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Abstract 

In this thesis, the role of platelets as potential drivers of both thrombotic and bleeding 

risk in patients with atherosclerosis and the influence of platelets on the immune 

system were investigated. The prevalence of high and low residual platelet reactivity 

phenotypes and the association of these phenotypes with thrombotic and bleeding 

risk in acute coronary syndrome (ACS) patients and patients with atherosclerotic 

vascular disease were examined. In ACS patients, the clinical factors that influence the 

residual platelet phenotype including the presence of genetic polymorphisms were 

tested. In addition to residual platelet reactivity, the utility of other cardiac biomarkers 

to predict perioperative and 1-year risk in vascular patients was also examined. To 

investigate the influence of platelets on the immune system, platelet-lymphocyte 

interactions in vascular patients and healthy volunteers were analysed.  

 

In ACS patients treated with aspirin and clopidogrel, the prevalence of high on 

treatment residual platelet reactivity (as identified with the Multiplate assay), was 

common in a New Zealand population and high residual platelet reactivity levels could 

be significantly reduced with prasugrel treatment. This phenotype was predicted by 

the presence of diabetes, high platelet count and a low clopidogrel dose. It was also 

demonstrated that although the prevalence of loss of function and gain of function 

CYP2C19 alleles were high in our population, genotype had little influence on residual 

platelet reactivity levels in ACS patients. Furthermore, both phenotype and diabetes 

were significantly and independently associated with major adverse cardiovascular 

events (MACE) at 1 year. Genotype was not found to be a significant driver of risk. The 

incidence of major bleeding in this cohort was low and not predicted by platelet 

reactivity phenotype or genotype. 

 

In stable vascular patients the study found the level of residual platelet reactivity on 

aspirin therapy was not significantly associated with MACE or bleeding following 

major elective surgery. However, baseline high sensitivity troponin T was the most 

predictive biomarker and an elevated preoperative level was significantly associated 

with an increased risk of MACE in both the short and long term. Bleeding was frequent 
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and occurred early following surgery in the majority of patients and open abdominal 

aortic aneurysm repair surgery was the only predictor of bleeding.  

 

Investigating the interactions between platelets and lymphocytes in atherosclerosis, 

the study found higher levels of platelet-T cell conjugates in patients with vascular 

disease compared to healthy controls. There was also interesting changes in the CD4 

T cell activation phenotype with a switch from a predominant memory phenotype in 

healthy controls to an effector activation phenotype in vascular patients. A follow on 

study investigated the impact of platelets on CD4 T cells in more depth and found that 

platelets had a potent stimulatory effect on CD4 T cell differentiation and cytokine 

production ex vivo in healthy volunteers. Furthermore, the CD4 T cell stimulation 

provided by platelets was eliminated with in vivo prasugrel treatment. The influence 

of platelets on the immune system demonstrated in these two studies suggests that 

antiplatelet therapy may modulate not only thrombosis but also inflammation.   
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1.1 Introduction Overview 

Cardiovascular disease is both the current and projected number one cause of 

mortality and morbidity in the developed world. The impact of this disease is even 

greater in New Zealand (NZ) with 6000 patients dying from an Acute Coronary 

Syndrome (ACS) or "heart attack' every year and a disproportionate number of 

patients represented by Maori or Pacific Island ethnicities. Atherosclerosis is the 

principle underlying pathophysiology for the majority of cardiovascular disease and 

the platelet plays a central role in the progression and destabilisation of 

atherosclerosis. This is highlighted by the frontline treatment of ACS with antiplatelet 

agents such as aspirin and clopidogrel. The use of these treatments has been shown 

to be highly effective in reducing rates of death, recurrent myocardial infarction (MI), 

ischaemic stroke and stent thrombosis following an ACS. However, it is now 

recognised that the response to aspirin and clopidogrel is highly variable with patients 

lying somewhere on a spectrum of on treatment platelet reactivity. High on treatment 

platelet reactivity (HOTPR) results in an inadequate inhibition of platelets, which has 

been associated with an increased risk of ischaemic events. Low on treatment platelet 

reactivity (LOWPR) at the other end of the spectrum, leads to a significant decrease in 

clotting ability which has been linked to an increased risk of major bleeding. This 

variability suggests the presence of a therapeutic window when treating patients with 

aspirin and clopidogrel where both ischaemic and bleeding risk is reduced. Identifying 

where a patient sits on this platelet reactivity spectrum has been made possible by 

platelet function assays that test a patients’ response to agonist stimulation. More 

potent new antiplatelet agents have the potential to decrease on treatment platelet 

reactivity and in the right patient population group guided by platelet function testing, 

reduce ischemic events.  
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1.2 Atherosclerosis 

1.2.1 Pathophysiology  

Atherosclerosis is an inflammatory disease and the main cause of coronary artery and 

vascular disease. Atherosclerotic lesions develop in the intima of arteries with an 

asymmetrical pattern of thickening and are characterised by the presence of lipids, 

immune cells, connective tissue elements, endothelial and smooth muscle cells (1). 

The progression of simple lesions or fatty streaks to complex vulnerable plaques is 

shown in Figure 1-1.  

 

Fatty streaks are comprised largely of lipid-laden macrophages and T cells 

accumulating beneath the endothelium (2) and preferentially distribute at areas in the 

vasculature where blood flow is low and oscillatory or “turbulent”(3). This turbulent 

flow limits the exposure of endothelial cells to nitric oxide in the blood, which leads to 

an increase in endothelial permeability, leukocyte adhesion and endothelial cell death 

supporting initiation and progression of atherosclerotic lesions (4). Oxidization of low-

density lipids (LDL) in the intima leads to the release of phospholipids that can also 

activate endothelial cells and cause dysfunction (5). Therefore both hemodynamic 

strain and lipid oxidisation contribute to initiating inflammation in the artery. Platelets 

are one of the first cells to arrive at the site of endothelial activation and have been 

shown to participate in recruitment and aiding infiltration of leukocytes at the site of 

injury (6). The prevalence of these fatty streaks is high in the general population and 

can be found in young patients. They are subclinical and never cause symptoms but 

can progress on to complex lesions or eventually disappear (7).  
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Figure 1-1 Progression of atherosclerotic plaques 

The schematic depicts the sequences involved in the progression of atherosclerosis. These 
include the main histology findings associated with progression of lesions, the onset of each 
stage according to a patients age, the main growth mechanism involved at each stage and the 
clinical manifestation of each stage. With progression of atherosclersosis there is also an 
increase in endothelial dysfunction and complexity of the lesion. Image reproduced with 
permission from Creative Commons Attribution-Share Alike 3.0 Unported.  

 

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
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As lesions develop, a core of foam cells and extracellular lipid droplets expands with a 

smooth muscle cell and collagen-rich matrix forming the surrounding cap. This process 

involves a mass infiltration of immune cells into the plaque including monocytes, T 

cells and dendritic cells creating a rich pro-inflammatory milieu of cytokines and 

growth factors (8, 9). These cells preferentially deposit at the shoulder of plaques with 

a necrotic core of debris, lipids and dead cells (8).  As these lesions develop and expand 

in size, the artery enlarges to compensate for the extra thickness of the atheroma and 

maintain flow in the lumen of the artery. However, if this enlargement of the artery 

progresses beyond the thickness of the atheroma, then an aneurysm is created (10). 

Stenosis is a relatively late event in the atherosclerotic process and is often a result of 

repeated plaque rupture and fibrous remodelling.  

1.2.2 Immune system 

The immune system is involved in both the initiation and progression of 

atherosclerotic plaques. Not only are immune cells present in large numbers at the 

early stages, their effector cells can accelerate or modulate progression and 

exacerbation of the local inflammatory environment can elicit an ACS or stroke. One 

of the critical elements for the development of atherosclerosis is the production of 

macrophage colony stimulating factor (M-CSF) in the inflamed intima that induces the 

differentiation of monocytes to macrophages as they enter the plaque (11). 

Differentiation induces the up-regulation of scavenger receptors and toll-like 

receptors on macrophages, which allows recognition and internalisation of oxidized 

LDL (12, 13). The scavenger receptors function to destroy internalised LDL but if 

accumulation is too great, macrophages can be transformed into the prototypical 

foam cell. In contrast, toll-like receptor internalisation of oxidised LDL can initiate 

signal cascades leading to cell activation (13). This activation of macrophages induces 

the release of pro-inflammatory cytokines, proteases and reactive oxygen species (7). 

These two processes promote cell death, further infiltration of immune cells and 

weakening of the surrounding collagenous structure.    

Large populations of CD4+ T cells take residence in atherosclerotic plaques. Their 

infiltration is in response to the presentation of oxidised LDL and heat shock protein 
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60 antigens by trafficking macrophages and dendritic cells in the blood (14-16).  The 

interaction between T cell and antigen causes an activation cascade in the T cell 

resulting in the expression of a set of cytokines, cell-surface molecules and enzymes. 

The type 1 helper (Th1) response is the predominant phenotype of CD4 T cells in the 

plaque resulting from the Th1 promoting cytokines (rather than a Th2) present during 

activation in plaques (17, 18). Th1 effector cells produce the macrophage activating 

cytokine interferon-γ (IFN-γ) that in turn improves the macrophages’ antigen 

presenting ability and augments synthesis of pro-inflammatory cytokines interleukin-

1 (IL-1) and tumour necrosis factor (TNF) (19).  The synergetic action of these cytokines 

instigates the production of many inflammatory and cytotoxic molecules in 

macrophages and vascular cells promoting atherosclerosis (16). 

 

The Th2 phenotype, classically an allergy response cell, has shown to be largely anti-

inflammatory but may also be pro-inflammatory in atherosclerosis. The Th17 

phenotype, characterised by the secretion of IL-17, has more recently been recognized 

to be present and play a role in atherosclerotic plaques. Similarly to Th2 CD4 T cells, 

the impact of Th17 cell response in atherogensis is controversial (20-22). T regulatory 

(Treg) cells produce the anti-inflammatory IL-10 and TGFβ and are found in low 

numbers in atherosclerotic plaques (23). Treg cell numbers and IL-10 levels are 

severely decreased in patients experiencing an ACS (24) and in mouse models, the 

deficiency of these cells is linked to increased atherogenesis and lesion inflammation 

(25). Furthermore, increased Treg presence and stimulation of this phenotype has 

shown to reduce lesion formation and attenuate atherosclerosis (26-28).  Natural 

Killer T cells and CD8+ T cells are also present in atherosclerotic plaques but tend to 

be found in early plaque development and in much smaller numbers (16, 29). Both cell 

types are pro-atherogenic in their activity (30). All major T cell lineages are present 

during atherogenesis and destabilisation of the balance between pro and anti-

inflammatory phenotypes drive the development of vulnerable plaques. 
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1.2.3 Acute Coronary Syndromes 

Despite the chronic nature of atherosclerosis, thrombotic complications or Acute 

Coronary Syndromes (ACS) occur suddenly and often without warning. The traditional 

view of infarction is the progressive luminal narrowing of a coronary artery from 

continued growth of smooth muscle cells in the plaque which a small platelet 

thrombus could occlude the vessel completely. However, angiographic studies have 

identified culprit lesions that do not cause marked stenosis (31), and often an ACS 

occurs without the preceding symptoms of angina which would be indicative of a high 

grade stenosis. 

 

Computed tomographic (CT) angiography, which showcases the arterial wall as well 

as the lumen, has revealed plaque characteristics associated with ACS events which 

include: low attenuation (i.e. little or no calcification) and an outward expansion of 

the artery wall which allows for very little encroachment on the lumen (32, 33). This 

expansion also accommodates the growth of the plaque for much of its development 

(34).  

 

Instead of progressive narrowing of the lumen, it is the activation of vulnerable 

plaques that precipitates ischaemia and infarction. Some studies have noted the role 

of coronary spasm causing restricted blood flow to the myocardium, but in most cases 

the formation of an occluding thrombus on the surface of the plaque is the driver of 

infarction (35). Thrombosis can occur due to plaque rupture, which is detectable in 60 

to 70% of cases, or less frequently due to endothelial erosion (36). Plaques vulnerable 

to rupturing, which most commonly cause a fatal ACS, often have a thin fibrous caps 

(37). This cap allows for a barrier between the immune and thrombogenic rich 

material of the necrotic core and the coagulation factors found in the blood. Thinning 

of this fibrous cap and degradation of collagen, which provides tensile strength, is 

caused by an excess of proteinases that break down collagen and an inhibition of 

smooth muscle cells to replenish it (38). These enzymes belong to the matrix-

metalloproteinase (MMP) family and macrophages have been found to over produce 

all three of the human MMP collagenases (MMP-1, 8 and 13) in atherosclerotic 
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plaques (39, 40). When the fibrous cap ruptures or is disrupted, blood is allowed to 

come in to contact with the thrombogenic core. Tissue factor, a potent pro-coagulant 

produced by macrophages, comes in to contact with the blood triggering thrombin 

generation and platelet activation and aggregation (40). 

 

Superficial erosion of coronary plaques causes approximately 20 – 25% of deaths from 

an ACS (40). These lesions usually lack prominent inflammatory infiltrates and exhibit 

a much richer proteoglycan accumulation compared to rupture prone plaques. The 

mechanisms of superficial erosion have received much less attention than those 

involved in the rupture of the fibrous cap. Apoptosis of endothelial cells could 

contribute to desquamation and production of tissue factor (41). Oxidative stress, in 

particular the production of myeloperoxidase by activated leukocytes, can initiate 

endothelial cells to undergo programmed cell death. Endothelial cell loss and tissue 

factor production could propagate local thrombosis found in the coronary arteries 

(42).    

 

Although it is noted in autopsy studies that frank rupture of plaques causes the 

majority of deaths (43), and superficial erosion making up the rest, there is growing 

evidence that not all plaque ruptures and thrombus formation cause coronary events 

(44). Rather, plaque rupture and thrombus formation occurs frequently at a subclinical 

level and is instrumental in plague progression, remodelling and later luminal 

narrowing (34, 45). Therefore, it is not only the act of plaque exposure to the blood, 

but also the combination of other factors and conditions with rupture or erosion that 

lead to the perfect storm resulting in an ACS (34).  Tabled below is a list of factors and 

conditions associated with increased risk of ACS (Table 1-1).   
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Table 1-1 Factors and conditions associated with increased risk for an Acute Coronary Syndrome  

Coronary Plaque 
characteristics  

Coronary Blood 
Flow Dynamics 

Intrinsic Hemostasis 
Factors 

Metabolic and 
Inflammatory Conditions 

Neurohormonal 
imbalance 

Environmental 
Factors and Drugs 

Plaque Burden 
Lumen Encroachment 
Lesion location 
Plaque composition 
Endothelial 
remodelling 

Blood viscosity 
Shear Stress 
Reduced blood 
flow/low cardiac 
output 
Vascular tone and 
reactivity 
Arterial 
Hypertension 
 

Platelet function/volume 
Circadian variation 
Factor V Leiden deficiency 
Von Willebrand factor 
deficiency 
Antiphospholipid syndrome 
 

Diabetes 
Obesity 
Dyslipidemia 
Connective tissue 
diseases 
Infections 
Renal disease 

Stress 
Catecholamine 
surges 
Depression 
Exertion 
Autonomic 
dysfunction 
Endocrine 
imbalance 

Smoking 
Pollution 
Climate 
Legal drugs 
Illegal drugs 
Diet 
Sedentary lifestyle 
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1.2.4 Treatment 

The management and treatment of ACS is dictated by where the patient falls on the 

ACS spectrum (Figure 1-2) and is intended to reduce myocardial necrosis and thus 

preserve left ventricular function and prevent major adverse cardiac events such as: 

ventricular fibrillation, decompensated heart failure and cardiogenic shock (46).  

 

 

Figure 1-2 Spectrum of Acute Coronary Syndromes (ACS) 

Adapted from C. Karras et al. Acute Coronary Syndromes. Disease-a-month (2013) 202-209 
with permission from Elsevier. 

Reperfusion of the ischaemic myocardium is the primary objective in the acute setting 

and restoring coronary flow to the muscle is time critical. Percutaneous coronary 

intervention (PCI) with balloons or stents are the treatment of choice and are able to 

achieve restored coronary artery flow in >90% of patients in optimal circumstances. 

Fibrinolytics are indicated in STEMI patients where a skilled facility and provider for 

primary PCI is not accessible within 90 minutes. Other adjunct therapies to manage 

the acute phase and chronic disease include: oxygen, nitroglycerin, analgesia, 

antiplatelet agents, hypertensive medications, anticoagulation and statin therapy.     
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1.2.5 Peripheral Vascular Disease 

Atherosclerosis as a systemic disease not only affects the coronary arteries but also 

the aorta, cerebral and lower arterial extremities. The manifestation of peripheral 

atherosclerotic disease has long been underestimated and under diagnosed, with 

large epidemiology studies showing a high prevalence of peripheral vascular disease 

(PVD) in the elderly, diabetics and patients with existing cardiovascular risk factors 

(47). Importantly, those with PVD have an increased risk of premature mortality and 

cardiovascular and cerebrovascular events (48-50).  Studies using stress testing or 

coronary angiography found 60 – 90% of patients with PVD also had coronary disease 

and was an independent risk factor for cardiovascular death (50).  

1.2.6 Carotid Artery Disease 

Carotid artery disease is the formation and progression of atherosclerotic plaques in 

the carotid artery usually at the branching of the artery into its internal and external 

counterparts. The risk of cerebrovascular stroke is increased as the carotid artery 

becomes more stenosed with plaque but also as the morphology of the plaque 

becomes more unstable leading to a higher risk of embolism (51). Embolism from the 

carotid bifurcation is the most frequent pathogenetic mechanism of cerebral 

ischaemia (52). This ischaemia can be temporary causing Transient Ischaemic Attacks 

(TIA) or blood flow can be blocked permanently causing a cerebrovascular stroke and 

tissue death. TIAs can act as a warning sign as a plaque is becoming unstable and the 

risk of stroke is greatly increased in the short term (53). Cerebral ischaemia can cause 

paralysis, loss of vision, slurring of speech, numbness and loss of power on the 

contralateral side to the infarct.  

 

Intervention with carotid endarterectomy surgery or carotid stenting in severe carotid 

stenosis (>75%) is recommended to reduce secondary stroke risk particularly if the 

patient is symptomatic (54). Primary stroke prevention with surgery or stenting in 

asymptomatic patients with a severe stenosis is not as heavily recommended (55). 

Furthermore, as a significant proportion of cerebrovascular events occur in patients 

with carotid stenosis <75% and as the embolic process is a significant driver of stroke, 
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therapies to reduce plaque progression and destabilistation such as antiplatelet, 

statins and anti-hypertensive drugs are also crucial (55).  

1.2.7 Lower Extremity Peripheral Vascular Disease 

 Lower extremity peripheral vascular disease (PVD) is the atherosclerotic plaque 

obstruction of the arteries in the legs and pelvis. At the time patients are diagnosed 

with lower extremity PVD, >50% present with asymptomatic disease or complain of 

atypical leg pain. A smaller percentage of patients who have lower extremity PVD also 

have intermittent claudication distinguished by cramping pain, discomfort, or a 

sensation of weakness in the legs that occurs with exertion and is relieved by rest. 

These symptoms are primarily attributed to the flow limiting stenosis or occlusion in 

the artery limiting oxygen supply to the muscle during exercise. Limb ischaemia also 

evokes an acute systemic and local response characterised by increased oxidative 

stress, inflammation and endothelial dysfunction (56-58). 

 

Although claudication symptoms remain stable in 70% to 80% of patients, 

approximately 10% to 20% worsen and 1% to 2% of patients will progress to critical 

limb ischemia (CLI) over a 10-year period (59). Some patients undergoing amputations 

for CLI did not experience claudication pain 6 months previously, which indicates that 

not all PVD advances through the traditional classification schemes (60). In addition 

to functional impairment, as mentioned previously, PVD is a strong marker for 

coronary artery disease and increased risk of cardiovascular death. Interestingly, 

although the risk of death is higher in patients with PVD compared to those without, 

the risk is equal in patients who are symptomatic or asymptomatic (61).   

 

Treatment of lower extremity PVD is intended to improve debilitating claudication 

symptoms and reduce cardiovascular morbidity and mortality. Along with 

revascularising the atherosclerotic arteries with surgery or percutaneous intervention 

where indicated, addressing risk factors such as smoking cessation, and proper 

diabetes and blood pressure management is also imperative for reducing symptom 

burden and cardiovascular risk. Studies have found the use of statins in lower 



INTRODUCTION 

 

 13 

extremity PVD can increase walking distance and slow progression of disease (62). 

Furthermore, the use of antiplatelet drugs in PVD with and without known coronary 

artery disease reduces the risk of stroke, MI and cardiovascular death (63, 64). Clear 

indications for revascularisation include ischemic rest pain, ischemic ulceration, 

gangrene, or symptomatic disabling claudication.  

1.2.8 Abdominal Aortic Aneurysm 

Patients with an abdominal aortic aneurysm (AAA) remain asymptomatic in most 

cases until rupture, which leads to death in 65% of patients (65). This highly fatal 

outcome is caused from the dilatation of the aortic wall and a weakening of the 

connective tissue to a point of rupture. As atherosclerotic lesions and thrombus are 

always present at the site of abdominal aneurysms, traditionally these aneurysms 

have been regarded as the same pathological consequence as coronary artery disease. 

However, this conventional view has been challenged by more recent studies showing 

a divergence from the athero-occlusive process with a more significant role of 

proteases pushing atherosclerotic plaques down an aneurysm path (66, 67). In 

particular the decreased expression of protease inhibitors such as, TIMP-2 and PAI-1, 

and increased production of MMPs, allow the imbalanced degradation of elastin and 

collagen in the aneurysm, which cross link with other connective molecules to provide 

strength and stability (68). The formation of a AAA is associated with a mural 

thrombus, which undergoes continual remodelling due to the constant blood flow in 

the aneurysm, unlike the turbulent flow in athero-occlusive disease (69). This mural 

thrombus has been implicated in reducing aneurysmal wall stress, but it’s increasing 

thickness rich in platelets and thrombin can also lead to a local hypoxic environment 

in the aneurysm, exacerbating inflammation, apoptosis of smooth muscle cells and 

promoting remodelling of the arterial wall (70, 71).  

 

The treatment of AAA with open surgery or endovascular stenting is based on the risk 

of rupture and is essentially prophylactic in nature, with the most benefit and risk 

reduction resulting from operating on aneurysms >5cm in diameter (69). As well as 

surgery, the proper management of cardiovascular risk factors is suggested, in 
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particular smoking. There is a strong association between tobacco smoking and 

aneurysm development, with the prevalence of AAAs four times greater in smokers 

compared to non-smokers (72, 73). When relative risks were assessed in chronic 

smokers, the risk of developing a AAA is three-fold greater than developing coronary 

artery disease and five-fold higher than cerebrovascular disease (74). Therefore, 

smoking cessation is even more imperative in patients with AAA.    

1.3 Platelets 

1.3.1 Function in Hemostasis 

Platelets are anuceleated cells in the blood, produced by megakaryocytes in the bone 

marrow and have been acknowledged for over 150 years for their important role in 

hemostasis and thrombosis (75). Platelets circulate at high shear rates and the primary 

physiological role is to sense damage to the endothelial wall and plug any circulatory 

leak. Platelets are activated by exposed collagen binding to the glycoprotein VI (GPVI) 

on the platelet at the site of injury, allowing the platelet to adhere to the substratum. 

Firm adhesion promotes the release of intracellular stores from granules, including 

adenosine diphosphate (ADP) and thromboxane A2 (TXA2), which triggers the 

recruitment and activation of more platelets. During activation platelets undergo 

dramatic shape change which is calcium dependent and form into spiny spheres with 

finger like projections using their extensive actin cytoskeleton (76). In addition to 

shape change and granule release, activation leads to the important conformational 

change of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) increasing its affinity for 

fibrinogen, von Willebrand factor (VWF) and fibronectin to promote firm platelet-

platelet adhesions (77).  Activated platelets produce thrombin, which triggers the 

coagulation cascade resulting in the formation of a fibrin mesh encapsulating cross-

linked platelets, red blood cells and leukocytes that effectively plugs the hemostatic 

leak.  
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1.3.2 Platelets in Atherosclerosis 

In addition to hemostasis, platelets also contribute to pathological processes such as 

host defence from microbial infection, sepsis, autoimmune diseases, tumour growth 

and metastases and atherosclerotic plaque progression, rupture and thrombosis (75).  

1.3.3 Plaque initiation and development 

Platelets are not only activated by collagen, but by an array of extra cellular matrix 

proteins and soluble factors in the blood such as ox-LDL, thrombin, ADP, serotonin and 

shear stress (78). Endothelial dysfunction and injury exposing pro-coagulant proteins 

to the circulation, as well as pro-inflammatory states such as diabetes; results in the 

increase of activated circulating platelets. Upon activation, platelets up-regulate 

several ligands that allow the cell to interact with the endothelium and leukocytes, 

promoting the initial inflammatory infiltration in atherosclerosis and progression of 

plaques. The platelet glycoproteins GPIbα, GPIIb/IIIa and GPVI have important roles in 

platelet-endothelial interactions (79-81) and GPIbα and GPVI have shown to mediate 

platelet-leukocyte interactions (82, 83). Platelets are able to tether to atherosclerotic 

endothelium and bind to leukocytes under high vascular shear to aid in leukocyte 

infiltration (84). Inhibition or knock out of these ligands in animal models has resulted 

in the reduction of plaque progression (83, 85) and interestingly, GPVI has been 

proposed as a novel diagnostic marker for ACS in clinical studies (86).  

 

P-selectin is one of the primary ligands for platelets’ involvement in atherosclerosis, 

highlighted from P-selectin-deficient animal studies showing protection from the 

disease (87). It is expressed on platelets and is also stored and released in a soluble 

form from α-granules. Platelets bind to the endothelium through P-selectin, but also 

to leukocytes via P-selectin glycoprotein ligand 1 (PSGL-1). Through this 

communication, multicellular aggregates can form which promotes the release of 

chemokines CCL2, CCL5 and cytokines like interleukin (IL)-1β to further activate and 

recruit leukocytes and promote atherosclerosis (88, 89). Platelet-Leukocyte 

aggregates are able to tether and roll on endothelial cells with a higher avidity than 

unconjugated leukocytes, enhancing endothelial activation and leukocyte 
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transmigration (90). Soluble (s)P-Selectin has shown to be a good biomarker of 

platelet and/or endothelial cell activation and high levels indicate an elevated risk for 

future cardiovascular events independent of traditional risk factors (91). Beyond a 

biomarker function, sP-Selectin is also considered an active player in inflammation 

during atherosclerosis, potentially through binding to PSGL-1 on leukocytes and 

promoting pro-coagulant microparticle generation via the Mac-1 pathway (92). 

 

CD40 ligand (CD40L), a member of the TNF-family, is one of the best characterised co-

stimulatory molecules that enhances immune responses and inflammation through 

binding to CD40 and inducing cell activation and differentiation (93, 94). Platelets 

express CD40L on activation and can also shed the ligand, contributing to the soluble 

CD40L in the circulation. The presence of platelet bound and soluble CD40L enable 

binding of CD40 on the endothelium and different leukocyte subsets. Atherosclerotic 

lesions are abundant in CD40L expressing cells and platelet expressed CD40L 

represents the majority of circulating CD40L (95). Studies investigating the inhibiton 

of the CD40-CD40L stimulation found a reduction in atherosclerotic plaque size and 

an increase in stable fibrous lesions (95). Through CD40L, platelets can bind to 

lymphocytes, particularly T cells and promote pro-inflammatory effector cell 

generation and reduce Treg populations (96, 97). Soluble CD40L has been 

demonstrated to be a potential biomarker for atherosclerotic instability, with higher 

levels found in patients experiencing acute atherosclerotic infarctions and patients 

with atherosclerotic disease compared to healthy controls (98). Additionally, platelets 

express scavenger, chemokine and toll-like receptors that also have key roles in 

atherosclerosis development and have been reviewed by several groups (98-100) 

 

Platelets also release a multitude of chemokines, cytokines and other immune 

modulatory proteins that drive atherosclerosis. The chemokines Platelet Factor 4 (PF4 

or CXCL4), RANTES (CCL5), CDCL7 and stromal-cell derived factor-1 (SDF-1 or CXCL12) 

are stored in α-granules and released on activation.  In particular RANTES and PF4 

have been studied extensively and are both pro-atherogenic and act to selectively 

recruit monocytes, neutrophils and T cells to injured endothelium (101-104). The 

cytokine IL-1β is recognized as a main driver of platelet-induced endothelial cell 
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activation (105). Release of this cytokine causes endothelial secretion of IL-6, IL-8, 

CCL2 and expression of adhesion molecules ICAM-1 and αvβ3 (106, 107). 

Transforming growth factor β (TGF-β) is a potent modulator of the immune system 

and promotes anti-inflammatory and wound healing responses. Interestingly, 

platelets are the largest containers of TGF-β in the body and release it in abundance 

on activation/degranulation (75). The role of platelet released TGF-β remains unclear, 

with potential roles in promoting Treg development to counter pro-inflammatory 

responses in the plaque but also proatherogenic functions in promoting calcification 

and apoptosis (108). Platelet derived TGF-β may also provide key signals during 

thrombosis to induce matrix production (109).      

 

There are multiple other expressed receptors and secreted mediators that platelets 

produce to influence plaque initiation and development as reviewed by Lievens and 

von Hundelshausen (78). Overall the platelet has a big impact on determining the 

inflammatory milieu of the plaque and the progression from stable to unstable 

potentially resulting in a thrombotic event as summarised in Figure 1-3. 
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Figure 1-3 Role of platelets in the vascular inflammatory response associated 

with atherosclerosis 

Platelets interact with immune cells via both cell to cell contact and platelet derived soluble 
mediators. These interactions can lead to increased levels of chemotaxis and adhesion in 
immune cells as well as differentiation and infiltration. This heightened inflammation can lead 
to the phenotype of plaque to change from stable to and unstable phenotype. CCR1, 
Chemokine (CC motif) receptor 1; JAM-3, Junctional adhesion molecule 3; TXA2, Thromboxane 
A2; TP, Thromboxane A2 receptor; TLRs, Toll-like receptors; IL-1_, Interleukin-1 beta; SDF-1, 
Stroma-cell derived factor-1; GPIb_, glycoprotein Ib_; PSGL-1, P-Selectin Glycoprotein Ligand 
1; and Mac-1, Macrophage 1 antigen. Lievens D and Von Hudelshausen P. Platelets in 
atherosclerosis. Thrombosis Haemostasis 2011; 106: 827 – 838. Permission for reproduction 
sough from Elsevier.  
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1.3.4 Platelets in thrombosis 

The main role of platelets in the body is thought to be clot formation and therefore it 

is not surprising that in atherosclerosis, platelets drive the late events of thrombus 

formation during plaque rupture, microembolism, or spasm within the 

microcirculation. The mechanisms involved in hemostasis and thrombosis are similar 

with early key roles for exposed collagen coupled with VWF and GPIV to initiate 

adhesion of platelets to injured endothelium and exposed plaque (111).  

 

The propagation of thrombus is reliant on soluble agonists such as ADP, thromboxane 

and α-thrombin, as only the first layer of platelets are in direct contact with 

thrombogenic proteins. These soluble agonists induce a broad range of biochemical 

and functional platelet responses—including intracellular Ca2+ flux, platelet shape 

change, and the secretion of granule contents—coincident with the formation of 

platelet aggregates (112). However, recent studies have shown discoid shaped 

platelets adhering to growing thrombi in the early stages that do not undergo shape 

change, Ca2+ or α granule release, indicating that additional platelet aggregation 

mechanisms could be involved (112, 113). One of these is the biomechanical 

mechanism of activation via shear stress due to arterial blood flow promoting 

thrombus growth (114).   

 

After platelets activate and aggregate at the sites of vascular lesions, the thrombus 

undergoes stabilisation to maintain its location against opposing blood flow. Newly 

recruited platelets to a growing thrombus send feedback signals to platelets in the 

deeper layers of the thrombus to prevent disaggregation. This leads to strengthening 

of the interactions between adhesive ligands (VWF, fibrinogen, fibronectin) and 

receptors (GPIbα and GPIIb/IIIa). In particular, ADP signaling through the P2Y1 and 

P2Y12 receptors causing cyclic Ca2+ oscillations is vital to maintain GPIIb/IIIa activation, 

which provides the thrombus stability in flowing blood. Brass et al present an 

exhaustive review on this feedback system in thrombus stabilization (116).   

Thrombosis is also a potentially life threatening complication after the implantation 

of stents or grafts in atherosclerotic lesions. Stent thrombosis (ST) is a relatively 
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uncommon complication but it’s mortality and morbidity is high with 20-40% of cases 

causing death and 50-70% causing myocardial infarction and the need for 

revascularisation (116, 117). The occurrence of stent thrombosis is directly related to 

the acuity of the clinical syndrome before stenting. A patient presenting with an ACS 

has a several fold increase risk of stent thrombosis independent of stent type 

compared to a patient with stable coronary symptoms (118, 119). This risk is related 

to underlying inflammation and unstable plaque at the time of implantation leading 

to incomplete endothelialisation, less neointima formation allowing for continued 

exposure of circulating platelets to the injured vessel (120). Patients with critical limb 

ischaemia undergoing femoral bypass surgery and endovascular procedures are at 

high risks of graft occlusion and limb amputation (122). The risk of limb amputation 

and death, also increases significantly with every revascularisation procedure (123). 

 

1.4 Antiplatelet agents and Non-Response 

Platelets are the drivers of thrombotic events in atherosclerosis and are central to 

disease progression. Therefore, antiplatelet therapy is a cornerstone of the 

pharmacologic treatment strategy in patients with cardiovascular disease. As platelet 

activation and aggregation is controlled by complex and overlapping pathways, there 

are many targets for antiplatelet drugs to prevent ischaemic events as displayed in 

Figure 1-4. 
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Figure 1-4 Antiplatelet agent targets to prevent ischaemic events  

The process of PCI or plaque rupture leads to an increase in the release of TF, initiating the 
coagulation cascade and the release of collagen, activating platelets. Platelet activation is a 
complex process involving many receptors and signalling pathways highlighted in blue. Platelet 
activation leads to several secondary pathways including granule secretion and GPIIb/IIIa as 
highlighted in green. Therefore, antiplatelet drugs highlighted in black, target multiple pathways 
to inhibit platelet activation and aggregation to prevent ischaemic events. Gurbel PA and Tantry 
US, Monitoring of antiplatelet therapy, Platelet Third Edition, 2013; 603-633. Reproduced with 
permission from Elsevier. ACS, acute coronary syndromes; ADP, adenosine diphosphate; 
PAR-1, pro-tease activated receptor1; GPIIb/IIIa, glycoproteinIIb/IIIa; PCI, percutaneous 
coronary intervention; TF, tissue factor; TP, thromboxane receptor; TxA2, thromboxaneA2; 
vWF, von Willebrand factor. 

The use of dual antiplatelet therapy (DAPT) comprising of aspirin and a P2Y12 

inhibitor, commonly clopidogrel, is the most widely used combination for prevention 

of ischaemic events in ACS patients (123). A summary of the current European and 

American guidelines for antiplatelet therapies is shown in Table 1-2. The widespread 

use of these agents, coupled with more evidence-based interventions and therapies, 

has led to a significant reduction in adverse events following an ACS, including death, 

over the last decade (125). However, adverse events still occur in these patients who 

are on DAPT and recent studies have observed that there is a wide inter-individual 

variability in the response to therapy. A proposed therapeutic window exists where a 

patient with high on treatment platelet reactivity (HOTPR) is at risk of ischaemic 

events and a patient with low on treatment platelet reactivity (LOWPR) is at risk of 
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bleeding complications. The use of aspirin and clopidogrel in atherosclerosis as well as 

the prevalence of HOTPR and LOWPR and their contributing risk factors are 

summarized below. 
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Table 1-2 Guidelines for Antiplatelet therapy in patients with CAD 

 Preclinical 
CAD 
ESC (125) 

Stable 
CAD 
ESC (125) 

Elective PCI 
 

UA/NSTEMI STEMI 

ESC (123, 125) AHA/ACC (126) ESC (125) AHA/ACC (128) 

Aspirin II-A I-A I-A (125) I-A I-A I-A I-A 

Clopidogrel _ I-A I-A (125) I-B a I-B b, I-A c I-C I-C 

Prasugrel _ _ _ IIa-B, I-B d I-B I-B I-B 

Ticagrelor _ _ _ I-B _ f I-B _ f 

 

aOnly if prasugrel or ticagrelor are not an option. b Before PCI, cAt the time of PCI. dIn case of known coronary anatomy, intent to PCI and no pretreatment with 
P2Y12-inhibitiors, eAt the time of PCI, if not pretreated with thienopyridines, f Not approved at the time of guidelines compliation. 

ACC, American College of Cardiology; AHA, American Heart Association; CAD, coronary artery disease; ESC, European Society of Cardiology; NSTEMI non-
ST segment elevation myocardial infarction; PCI, percutaneous coronary intervention; STEMI, ST elevation myocardial infarction 

Classes of Recommendation: 
Class I: Benefits >>> Risk: Procedure/ treatment SHOULD be performed/administered. 
Class IIa: Benefits >> Risk: Additional studies with focused objectives needed; it is REASONABLE to perform procedure/administer treatment. 
Levels of Evidence: 
Level A: Multiple populations evaluated; data derived from multiple randomized clinical trials or meta-analyses 
Level B: Limited populations evaluated; data derived from a single randomized trial or nonrandomized studies 
Level C: Very limited populations evaluated; only consensus opinion of experts, case studies, or standard of care 
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Clinical trials investigating the use of DAPT in patients with PVD is limited. The only 

available evidence comes from a substudy of the large DAPT trial CHARISMA, which 

evaluated the effect of aspirin plus clopidogrel versus aspirin alone in patients with 

established and at risk for cardiovascular disease (128). In a subgroup analysis of PVD 

patients, there was no observed benefit in the DAPT arm at reducing cardiovascular 

events compared to aspirin monotherapy (130). Further trials in larger PVD 

populations are needed to investigate whether DAPT therapy can reduce risk over 

standard aspirin therapy. 

1.4.1 Aspirin therapy 

Aspirin blocks thromboxane A2 (TXA2) mediated platelet aggregation through the 

acetylation of the COX-1 enzyme (Figure 1-5) and this process is irreversible as 

platelets are enucleate and are unable to resynthesize COX-1 (130). However, as 

aspirin is not a direct inhibitor of thromboxane, it has been demonstrated that even a 

10% residual thromboxane synthase activity is sufficient to cause aggregation (132). 

Furthermore, it is believed a 95% inhibition of thromboxane is needed to observe 

clinical efficacy from aspirin therapy (133).  COX-2, even at low levels is also able to 

induce platelet aggregation via thromboxane A2 and aspirin inhibits COX-2 but 166 

times less effective than COX-1. Additionally, endothelial cells and 

monocytes/macrophages can rapidly (2-4 hours) recover from the aspirin effect by 

resynthesizing the COX-2 enzyme and may contribute prostaglandin H2 to platelets 

that synthesize TXA2 by thromboxane synthase (transcellular TXA2 synthesis), as 

detailed in Figure 1-5.  As atherosclerotic plaques have an abundance of 

monocytets/macrophages, this local provider of COX-2 may be an important 

mechanism that platelets use to overcome the antithrombotic effect of aspirin 

therapy. Under normal conditions, COX-2 only comprises 10% of platelet COX activity. 

However, in environments such as post coronary artery bypass (CABG) surgery or 

diabetes, where there is high turnover and a higher proportion of young platelets, 

COX-2 activity can be as high as 60% and may contribute to thromboxane production 

despite COX-1 inhibition (133).    
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Figure 1-5 Aspirin effects via the inhibition of COX activity. 

Aspirin has inhibitory effects on both COX-1 and COX-2 activity. Aspirin prevents the access 
of arachidonic acid to the catalytic site of COX-1. In platelets (highlighted in pink) this leads to 
a reduction thromboxane A2 production, which promotes aggregation and this inhibition is 
irreversible. However, in endothelial cells and monocytes (highlighted in yellow), the aspirin 
effect can be overcome by resynthesising the COX-2 enzyme and may contribute PGH2 to 
platelets by Transcellular TxA2 synthase. COX, cyclooxygenase; TX, thromboxane; PG, 
prostaglandin; NSAIDs, nonsteroidal antiinflammatory drugs Gurbel PA and Tantry US, 
Monitoring of antiplatelet therapy, Platelet Third Edition, 2013; 603-633. Reproduced with 
permission from Elsevier.  

Aspirin remains the drug of choice for secondary prevention of recurrent ischaemic 

events in ACS patients (130). Conversely, aspirins’ role in primary prevention of ACS 

remains unclear and somewhat controversial (134, 135). In the setting of established 

preclinical vascular disease without the presence of other risk factors, aspirin has a 

Class II-A indication for use but the risk of bleeding must be taken in to consideration 

(134). There is also no apparent benefit of daily doses above 100mg from meta-

analyses and a negative dose-dependant effect on gastrointestinal complications with 

increasing doses (136, 137). It is hoped that continuing studies such as ASCEND 

(NCT00135226) and ACCEPT-D (ISRCTN48110081), both investigating aspirin for 

primary cardiovascular event protection will provide clarifying information.  
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Early administration of aspirin in ACS has consistently been shown to be beneficial 

over all factions of ACS including: unstable angina/NSTEMI (138, 139) and STEMI (140). 

Aspirin HOTPR has been extensively reviewed and several studies have linked the 

presence of HOTPR to a higher risk of recurrent ischaemic events (141, 142). A 

systematic review and meta-analysis of various studies linking aspirin HOTPR to clinical 

outcomes utilising different methods, an odds ratio of all cardiovascular outcomes of 

3.8 (95% CI; 2.3–6.1) for aspirin HOTPR was observed (143). Additionally, the 

important role of aspirin in ACS is underlined by the nearly two-fold (OR 1.82, 1.52-

2.18, p< 0.00001) increased risk of adverse events in patients with an ACS or history 

of CAD who discontinued or were not compliant with their aspirin therapy (145). 

 

Despite the abundance of data demonstrating the efficacy of aspirin therapy in 

patients with CAD, the data in PVD is less compelling. Aspirin therapy has been 

demonstrated to decrease cardiovascular events in patients with PVD, but has little or 

no effect on symptomatic improvement in subjects with intermittent claudication 

(146). In a recent meta-analysis of 18 prospective randomised studies including 5269 

patients with PVD, aspirin resulted in 12% reduction of the combined end point of 

nonfatal MI, nonfatal CVA and cardiovascular death but failed to reach statistical 

significance (64). Whether studies with a larger number of vascular patients would 

provide more convincing benefit is unknown. Because a large majority of PVD patients 

also have symptomatic CAD or cerebrovascular disease, aspirin is an acceptable 

antiplatelet agent in this setting and the ACCF/AHA endorse aspirin with class I, level 

of evidence B recommendation (146). Further studies are needed to elucidate the 

relationship between aspirin HOTPR and risk in PVD patients.  

1.4.2 Aspirin HOTPR 

Estimates of the prevalence of aspirin HOTPR vary dramatically (from 5.5% to 56.8%), 

depending on the method of platelet function testing, cut-point used and the 

population (148). Aspirin HOTPR has also been linked to high platelet reactivity in the 

response to other agonists such as ADP and collagen and may reflect a global hyper-

reactivity (148). The concomitant use of particular NSAIDs may influence the response 
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to aspirin by interfering with aspirins ability to bind COX-1 (150) and the use of these 

drugs has been associated with an increased risk of cardiovascular events (150). 

Genetic polymorphisms in the genes encoding COX-1, COX-2, GPIIIa, P2Y12, and P2Y1 

have been suggested and studied for their potential influence on aspirin response. A 

systematic review looking at 50 studies investigating 9 genes in more than 11,000 

people only found a significant relationship between the PLA1/A2 polymorphism in 

the GPIIIa receptor and an increased rate of aspirin HOTPR in healthy subjects but not 

CAD patients (151). The relationship between gene polymorphisms and aspirin 

responsiveness remains unclear. 

 

When aspirin HOTPR is identified in patients, the treatment to correct this is still 

unknown. Currently, there is no published study that has investigated the clinical 

efficacy of changing therapy based on aspirin response and therefore guidelines do 

not recommend routine testing of aspirin response or tailoring of therapy based on 

these tests (152). Furthermore, there are only a handful of studies that have 

investigated aspirin HOTPR in a strictly PVD population and have found mixed findings 

between HOTPR and adverse events (153, 154).  

1.4.3 P2Y12 Inhibitors  

P2Y12 inhibitors are used in conjunction with aspirin to prevent secondary ischaemic 

events in patients with ACS. The drugs work by blocking the ADP platelet amplification 

pathway by antagonising P2Y12 receptors on platelets and inhibiting GPIIb/IIIa 

formation. The first P2Y12 inhibitor Ticlodopine, belonging to the Thienopyridine 

family of drugs, was discovered after antiplatelet/aggregation screening studies in the 

1970s. Ticlodopine was found to have greater antithrombotic efficacy than aspirin in 

many clinical settings including; secondary protection against ischaemic events 

following stroke, TIAs and unstable angina, leading to FDA approval in 1991 (156). A 

further 5 years later, a study published in the New England Journal of Medicine found 

DAPT therapy of aspirin plus ticlodopine decreased the risk of MI and repeat 

revascularisation after PCI by 82% compared to aspirin alone (156). However, 

ticlodopine had unfavourable side effects such as diarrhoea, nausea and vomiting in 
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up to 50% of treated patients (157). But some patients also suffered from rare but 

serious side effects including neutropenia and thrombotic thrombocytopenic purpura, 

which lead to the recommendation of regular full blood count tests in the first 3 

months of treatment (158). The development of clopidogrel, another theinopyradine 

with a similar efficacy for preventing vascular events, but a much more favourable 

safety profile (160), lead to clopidogrel becoming the most commonly prescribed drug 

in the world (160).  

1.4.4 Clopidogrel 

Clopidogrel is a pro-drug that requires hepatic biotransformation into its active 

metabolite to exert its antiplatelet response. Only 10-15% of the absorbed drug 

undergoes biotransformation, the remaining 85-90% is hydrolysed by hepatic 

carboxylase to an inactive carboxylic acid metabolite. The metabolism of clopidogrel 

is a two-step process controlled by hepatic cytochrome (CYP) P450 isoenzymes (Figure 

1-6). The first step involves the oxidation of the thienol ring to 2-oxo-clopidogrel and 

studies have indicated the CYP isoenzymes CYP2C19, CYP1A2, and CYP2B6 as the main 

enzymes involved. The second metabolism step produces the highly unstable active 

metabolite (R-130964) through hydrolysis and similarly to the first step, CYP2C19 is 

actively involved in the metabolism along with CYP2C9, CYP2B6, and CYP3A (161). The 

active metabolite of clopidogrel covalently and specifically binds to the P2Y12 

receptor on platelets trafficking through the hepatic circulation. This interaction is 

non-reversible and blocks ADP induced platelet aggregation for the platelets lifetime. 
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Figure 1-6 Metabolism of clopidogrel  

Cattaneo M, ADP Receptor Antagonists, Platelet Third Edition, 2013; 1117–1138. Reproduced 
with permission from Elsevier.    

Clopidogrel has shown to be very effective in secondary prevention of ischaemic 

events in patients with established cardiovascular disease (63). However, clopidogrel 

as a single or dual antiplatelet therapy is not indicated for primary prevention of 

ischaemic events in patients with preclinical cardiovascular disease or multiple risk 

factors. In the primary prevention cohort of the CHARISMA trial, there was no clear 

benefit of DAPT with clopidogrel over aspirin alone and subgroup analysis revealed a 

higher mortality and bleeding risk in patients on DAPT who were asymptomatic (162, 

163). This cohort also comprised a large proportion (42%) of diabetics and currently 

there is no evidence to support DAPT in this high-risk group for primary prevention.  

 

The CAPRIE study investigated the risk of recurrent ischaemic events in a larger cohort 

(19,185) of high-risk patients due to a previous ACS, ischaemic stroke or peripheral 

vascular disease (63). The study found clopidogrel single therapy (75mg) to be 

superior to aspirin therapy (325mg) at preventing major cardiovascular adverse 

events with an 8.7% relative risk reduction of MI, ischaemic stroke and vascular death 

in those treated with clopidogrel. The use of DAPT (aspirin and clopidogrel) in stable 

cardiovascular disease has not been directly tested in a prospective randomised trial. 

However, post-hoc analysis from the CHARISMA study in patients with a history of 



INTRODUCTION 

 

30 

cardiovascular events (similar to CAPRIE) showed an improvement in prognosis 

without excess bleeding in those who were on DAPT compared to aspirin alone (128). 

Interestingly, the reduced risk of MI, stroke and cardiovascular death seen in stable 

coronary disease patients on DAPT was also found in the peripheral vascular disease 

subgroup (164). In the context of cerebrovascular ischaemia and secondary 

prevention of TIAs or addition strokes, clopidogrel has some data to support its use 

over aspirin although the size of the additional benefit is controversial (165). The use 

of DAPT in preventing recurrent stroke and TIAs is not favoured over aspirin or 

clopidogrel alone. The MATCH trial, a study of high-risk patients with recent ischaemic 

stroke or TIA and at least one risk factor, found DAPT compared to clopidogrel alone 

resulted in a non-significant reduction in major vascular events but a doubled relative 

risk in life threatening hemorrhages (166). Although analyses of predefined subgroups 

in the MATCH trial did not identify patient groups where DAPT therapy was 

advantageous and bleeding risk was relative to single clopidogrel therapy.   

 

In contrast to preclinical and stable cardiovascular disease, there is a wealth of trial 

data supporting the use of DAPT in patients following an ACS or PCI. The sustained and 

incremental benefit of clopidogrel on top of standard therapy, including aspirin, was 

demonstrated in the CURE trial in unstable angina (UA), non-ST elevation MI (NSTEMI) 

(167) and acute ST-elevation MI patients (STEMI) (168). The UA and NSTEMI patient 

cohort received clopidogrel (300mg) within 24 hours of symptom onset and 

chronically (75mg) on top of standard therapy for 3 – 12 months following the event. 

This lead to a 20% risk reduction of MACE in patients receiving clopidogrel compared 

to the placebo group. With a more potent antiplatelet added on top of standard 

therapy, not surprisingly the rate of major bleeding was greater in the clopidogrel 

group compared to placebo (3.7% vs 2.7%, p< 0.001), although the rates of life 

threatening bleeds and hemorrhagic stokes were similar (2.1% vs 1.8% p=0.3) (167).  

In the STEMI patient group a loading dose of clopidogrel (300mg) was given within 12 

hours of ACS onset and compared to standard therapy. Patients who received 

clopidogrel had a 20% risk reduction in MACE at 30 days. Furthermore, the addition 

of clopidogrel in the acute setting lead to 36% reduced risk of an occluded infarct-

related artery on angiography, which reduces reperfusion and increases complication 
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risk, and decreased rates of recurrent MI and death before angiography could occur 

(168). The COMMIT trial randomly allocated clopidogrel (75mg) or placebo to a large 

cohort of patients (45,852) with suspected MI on top of daily aspirin. Although 

treatment was of a short duration (average 15 days); clopidogrel treatment was again 

associated with a statistically significant reduction in the incidence of death, re-

infarction and stroke, and was consistent over a wide range of patients and 

independent of other therapies used (169). 

 

Coronary revascularisation with the use of coronary balloons or stents in both elective 

and acute settings is associated with an increase in thrombosis risk and therefore 

adequate antiplatelet therapy is even more critical after PCI. Within the CURE trial, a 

pre-specified subset who underwent PCI (PCI-CURE) were assessed to investigate the 

benefit of a pre-procedural loading dose of clopidogrel (300mg) followed by long term 

daily doses (75mg). A 31% reduction in cardiovascular death and MI risk was observed 

in the patients receiving clopidogrel and a 30% risk reduction in target-vessel 

revascularisation at 30 days compared to aspirin alone (171). In addition, the CREDO 

trial showed that DAPT should be continued beyond the usual 30 days, as one year 

outcomes revealed a 27% risk reduction in death, MI and stroke in patients on DAPT 

compared to patients on aspirin alone past 30 days of DAPT (172).  In the high-risk 

STEMI population, the use of DAPT before or after PCI in the CLARITY study resulted 

in significantly lower rates of cardiovascular death or ischaemic complications without 

an increase in major or minor bleeding (172). The doubling of clopidgorel dose to 

600mg before PCI in the ARMYDA-2 study, significantly reduced periprocedural MI 

compared to patients receiving the conventional 300mg. These studies in total show 

the superior efficacy of DAPT to prevent MACE in patients undergoing PCI compared 

to aspirin alone. Current guidelines advocate DAPT with aspirin and clopidogrel for up 

to 12 months depending on type of stent and favour continuation beyond this time 

period according to individual risk assessment (174).  

 

There is also evidence to support clopidogrel monotherapy in PVD patients. In a 

subgroup analysis from CAPRIE, clopidogrel had its greatest effect on reducing 

cardiovascular events in patients with PVD (63). Clopidogrel has been approved for 
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use in PVD, particularly in patients with adverse reactions or intolerance to aspirin 

(146).   

1.4.5 Clopidogrel HOTPR 

Despite remarkable improvements in patient outcomes following the implementation 

of DAPT, 8-10% of patients suffer a recurrent cardiovascular event during the first year 

following an ACS (175). It was first reported in 2002 by Jaremo et al. and then Gurbel 

et al. that recommended doses of clopidogrel produced very variable antiplatelet 

effects when given to different patients (175, 176). Then the following year, Matetzky 

et al. observed that this variability in response to clopidogrel correlated with clinical 

outcomes following PCI (178). In Gurbel et al’s. early study in patients undergoing 

elective PCI, platelet reactivity in response to ADP was measured at several time 

points, pre and post loading (clopidogrel 300mg), 5 days and 30 days post PCI (176). 

HOTPR was classified as a <10% fall from baseline and 31% of patients post loading 

and at day 5, fell in to this category. The prevalence of HOTPR dropped to 15% at day 

30 post-PCI, but there remained a wide inter-individual variability in the response to 

clopidogrel (176). The prevalence of clopidogrel HOTPR in coronary artery disease 

patients has since been the focus of a number of studies and rates vary between 25-

40% depending on the assay used, the population tested and the timing of 

measurement post clopidogrel therapy (178, 179).  

 

Several studies have linked clopidogrel HOTPR to increased risk of thrombotic events 

following PCI as summarised in Table 1-3. Early studies by Matetzky et al. using light 

transmission aggregometry (LTA) in STEMI patients undergoing PCI, found patients in 

the lowest quintile of clopidogrel responsiveness had the highest rates of ischaemic 

events during follow up (178). Subsequently, it was suggested that high on treatment 

platelet reactivity to ADP would be a superior marker of ischaemic risk instead of the 

difference from baseline to on treatment, as platelet reactivity to ADP on aspirin alone 

was highly variable (181). The relationship between HOTPR and risk of ischaemic 

events was first prospectively investigated in the PREPARE POST-STENTING study 

(181). The presence of HOTPR was associated with a 2.6 increased risk of ischaemic 
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events and the occurrence of MACE in patients without HOTPR was relatively rare, 

postulating a potential therapeutic target to protect patients against thrombotic 

complications post PCI. In 2008, Price et al. demonstrated patients with HOTPR (>235 

PRU as measured by VerifyNow) had significantly higher rates of cardiovascular death 

(2.8% vs. 0%, p=0.04) and stent thrombosis (4.6% vs. 0%,p=0.004) (182). Additionally, 

Sibbing et al. demonstrated a similar risk of ischaemic events associated with HOTPR 

as measured by the Multiplate analyser (184). Patients with HOTPR had a dramatic 

increased risk of stent thrombosis, OR 9.4 and cardiovascular death, OR 3.2 compared 

to normal responders at 30 days post PCI. Many other studies have consistently 

demonstrated HOTPR to be an independent risk factor for ischaemic events post PCI 

(Table 1-3). The wealth of data on this subject also suggests that patients could 

potentially be protected from thrombotic/ischemic complications if low to moderate 

on treatment platelet reactivity were achieved. 

 

There is limited data on the frequency of clopidogrel HOTPR in PVD patients. A small 

study looking at the incidence of HOTPR in 54 stable PVD patients found 32% had 

HOTPR on clopidogrel monotherapy and that this phenotype was not stable in all 

patients over time (184). The relationship between clopidogrel HOTPR and MACE had 

not been examined in a PVD population to our knowledge. 
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Table 1-3 Studies linking HOTPR to adverse clinical events in CAD 

Study Patient group 
(n) 

Methods Definition of 
HOTPR 

Clinical Relevance 

Barragan et 
al. 
(185) 

PCI (46) VASP-PRI >50% VASP  Stent thrombosis 

Gurbel et al. 
(181)  

Elective PCI 
(192) 

5 μM ADP – 

LTA 

75th percentile 
post PCI 
platelet 
reactivity 

 post PCI events 
at 6 months, OR 2.1 

Matetzky et 
al.(186) 

STEMI-PCI 
(60) 

5 μM ADP – 

LTA 

75th percentile 
platelet 
reactivity 

 cardiac events at 
6 months post PCI 

Bliden et al. 
(187) 

Elective PCI 
(150) 

5 μM ADP – 

LTA 

≥50% platelet 

aggregation 

 1 year post PCI 
events 

Blindt et al. 
(188) 

High risk for 
ST – PCI (99) 

VASP-PRI 
(72-96 hrs 
after 
stenting) 

>48% PRI  6 month ST 

Cuisset et al. 
(190) 

NSTEMI –PCI 
(190) 

10 μM ADP-

LTA 

>70% LTA  periprocedural 
ischaemia 

Frere et al. 
(190) 

NSTEMI – 
PCI (195) 

10 μM ADP-

LTA 

>70% LTA  30 days post PCI 
events MACE + 
Stroke 

Geisler et al. 
(191) 

CAD-PCI 
(802) 

20 μM ADP-

LTA 

Upper quartile  30 days MACE 
and death OR = 4.9 

Price et al. 
(182) 

PCI (380) VerifyNow 
P2Y12  

≥ 235 PRU  6 months post 
PCI events 
including ST 

Gurbel et al. 
(192) 

Elective PCI 
(297) 

5 & 20 μM 

ADP-LTA 

>46% 5 μM 

ADP 
>59% 20 μM 

ADP 

 2 year ischaemia 
events 5 μM OR = 

3.9, 20 μM OR = 

3.8 

Bonello et al. 
(193) 

PCI (144) VASP-PRI >50% PRI  6 months post 
PCI MACE 

Marcucci et 
al. (194) 

PCI-ACS 
(683) 

VerifyNow 
P2Y12 

≥ 240 PRU  12 month 
ischaemic event, 
CV death OR = 
2.55, nonfatal MI 
OR = 3.36 

Patti et al. 
(195) 

PCI (160) VerifyNow 
P2Y12 

≥ 240 PRU  1 month MACE 

Sibbing et al. PCI-DES 
(1608) 

Multiplate 
Analyser (6.4 
μM ADP) 

Upper quintile 
(>47 AU) 

 1 month definite 
ST, OR =9.4 
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1.4.6 Clopidogrel LOWPR    

The prevalence and significance of low on treatment platelet reactivity (LOWPR) to 

ADP has not been as extensively studied as HOTPR. Early observations of higher 

bleeding rates in studies where more potent antiplatelet treatments were being 

administered suggested a negative trade-off of a poorer safety profile with improved 

clinical efficacy. In the CURE trial, DAPT was associated with a 38% increased relative 

risk of major bleeding compared to aspirin single therapy (196). Recent studies have 

investigated the relationship between LOWPR and bleeding risk following PCI. An 

enhanced response or hypersensitivity to clopidogrel as measured by the Multiplate 

in Sibbing et al. study, was associated with a 3.5 fold increased risk of procedure 

related major bleeding following PCI (197). In the Sibbing study, the investigators also 

found an association between HOTPR and ischaemic events, unveiling a spectrum of 

response to clopidogrel. In a study utilising the VerifyNow P2Y12 assay, the presence 

of LOWPR (PRU ≤86) was associated with an increase in 1 month bleeding events in 

507 patients tested undergoing PCI (198).  

1.4.7 Prasugrel 

Prasugrel is a second-generation thienopyridine pro-drug similar to clopidogrel.  It is 

also metabolised by hepatic CYP isoenzymes into its active form, although prasugrel’s 

chemical structure allows for a more efficient metabolism that is not as reliant on the 

CYP2C19 or CYP2C9 enzymes as clopidogrel (Figure 1-7) (199). This efficient 

metabolism results in a faster onset of action at doses’ 10-100 fold lower than 

clopidogrel. A loading dose of 60mg reaches 80% inhibition of platelets 30 minutes 

after dosing, whereas clopidogrel even at a 600mg-loading dose exerts minimal 

inhibition at the same time point (200). The anti-aggregatory effects of prasugrel lasts 

the lifespan of the platelet due to irreversible binding of the active metabolite to the 

P2Y12 receptor, similar to clopidogrel. Studies comparing prasugrel (60mg loading, 

10mg maintenance) and clopidogrel (300mg loading, 75mg maintenance) in healthy 

subjects and patients with coronary artery disease consistently find a faster and higher 
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mean platelet inhibition in participants receiving prasugrel (201-203). Although there 

exists a degree of variability in on-treatment platelet reactivity to prasugrel therapy, 

the prevalence of HOTPR on prasugrel is much lower than clopidogrel treatment (204). 

This is thought to be due to CYP2C19’s limited role in the biotransformation process 

leading to a more consistent level of active metabolite between individuals rather 

than a greater potency of the active metabolite to inhibit the P2Y12 receptor (201) 

(202). In pharmacokinetic studies, low body weight and increasing age (≥75) resulted 

in significantly greater platelet inhibition levels (205). 

Figure 1-7 Metabolism of Prasugrel 

Cattaneo M, ADP Receptor Antagonists, Platelet Third Edition, 2013; 1117–1138. Reproduced 
with permission from Elsevier.   

The more potent efficacy of prasugrel compared to clopidogrel, was demonstrated in 

the TRITON-TIMI-38 trial, a phase III trial that evaluated 13,608 high-risk ACS patients 

undergoing PCI (206). Patients were randomised to receive either prasugrel (60mg 

loading, 10mg maintenance) or clopidogrel (300mg loading, 75mg maintenance) for 6 

– 15 months. Prasugrel was associated with a 19% risk reduction in ischaemic events 

(HR 0.81, p < 0.001) but a higher incidence of major and fatal bleeding complications 

(HR 1.32, p = 0.03). Landmark analysis revealed a significant protection from ischaemic 

events particularly in the perioprocedural time period, but decreased ischaemic rates 
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also extended out to the end of the study (207). There was a notable increase in the 

incidence of major bleeding in patients undergoing CABG surgery on prasugrel 

compared to clopidogrel and post hoc analysis indicated when prasugrel was withheld 

7 days before surgery, the rates of major bleeding were substantially reduced (207). 

Other post-hoc analyses also identified subgroups that either received more benefit 

or more harm from prasugrel therapy. Patients with previous cerebrovascular 

accidents, patients over 75 years of age or weighing less than 60kg appeared to have 

less of a net clinical benefit and/or greater harm than the same subgroups receiving 

clopidogrel. Consequently, adjustment of the maintenance dose to 5mg is 

recommended in these populations and validity of this approach is the subject of 

ongoing studies (208). Patients with diabetes, STEMI, coronary stents, or recurrent 

cardiovascular events on treatment all had significantly more favourable outcomes 

compared to the same subgroups on clopidogrel (209) (210, 211). Based on the results 

of the TRITON TIMI-38 trial, prasugrel was FDA approved and is recommended in high-

risk patients for a short time period (213).  

1.4.8 Ticagrelor   

Ticagrelor is a direct and reversible P2Y12 antagonist and belongs to the new chemical 

class cyclopentyl-triazolo-pyrimidines. Interestingly, ticagrelor binds to the P2Y12 

receptor via a mechanism that is non-competitive to ADP, suggesting the existence of 

an independent alternative-binding site on the receptor (213). Ticagrelor also has a 

rapid onset of action, achieving maximal platelet inhibition in about 2 hours and the 

achieved platelet inhibition levels are less variable compared to clopidogrel (214, 215). 

Unlike clopidogrel and prasugrel, ticagrelor does not undergo hepatic metabolism and 

is ingested in its active form resulting in the observed fast onset and consistent 

platelet inhibition.  

 

The DISPERSE-2 study compared the safety of ticagrelor with that of clopidogrel in 990 

NSTEMI patients on top of aspirin therapy for up to 12 weeks (217). There was no 
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difference in major bleeding observed between the two groups. The study did confirm 

that dyspnea occurred more frequently with ticagrelor and in this study the impact on 

discontinuation of treatment was low. The mechanism of this side effect remains 

unclear and some have hypothesised that it is mediated by the induced increase in 

adenosine release. Whether this side effect will impact more in a real world setting of 

ticagrelor administration is unknown. Ticagrelor was shown to decrease the incidence 

of cardiovascular death, MI or stroke by 16% compared to clopidogrel (9.8% vs. 11.7%) 

in NSTEMI and STEMI patients in the PLATO study (217). This was a high-risk 

population and two thirds were undergoing PCI. The more potent ticagrelor also 

reduced the secondary endpoints of MI (5.8% vs. 6.9%) and unexpectedly, 

cardiovascular death (4.0% vs. 5.1%). Whilst in the overall study there was no 

difference in bleeding between the two treatment groups, the incidence of major non-

CABG related bleeding was significantly higher in the ticagrelor treated patients (219). 

In patients undergoing CABG the incidence of both cardiovascular and total mortality 

was lower in the ticagrelor treated patients, while the incidence of major CABG-

bleeding was similar, potentially due to the quicker regain of platelet function after 

discontinuation of ticagrelor (219). Therefore, similar to the TRITON-TIMI 38 trial, the 

PLATO trial demonstrated that more potent and consistent P2Y12 inhibition of 

platelet function than clopidogrel is associated with greater antithrombotic protection 

but a higher risk of non-CABG major bleeding. Based on the results of the PLATO trial, 

ticagrelor is now FDA-approved.  

1.4.9 Novel P2Y12 inhibitors  

Several other novel antiplatelet agents are in development for the use in ACS, some 

of these are outlined in Table 1-4. Cangrelor and elinogrel are both new P2Y12 

receptor antagonists. Cangrelor has undergone two phase III trials, CHAMPION-PCI 

(220) and CHAMPION-PLATFORM (221) that have evaluated the intravenous and oral 

form of cangrelor. Both trials were terminated early, as there was insufficient 

evidence to show cangrelors efficacy. Another phase III trial, CHAMPION-PHOENIX is 
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currently under way to evaluate cangrelors efficacy with outcomes. Elinogrel has 

shown promising results in the phase II INNOVATE-PCI trial with greater and more 

rapid antiplatelet action compared to clopidogrel and no excess bleeding, as is 

common with stronger platelet inhibition (222). The current targets of antiplatelet 

agents have either been COX-1 or P2Y12 platelet activation pathways. Patients 

continue to have events on these antiplatelet agents and this may be due to the 

known upregulation of other pathways that are left uninhibited.  

1.4.10 Other platelet inhibitors under clinical trial 

Several drugs including cilostazol, protease-activated-receptor-1 (PAR-1) antagonists 

and oral anticoagulants have been suggested as adjunct therapies to aspirin and a 

P2Y12 inhibitor. Cilostazol is a phosphodiesterase III inhibitior, that  effects platelet 

intracellular cAMP levels. It has shown some promise in diabetic patients (OPTIMUS-

2) with a significant decrease in measured P2Y12 activation levels compared to control. 

However, a multitude of side effects has inhibited its development (223). PAR-1 

antagonists, atopaxar and vorapaxar are at varying stages of development (225) and 

could be particularly relevant in ACS populations, as thrombin generation processes 

are enhanced in these patients (225). Early development of revacept, a soluble dimeric 

Glycoprotein VI-Fc fusion protein, that interferes with collagen induced platelet 

activation has been shown to inhibit platelet aggregation in a dose dependent manner 

without altering general homeostasis (226). 
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Table 1-4 Major novel antiplatelet agents in development 

 Key: PAR-1, Protease-activated receptor-1; GP, Glycoprotein.  

Drug Class Platelet inhibition target Administration Half life Development stage 

Cangrelor ADP P2Y12 

receptor 
antagonist 

Direct, reversible P2Y12 

inhibition 
Intravenous 3 – 5mins Phase III trial –CHAMPION-

PHOENIX 
 

Elinogrel ADP P2Y12 

receptor 
antagonist 

Competitive, direct and 
reversible P2Y12 inhibition 

Intravenous and oral 12 hrs Phase III trial  

Vorapaxar Thrombin PAR-1 
antagonist 

Direct, reversible Oral 165-311 hrs Phase III trial – TRACER and 
TRA-2P 

Atopaxar Thrombin PAR-1 
antagonist 

Direct, reversible Oral 22-26 hrs Phase II (LANCELOT-ACS 
and LANCELOT-CAD) 
complete 

Revacept GP V1 pathway 
blocker 

Interferes with collagen 
mediated platelet activation 

Intravenous 67-137 hrs Completed phase I trial 
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1.4.11  HOTPR and LOWPR risk factors 

The variability in response to clopidogrel is multi-factorial and complex, influenced by 

genetic factors, clinical variables and non-compliance. A schematic diagram of these 

factors is depicted in Figure 1-8. 

 

Figure 1-8 Factors influencing clopidogrel metabolism and ADP response. 

The pharmacodynamic response to clopidogrel is influenced by numerous factors such as 
single nucleotide polymorphisms of genes encoding p-glycoprotein transporter (ABCB1) and 
CYP2C19 and also by drugs that are metabolized by hepatic cytochrome enzymes along with 
clopidogrel (e.g., proton pump inhibitors, calcium channel blockers, St. John’s Wort, smoking). 
In addition, platelet response to ADP is also influenced by age, body mass index, diabetes, 
coronary artery disease state, and renal insufficiency. The variable response to ADP results in 
increased ischemic outcomes in the presence of high platelet reactivity and bleeding in the 
presence of low platelet reactivity. BMI, body mass index; CAD, coronary artery disease; CCB, 
calcium channel blockers; CYP, cytochrome; DDI, drug-drug interaction; HPR, high platelet 
reactivity; LPR, low platelet reactivity; PPI, proton pump inhibitor; SNP, single nucleotide 
polymorphism; SJW, St. John’s Wort. Gurbel PA and Tantry US, Monitoring of antiplatelet 
therapy, Platelet Third Edition, 2013; 603-633. Reproduced with permission from Elsevier 
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1.4.12 Genetic Factors  

Several genetic mutations or single nucleotide polymorphisms (SNPs) have been 

identified in genes that control clopidogrel absorption and metabolism and could 

affect the level of active metabolite that is produced. Several SNPs, at least 25, have 

been identified in the gene encoding the CYP2C19 isoenzyme, which influence the 

catalytic activity of the enzyme is a dose-dependent manner. Of the SNPs identified in 

the CYP2C19 gene, the most widely analysed and most frequent are *2, a G→A 

mutation in exon 5 producing an aberrant splice site, leading to the complete absence 

of CYP2C19 activity; and *17 (-806C→ T), a regulatory region variant that has 

been associated with increased expression and enzymatic activity. The *2 is the most 

common loss-of-function (LOF) allele whereas *3, and *4, *5, *6, *7, and *8 are less 

common LOF alleles (227).  

 

The prevalence of the *2 LOF allele differs between ethnic groups, occurring in 13% 

of Caucasians, 18% of African Americans and 29% of East Asians (228). Importantly, in 

a NZ population a single small study has identified a higher frequency of the *2 LOF 

Maori (24%) compared to NZ Europeans (15%) (230). On the other hand, the *17 GOF 

allele has found to be more prevalent in Caucasians (21%) compared to African 

Americans (16%) and Asians (4%) (228). Carriage of at least one CYP2C19 LOF allele 

was demonstrated to decrease both active metabolite levels of clopidogrel in the 

blood by 34% (relative reduction, p<0.001) and platelet inhibition (9% absolute 

reduction from baseline, p<0.001) compared to non-carriers in healthy participants 

(231). Homozygous LOF allele carriage has the greatest impact on ADP induced 

platelet reactivity resulting in a significant increase in on treatment platelet reactivity. 

Platelet function between heterozygous diplotypes is highly variable and therefore 

genotyping will fail to identify a large proportion of patients who have HOTPR (231).      

 

The impact of CYP2C19*2 carriage on MACE risk is debatable in the literature with 

some metanalyses reporting an increase in cardiovascular risk, particularly stent 

thrombosis in patients undergoing percutaneous coronary intervention (PCI) (232, 

233). However, other studies have directly challenged this link and report a marginal 
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increase in MACE for patients with the LOF allele (234, 235). The reported 

inconsistencies linking CYP2C19 and MACE are most likely due to the small influence 

(5-12%) that the LOF allele has on the variability in clopidogrel response (236). 

 

The gain of function allele CYP2C19*17 is associated with significantly lower levels of 

ADP-induced platelet aggregation and a higher risk for bleeding during clopidogrel 

treatment compared to wild-type carriers (237). However, in this study conducted by 

Sibbing et al, platelet function was not reported in those who had bleeding and 

whether the GOF allele affects cardiovascular events remains unclear.  

 

Genetic polymorphisms also affect other genes that are central to active clopidogrel 

metabolite production. Limited intestinal absorption and therefore decreased hepatic 

biotransformation of clopidogrel has been associated with the homozygous 3435C to 

T mutation of ATP binding cassette sub family B member 1 (ABCB1). The gene encodes 

the efflux pump P-glycoprotein and is central to clopidogrel absorption in the gut 

(238). It has more recently been proposed that paraoxonase-1 (PON-1) is the crucial 

enzyme involved in clopidogrel bioactivation and polymorphisms in this gene lead to 

higher rates of HOTPR (239), but this finding was not confirmed by several subsequent 

studies (240).  

1.4.13 Drug-Drug Interactions 

Several drug interactions with the P450 isoenzymes have shown to contribute to the 

variability in clopidogrel metabolite production. The coadministration of clopidogrel 

with proton pump inhibitors, calcium channel blockers, St. John’s wort, smoking and 

warfarin, which are metabolised by the CYP2C19, CYP3A4, CYP1A2 and CYP2C9 

isoenzymes may potentially influence clopidogrel response (242). 

 

Patients treated with clopidogrel for cardiovascular disease, are frequently also on 

proton pump inhibitors (PPIs) and both drugs are mainly metabolised by CYP3A4 and 

CYP2C19 isoenzymes. Consequently, recent studies have focused on the relation of 

PPI treatment to clopidogrel metabolism and cardiovascular outcomes. Platelet 
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function studies have found an association between omeprazole administration and 

reduced clopidogrel response, as measured by the VASP phosphorylation, but no 

change with pantoprazole or esomeprazole administration (242, 243). Several 

retrospective studies have observed higher rates of major adverse cardiovascular 

events in patients receiving both clopidogrel and a PPI suggesting a decrease in 

clopidogrel’s ability to prevent ischaemic events (245). However, this finding has not 

been consistent and other studies have found no association leaving a lack of 

conclusive evidence to support a clinically important interaction between clopidogrel 

and PPI use. 

1.4.14 Diabetes  

Diabetes Mellitus (DM) is a metabolic disorder that is accompanied by a 

prothrombotic state and cardiovascular disease is the leading cause of mortality in this 

patient group (246). Diabetic patients not only have a higher cardiac risk than non-

diabetics but also suffer from more cardiovascular complications and recurrent 

atherothrombosis events (245, 246). Multiple mechanisms have been suggested to 

contribute to the platelet dysfunction observed in DM patients and are caused by 

metabolic and cellular abnormalities (247-250). This dysfunction results in two 

important factors that negatively impact diabetic patients: a higher level of baseline 

platelet reactivity and higher levels of antiplatelet drug targets compared to non-

diabetics 

 

These include the enhanced production of thromboxane due to increased arachidonic 

acid metabolism and observed low intra cellular levels of glutathione and other 

antioxidants in diabetic platelets (251, 252). Calcium homeostasis is also disrupted 

leading to increased cytosolic calcium concentration and platelet hyperaggreability 

(254). Due to the hyperglycemic environment in diabetic patients, platelet function is 

augmented in many ways. There is enhanced expression of P-selectin (254) and 

glycation of certain platelet surface proteins such as GPIIb/IIIa, which may decrease 

membrane fluidity and increase platelet adhesion (255, 256). 
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Nitric oxide (NO) production by platelets inhibits interactions with the endothelium 

and promotes endothelium mediated vasodilation in normal conditions (258). NO 

synthase levels are significantly decreased in diabetic patients (259) although 

interestingly, levels can be improved by the presence of insulin (259). Furthermore, 

this deficiency of insulin and/or its response on tissues that is central to diabetes, 

contributes to platelet dysfunction from the abolishment of insulin’s platelet-

inhibitory effects (260, 261).  Recent research has shown a striking upregulation of the 

ADP P2Y12 receptor on platelets from diabetic patients compared to non-diabetic 

controls, leading to increased adhesion, aggregation and procoagulant activity (262, 

263). Lastly, diabetic patients have a higher turnover of platelets, with the presence 

of larger, sensitive reticulated platelets, resulting in platelet hyperactivity and lower 

response to antiplatelet agents (264-266).  
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Table 1-5 Mechanisms contributing to platelet dysfunction in diabetes 

Increased production of thromboxane A2 

Increased expression of platelet surface adhesion molecules, including; CD31, 
CD4ab, CD62P and CD63. Leads to an increase in platelet activation.  

Increase in platelet-dependent thrombin generation 

Increased expression of platelet surface receptors P-selectin, GPIb and GPIIIb/IIa. 
GPIa binds to Von Willibrand Factor            
GPIIb/IIIa binds fibrinogen            
Important step in thrombogenesis 

Decrease vascular synthesis of NO and PGl2 – pushing balance towards 
aggregation opposed to vasoconstriction. 

Disorded calcium homeostasis – effect shape change, secretion, aggregation and 
thromboxane formation. 

Decrease platelet insulin receptor number and affinity.  
Insulin is thought to decrease platelet response to ADP, collagen, thrombin, 
arachidonate and PAF 

Key: GP = glycoprotein; vWf = von Willebrand factor; PGI2 = prostacyclin; NO = nitric oxide; 
ADP = adenosine diphosphate; PAF = platelet-activating factor 

1.4.15 Obesity 

Increased BMI has also been associated with an increase in HOTPR rates. Furthermore, 

there appears to be a linear relationship, with increasing BMI leading to higher levels 

of platelet reactivity in obese patients (267). A contributing factor to the high rates of 

HOTPR in obese patients is the underdosing of clopidogrel in relation to body weight. 

However, studies have found even triple doses of 600mg of clopidogrel in some obese 

patients has not been sufficient to overcome HOTPR suggesting additional factors 

contributing to the observed high platelet reactivity (268). These include an increased 

inflammatory state and enhanced PAR-1 medicated platelet activation and impaired 

hepatic metabolism of clopidogrel due to fatty liver disease (268).    

1.4.16 Renal Insufficiency  

Renal insufficiency is associated with increased rates of HOTPR on clopidogrel therapy 

(269). A confounding factor is the high rate of diabetes in renal failure patients, which 

is the key risk factor for nearly half of end stage renal failure patients and as previously 
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described is a known contributor to HOTPR (270). However, a recent study observed 

a significant association between renal insufficiency, as measured by estimated 

glomerular filtration rate (eGFR) and residual platelet reacitivty with the highest rates 

of HOTPR in patients with a eGFR of <15 ml/min/1.73m2. This finding was independent 

of diabetes as a significant predictor of HOTPR but only in patients with an eGFR below 

15 (271). The mechanism to which renal insufficiency fosters HOTPR is still unknown.  

 

Other variables that influence the response to clopidogrel include: advanced age, CAD 

state and non-compliance (238). More recently the role of microRNAs which are 

involved in regulating gene expression, was investigated in platelet reactivity in a 

study by Rui Shi et al (273). The microRNA miR-223 expression in this study was found 

to negatively correlate with platelet reactivity in patients on clopidogrel. The 

expression of miR-233 in platelets, correlated with higher levels of P2Y12 expression 

and consequently with high levels of HOTPR and was a significant predictor of HOTPR 

in 33 PCI patients. Future studies with larger populations are needed to test the impact 

of this miRNA on clopidogrel response.   
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1.5 Platelet Function Testing  

The diverse response to antiplatelet drugs and its link with clinical outcomes has 

driven the development and implementation of platelet function testing in an effort 

to improve clinical outcomes. There are several tests available (outlined in Table 1-6 

and Figure 1-9) that differ significantly in predictive value of clinical outcome (238), 

consumable and testing costs and their appropriateness as a point of care assay for 

real time platelet function monitoring (274). 

 

Figure 1-9 Laboratory measurement of on treatment platelet reactivity. 

Laboratory methods to assess clopidogrel responsiveness are conducted by either measuring 
the response to ADP or specifically measuring the amount of P2Y12 inhibition. Genetic analysis 
of polymorphisms in the genes associated with metabolism of clopidogrel can also be 
performed. The ADP and P2Y12 specific methods can also be used to measure the response 
to other antiplatelet agents such as: prasugrel, ticagrelor, cangrelor and elinogrel which are all 
P2Y12 receptor antagonists. ADP, adenosine diphosphate; cAMP, cyclic adenosine 
monophosphate; CYP, cytochrome; PRP, platelet-rich plasma; LTA, light transmittance 
aggregometry; PI3K, phosphatidylinositol 3-kinase; TEG, throm- belastography; VASP, 
vasodilator-stimulated phosphoprotein; VASP-P, phosphorylated vasodilator-stimulated 
phosphoprotein. Gurbel PA and Tantry US, Monitoring of antiplatelet therapy, Platelet Third 
Edition, 2013; 603-633. Reproduced with permission from Elsevier. 
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Table 1-6 Platelet Function Assays 

 

Abbreviations: ADP, adenosine diphosphate; PGE1, prostaglandin E1. AU indicates aggregation units; LTA, light transmittance aggregometry; ROC, receiver 
operator characteristic curve analysis; PRI, platelet reactivity index; PRU, P2Y12 reaction units; VASP, vasodilator-stimulated phosphoprotein phosphorylation 
analysis

Assay Methodology Platelet  
stimulation 

Advantages Disadvantages Diagnostic cutoff  
point for ADP (ROC) 

LTA Reduction of optical density 
 after stimulation in PRP 

ADP, collagen, 
 AA, TRAP 

Good predictivity,  
historical measure 

Complex sample prep,  
time consuming 

n/a 

VASP Flow cytometric detection  
of VASP phosphorylation 

ADP and 
ADP + PGE1  
in parallel 

Whole blood assay,  
P2Y12 receptor specific 

Technically complex method, 
need flow cytometer,  
weak sensitivity and  
predictivity 

PRI > 50% 

VerifyNow Platelet mediated aggregation  
of fibrinogen-coated  
polystyrene beads 

ADP + PGE1  
(P2Y12 assay)  
AA (Aspirin assay) TRAP-6 
(IIb/IIa assay) 

Whole blood assay,  
true point of care,  
standardized procedure 

No room for assay  
adjustment, expensive  
cartridges 

PRU > 235-240 

Multiplate 
Analyser 

Impedance aggregometry  
coating of 2 electrode pairs  
by platelets 

ADP, ADP + PGE1, 
 AA, TRAP-6 

Whole blood assay, 
simple and rapid,  
standardized procedure,  
good predictivity for  
bleeding and stent  
thrombosis 

Requires pipetting,  
samples time sensitive 

>47 AU 
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1.5.1 Platelet function assays  

Laboratory based methods require specialised facilities, skilled personnel and can be 

time consuming. Examples of these include, Light transmission aggregometry (LTA) 

(274), which measures the optical density after preparation of platelet rich plasma 

and stimulated with an agonist. Historically, it has been viewed as the ‘gold standard’ 

of platelet function testing, and although it has good predictivity of clinical outcomes, 

the assay remains complex with no standardisation between testing (276). Another 

laboratory-based method, VASP phosphorylation measured by flow cytometry, is a 

whole blood assay that specifically measures P2Y12 receptor antagonism. Similarly to 

LTA, this assay is complex with the requirement of specialised equipment and time 

consuming. Unlike, LTA the VASP assay has weak sensitivity and predictivity (276). 

 

On the other hand, point-of-care assays are rapid and less complex, which are more 

desirable features when integrating these assays into clinical practice. The two most 

commonly used point-of-care assays are the VerifyNow Assay and the Multiplate 

analyser. The VerifyNow assay is a turbidimetric assay that measures aggregation of 

platelets to fibrinogen-coated beads in whole blood (182). The Multiplate analyser is 

an impedance aggregometer that assesses platelet function in whole blood (277). 

Both these assays are rapid and simple, with results obtained in less than 10 minutes 

and can be used to test residual platelet reactivity to a range of agonists. Testing 

procedures are completely standardised allowing comparable results between 

operators and institutions. The Multiplate is semi-automated, requiring pipetting and 

has been found to strongly predict bleeding and stent thrombosis risk (277), with a 

recent study displaying it was more predictive of ischaemic events than the VASP 

assays (278). On the other hand, VerifyNow is completely automated but 

consequently requires expensive testing cartridges. It is becoming more apparent that 

while laboratory-based assays are valuable for platelet function research purposes, 

only the rapid, standardised and easy to use methods will be appropriate for wide 

spread clinical use.  

Diagnostic cut-point values for high on treatment platelet reactivity have been 

determined for the reviewed platelet function assays using receiver operating 
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characteristic curve analysis (Table 1-3) and these are recommended by the Working 

Group on High On-Treatment Platelet Reactivity (238). Irrespective of the assay used, 

these cutoffs are a strong predictor of recurrent ischaemic events such as myocardial 

infarction or stent thrombosis. Furthermore, according to a recent meta-analysis of 

20 studies utilising the described platelet function tests, a patient identified with 

HOTPR has a 3.4 fold higher risk of cardiovascular death compared to a patient with 

an adequate ADP response (279). As with recurrent ischaemic risk, bleeding risk has 

also been linked with low platelet reactivity or hypersensitivity in patients on 

clopidogrel (192). The TRITON TIMI 38 trial (280) and recent Sibbing et al. (282) study 

suggest there is a therapeutic window for antiplatelet therapy in general and 

specifically P2Y12 receptor inhibition with “normal platelet reactivity” showing the 

lowest risk of either bleeding or stent thrombosis as measured by the Multiplate 

(Figure 1-10).  

 
 

Figure 1-10 Therapeutic window of P2Y12 blockade 

Sibbing et al. study suggest there is a therapeutic window for antiplatelet therapy in general 
and specifically P2Y12 receptor inhibition with “normal platelet reactivity” showing the lowest 
risk of either bleeding or stent thrombosis as measured by the Multiplate Sibbing et al. Platelet 
Aggregation and Its Association With Stent Thrombosis and Bleeding in Clopidogrel-Treated 
Patients. Initial Evidence of a Therapeutic Window. Journal of the American College of 
Cardiology. (2010) Vol 56: 4:317-318. Reproduced with permission   
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1.5.2 Personalised antiplatelet therapy 

Following the observed link between HOTPR and increased adverse outcomes, several 

studies have aimed to improve patient outcome by modifying antiplatelet therapy and 

lowering platelet reactivity. Treatment of HOTPR on maintenance clopidogrel therapy 

has been attempted by using higher loading or maintenance doses of clopidogrel, 

adding cilostazol, switching to more potent alternative P2Y12 receptor blockers such 

as prasugrel or ticagrelor, or by adding elinogrel or GPIIb/IIIa antagonists (283). Two 

small studies by Bonelle et al. randomised patients undergoing PCI to a guided 

antiplatelet therapy using the VASP assay or unguided therapy. Those who were found 

to have HOTPR in the guided arm were given an additional 600mg loading of 

clopidogrel. This treatment was successful in reducing on treatment platelet reactivity 

and decreased the rate of early stent thrombosis without an increase in major 

bleeding compared to a non-guided approach (283, 284). The selective addition of 

GPIIb/IIIa antagonists on top of DAPT in PCI patients with HOTPR has also been shown 

to improve patient outcomes without increasing bleeding (285). These early studies 

suggested that a platelet reactivity threshold of increased thrombotic and ischaemic 

risk could be used to target therapy and improve clinical outcomes. 

 

However, this outcome was not observed in the three largest randomised trials using 

platelet function testing to tailor antiplatelet therapy. The GRAVITAS trial was the first 

large scale trial (n = 2214) that utilised the VerifyNow P2Y12 assay to identify patients 

with HOTPR and subsequently doubled clopidogrel dosing(287). High-dose clopidogrel 

treatment was ineffective in reducing the 6-month composite ischemic event 

occurrence (cardiovascular death, nonfatal MI, and stent thrombosis); both treatment 

groups had an unexpectedly low event rate (2.3%). Similarly, the ARCTIC study 

enrolled 2440 patients undergoing PCI to receive guided therapy with the VerifyNow 

or non-guided therapy. Several different treatments were available to clinicians in the 

guided arm including reloading with clopidogrel (600mg), switching to prasugrel or 

administration of a GPIIb/IIIa inhibitor during PCI. The study was also neutral with no 

improvement in clinical outcomes for patients receiving guided therapy compared to 

standard clopidogrel therapy without monitoring (287). The TRIGGER-PCI trial, which 
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compared prasugrel versus clopiodgrel in patients with HOTPR as identified by the 

VerifyNow, was stopped by the steering committee prematurely after randomisation 

of 423 patients (out of the planned 2150) due to an interim analysis indicating a lower 

than expected incidence in the primary endpoint. Given the low rate of ischemic 

events, the clinical utility of this strategy could not be demonstrated (288). 

 

Many have taken the results of these trials and concluded the platelet reactivity is not 

a modifiable risk factor that can be treated to improve patient outcome. However, 

there are several issues with the study design of these trials that may have contributed 

to the negative results. These include, recruiting a study population with a low risk of 

thrombotic complications, the assay used to determine tailored therapy may not have 

been sensitive enough and the use of antiplatelet treatment that provided inadequate 

therapy to overcome HOTPR. Therefore, it remains a fundamental issue to 

characterise patient populations using the right platelet function assay and cut-point, 

to identify a population that may benefit from the use of proper protocols of 

personalised antiplatelet therapy. 
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1.6 Overall aims and objectives 

This thesis explores the presence and prevalence of high and low residual platelet 

reactivity in patients with atherosclerotic disease and the different clinical, 

demographic and genetic factors that influence this phenotype. Furthermore, which 

factors are predictive of a patient’s outcome and could be used to inform a patient’s 

risk or tailor antiplatelet therapy. In addition to assessing the extent to which platelet 

function testing is useful as a risk-marker in patients, the wider interactions between 

platelets and lymphocytes contributing to the inflammatory state of a patient with 

atherosclerosis could also influence risk. Therefore, interactions between platelets 

and T cells were examined.  

 

The overall aims of the thesis are: 

1. To understand the reproducibility of the Multiplate assay and the 

different methodological factors that add variance when measuring 

residual platelet reactivity 

2.  To examine the incidence of HOTPR in a NZ ACS population and the 

impact of prasugrel to reduce high on treatment residual platelet 

reactivity.  

3. To investigate the independent clinical predictors of high residual 

platelet reactivity as well as the prevalence and impact of genetic 

variants in the CYP2C19 gene on platelet reactivity. 

4. To examine the relationship between phenotype, genotype and 

predictors of phenotype with MACE and bleeding events in an ACS 

population. 

5.  To investigate the relationship between residual platelet reactivity on 

aspirin as well as the cardiac biomarkers hs-TnT, NT-proBNP and CRP 

with cardiovascular and bleeding outcomes in patients undergoing 

major vascular surgery. 

6. To discern differences in platelet–T cell interactions in patients with 

atherosclerotic vascular disease compared to healthy controls. 
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7. To study the impact of platelet interactions on CD4 T cell differentiation 

and the effect of antiplatelet therapy on platelet – T cell interactions 
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2 Chapter 2 – Measurement of platelet 
reactivity  
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2.1 Introduction 

Several assays are available to measure platelet reactivity that differ in their 

complexity, price and time to deliver results as reviewed in section 1.5.1. We have 

chosen to use the Multiplate in a series of clinical studies to investigate platelet 

reactivity within this thesis. To use this assay clinically we need to understand the 

reproducibility of the measurement and the impact of methodological factors on the 

precision of the assay. There is substantial variation in the Multiplate methodology of 

reported studies to date, and the effect of these methodological variations on the 

reported results is unknown.  

 

Thus, the aims of the study were:  

1. To assess how reproducible the assay is in ADP and Arachadonic Acid 

(AA) stimulated platelets. 

2.  To determine the effect of time delay from sample collection to testing 

on platelet reactivity.  

3. How the choice of anticoagulant effects the measurement of platelet 

reactivity. 

4.  If the use of a manual pipette can improve the analytical precision of 

the assay.  
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2.2 Methods 

2.2.1 Study Population  

Patients presenting to our institution were eligible for inclusion in the study if they 

presented with an ACS, there was an invasive approach (coronary angiography +/- PCI) 

planned and they were adequately pretreated with aspirin and clopidogrel. ACS was 

defined as symptoms suggestive of ischaemia lasting > 10min in duration coupled with 

either a troponin elevation or new 1mm ST segment deviation or T wave inversion in 

at least 2 contiguous leads (289). Adequate pretreatment was defined as chronic 

therapy with aspirin (75mg) and clopidogrel (75mg) or loading with clopidogrel  

300 mg at least 6 hours before or aspirin 300 mg at least 2 hours before enrolment. 

 

Exclusion criteria included a platelet count less than 100 x 109/L, known platelet 

function disorder, administration of a fibrinolytic agent within 24 hours of enrolment 

and administration of a glycoprotein IIb/IIIa receptor antagonist within a week prior 

to enrolment. The study was reviewed and approved by the Upper South A Regional 

Ethics Committee and all patients provided written informed consent 

(URA/11/05/016).  

2.2.2 Blood sampling and platelet function testing 

Blood for platelet function testing was collected from a peripheral vein using a 21-

gauge needle before angiography or collected in the cardiac catheterization 

laboratory from the arterial sheath immediately after insertion and before 

administration of heparin. All samples were collected in tubes containing huridin (25 

μg/ml, Dynabyte, Munich, Germany) and were tested 30 min post collection unless 

otherwise stated. 

 

Residual platelet aggregation in whole blood was assessed with multiple electrode 

impedance aggregometry using the Multiplate analyser (Figure 2-1), following the 

manufacturer’s instructions.  
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Figure 2-1 Multiplate Analyser System 

Images recreated from Multiplate educational material 
http://www.multiplate.net/en/detection.php. 

Whole blood was added directly to the test cuvette (Figure 2.2A) and diluted 1:1 with 

0.9% NaCl solution to give a final volume of 600μL. Inside each test cell is a Teflon 

coated magnetic stirring bar (Figure 2-2A) and samples were stirred for 3 minutes at 

37°C. After stirring 20 μL of 0.2mM ADP (Dynabyte, Munich, Germany) was added to 

the test cell with a final concentration of 6.4mM. The Multiplate automatic pipette, 

which delivers 20-300μL volumes, was used for reagent delivery unless stated 

otherwise. Addition of an agonist stimulates platelets to aggregate to the paired 

electrodes in the test cells and impede the current across them (Figure 2-2B & C).  
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Figure 2-2 Multiplate electrode impedance aggregometry 

Whole blood and saline are added to test cuvette using the automated pipette (A). Paired 
electrodes are present in each test cell and with the addition of platelet agonists, platelets are 
activated and aggregates form on electrodes and impede the current (B). Electron Scanning 
Microscopy image of platelet aggregates on electrode surface (C). Images recreated from 
Multiplate educational material http://www.multiplate.net/en/detection.php.  

The increase of impedance due to the attachment of platelets to the electrodes is 

detected for each sensor unit separately and was continuously recorded for 6 minutes 

(Figure 2-3). The change in impedance is measured over time and the area under the 

curve (AUC) is transformed to arbitrary units and platelet reactivity is expressed in AU. 
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Both pairs of electrodes (Test 1 and 2) are measured and the difference in these tests 

acts as an internal quality check. 

 

Figure 2-3 Aggregation over time in Multiplate test 

Impedance is measured from each electrode pair (Test 1 and Test 2) and aggregation is plotted 
over time. The area under the curve is then converted in to arbitrary units and platelet reactivity 
is expressed as AU.  

2.2.3 Experimental Design 

Using the above platelet function testing protocol and the following changes, we 

tested reproducibility of measurement, effect of different anticoagulants, time 

sensitivity and the use of a manual pipette on variance in the following 4 studies.  

2.2.3.1 Protocol 1 – Analytical Precision 

Blood was drawn from 30 patients and tested using the above Multiplate protocol. In 

addition to ADP stimulation, the reproducibility of Arachidonic acid (AA) stimulation 

was also tested by the addition of 20μL of 15mM stock AA (Dynabyte, Munich, 

Germany) in addition to the standard Multiplate protocol with a final concentration 

of 0.5mM. The coefficient of variation (CV) between each pair of measurements was 

then calculated. 
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2.2.3.2 Protocol 2 – Choice of anticoagulated blood tube 

To determine the effect of different anticoagulants on platelet aggregation, blood 

from 20 patients was collected into tubes containing 3 different anticoagulants; 

hirudin (25 μg/ml, Dynabyte, Munich, Germany), lithium heparin (15 U/ml BD 

Vacutainer, NJ, USA) and sodium citrate (0.109M, BD Vacutainer, NJ, USA). Blood from 

each tube was tested in a 1:1 dilution with 0.9% NaCl. In addition, blood 

anticoagulated with sodium citrate was tested in a 1:1 dilution with 3 mmolL CaCl2/ 

0.9% NaCl solution. 

2.2.3.3 Protocol 3 – Time delay to testing 

To test the effect of time delay between sample collection and Multiplate testing on 

platelet aggregation, blood was drawn from 20 patients and tested using the standard 

Multiplate protocol at the following 6 time intervals post blood sampling: 15, 30, 45, 

60, 120 and 180 minutes.  

2.2.3.4 Protocol 4 – Use of Manual Pipette 

To test the effect of using a manual pipette on the analytical precision of the assay, 

blood was collected from 20 patients into a hirudin tube and tested at 30 minutes in 

two parallel tubes using calibrated manual pipettes. A 1mL pipette was used for NaCl 

and whole blood, and a 100μL pipette for ADP. 

2.2.4 Statistics  

Continuous variables are reported as mean (± standard deviation). Statistical analysis 

was performed using student’s t-test, one-way ANOVA or linear regression where 

appropriate. Statistical significance was taken at 5%. Calculations were performed 

using the GraphPad Prism Software package (GraphPad Software Inc, CA, USA).
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2.3 Results 

2.3.1 Analytical Precision  

The CV for 30 samples anticoagulated with hirudin and analysed using the standard 

Multiplate protocol plus ADP stimulation is shown in Figure 2-4. The mean CV for ADP 

induced platelet aggregation was 10.8% (95% CI, 7.5% - 14.1%). Arachadonic Acid (AA) 

stimulated platelet aggregation was also tested (Figure 2-5) and the mean CV was 11% 

(95% CI, 8.3% – 15.3%). There was no relationship between coefficient of variation 

and level of platelet aggregation with either ADP or AA stimulation.  

 

Figure 2-4 Coefficient of variance (CV) in platelet aggregation using standard 
Multiplate protocol with ADP stimulation.  

The CV was calculated by the standard deviation divided by the mean of the two tests from the 
same patient sample was expressed as CV% and plotted against absolute platelet aggregation 
(AU). There was no correlation between increased variance with the increase in platelet 
aggregation (r2 0.005). Each point represents duplicate patient samples (n=30).   
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 Figure 2-5 Coefficient of variance (CV) in platelet aggregation using 
standard Multiplate protocol with Arachadonic Acid (AA) stimulation. 

The CV was calculated by the standard deviation divided by the mean of the two tests from the 
same patient sample, expressed as CV% and plotted against absolute platelet aggregation 
(AU). There was no correlation between increased variance with the increase in platelet 
aggregation (r2 0.05). Each point represents duplicate patient samples (n=30).   
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2.3.2 Choice of anticoagulant 

The choice of anticoagulant had a marked effect on residual platelet aggregation 

(Figure 2-6). Platelet aggregation was increased in heparin-treated whole blood (52.0 

± 32 AU) when compared to hirudin (36.5 ± 31 AU, P = 0.0015), with an average 

relative increase of 65%. Conversely, platelet aggregation was reduced in blood 

treated with sodium citrate (25.0 ± 21 AU), resulting in an average reduction of 30.6% 

when compared to hirudin (P = 0.003). However, addition of CaCl2 to the citrate-

treated blood restored platelet aggregation (34.0 ± 25 AU, P = 0.45) to levels similar 

to those seen with hirudin anticoagulation.  

 

 

Figure 2-6 Effect of anticoagulant on variance in platelet aggregation. 

Platelet aggregation tested using whole blood collected into tubes containing hirudin, heparin 
and citrate. Citrate-treated blood was tested with and without CaCl2. *P=0.0015, **P=0.0034. 
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2.3.3 Effect of time delay between sampling and testing 

Platelet aggregation was sensitive to the time delay between sampling and analysis 

(Figure 2-7). There was no difference in platelet aggregation at 15 minutes (38.8 ± 29 

AU, P = 0.614) or 45 minutes (37.1 ± 27 AU, P = 0.377) compared to 30 minutes (62.0 

± 35 AU). However, when platelet aggregation at 30 minutes was compared to 60 min 

(34.2 ± 25 AU, P <0.05), 120 minutes (19.8 ± 12 AU, P < 0.001) and 180 minutes (16.7 

± 9 AU, P < 0.001), there was a significant reduction in aggregation, especially the last 

two-time points.  

Figure 2-7 Effect of time delay from collection to assay performance on 
platelet aggregation. 

Platelet aggregation measured in hirudin-treated blood at 15, 30, 45, 60, 120 and 180 minutes 
post sampling. * P < 0.05, **P<0.001. 
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2.3.4 Manual Pipetting  

The CV for 20 samples anticoagulated with hirudin and analysed using the modified 

Multiplate® protocol with a calibrated manual pipette are shown in Figure 2-8. The 

mean CV was 9.2% (95% CI, 6.1 – 12.1) with the use of a manual pipette. This value 

did not differ significantly from the mean CV observed using the Multiplate automated 

pipette (P = 0.55). 

 

Figure 2-8 Coefficient of variance (CV) in platelet aggregation using calibrated 
manual pipette and ADP stimulation 

The CV calculated by the standard deviation divided by the mean of the two tests from the 
same patient sample was expressed as CV% and plotted against absolute platelet reactivity 
(AU). There was no correlation between increased platelet reactivity and variance (r2 0.006). 
Each point represents duplicate patient samples (n=20).    
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2.4 Discussion 

Although there have been studies looking at different pre analytical factors that may 

influence platelet aggregation and the analytical precision of the Multiplate assay, this 

is the first study to bring all of these factors together and evaluate ADP and AA 

dependent platelet aggregation in ACS patients on dual antiplatelet therapy. We have 

found an inter-assay mean coefficient of variation of 10.8% with ADP stimulation and 

11% with AA stimulation using the manufacturers recommended methodology. The 

assessment of platelet aggregation was influenced by time of assessment and the type 

of anticoagulant used. Use of manual rather than automated pipette was not 

associated with a significant decrease in the mean coefficient of variation 

 

Several other studies have reported the CV using the Multiplate system. In groups of 

healthy volunteers coefficients of variation ranging from 3.9% to 14.9% have been 

reported (290-295). Coefficients of variation for the Multiplate system in ACS patients 

on dual antiplatelet therapy of 5.8% and 6.2% were also reported in two of these 

studies (290, 292). However, hirudin was used as the anticoagulant in only one of 

these studies (294), and many studies were performed with a very small number of 

subjects or did not outline their methodology in detail. Our measurement of mean CV 

for ADP at 10.8% and 11% with AA is within the range of previous studies, and has 

been determined from a significantly larger patient group.  

 

It is possible that a small variation in the quantity of ADP delivered, leading to variation 

in the final concentration of ADP within the test cell, contributes to the analytical 

imprecision of the assay. Because the automated pipette in the Multiplate® system 

delivers volumes over a wide range (20 μL to 300 μL), we believed that the use of a 

calibrated 100 μL manual pipette would reduce any variation in delivered ADP.  

However, the use of a manual pipette did not lead to a significant reduction in the CV. 

Thus the analytical precision of the assay is not significantly influenced by the use of 

the 300 μL-automated pipette.  

The agonist AA is relatively unstable and the manufacturer’s guidelines recommend a 

one time thawing and stability for only 24 hours at room temperature. It is possible 
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that a small amount of variation in the analytical precision could be due to the 

decreasing stability of the AA agonist over time. However, the use of this assay was 

tightly controlled and fresh AA was used daily. 

  

The Multiplate records both sets of electrode pairs within the same test cell. This acts 

as an internal quality check (IQC) that the test cell is functioning appropriately and if 

there is a difference of more than 20% between the two tests, the user is asked to 

repeat the measurement. We found that an increase in the IQC did not correlate with 

an increase in the CV for ADP or AA induced platelet reactivity and did not differ when 

measuring different levels of platelet reactivity (data not shown). Many of the other 

platelet function assays do not offer internal quality assessments or visual checks such 

as platelet aggregation tracings to ensure the measurement is acceptable 

 

The Multiplate is a simple relatively inexpensive point of care assay, which has a 

flexible platform to measure several clinically relevant pathways of platelet activation. 

The level of reproducibility of the assay reported here is slightly higher than has been 

reported using VerifyNow (6%) (195), or light transmission aggregometry (LTA) (6.8%) 

(296) which is considered to be the gold standard of platelet function testing but is 

complex and laborious. Despite this level of inter-assay variability, measurement of 

platelet aggregation using the Multiplate assay correlated well with the clinical 

endpoints of increased stent thrombosis and bleeding risk (278) (297). It has also been 

proposed that the Multiplate offers a more physiological representation of platelet 

reactivity in vivo. As the test requires strong interactions between platelets and 

thrombin in whole blood to maintain connections and remain attached to the 

electrodes, this reactivity is closer to the response of platelets seen in the body, such 

as attaching to an injured vascular wall or atherosclerotic plaque. The LTA assay 

requires isolated platelets to aggregate in a liquid phase and the VerifyNow system 

provides fibrinogen-coated beads for platelets to attach to, which is further removed 

from the in vivo setting.  

In this study we found the anticoagulant tube used to collect blood had a significant 

effect on platelet aggregation. Hirudin is the anticoagulant recommended for use with 

the Multiplate analyser by the manufacturer. Hirudin is a direct thrombin inhibitor and 
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has the advantage of allowing analysis of platelet function under physiological calcium 

concentrations. By contrast, anticoagulation with the calcium-chelating agent sodium 

citrate reduces free plasma and cytosolic calcium levels and has been shown to reduce 

platelet activation and aggregation as measured by other methods (298, 299). It is 

therefore not surprising that anticoagulation with sodium citrate in our study reduced 

platelet aggregation by 31% when compared to hirudin and the addition of CaCl2 

resulted in levels of platelet aggregation similar to those seen in hirudin-treated blood. 

Other studies in healthy volunteers have reported similar findings (295, 300). 

Anticoagulation with heparin does not affect calcium concentrations but does cause 

platelet activation (301-304). Consistent with this, treatment with heparin in our study 

resulted in a 65% increase in residual platelet aggregation. Our findings suggest that 

it is important to standardise the anticoagulant used and for the reasons stated above 

we would recommend using hirudin. 

 

For platelet function testing to be effective, the results need to be obtained quickly 

and easily. The Multiplate assay delivers results within 10 minutes and the 

manufacturer recommends testing 30 to 180 minutes post-sampling. In this study we 

found platelet aggregation varied significantly over the 180-minute testing time with 

reduced platelet aggregation at later time points. Therefore the manufacturer’s 

guideline for testing over a period of 180 minutes is not recommended and would 

increase variance in measurement. We would suggest that the assay should be 

performed within 15 to 45 minutes of blood sampling. The mechanisms responsible 

for the change in reactivity over time ex-vivo, are likely be multifactorial and are 

poorly defined at present.  

2.5 Limitations 

To test the CV of ADP and AA induced platelet reactivity we measured 30 patients with 

2 replicates in each person, and 20 measurements with single replicates for the other 

testing parameters. With a sample size of 30 we had modest 95% confidence intervals 

(CI) of 7.5% to 14.1% CV with ADP and 8.3% to 15.3% CV with AA stimulated blood. If 

we had tested more individuals we could have reduced the 95% CI of our calculated 

CVs and increased our confidence in the CV of the assay. However, every test has a 



CHAPTER 2 

 

72 

consumable cost of approximately $17 so the addition of extra measurements would 

have incurred a much greater cost. A CV of between 7.5% and 14% is acceptable and 

additional features such as the internal quality check makes it practical to use in 

clinical studies. Similarly, with a sample size of 20 we had the power to detect a 

difference of 15% in platelet reactivity between time points and anticoagulant tubes 

at a significance level of 0.05. By increasing the sample size, we could have more 

power to detect a smaller difference between time points or anticoagulant tubes. 

However, this level of power allowed us to determine a time point and anticoagulant 

that can be standardised and therefore reduce some of the variance in the assay.  

 

From this study we could not determine which time point or anticoagulant is the ‘best’ 

or optimal one to use. We can however, pick a time point of 30 minutes and the 

manufacturers guide of hirudin anticoagulated tubes to use in the rest of our studies, 

with a known level of standard error and both are practical for testing in a clinical 

setting.  

2.6 Conclusion 

Pre-analytical and analytical variables affect the assessment of ADP and AA-induced 

platelet aggregation with the Multiplate assay. This study highlights the importance 

of standardising these methodological elements to reduce variation. Therefore, a time 

delay of 30 minutes post sampling, hirudin anticoagulated tubes for blood sampling 

and use of the automated pipette will be standardised throughout the rest of the 

thesis to measure ADP and AA induced platelet aggregation. Despite alternative 

platelet function assays having lower CVs, the Multiplate is more economical, flexible 

and easy to use. These factors along with a moderate CV of 10-11%, provides a 

reasonable system to test platelet reactivity in clinical studies. 
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3 Chapter 3 – Platelet reactivity in 
Acute Coronary Syndromes 



CHAPTER 3 

 

74 

3.1 Introduction 

Multiple studies have demonstrated a clear association between a suboptimal 

response to clopidogrel and an increased risk of cardiovascular events in patients with 

ACS or undergoing PCI (238, 279). The majority of these studies have been conducted 

in North American and European populations with minor or no inclusion of Maori, 

Pacific Islander or Asian ethnicities. The genetic make up of a NZ ACS population differs 

substantially from international trials, in that it has a considerable portion of Maori 

and Pacific Islanders. Previous studies have suggested that ethnicity has a significant 

impact on the response to clopidogrel (305, 306) and therefore collection of local data 

is important to identify patients at increased risk. 

 

The treatment of HOTPR with subsequent loading doses of clopidogrel or increased 

maintenance doses have been ineffective at significantly lowering residual platelet 

reactivity in a large proportion of the patients treated. New P2Y12 inhibitors such as 

prasugrel have demonstrated a more potent and consistent inhibition of platelets 

than clopidogrel (307). The TRITON-TIMI 38 trial compared clopidogrel to prasugrel in 

ACS patients undergoing PCI and found that use of prasugrel resulted in a reduction 

in ischaemic events but this was at the cost of an increased risk of bleeding [10]. The 

utility of prasugrel in patients with HOTPR has not been examined. There are a number 

of different methodological approaches to assess platelet reactivity including: 

VerifyNow, light transmission aggregometry, VASP and the Multiplate as outlined in 

the previous chapter.  

 

The aims of this study were: 

1. To determine the incidence of HOTPR in a NZ ACS population  

2. To investigate the presence of clinical predictors of HOTPR  

3. To examine the effectiveness of prasugrel in reducing platelet reactivity in 

those patients with HOTPR. 
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3.2 Methods 

3.2.1 Study Population: 

Patients presenting to Wellington Regional Hospital with ACS between October 2010 

and March 2011 were eligible for inclusion in the study if there was an invasive 

approach (coronary angiography ± PCI) planned and they were adequately pretreated 

with aspirin and clopidogrel. An ACS was defined as symptoms suggestive of 

myocardial ischaemia lasting > 10 minutes and either troponin elevation or ≥1mm of 

new ST segment deviation or T wave inversion on an electrocardiogram in at least 2 

contiguous leads. Adequate pretreatment was defined as chronic therapy with aspirin 

(75mg) and clopidogrel (75mg) and / or loading with aspirin 300 mg at least 2 

hours and clopidogrel 300 mg at least 6 hours or prior to enrolment. This time point 

is based on the average time to achieve peak platelet inhibition in patients receiving 

clopidogrel (309). Exclusion criteria included a platelet count less than 100 x 109/L, 

known platelet function disorder, administration of a fibrinolytic agent within 24 

hours of enrolment or administration of a glycoprotein IIb/IIIa receptor antagonist 

within a week prior to enrolment. The study was reviewed and approved by the 

Central Regional Ethics Committee.  

3.2.2 Data Collection 

Patient demographics, clinical characteristics, medications including antiplatelet 

therapy, clinical management, procedural variables and in-hospital outcomes were 

obtained prospectively from review of the medical records and cardiac catheterization 

database. Ethnicity was self-identified by the patient. All aspects of clinical 

management, including prescription of antiplatelet therapy, were at the discretion of 

the attending physicians.  

3.2.3 Blood Collection and Platelet Function testing 

Blood for platelet function testing was collected and testing as described in section 

2.2.2. Patients that were identified as having HOTPR were presented to the consultant 
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cardiologist performing the angiogram and it was their decision whether the patient 

received prasugrel. Contraindications to prasugrel were; weight under 65kg, age over 

75 and renal dysfunction classified as an eGFR<45. Where patients with HOTPR were 

treated with prasugrel a further blood sample for measurement of platelet reactivity 

was taken at least 2 hours post administration of a 60mg loading dose unless a 

glycoprotein IIb/IIIa receptor antagonist had been administered. Cardiac enzymes 

including high sensitivity Troponin T (hs-TnT) and electrocardiograms were routinely 

performed prior to cardiac catheterization and following PCI. 

3.2.4 Definitions 

The clopidogrel dose was defined as “high” if patients had received a 600 mg loading 

dose followed by a 150mg daily maintenance dose. Intermediate dose was defined as 

either a 600 mg loading dose followed by a 75 mg daily maintenance dose or a 300mg-

loading dose coupled with a 150 mg maintenance dose. Low dose was defined as a 

300 mg loading dose followed by a 75mg daily maintenance dose or chronic therapy 

with 75 mg daily of clopidogrel. HOTPR was defined as 47 AU and a cutoff value of 

18 AU was used to define an enhanced response to clopidogrel. These cutoff values 

have been determined from a comparative analysis of the risk for bleeding and stent 

thrombosis across different levels of P2Y12 receptor inhibition (310). A periprocedural 

enzyme rise was defined as an increase in hs-TnT to > three times the upper reference 

limit (>39ng/L) for those with preprocedural hs-TnT levels within the normal range. In 

those with elevated preprocedural hs-TnT that were stable or falling a further 

elevation of hs-TnT >39 ng/L was required. 

3.2.5 Statistical Analysis 

A power calculation was performed based on a total population of 250 patients and 

HOTPR rate of around 33% based on the literature. In a population of 250 ACS patients 

we expected approximately 200 Europeans, 35 Maori and Pacific Islanders and 15 

other ethnicities based on the demographics of our referral population and catchment 

area. The confidence intervals for these populations were 6.52 for Europeans, 15.53 
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for Maori and Pacific Islanders and 23.8 for other ethnicities. Therefore we had the 

power to detect a difference of 20% or more in the rate of HOTPR between Europeans 

and Maori and Pacific Islanders.  

 

Continuous variables are expressed as median and interquartile range (IQR). 

Categorical variables are expressed as frequencies and percentages. We compared 

the proportion of patients with HOTPR by diabetes, ethnicity and dose group using 

Chi-Squared test. Absolute values for residual platelet reactivity (AU) were compared 

by ethnicity, diabetes and dose groups using the Kruskal Wallis test. The relationship 

between body mass index (BMI) and residual platelet reactivity was assessed by 

Spearman’s correlation coefficient (rho). Residual platelet reactivity before and after 

treatment with prasugrel was compared using Wilcoxon Signed rank test. All statistical 

tests were performed using PASW 18.0 (IBM, NY, USA). 

3.3 Results 

3.3.1 Baseline demographics and prevalence of HOTPR 

During the study 250 patients with ACS met the inclusion criteria and were enrolled in 

the study. Their baseline demographics, clinical characteristics and laboratory data are 

shown in Table 3-1. The median age was 62 (54-72) years with 74.8% being male and 

20.8% having diabetes. STEMI was the presentation in 28.4%, NSTEMI in 62.4% and 

unstable angina in 9.2%. The majority identified themselves as European 81.2%, a 

further 14% as Maori or Pacific Islanders and 4.8% as other ethnicities. Platelet 

reactivity was measured in all 250 patients with the Multiplate analyser prior to 

cardiac catherterisation. Of the 250 patients tested, 95 patients (38%) had HOTPR. 
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Table 3-1 Patient baseline demographics, clinical characteristics and 
laboratory data 

 
 N=250 HOTPR  

(N=95) 
NO HOTPR 
(N=155) 

P value 

Age (years) 62 (54-72) 62.0 (55-71) 61.0 (53-72) 0.679 

Male, n (%) 187 (74.8) 73 (76.8) 114 (73.5) 0.560 

BMI 28 (19-56) 29 (26-33) 27 (25-31) 0.066 

Ethnicity, n (%)     

      European 203 (81.2) 71 (74.7) 132 (85.2) 0.041 

Maori and Pacific 
Islander 

35 (14) 20 (21.1) 15 (9.7) 0.019 

      Other 12 (4.8) 4 (4.2) 8 (5.2) 0.649 

Risk Factors, n (%)     

      Hypertension 145 (58.0) 55 (57.9) 90 (58.1) 0.979 

      Dyslipidaemia 137 (54.8) 53 (55.7) 84 (54.2) 0.806 

      Diabetes 52 (20.8) 26 (27.3) 26 (16.7) 0.045 

      Current Smoker 65 (26.0) 27 (28.4) 38 (24.5) 0.494 

Medical History, n (%)     

Previous MI 56 (22.4) 26 (27.4) 30 (19.4) 0.140 

Previous PCI 40 (16.0) 21 (22.1) 19 (12.3) 0.039 

Previous CABG 20 (8.0) 9 (9.5) 11 (7.1) 0.501 

Clinical Presentation, n 
(%) 

    

      STEMI 71 (28.4) 28 (29.5) 43 (27.8) 0.768 

      NSTEMI 156 (62.4) 58 (61.1) 98 (63.2)  0.731 

      Unstable Angina 23 (9.2) 9 (9.5) 14 (9.1) 0.919 

Laboratory data     

      Creatinine (umol/L) 88 (76-102) 89 (77-102) 88(74-102) 0.357 

      Platelet Count 
(109/L) 

220 (187-
267) 

223 (190-
278) 

217 (187-
264) 

0.135 

PPI use, n (%) 
Clopidogrel Dosing 
High  
Intermediate 
Low 

65 (26.0) 
 
41 (16.4) 
55 (22.0) 
154 (61.6) 

22 (23.2) 
 
11 (11.6) 
14 (14.7) 
70 (73.7) 

43 (27.7) 
 
30 (19.4) 
41 (26.5) 
84 (54.2) 

0.423 
 
0.107 
0.30 
0.003 
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3.3.2 Predictors of HOTPR 

To investigate the predictors of HOTPR, baseline demographics, clinical characteristics 

and laboratory data were tested against rates of HOTPR in a univariate analysis. 

Ethnicity, diabetes and clopidogrel dosing were found to be predictors of HOTPR. 

Maori and Pacific Islanders had higher residual platelet reactivity (50 AU (35-70) 

versus 38 AU (250-570), p = 0.014) and a higher rate of HOTPR compared to Europeans 

(57% versus 35.9%, p = 0.013, Table 3-2 and Figure 3-1).  

 
Table 3-2 Patient Ethnicity and platelet reactivity 

 Maori and Polynesian 
(35) 

European (203) P value 

HOTPR (%) 20 (57.0) 71 (35.9) 0.013 

Platelet reactivity (AU) 50 (34 - 77) 38 (25 - 57) 0.014 

 

Figure 3-1 Patient ethnicity and platelet reactivity.  

The rate of HOTPR (A) analysed by chi-square test (p = 0.013) and the absolute levels of 
platelet reactivity (B) analysed by Kruskal Wallis test (p = 0.01) in Maori and Pacific Islanders 
compared to Europeans. The red dotted line represents the 47 AU HOTPR cut-point. Median 
and IQR absolute platelet reactivity are displayed. 
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Patients with diabetes were also found to have higher residual platelet reactivity (43 

AU (29-77) versus 38 AU (25-55), p = 0.029) and higher rates of HOTPR compared to 

non-diabetics (50% versus 34.8%, p = 0.045, Table 3-3 and Figure 3-2).  

Table 3-3 Diabetes and platelet reactivity 

 Diabetic (52) Non-Diabetic (198) P Value 

HOTPR (%) 26 (50.0) 69 (34.8) 0.045 

Platelet reactivity (AU) 43 (29 - 77) 38 (25 - 55) 0.029 

 

Figure 3-2 Diabetes and platelet reactivity 

The rate of HOTPR (A) analysed by chi-square test (p = 0.045) and the absolute levels of 
platelet reactivity (B) analysed by Kruskal Wallis test (p = 0.029) in diabetics and non-diabetics. 
The red dotted line represents the 47 AU HOTPR cut-point. Median and IQR absolute platelet 
reactivity are displayed. 

The rate of diabetes was higher in Maori and Pacific Islanders compared to Europeans 

(38.8% versus 15.3%, p = 0.001). Maori and Pacific Islanders with diabetes also had 

the highest absolute levels of platelet reactivity 75AU (41 – 90) versus European 

diabetics 40 AU (23 – 70), non-diabetic Maori and Pacific Islanders 40 AU (24 – 56) and 

non-diabetic Europeans (38 AU (25 – 54), p = 0.004, Table 3-4, Figure 3-3B). The rates 

of HOTPR displayed a similar trend with the highest in Maori and Pacific Islander 

diabetics (71%), followed by European diabetics (42%), non-diabetic Maori and Pacific 

Islanders (45%) and non-diabetic Europeans (33%, p = 0.03, Table 3-4, Figure 3-3A).  
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Table 3-4 Diabetes, ethnicity and platelet reactivity 

Figure 3-3 Diabetes, ethnicity and platelet reactivity 

The rate of HOTPR (A) analysed by one way ANOVA (p = 0.004) and the absolute levels of 
platelet reactivity (B) analysed by one way ANOVA (p < 0.05) and Kruskal Wallis test *p < 0.05, 
**p < 0.01, *** p < 0.001 in Maori and Pacific Islanders compared to Europeans with and without 
diabetes. The red dotted line represents the 47 AU HOTPR cut-point. Median and IQR absolute 
platelet reactivity are displayed. 

Although all patients were pre-treated with aspirin and clopidogrel, a variety of 

clopidogrel dosing regimens were used with the majority of patients (61.6%) being 

treated with a low dose regimen. To understand the relationship between clopidogrel 

dose and residual platelet reactivity, we compared the rates of HOTPR in patients who 

received low, intermediate, and high dose regimens (Table 3-5). Our findings show 

that patients treated with a low dose regimen had significantly higher rates of HOTPR 

compared to those treated with intermediate or high dose regimens (p = 0.009, Figure 

3-4A). Additionally, the mean residual platelet reactivity decreased with increasing 

clopidogrel dose (p = 0.007, Figure 3-4B). There was no significant correlation between 

BMI and residual platelet reactivity (rho = 0.1, p = 0.1). Mean residual platelet 

reactivity and rates of HOTPR were also not affected by concomitant treatment with 

a proton pump inhibitor or the type of ACS at presentation. 
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Table 3-5 Clopidogrel dose and platelet reactivity 

Figure 3-4 Clopidogrel dose and platelet reactivity.  

The rate of HOTPR (A) analysed by one-way ANOVA (p = 0.009) and the absolute levels of 
platelet reactivity (B) analysed by one-way ANOVA (p = 0.007) in patients receiving low, 
intermediate and high doses of clopidogrel. The red dotted line represents the 47 AU HOTPR 
cut-point. Median and IQR absolute platelet reactivity are displayed. 

 

 

Clopidogrel Dose Low (154) Intermediate 
(55) 

High (41) P value 

HOTPR (%) 70 (45.4) 14 (25.4) 11 (26.8) 0.009 

Platelet reactivity 
(AU) 

43 (30 - 66) 37 (22 – 49)  29 (20 - 52) 0.007 

Low Intermediate High
0

10

20

30

40

50

%
 o

f 
p

o
p

u
la

tio
n

 w
it
h

 H
O

T
P

R

Clopidogrel Dose

Low Intermediate High
0

25

50

75

100

125

150

Clopidogrel Dose

P
la

te
le

t 
re

a
c
ti
v
ity

 (
A

U
)

A B



CHAPTER 3 

 

 83 

3.3.3 Effectiveness of prasugrel on HOTPR 

Of the 95 patients with HOTPR, 29 patients were treated with prasugrel and 

underwent platelet function testing at least 2 hours after loading with 60mg. The 

remaining 66 patients did not receive prasugrel due to contraindications or because 

they were being medically managed, undergoing CABG, received glycoprotein IIb/IIIa 

inhibitors during their angiogram or the managing clinician chose not to use prasugrel. 

Residual platelet reactivity was lowered markedly by prasugrel treatment (66 AU (56-

77) before versus 23 AU (11-34) after, p < 0.001). Residual platelet reactivity was 

lowered below the HOTPR cut-point in 26 (89.7%) patients. The 3 patients whose 

reactivity remained above the 47 AU cut-point still had a dramatic lowering of residual 

platelet reactivity following prasugrel administration (Figure 3-5). In 10 patients 

(34.5%), treatment with prasugrel resulted in a platelet reactivity level below the cut-

point defining an enhanced response. 

 
Figure 3-5 Platelet reactivity pre and post prasugrel administration 

Platelet reactivity (AU) of patients with HOTPR pre and post 60 mg prasugrel loading. The red 
dotted line represents the 47 AU HOTPR cut point. 

All patients involved in the study underwent coronary angiography. Of these 42 

(16.8%) had minor coronary disease, 99 (39.6%) single vessel disease, 63 (25.2%) 2 
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vessel disease and 46 (18.4%) 3 vessel disease. Sixty-nine patients (27.6%) were 

managed medically, 154 (61.6%) treated with PCI and 27 (10.8%) referred for CABG. 

In-hospital there were no cases of death, stent thrombosis, target vessel 

revascularisation or major bleeding. In the patients undergoing PCI, periprocedural 

enzyme rises occurred in 32 (20.8%), while clinical periprocedural myocardial 

infarction occurred in 7 (2.8%). Periprocedural enzyme elevation occurred in 13 

(26.5%) of those with HOTPR compared to 19 (18.3%) without HOTPR p=0.23.3.4  

3.4 Discussion 

Our study is the first to look at the frequency of HOTPR following treatment with 

clopidogrel in a NZ population. HOTPR was common in our population and importantly 

there was an ethnic disparity with Maori and Pacific Islanders having a much higher 

rate of HOTPR. Diabetes was also associated with higher rates of HOTPR. Although 

treatment with high dose clopidogrel was associated with a reduction in residual 

platelet reactivity, 26% of patients treated with the high dose regimen still had HOTPR. 

To our knowledge this study was the first to examine the effect of prasugrel on platelet 

reactivity in ACS patients with HOTPR. We found that prasugrel therapy in those with 

HOTPR resulted in a consistent and marked further reduction in platelet reactivity 

 

The current study is the first to include Maori and Pacific Islanders in significant 

numbers. Both of these ethnic groups have disproportionately high rates of 

cardiovascular disease and adverse outcomes following cardiovascular events (306). 

The very frequent occurrence of HOTPR despite adequate clopidogrel therapy in this 

group may contribute to their poor outcomes following cardiovascular events and is a 

potential target for intervention with more potent antiplatelet agents. 

 

One contributing factor to the observed high rates of HOTPR in Maori and Pacific 

Islanders may be the increased carriage of loss of function SNPs in the CYP2C19 gene 

[15]. These SNPs have been shown to result in reduced formation of clopidogrel’s 

active metabolite, reduced platelet inhibition and an increased risk of thrombotic 

events following PCI (306). The most frequent and important of these polymorphisms 

is the CYP2C19*2. It has been previously demonstrated that the allele CYP2C19*2 
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occurs more frequently in Maori (24%) compared to NZ Europeans (15%)(230). 

Another polymorphism CYP2C19*3 that results in reduced function also occurs more 

frequently in Maori (1.8%) than Europeans (0.4%)(230). These findings suggest that 

CYP2C19 polymorphisms may be contributing to the phenotypic differences found in 

this study. However, it is likely that multiple genetic and environmental factors play a 

role. Previous studies have suggested that CYP2C19 loss of function polymorphisms 

only account for a small minority of the inter-individual variability in the response to 

clopidogrel therapy found in other populations (236, 309).  

 

Patients with diabetes mellitus are at high risk for recurrent cardiovascular events 

after an ACS (246). Multiple studies have suggested that platelets of diabetic patients 

are larger, hyper-reactive and show increased adhesion and aggregation (250, 255). It 

is therefore not surprising that in our study we observed a higher rate of HOTPR in 

patients with diabetes mellitus. This finding is also consistent with those of a number 

of other studies that have also demonstrated increased rates of HOTPR in diabetic 

patients using different platelet function tests (310-312). The combination of 

increased platelet reactivity and reduced responsiveness to clopidogrel may explain 

the increased benefit seen in randomized trials with more potent antiplatelet agents, 

such as prasugrel and glycoprotein IIb/IIIa inhibitors in diabetic patients (313, 314). 

We also observed that Maori and Pacific Islanders had higher rates of diabetes 

compared to Europeans, which has also been reported in previous studies (315) and 

may be contributing to the ethnicity disparity in the response to clopidogrel. Our 

results noting Maori and Pacific Island diabetics having the highest levels of absolute 

platelet reactivity and HOTPR rates suggests that both ethnicity and diabetes are 

important contributors to platelet reactivity. However, with the small subgroup sizes 

we were underpowered to determine whether these are independent predictors, 

although this trend highlights an interesting question to pursue further.  

Treatment with a high dose clopidogrel regimen resulted in greater platelet inhibition 

and a reduction in the number of patients with HOTPR when compared to a standard 

(low) dose regiment in our study. However, the absolute reduction in platelet 

inhibition achieved with high dose clopidogrel was modest and a considerable portion 

of patients still had HOTPR despite use of a high dose. The ARMYDA-150 mg and 
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GRAVITAS randomized controlled trials compared the effect of high and low 

maintenance dose clopidogrel on platelet inhibition. Consistent with our findings both 

of these studies demonstrated greater platelet inhibition with high dose clopidogrel 

(316, 317). However, use of high dose clopidogrel has had little impact on clinical 

events. In the GRAVITAS study treatment with high dose clopidogrel did not reduce 

adverse events following PCI. The large CURRENT-OASIS 7 study found that short-term 

treatment with a high dose clopidogrel regimen did not result in a reduction in the 

primary end point (cardiovascular death or nonfatal MI) but did find a significant 

reduction in stent thrombosis in those undergoing PCI (318). 

 

This study is also the first to report the effect of prasugrel on platelet function in ACS 

patients treated with aspirin and clopidogrel who have HOTPR. We found that 

prasugrel resulted in a consistent and marked reduction in platelet reactivity in this 

group with an average reduction in residual platelet reactivity of 47 AU. Following 

prasugrel loading, residual platelet reactivity was lowered below the HOTPR cut-point 

in 89.7% of patients. Of note, in 34.5% of patient’s residual platelet reactivity was 

inhibited below the level associated with an increased risk of bleeding. The fact that 

the majority of HOTPR can be overcome by prasugrel suggests that the variability in 

the response to clopidogrel is largely due to variability in active metabolite generation. 

The additional inhibition achieved with prasugrel was of a much greater magnitude 

than that associated with high dose clopidogrel. However, we can not rule out the 

potential for a natural decline in platelet reactivity over time independent of prasugrel 

loading as testing was not repeated on patients that did not receive prasugrel. 

Although the results of high dose clopidogrel to date have been disappointing, the use 

of prasugrel as an alternative agent in patients with HOTPR looks promising and the 

clinical safety and efficacy of this approach is currently being evaluated in clinical 

trials.  

3.5 Limitations 

As the study was observational, the dose of clopidogrel as well as the timing and use 

of prasugrel was at the operator’s discretion rather than systematically determined 

by a protocol. The testing of platelet reactivity was not at a standard time after 
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symptom onset, or after commencement of dual antiplatelet therapy, and differences 

in the level of platelet reactivity over time cannot be excluded. Samples were not 

collected for genetic testing and therefore the role of genetic polymorphism in the 

phenotypic differences observed could not be assessed. Due to the size of the cohort 

and the relatively low proportion of Maori and Pacific Islanders, multivariate analysis 

could not be carried out to determine whether ethnicity, diabetes and clopidogrel 

dose were independent predictors of HOTPR. Finally, this study was not powered to 

look at the effect of HOTPR or prasugrel therapy on clinical events. 

3.6 Conclusion 

This study demonstrates that HOTPR is common in a NZ population and occurs more 

frequently in Maori and Pacific Islanders. The use of high dose clopidogrel resulted in 

a modest reduction in residual platelet reactivity but a suboptimal response 

frequently remained. However, use of prasugrel in those with HOTPR following 

clopidogrel therapy resulted in a consistent and marked reduction in platelet 

reactivity, which was lowered below the threshold associated with ischaemic risk in 

the vast majority. This study highlights further questions that exist surrounding the 

HOTPR phenotype in a NZ ACS population and abroad. Firstly, which predictors of 

HOTPR are independent risk factors and to what extent is HOTPR in Maori and Pacific 

Islanders driven by diabetes and CYP2C19 loss of function carriage. Furthermore, is 

the association between HOTPR and poor outcomes in ACS patients independent of 

diabetes and ethnicity or is it simply a marker of risk. Our findings suggest that HOTPR 

can be overcome with more potent P2Y12 inhibitors, but before interventional studies 

are conducted guided by platelet function testing, a better understanding of this 

complex and multifactorial phenotype is essential for success. 
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4.1 Introduction 

The previous chapter identified several clinical predictors of high residual platelet 

reactivity including ethnicity, diabetes and clopidogrel dose in a NZ ACS population. 

However, we were not able to investigate the impact of the previously described 

CYP2C19 genetic variants on clopidogrel response. The prevalence of the CYP2C19*2 

allele, resulting in a reduced clopidogrel metabolism, has been reported to be more 

common in Maori and Pacific Islanders compared to Europeans (230), although the 

prevalence of this polymorphism is unknown in an NZ ACS population. Furthermore, 

the prevalence of the CYP2C19*17 allele, associated with significantly lower levels of 

ADP-induced platelet reactivity (237), is unknown in a NZ ACS population. It is also 

unknown how these genetic variants impact on residual platelet reactivity and to what 

extent in the presence of other influencing factors such as diabetes and clopidogrel 

dose.  

 

In this chapter the overall aim was to further investigate the clinical predictors of high 

residual platelet reactivity as well as the prevalence and impact of genetic variants in 

the CYP2C19 gene on platelet reactivity. In addition, multivariate analysis was 

conducted to determine whether these predictors were independent of each other 

and determine the most significant drivers of high residual platelet reactivity. 

 

The specific aims of the study were: 

1. To determine the clinical, demographic and laboratory parameters that 

are correlated with high residual platelet reactivity. 

2. To identify the prevalence and impact of the CYP2C19*2 and *17 alleles 

on residual platelet reactivity. 

3. To investigate the relationship between predictors of residual platelet 

reactivity using multivariate analysis.  
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4.2 Methods 

4.2.1 Study Population 

Patients presenting to Wellington Regional Hospital with ACS between January and 

December 2012 were eligible for inclusion in the study if there was an invasive 

approach (coronary angiography ± PCI) planned and they were adequately pre-treated 

with aspirin and clopidogrel. To ensure the necessary statistical power to assess the 

impact of ethnicity we recruited 282 ACS patients (232 Caucasian, 40 Maori and Pacific 

Islanders) and enriched the population with an additional 30 Maori and Pacific 

Islander ACS patients. By enriching the population to have double the Maori and 

Pacific Islander patients compared to the cohort in Chapter 3 we increased our power 

to detect a difference in the rate of HOTPR between ethnicities of 15% or more. An 

ACS was defined as symptoms suggestive of myocardial ischaemia lasting > 10 minutes 

and either troponin elevation or ≥1mm of new ST segment deviation or T wave 

inversion on an electrocardiogram in at least 2 contiguous leads (289). Adequate pre-

treatment was defined as chronic therapy with aspirin (75mg) and clopidogrel 

(75mg) and / or loading with aspirin 300 mg at least 2 hours and clopidogrel 300 

mg at least 6 hours prior to enrolment. Exclusion criteria included a platelet count less 

than 100 x 109/L, known platelet function disorder, administration of a fibrinolytic 

agent within 24 hours of enrolment or administration of an oral antiplatelet agent 

other than aspirin of clopidogrel within 2 weeks enrolment. The study was reviewed 

and approved by the Lower Regional South Ethics Committee (LRS/11/09/035).  

4.2.2 Data Collection 

Patient demographics, clinical characteristics, medications including antiplatelet 

therapy, clinical management and procedural variables were obtained prospectively 

from review of the medical records and cardiac catheterization database. Ethnicity 

was self-identified by the patient. All aspects of clinical management, including 

prescription of antiplatelet therapy was at the discretion of the attending physicians.  
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4.2.3 Blood Collection and Platelet function testing 

Blood for platelet function testing was collected for testing as described in section 

2.2.2. High sensitivity Troponin T (hs-TnT) and electrocardiograms were performed as 

part of clinical practice by cardiac care nurses prior to cardiac catheterization and 

following PCI.  

4.2.4 Isolation of Genomic DNA 

Genomic DNA was extracted from EDTA anticoagulated whole blood using the 

Promega Wizard Genomic DNA Purification Kit (Promega, WI, USA). Following the 

manufacturer’s instructions, 3mL of whole blood was added to 9mL of red cell lysis 

buffer and incubated with rocking for 8 minutes at RT. After incubation, cell 

suspension was centrifuged at 5000 rpm for 5 minutes. Supernatant was discarded 

leaving a white cell pellet, which was washed in excess sodium chloride 0.9%. The 

washed white cell pellet was resuspended in nuclei lysis solution (3mL) before the 

addition of protein precipitation solution (1ml) and vortexed for 30 seconds. Samples 

were centrifuged at 5000 rpm for 5 minutes and the clear supernatant was transferred 

in to a separate tube, avoiding the transfer of cellular debris. 3mL of isopropanol was 

added to supernatant and mixed until DNA precipitated out of solution, evident by 

white threads. Samples were centrifuged for 1 minute at 5000 rpm and the 

supernatant was decanted to leave a DNA pellet. The DNA pellet was carefully washed 

with 3mL of 70% ethanol and the remaining pellet was dried in the 37°C incubator for 

1 hour or until the pellet was clear. Following drying, the pellet was resuspended in 

200μL DNA rehydration solution and placed in the 37°C incubator overnight to 

dissolve. DNA suspension was then stored at 4°C for genetic analysis. 

 

Genotyping of CYP2C19*2 and *17 was performed by Eng Wee Chau and Leon Smyth 

under the supervision of Prof. Martin Kennedy from the University of Otago, 

Christchurch. All DNA samples were normalized to 20-50 ng/µL. However, even after 

normalisation DNA concentrations were found to be quite variable. Subsequent PCR 

analysis was performed with greater caution and, as will be described in the following 

section, ambiguous genotype calls were resolved by various other methods. 
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4.2.5 Validation of CYP2C19*2 and CYP2C19*17 HRM Assays 

All genetic work Both CYP2C19*2 and CYP2C19*17 were genotyped by high-resolution 

melting (HRM) assays. The genotyping assay for CYP2C19*2 was mainly based on a 

method previously published by Temesvári et al. (2011) (319), and was further 

validated in-house. CYP2C19*17 HRM assay was developed and validated on 27 

samples whose -806C>T genotypes were determined via a sequencing method 

described elsewhere in this thesis. 

Figure 4-1 High resolution melting curve assay 

The defining variant for CYP2C19*17, -806C>T located in the promoter region, was genotyped 
by a high-resolution melting assay, where three groups of genotypes were defined by clearly 
distinctive melting profiles: CC (blue), CT (green), and TT (red-brown). 

4.2.6 Genotyping of CYP2C19*2 and CYP2C19*17 

Generally, 10μL PCR reactions were set up and cycled in the Eco Real-Time PCR System 

(Illumina Inc., California, USA). A no-template control was included in every 

genotyping run. For CYP2C19*2, a 100-bp fragment was amplified in the following 

reaction mix: 1X Reaction Buffer B1, 1.5 mM Mg2+, 0.2 mM of each dNTP, 0.2 µM of 

2C19*2 HRM-F, 0.2 µM of 2C19*2 HRM-R, 1.5 mM of SYTO® 9 Green Fluorescent 

Nucleic Acid Stain (Life Technologies, California, USA), and 0.5 U of HOT FIREPol® DNA 

Polymerase (Solis BioDyne, Estonia). The thermal profile consisted of an initial 

activation step of 95 °C for 10 min, then 40 cycles of 95 °C for 10 seconds (s), 54 °C for 

30 s, and 72 °C for 30 s. For CYP2C19*17, a 62-bp fragment was amplified with 1X 

Reaction Buffer B1, 1.5 mM Mg2+, 0.2 mM of each dNTP, 0.2 µM of 2C19*17 HRM LitF, 

0.2 µM of 2C19*17 HRM LongR, 1.5 mM SYTO® 9 Green Fluorescent Nucleic Acid Stain 
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(Life Technologies, California, United States), and 0.5 U of HOT FIREPol® DNA 

Polymerase (Solis BioDyne, Estonia). The cycling conditions were 95 °C for 10 min, 

then 45 cycles of 95 °C for 10 s, 52 °C for 15 s, and 72 °C for 15 s. To generate a HRM 

profile, all PCR products were completely denatured by heating at 95 °C for 15 s, 

allowed to re-anneal at 55 °C for 15 s, and denatured again by gradual heating to 95 

°C, during which fluorescence data was collected every 0.1 °C. Ambiguous genotype 

calls i.e., samples which had an unusual melting curve visually, were resolved by 

Sanger sequencing or restriction digest.  

Table 4-1 Primer Sequences 

Primer name  Primer sequence (5’-3’) 

2C19*17 HRM-F CTTAGATATGCAATAATTTTCCCAC 

2C19*17 HRM-R CTTTCCATAAAAGCAAGGTT 

2C19*17 HRM LitF AAATTTGTGTCTTCTGTTCTCAAA 

2C19*17 HRM LongR TGCCCATCGTGGCGCATTAT 

2C19Ex5F CAACCAGAGCTTGGCATATTG 

2C19Ex5R TGATGCTTACTGGATATTCATGC 

2C19Prom4F GCCCTTAGCACCAAATTCTCT 

2C19Prom4R CACCTTTACCATTTAACCCCC 

 

4.2.7 Restriction Fragment Length Polymorphism (RFLP) and Sanger 
Sequencing 

For RFLP analysis of CYP2C19*2, a 409-bp fragment was amplified in a 10 µL reaction 

containing 1X Reaction Buffer, 1.5 mM Mg2+, 0.2 mM of each dNTP, 0.2 µM of 

2C19Ex5F, 0.2 µM of 2C19Ex5R, and 0.25 U of TAQ-TI Heat-Activated DNA Polymerase 

(Fisher Biotec, Western Australia). The thermal profile consisted of an initial 

denaturation step at 94 °C for 2 min, followed by 35 cycles of 94 °C for 15 s, 56 °C for 

15 s, and 72 °C  for 30 s, and a final elongation step of 72 °C  for 1 min. Restriction 

digest was carried out by directly incubating the PCR mix with 10 U of SmaI (New 

England BioLabs Inc., Massachusetts, USA) at room temperature for two hours. 

Digested PCR products were resolved by 1.5% agarose gel electrophoresis. The 

presence of CYP2C19*2 abolishes SmaI recognition site; as a result the PCR fragment 
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would remain undigested.  A 483-bp fragment encompassing the -806C>T variant was 

similarly amplified with the primer pair 2C19Prom4F and 2C19Prom4R; the reaction 

volume was increased to 20 µL and annealing temperature to 65 °C. The resulting PCR 

products were purified through the AcroPrepTM 384 Filter Plate, Omega 30K (Pall 

Corporation, Michigan, USA), and subsequently Sanger-sequenced using the BigDye® 

Terminator v3.1 Cycle Sequencing Kit as per the manufacturer’s instructions.  

4.2.8 Definitions 

The clopidogrel dose was defined as “high” if patients had received a 600 mg loading 

dose followed by a 150mg daily maintenance dosing. Intermediate dose was defined 

as either a 600 mg loading dose followed by 75 mg daily maintenance dose or a 300mg 

loading dose coupled with 150 mg maintenance dose. Low dose was defined as a 300 

mg loading dose followed by 75mg daily maintenance dose or chronic therapy with 75 

mg daily of clopidogrel. Patients with a platelet count over 300 x 109/L were defined 

as having a high platelet count. Obesity was defined as a BMI ≥ 30 and the 

classification of loss of function (LOF) allele and gain of function (GOF) allele was either 

heterozygous or homozygous for CYP2C19*2 SNP and CYP2C19*17 respectively.  

4.2.9 Statistical analysis 

In the previous study, the continuum of residual platelet reactivity was categorised in 

a binary fashion into HOTPR and non-HOTPR using the cut-point of 47 AU as previously 

described by the Sibbing group (184). This method was used to allow us to identity the 

prevalence of HOTPR in a NZ population and compare the rate with other reported 

studies using the same methods. The limitation with using a defined cut point is you 

lose information and miss potentially important relationships. In this study we wanted 

to further investigate the relationship between clinical and genetic factors with high 

and low residual platelet reactivity. To have the most sensitivity we decided to analyse 

the relationship between these factors with residual platelet reactivity as a continuous 

variable.  
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Continuous variables are expressed as median and interquartile range (IQR). 

Categorical variables are expressed as frequencies and percentages. We compared 

the proportion of Maori and Pacific Islanders or Europeans with diabetes, LOF and 

GOF alleles using the Chi-Squared test. Platelet reactivity distribution did not pass the 

D’Agostino & Pearson omnibus normality test. Therefore all univariate analysis was 

carried out using non-parametric tests. Absolute values for residual platelet reactivity 

(AU) were compared by ethnicity, diabetes, dose groups, high platelet count, obesity 

and LOF and GOF genotypes using the Mann-Whitney test. The relationship between 

age, renal function and residual platelet reactivity was assessed by Spearman’s 

correlation coefficient (rho). To perform parametric multivariate analysis, platelet 

reactivity was log transformed and compared against significant univariate predictors 

of residual platelet reactivity using a multiple linear regression model. Regression 

analysis and Chi-Squared tests were performed using PASW 18.0 (IBM, NY, USA), all 

other analysis and graphs were generated using GraphPad prism 5 (GraphPad 

Software Inc., CA, USA).  
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4.3 Results 

4.3.1 Demographics 

During the study period 312 patients were enrolled in the study. The baseline 

demographics for the population are displayed in Table 4-2. This study cohort had a 

higher proportion of Maori and Pacific Islanders (22.4%) with the additional selected 

recruitment of these patients compared to the study population in Chapter 3, whereas 

all other demographics were comparable. 

Table 4-2 Patient baseline demographics 

 N = 312 

Age (years) 63 (31 – 89) 

Male, n (%) 225 (72) 

BMI 28 (17 - 50) 

Ethnicity, n (%)  

European 232 (74.3) 

Maori and Pacific Islander 70 (22.4) 

Other 10 (3.2) 

Risk Factors, n (%)  

Hypertension 213 (68) 

Dyslipidaemia 209 (66.9) 

Diabetes 79 (25.3) 

Current Smoker 60 (19.2) 

Medical History, n (%)  

Previous MI 93 (29.8) 

Previous PCI 52 (16.6) 

Previous CABG 21 (6.7) 

Clinical Presentation, n (%)  

STEMI 58 (18.5) 

NSTEMI 239 (76.6) 

Unstable Angina 15 (4.8) 

Laboratory data  

Creatinine (umol/L) 84 (51 – 1058) 

Platelet Count (109/L) 220 (109 – 626) 
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4.3.2 Predictors of platelet reactivity 

To investigate the impact of different predictors on platelet reactivity, demographics, 

clinical characteristics and laboratory data were tested against absolute levels of 

platelet reactivity in univariate analysis. Patients with diabetes had significantly higher 

levels of platelet reactivity compared to non-diabetics (44 AU (4 – 140) vs. 34 AU (4 – 

148), p = 0.002, Figure 4-2A. Platelet reactivity was also compared between patients 

that received different doses of clopidogrel. As with the last cohort there was 

significant variance in the dose of clopidogrel that patients were allocated, with 50% 

of patients receiving low dose clopidogrel, 22% on a medium dose and 28% on a high 

dose. Patients receiving low doses of clopidogrel had significantly higher levels of 

platelet reactivity compared to the medium or high dose patients (43 AU (6-143) vs. 

31 AU (6-140), p = 0.013, and 31 AU (4 – 104), p = 0.002, Figure 4-2B). There was no 

difference in platelet reactivity between medium and high dose patient groups.  

 

Platelet count was measured in all patients, and patients with a high platelet count 

had a level of platelet reactivity 1.8 times higher than patients with a normal platelet 

count (53 AU (6 – 148) vs. 34 AU (4 – 104), p = 0.001, Figure 4-2C). Similarly, patients 

who were obese as defined by a BMI ≥ 30, had significantly higher levels of platelet 

reactivity compared to patients with a BMI < 30 (40 AU (4 – 148) vs. 33 (4 – 141), p = 

0.01, Figure 4-2D) 
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Figure 4-2 Clinical predictors of platelet reactivity 

Absolute levels of platelet reactivity (AU) as measured by the Multiplate in patients with diabetes 
and no diabetes (A), by clopidogrel dose group including low, medium and high doses (B). 
Platelet reactivity was also compared by high platelet count (>300 x 109/L) vs. normal platelet 
count (<300 x 109/L) (C) and by BMI (D). Data presented as Median and IQR, analysed using 
the Mann-Whitney test. * p <0.05, **p < 0.01.  
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The impact of the SNPs CYP2C19*2 and CYP2C19*17 on platelet reactivity was also 

investigated. The prevalence of CYP2C19*2 was high in the cohort with 32% (100) of 

patients having at least 1 of the loss of function (LOF) allele, 28.5% (89) were 

heterozygous for the LOF allele and 3.5% (11) were homozygous for the LOF allele. 

The carriage of at least one LOF allele (Figure 4-3A) resulted in 1.3 times higher levels 

of platelet reactivity compared to wild type (w/t) (44 AU (6 – 126) vs. 33 (4 – 148), p = 

0.02). However, when the different genotypes were separated (Figure 4-3B), the 

highest levels of platelet reactivity were seen in LOF homozygotes (*2/*2) and were 

significantly higher compared to w/t (59 AU (20 – 126) vs. 33 AU (4 -148), p 0.03). The 

heterozygotes had a numerically higher level of platelet reactivity (43 AU (6 – 109), 

but this was not significantly different to w/t (33 Au (4-148), p = 0.07) or homozygotes 

(59 AU (20 – 126), p = 0.2). 

 
Figure 4-3 CYP2C19*2 loss of function allele (LOF) and platelet reactivity 

Absolute level of platelet reactivity (AU) as measured by Multiplate, in patients wild type (w/t) 
and at least 1 loss of function (LOF) allele (A). Platelet reactivity was also compared between 
the different CYP2C19*2 genotypes, 1*/1* - wild type, 1*/2* heterozygote and *2/*2 homozygote 
(B). Data presented as Median and IQR, analysed using the Mann-Whitney test.  *p < 0.05, **p 
<0.01.  
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The gain of function SNP CYP2C19*17 was also identified in patients and the levels of 

platelet reactivity were compared between genotypes. The prevalence of 

CYP2C19*17 was also high in the cohort with 34% (106) of patients having at least 1 

of the gain of function (GOF) allele, 30.4% (95) were heterozygous for the GOF allele 

and 3.5% (11) were homozygous for the GOF allele. The carriage of at least 1 GOF 

allele did not have any noticeable impact on platelet reactivity levels (Figure 4-4A, 33 

AU (4 – 141) vs. 36 AU (4 – 148), p = 0.3). Furthermore, analysis of the different 

genotypes (Figure 4-4B) also displays little difference between wild type, 

heterozygous and homozygote genotypes on platelet reactivity (36 AU (4 – 148), 36 

AU (6 – 140), 31 (4 – 141), p = 0.47).    

 
Figure 4-4 CYP2C19*17 Gain of Function (GOF) allele and platelet reactivity 

Absolute level of platelet reactivity (AU) as measured by the Multiplate, in patients wild type 
(w/t) and at least 1 gain of function (GOF) allele (A). Platelet reactivity was also compared by 
CYP2C19*17 genotype, 1*/1* - wild type, 1*/17* heterozygote and *17/*17 homozygote (B) 
Data presented as Median and IQR, analysed using the Mann-Whitney test 

The level of platelet reactivity was not significantly different between ethnicities 

(Figure 4-5A), although numerically Maori and Pacific Islanders had slightly higher 

levels of platelet reactivity compared to Europeans (38 AU (4 – 145) vs. 34 AU (4 – 

141), p = 0.14). Of note, Maori and Pacific Islanders had both higher rates of diabetes 

(35.7% vs. 21.5%, p = 0.032, Figure 4-5B) and a higher prevalence of the CYP2C19*2 

LOF allele (47% vs. 26%, p = 0.001, Figure 4-5C) compared to Europeans. Interestingly, 

Maori and Pacific Islanders also had a significantly lower prevalence of the 

CYP2C19*17 GOF allele (11.4% vs. 41.2%, p = 0.0001, Figure 4-5D) compared to 

Europeans.  
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Figure 4-5 Ethnicity and platelet reactivity 

Absolute levels of platelet reactivity (AU) as measured by the Multiplate in European and Maori 
and Pacific Island patients (A). Data presented as medians and IQR. The rate of patients with 
diabetes (B) and the proportion of patients positive for the LOF allele (C) and GOF allele (D) in 
European vs. Maori and Pacific Islander ethnicities, proportion of population (%) shown for 
each. Analysis performed by student t test. * p < 0.05, ** p < 0.01, ***p < 0.001.  

There was no significant correlation between age (rho = 0.002, p = 0.2) or renal 

function (rho = 0.0001, p = 0.8) as measured by creatinine level and residual platelet 

reactivity. Mean residual platelet reactivity was also not affected by concomitant 

treatment with a proton pump inhibitor or the type of ACS at presentation. There 

were no clinical, demographic or laboratory variables such as renal function, age and 

sex, that significantly correlated with low levels of platelet reactivity in this cohort. 
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4.3.3 Multivariate analysis of platelet reactivity predictors 

To test whether predictors that were found to be significant indicators of high levels 

of platelet reactivity in univariate analysis were independent predictors, multivariate 

linear regression analysis was performed on the following variables: obesity, diabetes, 

high platelet count, LOF allele carriage and clopidogrel low dose (Table 4-3). The 

model suggested these variables accounted for 11% (adjusted R2 0.110) of the 

variance in platelet reactivity. Of these variables, diabetes, high platelet count and low 

clopidogrel dose were found to be independent predictors of high platelet reactivity. 

Obesity and LOF allele carriage did not independently predict platelet reactivity. High 

platelet count had the greatest impact on platelet reactivity with a β coefficient of 

0.151 ± 0.05 (p = 0.002), followed by diabetes 0.094 ± 0.03 (p = 0.009) and clopidogrel 

low dose 0.084 ± 0.03 (p = 0.006). 

 

Table 4-3 Multivariate Linear Regression Coefficients  

Variable Coefficient (β) Std. Error Standardized β p Value 

Intercept 1.588 0.05  0.0001 

Obesity 0.043 0.03 0.075 0.179 

Diabetes 0.094 0.03 0.145 0.009 

High platelet count 0.151 0.05 0.172 0.002 

LOF allele carriage 0.051 0.03 0.084 0.126 

Clopidogrel low dose 0.084 0.03 0.152 0.006 
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4.4 Discussion 

This study sought to further investigate the complex nature of residual platelet 

reactivity in ACS patients and the different clinical, demographic, genetic and 

laboratory parameters that influence platelet reactivity. Of the different parameters 

that were collected, diabetes, clopidogrel dose, high platelet count, obesity and 

carriage of the LOF allele were all correlated with high residual platelet reactivity in 

univariate analysis. The prevalence of both the LOF allele and GOF allele was high in 

the NZ ACS population, with particularly high rates of CYP2C19*2 in Maori and Pacific 

Islanders. In multivariate analysis, only diabetes, high platelet count and clopidogrel 

dose were independently associated with higher levels of residual platelet reactivity. 

 

As described in the previous chapter, diabetes is a state of increased platelet activity 

and aggregation and in this cohort; diabetes continues to be a strong predictor of high 

residual platelet reactivity. The presence of diabetes resulted in a 3-fold increase in 

platelet reactivity compared to patients without diabetes. In this cohort we were able 

to perform multivariate analysis and determined that diabetes is an independent and 

significant risk factor for high platelet reactivity. Other studies have also found 

absolute platelet reactivity levels to be higher and the rate of non-responders to be 

more common in patients with diabetes (310, 320, 321). Previous studies have 

demonstrated that platelets are hyper-reactive in patients with diabetes and result in 

a poor response to P2Y12 inhibitors. Proposed mechanisms include: increased 

glycation of platelet membrane proteins, which may alter P2Y12 functioning; 

overexpression of platelet integrins, such as glycoprotein IIb/IIIa; disturbed calcium 

homeostasis and enhanced inflammatory status (322, 323). Some studies propose 

that high platelet reactivity can be attributed to a higher BMI in diabetic patients (326). 

However our data demonstrates diabetes as a risk factor independent of BMI. 

 

Furthermore, as observed in the previous cohort, clopidogrel dose was a significant 

independent predictor of high platelet reactivity and the administration of low doses 

correlated with significant increases in platelet reactivity. The administration of 

medium or high doses of clopidogrel resulted in a modest decrease in platelet 
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reactivity compared to low doses. Although there was no difference between medium 

and high doses suggesting a threshold of platelet inhibition that clopidogrel can 

achieve. 

 

The factor that had the greatest impact on high residual platelet reactivity in the 

multivariate model was a high platelet count. This was not identified as a significant 

contributor to platelet reactivity in the previous cohort but high platelet count has 

been reported in earlier studies to correlate with high residual platelet reactivity 

(236). There may be several reasons as to why higher platelet counts are contributing 

to higher levels of platelet reactivity. It is reasonable to argue that increases in platelet 

numbers and therefore an increase in P2Y12 receptor targets, would lead to higher 

rates of residual platelet reactivity due to the consequential insufficient dose of 

clopidogrel. Other studies have also hypothesized that an increase in platelet turnover 

can contribute to higher levels of residual platelet reactivity (325, 326). A high platelet 

turnover is often observed in ACS when platelets are being consumed by thrombus 

and is associated with a high platelet count, which results in an increase in a 

population of immature reticulated platelets (329). Reticulated platelets represent 

younger, more hyperactive platelets, with an increased volume and greater number 

of dense granules than older circulating platelets (328). They also have a greater 

prothrombotic potential; they aggregate more rapidly with collagen and have higher 

levels of intracellular thromboxane A2 as well as expression of P-selectin and GpIIb/IIIa 

(329, 330). These factors combined may reduce the ability of antiplatelet therapies to 

effectively inhibit aggregation and result in higher levels of residual platelet reactivity. 

Lastly, it has been found that low platelet count can influence Multiplate testing 

independent of platelet function, but this has not been the case for high platelet count 

(331) (332). Further investigation is required to determine if high platelet count is a 

risk factor for high residual platelet reactivity, independent of the platelet function 

assay being used. 

 

One of the central findings in this study is the high prevalence of the CYP2C19*2 LOF 

allele displayed in a NZ ACS population and the significant difference in expression 

between ethnicities. The presence of at least 1 LOF allele was also a significant 



CHAPTER 4 

 

106 

univariate predictor of high residual platelet reactivity, which was largely driven by 

the high platelet reactivity levels found in patients homozygous for the CYP2C19*2 

polymorphism. Studies conducted in the general NZ population have shown a higher 

prevalence of *2 alleles at 24% in Maori and Pacific Islanders compared to NZ 

Europeans at 13% (229, 333). However, our study in ACS patients found a much higher 

prevalence of the CYP2C19*2 LOF compared to previous findings, with 32% of the 

overall population and 47% of Maori and Pacific Islanders positive for the allele. Other 

studies have found significant differences in the reported rate of CYP2C19 

polymorphisms in the same race (227). For example, in two studies of Caucasian 

ethnicity, CYP2C19*3 frequency was reported at 0 and 6.5% (334, 335) and in two 

studies of African American ethnicity, CYP2C19*2 frequency was reported at 18 and 

25% (336). These differences are most likely due to the effect of low sample numbers 

on reported rates. This may also explain the discrepancy between our reported rate 

of LOF allele carriage in Maori and Pacific Islanders and that reported by Lea et al. 

(230) who also had a small cohort size of 60 Maori and Pacific Islanders. This is not the 

first study to find differences in the rate of CYP2C19 polymorphisms between 

ethnicities. However, in comparison Maori and Pacific Islanders have a high 

prevalence of the CYP2C19*2 LOF allele. A cumulative meta-analysis comparing the 

frequency of the CYP2C19 polymorphisms found African American, American and 

Europeans have the lowest average prevalence of CYP2C19*2 at 15%, followed by East 

Asian at 29% and South/central Asian at 35% (227).  

 

Reduced clopidogrel response in CYP2C19*2 carriers has been established from 

pharmocokinetic and pharmodynamic studies, which lead to the FDA black box 

warning to prescribe clopidogrel based on CYP2C19 genotype (337). The impact of 

CYP2C19*2 carriage on MACE risk is debatable in the literature with some meta-

analyses reporting an increase in cardiovascular risk, particularly stent thrombosis in 

patients undergoing percutaneous coronary intervention (PCI) (232, 233). However 

other studies have directly challenged this link and report a marginal increase in MACE 

for patients with the LOF allele (234, 235). The reported inconsistencies linking 

CYP2C19*2 and MACE are most likely due to the small influence (5-12%) the LOF allele 

has on the variability in clopidogrel response (236). In addition, our study found the 
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LOF allele was not an independent predictor of high residual platelet reactivity and is 

not significantly contributing to the variability seen in platelet reactivity in this ACS 

cohort. As discussed in section 1.4.11, genetic polymorphisms also affect other genes 

that are central to active clopidogrel metabolite production and a combination of 

these polymorphisms may have significant influence on residual platelet reactivity 

beyond CYP2C19*2. 

 

The gain of function (GOF) CYP2C19*17 polymorphism has been associated with 

significantly lower levels of ADP-induced platelet aggregation or Low on treatment 

platelet reactivity (LOWPR) in previous studies (237). In contrast, our study 

demonstrated no meaningful change in platelet reactivity between patients who were 

wild type, heterozygotes or homozygotes for the *17 polymorphism. However, we did 

find a significant difference in GOF allele prevalence between ethnicities. The carriage 

of the GOF allele has been reported to be more prevalent in Caucasians (21%) 

compared to other ethnicities (228) and our study further supports this with an even 

higher rate at 41% of Europeans positive for the GOF allele. Our study is also the first 

to report the prevalence of the CYP2C19*17 polymorphism in Maori and Pacific 

Islanders which was found to be significantly lower than Europeans at 11%. This rate 

is similar to what is seen in African American populations (16%) and higher than 

reports from Asian populations (4%) (228). 

 

LOWPR or hyper-response to clopidogrel measured by platelet function assays have 

been linked to increased major bleeding in both PCI treated patients and those going 

on to cardiac surgery (338-340). There has also been enhanced interest in using 

platelet function testing to guide antiplatelet therapy treatment particularly before 

CABG surgery as a number of studies have shown LOWPR to be predictive of an 

increased transfusion requirement post-surgery (341, 342). A consensus regarding the 

impact of the GOF allele on platelet reactivity and clinical outcomes has yet to be 

reached and our findings would suggest the GOF allele does not impact residual 

platelet reactivity significantly. Interestingly, we also did not encounter any other 

clinical or demographic parameter that was significantly correlated with lower levels 

of residual platelet reactivity. 
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In this cohort we did not find a significant difference in residual platelet reactivity 

between ethnicities. This finding is surprising given our results from the previous 

chapter, showing a significant increase in HOTPR in Maori and Pacific Islanders. This 

finding was also one of the key drivers to explore the HOTPR phenotype further and 

was one of the reasons to selectively recruit a larger proportion of Maori and Pacific 

Islanders. Furthermore, Maori and Pacific Islanders did have significantly higher rates 

of diabetes and the LOF allele, which were both correlated with higher levels of 

platelet reactivity. However, a small trend of increased platelet reactivity was 

demonstrated in this cohort and this finding in a larger group of participants suggest 

that ethnic differences are only having a minor influence on platelet reactivity. Maori 

and Pacific Islanders are a high-risk population with considerably poor cardiovascular 

outcomes compared to the general population. Further investigation into the factors 

contributing to cardiovascular risk is essential to tackling the health inequalities seen 

in these ethnicities. 

 

The finding that only a small percentage of the variability in platelet reactivity can be 

attributed to diabetes, clopidogrel dose and platelet count, indicates there still 

remains unidentified factors that are having a significant impact on platelet reactivity 

and highlights the complexity of this phenotype. One potential factor that will 

undoubtedly be having a large influence on platelet reactivity is the heightened 

inflammatory state and abundance of platelet activating factors that are released 

during an ACS. By measuring platelet function during this time, the background noise 

of inflammation may be overshadowing the impact of other predictors on residual 

platelet reactivity, particularly those that remain in a constant state such as genetic 

polymorphisms. Diabetes and platelet count are known to be dynamic factors that 

respond to changes in inflammation and oxidative stress and may track with ACS 

progression and resolution. This may explain why diabetes and platelet count are the 

most significant predictors of residual platelet reactivity in our ACS cohort.  

 

The optimal time to measure platelet function is at the centre of significant debate 

and an important issue when considering personalising antiplatelet therapy based on 
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platelet function assays. Some studies have suggested that platelet function testing at 

the time of an ACS is an unreliable predictor of the antiplatelet response during 

maintenance therapy (343). This finding again highlights the dynamic nature of 

platelet reactivity and suggests clinical factors that are influencing residual platelet 

reactivity at the time of infarct, may not be the same factors or impacting to the same 

degree on platelet reactivity during maintenance therapy. However, it is also 

important to point out that the key purpose of platelet function testing is to identify 

patients at increased risk, both ischaemic and bleeding risk. This risk is highest directly 

after an ACS (343) and potentially the most benefit from altering antiplatelet therapy 

is in this early period. Therefore, it is important to investigate platelet function as well 

as other clinical and genetic factors and determine which variables or combination of 

variables is the most predictive of ischaemic and bleeding outcomes.  

4.5 Limitations 

As the study was observational, the dose and loading time of clopidogrel was at the 

operator’s discretion rather than systematically determined by a protocol. The testing 

of platelet reactivity was not at a standard time after symptom onset, or after 

commencement of dual antiplatelet therapy, and differences in the level of platelet 

reactivity over time cannot be excluded. However, all blood samples were taken 

before angiography and no longer than 7 days post admission to limit this variance. 

The inclusion/exclusion criteria were also designed to ensure all patients would 

experience the maximal effect from antiplatelet therapy at the time of testing.  

4.6 Conclusion 

This study highlights the complex nature of residual platelet reactivity during an ACS, 

with many components influencing the response to clopidogrel. Diabetes, high 

platelet count and clopidogrel dose were all significant and independent predictors of 

high residual platelet reactivity. However, only a small percentage of the variability in 

platelet reactivity could be attributed to these predictors suggesting unidentified 

factors are having considerable influence on residual platelet reactivity. The large 

inter-individual variability in the response to clopidogrel can be considered as a matter 

of systems pharmacology rather than a phenomenon determined by a single-gene or 
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clinical factor, and prediction of an individual’s response to clopidogrel may require 

integration of information on genetics and clinical variables, both captured in an 

individual’s on-treatment platelet reactivity status. Furthermore, determining the 

ability of this phenotype to predict patient risk, potentially integrated with other 

patient parameters, is central to progressing platelet function testing as a viable 

clinical tool.  
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5.1 Introduction 

In the preceding chapter we demonstrated that several clinical factors contributed to 

the observed variability in residual platelet reactivity. In particular, diabetes, high 

platelet count and a low clopidogrel dose were all significant independent predictors 

of high residual platelet reactivity while the CYP2C19*2 genotype had only a minor 

impact on the platelet reactivity phenotype. Previous studies have demonstrated 

separately that the HOTPR phenotype (344) or LOF genotype (232, 233) are associated 

with an increased risk of major adverse cardiovascular (MACE) events in various CAD 

populations. However, outcome studies in these populations have not demonstrated 

whether the increased risk attributed to either phenotype or genotype are 

independent of each other. Furthermore, it has not been investigated whether the 

HOTPR phenotype predicts MACE risk independently of important clinical risk factors 

such as diabetes, which we know contributes to high residual platelet reactivity.  

 

Therefore the aims of this chapter were: 

1. To investigate the relationship between phenotype, genotype and 

predictors of phenotype with MACE and bleeding events in an ACS 

population and whether these various predictors were independent of 

one another.  

2. In addition to investigating risk in an ACS population, to also explore 

the relationship between platelet reactivity and risk in the patients 

undergoing PCI, as this population may benefit the most from 

personalized antiplatelet therapy. 

5.2 Methods 

5.2.1 Study population 

From the recruited cohort in Chapter 4, 294 (95%) of the patients had completed 

follow up to 1 year. Of the remaining 18 patients, 10 patients had medical documents 

that could not be accessed and 8 patients were unreachable by phone. 
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5.2.2 Data collection 

Patient demographics, clinical characteristics, medications including antiplatelet 

therapy, clinical management and procedural variables were obtained prospectively 

from review of the medical records and cardiac catheterisation database. Cardiology 

registrars at Wellington Hospital collected procedural variables and in-hospital 

outcomes. The cardiology research nurses collected follow-up data with telephone 

calls at 30 days and 1 year. Where necessary, a review of case notes was performed 

and the appropriate general practitioner contacted to further classify clinical 

outcomes. 

5.2.3 Platelet function testing and Genotyping 

Blood for platelet function testing was collected for testing as described in section 

2.2.2. Genotyping for of CYP2C19*2 and CYP2C19*17 were performed on isolated 

genomic DNA using the RFLP and sanger sequencing techniques as described in 

section 4.2.7.  

5.2.4 End points and definitions 

The primary endpoint was a composite of major adverse cardiovascular events 

(MACE) including death, nonfatal myocardial infarction, nonfatal ischaemic stroke and 

stent thrombosis.  

5.2.4.1 Major adverse cardiac event (MACE)  

Death encompassed all-cause mortality including cardiovascular death. Acute MI was 

defined using the third universal definition of myocardial infarction (289). This 

included the detection of a significant hs-TnT rise and the presence of symptoms 

suggestive of myocardial ischaemia, new or presumed new ST-segment-T wave 

changes or new LBBB, development of new pathological Q waves, or imaging showing 

new myocardial loss. Evaluation of definite stent thrombosis was performed according 

to the Academic Research Consortium criteria (345). Acute ischaemic cerebrovascular 

accident (CVA) was defined as signs of CVA confirmed with imaging studies.  
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5.2.4.2 Bleeding 

The Bleeding Academic Research Consortium Definition for Bleeding (BARC) (346) was 

used to define bleeding. Major bleeding was determined as fatal bleeding or BARC 

type 3 or type 4 CABG bleeds. Minor bleeding included BARC type 2 bleeds.  

Type 4 CABG-related bleeds include perioperative intracranial bleeding, reoperation 

for bleeding after closure of sternotomy, transfusion of ≥ 5 U of whole blood or packed 

red blood cells within 48 hour period and a chest tube output ≥ 2 L within a 24 hour 

period. Type 3 bleeds include any overt bleeding with the need for transfusion or a 

drop in hemoglobin of more than 30 g/L due to the bleed. Cardiac tamponade, 

bleeding requiring surgical intervention, bleeding requiring intravenous vasoactive 

agents, intracranial hemorrhage or intraocular bleeds are also included. 

Type 2 bleeds are any overt bleeding events that do not fit the criteria for type 3 or 4 

but still require either nonsurgical, medical intervention by a healthcare professional 

or hospitalisation.  

5.2.4.3 Hospital readmission 

All hospital readmissions were noted and notes were called on each visit to further 

classify events. 

5.2.5 Statistics 

Categorical variables are expressed as frequencies and percentages. Univariate 

analysis of demographic and biomarker variables as categories with outcome data was 

performed using Chi-Squared tests. Multivariate analysis of significant univariate 

predictors of outcome was performed using a multinominal logistic regression 

analysis. Cut-points derived from ROC curve analysis was determined as the multiplate 

AU value with the highest sensitivity and highest specificity-1. Regression analysis, Chi-

Squared tests and ROC curve analysis were performed using PASW 18.0 (IBM, NY, 

USA), all other analysis and graphs were generated using GraphPad prism 5 (GraphPad 

Software Inc., CA, USA). 
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5.3 Results 

All patients in the study underwent coronary angiography and their management is 

summarised in Table 5-1. Radial access was the predominant route of access used in 

79% of cases. PCI was performed in 53.8% of patients at the time of their index 

angiogram and the remaining patients being either medically managed (34%) or 

referred for CABG (12.2%).  

Table 5-1 Coronary angiogram procedure variables  

 N=294 

Underwent coronary angiography 294 (100) 

Radial access 234 (79) 

Stenosis >50% in ≥1 coronary artery 255 (86.7%) 

Management  

Medical Management 100 (34) 

PCI 158 (53.8) 

CABG 36 (12.2) 

5.3.1 Patient outcome 

At 1 year follow up, 31 patients (10.5%) experienced MACE. This included 10 deaths 

(3.4%), of which 9 were identified to be due to cardiovascular causes and 1 due to 

cancer. Nonfatal myocardial infarction occurred in 17 patients (5.8%) and ischaemic 

CVA in 6 (2%) patients. The rate of stent thrombosis was relatively low, occurring in 4 

patients (1.4%) during the follow-up period.  

 

Bleeding (≥ BARC 2) occurred in 40 patients (13.6%) at 1 year follow up. There were 9 

major bleeds (3.0%) made up of 5 BARC type 3 (1.7%) and 4 BARC type 4 CABG 

bleeding (1.4%). The remaining 31 patients (10.5%) had minor bleeds classified as 

BARC type 2 bleeds. Of note, 14 of the non-CABG bleeds were related to coronary 

angiogram access site complications. 

 

A further 83 patients were readmitted to hospital who did not experience MACE or 

bleeding (28.2%). Of interest, 12 patients were admitted with unstable angina (4.0%) 
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and 5 of these patients underwent revascularization (1.7%). A further 7 patients were 

admitted with congestive heart failure (2.4%).  

5.3.2 ROC curve analysis of residual platelet reactivity and outcome 

To assess the predictive value of residual platelet reactivity to identify patients at 

increased risk of MACE and bleeding, ROC curve analysis was conducted. Residual 

platelet reactivity was found to be a moderate predictor of MACE with an area under 

the curve of 0.631 (0.542 – 0.744) (Figure 5-1). The ROC curve demonstrated the lack 

of a single cut-point that was predictive of MACE risk, including the previously 

established 47 AU. A cut point of 35 AU for HOTPR was derived from the platelet 

reactivity value with the highest sensitivity and smallest loss of specificity (Table 5-2), 

which has a sensitivity of 0.710 and specificity of 0.51.  

 

Figure 5-1 ROC curve analysis of residual platelet reactivity and MACE  
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Table 5-2 ROC curve coordinates 

MEA value  Sensitivity  Specificity 

31 0.743 0.463 

32 0.743 0.482 

33 0.743 0.494 

34 0.743 0.514 

35 0.743 0.529 

36 0.686 0.553 

37 0.686 0.560 

38 0.657 0.572 

39 0.657 0.576 

40 0.657 0.591 

41 0.657 0.599 

43 0.629 0.623 

45 0.600 0.646 

46 0.543 0.661 

47 0.514 0.677 

 

With the new HOTPR cut-point of 35 AU, an additional 42 patients were included in 

the HOTPR group compared to categorizing using the 47 AU cut-point (Figure 5-2). 

This change resulted in a HOTPR rate of 51.7% compared to 37.5% with the previous 

classification.  
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Figure 5-2 Residual platelet reactivity and HOTPR cut-points 

Residual platelet reactivity as measured by the Multiplate (AU) plotted for each patient. The 
blue dotted line represents the 47 AU HOTPR cut-point as described by Sibbing et al (310). 
The red dotted line represents the 35 AU HOTPR derived from ROC curve analysis in this 
study.  

In ROC curve analysis of major bleeding (Figure 5-3) there was no relationship 

between residual platelet reactivity and outcome with an area under the curve of 

0.492. ROC curve analysis was then performed with all bleeding as the outcome 

(Figure 5-4) and no relationship was observed between residual platelet reactivity and 

bleeding The area under the curve was 0.499 indicating residual platelet reactivity is 

not a significant predictor of bleeding, major or minor.  

 

Figure 5-3 ROC curve analysis of residual platelet reactivity and major bleeding 
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Figure 5-4 ROC curve analysis of residual platelet reactivity and all bleeding 

 

5.3.3 Predictors of MACE 

Univariate analysis was conducted to assess whether the factors that were predictive 

of high residual platelet reactivity were also predictive of outcome (Figure 5-5). HOTPR 

with the cut-point of 35 AU resulted in a 2.5 fold increase risk of MACE (2.5, 1.1 – 5.6, 

p = 0.023) this is compared to the historical HOTPR cut-point of 47 AU which identified 

patients with a 2.2 fold increased risk (2.2, 1.1 – 4.7, p = 0.034). Diabetes was also 

found to be a significant predictor of MACE (3.2, 1.5 – 6.8, p = 0.002) whereas obesity 

(BMI > 30, 0.9, 0.4 – 2.1, p = 0.9), LOF allele (0.74, 0.31 – 1.7, p = 0.4), homozygous 

LOF allele (*2/*2) carriers (1.06, 0.12 – 7.0, p = 0.9), low clopidogrel dose (1.3, 0.6 – 

2.8, p = 0.4) and high platelet count (1.2, 0.4 – 3.7, p = 0.7) were not significantly 

correlated with increased MACE risk. In multivariate analysis both diabetes and HOTPR 

>35 AU were found to be significant independent predictors of MACE (Figure 5-6).  
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Figure 5-5 Univariate predictors of MACE 

Clinical and demographic variables represented as odds ratios for predictors of MACE at 1 year 
and 95% confidence intervals. 

 

Figure 5-6 Multivariate predictors of MACE 

Clinical and demographic variables represented as odds ratios for predictors of MACE at 1 year 
and 95% confidence intervals. 
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5.3.4 Predictors of bleeding 

Univariate analysis was also conducted to determine predictors of bleeding. None of 

the factors analysed were found to be predictive of bleeding (Figure 5-7). These 

included femoral access (1.8, 0.8 – 3.6, p = 0.155), low weight (BMI <20, 0.6, 0.2 – 1.5, 

p = 0.2), low platelet count (<150 x109/L, 1.5, 0.4 – 4.8, p = 0.5), diabetes (0.9, 0.4 – 

2.0), high clopidogrel dose (1.4, 0.7 – 2.8, p = 0.3), heterozygous (*1/*17) GOF allele 

(0.9, 0.2 – 3.7, p = 0.7) and patients homozygous (*17/*17) for the GOF allele (0.6, 0.1 

– 5.0, p = 0.6). As previously demonstrated in ROC curve analysis, residual platelet 

reactivity was not predictive of bleeding.  

 
Figure 5-7 Univariate predictors of bleeding 

Clinical and demographic variables represented as odds ratios for predictors of bleeding at 1 
year and 95% confidence intervals. 
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5.3.5 Subgroup analysis of PCI cohort 

Further analysis was performed in the PCI subgroup to investigate whether residual 

platelet reactivity was a stronger predictor in this population. Procedure variables for 

the cohort are summarized in Table 5-3. 

Table 5-3 PCI procedure variables 

 N = 158 

Average number of lesions treated 1.3 ± 0.5 

Average number of vessels treated 1.2 ± 0.4 

Average number of stents 1.4 ± 0.7 

Proportion of stents implanted DES 76% 

Average stent length (mm) 24.4 ± 13.6 

Average stent diameter (mm) 3.0 ± 0.9 

 

Within the PCI cohort 15 patients experienced MACE, which resulted in a similar MACE 

rate (9.7%) compared to the total population (10.5%). MACE events in the PCI cohort 

were comprised of 4 cardiovascular deaths (2.5%), 8 acute MI (5.2%), 2 ischaemic CVA 

(1.3%) and 4 stent thrombosis (2.6%).  

 

ROC curve analysis of residual platelet reactivity and MACE in the PCI cohort displayed 

a modest relationship with a similar area under the curve of 0.649 (0.470 -0.828) to 

the ROC curve in the total population. A HOTPR cut-point was also derived from the 

platelet reactivity value with the highest sensitivity and smallest loss of sensitivity 

(Table 5-4), which equated to an AU of 43, sensitivity of 0.733 and specificity of 0.594.  
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Figure 5-8 ROC curve analysis of residual platelet reactivity and MACE in PCI 
subgroup 

Table 5-4 PCI ROC curve coordinates 

MEA value  Sensitivity  Specificity 
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39 0.733 0.566 

40 0.733 0.573 

41 0.733 0.580 

43 0.733 0.594 

45 0.667 0.601 

46 0.667 0.629 

47 0.667 0.657 

 

Univariate analysis to investigate the predictors of MACE in the PCI cohort produced 

similar results as seen in the full population (Figure 5-9). Diabetes was associated with 

an increased risk of MACE (6.4, 2.1 – 19.6, p = 0.001) as well as the HOTPR ≥43 AU cut-

point (3.8, 1.2 -12.5, p = 0.02) and HOTPR ≥47 AU (3.2, 1.1 – 9.8, p = 0.03) in the PCI 
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cohort. The HOTPR >35AU cut-point was no longer a significant predictor of MACE in 

the PCI cohort as well as genotype, obesity, high platelet count and low clopidogrel 

dose. Evident from the wide confidence intervals displayed for the univariate 

predictors, conducting subgroup analysis reduces the number of MACE events and 

therefore statistical power. Multivariate analysis was conducted and found diabetes 

continued to be a significant predictor of MACE (5.1, 1.6 – 16.2, p = 0.005) whereas 

both HOTPR cut-points of 47 AU or 43 AU were not independent predictors (Figure 

5-10).   

 

Figure 5-9 Univariate predictors of MACE in the PCI subgroup 

Clinical and demographic variables represented as odds ratios for predictors of MACE at 1 year 
and 95% confidence intervals. 

 

Figure 5-10 Multivariate analysis of univariate MACE predictors in the PCI 
subgroup 

Clinical and demographic variables represented as odds ratios for predictors of MACE at 1 year 
and 95% confidence intervals. 
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5.4 Discussion 

This was the first study to investigate the relationship between phenotype, genotype 

and other clinical risk factors with outcome and identify which factors were 

independent predictors in the same cohort. We found the HOTPR phenotype and not 

the LOF genotype predicted MACE at 1 year. Furthermore, diabetes, which was shown 

to be a predictor of the HOTPR phenotype, was also a strong predictor of MACE 

independent of HOTPR. Bleeding rates were low in this cohort and were not predicted 

by low residual platelet reactivity or other clinical factors.  

 

Several studies including those conducted by Gurbel et al, Price et al, Sibbing et al and 

Matetzky et al., have demonstrated the HOTPR phenotype as measured by various 

platelet function tests is a strong predictor of MACE in CAD patients (181, 182, 185, 

347). Similarly, meta-analyses of outcome trials predominantly made up of patients 

undergoing PCI on clopidogrel, have demonstrated an increased risk of MACE in 

patients homozygous and heterozygous for the LOF allele (232). However, our study 

suggests that phenotype and not genotype predicts risk of MACE in an ACS population. 

As previously identified in Chapter 4, carriage of the LOF allele has a moderate impact 

on high residual platelet reactivity and is only 1 of many factors that influence this 

phenotype. We also investigated whether other factors that influenced residual 

platelet reactivity were also predictors of MACE. Patients with diabetes are known to 

have poor cardiovascular outcomes compared to non-diabetic cardiac patients (246) 

and as our study and others have shown diabetes is a significant contributor to HOTPR. 

However, to our knowledge this is the first study to demonstrate that HOTPR and 

diabetes are independent predictors of MACE risk. Therefore platelet function testing 

could offer additional information on a patients risk beyond a patients’ diabetes 

status.  

 

We also examined the other identified HOTPR predictors and found obesity (BMI >30), 

low clopidogrel dose and high platelet count did not predict MACE in our population. 

We did not investigate the predictive value of an exhaustive list of demographic and 
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clinical factors in this cohort, as we did not have the power to make multiple 

comparisons in this cohort.  

 

This study also highlighted that defining HOTPR by a single cut-point on a continuum 

of platelet reactivity is somewhat problematic. Undeniably, high residual platelet 

reactivity is associated with an increased risk of MACE, but where the optimal cut-

point is remains unknown. The ROC curve derived in the whole population identified 

a HOTPR cut-point of 35 AU, which is significantly lower than the HOTPR definition 

used previously and would result in half of the patients being classified at higher risk. 

Furthermore, the ROC curve derived in the PCI cohort sub analysis was different again, 

although confidence intervals where wide, with an optimal cut-point at 43 AU, which 

is more in line with the established multiplate cut-point (47 AU) determined by Sibbing 

and co (282). The issues with identifying the optimal cut-point are due to several 

factors that either increase the variability in the measurement of platelet reactivity or 

skew the risk of MACE.  

 

One issue in the current study is the relatively small population size, which reduces 

the level of confidence around the derived cut-point compared to the Sibbing group, 

which derived their cut-point from a much larger cohort of 1608 patients. 

Furthermore, as we have demonstrated in chapter 2, the assay itself has an inherent 

variability of 10% in the measurement of platelet reactivity. In addition to this, several 

pre-measurement factors such as anticoagulant and time can compound this 

variability and widen the confidence around a platelet function measurement 

identifying someone at risk. The adverse events we include to identify the optimal cut-

point are not homogenous. The degree in which high residual platelet reactivity is 

driving the risk of death, stroke, MI and stent thrombosis will vary and including these 

events as a composite endpoint may reduce our power to define the most sensitive 

cut-point. However, there are also limitations to only using a single outcome such as 

stent thrombosis at 30 days used by Sibbing et al. The resulting applicability of a cut-

point defined only by stent thrombosis may be inadequate as a tool to personalize 

antiplatelet therapy and reduce adverse events. There also exists variability in the risk 

of patients experiencing adverse events that we perform platelet function testing in. 
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The Sibbing study (344) derived their HOTPR threshold in a mixed population of stable 

and acute CAD patients where their risk of MACE would vary considerably. Our study 

exclusively examined an acute population as these patients have the highest risk of 

recurrent thrombotic events and therefore may benefit the most from adequate 

antiplatelet therapy. 

 

Bleeding complications in patients with ACS have been associated with an increased 

risk of subsequent adverse outcomes including MI, stroke, stent thrombosis and death 

(348-352). Recognition of this relationship between bleeding, mortality and morbidity 

has lead to a new emphasis on identifying those at risk of bleeding and strategies to 

minimize bleeding. In our cohort residual platelet reactivity did not predict major 

bleeding or all bleeding and no other significant predictors of major or all bleeding 

were identified. Although the link between HOTPR and ischaemic events is well 

established, the relationship between low platelet reactivity and bleeding is less clear. 

Although a number of previous studies in patients undergoing PCI have demonstrated 

an association between low platelet reactivity and bleeding (338, 353-355) this 

relationship was not observed in a number of other large-scale platelet function 

studies including the POPULAR, GRAVITAS and ARCTIC studies (287, 356-358).  

 

The rate of major bleeding in the cohort was low (3%). The high rate of radial access 

and the low rates of GP IIb/IIIa antagonist use in our study are likely to have 

contributed to this. The standardized definition recently proposed by the Bleeding 

Academic Research Consortium was used in the study (346). Previous observational 

studies and clinical trials have used a wide variety of other bleeding definitions making 

comparisions of bleeding rates across trials difficult (346). As a result of the low 

bleeding rate our study was underpowered to look at the relationship between 

bleeding and platelet reactivity, genotype or clinical factors. Major bleeding in our 

study included a combination of non-CABG and CABG related bleeding. The role that 

residual platelet function plays in these different types of bleeding might vary but 

because of the low number of events we were not able to examine these subgroups. 
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Based on the observations linking HOTPR with an increased risk of ischaemia and 

LOWPR with an increased risk of bleeding, the concept of a therapeutic window for 

platelet reactivity has been proposed (206, 281). Following this observation, several 

studies have aimed to improve patient outcome by targeting the therapeutic window 

using platelet function testing or genotyping. Two small studies by Bonelle et al. 

randomised patients undergoing PCI to a guided antiplatelet using the VASP assay or 

standard antiplatelet therapy. Those who were found to have HOTPR in the guided 

arm were given an additional 600mg loading of clopidogrel. This treatment was 

successful in reducing on treatment platelet reactivity and also decreased the rate of 

early stent thrombosis without an increase in major bleeding compared to the non-

guided approach (283, 284). The selective addition of GPIIb/IIIa antagonists in patients 

with HOTPR as identified with the VerifyNow assay, has also been shown to improve 

patient outcomes without increasing bleeding in the 3T/2R trial (359). 

 

However, the three largest randomized trials using platelet function testing to tailor 

antiplatelet therapy failed to demonstrate any benefit from this approach. There were 

several issues with the study design of these trials that may have contributed to the 

negative results. The GRAVITAS trial was the first large scale trial (n = 2214) that 

utilized the VerifyNow P2Y12 assay to identify patients with HOTPR and subsequently 

doubled clopidogrel dosing (287). High-dose clopidogrel treatment was ineffective in 

reducing the 6-month composite ischemic event occurrence (cardiovascular death, 

nonfatal MI, and stent thrombosis); both treatment groups had an unexpectedly low 

event rate (2.3%). Similarly, the ARCTIC study enrolled 2440 patients undergoing PCI 

to receive guided therapy with the VerifyNow or non-guided therapy. Several different 

treatments were available to clinicians in the guided arm including reloading with 

clopidogrel (600mg), switching to prasugrel or administration of a GPIIb/IIIa inhibitor 

during PCI. The study was also neutral with no improvement in clinical outcomes for 

patients receiving guided therapy compared to standard clopidogrel therapy without 

monitoring (287). The TRIGGER-PCI trial, which compared prasugrel vs. clopiodgrel in 

patients with HOTPR as identified by the VerifyNow, was stopped by the steering 

committee prematurely after randomization of 423 patients (out of the planned 2150) 

due to an interim analyses indicating a lower than expected incidence in the primary 
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endpoint. Given the low rate of ischemic events the clinical utility of this strategy could 

not be demonstrated (288). 

 

The limitations in these clinical trials are due to the treatment strategy, the study 

population and the method of identified high-risk patients. Firstly the treatment 

strategy utilized in the GRAVITAS study of single re-loading (600mg) and double 

maintenance therapy (150mg) was not potent enough to overcome HOTPR in a large 

proportion of those tested. A dramatic 40% of patients in the guided therapy arm with 

HOTPR remained non-responders after receiving additional clopidogrel. In the ARCTIC 

study, prasugrel was a treatment option for clinicians, although this treatment only 

became available towards the end of the enrolment period and of the cohort only 

3.3% were switched to the more potent P2Y12 inhibitor. The large majority of patients 

(80.2%) received increased doses of clopidogrel, which has been shown to be 

ineffective in lowering platelet reactivity in those with HOTPR. Both pharmacokinetic 

studies and large clinical trials have demonstrated ticagrelor and prasugrel therapy, 

result in lower on treatment platelet reactivity levels and a decrease in MACE 

compared to clopidogrel (203, 217, 360, 361). Furthermore, in chapter 3 we 

demonstrated the treatment of patients with HOTPR with prasugrel resulted in a 

marked reduction in residual platelet reactivity in all patients. Therefore it is not 

surprising that this inadequate personalized therapy of additional clopidogrel, failed 

to show clinical benefit.  

 

The populations in all of these studies were largely stable patients undergoing elective 

PCI and high-risk patients (STEMI) were excluded. The recent ADAPT-DES registry 

indicates that intensified antiplatelet therapy may not benefit low-risk patients but 

might improve patient outcomes in high-risk patients; high risk ACS or patients with a 

high risk for stent thrombosis; diabetes, multiple stents and multivessel disease (364). 

Therefore exclusion of high-risk patients in these large trials could have contributed 

to the lack of benefit in the personalized therapy arm. The GRAVITAS and TRIGGER-

PCI trials were also statistically underpowered to a point where TRIGGER-PCI was 

stopped prematurely and GRAVITAS has a much lower primary endpoint rate than 

expected (calculated as 5% vs. observed 2.3%). This could also be due to the low-risk 
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population that was recruited. It has been suggested that as for studies with tailored 

therapy of prasugrel or ticagrelor, a much higher sample size (at least 17,000 patients) 

would be required to show statistical differences (365).  

 

Lastly, the assay and cut-point used to identify HOTPR needs to be considered in these 

studies. The three trials employed the VerifyNow P2Y12 assay with a threshold of 235 

PRU to identify HOTPR. Subsequent analysis of the GRAVITAS trial hypothesized that 

the original threshold may have been too high with a clustering of events above and 

below the threshold and conversely, a PRU<208 was strongly associated with an event 

free survival at 60 days (364). This adjusted threshold of 208 PRU was also confirmed 

in the ADAPT-DES, a study investigating ischaemic outcomes and clinically relevant 

bleeding at 1-year follow-up, in more than 8500 patients treated with clopidogrel and 

undergoing PCI. A PRU>208 resulted in a 2.5 fold increase risk of stent thrombosis and 

myocardial infarction (364). Therefore the method used to identify patients at risk 

may not have been sensitive enough.  

 

Several key issues around the measurement of platelet reactivity and personalisation 

of antiplatelet therapy remain and require further investigation before platelet 

function testing can be considered for clinical use. As this study has demonstrated, 

finding the optimal cut-point for HOTPR is challenging but key to identifying those who 

will benefit the most. As identified in chapter 2, the standardised measurement of 

platelet reactivity is important to reduce analytical variation and the use of a wide 

sampling to testing time frame may have significantly reduced the sensitivity and 

specificity of the cut-point derived by Sibbing et al (344). The appropriate population 

to test residual platelet reactivity is also unknown. As previously discussed, there is 

limited evidence to show personalised antiplatelet therapy is beneficial in stable CAD 

patients from the ADAPT-DES registry. However, previous studies in ACS populations 

have largely focused on platelet function testing in PCI patients and the predictive 

value of HOTPR in medically managed populations or patients undergoing CABG need 

to be established. An extension of this study to address these limitations is planned to 

identify the optimal cut-point for HOTPR using a consistent Multiplate methodology 

in a larger cohort of 700 ACS patients.  
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In New Zealand there is a significant increase in the use of ticagrelor, due to 

government funding of this therapy in ACS patients from 1 July 2013. As the 

antiplatelet therapy landscape evolves, the use of platelet function testing to tailor 

therapy must also evolve. Although ticagrelor was shown to be superior to clopidogrel 

at reducing MACE in ACS patients it also increases the risk of non-CABG related major 

bleeding (365). Therefore, instead of the routine use of ticagrelor in all patients who 

present with an ACS, it may be possible to use platelet function testing to identify a 

group of patients who would have adequate platelet inhibition and protection from 

ischaemic events on clopidogrel without an increased bleeding risk. This strategy may 

lead to equivalent outcomes at a considerably lower cost, although such a strategy 

has not yet been proven to work.  

5.4.1 Limitations 

As the study was observational and all aspects of clinical management were at the 

consultant’s discretion, we cannot exclude the possible influence of other medications 

or clinical and procedure variables on our results. The study was underpowered to 

investigate the relationship between multiple demographic and clinical factors with 

the risk of MACE and bleeding. It would have been interesting to determine the 

presence of other clinical risk factors that could potentially inform a modified risk 

score in ACS patients. However, to conduct a study that included a large number of 

patients with 1 year follow up in the time frame of the thesis was not possible.  

5.4.2 Conclusion 

In this study, HOTPR phenotype and not CYP2C19*2 genotype is a predictor of 

ischaemic risk in an ACS population. However, identifying the optimal cut-point for 

classifying HOTPR remains complex and challenging. Diabetes was also found to be a 

strong predictor of ischaemic risk. Importantly this study demonstrated that HOTPR 

and diabetes independently predict MACE at one year. In the PCI cohort, HOTPR 

remained a predictor of MACE at one year on univariate but not on multivariate 

analysis. The bleeding rate was low in our cohort and low residual platelet reactivity 
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was not predictive of these events. Identifying the optimal cut-point for classifying 

HOTPR and whether residual platelet reactivity can be used improve the predictive 

power of existing risk stratification models or personalise antiplatelet therapy requires 

further investigation. 
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6 Chapter 6: Platelet reactivity, 
biomarkers and outcome following 

vascular surgery 
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6.1 Introduction 

Postoperative MI and major cardiac complications occur in more than 4% of the 

patients with either an established diagnosis of CAD or risk factors for CAD, who 

undergo major non-cardiac surgery (366). Patients undergoing vascular surgery 

appear to be at particularly high risk of perioperative cardiac complications such as 

death and nonfatal myocardial infarction. Previous studies suggested that myocardial 

injury (troponin elevation) occurred in 21-24% of patients undergoing vascular surgery 

and that this elevation of post-operative troponin levels is  strongly associated with 

an increased mortality (367-369). Treatment with aspirin has been shown to 

substantially reduce this risk (59). However, as seen in the previous chapters, the 

biological response to antiplatelet therapy varies significantly between ACS patients 

and it is logical to assume that this variance would also exist in vascular patients.  

 

In ACS patients our previous studies have demonstrated that residual platelet 

reactivity is predictive of outcome. To date, the relationship between residual platelet 

reactivity and outcomes in patients undergoing major elective vascular surgery has 

not been established, despite their high risk for cardiac complications. Furthermore, 

the utility of other biomarkers such as high sensitivity troponin (hs-TnT), C-reactive 

protein (CRP) and NT-proBNP (brain naturetic protein), that have shown to be highly 

predictive of poor outcome in a CAD population, have not been thoroughly examined 

in vascular patients. There remains a lack of evidence based risk stratification tools to 

apply in vascular populations that can identify those at increased risk of ischaemic and 

bleeding events both perioperatively and long term. 

 

Therefore the aim of this chapter was to:  

1. To investigate the relationship between residual platelet reactivity on 

aspirin as well as the cardiac biomarkers hs-TnT, NT-proBNP and CRP 

with adverse cardiovascular and bleeding outcomes in patients 

undergoing major vascular surgery.  

2. To examine the relationship between these biomarkers with 

perioperative and long-term outcomes.  
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6.2 Methods 

6.2.1 Study Population 

Patients presenting to Wellington Regional Hospital for elective major vascular 

surgery between April 2011 and December 2012 were eligible for inclusion in the 

study if they were adequately pre-treated with aspirin. Elective major vascular surgery 

included carotid endarterectomy, open abdominal aortic aneurysm repair and infra-

inguinal procedures including femoral-popliteal bypass and femoral enadarterectomy. 

Adequate pre-treatment was defined as chronic therapy with aspirin (100mg/day for 

more than 7 days) or loading with aspirin 300 mg at least 2 hours prior to enrolment. 

Exclusion criteria included a recent ACS (< 3 months), platelet count less than 100 x 

109/L, known platelet function disorder, treatment with an antiplatelet agent other 

than aspirin, acute limb ischaemia, symptomatic AAA, current active infection and 

those unable to give informed consent. The study was reviewed and approved by the 

Central Regional Ethics Committee (NTX-11-03-018).  

6.2.2 Data Collection 

Patient demographics, clinical characteristics, medications including antiplatelet 

therapy, clinical management and procedural variables were obtained prospectively 

from review of the medical records. All aspects of clinical management were at the 

discretion of the attending physicians. All ischaemic and bleeding complications 

occurring during the hospital admission were recorded. Patients were also contacted 

by phone at 30 days and 1 year by a cardiology research nurse, to assess clinical 

outcomes. Where necessary, review of case notes and contact with the general 

practitioner was performed to further classify clinical outcomes. 

6.2.3 Study design, ECG and blood collection 

The study was a prospective observational study of patients undergoing major elective 

vascular surgery. Electrocardiograms (ECGs) and venous blood samples were collected 

from all patients at baseline, before surgery and on postoperative days 1 and 2. 
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Further blood samples for hs-TnT measurement and electrocardiograms were 

performed where clinically indicated. Blood for platelet function testing was collected 

as described in section 2.2.2. Blood for high sensitivity troponin T (hs-TnT), C-reactive 

protein (CRP) and N terminus pro-B type Naturetic Peptide (NT-ProBNP) was collected 

into a serum-separator collection tube (BD Diagnostics, NJ, USA) 

6.2.4 Platelet function testing and biomarker analysis 

Platelet function testing was performed as described in section 2.2.2. Whole blood 

based impedence aggregometry was performed using the Multiplate analyser using 

0.5mM arachadonic acid to stimulate platelets and test the thromboxane pathway. 

The upper and lower quintiles of residual platelet reactivity were empirically defined 

as HOTPR and LOWPR respectively.  

 

All hs-TnT, NT-proBNP and CRP measurements were performed in the Wellington 

Regional Hospital Medical Laboratory using the Cobas CE modular system (Roche 

Diagnostics, Basel, Switzerland). A hs-TnT level ≥ 14 ng/L was considered elevated. 

Elevated NT-proBNP was age adjusted and a positive value was defined as >53 pmol/L 

for age <50 years, >106 pmol/L for age 50-75 years and >212 pmol/L for age >75 years. 

The lower limit of detection for CRP was 3 mg/L. For CRP the upper quintile was 

emperically defined as an elevated value. 

6.2.5 End points and definitions  

6.2.5.1 Primary end point 

The primary endpoint was major adverse cardiovascular events (MACE) at one year. 

MACE was defined as a composite of cardiovascular death, nonfatal myocardial 

infarction, nonfatal ischaemic stroke, periprocedural myocardial injury and graft 

occlusion at one year. Secondary endpoints included MACE at 30 days, bleeding at 30 

days and 1 year and rehospitalisation.  
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6.2.5.2 Ischaemic events  

Cardiovascular death was considered as any death with a demonstrable 

cardiovascular cause or any death that is not clearly attributable to a non-

cardiovascular cause. Acute myocardial infarction was defined using the third 

universal definition of myocardial infarction (289), including a detection of a 

significant hs-TnT rise in the presence symptoms suggestive of myocardial ischaemia, 

new or presumed new ST-segment-T wave changes or new LBBB, development of new 

pathological Q waves, or imaging evidence of new myocardial loss. An isolated 

significant elevation in hs-TnT of more than 50% compared to baseline hs-TnT levels 

and an absolute rise of at least >20ng/L with no other evidence of myocardial 

ischaemia was considered as periprocedural myocardial injury. Acute ischaemic 

cerebrovascular accident (CVA) was defined as signs of CVA confirmed with imaging 

studies. Graft Occlusion was defined as any graft occlusion confirmed by duplex 

ultrasound or angiography.  

6.2.5.3 Bleeding events 

Major bleeding was defined as fatal bleeding, intracranial bleeding, drop in 

postoperative hemoglobin of > 50 g/L perioperatively, transfusion of ≥ 2 units of Red 

Blood Cells (RBC), bleeding requiring reoperation or bleeding requiring readmission to 

hospital.  

6.2.6 Statistical analysis 

In this chapter a different statistical approach has been used to investigate the 

relationship between biomarkers, clinical factors and patient outcome compared to 

the statistical analysis in the ACS cohort. In the preceding chapters the number of 

comparisons has been deliberately limited to reduce the probability of false positive 

results. However, in the current study, due to a limited recruitment (see limitations 

section 6.5), a limited comparison approach would potentially lead to a greater 

problem with false negative findings (372). Therefore, the multiple comparisons are 

displayed as forest plots for completeness and potential incorporation into larger 

meta-analyses and to also display the variability due to the reduced power in the 
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cohort. Interpretation of all of these results needs to be undertaken with care, mindful 

of the large confidence intervals observed within these forest plots. 

 

Categorical variables are expressed as frequencies and percentages. Continuous 

variables not normally distributed following D’Agostino & Pearson normality testing 

are expressed as median and IQR. Surgical variables were found to be normally 

distributed and are expressed as mean and standard deviation and analsyed using 1 

way ANOVA. Univariate analysis of demographic and biomarker variables as 

categories with outcome data was performed using Chi-Squared tests. Multivariate 

analysis of significant univariate predictors of outcome was performed using a 

multinominal logistic regression analysis. Regression analysis, Chi-Squared tests and 

ROC curve analysis were performed using PASW 18.0 (IBM, NY, USA), all other analysis 

and graphs were generated using GraphPad prism 5 (GraphPad Software Inc., CA, USA). 
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6.3 Results 

6.3.1 Demographics 

During the study period 106 patients were enrolled in the study. Of those enrolled 6 

patients were subsequently excluded for the following reasons, 3 patients decided to 

have their surgery performed in a private hospital due to the waiting time in the public 

hospital, 2 patients presented acutely prior to their scheduled elective surgery and 

one was initially planned to have an open AAA but subsequently the vascular team 

decided to use an endovascular approach. One year follow-up was completed in all of 

the remaining 100 patients and the baseline demographics are displayed in Table 6-1. 

Table 6-1 Patient baseline demographics 

 N = 100 

Age (years) 72 (45 – 88) 

Male, n 61 

BMI 27 (16 - 38) 

Ethnicity, n   

European 91 

Maori and Pacific Islander 7 

Other 2 

Risk Factors, n  

Hypertension 86 

Dyslipidaemia 80 

Diabetes 33 

Current Smoker 15 

Previous Smoker 59 

Previous TIA/Stroke 31 

Previous Vascular Surgery 30 

Ischaemic Heart Disease 43 

Laboratory data  

Creatinine (umol/L) 96 (47 – 270) 

Platelet Count (109/L) 229 (124 – 479) 

Haemoglobin (g/L) 133 (95 – 168) 

 



CHAPTER 6 

 

140 

Admission medications were recorded for each patient (Table 6-2). As per the 

inclusion criteria, all patients were on aspirin therapy. There was also a high 

administration of statin therapy (86%) and the majority of patients were on a form of 

hypertension medication.  

Table 6-2 Admission medications 

Medication N=100 

Aspirin 100 

Beta Blocker 50 

Statin 86 

ACE inhibitor 44 

Diuretic 25 

Warfarin 3 

Nitrate 7 

Calcium Channel Blocker 37 

 

Baseline measurements of the biomarkers, platelet reactivity, hs-TnT, NT-proBNP and 

CRP were performed in every patient and there was a wide range of baseline values 

for all 4 biomarkers (Table 6-3, Figure 6-1). Platelet reactivity ranged from 2 – 142 AU 

with the upper quintile (>24 AU) and lower quintile (<7 AU) empirically defined as 

HOTPR and LOWPR respectively. Hs-TnT also varied greatly at admission, with the 

highest value at 152 ng/L and 35% of patients had a baseline hs-TnT that was elevated 

above the upper limit of normal (≥14 ng/L). NT-proBNP was determined in all patients 

and elevated levels were determined by adjusting for age, resulting in the 

identification of 13 patients with elevated levels. CRP was detectable in 41% of 

patients at baseline (>3 mg/L). As nearly 59% of patients had an undetectable level of 

CRP, elevated levels were also empirically defined as the upper quintile of 

measurements (>6 mg/L). 
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Table 6-3 Baseline measurement of biomarkers  

Multiplate platelet reactivity (AU) 16.5 (2 – 142) 

Hs-TnT (ng/L) 9.5 (3 – 153) 

Elevated hs-TnT 35% 

NT-proBNP (pmol/L) 33.5 (1 – 521) 

Elevated NT-proBNP 13% 

CRP (mg/L) 3 (3 – 46) 

Elevated CRP 20% 

Figure 6-1 Variability of baseline biomarkers 

Baseline residual platelet reactivity (A), hs-TnT (B), CRP (C) and NT-proBNP (D) were 
measured in all patients. The red and blue dotted line for residual platelet reactivity represents 
the upper (>24 AU) and lower quintiles (>7 AU) respectively (A). The red dotted line for hs-TnT 
represents the upper limit of normal (>14 ng/L) and an undetected level was lower than 4 ng/L. 
The red dotted line for CRP represents the upper quintile (>6 mg/L) and an undetected level 
was lower than 3 mg/L. The three dotted lines for NT-proBNP represent the age-adjusted cut-
point for elevated levels.     
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The type of anesthesia, duration of surgery and estimated blood loss was recorded 

during surgery by the anesthetist and vascular surgeon for each patient (Table 6-4). 

The majority of patients received a general anesthetic (84%). Epidural alone was used 

solely in patients undergoing infra-inguinal surgery and some patients undergoing an 

AAA received a combined approach. The mean procedure time across all surgeries was 

161 mins ± 69 and differed significantly across the three surgery sub groups (p < 

0.0001). The longest surgery times were in the AAA group (224 mins ± 51) and shortest 

in patients undergoing carotid endarterectomy surgery (108 mins ± 31). Similarly, 

estimated blood loss was significantly higher in the group undergoing AAA at 1045 mL 

± 973 compared to infra-inguinal surgery (236 mL ± 462) or carotid endarterectomy 

(41 mL ± 103, p < 0.0001). 

Table 6-4 Surgery details 

 All patients 
n = 100 

Carotid 
n = 37 

AAA 
n = 22 

Infra-inguinal 
n = 41 

P 
value 

Anesthesia      

General 84 37 15 32  

Epidural 4 0 0 4  

Combined 12 0 7 5  

Procedure time 
(mins) 

161 ± 69 108 ± 31 224 ± 51 174 ± 68 < 
0.0001 

Blood loss 
during surgery 
(mL) 

342 ± 662 41 ± 103 1045 ± 
973 

236 ± 462 < 
0.0001 

6.3.2 Perioperative measurement of hs-TnT 

As 35% of patients had elevated hs-TnT levels at baseline, a significant hs-TnT rise 

perioperatively was determined by the change in hs-TnT between baseline and post-

operative measurements. As displayed in Figure 6-2A, 17 patients had a significant rise 

in hs-TnT compared to baseline. However, as depicted in Figure 6-2B, where patients 

did not have a significant rise in hs-TnT post operatively compared to baseline, if hs-

TnT were only measured on day 1 or day 2, 31% of the total population would appear 

to have elevated levels which would indicate a possible acute MI and lead to further 

unnecessary investigations.   
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Figure 6-2 Hs-TnT measurement perioperatively 

Hs-TnT measurements at baseline (Day 0) and Day 1 and 2 post-operatively in patients with a 
significant rise in hs-TnT (A) and patients who did not have a significant rise compared to 
baseline (B). The red dotted line represents the upper limit of normal (14ng/L).  

6.3.3 Patient outcomes following vascular surgery 

To look at predictors of patient outcome following vascular surgery, data was 

collected in-hospital, at 30 days and at 1 year following surgery. Overall 34 patients 

experienced MACE with a total of 39 events occurring in these patients. Furthermore, 

major bleeding occurred in 29 patients with a total of 32 events occurring in these 

patients. Patient outcome data was also divided into short (0 - 30 days post surgery) 

and long-term (30 days – 1 year post surgery) time periods as the nature of events 

short term differed compared to events occurring after 30 days. 

6.3.4 Short term outcomes 

During the time period from surgery up to day 30, 23 patients experienced MACE. 

Some patient’s experienced more than one event, these included 9 periprocedural 

myocardial injury, 8 acute MI events, 1 CVA and 5 graft occlusions. The majority of 

these events occurred on day 1 or day 2 post-operatively (Figure 6-3). During the same 

time period, 29 patients experienced major bleeding events. In the 24 patients, 15 

patients received transfusions of ≥2 RBC units, 3 patients had hematomas requiring 

reoperation, 8 patients had a haemoglobin drop of more than 50 g/L and 5 patients 
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were readmitted with major bleeding. Of the patients who had bleeding or 

experienced MACE in this time period, 13 patients experienced both outcomes. Post 

discharge there was a further 12 patients who re-presented to hospital with varied 

problems including; wound infection, gastroenteritis, fever, exacerbation of COPD, 

non cardiac chest pain and bowel issues. 

 

Figure 6-3 Short term timing of events post surgery 

Each dote represents an individual MACE (red) or bleeding (blue) event during the patients 
hospital admission. Mean and SEM are displayed. 

6.3.5 Long term outcomes 

In the time period between 30 days and 1 year post surgery, a further 12 patients 

experienced MACE. Five patients died in the follow up period, 1 cardiovascular death 

and 4 documented as non-cardiac deaths, 5 patients were also readmitted with graft 

occlusion as confirmed by duplex. Acute MI occurred in 2 patients and 2 patients were 

readmitted with an ischaemic CVA. There was a consistent incidence of MACE events 

over this time period (Figure 6-4). During this period, 3 patients experienced major 

bleeding complications resulting in a readmission to hospital. A further 23 patients 

had re-admissions to hospital during the follow up period. These included 16 elective 

vascular procedures (angioplasty or surgery) for progression of vascular disease and 7 

other minor elective procedures. An additional 16 patients presented to ED with 

varying complaints, but these presentations did not require admission.  
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Figure 6-4 Timing of events from 30 days to 1 year post discharge 

Each dote represents an individual MACE (red) or bleeding (blue) event between 30 days and 
1 year post discharge from hospital.  

6.3.6 Predictors of adverse outcomes in vascular patients 

6.3.6.1 Adverse outcomes at 1 year 

Several clinical factors predicted an increased risk of MACE at 1 year in univariate 

analysis (Figure 6-5). These included a BMI <25 (3.4 (1.5 – 8.3), p = 0.005), elevated 

baseline hs-TnT (3.6 (1.5 – 8.6), p = 0.003), elevated CRP (2.3 (1.0 – 5.3), p = 0.047) and 

renal impairment (2.3 (0.98 – 5.4), p = 0.05). Of these factors an elevated baseline hs-

TnT (3.7 (1.4 – 10.1), p = 0.008) and a BMI < 25 (4.1 (1.5 – 11.1), p = 0.005) were found 

to be independent predictors of MACE at 1 year in multivariate analysis (Figure 6-6). 

HOTPR and elevated NT-proBNP did not significantly correlate with MACE at 1 year.  
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Figure 6-5 Predictors of MACE at 1 year 

Clinical and demographic variables represented as odds ratios for predictors of MACE at 1 year 
and 95% confidence intervals. 

 

Figure 6-6 Multivariate analysis of predictors of all MACE 

Clinical and demographic variables represented as odds ratios for predictors of MACE at 1 year 
and 95% confidence intervals. 
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ROC curve analysis was also conducted to investigate if there was any relationship 

between residual platelet reactivity and MACE at 1 year (Figure 6-7). The ROC curve 

displayed no relationship with an area under the curve 0.482 and no discernable cut-

point that would identify patients at increased risk of MACE.   

 

 

Figure 6-7 ROC curve analysis of residual platelet reactivity and MACE 
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Major bleeding was also examined at 1 year and the only predictor of increased 

bleeding risk was AAA surgery (8.5 (2.9 – 24.8), p = 0.001). LOWPR, elevated hs-TnT, 

elevated BNP and elevated CRP did not predict bleeding risk  

Figure 6-8 Predictors of bleeding at 1 year 

Clinical and demographic variables represented as odds ratios for predictors of bleeding at 1 
year and 95% confidence intervals. 

ROC curve analysis was also conducted to investigate the relationship between 

residual platelet reactivity and bleeding at 1 year (Figure 6-9). The ROC curve displayed 

no relationship with an area under the curve 0.563 and no discernable cut-point that 

would identify patients at increased risk of bleeding. 
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Figure 6-9 ROC curve analysis of residual platelet reactivity and bleeding 

 

6.3.6.2 Adverse outcomes short term 

Several clinical and demographic factors were identified to be predictive of MACE at 

30 days in univariate analysis (Figure 6-10). These included a BMI <25 (4.3 (1.6 – 11.3), 

p = 0.002), elevated baseline hs-TnT (2.5 (1.0 – 6.7), p = 0.05), and previous HF (2.8 

(0.96 – 8.7), p = 0.05). All of these factors were found to be independent predictors of 

MACE at 30 days in multivariate analysis (Figure 6-11). HOTPR, elevated NT-proBNP 

and elevated CRP did not significantly correlate with short term MACE.  
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Figure 6-10 Predictors of short term MACE  

Clinical and demographic variables represented as odds ratios for predictors of MACE at 30 
days and 95% confidence intervals. 

 

Figure 6-11 Multivariate analysis of short term MACE predictors 

Clinical and demographic variables represented as odds ratios for predictors of MACE at 30 
days and 95% confidence intervals. 
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Short term bleeding was also examined and the only variable that was found to be 

significantly associated with an increased risk of bleeding was undergoing AAA surgery 

(Figure 6-12). Patients in this group had a 10 times higher risk of bleeding during their 

hospital admission (10.0 (3.3 – 29.7), p = 0.001). There was no correlation between 

baseline biomarkers and short term bleeding. 

 

 

Figure 6-12 Predictors of short term bleeding  

Clinical and demographic variables represented as odds ratios for predictors of bleeding at 30 
days and 95% confidence intervals 

Platelet reactivity was plotted for each bleeding and MACE from day 1 up to day 30 

post surgery (Figure 6-13). This identified a group of patients that had co-localisation 

of both MACE and bleeding events.  
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Figure 6-13 Platelet reactivity and short term events 

The distribution of platelet reactivity (U) compared to bleeding and MACE during the hospital 
admission. Each dot represents an individual MACE (red) or bleeding (blue) event in-hospital. 
Both X axis display platelet reactivity. 

To assess whether clinical and demographic parameters could identify patients at risk 

of both major bleeding and MACE in this period, univariate analysis was conducted 

with the endpoint of bleeding plus MACE (Figure 6-14). In this analysis, patients 

undergoing AAA surgery (4.1 (1.2 – 13.9), p = 0.017) and patients with an elevated 

baseline hs-TnT (3.5 (1.1 – 11.8), p = 0.03) had an increased risk of experiencing both 

bleeding and MACE in the short term. An elevated baseline NT-proBNP (2.87 (0.98 – 

9.52), p = 0.07) resulted in a trend for more bleeding and MACE. Multivariate analysis 

identified AAA surgery (10.9 (2.0 – 59.5), p = 0.005) and elevated hs-TnT (6.9 (1.2 – 

39.5), p = 0.02) as independent predictors of the combination of bleeding and MACE 

in the time period up to 30 days post surgery (Figure 6-15). 
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Figure 6-14 Predictors of patients at risk of both short term MACE and bleeding  

Clinical and demographic variables represented as odds ratios for predictors of MACE and 
bleeding at 30 days and 95% confidence intervals 

 

Figure 6-15 Multivariate analysis of predictors of patients at risk of short term 
MACE and bleeding  

Clinical and demographic variables represented as odds ratios for predictors of MACE and 
bleeding at 30 days and 95% confidence intervals 
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6.3.6.3 Long term adverse outcomes  

Predictors of bleeding and MACE between 30 days and one year were also 

investigated. Only elevated hs-TnT (4.1 (1.2 – 13.6), p = 0.013) and elevated CRP (3.3 

(1.1 – 10.3), p = 0.047) were associated with an increased risk of MACE during this 

time period (Figure 6-16). However, elevated hs-TnT was the only significant 

independent predictor in multivariate analysis resulting in a 3.7 (1.1 - 12.3, p = 0.034) 

increased risk of MACE between 30 days and 1 year (Figure 6-17). 

 

 Figure 6-16 Predictors of long term MACE 

Clinical and demographic variables represented as odds ratios for predictors of MACE between 
30 days and 1 year and 95% confidence intervals 
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 Figure 6-17 Multivariate analysis of predictors of long term MACE  

Clinical and demographic variables represented as odds ratios for predictors of MACE between 
30 days and 1 year and 95% confidence intervals 

There were no baseline clinical factors or biomarker that significantly predicted an 

increased risk of long term bleeding (Figure 6-18). 

 

Figure 6-18 Predictors of long term bleeding 

Clinical and demographic variables represented as odds ratios for predictors of bleeding 
between 30 days and 1 year and 95% confidence intervals 
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Platelet reactivity was plotted for each bleeding and MACE event from 30 days up to 

1-year post surgery (Figure 6-19). In contrast to short-term events, there was no co-

localisation of MACE and bleeding in this time period. Furthermore, platelet reactivity 

levels were not significantly different in patients experiencing MACE compared to 

those having major bleeds.  

Figure 6-19 Platelet reactivity and long term events 

The distribution of platelet reactivity (AU) compared to bleeding and MACE from 30 days up to 
1 year post surgery. Each dote represents an individual MACE (red) or bleeding (blue) event 
at 1 year. Both X axis display platelet reactivity. 
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6.4 Discussion 

This is the first study to investigate the relationship between residual platelet 

reactivity and other baseline cardiac biomarkers with outcomes following elective 

major vascular surgery. Residual platelet reactivity both high and low was not found 

to be significantly associated with MACE or bleeding following surgery in this cohort. 

Elevated baseline hs-TnT appeared to be the most predictive biomarker and was 

significantly associated with the risk of MACE in both the short-term and long-term. 

Bleeding occurred early following surgery in the majority of patients and AAA surgery 

was the only predictor of bleeding. Interestingly, we found a number of MACE and 

bleeding events were co-located, which may indicate that mechanisms other than a 

thrombotic process could be driving ischaemic events in these patients.  

 

We found the response to aspirin in our vascular cohort to be highly variable ranging 

between 2 AU to 142 AU. The level of on treatment residual platelet reactivity did not 

correlate with adverse outcomes in this vascular cohort and we could not derive a cut-

point for HOTPR from ROC curve analysis. Using the previously recommended cut 

point for aspirin HOTPR of 30 AU, which has been derived in a healthy population 

(295), only 10% of patients in our study would be classified as having a suboptimal 

response to aspirin. Our findings are consistent with a previous report, which 

estimated that high on treatment platelet reactivity was present in between 5% and 

27.5% of patients with PVD depending on the assay used (371). 

 

To date the few studies that have examined the relationship between residual platelet 

reactivity and adverse events in those undergoing vascular surgery have 

demonstrated mixed findings. Rajagopalan and colleagues assessed platelet function 

with the VerifyNow arachidonic acid assay in 136 aspirin treated patients undergoing 

elective surgery for subcritical limb ischemia or infrarenal AAA repair. They found that 

postoperative but not baseline arachidonic acid stimulated platelet aggregation was 

higher in those with a postoperative troponin rise (153). Another study of patients on 

aspirin therapy undergoing elective vascular surgery found that when platelet 

function was assessed using whole blood impedance aggregometry with arachidonic 
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acid stimulation those with residual platelet reactivity in the upper quartile had almost 

twice the rate of in-hospital cardiovascular events (154). Finally, a study conducted in 

patients with peripheral arterial vascular disease undergoing transluminal angioplasty 

found a high level of residual platelet reactivity on aspirin as measured by light 

transmission aggregometry, did not correlate with the rate of stent 

thrombosis/restenosis (372). 

 

There are a number of possible explanations as to why residual platelet reactivity 

didn’t correlate with ischaemic outcomes in our study. It is likely that a significant 

proportion of perioperative myocardial infarctions are due to an imbalance between 

myocardial oxygen supply and demand (type 2 MI). Multiple factors including high 

circulating catecholamine levels, vasospasm, endothelial dysfunction, hypotension 

and hypoxia in the perioperative period have the potential to cause a type 2 MI (375). 

Consistent with this concept a recent study demonstrated that coronary plaque 

rupture was present in slightly less than half of those suffering periprocedural MI 

following non-cardiac surgery (374). Whilst platelet activation plays a central role in 

type 1 MI, it may not play the same role in perioperative type 2 MI and as a result may 

not be predictive of these events. 

 

Another potential explanation for the failure of residual platelet reactivity to predict 

ischaemic events is that we studied a population with stable PVD. Although we found 

the response to aspirin to be highly variable, only 10% of patients had platelet 

reactivity values  >30 AU or high on treatment platelet reactivity. Studies in patients 

presenting with ACS have clearly shown high on treatment platelet reactivity to be 

predictive of future ischaemic events (375). However, studies of platelet function in 

those with stable coronary artery disease been less convincing and have failed to 

demonstrate an incremental predictive value over common risk factors for the 

occurrence of major adverse cardiovascular events (375, 376). Previous studies have 

shown patients presenting with critical limb ischaemia to have very high levels of 

platelet activation (377). Therefore it is possible that a poor response to aspirin may 

occur more frequently in a population presenting acutely for vascular surgery and may 

be more predictive of outcome.  
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The introduction of high-sensitivity cardiac troponin assays, which have a 10 times 

greater sensitivity compared with previous assays, has allowed the accurate 

determination of very low levels of circulating troponin (378, 379). As a result the 

elderly, and those with other comorbidities such as renal impairment, stable coronary 

disease and heart failure frequently have detectable circulating troponin, which may 

be elevated above the upper limit of normal (382). It is therefore not surprising 35% 

of our cohort had elevation of baseline hs-TnT above the upper limit or normal. 

Measurement of cardiac troponin has become the cornerstone for the diagnosis of 

myocardial infarction. Because of the possibility of background chronic elevations a 

rising or falling pattern of troponin levels is key to the diagnosis of MI. In our study 

there were 28 patients who had an elevated baseline hs-TnT that remained stable and 

elevated post operatively that potentially could have been misclassified as having a 

periprocedural event if post operative hs-TnT alone had been measured. 

 

Baseline hs-TnT was the biomarker most predictive of ischaemic events in our study. 

An elevated baseline hs-TnT was independently predictive of MACE at both 30 days 

and 1 year. Other studies have reported that an elevated post-operative troponin or 

periprocedural enzyme rise is predictive of long term outcomes (366, 367). To our 

knowledge this is the first study to demonstrate the utility of preoperative high 

sensitivity troponin in predicting risk of cardiovascular events in patients undergoing 

vascular or non-cardiac surgery. Elevated baseline hs-TnT has consistently been 

demonstrated to be a strong predictor of poor cardiovascular outcomes in a range of 

other patient populations. These include but are not limited to; patients with acute 

(383) and chronic coronary disease (382), in patients with congestive heart failure 

(383), in hemodialysis patients (386) and even healthy older patients (385). Our 

findings suggest that further investigation is warranted to confirmed the uitility of 

preoperative hs-TnT for risk stratification and to determine whether this is additive to 

existing risk stratification models. 

 

Elevated baseline CRP was associated with a higher risk of MACE at 1 year in univariate 

analysis but was not found to be a significant predictor in multivariate analysis. CRP is 
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an acute-phase protein and appears in the circulation in response to inflammatory 

cytokines, such as IL-6 and can act as a biomarker for systemic inflammation (386). 

Elevated levels of CRP in patients experiencing an ACS have shown to be a predictor 

of poor cardiovascular outcomes both short and long term (387, 388). The biomarker 

has also found to predictive of mortality in end-stage renal disease patients, 

independent of other classic biomarkers (389). Elevated CRP as a predictor of long-

term MACE in vascular patients, may reflect a higher level of background inflammation 

and indicate a more unstable atherosclerotic process, as seen in CAD populations 

(392). 

 

NT-proBNP is one of a family of cardiac peptides secreted almost exclusively by the 

myocardium in a nonspecific response to wall stress (391). Several studies have 

identified strong associations between elevated preoperative levels of NT-proBNP 

with adverse cardiac events both perioperatively and long term following non-cardiac 

surgery (392-394). Our study found a weak relationship between elevated baseline 

NT-proBNP and the occurrence of both bleeding and MACE in-hospital. Due to 

reduced power and large confidence intervals around the elevated risk, this 

association was not significant. However, previous HF was found to be a significant 

predictor of short-term MACE. A history of HF has also been identified as a cardiac risk 

factor for patients undergoing non-cardiac major surgery and proposed as an 

important component to be incorporated in to preoperative risk scores (397). It 

remains unclear how much additive prognostic value NT-proBNP levels can offer to 

stratify risk in vascular surgery patients. 

 

 The other clinical factors that were found to be independently associated with 

increased MACE risk were a BMI < 25 and AAA surgery. A lower BMI has previously 

been associated with a higher risk of death following major cardiac surgery compared 

to normal weight or obese patients (396). However, this may also be a reflection of a 

patients’ frailty, which has also been linked to poor outcome and has increasing 

interest as an important factor to integrate into pre-operative risk scores for cardiac 

surgery (397). Open AAA surgery was associated with an increased risk of short term 

MACE and co-located with bleeding. This finding is not surprising as it is well 
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established that AAA surgery is the type of vascular surgery associated with the 

highest risk of ischaemic events (398). Interestingly, AAA surgery was not associated 

with long-term MACE risk in our cohort. This is consistent with the large randomised 

trials investigating open AAA repair versus endovascular approaches, which found 

that the risk of open AAA occurs predominantly in the perioperative setting with a 

large decline in adverse events past 30 days (399). 

 

Major bleeding was found to be common with the vast majority of events occurring 

within the first 30 days. The AAA surgery group had 10 times higher risk of major 

bleeding and was the only significant factor identified. Several previous trials of 

therapy for AAA patients have also observed high rates of major bleeding. In the Dutch 

Randomized Endovascular Aneurysm Management (DREAM) trial, 39% of the 345 

patients submitted to aortic aneurysm repair received blood transfusions (398). 

Furthermore, in the Open Versus Endovascular Repair (OVER) trial, the authors 

observed a median of 1000mL blood loss during surgery in the 429 open AAA patients 

enrolled (399). This is similar to the observed 1045mL average blood loss in our AAA 

surgery patient group.  
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6.5 Limitations 

Firstly, in order to have the power to detect a relationship between biomarkers and 

patient outcome, the study was designed to recruit 240 patients undergoing major 

vascular surgery. Although this power calculation was based on a predicted adverse 

cardiovascular outcome rate of 21-24% and we experienced a much higher rate at 

34%, a cohort size of 100 patients leaves the study underpowered. When the 

inclusion/exclusion criteria were being determined, we did not fully appreciate the 

way in which the vascular service operated, particularly how they managed surgery 

waiting times and operation theatre scheduling. A management scheme which 

appears to be somewhat unique to the Wellington service, resulted in a large 

proportion of planned elective cases being pushed through on a semi-acute theatre 

list to get around limited vascular theatre access and long waiting lists. This resulted 

in a significantly reduced pool of eligible patients to recruit from. With a larger patient 

group we may have been able to detect significant relationships between some of the 

biomarkers and other clinical factors with cardiovascular and bleeding outcomes. The 

heterogeneity of the vascular procedures in the study could be considered a 

limitation. However, many previous studies have recruited similar population groups 

(367-369). All patients have atherosclerotic vascular disease and underwent major 

surgery. Our study population is somewhat restrained compared to other studies that 

have included a mix of those undergoing vascular surgery with endovascular 

interventions (154, 400) and elective and acute patients which arguably results in 

more variance in levels of perioperative risk between patients.  
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6.6 Conclusion 

Patients undergoing major vascular surgery remain at a high risk of experiencing 

perioperative and long-term adverse events. We have demonstrated for the first time 

that elevated hs-TnT at baseline is an independent risk factor for short and long term 

MACE in patients undergoing vascular surgery. Our findings suggest further 

investigation of the utility of baseline hs-TnT for pre-operative risk stratification is 

warranted. Although an elevated CRP was predictive of MACE at one year on 

univariate analysis, in multivariate analysis it was no longer predictive. Residual 

platelet reactivity on aspirin was not associated with either MACE or bleeding 

outcomes in our cohort. Major bleeding was frequent with the vast majority occurring 

early. This observation and the observation that bleeding and MACE frequently 

occurred concurrently suggests that the use of more potent antiplatelet therapy in the 

perioperative period in an attempt to reduce adverse events may not be a successful 

strategy. The majority of bleeding occurred in-hospital and AAA surgery was the only 

significant determinant of a major bleed occurring. This study supports further 

investigation of the incorporation of biomarkers, particularly hs-TnT into risk models 

that will enable the identification of patients that will benefit from additional 

preoperative evaluation. 
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7 Chapter 7: Platelet-T cell interactions  
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7.1 Introduction 

Historically, platelets have been noted for their significant thrombotic role in 

atherosclerotic plaque rupture. The previous chapters have focused on residual 

platelet reactivity as a driver or primarily thrombotic risk in patients with coronary 

artery disease and vascular disease. More recently, platelets have been established as 

cells that directly contribute to plaque progression (as reviewed in Section 1.3.2), 

which may also contribute to risk. This involvement has been demonstrated in several 

atherosclerotic mouse and in vitro human development models, revealing platelets 

bind to the endothelium and leukocytes, primarily through P-selectin, resulting in 

enhanced leukocyte recruitment and migration into the plaque (75). Additionally the 

high expression of CD40L (CD154) on platelet membranes and the release of soluble 

CD40L contribute significantly to the pro-inflammatory milieu of atherosclerotic 

plaques (94).  

 

Platelet-monocyte interactions have been thoroughly investigated in atherosclerosis 

including ACS. Platelet-monocyte conjugates have been shown to be increased in ACS 

patients, with platelet interactions inducing a more pro-inflammatory phenotype in 

circulating monocytes (403). High levels of the CD14++CD16+ monocyte subtype-

platelet conjugates has been correlated with a higher troponin release ACS and is 

predictive of poor outcome as indicated by a decreased left ventricular ejection 

fraction (404). Interestingly, loading ACS patients with clopidogrel decreased platelet-

monocyte conjugates, monocyte activation and the plasma levels of pro-inflammatory 

mediators RANTES and CD40L (405); further adding to the hypothesis that platelets 

drive pro-inflammatory environments.  

 

The interactions between platelets and lymphocytes are less well understood. It is 

confirmed that platelets and lymphocytes can bind and form conjugates which are 

preferentially formed with T cells. This connection is established via platelet P-selectin 

and lymphocyte P-selectin glycoprotein ligand-1 (PSGL-1) leading to enhanced 

migration of lymphocytes to plaques (406). In contrast, CD40-CD40L cross-linking 

enhances T cell cytokine production (407). Platelets also release several soluble 
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factors that may influence T cell activation, including platelet factor 4 (PF4), 

transforming growth factor-β (TGF-β) and RANTES. However work done to date has 

been conducted in predominantly mouse models of disease or in healthy individuals 

and may not be relevant to how platelets function in patients with atherosclerosis. 

Therefore the focus of this chapter was to investigate differences in platelet–T cell 

interactions in patients with atherosclerotic vascular disease compared to healthy 

controls.  

 

The specific aims of this study were:  

1. To determine the level of platelet-T cell conjugates in healthy and 

vascular patients.  

2. To investigate differences in platelet conjugates with T cell subgroups 

(CD4, CD8 and natural killer T cells) between the two patient groups. 

3. To assess alterations in the activation phenotype of CD4 and CD8 T cells 

between healthy and disease state and any changes in platelet 

interactions with these cells.  

 

7.2 Methods 

7.2.1 Study population 

Two patient groups were included to investigate platelet – T cell conjugates. All 

patients provided written informed consent and the study was reviewed and 

approved by the Upper South A Regional Ethics Committee (URA/11/05/016). 

7.2.1.1 Healthy volunteers 

Participants enrolled in the study were between the ages of 18 – 50 years with no 

known cardiovascular disease, or other acute illness within the preceding six weeks. 

Exclusion criteria included diabetes, smokers, pregnancy, intercurrent illness and 

those who were on regular cardiovascular or immune modulating medication or had 

been treated with antiplatelet therapies or non-steroidal anti-inflammatory drugs 

(NSAID) within the last 7 days. 
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7.2.1.2 Vascular patients 

Patients in whom the presence of peripheral atherosclerotic vascular disease had 

been confirmed angiographically were recruited into the vascular cohort. Exclusion 

criteria included treatment with an antiplatelet agent or NSAID within 7 days of 

enrolment, a platelet count less than 100 x 109/L, a known platelet function or 

bleeding disorder or intercurrent illness.  

7.2.2 Blood collection and antibody staining 

Blood for platelet-lymphocyte conjugate analysis was collected into a single hirudin 

tube as previously described (section 2.2.2). Whole blood was stained in duplicate 

with the four antibody panels made up in FACS buffer (Table 7-1) at 30 minutes post 

blood sampling. Appropriate isotype controls were stained alongside panel samples 

(Appendix 2). A total staining volume of 50 μL (1:1 dilution of blood to antibody mix) 

was incubated in 1.5 mL eppendorfs for 20 minutes at room temperature (RT) in the 

dark. Following staining, 450 μL of FACS Lyse containing 1% paraformaldehyde (PFA) 

(BD Biosciences, NJ, USA) was added and gently mixed to lyse red blood cells and fix 

the sample for acquisition.  

7.2.3 Flow cytometry 

Flow cytometry was used to identify T cell and platelet populations and acquired using 

the Millipore Guava easyCyte 8HT system (Merck Millipore, Darmstadt, Germany). 

Samples were diluted with FACS buffer before acquisition to achieve an optimal cell 

concentration between 300-500 cells/μL. Anti–mouse Ig, κ/compensation beads (BD 

Biosciences, NJ, USA) were acquired at the same time as samples for compensation 

during analysis. Data was analysed using FlowJo software (Tree star, Ashland, OR, 

USA). 

At least 5000 T cell events were collected in every sample by gating on the CD3 positive 

cells. Platelet-Tcell conjugates with the different T cell subgroups were determined by 

the gating strategies outlined in Figures 7-1, 7-2 and 7-3. 
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Table 7-1 Platelet-T cell conjugates antibody panels 

 Panel 1 Panel 2 Panel 3 Panel 4 

Channel Antibody Final Conc Antibody Final Conc Antibody Final Conc Antibody Final Conc 

FITC CD3 500ng/mL CD3 500ng/mL CD3 500ng/mL CD3 500ng/mL 

PE CD8 15ng/mL CD44 1μg/mL CD44 1μg/mL CD56 250ng/mL 

PerCP CD42a 1.25μg/mL CD42a 1.25μg/mL CD42a 1.25μg/mL CD42a 1.25μg/mL 

PE-Cy7 CD4 500ng/mL CD4 500ng/mL CD8 250ng/mL CD4 500ng/mL 

APC CD25 250ng/mL CD62L 500ng/mL CD62L 500ng/mL CD25 250ng/mL 

* A list of all antibody formats, clones, isotypes and manufactures can be found in Appendix 2. 
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Figure 7-1 Gating strategies to identify CD8 and CD4 platelet-T cell conjugates.  

T cells were identified by their SSC properties and expression of CD3 (A). CD4 and CD8 T cells were then identified by their expression of CD4 (B) and CD8 
(E) respectively. Gating on these separate T cell population, CD42a could be used to identify platelet positive populations (C & F) as compared to the isotype 
control (D & G).   
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Figure 7-2 Gating strategy to identify activation phenotype of CD4 and CD8 T 
cells 

CD4 and CD8 T cells were then identified by their expression of CD4 (A) and CD8 (E) 
respectively The cell markers CD62L and CD44 were used to identify memory and effector T 
cells on pre gated CD4 (B) and CD8 populations (F). The platelet marker CD42a was used to 
identify memory T cell- platelet conjugates (C & G) and effector T cell-platelet conjugates (D & 
H) as compared to isotype control (right panel).   

 



CHAPTER 7 

 

172 

 

Figure 7-3 Gating strategies to identify T regulatory (Treg) cells and Natural 
Killer T cells (NKT). 

T cells were identified by their SSC properties and expression of CD3 (A). Treg cells were 
identified by their expression of CD4 and CD25 (C) as compared to isotype control (B). NKT 
cells were identified by the expression of CD56 (D) as compared to the isotype control (C). 

7.2.4 Statistics  

Platelet-T cell conjugate data was normally distributed as confirmed by D’Agostino & 

Pearson normality testing. Platelet-T cell conjugates are expressed at mean 

percentages ± the standard deviation. Platelet-T cell conjugates were compared 

between healthy and vascular cohorts using student t test. Statistical analysis and 

graphs generated using GraphPad prism 5 (GraphPad Software Inc., La Jolla, CA, USA). 
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7.3 Results 

7.3.1 Demographics  

The healthy volunteer group was relatively young with a mean age of 31 and did not 

have any known cardiovascular disease or risk factors as per the inclusion/exclusion 

criteria (Table 7-2). The vascular patient group was more than twice the age of the 

healthy volunteers at 77 and displayed multiple cardiovascular risk factors and 3 of 

the patients had documented ischaemic heart disease or previous stroke. Only 2 

patients were receiving statin therapy and several were on blood pressure lowering 

agents. The two populations were sex matched with 4 males in each group. 

Table 7-2 Demographics of healthy volunteers and vascular patients 

 Healthy volunteers 
(n=10) 

Vascular patients 
(n=10) 

Male, n 4 4 

Age  31 ± 9 77 ± 8 

Current Smoker 0 4 

Diabetes 0 4 

Hypertension 0 6 

Hyperlipidaemia 0 2 

Ischaemic heart disease 0 2 

Previous stroke 0 1 

Medications 

Statin 0 2 

Beta blocker 0 3 

ACE inhibitor 0 2 

Calcium channel blocker 0 1 

Diuretic 0 3 

7.3.2 Platelet-T cell conjugates  

Firstly, the overall T cell population was analysed and total platelet-T cell conjugates 

were compared between the two participant groups. The percentage of platelet-T cell 

conjugates was significantly increased in patients with vascular disease (37.7% ± 10%) 

compared to healthy controls (23.9% ± 8.7%, p = 0.005, Figure 7-4). 
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Figure 7-4 Platelet-T cell conjugates 

Whole blood from healthy volunteers (n=10) and vascular patients (n=10) were stained with 
anti-CD42a and anti-CD3 antibodies to identify platelet-T cell conjugates using flow cytometry. 
Platelet-T cell conjugates are presented as the % of T cells positive for the CD42a marker. Data 
is plotted for all 10 patients in each group as mean ± SD in healthy volunteers and patients with 
vascular disease. Student T test * p=0.005.  

7.3.3 CD4 T cell interactions 

To investigate differences in platelet interactions with T cell subgroups, we initially 

looked at CD4 T cell populations and found significant changes in this subgroup 

between patient groups. The majority of T cells in both healthy volunteers and 

patients with vascular disease expressed CD4, comprising approximately 70% of the T 

cells (Figure 7-5A). Although there was no significant difference in the proportion of 

CD4 T cells between healthy and vascular patients, the level of platelet-CD4 T cell 

conjugates was significantly higher in the vascular patients (Figure 7-5B). Platelet-CD4 

T cell conjugates increased by 40% from 26.6% ± 5.9% in healthy volunteers to 37.6% 

± 7.9% in vascular patients, p =0.004. There were also differences in the activation 

phenotype of the CD4 T cells between the two patients groups. In the healthy 

volunteers, the majority of CD4 T cells were of a memory phenotype with a smaller 

proportion exhibiting effector phenotype markers (Figure 7-5C). In the vascular 

patients the majority of CD4 T cells were of an effector phenotype resulting in a 2 fold 

increase from healthy levels (31.8% ± 7% to 64.8% ± 11%, p < 0.0001). Accordingly 

there was a substantial drop in memory CD4 cells in vascular patient samples 

compared to healthy volunteers (61.3% ± 11% to 33.3% ± 13%. P <0.0001). Although 
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there was a large shift in the activation state of CD4 T cells between patient groups, 

there was no significant difference in the level of platelet-T cell conjugates between 

these different activation phenotypes (Figure 7-5D).  

Figure 7-5 CD4 T cell interactions with platelets 

Whole blood from healthy volunteers (n=10) and vascular patients (n=10) were stained with 
anti-CD42a, anti-CD3, anti-CD4, anti-CD62L and anti-CD44 antibodies to identify platelet-CD4 
T cell conjugates and CD4 activation phenotypes using flow cytometry. These antibodies were 
used to specifically identify: the proportion of T cell population expressing CD4 (A), platelet-
CD4 T cell conjugates (B), the proportion of CD4 T cells displaying effector and memory 
activation phenotypes (C) and the proportion of effector and memory CD4 cells that are platelet 
bound (D) in healthy volunteers and vascular patients. Data is plotted for all 10 patients in each 
group as mean ± SD Student T test * p < 0.001.  

A subset of CD4 T cells; T regulatory (Treg) cells were investigated and found to be in 

low circulating numbers making up on average 1.1% ± 0.7% of CD4 positive cells. In 

vascular patients the proportion of Treg cells doubled to a mean of 2.1% ± 1.2% (p= 

0.04, Figure 7-6A). However, the level of platelet conjugates in the Treg population 

did not significantly change between the healthy volunteers and vascular patients 

(28.3% ± 9.2% vs. 35.84% ± 12.5%, p = 0.14, Figure 7-6B)  
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Figure 7-6 T regulatory (Treg) cell interactions with platelets 

Whole blood from healthy volunteers (n=10) and vascular patients (n=10) were stained with 
anti-CD42a, anti-CD3, anti-CD4 and anti-CD25 antibodies to identify Treg cells and platelet-
Treg conjugates using flow cytometry. Data shows the proportion of CD4 T cells expressing the 
Treg marker CD25 (A) and the level of platelet-Treg conjugates (B) in healthy volunteers and 
vascular patients. Data is plotted for all 10 patients in each group as mean ± SD. Student T test 
*p = 0.04 

7.3.4 CD8 T cell interactions 

Platelet interactions were also investigated in CD8 T cells. Similar to the CD4 T cell 

population, the proportion of CD8 T cells did not change between healthy volunteers 

and vascular patients but made up a smaller proportion at 22% (Figure 7-7A). In 

contrast to platelet-CD4 T cell interactions, the level of platelet-CD8 T cell conjugates 

were not significantly elevated in vascular patients (33% ± 9%) compared to healthy 

volunteers (31% ± 8%, Figure 7-7B). The activation phenotypes were also investigated 

in CD8 T cells. Similar to the observed activation phenotypes of CD4 cells, there was a 

1.4 fold increase in the effector phenotype in vascular patient samples (35.4% ± 10%) 

compared to healthy volunteers (25% ± 9%, p = 0.03). However, there was no 

difference in the memory CD8 cells between the two groups and these remained the 

predominant activation phenotype in both healthy volunteers and vascular patients 

(Figure 7-7C). Furthermore, the level of platelet-CD8 conjugates did not differ 

between effector/memory phenotypes or patient population (Figure 7-7D).  
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Figure 7-7 CD8 T cell interactions with platelets. 

Whole blood from healthy volunteers (n=10) and vascular patients (n=10) were stained with 
anti-CD42a, anti-CD3, anti-CD8, anti-CD62L and anti-CD44 antibodies to identify platelet-CD8 
T cell conjugates and CD8 activation phenotypes using flow cytometry. These antibodies were 
used to specifically identify: the proportion of the T cell population expressing CD8 (A), platelet-
CD8 T cell conjugates (B), the proportion of CD8 T cells displaying effector and memory 
activation phenotypes (C) and the proportion of effector and memory CD8 cells that are platelet 
bound (D) in healthy volunteers and vascular patients. Data is plotted for all 10 patients in each 
group as mean ± SD. Student T test * p < 0.05.  

7.3.5 Natural Killer T cells 

Natural killer T (NKT) cells were found to constitute approximately 2.8% ± 1.9% of T 

cells in healthy volunteers. NKT cells were more populous in vascular patients with an 

increase of 40% compared to healthy levels (4.5% ± 2%), however this difference was 

not statistically significant (P = 0.06, Figure 7-8A). Furthermore, there was a trend of 

increased platelet binding to NKT cells in vascular patients compared to healthy 

controls (25% ± 7% vs. 35% ± 15%, p = 0.08, Figure 7-8B). 
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Figure 7-8 Natural Killer T (NKT) cell interactions with platelets 

Whole blood from healthy volunteers (n=10) and vascular patients (n=10) were stained with 
anti-CD42a, anti-CD3 and anti-CD56 antibodies to identify NKT cells and platelet-NKT 
conjugates using flow cytometry. Data shows the proportion of T cells expressing the NKT 
marlker CD56 (A) and the level of platelet-NKT conjugates (B) in healthy volunteers and 
vascular patients. Data is plotted for all 10 patients in each group as mean ± SD. Student T test 
– ns.  
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7.4 Discussion 

This study investigated platelet-T cell interactions in a healthy and an atherosclerotic 

inflammatory disease state and found significant differences between the two groups. 

Platelet-T cell conjugates were found to be more prevalent in vascular patients. 

Platelet binding to CD4 T cells also occurred more frequently in vascular patients when 

compared to healthy volunteers. However, there was no significant change in platelets 

binding to CD8 or NKT cells between the two groups. The activation phenotypes of 

CD4 T cells also changed dramatically, with a predominant memory phenotype seen 

in healthy volunteers switching to an effector response in vascular patients. This 

switch in activation was not observed in the CD8 T cells. For both the CD4 and CD8 T 

cell subgroups, there was no change in platelet binding to the different activation 

phenotypes or change between the healthy volunteers and vascular patients.  

 

We observed a high level of platelet-T cell conjugates in vascular patients at an 

average of 37% compared to 20% in healthy volunteers. This is the first study to look 

at platelet-T cell conjugates in atherosclerotic vascular disease in humans compared 

to healthy volunteers specifically. Previous studies have investigated other immune 

cells interacting with platelets such as circulating platelet-neutrophil, platelet-

monocyte and overall platelet-leukocyte conjugates in atherosclerosis, diabetes, 

cerebral stroke and other inflammatory states (406, 407). These studies also observed 

a significant increase in platelet-immune cell conjugates but did not investigate the 

particular differences in the T cell population.  

 

The higher level of platelet–T cell conjugates found in the vascular disease population 

may be due to several factors influencing both the platelets and T cells reactivity. 

Resting platelets do not express P-selectin or CD40, but upon activation these two 

ligands are quickly trafficked to the surface. In advanced atherosclerosis such as 

vascular disease, platelets display a higher activity and express significant levels of 

both ligands which are the main linkers to attach to T cells and potentially influence 

function and differentiation (78). Stimulation of platelets with classical agonists such 

as ADP and thromboxane A2 has been shown to increase platelet-leukocyte 
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conjugates (408) in healthy and ACS populations however this has not been confirmed 

in T cells.  

 

The communication between platelets and T cells is most likely bidirectional and the 

activation state of the T cell will also influence its ability to bind platelets. In vitro 

stimulation of human T cells with anti-CD3/anti-CD28 showed an enhanced CD40L 

surface expression on T cells leading to more potential communication with platelets 

through the CD40-CD40L system (409). In a further study done in healthy volunteers, 

expression of this ligand on T cells resulted in contact mediated activation of platelets 

via the CD40 dependent pathway resulting in RANTES release from platelets, which 

can influence T cell trafficking (410). Additionally, a study conducted in healthy 

volunteers found T cells that were larger in size and more granular coupled with high 

expression levels of the activation marker CD69, had more platelets attached 

compared to the smaller less active T cells (411). As this study looked purely at the 

level of interaction between platelets and T cells and we did not block the cells activity 

we cannot determine which cell is determining the interaction. Although, we would 

hypothesise that activation of either cell will enhance platelet–T cell conjugation.  

 

Other disease states, such as diabetes can also influence platelet and T cell function. 

A high proportion of patients with atherosclerosis, particularly those with lower 

extremity vascular diseases, have diabetes and as reviewed in section 1.4.4.3, this 

highly inflamed state can produce abnormally reactive and pro-inflammatory 

platelets. This vascular cohort also had other co-morbidities and underlying illness, 

including hyperlipidaemia, hypertension, and smoking which could be nurturing both 

pro and anti-inflammatory states. Due to these other conditions, many of the patients 

were on several drug therapies, which may also be influencing platelet and T cell 

responses. Surprisingly, at the time of enrolment only 2 of the vascular cohort were 

receiving statin therapy, which as a front line therapy for vascular disease has been 

shown to have profound effects on not only lipid levels but the immune system as well 

(412).  
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The level of platelet–T cell conjugates observed in our healthy donor population was 

relatively high at 20% compared to other reports of platelet–lymphocyte conjugates 

in healthy volunteers (3 - 15%)(411, 413). This can be partially explained by the 

different parameters other studies expressed their platelet-leukocyte populations and 

the experimental conditions used. Several studies have expressed platelet–

lymphocyte conjugates based on size and CD45 expression, which includes both T and 

B cells. As B cells have shown to have a low propensity to bind with platelets (414), 

this may decrease overall averages reported. Several studies have used sodium citrate 

as their anticoagulant for blood collection and as shown in Chapter 2, citrate can cause 

a decrease in platelet reactivity due to the depletion of calcium, which may potentially 

result in an artificially low platelet–T cell conjugate level. Studies investigating 

platelet-leukocyte binding in different anticoagulants, found a dramatic reduction in 

citrated blood compared to bivalirudin and heparin, due the calcium dependent 

nature of P-selectin binding with PSGL-1 (417). 

 

Within the T cell subgroups, we found interesting changes in the T helper cells that 

were not displayed in the cytotoxic CD8 cells. Platelets binding with CD4 cells occurred 

more frequently in vascular patients compared to CD8 or NKT cells. CD4 T helper cells 

are abundant in atherosclerotic plaques and their important role in atherogenesis has 

been highlighted by earlier animal studies showing that transfer of CD4 T cells 

aggravates (418), whereas CD4 deficiency attenuates (417) development in ApoE 

knockout mice. This significant increase in platelet–CD4 T cell binding observed in 

patients with vascular disease, could indicate important communications occurring 

between these two cell types in atherosclerosis.  

 

The predominant activation phenotype of CD4 T cells shifted from a memory 

phenotype in healthy donors to an effector phenotype in vascular patients. CD4 T 

effector cells are antigen-experienced cells that offer immediate effector functions 

and migrate into plaques to sustain inflammation (418). A study looking at CD4 naïve, 

effector and memory cells found high levels of effector cells were associated with a 

greater intima-media thickness of the common carotid artery and were more common 

in patients with chronic angina or ACS compared to healthy controls (418). However, 
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with this change in activation we did not see a significant difference in platelet binding 

between the different activation states or patient groups. Furthermore we observed 

an increase in Tregs in vascular patients but no increase in platelet binding. This 

difference may be partially due to the smaller cell numbers and statistical power when 

analyzing platelet binding within CD4 subgroups. It also could indicate the platelets’ 

effect on CD4 T cells is mediated through mechanisms other than platelet binding.  

 

Platelets can exert their effects on immune cells not only through cell-to-cell contact 

but also through powerful soluble mediators. Platelets release many soluble factors, 

which can have mitogenic effects on a diverse range of cells including lymphocytes. In 

vitro human and animal models have demonstrated the soluble factors RANTES and 

platelet-derived growth factor (PDGF) promote proliferation of CD4 T cells (419, 420). 

Other soluble mediators such as Platelet factor 4 (PF4), TGFβ and thromboxane A2 

have more complex actions on proliferation and either promote or inhibit 

proliferation depending on the local environment and the CD4 subset that is being 

targeted (423). Similarly, platelets release a multitude of cytokines, chemokines and 

growth factors that effect CD4 T cell differentiation and cytokine production. As with 

proliferation, these interactions are complex and each CD4 T cell subset is affected 

differently. Th1 cells appear to be highly stimulated by platelets via IL-1β (422), 

RANTES (423) and monocyte chemoattractant protein-1 (MCP-1) (424) whereas Th2 

are either stimulated, barely affected or inhibited by platelet contact depending on 

the environment (423). Interestingly, Tregs are also stimulated by platelets 

particularly through TGFβ (423, 425) and PF4 (426). Th17 are a relatively new subtype 

of CD4 T cells to be investigated and platelets act to promote differentiation and 

cytokine production through IL-1β and TGFβ (422). But as many of these studies that 

have investigated the effect of isolated mediators on T cell differentiation and 

function have been conducted in vitro, crucial in vivo information is lacking on how 

platelets act on CD4 T cells within the complex milieu of atherosclerosis. 

 

As this study looked at the overall CD4 T cell population and not the individual subsets, 

we cannot determine whether there were significant differences in binding between 

the subsets in a healthy state or atherosclerosis. As highlighted in section 1.2.2, Th1 
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cells are abundant in plaques and promote a pro-inflammatory environment. Whereas 

Tregs suppress inflammation and their absence is linked to progressive and unstable 

plaques. However, all CD4 T cell subsets are present in plaques with varying numbers. 

Therefore understanding how platelets interact with these cells, the consequences of 

these interactions on the immune system and how this is modified by existing 

antiplatelet agents is important as it will allow us to understand potential mechanisms 

of action of existing drugs and may allow us to identify additional targets for novel 

therapies. 

 

Unlike the CD4 T cell population there were few changes in the CD8 cytotoxic T cells 

between healthy donors and vascular patients. There was a 40% increase in effector 

CD8 T cells, but this activation phenotype did not predominate. There was no increase 

in platelet binding to CD8 T. CD8 T cells are present in atherosclerotic plaques and 

have been identified in early lesions in mouse models, yet their role in atherosclerosis 

remains unresolved. A recent study looking at CD8 T cells in a mouse model of 

atherosclerosis concluded CD8+ T lymphocytes promote the development of 

vulnerable atherosclerotic plaques by perforin- and granzyme B–mediated apoptosis 

of macrophages, smooth muscle cells, and endothelial cells that, in turn, leads to 

necrotic core formation and further augments inflammation by TNF-α secretion (427). 

However, there is limited evidence to confirm this finding in humans. The increase in 

CD8 effector T cells observed in the vascular group may represent more active CD8 T 

cells in atherosclerosis promoting inflammation. Platelets have been reported to 

interact with and enhance CD8 T activity; particularly in adenovirus infections, causing 

IFN-γ production and increasing the cytolytic capacity of CD8 T cells (407). Although 

our study would suggest that platelets are not influencing CD8 T cell function in 

vascular disease.  

 

Our study observed a 40% increase in Natural Killer T (NKT) cells in vascular disease 

however this trend was not statistically significant. NKT cells are a unique subset of T 

lymphocytes that share surface markers from both conventional T cells and NK cells. 

Although NKT cells are associated with decreasing inflammation and immune 

responses in autoimmune disease and cancer (430), their role in atherosclerosis has 
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been found to be pro-atherogenic especially in early lesional development. Unlike 

conventional T cells that only recognize peptide antigens, NKT cells can recognize 

glycolipid antigens as well and it is this ability that has been hypothesized to promote 

the pro-atherogenic response of NKT cells in a typically high ox-LDL environment 

(431). With the increase in NKT cells in our vascular cohort we also observed a trend 

to increased platelet binding. The potential for platelets and NKT to interact are 

practically unknown in either healthy donors or patients with atherosclerosis. Studies 

investigating Natural Killer (NK) function have shown platelets can inhibit NK cell’s 

anti-tumor cytolytic ability, thereby increasing tumor metastasis in mouse models 

(432) and as discussed previously platelets exert their influence on T cells in a host of 

different ways. Therefore, this finding could signify a novel interaction of platelets and 

NKT cells in atherosclerosis that warrants further investigation.  

7.5 Limitations 

As we designed this study to look specifically at platelet-T cell interactions, we did not 

include markers of platelet–monocyte or platelet–neutrophil conjugates which have 

been well documented and investigated in these two populations and could have 

acted as a positive control for the assay in our cohorts. However, as we were 

interested in the changes between the two populations using the same standardised 

procedure and not at platelet–T cell conjugates as a biomarker for disease, the need 

for this positive control is reduced. The study population was relatively small with 10 

people per group and a larger cohort would have allowed more statistical power for 

subgroup analysis. However we did find significant differences between the healthy 

donors and vascular group, which has highlighted areas of interest to pursue further. 

The average age of the healthy volunteer group was significantly lower than the 

vascular population, which may have impacted on our findings. However, to ensure 

the healthy group were free of risk factors and were unlikely to have occult 

atherosclerosis, this difference in age was necessary to investigate our aims. Similar 

to other vascular disease populations, several of the patients had other co-morbidities 

such as diabetes, hyperlipidaemia and hypertension and receiving treatments that we 

could not rule out as factors influencing platelet–T cell conjugates irrespective of 

atherosclerosis. But as this disease is complex and the interactions between platelets 
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and immune cells change dramatically depending on the physiological and 

pathological microenvironment, studying these interactions in a real world in vivo 

setting is imperative to advancing our understanding of atherosclerosis.  

7.6 Conclusion 

In this study we observed an increase in platelet–T cell conjugates in vascular patients 

compared to healthy donors. Platelets also preferentially bound to CD4 T and NKT 

cells in vascular disease, which was not observed in the CD8 T cell subgroup. The CD4 

T cell subgroup also exhibited changes in the activation phenotype, shifting from a 

predominantly memory phenotype in healthy patients to an effector response in 

vascular disease, which again was not observed in the CD8 cells. These changes in the 

CD4 T cell population coupled with our existing knowledge of the important role of 

CD4 T cells in atherosclerosis, raises questions on how platelets may be influencing 

the different subtypes of helper T cells to influence disease progression and what 

impact inhibiting these interactions has on the immune system. 
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8 Chapter 8 – The effect of platelets on 
CD4 T cell differentiation 
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8.1 Introduction 

As discussed in Chapter 7, CD4 T cells are major orchestrators of atherosclerotic lesion 

progression, and platelets may provide key interactions with CD4 T cells that influence 

their response. However, because different subsets of CD4 T cells may have either 

pro-inflammatory or regulatory functions in atherosclerosis, it is unknown how 

platelets may impact each of these different functional subsets. The inhibition of 

platelets with clopidogrel has been associated with reductions in CRP levels and 

decreased expression of CD40L and P-selectin in a variety of disease states, including 

cardiovascular disease, cerebrovascular disease, diabetes, and renal transplantation 

(433). This anti-inflammatory response may potentially be due to modulation of 

leukocyte responses by platelet inhibition, and in particular, could involve the 

inhibition of platelet interactions with pro-inflammatory T cells or possibly 

augmentation of the anti-inflammatory activity of Tregs. 

 

Antiplatelet therapy is a cornerstone treatment in patients with CAD and PVD due to 

their known ability to prevent platelet aggregation and reduce thrombotic risk. This 

has been our main focus in the first series of studies. However, antiplatelet therapy 

may be providing protection from adverse events through other mechanisms other 

than thrombosis.  

  

Therefore this chapter investigates the impact of platelet interactions on CD4 T cell 

differentiation and the effect of antiplatelet therapy on platelet-T cell interactions. 

This study was designed to investigate 1) how platelets could modify CD4 T cell subset 

differentiation and 2) if and how this differentiation was changed after antiplatelet 

therapy. Therefore, to exclude any variance in the immune response due to disease 

state, concurrent medication use and increasing age that is often present in patients 

with atherosclerosis, we decided to conduct the study in healthy volunteers.  
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The specific aims of the study were:  

1. To examine the impact of CD4 T cell-platelet interactions on IFN-γ 

production.  

2. To investigate the impact of CD4 T cell-platelet interactions on CD4 T 

cell differentiation, specifically Th1, Th17 and Treg subsets.   

3. To investigate the effect of inhibiting platelet-T cell interactions in-vivo 

on IFN-γ production and T cell differentiation using the P2Y12 

antagonist, prasugrel. 

8.2 Methods 

8.2.1 Study population 

Participants enrolled in the study were between the ages of 18 – 50 years with no 

known cardiovascular disease. Exclusion criteria included diabetes, smokers, an acute 

illness within the preceding six weeks and those who were treated with cardiovascular 

medication including antiplatelet therapies, non-steroidal anti-inflammatory drugs 

(NSAID) or immune modulating medications. All participants provided written 

informed consent and the study was reviewed and approved by the Central Regional 

Ethics Committee (12/CEN/59). The study was also registered with the Australian New 

Zealand Clinical Trials Registry (registration number ACTRN12612001157864).  

8.2.2 Study design and drug treatment  

This was a prospective, double-blind, placebo-controlled, randomized crossover trial. 

Subjects were randomized to receive either 60 mg of prasugrel (Group A) followed by 

10 mg/day prasugrel for 6 days or placebo (Group B) (Figure 8-1). After the first 

treatment there was a washout period of 21 days and participants were crossed over 

to the other study drug. An independent cardiology research nurse conducted 

randomization and drug administration.  
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Figure 8-1 Study cross over protocol 

8.2.3 Blood sampling and Multiplate testing 

Blood was drawn before and after each drug treatment from a peripheral arm vein as 

described previously in Chapter 2.2.2. Thirty-five ml of blood was drawn into sodium 

heparin tubes (158 USP unites, BD Biosciences, NJ, USA) for CD4 T cell isolation. A 

single hirudin tube (25 μg/ml, Dynabyte, Munich, Germany) was also obtained for 

isolation of autologous platelets and platelet function testing using the Multiplate, as 

described in Chapter 2.2.2 to assess adequate antiplatelet therapy was achieved.  

8.2.4 Peripheral blood mononuclear cell (PBMC) isolation 

All cell work was carried out in a class II purifier biological safety cabinet (LABCONCO, 

MO, USA) with HEPE air filters. Before use, sterilization with ultraviolet (UV) light 

(1390 mW/m2) for 15 min was carried out and all surfaces were wiped down with 70% 

ethanol. Blood was diluted 2.3 fold in sterile PBS and carefully layered on top of RT 

Histopaque-1077 Hybri Max (Sigma, MO, USA) in 15 ml Falcon tubes (BD Biosciences, 

NJ, USA) with a 1:1 ration of Histopaque to whole blood. The tubes were then spun at 

400 x g for 30 minutes at RT. The upper plasma layer was aspirated and discarded to 

within 0.5 cm of the opaque interface containing the peripheral blood mononuclear 

cells (PBMCs). The buffy coat layer was then carefully transferred to a separate tube 

and washed twice with 10 ml of dPBS, mixed with inversion and centrifuged at 250 x 
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g for 5 minutes. Cells were counted using a hemocytometer and 0.4% tryphan blue 

(Sigma, MO, USA) and resuspended at 5 x 107 cells/ml in isolation buffer (Appendix 1).  

8.2.5 CD4 T cell isolation 

CD4 T cells were isolated using the Dynabeads Untouched Human CD4 T cell kit (Life 

Technologies, CA, USA). Following the manufacturers instructions, 100 μL of FCS and 

100 μL of antibody mix was added to the aliquot of isolated PBMCs and incubated for 

20 minutes at 4°C. Cells were then washed with 4 ml of isolation buffer and mixed by 

inversion several times before being centrifuged at 350 x g for 8 minutes at 5°C. The 

washed pellet of cells was resuspended in 500 μL of IB. 500 μL of pre-washed 

Dynabeads (Life Technologies) were added to the cell suspension and the sample was 

incubated for 15 minutes at RT with gentle tilting and rotation. Following incubation, 

4 ml of isolation buffer was added to the bead-cell mix and the bead-bound cells were 

resuspended by pipetting the sample thoroughly with a 100 μL tipped pipette whilst 

avoiding foaming. The tube was then placed in the Dynamag magnet (Life 

Technologies) for 2 minutes and the supernatant containing the isolated CD4 T cells 

was transferred to a fresh tube. A further 4 ml of isolation buffer was added to the 

tube containing the bead-bound cells, repeating the resuspension and aspiration of 

remaining CD4 T cells. The CD4 T cells were counted and washed before resuspending 

in dPBS at 2 x 106 cells/ml.  

8.2.6 Isolation of autologous platelets 

Platelets were isolated from hirudin anticoagulated blood by centrifuging at 200 x g 

for 20 minutes at RT. The upper 2/3 of platelet-rich-plasma (PRP) was collected and a 

platelet count was determined using the XE-2100 hematology analyser (Sysmex, 

GmbH, Germany) operated and located in the Wellington Hospital Medical 

Laboratory. PRP was centrifuged at 1,000 x g for 15 minutes at RT and resuspended in 

CTCM at 2 x 108 cells/ml. 
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8.2.7 Cell culture 

T cells were resuspended in CTCM and plated in 96-well tissue culture U bottom plates 

(BD Biosciences, NJ, USA) with 2 x 106 T cells per well. For stimulated samples, the T 

cells were plated in 96 well anti-human CD3 T cell activation plates (BD Biosciences, 

NJ, USA) with the addition of 0.3 ug/ml of purified NA/LE mouse anti-human CD28, 

clone CD28.2 (BD Biosciences, NJ, USA). For platelet-T cell co-cultures, 1 x 107 platelets 

resuspended in CTCM were added to sample wells to give a final ratio of 1:250 of T 

cells to platelets. All samples were cultured in a Sanyo CO2 incubator (Global Science, 

PA, USA) for 48 hours in a humid environment at 37°C, supplemented with 5% CO2. 

For the last 5 hours of incubation BD GolgiStop (BD Biosciences, NJ, USA) was added 

to all samples and anti-CD3/CD28-stimulated CD4 T cells were challenged with PMA 

(50 ng/ml)/Ionomycin (1 μg/ml).  

8.2.8 CD4 T cell phenotyping 

Samples were transferred to eppendorf tubes after 48 hours of incubation and cells 

were spun out of media at 250 x g for 5 minutes. Supernatant from cell cultures was 

aspirated and frozen for IFN-γ quantification. Cells were washed in 500 μL of PBS, spun 

at 250 x g for 5 minutes and the supernatant removed to leave 50 μL of resuspended 

cells. Fixable viability dye eFlour 780 (eBioscience, CA, USA) was diluted 1:5000 and 

added to cells to give a final concentration of 1:10000, and used to gate out dead cells 

during analysis. Cells were incubated with the viability dye on ice in the dark for 30 

minutes followed by the addition of 500 μL FACS buffer (Appendix 1). Samples were 

spun at 250 x g for 5 minutes, the supernatant was removed, and an additional FACS 

wash was performed before staining with the extracellular CD4 antibody. Cells were 

stained with a final concentration of 500 ng/ml anti-human CD4 PE-Cy7 (clone OKT4, 

Biolegend, CA, USA) in 100 μL of FACS buffer for 20 minutes in the dark at RT.  

 

After staining, cells were washed twice with 500 μL of FACS buffer and centrifuged at 

250 x g for 5 minutes, leaving a cell suspension of 100 μL for intracellular staining. The 

intracellular staining of the CD4 T cells was performed using the Human Th17/Treg 

Phenotyping Kit (BD Biosciences, NJ, USA) following manufacturers guidelines. Cells 
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were fixed with 500 μL of Human FoxP3 Buffer A and incubated for 15 minutes in the 

dark at RT. The fixative was removed by spinning samples at 500 x g for 5 minutes and 

the supernatant aspirated carefully to not disturb the buoyant pellet. To permeablize 

cells, 400 μL of FoxP3 Buffer C was incubated with samples for 30 minutes in the dark 

at RT. Cells were washed twice with 500 μL of FACS buffer and centrifuged at 500 x g 

for 5 minutes, leaving a cell suspension of 100 μL for intracellular staining. FITC-

labelled anti-human IFN-γ (clone 25723.11, BD Biosciences, NJ, USA) at a final 

concentration of 7.5 μg/ml as well as 20 μL of antibody cocktail containing PE-labelled 

anti-human IL-17 and Alexa Flour 647-labelled anti-FoxP3 antibodies were added to 

the appropriate samples. Isotype controls (Appendix 2) and appropriate single stains 

were included along side phenotyping samples. All samples were stained for 40 

minutes in the dark at RT. At the end of staining, cells were washed twice with 500 μL 

of FACS buffer and spun at 500 x g for 5 minutes and resuspended in 200 μL of FACS 

buffer for sample acquisition. 

8.2.9  Flow cytometry  

Samples were collected on the FACS Canto II using Diva software (BD Biosciences, NJ, 

USA). At least 40,000 CD4 positive gated events were collected to allow for a minimum 

of 20,000 viable CD4 T cells to be analysed per sample. Anti–mouse Ig, 

κ/compensation beads (BD Biosciences, NJ, USA) were acquired at the same time as 

samples for compensation during analysis. Data was analysed using FlowJo software 

(Tree star, Ashland, OR, USA). CD4 T cell subgroup populations were determined by 

the gating strategies as outlined in Figures 8-2 to 8-6 
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Figure 8-2 Identification of CD4 T cells 

CD4 T cells were identified by excluding debris based on the Forward (FSC) and Side Scatter 
(SSC) properties (A) and including only single cells (B). With stimulation (E & F), the expression 
of CD4 was down regulated and as the majority of cells were CD4 positive in culture (C) as 
checked after isolation, the high and low CD4 population was included for analysis of 
proliferation and CD4 T cell sub groups. 
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Figure 8-3 Identification of T helper (Th)1 cells 

T helper 1 (Th1) cells were identified by the expression of IFN-γ compared to the isotype control (A). An example of the Th1 population in unstimulated CD4 T 
cells (B), anti-CD3/CD28 stimulated CD4 T cells (B) and anti-CD3/CD28 stimulated CD4 T cells + platelets (D) are shown. 
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Figure 8-4 Identification of T helper (Th)17 cells 

T helper 17 (Th17) cells were identified by the expression of IL-17A compared to isotype control (A). An example of the Th17 population in unstimulated CD4 
T cells (B), anti-CD3/CD28 stimulated CD4 T cells (C) and anti-CD3/CD28 stimulated CD4 T cells plus platelets (D) are shown. 
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Figure 8-5 Identification of T regulatory (Treg) cells 

T regulatory (Treg) cells were identified by the expression of FoxP3 compared to isotype control (A). An example of the Treg population in unstimulated CD4 T 
cells (B), anti-CD3/CD28 stimulated CD4 T cells (C) and anti-CD3/CD28 stimulated CD4 T cells plus platelets (D) are shown. 
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8.2.10  Quantification of IFN-γ production by ELISA 

The production of IFN-γ in the cell culture of unstimulated CD4 T cells, anti-CD3/CD28 

stimulated CD4 T cells and stimulated CD4 T cells + platelets was detected using the 

Legend Max™ Human IFN-γ ELISA kit (Biolegend, CA, USA) following the 

manufacturers guidelines. Briefly, all reagents were brought to room temperature and 

the lyophilized Human IFN-γ standard was reconstituted in Assay buffer A to give a 20 

ng/ml standard stock solution. The standard was serially diluted from 1000 pg/ml, to 

15.6 pg/ml. The plate was washed and 50 μL of sample or standard were added to 

wells. Unstimulated samples were added undiluted and stimulated and stimulated + 

platelet samples were diluted 100 fold first and all samples were tested in duplicate. 

The plate was sealed and incubated at RT for 2 hours while shaking at 200 rpm. The 

plate was washed and incubated in the IFN-γ detection antibody solution 1 hour while 

shaking. Avidin-HRP solution was then added to each well after washing and incubated 

for 30 minutes. Substrate solution F was added and incubated for 15 minutes in the 

dark at RT. The reaction was then stopped and the absorbance was read at 570 nm 

and 450 nm on a Versamax Microplate Reader (Molecular Devices, CA, USA). The OD 

value at 570 nm was subtracted from 450 nm and the level of IFN-γ in samples was 

determined from the standard curve. 

8.2.11 Statistics 

Due to the cross over design of the study, analysis of a potential period effect and 

treatment-period interaction were performed before comparisons could be done 

between treatment groups. This analysis was performed following the method 

outlined by Altman (434). For each parameter to be tested, the difference (di) and the 

average (ai) for each subject was calculated and averaged in Group A and B. The period 

effect was tested by a two-sample t test to compare the difference between the 

periods in the two groups of participants. This test determines whether a group 

benefits more from receiving the drug first or second. To investigate the treatment-

period interaction, a two-sample t test comparing the average responses between 

group A and B was performed. This analysis determines whether there is any carry-
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over of treatment effect from one period to the next and the effectiveness of the wash 

out period. 

 

Based on the variance of IFN– γ in the literature, we calculated a cohort size of 10 

patients would give us 80% power to observe a significant reduction in IFN-γ levels 

following prasugrel of more than 33%. We decided on a group size of 12 to slightly 

overpower the study 

 

Continuous variables were expressed in mean ± SEM. Comparisons between 

stimulation treatments and drug treatments were performed using 1-way ANOVA 

with post-hoc Bonferroni testing of selected pairs. Statistical analysis and graphs were 

generated using GraphPad Prism 5 (GraphPad Software Inc., CA, USA). 

8.3 Results 

8.3.1 Period effect and treatment-period interaction analysis 

To assess how platelet interactions with T cells could shape T cell phenotype and 

subset differentiation, a double blind, placebo controlled, cross over trial was 

performed on 12 healthy volunteers with a median age of 31 (21 – 45). Due to the 

cross over trial design, there was a possibility of period effects or treatment-period 

interactions. However, we found no statistically significant period effect or treatment-

period interaction between group A and group B. For example, the difference in T 

helper 1 cells for the drug and placebo period are calculated for each individual in 

group A  (Table 8-1) and group B (Table 8-2). There was no difference between đ1 and 

đ2 (p=0.34) and therefore no period effect. There was also no significant difference 

between ā1 and ā2 (p=0.25), which indicates the wash out period was sufficient and 

there was no treatment-period interaction. This analysis was repeated for every 

parameter and no period effect or treatment-period interaction was found. Therefore 

comparisons between baseline and treatments and between the two different 

treatments could be undertaken without adjustment.  
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Table 8-1 Group A: Drug (prasugrel) followed by placebo n=6 

 Period 1 

Drug 

Period 2 

Placebo 

(1) – (2) (1) + (2)/2 

1 -499% -42% -4.57 -2.71 

 -72% 27% -0.99 -0.23 

 -92% -96% 0.04 -0.94 

 -104% 43% -1.47 -0.30 

 -29% 23% -0.51 -0.03 

 -44% 22% -0.66 -0.11 

Mean -140% -4% -136% (đ1) -72% (ā1) 

SD 178% 54% 165% 103% 

 
Table 8-2 Group B: Placebo followed by drug (prasugrel) n=6  

 

                                                        
1 Difference in T helper 1 cells for the drug and placebo period are calculated for 
each individual and are expressed as % change between baseline and 
measurement following drug treatment.  

 Period 1 
Placebo 

Period 2 
Drug 

(1) – (2) (1) + (2)/2 

 84% -87% 1.72 -0.01 

 -110% -155% 0.44 -1.32 

 -40% -45% 0.05 -0.42 

 -67% -114% 1.81 -0.23 

 -15% -113% 0.98 -0.64 

 -3% -115% 1.12 -0.59 

Mean -3% -105% 102% (đ2) -54% (ā2) 

SD 71% 36% 69% 45% 
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8.3.2 Platelet function following placebo and prasugrel therapy 

To assess whether the treatments were having the desired impact on platelet 

function, platelet reactivity was measured with the Multiplate before and after each 

therapy (Figure 8-6). Treatment with placebo resulted in no change in platelet function 

between baseline and placebo treatment. However, following prasugrel therapy, all 

participants had a marked reduction in platelet reactivity (86.8 AU ± 7.7 AU vs. 27.3 

AU ± 5.2 AU, p < 0.0001). This finding confirms that prasugrel was having a significant 

and expected antiplatelet effect in the study participants. 

 

Figure 8-6 Marked reduction in platelet function following prasugrel therapy  

Platelet function (AU) as measured by Multiplate in whole blood, before and after placebo 
therapy (A) and prasugrel therapy (B). Each bar represents a participant’s response before and 
after each treatment n = 12. *** p < 0.0001 by paired Student’s t test. 

8.3.3 IFN–γ production and CD4 T cell differentiation at baseline 

To investigate the impact of platelets on CD4 T cell IFN–γ production and T cell 

differentiation, IFN–γ production and the Th1, Th17 or Treg phenotype was assessed 

on purified, anti-CD3/CD28 stimulated CD4 T cells (isolated at baseline) co-cultured 

with or without platelets. As expected, unstimulated cultures exhibited a low level of 

IFN–γ production and only a small proportion of CD4 T cells expressing the Th1, Th17 

or Treg phenotype (Figure 8-7). With the addition of anti-CD3/CD28 T cell stimulation 

there was a significant increase in all measured parameters. IFN-γ production 

significantly increased to an average production of 258 ng/ml ± 60 ng/ml from 

undetectable in unstimulated cultures (p < 0.01, Figure 8-7A). The proportion of CD4 

T cells positive for the Th1 phenotype (i.e. IFN-γ production) significantly increased to 

Baseline Placebo
0

50

100

150

200

P
la

te
le

t r
e

a
c
tiv

ity
 (
A

U
)

Baseline Prasugrel
0

50

100

150

200 ***

A B



CHAPTER 8 

 

202 

7.8% ± 0.8% with stimulation of T cells compared to 0.5% ± 0.05% in unstimulated 

controls (p <0.001, Figure 8-7B). The proportion of CD4 T cells positive for the Th17 

phenotype (i.e. IL-17 production) significantly increased stimulation of T cells to 3.4% 

± 0.4% of CD4 T cells compared to 0.8% ± 0.2% in unstimulated (p <0.001, Figure 8-7C). 

The proportion of CD4 T cells positive for the Treg phenotype (i.e. FoxP3 expression) 

significantly increased with stimulation of T cells, accounting for 11.2% ± 1.3% of CD4 

T cells compared to 1.4% ± 0.4% in unstimulated cultures (p <0.01, Figure 8-7D).  

 

In co-cultures of anti-CD3/CD28 stimulated T cells and autologous platelets there was 

further increase in the IFN-γ production and Th1 and Th17 subgroups. Co-culture 

resulted in a significant enhancement of IFN-γ production with an average production 

of 454 ng/ml ± 78 ng/ml (p = 0.019, Figure 8-7A). The addition of platelets further 

enhanced the Th1 population at baseline to 10.8% ± 0.8% (p = 0.01, Figure 8-7B). 

Similarly, co-culture resulted in the increase of the Th17 population to 5.4% ± 0.7% (p 

= 0.01, Figure 8-7C). In contrast, the addition of platelets did not significantly alter the 

Treg subpopulation compared to stimulated alone (p = 0.07, Figure 8-7D). These 

results indicate that stimulation with anti-CD3/CD28 drives the production of IFN-γ 

and promotes the differentiation of Th1, Th17 and Treg phenotypes and that the 

presence of platelets further enhances IFN-γ as well as Th1 and Th17 differentiation.  
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Figure 8-7 The addition of platelets to anti-CD3/CD28 stimulated CD4 T cells 
enhances the production of IFN- and Th1 and Th17 differentiation.  

Isolated CD4 T cells at baseline were cultured without stimulation (U), with anti-CD3/CD28 
stimulation (S) and stimulation plus autologous platelets (S + P). IFN-γ production was 
measured in the supernatant of cultures with ELISA and the CD4 T cell subsets were measured 
by intracellular cytokine staining for IFN-γ (Th1), IL-17A (Th17) and FoxP3 (Treg) using flow 
cytometry. IFN-γ production is expressed in ng/ml (A) and the subsets are expressed as the 
proportion of CD4 T cells expressing the Th1 phenotype (B), Th17 phenotype (C) and Treg 
phenotype (D) in each culture condition. Data is displayed as mean ± SEM for every 
measurement. The data represents all 12 patients. One way ANOVA was performed for each 
parameter and was found to be significant (p < 0.05) allowing paired Student’s t tests to be 
performed (*p <0.05, ** p < 0.01).  
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8.3.4 The effect of prasugrel on IFN-γ production and CD4 T cell 
differentiation  

To determine if treatment with a placebo alone altered IFN-γ production and the CD4 

T cell subset differentiation from baseline measurements, these parameters were 

measured following placebo treatment in all participants and compared to the 

baseline values. No significant change was seen in IFN-γ production (Figure 8-8) or the 

CD4 T cell subset differentiation (see Appendix 3) compared to baseline. Additionally, 

there was no significant change for any of the parameters in unstimulated cultures 

from the prasugrel group compared to placebo or baseline. Therefore, given that 

baseline and placebo responses were the same and the unstimulated cultures were 

not affected by any treatment, the stimulated CD4 T cell responses following prasugrel 

treatment were directly compared to the placebo treatment to more specifically 

assess the effect of prasugrel treatment on platelet-T cell interactions.  

 

Figure 8-8 No difference in isolated CD4 T cell IFN-γ production following 
placebo therapy compared to baseline in all culture conditions 

Isolated CD4 T cells at baseline and after placebo therapy were cultured without stimulation 
(U), with anti-CD3/CD28 stimulation (S) and stimulation plus autologous platelets (S + P). IFN-
γ production was measured in the supernatant of cultures with ELISA and expressed in ng/ml. 
Data is displayed as mean ± SEM for every measurement. The data represents all 12 patients. 
One way ANOVA was performed for each parameter and was found to be significant (p < 0.05) 
allowing paired T tests to be performed of culture conditions. 

Focusing on this comparison, there were several significant changes in the co-culture 

effects following prasugrel treatment. The level of IFN-γ in stimulated T cell–platelet 

cultures was significantly lower at 89 ng/ml ± 17 ng/ml compared to co-culture 
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samples following placebo treatment (p <0.01, Figure 8-9A) and the stimulatory effect 

of platelets on T cells was abolished. This change was also evident in the Th1 subgroup 

with a significant decrease in the proportion of CD4 T cells that was Th1 positive 

compared to co-cultures in the placebo group (5.9% ± 0.8% vs 10.2% ± 1.1%, p < 0.01, 

Figure 8-9B). Furthermore, the Th17 response was not enhanced with the addition of 

platelets to stimulated T cell cultures following prasugrel therapy resulting in 

comparable levels to when T cells were stimulated alone (2.7% ± 0.4% vs. 2.7% ±0.2%, 

Figure 8-9C). As seen in the placebo group, the addition of platelets to stimulated T 

cells did not alter the proportion of Tregs following prasugrel therapy (Figure 8-9D). 

Taken together these findings suggest that following prasugrel treatment, the 

enhancement of the pro-inflammatory CD4 T cell phenotype by platelets following 

anti-CD3/CD28 stimulation is abolished.  
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Figure 8-9 Prasugrel therapy abolishes the enhancement of isolated CD4 T cell 
IFN-γ production and Th1 and Th17 differentiation by platelets 

Isolated CD4 T cells following placebo and prasugrel treatment were cultured with anti-
CD3/CD28 stimulation (S) and stimulation plus autologous platelets (S + P). IFN-γ production 
was measured in the supernatant of cultures with ELISA and the CD4 T cell subsets were 
measured by intracellular cytokine staining for IFN-γ (Th1), IL-17A (Th17) and FoxP3 (Treg) 
using flow cytometry. IFN-γ production is expressed in ng/ml (A) and the subsets are expressed 
as the proportion of CD4 T cells expressing the Th1 phenotype (B), Th17 phenotype (C) and 
Treg phenotype (D) in each culture condition. Data is displayed as mean ± SEM for every 
measurement. The data represents all 12 patients. One way ANOVA was performed for each 
parameter and was found to be significant (p < 0.05) allowing paired Student’s t tests to be 
performed (*p <0.05, ** p < 0.01).  
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8.4 Discussion 

This study investigated the impact of platelet-T cell interactions on CD4 T cell IFN-γ 

production and Th subset differentiation. Stimulation of T cells with the known T cell 

stimulant, anti-CD3/CD28, induced a significant production of IFN-γ and an increase in 

Th1, Th17 and Treg subsets confirming that our experimental model was functional. 

The addition of platelets to stimulated T cells caused a further enhancement of IFN-γ 

production and greater proportion of Th1 and Th17 subsets. However, Tregs were less 

affected by platelet co-culture. The effect of inhibiting platelet activation in vivo with 

prasugrel on T cell responses was also determined and indicated that prasugrel 

treatment abolished the platelets’ ability to augment IFN-γ production and Th1 and 

Th17 differentiation.  

 

Platelet function testing confirmed prasugrel induced a marked inhibition in platelet 

activity in all subjects. However, prasugrel administration did not affect IFN-γ 

production or T cell differentiation in unstimulated or anti-CD3/CD28 stimulated T cell 

cultures in the absence of platelets. These two observations along with our findings 

from co-culture stimulations, suggest that platelets are potent regulators of CD4 T cell 

differentiation and cytokine production and that the impact of prasugrel on cytokine 

production and differentiation is due to the drug’s effects on platelet function. 

 

The addition of platelets to stimulated T cells resulted in a 340% increase in IFN-γ 

levels in the supernatant of cell cultures and a 40% increase in Th1 cell populations 

compared to stimulated alone. Th1 cells are the primary subset of CD4 T cells found 

in atherosclerotic lesions and secrete the pro-inflammatory cytokines, IFN-γ, IL-2 and 

TNF-α, which can activate other lesional cells to promote inflammation and augment 

lesion development (433). From various in vitro experimental settings, platelets and 

their derived mediators have shown to regulate Th1 differentiation and function. The 

platelet chemokines RANTES and MCP-1 have been demonstrated to enhance the 

production of IL-2, an important cytokine for T cell survival, from Th1 cells stimulated 

with anti-CD3/CD28, (424), and the neutralization of RANTES inhibited IL-2 and TNF-α 

production in CD4 T cell-platelet co-culture (434). Another platelet derived 
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chemokine, PF4 has demonstrated regulatory effects on CD4 T cells, although not 

always stimulatory depending on the environment. With cultured total T cells, PF4 

inhibited IL-2 and IFN-γ production in response to both antigenic and polyclonal 

stimulation (435). However, a recent study demonstrated PF4 enhanced Th1 

differentiation and cytokine production when CD4 T cells were cultured with 

autologous platelets, which the authors attributed to Th1 effector and memory cell 

stimulation (434).  

 

Other platelet-related inflammatory mediators, such as thromboxane A2, and platelet-

activating factor (PAF) also display Th1 cell-regulatory effects. Activated platelets 

produce a significant amount of TxA2, which inhibits Th1 proliferation and cytokine 

production (436). Activated T cells express PAF receptor (437), and PAF can enhance 

Th1 IFN-γ production of cultured T cells (437, 438). Finally, IL-1β a known potent 

promoter of Th1 differentiation from naïve CD4 T cells and this cytokine can be 

synthesized in platelets upon activation and deposited into fibrin nests of thrombi 

(439). Hence, a thrombus may serve as a reservoir of highly concentrated platelet-

derived cytokines and mediators that enhance platelet-dependent regulation of T cells 

in thrombi. Many of the studies have investigated Th1 differentiation and cytokine 

production with the addition of an isolated platelet derived mediator, but this study 

is the first to investigate the impact of platelets on Th1 differentiation and IFN-γ 

production ex vivo with the involvement of all platelet-derived mediators. Our findings 

suggest that overall platelets have a stimulatory effect on cytokine production and 

Th1 differentiation. 

 

Furthermore, this is the first study to ascertain the impact of inhibiting platelet-T cell 

interactions with a P2Y12 inhibitor in vivo, on T cell differentiation, cytokine 

production and proliferation. After prasugrel administration in participants, the 

addition of platelets to T cell cultures dramatically reduced the production of IFN-γ 

and Th1 differentiation to levels comparable to stimulated alone. Prasugrel eliminated 

the platelets’ stimulatory affects on Th1 cells. In animal models, it has been 

consistently demonstrated that the inhibition of Th1 cell differentiation or deficiency 

of Th1 cytokine receptors markedly reduces lesion formation (440, 441). As IFN-γ is an 
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important activator of monocytes and macrophages to become highly inflammatory, 

which are key inflammatory cells in atherosclerotic lesions, inhibiting this cytokine can 

reduce inflammation. Therefore, antiplatelet therapy may be providing therapeutic 

benefits by indirectly modulating Th1 activity and reducing pro-inflammatory cytokine 

production.  

 

Co-cultures of stimulated CD4 T cells and platelets also promoted a significant 

enhancement in Th17 differentiation. Th17 cells are a recently recognized CD4 T cell 

lineage in atherosclerotic lesions and previously have been acknowledged for their 

critical role in host defense and autoimmunity. Th17 cells secrete its signature 

cytokine IL-17, which acts on other cells to produce pro-inflammatory cytokines and 

chemokines and is the clear pro-inflammatory role of Th17 cells in autoimmune 

disease (444). The impact of Th17 cells in atherosclerosis however remains 

controversial. Patients with ACS have more circulating Th17 cells and higher plasma 

levels of IL-17, IL-6 and IL-23 (20) and mouse models of IL-17 deficiency show a 

reduction in atherosclerotic lesions (443). In contrast to these studies, which suggest 

the Th17 phenotype is pathogenic, other studies have found increased Th17 

differentiation and IL-17 in human atherosclerotic plaques are associated with a stable 

plaque phenotype (22).  

 

Despite this controversy, several platelet-derived mediators are thought to regulate 

Th17 differentiation and cytokine production. Platelets have abundant stores of TGFβ, 

which is released and acts with IL-6 and IL-21 to promote Th17 differentiation. TGFβ 

promotes Th17 differentiation in the presence of IL-6 whereas TGFβ alone drives Treg 

differentiation (425). As already mentioned, platelets can synthesise IL-1β and the 

release of this causes Th17 polarisation through inducing RORγt expression, a key 

transcription factor in Th17 differentiation (444). This cytokine is also critical in 

maintaining the steady status of Th17 cells and IL-6 acts to enhance IL-1β activity 

(444). Moreover, platelet activation leads to PAF synthesis and release, which can 

promote Th17 differentiation and cytokine production (445).  
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Prasugrel administration abolished the enhancement of Th17 differentiation by 

platelets in co-culture with T cells and produced similar Th17 levels to stimulated 

alone. Our results would suggest that platelets have a potent affect on Th17 

differentiation and antiplatelet treatment can inhibit this stimulus. However, it is 

unknown what affect and to what extent this inhibition would impact on 

atherosclerosis as the role of Th17 cells in atherogenesis remains controversial. 

 

CD4 T regulatory (Treg) cells are key anti-inflammatory cells in the immune system 

and operate to govern immunological tolerance and the terminate immune 

responses. With anti-CD3/CD28 stimulation, a significant increase in Treg 

differentiation was achieved at all time points. However, the addition of platelets did 

not significantly enhance the Treg response compared to stimulated alone. Other 

studies have found platelets can have a marked effect on Treg differentiation via 

platelets abundant stores of TGFβ (434). TGFβ is essential for Treg differentiation and 

high local concentrations selectively promote this CD4 phenotype (425). However, 

neutralization of this growth factor did not prevent platelet-enhanced Treg 

differentiation, indicating there are other platelet-derived factors that may be 

impacting on Treg differentiation. Platelet factor 4 (PF4) and IL-1β have both been 

indicated in in vitro models to enhance anti-CD3/CD28-stimulated Treg differentiation 

(446). However, the influence of these mediators on Treg development can be 

augmented by the presence of IL-2 and by the level of TGFβ, indicating the regulation 

of Treg in vivo is likely complex. In our present study, the net impact of platelets on 

Treg differentiation appears to be small and variable between healthy individuals. 

 

Not surprisingly, platelet inhibition with prasugrel did not reduce Treg differentiation 

significantly. The presence of Treg at atherosclerotic lesions can act to suppress 

immune responses in vulnerable plaques. Many strategies have been investigated to 

increase Treg activity in atherosclerosis with little success. Potentially the inhibition of 

platelets through the P2Y12 pathway can impact on Th1 and Th17 cells without 

altering Treg differentiation significantly, although further investigation would be 

needed to confirm this.  



CHAPTER 8 

 

 211 

Overall, as this study has demonstrated, platelets are not solely anucleate aggregating 

bodies driving thrombosis but can also communicate with cells including CD4 T cells 

to influence differentiation and cytokine production. While this study has primarily 

considered the role of platelet-T cell interactions in atherosclerosis, our findings have 

implications that extend beyond atherosclerosis and which may suggest a role for 

platelet-lymphocyte interactions in other diseases such as but not limited to; sepsis, 

rheumatoid arthritis, cancer, asthma and cystic fibrosis to (75, 449). Thus the novel 

finding that prasugrel can abolish the ability of the platelet to augment CD4 T cell 

stimulation highlights the potential use of antiplatelet therapy in other inflammatory 

conditions.  

8.5 Limitations 

One of the limitations of this study was the size of the study population and therefore 

the statistical power to detect subtle changes in the various parameters. As originally 

anticipated, with 12 participants we had the power to detect a >30% reduction in IFN-

γ levels following prasugrel therapy compared to placebo. However, with higher 

numbers of participants, we would have had the power to detect more subtle 

changes, such as the change in Treg differentiation and the interesting decrease in 

IFN-γ levels in stimulated samples following prasugrel treatment. Nevertheless, with 

12 participants we were able to detect significant and interesting effects of platelets 

on IFN-γ production and Th1 and Th17 subsets.  

 

Additionally, we looked at a limited number of CD4 T cell subsets and markers of cell 

function. It would have been interesting to look at Th2 subsets and other important 

populations of T cell such as natural killer T cells (i.e. NKT). However, from the 

literature it has been shown that Th1, Th17 and Treg subsets have a significant 

influence in atherosclerosis and therefore the impact of platelets on these cells was 

more likely to offer the most relevant results for this thesis. Finally, IFN-γ was the only 

cytokine to be quantified in culture supernatants due to the cost of ELISA kits, but in 

the future, it would be vaulable to measure other cytokines, both inflammatory and 

regulatory, to provide a fuller picture of the effect of platelets on CD4 T cell effector 

functions.  
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8.6 Conclusion  

Our findings suggest that platelets are potent regulators of CD4 T cell differentiation 

and IFN-γ production. The addition of platelets to stimulated T cells enhanced the 

production of IFN-γ and the differentiation of Th1 and Th17 subsets compared to 

single cultures of anti-CD3/CD28 stimulated T cells in healthy individuals. The 

administration of prasugrel abolished the platelets ability to boost Th1 and Th17 

differentiation and the production of IFN-γ suggesting that antiplatelet therapy may 

provide therapeutic benefits through the inhibition of the platelets’ thrombotic ability 

and an indirect modulation of the immune response.  
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9.1 Summary 

In this thesis, the first aim of investigation was to understand the reproducibility and 

methodological factors that influenced the Multiplate’s measurement of residual 

platelet reactivity. The Multiplate system had a moderate CV at 10-11% and the pre-

analytical factors of time delay to testing and anticoagulant blood tubes, affect the 

assessment of platelet aggregation and need to be standardised for all measurements. 

Using the Multiplate to measure residual platelet reactivity in a NZ ACS population 

treated with aspirin and clopidogrel, the study found HOTPR was common and 

occurred more frequently in Maori and Pacific Islanders. Patients with diabetes or 

receiving low clopidogrel doses also had higher rates of HOTPR. The use of prasugrel 

in patients with HOTPR resulted in a marked reduction in residual platelet reactivity 

for all patients. 

 

Further investigation of the relationship between genetic and clinical factors with 

residual platelet reactivity was conducted to identify independent predictors of this 

phenotype. This study revealed that diabetes, low clopidogrel dose and high platelet 

count were all strong independent predictors of high residual platelet reactivity. 

Genetic variation in the CYP2C19 gene only moderately contributed to the observed 

variation in the clopidogrel response. In this study there were no clinical or genetic 

factors that were driving a low residual platelet reactivity response to clopidogrel.  

 

In addition to understanding the drivers of the on treatment phenotype, the 

relationship between phenotype, genotype and predictors of phenotype with MACE 

and bleeding events were also examined following an ACS. It was demonstrated that 

both phenotype and diabetes were independent predictors of MACE and genotype 

was not a significant driver of risk. Bleeding was low in the cohort and was not 

predicted by phenotype, genotype or clinical factors. 

  

Another population at high risk of thrombotic complications are patients undergoing 

major vascular surgery. The aim was to investigate whether biomarkers including 

platelet reactivity and other established cardiac risk markers had utility at predicting 
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thrombotic and bleeding outcomes in this population. Baseline elevated hs-TnT was 

the most predictive biomarker and was significantly associated with an increased risk 

of ischaemia following surgery. Residual platelet reactivity did not predict ischaemia 

or bleeding in this population.  

 

The interactions of platelets with T lymphocytes in patients with atherosclerotic 

disease and healthy volunteers were also investigated. The first exploratory study 

revealed a higher level of platelet-T cell conjugates in vascular patients compared to 

healthy controls. An interesting observation was found in the CD4 T cell population 

with a switch in the activation phenotype to predominantly an effector phenotype in 

vascular patients, which were not observed in healthy controls. Further examination 

of platelet interactions with CD4 T cells in healthy volunteers; suggest platelets are 

potent regulators of the CD4 T cell differentiation and cytokine production and this 

stimulation can be abolished with the administration of prasugrel. 

 

9.2 Limitations 

Across the thesis there have been certain limitations that may have influenced our 

findings. A large majority of the studies were observational in nature. Although we 

wanted to look at residual platelet reactivity and biomarkers in a real world setting so 

our results had wider clinical applicability, this limited our ability to control for 

differences in medication and patient management, which may have introduced 

unknown variance. We were limited to one measure of platelet function using only 

the Multiplate assay and the use of another assay such as VerifyNow may have 

allowed for interesting comparisons in the ability for an assay to identify patients at 

risk of MACE. However, the VerifyNow has a high test cost of $70/ patient and the 

addition of this test in all patients was not feasible. As discussed in chapter 2, we felt 

the low consumable cost and moderate coefficient of variance achieved with the 

Multiplate was the best option to measure residual platelet reactivity. Finally, our 

study populations were of a moderate size and in some instances, reduced our power 

to investigate relationships between clinical factors, platelet reactivity and outcome. 
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However, with the time constraints of the thesis and factoring in the time for follow 

up for two of our cohorts, recruiting larger patient cohorts were not possible.  

 

9.3 Clinical implications and future directions 

The findings from this thesis have several clinical implications and raise further 

avenues of investigation. Some of the observations in our studies may further explain 

the failure of clinical trials to demonstrate a benefit from personalised antiplatelet 

therapy based on platelet function testing. As we have shown in this study, the 

method used to measure residual platelet reactivity needs to be standardised to 

reduce variance in the test. Reported platelet function trials have primarily used the 

VerifyNow assay to tailor therapy and a protocol of 10 minutes to 4 hours time delay 

from blood sampling to measurement is recommended (454). Although we have not 

specifically tested the effect of time delay on the VerifyNow assay, our results suggest 

that time has a significant impact on the precision of an assay and this added variance 

may have reduced the ability to discern which patients would benefit from tailored 

therapy from a single cut point. 

 

There is sufficient evidence from multiple studies including ours, that high residual 

platelet reactivity is a powerful independent predictor of MACE in ACS patients. With 

the increasing use of new potent P2Y12 inhibitors and the availability of generic 

clopidogrel, it will be left to the decision of the attending physician which drug to 

choose for the individual patient by balancing the risk of thrombotic and bleeding 

events. The potential clinical benefit and cost difference from personalised therapy 

suggest further evaluation of platelet reactivity testing is attractive. However, our 

study highlighted that platelet reactivity alone does not predict a patient’s thrombotic 

risk. We also identified diabetes as a significant predictor of MACE, and it is likely that 

other clinical factors will also influence risk. With a combined risk factor strategy 

including platelet function testing and clinical factors, the ability to identify patients 

at high risk of thrombotic events may be improved beyond a single biomarker 

strategy. Using a risk model such as this to personalise antiplatelet therapy has not 

been investigated and larger outcome studies in ACS patients are needed to ascertain 
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the key clinical factors that predict risk and whether such a strategy would improve 

patient outcomes. 

 

Our study also supports the notion that the loss of function CYP2C19*2 allele is only 

having a minor impact on an individual’s response to clopidogrel (228, 309). 

Moreover, the LOF allele was not predictive of MACE at 1 year in ACS patients, which 

has been the centre of much debate in the literature (228, 455-457). We hypothesised 

that the variability in platelet reactivity due to the acute inflammation and oxidative 

stress following an ACS may be overshadowing the impact of the LOF allele on residual 

platelet reactivity and measuring the phenotype at a different time point would result 

in a stronger relationship. However, as genotype is a constant entity and the LOF 

genotype was not found to be a significant predictor of MACE at 1 year, even if the 

relationship between HOTPR and CYP2C19*2 was significant at another time point, 

knowing the genotype of an individual would not aid in risk stratifying a patient. The 

use of new generation P2Y12 inhibitors may also make the role of bedside genotyping 

in ACS patients redundant. Ticagrelor is an active drug and does not require hepatic 

bioactiviation (213). Although the metabolism of prasugrel is via various CYP 

isoenzymes, the common genetic variants in the CYP2C19 gene do not affect 

formation of the active metabolite, inhibition of platelet aggregation, or the clinical 

outcome of prasugrel-treated patients (458). Therefore, genotyping may offer little 

prognostic information to help clinicians tailor clopidogrel or new antiplatelet 

therapies to high risk individuals.   

 

In contrast to the ACS population, our study investigating the use of biomarkers to 

predict risk in patients undergoing major vascular surgery did not find a significant 

relationship between residual platelet reactivity and outcome. As discussed, this may 

be due to the stable diseased population that we measured the biomarker in. In CAD 

patients, platelet function testing is more predictive in patients at a higher risk of stent 

thrombosis and other thrombotic complications (455) which mainly includes the ACS 

population undergoing PCI. Our study suggests that platelet function testing does not 

provide any additional information regarding risk in a stable vascular population. 

Whether, platelet function testing may be of value in a higher risk acute vascular 
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population is unknown. Patients with critical limb ischaemia undergoing femoral 

bypass surgery and endovascular procedures are at high risks of graft occlusion and 

limb amputation (122). The risk of limb amputation and death, also increases 

significantly with every revascularisation procedure (123). Furthermore, studies have 

demonstrated patients with active limb ischaemia have the highest levels of platelet 

and monocyte activation before and during surgery compared to those with 

intermittent claudication (460). High residual platelet reactivity in this population may 

be more predictive of thrombotic complications and could be used to identify patients 

who would benefit from more aggressive antiplatelet therapy and prevent further 

graft complications. 

 

A biomarker that was found to be a significant predictor of ischaemia in the vascular 

population was an elevated baseline hs-TnT. This is the first study to demonstrate that 

preoperative measurements of hs-TnT can predict risk in vascular patients. Many 

studies have found both troponin elevations perioperatively and peak troponin levels 

post-surgery significantly correlate with an increased risk of mortality following major 

noncardiac surgery (461, 462). However, the clinical utility of measuring this 

biomarker during surgery is limited to only informing post-operative management. 

Having a pre-operative biomarker that predicts both short and long-term risk allows 

clinicians to alter several aspects of patient management to reduce risk. Before 

surgery, having this information may allow clinicians to carry out further cardiac 

investigations to optimise medical therapy or change a clinician’s strategy regarding 

surgery and the risk-benefit balance. This information is also valuable for 

perioperative management as surgical teams can control blood pressure within a 

stricter range, have blood products available and more aggressive fluid management 

in patients who are at an increased risk of ischaemia. Whether this approach results 

in the reduction of ischaemia is unknown and warrants further investigation. 

 

We also demonstrated that platelets have a significant influence on CD4 T cells and 

this stimulation can be eliminated with prasugrel administration. This stimulatory 

communication between platelets and T cells may be one of the mechanisms driving 

risk in patients with HOTPR, resulting in more inflammation and plaque instability. To 
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investigate this hypothesis we would first need to look at platelet-CD4 T cell 

interactions in patients with atherosclerotic disease to see if platelets are having the 

same effect on the CD4 subsets. It would also be interesting to identify how the 

activation phenotype of isolated CD4 T cells from patients with atherosclerotic disease 

effected cytokine production and proliferation compared to healthy volunteers. As we 

demonstrated in chapter 7, the activation phenotype of CD4 T cells switched from a 

predominantly memory phenotype in healthy individuals to an effector response in 

patients with vascular disease. Our finding that platelets enhanced CD4 T cell 

differentiation and cytokine production but had little impact on proliferation, may 

suggest platelets are more prone to enhance CD4 T effector-cell responses. Effector 

cells are primed to make cytokines (463) and platelet interactions in vascular patients 

may result in even higher levels of cytokine production and CD4 T cell differentiation 

contributing to the pro-inflammatory environment. The administration of prasugrel in 

these patients could provide powerful anti-inflammatory actions, which could benefit 

a patient’s long-term outcome and is an important focus of future studies.   

 

We focused our investigation on the interactions between CD4 T cells and platelets. 

However, it would also be important to understand what effects platelets were having 

on the activation and function of other T cells including CD8 and NK T cells and B cells 

in both healthy volunteers and patients with atherosclerosis.  

 

The clinical implications of our study on platelet-CD4 T cell interactions not only relate 

to atherosclerosis and high on treatment platelet reactivity but may also have 

important implications in other disease states. Platelets are thought to promote 

neutrophil and lymphocyte recruitment and cause tissue damage in diseases such as 

asthma, cystic fibrosis, inflammatory bowel disease, glomerulonephritis and arthritis, 

from studies conducted in animal and human in vitro models (449). But little is known 

about how platelets influence lymphocyte function in these diseases from human 

models and if antiplatelet therapy could provide immunomodulatory benefits. Studies 

looking at the role of platelets in cancer have primarily focused at their ability to cause 

thrombotic complications and the release of growth factors supporting tumour 

growth, angiogenesis and metastasis (464). The dysfunction of the immune system 
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and the imbalance between cytotoxic T-cell and regulatory T cell responses can allow 

cancer tumours to grow unchecked. Platelets may have important effects on T cell 

responses in cancer and warrant investigation.  

 

Platelets play a key role in sepsis pathophysiology and are one of the drivers of 

multiple organ failure during systemic infection and inflammation (461).  There is 

substantial evidence that platelets create a pro-coagulant environment in sepsis and 

aid in the recruitment of leukocytes. However, their direct influence on the activation 

and phenotype of leukocytes, including T cells have not been investigated (462). There 

is considerable interest around the use of antiplatelet therapy in sepsis to reduce 

multiple organ failure. Retrospective studies have investigated the impact of 

antiplatelet agents on outcomes following critical systemic infections in populations 

receiving antiplatelet therapy for other indications. These studies have found a trend 

to shorter ICU stays following infection, reduced rates of acute lung injury and in some 

cases, reduced mortality in patients receiving antiplatelet therapy (462). Antiplatelet 

therapy is undoubtedly lowering the thrombotic ability of platelets and reducing their 

propensity to cause pro-coagulant environments in sepsis. Another potential benefit 

of antiplatelet therapy in sepsis, which merits further investigation, may come from 

inhibiting platelet’s communication with immune cells and reducing the pro-

inflammatory environment.  

 

Platelets may have important roles in a number of other diseases not mentioned here. 

Their high frequency, ability to bind and communicate with an array of cells and 

abundant stores of cytokines, chemokines and growth factors mean platelets are 

positioned to significantly influence the immune system in a wide range of diseases. 
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11.1 Appendix 1 – Buffers and Solutions 

PBS 

NaCl      145 mM 

Na2HPO4     8.7 mM 

NaH2PO4     1.3 mM 

In ddH2O, autoclaved strilised 

 

FACS buffer (v/v) 

Fetal Calf Serum (FCS)    2% 

Sodium azide     0.1% 

PBS      97.9% 

 

Complete T cell media (CTCM) (v/v) 

Dulbecco’s Modified Eagle Medium  85.9% 

FCS      10% 

L-glutamate (200 mM)   1% 

Penicillin/Streptomycin   1% (100 U/ml/10 mg/ml) 

HEPES buffer (1 M)    1% 

Β-Mecaptoethanol    0.1% 

Non-essential amino acids (10nM)  0.1% 

 

Filter sterilized using 0.22μm syringe filter. 

 

Isolation Buffer (IB) (v/v) 

PBS      97.8% 

FCS      2% 

EDTA (0.5M)     0.2% 
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11.2 Appendix 2 – Antibody information 

Cell Surface 
Markers 

Flurophore Clone Isotype  Manufacturer 

CD3 FITC HIT3a Mouse IgG2a Biolegend 

CD8 PE 
PECy7 

HIT8a 
RPA-T8 

Mouse IgG1 
Mouse IgG1 

Biolegend 
BD Bioscience 

CD42a PerCP Beb-1 Mouse IgG1 BD Bioscience 

CD4 PECy7 OKT4 Mouse IgG2a Biolegend 

CD25 APC BC96 Mouse IgG1 Biolegend 

CD44 PE BJ18 Mouse IgG1 Biolegend 

CD62L APC DREG-56 Mouse IgG1 Biolegend 

CD56 PE HCD56 Mouse IgG1 Biolegend 

Isotype control FITC MOPC-173 Mouse IgG2a Biolegend 

PE MOPC-21 Mouse IgG1 Biolegend 

PerCP MOPC-21 Mouse IgG1 BD Bioscience 

PECy7 MPC-11 Mouse IgG2b Biolegend 

APC MOPC-21 Mouse IgG1 Biolegend 

Intracellular 
marker 

Flurophore Clone Isotype  Manufacturer 

IFNγ FITC 25723.11 Mouse IgG2a BD Bioscience 

IL-17A PE N49-653 Mouse IgG1 BD Bioscience 

FoxP3 Alexa Fluor 647 259D/C7 Mouse IgG1 BD Bioscience 

Isotype control FITC MOPC-173 Mouse IgG2a Biolegend 

PE MOPC-21 Mouse IgG1 BD Bioscience 

Alexa Fluor 647 MOPC-21 Mouse IgG1 BD Bioscience 
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11.3 Appendix 3 – Supplementary graphs for chapter 8 

 

 

 
Figure 11-1 No difference in isolated CD4 T cell differentiation following 

placebo therapy compared to baseline in all culture conditions 

Isolated CD4 T cells at baseline and after placebo therapy were cultured without stimulation 
(U), with anti-CD3/CD28 stimulation (S) and stimulation plus autologous platelets (S + P). CD4 
T cell subsets were measured by intracellular cytokine staining for IFN-γ (Th1), IL-17A (Th17) 
and FoxP3 (Treg) using flow cytometry. Data is displayed as mean ± SEM for the proportion of 
Th1 (A), Th17 (B) and Treg subsets (C). The data represents all 12 patients. Paired T tests of 
culture conditions were found to be not significant.  
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