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“Glaciers are delicate and individual things, like humans. Instability is built

into them.”

Will Harrison



Abstract

The ice thickness distribution of mountain valley glaciers is an important physical

constraint for modelling their flow. Ice thickness measurements are used to calcu-

late the geometry and ultimately the driving stress of a glacier. This information

is all required if realistic models are to forecast the response of glaciers to climate

forcings. For New Zealand’s Tasman Glacier, two factors complicate its response

to climate: 1) A layer of insulative rocky debris covers the lower half of the glacier,

retarding surface melt, and 2) the glacier has recently entered a period of iceberg

calving into a proglacial lake, introducing complex mechanical processes. These

complications, along with the uncertainty of the current bed topography of the

Tasman Glacier, make future predictions of its retreat behaviour difficult. The bed

of the Tasman Glacier has not been fully imaged but ice thickness measurements

obtained through seismic and gravity surveys have provided constraints for parts

of the glacier. This study applies a range of geophysical methods (gravity and re-

fraction seismics) to measure and model the ice thickness distribution of the lower

Tasman Glacier. We surveyed orthogonal to glacier flow to obtain 12 transects

within the lower 5 km of the glacier. Two-dimensional and three-dimensional

gravity models generally indicate a U-shaped valley with ice thicknesses of 92–

722 m from the present day terminus to the most upstream transect respectively.

These results were used as input data to a simple mass flux model to assess its

performance in estimating ice thickness and volume for the Tasman Glacier. The

mass-flux model estimated a volume of 14.96 km3 for the Tasman Glacier, but

generally underestimated ice thickness with an RMSE of 148 m between the mod-

elled and the gravity-derived ice thickness. This discrepancy could be reduced by

constraining ice thickness for a larger area of the glacier and providing a more

recent DEM to the mass flux model. Studies such as this highlight the importance

of constraining ice thickness in order to improve glacio-dynamic models and global

volume estimates.
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Chapter 1

Introduction

1.1 Motivation

During the 20th and early 21st centuries, mountain glaciers have experienced

overwhelming retreat in response to a warming climate (Alley et al., 2007). Their

contribution to future sea level rise is predicted to be of the order 0.6 ± 0.07 m

Sea Level Equivalent (SLE) (Radić and Hock, 2010) having the potential to con-

tribute more to sea level rise in the coming decades than the major ice sheets of

Greenland and Antarctica (Meier et al., 2007). Other estimates of 0.43 ± 0.06 m

SLE from Huss and Farinotti (2012) and 0.35±0.07 m SLE from Grinsted (2013),

indicate that there are significant uncertainties associated with calculating this

contribution.

In regions such as New Zealand, where tourism and hydroelectric power gen-

eration are important economic assets, glaciers also display a net retreat pattern

(Dykes and Brook, 2010; Chinn et al., 2012). Many of New Zealand’s large, de-

bris covered glaciers are presently calving into proglacial lakes (Dykes et al., 2010;

Quincey and Glasser, 2009) decreasing the long-term storage of ice. In scenarios

where climate change is expected to exacerbate current stresses on water resources,

knowledge of the ice thickness and total ice volume of these debris-covered glaciers

is critical to the future management of glacial catchments.

1
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When direct observations are unavailable, glacier volume changes are calculated

using scaling relations or ice-dynamical relationships. These changes have been

calibrated using several hundred ice-thickness measurements (Alley et al., 2007),

but of the 170,000 glaciers worldwide, this small subset of ice-thickness informa-

tion means that uncertainties remain large (Grinsted, 2013). Additionally, ice-

thickness measurements are biased towards clean-surface glaciers which are small

and/or easily accessible. Given that a large proportion of the world’s glaciers are

debris-covered or tidewater-calving, their total volume remains uncertain due to

the lack of direct ice-thickness measurements (Radić and Hock, 2010; Yde and

Paasche, 2010).

This study is motivated by the current uncertainties involved with calcu-

lating the ice thickness and volume of temperate valley glaciers, in particular,

debris-covered glaciers. To address these issues on a local scale, I focus on the

debris-covered Tasman Glacier in New Zealand. Here I explore the ice-thickness

distribution of the glacier using geophysical methods and compare these results

to other ice volume estimates for the Tasman Glacier. This chapter explores (1)

the regional setting of the Tasman Glacier, (2) the glacial processes which require

knowledge of ice thickness and (3) the techniques available for estimating ice vol-

ume. I then identify the questions to be answered in this study in a series of

research objectives.

1.2 Regional Setting

New Zealand lies on an active plate boundary between the Pacific and Australian

plates (Walcott, 1998). The plate convergence has a narrow band of NNE-SSW

compression marked by the Alpine Fault and other faults (Norris and Cooper,

2001) which has subsequently formed the Southern Alps. This 700 km-long,

' 2500-m high orographic boundary intercepts the dominant westerly atmospheric

circulation (Sturman and Tapper, 2006). Moist air which flows regularly across

this boundary generates a high precipitation band for the Mt. Cook region. An-

nual precipitation in the Mt. Cook climate station is monitored by the National
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Institute of Water and Atmospheric research (NIWA) and has a mean annual rate

of 4127 ± 913 mm/year (for the period 1930-2012). The mean temperature here

is 8.6 ◦C ± 5.2 ◦C and shows an increasing trend of 1.3 ◦C/100 years for the same

period.

The Tasman Glacier is in the centre of Aoraki/Mt Cook National Park, lo-

cated at 43.62 ◦S, 170.21 ◦E. The main trunk flows south from a névé at 2500 m

to a terminus elevation of ∼ 740 m where it terminates into a proglacial lake. It is

fed by a number of large tributaries, namely the Rudolf, Darwin, Hochstetter and

Ball Glaciers (Figure 1.1) (Anderton, 1973). The geology surrounding the glacier is

dominated by Mesozoic aged sandstones and argillites which are intensely faulted

and jointed (Cox and Findlay, 1995; Cox and Barrell, 2007; Rattenbury et al.,

2010; Tenzer et al., 2011). It is these weaknesses in the rock which allow frequent

rockfalls and occasionally, rock avalanches to cover the surface of the lower Tasman

Glacier (Kirkbride and Warren, 1999). This results in an irregular but extensive

debris cover over the glacier (Figure 1.1) (Kirkbride, 1993; Benn et al., 2003).

Like many glaciers in the Southern Alps, the Tasman Glacier is in a state of

negative mass-balance. The retreat history of the glacier has been characterised

by three phases (Kirkbride, 1993). Surface lowering was first documented, initially

by Skinner (1964) who observed an 82 m decrease in the elevation of the glacier

over a 72 year period since observations began by Brodrick in 1891. The second

phase commenced in the 1970’s where thermokarst ponds developed surrounding

areas of conduit collapse; these soon merged into a series of interconnected ponds

and eventually, a proglacial lake. By 1991 terminus calving had initiated into the

proglacial lake which led to rapid retreat of the terminus (Kirkbride and Warren,

1999). Despite calving being the dominant mechanism for ice loss near the termi-

nus (Purdie and Fitzharris, 1999), surface lowering is still the major contributor

to ice loss (80%) for the Tasman Glacier (Quincey and Glasser, 2009).

Predictions of future retreat for the Tasman Glacier are complicated by a

number of glacio-dynamic features which require knowledge of ice thickness. The

following section outlines the general theory of glacio-dynamic features which are

significant for the Tasman Glacier.
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Figure 1.1: Map of the Tasman Glacier (March 2, 2011 - Aster image). The
main trunk is visible by clean ice in the north-east, which becomes progressively
debris-covered to the south. Inset indicates the location of the Tasman Glacier

by the red box in the central South Island.
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1.3 Glacier Dynamics

1.3.1 Glacier Flow

The term ‘glacier dynamics’ encompasses the processes which control glacier flow.

Under the force of gravity, glaciers flow from the accumulation zone to the ablation

zone by three mechanisms; sliding over the bed, deformation of sub-glacial material

and internal deformation of the ice (Figure 1.2) (Cuffey and Paterson, 2010).

Figure 1.2: Components of glacier flow divided into (A) basal slip and (B)
internal deformation. Down-facing arrows indicate the initial and final positions
of a point on the glacier which has been displaced. Arrows within the glacier

represent velocity. Figure adapted from Hambrey and Glasser (1978).

The equations which describe glacier flow result from the stresses which act on a

glacier. To a first-approximation, glaciers in a steady-state of flow have a driving

stress equal to the resisting stress (imposed by the base and sides of a glacier)

and the longitudinal stress (Cuffey and Paterson, 2010). The driving stress (τd) is

proportional to the surface slope (α) and the thickness (H) of the glacier:

τd = ρgHα (1.1)
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where ρ is the density of ice and g is the force due to gravity (Cuffey and Paterson,

2010). The largest resisting stress is the basal drag, which is approximately equal

and opposite to the driving stress:

τb = f ′τd (1.2)

where f ′ denotes a constant close to one. (For the full derivation of this relationship

see Cuffey and Paterson (2010)).

The driving stress is a function of the ice thickness, the density of ice and the

surface slope of a glacier (equation 1.1). How the ice deforms or flows in response

to the driving stress depends on a few boundary conditions such as the basal drag,

and the properties of the ice, however, these features will not be explored here.

The following sections outline significant glacial processes that require knowledge

of ice thickness.

1.3.2 Glacier bed

The nature of the bed has implications for the dynamics of glacier flow. In highly

erosive valley glacier systems, the glacier bed can become over-deepened as a result

of rapid sub-glacial erosion (Bennett and Evans, 2012). Typically, lower and thus

warmer regions of a glacier exhibit over-deepened channels due to the presence of

surface melt-water reaching the bed and aiding erosion (Alley et al., 2003b). In

regions of over-deepening, beds also exhibit a steep reverse slope to the ice-air in-

terface. At the steepened glacier/sediment interface, ice growth from super-cooling

impedes flow thus decreasing sediment-transport capacity and favouring deposi-

tion (Figure 1.3). Through a positive-feedback, the mechanism of ‘glacio-hydraulic

supercooling’ proposed by Alley et al. (2003a) suggests that beds of reverse slope

to and 20-70 % steeper than the ice/air interface allow the supercooling of sub-

glacial waters as they migrate up the bed slope, thus freezing conduits which would

normally enable sediment transport. Hence, a form of ‘glacial progradation’ is ob-

served by the progressive deposition of sediment onto the reverse slope.
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The glacier bed has important controls on the stability of a glacier due to the

resisting stresses it imposes on the ice, as well as heterogeneous features such as

pinning points which can act to stabilise glacier fronts (Warren, 1991). Addition-

ally, it has been shown that glaciers in a stage of terminus calving into water may

enter a phase of unstable retreat if the bed deepens up-glacier (Bassis and Jacobs,

2013). For the Tasman Glacier, ice-thickness studies are sparse but values between

535 to 725 m adjacent to Ball Glacier (Figure 1.1) indicate that the bed may be

over-deepened here (Broadbent, 1973). Bathymetric surveys near the terminus

which indicate depths of up to 240 m (Dykes et al., 2010), suggest that the glacier

shallows significantly between Ball Glacier and the terminus. Insights into the na-

ture of the bed are sparse, but studies indicate that a till layer 100 – 200 m thick

exists beneath the Tasman Glacier (Broadbent, 1973). South of the present-day

terminus, till up to 620 m thick has been observed to occupy the Pukaki Valley

(Kleffmann et al., 1998).

Figure 1.3: Schematic of the sediment-transport capacity and sediment load
for a glacier exhibiting super-cooling. Figure courtesy of Alley et al. (2003a).
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1.3.3 Debris cover

The response of a glacier to climate variations is partially influenced by the amount

of surface debris cover. Models exploring the relationship between debris thick-

ness and ablation rates show that for short-term temperature oscillations a thin

debris cover (< 2.0 cm) enhances ablation (Reid et al., 2012). However, for glacier

surfaces covered in a uniform (> 5.0 cm) thickness of debris, a net insulating ef-

fect is exerted on the underlying ice, thus ablation is reduced (Benn et al., 2003).

Over seasonal and inter-annual time periods, long term temperature changes are

propagated at depth through the debris layer (Bozhinskiy et al., 1986). For debris-

covered glaciers, debris thickness generally increases towards the terminus, thus

reducing ablation rates down valley. Consequently, debris-covered glaciers typi-

cally have a reversed ablation gradient (Figure 1.4) (Benn et al., 2012). A surface

debris layer can result in (1) down-wasting of the ice surface, (2) a transition from

a convex to a concave glacier profile, (3) a reduced glacier gradient and (4) the

development of supra-glacial ponds, for glaciers in a state of negative mass balance

(Purdie and Fitzharris, 1999; Röhl, 2008; Dykes and Brook, 2010).

Figure 1.4: Reversed ablation gradient due to the effects of debris cover.
Curved arrows represent the direction of ice motion in a glacier.
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Glaciological observations since 1862 by von Haast and later mapping by Brodrick

(1890) indicate that the Tasman Glacier has always had a significant debris cover

over its lower extent. During the 20th and early 21st centuries, the glacier surface

has been subjected to vertical lowering, resulting in a shallowed surface gradi-

ent and the transition from a convex to a concave surface profile (Kirkbride and

Warren, 1999). Surface lowering was not associated with a change in terminus po-

sition until the early 1980’s, at which point several thermokarst ponds developed

and eventually coalesced into a proglacial lake (Kirkbride and Warren, 1999). The

modern surface of the glacier continues to down-waste. Evidence of this lowering

is exemplified by bare ice cliffs which exhibit small thermokarst ponds or drainage

networks at their base (Figure 1.5) (Redpath, 2011; Vivero et al., 2013). The effect

of debris cover on the sensitivity of ice-thickness changes is explored in more detail

in section 3.3.2.

1.3.4 Calving

Calving is an important mechanism for ice loss and can be a more effective mass

loss mechanism than surface ablation (Van der Veen, 2002). Many studies have

investigated the processes which drive terminus calving; (e.g. crevasse-induced

calving through high velocity gradients (Benn et al., 2007), thermo-erosional notch

development (Röhl, 2006) or the relationship between calving rate and water depth

(Dykes and Brook, 2010)).

To a first-order, longitudinal strain rates at the terminus of a glacier are

responsible for yielding fractures in the ice. It is these fractures which provide

the dominant mechanism for calving (Benn et al., 2007). Second-order processes

including thermal notch development or buoyancy forces acting on sub-aqueous

ice-tongues are typically super-imposed on top of this dominating trend. For

particularly slow moving glaciers, these second-order processes may indeed become

more dominant, such as in marine and lacustrine settings, where a glacier terminus

calves into water. It is also common for glaciers in lacustrine settings to have a

remnant sub-aqueous ice-foot following sub-aerial calving which, under unstable
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Figure 1.5: An extensive debris cover over the lower Tasman Glacier. Note
also the presence of an englacial tunnel exposed at the surface.

buoyant forces, will itself eventually calve (Figure 1.6). In particular, Mercer

(1961) showed that calving rate and water depth are correlated for tide-water

glaciers, indicating that retreat rates may be influenced by water depth. This

relationship has also been observed in lacustrine settings like the Tasman Glacier

(e.g. Dykes and Brook (2010)). Where glacial channels are over-deepened, the

likelihood of terminus calving is thought to be enhanced if a glacier progressively

retreats up-valley into a deeper channel. This would typically occur when the bed

of the glacier has a reverse slope.

The future retreat, likely due to terminus calving, at Tasman Glacier is not

well understood. Kirkbride and Warren (1999) established two different scenarios

for terminus calving involving a slow-retreat and fast-retreat scenario. Fast retreat

estimates were based on a linear relationship between calving rate and water depth
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Figure 1.6: Secondary calving processes such as notch development destabil-
ising the terminus of a glacier. Figure adapted from Röhl (2006).

while the slow retreat scenario assumed that only waterline melting contributed

significantly to terminus calving. Recent studies by Dykes and Brook (2010) have

investigated lake depth in an attempt to predict future retreat rates based on

the fast-retreat scenario. In its current state, the Tasman Glacier is retreating

primarily through terminus calving and has been since 1991 (Hochstein et al.,

1995). In February 2013, the most recent calving event was captured through

time-lapse photography (Figure 1.7).

(a) Pre calving (22/02/2013) (b) Post calving (23/02/2013)

Figure 1.7: February calving event at the Tasman Glacier terminus. Photos
courtesy of Brian Anderson.
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1.4 Estimating glacier volumes

One of the present uncertainties faced in glaciology involves calculating the total

volume of the world’s glaciers (Farinotti et al., 2009; Huss and Farinotti, 2012). Of

the 170,000 glaciers worldwide, only a small number have had their volume con-

strained through direct ice-thickness measurements (Nolan et al., 1995; Leclercq

et al., 2011; Farinotti and Huss, 2013). Moreover, ice-thickness data is limited to

point measurements or 2D cross sections which are then interpolated to obtain ice

volume (Farinotti et al., 2009). Ice-thickness measurements are typically obtained

through geophysical methods which are often arduous to collect and cannot be

easily extrapolated (e.g. Watson (1995); Dowdeswell et al. (2002)). For glaciers

without ice-thickness information, the total ice volume is often obtained through

empirical formulae (Bahr et al., 1997; Chen and Ohmura, 1990) which relate the

surface characteristics of a glacier to its volume. A variety of approaches have

been used to estimate glacier volumes without the use of ice-thickness informa-

tion. These approaches include:

1. Perfect-plasticity assumption

2. Area-volume scaling

3. Glacier mass turnover and principles of ice-flow mechanics

The following subsections outline the current methods used to estimate the

ice volume of glaciers.

1.4.1 Perfect-plasticity assumption

Nye’s (1952) theory states that the ice thickness can be estimated using the perfect-

plasticity assumption. Consider a 2-dimensional slab of ice resting on a slope (α)

whereby the length and width of the slab are large compared with the thickness

(h) (Figure 1.8). Assuming that large valley glaciers have a low surface slope, the
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Figure 1.8: Cross section of an ideal glacier, (parallel sided slab) representing
the perfect plasticity model. Under the perfect-plasticity assumption, τb is equal

to τ0 (ρghsinα).

thickness of the column in the vertical component is approximately the same as

the true thickness. Hence the weight of the column in the vertical component is

given by (ρgh) while the weight component parallel to the slope represents the

driving stress (ρghsinα). The driving stress is opposed by the basal drag of the

slope (τb). The perfect-plasticity theory assumes that the basal shear stress (τb)

is equal to the constant yield stress for ice (τ0) which is on the order of 100 kPa

(Cuffey and Paterson, 2010). Thus the ice thickness is given by Equation (1.3):

h =
τb

ρgsinα
(1.3)

The standard perfect-plasticity model ignores boundary conditions such as side

drag imposed by the valley walls. Additionally, the model requires no information

about the mass balance of the glacier, although the main assumption that the

basal shear stress is equal to the yield stress, implies that the glacier is in a steady

state of mass balance (Clarke et al., 2009).

More recent work by Li et al. (2012) on the perfect-plasticity model considers

the width of the glacier cross-section and therefore the additional drag forces

imposed on the glacier. Given this adaptation, the extended perfect-plasticity
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model is more rigorous, yet still simple compared to other methods in that it only

requires glacier geometry and an assumed yield stress as inputs.

1.4.2 Area-volume scaling

The area-volume scaling method works on the simple assumption that the vol-

ume (V ) of a glacier is proportional to its surface area (A) governed by a power

relationship:

V = c · Aγ (1.4)

where c and γ are empirical constants derived from direct measurements of

volume and area (Bahr et al., 1997; Chen and Ohmura, 1990). In essence, equation

(1.4) takes information about the surface boundary of a glacier and extrapolates

it to estimate the average thickness of the ice (Bahr and Radic, 2012).

The area-volume scaling method is justified by its ability to overcome random

errors in individual glaciers due to the large sample set of glaciers typically used

(Bahr and Radic, 2012). Its precision can be increased by using additional param-

eters in the regression between area and volume (Grinsted, 2013). As a result, this

method is useful for estimating global volumes of ice rather than individual glacier

volumes. Limitations in the scaling method arise from the lack of surface geome-

try information or climate setting for an individual glacier. Moreover, the scaling

method does not consider the ice-thickness distribution of an individual glacier

which is a first-order constraint for glacio-dynamic models (Huss and Farinotti,

2012).

1.4.3 Recent methods

Recent developments in estimating glacier volumes have come from a variety of

sources (e.g. Clarke et al. (2009); Farinotti et al. (2009); Huss and Farinotti (2012)).

Unlike the perfect plasticity and area-volume scaling methods, the goal of recent
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methods has been to calculate the volume of a glacier by using ice-thickness data

where available. Clarke et al. (2009) used artificial neural networks to simulate

sub-glacial topography based on neighbouring ice-free topography. Farinotti et al.

(2009) and Huss and Farinotti (2012) used a physics-based approach to solve for

the ice-thickness distribution and overall ice volume of a glacier. In particular,

Farinotti et al. (2009) used a method based on glacier mass turnover and princi-

ples of ice-flow mechanics to calculate the ice-thickness distribution of four alpine

glaciers, all of which had direct ice-thickness data available for model validation.

Huss and Farinotti (2012) developed this method further using digital elevation

models and glacier outlines from the Randolph Glacier Inventory to solve for the

total ice volume of glaciers worldwide (Arendt et al., 2012).

Farinotti et al.’s method for estimating the ice thickness distribution of the

Tasman Glacier provides a robust comparison for the results obtained in this study.

In particular, a simplified mass flux model based on Farinotti et al.’s method is

used to estimate the ice thickness distribution of the Tasman Glacier. The re-

sults from this study are used to evaluate the model outputs of ice thickness and

tune physical constants in the mass flux model in Chapter 3 and later compared

to Farinotti et al. (2009)’s result for the ice-thickness distribution of the Tasman

Glacier in Chapter 4.

1.5 Research questions and objectives

The ice-thickness distribution for glaciers is generally poorly known and is an im-

portant first-order physical constraint for estimating glacier volumes. The objec-

tive of this study is to improve our understanding on the ice-thickness distribution

of the lower Tasman Glacier. Below, I list the research questions and corresponding

objectives for this project.

Question 1: What is the ice-thickness distribution on the lower part of

Tasman Glacier?
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This question will be answered by producing two-dimensional (2D) and three-

dimensional (3D) gravity models of the lower Tasman Glacier, constrained where

possible by seismic methods and previous geophysical surveys, to estimate the

ice-thickness distribution and bed topography of the lower Tasman Glacier.

Question 2: How do my ice-thickness measurements for the Tasman

Glacier compare to estimates made using a simple mass flux model?

This question will be answered by applying an ice flux model to the Tasman Glacier

and evaluating its performance using gravity derived ice-thickness measurements.

To address these questions, the chapters will be arranged as follows:

Chapter 2 describes the methodology of this study. This chapter summarises the

theoretical basis behind gravity and seismic methods, encompassing appropriate

field applications used in this study. It also highlights the theoretical background

of the mass flux model used to estimate ice thickness for the Tasman Glacier.

Chapter 3 explores the results of the ice-thickness distribution of the Tasman

Glacier through two- (2D) and three-dimensional (3D) gravity models. First I

explore the sensitivity of ice thickness to changes in density and till thickness using

a suite of 2D synthetic models. Forward and inverse (2D and 3D) gravity models

are then presented for the Tasman Glacier. These models are constrained where

possible by additional geophysical methods such as a seismic refraction survey

and past geophysical studies. The mass flux model results are also evaluated with

respect to the gravity derived ice thickness results.

Chapter 4 summarises the ice-thickness distribution of the Tasman Glacier

by comparing 2D and 3D gravity models and analysing anomalous features in the

2D models. Limitations in the geophysical methods used and in the mass flux

model are then highlighted. I then explore the implications of bed topography on

future retreat with respect to glacier models before suggesting avenues for future

research.
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Methodology: Geophysical theory

and field applications

2.1 Introduction

Gravity prospecting methods use subtle changes (1 part in 105 to 106) in the

Earth’s gravitational field to infer density variations within the subsurface (Reynolds,

2011). The gravity method takes measurements across an area of interest and sub-

tracts the gravitational effect of an idealised Earth (addressing changes in latitude,

elevation and topography) leaving a Bouguer anomaly representative of the entire

subsurface (e.g. Claridge (1983)). Bouguer anomalies can be reduced to residual

anomalies to investigate shallow regions of the subsurface.

Refraction seismology is an additional method used here to measure the ve-

locity of subsurface layers and constrain their density. This is beneficial for gravity

modelling where geological models require realistic densities in order to match the

residual anomaly (e.g. Stern (1978)).

Here, the gravity method is used to investigate the ice-thickness distribution of the

lower Tasman Glacier, constrained locally by a seismic refraction survey. Residual

anomalies are modelled in order to investigate the shape and thickness of the lower

Tasman Glacier. Due to the high density contrast between the ice and basement

17
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rock, the residual anomalies are large (-24 mGal). This chapter outlines the field

methods used and the theory of seismic refraction and gravity with application to

our data.

2.2 Field methods

Fieldwork for this study was carried out over a three week period in January

and February, 2013. The fieldwork incorporated active-source seismic, gravity and

Global Positioning System (GPS) methods over the lower section of the Tasman

Glacier. A temporary camp was also established as a gravity base station in the

centre of the glacier approximately east of Ball Hut (Figure 2.1). The following

sections outline the survey designs used in this study.

2.2.1 Seismics

A refraction seismic survey was conducted to investigate the velocity structure of

the surface debris cover, glacier ice and bed. The refraction line was established

orthogonal to glacier flow near the camp-site/base station (Figure 2.1); this loca-

tion was chosen to match independent surveys by Anderton (1973) and Broadbent

(1973). A 230 m long, 24 channel spread (at 10 m spacing) was surveyed three

times across the glacier, encompassing a total survey length of 690 m. A record

length of 1 second was used at a sample interval of 0.125 seconds. The operator

made 5 blows per stack using a 5 lb sledgehammer on a well-secured boulder.

2.2.2 Gravity

A LaCoste & Romberg gravimeter (model G 179) was used to conduct the gravity

survey. A total of 189 stations were occupied between January 24 and February

8 2013, under fine conditions. (Sunny, with wind <5 kts 95% of the time). The

survey was composed of 10 linear transects (L 100 to L 1000) spaced 500 m apart,
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perpendicular to the main flow of the glacier. Two additional transects (T 100 and

T 200) were also surveyed near the terminus of the glacier (Figure 2.1). Transects

were composed of stations, spaced at 100 m intervals along each transect where

three consistent gravity measurements were made. The base station was occupied

every morning and evening (∼ 12 hr intervals) at the temporary camp established

in the centre of the glacier.

2.2.3 GPS

A Trimble GeoXH GPS unit was used with a dual frequency zephyr antenna to

observe surface elevation across the glacier surface. The mobile set-up included a

1-m-long rod attached to the antenna at a height of 1.52 m or 1.82 m depending

on the surveyor. Elevations were used to update DEM changes related to glacier

down-wasting and to validate terrain corrections made by the surveyor (see section

2.5.6).

2.3 Physical basis of seismic refraction

The seismic refraction method is based on principles of wave-propagation across

boundaries of varying refractive indices (Reynolds, 2011). It is commonly applied

to geological problems to investigate the depth to a layer and/or the velocity

within a layer (e.g. Bentley (1973); Booth et al. (2013)). Typical refraction surveys

involve an active energy source (sledgehammer) and a string of recording devices

(geophones). The source generates seismic waves which follow paths according to

the density of the subsurface layers while the geophones record the arrival of these

waves. Snell’s Law describes the path of a wave through a variable set of media

by:
sin(i)

sin(r)
=
V1
V2

(2.1)

where i describes the angle of incidence of a wave and r describes the angle of

refraction. V1 and V2 are the velocities in the upper and lower layers respectively.
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Figure 2.1: Location of the gravity survey points (yellow circles) and refraction
seismic line (red) over the lower Tasman Glacier. The gravity base station

(yellow star) also marks the temporary camp occupied during fieldwork.

Snell’s Law describes the refraction path of a wave due to an increase in den-

sity of a medium. Generally, density and wave velocity increase with depth. A

threshold depth is met when a wave propagates parallel to a refractive boundary;

this is known as critical refraction. Critical refraction occurs at the critical angle

(ic), a condition at which the angle of incidence is large enough to allow the re-

fraction of a wave along a boundary (Figure 2.2).

The seismic refraction method was used here to constrain the velocity and

density of the surface debris cover and glacier ice. This is achieved through empir-

ical relationships between velocity and density (e.g. Bentley (1973)). Constraining

the density of these layers allows tighter constraints on the gravity models to be

made.



Chapter 2. Methodology 21

Figure 2.2: A typical refraction survey in cross section. An active source (red
star) generates seismic waves. Inverted triangles represent a string of geophones.

2.3.1 Tasman Glacier refraction survey

The aim of the refraction survey was to constrain the velocities of the surface

debris cover, glacier ice and ideally, the sub-glacial bed. Due to the size of the

source (5 lb sledgehammer) and a small spread of geophones (24 channel at 10 m

spacing), only the surface debris and glacier ice were observed in the shot gather

(Figure 2.3). Data were processed in Globe Claritas and picks were made on the

first breaks of each trace. Figure 2.4 indicates three horizons that were picked

in between two distinct slope breaks, located at ∼ 35 ms and ∼ 45 ms. Three

slopes, located between 0 − 35 ms, 35 − 45 ms and 45 − 110 ms, are interpreted

to represent the air wave (298 ± 38 ms−1), debris layer (562 ± 333 ms−1) and

ice (3854 ± 56 ms−1) respectively. Linear regression was used to fit the gradients

of each line while uncertainties in these gradients are quoted to a 95% confidence

interval (CI). Table 2.1 summarises the picked gradients and associated velocities

for each wave.
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Figure 2.3: Offset sorted gather recorded across the Tasman Glacier showing
pre-picked (left) and post-picked horizons (right). An AGC filter (window =
20 ms) has been applied for display purposes. Y axes are in units of ms (travel
time) and x axes represent channel number (spacing between channels is 10 m).

Table 2.1: Refraction data summarised from Figure 2.4. Three distinct
changes in gradient mark the air wave, debris cover and ice velocities which
are fitted using linear regression. Uncertainties in the gradient, y-intercept and
velocity are quoted to a 95% confidence interval (C.I.) using methods from Tay-

lor (1997).

Waveform Grad ± 95% C.I. Y-int ± 95% C.I. Vp ± 95% C.I.
10−4 10−4 ms−1

Airwave 3.36 ±0.43 7.92 ± 2.61 298 ± 38
Debris 1.78 ±1.06 16.15 ± 14.17 562 ± 333

Ice 0.26 ±4× 10−3 42.93 ± 0.53 3854 ± 56

2.3.2 Velocity/density conversions

The velocity of a seismic wave is a function of the density (ρ) of the material

it travels through Fowler (2005). For primary waves (Vp), the velocity is also a

function of the material’s bulk and shear moduli, given by:

Vp =

√
K + 4

3
µ

ρ
(2.2)
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Figure 2.4: Direct (black circles), first refracted (blue circles) and second
refracted (red circles) rays for the Tasman Glacier. Linear regression fits (dashed
lines) have been applied to the data. Inset of total refraction line is shown on

the bottom right.

where K is the bulk modulus and µ is the shear modulus of a material. How-

ever, for practical applications, the dependence of elastic moduli on density is not

well established, hence empirical relationships have been developed to relate the

velocity of a material to its density (e.g. Birch (1961); Bentley (1973); Gardner

et al. (1974)).

Debris density

The density of debris cover is calculated using an empirical relationship developed

by Gardner et al. (1974). The estimate is complicated due to the poorly sorted

nature of the deposit. The deposit is composed primarily of Greywacke which has

an average density of 2639 kgm−3 ± 100 kgm−3 (Tenzer et al., 2011). However,

due to the amount of air space in the deposit, the refracted velocity of 562 ms−1
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± 333 ms−1 (Table 2.1) indicates a lower density of 1500 ± 200 kgm−3 according

to Gardner’s relation:

ρ = αV β
p (2.3)

where ρ has units of gcm−3, Vp has units of fts−1 and α and β are empirically

derived constants dependent on the local geology. In the absence of density data,

a good estimate of density is obtained by taking α = 0.23 and β = 0.25 (Gardner

et al., 1974).

Debris thickness

Debris thickness (h) can be calculated in two different ways (Stein and Wysession,

2003). Both use the velocities of the first refracted (V1) and second refracted

(V2) waves, which represent debris cover and ice respectively. The first approach

calculates depth using the intercept time (τ) and is given by:

h1 =
τ

2 ∗
√

1
V 2
1
− 1

V 2
2

(2.4)

The second approach uses the crossover distance (Xd) of 17.6 m (see Figure 2.4

and is given by:

h2 =
Xd

2 ∗
√

V2+V1
V2−V1

(2.5)

Equation 2.4 produces a depth of 4.6 m while equation 2.5 gives a depth of

7.6 m. These measurements provide a thickness for the debris which includes,

for example, the remains of rock avalanche material from the 1991 Mt. Cook

avalanche (McSaveney, 2002) or eroded material from the moraine sides.
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Ice density

For seismic studies on ice, empirical relationships are complicated by heteroge-

neous features in the material such as fluids and pore spaces (e.g. Gardner et al.

(1974); Booth et al. (2013)). This is also likely for the Tasman Glacier where

the entrainment of debris or presence of conduits/water in the ice can alter the

observed velocity. An empirical relationship proposed by Bentley (1973) has been

used in several ice studies (e.g. King and Jarvis (2007); Rege and Godio (2011)):

ρ = (0.239± 0.002)Vp − 0.002± 0.009 (2.6)

where ρ is the density (kgm−3) and Vp is the velocity of the ice (ms−1). To

constrain the density of ice for the Tasman Glacier, p-wave velocities of 3854 ± 56

ms−1 obtained from Table 2.1 are used in equation 2.6. A density range of 919 ±

16 kgm−3 agrees within error for the density of polar ice studies e.g. Bentley (1973)

as well as that for pure ice (917 kgm−3). Ice thickness could not be obtained from

this refraction survey as no refractions were observed at the glacier bed.

The density and thickness results obtained from this section will be used to

constrain two and three-dimensional gravity models in Chapter 3.

2.4 Physical basis of gravity methods

Gravity is a universal phenomenon described as the attractive force between two

objects. This force is proportional to the mass of two objects and inversely pro-

portional to the square of the distance between them. Consequently, the larger the

separating distance between two objects, the smaller the attractive force. Known

as Newton’s Universal Law of Gravitation, this force (F ) is given by:

F =
Gm1m2

r2
(2.7)

with,
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G = 6.67384 × 10−11 m3 kg−1 s−2

where, G is the universal gravitational constant, m1 and m2 are the masses of

the objects and r is the separating distance between the centres of mass of each

object.

When relating equation (2.7) to the Earth, we assume that the Earth is a perfect

sphere of constant mass (M) and constant radius (R). For an arbitrary point mass

m on the surface of the Earth, equation (2.7) becomes,

F =
GmM

R2
(2.8)

Newton’s second law states that a force is equal to mass times acceleration, given

by,

F = ma (2.9)

In the case of the Earth, the acceleration is equal to gravity (i.e. a = g), which

acts vertically towards the centre of the Earth. Combining equations (2.8) and

(2.9) we see that,

g =
GM

R2
(2.10)

Equation (2.10) shows, for a simplified Earth, the acceleration due to gravity on

the Earth’s surface. The acceleration due to gravity (g) is proportional to M and

inversely proportional to R2.

2.4.1 The Earth’s Gravity

If Earth were a perfect sphere and had a homogeneous mass distribution, gravity

would be constant over its surface. In reality this is not the case due to Earth’s

irregular shape and heterogeneous mass distribution. The true Earth shape in-

duces an equipotential surface (the geoid) which approximates mean sea level but

undulates according to mass inhomogeneities. Regions where the geoid is lower
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than the ellipsoid are highlighted by lows (equal to −107.0 metres and higher, in

magenta), while regions where the geoid is higher than the ellipsoid are represented

by highs (equal to 85.4 metres and lower, in red) (Figure 2.5). When measuring

gravity over Earth’s surface a more realistic model considers the following factors:

1. Earth tides and instrumental drift

2. Latitude of the observation point

3. Elevation of the observation point

4. Topography surrounding the observation point

5. Density variations of the subsurface

This section describes the process of isolating a residual anomaly for the Tas-

man Glacier; this is the change in gravity related only to density variations in the

shallow subsurface. To obtain a residual anomaly, the first four factors outlined

above must be accounted for in gravity reduction. The fifth is modelled to match

residual anomalies in Chapter 3).

Figure 2.5: Deviations between a geoid model GEOID96 and the WGS84
reference ellipsoid. Figure from National Geodetic Survey, 1997.
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2.5 Gravity reduction

2.5.1 Measuring gravity

Modern gravimeters can measure absolute and relative changes in gravity on the

order of 10 parts per million and thus require a more suitable unit than ms−2. The

Gal, equal to 1 cms−2, is adopted for geophysical uses, however the measurable

changes seen by a gravimeter are on the order of the mGal (1×10−3 Gal) (Reynolds,

2011).

The device used to measure gravity for this survey is a LaCoste and Romberg

gravimeter model G 179. The model G 179 measures relative changes in gravity

on the order of ± 0.01 mGal between sites. Using a calibration factor specific to

the meter, the meter units unique to the model G 179 are converted into mGals

for each station (Reynolds, 2011). The observed gravity at a station (gobs) is the

raw measurement of gravity. In order to remove the external effects on gravity

(outlined in section 2.4.1) gobs must be reduced to a common datum such as the

geoid (mean sea level) before corrections to the data can be made.

2.5.2 Absolute gravity

Absolute gravity is the acceleration due to gravity at a particular point in time

and space. Often it is useful to express gravity in terms of its absolute value so

that past studies can be tied to future studies. Absolute gravity is calculated from

relative gravity values:

gabs = gobssite − gobsref + gabsref (2.11)

Where gobssite is the relative gravity reading at a new observation site, gobsref

is the relative gravity reading at the reference site, gabsref is the absolute gravity

measurement at the reference site and gabs is the absolute gravity measurement

for the new observation site.
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In this study, relative changes in gravity were recorded between observation sites.

To convert relative gravity values to absolute values, a tie site where absolute

gravity had already been established was used along with equation 2.11. The

coordinates of the original tie site, established by Reilly (1972), did not match

the map description provided; rather, they plotted on a hill slope adjacent to

the Hermitage site description. We established a tie site on a permanent sundial

adjacent to the Hermitage garage (this most closely resembled the site description)

(Figure 2.6.) In order to tie this study to Reilly’s tie site it was assumed that the

absolute gravity from Reilly (1972) was equal to our tie site. The difference in

absolute gravity between our reference site and the actual reference site is likely to

be small, however the entire survey will have an associated static error of unknown

value due to the discrepancy between tie sites (see Table 2.2).

Figure 2.6: The Hermitage tie site established in this study is located at a
sundial (red star). Coordinates are in NZTM 2000 (m). Image from Google

Earth.

2.5.3 Variation of gravity with drift

The term ’drift’ refers to the temporal changes in gravity that are induced as a

result of both tidal forcings and spring relaxation in the meter (Claridge, 1983).
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Table 2.2: Site information for Reilly’s absolute gravity site and the tie site
used in this study. Latitude and longitude are in World Geodetic System 1984
(WGS 84). Eastings and Northings are in New Zealand Transverse Mercator
projection (NZTM 2000). Data obtained from the New Zealand Primary Grav-

ity Network (Reilly, 1972).

Mt. Cook absolute gravity station Hermitage reference site
(Reilly, 1972) (this study)

Latitude 43 44’ 2” 43 43’ 57”
Longitude 170 05’ 5” 170 05’ 40”
Easting 1365818.1 1365990

Northing 5153202.1 5153732
Elevation 748 m 760 m
gabsref 980270.85 mGal 980270.85 mGal

Instrumental and tidal drift are large enough to induce changes in the meter of

0.3 mGal/hr and 0.1− 1.0 mGal/hr respectively (Reynolds, 2011; Mishra, 2011).

Drift is accounted for by taking repeat measurements of an established base

site at regular (1-2 hour) intervals (Reynolds, 2011). This study adopted a looping

procedure at 8-12 hour intervals rather than 1-2 hour intervals due to (1) the survey

lines being traversed over difficult terrain and (2) the lines being located several

kilometres from the base station (Figure 2.1). A significant tidal drift component

associated with the spring-neap cycle was seen in the data (Figure 2.7). To remove

this, the combined effects of instrumental and the tidal drift over the 16 day period

were modelled using a cosine function:

gdrift = Acos(ω(tobs − φ)) + c (2.12)

where A describes the amplitude of the waveform, ω describes the angular

frequency of the waveform in radians per second, tobs represents the time of each

base site reading relative to the first base site reading, φ describes the phase of

the waveform in radians and c is a constant. The values associated with equation

2.12 are summarised below:

Equation (2.12) is fitted to the set of readings according to the least squares

method (Figure 2.7). It is assumed that the cosine function corrects for both the
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Table 2.3: Constants related to equation (2.12)

Constant Value

A 0.22
ω 0.0002
φ 3000
c 3863.41

spring-neap cycle and instrumental drift, even though the spring-neap signature

dominates the model.

Figure 2.7: Drift curve model obtained using equation (2.12). The cosine
model (red) is fitted to observed base readings (blue) according to the least-

squares method. The rms misfit between the two curves is ±0.08 mGal.

The drift corrected values for each site are then calculated as the difference between

gabs and gdrift:

gobsdc = gabs − gdrift (2.13)

where gobsdc is the observed drift-corrected gravity, gabs is the absolute gravity

and gdrift is the trend due to instrumental and tidal drift
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2.5.4 Variation of gravity with latitude

The force of gravity varies with latitude due to the Earth’s rotation. As the Earth

rotates, an apparent outward (centrifugal) force (Fc) is generated. Over large time

scales the Earth responds to the centrifugal force as a fluid, whereby the equator

bulges outwards and the poles flatten. The term used to describe this shape is an

ellipsoid of rotation. Two forces are considered to influence the Earth’s gravity

field: The gravity force (Fg) which acts from all directions towards the centre of the

Earth, and the centrifugal force (Fc) which is directed outwards perpendicular to

the axis of rotation. The force-balance relationship between (Fc) and (Fg) results

in an equatorial bulge relative to the poles (Figure 2.8) (Reynolds, 2011). The

centrifugal force opposes the gravity field (Fg) with a maximum force at the equa-

tor, diminishing to zero at the poles. Consequently, the force of gravity increases

with latitude as Fc decreases with latitude (Reynolds, 2011; Mishra, 2011).

The flattening of the poles also affects the mass distribution of the Earth.

There is a gradual decrease in the force of gravity from the equator to the poles

due to a relative mass deficiency with increasing latitude (λ). The combined effect

of rotation and a variable radius/mass distribution leads to an overall increase in

Fg with increasing latitude. This amounts to a difference of approximately 5200

mGal between the equator and the poles (Fowler, 2005).

To a first-order, an ellipsoid of rotation can be used to model the latitudi-

nal dependence of gravity (Reynolds, 2011; Fowler, 2005) (Figure 2.8). The true

gravity distribution for the Earth is much more complicated than the ellipsoid of

rotation. Large and small-scale geological features warp the gravity field so that

the equipotential surface deviates from the ellipsoid. This surface, known as the

geoid, is approximated by mean sea level (Reynolds, 2011). To a first order, the

reference ellipsoid can be used to estimate the latitudinal dependence of gravity

despite deviations between the reference ellipsoid and the geoid. The most re-

cent shape of the reference ellipsoid is modelled by the 1987 International Gravity

Formula. It provides an approximate value of gravity g(λ) for any given latitude

(λ):
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g(λ) = ge(1 + α sin2 λ)(1− β sin2 λ) (2.14)

where ge is the gravitational acceleration at the equator, equal to 9.780327,

with constants α = 1.932 × 10−3 and β = 6.694 × 10−3. It should be noted that

the Hermitage reference site (which this study is tied to) is relative to the 1930

International Gravity formula. Therefore a correction was made using equation

(2.15) to calibrate it to the more recent 1987 formula:

gherm = gabs + g1980 − g1930 (2.15)

where gabs is the absolute gravity at the Hermitage site, g1980 is the 1980 inter-

national gravity formula, g1930 is the 1930 international gravity formula (Fowler,

2005) and gherm is the updated absolute gravity for the Hermitage reference site.

gherm is the absolute value of gravity used in this study, summarised in Table 2.2.

The latitudes of all gravity stations occupied in this study were inputs to

equation 2.14 which describes the theoretical gravity for each station. These values

are used later in Section 2.5.7 to calculate the contribution to the Bouguer model.

2.5.5 Variation of gravity with elevation

Relative to the centre of the Earth, any elevation change will result in a change

in g (see equation (2.10)). To account for this change, two corrections must be

applied:

1. The free-air correction

2. The Bouguer slab correction
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Figure 2.8: The Earth represented as an ellipse of rotation. The actual flat-
tening is ' 1/300 but is exaggerated here to display an elliptical shape.

Free-air correction

The free-air correction is used to describe the difference in gravity between two

points due to a change in height (h). A change in height is seen as the difference

between the observation point and the geoid (Reynolds, 2011). The free-air gra-

dient dismisses any materials between the observation point and the geoid; this is

accounted for by the Bouguer slab correction in Section 2.5.5. The accepted value

for the free-air gradient is:

gFA = −0.30855h (2.16)

The G 179 meter used in this survey has a precision of ± 0.01 mGal. To

comply with this level of accuracy, elevations must ideally be known to within

3− 5 cm for the free-air correction (Reynolds, 2011).
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Bouguer slab correction

The Bouguer slab correction is a first-order approximation for the mass in be-

tween the observation point and the geoid. It removes the extra gravitational pull

imposed by the mass of an infinite horizontal slab. The Bouguer slab correction

assumes the infinite slab has a uniform density (ρ) and thickness (h) (Figure 2.9)

(Fowler, 2005; Mishra, 2011; Reynolds, 2011). The correction is:

gB = 2πGρh (2.17)

The combined effects of the free-air gradient and the Bouguer slab define the

elevation correction:

gE = (−0.30855 + 2πGρ)h (2.18)

The change in gabs associated with the height above the geoid and the mass

of a constant density slab of rock is corrected for by the elevation correction.

Figure 2.9: The variation of gravity with elevation is marked by a semi-
infinite slab which lies parallel to the reference geoid. Point p is affected by (1)
the height (h) above the geoid (free-air) and (2) the density of the slab between

p and the geoid (Bouguer slab). Figure adapted from Davy (2012).

Uncertainties in the density of the Bouguer slab can lead to significant errors in

the overall elevation correction. A mean crustal density of 2670 kg/m3 is typically

assumed for geological and gravimetric surveys (Hinze, 2003), while the greywacke

sandstone surrounding the Tasman Glacier has an average density of 2639 kg/m3

(Tenzer et al., 2011). Given that the slab correction for gravity is 4.19 mGal/100
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m, (equation (2.17)) the difference between these values for a glacier elevation

range of 750 - 1000 m results in a Bouguer anomaly error of 0.97 - 1.3 mGal. The

magnitude of this error becomes insignificant when incorporated into the overall

elevation error (See Section 2.5.8 - Elevation and position error).

Here, I adopt an average crustal density of 2670 kg/m3 for greywacke. This

value was chosen so that this study could be compared to previous gravity surveys

(e.g. Broadbent (1973)) who also used 2670 kg/m3 as their crustal density for

greywacke in the region.

2.5.6 Variation of gravity with topography

The terrain correction (gT ) is used to quantify and remove variations in height

about an infinite horizontal plane from an observation point (Fowler, 2005; Reynolds,

2011). Topographic variations are typically quantified using a Hammer Chart,

where a template consisting of concentric segmented rings is placed over a to-

pographic map and the average elevation of each segment is estimated (Hammer,

1938). The rings are weighted according to distance from the gravity measurement,

such that closer rings have a larger influence on the gravity at an observation point.

The Hammer Chart quantifies topography out to 21.9 km; beyond this distance

any change in height has a negligible effect on gravity (Hammer, 1938).

For inner terrain corrections (0 - 170.1 m), average elevations are typically es-

timated by the surveyor (Table 2.4). Outer terrain corrections (170.1 m - 21.9 km)

may use topographic maps. Modern techniques employ Digital Elevation Models

(DEMs) which allow for more accurate estimations of terrain (e.g. Chen and Yue

(2010); Columbus et al. (2011)). This study incorporated a combination of sur-

veyor estimates for elevation and GPS derived elevations. GPS derived elevations

were favoured, where possible, for their accuracy.
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Table 2.4: Radii of inner terrain corrections out to zone D (170.1 m).

Inner terrain zone Radius range

A 0-2 m
B 2-16.6 m
C 16.6-53.3 m
D 53.3-170.1 m

Inner terrain corrections

Inner terrain corrections (gT inner) were estimated by the surveyor between zones A

to D over the lower Tasman Glacier. The irregular topography of the glacier surface

made estimating elevations difficult, hence elevation data were also collected with

the Trimble Geo XH GPS where possible. A digitized Hammer chart was created to

incorporate inner terrain corrections from both eye-estimated elevations and GPS

elevations (Figure 2.10). Red and blue ’plus’ symbols represent Geo XH derived

elevations, delineated by colour to distinguish individual segments of the Hammer

chart. For inaccessible areas, the Geo XH could not sample certain topography,

hence estimates by the surveyor had to suffice; these segments of the Hammer

chart are represented by black lines. Zone A was always assumed to be level and

thus no terrain correction was required.

To verify that each inner terrain correction estimated by eye was valid, scat-

ter plots of eye elevation versus GPS elevation were made for each segment of

the Hammer Chart. In general, the eye method slightly overestimates elevation

except for the D radius. The spread in the plots is large, reflecting the difficulties

encountered in estimating elevations by eye on the glacier surface (Figure 2.11).

Provided that the two methods were directly proportional, segments with sparse

or no GPS measurements could be replaced with the appropriate eye estimate.

Outer terrain correction

Outer terrain corrections (gTouter) were determined between 170.1 m and 21.9 km

using the software ‘TopCor’ developed by Davies (2005). TopCor utilises digital
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Figure 2.10: A typical Hammer Chart used for an observation point between
zones B to D. Geo XH GPS elevations are distinguished by alternating segments
of blue and red ‘plus’ symbols. In segments with sparse GPS elevations surveyor

estimations of elevation were used (black lined area).

Figure 2.11: Inner terrain estimates for B, C and D radii. Blue circles repre-
sent the eye elevation estimate versus the measured GPS value for each segment
of the inner terrain. Black lines denote a 1:1 ratio between the two methods.

elevation models and the location of each gravity station to produce an outer

terrain correction for each station. The DEM used for this study (NZSoSDEM

v1.0) has a spatial resolution of 15 metres (Columbus et al., 2011).

The total terrain correction for an observation point is found by summing the

inner and outer terrain corrections given by:

gT = gT inner + gTouter (2.19)
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Glacier down-wasting

In recent decades, the Tasman Glacier has experienced significant thinning which

has reduced its surface elevation (e.g. Hochstein et al. (1995)). The more recent

(2013) glacier surface has decreased on the order of several metres per year relative

to the 1986 DEM (NZSoSDEM v1.0). If left uncorrected, this discrepancy in

elevation would lead to significant errors in the outer terrain correction. To account

for the elevation error, elevation data collected via GPS during this survey was

used to replace those parts of the outdated DEM occupied by the lower Tasman

Glacier. This was done on a point-by-point basis, where out-of-date points on the

1986 DEM were replaced by an area-averaged point. The resulting DEM consisted

of an updated glacier surface while the moraine walls and surrounding topography

were left unchanged as negligible vertical change has taken place in these areas.

2.5.7 Bouguer anomaly

The Bouguer anomaly is the departure between the theoretical gravity at a loca-

tion (corrected for drift, latitude, elevation and terrain) and the observed gravity

measurement. It is assumed that the Bouguer anomaly represents the density vari-

ation of the subsurface and any long period wavelength associated with a regional

trend (Fowler, 2005; Reynolds, 2011). The steps outlined in Section 2.5 provide

a method for calculating the theoretical gravity at each observation point on the

Tasman Glacier. Also known as the Bouguer model (gboug), the theoretical gravity

at a point is summarised by:

gboug = gλ + gE − gT (2.20)

Where gλ is the expected gravity for latitude λ, gE corrects for both the free-

air and bouguer plate and gT corrects for terrain. The Bouguer anomaly (ganom)

is defined by the difference between the observed drift-corrected gravity and the

theoretical Bouguer model:
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ganom = gobsdc − gboug (2.21)

Substituting Equation 2.20 into Equation 2.21 leads to:

ganom = gobsdc − gλ − gE + gT (2.22)

2.5.8 Uncertainty in the Bouguer anomaly

Uncertainties in each gravity measurement arise primarily from four sources. These

include: meter reader error, drift curve modelling, terrain corrections and the error

in position and elevation.

Reader error

For each gravity station the meter was read a minimum of three times. The

precision of the meter at 0.01 meter units (' 0.01 mGal) meant that 3 consistent

readings within 0.1 mGal were readily achievable, although outside factors such

as wind, ice melt, unstable ground and seismic activity sometimes meant that

measurements were outside the 0.1 mGal range. 89% of readings had a range

within 0.03 mGal while 98% had a range within 0.1 mGal. Considering that 98%

of the stations are within ±0.05 meter units for this survey, the reading error is

established as:

Ur = ±0.05 mGal

Drift error

To measure instrumental and tidal drift, base readings were taken on average every

12 hours. The average drift between readings was 0.083 mGal with a standard
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deviation of 0.177 mGal while the maximum drift was 0.274 mGal between Sunday

3rd February and Wednesday 6th February 2013. The cosine model fitted to the

meter readings used a method of least squares and had a standard deviation of

0.078 mGal, hence the uncertainty associated with drift is:

Ud = ±0.08 mGal

Terrain correction error

The uncertainties involved with estimating terrain proved the most significant,

contributing over 99% of the entire error for each gravity station. Of the 189

stations surveyed, 77% of inner terrain corrections were less than 0.5 mGal while

97% were less than 1.0 mGal.

Inner terrain corrections had a significant error due to:

1. the irregular, hummocky terrain over the glacier, and

2. inner terrains being composed of both reader estimates and GPS measure-

ments (Figure 2.10).

Uncertainties for the inner terrains are quoted to one standard deviation. B, C

and D radii have a standard deviation of ±0.142 mGal, ±0.155 mGal and ±0.148

mGal respectively. When the variances are summed, the inner terrain error for

each station is

Uit = ±0.26 mGal

Uit accounts for uncertainties out to zone D (170.1 m).

For outer terrain corrections (170.1 m - 22 km) the uncertainties depend on the

resolution of the digital elevation model used. The DEM used for this survey
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(NZSoSDEM v1.0) has a spatial resolution of 15 m with a standard deviation of 6.8

m and produced outer terrain values as high as 23 mGal. To quantify uncertainties

for the outer terrains, 10% of the stations had Gaussian noise applied to the DEM

with a standard deviation of 6.8 m. This allowed the DEM to vary by ±6.8 m, thus

altering the outer terrain corrections. The uncertainty in the outer terrains was ±

0.88 mGal for distances greater than 170.1 m, where each node of the DEM was

allowed to vary by the standard deviation. The approach is limited in the sense

that topography would not vary randomly from node to node in reality; rather,

one would expect it to vary over a wider area such as a valley or a ridge. However,

as a first-order constraint on the outer terrain error, the Gaussian approach is

appropriate.

The overall uncertainty associated with terrain is the sum of the inner and

outer terrain uncertainties given by:

Ut = Uit + Uot = 0.26 + 0.88

where Ut is the total terrain correction and Uot is the outer terrain correction.

Thus Ut is equal to ± 1.14 mGal.

Elevation and position error

The uncertainties associated with elevation and position are due to errors in ele-

vation (free-air), latitude and density (Bouguer plate). With the development of

differential GPS techniques, the errors involved in calculating elevation and po-

sition have been significantly reduced. Mounted with an external antenna, the

precision of the Trimble GeoXH captured 93% of station heights within 50 cm.

According to the elevation correction (equation 2.18) a deviation of 1 m of eleva-

tion is equivalent to a ±0.1967 mGal error (for a slab density of 2670 kgm−3). In

contrast, the international gravity formula (equation 2.14) indicates that a devi-

ation of 1 m in latitude is equivalent to a ±0.0008 mGal error. For this reason,
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latitudinal errors were assumed to be negligible.

ardincorporates both the free-air and Bouguer plate uncertainties:

Ue = (−0.3086 + 0.0419δρ)× δh (2.23)

Where δρ is the uncertainty in the density of the Bouguer slab and δh is

the error in elevation for a given gravity station. According to equation (2.23) a

density error of ± 15 kgm−3 and an elevation error of ±0.25 m corresponds to a

±0.08 mGal error for each station, 99.99 % of which is due to the elevation error.

Thus the error associated with elevation, position and density is:

Ue = ±0.08 mGal

Total uncertainty

The errors presented here represent measurement errors related to the formal

measurement and processing stage of gravity reduction. The total uncertainty

for each gravity station is the root mean square of each of the sources of error:

U =
√
U2
r + U2

d + U2
t + U2

e (2.24)

where U is the uncertainty at each observation site. All errors are presented

in mGals to one standard deviation. For all sites the total uncertainty is ±1.18

mGal representing one standard deviation.

Further uncertainties are introduced in this study regarding the reduction of

the Bouguer anomaly to the residual anomaly (Section 2.6). These uncertainties

are likely to be very significant if not more so than the measurement and processing

errors discussed above; however they cannot be addressed in a quantitative manner

as they were not acquired.
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2.5.9 Gravity reduction summary

To summarise, the steps taken to reduce gravity measurements down to the

Bouguer anomaly are:

• Convert relative gravity readings (gobssite) into absolute gravity values (gabs)

using an established reference gravity station (Hermitage Hotel) and equa-

tion 2.11.

• Correct gabs for drift using equation 2.13. To obtain gobsdc , the drift compo-

nent (modelled by a cosine curve) was subtracted from gabs.

• Calculate gλ using the 1987 International Gravity Formula (equation 2.14).

• Calculate the free-air correction gFA using equation 2.16 and the Bouguer

Plate correction gBP using equation 2.17. The sum of these two corrections

is equivalent to the total elevation correction (gE).

• Using the methods described in section 2.5.6 calculate the contribution of

the inner and outer terrain corrections using equation 2.19.

• Calculate the Bouguer gravity anomaly using equation 2.22. This includes

the aforementioned corrections above:

ganom = gobsdc − gλ − gE + gT (2.25)

• Errors are established for: reader error, drift error, terrain error, elevation

error and summed in equation 2.24.

2.6 Regional-residual separation

The Bouguer anomaly represents the combined effects of both deep seated struc-

tures and relatively shallow features; its appearance reflects this through both

long and short wavelength components. Often it is desirable to separate these
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components in order to observe the regional and residual anomalies individually

(e.g. Reynolds (2011)). To accurately separate the anomalies, a set of Bouguer

anomaly points must be extensive enough to capture the regional trend yet dense

enough to resolve the residual trend (Burger et al., 2006). However, the solution

is non-unique; the transition from small to large wavelengths is ambiguous. A

typical approach is to employ a combination of analytical and graphical methods

to accurately identify and remove the regional trend (Reynolds, 2011).

2.6.1 Mathematical methods

There are many mathematical approaches to separating the fields such as (1) re-

moval by frequency filtering or (2) fitting a low-order polynomial to the Bouguer

anomaly data (Reynolds, 2011). Low-order polynomials fit regional data appro-

priately compared to higher order polynomials which also capture part of residual

anomaly. This study explores a range of polynomial functions to describe the

regional signal and then separate it from the residual signal. Low order polyno-

mial surfaces ranging from first-order to third-order demonstrate this approach in

Figure 2.12.

Regional-residual separation for the Tasman Glacier

The Tasman Glacier region is influenced by a broad negative anomaly due to

the Southern Alps (Davey et al., 2007) and the spatially constrained, residual

anomaly due to the Tasman Glacier (Figure 2.13). To accurately capture the re-

gional anomaly, Bouguer anomaly points were chosen on sites with small density

variations and widespread distribution according to the method used by Stern

(1978). Bouguer anomaly points located on bedrock sites such as greywacke en-

sured the regional fit was independent of the residual anomaly generated by the

ice-based sites of the Tasman Glacier. The Bouguer anomaly associated with the

Southern Alps is on the order of −20 to −100 mGal (Davey et al., 2007) while

the Tasman Glacier Bouguer anomaly has a much smaller range of −80 to −100
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Figure 2.12: Bouguer anomaly points in red are modelled using mesh surfaces
from a range of polynomial functions (in blue). Polynomial functions range

from first order to third order (A to C).

mGal (Figure 2.13).

A surface fitting approach was used to remove the regional trend from the

Tasman Bouguer anomaly. A series of low-order polynomials were fitted in x-y-g

space to the regional Bouguer anomaly points seen in Figure 2.12 using a method

of least squares. The most appropriate polynomial surfaces were then chosen ac-

cording to (1) their minimum root mean square (rms) error (Figure 2.14) and (2)

their compatibility with the regional geological setting. With increasing order, the

polynomial surfaces have better fits to the Bouguer anomaly data. However, the

higher order surfaces become complex and develop unrealistic curvature at their

edges. Because data fitting methods are not constrained by the local geology they

tend to overlook unreasonable circumstances such as this. A decision was made

to represent the regional Bouguer anomaly signal with a second-order polynomial

surface which has both a low rms error and long wavelength signature (Figure

2.14).
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Figure 2.13: Bouguer anomaly values versus Northing for regional sites (blue)
and Tasman Glacier sites (red) from this study.

Figure 2.14: RMS error versus polynomial order. With increasing polynomial
order the rms error necessarily decreases. A second-order polynomial satisfies a

low enough rms error whilst not over fitting the Bouguer anomaly points.

The second-order polynomial representation of the regional Bouguer anomaly
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was subtracted from the Tasman Bouguer anomaly points to obtain the resid-

ual anomaly. Figure 2.15 demonstrates the effect of applying a regional-residual

separation. Because the regional trend centred about the Tasman Glacier was

relatively planar, the residual is simply shifted on the order of the regional signal

at that location (−70 to −80 mGal).

Figure 2.15: Regionally corrected Bouguer anomaly values using a second
order polynomial.

Residual anomaly

Following the regional correction, a number of the residual anomaly values re-

mained positive at the edges of the glacier, in part due to a partial regional

signature remaining in the data but also because the residual anomaly was not

absolutely tied to basement sites on the edges of the glacier. To remove the re-

maining regional signature a scalar (DC) shift was applied to the residual data

to force all values to be negative. The data were shifted by subtracting the high-

est residual anomaly value from the entire dataset. The absence of tie sites for

the residual anomaly is unappealing for gravity modelling; the residual anomaly
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should be equal to zero at the largest anomaly value. Uncertainties are introduced

into the ice thickness models because the residual anomaly has not been absolutely

fixed to basement sites. To resolve this issue, gravity readings should be made on

basement sites along the lateral edges of the Tasman Glacier. This suggestion is

unreasonable for the eastern edge of the Tasman Glacier due to the steepness of

the valley slopes, however the western edge is more favourable and could provide

an improvement for future studies utilising the residual anomalies presented here.

For the models presented in Chapter 3 the uncertainty in the residual anomalies

is the quoted value of ±1.18 mGal. In reality, this uncertainty is larger than this

due to the issues discussed above. However, because this uncertainty cannot be

quantified it not be addressed; however it does exist and it should be noted when

ice thicknesses models are presented.

The 2D residual anomaly profiles were gridded using a linear interpolation

method. The residual anomaly grid seen in figure 2.16 demonstrates the end

product of gravity reduction. A clear U-shaped form is seen the data, demon-

strating that residual anomaly values decrease towards the centre of the valley,

reaching a minimum of -24 mGal, and increase to zero at the edges. The lower

Tasman Glacier (between 5163000 N and 5164000 N) is characterised by a linear

feature with relatively high residual anomaly values which extend approximately

north-south for 1 km. This feature will be explored in more detail in Chapter 3.

2.6.2 Regional-residual separation summary

Here, a surface fitting approach was used to represent the regional Bouguer anomaly

signal. By subtracting the regional Bouguer anomaly from the Tasman Bouguer

anomaly points, a residual anomaly was obtained. A second-order polynomial

was chosen to represent the regional trend for its good-fit (low R value) and long

wavelength signature associated with the crustal root of the Southern Alps. The

edges of the residual anomaly remained above zero. To correct this error, a static

correction was made by removing the highest residual anomaly value from the
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Figure 2.16: Plan view of the interpolated residual anomaly for the Tasman
Glacier. Map coordinates are given in NZTM 2000 while residual anomaly units

are in mGals.

entire dataset. The final residual anomaly for the Tasman Glacier will be used as

an input for forward and inverse models in Chapter 3.

2.7 Ice volume estimation

This section describes the theory behind a recently-developed method for estimat-

ing the ice volume of the Tasman Glacier.

The method developed by Farinotti et al. (2009) assumes that the mass bal-

ance distribution of a glacier is equal to the sum of the ice flux divergence (the

cumulative mass flux up-glacier from a flow line) and surface elevation change

(assuming basal melt to be negligible). Ice flux is calculated using an ‘apparent

mass balance’ factor computed using surface elevation changes. Taking the ice flux

divergence (from predefined flow-lines) and the surface elevation of a glacier, ice
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thickness (H) is calculated using Glen’s flow law. Ice thickness (H) at any point

along the flow line is calculated using the equation:

H = n+2

√
qi
2A

n+ 2

(Cρg sinα)n
(2.26)

where qi is the mean specific ice volume flux along the flow line, ρ is ice density,

g is the acceleration due to gravity, α is the mean surface slope and n is a constant.

The parameter A is a flow rate factor taken from Glen (1955) while C represents a

correction factor describing (in part) the contribution of basal sliding to the total

flow speed. C can be calibrated using direct ice-thickness measurements (Farinotti

et al., 2009).

The accuracy of this method has been assessed by comparing the cross-sections

of the modelled and measured outputs. In Farinotti et al. (2009) the ice-thickness

distribution for four alpine glaciers in Switzerland was measured using results from

radio echo soundings. A point-to-point comparison between their measured and

modelled results indicates a precision of ∼25%. Here, I describe a simpler version

of this method. I use this method in Chapter 3 to assess the accuracy of modelled

ice thickness versus ice-thickness results using gravity.

2.7.1 A simplified ice-thickness model

A simplified implementation of Farinotti et al.’s method is outlined here for the

Central Southern Alps region (Figure 2.17). The model is simplified in three ways.

First, the area-averaged mass balance for each glacier in the model domain is as-

sumed to be zero (glaciers are in equilibrium with the present-day climate). Sec-

ond, surface elevation changes are not considered for the contribution to ‘apparent

mass balance’ (used by Farinotti et al. (2009)). Third, the ice flux divergence is

calculated within elevation bands (20 m contour interval) for each glacier, rather

then along flow lines (which considers multiple glacier catchments). Additionally,

to recreate an approximately parabolic valley profile, the mass flux flowing through

each elevation band is distributed into cells (within the elevation band) and scaled
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linearly from the glacier margin to the centre of the glacier.

The flow rate factor A and the correction factor C are the most sensitive fac-

tors affecting the calculated ice thickness (equation 2.26, Farinotti et al. (2009)).

The ice-thickness model for the Central Southern Alps has little ice-thickness in-

formation (Anderson, pers. comm. 2013) hence C is not well constrained for

the model domain. By providing direct ice-thickness measurements to the model,

calibrations of C can be made.

Figure 2.17: Map of the Central Southern Alps model domain. Map units
are in metres (NZTM 2000 projection). Data obtained from Landcare Research

2012. Data sourced from LINZ.
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2.8 Summary

Gravity and refraction seismics data are combined to explore the ice-thickness dis-

tribution of the Tasman Glacier. Residual anomalies are reduced from raw gravity

observations; these are later modelled to investigate the shape and thickness of the

lower Tasman Glacier. Refraction seismic data are used to constrain the density of

ice, till and basement rock. A simple mass flux model is then presented to describe

the ice thickness distribution of the Tasman Glacier. The following chapter details

the ice-thickness results of 2D and 3D gravity models and explores the application

of these results to the mass flux model described above.
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Results: Ice thickness distribution

of the Tasman Glacier

3.1 Introduction

This chapter describes results obtained from the gravity survey over the Tasman

Glacier. Initially, I present a suite of synthetic models to explore the major controls

on ice-thickness variability. Models are used to critically assess the uncertainties

involved in estimating ice thickness. A brief comparison of 2D models with past

studies is presented to assess the validity of ice-thickness results. The ice-thickness

distribution of the glacier is then explored through both 2D and 3D gravity models.

Finally, ice-thickness data from this work is applied to a simple mass flux model

to estimate the ice-thickness distribution and volume of the Tasman Glacier.

3.2 Gravity modelling

A gravity model represents the structure of the subsurface geologic units. By

adjusting the shape and physical properties of the geologic units, an attempt is

made to match the gravity response due to the geology to the measured residual

anomaly. The effect calculated in a model is dependant on the shape, density

55
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and depth of the causative bodies. The shape and depth of bodies is difficult to

constrain without direct observations. However, the densities of ice and till are well

constrained for this study. The density contrast between ice and basement rock

is large 1770 kgm−3, hence a high amplitude residual anomaly exists for regions

of thick ice. Uncertainties in the density of the bodies and the residual anomaly

propagate into the resulting model which lead to uncertainties in the extent of the

bodies of interest.

A forward approach is employed for the 2D model, a geologically reasonable

shape is produced and the calculated gravitational response is compared with the

observed residual anomaly. When the difference between the calculated response

and the observed anomaly are within uncertainty (±1.18 mGal), the model is

accepted. 3D models use both forward and inversion models using the software

package by ‘Oasis montaj’ developed by Geosoft.

Figure 3.1: Schematic diagram showing the ambiguity in geological models
(black) which extend to ± infinity along the y-axis. Thin, shallow structures
produce the same gravity anomaly as a horizontal cylinder at greater depth.

Diagram is not to scale.



Chapter 3. Results 57

3.3 Synthetic gravity models

It is important to assess the uncertainties associated with each variable and ignore

those that are insignificant to the overall result. Here, I use a range of synthetic

2D models to examine the sensitivity of ice-thickness:

• Density variations

• Internal bodies within the ice

• Complexity of geological features (i.e. sub-glacial till/surface debris)

In order to examine how different model configurations affect model-derived

ice thickness, a reference shape is required from which comparisons can be made.

The ideal shape for the synthetic models is one that follows the shape of a valley

glacier. A parabolic residual anomaly with an amplitude of 15 mGal is used as the

reference anomaly, while the maximum thickness of a parabolic ice body is 300 m.

This way, the uncertainty in ice thickness relative to a reference surface can be

tested. After assessing the relative importance of these features in the synthetic

models, 2D gravity models from the Tasman Glacier are presented. 2D models were

generated using the GM-SYS package, part of Geosoft’s ‘Oasis Montaj’ software,

following the procedures of Talwani et al. (1959). 2D models are oriented in x-z

space where x is profile distance in metres and z is depth in metres. The bodies

extend to infinity in the ± y-direction and also extend ± 30,000 km in the x-

direction to eliminate edge effects.

3.3.1 Density variations

Three main materials are typically used in temperate glacier gravity models; these

are ice, till and bedrock (e.g. Watson (1995)). Glacier ice typically has a density

range of 830 - 917 kgm−3 where temperate glacier ice (near 0 ◦C) is usually taken

as 917 kgm−3 (Cuffey and Paterson, 2010). Till densities range from 2000 - 2300



Chapter 3. Results 58

kgm−3 (Broadbent, 1973). Basement samples of greywacke have a density range

of 2640 kgm−3 (Tenzer et al., 2011) to 2700 kgm−3 (Broadbent, 1973). Table 3.1

(adapted from Watson (1995)) summarises the densities used in gravity modelling

studies for temperate valley glaciers as well as the densities used for this study.

Table 3.1: Summary of the densities used in temperate valley glacier gravity
studies. Units are in kgm−3.

Densities used for temperate valley glaciers

Author Ice density Till density Basement density
(kgm−3) (kgm−3) (kgm−3)

Krimmel (1970) 900 - 2670
Broadbent (1974) 920 2200 2700

Stern (1978) 920 2200 2800
Claridge (1983) 900 2200 2700
Watson (1995) 900 2400 2670

This study 910 ± 10 2200 ± 200 2670 ± 30

Ice density

Here I explore the effect that ice density variations have on modelled ice thickness.

Using a synthetic forward model, Figure 3.2 demonstrates the response of ice

thickness to changes in ice density (910 ± 10 kgm−3) based on a simple ‘ice over

bedrock’ model. Assuming a parabolic valley profile with a maximum ice thickness

of ∼ 300 m, an error in ice density of 910 ± 10 kgm−3 represents a 286 ± 5 m or

±2% error in maximum ice thickness. This is summarised in Table 3.2.

Table 3.2: Errors in density and ice thickness for a synthetic gravity model of
ice over bedrock.

Uncertainty in ice depth for variable ice density

Ice density (kgm−3) RMS error (mGal) Depth (m)
900 0.124 282
910 0.094 286
920 0.131 291
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Figure 3.2: Top panel: Observed (black circles) and calculated (solid line)
gravity in response to the forward model. Bottom panel: A synthetic gravity
model of ice (blue) over basement rock (orange). Red and green regions reflect

the change in ice thickness due to changes in ice density.

Till density

Holding the densities of ice and basement rock constant, a forward model was gen-

erated to investigate ice-thickness variations due to changes in till density (Figure

3.3). Initial bounds on the thickness of a sub-glacial till layer for the Tasman

Glacier are constrained at 50 − 620 m by a seismic line south of the present-day

Tasman Glacier Kleffmann et al. (1998). Here, a mean till thickness of 300 m

is used for this synthetic model. It is worth noting that the addition of a till

layer forces the ice thickness to decrease slightly (Table 3.3) relative to an ice

over bedrock scenario (Table 3.2). (Till thickness changes will be explored later

in section 3.3.3). The uncertainties in till density (±200 kgm−3) are an order of

magnitude larger than those for ice (±10 kgm−3) corresponding to a larger ice-

thickness variation. Figure 3.3 highlights the errors in till density of 2200 ± 200

kgm−3 which correspond to maximum ice thicknesses of 261± 17 m, equivalent to

a 7% error (Table 3.3).
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Figure 3.3: Top panel: Observed (black circles) and calculated (solid line)
gravity in response to the forward model. Bottom panel: A synthetic gravity
model of ice (blue) over till (grey) and basement rock (orange). Red and green

regions reflect the change in ice thickness due to changes in till density.

Table 3.3: Summary of the errors in density and depth for a synthetic gravity
model of ice over till and bedrock.

Uncertainty in ice depth for variable till density

Till density (kg/m3) RMS error (mGal) Depth (m)
2000 0.058 244
2200 0.063 261
2400 0.086 272

Basement density

Holding the densities of ice and till constant, a forward model can be used to

investigate the effect of uncertainty in basement density on the ice thickness esti-

mate (Figure 3.4). A density range of 2670 ± 30 kgm−3 was chosen to represent

greywacke density (Tenzer et al., 2011; Broadbent, 1973). Figure 3.4 displays

the result of varying basement density on modelled ice thickness. The resulting

estimate is 262 ± 12 m equivalent to a 5% error (Table 3.4).
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Figure 3.4: Top panel: Observed (black circles) and calculated (solid line)
gravity in response to the forward model. Bottom panel: A synthetic gravity
model of ice (blue) over till (grey) and basement rock (orange). Red and green
regions reflect the change in ice thickness due to changes in basement density.

Table 3.4: Summary of the errors in density and depth for a synthetic gravity
model of ice over till and bedrock.

Uncertainty in ice depth for variable basement density

Basement density RMS error Depth (m)
(kgm−3) (mGal) (m)

2640 0.085 274
2670 0.039 262
2700 0.054 251

Errors in modelled ice thickness are linked to density contrasts; lower un-

certainties in density (e.g. ice or basement rock) are associated with smaller ice-

thickness errors (2% and 5 % respectively) while higher uncertainties in density

(e.g. till) are associated with larger ice-thickness errors (7%). These values provide

a first-order constraint on the ice-thickness uncertainties expected for the Tasman

Glacier models.
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3.3.2 Modelling features of the anomaly

A prominent feature in the Tasman residual anomaly is a ‘residual ridge’ within

the overall U-shaped residual anomaly. This high region is present in the lower

transects of the glacier (lines 100-400) (Figure 2.16). The ridge has an amplitude

of approximately 6 mGal and a wavelength of 1000 m in the lower section of the

glacier. This amplitude is larger than the measurement error (±1.18 mGal) and

thus may be interpreted as a geologic structure. To investigate possible explana-

tions for the residual ridge I explore how entrained bodies or changes in basement

shape affect the residual anomaly. This subsection explores a range of synthetic

models which may cause such a feature.

Internal bodies

The most likely source for this residual ‘ridge’ is an anomalous high density body

either at depth or near the surface. Due to the high erosion rates and extensive

coverage of surface debris over the study area, it is possible that the localised high

may be due to entrained sediments. Entrained sediment of sub-glacial origins has

been shown to produce internal ‘debris ridges’ up to 50 m across (Jansson and

Iiolmlund, 2000). It is also possible that debris from events such as the Mt. Cook

rock avalanche in 1991 (Owens, 1992), which covered an extensive area of the

Tasman Glacier, may have become partially entrained in the Hochstetter ice fall

crevasses or in the Grand Plateau accumulation area. Subsequent entrainment of

debris may have led to an englacial position within the glacier.

An entrained debris ridge may be approximated as a horizontal cylinder of

till (2200 kgm−3) surrounded by glacial ice (910 kgm−3) (Figure B.1 in Appendix

A). To recreate the same amplitude (6 mGal) and wavelength (∼ 1000 m) we see

in the true residual anomaly, the cylinder has a diameter of 280 m and is centred

at approximately 140 m depth. The top of the body intersects the glacier surface

and extends to ± ∞ in the y-direction.

Alternatively, a vertical rectangular prism may be appropriate (Figure B.2 in

Appendix A). The length and width of the body is 400 m and 160 m respectively,
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centred at approximately 200 m depth. The residual anomaly peak spans approx-

imately 600 m but has a sharper peak compared to Figure B.1. The top of the

body intersects the glacier surface and extends to ± ∞ in the y-direction.

Basement highs

A basement ridge which is relatively resistant to erosion could also produce a

localised peak in the residual anomaly. A basement high was modelled using a

density of 2670 kgm−3 surrounded by glacial ice (910 kgm−3) (Figure B.3 in Ap-

pendix A). The height and base-width of the ridge required to produce a peak

of 6 mGals was 300 m and 400 m respectively. A peak with an amplitude of 6

mGal spans approximately 800 m producing a much broader response compared

with Figures B.1 and B.2 as well as the 400 m wavelength we see in the true

residual anomaly. This is because the ridge is positioned much deeper than either

of the internal bodies considered (Figures B.1 and B.2). By comparing the rela-

tive weighting of internal till bodies with respect to basement highs, we can see

that bodies nearer to the surface produce a larger amplitude/shorter wavelength

response in the residual anomaly, whereas deeper features such as the basement

high produce a smaller amplitude/longer wavelength response. Figure 3.5 demon-

strates the cumulative effect of a horizontal cylinder and then a basement ridge on

the residual anomaly. The majority of the anomaly response is due to the cylinder

which lies at 140 m depth and raises the anomaly by 5.1 mGal (lower peak) while

the basement ridge at approximately 250 m depth raises the anomaly a further

0.9 mGals (higher peak). The contribution from both features is represented by

the higher peak.

The next section explores ice-thickness changes in response to changes in the

thickness of till. Both sub-glacial till and surface debris cover are explored here.
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Figure 3.5: Top panel: Observed (black circles) and calculated gravity (solid
lines) representing the response to (1) the internal till body (lower peak) and
(2) the internal till body + basement ridge (higher peak). Bottom panel: A
synthetic gravity model of ice (blue) over basement rock (orange). Internal till

bodies are grey.

3.3.3 The effect of till

The term ‘till’ is used to describe the unconsolidated sediments which are deposited

by a glacier (Cuffey and Paterson, 2010). The thickness, porosity and saturation

of till are important constraints for glacier flow, yet these attributes are difficult to

quantify due to the inaccessibility of the material (Boulton and Hindmarsh, 1987;

Cuffey and Paterson, 2010). Surface debris cover is another form of till which may

be an important control on the mass-balance of debris-covered glaciers (Anderson

and Mackintosh, 2012).

Here, I present a discussion on the effects of (1), a varying sub-glacial till

thickness and (2) a varying surface debris cover on the overall ice thickness of a

typical valley glacier. Initial constraints on sub-glacial till thickness are 50 - 620 m

from Kleffmann et al. (1998) while a surface debris cover of ∼ 5-8 m is constrained

through seismic refraction results (Section 2.3.2). These bounds will be used to
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quantify minimum and maximum ice-thickness changes for the following synthetic

models.

Sub-glacial Till

Three sub-glacial till models are presented here. The models (based on evidence

from Broadbent (1973)) have till thinning towards the glacier sides and thickening

towards the centre, constrained by Kleffmann et al.’s results. All models have an

initial reference shape approximating a parabolic profile. The maximum thickness

of ice in these models is 300 m.

The introduction of a till layer forces the ice thickness to decrease for all

models. The thickness of sub-glacial till varied between the range 50 - 620 m. Ice

thickness was adjusted to match the offset residual anomaly due to the introduction

of the till layer. Figure B.4 demonstrates that for a minimum till thickness of 50 m

the ice thickness decreases by 7 m (14%) in the centre of the profile. Accordingly,

an average till thickness value of 300 m forces an ice-thickness decrease of 41 m

(14%) due to the till layer (Figure 3.6), while a maximum till thickness of 620 m

forces a decrease in ice thickness by 71 m (24%) (Figure B.5). For an ice thickness

similar to the Tasman Glacier (∼ 600 m) a 620 m till layer forces a decrease in

ice thickness of 84 m or 14%. This last result demonstrates that ice thickness

reductions are proportionally less for thicker bodies of ice relative to the synthetic

models presented here.

These models demonstrate that a sub-glacial till layer induces a reduction in

modelled ice-thickness. The most extreme case shows the modelled ice thickness

decreasing by up to 71 m for a 620 m thick till layer, suggesting that ice thickness

is highly dependant on the thickness of till beneath the glacier. When drawing

conclusions on the uniqueness of ice thickness for the Tasman Glacier, one must

consider two points. The first is that the thickness of till beneath the Tasman

Glacier is poorly constrained (Broadbent (1973)). Therefore uncertainties in ice

thickness are rather large due to the range of possible till thickness values obtain-

able from Kleffmann et al. (1998). Second, the maximum ice thickness for the
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Figure 3.6: A synthetic model demonstrates the effect of a till layer on the
changes in ice thickness. Observed gravity is shown by black circles while the
calculated residual anomaly is given by a solid black line (top). The original
ice/bed surface is marked by a solid black line. Adding a 300 m layer of till

causes an decrease in ice thickness of 41 metres.

Tasman Glacier is more than double that of the synthetic models (Section 3.4.1).

Therefore, ice thickness changes are proportionally reduced for a thicker glacier

compared to the thinner synthetic models presented above.

Surface debris

A variable surface debris thickness of 4.6 to 7.6 m was obtained from the refraction

survey adjacent to Ball Hut (Section 2.3.2). The density of this layer is relatively

low (1510 ± 190 kgm−3) which, in combination with a thin surface, meant that a

negligible response (± 0.1 mGal) was observed in the residual anomaly even for

the maximum thickness/highest density contrast scenario (Figure 3.7).

3.3.4 Summary of synthetic models

The following features were observed in synthetic models for a typical parabolic

shaped glacier with a maximum thickness of 600 m:
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Figure 3.7: Top panel: Observed (black circles) and calculated gravity (solid
line). Bottom panel: A synthetic gravity model of surface till (grey) over ice

(blue) over basement rock (orange).

• Density variations in ice/till/basement caused ice-thickness variations of ±28

m to ±67 m equivalent to a 4.7% to 10.9% change respectively.

• Entrained sediment and/or basement highs can reproduce the residual ‘ridge’

seen in the lower residual anomalies of the Tasman Glacier. The size, shape

and depth of these bodies influences the amplitude and wavelength of the

residual anomaly. Models are non-unique due to uncertainties in density and

shape of the bodies.

• The presence of a uniform sub-glacial till layer causes an ice thickening of 46-

254 m depending on the thickness of till. However I also consider a variable

till thickness: this causes a reduction in ice thickness of 0-50 m and may be

a more likely distribution for the Tasman Glacier.

• The presence of surface debris is too thin to have any significant effect on

ice thickness.
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3.4 Tasman gravity models

Here, I explore the ice-thickness distribution of the Tasman Glacier through both

2D and 3D gravity models. The models presented below are all non-unique solu-

tions to the ice thickness of the glacier; however, constraints have been employed

where possible to minimise the uncertainty in the models. These include con-

straints on density through the seismic refraction survey (Section 2.3.2) as well as

depth constraints on the Ball Hut transect (equivalent to line 900) through seismic

reflection studies by Broadbent (1973).

A total of twelve gravity transects, perpendicular to glacier flow, are mod-

elled both in 2D and 3D using Geosoft’s GM-SYS software. Four of the twelve 2D

models are presented in this chapter due to the similarity between adjacent tran-

sects. Transects are numbered T 100 and T 200 for the terminus transects and

L 100 to L 1000 for the main glacier, increasing to the north (Figure 2.1). Lines

L 900, L 300 and the terminus transects T 100 and T 200 are presented, while

the remaining models are seen in Appendix B. Line 900 is presented to compare

ice-thickness results with Broadbent’s 1973 Ball Hut survey. Line 300 is presented

to explore the causes behind a residual ‘ridge’ seen in a number of transects. The

terminus lines are then presented to explore the ice thickness near the actively

calving face of the Tasman Glacier.

3.4.1 2D models

I use a forward modelling approach for the 2D models and consider the gravita-

tional influence of three units: ice, till and basement rock (densities are summarised

in Table 3.1). 2D models are displayed in two parts: an upper segment and lower

segment. The upper segment shows observed gravity (black circles), calculated

gravity (black line) and the root-mean-square error between these (red line) with

units in mGals. The error associated with each residual anomaly point is ± 1.18

mGal as summarised in Appendix A. The number of observed gravity stations for

each transect also represents the number of nodes used to describe each interface.
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However, as no gravity measurements were made on bedrock surfaces, ice thickness

was forced to zero at the glacier sides. The bottom segment displays the three

units mentioned above which produce the calculated gravity response, given by

negative depth (km) as the profiles are above sea level.

All models have a horizontal position in NZTM 2000 Eastings (m) and are

tied to the highest observed gravity point (black circle with red star) in an attempt

to tie each survey to a site with zero ice thickness. For most transects, these sites

were impossible to occupy due to the steep moraine walls inhibiting a safe gravity

measurement.

Ball Hut transect (L 900)

The Ball Hut transect is a well established line that has been occupied by several

studies over the last few decades e.g. (Skinner, 1964; Anderton, 1973; Broadbent,

1973; Watson, 1995) (Figure 3.8). Ice thickness has been constrained at this loca-

tion through both reflection seismic surveys (Broadbent, 1973) and gravity studies

(Claridge, 1983; Watson, 1995) providing an important tie mark for this study.

Consequently, the survey was designed to incorporate the Ball Hut transect with

the aim of constraining ice thickness for this part of the glacier.

Line 900 was constructed using ice-thickness constraints from the Ball Hut

transect. To achieve this, Broadbent’s seismic line was digitised and compared

with the gravity anomaly obtained for line 900. Assuming Broadbent’s seismic

line was accurate, a close match was expected between the seismic model and the

residual anomaly. However, the direct use of Broadbent’s seismic line was compli-

cated by two factors.

First, Broadbent’s seismic model from 1973 was based on a glacier surface

∼75 m higher than today. A significant vertical lowering of this surface over

the last 40 years meant that the observed gravity values were relatively lower

compared with the gravity response form Broadbent’s seismic model. Assuming a

reduction in ice loss occurred across the entire transect over this period, a uniform
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Figure 3.8: Site map for the Tasman Glacier indicating the Ball Hut transect
in blue (Line 900) and Broadbent’s seismic line in orange. Yellow circles mark
the location of each gravity station used in this study while the yellow star
represents the base station for the survey. The Ball Hut shelter is marked by a

black square on the western side of the glacier.

correction was made in ice thickness of +75 m to restore the glacier surface to its

1973 elevation. Second, the seismic survey conducted by Broadbent only extended

across the western side of the glacier. Thus the eastern portion of the ice/till and

till/basement interfaces were inferred. These two factors led to Figure, 3.9 - a

reconstruction of Broadbent’s seismic model relative to our residual anomaly. A

large discrepancy between the model and our data is seen on the eastern part of the

glacier where till thicknesses range from 100 to 200 metres. This range is thought

to be related to errors involved in picking seismic events (Broadbent, 1973).

We adapted the forward gravity model for line 900 to incorporate the con-

straints provided by Broadbent’s seismic survey, while increasing the ice thickness

on the eastern side of the valley to satisfy the observed and calculated gravity

response (Figure 3.10). This meant that the cross sectional area obtained for the
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Figure 3.9: Broadbent’s digitised seismic model for the Ball Hut transect
on the Tasman Glacier. The model is composed of ice (910 kgm−3) over till
(2200 kgm−3) and basement (2670 kgm−3). The reduction in glacier elevation
since 1973 is shown by vertical lines. Broadbent’s seismic line extends across the
western part of the glacier while the inferred ice/till and till/basement interfaces
occupy the eastern side. Our observed residual anomaly is shown by black cir-
cles, calculated gravity is shown by a solid black line and the root-mean-squared
error (red line) represents the difference between the observed and calculated

anomalies (top).

Ball Hut transect (6.9 × 105 m2) was greater than Broadbent’s estimate of 6.5 ×

105 m2.

Figure 3.10 shows the 2D model for line 900 which lies approximately coinci-

dent with the Ball Hut transect of Broadbent (1973). At a bearing of 085◦ it is

also located within 400 m of the refraction seismic line used in this study (Figure

2.1) hence densities are well constrained here. The model is characterised by a

symmetrical parabolic shape with a cross-sectional area of 6.927 × 105 m2 (Table

3.5). The ice/till interface extends down to a depth of 295 m above sea level,
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equivalent to a maximum ice thickness of 663 m. An entrained layer of till (up to

36 m thick) outcrops at the surface and a variable sub-glacial till thickness of 100

to 150 metres occupies the base of the glacier.

Figure 3.10: Adapted forward gravity model for line 900 on the Tasman
Glacier. Observed gravity is shown by black circles, calculated gravity is shown
by a solid black line and the root-mean-squared error (red line) represents the

difference between the observed and calculated anomalies (top).

The residual ‘ridge’ (L 300)

Geomorphological evidence from unoccupied, present-day glacial valleys indicates

that the cross-sectional shape of temperate valley glaciers typically follows a U-

shape or catenary form (the shape of a chain suspended by each end) (Montgomery,

2002). Mathematically, the U-shape has also been shown to represent the cross-

sectional shape of a steady-state glacier (e.g. Hirano and Aniya (1988)).

The majority of anomaly transects across the Tasman Glacier indeed follow the
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U-shape typical of valley glaciers. However, a significant feature observed in many

transects is the presence of a high ‘ridge’ of anomaly values (Figure 2.16). This

feature extends in a north-south direction across several transects between lines

L 100 and L 400. With an amplitude of approximately 6 mGal and a wavelength

on the order of 1 km, the ridge cannot be explained simply through errors in the

residual anomaly values, which are ± 1.18 mGals.

Here, I test glaciologically plausible cross-sections for the lower Tasman Glacier

by attempting to fit the anomaly with a localised body of till entrained within the

glacier (Figure 3.11). The relatively high density contrast between ice and till

means that a body of till near the surface of the glacier causes a localised high

in the residual anomaly (as observed in Section 3.3.3 for the synthetic models).

Basement highs were also investigated in the synthetic models but were found

to produce a small amplitude/long wavelength response on the residual anomaly.

Furthermore, we expect to see a U-shaped bed for the Tasman Glacier, as was

observed in the more northern transects, thus the possibility of a bedrock ridge

was excluded from the models.

The body of till representing the residual ‘ridge’ seen in L 300 (Figure 3.11)

has a substantial area (summarised in Table 3.5). The dimensions of the body are

approximately 300 m wide and 70 m thick with a cross-sectional area of 17.975

× 103 m2. This feature extends north and south into the adjacent models L 100,

L 200 and L 400. The processes which allow such large volumes of sediment to be

deposited over the glacier are discussed later in Chapter 4.

Tasman Glacier terminus

Many of the world’s valley glaciers are currently calving into proglacial lakes (e.g.

Benn et al. (2012)). The dynamic control on the calving behaviour of these glaciers

is complicated by many factors such as lowering of the surface, lake level and

temperature, buoyancy forces or the nature of the sub-glacial topography (e.g.

Boyce et al. (2007)). For the terminus region of highly erosive valley glaciers, the

sub-glacial topography often forms a steep, reverse slope to the overlying glacier
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Figure 3.11: Forward gravity model for line 300 on the Tasman Glacier. A
large (6 mGal) ridge in the residual anomaly is modelled using an entrained
till body of density 2200 kgm−3. Observed gravity is shown by black circles,
calculated gravity is shown by a solid black line and the root-mean-squared
error (red line) represents the difference between the observed and calculated

anomalies (top).

surface (Alley et al., 2003b). The term used to describe this shape is a ‘bed over-

deepening’ (Bennett and Evans, 2012).

The sub-glacial topography plays a role in the stability of the terminus region.

The presence of an irregular bed surface may allow ‘pinning points’ to stabilise

the glacier terminus (Warren and Glasser, 1992) while an over-deepening of the

sub-glacial topography may result in an instability in the terminus region (Bennett

and Evans, 2012).

Geophysical and geomorphological evidence on the Tasman Glacier is sugges-

tive of the presence of a reverse bed slope leading up to the present-day terminus

(e.g. Anderton (1973); Dykes and Brook (2010)). Here, I present 2D gravity models

over the terminus region to address this feature. The two lines presented (Figures
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3.13 and 3.14) show a significant reduction in ice thickness compared to the more

northern lines suggesting a reverse bed-slope profile exists. These transects are the

southernmost lines for this study, positioned within 200 m of the terminal face.

The approximate positions of the two transects (T 200 and T 100) are marked

by solid black lines in Figure 3.12. The distance between the two transects is

approximately 200 m, while the length of line T 100 is 400 m.

Figure 3.12: An oblique photo taken on 22nd February 2013 shows the termi-
nus of the Tasman Glacier during this survey. Photo courtesy of Brian Anderson.
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Line T 200

Line T 200 is the more northern of the two terminus transects, approximately 250

m upstream of Line T 100. The ice/till interface extends down to a depth of 546

m above sea level, equivalent to a maximum ice thickness of 220 m. The ice has a

cross-sectional area of 9.18 × 104 m2 (Table 3.5). The model is characterised by a

asymmetrical parabolic shape, and contains an entrained layer of till (up to 40 m

thick) near its surface and a sub-glacial till layer up to 45 m thick. T 200 has a

significantly deeper section on the eastern side (approximately 60 m thicker than

the western side) which cannot be accounted for by an entrained till body.

Figure 3.13: Forward gravity model for line T 200 on the Tasman Glacier.
Observed gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference

between the observed and calculated anomalies (top).
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Line T 100

Line T 100 is the southern-most terminus transect, approximately 200 m from the

present-day calving face. Because T 100 is so close to the calving face, the 2D

assumption that bodies extend to infinity in the ± y-direction may be violated.

The modelled ice/till interface extends down to a depth of 662 m.a.s.l., equivalent

to a maximum ice thickness of 92 m. The ice has a cross-sectional area of 2.64 ×

104 m2 (Table 3.5). The profile is characterised by a broad and near-symmetrical

parabolic shape which contains an entrained layer of till (up to 30 m thick) near

its surface and a sub-glacial till layer up to 16 m thick.

Figure 3.14: Forward gravity model for line T 100 on the Tasman Glacier.
Observed gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference

between the observed and calculated anomalies (top).
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2D model summary

Four representative 2D models have been presented to show (1) the typical valley

shape and expected ice thickness of the glacier compared with previous surveys

(Broadbent, 1973), (2) the effect an entrained body of till has on a residual ‘ridge’

observed across several transects and (3) the ice-thickness distribution of the ter-

minus region of the Tasman Glacier.

The entire survey area, encompassing all twelve 2D transects, is presented

for the sub-glacial bed elevation in three-dimensions in Figure 3.15. The general

shape of the 3D plot shows a typical U-shaped valley with maximum ice thick-

nesses of 722 m, gradually thinning to 92 m at the terminus. A prominent reverse

bed-slope is also seen between L 300 and T 100 where a reduction in ice thickness

occurs. Lines 400 to 600 are noticeably shallower by up to 150 m than the adjacent

profiles. This feature will be explored in more detail in Section 3.4.2 and discussed

in Chapter 4. Table 3.5 summarises the main features for each transect.

Table 3.5: Summary of the ice thickness and glacier area data for transects
over the Tasman Glacier. Maximum ice thickness and glacier area are calculated

on the assumption that the models extend to infinity in the ± y-direction.

Tasman Glacier transect summary

Line # Bearing Max ice Glacier area Entrained till area
(◦) thickness (m) (× 105 m2) (× 103 m2)

1000 085 722 8.846 10.717
900 086 663 6.927 4.856
800 087 692 7.450 4.968
700 086 675 8.486 18.004
600 095 461 6.184 4.584
500 102 510 6.531 9.466
400 103 467 5.436 10.166
300 103 501 7.159 17.975
200 103 419 5.895 11.526
100 103 351 3.799 9.254

T200 105 220 0.9184 9.954
T100 105 92 0.2636 3.647
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Figure 3.15: Bed topography for the Tasman Glacier derived from 2D gravity
models. Coloured circles mark the elevation of each node (metres above sea
level) for each gravity station. X and Y axes are in NZTM 2000 Eastings and

Northings respectively.

3.4.2 3D models

Both structural inversion and forward modelling approaches are used to produce

3D models, where a three-layer scenario of ice over till and bedrock is consid-

ered. Model inputs include the surface topography of the glacier, an interpolated

bed and basement topography (derived from 2D models) and the gravity residual

anomalies. The main bed features and model differences are described in the 3D

models.
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Structural inversion

The gravity structural inversion approach uses a bed topography surface and alters

it to minimise the misfit between the calculated gravity response and the observed

gravity. A structural inversion was made for an interpolated bed topography

(derived from 2D model transects) with parameters summarised in Table 3.6. A

maximum of five iterations were set for the inversion, with each node allowed to

vary by upper and lower bounds of 35 m. Inputs are constrained where possible by

results obtained from the 2D models (e.g. uncertainties in ice thickness and/or the

uncertainty in the residual anomaly points). The model required two iterations

before terminating due to the mean error diverging from the limit of 1.18 mGal.

The structural inversion results described below are not valid, but are compared

with the forward 3D model. The inverted ice/till interface (left-hand image in

Figure 3.16) has a minimum and maximum elevation of 267 m.a.s.l. and 687

m.a.s.l. respectively and a mean value of 460 m.a.s.l.

Table 3.6: Summary of the inputs used for the structural inversion procedure
in GM-SYS 3D.

Structural Inversion parameters Value
Max. number of iterations 5
Convergence limit (mGal) 1.18

Lower High-cut limit 0.5
Upper High-cut limit 0.7

Regional offset 0
Upper Z bound (m) 35
Lower Z bound (m) 0

Max. change in Z (m) 35

Forward modelling

The forward modelling approach calculates the gravitational response from a

model input using Taylor series expansion (Taylor, 1717). Again, an interpo-

lated bed topography surface from the 2D surveys is used as the input model.
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Five Taylor series terms were used for the forward calculation. The ice/till inter-

face has minimum and maximum bed elevations of 254 m.a.s.l. and 700 m.a.s.l.

respectively and a mean value of 490 m.a.s.l. (right-hand image in Figure 3.16).

Comparison between 3D models

Both the gravity structural inversion and forward models show similar features

to the 2D models. However, the structural inversion model is not valid as the

result diverged from the error range supplied. The reasons for this are unknown,

but it is likely that a higher error margin would allow more freedom of movement

for each node. Focussing on the northern section of the transects (3500–5500

m along the y-axis in Figure 3.16), both models indicate a bed over-deepening

with ice thicknesses approaching 700 m in the centre of the glacier. South of the

bed over-deepening, the models deviate slightly. For the forward gravity model,

a high region of bed elevations (∼ 450 m ice thickness) between 2500–3500 m

along the y-axis extends across the entire width of the glacier. The forward grav-

ity model shows a significant step in bed elevation of ∼ 100–140 m between the

over-deepening and the raised bed while the structural inversion model produces a

more subtle transition between the bed over-deepening and the raised bed (∼ 50–

70 m), indicating a more typical U-shape expected for valley glaciers. South of the

raised bed (0–2500 m along the y-axis) both models indicate a gradual decrease

in bed elevations (∼ 500–550 m ice thickness) before increasing again towards

the terminus. The terminus region has ice thickness values between 100–200 m.

For the forward gravity model (0–1000 m along the y-axis) the bed slope tends

to steepen more towards the terminus while the structural inversion has a more

gradual increase in bed elevations towards the terminus. Ice thicknesses for both

models near the terminus are ∼ 240 m.
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Figure 3.16: Map view of the ice/till interface for a gravity structural inversion
(left) and a forward gravity model (right).

3D model summary

Two different modelling approaches (structural inversion and forward gravity) have

been used to produce 3D models for the ice-thickness distribution of the Tasman

Glacier. Because the structural inversion model diverged from the error limit,

its validity is poor, thus the forward model is favoured here for discussion. The

general bed shape is characterised by a U-shaped trough with (1) a large over-

deepening in the northern section of the survey area (ice thicknesses approach 700

m), (2) an increase in bed elevation between lines 400 to 600 (ice thickness reduces
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to ∼ 450 m), (3) a reduction in bed elevation south of line 400 (ice thicknesses

of ∼500–550 m) and (4) a bed elevation increase towards the terminus where ice

thickness is less than 100 m. Generally, the forward 3D model provides maximum

ice thicknesses in good agreement with the 2D models. This is thought to be

related to the 3D model being derived from 2D depth inputs. A more rigorous

comparison between the 3D model and 2D models will be summarised in section

4.

Section 3.5 explores the application of ice-thickness data to glacier models.

In particular I compare the 2D gravity results to an ice-thickness model based on

a simpler version of Farinotti et al. (2009). The glacier model takes point data

(derived from 2D profiles) as inputs to an ice-thickness model for the ‘Central

Southern Alps’ region which includes the Tasman Glacier.

3.5 Ice volume estimation

This section uses a simplified version of Farinotti et al.’s method in the 2D

model domain to estimate the ice-thickness distribution and volume of the Tasman

Glacier in the ‘Central Southern Alps’ region. The mass flux model uses measured

ice thicknesses (derived from gravity results) to produce an optimised ice-thickness

distribution for the entire glaciated area of the Central Southern Alps. Put simply,

the mass flux model is tuned. The optimisation is limited in its ability to model

ice thickness as it only seeks to minimise the Root Mean Square Error (RMSE)

between the calculated and measured ice thickness rather then find the most likely

bed shape. The model requires physical constraints such as surface slope, a DEM

of the glacier surface and the parameters A and C (equation 2.26) to calculate the

best fitting ice-thickness distribution.

The performance of the model was limited by the optimisation for reasons

previously mentioned, therefore manual tuning of the parameters A and C was

required. A manual adjustment of the C parameter was made while A was held

constant, in an attempt to more accurately constrain the ice-thickness distribution
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for the Tasman Glacier. In this way, changes in the influence of basal sliding and

other uncertainties could be assessed based on the linear fit between calculated

and measured ice thicknesses. Excluding the terminus profiles (T 100 and T 200)

resulted in a better fit. The manually adjusted parameter solutions for A and C

as well as glacier geometry for the best fitting model are summarised in Table 3.7.

Table 3.7: Summary of the inputs used for the ice-thickness model in the
Central Southern Alps.

Model parameters Value
C 2.5
A 2.4×10−15

Minimum slope 0.007
Slope median window 13
DEM median window 7

Max. ice-thickness (m) 700

An important control on maximum ice thickness in the model is the surface

slope. Farinotti’s equation (2.26) indicates that for small surface slopes (α) ice

thickness (H) is increased in order to maintain the same ice volume flux (qi). As

α approaches zero H tends to infinity. For the Tasman Glacier, surface slopes

near the terminus are low. A surface slope of 0.007 was used for the optimised

model solution. Maximum ice thickness was set at 700 m based on maximum

ice thicknesses obtained from this gravity survey. The DEM used in this model

is based on topographical maps from 1986. Due to continued downwasting since

then (Watson, 1995), the 1986 surface elevation of the glacier was ∼ 48 m higher

than the 2013 surface.

Results from manual adjustment of the model parameters indicate that the

modelled ice thickness underestimates observed ice thickness with a Root Mean

Square Error (RMSE) of 148 m. The regression line has a positive y-intercept

of 119 m, hence modelled ice thickness is overestimated relative to measured ice

thickness (for values up to x = 310 m). For x > 310 m modelled ice thickness is

underestimated relative to calculated ice thickness. The equation of the regression

line is:
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y = 0.613x+ 119 (3.1)

Figure 3.17: Plot showing calculated ice thickness versus measured ice thick-
ness from gravity results. Blue line indicates line of best-fit with equation y =

0.613x +119 and RMSE of 148 m.

The underestimation of modelled ice thickness relative to measured ice thick-

ness for x > 310 m is likely a result of several features. Firstly, cross glacier profiles

for the Tasman Glacier are complicated by multiple tributaries delivering mass into

the Tasman Glacier catchment (e.g. Rudolf and Darwin Glaciers). The simple as-

sumption that the ice flux is distributed linearly with distance from the margin

in each elevation band may be inaccurate. That is, the linear assumption doesn’t

provide enough ice flux in the glacier centre and so underestimates ice thickness

there. Secondly, the ice thickness distribution favours a low RMSE value rather

than finding an optimal ice thickness distribution with a slightly higher RMSE

value. Thirdly, the DEM surface used in the model is based off aerial photography

from 1986/87, hence the model is calculating an ice thickness relative to a glacier

bed that is being overestimated relative to the measured values.

Modelled ice thicknesses for the Central Southern Alps display the main glacial

valleys in the region (Figure 3.18). Tasman Glacier is the distinctly north-south
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trending red/yellow area in the centre of Figure 3.18 which contains the majority

of the Central Southern Alps ice. Maximum ice thicknesses approach 700 m in the

centre while other areas of thick ice are also observed up-glacier.

Figure 3.18: Map of the Central Southern Alps model domain showing ice
thickness derived from the mass flux model using gravity derived ice-thickness

measurements.

Here, 2D plots of ice thickness derived from the mass flux model are com-

pared to gravity derived ice thicknesses for transects L 100 to L 1000. The plots

show three surfaces: the 1986 DEM (blue line), the model bed (red line) and the

measured bed from this study (black line) (Figures 3.19 and 3.20).

Comparison of the measured and modelled profiles demonstrate the trend

given by the linear best fit (equation 3.1) that ice thickness is generally underes-

timated relative to our measured values. However for transects L 100 (in Figure

3.19) and L 600 (in Figure 3.20) the model overestimates ice thickness by ∼ 100

m near the glacier centre. Overall, the plots have an RMSE of 148 m between the

modelled and calculated ice thickness.

The final flux ice volume of the Tasman Glacier calculated using the mass
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flux model is 14.96 km3 while the total volume for the Southern Alps region is

39.81 km3. Other estimates of total ice volume for the Tasman Glacier give 14.77

km3 (Anderton, 1973) and 15.62 km3 (Chinn, 2001). The present estimate is not

distinguishable as no uncertainties exist. However, this estimate is still consid-

ered an improvement over past estimates for the following reasons. First Chinn

(2001) used area-volume scaling, an approach which is useful for large numbers of

glaciers but tends to become unreliable for estimating individual glacier volumes.

Furthermore, the method does not accommodate the ice-thickness distribution of

a glacier. Given that Chinn (2001)’s ice volume estimate of 15.62 km3 ± ∼ 15%

is possibly an overestimation, .

Second, the ice volume estimate made by Anderton (1973) of 14.77 km3 was

obtained from a simplified contour map of bedrock elevation based on the in-

terpolation between three profiles obtained from Broadbent (1973). Our results

indicated that Broadbent’s Ball Hut profile underestimated ice thickness based

on his method of interpolating between the profiles using a simplified contour

map. For these reasons our ice volume estimate is considered a more accurate

representation of current glacier volume than previous estimates of ice volume.

However, this claim cannot be fully resolved without associated uncertainties on

our estimations.

3.6 Results summary

The ice-thickness distribution of the Tasman Glacier has been estimated using

gravity observations and a suite of modelling techniques. Initially, synthetic mod-

els were presented to quantify the uncertainties in ice thickness due to physical

parameters such as density and till thickness. A series of 2D models for the Tas-

man Glacier outlined the major features of the glacier and summarised the general

ice-thickness distribution. 3D models were then used to compare results and ex-

plore features of the bed. Finally, our ice-thickness data were applied to a simple

equilibrium mass flux model in order to estimate the ice-thickness distribution of
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Figure 3.19: 2D transects for lines L 100 to L 600. Transects show modelled
bed topography (red) versus 2D gravity results (black). Glacier surface marked

by 1986 DEM (blue).

the entire Tasman Glacier. This led to an estimate of the Tasman glacier’s to-

tal volume, however because an uncertainty could not be provided for this value,
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Figure 3.20: 2D transects for lines L 700 to L 1000. Transects show modelled
bed topography (red) versus 2D gravity results (black). Glacier surface marked

by 1986 DEM (blue).

comparisons with other studies are limited.

The next chapter summarises the ice-thickness distribution of the Tasman

Glacier. Firstly, an analysis of the results section is presented through (1) anoma-

lous features in the 2D profiles and (2) a comparison between 2D and 3D models.

Secondly, I address the limitations in the methodology of this study and in the

mass flux model. Finally, the possible implications of bed topography on future

retreat are discussed before avenues for further research are mentioned.





Chapter 4

Discussion and conclusions

This study estimated the ice-thickness distribution of the lower Tasman Glacier

through gravity models, constrained where possible with seismic refraction surveys

and past studies. Here, I summarise the results of the 2D gravity profiles and

compare these to the 3D gravity model results. I then highlight advantages and

disadvantages of the gravity method before discussing limitations of the mass flux

model used to estimate volume for the Tasman Glacier. The bed topography of

the Tasman Glacier is then discussed with respect to potential controls on future

retreat. Finally, I address the limitations of this study and suggest avenues for

further research.

Glacier valley profiles

In most cases, 2D gravity models represented a U-shaped valley profile. This

seemed like a sensible result, considering geomorphological (e.g. Montgomery (2002))

and mathematical evidence (e.g. Hirano and Aniya (1988)) which demonstrates

the ubiquity of this valley shape in glaciated landscapes. I tested the applicability

of using this valley shape in my gravity models by comparing one transect (L 900)

to seismic results from Broadbent (1973) for the Ball Hut transect. The success of

this test meant that I had some confidence in using the same valley profile shape

91
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for adjacent profiles in order to develop a geologically reasonable model for the

entire glacier.

Broadbent’s seismic study resulted in a generally parabolic valley profile with

a maximum ice thickness of 615 m (Figure 3.9). As Broadbent’s seismic line was

limited to the western half of the glacier, ice thickness in the eastern part of the

valley may have been underestimated due to the incorrect identification of seismic

events (Broadbent, 1973). Regardless, a maximum ice thickness of 663 m for L 900

is comparable to Broadbent’s value of 615 m. The discrepancy between these val-

ues may be explained through two main sources of error. Firstly, ice-thickness

errors are linked to reasonable uncertainties in density of ice/till and basement.

The results from our synthetic models indicate that ice thickness can vary by up

to 67 m for uncertainties in the density of ice, till or basement. Secondly, the

thickness of till was shown to have a significant effect on the ice thickness variabil-

ity (up to 50 m). Considering these two sources of error, the agreement between

Broadbent’s Ball Hut transect and L 900 is good.

For the Ball Hut transect and other transects, valley profiles included the

sub-glacial till layer. The presence of till is suggested by Broadbent’s estimate of

sub-glacial till thickness near Ball Hut. Broadbent’s plots indicate a maximum till

thickness of ∼ 200 m. Our profiles adopt a till-thickness range at the bed of 100

to 200 m.

The following sections analyse the anomalous features present in some of the 2D

models.

The residual ‘ridge’

The residual ‘ridge’ is a longitudinally extensive feature seen between transects

L 400 and L 600. It is composed of residual anomaly values that are high relative

to neighbouring residual values and cannot be explained by errors alone. A high

density body near the surface of the glacier was required to fit the anomaly. We

suggested this is an entrained till body which most closely resembled the long-

wavelength and high-amplitude (∼ 6 mGal) signal of the residual ridge. In certain
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areas the modelled till body is over 50 m thick and, for continuity, has been

modelled across all lines that exhibit the ridge (see Appendix B). Other lines which

exhibit local highs in the residual anomaly can also be modelled by inclusion of a

localised till body emplaced near the surface. The cross-sectional areas of these

till bodies range from 5 × 103 m2 to 18 × 103 m2 (summarised in Table 3.5).

We suggest that the source for such an extensive body of till may be large rock

avalanche events. For example, the Mount Cook rock avalanche in 1991 contained

11.8 ± 2.4 × 106 m3 of rock and ice (McSaveney, 2002) which is comparable to

the total till volume (8.43 × 106 m3) of our entrained till body.

Debris cover in general was excluded from the profile models due to the rela-

tively insignificant effect it had on ice-thickness variability (summarised in section

3.3.3).

Murchison Embayment

The majority of the Murchison Embayment is occupied by a thin ∼ 100 m layer

of ice which lies adjacent to the main body of the glacier. Additional evidence

for this feature is provided by Redpath (2011) who agree that surface velocities

in the embayment are very close to zero. Low surface velocities are interpreted to

represent moraine and ice-cored moraine, thought to result from the detachment

of ice from the main glacier. If this is indeed the case, the active trunk of the

Tasman Glacier is approximately 1.4 km wide rather than 1.9 km at this location.

Comparing 2D/3D models

It was challenging to create a realistic 3D ice-thickness model for the Tasman

Glacier because data was not collected on the moraine walls abutting the glacier.

The structural inversion and forward gravity 3D models display ice and till layers

extending to infinity in the ± x-direction instead of thinning to zero at the edges

(Figure 4.1). Only the forward 3D model is valid for comparison with the 2D

models as the structural inversion model diverged from the error bounds.
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The forward 3D model used a 1986 DEM as the upper bound on ice-thickness

values. Down-wasting of the glacier surface since 1986 has resulted in a uniform

decrease of ∼ 48 m near Ball Hut. Maximum ice thicknesses in the forward 3D

model is consistent with corresponding 2D profiles which used an updated glacier

surface derived from GPS measurements. Taking the Ball Hut transect (L 900) as

an example, the forward gravity 3D model indicate maximum ice thicknesses of

675 m while ice thickness for the initial 2D model was 672 m. It is thought that

the 3D models may be underestimating the depth to the bed given the out-of-

date DEM surface used. In the forward 3D model the bed is ∼ 10 m higher than

L 900. Till thickness for the forward gravity model is 148 m while the initial 2D

model yields a till thickness of 146 m. Generally, all models perform best when

till thickness is kept relatively uniform (100–200 m) along the length of the glacier

(Figure 4.2).

A feature in the forward 3D model which differs from the 2D models is the

increase in till thickness towards the sides of the glacier (the opposite from what

was proposed in section 3.3.3 for the synthetic models). Till thickening near the

edges of the model may be due to the unconstrained ice thickness against the valley

sides. The 3D model attempts to fit high residual anomaly values at the edges by

increasing till thickness in these regions. This increased till thickness appears to

reduce the overall density contrast but is likely to be an unrealistic feature of the

models. This error highlights the need to constrain ice thickness at the edges of a

glacier.

To summarise, maximum ice thicknesses are estimated well by the forward

3D model, although this result is partly because the input data for the 3D model

was derived from 2D gravity models. The general distribution of ice is poorly

constrained at the edges of the 3D model due to the lack of accessible sites adjacent

to the glacier surface. The large discrepancy between the 2D and 3D models in

these areas highlights the importance of constraining sites of zero ice thickness in

gravity surveys.
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Figure 4.1: Comparison between 2D model and 3D forward gravity for L 900.
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Figure 4.2: South-west oblique view of the structural inversion model for the lower Tasman Glacier. Three layers are seen in the
model including the surface topography, ice-till interface, and till-basement interface (obscured). X and Y and Z axes are in metres

(NZTM 2000).
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4.1 Bed topography and future retreat

The driving stress and therefore the resisting shear stress at the sides and base of a

glacier are proportional to its surface slope and ice thickness (Cuffey and Paterson,

2010). Ice thickness is bounded by the surface of the glacier and its underlying bed.

Studies concerning the retreat of valley glaciers through proglacial lakes emphasize

the importance of constraining bed topography (e.g. Boyce et al. (2007); Quincey

and Glasser (2009)). Topographic highs in the bed are termed ‘pinning points’

due to their local modification of the stress balance (Mercer, 1961). It is on these

pinning points that a glacier can become stabilised for extended periods of time

(REF). Conversely, valley glaciers which gradually deepen up-valley are typically

vulnerable to rapid retreat (Bassis and Jacobs, 2013). Thinning of the terminus

region into bed over-deepenings has also been observed to induce flotation and up-

warping of the terminus region (Boyce et al., 2007) leading to terminus break-up.

Thickness reductions such as those recently observed at Tasman Glacier cause a

reduction in the driving stress, and therefore the velocity, assuming surface slope

has remained constant through time. Our gravity surveys on the Tasman Glacier

indicate that a gradual deepening of the bed occurs up-glacier from the terminus.

Ice thicknesses range from 92 m at the terminus to 722 m adjacent to the Ball

Glacier/Tasman Glacier confluence. Results at the terminus are less constrained

due to the smaller number of gravity points occupying each transect. However, a

sharp increase in ice thicknesses between the terminus profile T 100 (92 m) and

L 100 (351 m) does suggest a reverse slope profile.

For the central gravity transects (L 400 to L 600) the bed topography is com-

plicated with a localised high region at 400 to 450 m.a.s.l (equivalent to ice thick-

nesses of 460 to 510 m) surrounded by lower bed elevations of 250 to 320 m.a.s.l

(500 to 690 m ice thickness). The high region extends 1 km along flow and across

the entire width of the glacier (Figure 4.2). Forward gravity models could not

fit lower bed elevations for this region. This feature may act as a future pinning

point.
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Figure 4.3: Forward gravity model for line 1000 on the Tasman Glacier
(northern-most transect). The model shows the present-day lake level (730 m)
against the glacier cross-section with a minimum bed elevation of 253 m.a.s.l.

The most negative residual gravity anomalies (down to -24 mGal) were ob-

served at the northern transects, corresponding to a maximum ice thickness of

722 m. Ice thicknesses were observed to increase to the north, indicating that the

bed deepens further up-valley from the northern-most transect. Observations of

the surface velocity of the Tasman indicate that the Hochstetter Glacier provides

the majority of ice to the lower glacier (Redpath, 2011). Gravity anomalies indi-

cate a significant over-deepening south of the Hochstetter confluence (down to 253

m.a.s.l) which may be consistent with the high velocities observed here. Relative

to the present-day lake level at the terminus (730 m) the bed is almost 500 m

lower at the Ball/Tasman Glacier confluence (Figure 4.3).

Bed elevation is an important physical control on the future limits of lake ex-

pansion. For the Tasman Glacier, the maximum possible extent of the proglacial

lake will be defined by the point where the base of the glacial valley exceeds the

lake level (730 m). Bed topography at the Ball/Tasman Glacier confluence (253

m.a.s.l) is not high enough to terminate lake expansion. The maximum limit of



Chapter 4. Discussion and Conclusions 99

lake expansion lies somewhere north of the survey area and is only loosely con-

strained by Broadbent (1973) who measured bed elevations of ∼ 970 m.a.s.l, 16

km from the terminus.

Short-term limits on proglacial lake development are controlled by glacier ve-

locity and melting and calving at the terminus (Quincey and Glasser, 2009). For

the lake to continue migrating up-glacier, ice loss at the terminus would have to

exceed the flux of the glacier to reach this point. Rates of cliff retreat by subaerial

melt of 22 ma−1 and calving rates of 34 ma−1 for the terminus were calculated by

Röhl (2006) between 2001 and 2003 while velocity measurements have been made

by Quincey and Glasser (2009) and Redpath et al. (2013). An average retreat rate

of 54 m/a between 2000 and 2006 and 144 m/a between 2007-2008 was obtained

for the terminus of the Tasman Glacier by Dykes and Brook (2010). For the pe-

riod 2009 to 2011, average surface velocities were less than 50 m/a at the terminus

(Redpath et al., 2013). These results suggest that calving rates may still lead to

significant retreat of the Tasman Glacier terminus in the future.
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4.2 Limitations

First, I highlight the limitations in the geophysical methods used to estimate

ice thickness. Second, I suggest possible reasons for the discrepancy between

the modelled ice thickness (derived from the mass flux model) and measured ice

thickness (from gravity results). A volume comparison is also made between the

mass-flux model used here and the more rigorous mass-flux model by Huss and

Farinotti (2012).

Estimating ice thickness

Obtaining ice thickness and volume estimates for debris-covered glaciers is dif-

ficult due to their unique surface morphology. For debris-covered glaciers like

the Tasman, the gravity method is a sensible option as it relies on density con-

trast to measure ice thickness. Additionally, it is a relatively time efficient and

environmentally considerate method to use compared to active-source seismics

or ground-penetrating radar which can have logistical difficulties on debris cover

(Schrott and Sass, 2008). Many previous ice-thickness studies on the Tasman

Glacier have used the gravity method for these reasons (e.g. Broadbent (1973);

Claridge (1983); Watson (1995)) although the non-uniqueness of plausible models

does introduce errors into ice thickness and volume estimates. Prior to the forma-

tion of the proglacial lake in 1991 (Kirkbride and Warren, 1999), gravity transects

obtained by Broadbent (1973) indicated maximum ice thicknesses near the former

terminus of ∼ 200 m. Subsequent bathymetric soundings in the proglacial lake

by Dykes and Brook (2010) indicated maximum water depths of ∼ 160–170 m for

the same location. Although the glacier is likely to have thinned prior to lake for-

mation and the present day lake level does not match the 1973 glacier surface on

which Broadbent measured ice thickness, the agreements between past and present

studies reflect the reliability of the gravity method for ice-thickness studies.

Bed characteristics can influence the dynamics of a glacier and therefore its re-

sponsiveness to climate forcings (Cuffey and Paterson, 2010). Our gravity models
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could not uniquely identify the presence, or not, of a till layer, therefore seismic

results from Broadbent (1973) led to the assumption of including a 100 to 200 m

thick sub-glacial till layer. GPR transects by Nobes et al. (1994) show that the

base of the ice and underlying till is adequately imaged, however Nobes et al.’s

results were limited to the edges of the glacier where the ice was thin. For ac-

curate estimations on till thickness, reflection seismics would provide the tightest

constraints.

Performance of the mass flux model

In section 2.7 ice-thickness results were used to calibrate a mass flux model in

order to estimate the ice-thickness distribution and volume of the entire Tasman

Glacier. Results showed that for optimal parameter values, the model underesti-

mated ice thickness relative to our measured ice-thickness values. Here, I discuss

potential sources of error which may account for the discrepancies seen between

the model output and measured ice thickness.

The DEM used for the mass flux model is derived from topographic maps

which date back to 1986 (Columbus et al., 2011). On average, the surface has

decreased in elevation by ∼ 48 m near Ball Hut. This provides some estimate of

the amount of surface lowering that has occurred recently over the glacier. Use of

an out-of-date DEM can lead to (1) an incorrect surface slope or (2) an overesti-

mation of ice volume, considering it acts as an upper limit for ice thickness. Many

debris covered glaciers in the Central Southern Alps exhibit low surface slopes

which may be poorly represented by the DEM, and could pose difficulties for the

estimation of mass flux. For this reason a median filter was applied to the DEM

to smooth the slope. Improved performance on the mass flux model requires a

more recent DEM along with some consideration of the thinning rate.

The method developed by Farinotti et al. (2009) calculates the ice volume

flux based on the apparent mass balance for predefined ice flow-lines. In contrast,

our mass flux model calculates mass flux through a series of elevation bands. For

multiple glacier catchments which contribute to the overall mass flux of a glacier,
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different tributaries may have different mass-balance relationships. For example,

the western Hochstetter and eastern Darwin tributaries are likely to have differ-

ent mass balance gradients, because the eastern side of the glacier is significantly

drier than the western side. However, the lower Tasman Glacier should be well

represented by a single mass balance relationship.

In the Tasman terminus region, the irregular and hummocky terrain is not

well represented by the DEM. Poor representation of these features distorts the

elevation bands and may lead to errors in the mass-flux calculation. Better esti-

mation of the surface topography would result in an improved mass flux model

and more reliable ice-thickness estimates.

The performance of our mass-flux model can also be compared to global studies

(e.g. Huss and Farinotti (2012)) which estimated the total ice volume of all moun-

tain glaciers and ice caps on Earth. However, because both our estimate and Huss

and Farinotti’s estimate were not supported with an associated uncertainty, no

robust conclusions can be drawn. Huss and Farinotti (2012) obtained a total ice

volume of 35.98 km3 for the Central Southern Alps region, albeit with a slightly dif-

ferent area domain, using the complete method developed by Farinotti et al. (2009)

(Figure 4.4). This result is lower than our estimate of 39.81 km3 which may be due

to different area domain being used (Figure 4.5). The aforementioned simplifica-

tions made in our mass-flux model may also reflect the discrepancy between these

models. As the complete method developed by Farinotti et al. (2009) uses glacier

flow-lines to compute ice volume, the performance of Huss and Farinotti’s model is

likely improved for estimating ice thickness in the upper regions glacier catchments.

However, as this study incorporated gravity-derived ice-thickness measurements

for the lower Tasman Glacier, the estimate made by our mass-flux model may

be more accurate for the lower Tasman glacier. This comparison highlights the

advantages of including uncertainties for ice volume estimates, using an appropri-

ate mass-flux model and also incorporating direct ice-thickness measurements to

improve the performance of these models.
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Figure 4.4: Map of the Central Southern Alps model domain showing ice
thickness derived from the mass flux model developed by Huss and Farinotti

(2012).

Figure 4.5: Map of the Central Southern Alps model domain showing ice
thickness derived from the mass flux model using gravity derived ice-thickness

measurements.
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Interestingly, the volume estimate was systematically lower for large glaciers

compared to volume-area scaling (-49% for New Zealand) (Huss and Farinotti,

2012). This underestimation was also noted in Chapter 3 between our volume

estimate 14.96 km3 and the volume estimate made by Chinn (2001) of 15.62 km3.

To accurately constrain the ice-thickness distribution of glaciers worldwide, glacio-

dynamic models are favoured, but require more ice-thickness data to constrain

their uncertainties Huss and Farinotti (2012).

A simple ice flux model is used here to infer the ice-thickness distribution and

volume of the Tasman Glacier. Ideally bed topography should be used to constrain

the model through the calibration of parameters such as A and C. Including higher

quality surface elevation data and using model flow-lines would result in further

improvement. Ice flux models such as the one used in this study have the potential

to provide more robust estimates of glacier volume for the Southern Alps.

4.3 Future work

Ice-thickness measurements for the Tasman Glacier were made for an area ex-

tending from the terminus region to Ball Glacier. To constrain ice thickness for a

larger section of the Tasman Glacier, another similarly sized gravity survey could

be conducted up-glacier from the northern-most transect presented here. This

would allow a better estimate of ice volume for the Tasman Glacier and would

provide further data for calibrating models used to calculate the total volume of

the world’s glaciers (e.g. Huss and Farinotti (2012)).

An improved bed dataset for Tasman Glacier will also be useful for dynamic

glacier modelling studies, aimed at explicitly calculating the future response of this

glacier to climate change (Oerlemans et al., 1998). Such studies will allow tighter

constraints on local ice thickness to be resolved. The implementation of gravity

tie sites to the edge of the Tasman Glacier allows errors in the residual anomaly

and therefore ice thickness to be reduced for this purpose. Local scale ice volume

models will also enable improved predictions of melt-water run-off which forms an
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important part of the hydrological cycle (Huss et al., 2008) and is directly used in

NZ electricity generation and agriculture. Local studies such as this also provide

tighter constraints on global ice volume studies (e.g. Radić and Hock (2010)) that

assess the impact of climate change on global sea level.

4.4 Conclusions

A large-scale gravity survey has been used here to explore the ice-thickness distri-

bution of the lower Tasman Glacier. The results from this gravity survey were also

applied to a mass flux model to assess the performance of the model and provide

an estimate of total ice volume for the Tasman Glacier. The questions outlined in

section 1.5 can now be addressed:

Question 1: What is the ice-thickness distribution on the lower part

of Tasman Glacier?

Gravity models generally indicate a U-shaped valley for the lower Tasman Glacier

with ice thicknesses of 722 m near Ball Glacier, gradually thinning to 92 m at

the terminus. A prominent reverse bed-slope is also seen between L 300 and

T 100 where a reduction in ice thickness occurs. These results are supported by

previous geophysical studies (e.g. Broadbent (1973); Watson (1995)) who used

similar methods (reflection seismics and gravity) to calculate ice thickness.

Question 2: How do my ice-thickness measurements for the Tasman

Glacier compare to estimates made using a simple mass flux model?

Using gravity derived ice-thickness results as input data to a mass flux model,

ice-thickness outputs from the mass flux model were compared to the 2D gravity

profiles. Generally, ice thickness was underestimated relative to the gravity derived

ice-thickness results. Overall, the RMSE between the mass flux model results and

the gravity derived results was 148 m. Improvements to this discrepancy can be

made by constraining ice thickness for a larger area of the glacier and providing a

more recent DEM to the mass flux model (Anderson, 2013).
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Final ice volume was also calculated using the mass flux model. For the Tas-

man Glacier the best estimate was 14.96 km3. This is thought to be a reliable

estimate of ice volume compared to Chinn (2001) who estimated 15.62 km3 based

on volume-area scaling methods, and Anderton (1973) who estimated 14.77 km3

based on interpolation between 2D profiles made by Broadbent (1973). However,

no robust conclusions can be drawn from these values without appropriate uncer-

tainties.

To conclude, ice-thickness measurements are required to calculate the geometry

and driving stress of a glacier as well as providing estimates to the total volume of

glacier ice on Earth. As measurements are difficult to make everywhere, models are

typically used to infer this ice volume. Studies like this highlight the importance

of providing direct ice-thickness measurements to improve glacio-dynamic models

and global ice volume estimates.
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Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

T 101 -43.6625 170.1902 1373452 5161779 752.149 20.50 980257.24 980335.27 -78.03 -13.82 1.18

T 102 -43.6624 170.1892 1373368 5161785 752.551 18.70 980257.2 980335 -77.8 -13.63 1.18

T 103 -43.6621 170.188 1373271 5161818 742.937 18.20 980258.97 980336.35 -77.38 -13.28 1.18

T 104 -43.6616 170.1868 1373170 5161863 755.026 17.50 980256.57 980333.42 -76.85 -12.84 1.18

T 105 -43.661 170.1852 1373039 5161932 742.197 17.10 980259.93 980334.75 -74.82 -10.93 1.18

T 201 -43.6586 170.184 1372931 5162193 753.431 16.10 980259.39 980329.82 -70.43 -6.84 1.18

T 202 -43.659 170.1848 1372997 5162150 755 15.80 980256.82 980331.4 -74.58 -10.92 1.18

T 203 -43.6594 170.1859 1373091 5162106 773.664 15.40 980252.62 980328.25 -75.63 -11.89 1.18

T 204 -43.6598 170.1871 1373192 5162069 742.147 15.50 980258.88 980335.21 -76.33 -12.51 1.18

T 205 -43.66 170.1882 1373279 5162044 740.065 15.70 980258.73 980335.97 -77.24 -13.35 1.18

T 206 -43.6604 170.1894 1373379 5162006 755.406 15.90 980255.88 980334.02 -78.14 -14.18 1.18

T 207 -43.6612 170.1931 1373682 5161924 767 16.40 980257.1 980332.06 -74.96 -10.8 1.18

T 208 -43.6611 170.1917 1373567 5161938 765.579 16.90 980254.28 980332.75 -78.47 -14.37 1.18

T 209 -43.6606 170.1906 1373475 5161986 764.413 18.00 980254.16 980332.85 -78.69 -14.67 1.18

101 -43.6518 170.1855 1373028 5162954 789.385 22.20 980253.93 980320.46 -66.53 -3.65 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

102 -43.6521 170.1866 1373116 5162920 783.251 20.20 980252.86 980323.68 -70.82 -7.87 1.18

103 -43.6523 170.1877 1373210 5162898 773 19.30 980250.07 980326.63 -76.56 -13.54 1.18

104 -43.6524 170.1891 1373323 5162893 795.785 17.40 980245.42 980324.06 -78.65 -15.57 1.18

105 -43.6528 170.1901 1373402 5162851 801.663 16.50 980244.67 980323.86 -79.19 -16.04 1.18

106 -43.653 170.1911 1373488 5162834 784 16.70 980244.75 980327.1 -82.35 -19.15 1.18

107 -43.6533 170.1924 1373591 5162805 772 16.20 980248.36 980330.01 -81.65 -18.37 1.18

108 -43.6535 170.1936 1373691 5162784 772.256 16.00 980249.96 980330.2 -80.24 -16.9 1.18

109 -43.6538 170.1948 1373789 5162755 791.528 15.70 980246.16 980326.68 -80.52 -17.11 1.18

110 -43.654 170.1961 1373890 5162732 807.058 14.50 980243.21 980324.85 -81.64 -18.17 1.18

111 -43.6542 170.1971 1373975 5162718 782.624 14.70 980248.66 980329.47 -80.82 -17.3 1.18

112 -43.6544 170.1983 1374073 5162692 800.461 14.00 980246.38 980326.76 -80.38 -16.8 1.18

113 -43.6547 170.1994 1374162 5162666 812.827 13.90 980244.22 980324.38 -80.16 -16.52 1.18

114 -43.6549 170.2007 1374265 5162651 809.378 13.60 980246.53 980325.38 -78.85 -15.15 1.18

115 -43.6551 170.202 1374376 5162627 803.029 13.80 980250.45 980326.5 -76.05 -12.29 1.18

116 -43.6555 170.203 1374455 5162585 798.599 14.00 980255.49 980327.21 -71.73 -7.9 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

117 -43.6557 170.2042 1374556 5162569 809.328 13.80 980255.16 980325.31 -70.15 -6.27 1.18

118 -43.6559 170.2056 1374670 5162552 782.116 14.60 980263.17 980329.89 -66.72 -2.78 1.18

119 -43.6561 170.2068 1374760 5162534 815.22 14.10 980259.68 980323.86 -64.18 -0.19 1.18

201 -43.6477 170.1869 1373130 5163405 806.852 22.30 980249.5 980316.6 -67.1 -4.63 1.18

202 -43.6478 170.1882 1373235 5163400 791.331 21.90 980245.08 980320.06 -74.98 -12.46 1.18

203 -43.6481 170.1893 1373325 5163366 803.863 19.30 980242.14 980320.22 -78.08 -15.48 1.18

204 -43.6484 170.1906 1373428 5163343 815.427 18.50 980244.8 980318.68 -73.88 -11.22 1.18

205 -43.6485 170.1918 1373522 5163336 808.495 16.90 980239.32 980321.71 -82.39 -19.67 1.18

206 -43.6488 170.1929 1373619 5163307 823.777 16.40 980241.84 980319.26 -77.42 -14.63 1.18

207 -43.6489 170.194 1373704 5163291 799.738 16.00 980241.24 980324.37 -83.13 -20.29 1.18

208 -43.6493 170.1953 1373810 5163251 819.012 17.00 980242.59 980319.59 -77 -14.07 1.18

209 -43.6495 170.1966 1373913 5163240 816.734 16.10 980245.48 980321 -75.52 -12.54 1.18

210 -43.6497 170.1977 1374007 5163219 808.537 14.60 980242.45 980324.06 -81.61 -18.57 1.18

301 -43.6433 170.1887 1373253 5163902 800.669 23.70 980248.77 980315.94 -67.17 -5.15 1.18

302 -43.6435 170.1898 1373346 5163882 803.61 21.10 980244.11 980318.03 -73.92 -11.84 1.18

Continued on next page



C
h
ap

ter
4.

D
iscu

ssion
an

d
C

on
clu

sion
s

111

Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

303 -43.6437 170.191 1373445 5163862 805.221 19.50 980241.54 980319.31 -77.77 -15.62 1.18

304 -43.644 170.1922 1373539 5163836 809.989 18.20 980241.63 980319.74 -78.11 -15.89 1.18

305 -43.6442 170.1934 1373640 5163816 823.302 16.90 980235.06 980318.43 -83.37 -21.09 1.18

306 -43.6444 170.1946 1373736 5163797 827.278 16.00 980236.14 980318.52 -82.38 -20.04 1.18

307 -43.6447 170.1958 1373834 5163772 835.119 15.70 980239.4 980317.3 -77.9 -15.49 1.18

308 -43.6449 170.197 1373933 5163749 822.861 15.90 980239.28 980319.59 -80.31 -17.83 1.18

309 -43.6451 170.1982 1374029 5163724 831.317 16.40 980239.43 980317.39 -77.96 -15.42 1.18

310 -43.6453 170.1994 1374125 5163712 843.203 15.50 980237.37 980315.98 -78.61 -16.01 1.18

311 -43.6456 170.2006 1374221 5163683 840.867 14.10 980234.74 980317.88 -83.14 -20.48 1.18

312 -43.6459 170.2017 1374312 5163652 831.062 14.60 980234.74 980319.36 -84.62 -21.89 1.18

313 -43.6461 170.2028 1374407 5163634 815.613 14.60 980239.21 980322.37 -83.16 -20.38 1.18

314 -43.6461 170.2039 1374492 5163632 816.391 14.30 980240.11 980322.51 -82.4 -19.57 1.18

315 -43.6465 170.2053 1374610 5163589 826 14.10 980239.74 980320.92 -81.18 -18.27 1.18

316 -43.6467 170.2067 1374718 5163577 814 14.80 980242.69 980322.51 -79.82 -16.86 1.18

317 -43.647 170.2078 1374809 5163546 820 14.10 980245.16 980322.1 -76.94 -13.91 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

318 -43.6472 170.209 1374907 5163521 804 15.00 980250.04 980324.36 -74.32 -11.23 1.18

319 -43.6475 170.2102 1375002 5163499 801 15.20 980252.96 980324.81 -71.85 -8.71 1.18

320 -43.6477 170.2114 1375100 5163472 793 15.70 980256.28 980325.88 -69.6 -6.4 1.18

321 -43.6479 170.2123 1375178 5163457 807.593 16.20 980259.29 980322.54 -63.25 0 1.18

401 -43.6389 170.1898 1373329 5164390 835.227 23.80 980243.66 980308.68 -65.02 -3.47 1.18

402 -43.6392 170.1916 1373471 5164366 841.794 20.80 980238.16 980310.4 -72.24 -10.6 1.18

403 -43.6395 170.1928 1373573 5164340 847.902 19.50 980234.95 980310.57 -75.62 -13.9 1.18

404 -43.6397 170.194 1373669 5164314 823.408 18.80 980238.41 980316.03 -77.62 -15.84 1.18

405 -43.6399 170.1953 1373775 5164303 844.173 18.00 980234.39 980312.75 -78.36 -16.52 1.18

406 -43.6401 170.1963 1373858 5164275 841.982 16.90 980233.95 980314.33 -80.38 -18.47 1.18

407 -43.6403 170.1975 1373951 5164256 831.389 16.80 980235.75 980316.55 -80.8 -18.83 1.18

408 -43.6406 170.1987 1374053 5164231 845.316 16.00 980232.82 980314.67 -81.85 -19.8 1.18

409 -43.6408 170.1999 1374150 5164211 855.23 15.10 980230.75 980313.63 -82.88 -20.78 1.18

410 -43.641 170.2011 1374245 5164189 869.289 14.60 980227.74 980311.35 -83.61 -21.44 1.18

411 -43.6412 170.2023 1374342 5164170 876.259 14.80 980226.57 980309.79 -83.22 -21 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

412 -43.6415 170.2035 1374442 5164146 836.939 15.00 980235.49 980317.36 -81.87 -19.58 1.18

413 -43.6417 170.2047 1374541 5164119 855.398 14.50 980232.42 980314.29 -81.87 -19.51 1.18

414 -43.6419 170.2059 1374640 5164101 830 14.60 980236.57 980319.19 -82.62 -20.2 1.18

415 -43.6422 170.207 1374729 5164080 867.947 14.50 980232.37 980311.87 -79.5 -17.03 1.18

416 -43.6423 170.2082 1374829 5164067 848.331 14.30 980237.66 980315.93 -78.27 -15.75 1.18

417 -43.6426 170.2095 1374928 5164033 840.81 15.00 980241.63 980316.71 -75.08 -12.48 1.18

418 -43.6429 170.2108 1375035 5164011 837.248 16.10 980245.96 980316.31 -70.35 -7.7 1.18

501 -43.6344 170.1916 1373459 5164897 855.321 24.20 980239.5 980303.87 -64.37 -3.29 1.18

502 -43.6346 170.192 1373490 5164873 853.446 23.10 980238.53 980305.38 -66.86 -5.73 1.18

503 -43.6349 170.1931 1373578 5164844 850.018 21.30 980236.34 980307.94 -71.6 -10.4 1.18

504 -43.6352 170.1943 1373676 5164813 858.767 19.80 980233.07 980307.68 -74.61 -13.34 1.18

505 -43.6354 170.1955 1373776 5164803 861.233 18.60 980230.9 980308.44 -77.54 -16.21 1.18

506 -43.6356 170.1968 1373881 5164779 847.806 17.70 980233.02 980312.03 -79.01 -17.61 1.18

507 -43.6359 170.1981 1373985 5164750 855.161 16.90 980232.15 980311.4 -79.25 -17.77 1.18

508 -43.6357 170.1993 1374086 5164774 852.047 16.50 980231.45 980312.41 -80.96 -19.46 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

509 -43.6364 170.2005 1374180 5164706 857.24 15.90 980230.11 980311.99 -81.88 -20.27 1.18

510 -43.6365 170.2016 1374269 5164696 864.285 15.40 980228.34 980311.18 -82.84 -21.19 1.18

511 -43.6366 170.2028 1374369 5164681 862.071 15.10 980229.1 980311.9 -82.8 -21.09 1.18

512 -43.6369 170.2039 1374462 5164650 858.365 15.00 980229.74 980312.76 -83.02 -21.23 1.18

513 -43.6373 170.2053 1374576 5164612 856.486 14.90 980231.31 980313.23 -81.92 -20.05 1.18

514 -43.6373 170.2064 1374657 5164619 876.236 14.50 980227.33 980309.75 -82.42 -20.52 1.18

515 -43.6376 170.2076 1374756 5164586 877.261 14.40 980227.76 980309.68 -81.92 -19.95 1.18

516 -43.6377 170.2087 1374852 5164575 875.668 15.00 980230.08 980309.45 -79.37 -17.35 1.18

517 -43.6381 170.21 1374953 5164540 861.195 15.20 980234.9 980312.1 -77.2 -15.11 1.18

518 -43.6382 170.2113 1375059 5164536 847.335 16.30 980238.45 980313.74 -75.29 -13.15 1.18

519 -43.6385 170.2125 1375154 5164499 869.62 16.70 980238.35 980308.92 -70.57 -8.36 1.18

601 -43.6314 170.1933 1373581 5165234 865.623 23.50 980236.13 980302.36 -66.23 -5.45 1.18

602 -43.6316 170.1948 1373705 5165223 876.114 20.50 980230.9 980303.22 -72.32 -11.47 1.18

603 -43.6316 170.1959 1373795 5165219 867.389 19.60 980231.08 980305.9 -74.82 -13.92 1.18

604 -43.6318 170.1971 1373892 5165207 884.575 18.30 980226.41 980303.83 -77.42 -16.47 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

605 -43.6319 170.1984 1373995 5165193 892.09 17.20 980223.9 980303.44 -79.54 -18.52 1.18

606 -43.6319 170.1996 1374090 5165195 873.116 17.10 980227.17 980307.26 -80.09 -19.03 1.18

607 -43.6321 170.2008 1374189 5165182 893.182 16.40 980222.47 980304.06 -81.59 -20.48 1.18

608 -43.6322 170.202 1374288 5165172 887.643 16.00 980223.17 980305.52 -82.35 -21.17 1.18

609 -43.6323 170.2032 1374388 5165166 871.484 16.00 980226.33 980308.71 -82.38 -21.16 1.18

610 -43.6324 170.2045 1374492 5165162 882.515 15.60 980224.07 980306.94 -82.87 -21.6 1.18

611 -43.6325 170.2057 1374588 5165149 882.13 15.70 980224.39 980307.01 -82.62 -21.3 1.18

612 -43.6327 170.207 1374692 5165132 868.998 15.80 980227.41 980309.48 -82.07 -20.68 1.18

613 -43.6328 170.2081 1374781 5165117 872.723 15.80 980226.91 980308.7 -81.79 -20.36 1.18

614 -43.6329 170.2094 1374887 5165117 893.494 15.60 980223.74 980304.87 -81.13 -19.65 1.18

615 -43.6329 170.2107 1374995 5165114 889.375 15.90 980225.78 980305.34 -79.56 -18.03 1.18

616 -43.633 170.2119 1375090 5165105 890.551 16.40 980227.45 980304.69 -77.24 -15.67 1.18

617 -43.6331 170.2134 1375206 5165107 882.018 17.70 980231.71 980305.01 -73.3 -11.69 1.18

618 -43.6333 170.2143 1375283 5165088 872 18.80 980234.79 980305.97 -71.18 -9.52 1.18

701 -43.628 170.1943 1373652 5165616 860 24.20 980236.13 980302.37 -66.24 -5.83 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

702 -43.6274 170.1949 1373697 5165684 865 23.40 980232.7 980302.16 -69.46 -9.11 1.18

703 -43.6274 170.1962 1373797 5165687 891 20.30 980226.41 980300.15 -73.74 -13.34 1.18

704 -43.6273 170.1974 1373899 5165708 901.113 18.80 980227.69 980299.62 -71.93 -11.5 1.18

705 -43.6276 170.1988 1374014 5165677 909.523 18.10 980221.27 980298.74 -77.47 -16.95 1.18

706 -43.6275 170.1999 1374096 5165692 904 17.40 980219.13 980300.53 -81.4 -20.87 1.18

707 -43.6275 170.201 1374188 5165687 891 17.20 980220.63 980303.23 -82.6 -22.02 1.18

708 -43.6275 170.2024 1374298 5165694 891 16.90 980218.59 980303.61 -85.02 -24.39 1.18

709 -43.6276 170.2036 1374402 5165687 923.545 15.80 980215.98 980298.33 -82.35 -21.67 1.18

710 -43.6278 170.2048 1374498 5165669 916.486 15.70 980217.76 980299.79 -82.03 -21.29 1.18

711 -43.6279 170.206 1374595 5165662 911.238 15.90 980217.86 980300.67 -82.81 -22.02 1.18

712 -43.628 170.2072 1374689 5165655 902.309 16.00 980220.75 980302.28 -81.53 -20.69 1.18

713 -43.628 170.2085 1374797 5165651 881 17.20 980221.32 980305.29 -83.97 -23.08 1.18

714 -43.6281 170.2099 1374906 5165646 888.151 17.00 980224.24 980304.12 -79.88 -18.94 1.18

715 -43.6282 170.2109 1374990 5165636 884 17.30 980222.93 980304.57 -81.64 -20.65 1.18

716 -43.6283 170.2121 1375090 5165634 898 17.30 980221.33 980301.91 -80.58 -19.55 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

717 -43.6284 170.2134 1375196 5165623 897 18.00 980224.46 980301.33 -76.87 -15.79 1.18

718 -43.6286 170.2146 1375292 5165605 893 19.60 980227.44 980300.54 -73.1 -11.96 1.18

719 -43.6282 170.2153 1375345 5165655 877 21.50 980232.18 980301.78 -69.6 -8.49 1.18

801 -43.6236 170.1955 1373731 5166113 899.389 23.60 980232.14 980294.9 -62.76 -2.86 1.18

802 -43.6235 170.1968 1373831 5166119 903.431 21.30 980228.09 980296.39 -68.3 -8.35 1.18

803 -43.6235 170.1978 1373913 5166129 917.704 19.80 980223.01 980295.1 -72.09 -12.12 1.18

804 -43.6235 170.1989 1374006 5166129 896 19.40 980223.32 980299.7 -76.38 -16.35 1.18

805 -43.6235 170.2001 1374099 5166133 884 18.90 980223.12 980302.6 -79.48 -19.41 1.18

806 -43.6235 170.2013 1374201 5166139 905 17.60 980218.47 980299.74 -81.27 -21.17 1.18

807 -43.6235 170.2026 1374302 5166141 912 17.10 980215.72 980298.9 -83.18 -23.03 1.18

808 -43.6234 170.2038 1374397 5166151 904 17.10 980217.3 980300.42 -83.12 -22.94 1.17

809 -43.6234 170.2051 1374504 5166159 918.697 16.80 980215.82 980297.88 -82.06 -21.84 1.18

810 -43.6234 170.2063 1374602 5166165 917 16.90 980213.93 980298.1 -84.17 -23.91 1.18

811 -43.6234 170.2075 1374700 5166168 937 16.20 980211.71 980294.86 -83.15 -22.86 1.18

812 -43.6234 170.2088 1374802 5166172 934 16.60 980212.05 980295 -82.95 -22.61 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

813 -43.6233 170.21 1374902 5166179 908 17.40 980215.99 980299.34 -83.36 -22.98 1.18

814 -43.6233 170.2112 1374999 5166186 893 18.20 980220.39 980301.48 -81.09 -20.68 1.18

815 -43.6233 170.2126 1375106 5166190 903 18.80 980219.99 980298.91 -78.92 -18.48 1.18

816 -43.6232 170.2137 1375201 5166199 908 19.80 980221.78 980296.95 -75.17 -14.69 1.18

817 -43.6232 170.2151 1375310 5166208 889 22.30 980229.06 980298.21 -69.15 -8.64 1.18

901 -43.6192 170.1956 1373719 5166600 934 24.30 980224.62 980287 -62.38 -3.01 1.18

902 -43.6192 170.1959 1373743 5166605 935.79 23.30 980225.79 980287.61 -61.82 -2.45 1.18

903 -43.619 170.1966 1373805 5166619 934.769 22.40 980222.28 980288.7 -66.42 -7.03 1.18

904 -43.619 170.198 1373913 5166626 938.708 20.50 980218.38 980289.83 -71.46 -12.02 1.18

905 -43.619 170.1991 1374007 5166631 936.746 19.50 980217.25 980291.17 -73.92 -14.44 1.18

906 -43.6189 170.2005 1374114 5166650 952.129 18.40 980212.79 980289.22 -76.43 -16.92 1.18

907 -43.6189 170.2017 1374211 5166646 943 18.30 980210.71 980291.2 -80.49 -20.93 1.18

908 -43.6189 170.2029 1374309 5166648 936.052 18.00 980212.86 980292.84 -79.98 -20.38 1.18

909 -43.6189 170.2042 1374412 5166656 903 19.10 980215.69 980298.22 -82.54 -22.89 1.18

910 -43.6189 170.2054 1374511 5166656 954.688 17.60 980208.15 980289.55 -81.4 -21.72 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

911 -43.6189 170.2066 1374607 5166658 939.924 17.30 980211.16 980292.8 -81.64 -21.91 1.18

912 -43.6188 170.2078 1374706 5166675 943.038 17.30 980210.85 980292.14 -81.29 -21.54 1.18

913 -43.6188 170.2091 1374810 5166676 922 17.80 980213.22 980295.75 -82.53 -22.73 1.18

914 -43.6187 170.2105 1374919 5166691 930.049 18.10 980215.23 980293.86 -78.63 -18.8 1.18

915 -43.6188 170.2113 1374991 5166690 936.904 18.50 980216.58 980292.1 -75.52 -15.66 1.18

916 -43.6188 170.2129 1375113 5166694 923.061 19.90 980220.23 980293.45 -73.23 -13.31 1.18

917 -43.6187 170.2141 1375214 5166700 931.683 21.40 980220.28 980290.28 -70 -10.05 1.18

918 -43.6187 170.2148 1375273 5166705 927.251 22.70 980225.29 980289.8 -64.51 -4.54 1.18

1001 -43.6148 170.1958 1373718 5167089 984.173 22.90 980210.38 980278.12 -67.74 -8.92 1.18

1002 -43.6147 170.197 1373815 5167098 974.866 21.60 980210.8 980281.17 -70.37 -11.51 1.18

1003 -43.6147 170.1982 1373918 5167104 974.101 20.90 980209.54 980282.09 -72.55 -13.65 1.18

1004 -43.6146 170.1994 1374015 5167118 969.902 19.90 980208.47 980283.92 -75.45 -16.51 1.18

1005 -43.6146 170.2007 1374117 5167121 960 19.80 980206.74 980285.96 -79.22 -20.23 1.18

1006 -43.6145 170.2019 1374216 5167138 955.673 19.50 980208.56 980287.03 -78.47 -19.46 1.18

1007 -43.6145 170.2032 1374318 5167144 944.596 19.40 980210.21 980289.34 -79.13 -20.07 1.18

Continued on next page
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Table A.1 Continued from previous page

Station Latitude Longitude Easting Northing Height TC g abs g boug g anom g res Error

(ID) (WGS84) (WGS84) (NZTM) (NZTM) (m) (mGal) (mGal) (mGal) (mGal) (mGal) (mGal)

1008 -43.6146 170.2044 1374416 5167138 954.048 18.70 980207.84 980288.24 -80.4 -21.29 1.18

1009 -43.6144 170.2055 1374505 5167160 965.645 18.40 980206.02 980286.25 -80.23 -21.1 1.18

1010 -43.6144 170.2069 1374619 5167158 959.434 18.20 980206.79 980287.62 -80.83 -21.64 1.18

1011 -43.6144 170.2082 1374718 5167162 977.231 17.70 980203.71 980284.59 -80.88 -21.66 1.18

1012 -43.6144 170.2093 1374813 5167164 966.038 17.90 980206.6 980286.64 -80.04 -20.77 1.18

1013 -43.6144 170.2106 1374911 5167176 968.941 18.40 980207.64 980285.55 -77.91 -18.61 1.18

1014 -43.6143 170.2119 1375015 5167192 957.95 19.30 980211.64 980286.78 -75.14 -15.81 1.18

1015 -43.6141 170.213 1375110 5167210 944.249 20.70 980216.27 980288.13 -71.86 -12.51 1.18

1016 -43.614 170.2143 1375213 5167228 949.317 22.80 980219.18 980285.03 -65.85 -6.47 1.18



Appendix B

Synthetic models

Figure B.1: A synthetic model demonstrates the effect a cylindrical tube has
on the residual anomaly. Vertical exaggeration is 1.

121



Chapter 4. Discussion and Conclusions 122

Figure B.2: A synthetic model demonstrates the effect a platelet structure
has on the residual anomaly. Vertical exaggeration is 1.

Figure B.3: A synthetic model demonstrates the effect a basement ridge has
on the residual anomaly. Vertical exaggeration is 1.
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Figure B.4: A synthetic model demonstrates the effect of a 50 m till layer on
the changes in ice-thickness. Adding a 50 m layer of till causes an decrease in
ice-thickness of 7 metres in the centre of the glacier. Vertical exaggeration is 1.
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Figure B.5: A synthetic model demonstrates the effect of a 620 m till layer
on the changes in ice-thickness. Adding a 620 m layer of till causes an decrease
in ice-thickness of 71 metres in the centre of the glacier. Vertical exaggeration

is 1.
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Figure B.6: Forward gravity model for line 1000 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.



Chapter 4. Discussion and Conclusions 126

Figure B.7: Forward gravity model for line 800 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.
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Figure B.8: Forward gravity model for line 700 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.
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Figure B.9: Forward gravity model for line 600 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.
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Figure B.10: Forward gravity model for line 500 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.
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Figure B.11: Forward gravity model for line 400 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.
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Figure B.12: Forward gravity model for line 200 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.
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Figure B.13: Forward gravity model for line 100 on the Tasman Glacier. Ob-
served gravity is shown by black circles, calculated gravity is shown by a solid
black line and the root-mean-squared error (red line) represents the difference
between the observed and calculated anomalies (top inset). Vertical exaggera-

tion is 1.
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Röhl, K. (2006). Thermo-erosional notch development at fresh-water-calving Tas-

man Glacier, New Zealand. Journal of Glaciology, 52(177):203–213.
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