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Abstract

Sustainability in fisheries is a complex concept and one that has attracted

a rich history of research over time. The basic concerns of sustainability

are how to reconcile ecological, economic and social requirements within the

perspectives of intra - and inter-generational equity. Therefore, maintaining

these requirements simultaneously is critical to achieving a perennial system

and avoiding so-called “crisis” situations. It is contended that viability the-

ory, which is a relatively new area of mathematics, rigorously captures the

essence of sustainability. Using viability theory, this thesis develops two via-

bility models based on different direct conservation measures (i.e. input and

output controls) to examine the feasibility conditions under which a regulator

can achieve sustainability in a fishery characterised by a “by-catch process”,

whereby one species is targeted and another species is incidentally caught as

by-catch. The first model considers a by-catch fishery where fishing input

is controlled by a regulator. The second model considers two interrelated

fisheries managed using a dual quantity-price system, which is based on New

Zealand’s Quota Management System (QMS). For each model, the set of

constraints representing the “good health” of the system are characterised

using managerial priorities identified in the literature. Then, the viability

kernel, which is the largest set of initial states for which there are controls

that result in inter-temporal trajectories satisfying all the constraints, is ap-

proximated numerically. This is achieved by employing VIKAASA, which



is a computer application capable of generating kernel approximations. The

viability kernel provides the regulator with meaningful reference values and

indicators for desirable or undesirable states of the fishery, which serve as

important inputs into policy decisions. This study also shows the potential

for viability theory to provide policy makers with a better insight of how to

integrate ecosystem considerations into the QMS.
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Chapter 1

Introduction

The scope for contribution by fisheries to global food security and economic

growth is significant. In 2010, global fisheries supplied the world with about

148.5 million tonnes of fish valued at US$217.5 billion, and supported either

directly or indirectly the livelihoods of about 10-12 percent of the world’s

population (FAO, 2012). Fish is a vital source of nutritious food that has

been part of the human diet since the early stages of human evolution with

the earliest definitive evidence dating back to about 1.95 million years ago

(Braun et al., 2010)1. The dietary contribution of fish is significant in terms

of animal proteins with about one-fifth of the world’s population obtaining

at least 20 percent of their animal protein intake from fish, and with some

developing countries relying almost exclusively on fish (FAO, 2012). Marine

fisheries also have the potential to have the lowest ecological impact of all

sources of animal protein because they do not generate the waste and disease

1Fish also provides vital compounds for brain growth, which may have contributed

towards the development of larger brains in the early stages of human evolution (Braun

et al., 2010).
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2 CHAPTER 1. INTRODUCTION

problems found in both terrestrial and aquatic animal husbandry (Hauge

et al., 2009).

The sad reality however is that marine resources are under extreme pres-

sure worldwide. Recent estimates show that about three-quarters of the

world’s fish stocks are either fully exploited or over-exploited and that the

proportion of under-exploited stocks is declining increasingly (FAO, 2012).

These statistics are not surprising given that the second half of the 20th cen-

tury witnessed the remarkable growth in marine fisheries production driven

by the dramatic expansion in global fishing effort, so rapid that their trend

exceeded human population growth (Pauly et al., 2002)2. These are clear

warning signs that fishing practices in many parts of the world are unsus-

tainable and that there are major systematic gaps in fisheries management.

As a consequence, the sustainability of fisheries has increasingly become a

popular issue both nationally and internationally, and it is of particular focus

in this thesis.

This thesis is also concerned particularly with the by-catch fishery

management problem or simply the “by-catch problem” present in many

fisheries worldwide. The spatial coexistence of marine species, imperfectly

selective gear and potentially incentive-distorting managerial policies cause

a significant portion of catch to diverge from the desired species (Abbott &

Wilen, 2009). As a result, a number of species are unintentionally caught

as by-catch. By-catch is widely regarded as an undesirable “byproduct” of

fishing. Pascoe et al. (2010) put forward several reasons why by-catch poses

2Global marine production increased from 16.8 million tonnes in 1950 and peaked at

86.4 million tonnes in 1996 (FAO, 2012). However, production has been declining in the

last few years recording 77.4 million tonnes in 2010 (FAO, 2012).
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a major challenge for fishers, fisheries managers and conservation groups: (i)

incidental catch may impose additional costs on fishers that outweigh the

economic benefits from landing it, most likely resulting in the by-catch be-

ing discarded3, (ii) the mortality rate associated with discards is generally

high, so where the by-catch is a commercial species there is a direct cost to

the fishing industry in the form of foregone income or loss of future yield,

(iii) where the by-catch is a non-commercial or protected species such as

turtles, seabirds and marine mammals, discards entail non-market costs to

society, (iv) discarded by-catch is often not reported, which may adversely

affect the quality of stock assessments used to inform management decisions4.

The significance of discarding as a wasteful and unsustainable practice is in-

creasingly being realised given the apparent excessive exploitation of marine

resources and that a significant portion of the world’s population still suffers

from hunger (Pascoe, 1997; FAO, 2012)5.

Sustainability in multi-species fisheries is a complex concept and one that

has attracted a rich history of research over time (Charles, 1994). The

3These costs may include the opportunity cost of holding up storage space or quota

allocation that could otherwise be used for higher valued stocks, the potential damage

to high valued target species while in the nets with non-targeted stocks, and the cost

associated with employing more selective fishing gear.
4For example, the underreporting of catch for a particular stock may result in its

total allowable catch (TAC) being set too high. Fisheries managers try to deal with the

discarding problem by placing observers on fishing vessels (Hammond & Trenkel, 2005).
5About 7.3 million tonnes of fish suitable for human consumption are discarded every

year (Kelleher, 2005). This is a substantial reduction from the 27 million tonnes proposed

in Alverson et al. (1994) implying that since 1994 there have been significant efforts to

improve the selectivity of fishing gear and to induce greater incentives to utilise what

would otherwise be discarded.
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definition of sustainability and its operational content are not always well

explained. However, there is a general consensus that a multi-criteria ap-

proach is required when defining sustainability (Charles, 1994). For instance,

De Lara et al. (2007, p 761) define sustainability as the “ability to maintain

a system within the limits of given objectives for an indefinite time”. Some-

times these objectives are not compatible with each other, which therefore

leads to a so-called “crisis” (or unsustainable) situation where at least one of

the objectives is not met. Conflict between ecological, economic and social

objectives is one of the reasons for management failure in fisheries (Hilborn,

2007; Martinet et al., 2010).

Managing the trades-offs associated with conflicting objectives also poses

a challenge for fisheries management (Cheung & Sumaila, 2008). This is

illustrated in Figure 1.1, which shows popular management targets depending

on the manager’s goal and whether the fishery is single- or multi-species.

The schematic diagram is based on the Gordon-Schaefer model commonly

found in the fisheries economics literature6. The dashed lines represent the

hypothetical revenue generated from harvesting a target species (in blue) and

a by-catch species (in red)7. Total revenue is represented by the solid line (in

black). The double hump shape of this curve is caused by the less productive

by-catch species being extirpated as fishing effort increases. Total cost is

made up of variable cost only and it is proportional to fishing effort. It is

represented by the upward-sloping solid line (in green).

The ecological objective generally found in national legislations and inter-

6The Gordon-Schaefer model is presented in Section A.2 of Appendix A.
7Note that revenue here is the steady (or equilibrium) sustainable revenue. The unit

price of fish is assumed to be constant so the corresponding sustainable yield can easily

be obtained by dividing revenue by the price of fish.
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Figure 1.1: A comparison of popular management targets.

national agreements is maintaining the target stock at levels that sustain the

maximum level of catch or the maximum sustainable yield (MSY) (Hilborn,

2007). This requires that the fishery be maintained at B in Figure 1.1 either

by enforcing a limit on fishing effort equal to eMSY or setting a catch limit at

the appropriate level. However, from an economic perspective, maintaining

the fishery at A is desired because it maximises economic rent. Such a target

is commonly referred to as the maximum economic yield (MEY) and gen-

erally results in foregoing higher production for more profit (Kompas et al.,

2011)8. If fishing effort is an indicator of employment in the fishery, then

social advocates for employment would prefer that the fishery be maintained

at the “bionomic equilibrium” (Gordon, 1954), i.e. at C, which supports

the highest level of fishing effort eBE and therefore the highest level of em-

8MEY is also more conservative in the sense that stocks are larger than stocks at MSY,

so the fishery is more resilient to larger negative shocks to the fish population (Kompas

et al., 2011).
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ployment. For an analytical derivation of the management parameters eMSY,

eMEY and eBE, and the corresponding biomass and yield levels, see Section

A.2.

Furthermore, the protection of stocks taken as by-catch is vital as alluded

to earlier. It is therefore of particular interest to consider the policy impli-

cations of setting targets in a fishery whereby multiple species with different

productivity are caught jointly. For instance, setting a management target

appropriate for the target stock, e.g. at B or C in Figure 1.1b would be

utterly devastating for the less productive by-catch species as it would be

driven to extinction.

Managing the above trade-off becomes more difficult when considering

the bio-economic dynamics and uncertainties inherent in fishery systems.

For instance, natural variability in stocks, uncertainty in the price of fish or

the precise cost of fishing imply that the “Total Revenue” and “Total Cost”

curves in Figure 1.1 shift up and down in a hard-to-predict fashion, making it

all but impossible to determine management targets such as MSY and MEY

(Kompas et al., 2011).

Traditionally, multi-objective problems such as those presented above are

solved explicitly by defining a criterion that encompasses all of the objec-

tives to be optimised. This however requires assigning weights to all of the

objectives in order to materialise the trade-offs between conflicting objec-

tives. According to Martinet et al. (2010), determining these weights can be

difficult because they reflect the relative importance of different objectives,

which depends on normative choices. The choice of weights and therefore

the optimal solution can be influenced by the relative bargaining power of

stakeholders.
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Alternatively, it may be easier and more practical to represent the ob-

jectives by thresholds or constraints that materialise the “good health” or

sustainability of the fishery (Martinet et al., 2010). The regulator’s problem

then is to avert a crisis by finding a way or strategy that maintains the fishery

within the realms of safety defined as such by these constraints. Sustainabil-

ity appears then to be more of satisficing problem in the sense prescribed

in Simon (1955). That is, there are bounds on human rationality and as a

consequence we seek to attain some sufficient level of a goal variable rather

than the constrained optimum. In fact, experience shows that humans may

know enough to model the conditions under which systems are likely to per-

sist as sources of goods and services, rather than the theoretical “optimum”

conditions (Cury et al., 2005).

This thesis employs viability theory (Aubin, 1991), which has been ex-

plicitly developed for the purpose of analysing dynamic systems that face

constraints, making it particularly well suited for modelling and solving sus-

tainability problems. The viability approach allows for the characterisation

of initial conditions from which there exists a control strategy that ensures

that the system evolves without ever violating any of the constraints. The

largest set of such initial conditions is called the viability kernel. Solving a

viability problem thus requires the computation of the viability kernel, which

can be a complex task depending on the dimensionality of the problem at

hand. For this, in this thesis, the viability kernel is computed numerically

using VIKAASA9, a computer application dedicated to solving and analysing

9Viability Kernel Approximation Analysis and Simulation Application. The Sanskrit

word vikaasa (EvkAs) means “progress” or “development”. The developers of VIKAASA

(Jacek B. Krawczyk and Alastair S. Pharo) believe that their application represents vikaasa
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viability problems.

Two specific fisheries management regimes are considered. The first con-

siders a fishery managed by an input control, which is defined as a restriction

put on the intensity of use of gear that is used to catch fish (Pope, 2002). For

instance, restrictions on the number or size of fishing vessels, the length of

the fishing season, or the type of fishing gear. The other considers a fishery

managed by an output control, which is defined as a limit placed upon the

weight or the number of fish that is withdrawn from a fishery in a period of

time (Pope, 2002). For instance, annual total allowable catches or daily bag

limits used in many recreational fisheries.

Here is how this thesis is organised. Chapter 2 discusses viability the-

ory further and formalises the theoretical framework underlining a viability

problem. It also formally introduces VIKAASA, which is used to solve and

analyse the viability models presented in this thesis. The goodness of the

VIKAASA kernel approximation is verified by reproducing numerically the

viability kernel for a calibrated single-species fishery problem that has been

solved analytically in Béné et al. (2001). Chapter 3 applies the viability

approach to solve a dynamic bio-economic model of a two-species fishery

characterised by joint production and fixed production capacity. Here, man-

agement of the fishery is based on an input control or more specifically a

single command variable that controls variation in fishing effort. Chapter 4

casts the viability problem in a dual “quantity-price” managed fishery based

on New Zealand’s integrated quota management and deemed value systems.

This provides a richer platform for policy making, particularly in the context

in the process of understanding and application building in viability theory (Krawczyk &

Pharo, 2011). VIKAASA runs in MATLAB R⃝ and GNU Octave.



9

of fisheries management in New Zealand. In essence, management here is di-

rected at limiting the amount of fish that is commercially caught (i.e. output

control). The thesis is wrapped up in Chapter 5 by presenting the conclu-

sions and limits drawn from this research. Some discussion is also made as

to where the research might be extended.
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Chapter 2

An introduction to viability

theory

2.1 An overview

Viability theory, a relatively young area of mathematics, was first developed

by French mathematician Jean-Pierre Aubin in the late 1970s (Aubin et al.,

2011). The theory was inspired by the remarks attributed to the Greek

philosopher Democritus by Jacques Monod that “[e]verything that exists in

the Universe is due to Chance and Necessity” (Aubin, 1991, p ix). Dynamic

systems are considered to evolve under contingent, stochastic or tychastic1

uncertainty such that their evolutions are constrained to adapt to the sys-

tems’ environment. This is particularly true in economics where agents have

to adapt to scarcity constraints, balances between supply and demand, and

many other constraints. This is equally true in biology where the human

1The term “tychastic” originates from “tyches” meaning “chance” in classical Greek.

11
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body for instance has to maintain a constant internal environment (e.g. body

temperature) in spite of environmental changes, a biological principle known

as “homeostasis”.

The basic problem (referred henceforth as viability problem) that viability

theory attempts to solve is whether, for a given initial state, a control strategy

exists such that the system’s evolution remains confined to pre-determined

constraints or corridors, beyond which its perennial state cannot be main-

tained. The set of all initial states from which it is possible to remain within

these corridors dynamically is called the viability kernel, and hence becomes

a useful tool for analysing viability problems.

Suppose that these corridors are constrained by normative measures rep-

resenting knowledge of the conditions required to achieve sustainability or

avert catastrophic developments. Viability theory then provides the right

analytical framework to address so-called “sustainability problems” whose

“solution” consists of finding a way to avert catastrophic outcomes by main-

taining the system within the realms of safety or acceptability (Krawczyk &

Pharo, 2013).

The main attraction of viability theory, particularly for the purpose of

this thesis, therefore lies in the results it provides. Some of these results are

noted here. Firstly, it formally defines the boundary of the viability kernel,

which is a useful tool for analysing sustainability problems. Secondly, via-

bility theory is not concerned with determining theoretical optimum states,

but the feasibility conditions that allow for multiple objectives to be fulfilled

simultaneously at any time. The viability strategy or solution is therefore

satisficing (i.e. good enough) in sense prescribed in Simon (1955)2. Given

2This thesis shares the contention that economic agents display bounded rationality
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this, economic results obtained through viability theory might be closer to

what economic agents are really after. Thirdly, viability theory provides a

dynamic and multi-criteria framework that is well equipped to reconcile po-

tentially conflicting management objectives (e.g. ecological, economic and

social objectives). Lastly, viability theory accommodates inter-generational

equity by assigning equal weight to every time period. It therefore provides

an interesting analytical framework to deal with sustainable development,

which places an emphasis on meeting “the needs of the present without com-

promising the ability of future generations to meet their own needs” (WCED,

1987, p 43)3.

Viability theory has been successfully applied to a variety of problems

across many disciplines. It has been notably applied to the sustainable man-

agement of natural resources and especially fisheries, see Béné et al. (2001);

Eisenack et al. (2006); De Lara et al. (2007); Martinet & Doyen (2007);

Chapel et al. (2008); De Lara & Martinet (2009); Péreau et al. (2012); Doyen

& Péreau (2012) among others. For a viability analysis of fisheries recovery

programs, see Martinet et al. (2007, 2010). For a viability perspective on the

ecosystem approach to fisheries, see Bonneuil (2003); Mullon et al. (2004);

Cury et al. (2005); De Lara et al. (2012); Doyen et al. (2012); Cissé et al.

(2013). These papers model multi-species fisheries and species interactions.

However, they do not consider the by-catch problem per se, which this thesis

aims to address.

Other applications can also be found in the areas of aerodynamics4 (Oishi

et al., 2006), finance (Aubin et al., 2005), macro-economics (Krawczyk &

and therefore are only after satisficing outcomes rather optimal outcomes.
3World Commission on Environment and Development.
4For a brief example, see Section A.1 of the Appendix to this chapter.
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Kim, 2013, 2009; Bonneuil & Saint-Pierre, 2008),micro-economics (Krawczyk

et al., 2012; Krawczyk & Serea, 2011), and sociology (Bonneuil, 2000). Aubin

et al. (2011) provides a good illustration of other applications, including engi-

neering (i.e. robotics) and environmental (i.e. climate research) applications.

This chapter is organised as follows. Section 2.2 presents a general for-

mulation of a viability problem and defines basic concepts. Section 2.3 in-

troduces VIKAASA, a numerical application used to generate the viability

kernels for the viability problems considered in this thesis. This section also

includes some discussion on how to formulate a viability problem in VIKA-

ASA, what are the key ingredients required for VIKAASA to work, and how

the algorithm(s) underlining VIKAASA works. The limitations of VIKA-

ASA are also highlighted. Section 2.4 verifies the goodness of the VIKAASA

kernel approximation by reproducing numerically the viability kernel for a

calibrated single-species fishery problem that has been solved analytically in

Béné et al. (2001). This also serves as a good “warm up” before analysing

more complex viability models in subsequent chapters. Section 2.5 wraps up

this chapter by providing some concluding remarks.

2.2 A viability problem

Following standard practice in mathematical papers about viability theory,

the dynamics of a non-deterministic system are represented as a differential

inclusion5,

ẋ(t) ∈ F (x(t)) , (2.1)

5A differential inclusion is the mathematical translation of “chance” (Aubin et al.,

2011). It can be thought of as a set-valued equivalent of a differential equation.
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which states that at x(t) the change in the system’s state, i.e. its velocity,

will be a member of F (x(t)), where F is a function that takes the system’s

state and returns a set of possible velocities. Exactly which velocity will

eventuate is subject to uncertainty, which may come from either “distur-

bance” and “perturbation” of various kinds, or from modeling errors due

to the impossibility of a comprehensive description of the system dynamics

and/or parameters (Aubin, 1990; Krawczyk & Pharo, 2013). Regulation is

also considered a potential source of uncertainty given that commitment by

a regulator to a particular “closed-loop” control policy is not assumed in

viability theory (Krawczyk & Pharo, 2013).

Suppose that the dynamics of the system are related to certain “controls”,

which are restricted by state-dependent constraints. The multi-valued map

F then has the form F (x) ≡ {f(x), u); u ∈ U (x)}. In this case, the dynamic

system (2.1) can be described as

ẋ(t) = f (x(t), u(t)) (2.2)

u(t) ∈ U (x(t)) , (2.3)

where (2.2) is a standard parameterised differential equation and (2.3) states

that the control choice u(·) must come from a potentially state-dependent

set, U (x(t)) ⊂ Rm. So for a given x(t), there is an array of possible controls

to choose from in U (x(t)) and hence have a set of points in the state-space,

which can be reached at time t + γ (where γ > 0 is small). For example,

in a fishery-management problem, the fish biomass “tomorrow” will be in a

cone determined by the apex at the present state and rays corresponding to

different fishing strategies.
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Furthermore, let K represent some closed set of (viability) constraints

that state x(t) must satisfy for all t6,

x(t) ∈ K, ∀t ∈ Θ. (2.4)

Given a set-valued map F : K  X, it is said that x(0) ∈ K ⊂ X is viable

in K under F if there exists at least one solution to the following system:

∀t ∈ Θ

 x(t) ∈ K,

ẋ(t) ∈ F (x(t)),
(2.5)

that starts at x(0) and remains in K indefinitely7.

The viability problem is thus concerned with determining those members

of the control set U (x(t)) for which the system’s evolutions are viable in K.

Given such a problem, viability theory attempts to establish the existence of

the viability domain, D ⊆ K, which indicates a viable area for which there

are sufficient controls that maintain the system in K from any point in D8.

That is, for every element x(0) ∈ D, there exists a function (or feed-back

rule) g : Rn 7→ Rm that takes each element, k, of the constraint set K ⊂ Rn

6This requirement (2.4) provides the mathematical translation of “necessity” (Aubin

et al., 2011).
7Viability is normally defined in terms of an infinite time horizon, i.e. Θ ≡ [0,∞],

which is the case for the viability problems considered in this thesis. However, it is also

possible to define Θ ≡ [0, T ], T ∈ R+, and talk about finite-time viability or a capturability

problem, which is discussed briefly in Section A.1 in the Appendix to this chapter.
8The viability theorem underlining the existence of the viability domain requires estab-

lishing a relationship between any closed set of points D viable under F , and the concept

of the contingent cone to D at x, which defines the trajectories that point “inside” of D,

starting from x. See e.g. Krawczyk et al. (2013, p. 375) and the relevant citations therein

for a more formal discussion.



2.2. A VIABILITY PROBLEM 17

and returns a control policy u such that g(k) ∈ U(x),

x(t) ∈ K ∀t ∈ Θ,
(2.6)

where x(t) is a solution to (2.5).

The main theorem of viability theory asserts that the problem’s viability

kernel, VF (K) ⊆ K is the largest possible viability domain, giving all initial

conditions in K, for which a set of controls in U (x(t)) exists to prevent the

system from exiting K over t ∈ Θ. The viability kernel of K is formally

defined below.

Definition 2.2.1. The viability kernel of the constraint set K for the

dynamics F is the largest set of initial conditions x(0) ∈ K, denoted by

VF (K), and defined as follows:

VF (K) ≡

x(0) ∈ K :

∣∣∣∣∣∣ ∃u(·) such that the solution x(·) of (2.1)

starting from x(0) remains in K, ∀ t ∈ Θ

 .

(2.7)

Given the control system described by (2.2) and (2.3), the viability con-

straint (2.4), and the time horizon Θ, the associated viability problem thus

consists of establishing the existence of the viability kernel. When the kernel

is non-empty, i.e. VF (K) ̸= ∅, the viability problem is said to poses a solu-

tion. The viability kernel is an important policy tool, in that it can be used

to formulate control rules that maintain the system’s sustainability.

As a summary to this section, the key elements of a viability problem are

summarised and presented in Box 1 below.
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Box 1. General specifications for a viability problem

1. A continuum of time values, Θ ≡ [0, T ], where T can be finite or infinite.

2. A vector of real-valued state variables, x(t) ≡ [x1(t), x2(t), . . . xn(t)]
′ ∈

Rn, ∀ t ∈ Θ that together represent the dynamic system.

3. A constraint set, K ⊂ Rn , which is a closed set representing some

normative constraints imposed on these state variables.

4. A vector of real-valued controls, u(t) ≡ [u1(t), u2(t), . . . um(t)]
′ ∈

Rm, ∀ t ∈ Θ, that represent the set of feasible controls available to

the decision maker.

5. A set of normative restrictions imposed on the controls, such that u(t) ∈

U (x(t)). U : Rn 7→ Rm is a set-valued function, which gives the set of

control vectors available at each state.

6. The system dynamics can be represented as a set of real-valued first-

order differential inclusions,

ẋ(t) ∈ F (x) ≡ {f(x, u), u(t) ∈ U (x(t))}.

The next section introduces an application developed to generate approx-

imate viability kernels using numerical methods, which spares the user of the

complexity of solving for the viability kernel analytically.
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2.3 VIKAASA: A numerical method for the

determination of viability kernels

Solving a viability problem, such as that outlined in Box 1, requires compu-

tation of the problem’s viability kernel. Computation of the viability kernel

can be a very complex exercise, and the level of difficulty increases with the

dimensionality of the problem. Although an analytical characterisation of

the viability kernel is possible, for instance in Béné et al. (2001), in most

cases numerical methods have been the preferred means of overcoming the

complexity of computing viability kernels. One such application that makes

use of numerical methods is VIKAASA, which is used to compute the kernel

approximations of viability problems considered in this thesis.

There are other kernel computation algorithms, including those proposed

in Frankowska & Quincampoix (1990); Saint-Pierre (1994); Deffuant et al.

(2007). Brief comments on these algorithms are presented in Krawczyk &

Pharo (2013). For a reference list of more algorithms, see Krawczyk et al.

(2013).

2.3.1 Algorithms

VIKAASA attempts to establish the viability kernel VF (K) by looking for

solutions to (2.5). Gaitsgory & Quincampoix (2009) provide the base for

how to do this. In broad terms, if an optimal control problem can be solved

from x(0) ∈ K and the optimal solution x(·) starting from x(0) satisfies

x(t) ∈ K, ∀t, then x(0) is viable.

The are two kernel approximation algorithms that are currently imple-
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mented in VIKAASA. The “rejection” algorithm is based on the above

method. It approximates the viability kernel by the locus of state-space

positions for which solutions to an auxiliary cost-minimising optimal control

problem can be found over a grid of state-space points xδ ∈ Kδ ⊂ K, where

Kδ is a suitably discretised K. The other (“inclusion”) algorithm in contrast

solves a truncated optimal stabilisation (regulation) problem. That is, for

each point in Kδ, the algorithm accepts a point as viable if the system’s

dynamics can be stabilised without leaving Kδ in finite time.

The rejection algorithm has only just been implemented in VIKAASA, so

it is not considered in this thesis. Nonetheless, for a detailed discussion of the

rejection algorithm and its performance relative to the inclusion algorithm,

see Krawczyk et al. (2013). The numerical results presented in this thesis

have thus been generated using the inclusion algorithm exclusively. The in-

clusion algorithm (referred henceforth simply as the algorithm) is extensively

discussed in Krawczyk & Pharo (2013) and Krawczyk & Pharo (2011). For

convenience, in what follows, an explanation of how the algorithm works as

well as the key inputs required for the algorithm to work are presented.

2.3.2 Formulation of a VIKAASA viability problem

For a viability problem to be compatible with VIKAASA, the specifications

outlined in Box 2 must be satisfied. Note that a comparison between Boxes

1 and 2 shows that only a limited class of viability problems can be analysed

with VIKAASA.
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Box 2. Specifications for a VIKAASA viability problem

1. The continuum of time values must be infinite, i.e. Θ ≡ [0,∞)9.

2. There are no technical limits to how many state variables that can be

specified. However, in order for visualisation of the resulting viability

kernel to be possible, there must be at least two state variables.

3. Although any constraint set definable as a subset of a “rectangular” set

(hyper-rectangle) can be specified, the underlying algorithm requires

that the containing hyper-rectangle be explicitly given as a set of upper-

and lower-bounds. That is, K ⊆ [x1, x1]× [x2, x2]× · · · × [xn, xn] ≡ K̂,

where xi is the ith variable’s lower bound, and xi is its upper bound.

4. Multiple control variables can be specified, i.e. m ≥ 1.

5. The control set, U(x) must be the same for all values of x, and must

be symmetrical about zero. That is, given that u is a scalar, U =

[−c, c], ∀x, where c ∈ R+.

6. VIKAASA can only work with deterministic autonomous system’s dy-

namics. For any given point in the state-space, and any given control

choice, there can only be one possible trajectory. That is, this appli-

cation cannot model stochastic processes. It should also be noted that

the kernel approximation algorithm may not perform well with highly

non-linear differential inclusions, due to the simple numerical methods

employed to solve them.
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In addition to the standard formulation specified in Box 2, the inclusion

algorithm also requires the following parameters in order to approximate

viability kernels:

1. A discretisation, δ = [δ1, δ2, . . . , δn]
′ ∈ Rn, which determines the finite

subset of K to be examined by the algorithm.

2. A stopping tolerance, ϵ ∈ R+ is used as the criterion for “near-steadiness”

of the system.

3. A step size, h ∈ R+ is needed by the approximation algorithm in order

to compute the system’s trajectories using the Euler method.

4. A control algorithm, u∗ : Rn → U , which is a stationary feedback rule,

responsible for slowing the system’s velocity until its norm falls below

the stopping tolerance,
√
n · ϵ.

The inclusion algorithm begins by dividing the constraint space K along

its n vertices into δ evenly spaced points, starting at xi and finishing at

xi, ∀ i = 1, . . . , n, and then combining these points to obtain a discretised

version of the constraint set, Kδ, which contains δn points. For each point

x(0) ∈ Kδ, the algorithm considers whether a first-order Euler approximation

of the system can be brought to a “near-steady” state within some finite

time without violating the constraints. Near-steadiness is achieved when the

Euclidean norm of the system’s velocity,

||f(x, u)|| =
√

ẋ1(x, u)2 + ẋ2(x, u)2 + · · ·+ ẋn(x, u)2,

9Capturability problems such as those specified in Section A.1 cannot be solved in

VIKAASA.
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is less than the norm of a movement of ϵ in every direction,
√
n · ϵ.

VIKAASA offers a number of cost-minimising rules (control algorithms)

for use with the inclusion algorithm10. The most sophisticated of these and

the one employed to generate the numerical results of this thesis, uses MAT-

LAB’s fmincon nonlinear optimisation routine to choose the control u ∈ U

at each time realisation that minimises the norm of the system’s velocity

one Euler time-step into the future11, so that u∗(x) = argminG
u {||f(x + h ·

f(x, 0), u)||}12.

The effectiveness of the control u∗ in slowing the system is contingent on

the particular point in Kδ under consideration. If the system can be con-

sistently decelerated from x(0), and if this can be done fast enough, then

the algorithm will be able to bring the system’s velocity below the predeter-

mined threshold, in which case x(0) is considered viable and it is included

in the approximate viability kernel Vδ
F (K). Otherwise, the control will not

be effective in slowing the system, in which case either the system will leave

the constraint set, or it will loop (or “orbit”) infinitely13, so the algorithm

10VIKAASA also allows for the possibility of writing one’s own control algorithm. In-

stead of minimising the Euclidean norm of the system’s velocity, the user may specify

some other cost function to be minimised. The VIKAASA manual (Krawczyk & Pharo,

2011) provides further details.
11More forward-looking steps will identify more viable points, but at the cost of increased

computational time.
12The symbol minG refers to the numerical method of function minimisation employed,

for this thesis it is fmincon.
13As the algorithm is not interested in the content of f(·, ·), but simply attempts to

solve (2.5), it is technically undecidable as to whether the algorithm will ever finish. For

this reason, the algorithm gives up after some maximum number of loops, i.e. t = 46, 000.

Consequently, some viable points will be missed by the algorithm if the evolutions starting
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cannot establish that x(0) is viable and consequently it is excluded.

Thus, from each point in Kδ, the numerical simulation routine iterates

the system for as many steps as it takes either to violate one of the constraints

or for the Euclidean norm to fall below the predetermined criterion14.

2.3.3 Limitations

However, it should be noted that there are important limitations in the in-

clusion algorithm. Briefly,

• The algorithm can only work with viability problems that are formu-

lated according to the specifications provided in Box 2.

• The algorithm suffers from the “dimensionality curse”, which comes

from the need to discretise the constraint space in order to compute

how the dynamical system behaves locally everywhere in the state-

space. The computational time for a kernel approximation increases

exponentially with the number of dimensions, leading to some very

long waiting times for “kernel runs” to complete15.

• The algorithm depends on the user’s choices of the parameters: δ, ϵ,

h and u∗, which affect the “goodness” of the approximation. For in-

stance, the algorithm can falsely identify points as viable when they are

at these points are large orbits.
14This is of course subject to the requirement that the number of iterations does not

exceed 46,000, see footnote 13.
15For the four dimensional problem presented in Chapter 4, computation of its kernel

took 16 hours on a PC with an Intel R⃝ Core
TM

(Quad) i7-3630QM 2.4GHz 6MB Processor

and 8GB DDR3 RAM, using all four processors in parallel.
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not (i.e. false positive), if the stopping tolerance is too “generous”, in

which case verification of any results with a tighter grid and/or tighter

tolerance is something that should perhaps be considered. Conversely,

the algorithm may identify points as non-viable when they are actu-

ally viable. This can be observed for some highly non-linear dynamical

systems due to the simple numerical methods employed to solve them.

Increasing the number of forward-looking steps s improves the effec-

tiveness of the control algorithm u∗ in determining the viability (or

non-viability) of state-space points, and thus addressing these “false

negatives”. However, Krawczyk & Pharo (2011) find that s > 2 is

not practical because of the extremely long waiting times involved in

computing the control.

For most viability problems, the “true” kernel VF (K) is unknown unless

it can be determined analytically, which makes verifying that the approxi-

mated kernel Vδ
F (K) closely resembles VF (K) a rather impossible task. To

satisfy VIKAASA users of the “goodness” of the VIKAASA kernel approx-

imation and therefore the quality of the numerical results presented in the

subsequent chapters of this thesis, the next section presents the viability ker-

nel generated by VIKAASA for a calibrated fishery problem, whose kernel

has been established analytically in Béné et al. (2001).
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2.4 Solving a simple fishery’s viability prob-

lem

Here, a bio-economic fishery model (referred henceforth as the basic model)

based on Béné et al. (2001), and an approximation of its viability kernel

computed using VIKAASA are presented. In short, this problem concerns

the “viability” of a fishery in which a single fish stock is being exploited by a

fishing fleet. Viability here means the ability to maintain the fishery within

the limits of ecological, economic and social objectives for an indefinite pe-

riod. The basic model also provides the underlining platform for the viability

models developed in Chapters 3 and 4, making this section a good introduc-

tion to viability modelling and analysis to be undertaken in the following

chapters, without getting into too much detail.

2.4.1 Basic model

The elements of the model are outlined in Box 3 following the numbering used

in Box 2, so that one can verify that each of the VIKAASA requirements is

met.

Box 3. Basic model specifications

1. The model is concerned with an infinite time horizon, so Θ = [0,∞).

2. The system is described by two state variables: fishable biomass (or

simply “biomass”) x(t) and fishing effort e(t). Effort is exerted by the
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fishing fleet to extract the resource (i.e. fish) at time t. This is a fixed

fleet-size model, so there is no variation in capital to consider.

A “catchability coefficient” qx is defined to determine the quantity of

biomass that each unit of effort extracts, relative to the total size of

the biomass at the time. Thus, the harvest rate at time t is

hx(t) = qxe(t)x(t). (2.8)

3. Three viability constraints are given. The first constraint requires the

regulator to maintain what is herein referred to as the ecological sus-

tainability of the fishery, by ensuring that

x(t) ≥ xmin ∀t ∈ Θ, (2.9)

where xmin > 0 is the safe minimum biomass level (SMBL). Below this

level, the risk of resource extinction becomes unacceptably high and

authorities will have to close the fishery.

The second constraint is concerned with what is henceforth referred to

as the economic sustainability of the fishery, by guaranteeing that the

fishing fleet’s profits are non-negative at all times,

π(t) = pxhx(t)− ce(t)− C ≥ 0 ∀t ∈ Θ, (2.10)

where px is the price of a unit of biomass (fixed in this model), and as

explained above, hx(t) is the harvest rate, making pxhx(t) the fleet’s

revenue flow. C is some fixed cost, and c is a variable cost for each unit

of effort.
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The third constraint concerns minimum and maximum levels of ef-

fort. The minimum level emin is determined by social requirements for

the preservation of employment and maintenance of traditional fish-

ing communities16. The maximum level emax is determined not by any

normative considerations but rather by the physical capabilities of the

fishing fleet. Given that there is no variation in capital and labour, it

is supposed that maximum effort is constrained by a fixed production

capacity. So, overall, the level of effort is bounded as follows:

e(t) ∈ [emin, emax] ∀ t ∈ Θ, (2.11)

where the rate at which effort can change is also constrained

The constraint set K in which biomass and effort must remain, reads

as follows:

K = {[xmin, xmax]×[emin, emax]}∩{(x, e) : pxqxex−ce−C ≥ 0}. (2.12)

It should be noted that there is no explicit upper limit on x. However,

VIKAASA requires that both lower and upper limits be specified for

all state variables. Here, xmax = Lx is specified because the fish stock’s

biomass cannot exceed the environment’s carrying capacity.

4. It is supposed that so long as the ecological and economic sustainability

of the system are maintained, regulatory instruments can be used to

increase or decrease the level of effort exerted by the fleet. Thus, the

system can be modelled as having a single scalar control, u(t) ∈ R,

which determines effort variation, i.e. u(t) = ė(t).
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5. Effort variation is bounded by U = [δ−, δ+], where δ− < 0 and δ+ > 0.

Thus, where e(t) is too high (entailing imminent extinction), or too low

(meaning that fishing will soon be unprofitable), it may not be possible

to increase or decrease e(t) fast enough (depending on the sizes of δ−

and δ+, which determine to speed of changes of e(t)) to maintain the

viability of the system.

6. The fish population levels x(t) are governed by a logistic differential

equation,

ẋ(t) = rxx(t)

(
1− x(t)

Lx

)
− hx(t). (2.13)

The resource grows at a rate proportional to rx, up to the limit carrying

capacity Lx of the resource’s environment, less the harvest rate hx(t)

defined by (2.8).

As mentioned in 4 and 5, effort variation is given by the differential

inclusion,

ė(t) = u(t) ∈ U ≡ [δ−, δ+]. (2.14)

This inclusion represents bounds on the speed at which the regulator

can change fishing effort. This may reflect the regulator’s policy for

“smooth” fishing effort adjustments determined by δ.

For VIKAASA to compute the viability kernel, all parameters including

the boundaries of all dynamic variables must be assigned numerical values.

The base parameter set considered for the computation of the basic model’s

16It is noted that constraining e(t) from below may be redundant given the constraint

for profit π(t).
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viability kernel is presented in Table 2.1. These parameters have been cho-

sen so that the system is consistent with known characterisations of actual

fisheries17, and to ensure that both viable and non-viable regions are to be

found in the constraint space.

Table 2.1: The base parameter set for the basic model

Description Symbol Value

Intrinsic growth rate rx 0.4

Catchability coefficient qx 0.5

Limit carrying capacity Lx 600

Price px 4

Variable cost c 10

Fixed cost C 150

SMBL xmin 60

Minimum effort emin 0.1

Maximum effort emax 1

Maximum effort variation δ 0.01

Thus, with these parameter values the dynamical system – (2.13) and

(2.14) – becomes

ẋ(t) ∈ 0.4x(t)
(
1− x(t)

600

)
− 0.5e(t)x(t)

ė(t) ∈ U = [−0.01, 0.01]

 , (2.15)

17For instance, the SMBL is set equal to the hard limit, i.e. xmin = Lx

10 , which is

commonly implemented in fisheries worldwide.
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and the viability constraint set reads

K = {[60, 600)× [0.1, 1]} ∩ {(x, e) : 2ex− 10e− 150 ≥ 0}. (2.16)

The state-space of interest is illustrated in Figure 2.1 by the “rectangle”,

which delimits the hyper-rectangle K̂18. Recall from item 3 in Box 2 that the

bounds (i.e. lower and upper limits) on the dynamic variables are defined

by K̂. The downward-sloping curve gives the zero-profit line. Combinations

of fish biomass and fishing effort below this line yield negative profits and

are therefore not viable by definition, i.e. the economic constraint (2.10) is

violated. The domain of the viability constraints K ⊂ K̂ (or the viability

space), is delimited by the economic constraint and the maximum fishing

capacity (i.e. the horizontal line at e = 1).
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Figure 2.1: An illustration of the constraint set K for the basic model.

18Chapter 3 deals with a viability kernel in a three-dimensional (3D) space, so K̂ is

delimited by a “box”.
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Thus, it is of particular interest to determine the combinations of fish

biomass and fishing effort in the constraint space that are associated with

viable trajectories inK and thus with viable control strategies. Note that this

information is contained in the viability kernel. In what follows, the viability

kernel approximated by VIKAASA for the basic model is presented.

2.4.2 Presenting the “population viability” kernel

As a starting point, the viability kernel computed without the economic

constraint (2.10) or simply the population viability kernel is presented first19.

The population viability kernel is represented by the shaded area (in yellow)

in Figure 2.2a. By definition, combinations of target biomass and fishing

effort in the shaded area are associated with viable paths, given the set of

admissible controls U , that will always remain inside the rectangle20. Some

of these viable paths are displayed in Figure 2.2b. Note that these paths (in

yellow) remain inside the rectangle and converge to steady states indicated

by the dashed line. This line represents the “sustainable equilibria” and

corresponds to combinations of fish biomass and effort that guarantee an

extraction rate that equates the reproduction rate of the resource stock21.

Additionally, a ceiling on fishing effort is observed in Figure 2.2a, which is

below its upper bound. Regardless of the state of fish biomass, levels of effort

19Here, only the sustainability of the fish stock or population is considered and hence

the use of the term “population”. Since the zero-profit line always lies above emin (given

the chosen parameter values), the social constraint is always guaranteed.
20Note that here the constraint set and the hyper-rectangle are identical, i.e. K = K̂

due to the omission of the profitability condition (2.10).
21Equivalently, what is produced as surplus is harvested so the resource base remains

constant. This is the basis for the use of the term “‘sustainable” to describe the equilibria.
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(a) Population viability kernel
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(b) Viable paths are yellow and non-viable paths are blue

Figure 2.2: Population viability kernel with viable and non-viable trajectories

for the basic model.
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above this ceiling (i.e. in the unshaded area) are associated with initial states

that are non-viable. More specifically, starting above the ceiling results in

the resource stock being driven below its SMBL. This is confirmed in Figure

2.2b, with the relevant trajectories (in blue) shown to leave the rectangle via

the fish biomass’ lower bound.

2.4.3 Presenting the “co-viability” kernel

Now, the economic constraint is considered when computing the viability

kernel for the basic model. To distinguish this kernel from the population

viability kernel, the former is called the co-viability kernel because it con-

siders all of the objectives conjointly. The co-viability kernel is presented in

Figure 2.3a. Note that the co-viability kernel closely resembles the (partial)

viability kernel presented in Fig. 3 in Béné et al. (2001). There is a noticeable

change in the size and shape of the co-viability kernel relative to the popu-

lation viability kernel. It is observed that a rounded area at the bottom of

the diagram becomes non-viable as a consequence of imposing the economic

constraint. More specifically, fishing is not profitable in this area because

there is either not enough fish in the fishery or too little effort being exerted,

or a combination of these two factors.

Additionally, the ceiling on fishing effort observed in Figure 2.3a is slightly

lower than that shown in Figure 2.2a, meaning that some high fishing effort

states in the population viability kernel are no longer viable now that the eco-

nomic constraint is considered. This can be explained as follows. Although

VIKAASA is able to find a control strategy that guarantees the ecological

sustainability of the fishery, such strategy is insufficient to slow the system to

a steady state before hitting the zero-profit line, see Figure 2.3b. Moreover,
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(a) Co-viability kernel
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(b) Viable paths are yellow and non-viable paths are blue

Figure 2.3: Co-viability kernel with viable and non-viable trajectories for the

basic model. For illustrative purpose, the zero-profit line is shown in panel

(b).
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it is worth noting that starting with combinations of x and e on or above the

zero-profit line does not guarantee non-negative profits for all times thereon.

Thus, the state that the system will be steered towards depends on the sys-

tem’s dynamics f(x, u) and its current position. So if the fishery is at a point

where high fishing effort is exerted, the best strategy determined by VIKA-

ASA might be to reduce e by its maximum amount in order to conserve the

fish stock. However, by doing so the rate of harvest might be too low to yield

non-negative profit.

The existence of non-viability in the constraint set is an interesting case

because there is a clear need to regulate the fishery and to anticipate the

system’s dynamics in order to avoid a crisis. Crisis here being either a non-

profitable or over-exploited fishery, or both. This case is known as partial

viability and one that has received an analytical treatment in Béné et al.

(2001)22. Here, it is a result of assuming that the intrinsic growth rate

is lower than the catchability coefficient (i.e. rx < qx) as well as the high

rigidity imposed on the speed of fishing effort adjustment. The former implies

that the fish stock’s intrinsic growth rate is not sufficiently high to sustain

high fishing effort. Furthermore, the latter limits the regulator’s ability to

reduce fishing effort by the necessary amount in order to stabilise the system

within the realms of viability.

Note that if the converse of the first assumption is assumed (i.e. rx > qx)

then viability holds everywhere in K, see Figure 2.4. The fishery can thus

sustain itself and there is no need for intervention by the fishery manager.

This case is called global viability in Béné et al. (2001) and reflects the mere

22Béné et al. (2001) propose the necessary and sufficient conditions for the existence of

partial viability.
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fact that the maximum fishing capacity is too moderate to put the stock at

risk of over-exploitation. Similarly, it can be easily shown that the viability

space also expands when increasing the bounds on fishing effort variation.

i.e. by specifying a larger value of δ.

Figure 2.4: Co-viability kernel with rx > qx.

2.4.4 Policy advice

The preceding sub-section presented the co-viability kernel (or simply the

“viability kernel”), which is the solution to the simple fishery’s viability prob-

lem. Knowing the viability kernel, the fishery manager is aware of the locus

of states in which the fishery can continue to exist, for a given “strength” of

implementable controls. From the manager’s point of view, the kernel holds

invaluable information that align policy decisions with sustainable fishing

outcomes. In effect, the viability kernel defines the boundaries of allowed

fishing behaviour, within which the fleet can set level(s) of fishing effort to
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be exerted as it sees fit. The fishery manager’s task is therefore to make sure

that the fishery is maintained within these boundaries.

2.5 Summary

This chapter has provided a brief introduction to viability theory, which

designs and develops mathematical and algorithmic methods for analysing

dynamical systems facing constraints. Viability theory therefore provides an

appropriate tool for solving problems of sustainability particularly here in

the case of a fishery, which is of interest to this thesis.

This chapter has also introduced VIKAASA, a computer application ca-

pable of solving a certain class of viability problems by approximating the

viability kernel, which delineates the locus of states from which the continued

existence of a dynamical system is guaranteed. The application does have

its share of limitations. Nonetheless, as demonstrated by its developers and

again in this chapter, VIKAASA has delivered reliable results for an array

of viability problems whose kernel properties are known a priori.

A stylised fishery model (i.e. basic model) has also been presented, which

provides the basis for the viability models developed in the following chapters.

As an introduction to viability analysis to be conducted later, the basic

model’s viability kernel approximated by VIKAASA is presented and briefly

discussed. The viability kernel is essential for a regulator as it provides

policy-relevant information for the sustainable management of the fishery.

The next chapter extends the basic model to include an additional fish

stock, which is the by-catch (or by-product) of harvesting the target fish

stock.



Chapter 3

A viability analysis of an

input-controlled fishery

3.1 An overview

The previous chapter introduced the mathematical concept of viability kernel

to deal with the consistency between constraints and controlled dynamics. It

also presented VIKAASA, an application developed to numerically approx-

imate the kernel for a sub-set of viability problems. Using VIKAASA, the

present chapter applies viability theory to a two-species fishery model with

the aim of exhibiting the bio-economic configurations required to maintain

the fishery in a perennial state.

A non-selective fishery (referred herein as the by-catch fishery) charac-

terised by a by-catch production process is considered. This is a feature of

most multi-species fisheries and one that is managed, in the current chapter,

through direct controls on fishing input, i.e. fishing effort. The bio-economic

model presented here extends the basic model described in the previous chap-

39
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ter with the noticeable inclusion of a by-catch fish stock. This model is

referred henceforth as the input-controlled fishery model.

The problem here concerns the sustainable management of a by-catch

fishery. One of the reasons for the by-catch problem introduced in Chapter

1 is the failure to consider the co-dynamics of jointly harvested fish stocks

in policy decisions. This may result in certain slower growing stocks being

over-fished when exploited at rates appropriate for the target stocks. Thus,

viability here refers to the materialisation of sustainability objectives, such

as those defined in the basic model (Section 2.4.1) coupled with an ecological

constraint for the by-catch stock.

In what follows, the theoretical framework of the input-controlled fishery

model is presented in Section 3.2, which defines the system dynamics and

the viability constraints. For convenience, the mathematical symbols and

their descriptions for the model developed here are presented in the List of

Symbols, which is available towards the end of this thesis. The model is

calibrated in Section 3.3. Justification for the parameter values chosen is

also provided. An analysis of the viability kernel approximated by VIKA-

ASA for the input-controlled fishery model is documented in Section 3.4.

Some policy advice is also provided before closing this chapter with some

concluding remarks in Section 3.5.
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3.2 A viability model

3.2.1 The system dynamics

The system is described by three state variables: target biomass x(t), by-

catch biomass y(t) and fishing effort e(t), and is modelled over an infinite

time horizon,

t ∈ Θ ≡ [0,∞). (3.1)

The population dynamics

The dynamics of the biological variables are based on the surplus produc-

tion approach or (dynamic) biomass approach often connected to Schaefer

(1954), which has been widely adopted in economic fishery studies. The ap-

proach uses the Pearl-Verhulst logistic equation and describes the state of

the population using only a single variable, i.e. biomass (Tahvonen, 2010).

Notably, the surplus production approach has been criticised typically for

its over-simplification assumptions and minor empirical relevance (Wilen,

2000). According to Townsend (1986), it is only suitable for “pedagogi-

cal” purposes. Nonetheless, the surplus production model is conveniently

simple and removes the complexities associated with working with highly di-

mensional and parameterised age-structured models1. Furthermore, at this

stage, modelling the population dynamics based on an aged-structured spec-

ification, such as in Beverton & Holt (1957), is not sufficiently useful to

compensate for the non-practicality, i.e. significant computational time and

1The age-structured approach divides the fish population into age classes or cohorts,

and its development into primary factors such as reproduction, individual growth, natural

mortality, and fishing mortality (Tahvonen, 2010).
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extreme multi-dimensionality of the kernel, of modelling multiple cohorts for

both stocks in VIKAASA.

Suppose that the fishery of interest consists of two ecologically indepen-

dent populations, with fishable biomasses x(t) and y(t), that are subject to

logistic growth in continuous time, ẋ(t) = rxx(t)
(
1− x(t)

Lx

)
ẏ(t) = ryy(t)

(
1− y(t)

Ly

)
,

(3.2)

where rx, ry, Lx, and Ly are all positive constants. By convention, rx and ry

represent the intrinsic growth rates2, and Lx and Ly are the environment’s

limit carrying capacities of stocks x and y, respectively.

Now, suppose that the two population dynamics described by (3.2) are

subject to withdrawals. Let the harvest rates (i.e. fishery aggregates) of of

stocks x and y from the fishery be given by Hx(t) and Hy(t) respectively.

The population dynamics now become, ẋ(t) = rxx(t)
(
1− x(t)

Lx

)
−Hx(t)

ẏ(t) = ryy(t)
(
1− y(t)

Ly

)
−Hy(t).

(3.3)

Suppose that stock x is the fish stock that is being targeted. This may be

because stock x is more valuable and/or abundant than stock y. The harvest

rate of stock x at time t is assumed to be proportional to both its biomass

and the level of fishing effort,

Hx(t) = qxe(t)x(t), (3.4)

2The intrinsic growth rate represents the maximum growth rate of the population,

achieved at the smallest abundance levels. It is basically a balance between fecundity,

mortality, maturation and growth (FLR Project, 2013).
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where qx denotes the catchability coefficient. The catchability coefficient

links the level of fishing effort to the proportion of the stock removed (Pascoe,

1997). The product of the catchability coefficient and the level of effort is

generally termed the fishing mortality,

fx(t) = qxe(t), (3.5)

and it is expressed as a proportion of biomass.

Moreover, the fishery is characterised by a by-catch process. With each

unit of fishing effort, the fishing fleet catches both fish stocks, x and y, si-

multaneously. This may result from the combination of non-selective harvest

technologies (e.g. bottom trawl) and over-lapping populations of marine

species (Herrera, 2005). This makes harvesting like a joint production func-

tion where one species (i.e. stock y) is a byproduct of the production process

of another (i.e. stock x).

Here, a linear by-catch production function is proposed,

Hy(t) = αHx(t) (3.6)

where Hx(t) is given by (3.4) and the parameter α > 0 denotes the by-catch-

target harvest ratio, which is a measure of the intensity of jointness of the

production relationship.

It is worth noting that most fisheries are not characterised by pure joint

production, but instead may be “mostly” joint. That is, the composition of

the output mix may have some discretionary element. Agents may be able to

increase the proportion of one species or another in the catch through varying

their targeting behaviour. In such a situation, by-catch is less an ecological

and technological problem, but also a function of fisher targeting behaviour
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(Abbott & Wilen, 2009). Thus, in reality the by-catch-target harvest ratio

may vary over time. For the sake of simplicity, here α remains fixed.

Fishing effort adjustments

Following Béné et al. (2001), it is proposed that the time variation of effort

is described by the following differential inclusion,

ė(t) = u(t) ∈ U ≡ [−δ, δ], (3.7)

where δ ≥ 0 is a constant that defines the maximum speed of fishing effort

adjustment at each time realisation. The inclusion represents bounds on

the speed of adjustment of effort. This may reflect the regulator’s policy

for “smooth” fishing effort adjustments. That is, it implies the continuity

of effort with respect to time and thus rules out jumps in harvesting levels.

Additionally, −δ < 0 < δ is assumed, which means that effort can be kept

constant (i.e. ė = 0).

Thus, the system dynamics for the input-controlled fishery model is de-

fined through the following system of differential inclusions,

ẋ(t) ∈ rxx(t)

(
1− x(t)

Lx

)
− qxe(t)x(t)

ẏ(t) ∈ ryy(t)

(
1− y(t)

Ly

)
− αqxe(t)x(t) (3.8)

ė(t) ∈ U.

Note that the system of differential equations (3.3), which describes the

population dynamics for both stocks are now expressed in terms of differential

inclusions. This is a consequence of assuming that the evolution of fishing

effort is set-valued. So for a given x(t), there is an array of possible controls
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to choose from in U and hence have a set of points in the state-space that can

be reached in the next instant. Given the by-catch production relationship

(3.6), the evolution of the by-catch stock is consequently set-valued as well.

In what follows, the viability constraints are defined. These constraints

delineate the boundaries within which dynamical system must remain in

order to guarantee the continued sustainability of the fishery.

3.2.2 The viability constraints

Following Martinet et al. (2007), it is proposed that the sustainability of the

fishery is represented by a set of ecological, economic and social constraints

that the fishery must satisfy at all times. Each of these three constraints are

described below.

The ecological constraint

This constraint concerns the ecological sustainability of the two resource

stocks and requires that both x and y do not fall below their respective

SMBLs, xmin > 0 and ymin > 0,

x(t) ≥ xmin

y(t) ≥ ymin

 ∀ t ∈ Θ, (3.9)

where Θ is defined in (3.1). The interpretation of the SMBL used here is

that below this level the risk of resource extinction becomes unacceptably

high and authorities will move to close the fishery.
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The economic constraint

This constraint guarantees the economic sustainability of the fishing fleet and

requires that the fishing activity remains profitable. Aggregate profit for the

fishery is given by,

π(t) = pxHx(t) + pyHy(t)− ce(t)− C, (3.10)

where px and py are constants and represent the unit prices of stocks x and y,

respectively3. Fixed cost which may include yearly lease of a vessel from its

owner, insurance, taxes, depreciation and the appropriate opportunity costs

is denoted by the constant C. The marginal cost of effort is fixed at c.

The economic constraint imposes a non-negative condition on profit,

π(t) ≥ 0 ∀ t ∈ Θ. (3.11)

As noted in Béné et al. (2001), this condition is more “conservative” than

the conventional “shutdown” condition taught in the economic theory of the

firm. The shutdown condition states that if revenue exceeds variable cost,

the firm should continue to operate, at least in the short-run, because it is

earning something towards its overheads, otherwise it should close down to

avoid paying additional cost to its fixed cost, which it already loses by not

producing (Begg et al., 2003).

Possible interpretations for condition (3.11) are presented in Krawczyk

et al. (2013). One assumption is that fishermen do not amass any savings

from their operations, and therefore cannot afford to run at a loss even for a

3In some situations, py could be negative to represent a penalty incurred by the fish-

erman for catching the by-catch species. This could though be a politically problematic

solution because of underreporting or non-reporting and dumping possibilities of stock y.
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brief period. Another possible interpretation is that it is a political require-

ment – i.e. that the fleet’s cooperation with the regulator on fishing levels is

contingent on continued profitability, so that if fishing became unprofitable,

the regulator would no longer have any influence.

The social-physical constraint

The social constraint concerns the preservation of employment and mainte-

nance of traditional fishing communities. This requires that the regulator

maintains fishing effort above a minimum threshold, emin > 0. This guar-

antees minimum employment and activity in the fishery. As noted in the

previous chapter, the values of the economic parameters chosen may result

in the zero-profit line to lie above emin making this social condition redun-

dant. Nonetheless, for guaranteed activity in the fishery, fishing effort must

take on a positive value.

Moreover, the bounds imposed on the speed at which fishing effort can

be adjusted, i.e. condition (3.7), may reflect some social (and political) cost,

which limits the number of vessels, and hence employment, from leaving the

fishery during any period (Martinet et al., 2007)4.

Additionally, given that there is no variation in capital and labour, it is

supposed that effort is constrained by a fixed production capacity, i.e. there

is a maximum level of effort, emax that can be exerted. Fishing effort is

therefore bounded by,

e(t) ∈ [emin, emax] ∀ t ∈ Θ. (3.12)

4This interpretation differs from the “capital inertia” explanation often encountered in

the fisheries economics literature (Martinet et al., 2007).
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Thus, using (3.7), (3.9), (3.11) and (3.12), the viability constraint set is

defined by,

K ≡


(x, y, e, u) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t) ≥ xmin

y(t) ≥ ymin

π(t) ≥ 0

e(t) ∈ [emin, emax]

u(t) ∈ U


. (3.13)

3.2.3 The viability kernel

A commonly raised question in any viability analysis is whether the system

dynamics (3.8) are compatible with the set of viability constraints (3.13).

Here, compatibility means that with the predetermined system’s dynamics,

the system’s evolutions will always satisfy the constraint setK. By answering

this question, one can delineate the set of initial states from which there exist

viable evolutions that respect the entire set of constraints. This is known from

the previous chapter as the viability kernel or the solution to the viability

problem, and it is defined by5,

V ≡


(x(0), y(0), e(0)) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃u(·) and (x(·), y(·), e(·)) ,

starting from (x(0), y(0), e(0))

satisfying dynamics (3.8)

and constraints (3.13)

∀ t ∈ Θ


.

(3.14)

5To unburden the notation, V is used instead of VF (K) to denote henceforth the via-

bility kernel.
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3.3 The model calibration

In order to compute the viability kernel using VIKAASA, which does so

numerically, all parameters must be assigned numerical values. This also

applies to the boundaries of all dynamic variables. In what follows, the

assigned values for all parameters and boundaries are presented, as well as

some discussion on the rationale behind these values.

3.3.1 The base parameter set

It is assumed that target stock x is more productive (i.e. rx > ry) and

has a larger carrying capacity relative to the by-catch stock y (i.e. Lx >

Ly). The carrying capacity for stock x is set at 600, which is twice that

of y. If the unit of measure of biomass is denominated in tonnes, then it

is acknowledged that the order of magnitude of these values are far from

what is commonly associated with biomass. However, for the purpose of the

analysis in Section 3.4, the relative value of the carrying capacities is far

more important than their respective values in absolute terms. The latter

has no impact on the results other than changing the scale of measurement.

This does not apply, however, to the intrinsic growth rates, which are set

at 0.4 and 0.2 for stocks x and y, respectively. These are not unreasonable

values given that, for instance, Polacheck et al. (1993) and Chen & Andrew

(1998) estimate the intrinsic growth rate for the northern Namibian Cape

hake (Merluccius capensis and M. paradoxus) to be about 0.37.

Using these biological parameters, Figure 3.1a illustrates the time course,

without withdrawals, for fish stocks x (in blue) and y (in red). The popu-

lation size, or in this case the biomass (weight equivalent) for both stocks,
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starting at some small initial states, grow at an approximately exponential

rate. As the environment’s carrying capacity is approached (e.g. competition

for limited food supply or space), their growth rates slow until an equilibrium

limit is reached, where growth stops. The solution curves have the charac-

teristic ogive shape of the logistic growth curve (Clark, 1990). The solution

curve of the logistic growth equation(s) (3.2) is defined formally by (A.2).

The population dynamics of x, with withdrawal, is simulated for different

values of qx and e, which are held fixed over time. The results are presented

in Figure 3.1b. The simulated dynamics are most interesting when qx = 0.5

because for high values of effort, the target stock eventually depletes over

time. This is shown in the bottom two panels. It is worth noting that the

corresponding fishing mortality rates, i.e. 0.5 × 0.8 = 0.4 and 0.5 × 1 = 0.5

from (3.5), are at least greater than rx = 0.4 used in the simulation. This

confirms that for the logistic model, the stock is driven (asymptotically) to

zero if fishing mortality is maintained at a level (at least) greater than the

intrinsic growth rate (Clark, 1990)6. For this reason, the value chosen for the

catchability coefficient of stock x is qx = 0.5.

It is worth noting here that the biological parameters (rx, ry, Lx and

Ly) and the technical parameter (qx) can be estimated by fitting the surplus

production model (3.3) to a time series of catches and abundance indices,

which are available for most commercially exploited fish stocks. Although

parameter estimation is not performed in this study, Appendix B provides

some discussion as to how this can be carried out.

Similarly, the population dynamics of stock y is simulated for different

6Equivalently, e cannot exceed the ratio r
q . This ratio is called the “bio-technical

productivity” of the population in Clark (1990)
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(a) Typical solution curves for stocks x

and y: rx = 0.4, ry = 0.2, Lx = 600,

Ly = 300, x(0) = 300 and y(0) = 150.
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(b) Population dynamics of stock x with constant effort: rx = 0.4, Lx = 600 and

x(0) = 600.

Figure 3.1: Population dynamics simulated for selected parameter values.
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levels of effort and the by-catch-target harvest ratio α, and presented (in red)

in Figure 3.2. For α = 0.1, stock y is never at risk of depletion. However,

if α = 0.3, stock y is depleted over time for low to moderate levels of ef-

fort. To capture these two behaviours, a value of α between 0.1 and 0.3 is

chosen, i.e. α = 0.2. This seems to be in the right neighbourhood consid-

ering that, for example, 27% of catch of trevally (Pseudocaranx dentex ) is

reported as by-catch when tarakihi (Nemadactylus macropterus) is targeted

using bottom-trawl in New Zealand’s fisheries management area 2 (Bentley,

2010). An interesting observation is that the by-catch biomass exceeds the

target biomass (in blue) at high levels of e. This is noted in the bottom two

panels. This may be explained by the mere fact that at high effort levels,

there is sufficient reduction in the target biomass resulting in lower target

yield Hx. Combination of low α and sustained low Hx keeps by-catch harvest

substantially low over time, allowing for the by-catch biomass to exceed the

target stock’s biomass at some point in time.

As for the economic parameters, the ex-vessel unit price of stock x is set

at $4 and for stock y it is set much lower at $2. Stock x is the more valuable

fish stock and therefore it is the stock that is targeted. The unit cost of

effort c is equal to $10 and the fixed cost is set at $150. These values ensure

that there are areas associated with both negative and positive profits in the

state-space.

The calibrated parameter values, which are summarised in Table 3.1, in

broad terms characterise a typical multi-species fishery in which the target

stock x is more valuable and it is associated with higher catch rates (i.e.

because it is more abundant) than the by-catch stock. The latter is consid-

erably less productive than the former. So the by-catch stock is at risk of
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Figure 3.2: Population dynamics of the by-catch stock y (in red) for different

values of α and e. The population dynamics of stock x is in blue: rx = 0.4,

qx = 0.5, Lx = 600, Ly = 300, x(0) = 600 and y(0) = 300.

extinction when exploited at rates appropriate for the target stock. Thus, it

is of particular interest to use viability theory to determine the loci of states

from which the regulator can make the necessary adjustments that guaran-

tee the good health of both fish stocks, while meeting its other economic and

social responsibilities.
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3.3.2 The boundaries

As mentioned earlier, VIKAASA requires that both the lower and upper

limits be specified for all state variables (refer to item 3 in Box 2).

For the biological variables x and y, their lower limits are set by the

ecological constraint (3.9). That is, the target and by-catch biomasses cannot

fall below their respective SMBLs, xmin and ymin. Here, the SMBLs are set

at 10% of the stock’s carrying capacities,

xmin ≡ 0.1Lx

ymin ≡ 0.1Ly

 . (3.15)

New Zealand’s Harvest Strategy Standard for instance, sets a default

hard limit below which the stock is deemed to be collapsed, and the fishery is

considered for closure (Ministry of Fisheries, 2008). This is consistent with

the definition of the SMBL stated earlier in Section 3.2.2, and therefore the

reason for setting SMBL equal to the hard limit for both stocks. The default

hard limit is equal to 10% of B0 (Ministry of Fisheries, 2008)7.

As for the two stocks upper limits xmax and ymax, they are set equal to the

fishery’s carrying capacity for both fish stocks. The reason being, the size

of either stock’s biomass can never exceed their respective carrying capacity,

even without fishing taking place as illustrated in Figure 3.1a.

The maximum level of fishing effort, emax is set equal to unity, which

reflects full (i.e. 100%) capacity. It also ensures that fishing mortality (3.5)

takes on a value that is never greater than 1 given the value chosen for qx.

7In the fisheries literature, B0 is widely used to denote the virgin or unexploited

biomass, which is equivalent to the carrying capacity denoted by L (with subscript x

or y depending on which stock is being referred to) used in the logistic growth model.
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Note that the converse implies that Hx > x, which is a violation of the

scarcity constraint, i.e. we harvest more than what is available. As for the

minimum level of fishing effort emin, it is set rather arbitrarily equal to 0.1 or

10% of full capacity. Similarly, the limit on the speed of effort adjustment, δ

is also set arbitrarily equal 1 percentage point.

Thus, the proposed boundaries for the input-controlled fishery model are

presented below:

• target biomass should be between 10% and 100% of the stock’s car-

rying capacity, i.e. x(t) ∈ [60, 600];

• bycatch biomass should be between 10% and 100% of the stock’s

carrying capacity, i.e. y(t) ∈ [30, 300];

• fishing effort should be between 10% and 100% of the fleet’s maximum

capacity, i.e. e(t) ∈ [0.1, 1]; and

• fishing effort adjustment speed, i.e. the amount by which the

regulator can change fishing effort between fishing periods t will be

between -1 and 1 percentage points, so u ∈ [−0.01, 0.01].
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Table 3.1: The base parameter set for the input-controlled fishery model.

Stock-specific Target stock (x) By-catch stock (y)

Description Symbol Value Symbol Value

Intrinsic growth rate rx 0.4 ry 0.2

Limit carrying capacity Lx 600 Ly 300

Price px 4 py 2

Catchability coefficient qx 0.5 – –

SMBL xmin 60 ymin 30

Fishery-specific

Description Symbol Value

By-catch-target harvest ratio α 0.2

Variable cost c 10

Fixed cost C 150

Minimum effort emin 0.1

Maximum effort emax 1

Maximum effort variation δ 0.01
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Specifications of the input-controlled fishery model developed in this

chapter are summarised in Box 4, following the VIKAASA requirements

outlined in Box 2.

Box 4. Input-controlled fishery model specifications

1. The model is concerned with an infinite time horizon, so Θ ≡ [0,∞);

2. The system is described by three state variables: target biomass x(t),

bycatch biomass y(t) and fishing effort e(t);

3. The viability constraint set:

K = {[60, 600]× [30, 300]× [0.1, 1]} ∩ {(x, e) : 2.2ex− 10e− 150 ≥ 0}.

(3.16)

4. The control variable is represented by the scalar u;

5. The admissible control set is represented by U = [−0.01, 0.01];

6. The system’s dynamics are represented by the following system of dif-

ferential inclusions:

ẋ(t) ∈ 0.4x(t)

(
1− x(t)

600

)
− 0.5e(t)x(t)

ẏ(t) ∈ 0.2y(t)

(
1− y(t)

300

)
− 0.1e(t)x(t) (3.17)

ė(t) ∈ U.
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3.4 A viability analysis

In Chapter 2, the viability kernel for the single-species fishery problem was

presented. Here, the analysis is extended to consider the case where the

regulator is also concerned about maintaining the ecological sustainability

of a by-catch fish stock, which is assumed to be jointly harvested with the

target stock. It is of particular interest to learn what happens to the single-

species kernel (Figure 2.3a) when accounting for the by-catch dynamics. This

is considered in Section 3.4.2. Firstly, the viability kernel for the input-

controlled fishery model described above is presented.

3.4.1 Presenting the viability kernels

The viability kernel is presented in Figure 3.3a. The box delimits the three-

dimensional projection of the viability constraint set K ⊂ R3 less the eco-

nomic constraint (3.11), which is not displayed8. The shaded 3D body (“boul-

der”) represents the viability kernel and contains the loci of initial states

[x(0), y(0), e(0)] from which there exists a control strategy u ∈ U that keeps

the system in K forever. Those states outside the boulder cannot be con-

trolled to remain in K by the admissible set of controls U , so starting at any

of these points eventually results in the system leaving K, in which case the

fishery is considered to be in a “crisis” situation as defined earlier9.

8Actually, the box is a three-dimensional projection of K̂ ⊂ R3, where K̂ delimits the

bounds on all three state variables (x, y and e).
9There are a number of papers (see Doyen & Saint-Pierre (1997); Béné et al. (2001);

Martinet et al. (2007, 2010)) that have extended the viability approach to examine the

viable restoration of bio-economic systems facing crisis situations. These papers use the

concept of minimum time of crisis (Doyen & Saint-Pierre, 1997) to analyse recovery prob-
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(a) Viability kernel “with” the economic constraint (b) Viability kernel “without” the economic con-

straint

Figure 3.3: A comparison of the viability kernel with and without the eco-

nomic constraint.

The viability kernel generated without the economic constraint (3.11)

is presented in Figure 3.3b. By comparing the two panels in Figure 3.3,

the regulator obtains a general idea of which states violate the economic

sustainability of the fishery. That is, starting at such states will result in

negative cash flows for the fishing fleet taking effect at some point in time.

The by-catch management problem can also be analysed using 2D slices

of the 3D kernel. Figure 3.4 shows such of the kernel presented in Figure 3.3a

for each of the three dimensions. This provides a closer and more detailed

lems. It is worth mentioning here that though the current analysis does not specifically

consider recovery strategies, it is possible in VIKAASA to direct any initial state, starting

from outside the viability kernel, to re-enter the kernel in finite time. This requires that

the bounds, imposed on the speed of adjustment of the system’s control(s), be relaxed.

This implies that at least one of the viability constraints will be violated in finite time.
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(a) Slice through all values of “fishing effort”

(b) Slice through all values of “by-catch

biomass”

(c) Slice through all values of “target biomass”

Figure 3.4: 2D snapshots of the viability kernel for each of the three dimen-

sions.
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display of the viability space. Consider Figure 3.4a, which displays the kernel

in the target biomass vs by-catch biomass space. It is observed that viability

requires an implicit minimal biomass for fish stocks, which is larger than

their SMBL (i.e. the lower stock boundary). Note that this observation is

not apparent in Figure 3.3b, suggesting that the economic constraint imposes

a “floor stock” that is greater or more “conservative” than the ecological

sustainability criterion defined in (3.9). This is not surprising given that

stocks must be sufficiently large to sustain catch rates that guarantee non-

negative cash flows.

From the regulator’s point of view, it is important to observe that there

is a ceiling on fishing effort that is lower than the maximum fishing capacity

(emax = 1). This is shown in Figures 3.4b and 3.4c. Regardless of the state

of the fishery’s stocks, exerting effort at levels above this ceiling would lead

to the over-exploitation of resources. It is also observed in Figure 3.4b that

by starting with lower levels of fishing effort, viability of the fishery requires

beginning with higher target biomass. A larger target stock is required to

ensure that there is sufficient target harvest to satisfy the profitability con-

dition.

Figure 3.5 shows three exemplary evolutions of what happens to the fish-

ery when starting at an initial state [x(0), y(0), e(0)] inside and outside of

the kernel. By definition, starting at an initial state inside the kernel, such

as [384, 165, 0.55] ∈ V , there are smooth strategies (i.e. u ∈ [−0.01, 0.01])

for which the fishery’s evolution remains contained in V ∈ K ⊂ IR3. This

is confirmed by the solid blue trajectory in Figure 3.5 remaining inside the

box. Actually, it remains contained in V. The time profiles of selected vari-

ables including the three state variables (x, y and e) that are associated with
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this trajectory are presented in Figure 3.6. Note that the dynamics of these

variables never violate their respective boundaries represented by the solid

red lines.

Now consider an initial state in Figure 3.5 where the size of the by-catch

biomass is much smaller, such as [384, 57, 0.55] ̸∈ V . Here, even the fastest

fishing effort reduction cannot prevent the by-catch stock from being driven

below its SMBL. This is shown by the solid red line eventually leaving the

box in finite time via the by-catch biomass lower boundary.

Figure 3.5: Viability kernel with viable and non-viable trajectories.

There is also the case where the target stock can be driven below ecolog-

ically sustainable levels. Consider the initial state [384, 165, 0.91] ̸∈ V , where

fishing effort is close to emax and the by-catch biomass is sufficiently large.
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Figure 3.6: Time profiles associated with the viable trajectory displayed in

Figure 3.5.

Though the initial target biomass is large, the regulator cannot reduce fishing

effort fast enough, given the set of admissible controls available, in order to

prevent the target stock from violating its lower boundary. It is noted that

as the target biomass nears its SMBL, the profitability condition is expected

to be violated (i.e. insufficient target biomass to generate sufficiently large

catches). Thus, the fishery may be considered for closure before the target

stock hits its lower boundary. It is also noted that as target biomass and

consequently target harvest are driven towards zero because of high fishing

effort, the by-catch biomass in contrast increases towards its carrying capac-

ity Ly, see the dash red line in Figure 3.5. This observation is consistent

with the bahaviour of the simulated by-catch biomass dynamics noted for

high fishing effort in Figure 3.2 (refer back to the relevant discussion).
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(a) Slice through y(t) = 250 (b) Slice through y(t) = 150

(c) Slice through y(t) = 100 (d) Slice through y(t) = 80

Figure 3.7: 2D slices of the 3D kernel for different sizes of the by-catch

biomass.

Figure 3.7 shows 2D slices of the viability kernel for different starting sizes

of the by-catch biomass. There are notably very little changes to the viability

kernel (refer to Figures 3.7a and 3.7b) when starting with high levels of by-

catch biomass, i.e. at y(t) = 250 and y(t) = 150. This is simply because

there is no potential risk to the ecological sustainability of the by-catch stock,
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given that the by-catch biomass is sufficiently high10. However, significant

reductions to the kernel’s size are observed for lower starting levels of by-

catch biomass, i.e. at y(t) = 100 and y(t) = 80, see Figures 3.7c and 3.7d.

Note that initial states in the upper-right corner (i.e. where levels of e and x

are high) of the kernel presented in Figures 3.7a and 3.7b, become non-viable

as a result of starting with lower by-catch biomass. This makes sense because

with relatively high fishing effort and target biomass, by-catch harvest is also

relatively high (refer back to (3.6) and (3.4)), which puts additional pressure

on an already sparse by-catch stock.

3.4.2 A comparison of the single-species and two-species

viability kernels

In Figure 3.8, the two-species viability kernel (Figure 3.3a) is compared with

that of the single-species case (Figure 2.3a). The former is a 3D kernel so it

is sliced for selected sizes of the by-catch biomass, i.e. at y(t) = 250 (high

by-catch biomass) and y(t) = 100 (low by-catch biomass), making the two

kernels comparable in the same state-space. The shaded (yellow) area in

Figures 3.8a and 3.8b represents the 2D slice of the 3D kernel for high and

low starting values of stock y, respectively. The kernel for the single-species

model is represented by the scatter plots and displayed in both panels.

The size and shape of the two kernels are similar for the high by-catch

biomass case, see Figure 3.8a. By constrast, a significant difference between

the two kernels is noted for the low by-catch biomass case, see Figure 3.8b.

10For the logistic growth model, the level of biomass that supports the maximum sus-

tainable yield is equal to half the carrying capacity, i.e. yMSY =
Ly

2 = 150, see (A.9).
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It is mostly the area where both fishing effort and target biomass are large

that becomes non-viable under the two-species specification. This is not

surprising given that with higher e and x, there is more pressure placed

on the by-catch stock channeled through the corresponding higher by-catch

harvest rates. This pressure is simply exacerbated when starting with low by-

catch biomass and hence the notable reduction in the size of the two-species

kernel.

(a) High by-catch biomass (b) Low by-catch biomass, with an example non-

viable trajectory starting from [492, 100, 0.595]

Figure 3.8: A comparison of the two-species and single-species viability ker-

nels for high and low initial values of the by-catch biomass.

In particular, consider an example evolution shown in Figure 3.8b. This

evolution begins at the initial state [492, 100, 0.595] ̸∈ V . The strategy here

is to reduce fishing effort as quickly as possible, in an attempt to main-

tain ecological sustainability. Note that the trajectory is viable under the

single-species specification, which is confirmed by the trajectory never leav-
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ing single-species kernel. However, this trajectory is non-viable when the

ecological constraint on stock y is imposed. This is because, even with sus-

tained reduction of effort at the maximum allowed rate, the by-catch stock

inevitably falls below ecologically sustainable levels, see the panel titled “By-

catch biomass” in Figure 3.9. This implication would not have been observed

if the co-dynamics of the jointly harvested fish stocks were over-looked. This

shows the inadequacy of the single-species approach to provide reliable fore-

casting and policy recommendations for sustainable management of multi-

species fisheries.

0 5 10

200

400

600
Target biomass

0 5 10

100

200

300
By−catch biomass

0 5 10

0.5

1
Fishing effort

0 5 10

0

500

1000

Profit

0 5 10

20
40
60
80

100

Velocity

0 5 10
−0.01

0

0.01
Effort’s speed of adjustment

Figure 3.9: Time profiles of selected variables associated with the non-viable

trajectory displayed in Figure 3.8b.
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3.4.3 Sensitivity tests

Here, the viability kernel for the by-catch problem presented in Figure 3.3a is

contrasted with a number of kernels generated for different values of selected

parameters. For the purpose of this analysis, the former is herein referred as

the base kernel and displayed in yellow in the subsequent figures. In contrast,

the kernels generated with the new parameter values are represented in blue.

Lower by-catch growth rate (ry)

In Figure 3.10, the base kernel is contrasted with that generated for a lower

by-catch growth rate, i.e. ry = 0.15. For a closer look at where these two

kernel differ, 2D projections of these kernels are also presented for each of the

three dimensions. With a lower ry, the size of the kernel is clearly smaller,

while its general structure or shape remains unchanged. It is clear from Fig-

ures 3.10b and 3.10d that the lower ry specification induces a higher minimum

biomass threshold for the by-catch stock than under the base specification.

Higher by-catch-target harvest ratio (α)

Figure 3.11 contrasts the base kernel with that generated for a higher by-

catch-target harvest ratio (i.e. α = 0.3). As in the preceding case, the size

of the kernel reduces with a higher value of α. Similarly, there is no obvious

change in the shape of the kernel with the larger α specification.

Higher fixed cost (C)

Figure 3.12 contrasts the base kernel with that generated with a higher fixed

cost, i.e. C = 200. As in the preceding two scenarios, the size of the kernel
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(a) Projection in the 3D space (b) Projection in the y and x space

(c) Projection in the e and x space (d) Projection in the e and y space

Figure 3.10: A comparison of the viability kernels generated for ry = 0.2 and

ry = 0.15.
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(a) Projection in the 3D space (b) Projection in the y and x space

(c) Projection in the e and x space (d) Projection in the e and y space

Figure 3.11: A comparison of the viability kernels generated for α = 0.2 and

α = 0.3.
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(a) Projection in the 3D space (b) Projection in the y and x space

(c) Projection in the e and x space (d) Projection in the e and y space

Figure 3.12: A comparison of the viability kernels generated for C = 150 and

C = 200.



72 CHAPTER 3. AN INPUT-CONTROLLED FISHERY MODEL

reduces with a higher fixed cost. Similarly, there is no obvious change to the

shape of the kernel with a higher fixed cost specification.

Thus, from the regulator’s perspective, the limited structural change to

the kernel noted above for different parameter assumptions is a positive out-

come. It implies the robustness of the solutions of the by-catch fishery man-

agement problem to parameter uncertainty. As long as the regulator avoids

those states that are close to the kernel’s boundary, the regulator can be

confident that the fishery would not be lead on a catastrophic path even if

one (some) of the parameters is (are) misspecified.

3.4.4 Policy advice

The viability kernel provides a global picture of how the dynamical system

behaves locally in the state-space. From this, the regulator gains an insight of

the states from which attainment of the regulator’s objectives is guaranteed,

and those states that are associated with a catastrophic path leading to

the violation of these objectives. From the kernel, the regulator can also

infer where in the state-space would the fishery be steered towards given its

current position and the proposed policy decision. This may be of value to the

regulator for forecasting purposes or evaluating new or existing management

targets.

In particular consider Figure 3.13, which shows viable trajectories (in the

e and x state-space) for selected points in the viability kernel. By starting

anywhere in the kernel, it is known that the system eventually reaches a point

on the sustainable equilibrium line, as indicated by the line joining points

A and B. Exactly where on this equilibrium line does the regulator like the
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fishery to be in the long-run, depends on the regulator’s own prioritisation.

So, if the preservation of employment is a priority, then the regulator only

has to position the fishery at a state from which a steady state close to point

A (where e is high) can be attained. Conservation of the target stock as a

priority, requires attaining a steady state that is close to point B (where x is

high). Maximising long-term profit would require reaching a steady state that

is the furthest from the zero-profit line (in red), which seems to be half-way

between points A and B. Thus, the viability approach establishes satisficing

policies or solutions that are generally non-unique and hence amenable to the

regulator’s own prioritisation without compromising the overall sustainability

of the fishery.
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Figure 3.13: Viable paths presented in the fishing effort vs target biomass

space.

The regulator can also be confident that these satisficing policies are

robust in the face of parameter and model uncertainty. This is a consequence

of the precautionary nature of these policies. That is, they are based on the
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system’s inertia, making them naturally forward-looking and suitable for any

future circumstance (Krawczyk & Kim, 2009). However, in the case where

there exist uncertainty on parameter values, the viability kernel can then be

computed using different parameter assumptions. The fishery manager may

then choose to maintain the fishery anywhere in the intersection of these

kernels. Despite the robustness of these solutions, parameters must still be

carefully chosen for accurate and reliable kernel approximations.

The viability analysis presented in this chapter would be of value to a

regulator considering moving from a single-species management regime to

one that is based on the integrated management of marine resources. One

such approach is the ecosystem-based fishery management (EBFM), which is

becoming increasingly popular (Arkema et al., 2006). It is a holistic approach

that recognises the need to assess and manage the ecological impacts as well

as economic and social outcomes related to fishing (Metcalf et al., 2009;

Fletcher, 2005). The viability approach is therefore potentially suitable for

integrating ecosystem considerations into fisheries management (Cury et al.,

2005). There is an existing base of research that has already started doing

this, see e.g. Bonneuil (2003); Mullon et al. (2004); De Lara et al. (2012);

Doyen et al. (2012); Cissé et al. (2013).
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3.5 Summary

This chapter extends the basic model presented in Chapter 2 to account for

the dynamics of a by-catch fish stock, which is assumed to be incidentally

caught as a result of harvesting a targeted fish stock. The focus of the

analysis is to establish the configurations required to guarantee the survival

of the by-catch stock, while maintaining the ecological sustainability of the

target stock and sustaining fishing activity and profitability of the fishery. To

achieve this, the viability kernel for the by-catch problem is generated using

VIKAASA. It is shown that under the multi-species specification, there are

fewer combinations of fishing effort and target biomass that are viable relative

to the single-specifies specification. These changes are noticeable for lower

sizes of the by-catch stock. It is those combinations of relatively high fishing

effort and target biomass that become non-viable when the co-dynamics of

jointly harvested fish stocks are specified.

Although the model developed in this chapter is quite stylised, it is shown

that the viability kernel is a useful qualitative tool for a regulator tasked

with addressing the by-catch problem. Specifically, the qualitative analysis is

successful in investigating the system stability and the impacts of parameter

uncertainty on the behaviour of the system, and in highlighting the likely

viable and non-viable states.

In contrast to the current chapter, which assumes a fishery regulated by an

input (or fishing effort) control, the next chapter casts the by-catch problem

in the context of an output control based management regime that imposes

restrictions on the amount of fish coming out of the fishery. The quantity

or output measure is supplemented with a price instrument that aims to



76 CHAPTER 3. AN INPUT-CONTROLLED FISHERY MODEL

provide economic incentives to economic agents to restrict their landings

below allowable levels.



Chapter 4

A viability analysis of

output-controlled fisheries

4.1 An overview

The previous chapter considered a by-catch fishery where the regulator man-

ages fishing activity at sustainable levels by controlling fishing effort ad-

justments and hence the intensity of fishing methods used to catch fish.

This chapter, by contrast, considers an output-controlled management regime

based on New Zealand’s Quota Management System (QMS), which imposes

direct control over harvest levels for each fish species.

Since its inception in 1986, the QMS has undergone major administrative

and legislative changes1. Some of these developments are briefly described

below. For a more complete account of the history and institutional detail of

1For instance, the introduction of the deemed value system in 2001 shifted the QMS

from a criminal offence-based regime to an administrative regime based on economic in-

centives (Peacey, 2002).

77
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the QMS, see e.g. Lock & Leslie (2007); Mace et al. (2013) and the references

therein.

In 2010, there were 636 fish stocks spread over 100 species or species

groupings covered by the QMS (Mace et al., 2013)2. Initially, 161 fish stocks

for 28 species were managed by the QMS at its inception in 1986 (Peacey,

2002; Walker & Townsend, 2008). In order to maintain more control over the

sustainable utilisation of fisheries resources, each species subject to the QMS

is divided into separate fish stocks, which are managed independently in a

nominated geographical area, officially designated as the quota management

area (QMA) . A fish species can consist of numerous geographically isolated

and biologically distinct populations, making it rather difficult to manage

each species at the national level (Lock & Leslie, 2007). The QMA bound-

aries for each species is determined primarily by the fisheries management

areas (FMAs) that define New Zealand’s exclusive economic zone, see Figure

4.1. Depending on biological and administrative factors, a QMA may be an

amalgamation of more FMAs.

The Minister for Primary Industries sets an annual total allowable catch

(TAC) for each fish stock after considering biological assessments and other

sources of information3. The TAC is set with the goal of maintaining the fish

population at or above a level that can sustain the largest possible yield, i.e.

MSY. From the TAC, an allowance is made to non-commercial fishing (i.e.

recreational fishing and customary uses). The remainder is allocated to the

commercial sector as the total allowable commercial catch (TACC).

2Currently, there are 638 QMS fish stocks (Ministry for Primary Industries, 2013).
3The former Ministry of Fisheries has merged with the Ministry of Agriculture and

Forestry and the New Zealand Food Safety Authority to form the Ministry for Primary

Industries.
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Figure 4.1: Fisheries Management Areas. Source: Ministry for Primary

Industries (2005).
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The TACC is divided into individual transferable quotas (ITQs) that are,

in effect, the in-perpetuity right to receive a share of the TACC each year.

Since 2001, at the start of each fishing year, a quota owner’s ITQ generates an

annual catch entitlement (ACE), which is the tonnage equivalent of the quota

share of the commercial catch limit. ACE holders can use it to cover catch

or sell it at the going market ACE price to other agents who have insufficient

or no ACE. The objective is to ensure that the TACC is not over-caught

by encouraging agents to balance all of their catch (i.e. both target and

by-catch fish stocks) with ACE. This is achieved by supplementing the QMS

with a penalty-like mechanism, known as the deemed value system (DVS).

The DVS allows agents to land catch that is not covered by ACE through

payment of a deemed value on each unit of catch in excess of ACE holdings.

The deemed value is set sufficiently high such that any financial benefit from

landing the catch without ACE is eliminated and reducing incentives to catch

stocks for which agents have insufficient or no ACE, and low enough so that

agents have an incentive to land rather than discard any uncovered catch.

It is assumed in this study that the deemed value is set appropriately, so

agents are assumed not to engage in the practice of dumping or discarding,

i.e. what is caught is also landed.

This thesis is mainly concerned with the sustainable utilisation of fish-

eries resources by the commercial sector, so the focus herein is on modelling

the system wide implications (i.e. ecological, economic and social) of TACC

policies. For convenience, it is assumed that all of the TAC is allocated to

commercial fishing, i.e. TAC = TACC. Moreover, the aim of the present

chapter is not to provide a full account of the QMS, but to highlight im-

portant elements of the QMS on which to base a viability model (referred
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henceforth as the output-controlled fisheries model4) that reflects, as much

as possible, New Zealand’s fisheries management regime. Using this model,

an attempt is made to address the by-catch problem.

This chapter is organised as follows. The viability model is developed

in Section 4.2. This includes outlining key features of the QMS to be in-

corporated into the viability model, specifying the proposed cost and profit

functions, deriving the ACE price, and defining the system dynamics and

viability constraints. For convenience, the mathematical symbols and their

descriptions for the model developed here are available from the List of Sym-

bols. The model is calibrated in Section 4.3. An analysis of the viability

kernel approximated by VIKAASA for the output-controlled fisheries model

is presented in Section 4.4. Some policy advice is also provided before wrap-

ping up this chapter with some concluding remarks in Section 4.5.

4.2 A viability model

4.2.1 Outlining the Quota Management System

Following Herrera (2005), the system considered here consists of two ecolog-

ically independent fish stocks with fishable biomasses x(t) and y(t), which

are targeted by two groups of harvesters or fisheries denoted by FB and F T ,

respectively. The superscript B stands for the by-catch fishery and T stands

for the target fishery. Suppose that the system is characterised by a “uni-

lateral by-catch process” where agents in FB target and catch stock x, and

incidently catch stock y. Agents in F T target and only catch stock y. To

4Here, two fisheries are considered as opposed to only one fishery in the previous chap-

ter.
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distinguish an agent in FB from an agent in F T , i and j are used to denote

an individual agent in FB and F T , respectively.

At the beginning of each fishing period t, the regulator sets TACCs for

fish stocks x and y denoted by Ax(t) and Ay(t), respectively. The regulator

allocates Ax(t) among active agents in FB and Ay(t) among those active in

F T . An agent’s share of the TACC is assumed here to generate all the ACE

(denominated in tonnes) against which the agent balances his catch for that

fishing period5. It is assumed that agents in both fisheries are free to trade

all or a portion of their ACE. However, inter-temporal trade of ACE is not

allowed6.

Let aix(t) denote agent i’s ACE holding for stock x after trade in period

t. Similarly, let ajy(t) denote agent j’s ACE holding for stock y after trade in

period t. It is assumed that there is a linear relationship between an agent’s

catch of the stock targeted and his ACE holding for that stock. That is,

hix(t) = βxaix(t) ∀ i = 1, 2, . . . , nB (4.1)

hjy(t) = βT
y ajy(t) ∀ j = 1, 2, . . . , nT , (4.2)

where the parameters βx and βT
y are indicators of whether (on average)

agents’ catch differs from their ACE and in which direction7. So βx < 1 and

βT
y < 1 (βx > 1 and βT

y > 1) imply that agents in FB and F T under-catch

5In fact, quota at time t generates most of the current fishing year’s ACE as quota

right owners in New Zealand are permitted to carry forward up to 10% of unbalanced

ACE from the previous fishing year (Peacey, 2002). This, however, does not apply to fish

stocks listed under schedule 5A of the Fisheries Act 1996.
6This assumption may not hold true in reality given that ACE holders can carry forward

up to 10% of unbalanced ACE.
7Note that the superscript B is dropped from βx because agents in FT do not hold

ACE for stock x.
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(over-catch) their ACE. Agents just-catch their ACE when βx = βT
y = 1. The

number of active agents in FB and F T are given by nB and nT , respectively.

This chapter is interested in investigating the aggregate effect of under- or

over-fishing the TACCs on the viability of the system. Individual behaviours

are therefore irrelevant. Given this, it is assumed that agents in both fisheries

are homogenous in their decision to under- or over-catch their ACE. This is

expected to be true because all agents face the same economic conditions.

As mentioned earlier, agents in the by-catch fishery jointly harvest fish

stocks x and y, where the latter is considered to be the by-catch of targeting

the former. Suppose that the joint production function takes the linear form,

hiy(t) = αhix(t), (4.3)

where hix(t) is defined by (4.1). The parameter α denotes the by-catch-

target harvest ratio, which is a measure of the intensity of jointness of the

production relationship.

Note that agents in FB are also required to cover their catch of stock y

with ACE. They purchase ACE for stock y from agents in F T . Similarly, a

linear relationship between agent i’s catch of stock y and his ACE holding

for that stock is proposed,

hiy(t) = βB
y aiy(t) ∀ i = 1, 2, . . . , nB, (4.4)

where aiy(t) denotes agent i’s ACE holding for stock y in period t and βB
y is a

measure of the propensity that agent i under-catches (βB
y < 1), just-catches

(βB
y = 1) or over-catches (βB

y > 1) his ACE for stock y. Using (4.1), (4.3)

and (4.4), βB
y can be obtained,

βB
y =

αβxaix(t)

aiy(t)
, (4.5)
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which is simply the ratio between agent i’s catch of stock y and his ACE

holding for that stock.

ACE and deemed value payments

An agent’s catch must be covered with ACE, otherwise the agent is liable

to pay the deemed value on the volume of uncovered catch. As mentioned

earlier, agents are allocated a share of the TACC at the beginning of each

fishing year, which generates ACE for that period. So agents, in fact, do not

have to purchase ACE for catch already covered by their annual allocation

of ACE8. Despite this, there is an opportunity cost of fishing the allocated

ACE, i.e. the return from selling some or all of the allocated ACE at the

going price. Here, this opportunity cost is taken into consideration when

modeling agents’ costs.

Thus, agents pay the stock’s ACE price for every unit of catch landed or

until his ACE holding is exhausted. Let mx(t) and my(t) denote the ACE

price for stocks x and y, respectively. These ACE prices are determined in

Section 4.2.2.

Agent i’s payment of ACE for stock x is as follows9,

Λix(t) =

mx(t)hix(t) for βx < 1

mx(t)aix(t) for βx ≥ 1

= mx(t)min [hix(t), aix(t)] . (4.6)

8Note that agents in FB are not allocated ACE for stock y. It is assumed that they

do not hold quota for stock y and therefore have to purchase ACE from agents in FT .
9The min function is used so that the piecewise function can be collapsed into a single-

line equation. This is because only the latter can be specified in VIKAASA.



4.2. A VIABILITY MODEL 85

Agent i’s payment of ACE for stock y is as follows,

Λiy(t) =

my(t)hiy(t) for βB
y < 1

my(t)aiy(t) for βB
y ≥ 1

= my(t)min [hiy(t), aiy(t)] . (4.7)

Agent j’s payment of ACE for stock y is as follows,

Λjy(t) =

my(t)hjy(t) for βT
y < 1

my(t)ajy(t) for βT
y ≥ 1

= my(t)min [hjy(t), ajy(t)] . (4.8)

Additionally, agents are liable to pay the (base) deemed values, denoted

by dx and dy, for every unit of catch in excess of their ACE holdings for

stocks x and y, respectively. The deemed value is set by the regulator and it

is assumed here to be fixed for both stocks. It is set above the ACE price,

which gives an incentive to agents to balance their catch with ACE, but lower

than the landing price to discourage illegal discarding10. So, theoretically the

deemed value is an upper bound on the ACE price, which acts on catch vs

ACE similarly to a backstop technology as defined in Hotelling (1931).

10Some fish stocks in New Zealand have prohibitive deemed value, which makes it un-

economic to catch beyond self ACE holding. Additionally, some stocks have differential

deemed values. For example, for levels of catch h in excess of ACE a of up to 20%, the

basic annual deemed value, d is charged. For levels of catch in excess of ACE between 20%

and 100%, annual deemed value is charged at an increasing proportion of the basic rate,

i.e. d
(
1 + h−a

a

)
until the catch is twice the ACE owned when the deemed value charged

is twice the basic annual deemed value, i.e. 2 × d (Peacey, 2002). For simplicity the fish

stocks considered here are not subject to differential deemed values.
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Agent i’s deemed value payment for stock x is as follows11,

Ωix(t) =

0 for βx ≤ 1

dx (hix(t)− aix(t)) for βx > 1

= dx max [0, hix(t)− aix(t)] . (4.9)

Agent i’s deemed value payment for stock y is as follows,

Ωiy(t) =

0 for βB
y ≤ 1

dy (hiy(t)− aiy(t)) for βB
y > 1

= dy max [0, hiy(t)− aiy(t)] . (4.10)

Agent j’s deemed value payment for stock y is as follows,

Ωjy(t) =

0 for βT
y ≤ 1

dy (hjy(t)− ajy(t)) for βT
y > 1

= dy max [0, hjy(t)− ajy(t)] . (4.11)

Production costs

Furthermore, the fishing activity incurs production costs that depend posi-

tively on harvest and negatively on the biomass of the stock being targeted.

The cost function is assumed to be smooth enough (C2) on R+ and strictly

convex with respect to harvest12. The latter implies that marginal cost of

11Similarly, the max function is used so that the piecewise function simplifies into a

single-line equation.
12The convexity property is widely accepted and used in the fisheries economics lit-

erature. In an earlier paper, Doll (1988) provides a detailed review of the vessel cost

functions and related short-run concepts as presented in the conventional literature of

fishery economics.
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harvest increases with the level of harvest. As more and more agents compete

for a fixed stock of fish, at least in the short-run, it becomes progressively

harder for agents to maintain their catch rate because of the scarcity of fish,

so agents are forced to spend more time searching and fishing, and pushing

costs upwards in the process. Additionally, as the vessel or gear is used more

frequently during the fishing period, total variable costs will rise slowly and

then more rapidly as full utilisation requires more maintenance, replacement

of gears, and the like.

It is proposed that agent i’s cost of production comprises two parts: a

separable and a non-separable component. The former implies that the agent

incurs a cost that is associated with harvesting a particular stock, e.g. han-

dling, cleaning, preserving, etc. It is assumed that the separable cost is

linear in harvest. Non-separable cost includes all variable costs that cannot

be independently attributed to harvesting a particular stock or simply the

cost attributed to catching the stocks jointly, e.g. the cost of winching the

nets out and in, gear maintenance and repair, search cost, fuel, etc. It is

assumed that the non-separable cost is non-linear, increasing in harvest and

decreasing in the targeted stock’s biomass. Similarly, agent j’s production

cost consists of a linear and non-linear part.

Agents may also incur fixed costs, e.g. yearly lease of a vessel from its

owner, insurance, taxes, depreciation and the appropriate opportunity costs

(other than the forgone return from selling their allocated ACE). However,

these fixed costs are not accounted for in the cost function specified for the

output-controlled fisheries model, simply because the analysis is concerned

with the marginal behaviour of agents13.

13Other reasons include (1) a fixed cost would not add anything other than an upward
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Agent i’s production cost function reads as follows,

PCi(t) = cxhix(t) + cyhiy(t) +
wB

2x(t)
(hix(t) + hiy(t))

2 , (4.12)

where cx and cy are fixed unit costs that can be independently attributed

to harvesting stocks x and y, respectively. The parameter wB is a cost

associated with the non-separable cost of harvesting both stocks jointly.

Agent j’s production cost function reads as follows,

PCj(t) = cyhjy(t) +
wT

2y(t)
(hjy(t))

2 . (4.13)

It is assumed that agents face the same fixed unit cost cy of harvesting

stock y in both fisheries. Given that this cost is associated with the activity

that follows from landing the catch, it is reasonable to expect that the cost

of such activity is not significantly different across fisheries for a particular

stock. For instance, the hourly labour rate charged for handling and cleaning

stock y in F T should not be much different from that charged for the same

activity on the same stock in another fishery. The parameter wT denotes

the cost associated with the non-linear cost of harvest in the target fishery.

Obviously, with no by-catch there is no reason to expect that agents in F T

have an identical production technology to that employed in FB.

shift in the cost function, (2) the vessel and gears could be used in other fisheries so the

investment could be shared among several fishing activities, and (3) the fixed cost simply

disappears when deriving the ACE prices so it add an unnecessary constant to an already

complex mathematical notation.
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Profit

Agents in both fisheries are considered to be price takers in the output mar-

ket. They face a common exogenous unit price px and py for fish stocks x

and y, respectively.

The short form of agent i’s profit function is defined as,

πi(t) = pxhix(t)+pyhiy(t)−PCi(t)−Λix(t)−Λiy(t)−Ωix(t)−Ωiy(t), (4.14)

where PCi(t), Λix(t), Λiy(t), Ωix(t) and Ωiy(t) are defined in (4.12), (4.6),

(4.7), (4.9) and (4.10), respectively.

The short form of agent j’s profit function is defined as,

πj(t) = pyhjy(t)− PCj(t)− Λjy(t)− Ωjy(t), (4.15)

where PCj(t), Λjy(t) and Ωjy(t) are defined in (4.13), (4.8) and (4.11), re-

spectively.

In what follows the ACE price is derived for each fish stock.

4.2.2 Deriving the ACE price

The ACE prices for stocks x and y are derived using the method described in

Péreau et al. (2012)14. To maintain the readability of this thesis, this section

is limited to the derivation of the ACE price for stock x only. The ACE price

for stock y is derived in Section C.1 of the Appendix to this chapter. Note

that the time argument on all dynamic variables is dropped. This unburdens

the notation.

14Péreau et al. (2012) deal with a single-species fishery. They also assume that catches

do not deviate from catch entitlements, i.e. quota.
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By substituting (4.6), (4.7), (4.9), (4.10) and (4.12) into (4.14), the long

form of agent i’s profit function is obtained,

πi = pxhix + pyhiy

− cxhix − cyhiy −
wB

2x
(hix + hiy)

2

− mx min [hix, aix]−my min [hiy, aiy]

− dx max [0, hix − aix]− dy max [0, hiy − aiy] . (4.16)

Using (4.1), (4.3) and (4.4), agent i’s profit function (4.16) is expressed

as a function of hix,

πi = (px − cx)hix + α (py − cy)hix −
wB

2x
((1 + α)hix)

2

−
(
mx min

[
1,

1

βx

]
+ αmy min

[
1,

1

βB
y

])
hix

−
(
dx max

[
0, 1− 1

βx

]
+ αdy max

[
0, 1− 1

βB
y

])
hix. (4.17)

Differentiating (4.17) with respect to hix,

∂πi

∂hix

= px − cx + α(py − cy)−
wB(1 + α)2

x
hix

− mxmin

[
1,

1

βx

]
− αmy min

[
1,

1

βB
y

]
− dx max

[
0, 1− 1

βx

]
− αdy max

[
0, 1− 1

βB
y

]
= 0,

and solving for hix yields,

h∗
ix =

x

wB(1 + α)2

{
px − cx −mx min

[
1,

1

βx

]
− dxmax

[
0, 1− 1

βx

]
+ α

(
py − cy −my min

[
1,

1

βB
y

]
− dy max

[
0, 1− 1

βB
y

])}
.

(4.18)
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Aggregating (4.18) across all nB agents yields the demand for ACE,

H∗
x =

nB∑
i=1

h∗
ix

= nBh∗
ix (4.19)

From the ACE market clearing condition,

H∗
x = Ax (4.20)

the ACE price for stock x can be obtained,

m∗
x = max [1, βx]

{
px − cx − dx max

[
0, 1− 1

βx

]
+ α

(
py − cy −m∗

y min

[
1,

1

βB
y

]
− dy max

[
0, 1− 1

βB
y

])
− wB(1 + α)2

x

(
Ax

nB

)}
, (4.21)

where stock y’s ACE price is defined by (C.6). For convenience, it is stated

here,

m∗
y = max

[
1, βT

y

]{
py − cy − dy max

[
0, 1− 1

βT
y

]
− wT

y

(
Ay

nT

)}
.

(4.22)

Note that the ACE prices (4.21) and (4.22) are equal to the average (from

the homogeneity assumption) marginal profit associated with harvesting an

extra unit of fish. This is consistent with the literature, see e.g. Marchal

et al. (2011); Little et al. (2009); Guyader & Thébaud (2001).
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Marginal profit and therefore the ACE price increase with a higher price

of fish and lower costs of fishing. Additionally, the following relationships are

observed:

• ∂m∗
x

∂Ax
< 0 and

∂m∗
y

∂Ay
< 0

This may be explained as follows. A rise in the supply of ACE from

increasing the TACC results in the flooding of the market with ACE,

which consequently pushes the market price down.

• ∂m∗
x

∂x
> 0 and

∂m∗
y

∂y
> 0

This may be explained as follows. A rise in stock abundance for a given

supply of ACE implies an increase in the amount of harvest for a given

level of effort, creating an incentive for all agents to buy more ACE to

cover the additional units of catch. This yields an increase in the ACE

price.

Now that the ACE price for both fish stocks have been determined, the

focus is now on presenting the system’s dynamics.

4.2.3 The system’s dynamics

The system is described by four state variables: target biomass – x(t), by-

catch biomass – y(t), target stock’s TACC – Ax(t), and by-catch stock’s

TACC – Ay(t). The system is modelled over an infinite time horizon,

t ∈ Θ ≡ [0,∞). (4.23)
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The population dynamics

The population dynamics of stocks x and y are similar to those presented

in (3.3) in the previous chapter, in that both stocks are subject to logistic

growth in continuous time, ẋ(t) = rxx(t)
(
1− x(t)

Lx

)
−Hx(t)

ẏ(t) = ryy(t)
(
1− y(t)

Ly

)
−Hy(t)

(4.24)

where rx and ry denote the intrinsic growth rates, and Lx and Lx are the

environment’s carrying capacities, of x and y, respectively. Withdrawals of

stocks x and y from the system are represented by Hx(t) and Hy(t), respec-

tively.

Withdrawal of stock x in period t is obtained by summing up (4.1) across

all agents in FB,

Hx(t) =
nB∑
i=1

βxaix(t)

= βxAx(t). (4.25)

Note that the sum of individual ACE holdings at the end of the fishing period

must add up to the TACC set the beginning of the fishing period.

Withdrawal of stock y in period t is made up of harvests of stock y from

both FB and F T ,

Hy(t) = HB
y (t) +HT

y (t). (4.26)

In FB, total harvest of stock y is obtained by aggregating (4.3) for all agents,

HB
y =

nB∑
i=1

αβxaix(t)

= αβxAx(t). (4.27)
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In F T , total harvest of stock y is obtained by aggregating (4.2) for all agents,

HT
y =

nT∑
i=1

βT
y ajy(t)

= βT
y Ay(t). (4.28)

Given (4.27) and (4.28), withdrawal of stock y now reads as follows,

Hy(t) = αβxAx(t) + βT
y Ay(t). (4.29)

TACC adjustments

To fully describe the dynamics of the fisheries model, the population dy-

namics for stocks x and y (4.24) is coupled with the law of motion for both

TACCs, Ax and Ay. It is proposed that the time variability of Ax and Ay

are described by the following differential inclusions, Ȧx(t) = ux(t) ∈ [−δx, δx] ≡ Ux

Ȧy(t) = uy(t) ∈ [−δy, δy] ≡ Uy

(4.30)

where the parameters δx > 0 and δy > 0 define the maximum speed by which

the TACCs can be adjusted between fishing periods. The inclusions represent

bounds on the speed at which the regulator can change the TACCs. This

reflects the regulator’s policy for “smooth” annual catch limit adjustments.
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Thus, the dynamical system for the output-controlled fisheries model is

now completed. It is defined through the following vector of differential

inclusions,



ẋ(t) ∈ rxx(t)
(
1− x(t)

Lx

)
− βxAx(t)

ẏ(t) ∈ ryy(t)
(
1− y(t)

Lx

)
− αβxAx(t)− βT

y Ay(t)

Ȧx(t) ∈ Ux

Ȧy(t) ∈ Uy.

(4.31)

4.2.4 The viability constraints

Having defined the system’s dynamics, the current section defines the vi-

ability constraints, which need to be satisfied by the dynamical system at

all times. By doing so, the system is maintained in a perennial state. The

QMS was introduced into New Zealand’s fisheries to achieve two broad goals.

Firstly, to limit catches to levels that will result in maximum production from

the stock and secondly to maximise the net economic return to the nation

(Annala, 1996). Here, adjusted ecological and economic objectives coupled

with a social objective are proposed.

The ecological constraint

Again, the ecological sustainability of the system requires that stocks x and

y both do not fall below their respective SMBLs, xmin > 0 and ymin > 0, x(t) ≥ xmin

y(t) ≥ ymin

∀ t ∈ Θ. (4.32)
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The economic constraint

The economic sustainability of the system requires that the fishing industry

remains profitable. Rather than imposing a non-negative condition on profit

as in the input-controlled fishery model, here a non-negative condition is

imposed on the ACE price for both stocks, which follows from Péreau et al.

(2012). Given that the ACE price reflects marginal profit as noted earlier,

this condition ensures that the marginal profit of harvesting an additional

unit fish is never negative. Moreover, it does not make economic sense to

have a negative price of ACE as this would imply subsidising others to buy

your ACE.

Thus, the economic constraint is defined as, m∗
x(t) ≥ 0

m∗
y(t) ≥ 0

∀ t ∈ Θ, (4.33)

where m∗
x(t) and m∗

y(t) are defined in (4.21) and (4.22), respectively.

The social constraint

Social objectives are often associated with employment and income distribu-

tion, production of nutritional food, and maintenance of traditional liveli-

hoods and communities (Hilborn, 2007). The system provides a flow of

consumption and services through harvesting, which can either directly or

indirectly achieve these objectives. Thus, the social constraint here requires

that the annual catch limit (i.e. TACC) on both stocks is never set below a

minimum guaranteed harvest level (MGHL), Ax(t) ≥ Hx,min

Ay(t) ≥ Hy,min

∀ t ∈ Θ. (4.34)
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Moreover, the rigidity constraint imposed on the speed at which the

TACCs can be adjusted (4.30) may reflect some social (and political) cost.

As mentioned earlier, under a QMS quota owners have an exclusive right to

fish, in perpetuity, a share of the TACC. This property right is also divisible,

transferable and bankable, which essentially makes it an asset that promises

to generate a flow of economic benefits over time (Sumaila, 2010; Squires

et al., 1998). So, any major changes to the TACC may entail significant

socio-political ramifications. It is not surprising then that the TAC/TACC

for many fish stocks remain constant from year to year despite official recom-

mendations for adjustments (Lock & Leslie, 2007; Sanchirico et al., 2006).

It is worth mentioning here that associated with any ITQ-based manage-

ment regime is the issue concerning the concentration of quota by a small

group of quota owners (Stewart & Callagher, 2011), an inevitable conse-

quence of rationalisation. This may pose significant socio-economic costs

particular on small-scale fishing operators who have little choice but to leave

the fishery because they do not have sufficient quota to cover their catch as

mostly all of the quota is controlled by a small group operators15. The model

developed here cannot deal with this issue given the homogeneity assumption

on all agents. Nonetheless, it is worth exploring further in future research.

15This issue also features in a goema beat by Barry van Zyl, see (van Zyl, 2012).
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Thus, using (4.30), (4.32), (4.33) and (4.34), the viability constraint set

is defined by,

K ≡



(x, y, Ax, Ay, ux, uy) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x(t) ≥ xmin

y(t) ≥ ymin

m∗
x(t) ≥ 0

m∗
y(t) ≥ 0

Ax(t) ≥ Hx,min

Ay(t) ≥ Hy,min

ux(t) ∈ Ux

uy(t) ∈ Uy



. (4.35)

4.2.5 The viability kernel

The viability kernel for the output-controlled viability model is defined as

follows,

V ≡


(x(0), y(0), Ax(0), Ay(0)) :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ (ux(·), uy(·)) and (x(·), y(·), Ax(·), Ay(·)) ,

starting from (x(0), y(0), Ax(0), Ay(0))

satisfying dynamics (4.31)

and constraints (4.35)

∀ t ∈ Θ


,

(4.36)

which delineates the loci of states, from which moderate TACC adjustments

can guarantee a balanced evolution of the system.
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4.3 The model calibration

4.3.1 The base parameter set

The values assigned to the biological parameters (i.e. rx, ry, Lx and Ly)

and the technical parameter (i.e. α) here are identical to those used in the

input-controlled fishery model, refer to Section 3.3 for the rationale behind

these values.

Similarly, the ex-vessel prices of stocks x and y are identical to those used

in the preceding chapter. These prices are based on port price of fish stock

TAR2, i.e. tarakihi (Nemadactylus macropterus) caught in QMA2, see Table

C.1 in the Appendix to this chapter. Port prices are collected on a voluntary

basis through annual surveys with licensed fish receivers. These prices are

averaged using a 3 year moving average, which is the reason for showing little

to no variation between fishing years. Port prices in general are not very

reliable because they do not discriminate between fishing methods, market

fish sizes, fish quality and season (Lallemand, 2013). They are however the

best available indication of ex-vessel prices and are widely used by fisheries

managers in New Zealand.

In practice, the deemed value is generally set proportionally to the ex-

vessel price of the fish stock, and it is mostly set higher than the ACE price

so as to provide an incentive to agents to cover their catch with ACE, but

lower than the ex-vessel price to discourage illegal discarding (Holland &

Herrera, 2006). Newell (2004) shows that the base deemed value is set as

low as 10% of the port price for fish stocks with relatively little information

on the fishery status or no sustainability concerns, and as high as 200% of

the port price for some high-valued stocks taken primarily with little, if any,
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by-catch. The deemed values are then, in most cases, modified to account

for changes in port prices or if catch levels exceed the TACC.

Here, the (base) deemed values dx and dy are set at 75% of px and py,

respectively. This is based on the deemed value of TAR2, which remains at

about three-quarter of the port price, see Figure C.1 in the Appendix to this

chapter. The deemed values are assumed to be fixed over time. This is not an

unreasonable assumption given that the deemed values for many fish stocks

remain unchanged since the introduction of the DVS in 2001 (Lallemand,

2013).

The values assigned to the unit costs of fishing are not based on actual

costs. However, they have been set lower than the ex-vessel prices to ensure

that fishing is still profitable and hence worthwhile after taking into account

the cost of covering catch with ACE. The unit costs (i.e. cx and cy) associated

with the linear cost component are set at $1.50/kg and $1/kg, respectively.

Given that the target stock is more valuable and it is associated with higher

catch rates, it is reasonable to assume that it is more costly to harvest a unit

of stock x than it is to harvest a unit of stock y. For instance, there is more

care and time given to sorting and handling target catches. As for the cost

parameters wB and wT associated with non-linear variable costs, they are

set at $500 and $250, respectively.

The number of fishing permit holders for the TAR2 fishery for the period

2003-04 to 2009-10 is summarised in Table C.2. Using these figures as a

benchmark, the number of agents nB and nT are set at 30 and 20, respectively.

The calibrated values for the output-controlled fisheries model are sum-

marised in Table C.3. These parameter values, in broad terms, characterise a

typical multi-species fishery in which the by-catch stock is considerably less
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productive than the target stock, so the former is at risk of over-exploitation

if exploited at rates appropriate for the target stock. Thus, it is of particular

interest to use viability theory to determine the loci of states, from which

the regulator can make the necessary TACC adjustments that guarantee the

good health of resource stocks while not neglecting its other economic and

social responsibilities.

4.3.2 The boundaries

VIKAASA requires that both the lower and upper limits be specified for all

state variables x(t), y(t), Ax(t), Ay(t), and control variables ux(t) and uy(t).

The boundaries for the biological variables x(t) and y(t) proposed here

are identical to those used for the input-controlled fishery model. That is, for

each stock, the lower limit or the SMBL is set equal the hard limit, i.e. 10%

of the stock’s carrying capacity. The upper limit is set equal to the stock’s

carrying capacity.

The lower bound of the TACC for each stock is defined by the MGHL,

which is set arbitrary equal to a 1
3
of the stock’s MSY16. Theoretically, levels

of catch above MSY cannot be sustained without depleting the resource

stock. This makes MSY an appropriate level to set the upper bound for the

TACC for each fish stock.

Thus, the proposed boundaries are defined as follows,

• target biomass again is set between 10% and 100% of the target

stock’s carrying capacity, i.e. x(t) ∈ [60, 600];

16For the logistic growth model, MSY is defined by (A.8), i.e. YMSY = rL
4 , where r and

L are the stock’s intrinsic growth rate and carrying capacity, respectively.
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• by-catch biomass should also be between 10% and 100% of the by-

catch stock’s carrying capacity, i.e. y(t) ∈ [30, 300];

• target TACC should be between 1
3
and 100% of the target stock’s

MSY, i.e. Ax(t) ∈ [20, 60];

• by-catch TACC should be between 1
3
and 100% of the by-catch stock’s

MSY, i.e. Ay(t) ∈ [5, 15]

• target TACC adjustment speed, rather arbitrary the amount by

which the regulator can change Ax(t) between fishing periods will be

between -1 and 1 percentage points, so ux(t) ∈ [−0.01, 0.01]; and

• by-catch TACC adjustment speed, similarly the amount by which

the regulator can change Ay(t) between fishing periods will also be

between -1 and 1 percentage points, so uy(t) ∈ [−0.01, 0.01].

4.4 A viability analysis

4.4.1 How to analyse viability kernels with more than

three dimensions?

The fisheries viability problem presented in the current chapter deals with

four state variables (x, y, Ax and Ay), so V ⊂ K ⊂ IR4. The 4D viability

kernel V is also computed over a range of values of βx and βT
y , which are

initially kept constant. This allows for a qualitative analysis of the system-

wide implications of agents under-catching, matching or over-catching their

ACE holdings. The subsequent analysis focuses mostly on the last two cases.

The first case, which is referred henceforth as the base scenario considers
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βx = βT
y = 1. That is, catches by agents in both the by-catch fishery,

FB and the target fishery, F T never deviate from their ACE holdings. The

second case considers βx = 1.2 and βT
y = 1. That is, only agents in FB

exceed their ACE by the maximum allowable amount. The analysis also

considers a third case where βx is allowed to vary between βx(t) ∈ [0.8, 1.2],

while βT
y = 1 remains unchanged. Given that more than three state spaces

cannot be visually displayed, the analysis will be conducted using 3D and

sometimes 2D slices of V , for a given value of βx and βT
y . An explanation of

how to interpret multi-dimensional kernels is provided in Box 5.

Box 5. How to interpret 3D slices of the 4D kernel?

In order to examine the viability configurations for the output-controlled

fisheries model, 3D slices of the 4D kernel will be used. The first such slice

is shown in Figure 4.2a. The three dimensions, for which the slice is cut, are

labelled along the respective axes (here: x, y and Ax); the fourth dimension

is kept constant (here: Ay=all). The box delimits the three-dimensional

projection ofK ⊂ IR4, whereK is defined by (4.35) as the state constraint set,

within which the fishery is supposed to remain, less the economic constraint,

which is not displayed. The 3D body (“boulder”) is a snapshot of the viability

kernel taken for a particular value or values of the fourth dimension, written

down in the caption. If there is a line (trajectory) shown in the figure,

then each point of this line corresponds to a different value of the fourth

dimension; it can therefore be said that the 3D line is parameterised in the

fourth dimension.

From the viability kernel’s definition (2.7), it is known that:
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• for each initial state represented as a point in the boulder, there exists

smooth TACC policies (ux ∈ Ux and uy ∈ Uy ), which maintain the fishery

in the viability constraint set K;

• the points outside the boulder are those states that cannot be controlled

to remain in K by these policies.

4.4.2 Population viability analysis for the base sce-

nario

As a starting point, selected slices of the viability kernel computed without

the economic constraint (4.33) also known as the “population viability ker-

nel” are presented in Figure 4.2. There are four possible 3D slices of the 4D

kernel, however only two are shown here. The shaded 3D boulders represent

available choices of the TACCs, Ax (left panel) and Ay (right panel) that

satisfy both the ecological and social constraints (4.32) and (4.34), for the

base scenario17.

There are two important observations that are noted for Figure 4.2.

Firstly, the SMBL chosen for stock y is non-viable for any given value of

the other three state variables. In other words, the ecological sustainability

of the system requires that the size of stock y’s biomass be maintained at

levels that are higher than the hard limit. This is so stock y is sufficiently

17Note that under the base scenario, agents in both fisheries always catch their ACE

holdings (i.e. βx = βT
y = 1). Consequently, total harvest of the target stock x is always

equal to the stock’s TACC, Ax. However, the TACC, Ay for the by-catch stock is always

over-caught by the amount of stock y harvested in the by-catch fishery. So deemed value

payments are only limited to the by-catch harvest.
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(a) Viable choices of Ax (b) Viable choices of Ay

Figure 4.2: The population viability kernel for the base scenario. Panel (a)

presents a 3D slice of the kernel through all values of Ay. Panel (b) presents

a 3D slice of the kernel through all values of Ax.

productive to cope with the additional pressure imposed by the incidental

catch of y by the fishing fleet in FB. Secondly, setting the TACCs for stocks

x and y at their respective MSY levels (i.e. upper bounds) is not a viable

policy. In fact, the choices of Ax and Ay are constrained to values lower than

their upper bounds. Similarly to the explanation for the first observation,

this is so that total withdrawals of stock y from both fisheries are maintained

at levels that do not put this stock’s population at risk of extinction.

Setting the TACC equal to MSY as a non-viable policy is an interest-

ing result particularly from the regulator’s perspective given that MSY is

a common management target (Hilborn, 2007). It is common practice in

multi-species fisheries to set catch limits independently, with little or no con-

sideration of co-dynamics of fish stocks (Holland & Herrera, 2006). Here,

the implications of managing fish stocks independently are highlighted. The
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two-species population viability kernel (i.e. Figure 4.2) projected onto the

Ax vs x planes is contrasted with that generated for the single-species case.

The relevant viability domains are presented in Figure 4.3.

(a) Single-species case (b) Two-species case

Figure 4.3: A contrast of the choice of viable TACC policies for stock x under

the single-species and two-species species specification, for the base scenario.

Panel (a) considers only the ecological sustainability of stock x, and panel

(b) considers the ecological sustainability of stocks x and y conjointly.

Under the single-species specification, MSY is confirmed as a viable TACC

policy provided that the size of x is maintained at a level that is at least a

half of the stock’s carrying capacity18, see Figure 4.3a. Given this result, it

is not surprising that setting catch limits equal to MSY is a common man-

agement target. However, when taking into consideration the impact of joint

production on the ecological sustainability of the slower growing stock y, the

choice of viable TACC policies becomes constrained to levels lower than MSY

18For the logistic growth model, the stock’s biomass that supports MSY is theorectically

equal to xMSY = Lx

2 , see (A.9).
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as shown in Figure 4.3b.

For a closer look at the viable choices of TACCs available to the regulator,

the population viability kernel is projected onto the Ax vs Ay planes for all

values of x and y, in Figure 4.4. The two TACCs are clearly shown to

be constrained well below their respective upper bounds as noted earlier.

All combinations of Ax and Ay that are not in the shaded areas are non-

viable because they pose a potential risk to the ecological sustainability of

the system.

Figure 4.4: A 2D projection of the population viability kernel onto the Ay

vs Ax planes for all values of x and y, for the base scenario.

For example, consider the initial state [x(0), y(0), Ax(0), Ay(0)] =

[300, 150, 20, 12] ̸∈ V labelled “A” in Figure 4.4 and whose time profiles

are presented in Figure 4.5. Starting here inevitably results in stock y’s

biomass being driven below its SMBL (see the panel titled “y”), even with

Ay reduced by the maximum amount allowed (see the panel titled “uy”). This

is not unexpected given that total withdrawal of y, i.e. Hy(t) = αβxAx(t) +
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βT
y Ay(t), never falls below MSY, see the dashed blue line, which always

remains above y’s upper bound in the panel titled “Ay”
19. Note that Ax

cannot be reduced any further in order to decrease the by-catch harvest

component (i.e. βxAx(t)) as Ax is already equal to its lower bound, and

therefore it would violate the social constraint (4.34). It can be verified that

any of the states to the right of the shaded area in Figure 4.4 would violate

the ecological constraint (4.32).
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Figure 4.5: Time profiles associated with the initial state “A” marked in Fig-

ure 4.4. The red horizontal lines represent the bounds on dynamic variables.

19MSY is the biological maximum so any harvest above this level is not ecologically

sustainable.
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4.4.3 Co-viability analysis for the base scenario

The focus now is on providing a qualitative analysis of the effect of incorpo-

rating the economic constraint (4.33) coupled with the ecological and social

constraints on the viability configurations for the output-controlled fishery

problem. The kernel computed with all viability constraints conjointly is

called the “co-viability kernel”, and it is presented in Figure 4.6. Panels

on the left, i.e. Figures 4.6a and 4.6c display selected 3D slices of the co-

viability kernel for the base scenario. For a clearer visualisation of the effect

of the economic constraint on the viability space, corresponding 3D slices

of the population viability kernel (i.e. without the economic constraint) are

presented in the right-hand-side panels, i.e. Figures 4.6b and 4.6d.

The size of the kernel with the economic constraint is relatively smaller

than that without the economic constraint, which confirms that the economic

condition is constraining20. More specifically, the non-negative condition

imposed on the ACE prices for the calibrated model constrains x to relatively

higher levels, and Ax to relatively lower levels. The latter remark is consistent

with that made in Péreau et al. (2012), which is done so analytically. These

observations imply that the economic constraint entails more conservative

restrictions than what would otherwise be ecologically acceptable.

A remark was made earlier that the ACE price reflected the average

marginal profit of extracting an additional unit of fish. It is therefore not

surprising to observe that larger stock sizes entail positive ACE prices given

that the marginal cost (i.e. non-linear cost component) of harvesting an extra

fish unit decreases with increased stock abundance, ceteris paribus, refer to

20Initial states that are contained in the population viability kernel, but not in the

co-viability kernel are associated with negative ACE prices.
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(a) Viable choices of Ax with the economic con-

straint

(b) Viable choices of Ax without the economic

constraint

(c) Viable choices of Ay with the economic con-

straint

(d) Viable choices of Ay without the economic

constraint

Figure 4.6: A contrast of selected 3D slices of the co-viability kernel (left

panels) with corresponding slices of the population viability kernel (right

panels), for the base scenario.
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(4.12) and (4.13). Conversely, higher TACC levels entail higher marginal cost

(i.e. also through the non-linear cost component) of harvesting an extra fish

unit, ceteris paribus, so positive ACE prices are associated with lower TACC

values.
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Figure 4.7: Scatter plots of the ACE prices against selected explanatory

variables. The red horizontal lines represent the bounds on the ACE prices,

i.e. m∗
x ∈ (0, dx) and m∗

y ∈ (0, dy).
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Figure 4.7 confirms that the ACE prices m∗
x and m∗

y corresponding to the

co-viability kernel satisfy the economic constraint. Specifically, m∗
x is positive

over the range of viable values of x (approx. 200 < x ≤ 600) and Ax (approx.

20 ≤ Ax < 45), see panels (a) and (b), respectively21. Similarly, m∗
y is also

positive over the range of viable values of y (approx. 50 < y ≤ 300) and

Ay (approx. 5 ≤ y < 12), see panels (c) and (d), respectively. The scatter

plots also show that m∗
x is increasing (decreasing) with higher stock x (higher

Ax), and that m∗
y is increasing (decreasing) with higher stock y (higher Ay).

These observations confirm the remarks made earlier that ∂m∗
x

∂x
> 0,

∂m∗
y

∂y
> 0,

∂m∗
x

∂Ax
< 0 and

∂m∗
y

∂Ay
< 0.

4.4.4 Implications of over-catch on the co-viability ker-

nel

So far, the analysis has focused on the viability kernels generated for the

base scenario. The focus here is to analyse the co-viability kernel generated

for the case where agents in the by-catch fishery FB over-catch their ACE

for the target fish stock by 20%, and consequently the TACC for stock x is

also over-caught by the maximum allowable amount of 20%, i.e. βx = 1.2.

Given that Ay is already over-caught by the amount of stock y caught as

by-catch in FB, specifying βT
y > 1 would not add much value to the analysis,

so βT
y = 1 remains.

Selected 3D slices of the co-viability kernel generated for βx = 1.2 and

βT
y = 1 are presented in Figures 4.8a and 4.8c. For a clearer visualisation of

21Although it is not shown here, it can also be verified that m∗
x is positive for viable

values of y. Note that the latter affects the former rather indirectly via m∗
y, so it is not

expected that there is an obvious relationship between m∗
x and y.
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the effect of specifying a higher βx, corresponding 3D slices of the co-viability

kernel under the base scenario are presented in Figures 4.8b and 4.8d.

(a) Slice through Ay=all, βx = 1.2, βT
y = 1 (b) Slice through Ay=all, βx = 1, βT

y = 1

(c) Slice through Ax=all, βx = 1.2, βT
y = 1 (d) Slice through Ax=all, βx = 1, βT

y = 1

Figure 4.8: Selected 3D slices of the co-viability kernel associated with over-

catching Ax (left panels) and corresponding slices of the co-viability kernel

under the base scenario (right panels).
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Firstly, the regulator’s choice of Ax is much more restricted when the

TACCs are over-caught as shown in Figure 4.8a. This is mainly because

over-catching Ax implies higher by-catch harvest by the fishing fleet in FB,

which puts additional pressure on the survival of the slower growing by-catch

fish stock, y. Constraining Ax to lower levels is therefore required to ensure

the ecological sustainability of stock y. Similarly, the choice of values for Ay

is also shown to be constrained to lower levels, but only slightly as depicted

in Figure 4.8c, for the same reason explained above.

Secondly, the biomass of stock x is constrained to much higher levels when

its TACC is over-caught. Given that agents in FB are now paying deemed

value for catch of the target stock x in excess of their ACE holdings, higher

abundance of stock x is required to reduce harvest costs in order to offset the

additional costs associated with the deemed value payments, and therefore

maintaining the profitability of the fishery.

To further illustrate the economic implications of over-catching Ax, Fig-

ure 4.9 contrasts viable fishing profit levels associated with βx = 1.2 (left

panel) with those under the base scenario, βx = 1 (right panel). The profit

domain demonstrated here indicates the potential profits for an agent in FB

(horizontal axis) and an agent in F T (vertical axis). Profit levels for an agent

in FB are much lower when Ax is over-caught (i.e. βx = 1.2) compared to

when it is just-caught (i.e. βx = 1)22. This implies that the deemed value

specification (i.e. dx = 0.75px) for the calibrated model is constraining. It is

also noted that over-catching the target stock in FB can potentially constrain

profits in F T to lower levels. This is mainly a consequence of restricting Ay

22Similarly, it can be easily verified that profits for an agent in FT are constrained to

lower levels when βT
y = 1.2 is assumed.
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to lower levels noted in Figure 4.8c in order to dampen the incidental effect

of increased by-catch harvest (i.e. through over-catch of the target stock x)

on the survival of the by-catch stock. This is an example of a “dynamic

externality” resulting from the activity of one group of agents, which inflicts

costs on another group of agents23. Here, such costs include reduced yields

and revenues.

(a) βx = 1.2 (b) βx = 1

Figure 4.9: Viable fishing profit levels associated with over-catching Ax

(panel a) and the base scenario (panel b). The horizontal axis reads the

profit for agent i. The vertical axis reads the profit for agent j.

The above shows that when the deemed value is set sufficiently high,

agents are better off economically to limit their catch within self ACE hold-

ings, and therefore constraining catches within TACCs. By contrast, when

the deemed value is set too low, i.e. lower than the ACE price as shown in Fig-

ure 4.10, there are initial states where it is profitable for an agent to overfish

23Wachsman (2003) categorises the different types of externalises associated with com-

mercially exploited multi-species fisheries into five groups: dynamic, market, biological,

spillover and production.
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Figure 4.10: Scatter plots of the ACE prices, m∗
x and m∗

y for the case where

the deemed value is set at 10% of the port price for both fish stocks. The

deemed values dx and dy are represented by the vertical and horizontal red

lines, respectively.
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his ACE and cover the excess catch by paying the deemed value, see Figure

4.11. There are examples of agents exploiting New Zealand’s catch-balancing

system by over-catching a number of fish stocks whose deemed value were

set at low levels (Mace et al., 2013). As a consequence, accumulated catches

of these stocks were well above their TACC. This has resulted in a concerted

effort to set deemed values at appropriate levels in order to discourage agents

from intentionally targeting stocks without ACE, while encouraging them to

land rather than discard any uncovered catch. In effect, landings have been

constrained within the TACC and deemed value payments have dramatically

decreased (Mace et al., 2013).

(a) Agent i (b) Agent j

Figure 4.11: Viable fishing profit levels associated with the deemed value

being set at 10% of the port price for different TACC levels. Panel (a)

contrasts agent i’s potential profits obtained for βx = 1.2 (blue area) with

those obtained for βx = 1 (yellow area). Similarly, a contrast of agent j’s

profits for βT
y = 1.2 (blue area) and βT

y = 1 (yellow area) is shown in panel

(b).
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4.4.5 Allowing for βx to vary over time

So far the analysis assumes that agents’ propensity to deviate from their ACE

holding remains constant over time. In reality, the propensity to deviate has

some discretionally element and therefore varies over time depending on a

number of economic factors, e.g. the cost of covering catch with ACE relative

to the deemed value. An agent may also engage in different (or a mixture

of different) strategic behaviours, such as those (i.e. “contracted”, “indepen-

dent” and “vertically integrated”) characterised in Lallemand (2013). Differ-

ent strategic behaviours should affect an agent’s propensity to acquire ACE

and/or deemed value to cover his catch differently. For instance, both ver-

tically integrated and contracted fishing operators follow strict fishing plans

so they are less likely to catch in excess of ACE provided in-house or by

the contractor24. By contrast, independent operators are more likely to fish

without ACE (or fish with deemed value) given that they rely on the open

market to acquire ACE and therefore they are vulnerable to ACE availabil-

ity. The transaction cost associated with covering catch with ACE can be

prohibitive when ACE availability is restricted either by the TACC being set

unnecessarily low or simply by leaving it too late in the fishing season to find

ACE.

The strategic behaviour of agents can be modelled by specifying a differ-

ential inclusion for βx and βT
y in the output-controlled fisheries model. Note

24However, if the economic or biological environment permits, e.g. the market price of

the targeted fish stock(s) (fuel) is at an all time high (low) or there is a high abundance of

fish, it may be worthwhile then for an agent to catch beyond the contracted fishing plan

and then search for ACE on the open market or pay deemed value to cover the additional

catch.
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that this problem will be in six dimensions, which will require significant

computational time to compute the 6D viability kernel. For convenience,

it is assumed here that only agents in the by-catch fishery can vary their

behaviour, i.e. their propensity to deviate from their ACE holding can vary

over time (βx(t)). As for agents in the target fishery, the assumption that

βT
y = 1 remains unchanged.

Suppose that agents in the by-catch fishery can under-catch or over-catch

their ACE holding by a maximum of 20% and that the speed of variation

of βx(t) between fishing periods is between -10 and 10 percentage points,

which is sufficiently rigid due to e.g. contractual obligations or limited ACE

availability. Thus, the following additions are made to the output-controlled

fisheries model,

β̇x(t) = vx(t) ∈ [−0.1, 0.1] (4.37)

βx(t) ∈ [0.8, 1.2]. (4.38)

The viability kernel for the above problem, which is in 5D shall be called

the “augmented” co-viability kernel. This is to distinguish it from the co-

viability kernel computed for the case where agents cannot vary βx. The

focus here is merely to present selected slices of the this 5D kernel and to

describe key differences between the “augmented” co-viability kernel and

the co-viability kernel in order to highlight the effect of changes in strategic

behaviour on the viability of the system.

Figure 4.12 displays selected 3D slices of the augmented co-viability ker-

nel for two cases. Panels on the left, i.e. Figures 4.12a and 4.12c, consider

the case where agents in the by-catch fishery initially over-catch their ACE

holdings (and consequently the TACC) for stock x by the maximum allow-
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able amount of 20% (i.e. βx(0) = 1.2). By contrast, panels on the right,

i.e. Figures 4.12b and 4.12d, consider the base case where agents’ ACE hold-

ings (and consequently the TACC) for stock x are initially just-caught (i.e.

βx(0) = 1). The selected slices of the augmented kernel for these two cases are

not too dissimilar. The notable difference however is that stock x’s biomass

is constrained to higher levels when agents in FB initially over-catch their

ACE holdings. Higher stock abundance is required to reduce harvest costs

in order to offset the additional costs associated with the deemed value pay-

ments, and therefore maintaining a positive marginal profit25. A comparison

of Figures 4.12a and 4.12b shows that there is some (but trivial) restriction

on the viable choices of Ax available to the regulator. Note that there were

significant differences between viable choices of Ax for these two cases (i.e.

βx = 1.2 and βx = 1) when βx was assumed constant, refer back to Figures

4.8a and 4.8b.

Figure 4.13 provides a comparison of viable states when βx can vary (left

panels) and when βx cannot vary (right panels) for the case where agents

(initially) over-catch their ACE holdings for stock x. Firstly, there is no

obvious change to the range of viable sizes of stocks x and y when agents in

FB can vary their strategic behaviour. And secondly, there are notably more

choices of higher TACCs (i.e. Ax and Ay) for both stocks that are viable

when agents can vary their behaviour. That is, it is viable for the regulator

to set both Ax and Ay at higher levels even if agents initially over-catch Ax.

This is because the (sufficiently) high deemed value will induce agents to alter

25Recall, that agents are liable to deemed value payments when they over-catch their

ACE, i.e. βx > 1.
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(a) Slice through Ay=all and βx(0) = 1.2 (b) Slice through Ay=all and βx(0) = 1

(c) Slice through Ax=all and βx(0) = 1.2 (d) Slice through Ax=all and βx(0) = 1

Figure 4.12: Selected 3D slices of the augmented co-viability kernel associated

with βx(0) = 1.2 (left panels) and βx(0) = 1 (right panels).
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(a) Viable choices of Ax when βx can vary (b) Viable choices of Ax when βx remains fixed

(c) Viable choices of Ay when βx can vary (d) Viable choices of Ay when βx remains fixed

Figure 4.13: Selected 3D slices of the “augmented” co-viability kernel (left

panels) and the co-viability kernel (right panels) when initially beginning

with βx = 1.2.
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their behaviour, i.e. reduce βx over time, resulting in a flow of sustainable

catch rates that do not put the ecological sustainability of the system at risk.

Figure 4.14: The yellow area represents the viable fishing profit domain when

initially beginning with βx = 1.2, which remains unchanged at all times. The

blue area represents the additional viable profit levels when beginning with

βx = 1.2, but which can vary over time. The horizontal axis reads the profit

for an agent in FB. The vertical axis reads the profit for agent in F T .

Moreover, higher viable TACCs imply larger yields and consequently

higher profits for all agents in both fisheries as noted in Figure 4.14. Alter-

natively, in the case where agents cannot alter their behaviour, by starting

with βx = 1.2 (i.e. over-catching self ACE), agents will always be subject

to deemed value payments, which will substantially reduce their cash flow

over time. By contrast, when agents are able to alter their behaviour, they

can improve their cash flow by reducing βx and therefore any deemed value

liabilities.
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4.4.6 Policy advice

The set of viable regulations (i.e. TACCs) were shown to be restricted below

the level that corresponds to MSY, which is noted as an interesting policy

consideration given that MSY is widely accepted as a management target

and therefore a reference for setting catch limits. This result thus echoes

criticisms pointed at the single-species related concept of MSY and the need

to consider inter-species dynamics and interrelation of fisheries among other

factors when making policy decisions. Similarly, the non-viability of the hard

limit, which bases the fish stock’s SMBL solely on its biological characteristics

(i.e. its carrying capacity) reinforces the inadequacy of the single-species

approach.

The Fisheries Act 1996, which governs the management of New Zealand

fisheries does have provisions that give scope for consideration of species in-

teractions and externalities when setting or varying sustainability measures.

For instance, section 13 of the Fisheries Act 1996 states that the Minister

must have “regard to the interdependence of stocks” when setting catch lim-

its. Despite this, in practice controls such as TACCs have frequently been

set to achieve single-species MSY-related objectives making New Zealand’s

QMS essentially a single-species management system (Mace et al., 2013).

One of the concerns expressed in Mace et al. (2013) is how to reconcile

the QMS with an ecosystem approach in order to better manage the im-

pacts of fishing on the wider ecosystem. Any ecosystem-based management

approach requires considering the complexities and uncertainties of biotic,

abiotic, and human components of ecosystems and their interactions and

applying an integrated approach to fisheries management within the realms
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of sustainability (FAO, 2003). As demonstrated in this thesis and in other

works (e.g. Doyen et al. (2012, 2007)), the viability approach has the poten-

tial to provide a practical tool for integrating ecosystem considerations into

fisheries management.

Where fisheries are interrelated by e.g. a by-catch production process,

it is shown that the actions of economic agents in one fishery can generate

negative externalities (here reduced TACCs, which therefore induce lower

yields and revenues) on other agents in another fishery, which become po-

tential sources of conflicts among agents. Anticipating the strategic interac-

tion of agents becomes vital for the regulator when determining appropriate

TACCs and deemed values. As mentioned earlier, the strategic behaviour

(e.g. propensity to deviate from self ACE holding) of an agent in each fish-

ery can be modelled by specifying a differential inclusion for both βx and βT
y .

In effect, the viability problem becomes a constrained qualitative game (or

simply a viability game) and the viability kernel provides an overview for the

space in which the game will be played (Krawczyk et al., 2013). This could

be useful for a regulator determining the conditions under which cooperation

(i.e. βx = βT
y = 1) or non-cooperation (i.e. βx ̸= βT

y ̸= 1) can be sustainable.

As advocated in Doyen & Péreau (2012), there is scope for the use of dy-

namic games and viability theory conjointly to analyse strategic interactions

and coordination of users of resources.
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4.5 Summary

The by-catch problem is explored in this chapter within the context of New

Zealand’s QMS. This problem is solved by casting it as a viability problem

and then using the numerical application VIKAASA to determine the set of

bio-economic configurations delineated by the viability kernel, which guaran-

tee the survival of the fish stock that is primarily caught as by-catch, while

maintaining the ecological sustainability of the target fish stock, and fulfilling

social and economic requirements.

The viability kernel presents the set of viable regulations (i.e. TACCs) as

a function of the target and by-catch biomasses available to the regulator that

guarantee the overall system’s viability, and therefore constitutes important

policy-relevant information for the sustainable management of multi-species

fisheries. The non-uniqueness of these choices offers more policy options for

negotiations and discussions among different stakeholders than techniques

which propose a single optimal policy. Additionally, as demonstrated in

Chapter 3, but which is not explicitly shown in the present chapter, non-

uniqueness of solutions to the viability problem imply robustness of these

solutions given the possibility of parameter and model uncertainties.

The co-viability analysis shows that imposing a non-negative condition on

the ACE prices (i.e. economic constraint) induces minimal biomass thresh-

olds that are higher than ecologically acceptable levels as well as ceilings

on the TACCs that are lower than the biological maximum. The economic

constraint therefore entails more conservative policy choices that reconcile

conservation goals with economic requirements. It is also demonstrated that

when setting the deemed value properly, this price instrument can be an ef-
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fective tool in constraining catches below TACCs by making it uneconomic

to catch beyond self ACE holding.

The potential applications of the co-viability analysis are manifold. It

provides a practical tool for a regulator considering integrating the QMS with

an EBFM approach. Furthermore, it could also help solve a dynamic game

focusing on viability constraints by providing a complete characterisation of

its solution.

The next chapter wraps up this thesis by presenting the conclusions and

limits drawn from this research. Some discussion is also made as to where

the research might be extended.
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Chapter 5

Conclusion

This thesis addresses the by-catch fishery management problem (or simply

the by-catch problem) in the context of a sustainability problem. Failure to

understand the co-dynamics of fish stocks compounded with economic (i.e.

profit maximisation) and social (i.e. employment preservation) pressures may

threaten the survival of less productive and less valued fish stocks, which are

often caught primarily as by-catch. It is claimed that the solution to the

sustainability problem is to maintain the system within the realms of safety

or acceptability where the conservation of jointly harvested stocks remains

compatible with economic and social goals.

It is contended that viability theory provides the right framework for mod-

elling and solving this class of sustainability problems in the sense prescribed

in Simon (1955). Rather than maximising an inter-temporal multi-objective

function to determine the constrained optimum, the viability approach seeks

to attain some sufficient level of a goal variable by analysing the compatibility

between the dynamics of a system and its viability constraints, and deter-

mining the set of strategies that prevent the system from violating these

129
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(normative) constraints. Given this, a viability model requires fewer sub-

jectively assessed parameters than the corresponding optimisation model.

In particular, no weights are required to materialise the trade-offs between

various objectives, and neither is the discount rate needed as the viability

approach assigns equal weight to every time period. These features among

others render the viability model’s solutions less vulnerable to the Lucas

(1976) critique and less invasive than those delivered by the optimisation

approach (i.e. optimal to exhaust the resource).

Solving the by-catch problem therefore requires casting it as a viability

problem and then using an algorithmic method (e.g. VIKAASA) based on

viability theory to compute the viability kernel, which delineates the set of

viable or sustainable states. A general formulation of a viability problem

that is compatible with VIKAASA is presented in Chapter 2. This provides

the underlining theoretical framework for the two main viability models de-

veloped in this thesis. The goodness of the VIKAASA kernel approximation

is verified by reproducing numerically the viability kernel for a calibrated

single-species fishery problem that has been solved analytically in Béné et al.

(2001).

The first viability model, which is called the “input-controlled fishery

model”, is developed and solved in Chapter 3. This model is essentially an

extension of that proposed in Béné et al. (2001) with the noticeable inclusion

of the population dynamics of a by-catch fish stock. A key result for this

chapter is the computation of the viability kernel for the input-controlled

fishery model. This establishes the configurations required to guarantee the

survival of the by-catch stock, while maintaining the ecological sustainabil-

ity of the target stock and sustaining the fishing activity and profitability
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of the fishery. A comparison of this kernel with that generated under the

single-species specification (i.e. Béné et al. (2001)) shows that the size of the

former is relatively smaller. More specifically, combinations of relatively high

fishing effort and target biomass become non-viable when the co-dynamics

of jointly harvested stocks are considered. This finding echoes the criticisms

pointed at the single-species approach, which attempts to manage fish stocks

independently. Failure to consider the co-dynamics of species in policy de-

cisions may result in certain slower growing stocks being over-fished when

exploited at rates appropriate for the target stocks.

The second viability model is called the “output-controlled fisheries model”,

and is developed and solved in Chapter 4. This model provides a richer plat-

form for policy making, particularly in the context of fisheries management

in New Zealand. It builds on the work by Péreau et al. (2012) with the

focus on New Zealand’s QMS, which basically uses both quantity and price

instruments to control fishing output. Although the model abstracts from

many of the complexities of both the QMS and the (eco)-system, the via-

bility analysis highlights important policy-relevant considerations. Firstly,

the economic constraint induces minimal biomass thresholds that are higher

than biologically acceptable levels as well as ceilings on the TACCs that are

lower than the biological maximum. The latter implies that MSY is not a

viable policy when target stocks are harvested jointly with less productive

by-catch stocks. The economic constraint therefore entails more conservative

policy choices that reconcile conservation goals with economic requirements.

Secondly, these policy choices are generally non-unique and therefore amend-

able to a regulator’s own prioritisation or accommodative to a regulator’s

willingness to experiment knowing that there are sufficient controls to avert
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a catastrophe. Thirdly, when setting the deemed value properly, it can be an

effective tool in constraining catches below the TACCs by making it uneco-

nomic to catch beyond self ACE holding. This price instrument is therefore

an effective means of internalising external costs inflicted on other agents.

It is shown that with some minor adjustments to the output-controlled

fisheries model, the augmented model can be used to identify the conditions

under which cooperation and non-cooperation can be sustainable. However,

this would require specifying the viability problem in six dimensions, which

is doable but at the cost of significantly increased computational time. The

curse of dimensionality problem may be mitigated by running the viability

problem on more powerful machines or by employing more efficient kernel

detection algorithms that decide where to search based on which points have

so far been determined viable. The latter will almost certainly be a focus for

future work by the developers of VIKAASA (Krawczyk et al., 2013).

There is increasing interest in shifting management targets from those

that maintain fish stocks at levels that maximise production (e.g. MSY) to

those that maximise the economic value of the fishery (e.g. MEY) (Kompas

et al., 2011; Newell, 2004). The main concern however is how to determine

the path(s) to MEY. Given the natural variability of fish stocks and the

uncertainties of economic variables (e.g. prices and costs), MEY does not

necessarily have to be represented by a single state, but rather a set of states

in which a regulator would like to reach at some point in time. This is

essentially a finite-time viability problem or a capturability problem, which

can be solved through the viability approach by computing the capture basin,

which is a subset of the viability kernel1.

1For further discussion on capturability problems, see Section A.1 of Appendix A. At
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Another concern raised by New Zealand policy makers in Mace et al.

(2013) is that it is not immediately obvious how the QMS can be reconciled

with an EBFM approach. It is the aim of this study to show how viability

theory can provide policy makers with a better insight of how to integrate

ecosystem considerations into the QMS. However, a more comprehensive vi-

ability model will have to be developed in order to fully address many of the

important issues related to implementing the EBFM approach. This would

require building on some of the recent applications (Cissé et al., 2013; Doyen

et al., 2013, 2012; Béné & Doyen, 2008; Doyen et al., 2007) for a more com-

plete account of the ecosystem’s structure, processes and functions, as well

as the risks2 and uncertainties3 related to the economic drivers of fisheries.

At this stage, VIKAASA is not yet equipped to address issues related to risk,

except for the use of differential inclusions to model certain types (tychas-

tic) of uncertainties. However, efforts are underway to incorporate stochastic

viability (Doyen & De Lara, 2010) within VIKAASA.

Moreover, the homogeneity condition on agents will have to be relaxed for

a richer analysis of behaviour mechanisms, which are shown in this study to

have an effect on the system’s viability and therefore the choice of policies (i.e.

TACCs). Some of the proposed improvements include allowing for agents to

face different unit costs or engage in different strategic behaviours such as

this stage, VIKAASA is not equipped to solve such problems.
2These refer to situations where people are capable to formally calculate or intuitively

gauge probabilities of losses based on past experience, experimentation, and/or statistical

estimation, e.g. investing in a fishing vessel or fish quota.
3These refer to situations where quantitative assessment of risk is impossible, e.g. col-

lapse in fish abundance due to unexpected causes or downfall of markets for the fishery’s

output due to unforseen events.
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contracted, independent and vertically integrated strategic behaviours char-

acterised in Lallemand (2013). Different strategic behaviours should affect

agents’ propensity to acquire ACE and/or deemed value to cover their catch

differently, and therefore have different implications on whether catches are

constrained within the TACC. The heterogeneity assumption also allows for

an analysis of other important issues such as the rationalisation of the fishing

fleet and the distribution of quota, which may entail conflicting economic and

social implications.

The parameter values used in this study have been chosen so that the sys-

tem is consistent with known characteristics of actual multi-species fisheries.

They also ensure that both viable and non-viable regions are to be found in

the state-space. These serve this study’s purpose of presenting a methodol-

ogy and policy tool for analysing and solving sustainability problems with an

emphasis here on a qualitative method. For a real-life quantitative analysis

or for the problem’s viability kernel to have any quantitative significance,

these parameters will have to be re-estimated or re-calibrated using existing

biological and economic data4. These extensions are left to be addressed in

future research.

4Some discussion on parameter estimation is provided in Appendix B.
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Appendices for Chapter 2

A.1 A capturability problem

The viability problem presented in this thesis is mainly concerned with es-

tablishing the viability kernel, which formally delineates the conditions by

which the evolutionary system always satisfies its environment defined by the

set of viability constraints K. Alternatively, a regulator may be interested in

establishing the conditions by which the system remains viable in K until it

reaches a “target” in K in finite time. Such a problem is termed capturability

in viability theory and it is formally defined below.

Definition A.1.1 (Capturability). If a subset C ⊂ K is regarded as a target,

an evolution x(·) captures C if there exists a finite time T such that the

evolution is viable in K on the interval [0, T ] until it reaches the target at

x(T ) ∈ C at time T .

Associated with the notion of capturability is the concept of viable-capture

basin of a target or simply the “capture basin”, which is the set of initial con-
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ditions that capture the target in finite time. The capture basin is formally

defined below.

Definition A.1.2 (Capture basin). Let K be an environment, C ∈ K be

a target and F an evolutionary system. The capture basin of C (viable in

K) under the evolutionary system F is the set CaptF (K,C) of initial states

x ∈ K from which starts at least one evolution x(·) ∈ F (x) viable in K

on [0, T ] until the finite time T when the evolution reaches the target at

x(T ) ∈ C.

The characterisation of the capture basin has a wide range of applications,

one of which is to determine the safety configurations required to land an

aircraft safely. In that setting, the environment K is represented by the

“flight envelop”, which describes the boundaries of altitude, the flight path

angle and airspeed within which normal flight manoeuvring can be safely

conducted. The pilot is tasked with ensuring safety in the last phase of

landing by controlling the aircraft such that it remains within the flight

envelope until it reaches the “zero altitude” subset of the flight envelope, i.e.

the target C at which the aircraft touches down safely. Landing an aircraft

safely can thus be formulated as a capturability problem with the objective

of delineating the capture basin CaptF (K,C), which is the set of airspeeds,

path angles and altitudes, from which one can reach the runway without

ever leaving the flight envelop. This problem is solved in Aubin et al. (2011,

p 122). A similar problem is solved in Oishi et al. (2006) where invariance

kernels are computed in order to investigate the design of autopilot controls

for an aircraft.
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A.2 Gordon-Schaefer model

Here, selected elements of the Gordon-Schaefer (GS) model are reproduced,

with an emphasis on determining the relevant management parameters. A

detailed description of the GS model is provided in most fisheries economics

textbooks, see e.g. Clark (1990).

A.2.1 Resource dynamics

Here, an unregulated fishery where a single fish stock harvested by fishers

is considered. The natural growth rate of the resource is represented by

the notable logistic equation that depends on the intrinsic growth parameter

r > 0 and the environmental carrying capacity L > 0.

ẋ(t) = rx(t)

(
1− x(t)

L

)
≡ F (x(t)), (A.1)

which is a second-degree polynomial with two equilibrium solutions, x ≡ 0

and x ≡ L, graphically shown in Figure A.1a. The fish stock’s growth rate is

maximised when the stock’s biomass is maintained at x(t) = L
2
, i.e. at half

of the stock’s carrying capacity.

Using separation of variables, it can be shown that the solution to (A.1)

is,

x(t) =
L

1 + ce−rt
, (A.2)

where c =
L− x0

x0

.

One can see that x(t) approaches L at an exponential rate as t tends to

infinity, provided that the initial (i.e. t = 0) stock level x(0) = x0 is greater



138 APPENDIX A. APPENDICES FOR CHAPTER 2

.. x.

ẋ
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Figure A.1: (a) The logistic growth rate; (b) Typical solution curves

than zero. Figure A.1b presents the evolution of x(t) for two scenarios, where

x0 is either above or below the environment’s carrying capacity L.

Suppose that the renewable resource described by (A.1) is subject to

harvest at a rate H. It is assumed that harvest is proportional to both the

stock’s biomass, x and to fishing effort, e. The harvest flow is represented by

the Graham-Shaefer production function,

H(t) = qe(t)x(t), (A.3)

where q is a constant parameter usually referred to as the catchability coef-

ficient. The resource dynamic now becomes,

ẋ(t) = rx(t)

(
1− x(t)

L

)
− qe(t)x(t). (A.4)
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A.2.2 Biologically sustainable equilibrium

Here, the “sustainable” equilibria of (A.4) is determined, under the assump-

tion that e is constant, by setting ẋ = 0 and solving for x,

x∗ = L
(
1− qe

r

)
, (A.5)

which is displayed in Figure A.2a. It is observed from (A.5) that x = 0 if

e = r
q
. This implies that if the level of effort exceeds the critical level r

q
, the

resource stock will be driven towards extinction. However, for any e < r
q
,

there exists a unique non-zero equilibrium defined by (A.5). The equilibrium

is sustainable because ẋ = 0 implies that the harvest flow is counterbalanced

by stock recruitment, i.e. H(t) = F (x).

By substituting (A.5) into (A.3), Shaefer’s “yield-effort curve” is ob-

tained,

Y = qeL
(
1− qe

r

)
, (A.6)

where Y denotes the sustainable yield, Y = H(x∗, e).

Schaefer’s yield-effort curve is illustrated in Figure A.2b. For any e < r
q
,

Shaefer’s model implies that there is a certain rate of harvest that is just suf-

ficient to capture new additions to the stock of fish, and thus maintains an

equilibrium biomass. This rate of harvest, at which H = F (x), is known as

the “sustainable yield”. With increasing levels of effort, the sustainable yield

rises to a maximum level YMSY (at eMSY, xMSY), and then declines to zero (at

e = r
q
, x = 0). It is worth emphasising here that decreases in the sustainable

yield for e > r
2q

should not be misconstrued as a prediction that increases

in effort beyond this level will result in an immediate reduction in yield. In

the short term, (A.3) implies that the catch rate will always increase with

effort. However, it is only over the long term, when the processes of resource
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Figure A.2: (a) The logistic model with constant rate of effort e; (b) Shaefer’s

yield-effort curve

dynamics have resulted in a decreased fish stock, that yield ultimately de-

clines. By the same reasoning, a decrease in e always results in a short-term

decrease in the catch rate, but may lead to an increase in the long term.

By setting the first derivative of (A.6) with respect to e to zero and solving

for e, the level of effort that maximises sustainable yield is obtained,

eMSY =
r

2q
. (A.7)

The maximum sustainable yield, YMSY and the corresponding level of

stock, xMSY are obtained by substituting (A.7) into (A.6) and (A.5) respec-

tively,

YMSY =
rL

4
(A.8)

xMSY =
L

2
. (A.9)
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The maximum sustainable yield (MSY) is a pervasive concept in fisheries

biology and management. Because there is natural variability over time in

both the level and growth of fish stocks, MSY will ideally not be a constant

number. The concept also neglects inter-annual environmentally driven stock

fluctuations and so is not useful for short term predictions. It is, however,

useful for guidance on long term strategy formulation.

A.2.3 Bio-economic equilibrium

Here, economic aspects of the fishing activity are incorporated through the

exogenous fish price p and fishing cost c. It is assumed that p is constant

and fishers are homogenous. The total cost (TC) of fishing is proportional

to the amount of effort applied in the fishery. TC is variable and includes

the opportunity cost of fishing. No fixed costs are assumed. Economic profit

is therefore represented as,

π(t) = pqe(t)x(t)− ce(t). (A.10)

The “common property or bionomic equilibrium (BE)” stock level xBE

is obtained by setting (A.10) to zero and solving for x. The corresponding

effort level is obtained by substituting (A.11) into (A.5) and solving for e,

xBE =
c

pq
(A.11)

eBE =
r

q

(
1− c

pqL

)
. (A.12)

The bionomic equilibrium stock and effort levels reflect the tragedy of the

commons. That is, in an environment where there is an open-access resource,
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economic agents will continue to exploit the resource until economic returns

from the resource is dissipated. If c is sufficiently high relative to p, i.e.

c > pqL, the fishery would not be exploited, i.e e = 0. Additionally, provided

c > 0 the model predicts that exploitation of the fishery would not lead to

the extinction of the fish stock.

Figure A.3a shows that eBE occurs at the point where total sustainable

revenue (TSR) equates TC, i.e. sustainable economic profit is zero. Any

level of effort above eBE cannot be maintained indefinitely as this would

produce a situation in which economic profit is negative. Some fishers would

be forced to withdraw from the fishery and hence reducing the level of effort.

For levels of effort below eBE, positive economic profit would attract new

entrants and existing fishers to expand effort to capture the extra profit. As

long as economic profit is positive, levels of effort will continue to expand

until eBE is reached at which point there is no further incentive to expand.

This is the tragedy of the commons.

A.2.4 Maximum economic yield

For any e < eBE, TSR is above TC. There exists therefore a level of effort

eMEY that maximises total sustainable economic profit. Recall that sustain-

able yield was defined by (A.6). TSR is the product of the unit fish price p

and sustainable yield Y :

TSR = pqeL
(
1− qe

r

)
. (A.13)

The level of effort that maximises economic profit can be readily obtained

by equating the marginal value of effort (MVE) with the marginal cost (MC)

of effort and solving for e, or as depicted in Figure A.3b, equating the slopes
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of TSR and TC. MVE and MC are simply the slopes of TSR and TC respec-

tively, and can be obtained by differentiating TSR and TC with respect to e

respectively,

MVE =
∂TSR

∂e
= pqL

(
1− 2qe

r

)
MC =

∂TC

∂e
= c.

Equating MVE to MC and solving for e yields the level of effort that

maximises economic profit,

eMEY =
r

2q

(
1− c

pqL

)
(A.14)

Note that eMEY is half the level of effort at the bionomic equilibrium eBE.

To the determine the corresponding levels of biomass and yield when

eMEY is exerted, (A.14) is substituted into (A.5) and (A.6) respectively,

xMEY =
L

2

(
1 +

c

pqL

)
(A.15)

YMEY =
rL

4

(
1 +

c

pqL

)(
1− c

pqL

)
. (A.16)

Note that as the cost-price ratio c
p
tends towards zero, xMEY and YMEY move

closer to xMSY and YMSY.
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Figure A.3: (a) Bionomic equilibrium level of effort; (b) Maximisation of

sustainable economic profit occurs at eMEY

Table A.1: Management parameters for the Gordon-Schaefer model

Yield Biomass Effort

BE rc
pq

(
1− c

pqL

)
c
pq

r
q

(
1− c

pqL

)
MSY rL

4
L
2

r
2q

MEY rL
4

(
1 + c

pqL

)(
1− c

pqL

)
L
2

(
1 + c

pqL

)
r
2q

(
1− c

pqL

)



Appendix B

Appendix for Chapter 3

B.1 Some brief comments on estimating sur-

plus production model parameters

Biomass dynamic (or surplus production) models, such as that employed in

this thesis, are among the most simplest models of fish population dynamics.

The major appeal for these models is that they (only) require a time series of

both catch and a relative (or absolute) abundance index, e.g. standardised

catch-per-unit-effort (CPUE), in order estimate the model’s parameters, i.e.

r, q and L (Hilborn & Walters, 1992). Information about the age and size

structures of the fish population is generally not required, which is an advan-

tage given the paucity of life-history data of fish stocks prevalent in many

developing or low value fisheries1. In some cases, biomass dynamic mod-

els can provide better estimates of management-related parameters, such as

1Even some of the richest countries cannot afford to adequately research and assess all

stocks captured in their fisheries (Mace et al., 2013).
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those presented in Table A.1, than more complex aged-structured models,

even when aged-structured data are available (Hilborn & Walters, 1992).

Fitting surplus production models to observed data should be preferred

over dynamic-regression methods as the approach of choice for estimating

the parameters (Hilborn & Walters, 1992). There are several ways of fit-

ting surplus production models. The three most widely used approaches are

(1) observation-error estimators (Pella & Tomlinson, 1969), (2) process-error

estimators (Walters & Hilborn, 1976), and (3) effort-averaging estimators

(Fox, 1975). These three approaches have been reviewed and compared in

Polacheck et al. (1993). The third approach is a variation of the equilibrium

method proposed in Gulland (1961) and assumes that the stock is in equi-

librium relative to the recent effort, which is rarely the case in reality and

hence one of the reasons why it is rarely used in any formal stock assessment

(Polacheck et al., 1993). The observation-error and process-error estimators

mainly differ in how errors are introduced in the formal model with param-

eters to be estimated. The former assumes that all the error occurs in the

observed index of abundance whereas the latter assumes that errors only oc-

cur in the population dynamics of the stock. Polacheck et al. (1993) show

through the use of Monte-Carlo trials that observation-error estimators are

the least biased and the most precise, and hence recommended to be used

in fitting surplus production models. Given this, the discussion provided

henceforth focuses on the observation-error estimator.
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According to Hilborn & Walters (1992), there are three essential require-

ments for parameter estimation:

1. A formal model with parameters to be estimated,

xt+1 = xt + g(xt)−Ht, (B.1)

where xt is the fishable biomass at the start of year t and g(xt) is

the surplus production, which can take on the Schaefer form g(x) =

rx
(
1− x

L

)
as in the case of this thesis2. Ht is the harvest rate, which

is usually of the Graham-Shaefer form,

Ht = qxtet, (B.2)

where q is the catchability coefficient and et denotes fishing effort.

An observation model is also required, which relates unobserved stock

biomass to an observed abundance index,

Ot = qxte
ϵt , (B.3)

which essentially follows from (B.2), i.e. Ot ≡ Ht

et
. This is known as

CPUE and is widely adopted as a relative index of abundance. The

proposition that CPUE is proportional to abundance is questionable

(Maunder et al., 2006). Nonetheless, biomass dynamic methods work

on any measure of abundance, including absolute abundance surveys,

e.g. bottom trawl surveys or hydroacoustics (Hilborn & Walters, 1992).

It is commonly assumed that the error ϵt in the observed index satisfy

the Gauss-Markov assumptions of independence and identical N(0, σ2)

distribution, so the observed index is lognormally distributed about the

true abundance. A log-transformation of (B.3) obtains,

log(Ot) = log(qxt) + ϵt, ϵt ∼ N(0, σ2). (B.4)
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2. Data from a population to use to estimate the parameters, which is

usually limited to time series of catches and abundance indices.

3. A criterion to judge the goodness of fit to the data of any particular

combination of model and parameter estimates. A commonly used

criterion is maximum likelihood, which chooses the values of the

parameters that maximise the probability that the actual observations

would have occurred if the parameters were true.

Thus, the model parameters r, q, L and an additional parameter xinitial

(if catch data go back as far as the early years of the fishery, then

xinitial = L is assumed), can be estimated by maximising the appropri-

ate likelihood function,

L =
T∏
t=1

1

σ̂t

√
2π

e
− ϵ̂t

2σ̂2
t , (B.5)

where ϵ̂t = log(Ot)− log(Ôt)

and σ2
t =

T∑
t=1

ϵ̂2t
T
.

The product is over all years (t) for which CPUE data are available.

T is the total number of CPUE observations. The predicted CPUE

is given by Ôt = q̂x̂t, where x̂t is obtained by using (B.1) to project

the biomass at the start of the catch series (x̂initial) forward under the

historical annual catches, for a given r̂ and L̂.

The numerical procedure is basically a search algorithm that (1) be-

gins with inial guesses (q̂, r̂, L̂ and x̂initial) of the model parameters,

(2) projects Ôt, and (3) computes the likelihood function (B.5). The

algorithm keeps refining q̂, r̂, L̂ and x̂initial until it settles with q∗, r∗,
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L∗ and x∗
initial, which maximise (B.5).

Conventional estimation methods such as maximum likelihood tend to

be sensitive to the assumption about the model’s error structure, so any

misspecification of the error structure may result in large errors in parameter

estimates when fitting models to data (Chen & Andrew, 1998). So in any

case, the chosen application must be performed with special care. Given

this, there is increasing interest to establish more robust estimation methods

from which reliable parameter estimates can be attained. For instance, Chen

& Andrew (1998) propose a robust observation-error estimator based on the

least median of squares (LMS) in linear regression analyses. Shertzer &

Prager (2002) provide a critique of the LMS based approach and some brief

comments on other robust methods such as the method of least absolute

values (LAV). For further discussion, see Chen et al. (2003).

One of the problems encountered with abundance indices, in particular

CPUE, is that it can be potentially uninformative, e.g. declining catch rate

series with little variation in fishing effort (also known as “one way trip”

(Hilborn & Walters, 1992)), making it difficult to clearly estimate produc-

tivity and actual abundance simultaneously. The presence of one way trip in

CPUE data may explain highly imprecise estimates of r and L using the con-

ventional approaches described earlier (McAllister et al., 2001). This problem

can be addressed by estimating r independently.

2Other forms of g(x) include, g(x) = rx
(
1− log(x)

log(L)

)
(Fox form) and g(x) =

r
px

(
1−

(
x
L

)p)
(Palla-Tomlinson form).
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Using biological information on the life-history of the fish stock, r can be

estimated by solving the Euler-Lotka equation (Fisher, 1930),

I∑
i=0

e(−ri)wimipiα = 1, (B.6)

where i is the age class of the fish stock, I is the oldest age class, wi is the

weight-at-age, mi is the maturity-at-age, pi is the survival probability-at-age,

and α denotes the recruits-per-spawner biomass.

The weight-at-age wi can be obtained from the weight-length conversion

equation,

wi = albi , (B.7)

where a and b are the relevant conversion factors, and li is the length-at-age,

which can be obtained from the von Bertalanffy growth equation,

li = L∞
(
1− e−k(i−t0)

)
, (B.8)

where L∞, k and t0 are the von Bertalanffy growth parameters.

The survival probability-at-age pi can be expressed in terms of natural

mortality, M :

pi =
i−1∏
s=0

e−Ms . (B.9)

Mostly all of the relevant life-history parameters for most fish stocks sub-

ject to New Zealand QMS can be obtained from the annual fisheries assess-

ment plenary (Ministry for Primary Industries, 2013). Once these parameter

values are obtained, the Euler-Lotka equation (B.6) can be solved to estimate

the intrinsic growth rate, r. For an application of the Euler-Lotka equation

to the Indian Ocean bigeye tuna, see FLR Project (2013).

Alternatively, r can be estimated by developing Bayesian prior distribu-

tions for r using demographic methods. For further discussion about this
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approach, see McAllister et al. (2001). Once, r is estimated, it is fed into

the search algorithm described earlier, which now only estimates q, L, and

potentially xinitial.
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Appendix C

Appendices for Chapter 4

C.1 Deriving the ACE price for stock y

Profit for agent j in F T was defined in (4.15). For convenience, it is stated

again below,

πj = pyhjy − PCj − Λjy − Ωjy.

Using (4.8), (4.11) and (4.13), the long form of the above profit function

is obtained,

πj = pyhjy − cyhjy −
wT

2y
(hjy)

2

− my min [hjy, ajy]− dy max [0, hjy − ajy] , (C.1)

which can be re-written as

πj =

(
py − cy −

wT

2y
hjy

)
hjy

− my min

[
1,

1

βT
y

]
hjy − dy max

[
0, 1− 1

βT
y

]
hjy (C.2)

by replacing ajy with
hjy

βT
y
, which is obtained by rearranging (4.2) for ajy, and

factoring out hjy.
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The partial derivative of (C.2) with respect to hjy is

∂πj

∂hjy

= py − cy −
wT

y
hjy

− my min

[
1,

1

βT
y

]
− dy max

[
0, 1− 1

βT
y

]
,

and setting this equal to zero and solving for hjy yields

h∗
jy =

y

wT

(
py − cy −my min

[
1,

1

βT
y

]
− dy max

[
0, 1− 1

βT
y

])
. (C.3)

Summing up h∗
jy for all agents in F T yields

HT ∗

y =
nT∑
j=1

h∗
jy

= nTh∗
jy, (C.4)

which is the demand for stock y’s ACE. It is assumed here that the market

ACE price for stock y is determined only by the demand for ACE by agents

in F T , i.e. (C.4) and the supply of ACE, which is the TACC for stock y set

by the regulator at the start of the fishing period. Agents in FB purchase

whatever ACE is available in the ACE market at the going market price to

cover their catch of stock y. Thus, the market clearing condition is given by

HT ∗

y = Ay. (C.5)

From this, stock y’s market ACE price is deduced

m∗
y = max

[
1, βT

y

]{
py − cy − dy max

[
0, 1− 1

βT
y

]
− wT

y

(
Ay

nT

)}
. (C.6)
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C.2 Supplementary Tables and Graphs

Table C.1: Surveyed port prices for TAR2

Fishing year 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10

Price ($/kg) $2.42 $2.26 $2.26 $2.31 $3.38 $3.38 $3.38

Source: Lallemand (2013)

Table C.2: Number of Fishing Permit Holders for TAR2

Fishing year 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10

23 23 26 24 26 21 27

Source: Lallemand (2013)
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Table C.3: The base parameter set for the output-controlled fisheries model.

Stock-specific Target stock (x) By-catch stock (y)

Description Symbol Value Symbol Value

Intrinsic growth rate rx 0.4 ry 0.2

Limit carrying capacity (tonnes) Lx 600 Ly 300

Price ($/kg) px 4 py 2

Linear cost ($/kg) cx 1.50 cy 1

Non-linear cost ($) wB 500 wT 250

Deemed value ($/kg) dx 3 dy 1.50

Maximum sustainable yield (tonnes) Hx,MSY 60 Hy,MSY 15

Minimum guaranteed harvest level (tonnes) Hx,min 20 Hy,min 5

Maximum TACC adjustment speed δx 0.01 δy 0.01

Fishery-specific By-catch fishery (FB) Target fishery (F T )

Description Symbol Value Symbol Value

By-catch-target harvest ratio α 0.2 – –

Number of agents nB 30 nT 20
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157Figure C.1: Monthly trends of high, low, average ACE price, annual deemed value and surveyed port prices

for TAR2 (Tarakihi) between fishing years 2003-04 to 2009-10

Source: Lallemand (2013)
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Marchal, P., Little, L., & Thébaud, O. (2011). Quota allocation in mixed

fisheries: a bioeconomic modelling approach applied to the Channel flatfish

fisheries. ICES Journal of Marine Science, 68 (7), 1580–1591.

Martinet, V. & Doyen, L. (2007). Sustainability of an economy with an

exhaustible resource: A viable control approach. Resource and energy

economics, 29 (1), 17–39.
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Glossary

ACE Annual catch entitlement is the catching right (denominated in tonnes)

generated each year from quota.

deemed value A fee ($/kg) incurred for catches in excess of ACE.

DVS Deemed value system.

EBFM Ecosystem-based fishery management.

FMAs Fisheries management areas.

hard limit Reference point (10% B0) below which stocks are deemed to be

collapsed.

ITQ Individual transferable quota is the in-perpetuity right to receive a

share of the TACC each year.

MEY Maximum economic yield.

MGHL Minimum guaranteed harvest level.

MSY Maximum sustainable yield.
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174 Glossary

QMA Quota Management Area.

QMS Quota Management System.

SMBL Safe minimum biomass level.

TAC Total allowable catch is the total regulated catch for a fish stock in a

fishing year.

TACC Total allowable commercial catch is the total regulated commercial

catch for a fish stock in a fishing year.

TAR2 Tarakihi (Nemadactylus macropterus) in QMA2.

VIKAASA Viability Kernel Approximation Analysis and Simulation Ap-

plication is an application that uses numerical methods to approximate

and visualise viability kernels.



List of Symbols

α The by-catch-target harvest ratio.

aix(t) Agent i’s ACE holding for stock x after trade in period t.

aiy(t) Agent i’s ACE holding for stock y after trade in period t.

ajy(t) Agent j’s ACE holding for stock y after trade in period t.

Ax(t) Fish stock x’s TACC.

Ay(t) Fish stock y’s TACC.

βB
y An indicator of whether (on average) FB agents’ catch of stock y differs

from their ACE holding for that stock and in which direction.

βT
y An indicator of whether (on average) F T agents’ catch of stock y differs

from their ACE holding for that stock and in which direction.

βx An indicator of whether (on average) FB agents’ catch of stock x differs

from their ACE holding for that stock and in which direction.

C Fixed cost.

c Marginal cost of effort.
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176 List of Symbols

cx Unit cost independently attributed to harvesting stock x.

cy Unit cost independently attributed to harvesting stock y.

dx The deemed value of stock x.

dy The deemed value of stock y.

e(t) Fishing effort.

FB By-catch fishery in which fish stocks x and y are jointly harvested.

F T Target fishery in which only fish stock y is harvested.

hix(t) Agent i’s harvest of stock x.

hiy(t) Agent i’s harvest of stock y.

hjy(t) Agent j’s harvest of stock y.

Hx(t) Total harvests of fish stock x.

Hy(t) Total harvests of fish stock y.

i An individual agent in the by-catch fishery.

j An individual agent in the target fishery.

K The viability constraint set.

Lx Limit carrying capacity for fish stock x.

Ly Limit carrying capacity for fish stock y.



List of Symbols 177

mx(t) The ACE price of stock x.

my(t) The ACE price of stock y.

nB The number of active agents in the by-catch fishery.

nT The number of active agents in the target fishery.

px Unit price of fish stock x.

py Unit price of fish stock y.

qx Catchability coefficient of fish stock x.

rx Intrinsic growth rate for fish stock x.

ry Intrinsic growth rate for fish stock y.

t Time period and it usually refers to the fishing year.

Θ Time horizon – an infinite time horizon is assumed in this thesis.

V The viability kernel.

wB Cost associated with the non-linear component of agent i’ production

cost function.

wT Cost associated with the non-linear component of agent j’ production

cost function.

x(t) Fish stock x’s fishable biomass.

y(t) Fish stock y’s fishable biomass.
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