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Abstract 

Wetlands are areas where lands transition to water bodies. Because of this special 

geomorphological setting, wetlands play important roles in flood control, nutrient 

retention, and water storage. In New Zealand, less than ten percent of the original 

wetlands have survived since human settlement. Many of the remaining wetlands 

are still under threat from water quality degradation, invasive species, and changes 

in hydrological regime. Wetland restoration is the process of bringing the structure 

and function of a wetland back to its original state. Although specific objectives may 

vary between different projects, three major objectives of wetland restoration are 

restoration of wetland function, restoration of wetland structure, and restoration of 

traditional landscape and land-use practices. In order to ensure the success of a 

wetland restoration project, a good understanding of the hydrological process in the 

wetland is the first step.  

Boggy Pond and Matthews Lagoon are located at the eastern edge of Lake 

Wairarapa in the Wellington Region. They formed as a result of the deposition of 

sanddunes on the eastern shore and changes in river courses between floods. They 

were modified by a series of engineering works under the lower Wairarapa valley 

development scheme in the 1980s. As a result, Matthews Lagoon now receives 

agricultural outputs from surrounding farms; it is affected by water pollution and 

invasive plant species. Boggy Pond is cut off from Lake Wairarapa and surrounding 

wetlands by a road and stopbank, leaving a more stable water level compared to its 

original state. To analyse the water and nutrient balance in these two wetlands, 

factors such as surface flows, surface water levels, groundwater levels, rainfall, 

climate data, and water quality were assessed at various monitoring stations in this 

study.  

It is believed that Matthews Lagoon and Boggy Pond have completely different 

water regimes. Matthews Lagoon receives surface inflow from the Te Hopai drainage 

scheme and discharges to Oporua floodway, but Boggy Pond only has rainfall as the 

water input. The results from the water balance analysis seem to support this 

assumption. An unexpected finding in Matthews Lagoon suggests that water might 
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bypass the main wetland, creating a shortcut between the inlet and outlet. As a 

result, the nutrient removal ability was considerably weakened by this bypass 

because of the short water retention time. In Boggy Pond, there may be an unknown 

water input which could adversely affect the water quality and natural water regime. 

Boggy Pond is expected to have better water quality than Matthews Lagoon as the 

latter receives agricultural drainage from surrounding farms. The results from water 

quality monitoring also support this hypothesis. The nutrient balance in Matthews 

Lagoon showed very limited removal ability for phosphate but much higher removal 

rate for nitrate. The removal rate in summer for phosphate was less than 5% while in 

winter more phosphate was discharged from Matthews Lagoon than it received from 

Te Hopai drainage scheme. For nitrate pollutants, the removal rate was as high as 

17% even in winter.  

Some recommendations are given on the restoration of these two wetlands. First, 

set proper objectives according to their different functions. Second, enhance the 

nutrient removal ability of Matthews Lagoon by harvesting plants, removing old 

sediments, and creating a more evenly distributed flow across the wetland 

throughout the year. Third, restore the natural water level fluctuations and improve 

water quality in Boggy Pond by identifying any unknown water inputs first. 
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1. Introduction 

1.1. Context of study  

Wetlands provide various ecological services such as water storage, flood control, 

nutrient retention, and carbon cycling (Russo, 2008). They are also a source of food 

and materials for human beings and wildlife (Schuyt & Brander, 2004). Known as 

“mother earth’s kidney”, the water purification or filtration function of the wetlands 

has been discovered and utilized by human beings for many years (Verhoeven & 

Meuleman, 1999). However, with human population growth and urban 

development, this practice is beginning to pose a negative impact on the health of 

wetlands. For one, the volume of wastewater is increasing as a result of economic 

development, but the size of wetlands that receive the wastewater usually remains 

the same or becomes even smaller. Consequently the natural water regime that 

occurs in wetlands will be dramatically altered because a significant amount of 

wastewater flows in (Cooke, 1991). Secondly, the chemicals in nutrient-rich or even 

toxic wastewater are changing the chemical environment in wetlands, which makes 

the habitat no longer able to support native floras or faunas (Cooke, 1991). 

The damage that an ecosystem suffers can be measured and expressed by the 

degradation levels in its structure and function (Bradshaw, 1987). The structure is 

measured by species diversity and physical and biological complexity; the function is 

measured by productivity or biomass and nutrient cycling (Bradshaw, 1987). A 

healthy ecosystem usually has high levels of both, while a degraded ecosystem 

drives both attributes downwards (Bradshaw, 2002). There are many different 

approaches to bring back the original state of an ecosystem (see next chapter), 

among which, ecological restoration, according to the Society for Ecological 

Restoration (2004), is “the process of assisting the recovery of an ecosystem that has 

been degraded, damaged, or destroyed.”  

Two wetlands on the eastern shore of Lake Wairarapa in the Greater Wellington 

Region, Boggy Pond and Matthews Lagoon, were the study objects of this research. 

Surrounded by dairy farms, these two wetlands suffer from different degrees of 

nutrient rich pollutants. However, to date, there is no quantified study on the water 
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or nutrient regime of these wetlands. It is essential to discover and understand the 

problem first before applying any restoration actions on a degraded system 

(Bradshaw, 1987).  

1.2. The importance of this research 

The level of wetland degradation in New Zealand is high. There is an urgent need for 

wetland protection and restoration. This issue has been recognized by government 

organizations, non-government organizations and many wetland enthusiasts. For 

example, the New Zealand Wetland Management Policy published by the New 

Zealand Government in 1986 stated that “There is little legislation for protecting 

wetlands, and a lot of policy, equipment and expertise ready to facilitate 

destruction.” In addition, one of the aims of the National Wetland Trust is to “Ensure 

landowners and government agencies commit to wetland protection, enhancement 

and restoration.” Furthermore, one of the founders of National Wetland Trust, New 

Zealand wetland pioneer Gordon Stephenson, who helped develop the concept of 

the QEII Trust and was on the QEII board as deputy chairman until 1988, wrote a 

report “Wetlands: a Diminishing Resource” and a book “Wetlands: exploring New 

Zealand’s Shy Places”.  

However, until today, the state of New Zealand wetlands is still not good. In a report 

produced by the Department of Conservation (DOC) (2012) summarising the 

conditions of the six Ramsar wetlands (wetlands of international importance, and 

more generally to improve the management of all wetland systems) in New Zealand, 

threats such as water quality decline and hydroloic regime alteration are identified 

as the main challenges in the future. These two major threats are the main concerns 

of this study.  

For any restoration project, identifying the knowledge gaps and filling them is always 

the first step (Zedler, 2006, p. 349). To date, there are few detailed studies on the 

wetlands near Lake Wairarapa. Therefore, this study will provide basic but essential 

information about the hydrological and chemical environment of Boggy Pond and 

Matthews Lagoon.  
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As the main organisations responsible for management and restoration, Greater 

Wellington Regional Council (GWRC), DOC, and a local wetland committee are all 

interested in the study area. Water quality within Lake Wairarapa is a great concern 

to GWRC. Restoration and utilisation of the purification function of the wetlands 

around the lake is an effective way to reduce pollutant input. At the same time, 

GWRC is also seeking solutions to minimize the negative impact on the wetlands 

from agricultural activities around the study area. DOC focuses on the biodiversity of 

the wetland ecosystem around the lake. The works that DOC is involved in includes 

bird surveys, plant surveys, willow spraying, and predator control. The wetland 

committee represents the will of local residences, land owners, and farmers, who 

strongly concern about the value and future development of their land and 

surrounding areas. There are many potential restoration actions at this study site. 

Proposals including massive earth works such as diversion and damming are under 

discussion and consideration. Such actions will dramatically change the current 

hydrology regime in the wetlands. Implementing such actions without fully 

understanding the hydrological regime of the system is risky because it may alter the 

existing balance and change the habitat conditions so quickly that in some cases it 

may lead to local extinction of species (Sodhi et al., 2009). Therefore, a detailed 

study on the hydrologic regime is not only necessary but also crucial to the success 

of the restoration project. 

1.3. Research objectives and goals 

Therefore this research is aimed to: 1) identify and classify Boggy Pond and 

Matthews Lagoon; 2) investigate water balance and nutrient characteristics of these 

two wetlands that have been affected or potentially affected by nearby dairy farms; 

3) provide information and suggestions on potential restoration actions on these two 

wetlands. 

The specific objective of this study is to examine the water and nutrient balance 

within two wetlands near Lake Wairarapa in the Wellington region. Water quantity 

and quality within the two wetlands are the main interests because Boggy Pond is 

assumed to have better water quality and therefore higher ecological values for 
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wildlife. On the other hand, the nutrient removal function and ability of Matthews 

Lagoon is valued by people because it acts as a filter for Lake Wairarapa. The 

questions that inspired this research are: Can human valued ecological services 

provided by wetlands, such as nutrient removal, coexist with other wetland services, 

such as wildlife habitat? How do people allocate restoration resources when both 

services are important for human beings? By comparing the results from the two 

wetlands, this study is hoped to provide wetland regulators the first hand 

information on the hydrological and chemical environment in these wetlands and 

assist future restoration actions for the wetlands within this region.  

In addition to the rather broad goal, there are three specific objectives of this study, 

which break down the goal into three parts. First, record, analyse and compare the 

seasonal fluctuations of water levels in the two wetlands. Second, record, analyse 

and compare the nutrient levels within the two wetlands. Third, provide suggestions 

and recommendations on future restoration activities. 
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2. Background 

2.1. What is a wetland? 

2.1.1. Wetland definition 

As Johnson and Gerbeaux (2004, p. 7) stated: “wetlands are precisely that: wet 

lands”. Similarly, Peters (2010) stated that “a wetland is literally a ‘wet’ land”. 

Therefore, the term “wetland” is a broad concept and covers various environmental 

variables. From a policy point of view, a clear and legally binding definition is the first 

step for wetland managers or regulators to protect or restore wetlands (Batzer & 

Sharitz, 2006). Government agencies and non-government organisations develop 

many different definitions for wetlands (table 2.1.1). However, legal definitions may 

not fulfil the needs of wetland ecologists. For example, none of the definitions in 

table 2.1.1 developed by these administrative bodies mentions the soil type of a 

wetland, which is one of the three wetland delineation criteria (vegetation, soils, and 

hydrology) according to US Army Corps of Engineers Wetlands Delineation Manual. 

These definitions mainly focus on water regime and landscape. Only one of them 

mentions plants and animals. As a result, ecologists developed more comprehensive 

definitions that facilitate classification, inventory, and research (Mitsch & Gosselink, 

2011) (table 2.1.2). Because of the great diversity of wetland types (which will be 

discussed in detail in the next section), a seemingly straightforward task resulted in 

many definitions. In general, three major characteristics of a wetland are: 1) 

hydrologic condition that allows water to accumulate, 2) soils are dominated by 

anaerobic processes, and 3) plants and animals that are adapted to a wetland 

environment. 
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Table 2.1.1 Wetland definitions for the purpose of management by different 

organisations. Note that none of these definitions mention wetland soil, and only 

one of them mention plants and animals. These definitions developed by 

administrative organisations focus on water regime and landscape.  

Organisation Definition Reference 

Ramsar 

Convention 

on Wetlands 

(International)  

Areas of marsh, fen, peatland, or water, 

whether natural or artificial, permanent or 

temporary, with water that is static or 

flowing, fresh, brackish, or salt including 

areas of marine water, the depth of which at 

low tide does not exceed 6 meters. 

Convention on 

Wetlands of 

International 

Importance 

especially as 

Waterfowl 

Habitat, 1971 

Resource 

Management 

Act 

(New Zealand) 

Wetland includes permanently or 

intermittently wet areas, shallow water, and 

land water margins that support a natural 

ecosystem of plants and animals that are 

adapted to wet conditions.  

Resource 

Management Act, 

1991 

U.S. Fish and 

Wildlife 

Service 

(United 

States) 

Wetlands are lands transitional between 

terrestrial and aquatic systems where the 

water table is usually at or near the surface 

or the land is covered by shallow water. 

Cowardin et al., 

1979 
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Table 2.1.2 Wetland definitions given by ecologists. Note that these definitions cover 

all three wetland parameters (hydrology, soils, and vegetation), which is different 

from the definitions given by administrative organisations (table 2.1.1). 

Scholars Definition Reference 

Paul Keddy 

 

A wetland is an ecosystem that arises when 

inundation by water produces soils 

dominated by anaerobic processes and 

forces the biota, particularly rooted plants, to 

exhibit adaptations to tolerate flooding.  

Keddy, 2000 as 

cited in (Batzer & 

Sharitz, 2006, p. 

3) 

Stephen 

Zoltai 

 

Land that has the water table at, near, or 

above land surface or which is saturated for a 

long enough period to promote wetlands or 

aquatic processes as indicated by hydric soils, 

hydrophytic vegetation and various kinds of 

biological activity which are adapted to a wet 

environment. 

Zoltai, 1988 as 

cited in (Mitsch & 

Gosselink, 2011) 

Julia A. 

Cherry  

1. hydrology that results in wet or flooded 

soils 

2. soils that are dominated by anaerobic 

processes, and  

3. biota, particularly rooted vascular plants, 

that are adapted to life in flooded, 

anaerobic environments.  

Cherry, 2012 

 

2.1.2. Values of wetlands 

Like forests and oceans, wetlands provide important ecological services, support a 

wide range of faunas and floras, and are traditional sources of goods, food, and 

materials. All these services, goods, and food are valued by humans. To distinguish 

and categorise wetland values and to better assist wetland management, the 

concept of total economic values (TEV) of wetlands has been adopted (Barbier, 
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Acreman, & Knowler, 1997). Within the TEV, there are use values and non-use 

values. The former can further be subdivided into direct use values, indirect use 

values, and option use values (table 2.1.3).  

Table 2.1.3 Total Economic Value for wetlands. Note that the values listed in this 

table are just some examples. Many other values may not be listed here. Source: 

Barbier, Acreman, & Knowler, 1997. 

USE VALUES NON-USE VALUES 

Direct Use 

Value 
Indirect Use Value 

Option and Quasi-

Option Values 
Existence Value 

•  Agriculture 

•  Fuelwood 

•  Recreation 

•  Transport 

•  Wildlife      

harvesting 

•  Peat/energy 

•  Nutrient retention 

•  Flood control 

•  Storm protection 

•  Groundwater 

recharge 

•  External 

ecosystem 

support 

•  Micro-climatic 

stabilisation 

•  Shoreline 

stabilisation 

•  Potential future 

uses (both direct 

and indirect uses) 

•  Future Value of 

information 

•  Biodiversity 

•  Culture, 

heritage 

•  Bequest values 

 

Direct use values 

Food, water, materials, leisure, and shelters are some direct uses of wetlands 

(Schuyt & Brander, 2004). In New Zealand, eel hunting for food and flax gathering for 

weaving material are Maori traditional practice associated with wetlands (Hunt, 

2007, p.71). Besides providing food and material, wetlands can also benefit local 

people by involved with wetland ecotourism or recreational hunting and fishing. In 

the U.S., wetland-related activities have become a multi-billion dollar industry 

(Ramsar Convention on Wetlands, 2011). 
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Indirect use values 

Indirect use values of wetlands are not as obvious as direct use values, but they are 

equally important because the health of the entire ecosystems relies on the services 

delivered by wetlands. As transition areas between water bodies and land, water 

runs through wetlands before it runs into streams, rivers, lakes, or oceans. Studies 

have shown that wetlands are able to significantly trap and reduce sediments as 

water slows down when travelling through them (Ockenden et al., 2012; Olde 

Venterink et al., 2006; Zhu et al., 2012). Besides physical removal of the sediments, 

they also remove or reduce the level of pesticides, nutrients, heavy metals, and 

microorganisms through a series of chemical reactions (Woltemade, 2000). The 

purification function provided by wetlands plays a significant role in material and 

nutrient cycling. Wetlands also act as buffer zones which regulate and balance water 

between floods and droughts (Cernohous, 1979). In some wetlands, soil stores water 

from floods in the wet seasons and slowly releases water during dry periods. Other 

ecological services of wetlands include carbon sequestration, climate stabilization, 

and groundwater regulation (Schuyt & Brander, 2004).  

Option values 

It is believed that there are potential values (direct or indirect) of wetlands which 

have yet been discovered but which could have great use in the future. This category 

of values can also be called future values, potential values, or option values (Barbier, 

et al., 1997).  

Non-use values 

Many wetland ecosystems are so rich and fertile that they can support abundant 

fauna and flora (Moore & Garratt, 2008). Wetlands provide perfect breeding, 

feeding, and foraging habitat for many animals (Johnson, 2012), which makes 

wetlands great places for education and for preserving genetic, species, and 

biological diversity (Stuip, Baker, & Oosterberg, 2002). For those people whose life, 

culture, and history are closely related to wetlands, wetlands also have cultural and 
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heritage values (Omari, 1993). These non-use values of wetlands are also called 

existence or intrinsic values.  

2.1.3. Wetland classification 

Classification of wetlands is complicated because wetlands are such diverse 

ecosystems. Wetlands can be classified by many factors, in which water quality, 

vegetation type, salinity, water depth, and hydrological conditions are the most 

common ones (Johnson & Gerbeaux, 2004). In North America, inland wetlands are 

usually classified as low-nutrient bog or marsh (Mitsch & Gosselink, 2011). In Europe, 

fresh water wetlands are classified into at least four different types based on the 

vegetation, nutrient level, pH, and substrate characteristics (Mitsch & Gosselink, 

2011). Johnson and Gerbeaux (2004) summarised six classification levels for 

wetlands in New Zealand (appendix A), which cover the overall hydrological 

conditions and separate wetland classes according to pH, water quality, water 

regime, and dominant vegetation type. Three levels that are relevant to this study 

are listed in table 2.1.4. 

Table 2.1.4 Three major wetland classification levels used to identify wetland type in 

this study. Source: Johnson & Gerbeaux, 2004, p. 15. 

Hydrosystem (Based on broad hydrological and landform setting, salinity, 

temperature) 

 Marine, Estuarine, Riverine, Lacustrine, Palustrine, Inland saline, 

Plutonic, Geothermal, Nival 

Wetland class (Based on substrate, water regime, nutrients, pH) 

Bog, Fen, Swamp, Marsh, Seepage, Shallow water, Ephemeral 

wetland, Pakihi and gumland, Saltmarsh  

Composition 

of vegetation  

 (One or more dominant plants) 
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The problem of classification not only arises from the diverse nature of wetlands, but 

is also caused by differences in terminology for different regions. There are many 

different terms that are used to describe wetlands around the world. Mitsch and 

Gosselink (2011) listed 35 common terms used for different wetland types in the 

world (see appendix B). Despite various terms being used, one term could represent 

different types of wetlands in different regions. For example, the word swamp 

means a wetland dominated by woody plants in the North America context (Mitsch 

& Gosselink, 2011), but in New Zealand the vegetation types in swamps are much 

more varied, including tall herb, flax, reed, rush, and sedge types (Clarkson & Peters, 

2010 a). Therefore, caution should be used with an appreciation of international 

audiences when using these terms, even in the scientific literature (Mitsch & 

Gosselink, 2011). 

In New Zealand, five major fresh water wetland classes are identified (Johnson & 

Gerbeaux, 2004; Clarkson & Peters, 2010 a): 

Bogs 

Bogs are peat-accumulating systems fed only by rainwater and thus have very low 

nutrient levels. They are usually strongly acid, and water flow is restricted. The water 

table is either at or just below the surface and remains relatively constant. 

Vegetation is highly variable in bogs: tree species to mosses can all be found in this 

type of wetland. 

Fens 

Fens have a shallower peat substrate with more decomposition than in bogs. They 

are fed by both rain and groundwater, resulting in low to moderate nutrient and 

acidity levels. The water table is typically just below the peat surface with small but 

noticeable fluctuations. Scrubs, tall herbs, tussock grasses, ferns, restiads and  

sedges are usually the dominant vegetation in fens. 
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Swamps 

Swamps are relatively high in nutrients, supplied by nutrients and often sediment via 

surface runoff and groundwater from surrounding land. Substrates are typically a 

combination of mineral soils and well decomposed peat. The water table is usually 

above some of the ground surface, though due to large, seasonal fluctuations can 

periodically be much higher or lower. Vegetation cover is also wide-ranging, 

including sedge, rush, reed, flax, tall herb, or scrub types, often intermingled, and 

also forest. Heavily invaded by willow is often a typical signature of swamps. 

Marshes 

Marshes are characterised by large periodic fluctuations of water table or water 

level. They can experience water-level drawdowns that result in portions drying out 

and exposing the mineral substrate, but the soil usually remains moist. They have a 

lower overall water table, higher nutrient levels and a higher pH than swamps. 

Ephemeral wetlands are a subset of the marsh type in which ponding and drying out 

occur on a seasonal basis. In more extreme cases, the vegetation alternates between 

aquatic and terrestrial. Vegetation is mostly rushes, grasses, sedges and herbs.  

Shallow water 

Shallow water wetlands are characterised by the presence of open standing water, 

generally less than a few metres deep. This includes intermediate-size water bodies 

not large enough to be considered lakes or lake-like, though more significant than 

just smaller water bodies and leads (channels of open water). Also included are the 

margins of lakes, rivers, and estuary waters. Nutrient levels and water chemistry are 

basically those of the water as opposed to the substrate. Submerged, floating or 

emergent aquatic plants are the dominant plant species in shallow water. 

The differences in water source, water flow and fluctuation, nutrient level, pH, and 

peat content among the five types of fresh water wetlands in New Zealand are 

shown in table 2.1.5. In terms of water quality and water regime, bogs have the 

lowest level of nutrients and fewer fluctuations. Marshes, on the other hand, are 
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completely opposite. Shallow water has a wide range of water sources and water 

quality. 

Table 2.1.5 Differences and gradation among the five major fresh water wetlands 

(wetland class as shown in table 2.1.3). The five parameters are shown as gradients 

across bog, fen, swamp, and marsh. Shallow water wetland could cover all ranges in 

the five parameters. Source: Clarkson & Peters, 2010a. 

Wetland Class 
Bog Fen Swamp Marsh 

Shallow Water 

Water Source Rainfall 

 

 

⤍                    

 

Rainfall 

Groundwater 

 

⤍ 

                        

 

Rainflall  

Groundwater 

Surface water 

Water flow 

and fluctuation 

Low ⤍ Medium              ⤍ High 

Nutrient 

availability 

Low ⤍ Medium              ⤍ High 

pH Low (acidic) ⤍ Medium              ⤍ High (neutral) 

Peat content High (none) ⤍ Medium              ⤍ Low 

 

2.1.4. Brief history of New Zealand wetlands 

McGlone (2009) made a research on the history of New Zealand’s wetlands. Most 

New Zealand wetlands formed around 18,000 to 14,000 years before present (BP), at 

the end of the last glaciation. As climate warmed up, in the early Holocene (11,500 

years BP), wooded wetland began to spread out. By the time Maori arrived 

approximately 800 years ago, 1% of the New Zealand landscape was covered with 

wetlands, most of which supported woody vegetation. Fire and logging removed the 

woody cover of wetlands resulting in altering hydrological conditions at both the 

local and catchment scale. Draining and developing wetlands for productive 

farmland or other purposes associated with European settlement dramatically 

reduced the total area of wetland. Since then, New Zealand has lost 90% of its origin 
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wetlands, representing the highest rate of loss in the world (Greater Wellington 

Regional Council, 2005). In some parts of the country the remaining natural wetland 

is less than 3.5% of the original extent (Thompson, 2012).  

2.2. Wetland hydrology 

Wetland hydrology, in general, includes the water movement within a wetland and 

its interaction with plants, animals, and soils across a certain period of time 

(Campbell, 2010). More specifically, according to the United States Environmental 

Protection Agency (2008), water level, hydrological pattern, and residence time are 

the three major elements that wetland hydrology covers. 

Water level is the general water depth above the soil surface. Different water levels 

favour different types of vegetation in wetlands (figure 2.2.1). Floating and 

submerged plants usually dominate deep water zones. Emergent macrophytes are 

present in shallower zones, while areas of exposed, saturated soil is generally 

covered with other macrophytic vegetation. Therefore, vegetation types can be used 

to estimate water levels when direct measurement is not available (Goslee, Brooks, 

& Cole, 1997). Water levels can also be used to predict vegetation types in different 

zones of a wetland (Barrett, Nielsen, & Croome, 2010; Weiher & Keddy, 1995). 

Water level in a wetland is also an important factor indicating the level of flow 

“short-circuiting” (McJannet, Wallace, Keen, Hawdon, & Kemei, 2012), as the higher 

the water level, the more likely water will be short-circuiting through the wetland, 

and therefore decreasing the purification effect of a wetland. Like many other 

hydrological variables such as water table, tides, rainfall, and evapotranspiration, 

water level fluctuates in a wetland. A study by Knight, et al., (1987) showed that 

appropriate water level fluctuation increases the removal of nutrients in the water. 
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Figure 2.2.1 Cross-section of wetland indicating water level and vegetation types. 

Modified from Knight, et al., 1987 

Hydrological pattern is the timing, duration, and distribution of water levels. Tidal 

wetlands exhibits water level changes within a day while seasonally-flooded 

wetlands have much slower fluctuations. Different length of hydropattern 

sometimes favours different plants (Davis, Bidwell, & Hickman, 2009).   

Residence time is the travel time that the water takes to run through a wetland. 

Residence time is determined by two factors: wetland volume and flow rate. A large 

volume with a small flow rate results in longer residence time, while small volume 

with a large flow rate results in shorter residence time. Residence time plays a key 

role in the process of nutrient removal (Knight, et al., 1987), normally, the longer the 

residence time the better the nutrient removal (Dierberg & DeBusk, 2005). In most 

cases, in order to improve water quality, wetlands should retain water for at least 

four days to a few weeks (Huang, Reneau Jr, & Hagedorn, 2000; Tanner, Clayton, & 

Upsdell, 1995; Toet, Logtestijn, Kampf, Schreijer, & Verhoeven, 2005; and 

Woltemade, 2000). 

Water movement is the result of energy flow; wetland hydrology therefore can be 

seen as the driving force of a wetland (Thompson, 2012). It is well recognised as the 

most important component of a wetland (Cherry 2012; Campbell, 2010; Mitsch and 

Gosselink as cited in Labadz et al, 2002; Rosenberry & Hayashi, 2013; and Thompson, 
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2012). Hydrology is also the primary determinant of wetland type and function 

(Jackson, 2006). Any alternation in hydrology can potentially result in wetland 

degradation or destruction (Campbell, 2010). Wetland managers and ecologists 

should also be aware that every wetland has its own hydrological regime which 

requires a unique management approach. There is no one-size-fits-all solution for 

wetland management (Thompson, 2012). Therefore, understanding the hydrology of 

a wetland is essential. 

2.3. Wetland pollution and degradation 

Human activities have dramatically changed the nature of wetlands in New Zealand 

(Hunt, 2007). Agricultural, industrial and domestic run off often contain high levels of 

nitrogen (N) and phosphorus (P) (Carpenter et al., 1998). Excessive inputs of N and P 

from human activities can result in eutrophication in the wetlands, which directly 

leads to wetland degradation (Carpenter, et al., 1998). Table 2.3 lists the trophic 

states and their N and P level for fresh water bodies. Algal blooms are one of the 

symptoms of eutrophication. The oxygen shortage and toxic release caused by algal 

blooms could significantly reduce the biodiversity in a wetland (Carpenter, et al., 

1998). Although wetlands are able to tolerate and purify some levels of pollution, 

this ability is restricted by many factors such as the age of the wetland, vegetation 

type, how fast the water runs through the wetland, temperature, and even size and 

shape of the wetland (Woltemade, 2000).  

Table 2.3 Approximate trophic states. Source: Thompson, 2012. 

Trophic category Total phosphorus (g/m3) Total nitrogen (g/m3) 

Oligotrophic <0.02 <0.6 

Mesotrophic  0.02-0.05 0.6-0.9 

Eutrophic 0.05-0.2 0.9-2.0 

Hypertrophic  >0.2 >2.0 

 

The utilisation of natural wetlands as wastewater treatment sites has been practiced 

since the 1950’s (Verhoeven & Meuleman, 1999). Both chemical reactions and 

physical processes are involved in the purification process (McJannet, Wallace, Keen, 
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Hawdon, & Kemei, 2012). Using wetlands to treat agricultural wastewater has been a 

common practice in New Zealand. There are three major reasons behind this: First, 

land application of agricultural wastewater is more economically feasible when 

compared to other options such as storing and transporting wastewater to 

treatment plants (Cooke, 1991). Second, with the introduction of the Resource 

Management Act (RMA) in 1991, the practice of wastewater discharge to streams 

was phased out by regional councils (Houlbrooke, et al., 2004). Third, in Maori 

culture, bodies of water are seen as a spiritual symbol (wairua). Direct discharge of 

wastewater to water bodies is considered offensive (Cameron & Trenouth, 1999).  

However, using wetlands to treat agricultural wastewater also changed the water 

regime and enhanced the nutrient level of natural wetlands (Houlbrooke, 2004). 

Consequently, it may change the plant and animal communities and reduce habitat 

and intrinsic values in a wetland for a long period (Greater Wellington Regional 

Council, 2005). Figure 2.3 shows how agriculture activity, especially dairy farms, 

poses a threat to the water quality in wetlands.  

 

Figure 2.3 The process of nutrient-rich pollutants released from a dairy farm. Source: 

Carpenter et al., 1998. 
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2.4. Ecological restoration of wetlands 

As stated in the introduction, ecological restoration is the process of bringing an 

ecosystem’s structure and function back to its original state. In a narrow sense, 

restoration means bringing everything faithfully back to what it was before 

(Bradshaw, 2002). However, this understanding of restoration has led to many 

problems. First, the record on or the knowledge of the original state may be limited 

or absent (Egan & Howell, 2001). Second, even though the original state is known, 

the initial conditions for wetlands or other ecosystems may have changed which 

makes restoration to the original state impossible (Zedler, 2006). Lastly, because the 

ecosystem is constantly changing and the end point ecosystem is not a fixed entity, 

there is no way to measure whether the restoration is achieved (Bradshaw, 2002). A 

wide sense of restoration, on the other hand, can be applied to the individual 

components of an ecosystem (Bradshaw, 2002). This context allows ecologists, 

engineers, managers, and community groups to focus on restoring one or a few 

fundamental ecological processes. Successful restoration should then be built on 

good understanding of the system and therefore takes a relatively short period of 

time compared to natural succession (Bradshaw, 2002).  

There is more than one approach to recover or improve a degraded ecosystem. 

Natural processes of primary succession will restore the ecosystem to its original 

state after the disturbance is removed (Miles & Walton, 1993 as cited in Bradshaw, 

2002). If successful restoration is not completed, then what is achieved may be 

called rehabilitation (Bradshaw, 1987). Replacement or reclamation aims to only 

bring back or enhance the function of an ecosystem, but this is usually achieved by 

reducing the diversity or complexity in the structure (Bradshaw, 1987). These 

processes are all demonstrated in figure 2.4. 
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Figure 2.4 Different approaches for the improvement of a degraded system. Source: 

Perrow & Davy, 2002, p. 5. 

Wheeler, et al. (2008) stated three major objectives of wetland restoration: 

restoration of wetland function, restoration of wildlife conservation, and restoration 

of traditional landscapes and land-use practices. Due to the complexity of wetland 

ecosystems and the diverse goals of stakeholders, a restoration project usually has 

more than one objective. Factors such as the size and scale of the project, the level 

of degradation, and the funding, labour, and time availability must be considered 

when setting restoration goals or objectives. The “SMART” (Specific, Measurable, 

Achievable, Realistic, and Time-bound) principle (Clarkson & Peters, 2010b) provides 

a good guideline for developing a set of goals and objectives for wetland restoration 

project. 
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3. Regional setting and site description 

3.1. Lower Wairarapa Valley catchment 

Lake Wairarapa is the largest lake in the Wellington region, about 50km east of 

Wellington city. The lake and its surrounding areas are part of the Lower Valley 

catchment of the Wairarapa Valley (figure 3.1.1). The Lower Valley has been 

modified and regulated for flood protection purposes since the 1960’s (Airey, 

Puentener, & Rebergen., 2000) under the Lower Wairarapa Valley Development 

Scheme (LWVDS), which is “one of New Zealand's largest and most ambitious flood 

protection projects, benefiting a total land area of 31,500 hectares” (Greater 

Wellington Regional Council, 2013). 190 km of stopbanks were constructed under 

this scheme. One of the most remarkable projects was the diversion of the 

Ruamahanga River, which was diverted from its direct course into Lake Wairarapa, 

through a 4.5 km constructed channel into the Lower Ruamahanga (figure 3.1.2). 

Such earthworks effectively controlled the floods in the lower catchment, but also 

significantly changed the natural hydrological conditions of the wetlands in the same 

area. A lot of wetlands have lost their connectivity with the river (Watts and Perrie, 

2007) and have been drained for agricultural development (Robertson and Heather, 

1999). 

Agriculture is an important industry in southern (lower) Wairarapa, which contains 

almost 50% of the dairy cattle in the Wellington region (Sorensen, 2012). Most of the 

farming near the lake takes place on poorly drained soils and would not have been 

possible without an engineered drainage system (Perrie & Milne, 2012). There are six 

pump drainage schemes servicing 3550 hectares near the lake (Figure 3.1.3). For 

example, the Te Hopai pump and drainage scheme benefits 1,003 ha of farmlands on 

the eastern shore of the lake. The water from the Te Hopai pump station goes into 

Matthews Lagoon directly, which is one of the two wetlands in the study area. 
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Figure 3.1.1 Wairarapa Valley with black oval indicating the Lower Valley catchment. 

Source: Greater Wellington Regional Council, 2011. 

 

Figure 3.1.2 Ruamahanga Diversion. 

The blue line represents the man-

made channel that diverts the 

Ruamahanga River away from the old 

Ruamahanga River channel (the red 

line) which went into Lake Wairarapa. 

The Ruamahanga River now bypasses 

Lake Wairarapa and flows to the lower 

Ruamahanga River through the man-

made channel.

Legend 

               Spring-fed stream 

               Wetlands 

               Main lakes 

               Main rivers 

N 

Ruamahanga 
River 
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Figure 3.1.3 Locations of pump stations and drainage schemes in the Lower Valley 

Catchment. Source: GWRC, retrieved from: http://www.gw.govt.nz/assets/Our-

Services/Flood-Protection/Other-River-and-Stream/Wairarapa-Watercourses-O-214-

04.pdf 

3.2. Matthews Lagoon and Boggy Pond 

Matthews Lagoon and Boggy Pond are the two wetlands studied in this research. 

They are close to each other and located along the eastern shore of Lake Wairarapa 

(figure 3.2.1). They were formed as a result of depositions of sandstorms from the 

lake bed when the lake levels were seasonally very low, together with trapped water 

from changes in river courses (Airey, Puentener, & Rebergen., 2000). They were 

isolated by stop banking as part of the LWVDS, and were separated from each other 

by a common stopbank (Cooke, 1991).  
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Figure 3.2.1 The location of the wetlands on the eastern shore of Lake Wairarapa. 

Source: DOC, 2000. 

Matthews Lagoon occupies an area of 250 ha. Water from the Te Hopai pump 

station enters Matthews Lagoon from its southern end and joins the Oporua 

floodway at the outflow through twin culverts in the northern end near Parera Road 

(figure 3.2.2). Its surroundings are mainly dairy farms with some sheep and crop 

farms. There is a stopbank separating Matthews Lagoon and Boggy Pond. Water 

quality in Matthews Lagoon is assumed to be nutrient-rich. Raupos (Typha orientalis) 

and willows (Salix cinerea) are abundant in Matthews Lagoon. A weed plant, 

hornwort (Ceratophyllum demersum), has become a major problem in Matthews 

Lagoon. 



35 
 

 

Figure 3.2.2 Matthews Lagoon and its surroundings with civil structures. The Te 

Hopai pump station (inlet) services 1,003 ha farm lands and pumps agricultural 

drainage to Matthews Lagoon. Water runs out through twin culverts at the northern 

end under Parera Road (outlet) and joins Oporua floodway. Raupo, willow, and 

hornwort are abundant due to the high level of nutrients from the Te Hopai drainage 

scheme. Source of aerial photo: GWRC. 
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Boggy Pond is to the north of Matthews Lagoon. It is about 145 ha and surrounded 

by Parera Road on its northern and eastern side. On its western side, there are 

agricultural lands (figure 3.2.3). In theory, rainfall and groundwater are its main 

inputs. This is because Boggy Pond is physically isolated from other sources of water 

input. However, in 1983, the stopbank separating the two wetlands was cut open at 

the eastern end allowing water to mix in the two wetlands. This cut was replaced by 

a control gate five years later (Cooke, 1991). There was also an outlet to Oporua 

floodway, but this was sealed in 2011. Surveys in the 1980’s had found much more 

native and rare plant species in Boggy Pond than in Matthews Lagoon (Cooke, 1991).  

Raupo are now also abundant in Boggy Pond. The level of hornwart invasion is low 

(Airey et al., 2000).  
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Figure 3.2.3 Boggy Pond and its surroundings. Source of aerial photo: GWRC. 

 

  

Boggy Pond 

Stopbank 

Parera Road 
Sealed outlet 

Control gate (closed  
now)/ the old cut 

Lake Wairarapa Oporua floodway 

Boggy Pond is assumed to only have 
rainfall and groundwater as its water 
input. Therefore water quality in Boggy is 
much better than in Matthews Lagoon. 
Rare native turf plants were found in 
Boggy Pond but not in Matthews Lagoon. 
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4. Methodology 

4.1. Water balance 

In order to understand the hydrological processes of the study site, an insight into 

the water balance and quantitative water movement is useful. The concept of water 

balance or water budget is based on the physical principle of conservation of mass 

(Labadz et al., 2002; Jackson 2006), which can be simplified as:  

𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑖𝑛𝑝𝑢𝑡𝑠 − 𝑜𝑢𝑡𝑝𝑢𝑡𝑠      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.1            

For wetland water balance, there are many different types of inputs and outputs. 

However, to measure all of them is expensive, difficult, and time consuming 

(Jackson, 2006). Some of these inputs or outputs are also insignificant or irrelevant 

to this study and therefore can be ignored (table 4.1.1).  

Table 4.1.1 Potential water inputs and outputs for wetlands and their status in this 

study. 

Potential inputs  Potential outputs  

Precipitation (measured) Evapotranspiration (calculated) 

Surface channel flow (measured) Surface channel flow (measured) 

Surface diffuse flow (insignificant) Surface diffuse flow (ignored) 

Tides (insignificant) Tides (ignored) 

Overbank flow during 

floods 

(irrelevant) River return flow 

following floods 

(irrelevant) 

Groundwater spring 

flow 

(irrelevant) Groundwater 

seepage flow 

(estimated) 

Groundwater diffuse 

flow 

(estimated) Human withdraws (irrelevant) 

Overland flow (irrelevant)   

Human inputs (irrelevant)   
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A simplified water balance model is shown in figure 4.1.1 and a conceptual water 

balance equation that guided this study yields: 

𝑑𝑆 = 𝑄𝑖𝑛 + 𝑅 + 𝐺𝑖𝑛 − (𝑄𝑜𝑢𝑡 + 𝐸 + 𝐺𝑜𝑢𝑡)        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.2 

Where: 

dS = changes in the wetland water volume (mm)  

𝑄𝑖𝑛= surface flows into the wetland (mm)  

R = precipitation (mm) 

𝐺𝑖𝑛= groundwater inflow (mm) 

𝑄𝑜𝑢𝑡= surface flows out of the wetland (mm)  

E = evapotranspiration losses (mm) 

𝐺𝑜𝑢𝑡= groundwater outflow (mm) 

  

Figure 4.1.1 Conceptual water balance model. Green arrows indicate water inputs; 

red arrows indicate water losses. 

Evapotranspiration 
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When data are not available for one or more components in a water balance 

equation, certain assumptions can be made to eliminate those missing components. 

For example, groundwater level can be assumed to be the same throughout the 

year. Consequently, flows between groundwater and the wetland can be ignored. 

Similarly, wetland water volume can also be assumed to be unchanged throughout a 

year, which makes total water inputs equal to outputs.     

4.1.1. Precipitation 

Wetlands receive precipitation as water input in the form of rain, snow, hail, mist, 

dew, fog, and sleet (Holden, 2008; Labadz et al., 2002). Almost all wetlands will have 

some degree of direct precipitation, making measuring precipitation an important 

part in the water balance.  

In practice, precipitation is expressed in the units of length (mm or cm). In this way, 

precipitation is assumed to be evenly distributed over a certain area so the total 

volume of water is divided by its surface area (Holden, 2008). If duration and time 

are considered in the process, then the intensity of the precipitation can be used (for 

example, a rainfall of 30 mm/h lasts for 30 minutes) (Labadz et al., 2002).  

Rain gauges are traditional devices to record precipitation (Rasmussen, 2008). These 

instruments gather and record the amount of liquid precipitation over a period of 

time. There are many different types of rain gauges (e.g., standard rain gauge, 

tipping bucket rain gauge, weighing rain gauge, and optical rain gauge). Table 4.1.2 

summarizes some advantages and disadvantages between weighing-type and 

tipping-bucket type gauges. Wind, forest canopy, steep terrain, extreme event, and 

instrument design are known to cause errors when measuring rainfall with gauges 

(Wagner, 2009). Nowadays, radar techniques are used to remotely estimate total 

rainfall over a catchment, which provide a more accurate and efficient way of 

gathering precipitation data (Holden, 2008). 

 

 



41 
 

Table 4.1.2 Comparison of two types of recording rain gauges. 

Type of gauge Advantages Disadvantages 

Weighing type 

1. Can measure all kinds of 

precipitation (rain, snow and gale) 

2. No underestimation in heavy 

rain 

1. Expensive 

2. Requires more 

maintenance 

Tipping-

bucket type 

1. Easy to record the data (pulse)  

2. Easy to observe rainfall 

intensity from raw data 

 

1. Underestimates in heavy 

rain when bucket tipping 

2. Underestimates in light 

rain when the amount of 

water is not heavy enough 

to tip 

3. Cannot measure snow or 

hail unless install heating 

facility 

 

In general, precipitation readings from one gauge cannot be applied to the whole 

catchment (Holden, 2008). First, according to Winters (1981, as cited in Dingman, 

1993), point measurement of individual storms can lead to errors as high as 75%. 

Errors in short-term averages are commonly in the 15-30% range. Second, the windy 

nature of the study site may potentially increase the uncertainty of the 

measurements as well, because wind is known to cause the most significant and 

common errors for gauges (Dingman, 1993, p. 107). Lastly, due to topography and 

many localized factors, adding more tipping-bucket gauges measuring precipitation 

at the study site does not necessarily increase the accuracy of the results.  

However, for this particular study, point measurement is used because the study site 

is relatively small and the purpose is to get a general trend in the overall water 

movement rather than precise components in water balance. Furthermore, errors 
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from precipitation data may be insignificant when compared with other components 

in water balance computation (for example, groundwater and evapotranspiration). 

Lastly, since the limitations from tipping-bucket gauges are inevitable, increasing the 

sample size by using more tipping-bucket gauges may increase precision of the 

rainfall data but may not improve accuracy.  

4.1.2. Evapotranspiration 

Evapotranspiration (ET) consists of evaporation and transpiration. In the wetlands, 

evaporation represents the water movement from open water surfaces, plant 

canopy, and soil to the atmosphere. Transpiration accounts for the water movement 

from plants to the atmosphere through stomata in leaves (Allen, Pereira, Raes, & 

Smith, 1998). The level of evapotranspiration is affected by many factors (Holden, 

2008): solar radiation (providing latent heat), air temperature (influencing the 

vapour capacity to hold moisture), wind speed (removing saturated air at the water 

surface), humidity, turbulence caused by topography or surface roughness, plant 

biology, and water availability. Therefore, quantifying evapotranspiration is a 

complex task.  

The concept of potential evapotranspiration (PET) is adopted by hydrologists to 

indicate the meteorological conditions or the “drying power” of the climate 

(Dingman, 1994). It is the evapotranspiration from a uniform vegetated surface with 

unlimited water supply (Holden 2008). Therefore, it sets an upper boundary on the 

amount of water that can be lost through evapotranspiration (Law, 2008). Actual 

evapotranspiration (AET) is about 50% to 90% of potential evapotranspiration on an 

annual basis (Jackson, 2006).  

Many methods have been developed to either directly measure or indirectly 

estimate evapotranspiration (appendix B). These methods have all been used in 

different hydrological models under different hydrological and meteorological 

conditions. Many studies and experiments have also compared the performances of 

these different methods (Dingman, 1994, pp. 256-302).  In general, the Penman-

Monteith equation (PM) (equation 4.1.3) provides the most corresponding results 

with that measured by lysimeters (Van Bavel, 1966 and Jensen, et al., 1990 as cited 
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in Dingman, 1994) and it was used as a foundation to calculate potential 

evapotranspiration in this study: 

𝑃𝐸𝑇 =
∆(𝑅𝑛 − 𝐺) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

𝜆[∆ + 𝛾 �1 + 𝑟𝑠
𝑟𝑎
�]

       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.3 

Where ∆=rate of change of saturation specific humidity with air temperature (kPa °C 

−1), 𝑅𝑛=net irradiance (MJ m−2), 𝐺=ground heat flux (MJ m−2), 𝜌𝑎=air density (kg m−3), 

𝑐𝑝=Specific heat capacity of air (J kg−1 K−1),  𝑒𝑠 − 𝑒𝑎=vapour pressure deficit of the air 

(Pa), 𝑟𝑎=aerodynamic resistance (s m−1), 𝜆 =latent heat of vaporization (MJ kg-1),  𝛾 = 

psychrometric constant (kPa °C −1), and  𝑟𝑠=surface resistance (s m−1). 

For open water, under the following assumptions: 1. Water is always available for 

evapotranspiration; 2. Ground heat flux is negligible (𝐺 =0); 3. Surface resistance is 0 

for the study site (𝑟𝑠=0), equation 4.1.3 can be written as:  

𝑃𝐸𝑇 =
∆(𝑅𝑛) + 𝜌𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

𝜆(∆ + 𝛾)
       𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.4 

Where ∆=rate of change of saturation specific humidity with air temperature (kPa °C 

−1), 𝑅𝑛=net irradiance (MJ m−2),  𝜌𝑎=air density (kg m−3), 𝑐𝑝=Specific heat capacity of 

air (J kg−1 K−1),  𝑒𝑠 − 𝑒𝑎=vapour pressure deficit of the air (Pa), 𝑟𝑎=aerodynamic 

resistance (s m−1), 𝜆 =latent heat of vaporization (MJ kg-1), and  𝛾 =psychrometric 

constant (kPa °C −1). 

For vegetated areas, the FAO Penman-Monteith (FAO PM) combination equation 

(equation 4.1.5) was used to calculate reference evapotranspiration (𝐸𝑇𝑜), which is 

the recommended standard by the Food and Agriculture organization (Allen et al., 

1988). 𝐸𝑇𝑜 represents a theoretical value of evapotranspiration from a reference 

surface with an assumed crop height of 0.12 metre, a fixed surface resistance of 70 s 

m-1 and an albedo of 0.23. The equation of 𝐸𝑇𝑜 is given as:  

𝐸𝑇𝑜 =
0.408∆(Rn − G) + γ 900

T + 237 u2(es − ea)
∆ + γ(1 + 0.34u2)

         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.5 



44 
 

Where ∆=rate of change of saturation specific humidity with air temperature (kPa °C 

−1), 𝑅𝑛=net irradiance (MJ m−2), 𝐺=ground heat flux (MJ m−2),  𝛾  =psychrometric 

constant (kPa °C −1), T =air temperature (°C), 𝑢2=wind speed at 2 meter height (ms-1), 

and 𝑒𝑠 − 𝑒𝑎=vapour pressure deficit of the air (Pa). 

Since a wetland usually consists of both open water areas and vegetated areas, using 

open water PET or FAO PM 𝐸𝑇𝑜 alone would not reflect the diverse range of wetland 

landforms. Although total ET could have been calculated as a sum of PET and 𝐸𝑇𝑜 

according to the proportion of open water areas and vegetated areas in the 

wetlands, this would have required several detailed landform surveys at different 

times of the year. Due to the limited time and resources available in this study, ET is 

simplified as the mean value of open water PET and FAO PM 𝐸𝑇𝑜.   

4.1.3. Surface flows 

Normally, delimiting the catchment of the wetland of interest is the first step to 

identify and quantify surface inflows (Labadz, et al., 2002). A catchment is defined as 

an area that topographically contributes all the water that passes through a given 

cross section of a stream (Dingman, 1994, p. 14). On an annual basis, the volume of 

water that has been discharged by a river or stream can be seen as precipitation 

minus evapotranspiration (Q=P-E). The wetlands in this study, however, are not able 

to use this approach. First, the duration of this study is not long enough to neglect 

the groundwater interactions and soil water storage. Second, the hydrologic 

condition in the surrounding areas has been extensively modified by urban 

development including river diversion, road construction, and agricultural drainage. 

As a result, water movement in the catchment doesn’t necessarily contribute to the 

inflow of Matthews Lagoon. Instead, the inflow is controlled by a pump.  

Measuring surface flows is relatively easy compared to other components in the 

water balance equation (Holden, 2008). Surface flows can be measured both directly 

and indirectly (table 4.1.3). Selecting a measurement method depends on the 

purpose and duration of the project, the nature of the channel, and equipment 

availability (Dingman, 1994, pp. 536-552).  
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Table 4.1.3 Classification of surface flow gauging methods. 

Surface flow 

measurement 

methods 

Direct 

measurement 

Volumetric:  

Measuring the time taken to fill a container to a 

known volume.  

Velocity-area:  

Measuring the velocity of water passing a selected 

stream cross section in a certain time interval. 

Dilution: 

Adding a known concentration of chemical to the 

upstream and measuring the dilution at 

downstream location.  

Indirect 

measurement 

Stage-discharge: 

Converting water levels into discharge values using 

a rating curve. 

Flumes or weirs: 

In-stream engineering structures that divert all the 

water through. Discharge is a function of the 

shape of the flume or weir and the water level in 

the structure.  

 

In this study, the volume of inflow was obtained from GWRC. GWRC monitors the 

running time and electricity consumption of the pump that controls the Te Hopai 

Drainage Scheme. These data obtained from GWRC represent the “ideal” or 

“theoretical” volume of water that enters Matthews Lagoon. Overestimations may 

occur using this data because the efficiency of a pump reduces with pump age and 

without proper maintenance. This is due to wear on the impeller and general back 

leakage.  

Three water level monitoring stations were established in the two wetlands in this 

study (figure 4.1.2). Each station consists of a staff gauge and a pressure sensor. A 

staff gauge is a vertical ruler marked at centimetre intervals used to measure water 
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level relative to a reference elevation. It can be read by observers from a distance 

and has the advantage of low cost to install and maintain. The disadvantage is that 

the readings are not continuous, thus the intervals between the readings sometimes 

miss the natural fluctuations of levels (Labradz, et al., 2002). A pressure transducer 

measures the water or atmosphere pressure. Having one sensor at the bottom of the 

wetland and one above the water allows calculating actual water depth from the 

pressure difference between the two sensors. 

Stations 1 and 3 were installed to record water levels in Matthews Lagoon and Boggy 

Pond, respectively. Station 2 was installed at the outlet of Matthews Lagoon. In this 

study, a 2-meter long PVC pipe was used as a staff gauge (figure 4.1.3). 40 holes 

were drilled every 5 centimetres on the pipe to mark the water level and allow water 

to enter the pipe freely. A pair of pressure transducers sits inside the pipe and are 

tied to the PVC pipe by ropes (figure 4.1.4) so the pressure transducers can be pulled 

out to retrieve data and put back to the same depth.  

The elevations above sea level of these three stations (figure 4.1.2) were measured 

by a real-time kinematic (RTK) survey under NZGD 2000 datum. A RTK system 

consists of a base station and one or more rovers. The base station is at a known 

position while roving receivers occupy unknown positions. All devices communicate 

to the same satellites at the same time, and the communications between base 

station and roving receivers provide real-time corrective factors (Van Sickle, 2008). 

As a result, RTK can provide better accuracy than regular GPS. The devices used in 

this study (Trimble R4 GNSS system) give errors of about 15 mm for vertical 

measurement according to the manual.   
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Figure 4.1.2 Water level monitoring 

stations in Matthews Lagoon and Boggy 

Pond. Station 1 is in the middle of 

Matthews Lagoon, station 2 is at the 

outlet of Matthews Lagoon, station 3 is in 

the middle of Boggy Pond. 

 

 

Figure 4.1.3 A 2-meter long PVC pipe 

with holes every 5 centimetres used as a 

staff gauge. 

1 

3 

2 
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Figure 4.1.4 Cross-section of water level monitoring station.  

The velocity-area method (Dingman, 1994, p. 537-539) was used to generate the 

rating curve for the outflow of Matthews Lagoon. The measurement has to be taken 

several times under different flow conditions at the outlet. The total discharge Q 

(m3/s) is expressed as: 

𝑄 = ∑ 𝑋𝑖+1−𝑋𝑖
2

(𝑈𝑖𝑌𝑖 + 𝑈𝑖+1𝑌𝑖+1)𝑁
𝑖=1         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.6          

Where 𝑋𝑖  are cross-stream distances to successive verticals measured from an 

arbitrary datum (m), 𝑈𝑖 are the vertically averaged velocities of each vertical (m/s), 

and the 𝑌𝑖  are the depth of each vertical (m). Figure 4.1.5 shows how the 

components in equation 4.1.6 are obtained in the field. 

Pressure transducer  
(barotroll) that measures 
atmosphere pressure 

Pressure transducer  
(minitroll) that 
measures water and 
atmosphere pressure 

Ropes that attach the 
sensors to the pipe 

Water level 

Wetland bottom 

PVC pipe with drilled 
holes 
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Figure 4.1.5 Cross-section of the channel at outlet of Matthews Lagoon and 

measurement points to calculate discharge using the velocity-area method. The 

starting point 0 for x axis can be any point on the shore. The starting point 0 for y 

axis is the water surface. Water velocity is measured at 0.6y to the water surface.  

4.1.4. Groundwater  

Groundwater by definition is the water held below the water table in saturated soils 

or other earth materials (Dingman, 1994; Holden, 2008). Its movement into and out 

of a wetland represents the interactions between groundwater and surface water. In 

geology, the medium unit in which the interactions between groundwater and 

surface water occur is an unconfined aquifer (Dingman, 1994). An aquifer is a 

geologic unit that can store enough water and transmit it at a rate fast enough to be 

hydrologically significant (Dingman, 1994). 

Four types of interactions between wetlands and groundwater are identified 

(Greater Wellington Regional Council, 2005): A discharge wetland is fed by 

groundwater because it sits at a lower topographic point, where the wetland water 

table is below the surrounding water table (figure 4.1.6 A). A spring or seep wetland 

is at the base of a steep slope where the water table and the land surface are parallel 

(figure 4.1.6 B). A recharge wetland forms when the wetland water level is higher 

than the surrounding water table abd the wetland releases water (figure 4.1.6 C). If 

the amount of water released from wetland to the surrounding area is negligible, the 

wetland is then called perched wetland (figure 4.1.6 D). These interactions change 
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with seasons, sometimes even reverse during the year (Dingman, 1994). Fluctuations 

in water table level are the result of recharge and discharge processes in 

groundwater (table 4.1.4). 

 

Figure 4.1.6 Four types of wetland-groundwater interaction. Dashed lines represent 

water tables, while arrows represent water movement directions. A. Discharge 

wetland. B. Spring or seep wetland. C. Recharge wetland. D. Perched wetland. 

Source: GWRC, 2005.   

Table 4.1.4 Recharge and discharge processes of groundwater. 

Recharge Processes Discharge Processes 

• Infiltration: movement of water 

from soil surface into the soil 

• Exfiltration: evaporation from 

the upper layers of the soil 

• Percolation: downward flow from 

unsaturated zone to saturated 

zone 

• Capillary rise: movement from 

saturated zone to unsaturated 

zone 

• Seepage from surface water or 

flows 

• Contribution to surface water 

or flows 

• Groundwater inflow  • Groundwater outflow 

• Plant uptake 
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Groundwater flow is the most difficult component to obtain in the water balance 

equation, as it cannot be measured directly and the water movement underground 

is complicated (Hunt, Krabbenhoft, & Anderson, 1996). Darcy’s Law can be used to 

estimate groundwater flows in saturated soils (e.g., law, 2008):  

𝑉 = 𝑄
𝐴

= −𝐾𝑠
𝑑𝐻
𝑑𝑥

         𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.7           

Where:  

𝑉= discharge (cm/day) 

𝑄= volume rate of flow (cm3/day) 

𝐴= cross-sectional area of flow (cm2) 

𝐾𝑠= saturated hydraulic conductivity of the soil (cm/day) 

𝑑𝐻
𝑑𝑥

= hydraulic gradient between observation points (the rate of change of head over 

distance, unitless ratio) 

Certain assumptions must be made in order for Darcy’s Law to be valid. First, the 

soils must be saturated at all times. For unsaturated soil, its hydraulic conductivity 

becomes a function of pressure head. It can change dramatically with different water 

content in the soil. Second, the hydraulic properties of the media must be 

homogeneous. Saturated hydraulic conductivity solely depends on the 

characteristics of soil and bedrock that is affected by porosity, texture, structure, and 

macropore networks (Jackson, 2006). Better permeable units like sand and gravel 

have high hydraulic conductivity values, while poorly permeable materials such as 

clay have low values (Schwartz and Zhang, 2002) (table 4.1.5).  
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Table 4.1.5 Saturated hydraulic conductivity values for a range of soils. Source: 

Schwartz and Zhang, (2002). 

Materials  Hydraulic Conductivity (m/s )  
Gravel  3 x 10-4 – 3 x 10-2  
Coarse Sand  9 x 10-7 – 3 x 10-3  
Fine Sand  
Clay  
Sandstone  
Permeable Basalt  
Fractured metamorphic rock  

2 x 10-7 – 2 x 10-5  
1 x 10-11 – 4.7 x 10-9  
1 x 10-10 – 6 x 10-6  
4 x 10-7 – 2 x 10-2  
9 x 10-9 – 3 x 104  

Unfractured metamorphic rock  3 x 10-14 – 2 x 10-10  
 

 

Although Darcy’s law can provide a relatively good estimation of groundwater flow, 

there are certain drawbacks of this technique: First, the measurement is usually 

taken from a few points to represent an entire study site (Attanayake et al., 2006). 

Second, the hydraulic gradient changes through time (Kalbus, Reinstorf, & Schirmer, 

2006). Third, the hydraulic properties of the media can be heterogeneous (Hunt, et 

al., 1996). It is better to measure groundwater flows with more than one method to 

reduce errors (Hunt, et al., 1996). Other approaches to estimate groundwater flows 

include stable isotope mass balance, temperature profile modeling, and numerical 

water balance modeling (Hunt, et al., 1996). 

Water table data were obtained from GWRC. There are 4 boreholes monitored 

around the study area (figure 4.1.7). The water level was leveled against the 

NZGD2000 datum system. A borehole is simply a narrow hole bored in the ground 

vertically or horizontally. Its purposes include exacting liquid or gas, monitoring the 

properties of the water, soil, or gas within, or as an entrance hole to install 

underground facilities. The boreholes near the study site are vertical for water table 

monitoring.  

At least three boreholes are needed in order to calculate direction of groundwater 

flow and hydraulic gradient. The procedure is shown in figure 4.1.8. Three boreholes 

(A, B, and C) with known water table elevations are connected by solid lines which 

indicate the distance between them. Water table contours can be drawn by 



53 
 

connecting points on the solid lines with same water tables. Groundwater flow 

direction is the perpendicular line to the contours.     

 

Figure 4.1.7 Boreholes (yellow dots) near Matthews Lagoon and Boggy Pond. Source: 

GRWC. 
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Figure 4.1.8 Determination of water table contours (dashed lines) and groundwater 

flow direction (perpendicular line with arrow to the contours) from three boreholes.  

4.1.5. Wetland water volume and residence time 

The fluctuations in open water level directly reflect changes in water storage in a 

wetland. Watershed (or catchment) is defined as an area of land in which water 

flowing across the surface drains into a particular stream or river (Holden, 2008). It is 

a fundamental unit in regional water balance. Watershed delineation information for 

this study was obtained from The New Zealand River Environment Classification 

(REC). The watershed surface area is used in water balance equation when 

converting between cubic meters and millimetres. 

The availability of water strongly determines the wetland plants and animals through 

the cycles between flooding and drying periods (Mendelssohn and Batzer, 2006). 

Therefore, water level has a profound influence on the structure of a wetland 

ecosystem. In general, a still water level favours one or a few plant species while a 

fluctuated water level can support more complex and diverse plant communities 

(Greater Wellington Regional Council, 2005). As mentioned in surface water 

monitoring methods, surface water levels can be monitored by staff gauge and 

pressure transducer.  

In order to convert water level fluctuations to changes in water storage in a wetland, 

an understanding of the relationship between wetland volume and corresponding 

water level is essential (Labadz, et al., 2002; Rasmussen, 2008). This can be done by 

the production of a depth-volume curve, which estimates water volume for any 

given water depth similar to the rating curve in surface flow monitoring. Several 

topographic surveys under different water levels are required beforehand. Standard 

surveying techniques, which measure water depth at regular intervals across an 

entire wetland, can be used for topography monitoring. The wetland volume is 

calculated with the Create TIN function in ArcGIS 3D Analyst toolbox. A TIN is the 

acronym for triangulated irregular network, in which sample data points with x-, y-, 

and z-values are connected by lines to form Delaunay triangles. Summing up the 

volumes of these triangles yields the total wetland volume. Water depth was 
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surveyed twice both in summer and winter at over 300 data points. The surface area 

of the water body is from an aerial photo taken in February 2013 by GWRC. 

Storage of water in the soil is more complicated than in open water bodies (Labadz, 

et al., 2002). Some basic information is needed in order to calculate storage changes 

(Labadz, et al., 2002): the morphology of the water table, the volume of strata 

availability for water storage, and the relationship between change in volume of 

water stored and the change in water table. The changes of water storage in 

unsaturated zones and changes in the strata itself further complicate the monitoring 

of water storage in soil (Labadz, et al., 2002). Therefore, in this study, monitoring 

water storage solely focuses on open water bodies. The water content in the soil is 

assumed to be constant.   

Water residence time can be calculated from wetland volume and the amount of 

water that flows through it (equation 4.1.8). This way of calculating residence time is 

based on the assumption that water is well mixed in the wetland, and therefore 

provides an upper boundary of the actual residence time.  

𝑅𝑇 =
𝑉
𝑄

        𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.1.8 

Where 𝑅𝑇 is the residence time (days), 𝑉 is the volume of wetland (m3), and 𝑄 is the 

amount of water that flows through the wetland in a day (m3/day). 

4.2. Nutrient removal 

Monitoring of the chemical environment focused on nitrate, ammonium, and 

phosphate. Regular monitoring was carried out 5 occasions from July until November 

2013  using a YSI handheld meter and a Phosphorus Test Kit (HACH PO-19) due to the 

availability of equipment. The locations of regular monitoring points in Matthews 

Lagoon were the inflow, outflow and in the middle of the wetland. There was only 

one monitoring point in Boggy Pond as it has no inflow or outflow (figure 4.2.1). In 

addition to this regular monitoring, a continuous monitoring of nitrate concentration 

using a YSI handheld meter at inlet and outlet was also done between December 

2013 and January 2014. The YSI ProPlus handheld meter measures temperature (°C), 
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dissolved oxygen (% and mg/l), pressure (mbar), conductivity (µs/cm), total dissolved 

solids (mg/l), pH, salinity (‰), nitrate-N (mg/l), and ammonium-N (mg/l). GWRC also 

collects water samples from stations A, B and C (figure 4.2.1) for detailed lab anaysis 

quarterly.  

Multiplying the concentration of nutrients measured at stations A and C (figure 

4.2.1) with the water volumes measured at stations 1 and 2 (figure 4.1.2) yields the 

mass of nutrients that Matthews Lagoon receives and discharges. A removal rate 

(𝑅𝐸) can then be calculated as:  

𝑅𝐸 =
𝑀𝑖𝑛 − 𝑀0𝑢𝑡

𝑀𝑖𝑛
× 100%          𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4.2.1 

Where 𝑀𝑖𝑛 is the total nutrient mass (kg) from inflow and 𝑀0𝑢𝑡 is the total nutrient 

mass from outflow. Note that this removal rate treats the wetland as a black box, 

which means it only considers total inputs and outputs, does not account for the 

reactions that happens within the wetland. When using this removal rate to indicate 

the ability of the chemical and physical reactions, one should be aware that other 

factors such as nutrients released from soils by nitrogen fixers may influence the 

removal rate.  
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Figure 4.2.1 Monitoring stations for water quality and water level in Matthews 

Lagoon and Boggy Pond. Water level monitoring stations are the same as shown in 

figure 4.1.2. Water quality monitoring stations A, B, and C are at the inlet, middle 

point, and outlet in Matthews Lagoon; station D is in the middle of Boggy Pond. 

Water quality was measured with a YSI handheld meter and field test kits for nitrate, 

ammonium, and phosphate by C. Shi. GWRC also collected water sample from 

station A, B, and C for lab tests. 

 

Water quality monitoring point A 
(inflow) 

At Matthews Lagoon inflow 

Water quality monitoring point B (middle) 

In the middle of Matthews Lagoon 

Water quality monitoring point D 
(Boggy Pond) 

At Boggy Pond 

Water quality monitoring point C 
(outflow) 

At Matthews Lagoon outflow 

 Water quality 
monitoring points 

 Water level monitoring 
stations 
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4.2.1. Nitrate 

Nitrogen in the form of nitrate is a common pollutant from agricultural runoff 

(Houlbrooke, et al., 2004). Excessive usage of fertilizer and plant fixation are the 

sources of nitrate. Denitrification is the main process to remove nitrate from a 

wetland, during which nitrate is transformed to nitrogen gas (figure 4.2.2). There are 

some intermediates in different stages of denitrification (equation 4.2.2), among 

which nitrous oxide (N2O) and dinitrogen (N2) are in gaseus forms that can be 

released from the wetlands. Denitrification requires anaerobic conditions and carbon 

sources (Tanner, Clayton, & Upsdell, 1995; Woltemade, 2000). Plants can also uptake 

some nitrate, but the ability varies among different types of plant (Kirk & Kronzucker, 

2005). 

 

Figure 4.2.2 Nitrogen cycle. Source: (Zumft, 1997) 

𝑁𝑂3− ⤍ 𝑁𝑂2− ⤍ 𝑁𝑂 ⤍ 𝑁2𝑂 ⤍ 𝑁2         Equation 4.2.2 

The YSI handheld meter measures nitrate activity in the sampled water with a nitrate 

sensor (1006 Pro Series Nitrate Sensor) that consists of an ion-selective electrode in 

a custom filling solution. This internal solution is separated from the sample water by 

a polymer membrane, which selectively interacts with nitrate ions. The activity of 
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nitrate ions affects the electric potential of the solution in the probe which can be 

measured by the meter and then converted to mg/l of nitrate.  

One of the main problems of using ion-selective electrode is interference from other, 

undesired ions that have similar physical properties. High concentrations of chloride 

or bicarbonate ions in the sample water would potentially interfere with the nitrate 

selecting process. The YSI sensor manual stated that 500 mg/l chloride could 

increase the nitrate result by 3.6 mg/l. There are many sources of chloride in the 

water, both natural and anthropogenic sources (Kelly, Panno and Hackley, 2012). 

Livestock waste and potassium chloride (KCl) fertiliser are the most likely sources for 

chloride in the study area. Panno et al. (2006) found chloride concentrations in 

animal waste as high as 1980 mg/l. Potassium (K) is an important mineral for dairy 

cows and KCL is a common and cheap fertiliser in New Zealand. 

In addition to the periodical monitoring, a real-time water quality monitoring at 

inflow and outflow of Matthews Lagoon was carried out using two YSI handheld 

meters for about two weeks in the 2013/14 summer. The meters were calibrated 

before monitoring with standard nitrate nitrogen solution (1mg/l). Both meters 

measure and record nitrate concentrations every 15 minutes at the inlet and outlet 

of Matthews Lagoon.  

This real-time water quality monitoring could potentially reduce the errors from the 

equipment. Although it would be ideal if this real-time monitoring could have been 

done in both winter and summer for a longer period of time, due to the restrictions 

of resources, the summer was the only period when both handheld meters were 

available.   

4.2.2. Ammonium 

Ammonium nitrogen usually comes from the wastes from pasture animals (Hill, 

Owens, & Tchounwou, 2005; Lockyer, Pain, & Klarenbeek, 1989). It is toxic to some 

wetland organisms and can compress their growth (Britto & Kronzucker, 2002). 

Ammonia in the wetland is usually absorbed by plants (Miller, 1990). Nitrification can 

also occur, during which ammonium is oxidised to nitrate under aerobic condition 
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(Khanijo, 2002). Ammonium is also important in the formation of nitrogen in the 

nitrogen cycle (figure 4.2.2). 

Similar to nitrate measurements, ammonium was measured by a YSI handheld meter 

using ab ion-selective electrode. The main interference ion for ammonium is 

potassium, which increases ammonium concentration by 3.4 mg/l for 50 mg/l of 

potassium in the water sample. 

4.2.3. Phosphate 

Phosphorus is another element besides nitrogen that contributes to eutrophication 

in water bodies (Carpenter, et al., 1998). Agricultural runoff carries phosphate from 

the point of application to the wetland (Hubbard, Newton, & Hill, 2004). Although 

plants can uptake some phosphate, the major removal process is through adsorption 

and sedimentation (Khanijo, 2002; Woltemade, 2000).  

Adsorption and sedimentation happen mainly on the surface of wetland sediments 

under aerobic and neutral to acidic conditions, where phosphate reacts and attaches 

to iron, calcium and magnesium (Khanijo, 2002). Phosphate then is buried by new 

sediments as a result of sedimentation. However, two problems arise. First, 

adsorption and sedimentation are reversible processes. Therefore phosphorus is not 

really removed from a wetland system but stored within the sediments (Verhoeven 

& Meuleman, 1999). In other words, phosphorus can be washed out from wetlands 

when conditions are right and becomes a source of pollution (e.g. flood or earth 

work by human). Second, the amount of adsorption is controlled by various 

parameters and there is a point when a wetland is saturated (Verhoeven & 

Meuleman, 1999).  

The phosphate test kit (HACH PO-19) uses ascorbic acid method to measure 

phosphate. Once the water samples are collected in the twin glass tubes from the 

field, reagents (either liquid or powder) containing ascorbic acid and ammonium 

molybdate are added to one of the samples allowing them to react with phosphate 

in the sample to form a blue compound, and the depth of the blue color indicates 

the amount of phosphate in the water. The other sample without added reagent is 
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used as a control. Challenge arises for phosphate monitoring as the concentration is 

usually very low in the water samples. One of the drawbacks of this method is that 

readings can be highly subjective between different people, because the result is 

read based on the similarity of blue color between the water sample and the 

standard color comparator. Another drawback of this method is that it cannot pick 

up small differences in phosphate concentrations. As the phosphate level in water is 

usually very low, there are limitations when using the results from this method to 

generate a nutrient balances. 
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5. Result 

5.1. Weather and climate data analysis 

Rainfall, temperature, wind speed, and humidity data in 2013 was obtained from the 

climate station on the eastern shore of Lake Wairarapa, which is less than 2 

kilometres to the north of Boggy Pond. This station, established by GWRC since 

2012, measures all the parameters at 2.5 meters above ground. Historical rainfall 

and solar radiation data was downloaded from the NIWA National Climate Database. 

The nearest station that keeps long-term rainfall data is near Kahutara Road, about 

10 kilometres to the northeast of Boggy Pond and Matthews Lagoon. This station has 

recorded rainfall information since 1982. Solar radiation was measured from 

Martinborough station which is 10 kilometres to the east of the wetlands. Figure 

5.1.1 shows the locations of these stations. 

 

Figure 5.1.1 Weather and climate stations near the study site. Station 1 on the 

eastern shore records rainfall, wind speed, temperature, and humidity for the study 

area in 2013. Station 2 at Kahutara Road keeps historical rainfall data since 1982. 

Station 3 in Martinborough measures solar radiation. 
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5.1.1. Precipitation 

Total rainfall in 2013 at the eastern shore (station 1) was 1,093 millimetres . This is 

above the average annual rainfall recorded at Kahutara Road station (878.6 

millimetres). In order to find out if there were any extreme events or abnormal 

weather conditions during the study period, rainfall data from the eastern shore 

station in 2013 was compared with historical monthly rainfall data recorded from 

Kahutara Road station. By comparing with the maximum, minimum and average 

rainfall records for each month between 1982 and 2013 (figure 5.1.2), it can be seen 

that rainfall in May, June, and October 2013 was relatively high. In May 2013, the 

rainfall was only 10 millimetres lower than the highest value in May 1996. In June 

2013, a monthly rainfall of 192 millimetres became the new June rainfall record since 

1982. The rainfall in October once again broke historical records since 1982. Rainfall 

in these three months were significantly greater than in other months. In fact, these 

three months together contributed 46% of the total rainfall in 2013, which indicates 

unevenly distributed rainfall in 2013. Because of this unevenly distributed rainfall in 

2013, two of the months in the winter of 2013 were actually drier than previous 

years. In July and August, the rainfall was below the historical average and median 

values since 1982. Daily rainfall during the same period is shown in figure 5.1.3. 

Rainfall, inflow, and nitrate concentration at the inlet are closely related, which will 

be further discussed later. 
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Figure 5.1.2 Eastern shore rainfall in 2013 and January 2014 (blue line) compared 

with maximum (red dotted line), minimum (black dotted line), and historical average 

(green bars) monthly rainfall in the period between 1982 and 2013 at Kahutara Road 

station. 

 

Figure 5.1.3 Eastern shore (station 1) daily rainfall between January 2013 and 

January 2014.  
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5.1.2. Evapotranspiration 

As discussed in the previous chapter, evapotranspiration can be estimated from 

meteorological data. Meteorological parameters such as wind speed, relative 

humidity, and air temperature were measured from eastern shore station at 2.5 

metres above the ground, while the calculation procedures can be found in appendix 

D. Substituting these quantities into equation 4.1.4 yields the daily open water 𝑃𝐸𝑇 

of the study site. FAO PM 𝐸𝑇𝑜 was also calculated using the same parameters. 

Figure 5.1.4 shows the results for open water 𝑃𝐸𝑇 and FAO PM 𝐸𝑇𝑜 . Seasonal 

fluctuations are obvious because solar radiation and temperature play important 

parts in both equations. Daily variations can be explained by the speed of wind and 

the level of cloud coverage. 

 

Figure 5.1.4 Daily reference evapotranspiration derived from FAO Penman-Monteith 

combination equation (red line) and daily open water potential evapotranspiration 

(blue line).  

As discussed in chapter four, ET is simplified as the mean value of open water 𝑃𝐸𝑇 

and FAO PM 𝐸𝑇𝑜in this study. This is because of the diverse range of landforms in the 

wetlands in the study site. Only using open water PET or FAO PM ETowould not be 
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able to reflect this fact. Monthly evapotranspiration that was used in computing the 

wetland water balance is shown in figure 5.1.5.  

 

Figure 5.1.5 Monthly evapotranspiration derived from the mean value of free water 

𝑃𝐸𝑇 and FAO PM 𝐸𝑇𝑜. 

5.2. Water level analysis 

Surface water level data and groundwater table data are shown in figure 5.2.1. All 

the water levels are referenced to the NZGD2000 datum system above sea level.  

Results show that Boggy Pond looks like a raised wetland as its water level was 

above the water table. There should be no groundwater input to Boggy Pond 

according to these results. Water level at the outlet of Matthews Lagoon (station 2) 

was higher than the middle point (station 1) which indicates that water may not flow 

through the entire wetland. Instead a bypass is likely to be present in Matthews 

Lagoon. Surface flow, wetland volume, groundwater flow, water balance and water 

retention time were all calculated from water level data. 
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Figure 5.2.1 Surface water (station 1, 2, and 3) and groundwater (BQ33/0011, 12, 13, 

and 14) level recorded during the study period 2013-2014. Locations of these 

monitoring points are shown in figure 4.1.2 and 4.1.7. Water levels referenced 

against the NZGD 2000 datum. 

5.2.1. Inflow and outflow 

The inflow of Matthews Lagoon is controlled by the Te Hopai pump station. Greater 

Wellington Regional Council (GWRC) monitors the running time of the pumps (two 

identical pumps at Te Hopai pump station) since March 2013 at this station. The 

gauging of the pumps was also done by GWRC, once in May and once in June. The 

pumping rate was estimated to be 1.15 m3/s for each pump.  

When compared with rainfall data, a strong correlation can be observed where 

inflow happens after rainfall events in the autumn, winter and spring. However, 

there is no such correlation in the summer (figure 5.2.2). This effect will be further 

discussed in the next chapter. 

Monthly inflow from the Te Hopai pump station can then be calculated from the 

gauging information and actual running time of the pumps (figure 5.2.3). In late June 

2013, the rainfall was intensive (figure 5.2.2), which led to a huge amount of water 

Station 3 (Boggy Pond) 

Station 2 (Matthews 
Lagoon outlet) 
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Lagoon middle point) 
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that went into Matthews Lagoon in a short period of time. As a result, the inflow in 

June alone was greater than the combined inflow in May and July (figure 5.2.3). 

 

Figure 5.2.2 Daily inflow from Te Hopai pump station compared with daily rainfall. 

Note the inflow rate (downward arrows) responds differently to rainfall in winter 

and summer (upward arrows). 

 

Figure 5.2.3 Monthly water inflow from Te Hopai pump station. Note that gauging 

started in late March 2013 and data are updated until late January 2014. 
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At the outflow of Matthews Lagoon, a pressure transducer and a staff gauge were 

installed to monitor water levels (see details in chapter 4) since July 2013. Velocity-

area gauging in the channel near outflow was carried out several times to generate 

the rating curve at the outflow (figure 5.2.4). Using the curve and water level data 

recorded by the pressure transducer, the “total” discharge from Matthews Lagoon 

can be estimated.  

 

Figure 5.2.4 Rating curve at the outflow of Matthews Lagoon. Black dots represent 

the stage-discharge measurement taken at different times of the year. The date of 

measurement is labelled. The equation shows the stage- discharge relationship. 

However, solely using this calculation to estimate outflow could potentially 

overestimate the water flow rate. Since the outlet is controlled by floodgates, 

whether there is water flow at outlet depends on the water pressure on both sides 

of the floodgates. When water pressure in the wetland is greater than in the Oporua 

floodway, water pushes the floodgates open and flows out. Otherwise, the 

floodgates stay closed and there will be no water flow.  

To eliminate the affect from floodgates being open or closed, some assumptions 

were used to calculate the actual outflow. First, the floodgates did not open until 

late June and closed in early to late December. This assumption is made based on 
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observations throughout the study. Second, water flow between January and June is 

negligible. Third, water flow happens when water level at outlet drops (the green 

periods in figure 5.2.5). Otherwise, it is assumed there is no water flow (the red 

periods in figure 5.2.5). Water level at the inside of outlet has to “recharge” first to 

reach a certain depth so the floodgates can be pushed open by pressure difference 

(usually happens when the water level peaks). When water flows out through the 

floodgates and “discharges”, water level drops, pressure is not able to keep the 

floodgates open, and water flow slows down and gradually stops (when water level 

reaches the lowest point). After water level reaches its lowest point, the cycle of 

recharge and discharge begins again.  

 

Figure 5.2.5 Water level at outlet in Matthews Lagoon with discharge (green) and 

recharge (red) processes labelled. Water only flows out through the floodgates 

during the discharge (green) process. The ratio of discharge to recharge is about 

53:47. 

Theoretically, actual outflow should be calculated only when discharge happens 

(during the green periods). However, since the ratio between discharge (outflow) 

and recharge (no outflow) processes is almost the same (53:47), outflow volume was 
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simplified as half of the “total” discharge volume (figure 5.2.6) calculated from the 

rating curve and water level data. 

 

Figure 5.2.6 Monthly total discharge volume at the Matthews Lagoon outlet during 

the latter half of 2013.  

5.2.2. Wetland size and volume 

Figure 5.2.7 shows the watersheds and drainages of the study wetlands. Boggy 

Pond’s watershed area is 2.9 square kilometres, while Matthews Lagoon is 4.4 

square kilometres.  
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Figure 5.2.7 Watershed area of 

Matthews Lagoon and Boggy Pond 

(catchment surface area is used in 

water balance equation to convert 

between cubic meters and 

mllimeters). 

Two water depth surveys were done once in summer (February 2012) and once in 

winter (June 2013). 124 survey points were accessed by kayak and water depth was 

measured by a staff gauge (figure 5.2.8). The edge, where water depth is always 0, 

defines the surface areas of both wetlands (figure 5.2.9). The GPS coordinates of the 

survey points were collected by a Garmin GPS 60 handheld navigation device. It gives 

a ±15 meters accuracy when used alone for positioning.  

Note that the size and shape of the wetland surface area is different from the 

watershed (figure 5.2.7). This is because although the watershed contributes to the 

water gains or losses in a wetland, its size is constant, where the actual water surface 

area of a wetland changes with the fluctuations of water volume in the wetland. 

Therefore, the surface area is smaller in size than the watershed. Water depth of 

places that could not be accessed by kayak or on foot was estimated by using the 

water depth measurement from nearby accessible locations that had similar 

vegetation and landscape.  
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Figure 5.2.8 Water depth survey points in 

Boggy Pond and Matthews Lagoon 

(water depth survey carried out once in 

winter and once in summer. This picture 

shows the result from the winter survey).  

 

Figure 5.2.9 Wetland area of Boggy Pond 

and Matthews Lagoon (this is the actual 

surface area used in calculating wetland 

volume). 

The Create TIN function in ArcGIS 3D Analyst toolbox was used to generate 3D 

models for Matthews Lagoon and Boggy Pond (see details in chapter 4). In total, 

about 300 water depth data points were used to create TINs for Matthews Lagoon 

and Boggy Pond. Using the results from the water depth surveys in winter and 

summer, a high (winter) and low (summer) water level model of the wetlands can be 

displayed (figure 5.2.10).  

A linear relationship between the water depth measured at water level monitoring 

stations 1 and 3 (figure 4.1.2) and water volumes calculated from the TINs (figure 

5.2.10) were used to estimate water storage changes in the two wetlands (figure 

5.2.11). The water levels at stations 1 and 3 fluctuated differently (figure 5.2.12) 

indicating different hydropatterns in Boggy Pond and Matthews Lagoon.  
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Figure 5.2.10 Water depth in Boggy Pond and Matthews Lagoon when water levels 

are high in the winter (left) and low in the summer(right). 

 

Figure 5.2.11 Stage-volume relationship of Boggy Pond and Matthews Lagoon. Stage 

data were measured from water level monitoring stations 1 and 3 (figure 4.1.2).
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Figure  5.2.12 Water levels above sea level in Matthews Lagoon and Boggy Pond as 

shown in figure 5.2.1. Down arrows indicate the highest water levels and up arrows 

indicate the lowest in both wetlands. The high-low difference is 1m in Matthews 

Lagoon and 0.7m in Boggy Pond, corresponding to a change in wetland volume of 

1,386,800 m3 and 852,600 m3, respectively. 

From the literature review in Chapter 2, the water level in a wetland not only 

influences the type of vegetation in it but also significantly affects the nutrient 

removal function of a wetland. Between June 24th 2013 and January 16th 2014, water 

level in Matthews Lagoon dropped 0.76 meters from 17.73 meters above sea level to 

16.97 meters above sea level. The water level peaked on June 26th 2013 at 17.85 

meters and dropped down to the lowest levelon December 30th 2013 at 16.85 

meters (figure 5.2.12). Boggy Pond, on the other hand, increased in water level from 

19.32 meters in the beginning of the monitoring to 19.54 meters in the end. The 

highest water level happened on November 12th at 19.88 meters and the lowest 

happened on September 14th at 19.18 meters (table 5.2.1).  
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Table 5.2.1 Summary of water level changes in Matthews Lagoon and Boggy Pond. 

Water levels are in meters and are above the sea level. 

 Highest 

(m) 

Lowest 

(m) 

Difference between 

highest and lowest 

(m) 

Total water level 

changes (m) 

Matthews 

Lagoon 

17.85 16.85 1.00 -0.76 

Boggy Pond 19.88 19.17 0.71 0.22 

 

5.2.3. Groundwater 

The water tables in the four boreholes in figure 4.1.7 are shown in figure 5.2.13. 

BQ33/0011 and BQ33/0013 (the boreholes that are close to the lake’s eastern 

shoreline) have similar water tables throughout the study period. BQ33/0014 (to the 

east of Boggy Pond) and BQ33/0012 (to the west of Boggy Pond) have the highest 

and lowest water table, respectively.  Water levels in Boggy Pond are above nearby 

water tables, indicating it is a recharge wetland or perched wetland as mentioned in 

chapter 4.  

The groundwater flow directions can be drawn based on water level data from at 

least three boreholes (see details in chapter 4). An example of lateral groundwater 

flow directions is shown in figure 5.2.14. Groundwater enters Matthews Lagoon 

from its south-eastern side and exits from the north-western side, while Boggy Pond 

loses groundwater from the western end. These flow directions are estimated based 

on the information available. To fully understand the groundwater flow, a detailed 

groundwater table survey is required. Contours and flow directions slightly change 

from month to month due to the fluctuations of water tables, but the general 

direction is as shown in figure 5.2.14.  

As mentioned in the previous chapter, saturated hydraulic conductivity is a property 

of soils. GWRC (Jones and Gyopari, 2006) has categorised six broad 
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hydrostratigraphic units according to formation lithology, well yields, and measured 

aquifer properties in the Wairarapa Valley.  In general, soils in Matthews Lagoon and 

Boggy Pond are low permeability lacustrine and estuarine deposits. The silts and 

clays accumulated within the central part of the lower valley and the sediments are 

over 200 meters thick. The saturated hydraulic conductivity is assumed to be less 

than 10 m/day.    

 

Figure 5.2.13 Water tables in four boreholes (BQ33/0011 and BQ33/0013: along the 

lake eastern shoreline, BQ33/0012: next to Boggy Pond on the west, BQ33/0014: to 

the east of Boggy Pond) as shown in figure 4.1.7. 
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Figure 5.2.14 Groundwater flow directions (arrows) and water table contours (yellow 

dashed lines).  

Monthly groundwater flow in both wetlands is shown in table 5.2.2. Some 

assumptions have been made in order to apply Darcy’s Law (as explained in chapter 

4). Only lateral flows are considered in this study as it is the dominant process of 

groundwater flows according to Bredehoeft et al. (as cited in Carrillo-Rivera, 2000). 

The hydraulic conductivity in equation 4.1.5 is 10 m/day after Jones and Gyopari 

(2006). The hydraulic gradient varies with the fluctuation of water tables. Overall, 

groundwater flows contribute insignificantly to the water balance compared with 

other water balance components. 
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Table 5.2.2 Groundwater flows (positive value means groundwater flows into the 

wetland, negative value means the wetland releases water to groundwater) 

calculated using Darcy’s Law. Only lateral flows are considered in this calculation, 

longitudinal flow is negligible, due to the impermeable nature of wetland bottom.  

 June July August  September October 

Matthews 
Lagoon 
(cm) 

In 19.80 0.00 33.56 30.25 30.08 

Out 19.90 24.79 20.41 19.33 19.40 

Total (in-out) 
(cm) 

-0.1 -24.79 13.15 10.92 10.68 

Boggy Pond (cm) -- -1.63 -5.30 -5.13 -5.27 

 

5.2.4. Water balance and residence time 

Monthly water balances in Matthews Lagoon and Boggy Pond are shown in appendix 

E. Rainfall data is obtained from the climate station on the eastern shore (figure 

5.1.1). Evapotranspiration is calculated based on Penman-Monteith equation 

(equation 4.1.4 and 4.1.5). Surface inflow is measured by GWRC since Mar 2013, 

inflow in Jan and Feb 2013 is estimated based on measurement in Jan 2014. Surface 

outflow is calculated using the rating curve (figure 5.2.4). Since the water level 

monitoring started in late June in Matthews Lagoon and early July in Boggy pond, 

groundwater flows and changes in wetland volume are not available until July in this 

water balance calculation. Groundwater data from GWRC was downloaded in 

October 2013, therefore groundwater flows after October are not available.  

Figure 5.2.15 shows the water balances of Matthews Lagoon and Boggy Pond from 

July to October in 2013 when data were all available. It is clear that in these months 

surface flows dominated the water balance in Matthews Lagoon.  Wetland volume 

decreased in Matthews Lagoon but increased in Boggy Pond. Groundwater flow was 

not significant in both wetlands. It would be ideal to compare the water balance 

between winter and summer in the wetlands, but little information was available for 

the summers in either 2013 or 2014.   
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(a) Water balance in July 2013 in Matthews Lagoon (left) and Boggy Pond (right). 

 
(b) Water balance in August 2013 in Matthews Lagoon (left) and Boggy Pond (right). 

 
(c) Water balance in September 2013 in Matthews Lagoon (left) and Boggy Pond 
(right). 

 
(d) Water balance in October 2013 in Matthews Lagoon (left) and Boggy Pond (right). 

Figure 5.2.15 Water inputs (green arrows), outputs (red arrows), and volume change 

(grey boxes) in the wetlands in four months (Jul to Oct). Numbers are shown in mm. 
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In addition to this water balance, a conceptual water balance can be calculated 

under certain assumptions using the data measured from this study under certain 

assumptions. First, wetland volume is assumed to be the same in January 2013 and 

2014. Therefore, change in wetland volume (ds) is 0 throughout the year. This 

assumption may be unrealistic, but no other assumption is practicable due to the 

lack of data on the wetland size. Second, groundwater flows in Matthews Lagoon are 

neglected as they do not constitute a big portion in the water balance. The second 

assumption may also be unrealistic but there are no adequate data are available to 

support a more sophisticated assumption. Groundwater outflow from Boggy Pond 

assumes an average value from July to October in 2013. As for the surface flows in 

Matthews Lagoon, inflow and outflow are the same as shown in appendix E. This 

conceptual water balance is shown in table 5.2.3. According to the water balance 

equation (equation 4.1.1), if ds is 0, total inputs and outputs should be equal. Results 

from Matthews Lagoon follows this assumption better than Boggy Pond considering 

groundwater flow is neglected in this conceptual water balance. Evapotranspiration 

is acceptable in the water balance of Matthews Lagoon. For Boggy Pond, on the 

other hand, total inputs are about 360 mm less than total outputs. If the assumption 

on wetland volume being the same over the year is true, there might be other 

sources of water supply in Boggy Pond, which can be a major concern for the water 

quality in Boggy Pond.  
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 Table 5.2.3 Conceptual annual water balance in Matthews Lagoon and Boggy Pond. 

Wetland volume is assumed to be the same throughout the year (ds=0). Rainfall, 

evapotranspiration, and surface flows are adopted from appendix D. Groundwater 

flows in Matthews Lagoon and Boggy Pond are negligible as they contributed little to 

the water balance. Total water inflow should be equal to total output according to 

water balance equation (equation 4.1.1). 

 Matthews Lagoon  Boggy Pond 

In Rainfall (mm) 1169.5 1169.5 

Surface flow (mm) 1327.9 -- 

Out Evapotranspiration (mm) 1532.6 1532.6 

Surface flow (mm) 811.1 -- 

In – Out (mm) 153.7 -363.1 

 

Residence time is calculated for two scenarios here (figure 5.2.16). In the first 

scenario, it is assumed that water is well mixed in the entire wetland. In the second 

scenario, water bypasses the open water wetland. As mentioned in chapter 2, 

residence time is determined by wetland volume and water flow rate. The 

fluctuations of outflow can be used to divide the water residence time in Matthews 

Lagoon into long residence time mode and short residence time mode. Residence 

time is longer when floodgates are closed and becomes shorter when floodgates are 

open. Water residence times in Matthews Lagoon under the two scenarios are 

shown in table 5.2.4. Residence time is significantly shorter in scenario 2 than 

scenario 1. This is because the open water part takes up almost 90% of the total 

volume in Matthews Lagoon. 

The water level results (figure 5.2.1) suggest that water flows in Matthews Lagoon 

follow the patterns shown in scenario 2. This is because the pressure head is higher 

at the outlet than it is at the middle point. Since water only flows from high pressure 
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head to lower ones, it is assumed that there is no direct connectivity between the 

middle point and outlet in term of surface water flows. One possible explanation is 

that water bypasses the middle point and flows to the outlet directly.  

 

(a) Scenario 1. Water is well mixed and 

flows through the entire Matthews 

Lagoon. 

 

(b) Scenario 2. Water bypasses the main 

open water part of Matthews Lagoon.

Figure 5.2.16 Two scenarios of water paths through Matthews Lagoon that impact 

the length of water residence time. Blue lines with arrows indicates water flow 

directions and paths.  
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Table 5.2.4 Water residence time in Matthews Lagoon. Residence time (t) here is 

simplified as monthly average wetland volume (v) divided by monthly flow rate (v/t). 

Water is assumed to be well mixed in the wetland. Note the residence time 

difference in August (winter) and December (summer). 

 Residence time (days) 

 Scenario 1 (flow through 

entire wetland) 

Scenario 2 (bypass the main open 

water part) 

July 23.0 3.5 

August 14.6 2.2 

September 12.3 1.8 

October 14.3 2.1 

November 13.7 2.1 

December 38.2 5.7 

 

5.3. Water quality analysis  

5.3.1. Overall characteristics  

The results from water quality tests on different days at different locations are 

shown in figure (5.3.1). Detailed water quality test results can be found in appendix 

F. Boggy Pond in general had lower nutrient levels than other stations in Matthews 

Lagoon, which indicates its isolated hydrological nature. For nitrate nitrogen 

concentrations, the YSI handheld meter gives much higher results than lab tests. This 

phenomenon will be further discussed in the next chapter. Ammonium 

concentrations did not differ as much between the two methods (YSI handheld 

meter and lab analysis), which indicates low interference from other ions. For both 

methods, phosphate levels at the inlet and outlet did not differ too much, but was 

noticeably higher at the middle station of Matthews Lagoon.  

From figure 5.3.2, patterns of nutrient concentrations at the four monitoring 

locations show lower nitrogen levels at the outlet compared to the inlet for both 

measurement methods.  
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(a) Nitrate concentrations measured by YSI meter (left) and lab test (right). 

  

(b) Ammonium concentration measured by YSI meter (left) and lab test (right). 

  

(c) Phosphate concentration measured by YSI meter (left) and lab test (right). 

Figure 5.3.1 Concentrations of (a) nitrate, (B) ammonium, and (c) phosphate at 

different locations in Matthews Lagoon and Boggy Pond (refer to figure 4.2.1) on 

different days measured by YSI handheld meter (left) and lab test (right).  
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(a) Nitrate levels measured by YSI meter (left) and lab test (right).

 

(b) Ammonium levels measured by YSI meter (left) and lab test (right).

 

(b) Phosphate levels measured by YSI meter (left) and lab test (right). 

Figure 5.3.2 Ranges of (a) nitrate, (B) ammonium, and (c) phosphate levels at 

different locations in Matthews Lagoon and Boggy Pond (refer to figure 4.2.1) 

measured by YSI handheld meter (left) and lab test (right). Box represents the 

interquartlie range, the thick line is the median. Data obtained from figure 5.3.1. 
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Results from the real-time measurement (figure 5.3.3) shows that before January 

10th, Matthews Lagoon acted as a sink for nitrate nitrogen during the test. However, 

nitrate concentration at the outlet was higher than at the inlet from the 10th onward. 

In other words, Matthews Lagoon acted as a source of nitrate. This reverse can be 

explained by the “dilution” effect at the inlet and the “accumulation” effect at the 

outlet. These effects will be explained in the next chapter in detail.  

 

Figure 5.3.3 Nitrate concentration at inlet and outlet of Matthews Lagoon, measured 

by YSI handheld meters logging every 15 minutes. 

The nitrate level at the inlet shows a realationship with pumping actions from Te 

Hopai pump station (figure 5.3.4). Nitrate concentration goes up when the pumps 

are working. This is understandable as water from farm lands is usually high in 

nutrients (figure 2.3). However, these nutrient pulses could possibly create some 

problematic issues for nutrient removal which will be discussed in the next chapter.  
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Figure 5.3.4 Nitrate concentration at the inlet (measured with YSI handheld meter 

logging every 15 minutes) and daily total pump working hours. 

5.3.2. Removal rate 

A nutrient removal rate (equation 4.2.1) will be able to show how well the wetland 

acts as a sink for nutrients. Similar to the water balance equation, a nutrient balance 

equation is built based on the mass balance equation. Water quantity and pollutant 

concentration are two important parts in the mass calculation. For a more accurate 

result, continuous monitoring in flow rate and pollutant concentration is essential. 

However, in this study, monthly average surface water input, output, and 

concentration from each test were used in nutrient balance calculation. Table 5.3.1 

shows an example of the nutrient balance in Matthews Lagoon in July 2013. The 

concentration data is from GWRC water quality tests in July. Because the chemical 

reactions are complex among the pollutants and transformations from one form to 

another are common, total Kjeldahl nitrogen (TKN), total nitrogen (TN) and total 

phosphorus (TP) are used to represent the overall pollutant level. 
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Table 5.3.1 Nutrient balance in Matthews Lagoon in July 2013. Water quality data 

are from GWRC. Removal rate is expressed in equation 4.2.1. Total Kjeldahl nitrogen 

(TKN), total nitrogen (TN) and total phosphorus (TP) are used to represent the 

overall pollutant level, because the chemical reactions are complex among the 

pollutants and transformations from one form to another are common. 

 Inlet Outlet 

Re
m

ov
al

 r
at

e 
(%

) 

Flow 

(m3) 

Co
nc

en
tr

at
io

n 

(g
/m

3)
 

Mass 

(kg) 

Flow (m3) 

Co
nc

en
tr

at
io

n 

(g
/m

3)
 

Mass (kg) 

NO3 686,504 3 2,059.5 1,244,490 

 

0.62 771.6 62.6 

NO2 3 2,059.5 0.66 821.4 60.1 

NH4 0.57 391.3 0.18 224 42.8 

TKN 1.76 1,208.3 1.51 1,879.2 -55.5 

TN 4.8 3,295.2 2.2 2,737.9 16.9 

PO4 0.11 75.5 0.1 124.4 -64.8 

TP 0.41 281.5 0.3 373.3 -32.6 

 

In order to understand the nutrient balance in summer, a water quality test from 

December 2012 was used instead summer (there is no lab water quality test from 

GWRC in the 2013/2014 summer). Since water flow is unknown in the summer 2012, 

water inflow and outflow are assumed to be the same due to the low inflow and 

outflow in the summer months and the removal rate can be calculated from 

concentration data (table 5.3.2). 
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Table 5.3.2 Summer nutrient balance in December in Matthews Lagoon (2012). 

Water quality data are from GWRC. Water flows at inlet and outlet are assumed to 

be the same. Removal rate is expressed in equation 4.2.1. Total Kjeldahl nitrogen 

(TKN), total nitrogen (TN) and total phosphorus (TP) are used to represent the 

overall pollutant level, because the chemical reactions are complex among the 

pollutants and transformations from one form to another are common. 

 Inlet (g/m3) Outlet (g/m3) Removal rate (%) 

NO3 0.002 0.002 0.0% 

NO2 0.002 0.004 -100.0% 

NH4 4.9 0.179 96.3% 

TKN 5.8 1.6 72.4% 

TN 5.8 1.61 72.2% 

TP 1.04 0.99 4.81% 
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6. Discussion 
6.1. Wetland classification 

As stated in chapter 2, there are many factors that need to be considered when 

classifying a wetland. In this study, water quality and hydrological condition are the 

most important aspects.  Therefore, wetland classification of Matthews Lagoon and 

Boggy Pond were done based on these two factors. The classification levels are 

adopted from Johnson and Gerbeaux (2004). 

Matthews Lagoon and Boggy Pond were originally formed as sandstorm depositions 

on the eastern shore. They were formed on the immediate margin of the lake and 

most likely influenced by lake level fluctuations and wave actions, therefore, by 

definition, for the first level (hydrosystem) in the six classification levels, both 

wetlands were classified as lacustrine. However, the construction of Parera Road cut 

off these two wetlands from the lake (figure 3.1.5). As a result, both wetlands can be 

classified as palustrine base on their broad hydrological and landform systems, which 

are fed by rain, groundwater, or surface water, but not directly associated with 

estuaries, lakes, or rivers. A very small part of Matthews Lagoon has become riverine 

near the inlet and outlet, where water flows in and out of the wetland through open 

channels (figure 6.1.1).  

Figure 6.1.1 Open channels at outlet (left) and inlet (right) of Matthews Lagoon. The 

channel at the outlet is about 3-5 meters wide and over 500 meters long while at the 

inlet is over 10 meters wide and about 215 meters long. 

In the most important level of wetland classification, the wetland classes, according 

to Johnson and Gerbeaux (2004), there are 9 wetland classes that are recognised. 
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Both wetlands in this study have standing water in them most of the time which 

indicates that they are partially shallow water wetlands (details in chapter 2). For 

wetland areas not always covered by water, water regime, nutrient level, and pH are 

the factors that determine which class the wetland belongs to.  

Table 6.1.1 summarises the hydrology and nutrient status of the wetlands in this 

study. Overall, Matthews Lagoon has a more variable water regime and higher 

nutrient level than Boggy Pond. Because Matthews Lagoon has a more complicated 

hydrological system, changes in water level in these two wetlands were not always 

similar, and the fluctuations were much greater in Matthews Lagoon than in Boggy 

Pond (figure 5.2.12). As for nutrient level, although results from YSI handheld meters 

were much higher than lab tests (this issue has been discussed in chapter 5), they 

can still be used as references when comparing the water quality between the 

wetlands. Based on the lab tests on nitrate and ammonia and field test on 

phosphate, water in Matthews Lagoon falls into mesotrophic to hypertrophic in the 

trophic category, while Boggy Pond falls into the oligotrophic to mesotrophic 

category (table 2.3). Once the water quality and water regimes are clear, it is easy to 

classify these wetlands. Matthews Lagoon, with high levels of water level fluctuation 

and high trophic status, is classified as a marsh (details in chapter 2). Boggy Pond, 

with relatively stable water level and better water quality, belongs to the wetland 

class of swamps (details in chapter 2).   
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Table 6.1.1 Comparison between Matthews Lagoon and Boggy Pond in water regime 

and nutrient level. Average nutrient concentration was calculated from 5 

measurements between July 2013 and November 2013 by C. Shi using a YSI 

handheld meter and photometric field test kit. Lab test samples were collected 5 

times by GWRC between September 2012 and July 2013. Trophic category is adopted 

from Thompson (2012), see details in table 2.3. 

 Matthew Lagoon  Boggy Pond 

Inflows  Rainfall, groundwater, and 

surface flow (pump station) 

Rainfall  

Outflows Evapotranspiration, 

groundwater, and surface 

flow (outlet) 

Evapotranspiration and 

groundwater 

Average 

nitrate 

concentration 

5.88 mg/l (C. Shi) 

0.79 mg/l (GWRC) 

4.17 mg/l (C. Shi) 

Average 

ammonia 

concentration 

0.99 mg/l (C. Shi) 

0.16 mg/l (GWRC) 

0.89 mg/l (C. Shi) 

Phosphate 

concentration 

0.35 mg/l (C. Shi) 0.05 mg/l (C. Shi) 

Trophic state Mesotrophic to hypertrophic Oligotrophic to mesotrophic 

 

Now that the classifications of both wetlands are known, it will be easier and more 

accurate to describe them in a way that different groups of audiences all understand. 

For example, Matthews Lagoon can be described as: 

A combination of riverine and palustrine hydrosystem originally developed from 

lacustrine on the eastern shore of Lake Wairarapa. It is now a marsh and shallow 
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water wetland complex with pump controlled inlet and floodgate controlled outlet. 

Emergent raupo (Typha orientalis), submerged aquatic weed hornwort 

(Ceratophyllum demersum), and willows (Salix cinerea) are commonly present in this 

wetland. 

While Boggy Pond can be described as: 

A combination of shallow water and swamp in a palustrine hydrosystem, which was 

separated from Lake Wairarapa by Parera Road. The water input is mainly rainfall. 

Rare turf plants and various bird species were found here in the 1980’s (Ogle, 1989), 

but Raupo (Typha orientalis), hornwart (Ceratophyllum demersum), and willows 

(Salix cinerea) have become more abundant. 

Knowing the classification of wetland types not only helps describe the wetlands 

more accurately, but also provides guidance with restoration actions (Clarkson and 

Peters, 2010). Clearly, Boggy Pond is cleaner and more isolated. Matthews Lagoon, 

on the other hand, is high in nutrients and invasive plants. Therefore, restoration 

goals for Boggy Pond should focus on prevention of further degradation and 

restoration of biodiversity, while Matthews Lagoon should focus on prevention of 

spreading of the weed plants and improving the nutrient removal ability. 

This is the first attempt to officially classify and systematically describe these two 

wetlands. There are many other factors, such as soil type, substrate, vegetation, and 

landform (Johnson and Gerbeaux, 2004), that need to be taken into consideration 

when doing so. However, due to the scope of this study and restriction of resources, 

only nutrient levels and water regimes are considered. Although this attempt may 

not cover all aspects of these two wetlands, it should be able to start filling the 

knowledge gaps of this area.  
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6.2. Hydrological regime  
6.2.1. Overall characteristics  

One noticeable fact is that groundwater flows are not significant water inputs or 

outputs in these two wetlands when compared to other water balance components. 

In general, groundwater outflow is small due to the topographic setting of wetlands, 

usually in low-laying areas, and in the permeability of bottom layers (Campbell & 

Jackson, 2004). Groundwater inflow, however, varies depending on the type of 

wetland. As mentioned in chapter 3, water level in Lake Wairarapa is controlled by 

flood gates. This controlled hydrologic regime of Lake Wairarapa could have 

significant influences on the hydrological condition of the region. First, the lake is 

able to act like a buffer to offset the fluctuations in water table. The lake becomes 

source or sink of groundwater when the water table is low or high. Second, the 

controlled lake level can also influence surface flows that connect to the lake. Since 

the outlet of Matthews Lagoon joins the floodway which eventually goes to the lake, 

if the water level in the lake is higher than at the outlet, then the surface flow from 

Matthews Lagoon to the lake will stop. This is probably part of the reason that 

outflow from Matthews Lagoon only happens from July to January. 

Another noticeable fact is that the difference between annual total inflow and 

outflow in Boggy Pond indicates an unidentified water input. Total water inputs 

minus outputs in Boggy Pond between January 2013 and January 2014 was -403mm. 

Wetland volume should be significantly smaller in 2014 than 2013 according to this 

calculation. However, the water level remained almost the same, which indicates 

little change in volume. Two water sources could explain this extra water input to 

Boggy Pond. First, there may be surface water flowing into Boggy Pond through the 

sealed outlet and control gate (figure 3.2.3). Matthews Lagoon and Oporua floodway 

are most likely the water sources. Second, groundwater may flow into the wetland. 

Lake level and the water table on the eastern shore of Lake Wairarapa could be 

temporarily raised by the strong wind that is common in this region (Perrie and 

Milne, 2012). Another possible explanation is that the evapotranspiration used in the 

water balance calculation might be overestimated. As mentioned in the previous 

chapter, AET usually accounts for 50-90% of PET, which means the AET could be 
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about 100-700mm lower than what was used in the balance calculation. This is 

normal because potential evapotranspiration is calculated based on meteorological 

data with various assumptions and actual evapotranspiration could be influenced by 

cloud cover, so actual evapotranspiration is always less than potential 

evapotranspiration. To find out whether this unbalanced water input and output is 

caused by leakage or just due to errors in the calculation requires further 

investigation with more accurate data on net radiation of the study area.  

In Matthews Lagoon, the discharge from the pump station showed quick and strong 

response to rainfall events from autumn to spring when soils were saturated or 

nearly saturated with water (figure 5.2.2). In winter, the initial response to rainfall 

events on the water inflow peaked about 2 days after the rainfall event and lasted 

for about 10 days. In other words, within two weeks, rainfall that falls on the 

farmlands that are within the Te Hopai drainage scheme will get to the pump station 

through various pathways. In summer, because the soil was dry, the pump station 

didn’t respond to rainfall events as quickly as in winter, even when the rainfall event 

was large (figure 5.2.2). As introduced in chapter 3, the Te Hopai pump station 

services 1,003 ha farmlands near the site. Between March 20th 2013 and January 20th 

2014, total rainfall was 9,663,905 cubic meters, meanwhile pump discharge to 

Matthews Lagoon was about 5,513,608 cubic meters, which means 57% of the 

rainfall was pumped to Matthews Lagoon from the catchment which is over twice 

the volume of water in Matthews Lagoon itself. 

This water regime of the Te Hopai drainage scheme leads to two effects on the water 

and nutrient environment in Matthews Lagoon. First, inflow from the pump station 

shows seasonal patterns. As shown in figure 5.2.2, little water was pumped during 

the summer while in winter water was pumped after 2 to 14 days of each rainfall. 

Therefore, in summer, the Te Hopai drainage scheme decreases pumping water into 

Matthews Lagoon, while in winter the amount of water being pumped to the 

wetland is significant. The second impact from this kind of pulse-like water inflow is 

that the “first flush” after the first heavy rainfall after summer could contain high 

concentration of nutrients. Nutrients from fertiliser and manure from the farmlands 

within the Te Hopai drainage scheme could potentially be stored and concentrated 
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in the soil over summer. Heavy rainfall in early Winter will flush out these nutrients 

all at once. Although the nitrate and total phosphorus tests by GWRC in January and 

April 2013 support this theory (appendix E), more detailed long-term water quality 

monitoring is required. In the 2013/2014 summer, continuous short-term water 

quality monitoring for about two weeks at the inlet helped to show the impact on 

water quality from the drainage. Nitrate was tested by a YSI handheld meter at the 

Te Hopai pump station from December 28th 2013 to January 15th 2014 (figure 5.3.5). 

During the same period, Te Hopai pump station ran for 5.14 hours. The nitrate 

concentration fluctuations were most likely the result from the pumping. Although in 

summer the pump station was not as active as in winter, there were still noticeable 

nitrate peaks flowed by pumping. 

Since one of Matthews Lagoon’s ecological services is to purify the water from Te 

Hopai drainage scheme before it gets to Lake Wairarapa, the ideal water regime 

should be steady and stable in Matthews Lagoon so it allows the nutrients to be 

removed through chemical reactions and physical processes. However, according to 

the monitoring results, the water inflow from Te Hopai pump station poses 

challenges for this water purification function of Matthews Lagoon. For one, the 

fluctuations in the amount of inflow separate the wetland into two functional states, 

long residence time state and short residence time state, which will be further 

discussed in the next section. Second, water with high nutrient loading rates goes 

into Matthews Lagoon in a relatively short amount of time, which is not an ideal 

situation for nutrient removal. 

6.2.2. Water level and residence time 

Changes in water level reflect the relationship of all water inputs and outputs over a 

certain period of time. In this study, water level in Matthews Lagoon decreased, 

while in Boggy Pond, water level increased. As mentioned earlier, there might be 

other water inputs to Boggy Pond according to the water balance. This could explain 

the more stable water level in Boggy Pond than in 1980’s. According to Ogle (1989), 

Boggy Pond experienced dramatic water level fluctuations between summer and 
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winter. Therefore, to restore the natural water fluctuation is important for native 

plants to regenerate.  

Since inputs from rainfall and output from evapotranspiration were similar in the 

two wetlands, having surface inflow and outflow in Matthews Lagoon really made a 

difference in its hydrologic regime. The surface flow not only made a difference on 

the overall water level, but also influenced the residence time of water in Matthews 

Lagoon. As stated in chapter 5, discharge from Matthews Lagoon happens only from 

July to December. Consequently, the residence times of water in these months were 

relatively short (table 5.2.4). However, under scenario 1, even in winter when 

residence time is supposed be low, water still stayed in Matthews Lagoon for at least 

12 days before it was discharged. Under scenario 2, water residence time was as low 

as 1.8 days in winter because water is potentially bypassing the main open water 

part in Matthews Lagoon (figure 5.2.15. b). This result from scenarios 2 could also 

explain the poor nutrient removal rate in the winter. As mentioned in chapter 2, in 

order to improve water quality, a residence time of 4 days is the minimum 

requirement.   

Based on the fact that the water level at the outlet is higher than in the middle of the 

wetland in Matthews Lagoon (figure 5.2.1), the connectivity between the middle 

point and outlet in Matthews Lagoon is probably poor. Water bypasses the middle 

point and most likely move along the stopbank from the inlet to outlet. However, a 

tracer study on water movement within Matthews Lagoon would be necessary in the 

future.  

6.3. Nutrient characteristics 
6.3.1. Nutrient removal in Matthews Lagoon 

As mentioned earlier, one of Matthews Lagoon’s ecological services is to purify 

water from Te Hopai drainage scheme before it goes into Lake Wairarapa. Looking at 

the nutrient levels at the inlet and outlet only, in July 2013, Matthews Lagoon 

showed significant removal of nitrate, nitrite, and ammonia, with removal rates of 

62.5%, 60.1%, and 42.8%, respectively (table 5.3.1). This indicates the denitrification 

process and volatilisation process actively transforms nitrate, nitrite, and ammonia 
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into nitrogen gas that is being released from the wetland (details in chapter 4). 

However, the total nitrogen removal rate was only 17% (table 5.3.1). This is because 

Matthews Lagoon has become a source of the organic nitrogen (organic nitrogen and 

ammonia nitrogen compose TKN) in the outflow. Organic nitrogen is rich in living 

organism, humus or in the intermediate products of organic matter decomposition 

(Yu, 2012). In Matthews Lagoon, dead leaf litter and dead water birds could possibly 

be the main source of organic nitrogen. The removal of organic nitrogen is through 

ammonification when microbes convert organic nitrogen into ammonium or through 

sedimentation when the organic nitrogen is buried by new sediments and exit 

nitrogen cycle (Lee, Fletcher, & Sun, 2009). The ammonification process could 

facilitate secondary pollution as its products, ammonia and buried organic nitrogen, 

can still be washed out if conditions are right. Note that this analysis is based on two 

water quality tests, once in winter and once in summer, and some assumptions. 

Although it shows some patterns in water quality in Matthews Lagoon, it should be 

treated as an isolated example other than general fact. In order to draw a more 

convincing conclusion to assist the future restoration project, long-term water 

quality monitoring is necessary. 

The long term nitrate monitoring at inlet and outlet of Matthews Lagoon in the 

summer (figure 5.3.3) showed an average removal rate (𝑖𝑛−𝑜𝑢𝑡
𝑖𝑛

∗ 100) of 20% of 

nitrate nitrogen. However, this removal rate is calculated based on assuming water 

inflow and outflow are at the same rate, which is probably unrealistic. However, 

there are no data available on the water flow under summer conditions. Another 

problem with measuring water quality in the summer is that the result could be 

affected by the “dilution” effect at inlet and the “accumulation” effect at outlet 

depending on the availability of water. There was not significant rainfall since 

December 2013 in the study area. As a result, less pollutant was discharged from 

surrounding farms to the pump station and the pump station worked less frequently. 

This allowed the “dilution” effect to happen at inlet while water naturally flowed 

towards outlet. At the same time, there was hardly any measurable water flow at 

outlet since the long term monitoring started. Pollutants from inlet and entire 

wetland tended to accumulate at outlet. 
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Although the result from water quality tests suggested good overall nitrogen 

removal in Matthews Lagoon, the wetland does not seem to reduce phosphorus 

levels from the water. As mentioned in chapter 4, phosphorus removal is mainly 

through plant uptake, adsorption, and sedimentation, and all these removal 

mechanisms are reversible and have limited removal capacity. Since Matthews 

Lagoon has been used to purify water since the 80’s, the capacity for phosphorus 

removal through adsorption may be saturated. Water flow in July was relatively high, 

hence phosphorus sedimentation is reduced. In the winter, when plant growth slows 

down and old leaves die off, phosphorus uptake by plants is outcompeted by 

phosphorus’s release back to the water from decomposition. This is probably the 

reason for the increased phosphorus level in outlet in July in Matthews Lagoon. 

When looking at the nitrate and ammonium levels at three monitoring stations in 

Matthews Lagoon, poor connectivity between the outlet and the middle point can be 

identified due to the nutrient level was much higher at inlet and outlet but much 

lower in the middle. This pattern can be observed in both measurement methods. 

Again, this difference in water quality indicates that the water may bypass the 

middle part of Matthews Lagoon. 

6.3.2. Seasonal patterns 

In the summer of 2012, TKN and TP were lower in outlet than inlet (table 5.3.2). This 

is because in summer, under low water flow condition, the up-taking effect by the 

plants is greater and there is less chance for leaching from sediments, resulting in 

lower TKN and phosphorus in outflow. However, TP removal rate was still very low, 

which indicates the saturation of phosphorus in Matthews Lagoon. Another 

interesting phenomenon is that inorganic nitrogen (nitrate and nitrite) level is high in 

the winter but low in the summer, where Kjeldahl nitrogen (organic nitrogen and 

ammonia) level is opposite (table 5.3.1 and 5.3.2). Correspondingly, removal 

efficiency for inorganic nitrogen is greater in winter while removal of Kjeldahl 

nitrogen peaks in summer. It seems that the chemical environment in summer and 

winter favours a different pollutant removal mechanism. This is probably because 
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the temperature and dissolved oxygen in winter and summer favours different 

groups of microorganisms.   

6.3.3. Limitations 

As mentioned in the previous chapter, undesired ions could interfere with ion-

selective electrode of the YSI handheld meter. Chloride is the most possible 

interference in this study site because animal waste and fertiliser from dairy farms 

could potentially contain high levels of chloride that influences the result of a nitrate 

test. However, there is no test to backup this theory in this study which could be a 

challenge in future projects. 

Some other factors that could possibly influence the water quality test by YSI meter 

are that the ion-selective electrode probe is not properly maintained or readings are 

taken before equilibrium. Ion-selective electrode probe are fragile and requires high 

levels of maintenance according to the manual, which includes calibration before 

each test, probe rinse with clean water between samples, moist storage condition, 

and clean by moist lens paper when required. Due to the limitation of time and 

resource of this study and in the school, such high quality of maintenance was not 

always possible. The fact that the meter was shared among several projects makes 

the maintenance even more important to obtain a reliable result. During regular 

tests, it is found that the meter takes a long time (sometimes over 30 minutes) to 

stabilise so the reading can be taken, however most of the readings were taken 

within 10 minutes due to transportation arrangement and coordination with other 

projects.  

6.4. Management suggestions 

Ecological restoration project requires proper goals to set overall visions, guide 

restoration actions, and measure achievement as the project goes on (Ehrenfeld, 

2000).  The goal can be made based on species, ecosystem functions, or ecosystem 

services of a target area (Ehrenfeld, 2000).  For wetland management, since the 

ecosystem services provided by wetlands are valued by human beings, restoration 

goals are usually set to recover or replace these service that are damaged by 

economic development and agricultural activities. For Matthews Lagoon, the main 
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goal is to purify water from Te Hopai drainage scheme before it gets to Lake 

Wairarapa. Boggy Pond, on the other hand, its biodiversity and habitat value is 

important for plants, birds, and the fish community, therefore restoration goals for 

Boggy Pond should focus on maintaining or recovering biodiversity.  

To achieve these goals, restoration actions should be made based on information 

and resources that are available. From what has been found in this study, several 

potential restoration actions may be applied to the wetlands in order to achieve 

these goals (table 6.4).  

Table 6.4 Restoration goals, main issues and proposal actions in Boggy Pond and 

Matthews Lagoon. 

Wetlands Matthews Lagoon Boggy Pond 

Goals Achieve better results in nutrient 

removal from the water 

Recover the habitat and diversity 

of plants, birds, and fish 

communities 

Identified 

issues in 

this study 

1. Inflow is high in winter but low in 

summer 

2. Nutrient concentration in inflow 

varies 

3. Surface flow bypass may exist in 

the wetland 

4. Secondary pollution from dead 

leaf litter or animals in the water 

5. Saturated phosphorus removal 

ability 

1. More stabled water level 

2. Potential unknown water input 

 

Actions 1. Make the inflow more steady in 

both quantity and quality 

2. Identify the bypass and reduce 

the impact from bypass 

3. Harvest plants at the end of 

growth season 

4. Remove old sediments 

1. Control the pond weed 

2. Predator control around the 

wetland (already started since 

July 2013) 

3. Restore the water level 

fluctuations 
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These actions are just principles that could theoretically help to achieve the goals, 

among which some are more feasible than others. In general, there are three levels 

of feasibility in these actions.  

In the first level, the actions require little support from experts and limited resource. 

They are relatively easy to operate, for example, plants harvesting and sediments 

removal only require human or machine powers to cut the leaves off and dig dirt up. 

Potential problems could rise from the timing of harvesting and treatment of the 

leaves and sediments. If the leaves are harvested during the growth season 

(summer), the nutrient uptake effect by plants will be suppressed (Uusi-Kamppa, 

Braskerud, Jansson, Syverson, & Uusitalo, 2000). The leaves and sediment should be 

removed from the wetland completely or they could cause secondary pollution.   

In the second level, technical support from experts will be required such as using 

trace study to identify the bypass in Matthews Lagoon and predator eradication in 

Boggy Pond. From the result of this study, a bypass might exist in Matthews Lagoon 

which leads to low nutrient removal rate. Tracer studies in winter and summer will 

help understanding the water pathways in Matthews Lagoon under different flow 

rate. Predator control in Boggy Pond will assist the recovery of the number of rare 

water birds. Traps have been put along the stopbank between Matthews Lagoon and 

Boggy Pond since July 2013 and they have been proved to be effective. Although 

these actions require intense monitoring or ongoing maintenance and they are more 

complicated than plants harvesting and sediment removal, they are worth to invest 

resources into because the long term benefits that they can provide are significant.  

The third level actions involve with hydrology manipulations therefore are more 

difficult to operate. Once the bypass is identified, by creating structures that 

obstruct water through the bypass will help spread water across entire wetland and 

increase the water retention time in Matthews Lagoon, which in turn will improve 

the nutrient removal rate. In order to stabilise water flow and water quality from Te 

Hopai drainage scheme, water storage facilities at inlet, such as first flush retention 

ponds or buffer zones (Uusi-Kamppa, et al., 2000), will be able to regulate water 

between winter and summer. In winter when inflow is high, water can be stored 
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temporarily in these facilities so it can be released later in summer when inflow is 

low. These storage facilities can also reduce the impact from “nutrient pulses” 

caused by highly concentrated nutrient run off from the first rainfall events (as 

known as first flush). Because these facilities act like huge mixing tanks where water 

can mix, so those “nutrient pulses” can be diluted. This kind of facility does not cost 

too much to build and requires low maintenance. However, since the total annual 

inflow of Matthews Lagoon is about 5.6 million cubic meters, the volume of the 

storage needs to be reasonably big (about 2.8 million cubic meters) to actively 

regulate water flow between high and low flow conditions.    

  



105 
 

7. Summary and Conclusion 

Wetland degradation is severe in New Zealand. Because wetlands were once 

considered “waste lands”, over 90% of the wetlands have been destroyed or 

modified for other purposes. Wetland restoration and protection is gaining more and 

more attention in New Zealand and around the world.  Matthews Lagoon and Boggy 

Pond have high restoration priorities because their ecosystem services are valuable 

and critical. There are different groups of people who are interested in developing 

restoration projects around these two wetlands and the surrounding areas. Although 

these different groups of people have slightly different objectives, there is an 

opportunity to develop a plan that could address all these different perspectives. The 

first step in developing a restoration plan is to gather information, which was what 

this study has done. Some findings from this study are able to fill the knowledge gaps 

on the hydrological and chemical characteristic of the wetlands on the eastern shore 

of Lake Wairarapa and could potentially contribute to the management of the 

wetlands in the future.  

Some key conclusions on the hydrology and nutrient environment of the wetlands 

can be drawn from the results of this study. First, Matthews Lagoon and Boggy Pond 

have completely different water regimes, therefore require different management 

approaches. Second, Boggy Pond had better water quality than Matthews Lagoon in 

general. Third, Matthews Lagoon was an efficient sink to nitrate and ammonia but 

was a source to organic nitrogen and phosphorus. Some major issues that might 

restrict the nutrient removal rate were also identified. Issues like variable nutrient 

load in the water from the pump station, short-circuiting bypass in the wetland, and 

secondary pollution caused by old and saturated sediments were most likely the 

reasons. 

Because of these differences in hydrological and chemical characteristics, Matthews 

Lagoon and Boggy Pond should have completely different goals and corresponding 

actions in restoration. Matthews Lagoon requires treatment to improve the nutrient 

removal efficiency because this is its primary function and important for the health 

of Lake Wairarapa. As mentioned in previous chapters, there are many potential 
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ways to improve the capability of nutrient retention in Matthews Lagoon. Boggy 

Pond, on the other hand, should be protected from further degradation. It has 

higher values for wild life and native plants. Restoring its natural water level 

fluctuation is important. 

In conclusion, as many ecologists have pointed out, wetland restoration projects 

usually have to address many aspects of the wetlands: hydrological functions, 

landscape aesthetics, cultural and spiritual values, habitat for native floras and 

faunas, and nutrient cycles. The scale of this study may not be able to address all 

these aspects, but this may be a start to draw more attention and research on the 

wetlands near Lake Wairarapa. Piece by piece, the knowledge gaps will be filled by 

many different groups of people and will better assist the decision makers. 
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Appendices 

Appendix A. Classification system for New Zealand wetlands 
Source: Johnson & Gerbeaux, 2004. pp. 15 

Level 1  Hydrosystem  
(Based on board hydrological and landform setting, salinity, temperature) 

 Marine, Estuarine, Riverine, Lacustrine, Palustrine, Inland saline, Plutonic, 
Geothermal, Nival 

Level 1A Subsystem 
(A description level relating to water regime) 

Level 2 Wetland class 
(Based on substrate, water regime, nutrients, pH) 

 Bog, Fen, Swamp, Marsh, Seepage, Shallow water, Ephemeral wetland, Pakihi 
and gumland, Saltmarsh 

Level 2A Wetland form 
• Landforms which wetlands occupy (e.g. slope, basin) 
• Forms which wetlands create (e.g. domed bog, string fen) 
• Forms or Features which wetlands contain (e.g. pool, rand) 

Level 3 Structural class 
• Structure of the vegetation (e.g. forest, rushland, herbfield) 
• Predominant ground surface (e.g. rockfield, mudflat)  

Level 4 Composition of vegetation  
(One or more dominant plants) 
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Appendix B. Different terms for wetlands used in the world 
Source: Mitsch and Gosselink, 2011. 

Billabong Australian term for a riparian wetland that is periodically flooded by 
adjacent stream on river. 

Bog A peat-accumulating wetland that has no significant inflow or outflows 
and support acidophilic mosses, particularly Sphagnum. 

Bottomland Lowland along streams and rivers, usually on alluvial floodplains, that is 
periodically flooded. When forested, it is a bottomland hardwood 
forest in the south eastern and eastern United States.  

Carr Term used in Europe for forested wetlands characterized by alders 
(Alnus) and willows (Salix).  

Dambo A seasonally waterlogged and grass-covered linear depression in 
headwater zone of rivers with no marked stream channel or woodland 
vegetation. 

Delta A wetland-river-upland complex located where a river forms 
distributaries as it merges with the sea; there are also examples of 
inland deltas such as the Peace-Athabasca Delta in Canada and the 
Okavango Delta in Botswana. 

Fen A peat-accumulating wetland that receives some drainage from 
surrounding mineral soil and usually supports marsh like vegetation. 

Lagoon Term frequently used in Europe to denote a deepwater enclosed or 
partially opened aquatic system, especially in coastal delta regions. 

Mangal Same as mangrove. 
Mangrove Subtropical and tropical coastal ecosystem dominated by halophytic 

trees, shrubs, and other plants growing in brackish to saline tidal 
waters. The word “mangrove” also refers to the dozens of tree and 
shrub species that dominate mangrove wetlands. 

Marsh A frequently or continually inundated wetland characterized by 
emergent herbaceous vegetation adapted to saturated soil conditions. 
In Europe terminology, a marsh has a mineral sol substrate and does 
not accumulate peat. 

Mire Synonymous with any peat-accumulating wetland (European 
definition); from the Norse word “myrr”. The Danish and Swedish word 
for peatland is now “mose”. 

Moor Synonymous with peatland (European definition). A highmoor is a 
raised bog; a lowmoor is a peatland in a basin or depression that is not 
elevated above its perimeter. The primitive sense of the Old Norse root 
is “dead” or barren land. 

Muskeg Large expanse of peatlands or bogs; particularly used in Canada and 
Alaska. 

Oxbow A bandoned river channel, often developing into a swamp or marsh. 
Pakihi Peatland in southwestern New Zealand dominated by sedges, rushes, 

fens, and scattered shrubs. Most pakihi form on terraces or plains of 
glacial or fluvial outwash origin and are acid and exceedingly infertile. 

Peatland A generic term of any wetland that accumulates partially decayed plant 
matter (peat). 

Playa An arid- to semiarid wetland that has distinct wet and dry seasons. 
Term used in the southwest United States for shallow deoressional 
recharge wetlands occurring in the Great Plains region of North 
America.  
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Pocosin Peat-accumulating, nonriparian freshwater wetland, generally 
dominated by evergreen shrubs and trees and found on the 
southeastern coastal plain of the United states.  

Pothole Shallow marshlike pond, particularly as found in the Dakotas and 
central Canadian provinces, the so-called prairie pothole region. 

Raupo swamp Carrail (Typha) mash in New Zealand. 
Reedmace 

swamp 
Carrail (Typha) mash in the UK. 

Reedswamp Marsh dominated by Phragmites (common reed); term used 
particularly in Europe. 

Riparian 
ecosystem 

Ecosystem with a high water table because of proximity to an aquatic 
ecosystem, usually a stream or river. Also called bottomland hardwood 
forest, floodplain dorest, bosque, riparian buffer, and streamside 
vegetation strip. 

Salt marsh A halophytic grassland on alluvial sediments bordering saline water 
bodies where water level fluctuates either tidally or nontidally.  

Sedge 
meadow 

Very shallow wetland dominated by several species of sedges. 

Slough An elongated swamp or shallow lake system, often adjacent to a river 
or stream. A slowly flowing shallow swamp or marsh in the 
southeastern United States.  

Swamp Wetland dominated by tree or shrubs (U.S. definition). In Europe, 
forested fens and wetlands dominated by reed grass (Phragmites) are 
also called swamps. 

Tidal 
freshwater 

marsh 

Marsh along rivers and estuaries close enough to the coastline to 
experience significant tides by nonsaline water. Vegetation is often 
similar to nontidal freshwater marshes. 

Turlough Areas seasonally flooded by karst groundwater with sufficient 
frequency and duration to produce wetland characteristics. They 
generally flood in winter and are dry in summer and fill and empty 
through underground passages. Term is specific for these types of 
wetlands found mostly in western Ireland. 

Vernal pool Shallow, intermittently flooded wet meadow, generally typical of 
Mediterranean climate with dry season for most if the summer and fall. 
Term is now used to indicate wetlands temporarily flooded in the spring 
throughout the United States. 

Vleis Seasonal wetland similar to a Dambo; term used in southern Africa. 
Wad Unvegetated tidal flat originally referring to the northern Netherlands 

and northwestern German coastline. Now used throughout the world 
for coastal areas. 

Wet meadow Grassland with waterlogged soil near the surface but without standing 
water for most of the year. 

Wet prairie Similar to a marsh, but with water levels usually intermediate between 
a marsh and a wet meadow. 
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Appendix C. Methods to calculate evaporation, evapotranspiration, and potential evapotranspiration 

Methods Theoretical 
explanation 

Equation Applicability Advantage Disadvantage 

Mass transfer 
equation 

Evaporation rate 
depends on the 
humidity in the air 
and the wind speed. 

𝐸 = (1.26 × 10−4)𝑣𝑎(𝑒𝑠 − 𝑒𝑎) 
where: E=evaporation rate (cm/day), 𝑣𝑎=wind 
speed at 2 meters above water surface(cm/s), 
𝑒𝑠=saturated vapour pressure (mb), 𝑒𝑎=actual 
vapour pressure (mb). 

Open water 
evaporation rate 

The data is 
easy to be 
collected or 
calculated.  

Average pressure 
and wind speed 
data could bring 
errors to the 
result. 

Water balance 
equation 

Solving the water 
balance equation for 
evaporation. 

𝐸 = 𝑄𝑖𝑛 + 𝑅 + 𝐺𝑖𝑛 − 𝑄𝑜𝑢𝑡 − 𝐺𝑜𝑢𝑡 − 𝑑𝑆 
where: R = precipitation (mm), 𝑄𝑖𝑛/𝑄𝑜𝑢𝑡 = 
surface flows into/out of the wetland (mm), 
𝐺𝑖𝑛/𝐺𝑜𝑢𝑡 = groundwater inflow/outflow 
(mm), dS = changes in the wetland volume 
(mm) 
 

Open water 
evaporation rate 

NA Difficult to 
measure all the 
terms on the right 
side of equation. 

Energy balance 
equation 

Solving the energy 
balance equation for 
evaporation. 

𝐸 =
𝐾 + 𝐿 − 𝐺 − 𝐻 + 𝐴𝑤 − ∆𝑄/∆𝑡

𝜌𝑊𝜆𝑉
 

where: K=shortwave radiation input, L=long-
wave radiation input, G=output by conduction 
to the ground, H=output of sensible heat 
exchange with atmosphere, 𝐴𝑤=input from 
inflows and outflows of water, ∆𝑄=changes in 
the amount of heat storage during ∆𝑡, 
𝜌𝑊=water density, 𝜆𝑉=latent heat of 
vaporization. 

Open water 
evaporation rate 

This method 
can provide 
reliable 
result if 
applied to 
period 
longer than 
7 days 

Difficult to 
measure all the 
terms on the right 
side of equation. 

Temperature-
based 
empirical 
methods 

Only using air 
temperature and 
day length to 
calculate PET 

𝑃𝐸𝑇𝐻 = 0.00138𝐷[𝜌𝑣𝑠𝑎𝑡(𝑇𝑎)] 

𝑃𝐸𝑇𝑀 = 0.409[𝑒𝑠𝑎𝑡(𝑇𝑎)] 

where:  𝑃𝐸𝑇𝐻= daily potential 
evapotranspiration rate, D=day length, 
𝜌𝑣𝑠𝑎𝑡(𝑇𝑎)=saturation humidity at mean daily 
temperature. Or, 

where, 𝑃𝐸𝑇𝑀=monthly  potential 

PET Easy to use 
and 
measure 

Result can be 
smaller than 
those calculated 
in other ways 
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evapotranspiration rate, 𝑒𝑠𝑎𝑡(𝑇𝑎)=saturation 
pressure at the mean monthly air 
temperature.  

Radiation-
based method 

Using net radiation 
and  air temperature 
to calculate PET 

𝑃𝐸𝑇𝑃𝑇 =
1.26[𝑠(𝑇𝑎)](𝐾 + 𝐿)
𝜌𝑊𝜆𝑉[𝑠(𝑇𝑎) + 𝛾]

 

where: 𝑠(𝑇𝑎)=saturation vapour pressure at 
air temperature, K=shortwave radiation input, 
L=long-wave radiation input, 𝜌𝑊=water 
density, 𝜆𝑉=latent heat of 
vaporization, 𝛾=psychrometric constant. 

PET  Underestimation 
when evaporation 
rate is greater 
than 0.4cm/day. 

Penman-
Monteith 
equation  

Combining mass 
transfer and energy 
balance approaches 
together with 
canopy conductance  

𝑃𝐸𝑇 =
𝑆(𝑇𝑎)(𝐾 + 𝐿) + 𝛾𝜌𝑎𝑐𝑎𝐶𝑎𝑡[𝑒𝑠𝑎𝑡(𝑇𝑎)](1−𝑊𝑎)

𝜌𝑤𝜆𝑉{𝑠(𝑇𝑎) + 𝛾[1 + 𝐶𝑎𝑡
𝐶𝑐𝑎𝑛

]}
 

where: 𝜌𝑎=air density, 𝑐𝑎=heat capacity of air (usually 0.24), 
𝑊𝑎=relative humidity, 𝐶𝑎𝑡=atmospheric conductance, 
𝐶𝑐𝑎𝑛=canopy conductance,  𝑆(𝑇𝑎),  𝐾,  𝐿,  𝛾, 𝑒𝑠𝑎𝑡(𝑇𝑎), 𝜌𝑤, and 𝜆𝑉 
are the same as in the radiation-based equation. 

Addresses 
vegetation, 
provide the 
best 
estimation 
of PET  

Complex 

 

Pan-
evaporation 
method 

Solving the water 
balance equation in 
a pan which is filled 
with water and 
exposed to the 
atmosphere.  

𝐸𝑓𝑤 = 0.7[𝐸𝑝𝑎𝑛
± 0.00061𝛼𝑝𝑎𝑛�0.37
+ 0.00255𝑣𝑝𝑎𝑛)�𝑇𝑝𝑎𝑛
− 𝑇𝑎|0.88] 

 
where: 𝐸𝑓𝑤 and 𝐸𝑝𝑎𝑛=daily free-water and 
pan evaporation respectively, 
𝛼𝑝𝑎𝑛=proportion of energy exchanged 
through the side of the pan, 𝑣𝑝𝑎𝑛=average 
wind speed 15 cm above the pan, 𝑇𝑝𝑎𝑛 and 
𝑇𝑎=water surface temperature and air 
temperature respectively. 

PET ( For short 
vegetation, PET 
is very similar to 
free-water 
evaporation) 

Direct 
approach to 
measure 
PET. Easy to 
use and 
cheap to 
maintain.  

Heating effect 
from pan and 
cannot apply to 
larger area don’t 
address plant 
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Lysimeter An enclosed block of 
soil with monitored 
inflow, outflow and 
storage. 

NA AET Provides the 
best 
estimation 
of AET. 
Transpiratio
n from 
vegetation 
can also be 
addressed.  

Expensive to 
install and 
maintain.  
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Appendix D. Calculation procedures of Penman-Monteith equation 
Basic 
parameters 

 

𝑇 (°C) 𝑇 = 𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛
2

  Mean air temperature of each day is used in the calculation 

u2 (m/s) u2 = u2.5
4.87

ln (67.8∗2.5−5.42)
  Converting wind speed at 2.5 metres to 2 metres 

e(T) (kPa) e(T) = 0.6108exp (17.27T
T+237

) Saturation vapour pressure at the air temperature T 

Rs (MJ m-2 day-1) Measured solar radiation  α  Albedo of water surface (0.1) 

Rns (MJ m-2 day-1) Net shortwave radiation, 
Rns = (1 − α)Rs  

Rso (MJ m-2 day-1) Clear-sky solar radiation, Rso = (0.75 + 2 ∗ 10−5z)Ra 
where z is station elevation above sea level 

Ra (MJ m-2 day-1) Extraterrestrial radiation, 

Ra = 24∗60
π

0.082 �1 + 0.033 cos � 2π
365

J�� [ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ωs)] where J is the 

number of the day in the year, ωs is sunset hour angle = arccos [− tan(φ) tan(δ)], φ is latitude, δ is solar 

decimation = 0.409sin ( 2π
365

J − 1.39) 

Rnl (MJ m-2 day-1) Net longwave radiation, Rnl = 4.903 ∗ 10−9 �TmaxK
4 +TminK

4

2
� �0.34 − 0.14�ea�(1.35 Rs

Rso
− 0.35) where 

TmaxK = Tmax + 237, TminK = Tmin + 237, ea is actual vapour pressure 

Equation 
components 

∆ (kPa °C −1) 
∆=

4098[0.6108exp�17.27T
T+237�]

(T+237)2
  

Rn (MJ m-2 day-1) Rn = Rns − Rnl  

es (kPa) es = e(Tmax)+e(Tmin)
2

  ea (kPa) ea = e(Tmin)RHmax+e(Tmax)RHmin
200

 where RH is relative 

humidity 
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𝜌𝑎𝑐𝑝 (MJ m-3 °C −1) 𝜌𝑎𝑐𝑝 = 𝛾𝜀𝜆
1.01(𝑇+237)𝑅

 where 𝛾 is the psychrometric constant, 𝜀 is ratio molecular weight of water 

vapour/dry air = 0.622, 𝜆 is latent heat of vaporization = 2.45, 𝑅 is specific gas constant = 0.287 

𝑟𝑎 (s m−1) 
𝑟𝑎 =

ln�𝑧𝑚−𝑑
𝑧𝑜𝑚

� ln�𝑧ℎ−𝑑𝑧𝑜ℎ
�

𝑘2𝑢𝑧
 where 𝑧𝑚 is the height of wind measurements (2 m), 𝑧ℎ is the height of humidity 

measurements (2.5 m), 𝑑 is zero plane displacement height (0 m), 𝑧𝑜𝑚 is roughness length governing 
momentum transfer (0.00023 m), 𝑧𝑜ℎ is roughness length governing transfer of heat and vapour (0.00023 
m), 𝑘 is von Karman's constant (0.41), 𝑢𝑧 is the wind speed at height z 

𝛾 (kPa °C −1) 𝛾 = 0.665 ∗ 10−3𝑃 where 𝑃 is atmospheric pressure =101.3(
293−0.0065z

293
)5.26 where z is the elevation 

above sea level 
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Appendix E. Monthly water balance of Matthews Lagoon and Boggy Pond 
The letters in the table represent the components in water balance: rainfall (R), surface inflow and outflow (𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡), groundwater inflow and 
outflow (𝐺𝑖𝑛 and 𝐺𝑜𝑢𝑡), evapotranspiration (E), and changes in wetland volume (dS, positive value means increasing in volume comparing to 
previous month, negative value means decreasing in volume). -- represents data not available. All water balance components are shown in mm.  

 Jan 
‘13 

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan 
‘14 

Matthews 
Lagoon 

In R 51 48 81 60.5 126 192 60 44.5 101 186 89 54 76.5 
𝑄𝑖𝑛 6.5 6.5 14.58 145.3 129.5 335.6 154.4 59.12 111.9 234.3 39.21 12.20 3.72 

𝐺𝑖𝑛 -- -- -- -- -- 19.80 0 33.56 30.25 30.08 -- -- -- 
Out E 208.7 157.1 132.9 79.9 56.8 37.7 54.9 70.9 97.1 144.8 161.4 191.6 138.8 

𝑄𝑜𝑢𝑡 0 0 0 0 0 0 139.9 148.6 162.6 192.5 132 35.45 0 

𝐺𝑜𝑢𝑡 -- -- -- -- -- 19.90 24.79 20.41 19.33 19.40 -- -- -- 

dS  -- -- -- -- -- -- -171.5 68.6 -43.7 -33.9 -9.36 -24.9 -9.36 
In - Out -151.2 -102.6 -37.05 125.9 198.7 489.8 -5.22 -102.7 -35.90 93.69 -165.2 -160.9 -58.58 

Boggy Pond 

In R 51 48 81 60.5 126 192 60 44.5 101 186 89 54 76.5 
𝐺𝑖𝑛 -- -- -- -- -- -- 0 0 0 0 -- -- -- 

Out E 208.7 157.1 132.9 79.9 56.8 37.7 54.9 70.9 97.1 144.8 161.4 191.6 138.8 
𝐺𝑜𝑢𝑡 -- -- -- -- -- -- 1.63 5.30 5.13 5.27 -- -- -- 

dS -- -- -- -- -- -- 12.4 128.6 -41.5 -20.7 33.2 -8.3 -24.9 
In - Out -157.7 -109.1 -51.9 -19.4 69.2 154.3 3.47 -31.7 -1.23 35.93 -72.4 -137.6 -62.3 
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Appendix F. Water quality in Matthews Lagoon and Boggy Pond 
I,M and O represent the inflow, middle, and outflow of Matthews Lagoon, while B 
represents Boggy Pond. Data in grey boxes is from water samples analysed in labs by Greater 
Wellington Regional Council, other data is obtained from field test using YSI handheld meter 
(N) or photometric field test kits. 

 

Nitrate (mg/l) Ammonia (mg/l) 

Total Phosphorus / 

Phosphate (mg/l) 

Location I M O B I M O B I M O B 

2012.8 

  

2.13 1.78 

  

0.21 0.36 

    2012.9 0.85 0.012 0.023 

 

1.2 0.01 0.012 

 

0.92 0.35 0.36 

 2012.12 0.002 0.002 0.002 

 

4.9 0.01 0.179 

 

1.04 1.46 0.99 

 2013.1 0.004 0.002 0.002 

 

4.5 0.01 0.01 

 

0.66 1.15 1.36 

 2013.4 0.167 0.005 0.002 

 

0.82 0.192 0.051 

 

0.87 1.06 0.82 

 2013.7 3 0.84 0.62 

 

0.57 0.34 0.18 

 

0.41 0.3 0.3 

 2013.7 11.05 5.75 19.92 4.44 0.9 0.5 0.4 0.4 0.11 0.2 0.1 0.03 

2013.9 14.27 5.55 5.03 4 1 1.07 1.75 1.12 0.11 0.34 0.25 0.046 

2013.10 7.54 6.44 28.61 6.14 1.22 0.75 1.26 1.03 0.43 0.43 0.34 0.046 

2013.10 6.75 8.05 5.43 3.03 1.55 0.74 0.8 0.81 

    2013.11 4.33 3.63 6.11 3.25 1.5 1.88 1.24 1.09 0.43 0.43 0.43 0.092 
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