = 1 when calculated

with the double-precision code of Mishchenko[9] and these new expressions, and

compared these matrices to one calculated using arbitrary-precision code. It was

found that the old expressions agreed within an order of magnitude up to N = 35,

while with our new expressions, this agreement was obtained to N = 43.

In addition, these expressions look simpler, and hence lend themselves more to

analytical manipulation. This is exploited in the second half of this chapter, and in

Chapter 5.

4.1.6 Summary of which Expressions are Used

The various codes that we use include an arbitrary-precision C implementation, a

double-precision MATLAB implementation, and a double-precision MATLAB im-

plementation for spheroids, which has some improvements for the special case of

spheroids. The two former codes both predate this thesis, but have been modified
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4.2 T -matrix Recursion Relations

slightly for performance and numerical reasons during this thesis.

All of the codes calculate Q directly, and do not calculate U, however this simply

involves replacing the values χn used in the previous derivation with the values

ξn = ψn + iχn.

In general, the arbitrary-precision code may use forms that suffer from cancel-

lations, as we are able to increase the working precision to remove the problem of

loss of precision. Thus, it makes use of integrals given in Eqs. (4.42) and (4.43)

to calculate all of the matrices Q11 and Q22. These are also the forms used in the

original double-precision MATLAB code, as the improved expressions (Eqs. (4.45)

and (4.46)) were developed after that code.

The new spheroid-only MATLAB code uses the expressions given in Eqs. (4.32),

(4.37), (4.45), (4.46), (4.53) and (4.54), but with an important modification, which

is explained more fully in Chapter 5. In short, for some parts of the matrix Q (but

not P) this replaces the products ξnψk, ξ
′
nψk and so on with modified products that

lead to improved numerical behaviour the integrals are calculated. Also, on the

diagonal of P11, there is an additional cancellation which is rectified by using some

different expressions in that case. This is discussed more in Section 5.6.5

Owing to reasons of parity, in the case of shapes with a plane of symmetry at

z = 0, then half of the entries in Q are zero (and similarly in all of the other matrices

we use). For the diagonal blocks Q11 and Q22 the entries that are zero are those for

which n + k is odd, and for the off-diagonal blocks the entries that are zero have

n+ k even. Based on the integral forms that are used in the case of spheroids, this

parity enables us to calculate only the terms that are actually required, and not to

calculate any off-parity terms.

4.2 T -matrix Recursion Relations

One of the computational limitations in the EBCM is that as higher-order multi-

poles (up to order N) are required, the number of integrals that must be calculated

increases as N3 (assuming all ms are required). As well as this computational ex-
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pense, performing the integrals inevitably leads to a loss of precision, aside from that

experienced for certain shapes (see Chapter 5). One way of overcoming this loss of

precision is to work in a higher precision, such that the results remain valid in (typ-

ically) double precision. However, such code is much slower than double precision

code (see comments in Section 5.6.6 for an example). As such, another approach is

sought.

One possible such approach is to find simple relations between the matrix el-

ements, such that the number of elements that are required to be computed is

reduced. Here ‘simple’ means computationally simple, for example linear relations.

Here we look for relations in P and U, as we have expressions for these integrals

and so can hope to find (and prove) relations between elements.

The work presented in the following sections is as-yet unfinished, and as a result

not every case has been considered. Specifically, the relations for all m have not

been found, and as a result, it is not yet clear if this method might provide much

benefit. However, the results to date are provided here, and it is hoped that more

will be made of this in the future.

4.2.1 Finding Relations

Our starting assumption is that any such relations we use should be valid for particles

of any size. As a result, in order to identify relations, we can vary the size of the

particle (by varying x here), carry out the integrations for each size, and test the

linear dependence of the resulting integrals.

By means of illustration, if we have equations

f1(x) = x (4.58)

f2(x) = 3 (4.59)

f3(x) = 3x+ 6 (4.60)

(4.61)

then we can simply see that 3f1(x) + 2f2(x) = f3(x).
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In order to find this relation numerically, we would evaluate the equations for

several different values of x, and form a matrix with the results. In this case, as

there are three equations, we only need to evaluate at three points. This leads to a

matrix like

f1(x) f2(x) f3(x)

x = 1 ( 1 3 9 )
x = 2 2 3 12

x = 3 3 3 15

(4.62)

and the rank of this matrix is two. Thus, we may deduce that there is a linear rela-

tion, though it is not necessarily obvious from knowing the rank what the relations

are. Of course, if there were two independent linear relations between the elements,

then the rank would be one.

In our context, we have a matrix where each column represents a different matrix

element, and each row represents a different x-value. Unfortunately, it is numerically

challenging to determine the rank of a large matrix accurately, and for this task

MATLAB under-reports the rank. This is evident because as we reduce the number

of columns in our matrix, which cannot increase the rank as we are not adding

information, the reported rank increases. However, taking the rank of small subsets

of the matrix results in a rank-deficient matrix, and by testing the effect of removing

columns, we may determine which elements have linear relations between them.

This method is valuable for determining where the relationships are, but it is a

challenge to select only the simplest relations. That is, if there is some element a

expressable as a combination

a = f(b, c, d) (4.63)

then another element e, expressable as

e = f ′(a, f, g, h) (4.64)
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will also be expressable as

e = f ′′(b, c, d, f, g, h). (4.65)

Thus, we only wish to find relationships that do not contain simpler relationships.

4.2.2 Obtaining Exact Relations

The approach in the previous section is useful to determine that there are rela-

tions, but it is not well suited to finding exact expressions. Instead, we look at the

expressions, and attempt to find relations between them, using the results of the

previous section as a guide as to which elements to focus on. Some of the relations

we already have, such as the relation between L1, L2, L3 and L4 (where only three

of those are linearly independent), as shown in Eq. (4.44). Also trivially, on the

diagonal, L1
nn = L2

nn. Finding other relations is less easy.

We start by defining slightly different forms of the integrals, replacing our angular

functions with the associated Legendre functions, as we are now focused on simplicity

of the expressions and not numerical stability in calculating them. We make use of

Pn = Cndn = Pm
n (cos θ) (4.66)

Tn = Cnτn =
d

dθ
Pm
n (cos θ) (4.67)

Cn = (−1)m

√
(n+m)!

(n−m)!
(4.68)

where the index m and parameter θ are implicit, and dn ≡ dnm(θ) and τn ≡ τnm(θ).

Thus, for reasons of convenience, we work with the functions

K̃1 = CnCkmdndkxθχnψ
′
k = mPnPkxθχnψ

′
k (4.69)

K̃2 = CnCkmdndkxθχ
′
nψk = mPnPkxθχ

′
nψk (4.70)

L̃1 = sin θCnCkτndkxθχnψk = sin θTnPkxθχnψk (4.71)

L̃2 = sin θCnCkdnτkxθχnψk = sin θPnTkxθχnψk (4.72)
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where K̃1 is the integrand of K1, excluding the prefactor anak, and likewise for the

other expressions. Note here that L̃1
nk and L̃2

nk are different to the quantities L̃1
n and

L̃2
n that were introduced in Section 4.1.4, which are vectors and not matrices. As

we shall see, there exist relations on the integrand, and we do not need to work with

the integral.

Angular Relations

We also make use of the following relations, which are derived and presented in

Appendix B, but are reproduced here for convenience;

πn sin θ = mdn (4.73)

d′n = τn (4.74)

[πnτk + τnπk] sin θ = m (dndk)
′ (4.75)

[πnπk + τnτk] sin θ = (dnτk sin θ)′ + k(k + 1)dndk sin θ (4.76)

[πnπk + τnτk] sin θ = (τndk sin θ)′ + n(n+ 1)dndk sin θ. (4.77)

(τndk sin θ)′ = sin θ (τnτk + πnπk − n(n+ 1)dndk) (4.78)

(dnτk sin θ)′ = sin θ (τnτk + πnπk − k(k + 1)dndk) (4.79)

(dn sin θ)′ = τn sin θ + dn cos θ (4.80)

(τn sin θ)′ = mπn − n(n+ 1)dn sin θ (4.81)

(πn sin θ)′ = mτn. (4.82)

We may also use the recursion relations for the angular functions to obtain the

additional relations

(n−m+ 1)Pn+1 + (n+ 1)Pn−1 = (2n+ 1) cos θPn (4.83)

n cos θPn − sin θTn = (n+ 1)Pn−1 (4.84)

(n+ 1) cos θPn + sin θTn = (n−m+ 1)Pn+1 (4.85)

n(n−m+ 1)Pn+1 − (n+ 1)(n+m)Pn−1 = (2n+ 1) sin θTn (4.86)
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We here consider only the case where m = 1, and other cases would behave

similarly, though this work has not been carried out. Note that in this case, Cn

reduces to

Cn =
√
n(n+ 1). (4.87)

From Eq. (4.83) we may obtain

(2k + 1) [nPn+1Pk + (n+ 1)Pn−1Pk] = (2n+ 1) [kPnPk + (n+ 1)Pn−1Pk] (4.88)

and from Eq. (4.86) we have

(2k + 1)
[
n2Pn+1Tk − (n+ 1)2Pn−1Tk

]
= (2n+ 1)

[
k2TnPk+1 − (k + 1)2TnPk−1

]
(4.89)

It is also possible to obtain from Eqs. (4.84) and (4.85) the set of four equations,

three of which are linearly independent

sin θ [kTnPk − nPnTk] = n(k + 1)PnPk−1 − k(n+ 1)Pn−1Pk (4.90)

sin θ [(k + 1)TnPk + nPnTk] = nkPnPk+1 − (k + 1)(n+ 1)Pn−1Pk (4.91)

sin θ [kTnPk + (n+ 1)PnTk] = nkPn+1Pk − (k + 1)(n+ 1)PnPk−1 (4.92)

sin θ [(k + 1)TnPk − (n+ 1)PnTk] = n(k + 1)Pn+1Pk − k(n+ 1)PnPk+1 (4.93)

Radial Relations

There are also some relations on the radial functions that are useful. The starting

point for these is the differential equation which defines the Riccati-Bessel functions,

Eq. (4.23), reproduced here for convenience

w′′n(x) =

[
n(n+ 1)

x2
− 1

]
wn(x) (4.94)
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where here w(x) can be any of the Riccati-Bessel functions. From this, we may

obtain

d

dθ
[k(k + 1)χ′nψk − n(n+ 1)sχnψ

′
k] =

[
n(n+ 1)s2 − k(k + 1)

]
xθχnψk

− [n(n+ 1)− k(k + 1)] sxθχ
′
nψ
′
k

(4.95)

There are recursion relations on these functions, which are

wn−1(x) + wn+1(x) =
2n+ 1

x
wn(x) (4.96)

n

x
wn(x) + w′n(x) = wn−1(x) (4.97)

n+ 1

x
wn(x)− w′n(x) = wn+1(x) (4.98)

(n+ 1)wn−1(x)− nwn+1(x) = (2n+ 1)w′n(x). (4.99)

It is possible to combine these to obtain relations, noting that the argument of

the regular Bessel function ψ is here sx,

kχ′nψk − nsχnψ′k = kχn−1ψk − nsχnψk−1 (4.100)

(k + 1)χ′nψk + nsχnψ
′
k = (k + 1)χn−1ψk − nsχnψk+1 (4.101)

kχ′nψk + (n+ 1)sχnψ
′
k = (n+ 1)sχnψk−1 − kχn+1ψk (4.102)

(k + 1)χ′nψk − (n+ 1)sχnψ
′
k = (n+ 1)sχnψk+1 − (k + 1)χn+1ψk. (4.103)

We start by looking at some special cases in the following sections.
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Special Case 1

We look for a relation between the elements L̃1
31, L̃2

31, L̃1
11 and K̃2

21. Thus, the

relation is between

χ3ψ1, T3P1 sin θ

χ3ψ1, T1D3 sin θ

χ1ψ1, T1P1 sin θ

χ′2ψ1, P2P1

(that is, radial terms from the first column and angular terms from the second

column are paired together). This special case is near the diagonal, and also on the

edge of the matrix, so we expect that the relation could be simpler than a general

relation. Checking the rank of the appropriately-constructed matrix, it is only 3,

indicating that the four entries are not linearly independent.

By using n = 1 in Eq. (4.86), and noting that P0 = 0, we have

P2 = 3 sin θT1. (4.104)

Also setting n = 3, k = 1 in Eq. (4.90) we have

sin θ [T3P1 − 3P3T1] = −4P2P1 (4.105)

and by using n = 2 in Eq. (4.99) (with w = χ), and by multiplying by ψ1 we have

2χ3ψ1 = 3χ1ψ1 − 5χ′2ψ1. (4.106)

Combining all of these we have

sin θ [T3P1χ3ψ1 − 3P3T1χ3ψ1] = 2 [5P2P1χ
′
2ψ1 − 3P2P1χ1ψ1]

= 2 [5P2P1χ
′
2ψ1 − 9 sin θP1T1χ1ψ1] (4.107)

L̃1
31 − 3L̃2

31 = 10K̃2
21 − 18L̃1

11 (4.108)
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We may also use the same relations to obtain the symmetric case,

L̃2
13 − 3L̃1

13 = 10K̃1
12 − 6L̃1

11 (4.109)

Thus we see that is is possible to obtain some relations on elements of U. Note

that the relations are valid on P also, as all the relations on χnψk are also valid on

ψnψk.

Special Case 2

While it is possible to find other relations between four entries, as in Special Case 1,

it is worth exploring relations between more elements. Here we consider a relation

between L̃1
n,2, L̃2

n,2, L̃1
n−1,1, L̃2

n−1,1, K̃1
n−1,2, K̃2

n−1,2, K̃1
n,1 and K̃2

n,1. By means of

illustration, this is between the following entries shown in Fig. 4.1 The rank of the

appropriate matrix is only seven, indicating that there is a linear relation between

these eight elements.

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·





· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +





L1,L2 K1,K2

Figure 4.1: A depiction of which entries are related by Special Case 2, where here
the left matrix represents both L1 and L2, and the right matrix both K1

and K2. Here entries which have the same parity of n+k as our relation
are shown as ·, while off-parity entries are shown as +. This is shown
here for n = 4, but the relation is valid for other values of n also.

We start with Eq. (4.90), and set n = n, k = 2. This gives

sin θ [2TnP2 − nPnT2] = −2(n+ 1)Pn−1P2 + 3nPnP1 (4.110)
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This corresponds to the angular parts of L̃1
n,2 and L̃2

n,2, and we may write[
2L̃1

n,2 − nL̃2
n,2

]
= −2(n+ 1)ξnψnPn−1P2 + 3nξnψ2PnP1. (4.111)

We also may use n = n− 1, k = 2 in Eq. (4.102) to get

−2ξnψ2 = 2ξ′n−1ψ2 + nsξn−1ψ
′
2 − nsξn−1ψ1 (4.112)

and substituting this in we obtain[
2L̃1

n,2 − nL̃2
n,2

]
= (n+ 1)

(
−nsξn−1ψ1Pn−1P2 + 2K̃2

n−1,2 + nsK̃1
n−1,2

)
+ 3nξnψ2PnP1.

(4.113)

Using Eq. (4.86), we have P2 = 3 sin θT1, and hence

nsξn−1ψ1Pn−1P2 = 3nsξn−1ψ1Pn−1T1 sin θ = 3nsL̃2
n−1,1. (4.114)

For the remaining term, we may use Eq. (4.101) with n = n, k = 1 to get

nsξnψ2 = 2ξn−1ψ1 − 2ξ′nψ1 − nsξnψ′1, (4.115)

as well as n = n− 1, k = 1 in Eq. (4.92)

sin θ [Tn−1P1 + nPn−1T1] = (n− 1)PnP1 (4.116)

and hence

3nξnψ2PnP1 =
6

s
ξn−1ψ1PnP1 −

6

s
ξ′nψ1PnP1 − 3nξnψ

′
1PnP1

=
6

s
ξn−1ψ1PnP1 − 3

[
2

s
K̃2
n,1 − nK̃1

n,1

]
=

6 sin θ

s(n− 1)
ξn−1ψ1 [Tn−1P1 + nPn−1T1]− 3

[
2

s
K̃2
n,1 − nK̃1

n,1

]
=

6

s(n− 1)

[
L̃1
n−1,1 + nL̃2

n−1,1

]
− 3

[
2

s
K̃2
n,1 − nK̃1

n,1

]
. (4.117)
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Thus, we may combine all of these results to obtain

2L̃1
n,2 − nL̃2

n,2 = (n+ 1)
[
2K̃2

n−1,2 + nsK̃1
n−1,2

]
− 3

[
2

s
K̃2
n,1 − nK̃1

n,1

]
+

6

s(n− 1)

[
L̃1
n−1,1 + n

(
1− s2(n2 − 1)

2

)
L̃2
n−1,1

]
(4.118)

This relation is valid on the edge of the matrix. Symmetric cases (for n = 2,

k = k) may be easily derived by symmetry.

General Case 1

We now move on to a more general case, which is not necessarily near the diagonal

or the edge of the matrix. The elements that this relation is between are depicted

in Fig. 4.2. The elements involved in this relation are L̃1
n,k+1, L̃2

n,k+1, L̃1
n,k−1, L̃2

n,k−1,

K̃1
n,k, K̃

2
n,k, K̃

1
n−1,k+1, K̃2

n−1,k+1, K̃1
n−1,k−1, K̃2

n−1,k−1, L̃1
n−1,k and L̃2

n−1,k.

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·





· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +

+ · + · + · + ·
· + · + · + · +





L1,L2 K1,K2

Figure 4.2: A depiction of which entries are related by General Case 1, where here
the left matrix represents both L1 and L2, and the right matrix both
K1 and K2. Here entries which are used in this relation are shown as
+, while non-contributing entries are shown as ·. This is shown here for
n = 6 and k = 3, but the relation is valid for other values of n and k.

We start by writing Eq. (4.90) with n = n, k = k+ 1, and multiplied by χnψk+1,
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which is

(k + 1)L̃1
n,k+1 − nL̃2

n,k+1 = χnψk+1 (n(k + 2)PnPk − (k + 1)(n+ 1)Pn−1Pk+1) .

(4.119)

We then make use of Eq. (4.102), with n = n− 1 and k = k + 1, which is

−χnψk+1(k + 1) = (k + 1)χ′n−1ψk+1 + nsχn−1ψ
′
k+1 − nsχn−1ψk (4.120)

and Eq. (4.101) with n = n, k = k, which is

nχnψk+1 =
k + 1

s
χn−1ψk −

k + 1

s
χ′nψk − nχnψ′k. (4.121)

Combining all of these, we are left with

(k + 1)L̃1
n,k+1 − nL̃2

n,k+1 = (k + 2)PnPk

(
k + 1

s
χn−1ψk −

k + 1

s
χ′nψk − nχnψ′k

)
+ (n+ 1)Pn−1Pk+1

(
(k + 1)χ′n−1ψk+1 + nsχn−1ψ

′
k+1 − nsχn−1ψk

)
(4.122)

in which we may recognise some integral forms, leaving

(k + 1)L̃1
n,k+1 − nL̃2

n,k+1 = − (k + 1)(k + 2)

s
K̃2
nk − n(k + 2)K̃1

nk+

+ (n+ 1)(k + 1)K̃2
n−1,k+1 + n(n+ 1)sK̃1

n−1,k+1 + A

(4.123)

where we group the parts that do not yet resemble integrals into A such that

A =
(k + 1)(k + 2)

s
PnPkχn−1ψk − n(n+ 1)sPn−1Pk+1χn−1ψk. (4.124)

Setting A aside for now, we now make use of Eq. (4.91) to move in the other
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direction, using n = n− 1, k = k − 1. This is

kL̃1
n,k−1 + nL̃2

n,k−1 = χnψk−1 (n(k − 1)PnPk − k(n+ 1)Pn−1Pk−1) (4.125)

and then by using Eq. (4.103) with n = n− 1, k = k − 1, we have

−kχnψk−1 = kχ′n−1ψk−1 − nsχn−1ψ
′
k−1 − nsχn−1ψk (4.126)

and by using Eq. (4.100) with n = n, k = k we have

nχnψk−1 =
k

s
χn−1ψk + (n+ 1)χnψ

′
k −

k

s
χ′nψk. (4.127)

These may all be combined to yield

kL̃1
n,k−1 + nL̃2

n,k−1 = (k − 1)PnPk

(
k

s
χn−1ψk + (n+ 1)χnψ

′
k −

k

s
χ′nψk

)
+ (n+ 1)Pn−1Pk−1

(
kχ′n−1ψk−1 − nsχn−1ψ

′
k−1 − nsχn−1ψk

)
(4.128)

and again recognising some integral forms,

kL̃1
n,k−1 + nL̃2

n,k−1 = (n+ 1)(k − 1)K̃1
nk −

k(k − 1)

s
K̃2
nk (4.129)

+ k(n+ 1)K̃2
n−1,k−1 − n(n+ 1)sK̃1

n−1,k−1 +B (4.130)

where we have grouped terms to create B as

B =
k(k − 1)

s
PnPkχn−1ψk − n(n+ 1)sPn−1Pk−1χn−1ψk. (4.131)

It is now a matter of working with A and B to recast them in terms of integrals

that we know, now by working with the angular functions. Firstly, we use Eq. (4.92)
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with n = n− 1, k = k to write

B =

(
k(k − 1)

s
− k(n2 − 1)s

k + 1

)
PnPkχn−1ψk +

s(n+ 1)

k + 1

(
kL̃1

n−1,k − nL̃2
n−1,k

)
(4.132)

B′ =

(
k(k − 1)

s
− k(n2 − 1)s

k + 1

)
PnPkχn−1ψk (4.133)

and secondly we use Eq. (4.93) with n = n− 1, k = k to get

A = (k + 1)PnPkχn−1ψk

(
(k + 2)

s
− (n2 − 1)s

k

)
+
s(n+ 1)

k

(
(k + 1)L̃1

n−1,k − nL̃2
n−1,k

)
(4.134)

A′ = (k + 1)PnPkχn−1ψk

(
(k + 2)

s
− (n2 − 1)s

k

)
(4.135)

Now we note that the non-integral terms in A′ and B′ have the same angular and

radial functions, and hence the appropriate combination of (k + 1)L̃1
n,k+1 − nL̃2

n,k+1

and kL̃1
n,k−1 +nL̃2

n,k−1 should produce a relation with only integral forms in it. This
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may be expressed as

α
(

(k + 1)L̃1
n,k+1 − nL̃2

n,k+1

)
−β
(
kL̃1

n,k−1 + nL̃2
n,k−1

)
=

− α(k + 1)(k + 2)

s
K̃2
nk

− αn(k + 2)K̃1
nk

+ α(n+ 1)(k + 1)K̃2
n−1,k+1

+ αn(n+ 1)sK̃1
n−1,k+1

+ α
s(n+ 1)

k
(k + 1)L̃1

n−1,k

− αn(n+ 1)s

k
L̃2
n−1,k

+ αA′

− β(n+ 1)(k − 1)K̃1
nk

+ β
k(k − 1)

s
K̃2
nk

− βk(n+ 1)K̃2
n−1,k−1

+ βn(n+ 1)sK̃1
n−1,k−1

− β s(n+ 1)

k + 1
kL̃1

n−1,k

+ β
n(n+ 1)s

k + 1
L̃2
n−1,k

− βB′

(4.136)

for some values α and β, where we clearly require here that αA′ = βB′, which means

that

α(k + 1)PnPkχn−1ψk

(
(k + 2)

s
− (n2 − 1)s

k

)
= β

(
k(k − 1)

s
− k(n2 − 1)s

k + 1

)
PnPkχn−1ψk

(4.137)
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and so we may express the ratio α/β as

α

β
= k2 (k2 − 1)− s2 (n2 − 1)

(k + 1)2 (k(k + 2)− (n2 − 1) s2)
. (4.138)

With this choice of α/β, we may then write our relation as

α
(

(k + 1)L̃1
n,k+1 − nL̃2

n,k+1

)
−β
(
kL̃1

n,k−1 + nL̃2
n,k−1

)
=

− (αn(k + 2) + β(n+ 1)(k − 1)) K̃1
nk

+

(
β
k(k − 1)

s
− α(k + 1)(k + 2)

s

)
K̃2
nk

+ α(n+ 1)
(

(k + 1)K̃2
n−1,k+1 + nsK̃1

n−1,k+1

)
− β(n+ 1)

(
kK̃2

n−1,k−1 − nsK̃1
n−1,k−1

)
+

(
α
s(n+ 1)(k + 1)

k
− βk(n+ 1)s

k + 1

)
L̃1
n−1,k

+

(
β
n(n+ 1)s

k + 1
− αn(n+ 1)s

k

)
L̃2
n−1,k.

(4.139)

General Case 2

Following on from the General Case 1 in the previous section, it is possible to

find a relation between another 12 elements, as shown in Fig. 4.3. Luckily, the

analytic relation here may be found easily from the form of General Case 1, by

simply swapping n and k in all expressions, and we do not need to repeat the entire

derivation. Note that this results in exchanging L1 and L2, as well as K1 and K2.
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The expression is then

γ
(

(n+ 1)L̃2
n+1,k − kL̃1

n+1,k

)
−δ
(
nL̃2

n−1,k + kL̃1
n−1,k

)
=

− (γk(n+ 2) + δ(k + 1)(n− 1)) K̃2
nk

+

(
δ
n(n− 1)

s
− γ (n+ 1)(n+ 2)

s

)
K̃1
nk

+ γ(k + 1)
(

(n+ 1)K̃1
n+1,k−1 + ksK̃2

n+1,k−1

)
− δ(k + 1)

(
nK̃1

n−1,k−1 − ksK̃2
n−1,k−1

)
+

(
γ
s(k + 1)(n+ 1)

n
− δn(k + 1)s

n+ 1

)
L̃2
n,k−1

+

(
δ
k(k + 1)s

n+ 1
− γ k(k + 1)s

n

)
L̃1
n,k−1.

(4.140)

where the expressions for γ and δ are simply obtained by exchanging n and k in the

expressions for α and β respectively, giving the ratio

γ

δ
= n2 (n2 − 1)− s2 (k2 − 1)

(n+ 1)2 (n(n+ 2)− (k2 − 1) s2)
. (4.141)

4.2.3 Using the Relations

Now that we have some relations between elements, we may naturally ask some

questions. Firstly, have we found all of the relations? Secondly, given the relations

we have, is it possible to make use of them in order to calculate the T -matrix more

efficiently?

Regarding the first question, we can answer “yes” under certain conditions. If

we consider only the m = 1 case, and only the matrices L1, L2, K1 and K2 (that is,

excluding L3 and L4), then these relations serve to fully explain the reduced rank.

Of course, we may construct other relations as combinations of these two, or special

cases, such as near the edge or diagonal, but these relations form a basis for the
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L1,L2 K1,K2

Figure 4.3: A depiction of which entries are related by General Case 2, where here
the left matrix represents both L1 and L2, and the right matrix both K1

and K2. Here entries which are involved in the relation are shown as +,
while entries that are not involved are shown as ·. This is shown here
for n = 6 and k = 3, but the relation is valid for other values of n and k.

other relations. The other proviso is that these relations are valid on the integrand.

There are some relations valid on the integral, which means that they only hold for

certain shapes. As a result, we do not consider these, as they are not general. Our

relations are valid for all axisymmetric particles.

For the second question, the answer is much easier to state, in that we do not

need to qualify it to such a degree. These relations do not make it easier to calculate

the T -matrix. It is worth, however, considering what we mean by this, and what

improvements are necessary to be able to answer “yes” to this question. For a fixed

m, using this recursion scheme to calculate the T -matrix up to n = N , we must

calculate O (N2) elements.1 However, there are O (N2) elements, so there is no

major gain to be made compared to evaluating every integral. As well as this, even

if it was more efficient, there are still the elements in L3 and L4 to be calculated,

and as long as we have no relations involving them, then the overall behaviour will

not improve.

There is an obvious means that could result in a much more useful result. If

1In so-called “Big-O” notation, this means that in the limit of large numbers of terms, the
number of operations required to calculate the matrix scales as N2. Broadly speaking, O(N2)
algorithms outperform O(N3) algorithms (or in fact any power larger than 2) as N increases,
though for smaller sizes this may not be true.
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a relation could be found (both its existence confirmed, and an exact form found)

relating terms of different m, then this may enable more efficient calculation of the

T -matrix (if coupled with a relation involving L3 and L4)2. Such a relation, to be

of use, would need to not increase the number of terms required for the relation by

more than a factor N , in order to obtain terms for all m from m = 0 to m = N .

As the number of elements goes as O (N3), then if the increase is less than a factor

of N , we would have a significantly more efficient method. Finding (and proving)

these relations is work not yet undertaken, and falls sadly outside the scope of this

thesis. However, it is anticipated that a concerted effort on this front would be able

to make some headway, using the general methods given here for the case m = 1.

4.3 Summary

The results presented in this chapter, previously published in Ref. [1], while offering

some small improvements to the EBCM, do not lead to revolutionary gains in the

applicability of the EBCM or T -matrix method. The work on obtaining new expres-

sions for the integrals presents a cleaner way of attempting to find more meaningful

improvements (such as the attempt to find linear recursion relations), which has led

to some significant improvements as shown in the next chapter.

The linear recursion relations shown in this chapter are an unfinished work, and

at this point they do not offer an improved method of calculating the T -matrix.

However, the work undertaken to date may, in the future, lead to relations being

found that involve all m, which has the potential to reduce the computational cost

significantly.

2As the matrices are not linearly independent, there is no need to include all 4 of them in such a
relation. Including 3 of them is sufficient.
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5 Problematic Spheroids

The spheroid is a geometry that has seen much use as a model for physical

systems, in some cases because the spheroid is a good description of the system

being studied, and in other cases because it is a simple shape, that adds an additional

geometric degree of freedom to the even simpler sphere. One common technique used

to study spheroids is the extended boundary-condition method (EBCM). However,

it has been known for some time the EBCM suffers from numerical problems in some

cases, especially for large or high aspect ratio particles[64]. There have been some

limited reports that for certain particle shapes, there are specific numerical problems

in the integrals[48, 72, 73]. We have, in Ref. [3], studied the behaviour of the EBCM

for the cases of spheroids and offset spheres, and provided a clear explanation of the

behaviour for those shapes. Following this, in Ref. [6], we presented a method of

modifying the integral expressions for the case of spheroids to remove the numerical

problems.

This chapter is based on work from these two publications[3, 6]. To begin with,

there is a brief discussion of precision in the context of numerical calculations. Fol-

lowing this is a demonstration of the problems for spheroids. This begins with a

demonstration that there are problems, and is followed by a derivation of the cause

Cupcakes (20) Preheat your oven to 190 ◦C. In a bowl, beat 150 g softened butter until smooth,
and add 1.5 cup white sugar and beat until light and fluffy. Add 2 eggs and mix well. Sift in
2.5 cup self-raising flour, and add 2 tsp vanilla essence and 1.25 cup milk. Beat until smooth.
Spoon mixture into paper baking cups in a cupcake tin, so that the cups are 2/3 full. Bake for
20 min, then cool on a wire rack.
Icing Beat 100 g softened butter until pale and fluffy, then sift in 1.5 cup icing sugar, and add
2–3 drops vanilla essence and 1–2 Tbsp milk. Mix until light and fluffy. Mix in food colouring
to reach desired colour. Spread over cooled cupcakes.
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of the problems. To conclude, a solution to these problems is provided, which allows

calculating a T -matrix for spheroids to a high precision with little effort, allowing

the treatment of light scattering for spheroids to be about as tractable as for spheres.

The problem that is encountered with the EBCM, including the case of spheroids,

is usually observed as a failure of numerical convergence in the calculations. There

have been several attempts to overcome this behaviour, often focusing on improving

the working precision of the integration, and the matrix inversion[64]. Typically the

improved performance of these approaches was attributed to the improved matrix

inversion when carried out in higher precision, but we have demonstrated that the

inversion of the system is not the cause of the problems for spheroids[3]. Rather, it

is the calculation of the integrals that presents problems. However, it is possible to

rewrite the relevant integrals in a way that allows them to be easily calculated[6].

In this chapter, for reasons of analytical simplicity, the matrix U (as defined in

Eq. (3.85), such that Q = P + iU) will be used when working with the expressions

instead of Q. However, as Q is the desired result, numerical examples (such as in

the figures) will make use of Q and not U.

5.1 Geometries

Here are presented the geometries used in this chapter. These are the spheroid and

the offset sphere, as well as the cylinder.

5.1.1 Spheroids

The spheroid, which is used for much of this chapter, is simply a sphere deformed

along one of the axes (which is equivalent to an ellipsoid with two of the axes equal).

The spheroid is described by

r(θ) =
ac√

a2 cos2 θ + c2 sin2 θ
(5.1)

dr

dθ
= rθ =

a2 − c2

a2c2
r(θ)3 sin θ cos θ, (5.2)
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where here a is the semiaxis along the x- and y-axes, and c is the semiaxis length

along the z-axis, which is the axis of revolution.

There are two classes of spheroids that may be considered. Oblate spheroids

resemble smarties, and have a > c. Prolate spheroids resemble (to a first approx-

imation) a rugby ball, and have a < c. The case where a = c is a sphere. The

aspect ratio, defined as the ratio between maximum and minimum distances from

the origin, is

h =
rmax

rmin

=
a

c
(5.3)

in the case of oblate spheroids, and for prolate spheroids it is

h =
c

a
. (5.4)

Often, spheroids are characterised by their equivalent-volume sphere radius rV ,

or their equivalent-area sphere radius, rA. The volume of a spheroid is

V =
4

3
πa2c (5.5)

and hence the equivalent-volume radius is

rV =
3
√
a2c. (5.6)

The surface area of a spheroid is

S =

2πa2
(

1 + 1−e2
e

tanh−1 e
)

for oblate spheroids

2πa2
(
1 + c

ae
sin−1 e

)
for prolate spheroids

(5.7)

where

e2 =


1− c2

a2
for oblate spheroids

1− a2

c2
for prolate spheroids.

(5.8)
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From this, it is possible to express the equivalent-area sphere radius as

rA =

a
√

1
2

+ 1−e2
2e

tanh−1 e if oblate

a
√

1
2

+ c
2ae

sin−1 e if prolate.
(5.9)

These values rV and rA are provided here for reference, but they are not used in

this thesis.

5.1.2 Offset Sphere

The offset sphere is a sphere (of radius a) that is displaced along our z-axis, the axis

of rotation, by some amount D. The amount by which it is displaced is less than

the radius, to ensure that the origin remains within the shape.

The relevant formulae for an offset sphere are

r(θ) = −D cos θ +
√
a2 −D2 sin2 θ (5.10)

rθ = D sin θ − D2 sin θ cos θ√
a2 −D2 sin2 θ

. (5.11)

The offset sphere has an aspect ratio of

h =
a+D

a−D
, (5.12)

and the surface area and volume are trivially the same as for a sphere of radius a.
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5.1.3 Cylinder

Here we consider a right circular cylinder, with semiaxis a perpendicular to the

z-axis, and c parallel to z. The formulae for a cylinder are

r(θ) =

 a
sin θ

if α ≤ θ ≤ π − α
c

cos θ
otherwise

(5.13)

rθ =

−a cos θ
sin2 θ

if α ≤ θ ≤ π − α

− c sin θ
cos2 θ

otherwise
(5.14)

where α = tan−1(a/c).

The aspect ratio for a cylinder is given by

h =

√
a2 + c2

min(a, c)
. (5.15)

5.2 Numerical Precision

This section begins with a brief examination of how numerical values are stored by

computers, and how this leads to numerical problems in some cases. In the follow-

ing, we refer solely to floating point numbers, which are those where the number

is expressed as some value (a significand) multiplied by an exponent, which allows

a large range of sizes to be represented. The standard precision offered is dou-

ble precision, which contains 53 bits (equivalent to ∼16 digits) of precision for the

significand, and 11 bits for the exponent. Arbitrary precision methods allow for in-

creasing the precision of the significand (and exponent) to arbitrary values, allowing

the working precision to be set to suit the problem at hand. The cost for this is

increased computation time and memory requirements, and potentially needing to

modify software to incorporate arbitrary-precision methods.

The easiest way to demonstrate a loss of precision is to perform some addition or

subtraction of numbers of similar sizes, where the correct result is small compared
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to the numbers. For example, consider the two numbers

a = 1010 + π

b = 1010.

We are able to easily see what the result of a−b should be (π), yet if we were to calcu-

late this in some double-precision numerical software, we get a result 3.141592025756836 ,

where the numbers in red italics differ from the correct digits. If we increase the

difference in size of the numbers,

a = 1017 + π

b = 1017,

then while the correct solution is unchanged, the numerical result is now a− b = 0.

This example shows the result losing accuracy, but the worst result that can be

obtained is simply zero. However, there are other losses of precision that may

produce much more incorrect results. As an example of this, consider

a = 1040 × 1

3

b = 1040 ×
(

1− 2

3

)
.

In this case, we can see that a − b should be zero, yet when calculated amounts

to a − b = −6 .04462909807315 × 10 23 . As integration amounts to a numerical

summation of many different numbers, it becomes obvious how that process may

lead to a loss of precision. In the case of the EBCM integrals, the integrands are

highly oscillatory, varying between large positive and negative values, leading to the

possibility of cancellation problems.

A range of arbitrary-precision libraries are used in this work. The base library

is the GNU Multiple Precision Arithmetic Library (GMP)[74]. On top of this,

MPFR[75] is used to support floating-point numbers, and MPC[76] is used to add

complex numbers. All of these libraries are used from the C programming language

for the most part. However, they are used with C++, when used in conjunction
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with the last library that we used, MPACK[77]. This library adds linear algebra

capabilities, such as matrix inversion methods. The C and C++ codes used are

written as a mex file, so that MATLAB can call the functions. Most of these codes

were written by myself as part of a short-term summer project preceding this thesis,

but many modifications, including the matrix inversion capability, were added as

part of this thesis.

When using arbitrary-precision code, it is possible to remove all precision issues,

by simply increasing the working precision until the result converges within some

desired precision. In this work, that desired precision is always double precision, as

the results are truncated to double precision when they are transferred into MAT-

LAB for analysis. In order to compare the relative agreement between two results,

we introduce here the metric α, defined as

α = − log10

(∣∣∣∣A−BB

∣∣∣∣) (5.16)

where here B is the value that is assumed correct (such as a value from arbitrary-

precision calculations), and A is the value that is being compared to it. α then

represents the number of digits of agreement between A and B. When α is infinity,

A and B agree exactly (within the working precision, the maximum finite value of

α is about 16 in double precision). As A becomes large compared to B, α becomes

negative when the order of magnitude of the two disagree. If A becomes small (close

to zero) compared to B, then α approaches zero. This metric α is used frequently

in this chapter to evaluate the numerical performance of various methods.

5.3 The Problem with Spheroids

We start here with a demonstration of how the numerical problems for spheroids

manifest. This is achieved by using the arbitrary-precision code to obtain the correct

(converged to double precision) results, and comparing these to results calculated

in double precision.

Here we provide three example calculations, for three different shapes, to em-
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phasise where the numerical problems appear. The three shapes are a prolate

spheroid, a cylinder, and an offset sphere. We treat here shapes with a size pa-

rameter xmax = k1rmax = 0.5, an aspect ratio h = 2 and a relative refractive index

s = 1.5 + 0.02i.

We start by examining the extinction cross section of the three shapes for excita-

tion with ~E along the long z-axis, as we increase the maximum multipole order N

being considered. In Fig. 5.1 is plotted the agreement in the extinction cross section,

compared to the N = 41 arbitrary-precision value. The agreement is plotted for cal-

culations in both double and arbitrary precision. As can be seen in that figure, in

the cases of the spheroid and the offset sphere, the number of digits of agreement

α in the arbitrary precision results tends towards 16, indicating that the results are

converging to the limits of the double precision the cross section is calculated in.

However, for the double precision results, a different trend is apparent. For these

two shapes, we can see an example of ‘pseudo-convergence’, where the results begin

to converge towards the correct value, as for the arbitrary precision case, before di-

verging. For the cylinder, the results struggle to converge. The important difference

between the cylinder, as opposed to the other two shapes, is that both the double-

and arbitrary-precision results for the cylinder follow the same path. Here, the fail-

ure to converge is not because of a loss of precision in the integration. Rather, we

attribute this to a matrix inversion issue, or similar. The matrix inversion for all

of these examples was performed in double precision. In the case of the spheroid

and offset sphere, the arbitrary-precision results converge well, while it is only the

double-precision results which exhibit problems. As the difference between the two

is the precision used in the integration, this suggests a loss of precision is the cause

for the problems for these shapes.

The cause of this behaviour is that for low N , both codes produce the same values

for the integrals, and so behave the same. However, as N increases, the integrals in

the double precision case begin to produce incorrect results in the case of spheroids

and offset spheres, and so the subsequent calculation of the extinction cross section

will also be incorrect. It is possible to truncate the calculations to the point of

best convergence (tested as relative convergence, as the fully-converged results will

not be available as in this example). However, it would be preferable to be able to
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Figure 5.1: The number of digits in agreement with the N = 41 result for the scatter-
ing cross section for a spheroid, offset sphere, and cylinder, with aspect
ratio h = 2, size parameter xmax = 0.5, and relative refractive index
s = 1.5 + 0.02i. Results are shown for calculation of P and Q in double
(solid lines) and arbitrary precision (dashed). The size of the inverted
matrices for each point is N .

calculate the cross section without needing to worry about this divergence. Such a

method is presented later.

In order to understand why the results begin to diverge, it is worth considering the

behaviour of the integrands and the integrals in the calculation of P and Q. We can

see in Fig. 5.2(a)-(c) that the maximum integrand values for the three shapes do not

vary with shape, but are different for different entries in the matrices. Figure 5.2(d)-

(f) shows the manner in which integrals, calculated in arbitrary precision, change

in size across the Q-matrix. It is clear here that for two of the shapes, the integral
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and the integrand behave differently. While for cylinders the behaviour of the two

is the same, for the offset sphere and the spheroid, the scaling behaviour is radically

different. While the integrand increases approaching the high-n/low-k corner of the

matrix, for offset spheres the integral decreases, symmetrically with the high-k/low-

n corner, and tends towards a non-offset sphere (a sphere), for which all off-diagonal

terms in this matrix would be zero. The failure of the integrals is demonstrated in

Fig. 5.2(g)-(i), where the number of digits of agreement between double precision

results and arbitrary precision results is shown. Here we can see that where the

integrands are large compared to the correct integrals, there is a loss of precision in

the results of the double precision integrals.

As Fig. 5.2 shows, the relative magnitude of the integral and the integrand varies

in the cases of spheroids and offset spheres across the matrix, while for the cylinder,

the integral and integrand scale the same. As this difference becomes larger, then

the precision of the numerical results degrades. As can be seen in that figure, even

in the case of the cylinder, where the magnitude of the integral is the same as the

integrand, the summation of many terms leads to a slight drop in precision in some

parts of the matrix, yet the error never becomes catastrophic.

In order to understand why some shapes behave differently to other shapes, we

can look at the way the integrals and integrands scale with the size of the particle.

This is shown for certain entries of the matrix L1 in Fig. 5.3. In all cases, the

integrands exhibit the same behaviour as the cylinder integrals. The panels in the

bottom row correspond to matrix entries that exhibit a loss of precision in Fig. 5.2

(g)-(i). In these cases, but not the top row (which corresponds to entries not showing

a loss of precision in Fig. 5.2) we can see that the different shapes behave very

differently. The integral considered here, L1, has the form

L1
nk =

∫ π

0

dθxθτndkχnψk (5.17)

and if we expand the Bessel functions in a power series (details are found in Ap-

pendix A) the leading-order term of this product is then xk−n+2. Hence, by rescaling

the particle that we model, we expect the integral to scale by this factor, xk−n+2. As

shown in Fig. 5.3, for small sizes the behaviour of the cylinder matches this expected
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Figure 5.2: This shows the magnitude of the integrands for the three shapes in (a)-
(c). The integrals are shown in (d)-(f), and the cylinder behaves the
same as the integrals. The offset sphere and cylinder show different
behaviour. The number of digits correct (α) when calculated in double
precision, compared to converged arbitrary-precision results, are given in
(g)-(i). This figure only shows the odd-odd entries in Q22 for m = 1, but
the same results hold for other entries and matrices, and other m-values.
Here black dots indicate that α < 0 (and so the order of magnitude is
incorrect). 93
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behaviour, while the other two shapes behave differently in those cases where we

observe a loss of precision. Once the sizes become larger, then the first term in the

series expansion is no longer the only significant term, and all of the shapes behave

similarly. It was only possible to carry out this study using the arbitrary-precision

codes. In double precision, the magnitude of the integrals cannot be evaluated for

the spheroid and offset sphere where they differ in behaviour from a cylinder.

Based on the leading term in the power series, we can easily see how the integrand

will scale with size of the scatterer. These go like xk−n+2 for the integral L1
nk.

However, for the spheroid and offset sphere, we can see that the scaling is not like

this: these leading terms in the integration do not appear to contribute. From this,

we suppose that some leading terms in the power series integrate to zero,∫ π

0

dθf(θ)xp = 0 (5.18)

for some appropriate f(θ) describing the angular terms, and for some term xp from

the power series. However, these terms are also the largest in the integrands, and

so lead to severe loss of precision when adding up a series of numbers that are

large compared to their sum. This results in calculating integrals where the value

computed is 16 orders of magnitude smaller than the maximum value, and otherwise

bears no relation to the correct result.

The solution to this is conceptually simple. We should simply integrate the part

of the power series that integrates to a non-zero value, and the remaining terms

make no contribution and may be safely discarded. Here, this solution is broken

into two parts. The first is a formal derivation of exactly which terms integrate to

zero in these integrals, and the second part is a method that is able to generate the

required parts of the integrand in a numerically stable manner.
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Figure 5.3: This demonstrates how the integrals L1
nk scale with the particle size, for

the three shapes cylinder, offset sphere, and spheroid. This is shown as
a function of n and k and the size of the particles. The scaling of all of
the integrands follows the cylinder. This is for m = 1, and the integrals
are calculated in arbitrary precision, with a precision and number of
integration points such that the results have converged within double
precision.
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5 Problematic Spheroids

5.4 Proof that Spheroid Integrals Contain Terms

Integrating to Zero

First we present a detailed demonstration of which terms in the integrals make no

contribution to the result (that is, integrate identically to zero). This is divided into

sections for each of the integrals.

5.4.1 Necessary Relations

Here we outline some important relations needed for these proofs. We begin by

defining the notation

PN(cosθ)

to mean a polynomial in cos θ of degree N or less. We also make use of the ability

to use the set of Legendre polynomials P 0
n(X), with 0 ≤ n ≤ N as a basis of the

vector space RN [X], denoting here real polynomials of degree N .

We make use of a formula by Gaunt which expresses the integral of the product

of three associated Legendre functions[78]. In our case, we are interested only in the

special case of when the integral is zero, and the third associated Legendre function

is a Legendre polynomial, that is∫ π

0

dθPm
n (cos θ)Pm

k (cos θ)P 0
p (cos θ) sin θ = 0

if

{ |n− k| > p

or

n+ k + p is odd.

(5.19)

This may be written in terms of dn as∫ π

0

dθdn(θ)dk(θ)Pp(cos θ) sin θ = 0

if |n− k| > p. (5.20)
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5.4 Proof that Spheroid Integrals Contain Terms Integrating to Zero

The proofs then consist mainly of placing the integrals into a form as in this equation,

and seeing that the terms that we have observed not to contribute all integrate

identically to zero.

The other important step, and which is what makes the spheroid special, is

to obtain some expressions about the spheroid geometry. It is these relations on

x ≡ x(θ) which provide all of the shape-dependent information in the integrals.

Hence, this is what causes the spheroids (and offset sphere) to behave in a manner

very different to other shapes. The geometry is defined as in Section 5.1.1, and we

may write the expressions

xθ
x3

=
a2 − c2

k2
1a

2c2
sin θ cos θ (5.21)

1

x2
=

1

k2
1a

2
+
a2 − c2

k2
1a

2c2
cos2 θ (5.22)

sin θ

x2
=

sin θ

k2
1a

2
+
xθ sin θ

x3
. (5.23)

and by combining these, it is also possible to obtain

xθ
x2q+3

= cos θ sin θ
(
α + β cos2 θ

)q
= sin θP2q+1(cos θ) (5.24)

sin θ

x2q+2
= sin θ

(
α + β cos2 θ

)q+1
= sin θP2q+2(cos θ) (5.25)

where we define

α =
1

k2
1a

2
(5.26)

β =
a2 − c2

k2
1a

2c2
. (5.27)

While the exact values for α and β are provided in this instance, here we introduce

a notational nicety whereby the values of variables styled in Greek letters are not

specified or important. We exclude from this convention the functions π and τ , the

Bessel functions χ and ψ, and the angle θ. None of the variables used diverge to

infinity, and as we are interested in showing when terms are zero, the exact value of

any prefactors is of no importance.
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It is important to note how the angular functions come into this. The function

dn = CnmP
m
n (cos θ) is simply an associated Legendre function, with Cnm defined

as in Appendix B, and dn as used here has an implied index m, so does not need

any relation. The other angular function, τn = τnm(θ) = d
dθ
dn, may be rewritten in

terms of dn as

sin θτn = −
√
n2 −m2dn−1 + ndn. (5.28)

This allows us to simply rewrite Eq. (5.19) in terms of τn, as∫ π

0

dθ sin θτn(θ)dk(θ)Pp(cos θ) sin θ = 0

if p ≤ |n− k| − 2. (5.29)

5.4.2 Integrals L1 and L2

For the integral L1
nk, we have the expression

L1
nk =

∫ π

0

dθ sin θxθτndkχnψk. (5.30)

In the case of spheroids, this integral is zero (by parity) whenever n+k is odd, hence

we shall assume here that n+ k is even. We are also able to expand the product of

the Bessel functions as

χnψk = xk−n+1

∞∑
q=0

νnkq(s)x
2q, (5.31)

and so we may write

L1
nk =

∞∑
p=k−n+1
p odd

µnkp(s)L
1
nkp (5.32)
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5.4 Proof that Spheroid Integrals Contain Terms Integrating to Zero

where

L1
nkp =

∫ π

0

dθ sin θxθx(θ)pτn(θ)dk(θ). (5.33)

Written in this way, each integral L1
nkp contains only one power of x, and based on our

observations of the scaling of the integrals, the lower orders should all integrate to

zero. We observed anomalous scaling only in the part of the matrix where n ≥ k+4

(that is, below and not immediately adjacent to the diagonal), hence we shall only

consider cases where n ≥ k + 4. Assuming that p ≤ − 3, using Eq. (5.24), and

defining the non-negative integer q = −(p+ 3)/2 we may rewrite the integral as

L1
nkp =

∫ π

0

dθ sin2 θP2q+1(cos θ)τn(θ)dk(θ). (5.34)

By using our modified Gaunt’s formula, Eq. (5.29), we can immediately see that this

integral is zero for 2q+1 ≤ |n−k|−2, or equivalently, as |n−k| is even, this may be

written |n−k| ≥ 2q+4, which is also equivalent to k−n+1 ≤ p. Through the scaling

studies, it is expected that the integrals will be zero whenever k − n+ 1 ≤ p ≤ −3.

This agrees with our conclusion above. Note that for p ≥ − 1, then this proof is

not valid, which amounts to the integrals being non-zero, as expected.

For L2, we have

L2
nk =

∫ π

0

dθ sin θxθdnτkχnψk (5.35)

where the only difference from L1 is the indices on d and τ . However, as these indices

only appear as |n− k| in the condition of Eq. (5.29), they are interchangeable, and

the results are the same as for L1. This is expected, as these two integrals were

found to scale the same way.
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5.4.3 Integrals K1 and K2

The integral K1 is

K1
nk =

∫ π

0

dθmdndkxθχnψ
′
k. (5.36)

Along the same lines as for L1, we may express the product of the Bessel functions

as

χnψ
′
k = xk−n

∞∑
q=0

αnkq(s)x
2q, (5.37)

where here n+ k is odd, because for the entries where n+ k is even, K1
nk is zero by

parity. Thus, we may define

K1
nkp =

∫ π

0

dθxθx(θ)pdn(θ)dk(θ) (5.38)

where

K1
nk =

∞∑
p=k−n
p odd

νnkp(s)K
1
nkp. (5.39)

Based on observations of the scaling behaviour of the integrals, we expect that K1
nkp

is zero when k − n ≤ p ≤ −3. We are able to rewrite the x-terms, to get

K1
nkp =

∫ π

0

dθ sin θP2q+1(cos θ)dn(θ)dk(θ) (5.40)

where q = −(p + 3)/2 is a non-negative integer. Thus, from direct application of

Eq. (5.19), K1
nkp = 0 when |n − k| − 1 ≥ 2q + 1. Given that |n − k| is odd, this is

the same as |n − k| ≥ 2q + 3, which is also equivalent to k − n ≤ p.1 Thus, all of

the terms that we need to integrate to zero do integrate to zero.

1Of interest there is that terms in, for example, p = k − n− 2, if they had a non-zero coefficient,
would not integrate to zero. It is only exactly the terms that we want to integrate to zero that
do integrate to zero.
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5.4 Proof that Spheroid Integrals Contain Terms Integrating to Zero

In order to show this for K2, only one small change is required. In this case, we

have the integral

K2
nk =

∫ π

0

dθmdndkxθχ
′
nψk (5.41)

and we may express

χ′nψk = xk−n
∞∑
q=0

βnkq(s)x
2q (5.42)

which is the same as Eq. (5.37) except for the coefficients, and so the rest of the

results are identical.

5.4.4 Integrals L3 and L4

We might hope that the proofs for the last two integrals would be as simple as for

the previous four. As we shall see, they are not quite as straightforward.

We shall start by looking at L3. The expression for this is

L3
nk =

∫ π

0

dθ sin θdkψ
′
k [xθτnχ

′
n − n(n+ 1)dnχn] . (5.43)

It may appear tempting to split this into two terms, and work on each one separately.

While this approach works to show that almost all of the required terms integrate

to zero for each integral, the leading term in both cases, as we shall see, does not

integrate to zero. Rather, the leading terms make no contribution because the two

leading terms cancel each other. Thus, in this proof, we shall need to consider the

exact coefficients of the two terms in order to demonstrate this.

For L3, we have n+ k even, as for n+ k odd entries the integrals are identically

zero by parity.
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Firstly, we may write the integral as

L3
nk =

∞∑
p=k−n−1
p odd

L3
nkp (5.44)

where

L3
nkp =

∫ π

0

dθ sin θdk
[
αnkp(s)xθx

pτn − n(n+ 1)βnkp(s)x
p+1dn

]
. (5.45)

Note that the two terms scale the same, as xθx
p scales like xp+1. The difference in

the two coefficients αnkp(s) and βnkp(s) is the difference in the leading term of χ′n

and χn, which is

χ′n
∣∣
leading term

χn
∣∣
leading term

= −n. (5.46)

Thus, we may rewrite for the leading term

L3
nkp|p=k−n−1 = −

∫ π

0

dθdk sin θβnkp(s)
[
nxθx

pτn + n(n+ 1)xp+1dn
]
, (5.47)

and using Eq. (5.23) this may be rewritten as

L3
nkp|p=k−n−1 = −

∫ π

0

dθdknx
p+3βnkp(s)

[
sin θ

xθ
x3
τn + α(n+ 1) sin θdn + (n+ 1)dn cos θ

xθ
x3

]
.

(5.48)

We may use one of the angular function relations, Eq. (B.15) to write

L3
nkp|p=k−n−1 = −

∫ π

0

dθdknx
p+3βnkp(s)

[xθ
x3
dn+1

√
(n+ 1)2 −m2 + α(n+ 1) sin θdn

]
,

(5.49)
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5.4 Proof that Spheroid Integrals Contain Terms Integrating to Zero

which may be split into two integrals,

L3
nkp|p=k−n−1 =

∫ π

0

dθnxθx
pβ′nkp(s)dn+1dk +

∫ π

0

dθ sin θnxp+3β′′nkp(s)(n+ 1)dndk.

(5.50)

where β′nkp(s) = −βnkp(s)
√

(n+ 1)2 −m2 and β′′nkp(s) = −βnkp(s)α.

The first of those integrals may be expressed as∫ π

0

dθnxθx
pβ′nkp(s)dn+1dk =

∫ π

0

dθ sin θnP2q+1(cos θ)β′nkp(s)dn+1dk (5.51)

where q = −(p + 3)/2, and we made use of Eq. (5.24). Thus, we can see that this

integral is zero when 2q+ 1 ≤ |n+ 1− k| − 1, equivalent to −p− 2 ≤ n− k. In this

case (of the leading term), p = k− n− 1, so n− k− 1 ≤ n− k is trivially true, and

the integral is zero.

The second of the integrals may be written using Eq. (5.25) as∫ π

0

dθ sin θxp+3β′′nkp(s)n(n+ 1)dndk =

∫ π

0

dθ sin θP2q+2(cos θ)β′′nkp(s)n(n+ 1)dndk

(5.52)

where q = −(p + 5)/2. This is then zero when 2q + 2 ≤ |n − k| − 1, or −p − 3 ≤
|n−k|−1. Given the value for p being used here, this simplifies to n−k−1 ≤ n−k,

which is again true, and so this integral is zero.

We have established that the leading order in L3
nk integrates to zero. For the

other terms, we divide the integral into the two terms,

L31
nk =

∫ π

0

dθ sin θxθτndkχ
′
nψ
′
k (5.53)

L32
nk = − n(n+ 1)

∫ π

0

dθ sin θdndkχnψ
′
k. (5.54)
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Looking first at L31
nk, we may write the product of the Bessel functions as

χ′nψ
′
k = xk−n−1

∞∑
q=0

γnkq(s)x
2q (5.55)

and hence

L31
nk =

∞∑
p=k−n−1
p odd

ιnkp(s)L
31
nkp (5.56)

where

L31
nkp =

∫ π

0

dθ sin θτndkxθx
p. (5.57)

By defining the non-negative index q = −(p + 3)/2 and using Eq. (5.24), we arrive

at

L31
nkp =

∫ π

0

dθ sin2 θτndkP2q+1(cos θ), (5.58)

which by Eq. (5.29) is zero whenever 2q + 1 ≤ |n − k| − 2. In terms of p, this

equates to −p ≤ |n− k|. The largest value of −p is n− k+ 1, which is not less than

|n − k|, however the next value of −p is n − k − 1, which is less than |n − k|. We

do not expect that the first term would fulfil the condition to integrate to zero, but

as already shown, that term cancels out with the first term from L32
nk. So, the terms

that integrate to zero in L31
nk are when n− k− 1 ≤ p ≤ −3, which matches with our

expectations based on the scaling study.

Considering L32
nk, we write the product of the Bessel functions as

χnψ
′
k = xk−n

∞∑
q=0

δnkq(s)x
2q. (5.59)
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Thus,

L32
nk =

∞∑
p=k−n−1
p odd

ρnkp(s)L
32
nkp (5.60)

where

L32
nkp = − n(n+ 1)

∫ π

0

dθ sin θdndkx
p+1. (5.61)

We again define the non-negative integer q = −(p+3)/2, so that by using Eq. (5.25)

we have

L32
nkp = − n(n+ 1)

∫ π

0

dθ sin θdndkP2q+2(cos θ) (5.62)

which is zero when 2q + 2 ≤ |n − k| − 1, or equivalently −p ≤ |n − k|, which is

the same as the result for L31
nk, and hence all of the terms except the leading term

integrate to zero. The leading term here, as we have seen, cancels with the leading

term of L31
nk, and so all of the terms which we have observed making no contribution

to the integrals do integrate identically to zero.

The only remaining integral to consider is L4. While a similar analysis could be

applied to L4, this is not necessary. As shown in Section 4.1.4 in Eq. (4.44), L4 may

be expressed as a linear combination of L1, L2 and L3, and thus the first contributing

order in L4 is simply the first order to contribute out of the other integrals.

5.5 Inversion of the Correct Matrices

It has been the focus of some works to improve the accuracy of the EBCM by

improving the inversion used to calculate T from P and Q. While this will improve

the method in general, in the case of spheroids normal inversion routines provide

adequate accuracy if the correct Q is used. Some of the suggested improvements to

the inversion implement an improved inversion routine, for example making use of
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Gaussian elimination[79], Gaussian elimination with back-substitution[63], or LU-

factorisation [65]. Other methods do the integration and inversion in extended

precision (in this case, quad precision, or 113 bits of precision, compared to 53

bits for double precision), and observe an increased range of convergence[64]. Here,

we will demonstrate that this improvement may be obtained with double-precision

inversion, if the correct Q-matrix is used, and that it is not the inversion step that

is crucial for the case of spheroids.

In order to determine how accurate a result is, we make use of the arbitrary

precision code, modified to use the C++ library MPACK[77], which is able to per-

form matrix inversion in arbitrary precision. This provides a good value against

which we may compare the other methods. Here, the two different methods were

used to calculate P and Q. Then, the inversion was performed in double precision,

and compared to the result where the matrices and the inversion were calculated in

arbitrary precision. The results are shown in Fig. 5.4, and demonstrate that there

is very good agreement even when the inversion is in double precision, so long as

the initial matrices are calculated correctly.

This exemplifies the value in correctly calculating Q, and demonstrates that it

is not necessary for reasons of numerical accuracy to focus on the inversion step

(this applies to spheroids, and is not true of other shapes). Of course, for speed or

memory requirements, it might still be desirable to use different inversion schemes.

It is also possible to consider the effect of truncation on the precision of elements

in T. Some parity considerations aside, each element of T depends on the values of

all elements of P and U.2 However, as it is intractable to calculate and then invert

an infinite matrix (or to perform either of those steps individually), the matrix is

truncated before inversion. The assumption here is that values with high n or k make

a negligible contribution to the earlier entries, especially those around n = k = 1,

as it is these early entries with typically contribute the most to the final results.

It is worth a brief mention of the methods used to invert the matrices. We use

MATLAB, and divide the T -matrix up into two matrices, based on the parity of the

2For axisymmetric particles this is restricted to only values with the same m, and for particles
with a plane of symmetry only values with appropriate parity of n + k.
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Figure 5.4: Number of correct digits of the T -matrix after inversion in double pre-
cision, after P and Q were calculated in (top) double and (bottom)
arbitrary precision. This is relative to inversion also being carried out
in arbitrary precision. The particle here is a prolate spheroid of aspect
ratio h = 2, size parameter xmax = 1, with relative refractive index
s = 1.5 + 0.02i. Only m = 1 is considered here. This shows only one
parity of each n, k, for each block of the matrix, as indicated by the axis
labels, though the other entries behave similarly.
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indices[6]. These two matrices are

Teo =

(
T11
ee T12

eo

T21
oe T22

oo

)
(5.63)

Toe =

(
T11
oo T12

oe

T21
eo T22

ee

)
(5.64)

where the subscript eo indicates that the n-index of the matrix takes even values,

and the k-index takes odd values. The same may be applied to P and Q also. Using

this notation,

Teo = −Peo (Qeo)−1 (5.65)

Toe = −Poe (Qoe)−1 . (5.66)

These two parts each relate half of the field coefficients, as(
~ce
~do

)
= Teo

(
~ae
~bo

)
(5.67)

~ae =


a2

a4

...

 (5.68)

and similarly for the other parity.

The inversion of these two equations is then carried out by block inversion

scheme[79–81], using a LU factorisation, obtained by Gaussian elimination with

partial pivoting. In MATLAB, this corresponds to the mrdivide operation, also

denoted /.
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The block inversion is carried out in the following steps,

F1 = I/Q11 (5.69)

G1 = P11F1 (5.70)

G3 = P21F1 (5.71)

G5 = Q21F1 (5.72)

F2 = I/
[
Q22 −G5Q

12
]

(5.73)

G2 = P22F2 (5.74)

G4 = P12F2 (5.75)

G6 = Q12F2 (5.76)

T12 = G1G6 −G4 (5.77)

T22 = G3G6 −G2 (5.78)

T11 = G1 −T12G5 (5.79)

T21 = G3 −T22G5. (5.80)

Here, for efficiency, this is carried out separately for Teo and Toe. In our tests, this

method does not result in a significant loss of precision, and was the method used

in Fig. 5.4.

5.6 Spheroid Integral Forms

Given our understanding of the cause of the loss of precision in the case of spheroids,

we can now consider how to calculate the integrals without a loss of precision.

Conceptually, the solution is simple. As the loss of precision is caused by dominant

terms in the integrals which should make no contribution to the result, then the

integrals should be calculated without making use of those terms.

In this section, we present the necessary relations to calculate the integrals in

the case of spheroids. Similar work has not been done in the case of offset spheres,

owing to the availability of Mie theory to calculate results for spherical scatterers,

and the ability to spatially offset the results, which renders such effort unrewarding.
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The loss of precision for spheroids occurs only in the matrix U (and Q, which

is obtained from U, but not P). Hence, in this chapter we make use of the Bessel

function products like χnψk, and not terms like ψnψk, for which there are not the

same numerical problems.

5.6.1 Basic Idea

To illustrate the underlying idea behind our approach, we define operators P+ and

P− such that for some function f = f(x),

P+f + P−f = f (5.81)

and where P+f contains only the components of f with non-negative powers of x,

such that if

f(x) =
1

x2
+

1

x
+ 1 + x2 + . . . (5.82)

then

P+f(x) = 1 + x+ x2 + . . . (5.83)

Our solution to the problem with spheroids therefore involves rewriting the inte-

grals in a form such that

L5
nk =

∫ π

0

dθ sin θ (n(n+ 1)dnτk − k(k + 1)τndk)
xθ
x
P+ [xχnψk] , (5.84)

with similar expressions for the other integrals. Note that if P− was used here

instead then the result would be zero, as the components with negative powers of x

integrate identically to zero. Here, xθ exhibits the same scaling behaviour as x, and

we have inserted a factor of x into our positive-part operator to increase all terms

by one order, so that we select terms of non-negative power, and not terms with

powers at least −1.
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We therefore define the function

Fnk(s, x) = xχn(s)ψk(sx) (5.85)

and for convenience define the general notation

f+ ≡ P+f (5.86)

f− ≡ P−f. (5.87)

This part of the solution is easy. The challenging part is to calculate the values

of F+ (referred to as the ‘positive part’ for simplicity) in a numerically-stable way.

It is worth noting that it is not stable to calculate F+ = F − F−, as in general

F+ is small compared to F , F− and so there will be a loss of precision in that

calculation. In fact, we must calculate F+ without making use of the value of F−

in the calculation.

5.6.2 Series Method

The conceptually-simplest method to calculate F+ is by series expansion. There

have been some hints in the literature as to how to implement this, yet no general

solution has been provided[72, 73]. The series expansion of the functions χ and ψ

are given in Appendix A. We may write the series as

F+
nk = (xχn(x)ψk(sx))+ =

∞∑
q=qmin

cqx
2q+k−n+2 (5.88)

for qmin = (n − k)/2 − 1, and the calculation of the values of cq is the substantial

focus of this section.

The first, most obvious approach is to directly calculate the coefficients in the

sum. By making use of the series expansion of the Riccati-Bessel functions, we can
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deduce that

F+
nk = −sk+1

∞∑
q=qmin

γqnk
(−1)q

2qq!
x2q+k−n+2 (5.89)

where

γqnk =

q∑
i=0

ciqnk (5.90)

ciqnk =

(
q

i

)
ai,nbq−i,ks

2(q−i) (5.91)

(
q
i

)
is the binomial coefficient

q!

i!(q − i)!
, and ai,n and bq−i,k are as defined in Ap-

pendix A. These expressions are a formally correct method to calculate the desired

positive part of our product, but they suffer some numerical problems. A demon-

stration of this is provided in Fig. 5.5. We can see that for s close to 1, as well as for

larger values of n−k (that is, further from the diagonal), there is a loss of precision.

As well, there is a loss of precision for small n values when x is large.

In order to work around some of these numerical issues, the first approach is to

modify how the coefficients are calculated. The problem which is worse for s close

to one may be treated by re-writing the form of the coefficients. Instead of s2(q−i)

in Eq. 5.91, for the case where q ≤ n− k − 1, we instead write

s2(q−i) =
(
s2 − 1 + 1

)q−i
=

q−i∑
j=0

(
q − i
j

)(
s2 − 1

)j
(5.92)

and thus γqnk may be written

γqnk =

q∑
i=0

(
q

i

)
ai,nbq−i,k

q−i∑
j=0

(
q − i
j

)(
s2 − 1

)j
. (5.93)
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Figure 5.5: A demonstration of the numerical problems with the näıve series imple-
mentation for F+. This shows the number of correct digits, when com-
pared to an arbitrary-precision implementation. This shows only those
entries with n+ k even in the region where cancellations are present. In
other regions (above the diagonal), F+

nk = Fnk, and this method is not
required.
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By swapping the order of the double sum, as

q∑
i=0

q−i∑
j=0

=

q∑
j=0

q−j∑
i=0

(5.94)

we may write

γqnk =

q∑
j=0

(
q

j

)(
s2 − 1

)j
wq−j (5.95)

where

wr =
r∑
i=0

(−1)i
(
r

i

)
(2n− 2i− 1)!!

(2k + 2q − 2i+ 1)!!
(5.96)

where we have used the forms of ai,n and bq−i,k for i ≤ n.

The term (2n− 2i− 1)!!/(2k + 2q − 2i+ 1)!! is a polynomial in i of degree n− k − q − 1,

and using the relation for a general polynomial P of degree less than q,

q∑
i=0

(−1)i
(
q

i

)
P (i) = 0 (5.97)

then wr = 0 for n − k − q − 1 < 1, so the sum in γqnk only needs to consider j for

j ≥ max(0, 2(q − qmin) − 1). In order to calculate the other values of wr, we write

(with implicit n-dependence)

urb = 2b
(

d

dX

)b [
Xn−1/2

(
1− 1

X

)r]∣∣∣∣∣
X=1

= 2b
(

d

dX

)b [ r∑
i=0

(−1)i
(
r

i

)
Xn−i−1/2

]∣∣∣∣∣
X=1

. (5.98)

By performing the successive differentiations, we can see that in the case of
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0 ≤ b ≤ n− r − 1,

urb =
r∑
i=0

(−1)i
(
r

i

)
(2n− 2i− 1)!!

(2n− 2i− 2b− 1)!!
(5.99)

and hence

wr = ur,n−k−q−1 (5.100)

and so

γqnk =

q∑
j=max(0,2(q−qmin)−1)

βjquq−j,n−k−q−1 (5.101)

where

βjq =

(
q

j

)(
s2 − 1

)j
. (5.102)

These values β and u are both independent of k, and hence for efficiency may

be calculated for each n and then used for multiple k values. As we shall see, this

matches closely the preferred way of calculating all of the values. For numerical

stability, β and u are calculated via recursion. For β, we have

β0,q = 1,

βj,q
βj−1,q

=
q − j + 1

j

(
s2 − 1

)
(5.103)

while for urb, we may derive the relations

u0,0 = 1 (5.104)

ur,0 = 0 for r > 0 (5.105)

ur,b+1 =

(
n− 1

2
− 2r

)
urb −

(
n− 1

2
− r
)
ur+1,b (5.106)
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and use these to calculate urb.

In the other case, where q ≥ n− k, there is not such a severe numerical problem

that needs to be overcome, but nonetheless for efficiency we design a recursion

scheme to calculate ciqnk. This applies when q ≥ n − k. The relation is (indices n,

k, implied)

ci,q
ci+1,q

=
s2(i+ 1)(2i+ 1− 2n)

(q − i)(2k + 2q − 2i+ 1)
(5.107)

which we use with a downward recursion scheme. The initial values, for i = q, are

obtained with the upwards recursion

cq+1,q+1

cq,q
=

1

2q + 1− 2n
(5.108)

and we need to know the values for i = q = n− k, which are simply

cn−k,n−k,n,k = an−k,nb0,k =
1

2k + 1
. (5.109)

Thus we are able to calculate γqnk for all values of q. We then write

F+
nk(x) = −sk+1

∞∑
q=qmin

γqnkαqnk(x) (5.110)

where

αqnk(x) =
(−1)q

2qq!
x2q+k−n+2. (5.111)

For numerical efficiency, we calculate αqnk(x) as

αq,n,k(x)

αq−1,n,k(x)
=
−x2

2q
(5.112)
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Figure 5.6: A demonstration of the numerical performance with the improved series
implementation for F+. This shows the number of correct digits, when
compared to an arbitrary-precision implementation. The loss of precision
for low n, k values for large sizes is not problematic in reality, using
methods discussed in the next section. This shows only those entries
with n + k even in the region where cancellations are present. In other
regions (above the diagonal), F+

nk = Fnk, and this method is not required.
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and we are able to calculate ᾱnk = αqmin,n,k(x) by recursing on k as

ᾱn,k=n−1(x) = 1 (5.113)

ᾱnk(x)

ᾱn,k+2(x)
=

−1

n− k − 2
. (5.114)

The sum is calculated by adding on terms, until three consecutive terms have

made no contribution (within double precision). However, when q = n− k the form

of γqnk changes between our two expressions, and we must consider the possibility

that the new terms start to make a significant contribution. As a result, we ensure

that even if subsequent terms with q < n − k have stopped making contributions,

terms from q = n − k are considered, until three consecutive of those terms also

make no contribution. This step is most significant when s is close to one, when the

terms for q < n− k typically become small.

Our implementation removes the need for special consideration when s is near

one. However, for completeness, a demonstration of the cause of such potential

problems is provided in Appendix F.

We are now able to examine the numerical performance of this series implemen-

tation of generating F+. We can see in Fig. 5.6 that the performance compared

to the näıve implementation (Fig. 5.5) is now much improved, with only some loss

of precision for low-n for large sizes. This turns out not to be important in real

applications, and a method to work around this is presented in the next section.

5.6.3 Recursion to Fill the Matrix

The series method to calculate the values of F+
nk works well for entries with large n,

while for large sizes, it performs badly for entries with low n. In order to calculate

these problematic entries with higher precision, we use a different approach. For this,

we calculate entries where the series approach works well, and then use recursion

relations on the Bessel functions to calculate the values where the series works

badly. This has the benefit that the series, which is time-consuming, only needs to

be calculated for a subset of the required values, and then a fast recursion scheme
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may be used to populate the rest of the matrix.

When designing the recursion scheme, it must be based on the recursion relations

of the Bessel functions. These are

χn−1(x) + χn+1(x) =
2n+ 1

x
χn(x) (5.115)

and similarly for ψk(sx). From the former, we may obtain

Fn+1,k =
2n+ 1

x
Fnk − Fn−1,k (5.116)

and by considering the Taylor expansions of the series this may be written in terms

of F+ as

F+
n+1,k(x) =

2n+ 1

x

(
F+
nk(x)− F+

nk(0)
)
− F+

n−1,k(x). (5.117)

However, implementing this leads to a loss of precision, as F+
nk(x) and F+

nk(0) may be

close in value to each other. In order to obtain a relation without this difference, we

combine the recursion relations for χn(x) (given in Eq. (5.115)) and ψk(sx), which

is

ψk+1(sx) + ψk−1(sx) =
2k + 1

sx
ψk(sx) (5.118)

to obtain the relation (also valid on Fnk, without the +)

F+
n+1,k + F+

n−1,k = s
2n+ 1

2k + 1

(
F+
n,k+1 + F+

n,k−1

)
. (5.119)

From Eq. (5.119), there are four possible schemes to populate the matrix. Each

of these requires a different set of starting values, and has different numerical per-

formance. These schemes are summarised in Fig. 5.7. The ‘natural’ method in some

sense is shown in Fig. 5.7(d). This seems natural as the required starting values are

k = 1, and the diagonal, so if a larger number N is required, previous starting val-

ues may be reused. However, this scheme has poor numerical performance, with the
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error becoming large as we move away from the diagonal. It is possible to examine

the error in two ways. Knowing the exact result from arbitrary-precision code, the

effect of each step may be calculated, using the correct value as the starting values

in each case, or alternatively (as shown here) the error accumulated across many

steps, using the correct values only for the initial starting value may be obtained.

The error behaves in a similar fashion for both of these approaches.

The schemes shown in Fig. 5.7(a) and (b) are not as appealing from the per-

spective of starting values, but also display a loss of precision. The optimal scheme

is that shown in Fig. 5.7(c), which has excellent precision behaviour. The starting

values are manageable, as our series method (as presented in Section 5.6.2) is able to

efficiently generate an entire row of the matrix (that is, for one value of n, calculate

all problematic values of k). It would be nice to be able to easily increase the value

of N without redoing the entire calculation, but the calculations do not take so long

that this is a problem, and the vastly superior performance with regards to precision

easily wins that battle. As a result, we solve for F+
n,k−1, using the relation

F+
n,k−1 =

2k + 1

s(2n+ 1)

(
F+
n+1,k + F+

n−1,k

)
− F+

n,k+1. (5.120)

Thus, by using this equation, we are able to easily generate all of the entries

for F+ that we require. It is necessary to pick a starting N (for which the series

implementation must provide accurate results), and then the rest of the matrix may

be populated. For cases when only a small N is required, if the series method

fails to provide accurate results for that N , it is necessary to use a larger N for

the series, and then the final matrix may be truncated if desired. We may use the

values calculated for F+ to calculate all modified Bessel products that we require,

as discussed in the next section.

5.6.4 Derivatives

Once we have calculated F+, it is necessary to calculate the quantities that are

required for the integrals. These required values are (xχnψk)
+, (xχ′nψk)

+, (xχnψ
′
k)

+,(
xχnψk

sx2

)+
,
(
xχ′nψ

′
k + n(n+ 1)xχnψk

sx2

)+
and

(
xχ′nψ

′
k + k(k + 1)xχnψk

sx2

)+
. The first of
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Figure 5.7: A demonstration of the performance of the different recursion schemes to
populate F+. This shows the number of correct digits, when compared
the arbitrary-precision series implementation. Black entries represent
entries that are necessary to start the recursion, but which have cancel-
lations, and so must be calculated with the series implementation. Grey
entries are entries with no cancellation that are necessary to start the
recursion. These may be calculated simply as the product of the ap-
propriate Bessel functions. The inset figures denote how the recursion
scheme works, with the entry shown as a green circle being calculated by
some combination of the entries shown as red squares. The parameters
used here were x = 0.1 and s = 1.5 + 0.02i.
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these is easy to generate, as it is simply F+. There are relations for the Bessel

functions,

(2n+ 1)χ′n(x) = (n+ 1)χn−1(x)− nχn+1(x) (5.121)

(2k + 1)ψ′k(sx) = (k + 1)ψk−1(sx)− kψk+1(sx) (5.122)

from which we may obtain the relations

(xχnψ
′
k)

+
=

(k + 1)F+
n,k−1 − kF

+
n,k+1

2k + 1
(5.123)

(xχ′nψk)
+

=
(n+ 1)F+

n−1,k − nF
+
n+1,k

2n+ 1
(5.124)

as well as(
xχ′nψ

′
k + n(n+ 1)x

χnψk
sx2

)+

=
1

(2n+ 1)(2k + 1)

×
{

(n+ k + 1)
[
(n+ 1)F+

n−1,k−1 + nF+
n+1,k+1

]
+ (n− k)

[
(n+ 1)F+

n−1,k+1 + nF=
n+1,k−1

] }
(5.125)(

xχ′nψ
′
k + k(k + 1)x

χnψk
sx2

)+

=
1

(2n+ 1)(2k + 1)

×
{

(n+ k + 1)
[
(k + 1)F+

n−1,k−1 + kF+
n+1,k+1

]
+ (k − n)

[
(k + 1)F+

n+1,k−1 + kF=
n−1,k+1

] } .

(5.126)

These relations allow all of the required integrands to be calculated. It is worth

mentioning that it is because these relations depend on entries n− 1, n+ 1, k − 1,

k + 1 that the Bessel functions must be calculated for n, k from 0 to N + 1. Thus,

after applying these relations, all of the integrands are available for n, k from 1 to

N .

It is worth commenting on the new form of the integrals, as we use terms like
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F+
nk(s, x)/x in them. The integrals for U (and not P) are

K1
nk =

∫ π

0

dθ sin θπndk
xθ
x

[xχnψ
′
k]

+
(5.127)

K2
nk =

∫ π

0

dθ sin θπndk
xθ
x

[xχ′nψk]
+

(5.128)

L5
nk =

∫ π

0

dθ sin θ [n(n+ 1)dnτk − k(k + 1)τndk]
xθ
x
F+
nk(s, x) (5.129)

L7
nk =

∫ π

0

dθ sin θτndk
xθ
x

[
x

(
χ′nψ

′
k + n(n+ 1)

χnψk
sx2

)]+

(5.130)

L8
nk =

∫ π

0

dθ sin θdnτk
xθ
x

[
x

(
χ′nψ

′
k + k(k + 1)

χnψk
sx2

)]+

. (5.131)

The forms for the diagonal entries are unchanged, as those entries do not have can-

cellations. As well, P does not have cancellations in the integrals, so the expressions

are not altered. There is, however, a minor cancellation in the calculation of the

integrand on the diagonal of P11, which is described in the next section.

5.6.5 A Cancellation in P

While so far all of the cancellations have been in U, there is one cancellation that

we have noticed in P. This results in a loss of precision for the diagonal entries

of P11 in the case of small size parameters. This loss of precision is evident in the

calculation

ψ′n(x)ψn(sx)− sψn(x)ψ′n(sx) (5.132)

in the calculation of L̃1
n (which is only for the diagonal elements). The loss of

precision is in the calculation of the integrand, not in the integration itself. It comes

about as a cancellation in the leading order terms (which are of order x2n+1), while

the integral should scale as x2n+3. We may use another of the relations on the Bessel
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functions,

ψ′n(x) = − ψn+1(x) +
n+ 1

x
ψn(x) (5.133)

ψ′n(sx) = − ψn+1(sx) +
n+ 1

sx
ψn(sx) (5.134)

to write

ψ′n(x)ψn(sx)− sψn(x)ψ′n(sx) = sψn(x)ψn+1(sx)− ψn+1(x)ψn(sx). (5.135)

Both of the new terms scale as x2n+3, and no longer exhibit a loss of precision. This

slightly complicates the calculation of the entries, as it mixes the orders of the Bessel

functions.

5.6.6 Demonstration of Improved Performance

Now that we have new expressions for the integrals, designed to avoid problems

with numerical loss of precision, it is important to check that the results from these

expressions are correct. A comparison with arbitrary-precision results using the

previous expressions is shown in Fig. 5.8, while for the new expressions a comparison

is given in Fig. 5.9. Here we can see that the extreme loss of precision with the

previous expressions is no longer evident with the new expressions, which have a

high level of agreement. This confirms that the terms that we have removed from

the integrals were the cause of the loss of precision, and the new expressions are

correct.

Now that we have reliable P - and Q-matrices, it is possible to test the precision

of the T -matrix after inversion. In comparision with Fig. 5.4 (which made use of

the old double-precision code), we can see in Fig. 5.10 that the new double-precision

code is able to calculate T to a high level of agreement with arbitrary-precision

inversion. We are also able to use the new codes to test how different elements

of T converge as we increase the size of P and Q. Studying this is a substantial

topic, but some preliminary results are presented here. The basic idea is to test the

effect of matrix truncation, by increasing the size of P and Q, and testing to what
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Figure 5.8: This shows the agreement with the arbitrary precision code of the P and
Q matrices, when calculated using the ‘old’ expressions, which do not try
and remove the cancellations. This is for a prolate spheroid of relative
refractive index s = 1.5 + 02i, size parameter x = 10, and aspect ratio
h = 2. Both cases m = 0 (top row) and m = 1 (bottom row) are shown.
Entries in red, with inset dots, have incorrect orders of magnitude. Only
one parity of each n and k is shown in each panel, as indicated by the
axis labels. The off-diagonal blocks for m = 0 are empty, as the integrals
are identically zero in those cases.
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Figure 5.9: This shows the agreement between results with arbitrary precision code
and double precision code using the new expressions. This is for a prolate
spheroid of relative refractive index s = 1.5+02i, size parameter x = 10,
and aspect ratio h = 2. Both cases m = 0 (top row) and m = 1 (bottom
row) are shown. Only one parity of each n and k is shown in each panel,
as indicated by the axis labels. The off-diagonal blocks for m = 0 are
empty, as the integrals are identically zero in those cases.
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5.6 Spheroid Integral Forms

order all the values in T agree to some defined precision α. Results are shown in

Fig. 5.11. This shows that in order for the T 11
11 and T 22

11 entries to be correct, the

P - and Q-matrices must have N = 15 (α = 4) or N = 30 (α = 12). However, once

this value is correct, then roughly one extra N is correct in T for each additional

N in P, Q. This means that the size of P, Q, NQ, should be chosen to be larger

than the number of terms desired in T, such as NQ = N + ∆. The value of ∆ will

depend on the required precision of T, as well as dependence on the size and aspect

ratio of the particle being considered. The exact dependence on these quantities is

an area of further study.

Time Requirements

It is expected that this new method of calculating the P - and Q-matrices will not

have a significant performance penalty, as the modified code is independent of the

index m. That is, for each calculation, the Bessel product is calculated once, and

for each m, the angular functions are calculated, and the integration performed. As

a result of the modified code not having m-dependence, the performance of it is not

greatly impacted.

In order to demonstrate the time requirements, the time taken to calculate P and

Q for this new method, unmodified MATLAB code (whose results might contain

severe numerical errors), and converged arbitrary-precision results are presented in

Fig. 5.12. The computer used for these measurements is a quad-core Intel Xeon

W3520 2.67 GHz desktop with 18 GB of RAM, running MATLAB R2012a and

Ubuntu Linux 13.04. The particle modelled here is a prolate spheroid, with size

parameter xmax = 2, aspect ratio h = 2, relative refractive index s = 1.5 + 0.02i,

and k1 = 1, ranging from N = 5 to N = 50. Here we can see that the arbitrary-

precision code represents a significant performance penalty, while the new code is

much faster. The disadvantage of the old code is that the results begin to fail

catastrophically for N larger than approximately 15.
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Figure 5.10: Number of correct digits of the T -matrix after inversion in double pre-
cision, after P and Q were calculated in (top) double precision using
our new method and (bottom) arbitrary precision. This is relative to
inversion also being carried out in arbitrary precision. The particle here
is a prolate spheroid of aspect ratio h = 2, size parameter xmax = 1,
with relative refractive index s = 1.5 + 0.02i. Only m = 1 is considered
here. This shows only one parity of each n, k, for each block of the
matrix, as indicated by the axis labels, though the other entries behave
similarly.128
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Figure 5.12: Measured times taken to compute P and Q using three possible EBCM
implementations, for a prolate spheroid. The three different methods
are an arbitrary-precision C implementation, a näıve (old) MATLAB
code that does not treat spheroids specially, and a new MATLAB code
implemented using the method presented here, which removes cancella-
tions for spheroids. The precision used for the arbitrary-precision code
varies in order that the final results are correct to double precision, and
the number of integration points likewise. These values range from 73
to 300 bits for the precision (for the arbitrary-precision code), and 80
to 500 for the number of integration points. All methods used the same
number of integration points, and calculate for all values of m from 0
to N .
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5.7 Discussion and Outlook

The results in this chapter have provided an understanding of the main numerical

problems that affect the EBCM calculations of spheroids (and offset spheres). The

cause of these problems was problematic terms in the integrands, which should iden-

tically integrate to zero, but due to loss of precision, they dominate the integration

and lead to dramatically incorrect results due to catastrophic cancellations. This

specific numerical problem was found to be only problematic for some shapes, and it

was shown that the dominant terms in the power series expansion of the integrand

for some matrix entries of the Q-matrix do integrate identically to zero.

With knowledge of the cause of the numerical problems, focus turned to resolving

these cancellations. This involved calculating the integrands without the terms in

the power series that cause problems, which comes down to the calculation of the

product of two Bessel functions, without the problematic terms. The best method

that was found consists of using a series expansion to determine some values where

the series expansion provides reliable results, and then using a recursion scheme to

determine the other required matrix entries. Using this approach, it is now possible

to obtain to a high precision the T -matrix for spheroids.

A demonstration of the improved performance of the new codes can be seen in

Fig. 5.10. This ability to calculate the T -matrix to such a precision represents a

substantial improvement in the performance of the T -matrix method for the case of

spheroids. In the case of general shapes, the problems with the T -matrix method

have a different origin, and this approach is not applicable. To improve other shapes,

an approach in line with previous works seems the most promising, to focus on

improving the matrix inversion[63, 64, 79]. However, as the issues that affect general

shapes are different, this problem is independent from the problems with spheroids.

Now that it is possible to obtain an accurate T -matrix for spheroids, there is

the possibility of further investigations, which have not been completed to date.

These include examining the convergence of the near-field, specifically to study the

so-called Rayleigh hypothesis, and to examine the regions where this may not be

valid. While previously it was challenging to study this for spheroids, using this
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new method it is now possible to calculate high-order multipole contributions, and

so determine how the field is converging. Some preliminary exploration of this has

already been carried out by Stanley Roache, a summer student.

An additional area of investigation is to look at how the elements of T behave

as N increases. As the matrices involved are infinite, they must be truncated. The

size must be large enough that the terms in T that we are interested in are not

affected by this finite size. By using these accurate integral values, it is now possible

to investigate this behaviour. Some preliminary analysis of this has already been

carried out, as shown in Fig. 5.11, and is ongoing. This suggests that truncation

of T after inversion is useful to remove some values that have not yet converged,

leaving only entries that have converged, and hence are reliable values. This study

is only possible due to having an efficient and reliable means of calculating T.

One of the consequences of the results in this chapter is that it is clear that

spheroids and offset spheres have numerical behaviour that is different to other

shapes. That is, these shapes exhibit more challenging behaviour in the integrals,

but once the correct integrals are obtained, they have easier inversion. As a result,

caution should be used when selecting shapes to use to test EBCM implementations,

realising that spheroids and offset spheres are not representative examples. For

offset spheres this is particularly important, as they are an attractive shape to test

with, because the correct results are obtainable with Mie theory, and subsequent

translation of the results.
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6 Application of Electromagnetic

Calculations to Plasmonics

Following on from the fundamental light-scattering focus of the previous chapters,

this chapter presents work that uses light scattering to study systems of interest in

the field of plasmonics. The first two sections here are concerned with work that was

carried out in support of specific experimental projects[2, 5], modelling the response

of experimentally-motivated systems. The last section concerns simulations carried

out to examine how the electromagnetic enhancement factor (EF) is distributed in

plasmonic systems[4]. It is presently a challenging task to experimentally measure

EF distributions, though attempts have been reported[82].

This chapter does not exclusively make use of the T -matrix method, but largely

uses COMSOL to solve the problems, as it is able to consider more general ge-

ometries. COMSOL solves problems using the finite-element method. Some use,

however, is made of the T -matrix when examining the EF distributions, where its

much greater speed and level of numerical accuracy is of benefit.

(Vegan) Chocolate Cake Preheat the oven to 180 ◦C. In a 22 cm cake tin, mix together well
1.25 cup flour, 1 cup sugar, 0.33 cup cocoa, 1 tsp baking soda, and 0.5 tsp salt. Add 1 cup warm
water, 1 tsp vanilla essence, 0.33 cup vegetable oil, and 1 tsp white vinegar, and mix together
well. Bake for 30 min, or until a skewer comes out clean. When cool (on a rack), top with
chocolate glaze.
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6 Application of Electromagnetic Calculations to Plasmonics

6.1 Bipyramids and Bicones

The basis of this section concerns bipyramids as used as a SERS substrate[2].

A transmission election microscopy (TEM) image of a bipyramid is presented in

Fig. 6.1. In these single-molecule SERS (SM-SERS) experiments, the positively-

charged analytes (in this case, the dye Crystal Violet) are prevented from adsorbing

on the surface of the bipyramids (except at the tips) by the similarly-charged layer

of the surfactant, cetyltrimethylammonium bromide (CTAB). The CTAB layer is

not present at the tips as the high curvature there disrupts the bilayer structure.

This is a fortunate, if not entirely unrelated, coincidence, as the largest enhancement

factor is also found at the tips. As a result, all of the adsorbed molecules end up in

a hot-spot. In the case of SM-SERS, this allows for both an increased proportion

and increased rate of single-molecule events[2].

20nm

Figure 6.1: A TEM micrograph of a gold bipyramid. The bilayer of the surfactant
CTAB is visible as the lighter region near the surface, which is notably
absent at the tips. Note that this image is from a different batch of
bipyramids to that used in the SERS measurements, and significantly
has a different size.
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6.1 Bipyramids and Bicones

The contribution to this work that is detailed in this thesis involves numerical

simulations undertaken in order to support calculations of the ratio of average to

maximum enhancement of the particles. Such a ratio is used (as discussed later) to

argue that all of the molecules experience a similar enhancement factor, which is an

indication that they are all adsorbed at the hot-spots, and not randomly over the

surface of the particle.

6.1.1 Geometry

In order to model the light-scattering behaviour of these bipyramids, it is necessary

to represent their geometry somehow. For simplicity, we use an axisymmetric geom-

etry, and hence we ignore the facets of the real particles, and label this new shape

a bicone. As the tips of the particles are curved, and not sharp as for a cone, we

must round the tip of the bicone.

The obvious first choice for the tip is a truncated spherical tip, placed so that the

first derivative of the surface remains continuous. With this model, the parameters

that we are able to vary are the sphere radius, the width of the bicone, and the

height of the bicone. However, with this geometry, it is not possible to match the

experimental resonance location while maintaining a shape resembling the TEM

image.

Following a sphere, the next shape to be tried for the tip is a truncated spheroid.

This model allows an extra parameter, replacing the radius of the sphere with the

two axis lengths of the spheroid. After making this modification, the resonance

in absorption matches the observed position well. The position of the spheroid is

chosen such that the first derivative of the shape is continuous. A schematic of this

shape is shown in Fig. 6.2

The geometry is described by

r(θ) =


− az

(rp−a)| cos θ|− z sin θ
rp−a

if β < θ < π − β
(c−hTE)| cos θ|+

√
h2TE

2+h2T (2chTE−c2−E2) sin2 θ

(h2T−1) sin2 θ+1
otherwise

(6.1)
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Figure 6.2: Schematic showing how the bicone geometry with a spheroidal tip is
constructed. Here the parameters of the spheroid are chosen such that
the first derivative of the geometry is continuous at the junction of the
spheroid and the cone. The full shape is constructed by rotating this
about the long axis. The angle θ is shown here, which is the angle from
the z-axis. The angle α is the angle the sides of the shape make with
the symmetry plane.

where

β =− tan−1 (z/rp) + π/2 (6.2)

z =
a+ (c− hTE) tanα

h2T
tanα
h2T

+ 1
tanα

(6.3)

rp =a− z

tanα
(6.4)

hT =
E2 tan2 α− (a tanα− c)2

2E(a tanα− c)
. (6.5)

Here β is the value of θ at the point where the cone and the spheroid intersect,
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6.1 Bipyramids and Bicones

(rp, z) are the coordinates at that point, and hT is the ratio D/E, the aspect ratio

of the spheroid at the tip. The semi-width and semi-height of the particle are a and

c respectively. The free parameters in this model are a, c, α and E.

The dimensions of the bipyramids as measured by TEM were 45 nm along the

long axis, and 20 nm along the short axis. In order to determine the parameters to

be used to represent the spheroid, we modelled the optical response and modified the

spheroid parameters to match the measured resonance in the extinction spectrum.

This is discussed more in Section 6.1.3. An overlay of the final geometry to a TEM

scan of some bipyramids is provided in Fig. 6.3.
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Figure 6.3: An overlay of the geometry we use onto a TEM image of the actual
bipyramids used, showing that the model is a close approximation of
the real shape. The technique used to synthesise the bipyramids also
results in some spherical particles, whose resonance is far-removed from
the bipyramid resonance, and hence the contributions of the two shapes
may be resolved.

6.1.2 Simulation Techniques

For modelling the response of the bicones, we made use of COMSOL. Owing to the

very subwavelength nature of the particles, we made use of the computationally-

easier electrostatics approximation, rather than solving the full-wave problem, after

checking that results from the two methods were equivalent. In addition, as we

are interested in the main dipolar resonance, along the long axis, we are able to
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6 Application of Electromagnetic Calculations to Plasmonics

use an axisymmetric simulation, which reduces the dimensionality of the problem.

However, if we wanted to solve for incident polarisations different to the z-axis (along

the long axis), then the axisymmetric simulation is not applicable, as the resulting

field would then have a φ-dependence. Similarly, for any full-wave simulations, the

axisymmetric case is not applicable as the k-vector breaks the rotational symmetry.

The particles were considered to have the dielectric function of gold given in

Ref. [83], and be embedded in water (with a refractive index of n = 1.33). We

neglected to model the CTAB layer, after simulations of its effect showed it to be

small. Specifically, modelling a layer of refractive index n = 1.4 tapering from 4 nm

thick at the centre of the particle, to 0 nm thick at the tips, resulted in a resonance

shift of only 4 nm, and a reduction in the maximum calculated SERS intensity of

4%.

Properties that are examined are the absorption cross section, and the maximum

and average SERS enhancement factors. In the electrostatics approximation there

is no scattering, so only the absorption cross section is relevant here. In addition,

the quantity

R =
EFmax

〈EF〉
(6.6)

is used to measure the localisation of the enhancement factor. This quantity is

discussed in more detail in Section 6.3.

In order to calculate orientation-averaged enhancement factors, one approach is to

model the resonance as a dipole, with the orientation-averaged values (of F ≈ |E|4)

being one-fifth of the maximum values[84]. This method is valid only near the main

(longitudinal) resonance, and not near to other resonances that the molecule has.

The other approach is to carry out simulations with different incident directions,

and average the results of all orientations. This precludes the 2D-axisymmetric

simulation, as that requires the incident field is axisymmetric, which is only the

case with the field along the z-axis. Thus, we resorted to 3D simulations, still using

the electrostatics approximation. This allows the incident field to be rotated. The

field on the surface as a function of angle is shown in Fig. 6.4, which compares the

results from F/5 and from averaging different incident directions. We can see that
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6.1 Bipyramids and Bicones

the F/5 approximation is good for most angles, and specifically for the angles where

the enhancement factor is high. The departure of the two curves from each other

occurs in regions of low enhancement.

6.1.3 Results

The first step in modelling the bicones is to find the geometric parameters that best

represent these particles, with the requirement that they also resemble visually the

shapes from the TEM images. The total width and height of the bipyramids may

be extracted directly from the images. The values that were found to match best

are E = 2.27 nm and D = 4 nm, with α = 71◦. These result in a resonance centred

at a wavelength of λ = 658 nm, to match experimental measurements.

Once the geometric parameters have been found, then the enhancement factors

may be examined. In most cases we would simply look at the simplest approximation

of the SERS EF,
∣∣∣ ~E∣∣∣4/∣∣∣ ~E0

∣∣∣4, but here we are comparing the results to some exper-

imental data, specifically data with a known Raman shift. The laser wavelength

used was 633 nm, and the Raman mode examined had a Raman shift of 1620 cm−1,

which for that incident laser corresponds to a wavelength of 705 nm. In this case,

the SERS EF is better represented as

F =

∣∣∣ ~E633

∣∣∣2 ∣∣∣ ~E705

∣∣∣2
|E0|4

(6.7)

which requires simulations at two different wavelengths.1 Here ~E633 is the local

electric field for excitation at λ = 633 nm, and similarly for ~E705. By reciprocity,

the excitation and emission processes share the same enhancement factor. A plot of

the enhancement factor in the region around the bicone is shown in Fig. 6.5. The

maximum enhancement factor from these simulations is F = 1.29 × 107, and the

average is 〈F 〉 = 2.41× 105.

The ratio R as calculated from these simulations is Rsimulation = 53.5. This is in

1In the electrostatics approximation, the only difference between these simulations is the dielectric
function used for the gold.
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Figure 6.4: The angular behaviour of the orientation-averaged SERS enhancement
factor on a bicone. Here the dashed line is from the F/5 approximation,

where F is the EF from excitation with ~E along the z-axis, while the
solid line is for averaging over 20 different incident directions, evenly-
spaced in cos θ. The two lines separate at large angles as the resonance
along the minor axis is excited only for the orientation-averaged result,
while the F/5 approach does not excite that resonance at all.
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Figure 6.5: The SERS enhancement factor F around the bipyramid, as calculated
by COMSOL. This is calculated as F = | ~EL|2| ~ER|2/| ~E0|4, for a laser
wavelength of 633 nm, and a Raman shift of 1620 cm−1, corresponding
to a wavelength of 705 nm.
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contrast to the experimental estimate of Rexperiment = 7.7, from SERS measurements.

For a discussion of experimental determination of the +relevant enhancement fac-

tors, see Ref. [85]. The +difference in the values of R is attributed to the CTAB

layer, which prevents the probe molecules adsorbing over most of the particle. If

we instead define R such that the average EF is averaged only over spheroidal tip

region, then we get a value of Rtip only = 4.2. That this is slightly lower than the

experimental value might suggest that the particles are able to adsorb over a larger

region than just the tip. A value of R = 1 would indicate that all molecules experi-

ence exactly the same enhancement factor, such as if they could only adsorb directly

at the hot-spot.

6.2 Chains of Spheres

This section concerns simulations done in support of the work reported in Ref. [5].

This paper concerns surface-enhanced fluorescence measurements of dye-labelled

DNA on a substrate of aggregated silver colloids. As it was noted that the extinction

spectrum peak red-shifted as the nanoparticles aggregated before reaching a steady

position, we attempted to replicate this with simulation results. For this, COMSOL

was used, and full-wave simulations were run. This requires a 3D simulation.

For simplicity, instead of aggregation of clusters of spheres, we modelled the

lengthening of chains of spheres, from two spheres to 8 spheres. The spheres have a

radius of 17 nm, and the gap between neighbouring spheres is 1.5 nm. The dielectric

function of silver used is that from Ref. [10], and the particles are embedded in

water, modelled as having a refractive index of n = 1.33.

In order to eliminate the effects of reflections of the scattered wave off the edges

of the simulation volume, a perfectly matched layer (PML) is used. This layer is

designed so that the scattered field that is incident on this layer is adsorbed with no

reflections. This is so that the finite size (and hence edges) of the simulation volume

have no effect on the simulation results.

In order to test the accuracy of the simulations, the results of light scattering by a

dimer were compared to results obtained from generalised Mie theory. A comparison
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6.2 Chains of Spheres

of the absorption and scattering efficiencies, as well as the value of |E|2 at the centre

of the gap, from the two methods is shown in Fig. 6.6. By comparing these, we may

be confident that the results from the COMSOL simulations are as accurate as those

from Mie theory.

Qabs Qsca |E|^2

5000

10000

15000

0

5000

10000

50000

100000

150000

200000

450 475 500 525 550 450 475 500 525 550 450 475 500 525 550
Wavelength [nm]

Method COMSOL Mie

Figure 6.6: A comparison of the absorption, scattering and local field of a dimer of
silver spheres, radius 17 nm, with a 1.5 nm gap, as calculated by gener-
alised Mie theory and a full-wave simulation in COMSOL with a PML.
This case, of a silver dimer at resonance, with a small inter-particle gap,
is one of the more difficult simulations, as silver has low absorption here,
and so the resonance is sharp.

These results, where fully numerical results from COMSOL show good agreement

with analytical methods, even for challenging cases of sharp resonances, demonstrate

that COMSOL is able to solve full-wave problems even in challenging cases, and in

situations where the numerical methods run into numerical problems, such as long
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6 Application of Electromagnetic Calculations to Plasmonics

chains of spheres. Also, as COMSOL does not take the symmetry into account,

it is not constrained to solving problems that have this symmetry. However, the

price to pay for this generality is the speed of the calculations. For the dimers in

Fig. 6.6, on a quad-core Intel Xeon W3520 2.67 GHz desktop with 18 GB of RAM,

COMSOL 4.3b took 41 minutes to solve the problem (for all wavelengths), with

1507354 degrees of freedom. Calculating the scattered and absorbed power took

additional time. In contrast, MATLAB R2012a on the same computer takes 15

seconds using generalised Mie theory codes.

The calculated extinction spectra for a variety of chains of spheres of different

lengths is provided in Fig. 6.7. These silver spheres embedded in +water (n = 1.33)

each have a radius of 17 nm, and the +inter-sphere gap is 1.5 nm. Of interest here is

that as the number of spheres increases, the position of the main dipolar resonance

appears to be approaching some limit, after which the addition of more spheres to

the chain will not shift the resonance. This qualitatively supports the experiments

observations in [5].

6.3 EF Localisation

In several fields, there is much interest in obtaining large electromagnetic enhance-

ment factors (EFs). One such example is in SERS, where the enhancement in the

Raman signal goes roughly as |E/E0|4 [32]. Other uses include in nonlinear processes

(such as second-harmonic generation)[86]. As a result, quite some effort is put into

developing systems which generate large electric fields (or large field enhancements,

in the case of SERS). Focusing on the case of SERS, there is a wealth of literature

of reports of SERS substrates with higher and higher EFs[87–91]. These include at-

tempts to obtain both large maximum EFs as well as large average EFs. However, in

this chapter, we focus not on attaining the largest possible enhancements, but rather

on examining the manner in which the enhancement is distributed[4]. Typically in

these situations, there are regions with much higher enhancement that other regions.

These are referred to as “hot-spots”. Continuing the theme of this thesis looking at

light scattering by particles, the SERS systems considered here are single or multi-
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Figure 6.7: The extinction spectra of chains of spheres of varying lengths, normalised
to the maximum value for each chain. These are silver spheres in wa-
ter (n = 1.33), with a gap between spheres of 1.5 nm, and a radius of
17 nm. These are from full-wave electromagnetic simulations carried out
in COMSOL.
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6 Application of Electromagnetic Calculations to Plasmonics

ple particles, and not an extended substrate. This represents a typical experiment

carried out in a solution of colloids, and while some of the results may carry over

to other systems (such as roughened silver surfaces, or lithographically-produced

arrays of particles on a support), some care should be taken.

There are several obvious ways to change the EFs in the vicinity of a particle.

These include changing the wavelength, incidence direction or polarisation of the

incident light, as well as the size, shape or material of the particles. Typically

making particles ‘sharper’ will lead to larger EFs, as will using wavelengths closer

to electromagnetic resonances.

6.3.1 Different Metrics

There are a variety of different metrics that we may consider when attempting

to evaluate the hot-spot, which provide a variety of different information. In this

section are provided a brief description of some of these metrics, including how they

are calculated, and what they mean physically. Looking at the field distribution

by considering the field at every point leads to a practically-challenging analysis

problem. Hence, it is preferred to have some single-valued metric, which simplifies

analysis.

Common Metrics

These metrics are the simplest, in that they are simple to calculate, and have an

easily-accessible physical meaning. They also measure the strength of the response,

and do not make a statement about the localisation of the hot-spot.

The first is simply the maximum enhancement factor, EFmax. This is the maxi-

mum of the enhancement factor on the surface of the particle, the location of which

depends on the details of the shape and the excitation.

The second is the average value of the enhancement factor on the surface, 〈EF〉.
This represents the average enhancement factor experienced by an average molecule

on the surface (in the case of SERS), assuming random surface adsorption. This is
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6.3 EF Localisation

computed as

〈M〉 =

∫
S

M(~r)dS

S
(6.8)

where S is the surface area of the particle, and M is the enhancement factor of

interest (such as |E|, |E|2, etc.).

In SERS experiments, it is the average enhancement factor 〈EF〉 that is typically

measured. In the case of single-molecule SERS, information is instead provided

about the maximum enhancement factor, EFmax. However, neither of these metrics

provide information about the distribution of enhancement factors..

Localisation Metrics

The previous section looks at metrics that do not consider the localisation of the

hot-spot. In this section, we examine several metrics that do not respond to the size

of the enhancement, but more how it is distributed. These metrics are focused on

understanding SERS enhancement factors (so look at |E/E0|4), but are applicable

more generally also. All of this study considers the metrics at the main dipolar

resonance of the particle being considered.

The first metric here is the ratio of maximum to average enhancement factor,

R = EFmax/〈EF〉. (6.9)

Clearly, if we are able to change the enhancement factors such that all the values, say,

double (for example by changing the material), then this metric remains unchanged.

In terms of SERS scatterers, this represents the number of average (∼ randomly

positioned) molecules that produce the same signal as one molecule that experiences

the maximum enhancement. This metric is the one shown in Ref. [92], where it is

shown that, in the case of spheroids at their dipolar resonance, this ratio R is

independent of material or size, but depends only on the aspect ratio of the particles.

The next metric looks at what fraction of the area of the particle is responsible

for some fraction of the signal. This metric, ax, where x is some percentage, is
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6 Application of Electromagnetic Calculations to Plasmonics

the fraction of the area responsible for x% of the signal. Typically we look at a80,

the fraction of the area from which 80% of the signal from randomly-positioned

molecules arises. This is calculated from

a80 =

∫
Ω

dS

S
(6.10)

where we choose Ω such that∫
Ω

M(~r)dS

S
=0.8

∫
S

M(~r)dS

S
. (6.11)

Here the choice of Ω should be the smallest possible area that fulfils these conditions

(in order to minimise the value of a80), and Ω need not be a connected region.

6.3.2 Shape Effect

Following on from [92], it seems worthwhile to investigate the effect of shape on

the enhancement factor distribution. The main aspects of the shape that can be

categorised easily are the global aspect ratio (ratio of maximum to minimum distance

from the centre) and the curvature of the surface at the hot-spot. There is some

intuitive expectation that the local curvature (at the hot-spot) is responsible for

increasing the localisation. In general, pointier shapes lead to higher degrees of

localisation, and also a higher maximum enhancement. In order to investigate this

behaviour, shapes which allow us to examine the different contributions are needed.

The limitations of spheroids here is that the global aspect ratio determines the

curvature: the two are not independent. The following sections contain descriptions

of the different classes of shapes that are used to investigate the effects of curvature.

For this study, all of the particles used were prolate (higher than they are wide).

Spheroids

The first shape considered was the spheroid, as used in [92]. Some examples of

spheroids are depicted in Fig. 6.8. However, as mentioned before, for spheroids it
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6.3 EF Localisation

is not possible to independently change the aspect ratio and curvature, so we are

limited in our ability to decouple the two. The equation for the geometry of a

spheroid is (in spherical coordinates)

r(θ) =
ac√

a2 cos2 θ + c2 cos2 θ
. (6.12)

Figure 6.8: A depiction of a collection of spheroids. The two left-most are oblate
spheroids, the centre object is a sphere, and the two on the right are
prolate spheroids. The aspect ratios are (from the left) 5, 2, 1, 2, 5.

Bicones

The next class of shapes are those that are the focus of Section 6.1, and are inspired

by the colloids used in [2], bipyramids. An electron micrograph showing an example

of these particles is given in Fig. 6.1. In this study, however, we look at bicones,

which differ from the bipyramids in that they are not faceted, they have smooth

sides. This is for ease of simulations, as the bicones have axial symmetry.
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6 Application of Electromagnetic Calculations to Plasmonics

The model of the bicone geometry is given in Fig. 6.2. Here, the bicone is made of

two cones arranged base-to-base, where the tip is replaced by a truncated spheroid

in such a way that the first derivative of the surface is continuous. The equation

for this geometry is provided in Section 6.1.1. This geometry allows two additional

degrees of freedom over a simple spheroid. There are 4 parameters, the width and

height of each of the overall shape, and the spheroid at the tip. A collection of

bicones with different parameters is shown in Fig. 6.9.

Figure 6.9: A selection of bicones with different parameters. The centre bicone has
a global aspect ratio of two, and an aspect ratio of the spheroid that
makes up the tip of two. To the right, the aspect ratio of the spheroid
at the tip increases to five and then 10, while the global aspect ratio
remains constant. To the left, the tip aspect ratio remains at two, while
the global aspect ratio increases to five and then 10.
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6.3 EF Localisation

Modified Spheroids

Here we look at a class of shapes that are a modification of the spheroid shape

designed to add another parameter. The form of this is given by

f(θ) =
(
cos2 θ

)n
(6.13)

r(θ) =
1

[c−1/pf(θ) + a−1/p(1− f(θ))]
p . (6.14)

Here n is an integer (restricted here to 1 or 2), and p is between 0 and 1. As we can

see in Fig. 6.10, these shapes can have a variety of tip curvatures, while maintaining

the same overall aspect ratio.

Figure 6.10: A selection of some modified spheroids, as described by Eq. (6.14).
The three leftmost shapes have n = 2, while the three on the right have
n = 1. The values of p are, from the left, 0.2, 0.25, 0.5, 0.5, 0.25, 0.2. All
of these shapes have an aspect ratio of two. The n = 1, p = 0.5 (fourth
from the left) shape is identical to a normal spheroid.
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6 Application of Electromagnetic Calculations to Plasmonics

6.3.3 Effect of Different Parameters

We wish to understand the effects of different parameters on the different metrics

we have about the enhancement. We start by looking at the different metrics in the

case of spheroids. In this case, we are unable to independently alter the curvature

of the tips and the aspect ratio. However, it is interesting to have these results to

compare to the other shapes.

Fig. 6.11 shows how the metrics R, Fmax = |Emax/E0|4, and a80 vary as the aspect

ratio is varied. Here, there are two different sizes for spheroids, and also both gold

and silver spheroids. The simulations for each case were carried out at the dipolar

plasmon resonance, to match possible experimental conditions. As can be seen in

the figure, the value of Fmax varies for the different sizes and materials, but the

metrics which are a measure of localisation, R and a80, show essentially no variation

with these parameters. They are dictated solely by the aspect ratio of the particles.

The next shape to be considered is the bicone, where it is possible to indepen-

dently change the curvature at the tips and the overall aspect ratio of the particle.

Fig. 6.12 shows how the metrics change as the particle is altered, either by changing

the curvature of the tip, or by changing the aspect ratio of the particle as a whole.

For this shape, we can see that changing the curvature at the tips (which are the

locations of the hot-spots) leads to large changes in Fmax, as well as the localisation

metrics R and a80. In contrast, changing the overall aspect ratio, but leaving the

tips unchanged, leads to much smaller changes in the properties. Figure 6.13 shows

the enhancement of |E|4 in the vicinity of the bicone, for tip aspect ratios of two

and 10. This shows that the hot-spot is a lot more localised for the case where the

tip is sharper, even though the overall aspect ratio is unchanged.

This confirms what is more-or-less expected, that changes in the particle in the

vicinity of the hot-spot lead to changes in the behaviour of that hot-spot (including

localisation), while changes in the overall shape of the particle influence more the

location of the resonance. This is the case here, where the resonance position varies

substantially when altering the overall shape, but by less than 40 nm covering the

entire range of modifying the tip curvature.
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Figure 6.11: The variation of properties Fmax, R and a80 for spheroids of different
size (minor semiaxis lengths of 1 (solid) and 10 nm (dashed)), made of
gold (triangles) and silver (circles). Each data point is for a simulation
carried out at the dipolar resonance for that particle. Note that the
panels for R and a80 do contain four lines, that happen to be very
close to each other. The behaviour of R here replicates the results of
Ref. [92].
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Figure 6.12: This shows how the different properties Fmax, R and a80 for a gold
bicone vary as different geometric parameters are changed. Here dashed
lines represent changing the aspect ratio of the spheroid at the tip of the
bicone, leaving the overall aspect ratio at two. Solid lines signify leaving
the spheroid tip aspect ratio at two, and altering the overall aspect ratio
of the particles. These simulations were carried out in COMSOL, using
the electrostatics approximation. Each simulation was carried out at
the resonant frequency, which varied from 636–672 nm for changing the
tip properties, and from 636–1541 nm for changing the overall aspect
ratio.
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Figure 6.13: The enhancement of |E/E0|4 in the vicinity of two of the bicones in
Fig. 6.12, those with a overall aspect ratio of two, and aspect ratios of
the tip spheroids of two (left) and 10 (right). This is carried out at the
resonance position for each of the shapes, 636 nm for the left one, and
672 nm for the right one.
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We are also able to look at the modified spheroids, where it is possible to modify

the curvature of the tips while leaving the overall aspect ratio the same. For this,

we examined a selection of different particles, and looked at the extinction efficiency

(a typical far-field measurement), as well as the behaviour of Fmax around the hot-

spot at resonance. These simulations were carried out in COMSOL, using a full-

wave electromagnetic simulation. Initially, we begin with the collection of shapes

presented in Fig. 6.14(a). These all have the same overall aspect ratio h = 2, but

the curvature at the tips is different. The far-field extinction efficiency is given in

Fig. 6.14(b), and the positions of the resonances are all slightly different. All of the

shapes also have different near-field behaviour, shown in Fig. 6.14(c), examining F

as a function of the angle from the z-axis.

In contrast are the shapes in Fig. 6.15(a). Superficially, these shapes look the

same as their counterparts from Fig. 6.14(a). However, they have one key difference.

The aspect ratio of these shapes was varied slightly, between h = 2 and h = 1.83,

such that the resonance location for all of the shapes is the same. This is shown in

Fig. 6.15(b), where the normalised extinction efficiency of all of the different shapes

is indistinguishable. There is a difference in the unnormalised value, but experimen-

tally, the absolute value of this is not easily obtainable. Hence, these are shapes

that, from this resonance, are not distinguishable from extinction measurements.

The shapes here are also similar, such that attempting to distinguish them on an

electron micrograph would be difficult. Hence, the two far-field methods readily

available to characterise these particles would not be a reliable means of distin-

guishing them. However, if we examine their near-field behaviour in Fig. 6.15(c),

their distribution on the surface differs.

This highlights a key point to be wary of when attempting to model experimental

systems, especially when it is the near-field that is of interest. Simply ensuring that

the far-field behaviour, be it spectral or morphological, matches the experimental

system, might well be insufficient to guarantee the near-field behaviour will match.

Sadly, there is no obvious way around this, without resorting to near-field probes to

test the near-field experimentally, which would greatly complicate studies.
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(a) The modified spheroids used here, all have the same aspect ratio h = 2.
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(b) The extinction efficiency for each of the shapes, showing a different resonance position
for each shape. The vertical bar shows the position of the electrostatics spheroid
resonance.
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(c) The SERS enhancement factor on the surface of the particle for each of these shapes
at their resonance.

Figure 6.14: Various properties of different modified spheroids. Shown are (a) out-
lines of the shapes, (b) extinction efficiency spectra for each shape and
(c) the SERS EF near the hot-spot for each of the shapes at their
resonance.
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a b c d e

(a) The modified spheroids used here, all with slightly different aspect ratios.
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(b) The normalised extinction efficiency for each of the shapes, showing the same resonance
position for each shape. There are five lines overlaid here. The vertical bar shows the
position of the electrostatics spheroid resonance.
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(c) The SERS enhancement factor on the surface of the particle for each of these shapes
at their (joint) resonance.

Figure 6.15: Various properties of different modified spheroids having the same res-
onance. Shown are (a) outlines of the shapes, (b) normalised extinction
efficiency spectra for each shape and (c) the SERS EF near the hot-spot
for each of the shapes at their resonance.
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6.3.4 Implications of Different Metrics

It is worth considering what metrics we might want to optimise, when trying to

select (or design) a substrate for a SERS experiment (for example). To answer

this, we must consider what we are trying to gain from using SERS, as opposed to

‘normal’ Raman spectroscopy. While it is true that SERS may be used to probe

the interactions of the target molecule with the surface[28, 93], it is often used as

a means of increasing the signal. To this end, there are two main approaches that

are used. One is to maximise the signal collected, to detect small quantities of

material, for example for medical uses, to detect disease[94, 95], illicit-or-otherwise

drugs[96, 97] or explosives[98–100]. For this purpose, it is desirable to maximise

the average enhancement factor, 〈EF〉. The other aim is to detect single molecules.

The discussion of this is more complicated. This requires both that the signal from

the single molecule is large enough to be detected, and also that the signal from

any other molecules is not so large as to interfere with the signal from the first

molecule. It has been estimated that enhancement factors of only 104 are sufficient

to observe single molecules, so the lower limit of EFmax is 104. Regarding additional

molecules providing signal, there are two main approaches to combat this. The

first is to reduce the concentration of analytes, as was used in the first reports of

single-molecule SERS[24, 25]. In order to counter the low number of events that

low concentrations lead to, it may be combined with the bianalyte method[26] in

order to distinguish statistically single- and multi-molecule events, allowing higher

concentrations to be used. The other possible means of increasing the number of

single-molecule events is to use a substrate such that the metric R is large. This

means that high-enhancement events, while perhaps rare, are very strong compared

to average events. This entails choosing a substrate with strong localisation, such

that when a molecule is at a hot-spot, with large enhancement, the signals from

other molecules are much smaller. This approach may also be combined with the

bianalyte method, in order to allow higher concentrations of analytes to be used

while still distinguishing single-molecule events. This study will be a useful guide in

this context.
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7 Discussion

The results in this thesis are based in two separate areas, unified by the field of light

scattering. The first area relates to improving the extended boundary-condition

method for fast and accurate modelling of how light scatters by particles. The

second area focuses on the behaviour of the near-field of light in the region near to

a metallic particle in the context of plasmonics and SERS.

Regarding the EBCM, the most general results presented in Chapter 4 relate to

the forms of the integrals used to calculate the T -matrix. These new expressions are

advantageous both because they are analytically simpler, permitting manipulation

for special cases, and they also exhibit fewer numerical problems in some cases, by

analytically simplifying problematic terms. These expressions form the basis of all

of the other work on the EBCM in this thesis.

Following the presentation of these forms they were used, also in Chapter 4, to

explore some linear relations between different integrals. General relations between

12 elements from L1, L2, K1 and K2 were found, and an expression for these derived.

These results, as they stand, do not allow a more efficient means of calculating the

matrices yet, but it is hoped that future work in this area will extend the relations

to different m-values, with the possibility of reducing the computational cost of the

method.

Both of the preceding contributions are general, and apply to all axisymmetric

particles. The next results are shape-specific, and greatly improve the ability of the

EBCM to model spheroids. In Chapter 5, the cause of severe numerical problems in

the calculation of the T -matrix was examined. Firstly, the form of the problem was

confirmed. This is, for the special cases of spheroids and offset spheres, a problem in

the calculation of the matrix Q. Other shapes suffer from numerical problems in the
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EBCM, but the cause of these, while not studied here, is generally assumed to be

more closely related to matrix inversion. However, spheroids and offset spheres have

poorly-behaved integrals, where dominant terms in the power series of the integrands

should integrate to zero, but numerical errors due to insufficient precision lead to

catastrophic results. Further to this, it is possible to reformulate the integrals such

that these problematic terms are removed, which is the subject of the second part

of Chapter 5. Here, the behaviour of a series method to obtain the integrands is

explored, and coupled with a recursion approach to populate all of the required

entries. Using this method, it is now possible to obtain the correct Q-matrix, which

may be easily inverted to obtain T.

It is hoped that this method will allow the investigation of the behaviour of the

T -matrix method close to the surface of spheroids, as well as the behaviour of the

convergence of T -matrix entries under inversion. It permits the easy treatment of

spheroids, approaching the ease of use as for spheres under Mie theory. The different

behaviour of spheroid and offset spheres compared to other shapes means that these

shapes are not in general useful to benchmark the performance of code. The steps

that cause problems for other shapes (mainly inversion) are not problematic for

spheroids and spheres, while the steps that cause problems for spheroids and spheres

(integration) is not such a concern in general.

The second main area of this thesis is the subject of Chapter 6. This begins by

using COMSOL finite-element modelling to replicate some experimental nanostruc-

tures, to better understand the surface-enhanced spectroscopic signals from exper-

iments. This provided support to different experimental studies. In the bipyramid

case, the simulations agree with the assumption that the CTAB bilayer prevents

adsorption, as the metric R over the entire particle surface as calculated does not

match the experimental estimate, while when the area over which it is calculated is

reduced, the agreement is much better.

In the study involving chains of spheres, the observed saturation in the shift of

the resonance as silver spheres aggregate was modelled successfully. The simplest

case of a dimer was modelled, and the results from both generalised Mie theory and

COMSOL were compared, and yielded excellent agreement, supporting the use of
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COMSOL for the longer chains.

The last part of Chapter 6 concerns the distribution of the SERS enhancement

on the surface of resonant nanoparticles. Here a selection of metrics which measure

the degree to which hot-spots are localised, independent of the magnitude of the

enhancement are presented. These are relevant especially when trying to optimise

substrates for particular tasks, usually either maximising total signal, or for single-

molecule detection, highlighting one source of signal compared to others. The use of

shapes which permit modifying the global aspect ratio and local curvature indepen-

dently allows us to examine the contributions these different geometrical parameters

have on the localisation. The results confirm what is intuitively suspected, that it is

the local curvature that defines the hot-spot characteristics, while the overall shape

has more of an effect on the frequency of the resonance.

One of the outcomes of this study into localisation was to demonstrate that by

changing both the overall shape, and the curvature at the tips of a particle, it is pos-

sible to obtain normalised extinction behaviour that is very similar, for a collection

of shapes that have only slight geometric differences. However, these shapes, which

would be very difficult to distinguish in the far-field, have very different near-field

behaviour. This should encourage caution especially when attempting to deduce

exact local shape by matching far-field properties, and then draw conclusions about

the near-field.

Using this knowledge, it is hoped that more efficient SERS substrates might be

sought, that better suit the problem at hand. Also, further study into the effect

of local shape on near-field behaviour, that might ameliorate some of the concerns

above, could use these results as a starting point.

The initial aim of this project was to improve the applicability of the T -matrix

method in the area of plasmonics, to make it a compelling tool for the study plas-

monic systems. As it progressed, we instead made more gains on fundamental

aspects of the EBCM and T -matrix method, which have wider applicability than in

plasmonics. The progress made for spheroids has made the T -matrix an appropriate

method to use for plasmonics applications involving spheroids. For other shapes,

the progress is still to be made, and hence we used COMSOL to solve problems
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involving other geometries.
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A Bessel Function Series Expressions

The Riccati-Bessel functions may be written in a power series as ([50], Sections 9.1.2

and 9.1.10)

χn(x) =
−1

xn

∞∑
i=0

(
−1

2

)i
i!

ai,nx
2i (A.1)

ψk(sx) = (sx)k+1

∞∑
i=0

(
−1

2

)i
i!

bi,kx
2is2i, (A.2)

where the coefficients a and b are defined as

ai,n = (2n− 1)!!
2i−1∏
j=1
odd

1

j − 2n
(A.3)

=

(−1)i(2n− 2i− 1)!! for i ≤ n

(−1)n

(2i−1−2n)!!
for i > n

bi,k =
1

(2k + 1)!!

2i−1∏
j=1
odd

1

2k + j + 2
(A.4)

=
1

(2k + 2i+ 1)!!

where (2l + 1)!! is the double factorial operation,

(2l + 1)!! = 1× 3× 5× · · · × (2l + 1) =
(2l + 1)!

2ll!
.
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We are also able to express the derivatives of these functions as

χ′n(x) =
d

dz
χn(z)

∣∣∣
z=x

=
−1

xn+1

∞∑
i=0

(
−1

2

)i
(2i− n)

i!
ai,nx

2i (A.5)

ψ′k(sx) =
d

dz
ψk(z)

∣∣∣
z=sx

= (sx)k
∞∑
i=0

(
−1

2

)i
(2i+ k + 1)

i!
bi,kx

2is2i. (A.6)

The Riccati-Bessel functions are related to the spherical Bessel functions by

ψn(x) = xjn(x) (A.7)

χn(x) = xyn(x) (A.8)

ξn(x) = xh(1)
n (x), (A.9)

and the spherical Bessel functions are related to the Bessel functions as

jn(x) =

√
π

2x
Jn+1/2(x) (A.10)

yn(x) =

√
π

2x
Yn+1/2(x) (A.11)

h(1)
n (x) =

√
π

2x
H

(1)
n+1/2(x). (A.12)
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B Angular Function Definitions and

Relations

There are a variety of functions that depend on the angle θ that we use. These

functions are all based on the associated Legendre functions. This appendix contains

first the definitions of the various functions used, and following that are various

relations that are used in this thesis. The relations are broken down into two groups.

The first considers relations that are used in order to numerically compute the

functions, while the second considers analytic relations between the functions that

are used in various proofs.

B.1 Function Definitions

The function which underlies all of the others is the associated Legendre function.

This is a solution to the differential equation (as from [50], Eq. (8.1.1))

(
1− x2

) d2w

dx2
− 2x

dw

dx
+

[
n(n+ 1)− m2

1− x2

]
w = 0 (B.1)

where we are interested in solutions

w = Pm
n (cos θ) (B.2)

where m is the order of the solutions, n is the degree, and we use x = cos θ. Cases

where m = 0 are known as Legendre polynomials, Pn(x). The associated Legendre
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B Angular Function Definitions and Relations

functions may be written in terms of the polynomial as (for m ≥ 0)

Pm
n (x) = (−1)m

(
1− x2

)m/2 dm

dxm
Pn(x) (B.3)

where the polynomial is given by the expression

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
. (B.4)

The factor (−1)m in the definition of Eq. (B.3) is known as the Condon-Shortley

phase. In the case of negative m, the expression for the associated Legendre function

is

P−mn (x) = (−1)m
(n−m)!

(n+m)!
Pm
n (x). (B.5)

We do not use the associated Legendre functions directly, but rather some func-

tions obtained from them, which have more favourable numerical properties[9]. We

use a special case of the Wigner d-functions,

dnm(θ) = dn0m(θ) = (−1)m

√
(n−m)!

(n+m)!
Pm
n (cos θ) (B.6)

where we make use of the simpler dnm(θ) notation in this thesis. We also make use

of the functions πnm(θ) and τnm(θ), defined in terms of dnm(θ) as

πnm(θ) =
mdnm(θ)

sin θ
(B.7)

τnm(θ) =
d

dθ
dnm(θ). (B.8)
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B.2 Numerical Computation of the Functions

B.2 Numerical Computation of the Functions

The function πnm(θ) may be generated using a recursion relation, as[9]

πnm(θ) =
1√

n2 −m2
((2n− 1) cos θπn−1,m(θ))−

√
(n− 1)2 −m2πn−2,m(θ), (B.9)

with the initial conditions

πm,m−1(θ) = 0 (B.10)

πmm(θ) = mAm sinm−1 θ (B.11)

with Am defined recursively as

A0 = 1 (B.12)

Am+1 = Am

√
2m+ 1

2(m+ 1)
. (B.13)

From the values πnm, it is possible to calculate the τnm as

τnm(θ) =
−1

m

√
n2 −m2πn−1,m(θ) +

n

m
cos θπnm(θ), (B.14)

or making use of dnm instead of πnm,

sin θτnm(θ) = −
√
n2 −m2dn−1,m(θ) + n cos θdnm(θ). (B.15)

It is also possible to calculate the values for negative m using simple relations, as

πn,−m(θ) = (−1)m+1πnm(θ) (B.16)

τn,−m(θ) = (−1)mτnm(θ). (B.17)

These schemes for calculating these functions are numerically stable and efficient[9].

In some cases, we use the function dnm rather than πnm, but these are calculated

from πnm (when m 6= 0). In the case where m = 0, then πnm is zero, but dnm is
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B Angular Function Definitions and Relations

not in general zero. Rather, in that case, the Legendre polynomial itself is used to

obtain dn,m=0(θ) = Pn(cos θ).

B.3 Relations Used in Proofs

For the angular functions, we have

[πnτk + τnπk] sin θ = m (dndk)
′ (B.18)

which may be obtained by noting that d
dθ
dn = τn, and that dn = πn

sin θ
m

(for m 6= 0).

This then follows from application of the chain rule.

We have the simple relations

d

dθ
(dn sin θ) = τn sin θ + dn cos θ (B.19)

and

d

dθ
(πn sin θ) = mτn. (B.20)

We also have the relations

[πnπk + τnτk] sin θ = (dnτk sin θ)′ + k(k + 1)dndk sin θ (B.21)

= (τndk sin θ)′ + n(n+ 1)dndk sin θ. (B.22)

This may be shown by considering the definition of dn(θ) in terms of associated

Legendre functions. We then have (using complete notation)

τnm(θ) =
d

dθ
dn0m = − sin θCnm

d

d (cos θ)
Pm
n (cos θ)

= − sin θCnm (Pm
n (cos θ))′

(B.23)
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B.3 Relations Used in Proofs

where

Cnm = (−1)m

√
(n−m)!

(n+m)!
(B.24)

and hence

d

dθ
τnm(θ) =

d2

dθ2
dn0m(θ)

= − cos θCnm (Pm
n (cos θ))′ + sin2 θCnm (Pm

n (cos θ))′′ .

(B.25)

By making use of Eq. (B.3) which defines the associated Legendre functions, we

have

sin2 θ (Pm
n (cos θ))′′ = 2 cos θ (Pm

n (cos θ))′ −
[
n(n+ 1)− m2

sin2 θ

]
Pm
n (cos θ) (B.26)

and thus

d

dθ
τnm(θ) = cos θCnm (Pm

n (cos θ))′ − Cnm
[
n(n+ 1)− m2

sin2 θ

]
Pm
n (cos θ) . (B.27)

From this, we can calculate

d

dθ
(τnm(θ) sin θ) = − sin θCnm

[
n(n+ 1)− m2

sin2 θ

]
Pm
n (cos θ)

=
m2

sin θ
dn0m(θ)− n(n+ 1) sin θdn0m(θ)

= mπn − n(n+ 1)dn0m sin θ

(B.28)

and then

d

dθ

(
τnm(θ)dk0m(θ) sin θ)

)
= sin θ (τnm(θ)τkm(θ) + πnm(θ)πkm(θ))

−n(n+ 1)dn0m(θ)dk0m(θ)
)
.

(B.29)

This may be written in slightly different notation, by omitting the argument θ of

171



B Angular Function Definitions and Relations

functions, and also omitting the index m, as

(τndk sin θ)′ = sin θ (τnτk + πnπk − n(n+ 1)dndk) . (B.30)

By exchange of indices, we also trivially arrive at

(dnτk sin θ)′ = sin θ (τnτk + πnπk − k(k + 1)dndk) . (B.31)
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C Vector Spherical Wavefunctions

Vector spherical wavefunctions (VSWFs) are central to both Mie theory and the

T -matrix method, as the fields are expressed in terms of series of these functions.

In this appendix, the definitions of the relevant wavefunctions are provided for com-

pleteness. This follows Appendix C of Ref. [9].

The function ~M is defined as

~M(kr, θ, φ) = ∇× (~rf(kr, θ, φ)) (C.1)

and ~N is defined from this as

~N =
1

k
∇× ~M. (C.2)

Obviously, the definition of f is crucial to these functions. In these, k is the

wavenumber in the appropriate medium, and not necessarily the incident wavenum-

ber. The form of f is

fnm(x, θ, φ) = γnmzn(x)

√
(n+m)!

(n−m)!
dnm(θ)eimφ (C.3)

where zn is one of the spherical Bessel- or Hankel-functions, as necessary to be

regular at the origin (jn(x)) or behave as outgoing spherical waves (h
(1)
n (x)), and

x = kr. Regular solutions, ~M (1) and ~N (1), make use of jn, while the irregular

solutions ~M (3) and ~N (3) contain h
(1)
n . We also make use of

γnm =

√
(2n+ 1)(n−m)!

4πn(n+ 1)(n+m)!
. (C.4)
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C Vector Spherical Wavefunctions

This expression is normalised so that the integration over angle of two such functions

is normalised to one. Other normalisation schemes are possible.

It is possible to express the wavefunctions as

~M = γnmzn(x)~Cnm(θ, φ) (C.5)

~N = γnm

(
n(n+ 1)

x
zn(x)~Pnm(θ, φ) +

1

x
z′n(x) ~Bnm(θ, φ)

)
(C.6)

where we use the vectors

~Bnm(θ, φ) = r∇
(
Pm
n (cos θ)eimφ

)
=

(
θ̂

d

dθ
Pm
n (cos θ) + φ̂

im

sin θ
Pm
n (cos θ)

)
eimφ

= (−1)m

√
(n+m)!

(n−m)!
~Bnm(θ)eimφ

(C.7)

~Cnm(θ, φ) = ∇×
(
~rPm

n (cos θ)eimφ
)

=

(
θ̂
im

sin θ
Pm
n (cos θ)− φ̂ d

dθ
Pm
n (cos θ)

)
eimφ

= (−1)m

√
(n+m)!

(n−m)!
~Cnm(θ)eimφ

= ~Bnm(θ, φ)× r̂

(C.8)

~Pnm(θ, φ) = r̂Pm
n (cos θ)eimφ

= (−1)m

√
(n+m)!

(n−m)!
~Pnm(θ)eimφ.

(C.9)

In these expressions, we use the φ-independent vectors

~Bnm(θ) = θ̂τnm(θ) + φ̂iπnm(θ) (C.10)

~Cnm(θ) = θ̂iπnm(θ)− φ̂τnm(θ) (C.11)

~Pnm(θ) = r̂dnm(θ). (C.12)
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D J-integral Expressions

In this appendix, the forms of the J-integrals for axisymmetric scatterers, as given

in Ref. [9], are provided. In this case, the integrals are zero unless the indices m and

m′ are equal, and hence the index m′ has been dropped.

The elements of J are given by

J11
mnn′ = − i

2
anan′

∫ +1

−1

d(cos θ)r2h(1)
n (k1r) jn′ (k2r) [πmn(θ)τmn′(θ) + τmn(θ)πmn′(θ)]

(D.1)

J12
mnn′ =

1

2
anan′

∫ +1

−1

d(cos θ)r2jn′ (k2r)

{
1

k1r

d

d (k1r)

[
k1rh

(1)
n (k1r)

]
× [πmn(θ)πmn′(θ) + τmn(θ)τmn′(θ)] +

rθ
r
n(n+ 1)

h
(1)
n (k1r)

k1r
dn0m(θ)τmn′(θ)

}
(D.2)

J21
mnn′ = − 1

2
anan′

∫ +1

−1

d(cos θ)r2h(1)
n (k1r)

{
1

k2r

d

d (k2r)
[k2rjn′ (k2r)]

× [πmn(θ)πmn′(θ) + τmn(θ)τmn′(θ)] +
rθ
r
n′(n′ + 1)

jn′ (k2r)

k2r
τmn(θ)dn

′

0m(θ)

}
(D.3)
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D J-integral Expressions

J22
mnn′ = − i

2
anan′

∫ +1

−1

d(cos θ)r2

(
1

k1r

d

d (k1r)

[
k1rh

(1)
n (k1r)

] 1

k2r

d

d (k2r)
[k2rjn′ (k2r)]

× [πmn(θ)τmn′(θ) + τmn(θ)πmn′(θ)]

+
rθ
r

{
n(n+ 1)

h
(1)
n (k1r)

k1r

1

k2r

d

d (k2r)
[k2rjn′ (k2r)]

+
1

k1r

d

d (k1r)

[
k1rh

(1)
n (k1r)

]
n′ (n′ + 1)

jn′ (k2r)

k2r

}
πmn(θ)dn

′

0m(θ)

)
,

(D.4)

where an =
√

2n+1
n(n+1)

, and π, τ are as defined in Section B.1. To simplify the

expressions, a different notation is used. This does not alter the expressions, but

simply uses a slightly different notation, introduced in Ref. [1], as

J11
nk = − ianak

sk2
1

∫ π

0

dθ sin θξnψk [πnτk + τnπk] (D.5)

J12
nk =

anak
sk2

1

∫ π

0

dθ sin θψk

{
ξ′n [πnπk + τnτk] +

xθ
x2
n(n+ 1)ξndnτk

}
(D.6)

J21
nk = − anak

sk2
1

∫ π

0

dθ sin θξn

{
ψ′k [πnπk + τnτk] +

xθ
sx2

k(k + 1)ψkτndk

}
(D.7)

J22
nk = − ianak

sk2
1

∫ π

0

dθ sin θ

{
ξ′nψ

′
k [πnτk + τnπk] +

[
n(n+ 1)ξnψ

′
k +

k(k + 1)

s
ξ′nψk

]
xθ
x2
πndk

}
,

(D.8)

where this notation has an implied argument of θ for π, d, x and τ , s = k2/k1, ξn

has an argument of x(θ) = k1r(θ), ψk has an argument of sx, and the index m is

implied for all the J-matrices, as well as for π, d and τ . The Riccati-Bessel functions

ξ and ψ are given by ξn(x) = xh
(1)
n (x) and ψk(x) = xjk(x), and are described in

more detail in Appendix A. We also use the index k instead of n′.
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E Proof that Leading Terms Make

No Contribution in Offset-Sphere

Integrals

Here is presented a proof that certain leading terms in the integrals for U integrate

to zero in the case of an offset sphere. These proofs largely follow those of the

spheroid (as in Section 5.4), but the details do differ significantly, for two reasons.

Firstly, because of the reduction in symmetry, every entry in the matrix is now non-

zero, not only half of the entries as for spheroids. The other difference is that the

specific relations on the geometry of the spheroid are no longer valid. Instead, we

must use different relations applicable to the offset sphere.

These proofs follow the same basic structure as those presented in Ref. [3], though

the proofs in this thesis cover all cases (both parities of n + k, as well as all of the

integrands required).

E.1 Some Definitions

We here define some terms relating to the geometry. As with the spheroid, these

geometric relations are key to the special behaviour of the integrals for this shape.

For the offset sphere, the geometry is as defined in Section 5.1.

In order to exploit parity properties, that is, the transformation θ → π − θ, we
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E Proof that Leading Terms Make No Contribution in Offset-Sphere Integrals

write

x(θ) = k1r(θ) = f(θ) + g(θ) (E.1)

f(θ) = − k1D cos θ ≡ f (E.2)

g(θ) = k1

√
a2 −D2 sin2 θ ≡ g. (E.3)

Looking at the derivatives of these, we have also

xθ = fθ + gθ (E.4)

fθ = k1D sin θ (E.5)

gθ = − k1D
2 sin θ cos θ/g, (E.6)

where these functions have the parity properties

f(π − θ) = − f(θ) (E.7)

fθ(π − θ) = fθ(θ) (E.8)

g(π − θ) = g(θ) (E.9)

gθ(π − θ) = − gθ(θ). (E.10)

It is also worth noting the relations

fθf = gθg (E.11)

g2 − f 2 =
1

a2 −D2
≡ b (E.12)

1

f + g
=
g − f
b

(E.13)

xθ
x

=
fθ
g

=
gθ
f
, (E.14)

and some parity properties of the angular functions, namely

dn(π − θ)dk(π − θ) = (−1)n+kdn(θ)dk(θ) (E.15)

sin(π − θ)τn(π − θ)dk(π − θ) = (−1)n+k sin θτn(θ)dk(θ). (E.16)
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E.1 Some Definitions

We also define two operators that allow us to decompose functions into parts of

‘even’ or ‘odd’ parity (when using the transformation θ → π − θ). Thus, we define,

for some arbitrary function h(θ)

h(θ) = E [h](θ) + U [h](θ) (E.17)

with E the ‘even’ part, and U the ‘odd’ part, such that

E [h](π − θ) = E [h](θ) (E.18)

U [h](π − θ) = − U [h](θ), (E.19)

and which display the properties (for an arbitrary function j(θ))

E [hj] = E [h]E [j] + U [h]U [j] (E.20)

U [hj] = E [h]U [j] + U [h]E [j]. (E.21)

Further, we define, for the case of p an integer,

ep = E [xθx
p] (E.22)

up = U [xθx
p] (E.23)

ẽp = E [xp] (E.24)

ũp = U [xp]. (E.25)

We may, using the properties of x, also deduce that

E [xθx
p+2] = E [xθx

p]
(
f 2 + g2

)
+ 2fgU [xθx

p] (E.26)

U [xθx
p+1] = fE [xθx

p] + gU [xθx
p] (E.27)

E [xθx
p+1] = gE [xθx

p] + fE [xθx
p] (E.28)

U [xθxp+2] = 2fgE [xθx
p] + U [xθx

p]
(
f 2 + g2

)
(E.29)

and thus by combining Eqs. (E.26) and (E.27) we have

ep+2 = bep + 2fup+1 (E.30)
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E Proof that Leading Terms Make No Contribution in Offset-Sphere Integrals

and by combining Eqs. (E.28) and (E.29) and re-numbering we have

up+1 = bup−1 + 2fep, (E.31)

where b = g2 − f 2 is as defined in Eq. (E.12). These two relations are also valid for

ẽp and ũp.

We are able to write explicitly the θ-dependence of the first terms

e0 = fθ ∝ sin θ (E.32)

u1 = 2fθf ∝ sin θ cos θ (E.33)

and using recursion, these functions are expressable as (for q ≥ 0)

e2q = sin θP2q(cos θ) (E.34)

u2q+1 = sin θP2q+1(cos θ) (E.35)

where PN(cos θ) represents a polynomial in cos θ of degree N or less, as was used in

Section 5.4 for the case of spheroids.

For negative q, we have u−1 = 0 as xθ/x is even, and e−2 = fθ/b ∝ sin θ. Thus

(for q ≥ 1)

e−2q = sin θP2q−2(cos θ) (E.36)

u−(2q+1) = sin θP2q−1(cos θ). (E.37)

It is also possible to obtain forms for ẽp and ũp. We start with

ẽ0 = 1 (E.38)

ũ1 = f ∝ cos θ (E.39)

ũ−1 = − f ∝ cos θ. (E.40)
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It is then possible to deduce that

ẽ2q = P|2q|(cos θ) (E.41)

ũ2q+1 = P|2q+1|(cos θ), (E.42)

for all integer q.

Also, it is possible to show that

sin θẽp+1 = cos θup + ep+1/(k1D) (E.43)

sin θũp+1 = cos θep + up+1/(k1D). (E.44)

E.2 Proofs

Here are provided proofs that the terms we expect integrate to zero do integrate

identically to zero.

E.2.1 Integrals K1 and K2

We begin by considering the integral K1. We make use of the expansion of the

Bessel function product, as for the spheroid in Eq. (5.39). The key now is to expand

K1
nkp into two parts, with different parities.

For n+ k even, we have

K1
nkp =

∫ π

0

dθmdndkep. (E.45)

Using Eq. (E.34) and Eq. (5.19), we can see that this integral is zero whenever

0 ≤ p ≤ n− k − 1 or, by using Eq. (E.36) for negative p we see that the integral is

zero when −p− 2 ≤ n− k − 1, thus for k − n ≤ p ≤ n− k − 2 the integral is zero.

This matches our expectations.
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E Proof that Leading Terms Make No Contribution in Offset-Sphere Integrals

For the odd values of n+ k, then we also have p odd by parity, and

K1
nkp =

∫ π

0

dθmdndkup. (E.46)

For p = −1, then u−1 = 0 and this is trivially zero. For p ≥ 0, this integral is zero

when p ≤ n−k−1, and for p ≤ −3, then the integral is zero for −p−2 ≤ n−k−1,

meaning that the integral is zero for k − n ≤ p ≤ n− k − 2, which is the entire range

that we expect.

The proof for K2 is identical to this, as K1
nkp has exactly the same form as K2

nkp.

E.2.2 Integrals L1 and L2

As with the proof for the spheroid, we start by considering L1
nkp, the terms in the

expansion of the integral in powers of x. In this case, based on parity, when n+k+p

is even then the integral is zero.

For n+k even, then we want to examine the case where p is odd. By parity, that

means that

L1
nkp =

∫ π

0

dθ sin θτndkup. (E.47)

From Eqs. (E.35) and (E.37) we know that this integral is zero for p ≥ 0 when

p ≤ n − k − 2. For p = −1 then u−1 = 0 and so the integral is zero. For p ≤ − 3

then by Eqs. (E.37) and (5.29) the integral is zero when −p−2 ≤ n−k−2, meaning

the integral is zero for k+ 1−n ≤ p ≤ n−k− 3, which is the range that we require.

For n+ k odd, then p is even. We than have

L1
nkp =

∫ π

0

dθ sin θτndkep. (E.48)

For p ≥ 0, the integral is zero for p ≤ n− k− 2. For p negative, then the integral is

zero when −p− 2 ≤ n− k− 2. These combine so that the integral is zero whenever

k + 1− n ≤ p ≤ n− k − 3.
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E.2 Proofs

In the case of L2, the same logic holds, as the only difference from L1 is the indices

of d and τ . As these only appear as |n−k| in the working, these are interchangeable

and the same proof holds for L2.

E.2.3 Integrals L3 and L4

We now look at the proof that L3 exhibits the same cancellation, following the same

approach as for the spheroid case. The integral is

L3
nk =

∫ π

0

dθ sin θdkψ
′
k [xθτnχ

′
n − n(n+ 1)dnχn] , (E.49)

and we may expand this as a Laurent series as

L3
nk =

∞∑
q=0

L3
nkp, (E.50)

L3
nkp =

∫ π

0

dθ sin θdk
[
αnkq(s)xθx

pτn + βnkq(s)x
p+1dn

]
(E.51)

and we note that the two terms in L3
nkp scale the same, as xθ scales as x. We may

also write

L3
nkp = αnkq(s)L

31
nkp + βnkq(s)L

32
nkp (E.52)

L31
nkp =

∫ π

0

dθ sin θτndkxθx
p (E.53)

L32
nkp =

∫ π

0

dθ sin θdndkx
p+1. (E.54)

As for the spheroids, we can show that each of L31
nkp and L32

nkp is zero for the values

of p that we have seen make no contribution, except for the dominant term. In this

case, it is the sum of the dominant term from each integral which is zero.

We consider first the dominant terms in the case where p = k−n− 1. As for the
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spheroids, the ratio of these leading terms is

χ′n
∣∣
leading term

χn
∣∣
leading term

= −n. (E.55)

From this, we may write

L3
nkp

∣∣∣
p=k−n−1

=

∫ π

0

dθ sin θdknγnk(s)
[
xθτnx

p + (n+ 1)dnx
p+1
]
. (E.56)

If n + k is odd, then p is even, and the parity of τndk is even by Eq. (E.16), and

dndk is odd by Eq. (E.15), then we may substitute using the definitions of ep and ũp

to obtain

L3
nkp

∣∣∣
p=k−n−1

=

∫ π

0

dθdknγnk(s) [sin θτnep + (n+ 1) sin θdnũp+1] . (E.57)

It is possible to write the part in brackets by using Eqs. (B.15) and (E.44) as

sin θτnep + (n+ 1) sin θdnũp+1 =
√

(n+ 1)2 −m2dn+1ep + (n+ 1)up+1dn/(k1D),

(E.58)

and thus the integral may be written

L3
nkp

∣∣∣
p=k−n−1

= ηnk(s)

∫ π

0

dθepdkdn+1 + φnk

∫ π

0

dθup+1dkdn. (E.59)

The first of these terms resembles K1
n+1,k,p (for the case where p is even, as in

Eq. (E.45)), which is zero for p = k−n+1. The second term resembles K1
n,k,p+1 (for

the case where p+ 1 is odd, as Eq. (E.46)), and this is also zero when p = k−n− 1.

We now turn to the case where n + k is even, and so p is odd. In this case, the

parity of τndk is odd, and dndk is even, and so by considering this we end up with

L3
nkp

∣∣∣
p=k−n−1

=

∫ π

0

dθdknγnk(s) [sin θτnup + (n+ 1) sin θdnẽp+1] . (E.60)
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The term in brackets may now be written using Eqs. (B.15) and (E.43) as

sin θτnup + (n+ 1) sin θdnẽp+1 =
√

(n+ 1)2 −m2dn+1up + (n+ 1)ep+1dn/(k1D),

(E.61)

and hence the integral becomes

L3
nkp

∣∣∣
p=k−n−1

= λnk(s)

∫ π

0

dθupdkdn+1 + ζnk

∫ π

0

dθep+1dkdn. (E.62)

The first of these resembles Eq. (E.46), which is K1
n+1,k,p where p is odd, and this

is zero when p = k − n− 1. The second term resembles Eq. (E.45), K1
n,k,p+1 where

p + 1 is even, and this is also zero when p = k − n − 1. Hence, the leading terms

cancel out with each other, and make no contribution to the integral.

We can now consider the other terms. Looking at L31
nkp, this has the same form

as L1
nkp, which is zero when k−n+ 1 ≤ p ≤ n− k− 3, which is the rest of the range

that we need to be zero. For L32
nkp, more work is involved.

We start with the case where n + k is odd, and so p is even. Using the parity

properties of the angular functions, we may then write

L32
nkp =

∫ π

0

dθ sin θdndkũp+1. (E.63)

Using Eq. (E.42), this may be written (note that p+ 1 here is odd)

L32
nkp =

∫ π

0

dθ sin θdndkP|p+1|(cos θ) (E.64)

and then by Eq. (5.19) this is zero when |p+ 1| ≤ n− k− 1, which covers all of the

required terms (except the already-accounted for dominant term).

In the case where n+ k is even (and p is odd), then by parity we may write

L32
nkp =

∫ π

0

dθ sin θdndkẽp+1. (E.65)
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This may be rewritten using Eq. (E.41) (as p+ 1 is even) to

L32
nkp =

∫ π

0

dθ sin θdndkP|p+1|(cos θ) (E.66)

and is also zero by Eq. (5.19) when |p + 1| ≤ n − k − 1, which is exactly the same

condition as for n+ k odd. Thus, combined with the result for the dominant terms,

all of the required integrals are identically zero.

The last integral is L4
nk. However, this may be constructed as a linear combination

of L1, L2 and L3, and so a proof here is unnecessary. This completes the proofs for

all of the integrals.
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s = 1

As mentioned in Section 5.6.2, when computing the function F+
nk = P+ (xχn(x)ψk(sx)),

there can be numerical problems when s is close to one. The final method proposed

in Section 5.6.2 does not suffer from these problems, but for completeness, a demon-

stration of the problems is provided here. This follows Appendix C of [6], where

this was first presented.

We here take n + k to be even, with n ≥ k + 4, as these are the terms that

exhibit cancellations. We also are working with s = 1, as that is where the problem

manifests. Thus, we are working with

F+
nk(s = 1, x) = P+ (xχn(x)ψk(x)) . (F.1)

In the following, we omit the argument x from all functions, and it should be

taken as implied.

We begin by defining

∆nk = ψnχk − χnψk. (F.2)

Using this, we will show that P+ (xχnψk) contains only powers of x starting at

n+ 1− k. A similar equation was written by Waterman as Eq. (28a) in Ref. [72].

Trivially, we note that

∆nn = 0 (F.3)
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and we may use the Wronskian relation (from Eq. (10.1.31) of Ref. [50]) to see that

∆n+1,n = ψn+1χn − χn+1ψn = 1. (F.4)

Following on from this, we define

νpn = x∆p+n,n, (F.5)

and look to find a recursion relation in p, for a given n. The initial conditions are

ν0,n = x∆nn = 0 (F.6)

ν1,n = x∆n+1,n = 1. (F.7)

We also note some relations on the Riccati-Bessel functions, namely

ψn+1χk + ψn−1χk =
2n+ 1

x
ψnχk (F.8)

χn+1ψk + χn−1ψk =
2n+ 1

x
χnψk (F.9)

and hence

∆n+1,k + ∆n−k,1 =
2n+ 1

x
∆nk. (F.10)

Phrasing this in terms of νpn, we have

νp+1,n =
2n+ 2p+ 1

x
νpn − νp−1,n. (F.11)

From this, we may obtain, by using the initial conditions listed before, for the

positive part of ν

ν+
2q−1,n = (−1)q+1x (F.12)

ν+
2q,n = (−1)q+1q(2n+ 2q + 1). (F.13)
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Now, with n+ k even, we may write

(x∆nk)
+ = ν+

n−k,k = (−1)(n−k+2)/2n− k
2

(k + n+ 1). (F.14)

Note also that as we are working with n ≥ k + 4, then xχkψn = (xχkψn)+ (beware

of the swapped order of indices here, this means we are looking above the diagonal

of our matrix, where there are no cancellations). From this, we may obtain

xχnψk = xχkψn − x∆nk = xχkψn + (−1)(n−k)/2n− k
2

(n+ k + 1). (F.15)

The significance of this is that the first term in the power series expansion of this is

x0, but the second term is xn−k+1. This large gap leads to a lot of coefficients γqnk

(from Eq. (5.89)) that should be identically zero (in the case of s = 1), but instead

are affected by numerical errors in the cancellation, and hence the calculated value

of F+ is wrong in this case.
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