
Generic Ownership Types for
Java and the Collections

Framework

by

Ahmed Aziz Khalifa

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2014

Abstract
Generic programming has turned out very useful in the development of
reusable software. With the Java programming language, genericity is not
only meant for reusability, but also for type-safety. Java generics constrain
a container object (e.g., list, hash table) to store objects of a pre-specified
data type. Nevertheless, safe programming with aliasing (multiple point-
ers in a program may point to the same object) is still a concern in object-
oriented programming language research. A pointing object can mutate
the state of the aliased object, reflecting the changes to all of the other
pointers (aka aliases) thus affecting their behaviour. As programs grow
larger and more complex, such changes in behaviour can be undesirable
and difficult to detect and reason about. With respect to container objects,
the iterator pattern critically violates encapsulation, allowing aliases to the
state (and thereof the components) of its container.

Object ownership is one of the well-researched paradigms in the area
of alias management. Ownership types support hierarchical object encap-
sulation rather than the traditional class-level encapsulation. This thesis
introduces an extension of Java 6 with support for ownership types as
supplementary generic types. That is, Java generics are extended with
the ability of carrying ownership information. This extension provides
generic ownership support for all of Java; that is, all major language fea-
tures are addressed so that programs can safely manage and express their
aliasing properties. The resulting language is expressive enough to sup-
port common programming idioms, with little programming and run-
time overhead. We evaluated the programmability of the language by
refactoring a major (the most essential) portion of the Java Collections
Framework. We also evaluated the performance impact of our refactor-
ing by conducting a small micro-benchmark study to measure the perfor-
mance time overhead the refactored collections may impose.

ii

Acknowledgments

I wish to express my gratitude to my supervisors Dr. Alex Potanin and
Prof. James Noble. To Alex for his tremendous guidance, patience and
support throughout this research. Alex has been habitually knowledge-
able, alert and enthusiastic. I am exceedingly thankful to him for keeping
me financially secure at all times during the period of this research. James,
a million thank you is not enough for you. You enlightened the path for-
ward when it seemed headed for a dead-end. I appreciate the lessons I
learned from your red ink. No fair person can fail to see your insightful
conjecture.

I wish to express my gratitude to A/Prof. Lindsay Groves for looking
after my progress when James and Alex were on another continent; for
understanding my stress and press during the final write-up.

A big thank you should go to my examiners for their time, effort and
feedback. Another big thank you to the Faculty of Graduate Research for
awarding me a Victoria PhD Submission Scholarship, and for the free reg-
ular workshops that helped me cope and settle with more ease. I would
also like to thank Victoria International for the help given to me since the
moment I put my foot on Wellington airport.

My wife Salma has been a fruitful source of love and support through-
out my studies. My daughters Ola and Rana, thank you for being quiet (at
night) while I was working.

My parents have always supported me to pursue my dreams. They
have done everything possible to secure me the best way of life. What I
owe them is countless and eternal.

iii

iv

Contents

1 Introduction 1
1.1 Contributions . 3

1.2 Outline . 4

2 Background 5
2.1 Object Sharing . 5

2.2 Alias Control . 9

2.2.1 The Geneva Convention 9

2.2.2 Alias Transitivity and Aggregation 10

2.2.3 Uniqueness . 12

2.2.4 Full Alias Protection 14

2.2.5 Confined Types . 15

2.2.6 Flexible Alias Protection 16

2.3 Object Ownership . 17

2.3.1 Deep Ownership . 18

2.3.2 Universes . 21

2.3.3 External Uniqueness 22

2.3.4 Ownership Generic Java (OGJ) 23

2.3.5 Wildcards and Generic Ownership 25

2.3.6 Generic Universe Types (GUT) 25

3 OGJ+ Language 27
3.1 An OGJ+ Example . 28

v

vi CONTENTS

3.2 Reference Types . 30

3.3 Class Hierarchy . 32

3.3.1 Subtyping . 33

3.3.2 Interfaces . 34

3.4 Nesting Scheme . 35

3.4.1 Class Declaration . 35

3.4.2 Field/Variable Declaration 35

3.4.3 Method Declaration 36

3.5 Instantiation and Casting . 38

3.6 Wildcard Types . 40

3.6.1 Ownership Context Covariance 41

3.6.2 Readonly References 44

4 From Java To OGJ+ 47

4.1 Arrays . 47

4.1.1 The main() Method 48

4.2 Inner Classes . 50

4.3 Statics . 55

4.3.1 Static Fields . 56

4.3.2 Static Methods . 57

4.3.3 Static Blocks and Nested Static Classes 57

4.4 Clone . 58

4.5 Equals . 64

4.6 Exception Handling . 68

4.7 Enum Types . 71

4.8 Implementation Methodology 73

4.8.1 Ownership Domains and Types 73

4.8.2 Type Checking . 74

4.8.3 Testing . 76

4.8.4 Usage . 77

CONTENTS vii

5 Generic Ownership Compliant Collections 79

5.1 Interfaces . 83

5.1.1 The Collection Interface 84

5.1.2 The Map Interface . 90

5.1.3 The Iterator Interface 92

5.2 Lists . 94

5.2.1 Array List . 95

5.2.2 Linked List . 97

5.2.3 Vector (legacy) . 100

5.3 Queues . 101

5.3.1 Priority Queue . 101

5.3.2 Array Deque . 102

5.4 Maps . 103

5.4.1 Hash Map . 104

5.4.2 Linked Hash Map . 106

5.4.3 Hash Table (legacy) . 109

5.4.4 Identity Hash Map . 111

5.4.5 Tree Map . 112

5.5 Sets . 113

5.5.1 Hash Set . 114

5.5.2 Linked Hash Set . 114

5.5.3 Tree Set . 115

5.6 Usability . 116

6 Evaluation 119

6.1 IteratorLoops . 120

6.2 CollectionLoops . 122

6.3 MapLoops . 126

6.4 MapMicroBenchmark . 127

6.5 Discussion . 128

viii CONTENTS

7 Conclusions 131
7.1 Limitations . 132
7.2 Future Directions . 133

List of Figures

2.1 Shared List. 6

2.2 Representation Exposure Example. 7

2.3 Types of references. Object aggregate is denoted by the box. 11

2.4 Ownership Tree with Sharing Contexts 17

2.5 Deep Ownership Relationships Between Objects. 19

2.6 References must not cross a context boundary from the out-
side to the inside . 21

2.7 Universe Types Modifier Combinator. 22

2.8 Ownership Transfer of an Externally Unique Object 23

3.1 A generic ownership compliant version of Fig. 2.2. 29

3.2 A possible OGJ+ class header. 30

3.3 Using a naked owner to infer ownership information. 31

3.4 OwnedArray class header. 32

3.5 Context information must be preserved. 33

3.6 Illegal Owner Nesting. 36

3.7 Context boundaries should not be broken through method
invocations. 37

3.8 Preserving Ownership Information 38

3.9 Preserving Ownership Information against Up/DownCasting 39

3.10 Generic Ownership Wildcard Types 43

3.11 Restrictions on method invocations via wildcard owner pa-
rameterised receivers . 45

ix

x LIST OF FIGURES

3.12 Wildcard owned references are readonly 45

4.1 The Use of OwnedArray . 49
4.2 No common representation between inner classes and outer

classes . 51
4.3 An outer class’s owner is not inside the inner class’s owner. . 52
4.4 Event-Listener Pattern implemented in OGJ+ (uncompilable) 53
4.5 Event-Listener Pattern implemented in OGJ+ (compilable) . 54
4.6 Illegal Static Field Declaration 57
4.7 The ArrayList’s override clone() method 60
4.8 An unreal OGJ+ version of ArrayList’s clone() 61
4.9 The OGJ+ ArrayList’s deep cloning operation 62
4.10 Deep copy operations in OGJ+ 63
4.11 java.util.AbstractList.equals() 64
4.12 OGJ.java.util.AbstractList.equals() 65
4.13 equals() accessing two unrelated private objects 66
4.14 Illegal equals() invocation (receiver and actual parameter

are wildcard-owned) . 67
4.15 Exception Handling Example 69
4.16 Depiction of the call stack exemplified in Fig. 4.15 69
4.17 Depiction of the object ownership structure exemplified in

Fig. 4.15 . 69
4.18 Mandatory declarations required for a minimal runnable

OGJ+ program . 77

5.1 Iterable Collections . 81
5.2 Maps . 81
5.3 JDK 1.6 Collection Interface. 84
5.4 OGJ+ Collection Interface. 85
5.5 A liberal signature of contains() 87
5.6 OGJ+ AbstractCollection.removeAll() 88
5.7 ArrayList constructor takes a Collection argument . . 89

LIST OF FIGURES xi

5.8 JDK 1.6 Map Interface. 90
5.9 OGJ+ Map Interface. 91
5.10 Linked List’s Iterator as an Inner Class 93
5.11 OGJ+ List Interface. 94
5.12 Linked List with Iterator . 97
5.13 LinkedList Fields and Constructors 98
5.14 An object of an anonymous class as a sibling of the enclos-

ing object . 100
5.15 Enumeration implemented as an anonymous class in the

same context as Vector . 101
5.16 Hash Map with Iterator . 105
5.17 Java 1.6 LinkedHashMap.Entry.recordAccess() . . . 108
5.18 A HashMap storing multiple values for the same key using

ArrayList. 116
5.19 OGJ+’s version of Fig. 5.18. 117

6.1 IteratorLoops – Nanoseconds per Iteration Step 121
6.2 CollectionLoops for Lists and Queues – Nanoseconds

per Operation . 123
6.3 CollectionLoops for Sets – Nanoseconds per Operation . 124
6.4 MapLoops – Nanoseconds per Operation 126
6.5 MapMicroBenchmark – Nanoseconds per Operation over

a map size of 589,824 . 127
6.6 MapMicroBenchmark’s results for JDK 1.6 HashMap 128

xii LIST OF FIGURES

Chapter 1

Introduction

Since the 1940s to the end of the 1980s, software construction had evolved
considerably. Since the 1990s to the present, software construction has
evolved miraculously. One of the most prominent advances in the last
three decades is the evolution of object-oriented technologies. Object-
oriented techniques are mainly meant for reusability, or building reusable
components, thus less software needs to be written. Nevertheless, build-
ing reliable software components is still a challenge.

The value of some constituent object-oriented techniques such as inher-
itance, polymorphism and dynamic binding was not well-known when
the information hiding principle [54, 55] and the encapsulation technique
[40, 41] were introduced. Heretofore, encapsulation is the most distin-
guishing feature of object-orientation [26]. A data abstraction is an object
whose state is accessible only through its operations [66]. Encapsulation
evolved with the introduction of inheritance to include, along with the
notion of data abstraction, the ability to hide references to subobjects from
the clients of the inherited object. This evolution is in fact related to the
area of alias management.

Reference aliasing is the property that allows multiple objects to refer to
a single object which can be changed by any of the referrers. Aliasing is in-
evitable in object-orientation. Object-oriented languages without aliasing

1

2 CHAPTER 1. INTRODUCTION

are inefficient, if not powerless. Yet, aliasing is a major source of compli-
cations, and an important source of malfunctioning in object-oriented sys-
tems. The misuse of aliasing breaks the encapsulation needed for building
reliable software components [31, 39]. Therefore, aliasing must be man-
aged.

Object ownership [21] is one approach to alias management. This ap-
proach restricts the interplay between aliasing and the mutable state of an
object, so that an incoming reference cannot penetrate from the outside
of that object to directly access its internal state. This is done by identi-
fying an owner for every individual object in a system, and by allowing
modifications only through the object’s owner. Deep ownership [17, 19] is
one of the kinds of object ownership, which lays out the heap into nested
constructs. Generic ownership [61] is the merging of deep ownership types
with parametric polymorphism.

Potanin et al. [61] provide a formal model for combining deep own-
ership information with Java generics. Potanin et al. also provide an ex-
tended version of Java, named Ownership Generic Java (OGJ). This proto-
type addresses the basic features of Java, such as class declaration, method
parameterisation and field access, to show how ownership information
can be merged into generic declarations and how restrictions can be im-
posed statically.

In this thesis, we concentrate on Generic Ownership in the context of
Java. The popularity of Java and the vivid alias management research in-
duce the research problem of this thesis: What are the potentials and limits
of combining deep ownership with Java generics in a real language imple-
mentation that addresses all features of Java? The implementation of Java
generics does not touch the Java Virtual Machine (JVM) or the class file
structure, what are the possibilities of keeping them untouched without
compromising the generic ownership encapsulation? Deep ownership is
too strict to support constructs like iterators, how could we support iter-
ators without compromising encapsulation? Finally, what are the poten-

1.1. CONTRIBUTIONS 3

tials and limits of our language’s usability in terms of programmability
and performance?

1.1 Contributions

This thesis makes the following contribution:

• OGJ+ is an extension of Java 6 with support for Generic Owner-
ship Types. OGJ+ provides ownership support for all features of
Java. To provide support for constructs such as iterators, OGJ+ in-
troduces readonly references using the wildcard feature of Java gener-
ics. OGJ+ utilises wildcards to relax the restrictions imposed by the
deep ownership model without compromising the nested structure
of the heap.

• OGJ+ Compliant Collections: In order to evaluate the applicability
of OGJ+’s encapsulation system to a real life code base, we refac-
tored the complete set of general purpose implementations of the
JDK 1.6 Collections Framework. In addition to the ten general pur-
pose implementations, we refactored two legacy implementations
and one special purpose implementation. All of these implementa-
tions are decedents of five abstract data types: List, Queue, Deque,
Map, and Set. These interfaces were refactored along with the ab-
stract classes that provide their skeleton implementations. In total,
we have refactored 38 classes and interfaces.

• A Micro-Benchmark Study: In order to evaluate the refactored col-
lections in terms of performance, we conducted a micro-benchmark
study quantifying the overall impact of emplacing ownership infor-
mation into the declarations of Java generics.

4 CHAPTER 1. INTRODUCTION

1.2 Outline

The next chapter provides a background on the problem of aliasing and
representation exposure in object-oriented programming. Thereafter, we
review some of the proposals that address this problem, showing differ-
ent forms of alias management. Finally, we focus on object ownership,
providing background on the attempts which inspired our work.

Chapters 3 and 4 introduce the OGJ+ extension of Java. Both chap-
ters give a detailed explanation of the various features of OGJ+, with the
necessary discussion on how each feature deals with aliasing.

Chapter 5 describes the implementation details of applying generic
ownership to the Collections Framework, with the necessary discussion
on the programmability of OGJ+.

Chapter 6 quantifies the cost of our encapsulation system, measuring
the runtime overhead imposed by the OGJ+ collections on a set of micro-
benchmarks implemented specially to target the Java Collections Frame-
work. We discuss the pros and cons of the integration of object ownership
into Java generics.

Finally, Chapter 7 concludes with a summary and directions for future
work.

Chapter 2

Background

2.1 Object Sharing

Sharing objects is fundamental to object-oriented programming [39, 42].
According to Wegner [66], ’a language is object-based if it supports ob-
jects as a language feature’; ’an object-based language is object-oriented
if its objects belong to classes and class hierarchies may be incrementally
defined by an inheritance mechanism’; ’a class is a template (cookie cut-
ter) from which objects may be created (instantiated) by create or new
operations’; ’objects of the same class have common operations and there-
fore uniform behaviour’. Declaring a class creates a unique type that can
be called class type, user-defined type or reference type. In a mainstream
object-oriented language such as Java, variables of class types are refer-
ences to objects. That is, a variable of a class type holds the memory ad-
dress of where the actual class instance (object) is stored; and therefore,
assignments to variables of class types copy the references only. These as-
signments are said to have reference semantics. Reference semantics make
object sharing attainable and make efficient use of the heap. Consider Fig.
2.1, variables x and y are of the same class type that represents a list of
integers. Variable x refers to a list whose members are the first four pos-
itive integers. The assignment statement y=x does not make a copy of x,

5

6 CHAPTER 2. BACKGROUND

but makes y refer to the same list referred to by x. The change in y also
changed x. References x and y are said to be aliases, of one another, for the
same object. An object is aliased whenever it is referred to by more than
one other object.

Figure 2.1: Shared List.

Reference semantics are the only possible approach to sharing objects
in mainstream object-oriented languages. While sharing is an empower-
ing feature in terms of heap utilization and in the design of data structures,
misusing reference aliasing can lead to unexpected program behaviours.
Such behaviours can be very difficult to understand and reason about as
the system grows.

Consider the example in Fig. 2.2, in line 11 the field wPos forms the pri-
vate state of class Widget; wPos is of type Point; and Point is what we
call a reference type or class type. That is, the data referred to by wPos is
always an instance of class Point, and represents the position of an indi-
vidual Widget instance (say w1). Sharing this data with any other Widget
instance (say w2) will result in dragging w1 behind w2wherever w2moves,
and vice versa. That is why wPos is declared private, meaning that the
position data of any Widget instance is not sharable. Consider the instan-
tiations in lines 22 and 24, if we try to have an assignment statement such
as w1.wPos=pos, we will get a compile time error saying wPos has pri-
vate access in Widget. This is not enough, however. Consider the benign-
looking method invocations in line 26, method getPosition() returns
wPos; which means that w1.getPosition() is the same as w1.wPos,

2.1. OBJECT SHARING 7

1 class Point{

2 public int x;

3 public int y;

4
5 public Point(int x, int y) {

6 this.x = x;

7 this.y = y;

8 }

9 }

10 class Widget{

11 private Point wPos;

12
13 public void setPosition(Point pos) {

14 this.wPos = pos;

15 }

16 public Point getPosition() {

17 return wPos;

18 }

19 }

20 public class AccessWidget{

21 public static void main(String[] args) {

22 Widget w1= new Widget(), w2 = new Widget();

23
24 Point pos = new Point(50,50);

25 w1.setPosition(pos);

26 w2.setPosition(w1.getPosition());

27 System.out.println(w2.getPosition().x+", "+w2.getPosition().y);

28
29 pos.x = pos.y = 99;

30 w1.setPosition(pos);

31 System.out.println(w2.getPosition().x+", "+w2.getPosition().y);

32 }

33 }

34 ==

35 run:

36 50, 50

37 99, 99

Figure 2.2: Representation Exposure Example.

but Java allows this method invocation. That is, wPos is not properly hid-
den or encapsulated inside Widget; and as a result, object w2 managed to
share the position data of w1. That is, the method invocations in line 26 are
in fact a workaround the disallowed statement w2.wPos=w1.wPos, by

8 CHAPTER 2. BACKGROUND

means of public getter/setter methods. Java’s class-level private fields
restrict access to the names of the local state, but does not restrict access
to the objects to which the names refer. An object’s private state or in-
ternal representation [52] can still be accessed and modified by its public
methods that can directly return references to that private representation.

The principle of information hiding [54, 55] was introduced as a design
criterion in modular programming. Information hiding means that inde-
pendent information (wPos) should be hidden in independent modules
(Widget). That is, as long as programmers have as little code dependen-
cies as possible, development risks are diminished. In object-orientation,
independent information or the internal representation (aka the private
state) should be accessed only through operations (getPosition() &
setPosition()) which are grouped together with the internal represen-
tation in a data abstraction (Widget). This grouping property in object-
oriented languages is what we call Encapsulation [6, 26, 39, 40, 41, 42]. Our
example followed these principles; the operations of the data abstraction
were the only access mechanism to the internal representation. Neverthe-
less, the encapsulation was easily breached.

Much of the flexibility and efficiency of object-oriented coding is
grounded by the notion of sharing mutable objects. Nevertheless, the
unrestricted interplay between aliasing and the mutable state can lead to
unfavourable outcomes. What happened in the example above is that a
supposedly hidden object, wPos, was exposed. This phenomenon of rep-
resentation exposure [20, 22, 39, 46] is the side-effect of reference semantics.
Representation exposure is the inability of an object to prevent references
to objects that make up its internal representation from leaking outside
its boundary. That is, representation exposure occurs as long as an ob-
ject lacks the capacity to constrain aliasing sufficiently in order to enforce
encapsulation.

One of the most expressive comments on the situation described in this
section came from John Hogg [30]:

2.2. ALIAS CONTROL 9

”Object-oriented languages have a light side and a dark side. The
light side is that the programming model makes rapid prototype im-
plementation much easier, since components can be easily reused. The
dark side is that as these prototypes mature, the components can man-
ifest strange behaviors due to unforeseen interactions and interrela-
tionships. The big lie of object-oriented programming is that objects
provide encapsulation”.

2.2 Alias Control

Protecting values from being changed due to aliasing has been a research
concern since the very early 1990s. In this section, a brief review of litera-
ture on the alias management research is provided. Since this thesis work
is set in the context of ownership types, we allocate the next section for a
general overview of object ownership.

2.2.1 The Geneva Convention

The Geneva Convention on the Treatment of Object Aliasing [31] describes
aliasing as a problem for both formal verification and practical program-
ming. It sorts out four approaches to dealing with aliasing: detection, ad-
vertisement, prevention and control.

Alias detection is subsequent to program implementation. Alias detec-
tion is the process of detecting actual and potential aliasing using static
and dynamic techniques. The resulting information will classify each ob-
ject as never, sometimes, or always aliased by any two variables.

Alias advertisement keywords can be used to annotate methods on the
basis of their resulting aliasing properties, so that modular analysis can be
made more efficiently. Alias advertisement is desirable for the reason that
comprehensive detection is impractical.

10 CHAPTER 2. BACKGROUND

Alias prevention is the act of verifying statically that aliasing is prohib-
ited within confirmed contexts. This requires conservatively defined static
constructs. Eliminating aliasing within particular contexts can help reason
about the validity of programs.

Alias control is the act of adopting techniques capable of preventing
a system from reaching the level of causing unexpected aliasing. Alias
control is the most appreciated approach to dealing with aliasing, since
prevention hinders the flexibility of object structures. According to Hogg
et al. [31], there are situations in which the dynamic state of the system
needs to be taken into consideration in oreder to pin down the bad effects
of aliasing. Therefore, alias control needs to be applied at the program-
ming level.

2.2.2 Alias Transitivity and Aggregation

An aggregate is an abstraction for an object that represents a storage des-
tination for a collection of other objects (e.g., a list, table or bag). Noble et
al. [52] describe the problem of representation exposure in the context of
aggregation. An aggregate object’s state is likely to change via an alias to
any of the component objects that make up the aggregate’s representation,
while the aggregate itself is unaware of any aliasing. An aggregate is con-
sidered unaware of the aliases of its representation whenever an external
object manages to bypass the aggregate’s interface operations and directly
refers to a state object. Any reference from the outside to the inside of an
aggregate can mutate the state of the object’s implementation, either by
modifying a field or via method calls.

Clarke [16] classifies references, in the context of aggregation, into four
categories: internal, external, outgoing and incoming references; or into be-
nign references (internal and external) and problematic references (outgoing
and incoming).

2.2. ALIAS CONTROL 11

Internal references are those created inside the aggregate object, refer-
ring to internal objects, and solely to interact internal to the aggregate’s
implementation. They are safe as long as they are not depending on out-
going references or responsive to incoming aliasing. See references a→b
and aggregate→a in Fig. 2.3.

External references are those to the aggregate itself, but neither expose
nor access the internal implementation of the aggregate. See reference
x→aggregate in Fig. 2.3.

Outgoing references pass from an object inside the aggregate to alias an
object external to it. The aggregate has no control over external objects,
while the references depend on them and there is no guarantee that the
dependency is on the immutable parts of the external object [52]. See ref-
erence a→y in Fig. 2.3.

Incoming references penetrate from the outside to the inside, and are
considered very critical since they can directly access the internal state of
the aggregate, and thus mutate it, without the aggregate being aware of
the aliasing [31]. See reference z→b in Fig. 2.3.

Figure 2.3: Types of references. Object aggregate is denoted by the box.

Various attempts have been proposed to prevent the problem of rep-
resentation exposure, and thus eliminating the leak of references to the
internal representation. In the rest of this chapter, we will highlight some
of the key attempts.

12 CHAPTER 2. BACKGROUND

2.2.3 Uniqueness

An object is unique as long as it is being referred to by only one reference.
If a language can constrain an object to have only one external reference,
then such an object can never be aliased. Several proposals deal with dif-
ferent notions of uniqueness [4, 10, 11, 27, 30, 43, 65].

Class-level annotations [43] are the very basic form of uniqueness, pro-
posed for Eiffel. In this encapsulation system, any instance of the anno-
tated class can be referred to by only one reference. This proposal does not
make clear whether uniqueness or non-uniqueness should be preserved
over subtyping or not. Wrigstad [67] argues that even if uniqueness is
not preserved over subtyping, uniqueness might not become invalidated.
Nevertheless, non-uniqueness must be preserved over subtyping, since a
non-unique superclass might involve methods that create aliases to this;
invoking such methods in a unique subclass should invalidate its unique-
ness. Eiffel has expanded classes [42]. An expanded type object cannot be
referenced by other objects, it can only be copied. The expansion nature
of a class is not transmitted via inheritance unless the subclass is declared
expanded. Also, the other way around holds; a subclass inherited from
a reference (non-expanded) class can be declared expanded. That is, the
argument about the preservation of non-uniqueness also applies to the
preservation of non-expansion.

Reference-level access control proposals [10, 11, 27, 65] demonstrate
more refined and restrictive forms of uniqueness. A variable or field an-
notated as unique is the only possible reference in the system to a par-
ticular object. Limiting the number of references to only one reference to
a particular object is simple and powerful, but not practical since unique
references cannot, for example, refer to the internally aliased objects of a
node-linked model, such as a doubly-linked list or a tree map. In most
cases, the components of aggregate objects are internally aliased.

2.2. ALIAS CONTROL 13

Instance-level uniqueness proposals consider an object as free [30, 52]
or virgin [37] if it can be initialised without being given a reference. An
object’s internal representation can then be set to such a free object, guar-
anteeing that it will not be captured in a variable. Hogg [30] provides the
free aliasing mode among other aliasing modes required to characterise an
object as part of an island or as a bridge capable of connecting two islands;
this is discussed in subsection 2.2.4. Noble et al. [52] provide the free alias-
ing mode among other aliasing modes to maintain the flexibility required
for alias-protected aggregates; this is discussed in subsection 2.2.6.

To transfer an instance’s unique reference from one place to another,
additional language features are required. Almeida [4] uses copy assign-
ments. Hogg [30] proposes an atomic operation, called destructive read, to
nullify unique variables after returning their values. Boyland [10] stati-
cally checks the sharing properties of the variables to nullify them after
the transfer if they hold unique references. To avoid destructive reads,
Boyland[10] accommodates a borrowed qualifier so that a unique refer-
ence can be passed to a method only for the span of its operation. A bor-
rowed reference transiently loses its uniqueness, but cannot be returned
by the method or captured in fields. The unique reference is still visible
during the borrowing, however.

Other language features can be associated with uniqueness. Among
other capabilities, including unique capability, Boyland et al. [11] provide
a null capability so that a reference with this capability can only perform
instance identity comparisons; such a reference can neither access state
variables nor invoke operations. Wrigstad [67] argues that references with
null capability to unique objects weaken uniqueness.

14 CHAPTER 2. BACKGROUND

2.2.4 Full Alias Protection

Islands [30] and Balloons [4] control possible aliasing amongst the state
objects statically. External objects are not permitted to have references to
the internal representation. This subsection provides a brief overview of
the aim of both proposals. This aim is considered common and termed
’full alias encapsulation’ in Noble et al. [52].

The Islands proposal aims to group objects into sets of dependent ob-
jects; each set is called an island. The objects that make up an island can
access each other without restrictions. Objects in one island cannot access
objects in another island. Sharing between two islands can only be done
through a bridge object. All parameters and results of a bridge object’s op-
erations must be read, unique or free. An interface can be annotated as: read
if it is required to be only readable and not assignable to a field; unique if
the object is required to have only one reference to it; or free if the object is
not required to have any references.

In the Balloons proposal, data types are classified into balloon types
and non-balloon types. Non-balloon types are for full freedom of sharing.
Balloons cannot be accessed via state variables of any external object. Any
object pointed to by a balloon is part of the balloon and hence has the same
aliasing restrictions as the balloon. All objects inside a balloon have access
to each other. Any instance of a balloon can be referred to by one and only
one external reference; incoming references are not allowed. Copy assign-
ments are then relied on to pass references from one balloon to another,
which is expensive.

The Islands proposal relies mainly on annotations. The Balloons pro-
posal uses a single class annotation to binary classify data types into bal-
loon and non-balloon types; program analysis is then relied on to verify
statically the sharing properties of the objects. In both proposals, fully
encapsulated aggregate objects cannot share their contents between each
other. To minimize restrictions, both proposals make a distinction between
static aliasing (local state variables involved) and dynamic aliasing (stack

2.2. ALIAS CONTROL 15

based variables involved). Islands allow dynamic aliases to the internal
representation but they are restricted to be read only; this form of dy-
namic aliasing does not break encapsulation. Balloons can be Opaque or
Transparent. Opaque balloons do not allow any form of dynamic aliasing.
Transparent balloons do not enforce any restrictions on dynamic aliasing;
that is, dynamic aliases are allowed to the internal representation; this
form of dynamic aliasing breaks encapsulation and exposes the internal
representation.

2.2.5 Confined Types

The Confined Types proposal [64] is another static technique to enforce the
protection boundaries required to prevent undesirable aliasing. Confine-
ment is a package-level encapsulation scheme proposed for Java. In this
proposal, any instance of a class annotated with the keyword confined

cannot be referenced outside the package in which this annotated class is
declared. The same applies to instances of any subclasses of the confined
class.

This proposal also introduces the notion of anonymous methods to relax
confines to the extent that allows flexible code reuse. Any method anno-
tated with the keyword anon will propagate the identity of the current
instance only and solely to anonymous methods; no aliases to the current
instance can originate from within such a method. The flexibility provided
by introducing anonymous methods is that confined classes are allowed
to inherit methods from unconfined superclasses. A confined class should
only call anonymous methods and non-native methods defined in other
confined classes. Anonymous methods are disallowed from fetching other
objects unless through variable this; but cannot assign this to a variable
or method argument; and cannot return this.

16 CHAPTER 2. BACKGROUND

2.2.6 Flexible Alias Protection

Flexible alias protection [52] is another conceptual model for enforcing
alias encapsulation and managing the effects of aliasing. Rather than rec-
ognizing aliasing as a problem in itself, the visibility of an object’s state
changes via aliases is the premise on which this model is founded. This
model distinguishes between two sets of objects: private unexposed mu-
table representation objects, and public shareable immutable argument
objects. That is, an aggregate’s representation objects can be read and
write, but should not be visible from the outside of the aggregate; and
the aggregate’s argument objects can be aliased without restrictions, but
the aggregate should not depend on their mutable state. This model in-
troduces aliasing mode declarations to annotate static types, and aliasing
mode checking to statically verify the aliasing properties of an object’s im-
plementation. Aliasing modes are incorporated into a language’s type ex-
pressions, resulting in moded type expressions. The proposed modes are:

rep This mode classifies an object as a private mutable representation
object that is restricted from being sent out of the object to which it belongs.

arg R This mode classifies an object as a public immutable argument
object. R is an optional role tag used to individualize respective roles.

free This mode classifies an object as an unaliased object.
val This mode classifies an object as an instance of a value type. It has

the same semantics as arg, but does not require a role.
var R This mode classifies an object as an aliased mutable object. It

has the same semantics as regular references in typical object oriented lan-
guages.

2.3. OBJECT OWNERSHIP 17

2.3 Object Ownership

In the light of the Flexible Alias Protection model [52], the pioneer model
for ownership types was introduced by Clarke et al. [21]. Any object
should be owned by only one owner object, and can only be accessed
through that owner object. The set of objects owned by the same owner is
named a context, since these objects have one sharing context [62]. Owner-
ship information is incorporated into type expressions, akin to the Flexible
Alias Protection. That is, ownership types are types annotated with context
declarations [21, 52, 62]. The ownership relationships between objects can
be thought of as a tree. All objects in a system must be brought together
into a single ownership tree [62]. This way, owned objects can be protected
from being accessed directly from the outside of the owner’s context. Any
object outside a context must go through the owner in order to have access
to the other objects inside the context.

Figure 2.4: Ownership Tree with Sharing Contexts

Consider the ownership tree, depicted in Fig. 2.4, object a owns objects
b and d, and hence the three of them form one sharing context. Objects
b and c form another context, and hence a and d cannot access c unless
through b. Consider the path from c to e, or from e to c, objects c and e

can access directly any object in that path as long as they do not penetrate
context boundaries. That is, c can access directly any object but not e, and
e can access directly any object but not c.

18 CHAPTER 2. BACKGROUND

The most researched two approaches to object ownership are: owners-
as-dominators [62] and owners-as-modifiers [25].

The owners-as-dominators approach stresses that the dominator object
(the owner) is the only entry point for accessing the objects it owns. No one
single reference can bypass the dominator. An object can only be referenced
by references that do pass through its owner. In other words, the path
from the root to the private internal representation of any object must pass
through the given object.

The owners-as-modifiers approach implies that an object can only be
modified by references that do pass through the owner of that object, but
it can be referenced by any arbitrary object with no restrictions. That is,
read-only references are allowed to bypass the owner, but cannot update
fields or invoke methods.

In the next two subsections, two object ownership models will be de-
scribed. The first model, deep ownership [19, 21], adopts the owners-as-
dominators approach. The second model, universes [45, 46], adopts the
owners-as-modifiers approach.

2.3.1 Deep Ownership

Paradigms that adopt a fully nested scheme of the owners-as-dominators
approach are called deep ownership types [19, 21]. The notion of object
contexts accommodates the capability to organize the heap into nested
constructs. Consider the ownership tree, depicted in Fig. 2.5, we say that
the root context is World. That is, the root context is the set of objects
owned by world. Objects which are owned by World are accessible to
all objects. The solid arrows between objects represent the ownership re-
lationships. The boxes represent the context boundaries. The dashed ar-
rows represent the references that should stop by the boundaries and pass
through the right entry point (i.e., the owner).

2.3. OBJECT OWNERSHIP 19

Still with Fig. 2.5, the ownership relationships can be seen as a tree
rooted at World. An owner is another object or World. Every object
should have an owner. An object can have only one owner. The owner
cannot be changed during the lifespan of the object. Object a owns b but
does not own c. An object can access the objects it owns. An object can
access its ancestors and objects they own. That is, any object can access
any object owned by World. Henceforth, the notion of containment [21]
(inside-outside relationships) can be used as we describe the relationships
between objects. That is, if we say that b and d are inside a, and c is in-
side b, then this means that b and d are owned by a or in a’s context, and
c is owned by b or in b’s context. Furthermore, we say that b and d are
siblings.

Figure 2.5: Deep Ownership Relationships Between Objects.

The earliest ownership type system [21] introduces ownership types
as static types annotated with context declarations. The rep annotation
denotes an object as owned by this; that is, a rep object is part of the
owner’s private representation. The Owner annotation denotes an object
as having the same owner as this; that is, a sibling object to the enclosing
this. The World annotation denotes the absence of an identified owner;

20 CHAPTER 2. BACKGROUND

that is, objects owned by World can own but cannot be owned; visible to,
and accessable by, all objects but not dominated.

This model does not permit a container’s iterator to access the con-
tainer’s internal representation. This problem is tackled by permitting in-
ner classes [9] or local variables [17] to have special privileges, or by way
of using unique incoming references [19]. The idea is that deep ownership
imposes an equal treatment of inner classes and their enclosing classes.
That is, inner classes’ instances cannot share the internal representation
of their enclosing object. Boyapati et al. [9] considered this restriction too
strict to support constructs like iterators; and thus, argue that the appro-
priate way to relax the owners-as-dominators property is to permit inner
classes’ instances and their enclosing object to have a common represen-
tation. A comprehensive study on the use of ownership types in design
patterns [50] concludes that permitting an inner class to have privileged
access to its enclosing class’s internal representation has not shown very
useful apart from the iterator pattern; and that even with highly collabo-
rating classes, the use of inner classes is undue in most situations.

Since an iterator needs to be able to access the elements stored in its re-
spective aggregate, the typical approach taken for implementing iterators
is to declare them as inner classes. Consider the diagram in Fig.2.6, deep
ownership requires an aggregate object to own its private representation.
That is, the representation is directly inside the owner context. Since an
iterator is usually instantiated independently of its enclosing aggregate,
then it should not be able to access the aggregate’s representation without
the aggregate’s knowledge. That is, an iterator should pass through its
aggregate’s operations in order to access the private representation. The
proposed ad hoc relaxation, by Boyapati et al. [9], critically violates the
representation containment invariance [21] necessary for deep ownership
types, and breaks encapsulation, since incoming aliases are allowed to in-
stances of iterators that share the internal representation of their enclosing
aggregates.

2.3. OBJECT OWNERSHIP 21

Figure 2.6: References must not cross a context boundary from the outside
to the inside

2.3.2 Universes

Müller and Poetzsch-Heffter [45, 46] introduced Universes with the follow-
ing aspirations: Universes needs to (1) have simple semantics, (2) be easy
to apply, (3) be statically checkable (4) guarantee an invariant that is strong
enough for modular reasoning, and (5) be flexible enough for many useful
programming patterns. The Universe type system is an ownership type
system to enforce the owner-as-modifier approach that has been inspired
by Flexible Alias Protection. The original syntax of Universes, which is dif-
ferent from the current one, used a type combinator, higher-order function,
to construct types. Later in 2001, Müller and Poetzsch-Heffter [47] used
three ownership modifiers peer, rep, and readonly (changed later to
be any), to extend all type declarations with one of these modifiers. The
modifier peer denotes an object as having the same owner as this; rep
denotes an object as owned by this; and readonly denotes an object
as capable of having any owner, but readonly references cannot update
fields or invoke methods. The type combinator function takes two of these
modifiers (both arguments can be the same modifier) and returns the re-
sulting ownership modifier to determine the type of field accesses and
method call parameters and results. That is, the ownership type of x.f
is determined, according to the combination to be made inside the type

22 CHAPTER 2. BACKGROUND

combinator, by passing the ownership modifiers of both x and f as refer-
ence parameters. The table in Fig. 2.7 is used to determine the resulting
modifier. The table uses modifier this, which cannot be supplied by a
user, as the modifier of receiver this.

Figure 2.7: Universe Types Modifier Combinator.

The Universe type system has achieved gradual development in the
past years. The most notable ones: are the integration into the Java Mod-
eling Language (JML) [25], and another type system called Generic Uni-
verse Types (GUT) [23] to integrate the owner-as-modifier property into
generic types in mainstream object-oriented languages; GUT was also im-
plemented in JML.

The use of read-only references, that can have any owner, makes some
programming idioms more expressible with this model than with the deep
ownership model. Nevertheless, deep ownership and universes have been
evaluated [50] for compatibility with object-oriented design patterns, and
have not proved sufficient. The evaluation suggests that many design pat-
terns require moving particular objects, after they have been initialised,
from their originating contexts to some other contexts.

2.3.3 External Uniqueness

In conjunction with deep ownership types, a relaxed form of uniqueness
called External Uniqueness [19] validates the use of incoming references
only if they are constrained to be unique.

2.3. OBJECT OWNERSHIP 23

As explained in subsection 2.2.3, uniqueness is not practical for aggre-
gate objects, since a unique reference cannot refer to the internally aliased
components. Clarke and Wrigstad [19] propose that a component object
can have only one alias from the outside of its aggregate, while still being
aliased freely from the inside of the aggregate. That is, internal aliases to
an externally unique object cannot be observed by external clients.

In conjunction with deep ownership, this proposal suggests that an ex-
ternally unique object can be safely transferred from one context to another
sibling context, as depicted in Fig. 2.8. Clarke and Wrigstad argue that this
form of ownership transfer is sufficient for concurrent object-oriented pro-
gramming.

Figure 2.8: Ownership Transfer of an Externally Unique Object

2.3.4 Ownership Generic Java (OGJ)

As a combined mechanism to facilitate deep ownership types in conjunc-
tion with parametric polymorphism, Potanin et.al. [59, 60, 61] introduced
Generic Ownership along with an extended version of Java, named Owner-
ship Generic Java (OGJ). This combination provides the ability to constrain
aliasing and detect errors statically, while neither demands an added syn-
tactic extension nor imposes overheads at runtime. This is because OGJ

24 CHAPTER 2. BACKGROUND

treats ownership information as supplementary generic types. That is,
Java Generics are extended by the ability to hold, and interpret, owner-
ship information.

In OGJ, any class declaration needs to allocate at least one type param-
eter to receive context declarations as type arguments. Usually, this type
parameter is bounded by World, in which case it is dubbed owner parame-
ter. A possible declaration would read as:

class Foo<Owner extends World> {...}

If an instantiation such as new Bar<Owner>() is created within Foo’s
class body, then Foo and Bar are siblings owned by the same owner. OGJ
uses the last type parameter to denote an object’s owner. For example,
instantiating a List container can read as:

List<String,Owner> l = new ArrayList<String,Owner>();

OGJ introduced three ownership domains [3], namely World, This,
and Package. Objects owned by World are global objects that can be
freely aliased by any arbitrary object. Objects owned by This can only be
aliased within the class in which they have been created; they can only be
accessed through this as a receiver. That is, owner argument This de-
notes an object as owned by an instance of the enclosing class. With regard
to the ownership tree which is depicted in Fig. 2.5, there seems no need for
more context declarations in order to maintain deep ownership types. We
have global objects, private hidden objects, and sibling objects which are
owner parameterised by the same owner variable of the enclosing class.
In order to make some programming idioms more expressible, the own-
ership domain Package is introduced in OGJ so that objects owned by
Package can only be aliased local to the package in which they have been
created, with no restrictions on how they can be aliased within the pack-
age. This follows from the Confined Types proposal [64].

2.3. OBJECT OWNERSHIP 25

2.3.5 Wildcards and Generic Ownership

WOGJ [13] and Jo∃ [12] applies the theory on existential types [56] to
generic ownership. Both systems provide theoretical foundations for em-
ploying Java wildcards in favour of ownership types. The fundamental
goal of both systems is to eliminate the special treatment of the This con-
text in parametric ownership type systems, so that the heap structure be-
comes independent of the encapsulation system, and thus there is no en-
forcement of the owners-as-dominators property. Jo∃deep makes this en-
forcement optional. The above mentioned systems are proved to be theo-
retically sound, with no practical language design or implementation.

2.3.6 Generic Universe Types (GUT)

As is the case with OGJ, Dietl et.al. [23] combined Universe Types with
type genericity. GUT is integrated into JML. GUT enforces the owner-
as-modifier approach. As mentioned above, this approach provides for
an object to only be modified through its owner, and does not limit the
freedom to alias. What applies to the original universe types applies to
the generic universe types: the ownership information is object-specific,
not class-specific; it provides static control; and annotation overheads.

As is the case with the universe type system, the type combinator func-
tion is relied on. The idea is that the three ownership modifiers peer, rep,
and any were remodelled to couple type arguments. A possible declara-
tion would be as:

rep Iter<any Node<rep ID, any Data>> i;

That is, the ownership information is not type parameters, but instead is
associated with type arguments as well as with type instances (parameter-
ized and non-parameterized).

26 CHAPTER 2. BACKGROUND

Chapter 3

OGJ+ Language

This chapter explains the main concepts of OGJ+, our extension of
Java 6 with support for deep ownership types. OGJ+ provides support
for generic ownership types, and addresses all of the remaining open is-
sues that were not addressed in OGJ [57, 59, 60, 61]. That is, OGJ+ treats
arrays, inner classes, static contexts, wildcard types, clone, equals, enum
types and exception handling. We allocate the next chapter to these open
issues.

The previous version of OGJ is an extension of Java 5 and provides
ownership support for the basic features such as classes and subtyping,
field access and assignment, and methods. OGJ+ treats these basic fea-
tures in a broader perspective, so that interfaces, constructors, method
parameters, return types, method invocations and casts can conform to
our treatment of the other features. Ideas will be clarified gradually as
we progress with this chapter and the next chapter. Altogether, OGJ+ is
ownership for all of Java.

OGJ+ provides a very restrictive form of encapsulation. The basis of
this is a strict adherence to the rules of the deep ownership encapsula-
tion model which is too strict to support some programming idioms and
design patterns. The resulting language is rather verbose. Existing Java
programs might require significant restructuring in order to comply with
OGJ+.

27

28 CHAPTER 3. OGJ+ LANGUAGE

3.1 An OGJ+ Example

Although the very basic concepts of generic ownership are provided in
the previous chapter, we will re-explain them using the example in Fig.
3.1, which is an OGJ+ compliant version of the example in Fig. 2.2.

An OGJ+ program may involve only two ownership domains: World
and This. The first type parameter in a generic parameter list is always
reserved to denote an object’s owner.

Class instances owned by World (see line 24, Fig. 3.1) are public ob-
jects, to which access is unrestricted and they are visible to all objects in
the ownership tree. That is, World-owned objects belong to the root con-
text.

Objects owned by This (see line 11) are private objects that need to
remain hidden from the other objects in the tree, except from their enclos-
ing objects. That is, This-owned objects belong to the current object, and
can only be referred to by this. The use of owner This is exemplified by
class Widget. Widget objects own their Point objects as they form the
internal representation. This dominance is represented by owner This of
Widget’s field wPos, which refers to the widget’s position.

Finally, there are objects that need to have the same owner as the this
object. A referenced object can share the same owner as the current object
in order to share the same context. In line 17, the local variable pos is
owner parameterised by Owner, which is the same owner variable used
to specify the owner of the enclosing class Widget (see line 10). That is,
any pos object will always be owned by the same owner object as the
enclosing Widget instance.

The class headers at lines 1, 10 and 21 illustrate how class owners can
be defined. Since Owner is bounded by World, a class can be instantiated
as (1) a public object owned by World (see line 24); (2) a private object
owned by This (see line 11), since This is a subtype of World; or (3) a
sibling object owned by Owner (see lines 13 & 17).

3.1. AN OGJ+ EXAMPLE 29

1 class Point<Owner extends World> extends OwnedObject<Owner>{

2 public int x;

3 public int y;

4
5 public Point(int x, int y) {

6 this.x = x;

7 this.y = y;

8 }

9 }

10 class Widget<Owner extends World> extends OwnedObject<Owner>{

11 Point<This> wPos;

12
13 public void setPosition(Point<Owner> pos) {

14 this.wPos = new Point<This>(pos.x, pos.y);

15 }

16 public Point<Owner> getPosition() {

17 Point<Owner> pos = new Point<Owner>(this.wPos.x, this.wPos.y);

18 return pos;

19 }

20 }

21 public class AccessWidget<Owner extends World> extends OwnedObject<Owner>{

22 static { begin(); }

23 public static void main(OwnedArray<World, OwnedString<World>> args){

24 Widget<World> w1= new Widget<World>(), w2= new Widget<World>();

25
26 Point<World> pos = new Point<World>(50,50);

27 w1.setPosition(pos);

28 w2.setPosition(w1.getPosition());

29 System.out.println(w2.getPosition().x+", "+w2.getPosition().y);

30
31 pos.x = pos.y = 99;

32 w1.setPosition(pos);

33 System.out.println(w2.getPosition().x+", "+w2.getPosition().y);

34 }

35 }

36 ==

37 run:

38 50, 50

39 50, 50

Figure 3.1: A generic ownership compliant version of Fig. 2.2.

30 CHAPTER 3. OGJ+ LANGUAGE

Methods, whose formal parameter types and/or return types are own-
ed by This, can also only be invoked within the current object (i.e., as ac-
cessible via this) because owner This is instance-specific and is not com-
patible with owner This in another class. As a result, we could not have
Point<This> as a parameter type and return type in setPosition()

and getPosition(), respectively, since invoking these methods in an-
other class, the public class (line 21), is no more possible than through
owners other than This. Since Widget’s field wPos is owned by This,
it is not possible within setPosition() to assign the Owner-owned pa-
rameter Pos to this.wPos; owners are incompatible. The same applies
to getPosition(), it is not possible to return this.wPos. In this ex-
ample, the chosen solution is to use value semantics instead of reference
semantics; that is, getPosition() clones the return value, and set-

Position() clones the actual parameter’s value. Value semantics are
not inevitable in OGJ+, as will be discussed later in this chapter.

3.2 Reference Types

There are two kinds of reference types: type variables and nonvariable
types. A type variable in OGJ+ needs to have an explicitly owned bound,
as illustrated by type variable T in Fig. 3.2; the example shows a possible
formation of a class header in OGJ+. As illustrated by the example, T
is bounded by OwnedObject, which is the root of the class hierarchy in
OGJ+, and is owner parameterised by the owner variable TOwner.

1 class Foo<Owner extends World, T extends OwnedObject<TOwner>, TOwner extends

World> extends OwnedObject<Owner> {

2 Foo<This, OwnedString<TOwner>, TOwner> f;

3 ...

4 }

Figure 3.2: A possible OGJ+ class header.

3.2. REFERENCE TYPES 31

A nonvariable type in OGJ+ involves a class name, owner parameter,
and optional type arguments. Type Foo in line 2, Fig. 3.2, is an example of
a nonvariable type; Foo involves the type argument OwnedString plus
two owners, one as the first parameter and the other as the last param-
eter in the generic parameter list. OGJ+ uses the first type parameter to
denote an object’s owner. Such an owner is conventionally known as the
distinguished owner, and is mandatory since every object should be owned.
The distinguished owner must be preserved over subtyping, as will be de-
scribed in subsection 3.3.1. Consider the header of class Foo, there are two
different owner variables defined, Owner and TOwner. Owner is Foo’s
distinguished owner, and any owner argument in place of Owner will de-
note the current Foo object’s owner. As for TOwner, this is what we call a
normal owner parameter. Normal owners can occur, more than once, any-
where in the generic parameter list. In this example, we use TOwner to
constrain the owner of the generic type argument of T.

There are times when owner parameters are not just required to define
distinguished owners or to constrain the owners of type parameters, but
for example to infer the objects’ owners. Consider the example in Fig. 3.3,
Foo1 owns f2 as represented by owner This in line 2. Java will not al-
low the method invocation, in line 4, if any of the owners World, This,
Owner2 occurs in place of MOwner (line 6). Java does not allow this be-
cause the type parameter (or owner parameter in OGJ+’s parlance) should
match the owner of this, which is Owner1. For methods in Java to facil-

1 class Foo1<Owner1 extends World> extends OwnedObject<Owner1>{

2 Foo2<This> f2;

3 void meth1(){

4 f2.meth2(this); } }

5 class Foo2<Owner2 extends World> extends OwnedObject<Owner2>{

6 <MOwner extends World> void meth2(Foo1<MOwner> f1) { ... }

7 }

Figure 3.3: Using a naked owner to infer ownership information.

32 CHAPTER 3. OGJ+ LANGUAGE

itate type argument inference [28], they had to be generified. That is, the
generic parametricity of method meth2(), in line 6, allows the method
to get the correct owner of this as a result of the invocation in line 4.
In comparison to normal owners, the owner parameter in this method’s
signature does not constrain a type parameter’s owner. Such an owner is
what we call a naked owner parameter.

Finally, OGJ+ provides the possibility to define a placeholder corre-
sponding to a yet to be defined representation context, through the use of
wildcards. The example in Fig. 3.4 shows the header of class OwnedArray,
which we use in OGJ+ to wrap array objects, as will be explained in sub-
section 4.1. The formal type parameter T is bounded by OwnedObject,
but the owner (representation context) is not explicitly provided as we use
a wildcard in place of the actual owner parameter. As will be explained in
subsection 3.6, a wildcard owner parameter must be bounded by World.
Line 23 in Fig. 3.1 shows how type OwnedArray involves the type argu-
ment OwnedString as being located in the root context.

1 public final class OwnedArray<Owner extends World, T extends OwnedObject<?

extends World>> extends OwnedObject<Owner> implements java.io.Serializable {

2 ...

3 }

Figure 3.4: OwnedArray class header.

3.3 Class Hierarchy

In deep ownership, the root of the class hierarchy can be envisioned as a
context-specific root. That is, the root of one context is not the same as the
root of another, since the heap is transformed into separate nested parts,
where Object cannot jump arbitrarily from one to another. Strictly speak-
ing, each context should be able to have its own Object, which means
that Object should also be type-parameterised by an owner parameter,

3.3. CLASS HIERARCHY 33

as is the case with every other class. To facilitate this, OGJ+ provides a
new class called OwnedObject<Owner> to serve as the root class in its
respective context; and thus, subtyping Object is no longer permitted.
Accordingly, a typical OGJ+ class declaration would be as in line 1 of Fig.
3.5.

3.3.1 Subtyping

Context information must be preserved over subtyping [18]. That is, we
need to map the owner of the subclass to the owner of the superclass, as
appears in lines 1 and 7, Fig. 3.5. This is enforced by the type checker;
otherwise, objects can overstep context boundaries using subtyping. Con-
sider the class declaration in line 3, Fig. 3.5, where the owner of Bar is not
mapped to the owner of Foo. As a consequence of this class declaration,
Java allows the assignment statement in line 10, where a public object from
the root context is able to refer to a private object that is supposed to be
hidden in a nested context.

1 class Foo<Owner extends World> extends OwnedObject<Owner> { ... }

2
3 class Bar<Owner extends World> extends Foo<World>{ // Owner is not preserved

4 // over subtyping

5 ...

6 }

7 class Break<Owner extends World> extends OwnedObject<Owner>{

8
9 Bar<This> b;

10 Foo<World> f = b; // Allowed by Java

11 }

Figure 3.5: Context information must be preserved.

By preserving ownership over subtyping, the nesting among contexts
is preserved and objects cannot overstep the boundary limitations, im-
posed by the dominators property, using subtyping. Assignment oper-
ations should always involve compatible owners. An object’s value is

34 CHAPTER 3. OGJ+ LANGUAGE

assignable to a reference variable of a supertype of the given object, only
if they share the same ownership context. Since each ownership context
must have its own class hierarchy, the context information that is propa-
gated amongst the objects contained in one context is not compatible in
another context. That is, two instances of the same type, or supertype, are
considered incompatible (not assignable to each other) if they have differ-
ent owners.

3.3.2 Interfaces

Now that extending Object is prohibited, and every single object is en-
forced to be owned and to only subtype owned objects; we still have
interfaces: Java expects every interface to only extend another interface.
To overcome this, an interface called IOwnedObject<Owner> is imple-
mented so that an interface can have its root originated from within its re-
spective context. Similar to class declarations, an interface must preserve
its owner over subtyping.

Any class in OGJ+ must be a descendant of OwnedObject; and
any interface must be a descendant of IOwnedObject. By design,
OwnedObject implements IOwnedObject, and preserves its own
owner over this subtyping. Since the owner of a class must be pre-
served over subtyping, interfaces are safe from being inherited (using
implements) with a different owner than that of the given class.

3.4. NESTING SCHEME 35

3.4 Nesting Scheme

As explained in chapter 2, deep ownership is a fully nested scheme of
the owners-as-dominators approach to encapsulation. The owner nesting
type checking can be concisely explained as going over every individual
owner parameter involved in any generic parameter list to verify if it is the
same or outside the distinguished owner of the defining object. For do-
main parameters, this means that This is inside everything, and World is
outside everything. That is, if the distinguished owner is This, then there
will be no restrictions placed on the other owner parameters involved; if
the distinguished owner is World, then all of the other owner parameters
should be World. For owner variables, the relationships between them
will be clarified as we describe type checking against variable definitions
in subsection 3.4.2. Owner nesting needs to be verified for every class,
method and field/variable declaration. The rest of this subsection de-
scribes how the inside-outside relationships can be maintained, and what
happens if these relationships are broken.

3.4.1 Class Declaration

The determination of nesting relationships amongst the owner parameters
in a class header can be seen as if it is amongst the bounds of these owner
parameters; and if the owner bound is itself an owner variable, then the
compiler will go find its bound, and so on. As in most cases, if the distin-
guished owner bound is World, then every other bound should be World.

3.4.2 Field/Variable Declaration

All kinds of variables (namely fields, local variables and parameters) are
treated the same, when it comes to owner nesting verification within the
types of the variables. OGJ+ assumes that This is inside everything,
World is outside everything, and the distinguished owner variable of the

36 CHAPTER 3. OGJ+ LANGUAGE

enclosing class is inside every other owner variable involved in the header
of that enclosing class. This means that the field declaration in line 4 of
Fig. 3.6 is illegal, since Owner1 is inside Owner2. If this is not illegal, then
the instantiation in line 13 will result in InnerFoo<World, This> f;

which breaks the nesting rule, and exposes the field to the outside world,
while the defining object (i.e., the current Foo) is supposed to be hidden,
and be able to hide its interior as need be.

1 class Foo<Owner1 extends World, Owner2 extends World>

2 extends OwnedObject<Owner1>{

3
4 InnerFoo<Owner2,Owner1> f; //Illegal

5
6 public <OM extends World> void method(OwnedObject<OM> om) {

7 ...

8 }

9
10 class InnerFoo<O extends World, O1 extends World>

11 extends OwnedObject<O>{

12
13 Foo<This,World> t = new Foo<This,World>();

14 Foo<O,O1> t1 = new Foo<O,O1>();

15 Foo<World,World> t2 = new Foo<World,World>();

16
17 public void m() {

18 t1.<This>method(t); // ERROR t1’s owner(O) is

19 // outside t’s owner (This)

20 t2.<O>method(t1); // ERROR t2’s owner(World) is

21 // outside t1’s owner (O)

22 }

23 }

24 }

Figure 3.6: Illegal Owner Nesting.

3.4.3 Method Declaration

In certain cases, such as the one described in subsection 3.2, a method
declaration might need to be owner parameterised with a supplementary

3.4. NESTING SCHEME 37

naked owner parameter to infer the correct owner when the method is be-
ing invoked in different ownership contexts. In such a case, this owner
parameter will need to be checked for owner nesting against the distin-
guished owner of the enclosing class. Correspondingly, when it comes to
method invocation, the owner of the method receiver must be inside ev-
ery actual owner parameter used as a distinguished owner for any of the
method’s arguments. Consider the erroneous method invocations in lines
18 and 20 of Fig. 3.6. The relationship between the objects involved in the
first method invocation is depicted in Fig. 3.7. The owner parameter O
is declared, in line 10, as the owner of InnerFoo. The method receiver
t1 is declared, in line 14, as a sibling to InnerFoo; which means that
InnerFoo and t1 are located in O’s ownership context. The method ar-
gument t is declared, in line 13, as owned by InnerFoo; which means
that t is located in InnerFoo’s nesting context. Since t1 is located out-
side InnerFoo’s context, t1 in not allowed to cross InnerFoo’s context
boundary and access t. That is why we have to ensure that the owner of
the receiver is inside the owner of the argument. The same idea applies to
the method invocation in line 20; t2 is owned by World which is outside
everything; that is, the owner of the argument cannot be anything other
than World.

Figure 3.7: Context boundaries should not be broken through method in-
vocations.

38 CHAPTER 3. OGJ+ LANGUAGE

3.5 Instantiation and Casting

Ownership information should not be lost while instantiating a new object
or due to casting to a particular type. Type erasure is the process by which
the Java compiler removes all type parametricity information, parameters
as well as arguments, by replacing all type variables with only the class
names of their bounds, or with Object if a type variable is not bounded.
On that account, programmers are allowed to drop the actual type param-
eters from parameterised types as need be. A parameterised type used
without an accompanying type argument is conventionally known a raw
type. For OGJ+ to ensure that ownership information cannot be lost, raw
types are forbidden in all respects. Consider the different kinds of erro-
neous statements in Fig. 3.8. In addition to the prevention of casting to
raw types, and Object, casts such as the ones shown in lines 9 and 10
should not be allowed as they create a sharable reference to a private ob-
ject, in the first case; and a public reference to a within-context sharable
object, in the second case. That is, cast ownership information should be
the same as the instance ownership information.

1 class Foo<Owner extends World> extends OwnedObject<Owner> {

2
3 Foo<Owner> f = new Foo<Owner>();

4 Foo<This> ff = new Foo<This>();

5 Foo<Owner> f0 = new Foo(); //ERROR: f0 initialized ownerless

6 Foo f1 = f; //ERROR: Raw Type

7 Object o1 = f; //ERROR: Ownership information erased

8 Foo<This> f2 = (Foo)f; //ERROR: Cast to raw type

9 Foo<Owner> f3 = (Foo<Owner>)ff; //ERROR: ff loses privacy

10 Foo<World> f4 = (Foo<World>)f; //ERROR: f loses context information

11 }

Figure 3.8: Preserving Ownership Information

Upcasting happens implicitly whenever a reference to a subtype is as-
signed to a supertype reference, and the supertype might not involve the
type parameters that its subtypes might involve, as illustrated in lines 3

3.5. INSTANTIATION AND CASTING 39

and 9, Fig . 3.9. Downcasting the supertype reference as in line 10 is al-
lowed by Java, but will result in f2 referring to the same object as f1 with
different ownership information, since the actual type parameter Foo1 of
f2 has different ownership information than that of f1’s Foo1. OGJ+ pro-
hibits the kind of downcast in line 10, but unfortunately prohibits also the
downcast in line 11, since it does not provide a mechanism for preserving
the ownership information of runtime downcasts [8]. Nevertheless, OGJ+

mitigates this restriction through the use of wildcard owner parameters,
as illustrated in lines 6 and 12. The safety of utilising the wildcard feature
of Java generics will be described in detail in the next section.

1 public class Foo1<Owner extends World> extends OwnedObject<Owner> {

2
3 Foo2<This, Foo1<Owner>> f1 = new Foo2<This, Foo1<Owner>>();

4 Foo2<This, Foo1<World>> f2 = new Foo2<This, Foo1<World>>();

5
6 Foo2<This, ? extends Foo1<? extends World>> f3 = new Foo2<This, Foo1<This>>();

7
8 public void meth() {

9 OwnedObject<This> o1 = f1;

10 f2 = (Foo2<This, Foo1<World>>) o1; // ERROR

11 f1 = (Foo2<This, Foo1<Owner>>) o1; // ERROR

12 f3 = (Foo2<This, Foo1<? extends World>>) o1; // OK

13 }

14 }

15
16 class Foo2<Owner extends World, T extends OwnedObject<? extends World>>

17 extends OwnedObject<Owner> { ... }

Figure 3.9: Preserving Ownership Information against Up/DownCasting

The idea of using wildcards to synthesise owner parameters [15], when
downcasting from one type to another, while the latter has ownership in-
formation that the former has not, takes its root from ”Existential Down-
casting” proposed by Wrigstad and Clarke [68]. The authors simplify the
idea as ”if a Java-style downcast (disregarding ownership) of an object to some
class c succeeds, then we could infer the owner parameters necessary to form the
new type from c’s class header. We call the inferred owners existential owners, and

40 CHAPTER 3. OGJ+ LANGUAGE

types that use them existential types”. Wrigstad and Clarke built their case
based on the Java equals idiom, and argue that it is not sufficient for the
overriding equals() operations to keep track of the owners at run-time
by extending each class by a field for each owner the class uses [8]. The
equals idiom will be described in section 4.5.

3.6 Wildcard Types

Generic types should be invariant in sound type systems; therefore,
Java does not accommodate a built-in conversion from, for exam-
ple, List<Manager> to List<Employee> based on the datum that
Manager is a subtype of Employee. That is, there should be no de-
pendency, or subtype covariance, between two objects generated from a
single generic class; otherwise, employees who are not managers might
be added to List<Manager>. As a consequence, it is not possible to
write a reusable subroutine that can list the different categories of employ-
ees by parameterising the subroutine with List<Employee>, or even
List<Object>, because Java generics are not associated with a built-
in subtype covariance. Nevertheless, to attain the flexibility required for
writing reusable software, Java facilitates a programmer-defined covariant
subtyping through wildcard types [28].

A wildcard type is a generic type that uses ? as a type argument,
for example List<?>. Wildcard types are carefully integrated with Java
generics to provide as safe as possible form of covariant subtyping. For
example, Java does not allow any add operations to a list object of
type List<?>, since the element type of the list object is unknown,
and thus the creation of new element objects is disallowed. In contrast,
retrieve operations can face less restriction in making use of the result,
since a result type is, in the end, of type Object. Nevertheless, a wild-
card type can be further constrained as List<? extends Employee>,
which means that the unknown element type must be a subtype of

3.6. WILDCARD TYPES 41

Employee; and we say that Employee is the upper bound of the wildcard.
An unbounded wildcard type, such as List<?>, has the same inter-
pretation as List<? extends Object>. It is also possible to define
a lower bound for the wildcard using the keyword super; for example,
List<? super Trainee>, which means that the unknown element
type must be a supertype of Trainee. Furthermore, the bounding
types can be parameterised types; and here is exactly how OGJ+ can
support wildcard types, since all reference types must be owner param-
eterised in OGJ+.

OGJ+ provides the same programmer-defined covariant subtyping me-
chanism as Java. While Collection<?> is the supertype of all kinds of
Java collections, Collection<O,? extends OwnedObject<EO>,EO>

is a possible supertype of all kinds of collections located in the same
ownership context, where O is the Collection’s distinguished owner,
and EO is the owner of the unknown element type. The use of un-
bounded wildcard types in OGJ+ is not allowed, since Object is no
longer the root class; a wildcard should be bounded by ’OwnedObject’,
’IOwnedObject’, or a class that is subtyping any of them.

3.6.1 Ownership Context Covariance

OGJ+ also supports ownership context covariance. That is, an object can
belong to an unknown ownership context for more flexible code reuse. A
wildcard can occur in place of an actual owner parameter, but can only be
bounded by World. Accordingly, the supertype of all kinds of collections
in a yet to be defined context is as follows:

Collection<? extends World,

? extends OwnedObject<? extends World>>

If a distinguished owner is a wildcard, then any other owner ar-
gument must be either a wildcard or World. This is because if we
have, for example, a field, local variable, or method parameter of type

42 CHAPTER 3. OGJ+ LANGUAGE

List<? extends World,...>, we do not know which owner would
replace the wildcard. The owner might be World, which means that every
other owner must be World in order to preserve the nesting relationships
between owners—the distinguished owner must be inside every other
owner, and World is outside everything. So, having a wildcard as the dis-
tinguished owner necessitates that all of the other actual owner parame-
ters be made nesting World via a wildcard, or World as infrequently need
be. Declaring an object, whose type is a wildcard owner parameterised, is
subject to owner nesting verification by treating every wildcard as World.
This way, it is possible to have a non-wildcard distinguished owner (e.g.,
World, This, or an owner variable), while wildcards can be used in place
of other owner arguments. Since every declared object (with wildcards
or without) is subject to owner nesting verification, the nesting scheme is
not to be violated. The example in Fig. 3.10 illustrates the use of wildcard
types in OGJ+. Method printList() is able to access list objects of
unknown contexts. list01 and list02 (declared in lines 16 and 21, re-
spectively) are objects located in different contexts. Passing list01 and
list02 to printList() (lines 26 and 27) is safe since the type check-
ing required for owner nesting verification is applied beforehand at the
declaration sites.

3.6. WILDCARD TYPES 43

1 public class TestCovariance<Owner extends World, O extends World>

2 extends OwnedObject<Owner> {

3
4 void printList(List<? extends World,

5 ? extends OwnedObject<? extends World>> list) {

6
7 Iterator<? extends World,

8 ? extends OwnedObject<? extends World>> i = list.iterator();

9
10 for (int j = 0; j < list.size(); j++) {

11 System.out.print(i.next()+" ");

12 }

13 }

14
15 void meth(){

16 List<Owner, OwnedString<O>> list01 =

17 new ArrayList<Owner, OwnedString<O>>();

18 list01.add(new OwnedString<O>("Abc"));

19 list01.add(new OwnedString<O>("Bcd"));

20
21 List<This, OwnedInteger<Owner>> list02 =

22 new ArrayList<This, OwnedInteger<Owner>>();

23 list02.add(new OwnedInteger<Owner>(123));

24 list02.add(new OwnedInteger<Owner>(234));

25
26 printList(list01);

27 printList(list02);

28 }

29
30 static { begin(); }

31 public static void main(OwnedArray<World, OwnedString<World>> args) {

32
33 TestCovariance<World, World> t = new TestCovariance<World, World>();

34 t.meth();

35 }

36 }

37 ===

38 run:

39 Abc Bcd 123 234

Figure 3.10: Generic Ownership Wildcard Types

44 CHAPTER 3. OGJ+ LANGUAGE

As is clarified in previous subsections, the meaning of owner This
relies on the presence of receiver this. Accordingly, invoking methods,
which involve owner This within their formal parameter types and/or
return types, must be via receiver this. Nevertheless, a method might in-
volve owner This at the time of invocation, not at the time of declaration,
if it is an owner parameterised method (line 2, Fig. 3.11). In such a case,
OGJ+ will not check if owner This is involved within the declaration sig-
nature or not, or if receiver this is involved in the invocation or not, but
owner nesting verification will be applied to ensure that the distinguished
owner of the receiver is inside every actual owner parameter used as a
distinguished owner for any of the method’s arguments. So, what if the
receiver’s owner is a wildcard (lines 12, 13 and 14, Fig. 3.11), or if the
method argument’s owner is a wildcard (lines 16, 17 and 18)? The only
legal method invocation, if the receiver’s owner is a wildcard, is that if the
method argument’s owner is World; and the only legal method invoca-
tion, if the method argument’s owner is a wildcard, is that if the receiver’s
owner is This. Otherwise, there is no guarantee that the unknown owner
will preserve the nesting relationships.

3.6.2 Readonly References

A wildcard owner makes a reference readonly, and hence cannot be ma-
nipulated by arbitrary external objects. Consider the example in Fig. 3.12,
class OwnsFoo owns f1 and has a getter method getFoo() that returns
f1. The return type of getFoo() is owner parameterised by a wildcard,
hence the method can be invoked as in line 14. The other option for this
method is to have a return type that is owned by This, in which case
the method invocation in line 14 will not be possible in OGJ+. Class
TryExpose has the wildcard-owned reference f2 that can be set to any
Foo object of any ownership context. The only way, in Java, to write
to f2.bar (line 17) is if OwnedString is raw, which cannot be the case

3.6. WILDCARD TYPES 45

1 class Foo<Owner extends World> extends OwnedObject<Owner>{

2 public <OwnerM extends World> void meth(OwnedObject<OwnerM> o) { ... }

3 }

4 class Test<Owner extends World> extends OwnedObject<Owner> {

5 Foo<? extends World> fWild = new Foo<This>();

6
7 Foo<This> fThis = new Foo<This>();

8 Foo<Owner> fOwner = new Foo<Owner>();

9 Foo<World> fWorld = new Foo<World>();

10
11 public void test03() {

12 fWild.meth(fThis); // ERROR an unknown might not be ’This’

13 fWild.meth(fOwner); // ERROR an unknown might not be inside ’Owner’

14 fWild.meth(fWorld); // OK an unknown is always inside World

15
16 fThis.meth(fWild); // OK ’This’ inside everything

17 fOwner.meth(fWild); // ERROR ’Owner’ cannot be inside an unknown

18 fWorld.meth(fWild); // ERROR ’World’ cannot be inside an unknown

19 } }

Figure 3.11: Restrictions on method invocations via wildcard owner pa-
rameterised receivers

1 class Foo<Owner extends World> extends OwnedObject<Owner> {

2 OwnedString<Owner> bar;

3 }

4 class OwnsFoo<Owner extends World> extends OwnedObject<Owner> {

5 Foo<This> f1 = new Foo<This>();

6
7 Foo<? extends World> getFoo() {

8 return f1;

9 }

10 }

11 class TryExpose<Owner extends World> extends OwnedObject<Owner>

12 {

13 OwnsFoo<Owner> of = new OwnsFoo<Owner>();

14 Foo<? extends World> f2 = of.getFoo();

15
16 public void meth(){

17 f2.bar = new OwnedString("No Raw Types .. No Writing");

18 }

19 }

Figure 3.12: Wildcard owned references are readonly

46 CHAPTER 3. OGJ+ LANGUAGE

with OGJ+; and that is why we worry about the ownership of a final im-
mutable object such as String, since all objects in OGJ+ must belong to
an ownership context. Classes in the Java standard library (e.g., Integer,
Number, String, etc.) have their corresponding classes in OGJ+ (e.g.,
OwnedInteger, OwnedNumber, OwnedString, etc.)

Chapter 4

From Java To OGJ+

4.1 Arrays

One of the fundamental issues that any attempt to extend Java with own-
ership types encounters is arrays. In relation to the use of owners-as-
dominators, prototype implementations of ownership type systems in the
context of Java are usually bound to remain JVM-compatible; very much
as is the case with Java generics, whose information is erased by the com-
piler after the type checking. SafeJava [7] could not support safe runtime
downcasts to array types, since there is no way, while working on the lan-
guage level, to provide an array object with an added owner field that can
be accepted by the JVM at runtime. This is also the case with Cameron &
Noble [15] in treating array objects just like primitive types that are not re-
quired to be owned, while providing only the array elements with generic
owners, whose presence does not violate the JVM.

In relation to the use of owners-as-modifiers, Universe type system
(UTS) [25] handles array objects by providing two ownership modifiers,
one for the array itself and the other for the array elements. UTS integrates
ownership information to Java Modeling Language (JML) [34, 35], which
facilitates runtime assertion checking or verification. Assertion checking
ensures that an object meets an assertion during program execution. That

47

48 CHAPTER 4. FROM JAVA TO OGJ+

is, an object can be assured to hold certain ownership information at run-
time.

The fact is that Java arrays are objects and therefore need to be owned.
Generic ownership is a mechanism for treating ownership information
as supplementary generic types, but there is no generic array creation in
Java. Java generics are a language-level mechanism, while Java arrays
are checked at the JVM-level. Accordingly, OGJ+ forbids the use of tra-
ditional Java arrays. We created the final wrapper object OwnedArray,
whose state is represented by a private one-dimensional array object.
OwnedArray bundles operations that can: return an element at a speci-
fied position, replace an element at a specified position, return the num-
ber of elements, resize the capacity, and copy a segment from the current
OwnedArray object to another destination object. OwnedArray can be
used within an OGJ+ program in the way illustrated by the example in
Fig. 4.1

4.1.1 The main() Method

Since the commonly practiced Java array types are no longer available in
OGJ+, the main() method is therefore adapted to capture the command
line arguments in an OwnedArray object. The code in Fig. 4.1, as well as
the code in Fig. 3.1, shows a runnable OGJ+ program. The static initial-
izer in line 18 is mandatory as it invokes the operation begin(), which is
responsible for translating the new main() method signature in line 19.
As illustrated, the OwnedArray object used takes an OwnedString object
as a type argument, and the actual owner parameters are all World, since
the main method is a static context; this is enforced by OGJ+ as will be
explained in subsection 4.3. Nevertheless, as the logic goes, the main()
method is an entry point for running a program whose ownership hierar-
chy should be rooted at World.

4.1. ARRAYS 49

1 public class ArrEx<Owner extends World> extends OwnedObject<Owner> {

2
3 OwnedArray<This, OwnedInteger<Owner>> arr;

4
5 void meth() {

6
7 arr = new OwnedArray<This, OwnedInteger<Owner>>(10);

8 OwnedInteger<Owner> i;

9
10 for (int j = 0; j < arr.length(); j++) {

11 i = new OwnedInteger<Owner>(j);

12 arr.set(j, i);

13 }

14 for (int j = 0; j < arr.length(); j++)

15 System.out.print(arr.get(j).value + " ");

16 }

17
18 static { begin(); }

19 public static void main(OwnedArray<World, OwnedString<World>> args) {

20
21 ArrEx<World> arr = new ArrEx<World>();

22 arr.meth();

23 }

24 }

25 ==

26 run:

27 0 1 2 3 4 5 6 7 8 9

Figure 4.1: The Use of OwnedArray

50 CHAPTER 4. FROM JAVA TO OGJ+

4.2 Inner Classes

Inner classes are non-static classes which are declared within other classes.
Nevertheless, this nesting is only a relationship between classes, not ob-
jects. Java facilitates such nesting so that an inner class’s instance can
maintain an implicit pointer to the object of its enclosing class. This way,
the state of the enclosing class is always available to its inner classes; al-
though, as instances, each has its own independent identity.

As explained in subsection 2.3.1, the owners-as-dominators approach
to encapsulation accommodates an equal treatment of inner classes and
their enclosing classes, since inner classes are usually instantiated inde-
pendently and therefore references from them to the outer class’s repre-
sentation are incoming references. That is, there should be no common
representation between nested classes. For OGJ+ to maintain deep ob-
ject ownership, the interpretation of owner This is class-specific, since
the meaning of owner This depends on the existence of receiver this.
That is, an inner class cannot access fields declared in an enclosing class as
owned by This. An inner class cannot also invoke methods defined in an
enclosing class with formal parameter types and/or return types owned
by This. See the erroneous statements in Fig. 4.2, where owner This in
the outer class is not considered compatible with owner This in the inner
class. Rationally, OGJ+ allows a readonly wildcard owner parameterised
reference to refer to objects in the outer class.

4.2. INNER CLASSES 51

1 public class TestInner<Owner extends World> extends OwnedObject<Owner> {

2
3 OwnedObject<This> fieldInTestInner;

4
5 OwnedObject<This> meth(OwnedObject<This> o) {

6 return o;

7 }

8
9 class Inner<IOwner extends World> extends OwnedObject<IOwner> {

10
11 OwnedObject<This> field01InInner = fieldInTestInner; //Error

12 OwnedObject<This> field02InInner = meth(field01InInner); //Error

13
14 void methInInner() {

15 field01InInner = fieldInTestInner; //Error

16 field01InInner = TestInner.this.fieldInTestInner; //Error

17 TestInner.this.fieldInTestInner = field01InInner; //Error

18
19 meth(field01InInner); //Error

20 TestInner.this.meth(field01InInner); //Error

21
22 field02InInner = meth(fieldInTestInner); //Error

23 field02InInner = TestInner.this.meth(fieldInTestInner); //Error

24 }

25 }

26 }

Figure 4.2: No common representation between inner classes and outer
classes

Since the instances of inner classes are independent of their enclosing
objects (i.e., the nesting is between classes, not objects), Java normally does
not allow type variables declared in an inner class to be used in an outer
class; however, Java allows vice versa. As a result, owner parameters de-
clared in an inner class are safe from being used in an outer class, but not
vice versa. For OGJ+ to maintain proper independency between object,
the use of an enclosing class’s distinguished owner in any of the enclosing
class’s inner classes is prohibited. This is because there should be no nest-
ing relationship between the distinguished owner of an enclosing class
and the distinguished owners of the inner classes. If we are to allow the

52 CHAPTER 4. FROM JAVA TO OGJ+

use of the outer class’s owner in an inner class, then the inner class will be
able to define siblings to the outer class without the outer class’s knowl-
edge.

Although Java prohibits the explicit use of inner class’s type variables
in the enclosing class, generic methods facilitate a workaround, which
OGJ+ can catch. See the erroneous statement in Fig. 4.3. Owner must
be inside MOwner; and by extension, Owner must be inside the owner that
meth()would infer. Since there is no nesting relationship between Owner
and IOwner, the call to meth() violates the requirements by Owner.

1 class TestInner<Owner extends World> extends OwnedObject<Owner> {

2
3 <MOwner extends World> OwnedObject<MOwner> meth() {

4 OwnedObject<MOwner> o1 = new OwnedObject<MOwner>();

5 return o1;

6 }

7
8 class Inner<IOwner extends World> extends OwnedObject<IOwner> {

9 OwnedObject<IOwner> o2 = meth(); // Error: Owner is not inside IOwner

10 }

11 }

Figure 4.3: An outer class’s owner is not inside the inner class’s owner.

One limitation regarding the treatment of inner classes in OGJ+ is that
implementing event-listeners as anonymous inner classes is not possible
in the way illustrated in Fig. 4.4, since OGJ+ will not allow the method
invocation, in line 27, as long as the actual parameter is owned by This.
However, event-listeners can be implemented safely as anonymous inner
classes in OGJ+, in the way illustrated in Fig. 4.5, as long as the return
type, in line 20, is owned by This. Consider the changes made in lines
2, 10, 11 and 19 to provide the context covariance necessary to avoid re-
structuring the original code, if at all possible. As explained earlier in
subsection 3.6.1 wildcard owners are mainly utilised in OGJ+ to facilitate
context covariance, not only readonly references, and that is why a wild-
card owner can only be bounded by World.

4.2. INNER CLASSES 53

1 public interface EventListener<Owner extends World> extends IOwnedObject<Owner>

{

2 void fireEvent(Event<Owner> e);

3 }

4 public class Event<Owner extends World> extends OwnedObject<Owner> {

5 public Event(OwnedString<Owner> e) {

6 System.out.println(e);

7 }

8 }

9 public class SomeObject<Owner extends World> extends OwnedObject<Owner> {

10 private EventListener<This> lst;

11 public void setListener(EventListener<This> lst) {

12 this.lst = lst;

13 }

14 public void somethingHappened() {

15 lst.fireEvent(new Event<This>(new OwnedString<This>("Something Happened")

));

16 }

17 }

18 public class MyCode<Owner extends World> extends OwnedObject<Owner> {

19 public EventListener<This> eventListener() {

20 return new EventListener<This>() {

21 @Override

22 public void fireEvent(Event<This> e) { ... }

23 };

24 }

25 public void meth() {

26 SomeObject<Owner> s = new SomeObject<Owner>();

27 s.setListener(eventListener()); //ERROR

28 s.somethingHappened();

29 }

30 }

Figure 4.4: Event-Listener Pattern implemented in OGJ+ (uncompilable)

54 CHAPTER 4. FROM JAVA TO OGJ+

1 public interface EventListener<Owner extends World> extends IOwnedObject<Owner>

{

2 void fireEvent(Event<? extends World> e); //CHANGED

3 }

4 public class Event<Owner extends World> extends OwnedObject<Owner> {

5 public Event(OwnedString<Owner> e) {

6 System.out.println(e);

7 }

8 }

9 public class SomeObject<Owner extends World> extends OwnedObject<Owner> {

10 private EventListener<? extends World> lst; //CHANGED

11 public void setListener(EventListener<? extends World> lst) { //CHANGED

12 this.lst = lst;

13 }

14 public void somethingHappened() {

15 lst.fireEvent(new Event<Owner>(new OwnedString<Owner>("Something Happened

"))); //CHANGED

16 }

17 }

18 public class MyCode<Owner extends World> extends OwnedObject<Owner> {

19 public EventListener<? extends World> eventListener() { //CHANGED

20 return new EventListener<This>() {

21 @Override

22 public void fireEvent(Event<? extends World> e) { ... } //CHANGED

23 };

24 }

25 public void meth() {

26 SomeObject<This> s = new SomeObject<This>(); //CHANGED

27 s.setListener(eventListener());

28 s.somethingHappened();

29 }

30 }

Figure 4.5: Event-Listener Pattern implemented in OGJ+ (compilable)

4.3. STATICS 55

4.3 Statics

Java does not allow static declared member classes, methods and fields to
use a type variable, and hence an owner variable, defined by the enclosing
class. Moreover, if the enclosing class is a static member class, the same
applies to its static members. This is because all type variables are non-
static. Since a static member is shared along with its enclosing class, and
since there should exist only a unique instance of that static member for
all instances of the generic enclosing class, a static member needs to be
accessible by objects located in any arbitrary ownership contexts.

The treatment of statics has not been specified explicitly in many pro-
posals. Treating statics within the notion of owners-as-dominators [32] is
not significantly different than within the notion of owners-as-modifiers
[36, 44], as long as the object ownership heap graph is of only one tree
structure. Huang and Milanova [32] force all static fields to belong to the
root context, and assume that static methods have a virtual receiver this.
Universe type system (UTS) [36, 44] does the same for static fields; but
for static methods, the meaning of the peer modifier is slightly adapted.
Normally, the peer modifier annotates an object as a sibling object; that
is, a peer object has the same owner as the this object in order for both
objects to share the same context. In the case of static methods, if a method
is called as peer Class.method() at a static call site, then the callee’s
context will be the same as the caller’s. If the same static method is called
at a non-static call site, then the callee’s context will be the same as the
this object.

Summers et.al.[63] proposes extending the universe types heap struc-
ture with multiple trees, where each tree is rooted in a class. Classes can,
therefore, own objects as static fields. This can be achievable since the root
context of a UTS is the set of objects with no owner, and the root con-
text is excluded from the verification of the nesting relationships between
owners. In deep ownership, every single object should have an owner.

56 CHAPTER 4. FROM JAVA TO OGJ+

If we are to have an individual tree for each object owning static fields,
while forcing such an object to be owned by World, then we will end up
with a single tree that does not preserve the nesting relationships. If we
are to treat an object, that owns static fields, as non-owned or as virtually
owned by World, then we will end up breaking the rule of having all ob-
jects owned, as well as breaking the nesting relationships. OGJ+ ensures
that a static field is either in the root context or wildcard-owned in order
to guarantee correct object encapsulation, while sustaining the possibility
of accessing static fields from any arbitrary context.

4.3.1 Static Fields

A static field is also known as a class variable; so, as the name implies, a
class variable is a per-class incarnation rather than a per-instance incarna-
tion. As a rule, Java does not allow the use of a type variable as an actual
type parameter within a static field; accordingly, there is no way to have
an owner variable as an actual owner parameter within a static field.

As for the use of owner This, since the significance of This relies on
the presence of receiver this, owner This cannot be used within a static
field declaration. Consider the example of Fig. 4.6, Java only provides a
warning about ”accessing static filed” in response to the assignment state-
ment in line 7; and if meth() is static, Java will provide an error because
Java treats this as a non-static variable. The principle that should hold
here is that each private static field—as a unique instance—must be ac-
cessible by any of the enclosing class’s instances, no matter the location
of these instances in the ownership tree. Although owner World can
stand alone as a statically safe owner for static field declarations, we also
have wildcard owners through which static fields can still be available for
objects located in different contexts. A static field can then be declared
private for proper information hiding, as need be.

4.3. STATICS 57

1 public class Foo<Owner extends World> extends OwnedObject<Owner> {

2
3 static Foo<This> f1; // Forbidden by OGJ+

4 static Foo<This> f2; // Forbidden by OGJ+

5
6 public void meth(){

7 this.f1 = this.f2;

8 }

9 }

Figure 4.6: Illegal Static Field Declaration

4.3.2 Static Methods

Similar to static field declarations, owner variables declared by the en-
closing class cannot be used within a static method, neither within the
signature, nor within the body. Nevertheless, since a method can be
owner parameterised, a static method’s local variable or parameter can
share contexts, as need be. An owner parameterised static method
can be called, at a static call site, as Class.<World>method(), or as
Class.<Owner>method(), so that the method can be evaluated either
in the root context, or in the context of the caller, respectively. If the same
static method is called at a non-static call site, then it can be called as above,
or as Class.<This>method(), so that it can be evaluated in the context
of the this object. If a static method is not owner parameterised, then it
can only be evaluated within the root context, unless it involves wildcard
owners. For the same reason as static fields, a static method cannot use
owner This in the signature or in the body, as it should be available in
arbitrary contexts.

4.3.3 Static Blocks and Nested Static Classes

Owner This is disallowed within static blocks and nested static classes.
Methods declared inside these static contexts can be owner parameterised
as need be. OGJ+ treats anything declared within a nested static class

58 CHAPTER 4. FROM JAVA TO OGJ+

as a static context. Inner classes, methods, blocks, and fields which are
declared within a static class are not allowed to use owner This.

4.4 Clone

In languages that have reference semantics, the assignment operator is not
appropriate for duplicating an object. Creating a duplicate copy of an ob-
ject is sometimes essential for equality, or inequality, comparisons [29].
Copying an object is commonly conducted through a special default op-
eration that is usually defined in the language’s root class, as is the case
with Java’s java.lang.Object.clone(). The clone() method cre-
ates a new instance of the object that is being copied, then returns this
new instance. All of the new instance’s fields are aliases to the fields of the
original object. Such an operation is conventionally known as shallow copy.
The clone() method’s return type is Object; therefore, casting back the
result to the original object is required. This default implementation can
be overridden by some other custom behaviour in order, for example, to
protect mutable fields from being affected by the behaviour of the original
object. Normally, the override clone() gets a copy of the original object
by invoking super.clone() until it reaches Object.clone(), which
throws a CloneNotSupportedException if the class of the original ob-
ject does not implement the interface Cloneable.

Another alternative approach to object copy is deep copy, where the ref-
erents of all of the original object’s fields are copied, not aliased. Deep
copy causes no dependency between the source and target objects. So, the
structure of the target object is isomorphic to the structure of the source
object. On the contrary, shallow copy makes the target object completely
dependent on the source, with no isomorphic structures.

4.4. CLONE 59

Grogono and Sakkinen [29] argue that copying operations should re-
spect the semantic properties of objects rather than merely their syntactic
properties, because ”shallow” is too shallow and ”deep” is too deep. In
other words, the original and the cloned objects do not necessarily need
to have isomorphic structures, and should not be completely dependent
on one another. More specifically, objects which are not part of the private
internal representation of the source object can be freely aliased within the
cloned object; otherwise, references should be traced in order to copy their
referents.

Noble et al. [51] discuss the idea of an ownership based mechanism
called sheep cloning. Since an object owns its internal representation, the
sheep cloning operation will copy all objects which are transitively owned
by the source object, and will alias objects which are not part of the rep-
resentation. It is not clear how the sheep cloning mechanism treats cycles
within the object graph. There is an ongoing research aiming to formalize
a type system that supports sheep cloning [38].

60 CHAPTER 4. FROM JAVA TO OGJ+

The example in Fig. 4.7 illustrates the implementation of the override
clone() method used in the ArrayList collection class. Line 2 declares
v as an object of type ArrayList whose initial value is a shallow copy
of the current ArrayList. The ArrayList class is implemented as to
have an array buffer to contain the elements of the ArrayList; which
means that the backing array is constituting the internal representation of
the ArrayList. Having the current ArrayList shallow copied, as in
line 2, means that its backing array object becomes aliased, which is not
safe. Therefore, the assignment statement in line 3 copies the backing ar-
ray, elementData, into a new array object assigned to v.elementData.
Since elementData forms the internal representation of the ArrayList,
it should be owned by This in OGJ+. As a result, the field access on the
left hand side of the assignment statement, line 3, would be erroneous in
OGJ+, since elementData can only be accessed via receiver this.

1 public Object clone() {

2 ArrayList<E> v = (ArrayList<E>) super.clone();

3 v.elementData = Arrays.copyOf(elementData, size);

4 v.modCount = 0;

5 return v;

6 }

Figure 4.7: The ArrayList’s override clone() method

The use of wildcard owners can mitigate the above mentioned restric-
tion in the way illustrated in Fig. 4.8. A private getter method (line
1) can be defined to return a wildcard owner parameterised reference
to the backing array. This reference can then be used inside clone()

(lines 8 and 9) to copy the original array into the array of the clone.
We used the method OwnedArray.copySegment() in line 9 instead of
Arrays.copyOf() (line 3, Fig. 4.7) which deals only with Java arrays.
The receiver of copySegment() is the source array; the arguments are,
respectively: the starting position in the source array, the destination array,

4.4. CLONE 61

the starting position in the destination array, the number of array elements
to be copied. Although implementing custom behaviours that deal with
the This-owned objects is possible, shallow copying breaks deep owner-
ship encapsulation, and hence should be forbidden in OGJ+ because the
clone will still be referring to the private representation of the original ob-
ject; the statement in line 3, Fig. 4.7, and the statement in line 9, Fig. 4.8,
do not copy the actual elements but only references to the elements. Since
immutable arrays exist neither in Java nor in OGJ+, facilitating deep copy
is the appropriate solution for OGJ+.

1 private OwnedArray<? extends World, E> getTable() {

2 return elementData;

3 }

4
5 @Override

6 public IOwnedObject<Owner> clone() {

7 ArrayList<Owner, E> v = (ArrayList<Owner, E>) super.clone();

8 OwnedArray<? extends World, E> tab = v.getTable();

9 elementData.copySegment(0, tab, 0, elementData.length());

10 v.modCount = 0;

11 return v;

12 }

Figure 4.8: An unreal OGJ+ version of ArrayList’s clone()

We choose to facilitate an automatic version of deep copying. The
deepCopy() operation in OGJ+ can be overridden in a way similar to
that of java.lang.Object.clone(), so that custom behaviours can be
implemented, as need be, to alias the objects outside the representation of
the copied object. OGJ+ requires the object being copied to be serialisable.
This can be done by making all of the classes that make up the class of the
source object implement the Serializable interface. Having the source
object serialisable means that all of its values can be serialised and written
into a ByteArray; then, the ByteArray can be deserialised into a new
object, during which we can assign the required owner; that is, copies can

62 CHAPTER 4. FROM JAVA TO OGJ+

be public, private or siblings; see lines 17, 20 and 23, Fig. 4.10. This ap-
proach takes care of the superclass fields, and traces the object graph to
handle repeated references to the same object within the graph. There is
no need to cast the result back to the source object, since deepCopy() is
a generic method, whose type variable’s bound, IOwnedObject, is wild-
card owner parameterised. The example in Fig. 4.10 illustrates the use of
the deep copy operations provided by OGJ+.

1 public IOwnedObject<Owner> deepCopy() {

2 ArrayList<Owner, E> v = super.deepCopy();

3 v.modCount = 0;

4 return v; }

Figure 4.9: The OGJ+ ArrayList’s deep cloning operation

Consider Fig. 4.9 which is the cloning operation deepCopy() of the
OGJ+ ArrayList. In comparison with the clone() operation in Fig.
4.7, the backing array elementData does not need to be cloned again,
because elementData was already deep copied by super.deepCopy()
(line 2, Fig. 4.9) . Any other non This-owned object outside the private in-
ternal representation of ArrayList (e.g., modCount, line 3, Fig. 4.9) can
still be accessed and aliased, as need be, in order to provide the required
sheep (or sheep-like) cloning. The Arrays.copyOf() operation in Fig.
4.7 shallow copies elementData; that is, creates a new array object but
only references to the elements are copied, not the actual elements. Using
OGJ+’s deepCopy(), everything is deep copied; and deep ownership en-
capsulation is guaranteed to be preserved, since the elements of an aggre-
gate are part of its private internal representation.

The limitation of relying only on deepCopy() is that programming
idioms which rely on shallow copying and on pointers to the internal rep-
resentation of both the clone and the original object (e.g., to observe the
changes since the clone was created) can no longer be implemented in
OGJ+ without being restructured to perform value comparisons rather
than reference comparisons, if at all possible.

4.4. CLONE 63

1 public class TestDeepCopy<Owner extends World> extends OwnedObject<Owner>{

2
3 static class Foo01<Owner extends World> extends OwnedObject<Owner>

4 implements java.io.Serializable {

5
6 public int value;

7 }

8
9 static class Foo<Owner extends World> extends OwnedObject<Owner>

10 implements java.io.Serializable {

11
12 public Foo01<Owner> test = new Foo01<Owner>();

13
14 public void meth() throws IOException, ClassNotFoundException {

15
16 this.test.value = 1;

17 Foo<Owner> x = super.deepCopy();

18
19 this.test.value = 2;

20 Foo<World> y = super.deepCopy();

21
22 this.test.value = 3;

23 Foo<This> z = super.deepCopy();

24
25 this.test.value = 4;

26
27 System.out.print("Foo: " + this.test.value + "; ");

28 System.out.print("z: " + z.test.value + "; ");

29 System.out.print("y: " + y.test.value + "; ");

30 System.out.print("x: " + x.test.value + ".");

31 }

32 }

33 static { begin(); }

34 public static void main(OwnedArray<World, OwnedString<World>> args)

35 throws IOException, ClassNotFoundException {

36
37 Foo<World> f = new Foo<World>();

38 f.meth();

39 }

40 }

41 ===

42 run:

43 Foo: 4; z: 3; y: 2; x: 1.

Figure 4.10: Deep copy operations in OGJ+

64 CHAPTER 4. FROM JAVA TO OGJ+

4.5 Equals
Java’s equals() method is another default operation defined in the root
class Object. As the method’s name implies, it performs equality com-
parisons. Nevertheless, equals() operates in exactly the same way as the
equality testing operator ’==’, which performs identity equality compar-
isons rather than object equality comparisons. Similar to Java’s clone(),
the default implementation can be overridden by hand-coded versions.
Java’s equals() method is mostly overridden by, recursively, comparing
referenced objects with equals(); for instance, see Fig. 4.11, line 12.

1 public boolean equals(Object o) {

2 if (o == this)

3 return true;

4 if (!(o instanceof List))

5 return false;

6
7 ListIterator<E> e1 = listIterator();

8 ListIterator e2 = ((List) o).listIterator();

9 while(e1.hasNext() && e2.hasNext()) {

10 E o1 = e1.next();

11 Object o2 = e2.next();

12 if (!(o1==null ? o2==null : o1.equals(o2)))

13 return false;

14 }

15 return !(e1.hasNext() || e2.hasNext());

16 }

Figure 4.11: java.util.AbstractList.equals()

The equals() signature is: boolean equals(Object obj). This
means that the overriding implementation should check if the method’s
actual parameter is of the required type (line 4, Fig. 4.11); this is normally
the type of the enclosing class, a superclass, or the abstract type it im-
plements. If the check holds true, then it is inevitable to downcast the
method’s parameter to the verified type (line 8) in order to perform the
required equality comparison between the receiver and the argument of
the overriding implementation. This standard code reuse practice became

4.5. EQUALS 65

entangled by the use of ownership types, since not only the object graph
should be taken into account but also ownership information should be
evaluated. Moreover, with deep ownership types, the nesting information
should also be evaluated.

1 public <O extends World> boolean equals(IOwnedObject<O> o) {

2 if (o == this)

3 return true;

4 if (!(o instanceof List))

5 return false;

6
7 ListIterator<Owner,E> e1 = listIterator();

8 ListIterator<O, E> e2 = ((List<O, E>) o).listIterator();

9 while(e1.hasNext() && e2.hasNext()) {

10 E o1 = e1.next();

11 IOwnedObject<? extends World> o2 = e2.next();

12 if (!(o1==null ? o2==null : o1.equals(o2)))

13 return false;

14 }

15 return !(e1.hasNext() || e2.hasNext());

16 }

Figure 4.12: OGJ.java.util.AbstractList.equals()

The example in Fig. 4.11 shows the overriding equals() implemen-
tation for the collection class java.util.AbstractList of Java 1.6. In
line 8, consider the downcast of the method’s parameter to the abstract
type List. First, OGJ+ does not allow raw cast since all objects should be
owner parameterised. Second, passing a List object to the method means
upcasting the argument to Object, then downcasting it back to List,
which is something that cannot be done in OGJ+ as explained in section
3.5 by the example in Fig. 3.9. To overcome this restriction, OGJ+ only per-
mits this kind of downcasting if all of the additional outside owners are
hidden via wildcards. The example in Fig. 4.12 shows the overriding im-
plementation of equals() for OGJ.java.util.AbstractList. The
latter class has the type variable E declared in its header with a placeholder
owner as follows: E extends IOwnedObject<? extends World>.

66 CHAPTER 4. FROM JAVA TO OGJ+

That is, the downcast in line 8 is allowed. In conclusion, the restrictive
form of casting in OGJ+ might seem to impose an impact on the way an
equals() is written in OGJ+, but the simple decision of using a place-
holder owner within the class header mitigated this impact. As illustrated
by the example in Fig. 4.12, we did not need to restructure the example
in Fig. 4.11, but did supply only owner parameters. Note also that the
OGJ+’s equals() is owner polymorphic so that equality testing between
objects with different ownership information can be conducted.

1 class Foo<Owner extends World> extends OwnedObject<Owner> {

2 Bar<This> bar;

3
4 private Bar<? extends World> getBar() {

5 return this.bar;

6 }

7
8 public <O extends World> boolean equals(IOwnedObject<O> o) {

9
10 Foo<O> f = (Foo<O>) o;

11
12 // return bar.equals(f.bar); //ERROR

13 // return f.getBar().equals(bar); //ERROR

14
15 return bar.equals(f.getBar());

16 }

17 }

Figure 4.13: equals() accessing two unrelated private objects

Consider the example in Fig. 4.13, the field access f.bar in line 12 is
erroneous since bar is owned by This, and hence can only be accessed via
receiver this. To overcome this restriction, we can define a getter method,
such as getBar() in line 4, and then invoke it as in line 15. Nevertheless,
getBar() cannot be used the way illustrated in line 13, since there is no
guarantee that the returned wildcard-owned type is inside bar’s owner,
as explained in section 3.6. Moreover, OGJ+ prohibits method invocations
if the receiver and the actual parameter are both wildcard-owned. That,
in fact, imposes a limitation on one’s ability to use OGJ+’s equals() and

4.5. EQUALS 67

method invocation in general (see Fig. 4.14, line 28); and would obstruct
both the implementation and utilisation of some programming idioms and
design patterns (e.g., caching pattern).

1 public class DefaultCacheImpl<Owner extends World>

2 extends OwnedObject<Owner>

3 implements Cache<Owner> {

4
5 private HashMap<This,

6 OwnedObject<? extends World>,

7 OwnedObject<? extends World>> map;

8 ...

9 public Collection<? extends World,

10 Map.Entry<? extends World,

11 OwnedObject<? extends World>,

12 OwnedObject<? extends World>>> getAll() {

13
14 return new ArrayList<This,

15 Map.Entry<? extends World,

16 OwnedObject<? extends World>,

17 OwnedObject<? extends World>>>(map.

entrySet());

18 }

19 ...

20 }

21
22 public class MyImpl<Owner extends World> extends OwnedObject<Owner>{

23
24 DefaultCacheImpl<This> c = new DefaultCacheImpl<This>();

25
26 public boolean meth(OwnedObject<Owner> obj) {

27 ...

28 return c.getAll().equals(((DefaultCacheImpl<Owner>) obj).getAll()); //ERORR

29 }

30 }

Figure 4.14: Illegal equals() invocation (receiver and actual parameter
are wildcard-owned)

68 CHAPTER 4. FROM JAVA TO OGJ+

4.6 Exception Handling

Java utilises exceptions to handle errors and exceptional events that could
happen during the operation of a method at runtime. Whenever such an
event occurs, the relevant method creates an exception object and hands
it to the runtime system; this procedure is called throwing an exception.
Whenever an exception is thrown, the runtime system goes over the call
stack (the chain of methods called to reach the method that has thrown the
exception) in search of a method that contains an exception handler.

Exception handling in type systems that enforce ownership encapsu-
lation properties raises the issue that an object may create an exception
in one ownership context, while the object that has the exception handler
might be in another context. Consider the example in Fig. 4.15, the object
of class FoosFather owns Foo; and Foo owns FoosChild. FoosChild
creates an exception object, at line 17, while FoosFather handles the ex-
ception. Foo is in the call stack, and is neither throwing nor handling an
exception, as depicted in Fig. 4.16. Consider the object ownership struc-
ture in Fig. 4.17, FoosChild is in a different ownership context (Foo’s
context) than that of FoosFather. If method FoosChild.init() cre-
ates an exception object local to Foo’s context, then the exception will not
be able to propagate farther Foo’s context boundary.

Dietl and Müller [24] explain and evaluate four approaches to excep-
tion handling in ownership type systems: 1) cloning exception objects
from the context where they are created to the context where they are han-
dled; 2) transferring exception objects from the context where they are cre-
ated to the context where they are handled; 3) treating exceptions as global
data that can be accessed from all contexts; and 4) propagating exceptions
via read-only references, which may cross context boundaries. The au-
thors think that both global exceptions and read-only exceptions are more
applicable alternatives, since both approaches do not lead to specification
overhead, and do not increase the complexity of the type system signifi-

4.6. EXCEPTION HANDLING 69

1 class FoosFather<Owner extends World> extends OwnedObject<Owner>{

2 Foo<This> myChild;

3 void init() {

4 try {

5 myChild.init();

6 } catch(FooException e) {

7 System.err.println (e.origin.getClass());

8 } } }

9 public class Foo<Owner extends World> extends OwnedObject<Owner> {

10 FoosChild<This> myChild;

11 void init() throws FooException {

12 myChild.init();

13 } }

14 class FoosChild<Owner extends World> extends OwnedObject<Owner> {

15 void init() throws FooException{

16 FoosChild<World> f = deepCopy();

17 throw new FooException(f);

18 } }

19 class FooException extends Throwable{

20 OwnedObject<World> origin;

21 public FooException(OwnedObject<World> origin) {

22 this.origin = origin; } }

Figure 4.15: Exception Handling Example

Figure 4.16: Depiction of the call stack exemplified in Fig. 4.15

Figure 4.17: Depiction of the object ownership structure exemplified in
Fig. 4.15

70 CHAPTER 4. FROM JAVA TO OGJ+

cantly. The authors explain that read-only exceptions have two limitations.
First, read-only references lead to a weaker ownership invariant. The sec-
ond limitation is that an exception object is modified while being prop-
agated. Handling this would require cloning the exception, modify the
clone, then throw the clone. In relation to global exceptions, the declara-
tion and propagation of exceptions are straightforward. Global exceptions
are viable for ownership type systems that permit references to objects in
ancestor contexts, as is the case with deep ownership.

OGJ+ treats exception classes the same way as static declarations,
where owner World and wildcards are the only allowed owner param-
eters within an exception class. If the example in Fig. 4.15 is implemented
with wildcard owners used in lines 20 and 21, then we could have nor-
mally replaced f, in line 17, by this and removed line 16; this is OGJ+’s
best option. The example uses owner World within FooException; that
is, we cannot use this in place of f in line 17, since casting this to
OwnedObject<World> is not possible; owners do not match. Using the
default deepCopy() operation provided by OGJ+, as in line 16, allows us
to get the required public deep copy of the current this.

4.7. ENUM TYPES 71

4.7 Enum Types

An enumeration type is mostly declared to contain a set of named con-
stant values. Nevertheless, in Java, it is more appropriate to say that an
enumeration type contains a set of closely related elements; for example,
Colour{RED, BLUE, YELLOW}. This is because an enumeration type in
Java is a distinct compiler-generated class, not an arithmetic type, whose
constant values cannot be directly set to numeric values.

Java enum types, or enums, were introduced in the type safe JDK 1.5,
as a type safe facility, along with genericity. Nevertheless, enums cannot
be generic types, although enums preserve type safety by implicitly ex-
tending the abstract generic class java.lang.Enum, whose header is as
follows:
public abstract class Enum<E extends Enum<E>>

implements Comparable<E>, Serializable

The class Enum is self-referencing in its generics, and implements
Comparable whose type argument is Enum’s type variable. This ensures
that an enum of one type can only be compared with another enum of the
same type.

Since enums extend java.lang.Enum, enums cannot extend any
other class or enum, as there is no multiple inheritance in Java. Enums
are implicitly final; thus cannot be subclassed. Also, an enum is implic-
itly static when being a member of a class. Enum constants are implic-
itly static final. There is no way to assign something other than the
predefined constants to an enum variable. Since enums are classes, it is
possible to define constructor, methods, variables, and member classes in-
side Java enum. Nevertheless, a constructor must be declared private,
to preserve the property that an enum is neither allowed to be instantiated
nor extended.

72 CHAPTER 4. FROM JAVA TO OGJ+

Since an enum class, as well as its constants, cannot be compromised
via the getter/setter idiom, the safety measures that OGJ+ applies are di-
rected to any variable, method, or member class declared inside an enum
class. What applies to anything declared outside an enum is applied to
everything declared inside an enum. If an enum is declared as a member
of a class, which is mostly the case, then OGJ+ will treat the enum, and
anything declared inside it, as being in a static context. An enum cannot
extend classes but can implement interfaces; and therefore, an enum can
only implement IOwnedObject, or its descendants.

4.8. IMPLEMENTATION METHODOLOGY 73

4.8 Implementation Methodology

This section describes the implementation approach adopted to extend
Java with the encapsulation system described above. The implementation
is done on the javac open source compiler.

4.8.1 Ownership Domains and Types

The ownership domains OGJ.Owners.World and OGJ.Owners.This

are implemented as blank interfaces. This inherits World, which in-
herits Object. The root class OGJ.OwnedObject is an owner parame-
terised class, which implements the owner parameterised root interface
OGJ.IOwnedObject. The default equality test operation equals() is
declared in IOwnedObject, and thus is overridden in OwnedObject.
OwnedObject also contains the default copy operation deepCopy(),
which is declared protected.

The default array type in OGJ+, OGJ.OwnedArray, is declared final,
with a public constructor that takes an integer parameter as the initial ar-
ray size, then initialises a new array object through a private constructor.
OwnedArray takes an owned type argument, as the type of the elements,
in the way explained in section 4.1, then creates a normal Java array type
and stores its value as a private field, which can be initialized by the
private constructor and accessed directly. OwnedArray is declared se-
rializable in order to conform with deepCopy() that uses Java serializa-
tion, as explained in section 4.4. OwnedArray bundles the following op-
erations: get(), set(), length(), resize(), and copySegment().

Classes in the Java standard library (e.g., Integer, Number, String,
etc.) have their corresponding classes in OGJ+ (e.g., OwnedInteger,
OwnedNumber, OwnedString, etc.); they are all owner parameterised,
serializable, and have public constructors.

74 CHAPTER 4. FROM JAVA TO OGJ+

4.8.2 Type Checking

The OGJ+ code is type-checked through an extension to the Java Com-
piler (javac). javac is a program to put Java language source code
files (.java) into an intermediate representation (IR), which is an abstract
language independent of the specifics of a particular machine (platform-
neutral). The IR of a Java program is known as bytecode. The compiler
processes source files to generate output machine-readable executable
bytecode class files (classname.class). For each class defined in the
source code file(s), the compiler creates a class file. So, Java class files, or
bytecode classes, are the accepted form that can be converted, by the Java
Virtual Machine, into native platform-specific executables. In that sense,
javac is typically a front end of a traditional compiler, which parses
source code in order to generate IRs.

For the compilation process to get started, the JavaCompiler class,
which is defined in com.sun.tools.javac.main, will be invoked to
read the source files specified on the command line. The compiler, first,
enters a parsing phase, in which it processes source files with the help
of classes defined in com.sun.tools.javac.parser.*. The parser
will then call the lexer in order to generate a stream of tokens from an
input stream of characters, then will map them into an abstract syntax tree
(AST); this can be thought of as an advance towards the utilization of the
package com.sun.source.tree.

As far as OGJ+ is concerned, javac employs the AST to symbolize
and process programs at compile time; and eventually, the AST is trans-
formed to Java bytecode and written to a class file(s). The root class
for AST nodes is com.sun.tools.javac.tree.JCTree, which imple-
ments com.sun.source.tree.Tree. To work with a tree, it is essential
to traverse it somehow; javac utilizes the design pattern Visitor. The vis-
itor class for trees is com.sun.tools.javac.tree.JCTree.Visitor,
which encloses a number of visitor methods to carry out attribution on
the AST. OGJ+ injects only a couple of visiting messages, before and after

4.8. IMPLEMENTATION METHODOLOGY 75

attribution, into the JavaCompiler class. The visitor methods which are
overridden by OGJ+ are as follows:

• visitVarDef(JCVariableDecl tree)

Deals with variable declarations (fields, variabls, parameters).

• visitMethodDef(JCMethodDecl tree)

Deals with method declarations.

• visitClassDef(JCClassDecl tree)

Deals with class declarations.

• visitApply(JCMethodInvocation tree)

Deals with method invocations.

• visitSelect(JCFieldAccess tree)

Deals with field accesses and assignments.

• visitTypeCast(JCTypeCast tree)

Deals with type casts.

• visitTypeApply(JCTypeApply tree)

Deals with parameterised types.

• visitTypeParameter(JCTypeParameter tree)

Deals with formal class parameters.

• visitAssign(JCAssign tree)

Deals with assignment statements.

• visitNewClass(JCNewClass tree)

Deals with new(...) operations.

• visitReturn(JCReturn tree)

Deals with return statements.

• visitBlock(JCBlock tree)

Deals with statement blocks.

Each of the above methods is overridden to behave, and perform
checks, as explained in a relevant section or subsection within the thesis.
For example, in relation to nesting verification, subsection 3.4.2 describes

76 CHAPTER 4. FROM JAVA TO OGJ+

part of the behaviour of visitVarDef(); in relation to instantiation and
casting, section 3.5 describes the dehaviour of visitNewClass() and
visitTypeCast(), and so on.

4.8.3 Testing

OGJ+ implementation is, by all means, a Test-Driven Development (TDD).
The process is mainly depending on reiterating brief development cycles.
At the beginning, a test case, that contains a faulty OGJ+ construct, is
written to define the required new function, or modification; then, the
code is written to satisfy that test. This process requires automated unit
tests to verify that all added functionalities are still working after code
changes. We used the JUnit testing framework as a test case execution tool
for OGJ+.

Test Cases

Most of the test cases are moderately small; they range in length from 3
to 100 lines of code. The length varies mainly depending on the integrity
of the number of errors that javac error log can report for each OGJ+

example program (test case). Sometimes, one test case cannot comprise all
of the potential deviations for the same construct; it is therefore at times
essential to have more than one test case for the same construct. We have
more than 70 Java class files to test error reporting; some of these files can
report up to 50 errors; some others contain correct OGJ+ code to detect
problems with the type checker. That is, there are two kinds of tests: failing
tests and passing tests. A failing test checks that a given file does indeed
fail, as should be; a passing test verifies that a given file does compile, as
should be. Furthermore, applying OGJ+ to the Collections Framework
has turned out very useful in detecting subtle bugs that would otherwise
have gone unnoticed.

4.8. IMPLEMENTATION METHODOLOGY 77

4.8.4 Usage

A minimal runnable OGJ+ program should have the lines shown in Fig.
4.18. The Compiler is available for the Windows platform from the follow-
ing link:

http://homepages.ecs.vuw.ac.nz/˜ahmkhal/

To run OGJ+, Java should be run from the command prompt as follows:
X:\>java -jar "OGJ JDK6 v20130630.jar" "Class.java"

See subsection 4.1.1 for discussion on OGJ+’s main() method (and
thus the begin()).

1 import static OGJ.ArraylessMain.*;

2 import OGJ.Owners.*;

3 import OGJ.*;

4
5 public class AnyClassName<OwnerVariable extends World>

6 extends OwnedObject<OwnerVariable> {

7
8 static { begin(); }

9 public static void main(OwnedArray<World, OwnedString<World>> args) {

10
11 }

12 }

Figure 4.18: Mandatory declarations required for a minimal runnable
OGJ+ program

78 CHAPTER 4. FROM JAVA TO OGJ+

Chapter 5

Generic Ownership Compliant
Collections

To evaluate the applicability of OGJ+’s encapsulation system to a real life
code base, we decided to refactor the JDK 1.6 Collections Framework. We
found that Java Collections Framework is large, complex and important
enough to be representative of the encapsulation issues we are targeting
(e.g., the iterator pattern). Not to mention the fact that ownership was first
introduced to target aggregation and container objects; and in the end, the
refactored framework is in fact integrated to the new language. That is,
OGJ+ has its own collection library.

The Java Collections Framework [1, 5, 49] was introduced in JDK 1.1,
and then redesigned more thoroughly in JDK 1.2. With generics intro-
duced in JDK 1.5, a collection object became restricted to hold a particular
data type, since the only thing a collection knows it holds was a handle
to an Object. Finding out type mismatches at compile time is known
as compile-time type safety, which relieves programmers of the burden of
casting when reading elements from collections. So, what we are about
is supporting owner detection, as companion to type detection, through
generic declarations.

In terms of encapsulation, a collection object can have its state compro-

79

80 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

mised via an incoming reference to its internal representation. How? One
of the very short, but most substantial, answers is: Iterators. The idea is
that for a collection object to be able to share its element objects, an itera-
tor needs to access the elements stored in that collection. As explained in
subsection 2.3.1, an iterator can bypass the collection’s interface and refer
directly to any arbitrary element by maintaining an incoming reference to
the collection’s private representation that can in turn be mishandled via
public getter/setter methods.

With ownership types, it is possible to have the internal representation
explicitly declared as owned by its respective collection class. That is, a
collection’s representation is hidden: constrained to interact only with its
owner collection object, with no incoming aliases.

This chapter explains how we refactored the JDK 1.6 collections’
code base, in order to use OGJ+’s ownership support. The classes
under study are the ones which are circled in Fig. 5.1 and Fig. 5.2.
These classes include all of the general-purpose implementations, namely
ArrayList, LinkedList, ArrayDeque, PriorityQueue, HashMap,
LinkedHashMap, TreeMap, HashSet, LinkedHashSet, and TreeSet.
Also, the legacy implementations Vector and Hashtablewill be investi-
gated, as well as the special purpose implementation IdentityHashMap.
The non-circled components in Fig. 5.1 and Fig. 5.2 are (1) the abstract data
types, or interfaces, of which the collection classes provide implementa-
tions, and they appear in red colour; and (2) the extended abstract classes
that provide the skeleton implementations of the relevant abstract data
types. All of these classes and interfaces are subject to refactoring.

Typically, the refactoring of a class (or interface) starts off by declaring
a distinguished owner for the class itself, then the appropriate owner pa-
rameters and bounds are supplied to the type parameters, as explained
earlier in the thesis, and as will be explained later in this chapter. If the
class is not extending another class in the hierarchy depicted in Fig. 5.1
(or Fig. 5.2), then the class should extend OwnedObject and the owner

81

Figure 5.1: Iterable Collections

Figure 5.2: Maps

82 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

of the class should be preserved as explained earlier in chapter 3. In a
similar manner, an interface should extend IOwnedObject, if it is not ex-
tending another interface in its respective hierarchy. Refactoring the body
of a class starts off by identifying its representation part and making it
owned by This (i.e., to be private and hidden). Owner This will not al-
low any access to that representation part unless through variable this.
The other non-representation objects will be initially siblings owned by
the same owner as the defining collection class, which means that these
objects can only be shared with objects owned by the same owner as the
current instance of the defining collection class. Exceptions occur when,
for example, a representation object is originally being assigned to any of
the other objects. In this case, such objects will need to be made owned
by This, and thus they will need to be only accessed via variable this,
which at times is not the originally intended receiver. Here we come to
what we call cross incompatibility between owners. The remainder of this
chapter explains the modifications found necessary, and why a particular
object had to become private, sibling, public or subject to context covari-
ance.

Identifying the representation part for this particular refactoring was
straightforward, as we considered every private field, in the original im-
plementations, a representation object. Otherwise, the determination of
the representation part of an object relies on human judgement, if not de-
sign principles.

Since most collection classes have compile-time dependencies on other
classes in the framework, the priority was always to make sure that the
whole set of classes under refactoring can altogether be successfully com-
piled with OGJ+, after every modification cycle. For rapid error reporting
for that whole set of classes, we utilised the JUnit testing framework which
provides an automated infrastructure for running repeatable tests. That is,
the collection classes were dealt with as passing test cases that should al-
together produce no errors. Modifications to one class can cause another

5.1. INTERFACES 83

to fail to compile, while the former can still pass the compilation. Thus,
the integrity, and quality of having unconflicted set of class relationships,
was a priority during every implementation cycle.

5.1 Interfaces

The set of classes mentioned above are descended from the two main col-
lection interfaces: Collection (Figure 5.1) and Map (Figure 5.2). The set
of interfaces and classes involved in both hierarchies are in the package
java.util. This study is mainly concerned with five abstract data types:
List, Queue, Deque, Map, and Set. These general purpose collections
can be classified into iterable collections and maps. Iterable collections are
those interfaces that extend Collection; and by extension, their imple-
mentor classes. Maps are all interfaces and classes which are rooted by the
interface Map.

Although the interface Iterable (in package java.lang) is outside
the Framework, Collection extends Iterable so that lists, queues,
and sets can be used with the foreach statement. It is not possible to iterate
over a Map object directly; instead, Map provides Collection views so
that a Map object can be iterated over through these views. That is, maps
are not iterable collections; and thus, there is no need for Map to extend
Iterable.

84 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

5.1.1 The Collection Interface

To apply Generic Ownership to the interface Collection, the appropri-
ate owner parameters and bounds are supplied to the interface header as
shown in line 1, Fig. 5.4. Fig. 5.3 and Fig. 5.4 are the original JDK 1.6 and
the OGJ+ compliant versions of the interface Collection, respectively.

1 public interface Collection<E> extends Iterable<E> {

2
3 // Adding Elements

4 boolean add(E e);

5 boolean addAll(Collection<? extends E> c);

6
7 // Querying the Contents of a Collection

8 int size();

9 boolean isEmpty();

10 boolean contains(Object o);

11 boolean containsAll(Collection<?> c);

12
13 // Removing Elements

14 boolean remove(Object o);

15 boolean removeAll(Collection<?> c);

16 boolean retainAll(Collection<?> c);

17 void clear();

18
19 // Making a Collection’s Contents Available for Further Processing

20 Iterator<E> iterator();

21 Object[] toArray();

22 <T> T[] toArray(T[] a);

23 }

Figure 5.3: JDK 1.6 Collection Interface.

5.1. INTERFACES 85

1 public interface Collection<Owner extends World, E extends IOwnedObject<? extends

World>> extends Iterable<Owner,E> {

2
3 // Adding Elements

4 boolean add(E e);

5 boolean addAll(Collection<Owner, ? extends E> c);

6
7 // Querying the Contents of a Collection

8 int size();

9 boolean isEmpty();

10 boolean contains(E o);

11 <O extends World> boolean containsAll(Collection<O, ? extends E> c);

12
13 // Removing Elements

14 boolean remove(E o);

15 <T extends E> boolean removeAll(Collection<Owner, T> c);

16 <T extends E> boolean retainAll(Collection<Owner, T> c);

17 void clear();

18
19 // Making a Collection’s Contents Available for Further Processing

20 <O extends World> Iterator<O, E> iterator();

21 <O extends World> OwnedArray<O, E> toOwnedArray();

22 <T extends E> OwnedArray<Owner, T> toOwnedArray(OwnedArray<Owner, T> a);

23 }

Figure 5.4: OGJ+ Collection Interface.

The OGJ+ Collection header has Owner as the owner of Collect-
ion, and E as the type of the elements. E is bounded by IOwnedObject

which is the root interface in OGJ+, and which OwnedObject imple-
ments, so that classes and interfaces can be used as bound objects. The
owner of the elements is subject to context covariance (recall subsection
3.6.1). Collection extendes the interface Iterable, which must be
within the same ownership context as Collection, and thus is owned
by Owner. As for the definition of Iterable, it extends IOwnedObject
and it reads as follows:

public interface Iterable<Owner extends World,

T extends IOwnedObject<? extends World>>

extends IOwnedObject<Owner> {
<O extends World> Iterator<O, T> iterator(); }

86 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

According to Naftalin and Wadler [49], the methods which are defined
by Collection can be classified into four groups in accordance with their
functionalities: adding elements, querying the contents of a collection, re-
moving elements, and making a collection’s contents available for further
processing. In the rest of this subsection, I will clarify the required adjust-
ments in the signatures of these methods.

Adding Elements

These are the methods in lines 4 and 5, Fig. 5.4. The add() method did
not require any modification in the signature. For addAll(), other than
supplying the parameter type with the relevant owner parameter, there
are no significant adjustments to be made.

Querying the Contents of a Collection

These are the methods in lines 8-11, Fig. 5.4. According to Naftalin and
Wadler [49], the signatures of contains() and containsAll() in the
original generified Collection (lines 10 and 11, Fig. 5.3) are a more lib-
eral alternative than the following:

boolean contains(E o);

boolean containsAll(Collection<? extends E> c);

The latter signatures catch more errors at compile time (while also rul-
ing out some sensible tests). We could not adopt a liberal OGJ+ version
similar to that in line 7, Fig. 5.5, because OGJ+ will not allow the method
invocation in line 8 unless Owner (the owner of c) is inside the owner
of o. Since the owner of o is unknown, determining the nesting struc-
ture at compile time will not be possible. OGJ+ can determine the nest-
ing structure through the ownership information provided by the class
header. OGJ+ knows that the owner of the class must be inside all of the
other owners involved in the class header. That is, using E as the type of o
means that Owner is inside the owner of o.

5.1. INTERFACES 87

1 public class MyCollection<Owner extends World, E extends OwnedObject<? extends

World>>

2 extends OwnedObject<Owner>

3 implements Collection<Owner,E> {

4
5 Collection<Owner,E> c; // Backing Collection

6 ...

7 public boolean contains(OwnedObject<? extends World> o) {

8 return c.contains(o); // Error

9 }

10 }

Figure 5.5: A liberal signature of contains()

So, what applies to add() and addAll() applies to contains()

and containsAll(). The only difference is that containsAll() is
owner-polymorphic. This is because the equals() method is owner-
polymorphic; see subsection 4.5. The idea is that the implementation of
the overriding equals(), in the abstract class AbstractSet, compares
the specified Set (method parameter) for equality with the this Set by
checking if the this Set containsAll() the elements in the speci-
fied Set, after confirming that they both have the same size. So, to send
a containsAll() message by passing the specified Set as argument,
containsAll() needs to be able to infer the owner of the specified Set,
which is already inferred by equals().

Removing Elements

These are the methods in lines 14-17, Fig. 5.4. The signature of remove()
is treated in a similar fashion as the signature of contains(). Also, the
signatures of removeAll() and retainAll() similarly correspond to
the signature of addAll(), although they utilise method genericity in-
stead of using wildcards. Apart from the owner parameter, in the result-
ing byte code there is no difference between the signature of the generic
removeAll() and its corresponding signature that uses a wildcard. We

88 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

found the generic signature mandatory for our refactoring, however. The
example in Fig. 5.6 shows the overriding removeAll() implementation
for the collection class AbstractCollection of OGJ+. The method
invocation in line 5 would not compile if the signature of removeAll()
required its argument to be a Collection<Owner, ? extends E>,
since contains() actual argument E cannot be converted to the cap-
ture of ? extends E by method invocation conversion. What applies
to removeAll() applies straightforwardly to retainAll().

1 public <T extends E> boolean removeAll(Collection<Owner, T> c) {

2 boolean modified = false;

3 Iterator<Owner, ? extends E> e = iterator();

4 while (e.hasNext()) {

5 if (c.contains((T)e.next())) {

6 e.remove();

7 modified = true;

8 }

9 }

10 return modified;

11 }

Figure 5.6: OGJ+ AbstractCollection.removeAll()

Making a Collection’s Contents Available for Further Processing

These are the methods in lines 20-22, Fig. 5.4. The iterator() method
returns an Iterator over the receiver collection. The two overloaded
toOwnedArray() methods transfer the contents of the receiver collec-
tion into a new OwnedArray object. Both methods are the OGJ+ versions
of the two overloaded toArray() methods in the JDK 1.6 Collection
interface. The advantage of the second toOwnedArray() method, line
22, is that it infers the type of the returned array from the method’s argu-
ment type in order to accurately realize control over the runtime type of
the returned array.

5.1. INTERFACES 89

There are times when we need to transfer the contents of a sibling col-
lection object into a private This-owned array object. For example, the
ArrayList class has a constructor that takes a Collection argument
to construct a list containing the elements of that Collection. Con-
sider the example in Fig. 5.7, the formal parameter c, line 6, is owned by
Owner, while the backing array object elementData is owned by This.
That is, we cannot use an assignment statement such as elementData =

c.toOwnedArray(); but we can have the returned OwnedArray owned
by This, if toOwnedArray() is owner-polymorphic so that the assign-
ment statement would appear as in line 7.

1 public class ArrayList<Owner extends World, E extends IOwnedObject<? extends

World>> extends ... implements ... {

2
3 private transient OwnedArray<This, E> elementData;

4 private int size;

5 ...

6 public ArrayList(Collection<Owner, ? extends E> c) {

7 elementData = (OwnedArray<This, E>) c.<This>toOwnedArray();

8 size = elementData.length();

9 }

10 }

Figure 5.7: ArrayList constructor takes a Collection argument

The implementation of toOwnedArray() is one of the implementa-
tions that required more flexibility in handling the iterator() meth-
od’s owner parametricity. That is, iterator() needed to be owner-
polymorphic in order to infer owner arguments that do conform to
the owner arguments of other iterator-manipulating owner-polymorphic
methods.

90 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

5.1.2 The Map Interface

Map is the other dominant interface, in that it sets up the second interface
hierarchy in the Collections Framework. Since any descendant of this in-
terface represents a mapping object that maps keys to values, the header
of this interface involves two type parameters: K for the type of the keys,
and V for the type of the values. Fig. 5.8 and Fig. 5.9 are the original JDK
1.6 and the OGJ+ compliant versions of the interface Map, respectively.
Unlike Collection, Map directly extends IOwnedObject, as it is not
iterable; and as a matter of course, IOwnedObject preserves the same
owner as Map. In close parallel to the categories of methods defined by
Collection, the methods in Map can be grouped into: adding mappings,
removing mappings, querying the contents of a map, and providing col-
lection views.

1 public interface Map<K,V> {

2
3 // Adding Mappings

4 V put(K key, V value);

5 void putAll(Map<? extends K, ? extends V> m);

6
7 // Removing Mappings

8 V remove(Object key);

9 void clear();

10
11 // Querying the Contents of a Map

12 int size();

13 boolean isEmpty();

14 boolean containsKey(Object key);

15 boolean containsValue(Object value);

16 V get(Object key);

17
18 // Providing Collection Views

19 Set<K> keySet();

20 Collection<V> values();

21 Set<Map.Entry<K, V>> entrySet();

22 }

Figure 5.8: JDK 1.6 Map Interface.

5.1. INTERFACES 91

1 public interface Map<Owner extends World, K extends IOwnedObject<? extends World

>, V extends IOwnedObject<? extends World>> extends IOwnedObject<Owner> {

2
3 // Adding Mappings

4 V put(K key, V value);

5 void putAll(Map<Owner, ? extends K, ? extends V> m);

6
7 // Removing Mappings

8 V remove(K key);

9 void clear();

10
11 // Querying the Contents of a Map

12 int size();

13 boolean isEmpty();

14 boolean containsKey(K key);

15 boolean containsValue(V value);

16 V get(K key);

17
18 // Providing Collection Views

19 Set<Owner,K> keySet();

20 Collection<Owner,V> values();

21 Set<Owner, Map.Entry<? extends World,K, V>> entrySet();

22 }

Figure 5.9: OGJ+ Map Interface.

As appears in Fig. 5.9, there is no significant changes in the first cat-
egory; only putAll() needed to have an owner for the parameter type.
Similar to contains(), in the previous subsection, the method signatures
of the second and third categories are treated in a more preservative fash-
ion than the original liberal version. As for the fourth group, since Map

cannot explicitly be iterated over, this category provides three methods
that return collection views, each with its own iterator. The first method
keySet() returns a Set view of the keys. The second method values()

returns a Collection rather than a Set, due to the possibility of hav-
ing duplicate values associated with different keys. The third method
entrySet() returns a Set view of the mapping key⇒value. The el-
ements of the returned set implement the interface Map.Entry that em-
bodies a mapping from a key to a value. Since the owner of the elements
of any collection class, in our design, is subject to context covariance, the

92 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

owner of the elements of the Set to be returned by entrySet() is a wild-
card.

5.1.3 The Iterator Interface

public interface Iterator<Owner extends World, E

extends IOwnedObject<? extends World>

extends IOwnedObject<Owner> {
boolean hasNext();

E next();

void remove(); }
The Iterator interface is included in the package java.util to-

gether with the general-purpose collections. Any class that implements
Collection maintains an iterator() method to return an Iterator

object applicable to the instances of that class. The iterator() method
is defined either inside the collection class itself or inside an abstract class
(e.g., AbstractList) that provides a skeleton implementation of the rel-
evant abstract data type (e.g., List).

Typically, iterators are implemented in the Collections Framework
as inner classes implementing the Iterator interface; or as is the
case with lists, iterators are inner classes that implement the interface
ListIterator, which in turn extends Iterator. As clarified in the
inner classes’ subsection 4.2, iterators are implemented as inner classes in
order to maintain direct access to the private backing fields of the outer
collection classes (and thereof to the element objects). The nesting between
classes is not a nesting between objects, however; hence private fields
are exposed to incoming aliases to inner classes’ instances. Implementing
iterators as inner classes is basically the main issue in applying ownership
to collections. Backing fields, as the internal private representation of their
containers, must be owned by This; and therefore, cannot be directly ac-
cessed even through a This-owned reference defined in an inner class.

5.1. INTERFACES 93

Consider the example of Fig. 5.10, header is a representation object
of LinkedList, which means that header should be owned by This.
ListItr is the iteration inner class of LinkedList. In the original im-
plementation of LinkedList, header is assigned to lastReturned in-
side ListItr, as in line 7. If we are to make lastReturned owned by
This, this does not mean that header and lastReturned have the same
owner. header belongs only to the outer class, and can only be accessed
through the operations of LinkedList. Within the course of the rest of
this chapter, we will demonstrate how each collection class treats its itera-
tors.

1 public class LinkedList<Owner extends World, E extends IOwnedObject<? extends

World>> extends AbstractSequentialList<Owner,E> implements List<Owner,E>, ...

{

2
3 private transient Entry<This, E> header = new Entry<This, E>(null, null, null

);

4 ...

5 private class ListItr<Owner extends World> extends OwnedObject<Owner>

implements ListIterator<Owner,E>{

6
7 private Entry<This, E> lastReturned = header; //ERROR!!!

8 ...

9 }

10 }

Figure 5.10: Linked List’s Iterator as an Inner Class

94 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

5.2 Lists

Lists are implemented through the interface List. List extends Co-

llection and has a pretty similar header to Collection, see Fig. 5.11.
Owner owns List, and E is the type of the elements.

1 public interface List<Owner extends World, E extends IOwnedObject<? extends World

>> extends Collection<Owner,E> {

2
3 int indexOf(E o);

4 int lastIndexOf(E o);

5 List<Owner,E> subList(int fromIndex, int toIndex);

6
7 void add(int index, E element);

8 boolean addAll(int index, Collection<Owner, ? extends E> c);

9 E get(int index);

10 E set(int index, E element);

11 E remove(int index);

12
13 ListIterator<Owner, E> listIterator();

14 ListIterator<Owner, E> listIterator(int index);

15 }

Figure 5.11: OGJ+ List Interface.

In order to provide search operations and range-views, List supports
positional indexing so that the numerical position of a specified object (or
a view of a range of the list) can be returned. The methods in lines 3-
5, Fig. 5.11, support these operations. Since the nature of lists is to al-
low duplicates, List defines two methods for searching a specific ele-
ment: the first one, in line 3, is to return the position of the first occur-
rence of the specified element; the second, in line 4, returns the last occur-
rence. Method subList(), in line 5, returns a range-view of the receiver
list preserving owners. The original signatures of methods indexOf()
and lastIndexOf() involve Object as a parameter type, so they were
adapted to be more preservative.

Together with the methods inherited from Collection, the List in-
terface defines additional position-oriented methods for inserting (collec-

5.2. LISTS 95

tions as well as elements), retrieving, modifying and removing elements.
These methods are in lines 7-11, Fig. 5.11. Except for addAll(), the other
signatures did not require any modifications. What applies to addAll()

in Collection applies to the position-oriented version of addAll() in
List.

Finally, there are two iteration methods (lines 13 and 14, Fig. 5.11);
each of them is returning a ListIterator over the receiver list. The
java.util.ListIterator interface extends the Iterator interface.
Due to the sequential nature of lists, it is possible to have bi-directional
access to a list; that is, traversing a list backwards and forwards. So,
in conjunction with the three main operations of Iterator (namely
hasNext(), next() and remove()), ListIterator defines hasPre-
vious(), previous(), along with position-oriented methods such as
nextIndex() and previousIndex(). Moreover, ListIterator de-
fines add() and set() in order to facilitate insertions and replacements.
All of these methods do not need any modifications in their signatures.

Back to the methods that return ListIterator, the first one is sim-
ilar to iterator(), in Collection, in that it returns an iterator that
is positioned at index 0. The second method returns an iterator that
takes its initial position at the specified index. During the implementa-
tion, we found no need to make these methods owner-polymorphic as
Collection.iterator(). We made them owner-polymorphic, how-
ever, so that their owner arguments can conform to the owner arguments
of owner-polymorphic methods that might manipulate them.

5.2.1 Array List

ArrayList is a resizable version of an ordinary array. The ArrayList
class is implemented as an array buffer in which the contents of the
ArrayList are contained, and an integer field to keep track of the size
of the list. These fields are referenced as elementData and size, respec-

96 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

tively. That is, the representation objects of an ArrayList are those ref-
erenced as elementData and size. The field size is of value type int,
and we have no aliasing problems with value types. As for elementData,
the array field to which it refers is of type Object, and it had to be
substituted with an OwnedArray type. Since elementData is refer-
ring to a representation object, OwnedArray needs to be owned by This

(i.e., to be private and hidden); which means that elementData can
only be accessed via receiver this. Also, the type of the elements in-
side OwnedArray is no longer required to be other than E (originally
elementDatawas of type Object[]), as we are no longer worried about
Java’s no generic array creation property, see subsection 4.1. The definition
of elementData reads as follows:

private transient OwnedArray<This, E> elementData;

The ArrayList class provides no implementation for iterator()
(defined in Collection) or for listIterator() (defined in List);
instead, ArrayList inherits these implementations from the superclass
AbstractList. AbstractList has two iteration inner classes; one im-
plements Iterator, and the other implements ListIterator. Neither
of these inner classes requires access to a representation field; Abstract-
List does not have fields. AbstractList.iterator() returns an im-
plementation of the Iterator interface that depends entirely on three
methods of the extending list (in this case ArrayList). These methods
are size(), get(), and remove(). Likewise, AbstractList.list-
Iterator() returns an implementation of the ListIterator interface
that depends on the get(), set(), add(), and remove() methods of
ArrayList. ArrayList encapsulates its representation, and thus the
adaptation of ArrayList and AbstractList is just to make them com-
pliant with OGJ+.

5.2. LISTS 97

5.2.2 Linked List

LinkedList is the other concrete implementation of List in this study.
In contrast to ArrayList, which preserves encapsulation by depending
entirely on the List interface, LinkedList preserves efficiency by hav-
ing an iterator that bypasses the interface through an incoming reference
to the private representation of LinkedList. That is, efficiency is pre-
served by breaching encapsulation. As depicted in Fig. 5.12, the entry
nodes of the list are a number of objects placed into the heap with each of
them having its own data plus pointers to the next and previous nodes;
then, a ListIterator, as an outsider object, bypasses the List object’s
interface operations, and directly accesses the list’s entries by pointing at
any object in the chain.

Figure 5.12: Linked List with Iterator

An entry node is implemented in LinkedList as a static member class
called Entry, and contains three fields: element, next, and previous.
LinkedList uses a list header that has the same formation as any other
entry node. That is, to construct a new empty linked list, a new header ob-
ject should be instantiated with a null element and pointers to itself, then
new entry nodes can be linked to that header or inserted between each
other. The LinkedList class is implemented as to have two fields: an
Entry object referenced as header, and an integer size to keep track of
the size of the list. These are our representation objects; and thus, header
should be owned by This. The example of Fig. 5.13 shows the declara-

98 CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

tions of the fields and constructors.

1 private transient Entry<This,E> header = new Entry<This,E>(null, null, null);

2 private transient int size = 0;

3 public LinkedList() { // Constructs an empty list

4 header.next = header.previous = header;

5 }

6 // Constructor that takes a Collection argument

7 public LinkedList(Collection<Owner,? extends E> c) {

8 this();

9 addAll(c);

10 }

Figure 5.13: LinkedList Fields and Constructors

Similar to ArrayList, LinkedList inherits the implementation of
Collection.iterator() from AbstractList to return an iterator
for traversing the list from head to tail and safely removing entries.
LinkedList also provides an implementation for Deque.descending-
Iterator() to return an iterator for traversing the list from tail to head
and remove entries. That is, LinkedList.descendingIterator()
returns an implementation of the Iterator interface; this implementa-
tion is an inner class of LinkedList and does not maintain any incom-
ing aliases as it provides iterators via previous() and hasPrevious()

methods of the inner class implementation of ListIterator.

As explained earlier in subsection 5.1.3, ListItr is the inner class
implementation of ListIterator in LinkedList. As the example
in Fig. 5.10 shows, the representation object header is assigned to
lastReturned when the iterator is initially constructed. What happens
is that lastReturned gets information from the other incoming refer-
ence next that points to the current Entry node. Methods next() and
previous() return lastReturned after setting it to next that moves
along the linked nodes forward and backward by these methods. This will
still be the case with LinkedList as an OGJ+ compliant implementation,
since the incoming references from ListItr to the internal representation

5.2. LISTS 99

of LinkedList are wildcard-owned, and hence readonly.
ListIterator supports adding, removing and changing elements

in the underlying list. The implementations of add(), remove(), and
set() in LinkedList.ListItr is made through the operations of the
LinkedList, and thus there were no significant changes required to pre-
serve encapsulation in accordance with the rules of OGJ+.

100CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

5.2.3 Vector (legacy)

Vector is the legacy version of ArrayList. The main difference between
a Vector and an ArrayList is that the Vector class is synchronized.
Vector has exactly the same internal representation as ArrayList. Also,
Vector inherits the implementations of Collection.iterator() and
List.listIterator() from AbstractList, where the returned it-
erators are implemented as inner classes. So, in relation to these im-
plementations, Vector maintains the same encapsulation guarantees as
ArrayList.

Additionally, Vector provides the method elements() that returns
an implementation of the legacy interface Enumeration. Enumeration
iterates over the implementor collection for retrieval of stored elements.
Enumeration is implemented in Vector as an anonymous class. An
anonymous class can be declared in OGJ+ as a sibling of the enclosing
class. That is, the instances of Vector and the sibling implementation
of Enumeration are located in the same ownership context, but Vector
and its internal representation form another nesting context, as depicted
in Fig. 5.14. Accordingly, Enumeration has no right to directly access the
internal representation of Vector. The example in Fig. 5.15 shows how
the Enumeration interface can be implemented as an anonymous class
owned by the same owner of as Vector

Figure 5.14: An object of an anonymous class as a sibling of the enclosing
object

5.3. QUEUES 101

1 public class Vector<Owner extends World, E extends OwnedObject<? extends World>>

extends AbstractList<Owner, E> implements List<Owner, E>, ... {

2
3 OwnedArray<This, E> elementData;

4 ...

5 public Enumeration<Owner, E> elements() {

6 return new Enumeration<Owner,E>() {

7 ...

8 }

9 }

10 }

Figure 5.15: Enumeration implemented as an anonymous class in the
same context as Vector

Enumeration provides two methods (hasMoreElements() and
nextElement()) for traversing a Vector object. Method nextEle-

ment() returns the element at the relevant position by directly accessing
the backing array, which means that the elements can be retrieved with-
out the Vector’s knowledge. To correct this breach, that OGJ+ does not
allow, nextElement() was modified to depend on the get() methed of
the current Victor object.

5.3 Queues

Applying generic ownership to the interfaces Queue and Deque (double-
ended queue) is no different to the interfaces explained above. All modifi-
cations can be justified on the premises mentioned in subsection 5.1.1. This
section describes the issues addressed in two implementations of these in-
terfaces. PriorityQueue implements Queue; and ArrayDeque imple-
ments Deque.

5.3.1 Priority Queue

PriorityQueue is backed by an array. The representation objects of this

102CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

implementation are quite similar to those of ArrayList and Vector: an
array buffer to hold the contents of the queue; and an integer for keeping
track of the size of the queue. This implementation maintains its iterator as
an inner class, as mostly the case with collections; and as commonly hap-
pens, a next() method directly accesses the backing array. In Vector,
we modified nextElement() to depend on the get() method, which is
defined within the body of the Victor class. Due to the FIFO nature of
queues, the Queue interface does not provide any position-oriented meth-
ods for retrieving elements form the backing array. To overcome this, we
defined a privatemethod within the body of PriorityQueue to get the
element at the specified index, and made next() rely on this private
method.

5.3.2 Array Deque

As its name implies, the ArrayDeque implementation is also backed by
an array. Since a deque supports insertion, retrieval, and removal of el-
ements at either ends of the queue, ArrayDeque has two representation
integer fields, namely head and tail, to keep track of the indices of the
elements at the head and tail of the deque. ArrayDeque is no different to
PriorityQueue, however, in that it does not provide element retrieval
via position-oriented methods.

This implementation maintains two iterators, namely DeqIterator

and DescendingIterator, also as inner classes. Each of these iterators
has a next() method to return the element at the cursor position. Both
methods directly access the backing array on two occasions: first, to get
the relevant element; and second, to get the length of the array in order
to calculate the next cursor position. Moreover, the remove() method in
both iterators accesses the array to get its length in order to recalculate the
cursor position, so that the increment made by next() can be undone.
In a similar fashion to PriorityQueue, both iterators were refactored to

5.4. MAPS 103

relay on two private methods defined within the body of ArrayDeque;
one to return the element at the specified index, and the other to return the
array length.

5.4 Maps

Although a map can be thought of as a special kind of set of values associ-
ated with unique keys (one-directional mapping from a key to a value) the
Map interface does not extend Set or Collection. On the other hand,
the Set interface general-purpose implementations are backed by Map im-
plementations in order to make use of the properties of these Map imple-
mentations. For example, the HashSet implementation does not provide
a specific Iterator; instead, the method HashSet.iterator() returns
an iterator over the key set view of the backing HashMap. Since it is not
possible to iterate over a Map object directly, Map provides set views. That
is, the relationship between the notions of sets and maps forms a key el-
ement in their design and implementation. So, why does Map not extend
Collection? Further, why does Set not extend Map? The answer to
these questions are best described in Java Collections API Design FAQ [2]:

”This was by design. We feel that mappings are not collections and collec-
tions are not mappings. Thus, it makes little sense for Map to extend the
Collection interface (or vice versa). If a Map is a Collection, what
are the elements? The only reasonable answer is ”Key-value pairs”, but this
provides a very limited (and not particularly useful) Map abstraction. You
can’t ask what value a given key maps to, nor can you delete the entry for a
given key without knowing what value it maps to. Collection could be
made to extend Map, but this raises the question: what are the keys? There’s
no really satisfactory answer, and forcing one leads to an unnatural inter-
face. Maps can be viewed as Collections (of keys, values, or pairs), and
this fact is reflected in the three ”Collection view operations” on Maps
(keySet, entrySet, and values). While it is, in principle, possible to

104CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

view a List as a Map mapping indices to elements, this has the nasty prop-
erty that deleting an element from the List changes the Key associated
with every element before the deleted element. That’s why we don’t have a
map view operation on Lists.”.
So, in terms of design, conformance, and coding, treating maps as Co-

llection implementations (i.e., Map extends Collection) would
definitely hinder the flexibility of implementing maps, as well as the per-
formance, resulting in an inefficient Map abstraction. Treating collections
as Map implementations is not reasonable in terms of handling the con-
tents, properties, and solution design options. Maps are set containers,
however; mathematics says so, and even the code says so.

The Collections Framework provides three general-purpose Map im-
plementations: HashMap, LinkedHashMap, and TreeMap. This study
is concerned with these implementations of Map, the legacy implemen-
tation HashTable, and the special-purpose implementation Identity-

HashMap.

5.4.1 Hash Map

HashMap is a Map implementation backed by an array. The contents of
this array are the mapping entries of the table that makes up the internal
representation of HashMap. Each mapping entry is an instance of the static
inner class HashMap.Entry. In the List and Queue implementations,
the routine was to hide the backing OwnedArray objects by making them
owned by This, since they hold the elements. In LinkedList, the Entry
objects, which each hold an element, needed to be hidden, since they are
consistently available as entry points. With HashMapwe need to hide both
the backing array as well as the Entry objects that hold the key-value
mappings. So, the backing field table would be declared as follow:

OwnedArray<This, Entry<This, K, V>> table;

As explained in subsection 5.1.2, Map provides methods that return it-
erable collection views. These methods are keySet(), values() and

5.4. MAPS 105

Figure 5.16: Hash Map with Iterator

entrySet(); their signatures appear in Fig. 5.9. The views are backed
by the current map; that is, changes in the map are reflected in the views,
and vice-versa. To maintain this mirroring property while allowing each
view’s iterator to support entry removal, each iterator needs to run over
the indexed mapping entries of the backing array. In doing so, HashMap
provides three iteration inner classes, each for a view, as adapters that
provide iterators via HashIterator.nextEntry(). HashIterator is
a private abstract inner class implementation of the Iterator in-
terface, and does not override the abstract method Iterator.next().
Each of the three adapters extends HashIterator in order to over-
ride Iterator.next() in behalf of HashIterator. Each adapter’s

106CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

overriding next() relies on the indexed mapping entry returned by the
nextEntry() method. The nextEntry() method and the construc-
tor of HashIterator maintain incoming references to table. Through
these reference, nextEntry() accesses table to get its length, and runs
another pointer, next, over the table entries to get, and return, the Entry
object at the specified index.

To refactor this breach, we removed the incoming reference to table,
and kept next as a wildcard owner parameterised reference, so that
next can point to the Entry objects which are owned by This (i.e., the
this HashMap). Since accessing the table needs to be done through the
HashMap operations, we need to find methods that return indexed map-
ping entries and the table length. HashMap has a capacity() method
which returns the length of the backing array. HashMap treats table

as indexed by keys, and hence has no methods that allow dealing with
table as indexed array. We defined a private method inside HashMap
to return the Entry object at the specified index, and made next point to
the returned entry.

5.4.2 Linked Hash Map

The LinkedHashMap implementation inherits from HashMap. Link-

edHashMap maintains a doubly-linked list over the mapping entries to
be stored in HashMap.table. LinkedHashMap.Entry inherits from
HashMap.Entry, and provides additional pointers to the next and pre-
vious Entry objects to form the required nodes for a linked list. Similar to
LinkedList, LinkedHashMap uses a list header, which is an entry node
with a null mapping. That is, an Entry object referenced as header is
our representation object that should not be accessed via incoming aliases.

5.4. MAPS 107

The collection views’ iterators are implemented in LinkedHashMap

in the same fashion as in HashMap. The views’ iterators inherit from
the private abstract inner class LinkedHashIterator, which cor-
respond to HashIterator in HashMap. LinkedHashIterator main-
tains an incoming reference to the representation field header. This ref-
erence must be owner parameterised with a wildcard, so that it can safely
be set to header.

Since lookups are based on unique keys, the implementation of Hash-
Map uses a hash to store the key in the map for fast lookups. There-
fore, a HashMap does not guarantee the order of the mapping entries. By
maintaining a doubly linked list, LinkedHashMap maintains the order
of the entries according to the order in which they are inserted. More-
over, LinkedHashMap can maintain the ordering according to the order
in which the entries are accessed. In doing so, LinkedHashMap pro-
vides a constructor that takes a boolean parameter to switch between
the ordering modes. This boolean parameter is then assigned to the
representation field accessOrder. Apart from this constructor, for ev-
ery constructor declared in HashMap, LinkedHashMap declares a corre-
sponding constructor. All of the constructors of HashMap are invoked by
super() in their corresponding constructors of LinkedHashMap, and
accessOrder is set to false. In order for LinkedHashMap to initial-
ize the header node, the Template Method design pattern is adopted. This
pattern requires two kinds of methods, one is called a template method,
and the other is called a hook (or placeholder) method. The template
method (in a superclass) contains the invariant behaviour and invokes the
hook (in a subclass) for the variant behaviour. All of the constructors of
HashMap are template methods that call a hook called init(). Method
HashMap.init() does not hold any behaviour on its own, while the
overriding LinkedHashMap.init() initializes the header node of the
linked list. When the constructors of LinkedHashMap call super(), the
header node is initialised via LinkedHashMap.init().

108CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

In a similar fashion, methods put() and putForNullKey() are
implemented in HashMap as template methods that invoke the hook
recordAccess() which is declared in HashMap.Entry. This hook con-
tains no behaviour. The overriding hook recordAccess() of Link-
edHashMap.Entry moves the receiver mapping entry to the end of the
list, if LinkedHashMap is access ordered (i.e., accessOrder flags true).
In doing so, recordAccess() inserts the entry before the header. That
is, recordAccess() needs to access both accessOrder and header.
Class Entry is a static inner class from which non-static variables cannot
be referenced. That is why recordAccess() takes a HashMap parame-
ter. This parameter is then assigned to a LinkedHashMap local variable,
through which the representation fields can be accessed; see the example
in Fig. 5.17.

1 void recordAccess(HashMap<K,V> m) {

2 LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;

3 if (lm.accessOrder) {

4 lm.modCount++;

5 remove();

6 addBefore(lm.header);

7 }

8 }

Figure 5.17: Java 1.6 LinkedHashMap.Entry.recordAccess()

OGJ+ does not permit the field access in line 6, Fig. 5.17, since header
is owned by This. To overcome this restriction, we defined a private

getter method inside LinkedHashMap to return a wildcard owner pa-
rameterised reference to the first entry, so that the statement in line 6
reads as addBefore(lm.getFirstEntry().before). This required
addBefore() to take a parameter of an unknown context, and to make
the entry nodes’ pointers (after and before) also wildcard owner pa-
rameterised. This solution worked for the above mentioned conjunction
between the static context and the template method pattern.

5.4. MAPS 109

The OGJ+ approach to wildcards did not work, and should not, for a
hook such as transfer(), whose behaviour is to move the contents of
the backing array to another resized array. The resizing template method
declared in HashMap assigns the new array object to table after invok-
ing transfer(). This means that the new resized array and its en-
try objects should be owned by This. The overriding transfer() of
LinkedHashMap makes use of the linked list for faster iteration. If after
and before are of unknown context, then we cannot assign them to en-
try objects owned by This. We decided to keep the wildcard solution for
recordAccess() and rely on the transfer() method for HashMap.

5.4.3 Hash Table (legacy)

Hashtable is the legacy version of HashMap. The main difference be-
tween Hashtable and HashMap is that Hashtable is synchronized.
Hashtable maintains similar representation objects as HashMap. That
is, Hashtable is a Map implementation backed by an array. The map-
ping entries of the backing array, table, are instances of the private static
class Entry. The definition of table reads exactly as that of HashMap;
OwnedArray is owned by This, and the Entry objects should also be
owned by This.

Hashtable extends the abstract parent Dictionary, which pro-
vides the methods keys() and elements() that return enumerations
of the keys and values, respectively. The returned enumeration objects
are implementaions of the legacy interface Enumeration. This way,
Dictionary provides methods for traversing the keys and values, but
not the entry mappings; and Enumeration traverses a Hashtable ob-
ject without modifications. Hashtable provides the private inner class
Enumerator which implements both the Enumeration and Iterator

interfaces. This way, Enumerator can traverse a Hashtable object as
a dictionary (associative array) and as collection views. Hashtable pro-

110CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

vides key set, value collection, and entry set views, but none of them has
its own implementation of Iterator. Enumerator has a constructor
that takes two parameters; an integer parameter and a boolean parameter.
Enumerator serves as an iterator if the boolean argument is true. The
integer argument can be set to 0, 1, or 2, for traversing keys, values, or
entries, respectively. Apparently, there is no use for an Enumerator such
that: new Enumerator(2, false).

The Enumerator.next() method (overrides Iterator.next())
relies entirely on the Enumerator.nextElement() (overrides Enu-

meration.nextElement()). The overriding next() method calls
nextElement() and returns the value that nextElement() returns.
The return type of nextElement() is of type <T>, which is declared
in the header of Enumerator as the type of elements, and extends
IOwnedObject<? extends World>. Method nextElement() re-
turns an element such that:
type == 0 ? (T)e.key : (type == 1 ? (T)e.value : (T)e)

Variable type denotes the value of the constructor integer argument,
while e is a wildcard owner parameterised reference to the current Entry
object which is owned by This. OGJ+ accepts the first two casts, since
the owner of the type variable (K for keys, or V for values) is the same
owner of the elements that the Enumerator instance is to traverse over.
In fact, Enumerator is to be instantiated using the very same type vari-
able (K or V). Per contra, there is no way to allow the third cast in OGJ+.
Although it is possible to assign an object owned by This to a readonly
wildcard owner parameterised reference, it is not possible to allow a cast
using incompatible owners. Therefore, we had to provide a special imple-
mentation of Iterator for the entry set views.

5.4. MAPS 111

5.4.4 Identity Hash Map

Map’s general contract mandates the use of the equals() method to de-
termine equality using the state of the objects. In violation to this con-
tract, IdentityHashMap performs identity-equality comparisons to de-
termine uniqueness. A key is considered equal to another key only if
they are references to the same object. Since the object state is disre-
garded, an IdentityHashMap object can contain key values and map-
pings that would be dealt with as duplicates in other Map implementa-
tions. In addition to this distinct property, IdentityHashMap is also
different in that it uses a technique called hashing with linear probing
[53]. This technique is used to deal with hash collisions of values re-
turned by the hash() method. IdentityHashMap uses this technique
to sequentially search the hash table for a free pair of adjacent locations,
since IdentityHashMap stores the key and value references directly in
adjacent locations in the table, not in entry cells; the key is placed at
table[hash], while the value is placed at table[hash+1]. That is,
IdentityHashMap does not use Entry objects, and hence the backing
field table would be declared as follows:

OwnedArray<This,IOwnedObject<? extends World>> table;

In addition to the key set and value collection views, IdentityHash-
Map provides entry set views, however. Since IdentityHashMap does
not maintain entry cells, the iterator of the entry set view is itself used
as an entry that extends IdentityHashMapIterator and implements
Map.Entry. IdentityHashMapIterator is similar to HashIterator
and LinkedHashIterator in that it is an abstract inner class imple-
mentation of the Iterator interface, and does not override the abstract
method Iterator.next(). The methods which override the abstract
methods of Map.Entry rely on an incoming reference, defined in Ident-
ityHashMapIterator, to table. This reference had to be owner pa-
rameterised by a wildcard in order to safely be set to the This-owned
table.

112CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

Each view iterator overrides Iterator.next() relying on the in-
dexed key returned by IdentityHashMapIterator.nextIndex().
Determining the initial index (0 if table is not empty, or table length if
table is empty) requires access to table to get its length. That is, an
incoming reference to table is maintained. To maintain access to table

through the IdentityHashMap operations, we defined a private method
within the body of IdentityHashMap to return the table length, and
made the iterator depend on this method.

5.4.5 Tree Map

The Collections Framework of Java 1.6 has the new interface Navigable-
Map. The NavigableMap interface is a subtype of the SortedMap in-
terface. TreeMap is the only general purpose collection that implements
NavigableMap. As an implementation of NavigableMap, TreeMap
provides navigation methods such as descendingKeySet(), descend-
ingMap(), headMap(), tailMap() and subMap(). That is, TreeMap
provides more views than the ordinary views (i.e., KeySet, Values and
EnterySet); for example, AscendingEntrySetView, Descending-
EntrySetView, AscendingSubMap, DescendingSubMap; each has its
iterator. A lot of operations are involved; submaps and entries are defined
more precisely; as a result, many different inner classes (static and non-
static) had to be involved.

Except for LinkedList, all of the Collection and Map implementa-
tions that have been studied up to this subsection are backed by arrays,
and we used to make the backing arrays owned by This. Except for
IdentityHashMap, all of the other hash-based Map implementations use
entry cells to hold the mappings, and these cells had to be owned by This.
With LinkedList and LinkedHashMap, the list header is fixed and has
a null element or nullmapping. With TreeMap, the root is neither fixed
nor having a null mapping. The root is part of the tree and is the mid-

5.5. SETS 113

dlemost element. The mapping entry that represents the root of the tree
could be swapped through right and left rotations as we perform add and
remove operations. That is, the backing field of TreeMap, namely root,
should always be available to be set to a mapping entry. If we are to have
root owned by This while changing the reference structure through ro-
tations, then all of the references to the entry nodes which are involved
in a rotation operation must be owned by This and declared within the
same class as root. Because of the many different inner classes involved
in the implementation of TreeMap, and because the entry nodes must be
accessed through the operations of TreeMap, inner classes need to send
messages to TreeMap by passing references to entry nodes as arguments.
These references had to be owner parameterized by wildcards, and most
of the operations of TreeMap had to be able to accept argument types that
have wildcards as owner parameters. That is, root needs to be owner
parameterized by a wildcard in order for the rotation operations to set
root to mapping entries. Since all entry nodes must be owned by This,
we made sure that every new entry node is initialized within an insertion
method as follows:

Entry<This,K,V> e =

new Entry<This,K,V>(key, value, parent);

Since all of the entries that make up the internal representation of
TreeMap is to be initialized owned by This, we can safely declare the
backing field root as follows:

private Entry<? extends World, K, V> root;

5.5 Sets

Sets are implemented through the interface Set. Set extends Coll-

ection, overrides all of the methods of Collection, and does not pro-
vide more methods than Collection does. This study is concerned with
three implementations of Set, namely HashSet, LinkedHashSet and

114CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

TreeSet. These sets are backed by Map implementations, and can be iter-
ated over through the key iterators of their respective backing maps. The
implementation of these sets is quite simple, and hence the refactoring is
quite straightforward.

5.5.1 Hash Set

HashSet is backed by a HashMap instance referenced as map. HashSet
relies only on the key store maintained by the backing HashMap to prevent
duplicates. All mapping values are set to dummy values of type Object.

Since we made sure that the backing table of HashMap and the con-
tained entry cells are hidden, then the elements of HashSet (i.e., the keys
of the backing map) are also hidden whatever the owner of the backing
field map is. We made map owned by This, however. Since the signa-
ture of Set.iterator() is owner polymorphic, the overriding method
HashSet.iterator() can properly return the type returned by the call
map.keySet().iterator(). The backing field map is declared as fol-
lows:
HashMap<This, E, IOwnedObject<? extends World>> map;

The type argument of map’s keys is E, which is the type of HashSet’s
elements; and the type argument for the dummy values is the OGJ+’s
equivalence of Object.

5.5.2 Linked Hash Set

The LinkedHashSet implementation inherits from HashSet. The Lin-
kedHashSet class has no backing field and has only four constructors;
no other operations are defined in this class. All of the operations that a
LinkedHashSet instance can conduct are inherited from HashSet. The
four constructors of LinkedHashSet invoke only one constructor from
HashSet. The invoked constructor form HashSet is made especially
for LinkedHashSet and instantiates LinkedHashMap, so that the opera-

5.5. SETS 115

tions of HashSet can be conducted on a LinkedHashMap instance rather
than a HashMap instance. Therefore, there are no security issues with this
implementation.

5.5.3 Tree Set

In the same manner as described for TreeMap, TreeSet is the only gen-
eral purpose collection that implements the NavigableSet interface.
NavigableSet is a subtype of the SortedSet interface. That is, in ad-
dition to the sorting mechanisms, TreeSet provides the same navigation
mechanisms as that of TreeMap, but only on the key store of the backing
TreeMap. The backing field of TreeSet is of type NavigableMap, how-
ever. This is mainly because some of the navigation methods of TreeMap
return NavigableMap views, and the corresponding navigation meth-
ods in TreeSet are made simple as to return new instances of TreeSet
backed by these NavigableMap views.

As described for HashSet, there is no need to make the backing field
owned by This since the elements are properly encapsulated in the key
store of the backing map. We made the backing map of HashSet owned
by This, and this did not cause any owner compatibility problems. For
TreeSet, we decided to avoid making the backing map owned by This

in order to avoid any owner compatibility issues between TreeSet and
TreeMap. The backing field is declared as follows:
NavigableMap<Owner,E,IOwnedObject<? extends World>> m;

The backing map is owned by Owner which denotes the owner of
TreeSet. The type argument of the keys is E, which is the type of
TreeSet’s elements; and the third type argument is for the dummy
values.

116CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

5.6 Usability
Using the refactored collections requires a significant programming over-
head, as appears in Fig. 5.19 which is the OGJ+’s version of Fig. 5.18. Al-
though OGJ+ provides stronger encapsulation guarantees, it is hard to be-
lieve that productivity will not decline using our version of the Collections
Framework. Using OGJ+, and in particular the refactored collections, re-
quires increased effort since, in addition to the annotation overheads, pro-
grammers will have to deal with the fact that standard code reuse practices
became entangled by the use of deep ownership types.

1 public class Glossary{

2 public static void main(String[] args) {

3 Map<String, List<String>> map = new HashMap<String, List<String>>();

4
5 List<String> a = new ArrayList<String>();

6 a.add("Academy");

7 a.add("Anatomy");

8
9 List<String> b = new ArrayList<String>();

10 b.add("Balloon");

11 b.add("Burger");

12
13 List<String> c = new ArrayList<String>();

14 c.add("Cadbury");

15 c.add("Common");

16
17 map.put("A", a);

18 map.put("B", b);

19 map.put("C", c);

20
21 System.out.println("Get keys and their corresponding values:");

22 for (Map.Entry<String, List<String>> entry : map.entrySet()) {

23 String key = entry.getKey();

24 List<String> values = entry.getValue();

25 System.out.println("Key = " + key);

26 System.out.println("Values = " + values);

27 }

28 }

29 }

Figure 5.18: A HashMap storing multiple values for the same key using
ArrayList.

5.6. USABILITY 117

1 public class GlossaryOGJ<Owner extends World> extends OwnedObject<Owner>{

2 static { begin(); }

3 public static void main(OwnedArray<World, OwnedString<World>> args) {

4 Map<World, OwnedString<World>, List<World, OwnedString<World>>> map =

5 new HashMap<World, OwnedString<World>,

6 List<World, OwnedString<World>>>();

7
8 List<World, OwnedString<World>> a =

9 new ArrayList<World, OwnedString<World>>();

10 a.add(new OwnedString<World>("Academy"));

11 a.add(new OwnedString<World>("Anatomy"));

12
13 List<World, OwnedString<World>> b =

14 new ArrayList<World, OwnedString<World>>();

15 b.add(new OwnedString<World>("Balloon"));

16 b.add(new OwnedString<World>("Burger"));

17
18 List<World, OwnedString<World>> c =

19 new ArrayList<World, OwnedString<World>>();

20 c.add(new OwnedString<World>("Cadbury"));

21 c.add(new OwnedString<World>("Common"));

22
23 map.put(new OwnedString<World>("A"), a);

24 map.put(new OwnedString<World>("B"), b);

25 map.put(new OwnedString<World>("C"), c);

26
27 System.out.println("Get keys and their corresponding values:");

28 for (Iterator<World,

29 Map.Entry<? extends World, OwnedString<World>,

30 List<World, OwnedString<World>>>> entry =

31 map.entrySet().iterator(); entry.hasNext();) {

32 Map.Entry<? extends World, OwnedString<World>,

33 List<World, OwnedString<World>>> e = entry.next();

34 OwnedString<World> key = e.getKey();

35 List<World, OwnedString<World>> values = e.getValue();

36 System.out.println("Key = " + key);

37 System.out.println("Values = " + values.toOwnedString());

38 }

39 }

40 }

Figure 5.19: OGJ+’s version of Fig. 5.18.

118CHAPTER 5. GENERIC OWNERSHIP COMPLIANT COLLECTIONS

Chapter 6

Evaluation

To evaluate the refactored collections in terms of performance, we con-
ducted some micro-benchmark tests comparing the performance time of
the original and refactored collections.

As explained in the previous chapter, all class headers of the refac-
tored collections are no longer compatible with those of the JDK 1.6 col-
lections; all classes must involve owner parameters; all type variables are
bounded by IOwnedObject; Object is no longer permitted as a type
in OGJ+; a significant number of method signatures have been changed;
Java’s class types, such as String and Integer, have been wrapped in
owned classes; Java arrays are no longer permitted. As a result, any bench-
mark suite that is intended as a tool for Java benchmarking needs to be
refactored, in order to benchmark our refactored collections.

We found that refactoring a macro-benchmark, such as DaCapo or
SPECjvm2008, would be another big project; and in the end, we do
not expect that collections form a considerable share of their execu-
tion. Accordingly, we decided to modify four of Doug Lea’s JRS-166
[33] micro-benchmarks that were specially implemented to target the
Collections Framework. These micro-benchmarks are IteratorLoops,
CollectionLoops, MapLoops and MapMicroBenchmark. The latter is
in fact implemented to represent realistic uses of the Map classes. Since

119

120 CHAPTER 6. EVALUATION

Doug Lea is a co-developer of the Collections Framework, this set of
micro-benchmarks is considered the best for experimenting the collec-
tions’ performance.

All benchmarks were modified to be compatible with the class head-
ers and method signatures of the OGJ+’s collection classes. Class types
(e.g., Integer) were replaced with their corresponding types in OGJ+.
The modified micro-benchmarks were used along with the original ones to
compare the performance of our refactored collections against the JDK 1.6
collections. Some changes have been applied to the behaviour of both the
OGJ+ compliant benchmarks and the original benchmarks. These changes
are explained in detail, where applicable, in the following sections.

All benchmarks were run using the Java Platform JDK 1.6.0 30 (Java
HotSpot 64-Bit Server VM 20.5-b03) on the NetBeans IDE 7.1 (Build
201112071828). The computer used has a 64-bit Intel chip (Core i3 at 2.13
GHz) and 4GB of RAM, running a 64-bit operating system (Microsoft Win-
dows version 8). In the rest of this chapter, we present some experimental
results.

6.1 IteratorLoops

IteratorLoops measures the performance time for each step of the it-
eration process. IteratorLoops can test Collection classes as well
as Map classes. The estimates are provided in nanoseconds per each iter-
ation step; that is, the time needed to execute a single next() operation
call. IteratorLoops runs 268,435,456 iteration steps over an array of 16
Collection objects of size 16384 (the square root of the iteration steps).
IteratorLoops intermittently adds about 1/8 of the preloaded elements
at run-time.

Fig. 6.1 shows the estimates for all of our refactored collections and
maps against the original ones. The plots in Fig. 6.1 are the average of
four trials per run per collection class. This is the default number of trials
IteratorLoops produce. We executed IteratorLoops several times

6.1. ITERATORLOOPS 121

Figure 6.1: IteratorLoops – Nanoseconds per Iteration Step

for each collection class and found that the produced numbers are rela-
tively stable.

Except for HashSet, all of the other refactored Collection classes
show no variance of performance degradation. As for the Map classes,
LinkedHashMap, IdentityHashMap and TreeMap show no significant
variance (1-3 nanoseconds) of performance degradation. The performance
of Hashtable and HashMap (and hence HashSet) is around 2.5 times
slower. This is mainly because of the way the next() method works.
In HashMap, the backing array of entries is not a contiguous store; there
could be null values in between. The next() method performs a se-
quential walk over the backing array until a non-null value is found. The
walking loop used by the next() method of the original HashMap is as
follows:

while (index < table.length &&

(next = table[index++]) == null);

122 CHAPTER 6. EVALUATION

Java keeps type information at runtime for array types. Java arrays
are eliminated in OGJ+ that uses the generic type OwnedArray. With
generic types, type information is not kept at runtime; the compiler in-
serts checkcast instructions (The bytecode instructions for performing
casting at runtime). That is, every walking step performed by the next()
method of the refactored HashMap requires a checkcast to check if the
object extracted from OwnedArray could be cast to the type of next. This
should increase the time needed to execute the next() operation. The
same applies to Hashtable.

6.2 CollectionLoops

CollectionLoops can test only Collection classes. Collection-

Loops is originally implemented to exercise multi-threaded collections;
but for an unknown reason, some Collection classes (original and refac-
tored) cannot complete the test. We modified CollectionLoops to ex-
ercise single-threaded collections. A thread does a random walk over an
array of 10,000 elements. On each iteration, CollectionLoops checks
if the collection contains the given element. If the element is absent,
CollectionLoops adds it. If the element is present, CollectionLoops
removes it. CollectionLoops performs 100,000 operations per trial. A
trial measures the performance time for each operation in nanoseconds.

By default, CollectionLoops runs four trials for single-threaded col-
lections. With Set classes (refactored and original), we noticed that the
numbers of the first two trials are significantly higher than those of the
last two trials; and the numbers of the first two trials significantly vary
from run to run. We decided to loop the four trials 25 times, and the
output was 52 trials. We modified CollectionLoops to calculate the
average of the 52 results. With the HashSet and LinkedHashSet, we
found after several runs that the averages vary from 65 to 85 nanseconds
per operation, and more than 90% of the 52 results are under or between

6.2. COLLECTIONLOOPS 123

these two averages. Proportionally, the same happens with TreeSet.
Although the other Collection classes produce stable results, we kept
CollectionLoops with these modifications, and tested all of the collec-
tion classes. For the Set classes, the average of the best five repetitions
was calculated to represent the performance time per operation.

Figure 6.2: CollectionLoops for Lists and Queues – Nanoseconds per
Operation

Fig. 6.2 shows the results for the lists and queues. There is a signif-
icant improvement in the performance of the refactored classes. This is
because there is a significant decline in the number of implicit type casts.
To explain this, we first recall that the original ArrayList, Vector and
PriorityQueue are backed by arrays of type Object, while the corre-
sponding refactored versions are backed by OwnedArray instances that
store objects of type E, where E is the type variable of the collection class.
ArrayDeque is originally backed by an array of type E, and the nodes of

124 CHAPTER 6. EVALUATION

LinkedList originally hold elements of type E. Note that the improve-
ment in the performance of the refactored versions of the latter two imple-
mentations is not as great as that of the other three implementations. In the
five classes, all of the methods that originally take Object as an argument
were refactored to take E as an argument (e.g., contains(), indexOf(),
remove()). CollectionLoops uses contains() very heavily. The
implementation of contains(), in any of the five collections, checks if
the specified object (method argument) is contained in the current col-
lection by iterating over all of the stored objects to see whether one of
them is equivalent to the specified object using the equals() method.
Except for ArrayDeque, contains() delegates lookups to indexOf().
The indexOf() method (or contains() in case of ArrayDeque) walks
the backing array (or the linked list) using a for loop. Each step invokes
equals(). If both the receiver and the argument of equals() are of type
E, then the number of the required implicit casts will be less than the num-
ber of implicit casts required to complete the operation with a receiver or
argument (or both) of type Object.

Figure 6.3: CollectionLoops for Sets – Nanoseconds per Operation

6.2. COLLECTIONLOOPS 125

Fig. 6.3 shows the results for the Set classes. The plots show no
significant variance (1-5 nanoseconds) of performance degradation. The
contains() method of a Set implementation delegates lookups to
containsKey() of the backing Map implementation. With respect to
the hash-based Map implementations, containsKey() uses the hash of
the key to go directly to the position where this key should reside and
then uses equals() to check if it is there. That is, equals() is not in-
volved in a lookup iteration process, of which each step requires a call to
equals(); and thus, the performance of the refactored sets is just as the
original sets. The containsKey() of TreeMap does not use equals()
to determine equality; it uses Comparable.compareTo(). In contrast to
a binary method such as equals(), the receiver type and the argument
type of compareTo() do not need to coincide. Moreover, the argument
type of compareTo() is K (the variable type for the keys) in both the refac-
tored and the original TreeMap classes. That is, in both versions there is
a single implicit cast required for each invocation during the lookup; and
thus, the performance of the refactored TreeSet is similar to that of the
original TreeSet.

126 CHAPTER 6. EVALUATION

6.3 MapLoops

MapLoops can test only Map classes. Similar to CollectionLoops,
MapLoops is originally implemented to exercise multi-threaded maps, but
we modified it to exercise single-threaded maps and to exercise the same
number of operations and trials as CollectionLoops. Similar to what
we did with Set classes, MapLoops were repeatedly run, then the mean
of the best five repetitions were calculated to represent the performance
time per operation. The plots in Fig. 6.4 show that the performance of
the refactored maps is not significantly different from that of the original
maps.

Figure 6.4: MapLoops – Nanoseconds per Operation

6.4. MAPMICROBENCHMARK 127

6.4 MapMicroBenchmark

MapMicroBenchmark is another maps specific benchmark, but it can-
not run maps that do not permit insertion of non-comparable objects (ob-
jects that do not implement the Comparable interface). Therefore, we
couldn’t test TreeMap with MapMicroBenchmark. According to the
very brief documentation provided, this is ”a micro-benchmark with key
types and operation mixes roughly corresponding to some real programs”.
”The main results are a table of approximate nanoseconds per element-
operation (averaged across get, put etc) for each type, across a range of
map sizes”; see Fig. 6.6. We did not make any modification to the default
values of this class. The plots in Fig. 6.5 represent the averages calculated
for the largest map size (see the boxed number in the lower-right corner of
Fig. 6.6). As shown, the performance of the refactored maps is almost the
same as that of the original maps.

Figure 6.5: MapMicroBenchmark – Nanoseconds per Operation over a
map size of 589,824

128 CHAPTER 6. EVALUATION

Figure 6.6: MapMicroBenchmark’s results for JDK 1.6 HashMap

6.5 Discussion

Merging ownership information into generic declarations does not impose
significant runtime overheads, if there are any. Since all information about
generics is erased by the compiler after all checks are done, Java generics
might seem to be implemented with high overhead, requiring implicit up-
casts to Object in the process of inserting elements into a collection, and
implicit downcasts to the type of the elements in the process of taking the
elements out of the given collection. This is not precise, however. The fact
is that the implementations of some Collection classes involve arrays
of type Object rather than E. In the refactored collections, all of the back-
ing arrays became of type E, which is the type variable of their respective
Collection classes. We did not voluntarily choose to make the backing
arrays hold elements of type E. As explained in subsection 5.1.1, we had
no choice but to make the methods, which take Object as an argument,
take E as an argument due to the owner nesting rule imposed by OGJ+.
Similarly, the way to make the owner of the backing array elements the
same as the owner of the collection elements is by making the type of the

6.5. DISCUSSION 129

backing array the same as the type of the collection elements, given that
Java’s ”no generic array creation” property is no longer a concern to OGJ+.

There is no doubt that Java generics impose runtime overheads which
we notice clearly as we test the refactored HashMap class with Iterator-
Loops. Walking an array that preserves its type information at runtime is
more efficient than walking a generic aggregate such as OwnedArray. The
use of array types, which do not hold elements of concrete parameterized
types, to back collection classes, which accept elements of concrete param-
eterized types, has in fact eased the cost of Java generics.

Merging ownership information into generic declarations necessitated
the prevention of raw types and unbounded wildcard parameterized
types; both kinds of types are permitted as types of Java arrays. Pre-
serving the owners of both the backing aggregate and its component
type is an uncompromised priority in OGJ+. By using OwnedArray as a
workaround for the nonexistent generic array type, various settings have
changed in both the implementation of the collection classes and their
generated byte code. In addition to the added runtime checkcast in-
structions and implicit casts, operations such as OwnedArray.get() and
OwnedArray.set() had to replace the array index operator. Such oper-
ations, with others, should impose runtime overheads. Nevertheless, the
experimental results we presented suggest that the cost of combing owner-
ship types with parametric polymorphism is relatively low, and can even
be avoided by takeing alternative implementation decisions.

OGJ+ has the ability to enforce certain implementation decisions in
favour of efficiency. For example, with the original collections one can
query if an orange is contained in a basket of apples, and the answer is
false because such a query is allowed; but with the refactored collections,
such a query is not allowed. Our experiments turned out that allowing
this kind of queries with Java generics is expensive. For OGJ+ to confirm
that owner nesting is preserved, the possibility of allowing this kind of
queries is very limited; and if the owner of the component type is sub-

130 CHAPTER 6. EVALUATION

ject to context covariance, as is the case with the refactored collections,
the possibility does not exist. Indeed, making an owner subject to con-
text covariance is our decision, but maintaining readonly wildcard owner
parameterised references from inner classes to their outer classes necessi-
tated this decision. Otherwise, we should have made the component type
owned by World, which is not a reasonable decision.

The results of MapMicroBenchmark confirm that real programs wo-
uld not be affected by the overhead IteratorLoops produced for
HashMap. Based on the entire experimental results, we believe that the
OGJ+ prototype has confirmed expectations, given that Java generics cur-
rent implementation does not touch the JVM or the class file structure.
Emplacing ownership information into generic declarations, with the re-
quired workarounds, might keep the question open: what does matter
more, security or efficiency? We believe, however, that the cost of security
is not high, based on these results.

Chapter 7

Conclusions

Supporting efficient, true and handy encapsulation of software compo-
nents and their associated data types is a lively concern in object-oriented
research. In this thesis we have presented OGJ+, an actual usable lan-
guage implementation with deep ownership types extended with support
for readonly references. OGJ+ extends Java with a form of statically en-
forceable instance-level hierarchical encapsulation, rather than the class-
level private field encapsulation. We claim to have taken advantage of
Java Generics to the extreme. We have utilised the safe form of covariance
provided by the wildcard feature of Java generics to provide flexible refer-
encing without compromising the encapsulation or the nested structure of
the heap. Some features, such as inner classes, equals, statics and excep-
tion handling, would have been impaired under the strict model of deep
ownership, if wildcards were not utilised to favour ownership.

OGJ+ proved to have the potentials of supporting safe programming
with aliasing. For the practical evaluation, we refactored an essential por-
tion of the Collections Framework, showing that programming with OGJ+

will not hamper the construction of realistic software. While maintain-
ing the expressiveness of aliasing properties of the fields, OGJ+ was able
to precisely detect all breaches of encapsulation. We showed that the
refactoring was made without violating the traditional Java programming

131

132 CHAPTER 7. CONCLUSIONS

style; programmers are still able to take advantage of the full potentials of
inner classes. Therefore, we believe we managed to find a viable solution
for the iterator pattern. In comparison with the ad hoc approach proposed
by Boyapati et al. [9], OGJ+ does not permit an inner class and its outer
class to share a common representation; ownership information is strictly
class-specific. The internal representation of an outer class can only be re-
ferred to, form an inner class, through wildcard-owned references, which
are readonly.

During the refactoring, OGJ+ showed its ability to enforce constraints
on data structures; during the experiments, these constraints proved to
mitigate or reduce potential negative effects of implicit casting. Never-
theless, the nature of generic ownership as a language level mechanism
associated with Java generics makes all of our solutions coupled with the
effects and side effects of Java generics.

The undesired effects of aliasing (see example in Fig. 2.2) are known as
a problem [31] that programmers should be aware of. Researchers suggest
that thinking about ownership structures can lead to better code struc-
tures [58]. We claim that programming with OGJ+ allows only positive
thoughts of aliasing, and requires knowledge about the meaning of own-
ership types.

7.1 Limitations

The most notable limitation of OGJ+ is that the provided stronger encap-
sulation guarantees comes at the cost of programming overhead. We dis-
cussed in the thesis a number of limitations that might impact the way
software is written in OGJ+. Section 3.5 describes how casting is treated
in OGJ+ and explains the idea of using wildcards to overcome the limi-
tation of not keeping track of the owners at run-time. Since casting can-
not be dealt with in isolation from the equals idiom, section 4.5 takes the
discussion further afield than in section 3.5. Section 4.2 describes a limita-

7.2. FUTURE DIRECTIONS 133

tion with the event-listeners design pattern; the pattern can still be imple-
mented in OGJ+, however. Subsection 5.4.2 highlights another limitation
with the template-method design pattern. Note that the aim of this thesis
project is not to evaluate OGJ+ with design patterns. Finally, section 4.4
involves a discussion on the restrictive nature of OGJ+’s deep cloning.

7.2 Future Directions

We will continue to improve OGJ+ and evaluate it in large programs. We
think of evaluating the language with the concurrent implementations of
the Collections Framework. We are also interested in evaluating the lan-
guage with design patterns and see if more extensions would be required.
Initially, we think that a feature for ownership transfer [48] would be a
great addition to the language. Another interesting future work might be
allowing an object to have multiple owners [14].

We also think that relying on genericity should not be everything for
OGJ+. Finding a more reasonable solution for arrays would be a great
restoration. Supporting immutability could also be an interesting future
work, in this regard.

134 CHAPTER 7. CONCLUSIONS

Bibliography

[1] Collections framework overview. In Java SE Documentation, Oracle
Technology Network. Available Online: http://download.oracle.
com/ javase/6/docs/technotes/guides/collections/overview.html.
Viewed 16 Apr 2011.

[2] Java Collections API Design FAQ. In Java SE Documentation, Ora-
cle Technology Network. Available Online: http://download.oracle.
com/ javase/6/docs/technotes/guides/collections/designfaq.html.
Viewed 26 May 2011.

[3] ALDRICH, J., AND CHAMBERS, C. Ownership domains: Separating
aliasing policy from mechanism. In ECOOP ’04 — Object-Oriented
Programming European Conference (Oslo, Norway, 2004), M. Odersky,
Ed., vol. 3086 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 1–25.

[4] ALMEIDA, P. S. Balloon types: Controlling sharing of state in data
types. In ECOOP (1997), pp. 32–59.

[5] BLOCH, J. Collections. In The Java Tutorials, Oracle Technology Net-
work. Available Online: http://download.oracle.com/ javase/tuto-
rial/collections/. Viewed 16 Apr 2011.

[6] BOOCH, G., MAKSIMCHUK, R., ENGLE, M., YOUNG, B., CONALLEN,
J., AND HOUSTON, K. Object-oriented analysis and design with applica-
tions, third edition, third ed. Addison-Wesley Professional, 2007.

135

136 BIBLIOGRAPHY

[7] BOYAPATI, C. SafeJava : a unified type system for safe programming. PhD
thesis, Massachusetts Institute of Technology, 2004.

[8] BOYAPATI, C., LEE, R., AND RINARD, M. Safe runtime downcasts
with ownership types. In International Workshop on Aliasing, Con-
finement and Ownership in Object-oriented Programming (July 2003),
D. Clarke, Ed., UU-CS-2003-030, Utrecht University.

[9] BOYAPATI, C., LISKOV, B., AND SHRIRA, L. Ownership types for ob-
ject encapsulation. In Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY,
USA, 2003), POPL ’03, ACM, pp. 213–223.

[10] BOYLAND, J. Alias burying: Unique variables without destructive
reads. Software—Practice and Experience 31, 6 (May 2001), 533–553.

[11] BOYLAND, J., NOBLE, J., AND RETERT, W. Capabilities for sharing:
A generalisation of uniqueness and read-only. In ECOOP ’01: Pro-
ceedings of the 15th European Conference on Object-Oriented Programming
(London, UK, 2001), Springer-Verlag, pp. 2–27.

[12] CAMERON, N., AND DROSSOPOULOU, S. Existential quantification
for variant ownership. In Proceedings of the 18th European Symposium
on Programming Languages and Systems: Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2009 (Berlin,
Heidelberg, 2009), ESOP ’09, Springer-Verlag, pp. 128–142.

[13] CAMERON, N., AND NOBLE, J. Ogj gone wild. In International Work-
shop on Aliasing, Confinement and Ownership in Object-Oriented Pro-
gramming (New York, NY, USA, 2009), IWACO ’09, ACM, pp. 7:1–
7:10.

[14] CAMERON, N. R., DROSSOPOULOU, S., NOBLE, J., AND SMITH, M. J.
Multiple ownership. In Proceedings of the 22nd annual ACM SIGPLAN

BIBLIOGRAPHY 137

conference on Object-oriented programming systems and applications (New
York, NY, USA, 2007), OOPSLA ’07, ACM, pp. 441–460.

[15] CAMERON, N. R., AND NOBLE, J. Encoding ownership types in java.
In TOOLS (48) (2010), J. Vitek, Ed., vol. 6141 of Lecture Notes in Com-
puter Science, Springer, pp. 271–290.

[16] CLARKE, D. Object Ownership & Containment. PhD thesis, University
of New South Wales, 2001.

[17] CLARKE, D., AND DROSSOPOULOU, S. Ownership, encapsulation
and the disjointness of type and effect. In Proceedings of the 17th
ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications (New York, NY, USA, 2002), OOPSLA ’02,
ACM, pp. 292–310.

[18] CLARKE, D., SHELSWELL, R., POTTER, J., AND NOBLE, J. Object
ownership to order. Tech. rep., Microsoft Research Institute, 1998.

[19] CLARKE, D., AND WRIGSTAD, T. External uniqueness is unique
enough. In In European Conference for Object-Oriented Programming
(ECOOP (2003), Springer-Verlag, pp. 176–200.

[20] CLARKE, D. G., NOBLE, J., AND POTTER, J. Overcoming repre-
sentation exposure. In ECOOP Workshops (1999), A. M. D. Moreira
and S. Demeyer, Eds., vol. 1743 of Lecture Notes in Computer Science,
Springer, pp. 149–151.

[21] CLARKE, D. G., POTTER, J. M., AND NOBLE, J. Ownership Types for
Flexible Alias Protection. ACM SIGPLAN Notices 33, 10 (Oct. 1998),
48–64.

[22] DETLEFS, D. L., LEINO, K. R. M., AND NELSON, G. Wrestling with
rep exposure. SRC Research Report 156, Compaq Systems Research
Center, 130 Lytton Ave., Palo Alto, July 1998.

138 BIBLIOGRAPHY

[23] DIETL, W., DROSSOPOULOU, S., AND MÜLLER, P. Generic universe
types. In ECOOP (2007), E. Ernst, Ed., vol. 4609 of Lecture Notes in
Computer Science, Springer, pp. 28–53.

[24] DIETL, W., AND MÜLLER, P. Exceptions in ownership type sys-
tems. In ECOOP Workshop FTfJP’2004 Formal Techniques for Java-like
Programs (June 2004), E. Poll, Ed., pp. 49–54.

[25] DIETL, W., AND MÜLLER, P. Universes: Lightweight ownership for
JML. Journal of Object Technology 4, 8 (2005), 5–32.

[26] ELIËNS, A. Principles of Object-Oriented Software Development, sec-
ond ed. Addison-Wesley, 2000.

[27] FAHNDRICH, M., AND DELINE, R. Adoption and focus: practical
linear types for imperative programming. SIGPLAN Not. 37, 5 (2002),
13–24.

[28] GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. Java(TM) Lan-
guage Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-
Wesley Professional, 2005.

[29] GROGONO, P., AND SAKKINEN, M. Copying and comparing: Prob-
lems and solutions. In Proceedings of the 14th European Conference
on Object-Oriented Programming (2000), ECOOP ’00, Springer-Verlag,
pp. 226–250.

[30] HOGG, J. Islands: aliasing protection in object-oriented languages.
ACM SIGPLAN Notices 26, 11 (Nov. 1991), 271–285.

[31] HOGG, J., LEA, D., WILLS, A., DECHAMPEAUX, D., AND HOLT, R.
The Geneva convention on the treatment of object aliasing. SIGPLAN
OOPS Mess. 3, 2 (1992), 11–16.

BIBLIOGRAPHY 139

[32] HUANG, W., AND MILANOVA, A. Towards effective inference and
checking of ownership types. In Proceedings of the International Work-
shop on Aliasing, Confinement and Ownership at ECOOP (IWACO 2011)
(July 2011).

[33] LEA, D. Jsr-166 loops microbenchmarks. http://gee.cs.oswego.edu/
cgi-bin/viewcvs.cgi/jsr166/src/test/loops/.

[34] LEAVENS, G. T., BAKER, A. L., AND RUBY, C. JML: A notation for
detailed design. In Behavioral Specifications of Businesses and Systems,
H. Kilov, B. Rumpe, and I. Simmonds, Eds. Kluwer Academic Pub-
lishers, Boston, 1999, pp. 175–188.

[35] LEAVENS, G. T., BAKER, A. L., AND RUBY, C. Preliminary design
of JML: A behavioral interface specification language for Java. Tech.
Rep. 98-06y, Iowa State University, Department of Computer Science,
2003. Revised June 2004.

[36] LEAVENS, G. T., POLL, E., CLIFTON, C., CHEON, Y., RUBY, C., COK,
D. R., MÜLLER, P., KINIRY, J., CHALIN, P., ZIMMERMAN, D. M.,
AND DIETL, W. JML reference manual. Available from http://

www.jmlspecs.org, May 2008.

[37] LEINO, K. R. M., AND STATA, R. Virginity: a contribution to the
specification of object-oriented software. Inf. Process. Lett. 70, 2 (Apr.
1999), 99–105.

[38] LI, P., CAMERON, N., AND NOBLE, J. Cloning in ownership. In Pro-
ceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion (New York,
NY, USA, 2011), SPLASH ’11, ACM, pp. 63–66.

[39] LISKOV, B., AND GUTTAG, J. Abstraction and specification in program
development. MIT Press, Cambridge, MA, USA, 1986.

http://www.jmlspecs.org
http://www.jmlspecs.org

140 BIBLIOGRAPHY

[40] LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAFFERT, C. Ab-
straction mechanisms in CLU. Commun. ACM 20, 8 (August 1977),
564–576.

[41] LISKOV, B., AND ZILLES, S. Programming with abstract data types.
In ACM SIGPLAN Conference on Very High Level Languages, SIGPLAN
Notices (Apr. 1974), vol. 9, pp. 50–59.

[42] MEYER, B. Object-oriented software construction (2nd ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1997.

[43] MINSKY, N. H. Towards alias-free pointers. In ECCOP ’96: Proceed-
ings of the 10th European Conference on Object-Oriented Programming
(London, UK, 1996), Springer-Verlag, pp. 189–209.

[44] MÜLLER, P. Modular Specification and Verification of Object-Oriented
Programs, vol. 2262 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[45] MÜLLER, P., AND POETZSCH-HEFFTER, A. Universes: A type sys-
tem for controlling representation exposure. In Programming Lan-
guages and Fundamentals of Programming (1999), A. Poetzsch-Heffter
and J. Meyer, Eds., Fernuniversität Hagen.

[46] MÜLLER, P., AND POETZSCH-HEFFTER, A. A type system for con-
trolling representation exposure in Java. In Formal Techniques for Java
Programs (2000), S. Drossopoulou, S. Eisenbach, B. Jacobs, G. T. Leav-
ens, P. Müller, and A. Poetzsch-Heffter, Eds., Technical Report 269,
Fernuniversität Hagen.

[47] MÜLLER, P., AND POETZSCH-HEFFTER, A. Universes: A type sys-
tem for alias and dependency control. Tech. Rep. 279, Fernuniversität
Hagen, 2001.

BIBLIOGRAPHY 141

[48] MÜLLER, P., AND RUDICH, A. Ownership transfer in universe types.
In OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN con-
ference on Object-oriented programming systems and applications (New
York, NY, USA, 2007), ACM, pp. 461–478.

[49] NAFTALIN, M., AND WADLER, P. Java Generics and Collections.
O’Reilly Media, Inc., 2006.

[50] NÄGELI, S. Ownership in design patterns. Master’s thesis, Soft-
ware Component Technology Group, Department of Computer Sci-
ence, ETH Zurich, 2006.

[51] NOBLE, J., CLARKE, D., AND POTTER, J. Object ownership for dy-
namic alias protection. In Proceedings TOOLS ’99 (Nov. 1999).

[52] NOBLE, J., VITEK, J., AND POTTER, J. Flexible Alias Protection. In
ECOOP ’98—Object-Oriented Programming (1998), E. Jul, Ed., vol. 1445
of Lecture Notes in Computer Science, Springer, pp. 158–185.

[53] PAGH, A., PAGH, R., AND RUZIC, M. Linear probing with constant
independence. In Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of computing (New York, NY, USA, 2007), STOC ’07,
ACM, pp. 318–327.

[54] PARNAS, D. L. On the criteria to be used in decomposing systems
into modules. Commun. ACM 15, 12 (Dec. 1972), 1053–1058.

[55] PARNAS, D. L. A technique for software module specification with
examples. Commun. ACM 15, 5 (May 1972), 330–336.

[56] PIERCE, B. C. Types and programming languages. MIT Press, Cam-
bridge, MA, USA, 2002.

[57] POTANIN, A. Generic Ownership: A Practical Approach to Ownership
and Confinement in OO Programming Languages. PhD thesis, Victoria
University of Wellington, 2007.

142 BIBLIOGRAPHY

[58] POTANIN, A., DAMITIO, M., AND NOBLE, J. Are your incoming
aliases really necessary? counting the cost of object ownership. In
Proceedings of the 2013 International Conference on Software Engineering
(Piscataway, NJ, USA, 2013), ICSE ’13, IEEE Press, pp. 742–751.

[59] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Defaulting
Generic Java to Ownership. In In Proceedings of the Workshop on For-
mal Techniques for Java-like Programs in European Conference on Object-
Oriented Programming (FTfJP (2004), Springer-Verlag.

[60] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Generic
ownership. In In 7th Workshop on Formal Techniques for Java-like Pro-
grams - FTfJP2005 (2004).

[61] POTANIN, A., NOBLE, J., CLARKE, D., AND BIDDLE, R. Generic
Ownership for Generic Java. In Proceedings of the 21st annual ACM
SIGPLAN conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (New York, NY, USA, 2006), OOPSLA ’06,
ACM, pp. 311–324.

[62] POTTER, J., NOBLE, J., AND CLARKE, D. The ins and outs of objects.
In Proceedings of the Australian Software Engineering Conference (Wash-
ington, DC, USA, 1998), ASWEC ’98, IEEE Computer Society, pp. 80–.

[63] SUMMERS, A. J., DROSSOPOULOU, S., AND MÜLLER, P. Universe-
type-based verification techniques for mutable static fields and meth-
ods. Journal of Object Technology 8, 4 (2009), 85–125.

[64] VITEK, J., AND BOKOWSKI, B. Confined types in Java. Software —
Practice and Experience 31, 6 (2001), 507–532.

[65] WADLER, P. Linear types can change the world! In Working Confer-
ence on Programming Concepts and Methods (Sea of Galilee, Israel, April
1990), IFIP TC 2.

BIBLIOGRAPHY 143

[66] WEGNER, P. Dimensions of object-based language design. In Confer-
ence proceedings on Object-oriented programming systems, languages and
applications (New York, NY, USA, 1987), OOPSLA ’87, ACM, pp. 168–
182.

[67] WRIGSTAD, T. Ownership-Based Alias Management. PhD thesis, Royal
Institute of Technology, Sweden, May 2006.

[68] WRIGSTAD, T., AND CLARKE, D. Existential owners for ownership
types. Journal of Object Technology 6, 4 (2007).

	Introduction
	Contributions
	Outline

	Background
	Object Sharing
	Alias Control
	The Geneva Convention
	Alias Transitivity and Aggregation
	Uniqueness
	Full Alias Protection
	Confined Types
	Flexible Alias Protection

	Object Ownership
	Deep Ownership
	Universes
	External Uniqueness
	Ownership Generic Java (OGJ)
	Wildcards and Generic Ownership
	Generic Universe Types (GUT)

	OGJ+ Language
	An OGJ+ Example
	Reference Types
	Class Hierarchy
	Subtyping
	Interfaces

	Nesting Scheme
	Class Declaration
	Field/Variable Declaration
	Method Declaration

	Instantiation and Casting
	Wildcard Types
	Ownership Context Covariance
	Readonly References

	From Java To OGJ+
	Arrays
	The main() Method

	Inner Classes
	Statics
	Static Fields
	Static Methods
	Static Blocks and Nested Static Classes

	Clone
	Equals
	Exception Handling
	Enum Types
	Implementation Methodology
	Ownership Domains and Types
	Type Checking
	Testing
	Usage

	Generic Ownership Compliant Collections
	Interfaces
	The Collection Interface
	The Map Interface
	The Iterator Interface

	Lists
	Array List
	Linked List
	Vector (legacy)

	Queues
	Priority Queue
	Array Deque

	Maps
	Hash Map
	Linked Hash Map
	Hash Table (legacy)
	Identity Hash Map
	Tree Map

	Sets
	Hash Set
	Linked Hash Set
	Tree Set

	Usability

	Evaluation
	IteratorLoops
	CollectionLoops
	MapLoops
	MapMicroBenchmark
	Discussion

	Conclusions
	Limitations
	Future Directions

