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Abstract

Graphs, matroids and polymatroids all have associated connectivity functions, and
many properties of these structures follow from properties of their connectivity
functions. This motivates the study of connectivity functions in general. It turns
out that connectivity functions are surprisingly highly structured. We prove some
interesting results about connectivity functions. In particular we show that every
connectivity function is a connectivity function of a half-integral polymatroid.
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Chapter 1

Introduction

For a matroid M on E, the connectivity function λM is defined by λM(A) = r(A)+
r(E −A)− r(M) for all A ⊆ E. The function λM is symmetric and submodular
and satisfies λM( /0) = 0. We say that any integer-valued set function with these
properties is a connectivity function.

The connectivity function of a matroid captures many of the important properties.
While connectivity functions are much more general than matroids, it turns out
that many properties of matroids hold for connectivity functions in general. In
particular properties associated with branch-width and tangles of a matroid tend
to hold in this level of generality, see for example [1, 2]. Motivated by this, it is
natural to study connectivity functions in their own right.

Cunningham [5, Section 8.2] conjectured that a connected matroid is determined,
up to duality, by its connectivity function. Seymour [8] proved this conjecture is
false in general by giving a counterexample. Let E = {1, ...8}. Let M be the rank
4 matroid on E in which every 4-set is a base except {1,2,3,4}, {1,2,5,6}, and
let every 4-set except {1,2,3,4}, {1,2,7,8} be a base of M′. Then M and M′ are
connected, are not equal or dual, and yet have the same connectivity function λ

defined by

λ (X) =


|X | if |X | ≤ 3,
|E−X | if |X | ≥ 5,
3 if X ∈ {{1,2,3,4},{5,6,7,8},{1,2,5,6},{3,4,7,8}},
4 otherwise.

However, Cunningham’s conjecture does hold in some special cases. The follow-
ing theorem combines the results of Seymour [8] and Lemos [3, 4].

Theorem 1.1. Let M and N be connected matroids with the same ground set and
the same connectivity function. If

(i) M is binary, or
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CHAPTER 1. INTRODUCTION 2

(ii) r(M) 6= r∗(M),

then M = N, or M = N∗.

The theorem tells us that the connectivity function of a matroid determines cer-
tain structure of a matroid, and even determine the matroid up to duality in some
important special cases.

There are examples of connectivity functions that are not the connectivity func-
tions of matroids. It is interesting to ask which connectivity functions come from
a matroid, and if there are structures that give us all the connectivity functions.
These questions also motivate our study of connectivity functions in general.

A polymatroid P is an ordered pair (E,r), where E is a finite set and r : 2E→Z+∪
{0} is an integer-valued set function such that r is increasing and submodular and
satisfies r( /0) = 0. A fractional polymatroid is an ordered pair (E,r), where E is a
finite set and r : 2E→Q+∪{0} is a set function that is increasing and submodular
and satisfies r( /0) = 0. The fractional polymatroid on E is half-integral if r(A) ∈
{n

2 : n ∈ Z+∪{0}} for all A⊆ E.

The main theorem of this thesis is the following, which tells us that half-integral
polymatroids give us all the connectivity functions.

Theorem 1.2. Let µ be a connectivity function on E. Then there is a half-integral
polymatroid P on E such that µ = λP.

We assume the reader has some basic knowledge of matroid theory, even though
we will define the terminologies when we need to. The terminologies of matroid
theory follow [5].

We now outline the structure of this thesis. In Chapter 2, we summarise some
elementary but useful properties of connectivity functions and give examples of
connectivity functions. This chapter will cover most of the preliminary knowl-
edges.

In Chapter 3, we give more properties of connectivity functions and define the
single-element removal from a connectivity function. In particular, we show that
deletion and contraction of a matroid are just examples of single-element removal
from the connectivity function of a matroid. We define a natural operation called
elision to obtain a new unitary connectivity function by removing an element from
an arbitrary unitary connectivity function in Section 3.5, and in Section 3.6 we
discuss its relation between a well known function in matroid theory.

In Chapter 4, we find all the unitary connectivity function, up to isomorphism,
with ground set of size less than 6. We also give examples of unitary connectivity
functions that are not from matroids and investigate the relation between these
connectivity functions and elision operations.
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In Chapter 5, we prove our main result that every connectivity function is a con-
nectivity function of a fractional polymatroid, and give results giving more spe-
cific details about the structure of polymatroids.



Chapter 2

Connectivity Functions

In this chapter we first summarise some elementary properties of connectivity
functions, and then give some examples of connectivity functions that arise nat-
urally from different structures and review some background materials of these
structures.

2.1 Connectivity functions

Let E be a finite set. A set function on E is a function whose domain is the power
set of E, denoted 2E , and we call E the ground set of the set function. An integer-
valued set function is a set function whose codomain is the set of integers. A
set function f on E is normalised if f ( /0) = 0; is symmetric if f (X) = f (E−X)
for all X ⊆ E; and is submodular if f (X)+ f (Y ) ≥ f (X ∪Y )+ f (X ∩Y ) for all
X ,Y ⊆ E. A normalised integer-valued set function f on E is unitary if f (e)≤ 1
for all e ∈ E.

An integer-valued set function µ : 2E → Z is a connectivity function on E if the
following properties hold:

(C1) µ is normalised.

(C2) µ is symmetric.

(C3) µ is submodular.

2.2 Basic properties

This section summarises some elementary properties of connectivity functions.

Lemma 2.1. Let µ be a connectivity function on E, then µ(A)≥ 0 for all A⊆ E.

4
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Proof. By the symmetry and submodularity of µ , we have

µ(A) =
1
2
(µ(A)+µ(E−A))≥ 1

2
(µ( /0)+µ(E)) = µ( /0) = 0.

Lemma 2.2. Let µ be a connectivity function on E. Let X and Y be disjoint
subsets of E. Then |µ(X ∪Y )−µ(X)| ≤ µ(Y ).

Proof. The proof is by contradiction. Suppose µ(X ∪Y )− µ(X) > µ(Y ). Then
µ(X ∪Y ) > µ(X)+ µ(Y ), contradicting the fact that µ is submodular. Suppose
µ(X)−µ(X ∪Y )> µ(Y ). Let Z = E−(X ∪Y ). Then by symmetry of µ , we have
µ(Y ∪Z)−µ(Z)> µ(Y ), contradicting the submodularity of µ .

We follow the convention in matroid theory to write x instead of {x} to denote the
set containing the single element x.

The following corollaries are immediate consequences of Lemma 2.2.

Corollary 2.3. Let µ be a connectivity function on E. Let X ⊆ E, e∈ E−X. Then
|µ(X ∪ e)−µ(X)| ≤ µ(e).

Corollary 2.4. Let µ be a unitary connectivity function on E. Let X ⊆ E, e ∈
E−X. Then |µ(X ∪ e)−µ(X)| ≤ 1.

Lemma 2.5. Let µ be a connectivity function on E. Let X ⊆Y ⊆E and A⊆E−Y .
If µ(X∪A)< µ(X), then µ(Y ∪A)< µ(Y ). Moreover µ(X)−µ(X∪A)≤ µ(Y )−
µ(Y ∪A).

Proof. Suppose µ(Y )≤ µ(Y ∪A). By adding µ(X) to both sides of the equation
we have

µ(Y )+µ(X)≤ µ(Y ∪A)+µ(X).

Since µ(X ∪A)< µ(X), the equation above becomes

µ(Y )+µ(X ∪A)< µ(Y ∪A)+µ(X),

contradicting the submodularity of µ .

Since µ is submodular, µ(Y )+ µ(X ∪A) ≥ µ(Y ∪A)+ µ(X). Rearranging the
equation we have µ(X)−µ(X ∪A)≤ µ(Y )−µ(Y ∪A).

Let µ be a connectivity function on E and let X ,Y ⊆ E. We say X and Y is a
modular pair in µ if µ(X)+µ(Y ) = µ(X ∪Y )+µ(X ∩Y ).

Lemma 2.6. Let µ be a unitary connectivity function on E. Let X ,Y ⊆ E be a
modular pair in µ and let e ∈ E. If µ(X ∪ e)< µ(X) and µ(Y ∪ e)< µ(Y ), then
µ((X ∩Y )∪ e)< µ(X ∩Y ).
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Proof. X and Y is a modular pair in µ , so µ(X)+µ(Y ) = µ(X ∪Y )+µ(X ∩Y ).
Since µ(X ∪ e) < µ(X), it follows from Corollary 2.4 that µ(X) = µ(X ∪ e)+1.
Similarly µ(Y ∪ e) < µ(Y ) implies µ(Y ) = µ(Y ∪ e) + 1. Notice that e is not
in both X and Y , so e /∈ X ∪Y . It follows from Lemma 2.5 that µ(X ∪Y ) =
µ(X ∪Y ∪ e) + 1. Therefore the following holds from the substitutions of the
equations above and the submodularity of µ .

µ(X ∩Y ) = µ(X)+µ(Y )−µ(X ∪Y )
= µ(X ∪ e)+µ(Y ∪ e)+2−µ(X ∪Y )
= µ(X ∪ e)+µ(Y ∪ e)+1−µ(X ∪Y ∪ e)
≥ µ(X ∪Y ∪ e)+µ((X ∩Y )∪ e)+1−µ(X ∪Y ∪ e)
> µ((X ∩Y )∪ e).

2.3 Examples

In this section, we give some examples of connectivity functions that arise natu-
rally from different mathematical objects and some background materials of these
objects which will be used later in this thesis.

Connectivity functions of matroids

The following concepts and results are well known and can be found in [5] but
are presented in a somewhat different way there. Also any unexplained matroid
terminologies that appear later in this thesis follow from [5].

A matroid M is an ordered pair (E,r), where E is a finite set, and r is an integer-
valued set function on E satisfying the following properties:

(R1) r is normalised.

(R2) r(X)≤ |X |, for all X ⊆ E.

(R3) r(X)≤ r(Y ), for all X ⊆ Y ⊆ E.

(R4) r is submodular.

If M is the matroid (E,r), then M is called the matroid on E and the function r
is called the rank function of matroid M. We often denote the rank function of
M by rM, in order to make it clear which matroid is being referred to. The rank
of M, denoted r(M), is defined to be r(E). We refer to the property (R3) as the
increasing property of r. Let x ∈ E. We say x is a loop if r(x) = 0 and call it a
point if r(x) = 1. Let X ⊆ E. We call X a line if r(X) = 2.
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Let M be a matroid on E and let e ∈ E. The deletion of e from M, denoted
M\e, is a matroid on E − e, such that rM\e(A) = rM(E) for all A ⊆ E − e. The
contraction of e from M, denoted M/e, is a matroid on E−e, such that rM/e(A) =
rM(A∪e)−rM(e) for all A⊆ E−e. It is easy to verify that M\e and M/e are both
matroids. A matroid N is a minor of M if N is obtained from M by a sequence of
deletion and contraction operations.

The connectivity function of a matroid M, denoted λM, is defined by

λM(X) = r(X)+ r(E−X)− r(M),

for all X ⊆ E.

Lemma 2.7. Let M be a matroid on E. Then the connectivity function λM of M is
a unitary connectivity function.

Proof. It follows from (R1) that r( /0) = 0. Therefore

λM( /0) = r( /0)+ r(E)− r(M) = 0+ r(E)− r(M) = 0.

Hence λM is normalised, that is (C1) is satisfied. It follows directly from the
definition of λM that λM is symmetric, so (C2) is also satisfied. It remains to
prove that (C3) is satisfied. Let X and Y be any subsets of E. An elementary
fact called de Morgan’s Law shows that (E −X)∪ (E −Y ) = E − (X ∩Y ) and
(E−X)∩(E−Y ) = E−(X ∪Y ). We use the submodularity of r and de Morgan’s
Law to show λM is submodualr,

λM(X)+λM(Y )
=r(X)+ r(E−X)− r(M)+ r(Y )+ r(E−Y )− r(M)

≥r(X ∪Y )+ r(X ∩Y )+ r((E−X)∪ (E−Y )+ r((E−X)∩ (E−Y ))−2r(M)

=r(X ∪Y )+ r(X ∩Y )+ r(E− (X ∩Y ))+ r(E− (X ∪Y ))−2r(M)

=λM(X ∪Y )+λM(X ∩Y ).

Hence (C3) holds. Finally we show that λM is unitary. It follows from (R2) that
r(x)≤ 1 and from (R3) that r(E− x)≤ r(E), for all x ∈ E, so

λM(x) = r(x)+ r(E− x)− r(M)≤ 1+ r(E)− r(E)≤ 1.

Lemma 2.8. Let r be a rank function of a matroid with ground set E and r∗ be a
function on E defined as r∗(X) = |X |+ r(E−X)− r(E) for all X ⊆ E. Then r∗ is
a rank function of a matroid.

Proof. It is trivial that r∗( /0) = 0, so (R1) holds. Since r is a rank function, r(E−
X)− r(E)≤ 0 for all X ⊆ E. So it follows from the definition of r∗ that r∗(X)≤
|X |, that is (R2) holds. Let X ,Y be subsets of E such that X ⊆ Y . To show r∗
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satisfies (R3), we only need to show |X |+ r(E−X) ≤ |Y |+ r(E−Y ). It follows
from the submodularity of r that r(E−X) ≤ r(E−Y )+ r(Y −X), that is r(E−
X)− r(E −Y ) ≤ r(Y − X). Since r satisfies (R2), then r(Y − X) ≤ |Y − X | =
|Y | − |X |. Therefore r(E − X)− r(E −Y ) ≤ |Y | − |X |, rearraging the equation
we have |X |+ r(E−X) ≤ |Y |+ r(E−Y ). Let A,B be subsets of E. To show r∗

satisfies (R4), we only need to show

|A|+r(E−A)+|B|+r(E−B)≥ |A∪B|+r(E−(A∪B))+|A∩B|+r(E−(A∩B)).

Since |A|+ |B|= |A∪B|+ |A∩B|, so we only need to show

r(E−A)+ r(E−B)≥ r(E− (A∪B))+ r(E− (A∩B)).

By de Morgan’s Law, r(E−(A∪B)) = r((E−A)∩(E−B)) and r(E−(A∩B)) =
r((E−A)∪ (E−B)), so the equation above holds as r is submodular.

The matroid in the last lemma, whose ground set is E and whose rank function is
r∗, is called the dual of M, denoted M∗. Thus r∗M = rM∗ . It is easy to show that

M/e = (M∗\e)∗. (2.1)

The following lemma is a direct consequence of Lemma 2.8.

Lemma 2.9. Let M be a matroid on E. If X ⊆ E. Then

λM(X) = r(X)+ r∗(X)−|X |.

The following corollary is an immediate consequence of Lemma 2.9.

Corollary 2.10. Let M be a matroid. Then λM = λM∗ .

It is not true that every unitary connectivity function is a connectivity function of
a matroid. We want to know what structures forbid the matroids to have these
connectivity functions. Examples and discussions of these connectivity functions
are given in Chapter 4.

Connectivity functions of graphs

A graph G= (V,E) consists of a set V of vertices and a set E of edges such that for
all e ∈ E, there exist u,v ∈ V such that e = {u,v}. The definition is saying every
edge is a 2-element multiset of V , for convenience, edge e = {u,v} is denoted by
uv, and vertices u and v are said to be incident with edge e, and vice versa. We
also call u and v the ends of edge e = {u,v} and say u is adjacent to v.

In order to have a good intuition of a graph, we usually graphically represent a
graph. Each vertex is indicated by a point, and each edge is indicated by a line
joining the points which represent its ends. Here is an example of representing a
graph.
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a b

c

d

e

Figure 2.1: Graphical representation of graph G.

Example 2.11. Let G = (E,V ) be a graph, where V = {a,b,c,d,e} and E =
{{a,b},{a,e},{b,e},{d,e}}. Figure above is a representation of G.

Let G= (V,E) be a graph and let X ⊆ E. We use V (X) to denote the set of vertices
that are incident with at least one edge in X . The graph connectivity function λG
is defined as

λG(X) = |V (X)|+ |V (E−X)|− |V (E)|,
for all X ⊆ E. It is not hard to see λG(X) measures the number of vertices that are
both incident with X and E−X .

Lemma 2.12. Let G = (V,E) be a graph. Let X and Y be subsets of E. Then

|V (X)|+ |V (Y )| ≥ |V (X ∪Y )|+ |V (X ∩Y )|.

Proof. It follows from the basic fact, called the principle of inclusion-exclusion, in
set theory that |V (X)|+ |V (Y )|= |V (X)∪V (Y )|+ |V (X)∩V (Y )|. Also it is easy
to see that V (X)∪V (Y ) = V (X ∪Y ) and V (X)∩V (Y ) ⊇ V (X ∩Y ). So |V (X)|+
|V (Y )| ≥ |V (X ∪Y )|+ |V (X ∩Y )|.
Lemma 2.13. Let G = (V,E) be a graph. Then the connectivity function λG of G
is a connectivity function.

Proof. It is trivial that λG( /0) = 0, hence (C1) holds. It follows from the definition
of ν that λG is symmetric, hence (C2) holds. We only need to show λG is sub-
modular. Let X and Y be two subsets of E. It follows from the definition of λG, to
show λG(X)+λG(Y )≥ λG(X ∪Y )+λG(X ∩Y ) we only need to show

|V (X)|+ |V (E−X)|+ |V (Y )|+ |V (E−Y )|
≥ |V (X ∪Y )|+ |V (E− (X ∪Y ))|+ |V (X ∩Y )|+ |V (E− (X ∩Y ))|. (2.2)

By Lemma 2.12, we have

|V (X)|+ |V (Y )| ≥ |V (X ∪Y )|+ |V (X ∩Y )|, (2.3)

and

|V (E−X)|+ |V (E−Y )| ≥ |V ((E−X)∪ (E−Y ))|+ |V ((E−X)∩ (E−Y ))|
= |V (E− (X ∩Y ))|+ |V (E− (X ∪Y ))|. (2.4)

Combining (2.3) and (2.4), we can see (2.2) holds, hence λG is submodular. There-
fore (C3) holds.
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Notice that the connectivity function of a graph is not unitary in general.

The following example will generalise the examples in matroids and graphs.

Connectivity functions of polymatroids

A polymatroid P is an ordered pair (E,r), where E is a finite set, and r is a integer-
valued set function on E satisfying the following properties:

(P1) r is normalised.

(P2) r is increasing.

(P3) r is submodular.

If P is the polymatroid (E,r), then P is called the polymatroid on E and the func-
tion r is called the rank function of P. We often denote the rank function of P by
rP. The rank of P, denoted r(P), is defined to be r(E). The polymatroid P is a
k-polymatroid if r({x})≤ k for all x ∈ E,where k is a positive integer. We can see
that every matroid is just a 1-polymatroid.

Let G = (V,E) be a graph. Define the set function rG on E to be

rG(X) = |V (X)|

for all X ⊆ E. Then it is not hard to see P = (E,rG) is a 2-polymatroid.

Lemma 2.14. Let G = (V,E) be a graph. Let rG be a function defined as above.
Then P = (E,rG) is a 2-polymatroid.

Proof. It is trivial that (P1) holds. Let X and Y be subsets of E, then |V (X)| ≤
|V (Y )|, so rG(X) ≤ rG(Y ). Hence (P2) holds. Lemma 2.12 shows (P3) holds.
Also r(e)≤ 2 for all e ∈ E. So P is a 2-polymatroid.

Geometrically, a 2-polymatroid can be thought of as a multiset of lines, points,
and loops of some matroid [7, Section 2].

The connectivity function of a polymatroid P, denoted λP, is defined as

λP(X) = r(X)+ r(E−X)− r(P),

for all X ⊆ E.

Lemma 2.15. Let P = (E,r) be a polymatroid. Then the connectivity function λP
of P is a connectivity function.

Proof. In the proof of Lemma 2.7, we only use (R1) that r is normalised, (R4)
that r is submodular and de Morgan’s Law. As a polymatroid is just a matroid
except that we drop the condition (R2), the proof of Lemma 2.7 is also valid for
this lemma, except that λP is not unitary.
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The extended connectivity κ in matroid

Let M be a matroid on E and let λM be the connectivity function of M. Let X
and Y be two disjoint sets of E. The extended connectivity of X and Y , denoted
κM(X ,Y ), is defined as

κM(X ,Y ) = min{λM(X ∪Z) : Z ⊆ E− (X ∪Y )}.

It is not hard to see that κM(Y,X) = κM(X ,Y ). Moreover,

κM(X ,E−X) = λM(X).

The extended connectivity κ is well known in some area of matroid theory. For
example Tutte’s Linking Theorem which generalizes Menger’s Theorem is a result
about κ . The reader can find more detail in [5, Section 8.5].

Now we define a connectivity function which is based on κ . Let M be a matroid
on E and let A⊆ E. Define the function κ(λM ,A) on A by

κ(λM ,A)(X) = κM(X ,A−X)

for all X ⊆ A. The following lemma shows this is a connectivity function.

Lemma 2.16. Let M be a matroid on E and let A ⊆ E. Then κ(λM ,A) is a unitary
connectivity function on A.

Proof. It is trivial that (C1) holds. It follows from the definition of κ(λM ,A) and
κ that κ(λM ,A) is symmetric. We only need to show κ(λM ,A) is submodular. Let X
and Y be subsets of A. Let B and C be subsets of E −A such that κ(λM ,A)(X) =
λM(X ∪B) and κ(λM ,A)(Y ) = λ (Y ∪C). By the submodularity of λM, we have

λM(X ∪B)+λM(Y ∪C)≥ λM(X ∪Y ∪B∪C)+λM((X ∪B)∩ (Y ∪C)). (2.5)

By the definition of κ(λM ,A), Equation (2.5) becomes

κ(λM ,A)(X)+κ(λM ,A)(Y )≥ λM(X ∪Y ∪B∪C)+λM((X ∪B)∩ (Y ∪C)). (2.6)

It follows from the definition of κ(λM ,A) and κM that

κ(λM ,A)(X ∪Y ) = κM(X ∪Y,A− (X ∪Y ))≤ λM((X ∪Y )∪ (B∪C)), (2.7)

and

κ(λM ,A)(X ∩Y ) = κM(X ∩Y,A− (X ∩Y ))≤ λM((X ∩Y )∪ (B∩C)). (2.8)

Comparing (2.6) with (2.7) and (2.8), we can see κ(λM ,A) is submodular. Since λM
is unitary, it is trivial that κ(λM ,A) is also unitary.
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If we read carefully in the proof of Lemma 2.16, it is easy to see we use nothing
more than the fact that λM is a connectivity function. So this construction will
work for all connectivity functions.

We now generalise the concept and the lemma. Let µ be a connectivity function
on E and let X and Y be two disjoint subsets of E. Then the extended connectivity
of X and Y in µ , denoted κµ(X ,Y ), is defined as

κµ(X ,Y ) = min{µ(X ∪Z) : Z ⊆ E− (X ∪Y )}.

Let A⊆ E. Define the function κ(µ,A)(X) on A by

κ(µ,A)(X) = κµ(X ,A−X),

for all X ⊆ A.

Lemma 2.17. Let µ be a connectivity function on E and let A⊆ E. Then κ(µ,A) is
a connectivity function on A. Moreover, if µ is unitary, then κ(µ,A) is also unitary.

Surprisingly we show that this way of constructing unitary connectivity functions
coincides with a natural operation in unitary connectivity functions later in Chap-
ter 3.



Chapter 3

Properties of Connectivity Functions

In this chapter we give some properties of connectivity functions. Later on we
study ways to remove elements from the ground set of connectivity functions.
But first we study direct sums of connectivity functions which agrees with the
notion of direct sums of matroids.

3.1 Connected components and direct sums

We define a connectivity function µ on E to be connected if µ(A) 6= 0 for all non-
empty proper subsets A of E, otherwise µ is disconnected. The following lemma
shows how a connectivity function can be naturally broken up into smaller ones.

Lemma 3.1. Let µ be a connectivity function on E, and let (A,B) be a partition
of E, such that µ(A) = 0. Define µ ′ on A by µ ′(X) = µ(X) for all X ⊆ A. Then
µ ′ is a connectivity function on A.

Proof. We first show that µ ′ is submodular. Let X ,Y ⊆ A. Then X ∪Y and X ∩Y
are both subsets of A. So it follows from the submodularity of µ that

µ
′(X)+µ

′(Y ) = µ(X)+µ(Y )≥ µ(X ∩Y )+µ(X ∪Y ) = µ
′(X ∩Y )+µ

′(X ∪Y ).

We next show that µ ′ is symmetric. It follows from the symmetry of µ that,
µ ′(X) = µ(X) = µ(E−X) = µ(B∪(A−X). So it follows from the submodularity
of µ that

µ(B)+µ(A−X)≥ µ(B∪ (A−X)) = µ
′(X).

Notice that µ(B) = µ(A) = 0, so we have µ ′(A−X)≥ µ ′(X). On the other hand,
it follows from the submodularity of µ that

µ(A)+µ(B∪ (A−X))≥ µ(E)+µ(A−X). (3.1)

13
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Notice that µ(A) = µ(E) = 0, and µ(X) = µ(B∪ (A−X)). So (3.1) becomes
µ ′(X) ≥ µ ′(A−X). Hence µ ′(X) = µ ′(A−X). Therefore µ ′ is a connectivity
function on A.

Let µ be a connectivity function on E and let A ⊆ E. We say A is a separator of
µ if µ(A) = 0, and A is a component of µ if it is a minimal nonempty separator.

We can also construct a connectivity function from two given connectivity func-
tions. Let µ1 and µ2 be two connectivity functions on the sets E1 and E2 respec-
tively. The direct sum of connectivity functions µ1 and µ2, denoted µ1⊕ µ2, is
defined as µ1⊕µ2(A) = µ1(A∩E1)+µ2(A∩E2) for all A⊆ E1∪E2 . We need to
show the direct sum is indeed a connectivity function.

Lemma 3.2. Let µ1 and µ2 be connectivity functions on the set E1 and E2 re-
spectively, where E1∩E2 = /0. Then µ1⊕µ2 is a connectivity function on E1∪E2.
Moreover µ(E1) = µ(E2) = 0.

Proof. It is trivial that µ1⊕ µ2 is normalised. Let A,B ⊆ E1∪E2. We first show
µ1⊕µ2 is symmetric. It follows from the symmetry of µ1 and µ2 that µ1(A∩E1)=
µ1((E−A)∩E1) and µ2(A∩E2) = µ2((E−A)∩E2). So

µ1⊕µ2(A) = µ1(A∩E1)+µ2(A∩E2)

= µ1((E−A)∩E1)+µ2((E−A)∩E2)

= µ1⊕µ2(E−A).

Next we show µ1⊕ µ2 is submodular. The following argument follows from the
definition of direct sums, the submodularity of µ1 and µ2, and de Morgan’s Law.

µ1⊕µ2(A)+µ1⊕µ2(B)
=µ1(A∩E1)+µ2(A∩E2)+µ1(B∩E1)+µ2(B∩E2)

≥µ1((A∩E1)∩ (B∩E1))+µ1((A∩E1)∪ (B∩E1))

+µ2((A∩E2)∩ (B∩E2))+µ2((A∩E2)∪ (B∩E2))

=µ1((A∩B)∩E1)+µ1((A∪B)∩E1)+µ2((A∩B)∩E2)+µ2((A∪B)∩E2)

=µ1⊕µ2(A∩B)+µ1⊕µ2(A∪B).

Therefore µ1⊕ µ2 is a connectivity function. In particular, it follows from the
definition of µ1⊕µ2 that

µ1⊕µ2(E1) = µ1(E1∩E1)+µ2(E1∩E2) = µ1(E1)+µ2( /0) = 0,

and µ1⊕µ2(E2) = µ1⊕µ2(E1) = 0 as µ1⊕µ2 is symmetric.

Let M be a matroid on E. A separator of M is a subset X such at that λM(X) = 0,
and X is a component of M if it is a minimal nonempty separator. A matroid is
connected if the only separators of M are /0 and E.
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It is not hard to see the notion of connectedness of matroids agrees with the con-
nectedness of connectivity function, and the following lemma holds.

Lemma 3.3. Let M be a matroid on E. Then X ⊆ E is a component of M if and
only if X is a component of λM, where λM is the connectivity function of M.

From Lemma 3.1 and Lemma 3.2, we know that every disconnected connectivity
system is just the direct sum of its connected components, so we will only focus
on connected connectivity functions in the rest of this thesis.

3.2 Full closure

As we know there are many equivalent ways to define a matroid [5], such as
independent sets, rank functions, closure operators, bases, etc. We would like
to know if there is another way to define connectivity functions, as presenting
a connectivity function with the value on each subset of the ground set is very
inconvenient when the size of the ground set is large. In this section we try to
define a connectivity function in term of a closure operator called full closure and
we show that full closure cannot reconstruct a connectivity function.

Let µ be a connectivity function on E. A set A ⊆ E is fully-closed if µ(A∪ e) >
µ(A) for all e ∈ E −A. The full closure of A, denoted fclµ(A) or fcl(A) if µ is
clear from the context, is the intersection of all fully-closed sets that contains A. It
follows from the next lemma and the definition of fully-closed set and full closure,
if µ(A∪ e)≤ µ(A) then e ∈ fclµ(A).

We will show fcl(X) is fully-closed. We begin with a preliminary lemma.

Lemma 3.4. Let µ be a connectivity function on E and let A,B be subsets of E
such that A⊆ B. If µ(A)≥ µ(A∪ e), then µ(B)≥ µ(B∪ e).

Proof. If µ(A)≥ µ(A∪e), then by the symmetry of µ we have µ(E−A)≥ µ(E−
(A∪ e)). Since A ⊆ B, we have E− (B∪ e) ⊆ E− (A∪ e). By the contrapositive
of Lemma 2.5, we have µ(E−B) ≥ µ(E− (B∪ e)). So the result follows from
the symmetry of µ .

Lemma 3.5. Let µ be a connectivity function on E. Then fcl(X) is fully-closed
for all X ⊆ E.

Proof. We show the intersection of two fully-closed sets is fully-closed, which
will suffice to show the lemma. Let A,B ⊆ E be two fully-closed sets. Suppose
A∩B is not fully-closed. Then there exists e ∈ E− (A∩B) such that µ(A∩B)≥
µ((A∩B)∪ e). By Lemma 3.4, we have µ(A) ≥ µ(A∪ e), contradicting the fact
that A is fully-closed. Thus A∩B is fully-closed.
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A closure operator on a set E is a function cl : 2E → 2E satisfying the following
properties.

(i) X ⊆ cl(X), for all X ⊆ E.

(ii) cl(cl(X)) = cl(X), for all X ⊆ E.

(iii) If X ⊆ Y ⊆ E, then cl(X)⊆ cl(Y ).

We next show full closure is a closure operator.

Lemma 3.6. Let µ be a unitary connectivity function on E. Then fcl is a closure
operator.

Proof. It follows from the definition of full closure X ⊆ fcl(X). By definition,
fcl(fcl(X)) is the intersection of all fully-closed sets containing fcl(X), we have
fcl(fcl(X)) ⊇ fcl(X). By Lemma 3.5, we know fcl(X) is closed and contains
fcl(X), so fcl(fcl(X)) ⊆ fcl(X). Therefore fcl(fcl(X)) = fcl(X). Suppose X ⊆
Y ⊆ E. Let P be the intersection of all fully-closed sets containing X but not
containing Y and Q be the intersection of all fully-closed sets containing X and Y .
Then fcl(X) = P∩Q and fcl(Y ) = Q, thus fcl(X)⊆ fcl(Y ).

Unfortunately, the collection of fully-closed sets of a connectivity function on a set
cannot uniquely determine the connectivity function. For example the collection
of fully-closed sets in K4,1 and K4,2, which are shown in Table 4.1, are both { /0,E}.

3.3 Single-element removals

We have defined the minor of a matroid in Section 2.3. We would like to generalise
the similar notion of minor for a connectivity function, that is, we want to define
operations that produce a new connectivity function from a given connectivity
function by removing an element but still preserve some structure of the original
connectivity function.

The following lemma describes what properties the new connectivity function will
have. Later in Section 3.5, we will define a very natural operation that generalises
the similar notion of the minor of a unitary connectivity function.

Lemma 3.7. Let µ be a unitary connectivity function on E and e ∈ E. For all
A,X ,Y ⊆ E− e, if µ ′ satisfies the following properties, then µ ′ is a unitary con-
nectivity function.

(i) µ ′(A) ∈ {µ(A),µ(A)−1}.

(ii) If µ(A) = µ(A∪ e), then µ ′(A) = µ ′(E− (A∪ e)).
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(iii) If µ(A) 6= µ(A∪ e), then µ ′(A) = min{µ(A),µ(A∪ e)}.

(iv) Let A⊆ A′ ⊆ E−{e}. If µ ′(A) = µ(A)−1, then µ ′(A′) = µ(A′)−1.

(v) If µ ′(X) = µ(X)− 1,µ ′(Y ) = µ(Y )− 1, and µ(X) + µ(Y ) = µ(X ∪Y ) +
µ(X ∩Y ), then µ ′(X ∩Y ) = µ(X ∩Y )−1.

Proof. We first show that µ ′ is symmetric. Let {A,e,B} be a partition of E. We
need to show µ ′(A) = µ ′(B). If µ(A) = µ(A∪ e), then by property (ii), µ ′(A) =
µ ′(E−(A∪e)) = µ ′(B). If µ(A) 6= µ(A∪e), then by the symmetry of µ , we have
µ(B∪ e) 6= µ(B). Hence by property (iii),

µ
′(A) = min{µ(A),µ(A∪ e)}= min{µ(B∪ e),µ(B)}= µ

′(B).

We next show µ ′ is submodular by considering different cases. Notice that prop-
erty (i) implies µ(A)≥ µ ′(A) for all A⊆ E− e. Let X ,Y ⊆ E.

Suppose µ ′(X) = µ(X) and µ ′(Y ) = µ(Y ), then by the submodularity of µ and
(i), obtain

µ
′(X)+µ

′(Y ) = µ(X)+µ(Y )≥ µ(X ∪Y )+µ(X ∩Y )≥ µ
′(X ∪Y )+µ

′(X ∩Y ).

Suppose µ ′(X) = µ(X) and µ ′(Y ) = µ(Y )− 1. Then by submodularity of µ ,
obtain

µ
′(X)+µ

′(Y ) = µ(X)+µ(Y )−1≥ µ(X ∪Y )+µ(X ∩Y )−1. (3.2)

And it follows from property (iv) that µ(X ∪Y ) = µ ′(X ∪Y )+ 1, and it follows
from property (i) that µ(X ∩Y )≥ µ ′(X ∩Y ). Hence

µ
′(X)+µ

′(Y )≥ µ(X ∪Y )+µ(X ∩Y )−1≥ µ
′(X ∪Y )+µ

′(X ∩Y ).

Suppose µ ′(X) = µ(X)−1 and µ ′(Y ) = µ(Y )−1. By submodularity of µ , obtain

µ
′(X)+µ

′(Y ) = µ(X)+µ(Y )−2≥ µ(X ∪Y )+µ(X ∩Y )−2. (3.3)

If X and Y is not a modular pair in µ , then (3.3) becomes

µ
′(X)+µ

′(Y ) = µ(X)+µ(Y )−2 > µ(X ∪Y )+µ(X ∩Y )−2. (3.4)

But (3.4) is just the same as (3.2). Hence µ ′ is submodular.

If X and Y is a modular pair in µ , then (3.3) becomes

µ
′(X)+µ

′(Y ) = µ(X)+µ(Y )−2 = µ(X ∪Y )+µ(X ∩Y )−2. (3.5)

It follows from property (iv) that µ ′(X ∪Y ) = µ(X ∪Y )− 1, and from (v) that
µ ′(X ∩Y ) = µ(X ∩Y )−1. Then (3.5) becomes

µ
′(X)+µ

′(Y ) = µ(X ∪Y )+µ(X ∩Y )−2 = µ
′(X ∪Y )+µ

′(X ∩Y ).

Therefore µ ′ is submodular.
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We say the connectivity function µ ′ is a single-element removal of e from µ if µ ′

satisfies all the properties in Lemma 3.7.

We introduce two examples of single-element removal that arise naturally from
connectivity function of matroids in the next section.

3.4 Single-element removals from matroids

In this section we show that deletion or contraction of an element in a matroid
just corresponds to a single-element removal from the connectivity function of
the matroid.

Let M be a matroid with ground set E and let e ∈ E. Recall that the deletion of
e from M, denoted M\e, is a matroid on E− e such that rM\e(A) = rM(E) for all
A ⊆ E− e, and the contraction of e from M, denoted M/e, is a matroid on E− e
such that rM/e(A) = rM(A∪ e)− rM(e) for all A ⊆ E− e. Let M∗ be the dual of
M. It is easy to show that M/e = (M∗\e)∗. The closure of X ⊆ E, denoted clM, is
defined by

clM(X) = {x ∈ E : rM(X ∪ x) = rM(X)}. (3.6)

The following lemma gives formulas for the connectivity functions of a matroid
by deleting and contracting a element from a given matroid.

Lemma 3.8. Let M be a matroid with ground set E, and let A⊆ E. Then

λM\e(A) =
{

λM(A)−1 if e ∈ clM∗(A)
λM(A) else,

and

λM/e(A) =
{

λM(A)−1 if e ∈ clM(A)
λM(A) else.

Proof. By definition of the connectivity function of a matroid, we have

λM\e(A) = rM\e(A)+ r(M\e)∗(A)−|A|= rM\e(A)+ rM∗/e(A)−|A|. (3.7)

λM/e(A) = rM/e(A)+ r(M/e)∗(A)−|A|= rM/e(A)+ rM∗\e(A)−|A|. (3.8)

Notice that rM\e(A) = rM(A) and rM∗\e(A) = rM∗(A) we can simplify the two
equations above,

λM\e(A) = λM(A)+ rM∗/e(A)− rM∗(A) (3.9)

λM/e(A) = λM(A)+ rM/e(A)− rM(A). (3.10)

We can see that λM\e(A) = λM(A)− 1 only when rM∗(A) > rM∗/e(A) that is e ∈
clM∗(A). Rewrite equation 3.9,

λM\e(A) =
{

λM(A)−1 if e ∈ clM∗(A)
λM(A) else. (3.11)
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Similarly, equation 3.10 becomes

λM/e(A) =
{

λM(A)−1 if e ∈ clM(A)
λM(A) else. (3.12)

The next lemma shows the connectivity function of matroids by deleting and con-
tracting an element from a matroid satisfies property (iv) in Lemma 3.7 of being
a single-element removal of the connectivity of the given matroid.

Lemma 3.9. Let M be a matroid with ground set E and let A⊆ A′ ⊆ E− e.

(i) If λM\e(A) = λM(A)−1, then λM\e(A′) = λM(A′)−1.

(ii) If λM/e(A) = λM(A)−1, then λM/e(A′) = λM(A′)−1.

Proof. If λM\e(A) = λM(A)−1, then by Lemma 3.8, e ∈ clM∗(A), which implies
e∈ clM∗(A′). Hence by Lemma 3.8, we have λM\e(A′) = λM(A′)−1. If λM/e(A) =
λM(A)−1 then by Lemma 3.8 e ∈ clM(A), which implies e ∈ clM(A′). Hence by
Lemma 3.8, we obtain λM/e(A′) = λM(A′)−1.

Let M be a matroid on E and let X ,Y ⊆ E. We say X and Y is a modular pair in
M if rM(X)+ rM(Y ) = rM(X ∪Y )+ rM(X ∩Y ). Let µ be a connectivity function
on E and X ,Y ⊆ E. Recall that, X and Y is a modular pair in µ if µ(X)+µ(Y ) =
µ(X ∪Y )+µ(X ∩Y ).

The following lemma shows the relation between modular pairs in matroid and
modular pairs in its connectivity function.

Lemma 3.10. Let M be a matroid on E and let X ,Y ⊆ E. Then X and Y is a
modular pair in λM if and only if X and Y is a modular pair in both M and M∗.

Proof. It follows from Lemma 2.9 that X and Y is a modular pair in λM if and
only if

r(X)+ r∗(X)+ |X |+ r(Y )+ r∗(Y )+ |Y |
=r(X ∪Y )+ r∗(X ∪Y )+ |X ∪Y |+ r(X ∩Y )+ r∗(X ∩Y )+ |X ∩Y |.

By simplifying, the equation above is equivalent to the following equation,

r(X)+ r(Y )+ r∗(X)+ r∗(Y ) = r(X ∪Y )+ r(X ∩Y )+ r∗(X ∪Y )+ r∗(X ∩Y ).
(3.13)

Let X and Y be a modular pair in λM. Without loss of generality, we assume X
and Y is not a modular pair in M, that is, r(X)+r(Y )> r(X ∪Y )+r(X ∩Y ). Then
(3.13) becomes

r∗(X)+ r∗(Y )< r∗(X ∪Y )+ r∗(X ∩Y ),
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which contradicts the submodularity of rank functions.
If X and Y is a modular pair in both M and M∗, then it is trivial that (3.13) holds.

The next lemma shows the connectivity function of matroids by deleting and con-
tracting a element from a matroid satisfies property (v) in Lemma 3.7 of being a
single-element removal of the connectivity of the given matroid.

Lemma 3.11. Let M be a matroid on E and let e ∈ E. Let X and Y be a modular
pair in λM. Then the following hold.

(i) If λM\e(X) = λM(X)− 1 and λM\e(Y ) = λM(Y )− 1, then λM\e(X ∩Y ) =
λM(X ∩Y )−1.

(ii) If λM/e(X) = λM(X)− 1 and λM/e(Y ) = λM(Y )− 1, then λM/e(X ∩Y ) =
λM(X ∩Y )−1.

Proof. If λM/e(X) = λM(X)− 1, λM/e(Y ) = λM(Y )− 1, then by Lemma 3.9,
λM/e(X ∪Y ) = λM(X ∪Y )−1. Since X and Y is a modular pair in λM,

λM(X)+λM(Y ) = λM(X ∪Y )+λM(X ∩Y ).

Substituting λM/e(A)= λM(A)−1 for all A∈{X ,Y,X∪Y} into the equation above
and simplify, obtain

λM/e(X)+λM/e(Y ) = λM/e(X ∪Y )+λM(X ∩Y )−1.

By the submodularity of λM/e and the equation above,

λM/e(X ∪Y )+λM(X ∩Y )−1≥ λM/e(X ∪Y )+λM/e(X ∩Y ).

Hence λM(X ∩Y )−1≥ λM/e(X ∩Y ). Equation 3.11 shows λM(A)−λM/e(A)≤ 1
for all A ⊆ E − e. Therefore (ii) holds. Part (i) holds by the same argument as
(ii).

Now we have enough information to show the connectivity function of matroids
by deleting and contracting a element from a matroid are both single-element
removals of the connectivity of the given matroid.

Lemma 3.12. Let M be a matroid on E and e ∈ E. Then λM\e and λM/e are both
single-element removals of e from λM.

Proof. It is trivial that both λM\e and λM/e satisfy (i)-(iii) in Lemma 3.7. Lemma
3.9 and Lemma 3.11 show that they satisfy (iv) and (v) in Lemma 3.7 respectively.
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3.5 The elision operation

In the last section we have shown that deletion and contraction of an element from
a matroid correspond to two single-element removal operations in the connectivity
function of the matroid. But an arbitrary unitary connectivity function can not
distinguish deletion and contraction, even for a connectivity function of a matroid
as λM = λM∗ and M/e = (M∗\e)∗ for all e ∈ M, that is deleting e from M gives
the same connectivity function as contracting e from M∗. So it is natural to ask
if we can find some operations that always give us a single-element removal from
a unitary connectivity function. In this section we find one such operation and it
turns out to be important later in this thesis.

Now let us consider Lemma 3.7. Property (iii) shows we have no choice for µ ′(A)
when µ(A) 6= µ(A∪ e). Property (i) shows when µ(A) = µ(A∪ e) we have 2
choices for µ ′(A), either keep the value or drop the value by one. Therefore we
can have many single-element removals from µ by making different choices for
the sets of A such that µ(A) = µ(A∪ e), as long as µ ′ satisfies the remaining
properties in Lemma 3.7. But we need these operations to work for all unitary
connectivity functions. So we can try the two natural ways which are to keep the
value or to drop the value by one for all A⊆ E− e such that µ(A) = µ(A∪ e).

If we drop the value of µ(A) by one for all A⊆ E− e such that µ(A) = µ(A∪ e),
the new function is not always a connectivity function. For example, consider the
unitary connectivity function K5,5, shown in Table 4.2, and remove the element e
in this way. Then we have a symmetric set function µ on {a,b,c,d} defined as
µ(ab) = 0 and µ(a) = µ(b) = µ(c) = µ(d) = µ({a,c}) = µ({a,d}) = 1. We can
see µ(ab)+ µ(ac) = 1, but µ(abc) = µ(a) = µ(d)+ µ(a) = 2, submodularity
does not hold.

Fortunately, the other way of removing the element always gives us a new unitary
connectivity function. In this section we study this operation.

Let µ be a unitary connectivity function on E and let e ∈ E. Define the elision of
e from µ , denoted µ ∗ e, by

µ ∗ e(A) =
{

min{µ(A),µ(A∪ e)} if µ(A) 6= µ(A∪ e),
µ(A) if µ(A) = µ(A∪ e), (3.14)

for all A⊆ E− e. It is not hard to see that µ ∗ e can be defined as the following,

µ ∗ e(A) = min{µ(A),µ(A∪ e)}. (3.15)

We first show elision from a unitary connectivity always gives a single-element
removal.

Lemma 3.13. Let µ be a unitary connectivity function on E and e∈ E. Then µ ∗e
is single-element removal from µ .



CHAPTER 3. PROPERTIES OF CONNECTIVITY FUNCTIONS 22

Proof. By Corollary2.4, we have |µ(A∪ e)− µ(A)| ≤ 1. It is trivial that µ ∗ e
satisfies the first three properties of Lemma 3.7. First we show µ ∗ e satisfies
property (iv). Let A ⊆ E − e such that µ ∗ e(A) = µ(A)− 1. By definition of
µ ∗e, µ ∗e(A) = min{µ(A),µ(A∪e)} implies that µ(A)> µ(A∪e). If B⊆ E−e
and A ⊆ B, then µ(B) > µ(B∪ e) by Lemma 2.5. Hence µ ∗ e(B) = µ(B∪ e) =
µ(B)−1. Property (iv) holds.

Next we show property (v) holds. Let µ(X)+ µ(Y ) = µ(X ∪Y )+ µ(X ∩Y ). If
µ ∗ e(X) = µ(X)− 1 and µ ∗ e(Y ) = µ(Y )− 1, by a similar argument as above,
we have µ(X) > µ(X ∪ e) and µ(Y ) > µ(Y ∪ e). Since X and Y is a modular
pair in µ ,µ(X ∩Y ) > µ((X ∩Y )∪ e) by Lemma 2.6. That is µ ∗ e(X ∩Y ) =
µ((X ∩Y )∪ e) = µ(X ∩Y )−1. Property (v) holds.

The next result shows that the order of elision of elements does not matter.

Lemma 3.14. Let µ be a connectivity function on E. Let e and f be two distinct
elements of E. Then (µ ∗ e)∗ f = (µ ∗ f )∗ e.

Proof. Let X ⊆ E−{e, f}. By the definition of ∗ operation,
µ ∗e(X) =min{µ(X),µ(X∪e)} and µ ∗e(X∪ f ) =min{µ(X∪ f ),µ(X∪e∪ f )}.
So

(µ ∗ e)∗ f (X) = min{µ ∗ e(X),µ ∗ e(X ∪ f )}
= min{min{µ(X),µ(X ∪ e)},min{µ(X ∪ f ),µ(X ∪ e∪ f )}}
= min{µ(X),µ(X ∪ e),µ(X ∪ f ),µ(X ∪ e∪ f )}

Exchanging e and f and applying the same argument as above, obtain

(µ ∗ f )∗ e(X) = min{µ(X),µ(X ∪ f ),µ(X ∪ e),µ(X ∪ f ∪ e)}= (µ ∗ e)∗ f (X).

Lemma 3.14 shows that we can remove a set of elements by doing elision without
specifying the order in which we apply the operation. Combining with Lemma
3.13 we can see µ ∗X is obtained by a sequence of elision of elements in X from
a connectivity function µ , where X ⊆ E.

3.6 Elision and extended connectivity functions

In this section we show that the elision operation and the extended connectivity κ

coincide.

Let µ be a unitary connectivity function and let X and Y be disjoint subsets of E.
Recall from Section 2.3 that the extended connectivity between X and Y , denoted
κµ(X ,Y ), is defined by

κµ(X ,Y ) = min{µ(X ∪Z) : Z ⊆ E− (X ∪Y )}.
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Let A⊆ E. The function κ(µ,A) on A is defined by

κ(µ,A)(X) = κµ(X ,A−X),

for all X ⊆ A. We have shown in Lemma 2.17 that κ(µ,A) is a connectivity function
on A. We often denote κµ(X ,Y ) as κ(X ,Y ) if it is clear from the context which
connectivity function we are talking about.

We first show the relation between extended connectivity and the elision opera-
tion. Corollary 3.16 follows directly from the following lemma.

Lemma 3.15. Let µ be a unitary connectivity function on E and let A ⊆ E. Let
X ⊆ A. Then κ(X ,A−X) = µ ∗ (E−A)(X).

Proof. This lemma is proved by using induction on |E −A|. It is trivial for the
case |E−A| = 0. Assume it holds for |E−A| = n− 1. Now let |E−A| = n and
let e ∈ E−A. We have

κ(X ,A−X)

=min{µ(X ∪Z) : Z ⊆ E−A}
=min{µ(X ∪Z),µ(X ∪Z∪ e) : Z ⊆ E− (A∪ e)}
=min{min{µ(X ∪Z) : Z ⊆ E− (A∪ e)},min{µ(X ∪ e∪Z) : Z ⊆ E− (A∪ e)}}
=min{κ(X ,(A∪ e)−X),κ(X ∪ e,A−X)}.

By inductive hypothesis, κ(X ,(A∪ e)−X) = µ ∗ (E − (A∪ e))(X), and κ(X ∪
e,A−X) = µ ∗ (E− (A∪ e))(X ∪ e). Substituting these into the equation above,
obtain

κ(X ,A−X) = min{µ ∗ (E− (A∪ e))(X),µ ∗ (E− (A∪ e))(X ∪ e)}
= µ ∗ (E− (A∪ e))∗ e(X)

= µ ∗ (E−A)(X).

The following result follows from Lemma 3.15 directly.

Corollary 3.16. Let µ be a unitary connectivity function on E and let A ⊆ E.
Then

κ(µ,A) = µ ∗ (E−A).



Chapter 4

Connectivity Functions on Small
Sets

Let µ1 and µ2 be two connectivity functions on E1 and E2, respectively. µ1 is iso-
morphic to µ2 if there is a bijection φ from E1 to E2 such that µ1(X) = µ2(φ(X)),
for all X ⊆ E1. A unitary connectivity function is matroidal if it is isomorphic to
the connectivity function of a matroid, which was introduced in Section 2.3. It
is natural to ask whether every unitary connectivity function is matroidal. In this
chapter we will find all the connected unitary connectivity functions on small sets
and give some examples of non-matroidal connectivity functions.

In this chapter, it is convenient for us to write the subset {a1,a2, ...,an} as a1a2...an.

4.1 Connectivity functions on small sets

In this section, we will find all the connected connectivity functions, up to iso-
morphism, on sets with size less than 6, and present the smallest non-matroidal
connectivity functions.

For |E| = 1 the only connected connectivity function is µ( /0) = µ(E) = 0. For
|E| = 2,3, the only connected unitary connectivity function is µ(X) = 1 for all
X ⊆ E such that X /∈ { /0,E}. So there is only one connected unitary connectiv-
ity function on 1-, 2-, or 3-element set. We also know that there are connected
matroids on 1-, 2-, and 3-element set. Evidently, every connected unitary connec-
tivity function on 1-, 2-, or 3-element set is matroidal.

We list all the connected unitary connectivity functions on 4-element set in Table
4.1. We will use the following lemma to show that these are all connectivity
functions.

Lemma 4.1. Let µ be a connected symmetric unitary function on a 4-element set
E. Then µ is a connectivity function if and only if µ(X)≤ |X | for all X ⊆ E.

24
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Proof. Suppose µ is a unitary connectivity function. It follows from the submod-
ularity of µ that µ(X) ≤ ∑x∈X µ(x) = |X |. Conversely, we show µ is submod-
ular. It is trivial that if one of X and Y is a subset of another, or |X ∩Y | = 0,
or both |X | = 1 and |Y | = 1. So assume neither X nor Y is a subset of another,
|X ∩Y | 6= 0 and both |X | ≥ 2 and |Y | ≥ 2. Let |X ∩Y | = 1. If |X ∪Y | = 3, then
1+1 = µ(X ∪Y )+µ(X ∩Y )≤ µ(X)+µ(Y ). If X ∪Y = E, then 1 = µ(X ∩Y )+
µ(X∪Y )≤ µ(X)+µ(Y ). Submodularity holds for |X∩Y |= 1. If |X∩Y |= 2 then
|X ∪Y | = 4, hence 2 = 0+2 ≤ µ(X ∪Y )+µ(X ∩Y ) ≤ µ(X)+µ(Y ), submodu-
larity holds in this case. If |X ∩Y | ≥ 3, then either X ⊆ Y or Y ⊆ X , contradicting
the assumption. Hence µ is submodular, which completes the proof.

The following lemma is a direct consequence of Lemma 4.1.

Lemma 4.2. The connectivity functions in Table 4.1 are all the connected unitary
connectivity functions, up to isomorphism, on 4-element set.

E = {a,b,c,d} K4,1 K4,2 K4,3 K4,4
ab 1 1 1 2
ac 1 1 2 2
ad 1 2 2 2

Matroidal Yes No Yes Yes

Table 4.1: Connected connectivity functions on 4-element set

The uniform matroid Ur,n is a matroid on a set of n elements with rank function r
defined by r(X) = |X | if |X | ≤ r and r(X) = r if |X |> r, where r ≤ n.

We give matroids in Figure 4.1 to show K4,1, K4,3 and K4,4 are all matroidal. In
particular, K4,1 is the connectivity function of U3,4, and K4,4 is the connectivity
function of U2,4.

a

b

c

d

a c d a b c d

b

Figure 4.1: The matroids from left to the right have connectivity function
K4.1,K4,3,K4,4 respectively, where the matroid on the left is U3,4, the middle one
is the uniform matroid U2,3 except that {a,b} is a parallel pair instead of a point
and the one on the right is U2,4.

In the next lemma we show K4,2 is a non-matroidal connectivity function. It is the
smallest non-matroidal connectivity function.

Lemma 4.3. K4,2 is a non-matroidal connectivity function.
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Proof. Suppose there is a matroid M with connectivity function K4,2. It is trivial
that r(M) ≥ 2, as λ (ad) = 2. We can see r(M) ≤ 2, if not, then r(M) > 2, thus
r∗(M) = 4− r(M) < 2, contradicition. Therefore we only need to consider the
case r(M) = 2. Since λ (ad) = r(ad)+ r(bc)− 2 = 2, then r(ad) = r(bc) = 2.
Also λ (ab) = r(ab) + r(cd)− 2 = 1, so r(ab) = 1 or r(cd) = 1. Without loss
of generality, let r(ab) = 1. Similarly, λ (ac) = 1 implies r(ac) = 1 or r(bd) = 1.
Since rank function is submodular and increasing, r(ab)+r(ac)≥ r(a)+r(abc)≥
r(a) + r(bc) = 3, then r(ac) > 1. Similarly r(ab) + r(bd) ≥ r(b) + r(abd) ≥
r(b)+r(bd) = 3, then r(bd)> 1. Contradicition. Therefore K4,2 is not a matroidal
connectivity function.

Next we prove a lemma to help us find all the connectivity functions on 5-element
set.

Lemma 4.4. Let E be a 5-element set and let µ be a connected symmetric unitary
function on E. Then µ is a connectivity function if and only if the following hold:

(i) µ(X)≤ |X | for all X ⊆ E.

(ii) For any distinct elements a,b,c,d,e ∈ E, if µ({a,b}) = 2,then at least two
of µ({c,d}),µ({c,e}),µ({d,e}) are equal to 2.

Proof. Suppose µ is a connectivity function. It follows from the submodularity
of µ that (i) holds. Let X = abc and Y = abd. Then it follows from submodularity
of µ that

µ(X)+µ(Y ) = µ(abc)+µ(abd)≥ µ(ab)+µ(abcd).

By symmetry of µ we have

µ(E−X)+µ(E−Y ) = µ(de)+µ(ce)≥ µ(ab)+µ(e) = 3.

So at least one of µ(de) and µ(ce) equals 2. Let X = abc and Y = abe. By the
same argument, at least one of µ(de) and µ(cd) equals 2. Similarly X = abd and
Y = abe implies at least one of µ(ce) and µ(cd) equals 2. As a consequence of
the arguments above, at least two of µ(cd), µ(ce) and µ(de) equal 2.

Conversely, we show that µ is submodular by checking all the possible cases, that
is, for all X ,Y ⊆ E, the following holds:

µ(X)+µ(Y )≥ µ(X ∪Y )+µ(X ∩Y ). (4.1)

It is trivial that (4.1) holds if one of X and Y is a subset of another, or X and
Y are disjoint, or either |X | ≤ 1 or |Y | ≤ 1. So we assume neither X nor Y is a
subset of another, |X ∩Y | 6= 0 and both |X | ≥ 2 and |Y | ≥ 2. Hence, if |X | = 2,
then |X ∩Y | = 1, that is, µ(X ∩Y ) = 1. We can see that (4.1) fails only when
µ(X) = µ(Y ) = 1 and µ(X ∪Y ) = 2. As a consequence, |X ∪Y |= 3 and |Y |= 2.
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Let X = cd and Y = de. Then X∪Y = cde. By symmetry of µ , we have µ(ab)= 2,
but this implies at least two of µ(cd), µ(ce) and µ(de) equal 2, which means at
least one of µ(cd) and µ(de) equals 2, contradiction. So we assume both |X | ≥ 3
and |Y | ≥ 3. If |X ∩Y | = 1, then |X ∪Y | = 5. It is trivial that (4.1) holds. So
let |X ∩Y | = 2. For the case |X | = 3 and |Y | ≥ 4, we have |X ∪Y | = 5, that is,
µ(X∪Y ) = 0, it is easy to see (4.1) holds. So only consider the case |X |= |Y |= 3,
we have |X ∪Y |= 4, which means µ(X ∪Y ) = 1. Therefore (4.1) fails only when
µ(X) = µ(Y ) = 1 and µ(X ∩Y ) = 2. Let X = abc and Y = abd. Then X ∩Y = ab.
We know that µ(ab) = 2 implies at least two of µ(cd), µ(ce) and µ(de) equal 2,
which means one of µ(de) and µ(ce) equals 2. By symmetry of µ , at least one
of µ(abc) and abd equals 2, contradiction. For the case |X | ≥ 4 and |Y | ≥ 4, it is
trivial that (4.1) holds. Therefore µ is submodular, which complete the proof.

Now we can find all the connected unitary connectivity functions on 5-element
set, which is shown in Table 4.2.

Lemma 4.5. The connectivity functions in Table 4.2 are all the connected unitary
connectivity function, up to isomorphism, on 5-element set.

Proof. For a connected unitary connectivity function with ground set E such that
|E| = 5, the values on singleton are fixed, by symmetry the values on 4-element
set are also fixed. By symmetry knowing all the values on 2-element sets will
determine the connectivity function µ . By Lemma 4.4 (i), for each 2-element set
A⊆ E, either µ(A) = 1 or µ(A) = 2. So we represent each connectivity function
with a graph G such that for all x,y ∈ V (G), x is adjacent with y if and only if
µ({x,y}) = 2.

a b

c

d

e
→ → →

a b

c

d

e

a b

c

d

e

a b

c

d

e

Figure 4.2:

It is clear if G has no edge, then it satisfies Lemma 4.4. So we obtain a connectivity
function, call it K5,1 as shown in Table 4.2.

Let ab be an edge of G. In order to satisfy Lemma 4.4, we need at least two more
edges in the triangle cde, without loss of generality, say cd and de. To satisfy
Lemma 4.4, cd is an edge of G implies ae or be must be an edge of G, without
loss of generality, say ae is an edge of G. Similarly, de is an edge of G implies ac
or bc must be an edge of G. Hence we have two cases.

Case 1: If bc is an edge of G, called it G5 as shown in the figure below, then
Lemma 4.4 holds. Call the corresponding connectivity function K5,2.
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a b

c

d

e

Figure 4.3: G5

Case 2: If ac is an edge of G, then by Lemma 4.4, either bd or be is an edge of G.
If bd is an edge of G, called it G6 as shown in figure below, then it is easy to see
Lemma 4.4 holds. Call the corresponding connectivity function K5,3. If be is an
edge of G, because ae is an edge, by Lemma 4.4, either bd or bc is an edge of G.
So G has more than 6 edges, and will be consider later.

a b

c

d

e
→

a b

c

d

e

Figure 4.4: G6

We have shown that G5 is the only graph with 5 edges that satisfies Lemma 4.4.
It is not hard to see that adding any other edge in G5 will force us to add more
edges, otherwise Lemma 4.4 will not hold. Therefore G6 is the only graph with 6
edges that satisfies Lemma 4.4.

Let G7 be a graph with 7 edges and satisfies Lemma 4.4. Then the complement
G7 has 3 edges. Because G7 has 5 vertices only, two edges in G7 must incident
with a commom vertex. Let cd and de be these two edges and is shown in the
figure below. Then ab must be an edge in G7. If not, ab will be an edge in G7,
for Lemma 4.4 to hold at least one of cd and de is an edge in G7, contradicting
both cd and de are edges in G7. We can check G7 satisfies Lemma 4.4 and the
argument above shows G7 is the only graph with 7 edges that satisfies Lemma 4.4.
Call the corresponding connectivity function K5,4.
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e

Figure 4.5: G7
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Let G8 be a graph with 8 edges that satisfies Lemma 4.4. Then G8 has 2 edges,
the similar argument as above shows that they cannot have a common vertex since
there is no third edge to make Lemma 4.4 hold. G8 is shown in the figure below
and it is not hard to show that it satisfies Lemma 4.4. Call the corresponding
connectivity function K5,5.

a b

c

d

e

Figure 4.6: G8

Let G9 be a graph with 9 edges. Then it is isomorphic to K5\e as show below.
It is easily to see from the figure below that it satisfies Lemma 4.4. Call the
corresponding connectivity function K5,6.

a b

c

d

e

Figure 4.7: G9

a b

c

d

e

Figure 4.8: G10

If G10 is a graph with 10 edges, then it is isomorphic to the complete graph K5. It
satisfies Lemma 4.4. Call the corresponding connectivity function K5,7.

In the rest of this section, we generalise the result of Lemma 4.3 to Lemma 4.7,
which is a sufficient condition for a connectivity function to be non-matroidal and
will be used later in Section 4.2. In particular, Lemma 4.7 immediately implies
K5,2 and K5,4 are non-matroidal connectivity functions.

Let M be a matroid on E and let X ,Y ⊆ E. The local connectivity between X and
Y , denoted uM(X ,Y ), is defined by uM(X ,Y ) = r(X)+ r(Y )− r(X ∪Y ). We can
see uM(X ,Y )≥ 0 for all X ,Y ⊆ E, since the rank function r is submodular.



CHAPTER 4. CONNECTIVITY FUNCTIONS ON SMALL SETS 30

E = {a,b,c,d,e} K5,1 K5,2 K5,3 K5,4 K5,5 K5,6 K5,7
ab 1 2 2 1 1 1 2
ac 1 1 2 2 2 2 2
ad 1 1 1 2 2 2 2
ae 1 2 2 2 2 2 2
bc 1 2 1 2 2 2 2
bd 1 1 2 2 2 2 2
be 1 1 1 2 2 2 2
cd 1 2 2 1 1 2 2
ce 1 1 1 2 2 2 2
de 1 2 2 1 2 2 2

Matroidal Yes No Yes No Yes Yes Yes

Table 4.2: Connected connectivity functions on 5-element set

The following lemma (Oxley, Semple, and Whittle [6] ) gives useful link between
the local connectivity and the connectivity function of a matroid.

Lemma 4.6. Let X and Y be disjoint subsets of the ground set of a matroid M.
Then

uM(X ,Y )+uM∗(X ,Y ) = λ (X)+λ (Y )−λ (X ∪Y ).

Proof. The result follows easily by substitution using the facts that X and Y are
disjoint and Lemma 2.9.

Lemma 4.7. Let λ be a unitary connectivity function on E. If there is a partition
{A,B,C,D} of E such that λ (A)= λ (B)= λ (C)= λ (D)= λ (A∪B)= λ (A∪C)=
1, and λ (A∪D) = 2, then λ is non-matroidal.

Proof. In this proof, we denote X∪Y by XY whenever X and Y are disjoint subsets
of E. Assume M is a matroid with r(M) = n and connectivity function λ which
satisfies the properties in the lemma. By Lemma 4.6, uM(A,D)+uM∗(A,D) = 0,
therefore we have uM(A,D) = uM∗(A,D) = 0. By definition of local connectivity

r(A)+ r(D) = r(AD). (4.2)

The same argument also shows

r(B)+ r(C) = r(BC). (4.3)

Substituting Equations (4.2) and (4.3) into λ (AD) = r(AD)+ r(BC)− r(M) = 2,
obtain

r(A)+ r(B)+ r(C)+ r(D) = n+2. (4.4)

Since λ (A) = 1,
r(A)+ r(BCD) = n+1. (4.5)
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Combining (4.4), (4.5) and (4.3), obtain

r(BC)+ r(D) = r(BCD)+1. (4.6)

By Lemma 4.6, uM(A,B)+uM∗(A,B) = 1, that is, we have either uM(A,B) = 0
or uM∗(A,B) = 0, without loss of generality, say uM(A,B) = 0, hence

r(A)+ r(B) = r(AB). (4.7)

We show that exactly one of uM(A,B) and uM(C,D) is 1 and the other is 0. Sup-
pose both uM(A,B) and uM(C,D) are 0, then r(A)+ r(B)+ r(C)+ r(D) = n+1
as λ (A) = 1, contradicting (4.4). Hence uM(C,D) = 1, therefore

r(C)+ r(D) = r(CD)+1. (4.8)

By the same argument as above, we have either uM(A,C) = 0 and uM(B,D) = 1,
or uM(A,C) = 1 and uM(B,D) = 0. Without loss of generality, assume the former,
then

r(A)+ r(C) = r(AC), (4.9)

r(B)+ r(D) = r(BD)+1. (4.10)

By (4.8) and (4.10), we have

r(B)+ r(C)+2r(D) = r(CD)+ r(BD)+2. (4.11)

Applying (4.3) and (4.6) to the left-hand-side of the equation above and submod-
ularity to the right hand of the equation above, obtain

r(BCD)+ r(D)≥ r(BCD)+ r(D)+1. (4.12)

Contradiction.

The following lemmas are direct results of Lemma 4.7 by finding the right parti-
tion of ground set of the connectivity functions.

Corollary 4.8. K5,2 is a non-matroidal connectivity function.

Proof. Let A= {a}, B= {d}, C = {c,e}, D= {b}. Then lemma holds by applying
Lemma 4.7.

Corollary 4.9. K5,4 is a non-matroidal connectivity function.

Proof. Let A= {a,b}, B= {c}, C = {e}, D= {d}. Then lemma holds by applying
Lemma 4.7.

In fact K5,2 and K5,4 are the only non-matroidal unitary connected connectivity
function on 5-element set. It is easy to see that K5,1 is the connectivity function
of U1,5 and K5,7 is the connectivity of U2,5. We show K5,3,K5,5,K5,6 are matroidal
by giving matroids in Figure 4.1.
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b a a e c a c d e

b dd
c

e b
Figure 4.9: The matroids from left to the right have connectivity function
K5,3,K5,5,K5,6 respectively. The one on the left is the uniform matroid U2,2 ex-
cept that {b,c,e} is a parallel class and {a,b} is a parallel pair, the middle one is
the uniform matroid U2,3 except that {a,b} is a parallel pair and {c,d} is a parallel
pair, and the one on the right is the uniform matroid U2,4 except that {a,b} is a
parallel pair.

4.2 The elision operation and matroidal connectiv-
ity functions

We have shown that K4,2 is not matroidal. However the question remains as to
whether it can be obtained from a matroid by the elision operation. In this section
we show that this cannot happen. We also show that the class of matroidal con-
nectivity functions is not closed under the elision operation by giving a counter
example.

Lemma 4.10. Let µ be a connected unitary connectivity function on E. If µ ∗X
is isomorphic to K4,2 for some X ⊆ E, then there exist a partition {A,B,C,D}
of E such that µ(A) = µ(B) = µ(C) = µ(D) = µ(A∪B) = µ(A∪C) = 1 and
µ(A∪D) = 2.

Proof. In this proof, we denote X ∪Y by XY if X and Y are disjoint subsets of
E. Let µ be a minimal counter example with respect to the size of the ground set
E. That is, µ ∗X is isomorphic to K4,2 for some X ⊆ E, but there is no partition
of E as described in the lemma. Recall that the order of elision does not matter.
Let e ∈ X . By the definition of elision operation, we can easily see that µ ∗ e
is connected and unitary. Then by the minimality of the µ , we know µ ∗ e is a
connectivity function on E − e such that (µ ∗ e) ∗ (X − e) is isomorphic to K4,2,
and there exist a partition {A,B,C,D} of E − e such that µ ∗ e(A) = µ ∗ e(B) =
µ ∗ e(C) = µ ∗ e(D) = µ ∗ e(AB) = µ ∗ e(AC) = 1 and µ ∗ e(AD) = 2.

Suppose µ(A) = 2, then µ(BCD) = µ(A∪e) = 1= µ ∗e(BCD). By the contrapos-
itive of Lemma 3.7 (iv), since B is a subset of BCD, we have µ(B) 6= µ ∗e(B)+1,
that is, µ(B) = µ ∗ e(B) = 1. Similarly, µ(C) = µ(D) = 1. Then we can choose
the partition (A∪ e,B,C,D). By applying the contrapositive of Lemma 3.7 (iv),
we have µ(AB∪ e) = µ(AC∪ e) = 1 and µ(AD∪ e) = 2, so the lemma holds.

Now we assume µ(A) = µ(B) = µ(C) = µ(D) = 1. It follows from the submod-
ularity of connectivity functions that µ(AD) ≤ µ(A)+ µ(D) = 2 and µ(BC) ≤
µ(B)+ µ(C) = 2. If either µ(AD) = 1 or µ(BC) = 1 then by the definition of
µ ∗ e and the symmetry of µ , we have µ ∗ e(AD) = µ ∗ e(BC) = 1, contradiction.
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So µ(AD) = µ(BC) = 2.

As µ ∗ e(AB) = 1, we have µ(AB) = 1 or µ(CD) = 1. Without loss of generality,
let µ(AB) = 1. Also µ ∗ e(AC) = 1 implies either µ(AC) = 1 or µ(BD) = 1. If
µ(AC) = 1, let A′ = A, B′ = B, C′ = C and D′ = D∪ e. Then µ(A′) = µ(B′) =
µ(C′) = µ(D′) = µ(A′B′) = µ(A′C′) = 1 and µ(A′D′) = 2. Contradicting µ is
a counter example. So let µ(BD) = 1. We have a partition {A′,B′,C′,D′} of E
where A′ = A, B′ = B, C′ =C∪e and D′ = D, such that µ(A′) = µ(B′) = µ(C′) =
µ(D′) = µ(A′B′) = µ(A′C′) = 1 and µ(A′D′) = 2. Contradicting µ is a counter
example. Therefore the counter example does not exist.

Combining Lemma 4.10 and Lemma 4.7 we obtain the following lemma directly.

Lemma 4.11. Let µ be a unitary connectivity function on E. If µ ∗X is isomorphic
to K4,2 for some X ⊂ E, then µ is non-matroidal.

The following lemma shows that the class of matroidal connnectivity functions is
not closed under the elision operation.

Lemma 4.12. There exist a matroid M on E such that λM ∗ e is not a matroidal
connectivity function, where e ∈ E.

ea1

a2

b1

b2 c1

c2 d1

d2
Figure 4.10: A matroid such that the elision of the element e from its connectivity
function is non-matroidal.

Proof. Consider the matroid M in Figure 4.2, we show that λM ∗e is non-matroidal.
For convenience, in this proof we will use µ to denote λ ∗ e, use xyz to denote the
set {x,y,z}. For x ∈ {a,b,c,d}, we use x to denote any one of x1 and x2, for in-
stance, r(a) = 1 means for all a ∈ {a1,a2}, r(a) = 1, and λ (ab) = 2 means for all
a ∈ {a1,a2} and for all b ∈ {b1,b2}, λ (ab) = 2, etc.

It is not hard to see that the connectivity function µ is

µ(X) =


1 if X or E ′−X is in E1∪A∪{a1a2b1b2},
2 if X or E ′−X is in E2∪B∪{a1a2c1c2,a1a2d1d2}−A,
3 else,

(4.13)

where E ′ = E− e,
En = {X : |X |= n} for n = {1,2},
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A = {a1a2,b1b2,c1c2,d1d2},
B = {x∪ y : x ∈ E1,y ∈ A, |x∪ y|= 3}.
Suppose µ is a connectivity function of a matroid. Since |E − e| = 8 and the
maximum connectivity value of a subset of E− e is 3, up to duality we only need
to check the cases r(M) = 3 and r(M) = 4.

Suppose r(M) = 3. Since µ(ab) = µ(cd) = 2, r(a1a2b1b2)≥ 2 and r(c1c2d1d2)≥
2. Hence we can see µ(a1a2b1b2) = r(a1a2b1b2)+ r(c1c2d1d2)− 3 = 1 implies
that

r(a1a2b1b2) = r(c1c2d1d2) = 2. (4.14)

As rank function is increasing it follows from (4.14) that r(a1a2b1)≤ 2 and since
µ(a1a2b1) = 2, we have r(a1a2b1) = 2 and r(b2c1c2d1d2) = 3 which implies that
r(b1b2c1c2d1d2) = 3. Therefore µ(a1a2) = 1 implies r(a1a2) = 1. Similarly, we
have r(b1b2) = r(c1c2) = r(d1d2) = 1.

As rank function is submodular, we have r(a1a2c1c2) ≤ 2 and r(b1b2d1d2) ≤ 2.
Hence µ(a1a2c1c2)≤ 2+2−3 = 1 6= 2, contradiction.

Suppose r(M) = 4. For any X ⊆ E such that |X | = 3 and µ(X) = 3, we have
r(X) = 3. So µ(abc) = 3 implies

r(abc) = 3. (4.15)

As a consequence of (4.15) r(ab) = 2. Hence we have r(a1a2b1b2) ≥ 2. Sim-
ilarly, µ(acd) = 3 implies r(c1c2d1d2) ≥ 2. As µ(a1a2b1b2) = 1, either one of
µ(a1a2b1b2) and µ(c1c2d1d2) has value 2 and the other has value 3. Without loss
of generality say

r(a1a2b1b2) = 2 and r(c1c2d1d2) = 3. (4.16)

By the properties of rank function and the equations above we have

2≤ r(a1a2b1b2c1)≤ 3 and 2≤ r(c2d1d2)≤ 3. (4.17)

It follows from µ(c2d1d2) = 2 that r(a1a2b1b2c1)+ r(c2d1d2) = 6. Combining
this with (4.17), we obtain r(c2d1d2) = r(a1a2b1b2c1) = 3. As a consequence,
r(d1d2) = 2. Therefore we have

r(a1a2b1b2c1c2) = µ(d1d2)+ r(M)− r(d1d2) = 1+4−2 = 3. (4.18)

Since µ(d1) = µ(d2) = 1, it is not hard to see

r(a1a2b1b2c1c2d) = 4. (4.19)

By submodularity of r and Equations (4.15),(4.19) and (4.18), we have

r(a1b1c1d1)≥ r(a1b1c1)+r(a1a2b1b2c1c2d1)−r(a1a2b1b2c1c2) = 3+4−3 = 4.
(4.20)
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r(a2b2c2d2)≥ r(a2b2c2)+r(a1a2b1b2c1c2d2)−r(a1a2b1b2c1c2) = 3+4−3 = 4.
(4.21)

But, µ(a1b1c1d1) = 3 which means r(a1b1c1d1)+ r(a2b2c2d2) = 7 < 8, a contra-
diction.



Chapter 5

Connectivity Functions and
Polymatroids

So far we have defined polymatroids to be integer-valued, but in this chapter it is
convenient to extend the definition. A fractional polymatroid P on E is an ordered
pair (E,r), where E is a finite set and r : 2E → Q+∪{0} is a set function that is
normalised increasing and submodular. The fractional polymatroid on E is half-
integral if r(A) ∈ {n

2 : n ∈ Z+ ∪{0}} for all A ⊆ E. From now on we will refer
to a polymatroid that takes only integer values as an integer polymatroid. Recall
that a k-polymatroid P = (E,r) is an integer polymatroid such that r(e)≤ k for all
e ∈ E. A k-polymatroid is strict if r(e) = k for all e ∈ E.

Let P be a fractional polymatroid on E. We define the connectivity function of P,
denoted λP, by

λP(X) = r(X)+ r(E−X)− r(E)

for all X ⊆ E. Strictly speaking, λP may not be a connectivity function as we
have insisted that connectivity functions are integer-valued. However, it may be
the case that λP is integer-valued (and hence a connectivity function) even when
P is not integer-valued. We give an example below.

Example 5.1. Let G be a graph as shown in Figure 5.1. Then λG(a) = λG(b) =
λG(c) = λG(d) = λG(ab) = λG(ac) = 2 and λG(ad) = 4. It is easy to see that
µ defined by µ(X) = 1

2λG(X) for all X ⊆ E is also a connectivity function on E.
More specifically, µ = K4,2, where K4,2 is the non-matroidal unitary connectivity
as shown in Table 4.1.

Let P be a fractional polymatroid on {a,b,c,d} with r defined as

r(X) =


1 if X ∈ {{a},{b},{c},{d}},
3
2 if X ∈ {{a,b},{b,d},{c,d},{a,c}},
2 else.

Then the connectivity function of P is λP(a) = λP(b) = λP(c) = λP(d) = λP(ab) =
λP(ac) = 1 and λP(ad) = 2. That is λP = K4,2. Hence λP is integer-valued.

36
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a d
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Figure 5.1:

We have shown in Section 4.1 that not every unitary connectivity function is the
connectivity function of a matroid. It is interesting to ask if there are natural
strucures that give us all connectivity functions. In this chapter we answer this
question in the affirmative by proving that every connectivity function is the con-
nectivity function of a half-integral polymatroid. In particular, we prove

Theorem 5.2. Let µ be a connectivity function on E. Then there is a half-integral
polymatroid P on E such that µ = λP.

We also give related results giving more specific details about the structure of the
polymatroids. To do this we will need to derive certain types of polymatroids.

5.1 Proof of the main theorem

Let P be an integer polymatroid on E and let e ∈ E. We say e is compact if
rP(e) = λP(e), and the integer polymatroid P is compact if every element of P is
compact.

In this section we first show that for any integer polymatroid P there is a compact
integer polymatroid P′ such that λP = λP′ . And then we prove the main result.

Let µ be a connectivity function on E and let X ⊆ E. We define

||X ||µ = ∑
x∈X

µ(x).

We write ||X ||µ as ||X || if µ is clear from the context.

The following lemma shows how to construct a compact polymatroid from an
integer polymatroid without changing the connectivity function.

Lemma 5.3. Let P = (E,r) be an integer polymatroid, and e ∈ E is not compact.
Define r′ on E by

r′(X) =

{
r(X) if e /∈ X,
r(X)+λP(e)− r(e) if e ∈ X,

for all X ⊆ E. Then the following hold.
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(i) P′ = (E,r′) is an integer polymatroid;

(ii) λP′ = λP;

(iii) e is compact in P′.

Proof. (i) It is trivial r′ is integer-valued. Let X ,Y,Z ⊆ E such that X ⊆ Y . It is
trivial that r′( /0) = r( /0) = 0. We show r′ is increasing. If e /∈ Y , then r′(X) =
r(X) ≤ r(Y ) = r′(Y ). If e ∈ X , then r′(X) = r(X)+λ (e)− r(e) ≤ r(Y )+λ (e)−
r(e) = r′(Y ). If e ∈Y but e /∈ X , assume r′(X)> r′(Y ) then r(X)> r(Y )+λ (e)−
r(e) = r(Y )+ r(e)+ r(E− e)− r(E)− r(e). This implies r(X)+ r(E) > r(Y )+
r(E − e). By submodularity of r, we have r(X)+ r(E) > r(Y − e)+ r(E), thus
r(X) > r(Y − e) contradiction. Next we show r′ is submodular. Observe that if e
is in both X and Z then e is in both X ∪Z and X ∩Z. If e is in exactly one of X and
Z then e is in exactly one of X ∪Z and X ∩Z. If e is not in both X and Z then e is
not in both X ∪Z and X ∩Z. Let k = |X ∪ e−X |+ |Z∪ e−Z|. Then

r′(X)+ r′(Z) = r(X)+ r(Z)+ k(λr(e)− r(e))
≥ r(X ∪Z)+ r(X ∩Z)+ k(λr(e)− r(e))
= r′(X ∪Z)+ r′(X ∩Z).

(ii) We know e is in exactly one of X and E −X for any X ⊆ E. Thus r′(X)+
r′(E−X) = r(X)+ r(E−X)+λP(e)− r(e), by the definition of r′. Therefore

λP′(X) = r′(X)+ r′(E−X)− r′(E)
= r(X)+ r(E−X)+λP(e)− r(e)− (r(E)+λP(e)− r(e))
= r(X)+ r(E−X)− r(E)
= λP(X)

(iii) By the definition of r′ and (ii) above we have

r′(e) = r(e)+λP(e)− r(e) = λP(e) = λP′(e).

The following corollary is a direct consequence of Lemma 5.3.

Corollary 5.4. For any integer polymatroid P, there is a compact integer polyma-
troid P′ such that λP′ = λP.

Now we start to prove our main theorem. The following lemma is elementary.

Lemma 5.5. Let µ be a connectivity function on E. Then the following hold.

(i) µ(X)≤ ||X || for all X ⊆ E.
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(ii) µ(X)−µ(Y )≤ ||Y −X || for all X ⊆ Y ⊆ E.

Proof. Part (i) follows from applying the submodularity of µ inductively. It is
trivial that (ii) holds if µ(X) ≤ µ(Y ), so we assume µ(X) > µ(Y ). By Lemma
2.2, we have µ(X)−µ(Y )≤ µ(Y −X). Then part (ii) follows from part (i).

Lemma 5.6. Let µ be a connectivity function on E. Define a set function t on
E by t(X) = µ(X)+ ||X || for all X ⊆ E. Then P = (E, t) is a compact integer
polymatroid. Moreover λP(X) = 2µ(X) for all X ⊆ E.

Proof. It is trivial that t is normalised. Let X ,Y,Z ⊆ E such that X ⊆ Y . First we
show t is increasing. Suppose t(X) > t(Y ), that is µ(X)+ ||X || > µ(Y )+ ||Y ||.
Then µ(X)− µ(Y ) > ||Y ||− ||X || = ||Y −X ||, contradicting Lemma 5.5 (ii). We
next show t is submodular. As µ is submodular, then

t(X)+ t(Z) = µ(X)+ ||X ||+µ(Z)+ ||Z||
≥ µ(X ∪Z)+µ(X ∩Z)+ ||X ∪Z||+ ||X ∩Z||
= t(X ∪Z)+ t(X ∩Z).

Since µ(X) and ||X || are both integers, t(X) is also an integer, for all X ⊆ E.
Hence P is an integer polymatroid. It follows from the definition of λP that

λP(X) = t(X)+ t(E−X)− t(E)
= µ(X)+ ||X ||+µ(E−X)+ ||E−X ||−µ(E)−||E||
= µ(X)+µ(E−X)

= 2µ(X).

In particular, λP(e) = 2µ(e) = µ(e)+ ||e||= t(e) for all e ∈ E. So P is compact.

Lemma 5.7. Let P be an integer polymatroid on E with rank function r. Let r′ be
a set function on E defined by r′(A) = 1

2r(A) for all A⊆ E. Then P′ = (E,r′) is a
half-integral polymatroid.

Proof. It is obvious that r′( /0) = 0. Let X ,Y,Z ⊆ E such that X ⊆Y . We show r′ is
increasing. As r is increasing, so r′(X) = 1

2r(X)≤ 1
2r(Y ) = r′(Y ). Next we show

r′ is submodular. As r is submodular, so

r′(X)+r′(Z) =
1
2

r(X)+
1
2

r(Z)≥ 1
2
(r(X ∪Z)+r(X ∩Z)) = r′(X ∪Z)+r′(X ∩Z).

Since P is an integer polymatroid, r(A) is an integer for all A ⊆ E. So r′(A) =
1
2r(A)∈ {n

2 : n∈Q+∪{0}} for all A⊆ E. Hence P′ is a half-integral polymatroid.

Combining Lemma 5.6 and Lemma 5.7 we have the following corollary, which
implies Theorem 5.2.
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Corollary 5.8. Let µ be a connectivity function on E. Define a set function r
by r(X) = 1

2(µ(X) + ||X ||) for all X ⊆ E. Then P′ = (E,r) is a half-integral
polymatroid such that λP = µ .

5.2 Connectivity polymatroids

In this section we restrict our attention to unitary connectivity functions. We study
the 2-polymatroids constructed from unitary connectivity functions as shown in
Lemma 5.6, and give some interesting results about the structure of these 2-
polymatroids. We start with defining this class of polymatroids and then give
a characterization of these polymatroids.

Let µ be a unitary connectivity function on E. Then the 2-polymatroid, denoted
P(µ), with rank function rP(µ) defined by rP(µ)(X) = ||X ||µ +µ(X) for all X ⊆ E
is called a connectivity polymatroid generated by µ .

Let P = (E,r) be a k-polymatroid. The dual of P, denoted by P∗, is a polymatroid
with rank function r∗ defined as

r∗P(X) = k|X |+ rP(E−X)− rP(E) (5.1)

for all X ⊆ E. Whittle showed in [9] that this is the only dual operation in k-
polymatroids that interchanges deletion and contraction, and (r∗P)

∗ = rP.

Theorem 5.9. Let P be a strict 2-polymatroid. Then P is a connectivity polyma-
troid if and only if P∗ = P.

Proof. P is a strict 2-polymatroid, by the definition of r∗P, we have

r∗P(X) = 2|X |+ rP(E−X)− rP(E). (5.2)

If P is a connectivity polymatroid generated by a connected unitary connectivity
function µ , then for any X ⊆ E, we have

rP(X) = ||X ||µ +µ(X) = |X |+µ(X). (5.3)

Applying (5.3) to (5.2) and simplify, obtain

r∗P(X) = 2|X |+µ(E−X)+ |E−X |−µ(E)−|E|= |X |+µ(X) = rP(X). (5.4)

Therefore P∗ = P.

Conversely, r∗P(X) = rP(X) for all X ⊆ E. Rearranging (5.2) we have

rP(E−X)− rP(E) = r∗P(X)−2|X | (5.5)
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Hence we have

λP(X) = rP(X)+ rP(E−X)− rP(E) (5.6)
= rP(X)+ r∗P(X)−2|X | (5.7)
= 2(rP(X)−|X |). (5.8)

Therefore λP takes even values. Obviously, the set function µ defined by

µ(X) =
1
2

λP(X) = rP(X)−|X |

is a unitary connectivity function. Rearranging the equation above, obtain

rP(X) = |X |+µ(X) = ||X ||µ +µ(X). (5.9)

Therefore P is a connectivity polymatroid generated by µ .

In Section 3.5 we defined the elision operation in unitary connectivity functions
and showed that the class of unitary connectivity functions is closed under elision.
Now we define the elision operation for polymatroids and then prove a very inter-
esting result which shows the elision operation in unitary connectivity functions
and the elision in connectivity polymatroids coincide. This result immediately
implies the class of connectivity functions is closed under elision.

Let P be a 2-polymatroid on E, and l ∈ E. The elision of l from P, denoted P∗ l,
is defined by

rP∗l(X) =

{
rP(X)−1 if rP(X) = rP(X ∪ l)

rP(X) if rP(X)< rP(X ∪ l), (5.10)

for all X ⊆ E. Intuitively, this operation is achieved by adding a point freely on the
line l and then contracting the added point (this operation is also called principal
truncation, see for example in [5, Section 7.3]).

Theorem 5.10. Let P(µ) be a connectivity polymatroid on E generated by a uni-
tary connectivity function µ and let l ∈ E. Then

P(µ)∗ l = P(µ ∗ l).

Proof. By definition of µ ∗ l, for all X ⊆ E− l

µ ∗ l(X) =

{
µ(X) if µ(X)≤ µ(X ∪ l),
µ(X)−1 if µ(X)> µ(X ∪ l). (5.11)

Then by the definition of connectivity polymatroids, rP(µ∗l)(X) = µ ∗ l(X)+ |X |,
we have

rP(µ∗l)(X) = µ ∗ l(X)+ |X |=
{

µ(X)+ |X | if µ(X)≤ µ(X ∪ l),
µ(X)+ |X |−1 if µ(X)> µ(X ∪ l). (5.12)
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Since rP(µ)(X) = µ(X)+ |X |, the equation above becomes

rP(µ∗l)(X) =

{
rP(µ)(X) if µ(X)≤ µ(X ∪ l),
rP(µ)(X)−1 if µ(X)> µ(X ∪ l). (5.13)

Notice that µ(X) ≤ µ(X ∪ l) if and only if µ(X) < µ(X ∪ l)+ 1 if and only if
µ(X) + |X | < µ(X ∪ l) + |X ∪ l|, that is by definition, rP(µ)(X) < rP(µ)(X ∪ l).
Similarly µ(X)> µ(X ∪ l) if and only if rP(µ)(X) = rP(µ)(X ∪ l). Hence

rP(µ∗l)(X) =

{
rP(µ)(X) if rP(µ)(X)< rP(µ)(X ∪ l),
rP(µ)(X)−1 if rP(µ)(X) = rP(µ)(X ∪ l). (5.14)

We know from the definition that

rP(µ)∗l(X) =

{
rP(µ)(X) if rP(µ)(X)< rP(µ)(X ∪ l),
rP(µ)(X)−1 if rP(µ)(X) = rP(µ)(X ∪ l). (5.15)

Therefore rP(µ∗l)(X) = rP(µ)∗l(X) for all X ⊆ E− l.

The following corollary is a direct consequence of Theorem 5.10.

Corollary 5.11. Let P be a connectivity polymatroid on E and l ∈ E. Then P ∗ l
is a connectivity polymatroid.

Finally, let us restrict our attention to matroidal connectivity functions. Notice that
if µ is a connected unitary connectivity function on E, then rP(µ)(X) = |X |+µ(X)
for all X ⊆ E.

The following result reduces the interesting question of determining whether a
unitary connectivity function is matroidal to a decomposition problem in a 2-
polymatroid.

Theorem 5.12. Let µ be a connected unitary connectivity function on E and let
P(µ) be the connectivity polymatroid generated by µ . Then µ is a matroidal
connectivity function if and only if there is a connected matroid M on E such that

rP(µ)(X) = rM(X)+ rM∗(X)

for all X ⊆ E.

Proof. Suppose µ is matroidal. Then by definition µ = λM for some matroid M,
that is, rP(µ)(X) = ||X ||+µ(X) = |X |+λM(X) for all X ⊆ E. We also know that
λM(X) = rM(X)+ rM∗(X)− |X |, so rP(µ)(X) = rM(X)+ rM∗(X). The converse
holds by reversing the argument above.
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