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Abstract 

 

 

Significant opportunities exist in both the scientific and industrial sectors for 

the development of new generation hybrid materials. These multifunctional 

hybrid materials favourably combine the often disparate characteristics of 

both precursor components in one material. As such, this field can be very 

innovative due to the many possible combinations of components providing 

the opportunity to create a wide variety of new generation materials with a 

range of known and as yet unknown properties. In this manner the 

research carried out in this PhD research programme combines particular 

polymer substrates with gold, silver or silver halide nanoparticles, 

generating multifunctional hybrid materials which exhibit novel and useful 

optical, antimicrobial and antifouling properties. As such, these hybrid 

materials are well suited for applications in the healthcare and biomedical 

devices, food and packaging, surface coatings and the personal hygiene 

industries. 

 

The novel approach developed and used for the production of these 

nanogold, nanosilver and nanosilver halide hybrid polymer materials did not 

use conventional external reducing or stabilising agents. Instead, for the 

nanogold and nanosilver hybrid polymer materials, the Au3+ or Ag+ ions 

were first absorbed into the polymer substrates (polyurethane, nylon 6,6, 

polyurethane K5000 latex paint base and amine coated polyethylene 

terephthalate) and then upon heating the nitrogen-containing functional 

groups in the polymer matrices reduced the metal ions to their respective 

metal nanoparticles Au0 and Ag0. Simultaneously a chemical interaction 

between the metal nanoparticles and the polymer matrix was facilitated. 

Hence the reduction reaction was effected by the coupled to the oxidation 

reaction of the nitrogen-containing functional groups. The polymer matrix 

also afforded control over the nanoparticle size. Silica based BULK 

ISOLUTE® SORBENTS were used to help elucidate this particular chemistry 

taking place in the formation of the hybrid polymer materials.  
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The synthesis of the nanosilver halide hybrid polymer materials involved the 

initial absorption of halide ions into the polymer matrix followed by 

treatment with silver ions to effect precipitation of nanosize silver halide 

particles within the polymer matrix, wherein the particle size was similarly 

controlled by the polymer matrix and precipitation conditions. All formed 

nanoparticles were therefore stabilised by the polymer matrix. 

 

The colour of the resultant hybrid polymer materials is due to the surface 

plasmon resonance effect of gold and silver nanoparticles. The colour is 

dependent on the particle size and shape of the nanoparticles and on the 

refractive index of the surrounding medium. Nanogold hybrid polymers are 

pink/purple in colour whereas nanosilver hybrid polymers reflect 

yellow/brown colour. Nanosilver halide hybrid polymers absorb light in the 

UV range of light and are therefore white in colour. However, due to their 

photosensitive properties, once exposed to light, silver halides undergo a 

self-photosensitisation process resulting in formation of silver nanodomains 

(smaller nanoparticles) on the surface of the silver halide nanoparticles. 

This gives rise to their absorption in the visible range of light making the 

hybrid polymer materials appear purple/brown in colour. Nanosilver iodide 

hybrid polymer materials do not show this effect to any extent and remain 

as their typical yellow colour. The reflected colours of the hybrid polymer 

materials and therefore the particle sizes and shapes of metal nanoparticles 

were investigated by the UV-Vis spectroscopy. The electron microscopy 

(SEM and TEM) studies showed the morphology of the hybrid polymer 

materials and that the nanoparticles were not only deposited on the surface 

but distributed within the polymer matrix. The metal nanoparticles varied in 

sizes and shapes, particle agglomerates were observed. The confirmation of 

gold, silver or silver halide species was undertaken using energy dispersive 

spectroscopy (EDS), scanning transmission spectroscopy (STEM) and X-ray 

diffraction (XRD). Furthermore, X-ray photoelectron spectroscopy (XPS) 

was carried out in order to study the nature of the interaction between the 

formed metal nanoparticles and the polymer matrix. It was demonstrated 

that the gold and silver nanoparticles are bound to the polymer matrices via 

Au-N and Ag-N bonds respectively, through the nitrogen-containing 

functional groups of the polymer matrices. The presence of the oxidised 
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nitrogen species (NOx) confirmed that the electrons required for the 

reduction of Au3+ and Ag+ to the respective nanoparticles were provided by 

the coupled oxidation reaction of the nitrogen-containing groups in the 

polymer matrices. The XPS studies showed there is an interaction between 

the silver on the surface of the AgX nanoparticles and the nitrogen and 

oxygen groups present in the polymer matrix. The observation that only 

very small amounts of Au3+ and Ag+ ions could be leached from the 

nanogold and nanosilver hybrid materials confirmed the integrity of this 

chemical bonding between the gold or silver nanoparticles and the polymer 

matrix. The nanogold, nanosilver and nanosilver halide polymer materials 

showed effective antimicrobial properties. They were successfully tested 

against gram negative bacteria Escherichia coli. Additionally, the new 

generation nanogold and nanosilver hybrid polymer materials have been 

shown to exhibit antifouling properties. 
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Generic terms and definitions 

 

Elastomer is a thermoplastic or thermoset polymer that can stretch and 

then return to its original shape without permanent deformation.  

Glass-liquid transition (or glass transition) temperature is the temperature 

range where the reversible transition in amorphous materials (or in 

amorphous regions within semicrystalline materials) from a hard and 

relatively brittle state into a molten or rubber-like state occurs. 

Thermosetting plastics or thermosets are independent macromolecules 

before curing process. Upon curing they reach their final state. They then 

exhibit a 3D structure acquired by irreversible chemical crosslinking formed 

during or after the processing (e.g. injection moulding, spray-up moulding).  

Thermosoftening plastic or thermoplastics are polymers which are 

mouldable above a specific temperature. They return to a solid state when 

cooled, exhibiting a 3D structure acquired by reversible crosslinking during 

or after the processing.  

To pellet - gather the precipitate ("pellet") on the bottom of the tube via the 

centrifugation process.  
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1 Hybrid materials 

1.1 Background 

 

The world of science and technology grows every day. This creates new 

requirements for novel materials and provides new ways of making them. The 

demand for doing things smaller, lighter, faster and stronger has become a 

challenge for scientists and engineers. Well studied materials such as metals, 

polymers, glasses or ceramics do not always accomplish desires for new 

technologies. Material science has shown that a mixture of two different moieties 

on the molecular scale can produce a new composite that exhibits either 

characteristics in between the two components or remarkably different and 

unique properties.  

 

These novel functionalised materials are defined as hybrid materials and they 

comprise a broad area of different materials, such as crystalline highly ordered 

coordination polymers, amorphous sol–gel compounds, materials with and 

without interactions between the inorganic and organic units.1 Natural materials 

often play as an important model for scientists to develop new hybrid materials 

in as much as almost all materials of nature (e.g. wood, bone, skin, leaf) are 

hybrid materials, for example bone is a combination of collagen with 

hydroxyapatite.2 Hybrid materials mainly consist of organic and inorganic 

building blocks. Their properties can be tuned and altered by modifications of 

their composition on the molecular scale, the relative content of the constitutive 

organic and inorganic components. 

 

One of the well-known examples of hybrid materials is inorganic fibre-reinforced 

polymers. Due to their lightweight, corrosion resistance and high strength they 

have been utilised extensively in the medical, sports equipment, automotive and 

small ship industries, aerospace applications and the construction industry.3,4 

Carbon nanotubes-inorganic hybrids, produced from carbon nanotubes (CNTs) 

and inorganic glasses or ceramics, have been utilised in photocatalysis, 

electrocatalysis, environmental catalysis, gas sensors, supercapacitors, and field 

emission devices.  
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1.2 Polymer nanocomposites 

 

 

A polymer nanocomposite is a hybrid material and defined as a two-phase 

system, where at least one dimension of the reinforcing filler is on the 

nanometre scale. Clay minerals have been discussed as candidates for a filler 

material to improve the characteristics of conventional polymers, such as 

increased modulus, strength, fracture toughness, impact resistance, gas and 

liquid barrier, flame retardance.5,6 Clay polymer nanocomposites are applicable 

in a range of areas – from adhesives to coatings, from microelectronic 

applications to composite systems, in automotive components, food packaging, 

hoses for automotive, domestic electrical appliances.7 

 

Using metal nanoparticles as additives in polymer matrices is an enormously 

important progress for modern technology and a wide range of potential 

applications. Polymers exhibit electrical and thermal insulator or conductor 

properties, they can be of a hydrophobic or hydrophilic nature, mechanically 

hard, plastic or rubbery.8 Depending on nano-scale structure metal particles 

show unique physical and chemical properties (optical, electronic, magnetic, 

catalytic and antimicrobial). Metal polymer nanocomposites not only combine the 

advantageous properties of metal nanoparticles and polymers but also exhibit 

new multifunctional and high performance polymer characteristics.  

 

The incorporation of metal nanoparticles into polymer matrices can be achieved 

either by in situ or ex situ method. In the latter nanoparticles are first produced 

by the reduction of metal ions following by the distribution of the preformed 

metal nanoparticles into a polymer solution or monomer solution to polymerise. 

The in situ technique involves the production of nanoparticles inside the polymer 

matrix. The monomer is polymerised in solution containing metal salts, then 

metal nanoparticles are generated by reducing metal ions through a reduction 

process.9–11 In a third method, the combined solutions containing the metal 

precursor and the polymer are deposited onto a substrate, and the reduction to 

the metal colloids is performed within the thin solid film after removal of the 

solvent.12 Different approaches have been applied to reduce metal ions to metal 
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nanoparticles such as UV or γ-ray irradiation, microwave- and sonochemical-

assisted reduction, or by using chemical reductants.  

 

Silver nanoparticles can be coated onto polyurethane by producing nanoparticles 

ex situ following by soaking the polymer with the nanoparticles. Nitrogen groups 

(e.g. urethane) are expected to bind with the surface of the nanoparticles.13 In a 

similar manner, nanocomposites showing antibiofilm effects were prepared by 

using gold and silver nanoparticles as fillers in polyurethane (PU), 

polycaprolactam (PCLm), polycarbonate (PC) and polymethylmethaacrylate 

(PMMA) polymers.14 Silver nanoparticles as well as silver halide nanoparticles 

have been synthesised and deposited on nylon or polyethylene using ultrasound 

irradiation resulting in a physical adsorption of the nanoparticles onto the 

polymers.15–17 Antibacterial silver halide nanoparticles have been synthesised 

inside the pores of a mesoporous silica SBA-15, which then can be incorporated 

into a variety of fabrics and polymers as a filler.18 Antimicrobial metal 

nanoparticle-filled polymer nanofibres containing 0.5 - 1.25 wt % silver have 

been produced by using the electrospinning solvent (formic acid) as a reducing 

agent and the electrospinning polymer, nylon 6, as a stabilizing agent.19 Metal 

nanoparticles can be added to the polymer solution and the resulting suspension 

can be cast into polymer-metal composite films.11,14,20 Natural biopolymer wool 

has been utilised as the redox active biotemplate. The S-containing cystine 

amino acids in the wool reduced in situ Au3+ or Ag+ to nanoparticulate Au0 or Ag0 

respectively on and within the fibres. The reaction was coupled by the oxidation 

reaction of cystine in the fibre resulting in chemical bonds between the metal 

nanoparticles and the sulfur groups of the biopolymer.21,22 It has been reported 

that gold nanocrystals were successfully prepared in a single step synthesis by 

the addition of polyethyleneimine (PEI) to gold tetrachloroaurate solution.23 The 

produced nanoparticles were than absorbed by wool fibres and chemically bound 

via the amino nitrogen at the gold surface to the keratin fibre.24 

 

The present research has focused on the synthesis of new generation hybrid 

polymer materials, the characterisation and analysis of their novel optical, 

antimicrobial and antifouling properties. The new functionalised hybrid materials 

consist of an organic matrix (polyurethane, nylon 6,6 and polyurethane K5000 
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latex paint base polymers) and inorganic building block (gold, silver and silver 

halide nanoparticles). 

 

The following sections provide a background to the various components which 

were used for development of these hybrid polymer materials. 
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1.3 Substrates 

 

 

The properties of the polymer substrates used in the preparation of nanogold, 

nanosilver and nanosilver halide hybrid polymer materials are discussed below.  

 

 

1.3.1 Thermoplastic elastomers 

1.3.1.1 Background 

 

 

Thermoplastic elastomers (TPEs) are a unique class of high molecular weight 

polymers, which consist of materials with both thermoplastic and elastomeric 

properties. TPEs become plastic when heated and return to being elastic when 

cooled. The crosslinks in TPEs are of a weak dipole or hydrogen bond nature and 

are therefore reversible crosslinks. This is why TPEs can be processed by 

conventional extrusion and moulding techniques, the same as those which are 

used for thermoplastics such as injection moulding, extrusion, blow moulding 

and vacuum forming. The final products have similar mechanical properties to 

those produced from conventional vulcanized elastomers. The microphase-

separated morphology of the TPE is responsible for the specific properties of the 

material. A typical bimicrophasic TPE material consists of two structural units 

(Figure 1.1): a segmented block copolymer which contains an amorphous or 

semicrystalline polymer block with a low glass transition temperature and a 

crystalline block that physically crosslinks the polymer chains into a reversible 

network. The amorphous or semicrystalline polymer block defined as the soft 

segment which is incompatible with the hard segment at service temperatures to 

avoid the interpenetration of the segments. The hard segment consists of an 

immiscible crystalline copolymer,25,26 and a hydrogen-bonding27,28 urethane28–31 

or urea segment.28,32,33 The soft segment is responsible for the material’s 

flexibility and suppleness; whilst the hard segment acts as a reinforcing filler in 

addition to a physical crosslink, giving the material its stiffness. At a low 

temperature the hard segment accounts for mechanical stability in TPEs. 



6 

 

Figure 1.1: Schematic representation of segmented block copolymer. 

 

 

The reversible crosslinks can be disturbed by thermal or mechanical means and 

irreparable changes in the morphology of TPEs may occur, resulting in a plastic 

deformation of the material.  

 

The properties of TPEs are highly dependent on which phases are present and 

how those are spatially arranged. The crystallinity and crystal defects of the hard 

segment, the composition of the amorphous phase, the relative proportion of the 

hard and soft segments and the nature of their continuality and the processing 

history of the TPE are important parameters. The desired properties, for example 

porosity and density of TPEs can be obtained by altering of the polymerisation 

conditions or by changing the ratios of soft and hard segments or by varying the 

soft segment. 

 

TPEs have a wide range of useful products and applications in a variety of 

markets such as automotives, building and construction, wires and cables, 

biomedical fields,34 sports equipment, packaging and hygiene products, etc. 

Figure 1.2 shows some examples of different TPE products. 

 

 

 

 

   Hard segment  Soft segment 
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Figure 1.2: Consumer products containing TPEs as a) polyurethane shoe sole,35 

b) copolyester cutlery,36 c) power cords made of halogen-free flame-retardant 

(HFFR) TPEs.37 

TPEs may be rationally classified into the following classes due to their chemistry 

and morphology:38 

 

 

1. Block copolymers 

a. Styrenic block copolymers 

b. Thermoplastic copolyesters  

c. Thermoplastic polyurethanes 

d. Thermoplastic polyamides  

2. Blends and elastomeric alloys 

a. Elastomeric rubber –plastic blends 

b. Thermoplastic vulcanizates  

c. Melt processable rubber 

3. Crystalline –amorphous block copolymers 

4. Ionomers 

a. Sulfonated-EPDM rubber  

b. Zn or Na salt of ethylene acrylic acids 

5. Miscellaneous 

 

 

This thesis will be mainly focused on the block copolymers of the TPEs, with 

particular reference to polyurethanes and polyamides.  

 

 

 

b c a 
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1.3.1.2 Polyurethane 

1.3.1.2.1 Background 

 

 

Thermoplastic polyurethanes (PU) have been available for longer than any other 

TPEs. They are the well-known and widely used materials of the segmented 

copolymer class. A typical polyurethane structure is shown below: 

 

 

C O R' O C NH RNH

O O

C O R'' O C NH RNH

O O

x  

 

 

A significant break-through occurred in 1937 when Otto Bayer and his co-

workers discovered the basic isocyanate polyaddition reaction in Main Scientific 

Laboratories of I.G. Farbenindustrie, Leverkusen, Germany.39 The discovery was 

the first step towards the production of polyurethane fibres, trademarked as 

Perlon U, which were expected to compete with the nylons developed by DuPont 

some years earlier.40,41 In the following years the elastomeric properties of some 

polyurethanes were recognized independently by chemists at DuPont42,43 and 

ICI.44 Otto Bayer et al. first analysed the behaviour of polyurethane in a 

theoretical study which contained a truly linear polyurethane preparation 

through a sequence of steps.31 It was the first time that the polyaddition was 

systematically used, which opened the door to the development of many other 

TPEs (a typical process reaction for a PU synthesis is shown in Figure 1.4). Soon 

after, it was discovered that the replacement of the short-chain diol by a long-

chain diol improved the performance of the polyurethanes. This yielded highly 

elastic fibres. Further developments of PU proceeded through the 1950’s and 

1960’s. Polyurethanes were first commercially established in the 1950s by B. F. 

Goodrich in the United States and by Bayer A.G. in Germany. In 1958 

Schollenberger and his group from the B.F. Goodrich Company published a paper 

on a polyurethane which was soluble, offered good elasticity, high abrasion 

resistance and high tensile strength, and could be processed as a 

thermoplastic.45 In 1960 one of the most interesting thermoplastic polyurethane 

http://en.wikipedia.org/wiki/Otto_Bayer
http://en.wikipedia.org/wiki/I.G._Farben
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fibres, spandex (Lycra), was invented by chemist Joseph Shivers at DuPont's 

Benger Laboratory in Waynesboro, Virginia. The aim of the fibre was to replace 

natural rubber46 and nowadays it is in use for ladies’ garments, and is also 

expanding into all areas of clothing, including sports and swimwear, at a very 

rapid rate.47  

 

Today, the thermoplastic PUs are an important group of polyurethane products 

due to their favourable properties such as high hardness for a given modulus, 

excellent mechanical and elastic characteristics, high abrasion and chemical 

resistance, low stress relaxation and resistance to long term cyclic flex failure, 

good resistance to biodegradation, good biocompatibility, structural versatility, 

good wear and tear resistance, good oil and grease resistance, flame retardant 

characteristics, transparency, good processability, and protective barrier 

characteristics.48–55  

 

The properties of thermoplastic polyurethanes are highly influenced by their two-

phase microstructure notably the nature and functionality of the component 

monomers and their ratios. By varying the different parameters the structure of 

the polymer can be tuned and the desired final properties of the material can be 

achieved. Simplified linear block copolymer PU (Figure 1.3) consists of a long 

chain diol, a diisocyanate and a chain extender such as short chain diol.  

 

Figure 1.3: Simplified schematic representation of a PU.56 

 

 

Long chain diol 

Diisocyanate  

Urethane group 

Chain extender 

Hard segment  Soft segment  

http://en.wikipedia.org/wiki/Joseph_Shivers
http://en.wikipedia.org/wiki/DuPont
http://en.wikipedia.org/wiki/Waynesboro,_Virginia
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The hard segment of polyurethane which has a crystalline nature is formed by 

extending a diisocyanate (Table 1.2) with a low molecular weight chain extender 

such as 1,4-butanediol (or alternatively a diamine). The soft segment consists of 

flexible long chain diols (Table 1.1) with a polyether or polyester backbone 

(Table 1.3) which connects it to two hard segments. As mentioned in Section 

1.3.1.1, thermoplastic polyurethane is a phase-separated multiblock, in which 

the hard and soft segments are incompatible at the service temperature due to 

the difference in the chemical structure of both segments. The important 

parameters which control the degree of microphase separation include the 

copolymer composition, block length, crystallinity of the hard segment, their 

production conditions, as well as the difference in the melting points and the 

polarity of both segments.  

 

The rigid hard segments act as physical crosslinks providing filler-like 

reinforcement to the soft segments. The soft segments form an elastomeric 

matrix which accounts for the elastic properties of thermoplastic PU. The melting 

points and polarity of soft segment are much less than those of the hard 

segment.  

 

Due to the reversible cross links in the polymer matrix of PU, at temperatures 

higher than the melting point of the hard segment, the polymer becomes a 

homogenous viscous melt. Hence, polyurethane can be processed using 

conventional extrusion and moulding techniques.53 Cooling the melt results in a 

separation of the phases and reorganising of crosslinks in the matrix. The 

original properties are retained in the final product. 

 

Thermoplastic PUs are one of the most versatile materials which are suitable for 

demanding applications in almost all sectors of industry today. PU’s application 

can be found in engineering materials, coatings, adhesives as well as films.57 PU 

has been meeting the needs of a worldwide marketplace in sportswear and 

footwear because of their protective barrier properties like waterproofness whilst 

providing comfort through moisture vapour transmission.58 Due to excellent 

abrasion resistance, low density, high elasticity and flexibility, PU is ideal for 

producing thinner and lighter shoe soles.59 It has been used considerably in the 

automotive industry for instrument panel skins and several car interior parts, 
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like belts, hoses and tubing, gear knobs, inner door handles, seals, bushings 

etc.51,60,61 PUs have made inroads into biomedical and biotechnological fields due 

to their good biocompatibility, processing ability and excellent physical–

mechanical properties.62,63 

 

 

1.3.1.2.2 Synthesis of polyurethane 

 

 

The synthesis of a polyurethane can be accomplished by two polymerisation 

processes, the “one-shot method”64 or the “prepolymer” method.38 In the 

exothermic “one-shot” process the three reaction components, polyols (Table 

1.1), isocyanates (Table 1.2) and chain extenders are simultaneously mixed and 

all reactions occur at once forming polyurethane. Alternatively polyurethane can 

be formed via the prepolymer method which involves the initial formation of an 

isocyanate functionalized prepolymer. Subsequently the low molecular weight, 

linear isocyanate prepolymer reacts with the added chain extender resulting in 

the formation of the final high molecular weight linear PU. Here for example, the 

hardness of PU can be regulated by increasing the diisocyanate and chain 

extender concentrations. When using diamine as the chain extender, the PU also 

contains urea groups, which raise the melting temperature of the hard segment. 

There have been a number of patents and other literature published on the 

synthesis of thermoplastic polyurethanes.38,65–69 However, because of the broad 

range of hard and soft segment variations possible, the final PU product can be 

tuned from extremely soft flexible, elastomeric materials to more brittle, high-

modulus plastics. 

 

There are many possible variations of polyols, isocyanates and chain extenders 

or curatives, which can be used to manufacture thermoplastic PU. However only 

a limited number are of practical interest to the work presented in this thesis 

and these are discussed in the following sections. 
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1.3.1.2.3 Polyols 

 

 

The long flexible soft segments consisting of high molecular weight polyols are 

mainly responsible for the low temperature properties, the resistance to solvents 

and the weather-resistant properties of PUs. Polyols are primarily variations of 

hydroxyl terminated polyesters and hydroxyl terminated polyethers. The 

polyesters of commercial interest are adipates, polycaprolactones, and aliphatic 

polycarbonates.70 The polyethers used in large scale synthesis are 

poly(oxypropylene) glycols and poly (oxytetramethylene) glycols.70 Some 

commercially available polyols used for PU synthesis are represented in Table 

2.1. Mixtures of polyethers and polyesters are sometimes used and yield a very 

useful combination of properties at an attractive cost.56  

 

Generally more polyesters are used than polyethers. Table 1.1 represents the 

main differences between polyester based and polyether based PUs. The 

polyether based PUs are only of practical importance in cases where excellent 

hydrolysis, microbial resistance and extreme low temperature flexibility are 

required.  
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Table 1.1: Some commercial available polyols for PU synthesis.71 

Polyol Structure 

 

 

Poly (tetramethylene adipate) glycol 

 

OHCH2 O C CH2 C O CH2OH

OO

4 4 n

 

 

 

Poly (ε-caprolactone) glycol CH2 C ORO C CH2 O HOH

O O

5 5 yx

 

 

 

Poly (hexamethylenecarbonate) glycol CH2 O C O CH2 OHOH

O

6 6n  

 

 

Poly (oxytetramethylene) glycol 

 

CH2 O HOH
4 n  

 

 

Poly (1,2-oxypropylene) glycol 

 

CH CH2 O CH2 CH OHOH

CH3CH3

n  
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Table 1.2: Some commercial available isocyanates for PU synthesis.56,70,71  

Isocyanate Structure 

  

 

4,4´-methylene-bis(phenyl isocyanate) CH2OCN NCO

 

  

 

 

2,4-toluene diisocyanate NCO

OCN

CH3

 

 

 

 

1,5- naphthalene diisocyanate 

NCO

NCO  

 

 

 

3,3´-dimethyl-4,4´-biphenyl-

diisocyanate 

 

NCOOCN

CH3

CH3

 

 

1,6-hexamethylene diisocyanate OCN
NCO 

 

 

 

 

5-isocyanato-1-(isocyanatomethyl)-

1,3,3-trimethyl-cyclohexane 

 

CH3

NCO
CH3

CH3

CH3

 

 

 

 

4,4´-diisocyanato-dicyclohexylmethane 
CH2OCN NCO

 

http://en.wikipedia.org/wiki/Hexamethylene_diisocyanate
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Table 1.3: Differences between physical polyester based and polyether based 

PUs.72 

Property Polyester based PU Polyether based PU 

Abrasion excellent acceptable 

Mechanical properties excellent good 

Low temperature flexibility acceptable excellent 

Heat ageing good poor 

Hydrolysis resistance very poor excellent 

Chemical resistance excellent poor 

Resistance to microbes, fungi etc. very poor good 

Adhesion strength good poor 

Injectability (cycle time) excellent acceptable 

 

 

1.3.1.2.4 Isocyanates  

 

 

Isocyanate groups react with chain extenders and compose the hard segment of 

the PU. These hard regions in the PU matrix have relatively inflexible chain 

sequences but regular structures and a high capability for hydrogen bonding 

thus forming physical crosslinks with the soft segments.73 The hard segments 

comprise domains within the continuous softer PU matrix and act as reinforcing 

filler. Among the commercially available isocyanates only a few are appropriate 

for the synthesis of PUs. The isocyanates are divided into two types, aromatic 

isocyanates and aliphatic isocyanates. Isocyanates are commercially prepared by 

phosgenation of primary amines. Some commercially available and suitable 

isocyanates are presented in Table 1.2. Aromatic isocyanates are more reactive 

and economical to use than aliphatic isocyanates. Aliphatic isocyanates are used 

if special properties of the final product are essential, for example more UV- or 

light-stable PUs. 
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1.3.1.2.5 Chain extenders 

 

 

Chain extenders react with isocyanates to produce urethane rich hard segments. 

They are linear low molecular weight and difunctional compounds such as 

ethylene glycol, 1,4-butanediol, 1,6-hexanediol or hydroquinone 

bis(2-hydroxyethyl) ether. Chain extenders, curing agents and crosslinkers 

improve the properties of the final PU products. 

 

The structure of thermoplastic polyurethane is strongly influenced by the 

reaction conditions employed in their syntheses. Examples include temperature, 

type of catalyst and reactivity of components used during preparation. The 

isocyanate is a highly reactive functional group and can undergo a broad variety 

of chemical reactions such as with water, hydroxyl and amine functional groups, 

with other isocyanate groups (forming dimers, trimers etc.) or with unsaturated 

compounds etc.52,74 Because of the complexity of the isocyanate group only the 

most important isocyanate reaction of PU synthesis in the “one shot” process is 

illustrated in Figure 1.4.  

 

 

C N R N C OOn OH R' OH (n-1) OH R'' OH

C O R' O C NHNH

O O

R NH C O

O

R'' O C NH R

O

  
(n-1)x

+ +

 

 

Figure 1.4: “one shot” process reaction for PU synthesis. 

 

 

 

 

 

 

 soft segment  hard segment 
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1.3.1.3 Polyamide – nylon 

1.3.1.3.1 Background 

 

 

Thermoplastic polyamides are generally known as “nylons”. Nylons are 

characterised by their repeating amide linkage - the amide group (-CO-NH-) 

alternating with a (CH2)n, group. Much like PU, nylon is one of the most versatile 

polymers today. The discovery of nylon has been considered as one of the 

greatest achievements of chemistry in the 20th century. Polymeric amides can be 

found naturally in the polypeptides which represent every life form and in the 

composition of silk and wool.75 In the early 1930s the DuPont Company started 

their research on making man-made fibres in order to find a substitute for silk. 

In 1935 Wallace Hume Carothers and his researchers succeeded in creating a 

fibre referred to simply as “6,6” because both of the reactants hexamethylene 

diamine and adipic acid had six carbon atoms.76 Polyamide was developed. 

Although polymer 6,6 was patented in 1937, it took a further 2 years for its first 

appearance in the real world when it premiered at the New York World Fair and 

gained the name 'nylon', the 'ny' part of the name standing for the initials of 

New York. In 1941 researchers from I.G.Farben Industrie's in Germany managed 

to synthesise nylon 6, which was sold as Perlon. Since the discovery of Nylon 6,6 

and Nylon 6 a wide variety of nylon types have been synthesised and 

commercialised. 

 

Nylons are semicrystalline materials with their crystalline character reflected in 

their performance and processing properties. The most common nylons are 

nylon 6, nylon 11, nylon 12, nylon 6,6, nylon 6,10 and nylon 6,12.77 A typical 

linear structure of Nylon 6 is shown below: 

 

 

NH CH2 CH2 CH2 CH2 CH2C

O

n 
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Polyamides can be processed by most thermoplastic processing techniques, e. g. 

injection and blow molding, extrusion, co-injection and gas-assist injection. 

Polyamides are hygroscopic which has to be considered during their processing. 

The moisture content should be below 0.2 % or hydrolytic degradation and 

significant loss of properties may occur.78  

 

Polyamides have high performance characteristics such as excellent chemical, 

physical and mechanical properties.79,80 Many characteristics of nylons are 

attributable to the formation of hydrogen bonds between the NH and CO groups 

of neighbouring macromolecules.81 Nylons are suitable for demanding 

applications in almost all sectors of industry today. Nylons can be found in 

clothing, tyre cords, sails and rigging, fishing lines, insulators, electrical 

connectors, automotive industry, packaging industry, engineering and 

construction industry, racket strings, rope, musical strings, surgical sutures, etc.  

 

 

1.3.1.3.2 Synthesis of nylon 

 

 

A wide selection of nylons with synthesis routes to their production exist. The 

reactions utilised for the synthesis of polyamides are: polycondensation of ω - 

aminocarboxylic acids, polycondensation of diamines with dicarboxylic acids (or 

their derivatives such as acid chlorides) and ring-opening polymerisation of 

lactams.81 

 

By varying the monomer composition many different varieties of polyamides can 

be developed. The monomers required for the synthesis of some commercially 

available nylons are outlined in Table 1.4. The nylon of specific relevance to this 

thesis was nylon 6,6. The simplified synthesis scheme involves the condensation 

polymerization of adipic acid and 1,6 hexanediamine (Figure 1.5).82 
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Table 1.4: Commercial available polyamides with their respective monomers.83 

Polyamide Monomer(s) 

Polyamide 6 ε-caprolactam 

Polyamide 11 11-amino undecanoic acid 

Polyamide 12 laurolactam 

Polyamide 6,6 hexamethylene diamine and adipic acid 

Polyamide 6,10 hexamethylene diamine and sebacic acid 

Polyamide 6,12 hexamethylene diamine and 1,12-dodecanedionic acid 

 

 

CH2 CH2 CH2 CH2 CH2 CH2NH2NH2 C CH2 CH2 CH2 CH2 C OHOH

O O

+

OH22-

NH CH2 CH2 CH2 CH2 CH2 CH2 NH C CH2 CH2 CH2 CH2 C

O

 

O

 

 

Figure 1.5: Synthesis of nylon 6,6. 

 

 

1.3.1.4 Polyethylene terephthalate  

 

 

Polyethylene terephthalate (PET) is a thermoplastic polymer from the 

polyethylene family and is one of the most versatile thermoplastics. Although 

polyethylene has been known since the 19th century, PET was first developed by 

Whinfield and Dixon in 1941 and commercialised by ICI and DuPont.84 Early 
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grades were designed for use as fibres and in 1970s PET was first introduced to 

manufacture drink bottles due to its good barrier properties against oxygen and 

carbon dioxide. PET is made via a direct polycondensation reaction between 

terephthalic acid and ethylene glycol.85 A typical structure is shown below: 

 

 

CCH2 C O CH2CH2O  

OO

n  

 

 

PET exists as both an amorphous and semicrystalline thermoplastic material. It 

has good resistance to mineral oils, solvents and acids but not to bases. The 

semicrystalline PET has good strength, ductility, stiffness and hardness. The 

amorphous PET has better ductility but less stiffness and hardness. PET can be 

processed by extrusion and moulding techniques and is used as synthetic fibres, 

in food packaging, as materials for microwave and ovens and in thermal 

insulation etc. 
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1.4 Gold, silver and silver halide nanoparticles 

 

1.4.1 Background 

 

 

The prefix ‘nano’ is derived from the old greek word nannos and means dwarf. 

One nanometer is 10-9 metres. To provide a reference scale a typical human 

white blood cell size is about 10000 nm, a cell of the bacterium E. coli is 1000 

nm and a polymer coil is 40 nm.86,87  

 

A nanoparticle is defined as a particle with at least one dimension between 1 and 

100 nm. In this size-range quantum effects start to predominate and a decrease 

in the particle size of metal nanoparticles to the nanometer length scale 

increases the surface to volume ratio significantly. Hence, the surface chemistry 

and physical properties become much more important. These two factors may 

provide novel and unique physical, chemical and biological properties to the 

metal nanoparticles with respect to their bulk forms.  

 

The origin of nanoparticles dates back to ancient Egyptian and Roman times88 

where the brilliant colours of silver and gold metal colloids were used to colour 

glass. In the 4th century AD Romans utilised colloidal gold combined with smaller 

amounts of silver and copper nanoparticles as colourants for the Lycurgus Cup 

(Figure 1.6) which represents one of the outstanding achievements of the 

ancient glass industry.89 
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Figure 1.6: The Lycurgus Cup in a) reflected and b) transmitted light, 

Department of Prehistory and Europe, The British Museum.89 c) The deep red 

colours in some stained glass windows created during the Middle Ages were the 

result of the optical properties of the gold nanoparticles. 

 

 

In the Middle Ages gold and silver nanoparticles were used throughout Europe in 

stained glass windows of cathedrals and by the Chinese in colouring vases and 

other ornaments. Medieval artisans mixed metal salts for example gold chloride 

and silver nitrate into the molten glass and obtained a variety of different 

colours. Silver nanoparticles stained the glass yellow, while gold and copper 

nanoparticles were utilized to make ruby glass. However, the science behind it 

was not understood until the 19th century. In 1857 Michael Faraday observed 

that colloidal gold exists in the reduced state as extremely fine particles and 

these finely divided metals are responsible for their optical properties. When he 

reduced an aqueous solution of HAuCl4 using white phosphorus,90 his samples 

resulted in a stable, ruby-red colour, and some of them are still conserved today 

in the Faraday Museum in London. From his studies of the optical properties of 

thin films prepared from dried colloidal solutions, he elucidated the mechanism 

of formation of colloidal metals.91  

 

In 1908 by the solving Maxwell’s equations for spherical particles, with 

appropriate interface conditions, Gustav Mie first provided a theoretical 

quantitative explanation that the colour reflected by exceedingly small metal 

particles is due to strong visible absorptions known as Surface Plasmon 

Resonances (SPRs).92 These arise from the interaction of light with metal 

a b c 
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nanoparticles which can generate hybrid surface waves (light waves coupled to 

free electrons in a metal), referred to as surface plasmons.88 

 

 

1.4.2 Surface Plasmon Resonance 

 

 

The electron plasma in metal nanoparticles is spread in diverse spatial 

dimensions depending on the metal nanoparticle shape and it is smaller than the 

wavelength of light.93 When excited with incident electromagnetic radiation, the 

free electrons are displaced by the electric vector and a net charge difference at 

the surface of the nanoparticle originates. The main restoring force between the 

electron cloud and nuclei is the Columbic attraction.94 A dipolar oscillation of all 

the electrons with the same phase is created (Figure 1.7).93 The observed colour 

is due to the strong absorption of the metal nanoparticles when the incident 

photon frequency is resonant with the collective oscillation of the conduction 

band electrons. The resonance wavelength is defined as surface plasmon 

resonance band (SPRB). Because of the d-d transitions, the SPRB of silver and 

gold nanoparticle is localised at the visible wavelength of electromagnetic 

radiation.95  

 

 

 

Figure 1.7: Schematic representation for the excitation of the dipole surface 

plasmon oscillation for a metal nanosphere.94  

E - field 

Light 

Metal nanospheres 

Surface charges 
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The frequency (i.e., absorption maxima or colour) and intensity of the SPRB 

depend upon a variety of factors, such as the size and shape of the metal 

nanoparticles as well as on their dielectric environment.96  

 

The optical properties of dispersions of spherical metal particles with a radius R 

can be calculated by Mie theory, through expressions for the extinction cross 

section Cext (scattering + absorption). For very small particles with a frequency 

dependent, the complex dielectric function, ε = ε’ + iε’’, surrounded by a 

medium of dielectric constant εm, this can be expressed by the equation shown 

below: 

 

 

 

 

 

The resonance condition is fulfilled when ε' = - 2εm for spheres. With increasing 

particle size, higher order modes become more dominant. As the size increases, 

the plasmon absorption band shifts to longer wavelengths and the observed 

colour changes towards blue. The light cannot polarise larger nanoparticles 

homogeneously and retardation effects lead to the excitation of higher order 

modes.93 The optical absorption spectra depend directly on the size of the 

nanoparticles. This phenomenon is known as the extrinsic size effect.93 

Aggregation of colloidal metal particles can also lower their plasmon frequencies 

and shifts the plasmon absorbance to longer wavelengths.  

 

The shape of the nanoparticle is another factor which has a large influence on 

the presence and position of SPRB. A material with a large flat surface does not 

feature any resonance band due to surface plasmons which exhibit a strictly 

longitudinal propagation. They are not able to couple with light and the electric 

field will be uniform.  
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The interaction of electromagnetic radiation with a metal nanosphere causes a 

dipole which oscillates in phase with the electric field of the incoming light. For 

that reason spherical nanoparticles exhibit one distinct SPRB. For nonspherical 

particles, such as rods and ellipsoids, the resonance wavelength is influenced by 

the orientation of the electric field with respect to the metal nanoparticle. Hence, 

they display two distinct SPRBs due to longitudinal and transversal oscillations of 

electrons (Figure 1.8).95 Concerning the dimensionality of anisotropic shapes, 

the frequencies related with the diverse resonance modes can be different, 

therefore optical properties can be largely affected. 

 

 

 

Figure 1.8: a) Schematic presentation of the interaction of electromagnetic 

radiation with a metal nanosphere: a dipole is induced, which oscillates in 

phase with the electric field of the incoming light. b) Transversal and 

longitudinal oscillation of electrons in a metal nanorod.96 

 

 

The surface plasmon band of metal nanoparticles is greatly influenced by the 

local dielectric environment. Here the plasmon band position depends on the 

refractive index of the surrounding medium. The dependence of the wavelength 

of the SPRB on the medium dielectric constant can be determined 

a 

b 
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spectroscopically from reflectance and absorbance measurements. For spherical 

nanoparticles where λ >> particle diameter, the resonant frequency is described 

by the equation:97 

 

 

 

 

 

where λ is the resonance wavelength, λp is the wavelength of the bulk plasmon, 

ε∞ is the high frequency dielectric constant of the metal and εm is the 

dielectric constant of the medium. The temperature affects the dielectric 

constant, for that reason this factor has an influence on the position of the SPRB 

as well.  

 

Figure 1.9 represents a summary of silver and gold nanoparticles with different 

morphologies, compositions, and structures, with their respective typical 

locations of SPR absorption bands in the visible range. 

 

 

 

Figure 1.9: Summary of silver and gold nanoparticle morphologies with their 

respective typical locations of SPR bands in the visible range.98 

 

 

The exploration of unique physical, chemical and biological properties of noble 

metal nanoparticles has gained momentum as the metal nanoparticles exhibit 

enormous potential to be utilised in a variety of applications such as catalysis, 

optics, electronics, environmental biomedical and biotechnology, medical 



27 

diagnostics, high performance engineering materials, conducting adhesives, 

surface enhanced Raman scattering, etc.99–105 

 

 

1.4.3 Optical properties of gold and silver nanoparticles 

 

 

As described above, the position of the SPR absorption band depends on the size 

and shape (Figure 1.10) of the metal nanoparticles as well as the nature of the 

surrounding medium. 

 

 

 

Figure 1.10: UV-Vis spectrum of gold nanoparticles with different shapes and 

sizes.106 
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As the size of the nanoparticle increases, the surface plasmon resonance band 

shifts to the red.107 For example, there is a single, strong SPR absorption band in 

the visible region around 520 nm for a spherical gold nanoparticle of 20 nm 

diameter which red shifts to 560 nm as the nanoparticle diameter increases to 

100 nm.108 

 

However, for nanoparticles of anisotropic shapes, several plasmon resonance 

modes could appear resulting from diverse orientations of the multiple particle 

axes relative to the electric field of light.107 Two typical absorption bands exist in 

the UV–visible absorption for gold nanoparticles of anisotropic shapes: one 

corresponds to the absorption of transverse plasmon band, and at the longer 

wavelength a band that is ascribed to the absorption of the longitudinal plasmon 

band (Figure 1.10).109 For instance gold nanoparticles consisting of a mixture of 

triangular/hexagonal shaped and smaller, close to spherical particles show one 

SPRB at 540 nm and another at 680 nm.110 Secondly, nanorods exhibit two 

plasmon resonances, one at about 520 nm for gold (transverse oscillation of the 

electrons) and the other due to the longitudinal plasmon resonance at longer 

wavelengths. The transverse surface plasmon resonance is at the same 

wavelength as the plasmon resonance of spheres and is not dependent on the 

aspect ratio. However, the absorption band of the longitudinal surface plasmon 

resonance increases with larger aspect ratios (Figure 1.10).106  

 

The more irregular nanoparticles possess the more red-shifted and wider 

absorption peaks.111 Plasmon resonance UV-Vis spectra with three or more SPRB 

have also been studied for silver nanocrystals with different shapes, such as 

silver nanodisks and silver nanoprisms.93,112,113 

 

Another influential parameter is the nature of the surrounding medium to the 

nanoparticles. The refractive index of the solvent has been shown to provoke a 

shift of the SPRB. For example, the UV-Vis spectroscopy measurements have 

shown that a solution of gold nanoparticles of 5.2 nm average diameter results 

in an 8 nm shift in SPRB when the solvent refractive index is varied from 

nd
20 = 1.33 to nd

20 = 1.55.110 The SPRB of a silver nanoparticle of 80 nm in 

diameter in water is located at 445 nm. The same nanoparticle in air reveals a 

plasmon resonance peak with a wavelength of 380 nm, giving a blue shift of 
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65 nm; hence, the observed colour turns from yellow to yellow green due to the 

shoulder of this 380 nm peak being in the violet end of the spectrum. 

 

 

1.4.4 Synthesis of gold and silver nanoparticles  

 

 

Nowadays numerous chemical and physical procedures exist for the preparation 

of noble metal nanoparticles. Nanoparticles can be synthesised with great 

precision by controlling the size and shape of the nanoparticle. Nanoparticles are 

produced generally by the reduction of their corresponding precursor salt in the 

presence of a stabilising agent. Physical methods usually need a high 

temperature (over 1000 °C), vacuum and expensive equipment.114 Chemical 

methods are more convenient and do not require complex equipment. Chemical 

methods involve reduction using a reducing agent, electrochemical reduction,115 

photochemical reduction.116,117 In general, the chemical reduction reactions 

involve reducing agents that react with metal salts in an aqueous, organic or 

two-phase system. 

 

Nanoparticles have a very high surface area to volume ratio resulting in a higher 

reactivity thus they generally undergo an agglomeration based on van der Waals 

forces. To avoid the aggregation or precipitation, various stabilisers are used 

which bind to the surface of the metallic nanoparticles, imparting high stability 

and the desired charge and solubility properties. The main classes of stabilisers 

described in the literature are carboxylic acids, trisodium citrate (TSC), tannic 

acid, polymers and block copolymers; P, N, and S donors (e.g., thiols, 

phosphanes, amines, thioethers); solvents such as THF, THF/MeOH, and 

propylene carbonate, long-chain alcohols; surfactants and dendrimers.118 Apart 

from stabilising the nanoparticle dispersion, the stabilising agents can also play 

an important role in controlling the particle morphology.119 

 

Tetrachloroauric acid is the most commonly used precursor for the synthesis of 

gold nanoparticles and silver nitrate is suitable for production of silver 

nanoparticles. Reducing agents such as tri-sodium citrate, sodium or potassium 
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borohydride,120,121 hydrazine,122 ascorbic acid,123 dimethylformamide,124 salicylic 

acid125 are often used. 

 

The first scientifically reported preparation of gold nanoparticles was done by 

Michael Faraday. By using an aqueous solution of gold chloride and phosphorus 

as the reducing agent which was dissolved in a solution of carbon disulphide, he 

prepared stable gold nanoparticles. In 1951, almost one century later, Turkevich 

described one of the most popular methods for synthesis of gold 

nanoparticles.126 The method is based on reduction of gold tetrachloride to gold 

nanospheres using boiling trisodium citrate solution which acts as the reducing 

agent and simultaneously as the stabilising agent. The reaction is shown below: 

 

 

 

 

By varying the concentration ratio of gold salt and tri-sodium citrate, the 

nanoparticle diameter can be tuned over a range of 10 to 100 nm. The same 

method can be applied to the reduction of silver salts, but control of the particle 

size is very limited.96 

 

An alternative method for the synthesis of metal nanoparticles (in particular 

gold) is the two-phase method which was published by Brust and co-workers in 

1994.127,128 They reported on reduction of controlled size gold nanoparticles 

which were thermally stable and air stable. In general, the method includes 

mixing aqueous gold tetrachloride solution with an organic solvent such as 

toluene. Following the addition of a phase transfer agent such as 

tetraoctylammonium bromide, a phase separation occurs and the dissolved gold 

salt is transferred to the organic phase. Subsequent addition of stabilising agents 

such as organic thiols (dodecanethiol) and reducing agents such as sodium 

borohydride leads to the formation of thiolate protected gold nanoparticles 
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(Figure 1.11). By variation of the metal salt, stabilising agent and reducing 

agent concentration, the nanoparticle size can be tuned. 

 

 

 

Figure 1.11: Brust’s two-phase method for gold nanoparticle synthesis.129 

 

 

Microemulsions, copolymer micelles, reversed micelles, surfactants, and 

membranes have also been utilized in the two-phase system for synthesis of 

gold nanoparticles.110 The surfactants provide the formation of the 

microemulsion or the micelle maintaining a favourable microenvironment, also 

the extraction of metal ions from the aqueous phase to the organic phase is 

ensured. 

 

Recently, more advanced attempts have been made towards implementing 

‘green chemistry’ by using both uni- and multicellular organisms in order to 

create metal nanoparticles.130–132 The advantages of the metal nanoparticles 

produced by plants, algae, fungi, bacteria and viruses include the energy-

efficient synthesis and toxic organic solvents, external reducing agents and 
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stabilising agents are avoided. The synthesis is expected to yield novel and 

complex structural entities compared with those obtained by the conventional 

methods.133,134 

 

As mentioned in Section 1.2, wool has been utilised as a redox active 

biotemplate. Gold and silver nanoparticles have been reduced in situ. The 

controlled reduction of Au3+ or Ag+ to Au0 or Ag0 respectively with the coupled 

oxidation reaction of S and N in the cystine amino acids in the keratin protein of 

the wool fibre, leads to chemical bonding between the metal nanoparticles and 

the sulfur groups of the wool.21,22 The matrix of the wool stabilises the metal 

nanoparticles.  

 

Other methods for the syntheses of noble metal nanoparticles include 

sonochemical reduction,135,136 laser ablation,137 electrochemical or ultrasound-

assisted reduction,138,139 UV-, laser-, or microwave-assisted syntheses,140–142 γ-

radiolysis143 and thermal decomposition.144 

 

 

1.4.5 Silver halide  

1.4.5.1 Background  

 

 

When silver undergoes a reaction with a halogen a silver halide compound is 

formed which comprises a mix of ionic and covalent bonding. The difference, 

relative to their alkaline halide counterparts, is due to the presence of the 4d 

electrons in silver which are nearly degenerate with the halide valence p 

electrons, resulting in a strong hybridisation between them.145 Silver halides are 

given a pseudo-chemical notation AgX, where X represents one of fluoride, 

chloride, bromide or iodide. However, for the purpose of this thesis X will refer 

only to chloride, bromide and iodide.  

 

Because of their unique characteristics photosensitive silver halides are used in 

photographic materials, X-ray films and photocatalysis.146,147 For instance AgCl, 
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AgBr and AgI, known as widely applied photosensitive materials, were firstly 

reported as photocatalysts for water splitting in 1999.148,149 

 

AgX crystals, with the exception of one crystal modification of AgI, have cubic 

structures. At atmospheric pressure and low temperature AgCl and AgBr have 

the rock salt NaCl structure, which is typical of ionic compounds.150 Silver iodide, 

on the other hand, is found in the face centred cubic (fcc) zincblende (γ-AgI 

form), which is metastable, often coexisting with the hexagonal wurtzite (β-AgI 

form) phase where silver cations are tetrahedrally coordinated to iodide ions. 

This type is linked with covalent compounds.151 At elevated temperature (420 

K), β-AgI will undergo a first-order phase transition and transform into the α-AgI 

phase.152 

 

Silver halides are semiconductors and their nanosized crystals show notable 

quantum size effects; AgI was one of the first materials in which excitonic 

quantum confinement effects were detected.153 Another remarkable property of 

silver halides is their high ionic conductivity. The transport properties of these 

materials at room temperature are dominated by intrinsic ionic defects.154 Such 

defects are formed when silver ions are removed from their regular site and 

transferred to an interstitial site leaving silver ion vacancies within the silver 

halide crystal lattice. The ionic conductivity in such crystallites may be up to two 

orders of magnitude higher than in a bulk crystal.155 Ionic conductivity can be 

enhanced either by the dispersion of a second phase in the ionic conductivity 

matrix or by the heterogeneous mixture with other solid ionic conductors.156 

Interesting variations in the ionic conductivity performances can be expected 

when nanosized crystals are used as the dispersed phase, due to critical size-

dependent changes in the nanoparticle’s free energy. 

 

Silver halides exhibit antimicrobial properties (Section 1.4.6). However, the most 

well-known characteristic of silver halides is their behaviour when exposed to 

light, which makes them suitable as source materials in photographic processes. 
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1.4.5.2 Photochemistry of silver halide  

 

 

Since the 16th century scientists observed the darkening of silver salts upon 

exposure to light – a fundamental process for photography. In the 19th century 

Louis Daguerre plated silver onto sheets of copper and exposed them to iodine 

vapour. The iodine oxidised the silver as shown in equation below: 

 

 

2 Ag(s) + I2  2 AgI(s) 

 

 

Daguerre kept the produced plates in the dark. He used a lens to focus an image 

of a person onto a plate and everywhere where light fell on the coating, a black 

deposit of finely divided silver formed, this image was called a “daguerreotype”. 

Film photography is not much different to the process as that used by Daguerre. 

Black and white photographic film is composed of microscopic crystals of silver 

bromide and small amounts of silver iodide in gelatine coated on cellulose 

acetate plastic sheet. When the emulsion is exposed to light, the following 

mechanism for the photochemical reaction, first proposed by Gurney and Mott 

takes place:157 the absorption of a photon by the silver halide excites an electron 

from the valence band to the conduction band of the crystal, leaving an electron 

hole in the valence band. The photo-electron migrates to a trap (either a defect 

or an impurity centre) in the lattice where it reduces a silver ion to atomic silver. 

Following this, photo-electrons and mobile interstitial silver ions migrate 

alternately to the same trap to enhance the cluster of silver atoms. The positive 

hole can also diffuse to the surface of the crystal, where it oxidises a halide ion 

to halogen atom. The reactive halogen atom is prevented from re-oxidising 

reaction with the silver atom by the presence of sulphide compounds in the 

surrounding gelatine. This process is called photosensitisation.  

 

 

The equation shown below represents silver halides (X=Cl, Br, I, F) when 

exposed to light: 
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hv + AgX  Ag+ + e- + ½ X2 

 

 

The electron reduces silver ion to atomic silver: 

 

 

Ag+ + e-  Ag0 

 

 

In the developing process only the sensitised crystals are reduced to metallic 

silver by means of reducing agents such as hydroquinone which is oxidised to 

quinone as shown below: 

 

 

 

 

 

 

In this process the amount of metallic silver is increased by a factor of about 

1010, thus intensifying the image by the same factor. The undeveloped silver 

halide crystals are dissolved by a solution of sodium thiosulfate in the fixing 

process:  

 

 

AgBr(s) + 2 S2O3
2-  [Ag(S2O3)2]3- + Br- 

 

 

Without this step the non-sensitised crystals would continue being reduced to 

silver by light and the film would eventually turn black. Following the fixing a 

negative is created. When light is shone through the negative onto photographic 

paper which is covered with photographic emulsion, a positive print is obtained 

by essentially the same process. 

OHOH +OO 2e
-

+ 2H
+
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1.4.5.3 Synthesis of silver halide nanoparticles 

 

 

Among the variety of methods developed for the preparation of silver halide 

nanoparticles, microemulsions, or reverse micelles are popular as these are easy 

to handle, thermodynamically stable, systems which provide production of highly 

homogeneous materials with controlled particle sizes.158–161 Microemulsions are 

colloidal dispersions of two immiscible solvents which are stabilised by a layer of 

surfactant molecules at the liquid–liquid interface. Microemulsions may be 

classified as water-in-oil (w/o) or oil-in-water (o/w) depending on the dispersed 

and continuous phases.162 In a microemulsion the diameter of the micelles is 

typically of 3–20 nm, and co-surfactants, such as alcohols, are often added to 

support a more rigid interface, with a higher curvature towards the inside of the 

micelle.163 Silver halide nanoparticles are prepared by mixing two identical 

microemulsions, containing Ag+ and X− reactants separately.164–166 Upon mixing 

of both microemulsions, reverse micelles containing the two reactants migrate 

due to mixing and Brownian motion, collide, and their surfactant surface layers 

open up allowing the reaction to take place. The resultant precipitate is stabilised 

in the water phase by the surrounding surfactant layer upon decoalescence of 

the reverse micelles. Alternatively, a silver containing aqueous solution can be 

introduced in an organic microemulsion which contains a halide releasing 

material, or vice versa. An example for the preparation of silver halide 

nanoparticles via a microemulsion method involves the solubilising of two 

aqueous solutions into dioctyl sodium sulfosuccinate (surfactant) and alkane (n-

heptane) mixtures under stirring. The aqueous phase in the first microemulsion 

is composed of silver nitrate whereas the aqueous phase in the second 

microemulsion contains either NaCl or NaBr. Mixing of both microemulsions 

results in exchange of reactants between water droplets and allows precipitation 

of AgCl or AgBr nanoparticles.162 

 

Due to its simplicity and effectivity, aqueous synthesis of nanoparticles is an 

attractive method to produce silver halide nanoparticles. The method involves 

metal ions present in the aqueous solution of metal salt being reduced by a 

reducing agent. The synthesis is carried out in the presence of stabilisers in 
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order to avoid undesired agglomeration of the nanoparticles. For precipitation of 

silver halide nanoparticles, as opposed to using reducing agent, HCl or NaCl can 

be added to an aqueous solution containing AgNO3 in the presence of a stabiliser 

such as PVP or PVA.167,168 The chemical reaction is shown below: 

 

 

AgNO3 + HCl  AgCl + HNO3 

 

 

The large difference in the lattice energies between AgCl and AgNO3 is the 

driving force for this reaction. 

 

The silver halide nanoparticles thus formed can be used as precursors for the 

synthesis of Ag/AgX nanoparticles using the photoactive properties of silver 

halide materials. When exposed to light, silver clusters or domains are formed at 

the surface of the silver halide nanoparticles and can be described by a 

mechanisms first reported by first proposed by Gurney and Mott (Section 

1.4.5.2).  

 

 

1.4.5.4 Optical properties of silver halides 

 

 

Silver halides have an intrinsic absorption in the blue region of the UV-Vis 

spectrum. AgCl has a direct and an indirect band gap of 5.2 eV (~ 240 nm) and 

3.3 eV (~ 380 nm) respectively; with regard to AgBr the direct band gap is 4.3 

eV (~ 290 nm) and the indirect band gap is 2.7 eV (~ 460 nm);169 the direct 

band gap of γ-AgI is found to be 2.9 eV (~ 430 nm).170 Thus silver chloride and 

silver bromide as bulk- or nanoscale crystals are white in colour, whereas α-AgI 

gives dark brown nanoparticles, and β- and γ-AgI nanoparticles are yellow.171,172 

 

As a result of their photosensitive properties, silver halides are not stable under 

light radiation. Once exposed to UV-Visible light, silver halide particles undergo a 

self-photosensitisation resulting in partial reduction of Ag+ to Ag0 nanoparticles 
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at the surface of the silver halide particles, thus forming Ag/AgX nanoparticles. 

Once sufficient Ag0 particles are formed, the resultant Ag/AgX particles become 

photo-stable under further irradiation, preventing a total reduction of Ag+ to 

Ag0.173–175 The stability can be explained as follows. The surface of AgX particles 

is most likely terminated by X- ions, therefore it is negatively charged.174 The 

formed silver nanoparticles on the surface of an AgX particle polarise their 

electron distribution so that the regions of their negative charges are far from 

the Ag/AgX interface and their positive charges are close to the Ag/AgX 

interface. Under irradiation, due to the dipolar properties of the surface plasmon 

resonance effect of a silver nanoparticle, an absorbed photon would be efficiently 

separated into an electron and a hole such that an electron is transferred to the 

surface of the nanoparticle as far away as possible from the Ag/AgX interface, 

and a hole to the surface of the AgX particle bearing the nanoparticle.176 The 

migration of photo-excited electrons away from the AgX core avoids further 

photo-reduction of AgX to Ag0, resulting in stability of these Ag/AgX particles.177 

The combination between the polarisation field provided by the AgX core and the 

enhanced absorption of visible light by SPR of the Ag nanoparticles assists 

electron hole separation and interfacial charge transfer which allow these 

Ag/AgX materials to be utilised as plasmonic photocatalysis under visible light 

for the degradation of organic molecules.168,177–179 However, due to time 

constrains in the present research programme the photocatalytic properties of 

Ag/AgX hybrid materials could not be investigated, thus the photocatalytic 

Ag/AgX materials will not be discussed in detail.  

 

Once exposed to light, the Ag/AgX particles change their colour, for instance 

silver chloride or silver bromide nanoparticles change from being white to purple 

upon such exposure to light.22,180 AgCl has a wide band gap of 3.3 eV, therefore, 

absorption of light with a wavelength larger than 380 nm is not possible by AgCl 

alone. There are literature reports on wide absorption band of silver/silver 

chloride or silver/silver bromide nanoparticles in the wavelength range of 

420 - 800 nm attributable to the SPR effect of metallic Ag nanoparticles which 

are formed on the surface of the AgCl or AgBr nanoparticles respectively.174,181–

183 As mentioned in Section 1.4.5.4, silver nanoparticles exhibit unique optical 

properties which arise from the collective oscillation of the conduction electrons 

upon interaction with electromagnetic radiation. The frequency, shape and 
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amplitude of the maximum absorbance of the surface plasmon absorption band 

depend on their morphology and size distribution as well as the effective 

dielectric constant of the surrounding medium. For example, decreasing the 

refractive index, n, of the surrounding environment will shift the SPR band of 

silver nanoparticles to shorter wavelengths. Ware et al. reported purple silver 

halides with absorption maxima at ca. 550 nm after exposure to light.184 The 

absorption band arose due to 10 nm silver nanoparticles which were formed 

within the silver halide lattice. Generally, silver particles of this size dispersed in 

water (n=1) exhibit their characteristic SPR absorption at around 400 nm.21,185 

However, since the silver particles were surrounded by a silver chloride matrix 

with a refractive index of n=2 the absorption band is shifted towards a higher 

wavelength.184 Shape and size distribution of silver nanoparticles also create a 

variety of SPR absorption band shifts. 

 

 

1.4.6 Antimicrobial properties of gold and silver 

 

 

The concept of the use of gold as an antibacterial therapy has a long history and 

can be traced back to the Chinese in 2500 BC. In the 8th century AD, gold was 

considered to be the cure-all for every known disease186 In the 13th century 

Roger Bacon recommended auric chloride for the treatment of leprosy.187 In 

1890, gold cyanide was used for in vitro inhibition of tuberculosis. Around 1925 

the first clinical tests were carried out on bacteriostatic effect of gold towards 

bacilli.188 Since chronic polyarthritis was believed to be infectious disease, some 

patients suffering from rheumatoid arthritis also received the same gold 

compounds, gold therapy was shown to be clinically efficient.188 Extensive 

research since has revealed that a variety of gold complexes were active against 

a broad spectrum of microorganisms. The antimicrobial activity of gold(III) 

complexes is believed to be due to the instability of Au(III) in biological 

environments. Au(III) complexes often have strong oxidising properties as they 

are able to be reduced to Au(I). The major mode of action involves the highly 

specific coordination of Au(I) to thiol groups n proteins, and particularly with L-

cysteine, inhibiting processes essential to cellular survival.189 
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Several studies have shown that gold nanoparticles alone do not kill 

bacteria.190,191 However, when used in conjunction with a photosensitiser, they 

enhance the photosensitiser's ability to kill bacteria. Gold nanoparticles prepared 

by using hyperbranched poly(amidoamine) with terminal dimethylamine groups 

(HPAMAM-N(CH3)2) as the reducing and stabilising agent192 could inhibit the 

growth and multiplication of gram positive or gram negative bacteria and fungi 

efficiently. Although the antimicrobial mechanism of gold nanoparticles is not 

fully understood, it is likely to be due to existing Au(I) and Au(III) species on the 

surface of the particles making the particles bacteriostatic.  

 

The antimicrobial properties of silver in various forms have been used 

throughout history. The ancient Greeks, Romans, Egyptians, and many others 

used metallic silver vessels for preservation of water and wine.193,194 Alexander 

the Great used to drink only from silver vessels. In the 19th century silver nitrate 

became the most useful tool in the treatment of burns or wounds.195 Today silver 

based antimicrobial systems can be found in the medical field (e.g. orthopedic 

implants, prostheses, vascular grafts, wound dressings, cream gels, surgical 

instruments), food packaging, home appliances (e.g. refrigerators, washing 

machines), cosmetics and hygiene products (creams, lotions, soaps, deodorants, 

toothbrushes), textiles (clothing, underwear, socks), in air or water purifications 

systems, antifouling and antimicrobial paints and many more.141,196–198 

 

Silver is considered to exhibit low toxicity to human cells.199 The biocidal 

characteristics of bulk silver arise through the constant oxidation and release of 

very small amounts of silver ions to an aqueous or moist environment, making 

silver cups, vessels, pots famous for their antimicrobial activity. Contrary to the 

biocidal effects of ionic silver, the antimicrobial activity of colloidal silver particles 

depend on their size, and a decrease of the particle size reflects in the increase 

of the antimicrobial effect.200 Morones investigated the effect of silver 

nanoparticles with a broad size distribution, ranging between 1–100 nm on gram 

negative bacteria.201 The results indicated that the only silver nanoparticles to 

present a direct interaction with the bacteria preferentially had a diameter of ca. 

1–10 nm. Not only the size but also the shape202 of the nano silver can have 

significant effects on their antimicrobial activity against a broad range of 

microorganisms.203,204 Pal reported that truncated triangular silver nanoplates 
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displayed the strongest biocidal action, compared with spherical and rod-shaped 

silver nanoparticles.202 Silver nanoparticles exhibit biocidal effects in over 650 

disease-causing organisms (bacteria, viruses, fungi, parasites etc.)114,205 in the 

body even at low concentrations.206 

 

Although the antimicrobial activity of silver ions, silver nanoparticles, and silver 

nanoparticle polymer composites is believed to be due to morphological and 

structural changes found in the bacterial cells, to date the exact antimicrobial 

mechanism of silver is still not fully understood. 

 

In respect of silver ions, it has been reported that silver ions inactivate vital 

proteins by reacting with thiol groups of the proteins.207 Other researchers report 

on interaction of silver ions with peptidoglycan in the cell wall and the plasma 

membrane, resulting in cell lysis. The silver ions are also capable of disrupting 

protein synthesis and inhibiting DNA replication of the microorganisms.208–210 It 

has been reported that silver nanoparticles react in a similar way to silver ions. 

For comparison, there are reports in the literature that show there is an 

electrostatic attraction between the negatively charged bacterial cell walls and 

the positively charged surface of the nanoparticles.211 Deposition of these 

nanoparticles on the bacterial surface can affect cell wall permeability, thus 

altering the normal transport of electrolytes and other metabolites.212 Silver 

nanoparticles can directly enter the cell201 causing the changes of redox cycle in 

the cytosol, interference with the cellular S-containing compounds, intracellular 

radical accumulation, and dissipation of the proton motive force for ATP 

synthesis.212–214 Silver nanoparticles are not inert and are sensitive to oxidation 

in aqueous solutions exposed to air.215,216 Thus, the efficacious properties of 

silver arise through the partial oxidation and release of silver ions to an aqueous 

or moist environment217. The dissolution of silver nanoparticles to silver ions in 

the bacterial cells results in enhanced antimicrobial activity.218 Although the 

explanation remains unclear, it is accepted that these effects rely either on the 

increase in released silver ions or the increase in the reactivity of the particles 

resulting from the high active surface area. 

 

The possibility of incorporation of metal nanoparticles within a polymer matrix 

has attracted considerable global attention. Polymers are found to be very 
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effective support for the spatial stabilisation of metal nanoparticles; additionally 

the matrix provides a physical immobilisation of the nanoparticles at the polymer 

surface. The incorporation of metal nanoparticles into the polymer or paint 

matrix can enable a controlled slow migration of the antimicrobial metal ions 

or/and nanoparticles into environment due to the porosity of the matrix, thus 

making the new composites a powerful option for a variety of antimicrobial 

applications. There are diverse techniques to introduce metal nanoparticles into 

a polymer matrix. Several antimicrobial polymer nanocomposites have been 

prepared by mixing pre-formed particles with polymers. However, generally the 

production of a metal nanoparticle polymer composite involves chemical in situ 

reduction of metal ions (e.g. Ag+ from AgNO3) resulting in formation of the 

metallic nanoparticles within the polymer matrix.219  

 

A nylon 6,6 nanocomposite containing silver nanoparticles (1 wt % silver in the 

polymer) has been successfully produced by means of ultrasound-assisted 

reduction method of silver nitrate.220 The composite was successfully tested 

against Staphylococcus aureus and Pseudomonas aeruginosa. In other work, 

porous films with silver were produced from PVA electrospun fibres doped with 

AgNO3 (10 wt %).221 In these films the proliferation and biological activity of 

yeast cells was effectively inhibited. Polycarbonate and silver nanoparticles were 

mixed and moulded to prepare a composite in dichloromethane.222 The 

composite showed antifungal properties. Ag nanoparticles could be successfully 

loaded on the DBD (dielectric barrier discharge) plasma-treated woven PET 

surface by submerging into AgNO3 aqueous solution.223 The Ag nanoparticle-

loaded woven PET exhibited a strong antimicrobial activity against both Staph 

aureus and E. coli. Hyperbranched polyurethane composites containing silver 

nanoparticles (1, 2.5 and 5 wt % silver in the polymer) were prepared by an in 

situ polymerisation process.224 Dimethylformamide (DMF) was acting as a diluent 

as well as a reducing agent for silver ions. The composites showed antimicrobial 

activity against Staphylococcus aureus and Escherichia coli. Also antifouling 

activity was successfully tested against the yeast Candida albicans. 

 

Silver nanoparticle polymer composites show a low release rate of silver ions. 

Replacing of the silver nanoparticles with a moderately soluble silver salt can 

significantly improve the dissolution rate of silver ions and therefore increase the 
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antimicrobial efficacy in the short term. Solubility constants of some silver salts 

are listed in Table 1.5. Apart from silver nitrate these are all very small. Silver 

halides such as AgCl or AgBr which have low solubility exhibit the potential to 

provide a constant low concentration of silver ions in aqueous or moist 

environments over extended periods of time. 

 

 

Table 1.5: Solubility constants of silver compounds.195 

Silver compound Solubility constant  

AgNO3 51.60 

Ag2SO4 1.58 x 10-5 

Ag3PO4 2.51 x 10-18 

AgCl 1.58 x 10-10  

AgBr 7.70 x 10-13 

AgI 1.50 x 10-16 

Ag2S 7.94 x 10-51 

 

 

Furthermore, visible light irradiated silver halide species produce oxidative 

radicals (OH·, O2
-·, H2O2) which inactivate bacteria by decomposing its cell wall 

and cell membrane leading to the leakage of intracellular molecules and causing 

the cell death.225 

 

Antimicrobial composites consisting of a cationic polymer, 

poly(4-vinyl-N-hexylpyridinium bromide) and silver bromide nanoparticles have 

been produced.114 The bromide anions associated with the polymer side chains of 

the amphiphilic pyridinium polymer were precipitated by the addition of a silver 

salt. Surfaces coated with these composites resisted biofilm formation. Silver 

chloride nanoparticles were synthesized inside the pores of a mesoporous silica 

(SBA-15).18 The AgCl SBA-15 composites were blended with polypropylene into 

pellets by injection moulding which showed effective antimicrobial results against 

E. coli. 
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1.5 Antifouling paints 

 

 

Because of their unique properties and increasing popularity, antifouling nano 

composite coatings have been the subject of numerous books, journal articles, 

reports, etc. This section is intended to provide an overview of recent 

developments in these coatings. 

 

 

1.5.1 Background 

 

 

External surfaces of submerged structures in seawater, such as hulls of vessels, 

pontoons, piers, aquaculture nets, buoys, pipelines and drilling platforms can 

show settlement and growth of undesirable microorganisms, algae, slime and 

animals, so called marine biofouling. Biofouling can be roughly separated into 

two categories, microfouling (bacteria and diatomic biofilms) and macrofouling 

(e.g., macroalgae, barnacles, mussels, tubeworms, and bryozoans).226 Such 

accumulations of biofouling can result in lower speeds, greater fuel and power 

consumption due to the increase of frictional drag of vessels moving through 

water.227 Thus, biofouling is a major problem for the shipping industry. To 

prevent biofouling surfaces can be treated with antifouling paints to inhibit the 

settlement of marine organisms. These paints consist of solvents, pigments, 

extenders, fillers and binder.228 With the discovery of the antifouling 

effectiveness of organotin compounds in the 20th century, all hull fouling 

problems seemed to have been solved. However, Tributyltin (TBT) has shown 

extensive detrimental effects on non-target marine organisms and was 

internationally banned by International Maritime Organisation in 2008.229 After 

the prohibition of triorganotin formulations, copper has once again become the 

predominant antifouling biocide, as already the early Phoenicians (1500–300 BC) 

used copper sheets to prevent biofouling on their wooden boats.230 Cuprous 

oxide (Cu2O) is a common pigment of antifouling paints. However, Cu(I) 

thiocyanate and Zn(II) oxide can also be used as pigments. Zinc oxide is 

generally utilised in combination with Cu(I) as a booster, increasing the toxicity 
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of the formulation by 200-fold, and/or to impart flexibility and facilitate the 

erosion process of the coating.231 Some diatoms and algae are resistant to 

inorganic Cu and Zn, so the effectiveness of the antifouling paints can be further 

enhanced by the addition of one or more secondary or booster co-biocides.227 

These include zinc and copper pyrithione, Irgarol 1051®, chlorothalonil, TCMS 

pyridine, Sea-nine 211®, ziram, zineb, dichlofluanid and diuron.232 These are 

often herbicides (e.g., Irgarol 1051® and diuron) which negatively affect the 

growth rate of photosynthetic organisms.233 Legislation now exists in some 

countries to regulate the use of some booster biocides in antifouling paints.234 

 

Incorporating the biocides into the paint matrix allows them to leach out 

gradually from the surface layer and inhibit the settlement of marine 

organisms.235 However, not only desired organisms will be affected by the 

antifouling paints but there is also a very real potential for harmful effects on 

non-target organisms. In comparison with the application, maintenance or 

removal of the paints, a greater risk to the aquatic environment is present due 

to greater amounts of biocides released slowly through the leaching process 

from the antifouling paint into a marine or freshwater environment.236 Leaching 

is of particular concern in marinas where large numbers of vessels are moored 

for long periods of time. As such, antifouling paints containing toxins are 

elevating levels of contamination in the environment raising concerns about their 

effects on marine communities.237  

 

Consequently the development of more environmentally friendly antifouling 

paints has gained the interest of researchers. Some non-toxic foul release 

coatings which are silicone based have been developed.238,239 Instead of 

preventing the settlement of marine organisms these paints reduce the 

attachment strength of the settling organisms. When the vessel is moving any 

accumulated biofouling will be sheared off the paint surface due to increasing 

drag and turbulence. The drawback of these foul release coatings is that the self-

clean efficacy is only achieved on high speed vessels. Other non-toxic 

technologies include integrating natural antifouling compounds from marine 

organisms (algae and sponges) into the paint matrix, though these are not yet in 

commercially available. Existing major antifouling strategies with their 

advantages and disadvantages are summarised in Table 1.6 and Table 1.7. 
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Table 1.6: Antifouling strategies.234 

Antifouling system Mode of action 

 

Tin-free self-polishing copolymer coatings 

 

Cu/Zn/Silyl copolymer resin with Cu 

particles and booster biocides dispersed 

through the paint matrix – hydrolysis with 

seawater results in slow and consistent 

release of biocide 

 

Tin-free conventional coatings Cu particles and booster biocides dispersed 

through soluble or insoluble paint binder – 

dissolution in seawater results in slow and 

decreasing release of biocide 

 

Booster biocides Most often herbicides/pesticides 

incorporated into Tin-free conventional and 

self-polishing copolymer antifouling paints 

to increase efficacy against copper tolerant 

algae 

 

Foul-release coatings Low energy, minimally adhesive surfaces, 

mostly silicone elastomers and often 

incorporating silicone oils 

 

Biomimetics Incorporation of natural AF compounds 

produced by marine organisms or surfaces 

based on natural microtopography 
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Table 1.7: Key advantages and disadvantages of past and present antifouling 

systems.234 

Antifouling 

system 
Key advantages Key disadvantages 

Tin-free SPC 

coatings 

Effective against a range of 

invertebrate foulers, long 

lifetime (∼5 years) 

 

Cu and booster biocide impacts on 

non-target species, Cu persistent in 

marine environment (depends on pH, 

salinity and dissolved organic matter 

– also determines toxicity) 

 

Tin-free 

conventional 

coatings 

Effective against a range of 

invertebrate foulers 

Short lifetime (∼12–18 months), Cu 

and booster biocide impacts on non-

target species, Cu persistent in 

marine environment (depends on pH, 

salinity and dissolved organic matter 

– also determines toxicity) 

 

Booster 

biocides 

Effective against a range of 

bacterial, algal and fungal 

foulers 

Impacts on non-target species, e.g., 

algae, seagrasses, corals, 

invertebrates, some persistent in 

marine environment 

 

Foul-release 

coatings 

Effective at reducing strength of 

fouling attachment, do not 

leach, no or low toxicity, 

potential long life (∼10 years) 

Only self-clean on high speed /high 

activity vessels, or otherwise require 

regular cleaning, susceptible to 

abrasion damage 

 

Biomimetics 
Natural alternatives 

“environmentally friendly” 

Not commercially available yet, 

difficult to source adequate supply of 

compound 
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Traditional biocides have revealed limited efficacy against biofouling in aquatic 

and terrestrial environments. Another problem of liquid biocide use is the 

environmental pollution from antifouling biocides. Currently the Environmental 

Protection Authority is reassessing all biocides used as active ingredients in 

antifouling paints imported to, manufactured and used in New Zealand about the 

harmful effects they have on both aquatic and human health.240 All of these 

paints contain copper compounds. As such, more research is needed to find 

alternative strategies with more effective outcomes and minimised 

environmental impact. 
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1.6 Scope of Thesis 

 

 

The present research focused on the synthesis of new generation hybrid polymer 

materials, the characterisation and analysis of their novel optical, antimicrobial 

and antifouling properties. These new functionalised hybrid polymer materials 

consist of an organic substrate matrix (polyurethane, nylon 6,6 and 

polyurethane K5000 latex paint polymers) and gold, silver and silver halide 

nanoparticles respectively. 

 

The proposed technology for the formation of the nanogold and nanosilver 

particles in the polymer matrices comprises the uptake of gold or silver ions by 

the polymers and an in situ reduction of metal ions to metal nanoparticles within 

and on the polymer matrix. The oxidation potential and chemical affinity of 

nitrogen in the PU or nylon 6,6 polymer for gold and silver241 was utilised to 

reduce Au3+ and Ag+ to Au0 and Ag0 respectively and bind them chemically to the 

polymer matrix. The metal nanoparticles are stabilised by the polymer matrix 

which also serves as a control on their particle size. In a similar manner, gold 

and silver nanoparticles were formed by means of nitrogen containing 

compounds which are first incorporated into a polyethylene terephthalate (PET) 

polymer. Silica based BULK ISOLUTE® SORBENT (NH2) material was used as an 

additional substrate for the purpose of building up a simple model to confirm the 

chemical affinity of gold and silver for nitrogen, and the ability of the nitrogen-

containing functional groups to reduce Au3+ and Ag+ ions to Au0 and Ag0 

nanoparticles respectively. 

 

Photoactive nanosilver halide hybrid polymer materials were prepared by doping 

the polymer matrix with Cl-, Br- or I- ions and accomplishing the precipitation 

reaction of silver halide nanoparticles with silver ions in solution. The silver 

halide nanoparticles are similarly stabilised by the substrate matrix and form 

chemical interaction with the polymer matrix.  

 

The nanogold, nanosilver and nanosilver halide hybrid materials were 

characterised by a number of different methods. The uptake of gold and silver 
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ions by the polymer substrates and the amount of gold and silver later leached 

from the hybrid materials were analysed by atomic absorption spectroscopy. The 

optical properties were measured by ultra violet visible spectroscopy. The 

morphology of the hybrid materials was studied with scanning electron 

microscopy, energy dispersive spectroscopy and transmission electron 

microscopy. X-ray diffraction measurements were carried out to confirm the 

formation of crystalline gold, silver or silver halide within the hybrid materials. 

X-ray photoelectron spectroscopy and infra-red spectroscopy were used to 

determine the nature of the interaction between the metal nanoparticles and the 

polymer substrates. The antimicrobial properties of the hybrid materials were 

investigated against gram negative Escherichia coli bacteria. The Polymer Group 

Ltd in Auckland assisted in the testing of the antifouling properties of nanogold 

and nanosilver hybrid K5000 paint materials.  

 

These new generation nanogold, nanosilver and nanosilver halide hybrid polymer 

materials have significant potential in various commercial applications. 
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2 Experimental methodology 

2.1 Materials 

 

 

Polyurethane beads, nylon 6,6 and polyethylene terephthalate beads were 

supplied by the Centre for Advanced Composite Materials and the Plastics Centre 

of Excellence at the University of Auckland, New Zealand. Liquid PU 

Kamthane 5000 (K5000) latex paint base polymer was provided by The Polymer 

Group Ltd in Auckland. Sail cloth material was provided by Doyle Sails Ltd, 

Auckland. Polycarbonate and nylon 6,6 sheets were purchased from Mulford 

Plastics. BULK ISOLUTE® SORBENTS were supplied by International Sorbent 

Technology Ltd. Octadecyl-functionalized silica gel was purchased from Aldrich 

Chemical Company, Inc.  

 

All chemicals employed are of analytical grade unless otherwise stated. Distilled 

water was used. Silver nitrate was purchased from Scientific and Chemical 

Supplies and hydrogen tetrachloroaurate(III)hydrate (HAuCl4.3H2O (99%)) was 

sourced from Sigma Aldrich. Sodium chloride, sodium bromide and sodium 

iodide were supplied by Unilab. All other chemicals used were purchased from 

Sigma Aldrich.  

 

All laboratory equipment used for experiments was metal-free to eliminate any 

undesirable reduction of Au3+ to Au0 or Ag+ to Ag0, by for example contact with 

stainless steel equipment, and resulting in the deposition of Au0 or Ag0
 onto the 

stainless steel equipment. All laboratory glassware was washed with aqua regia 

before use to prevent any contamination.  
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2.2 Preparation 

2.2.1 In situ preparation of gold / silver nanoparticles in the presence of 

polyurethane or nylon 6,6 and their subsequent binding to the 

polymer matrix 

 

 

The preparation of nanosilver / nanogold hybrid plastic beads for the small scale 

approach involved immersing plastic polyurethane or nylon 6,6 beads (1 g) in an 

aqueous tetrachloroaurate or silver nitrate solution (10 mL, 10-1000 mg kg-1 

Au3+ / Ag+) for 24 hours under heat (in a water bath). The temperature was 

altered from room temperature to 50 °C (ideal for gold samples) and to 90 °C 

(ideal for silver samples). During heating, metal ions were absorbed by the 

polymer matrix and simultaneously reduced to Au0 or Ag0 by the nitrogen groups 

in the polymer, and subsequently stabilised and bound to the polymer matrix. 

With the appearance of purple/pink or yellow/brown colours on the plastic 

beads, the formation of gold and silver nanoparticles on/in the plastics was 

observed. At the same time the initial yellow gold solution became colourless. 

Following the absorption/reduction reaction, the resulting coloured beads were 

removed from solution, washed thoroughly with distilled water and air dried.  

 

For nylon or polyurethane in the form of sheets the following procedure was 

undertaken. Polyurethane sheets with dimensions of 20 x 20 x 3 mm (ca. 1.5 g) 

or 20 x 20 x 1 mm nylon sheets (ca. 0.5 g) were heated in an aqueous gold 

tetrachloride or silver nitrate solution (10 mL, 500 mg kg-1 Au3+ / Ag+), for 

24 hours (gold solution at 50 ºC, silver at 90 ºC). 
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2.2.1.1 Larger scale in situ preparation of gold / silver nanoparticles 

in the presence of polyurethane or nylon 6,6 and their subsequent 

binding to the polymer matrix 

 

 

A new reaction vessel was designed for larger scale processing. Figure 2.1 shows 

a typical setup which includes an elongated reaction glass vessel, with a glass lid 

and a sintered glass plate on the bottom. The sintered glass plate acts as a filter 

for the plastic beads and the lid prevents the water evaporation. A circulating 

pump was connected via silicon tubing to the vessel to pump the reagents 

through. The whole reaction vessel was immersed in a water bath set at 50 °C 

(gold samples) or 90 ºC (silver samples). 100 g of plastic beads were immersed 

in an aqueous gold tetrachloride or silver nitrate solution (1000 mL, 

10 - 1000 mg kg-1 Au3+ / Ag+). The reaction solution was pumped through the 

beads for 24 hours to provide the maximum absorption of metal ions by the 

plastics. As mentioned in Section 2.2.1 the beads were rinsed with distilled water 

and dried at room temperature. 
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Figure 2.1: Setup for scale up reaction: a) circulating pump, b) water bath, c) 

reaction vessel, d) sintered glass plate, e) reaction solution containing metal 

ions and f) substrate polymer beads. 

 

 

2.2.1.2 In situ preparation of gold / silver nanoparticles in the 

presence of alternative substrates  

 

 

Polymer substrates which do not normally contain functional groups capable of 

reducing Au3+ or Ag+ to their respective metallic nanoparticles were modified to 

include thiol or amine groups on the surface of these substrates. Such modified 

substrates included amine coated polyethylene terephthalate sail cloth. 

f 

e 

d 

c 

b 

a 
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Additionally Bulk isolute® sorbent (containing amine functional groups) and 

octadecyl-functionalised silica gel were used as alternative substrates. It was 

hoped that the nitrogen-containing functional groups on the surface of the 

substrates would reduce Au3+ and Ag+ to Au0 and Ag0 respectively, whilst 

simultaneously stabilising the resultant metal nanoparticles.  

 

 

2.2.1.2.1 In situ preparation of gold / silver nanoparticles in the 

presence of amine coated PET sail cloth and their subsequent 

binding to the sail cloth 

 

 

A fine PET fabric treated with an amine based light stabiliser was provided by 

Doyle Sails Ltd. Treatment details are unknown as they are proprietary.  

 

PET sail cloth (0.2 g) was immersed in an aqueous gold tetrachloride or silver 

nitrate solution (10 mL, 10-100 mg kg-1 Au3+ / Ag+) and heated in a water bath 

(80 ⁰C for gold and silver samples) for up to 24 hours. A pink or yellow colour 

was observed, which corresponds to the SPRB of gold and silver nanoparticles 

respectively (Section 1.4.2). The coloured sail cloth was then removed from the 

solution, rinsed with distilled water and air dried. 

 

As a control, 1 g of untreated PET beads were immersed in an aqueous gold 

tetrachloride or silver nitrate solution (10 mL, 10-1000 mg kg-1 Au3+ / Ag+) and 

heated for 24 hours at 80 °C. After 24 hours the samples were rinsed with 

distilled water and dried at RT. 
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2.2.1.2.2 In situ preparation of gold / silver nanoparticles in the 

presence of BULK ISOLUTE® SORBENTS and octadecyl-

functionalized silica gel 

 

 

0.2 g of Bulk isolute® sorbent were dispersed in an aqueous gold tetrachloride 

or silver nitrate solution (10 mL, 500 mg kg-1 Au3+ / Ag+) and heated for 24 

hours in a water bath at 70 °C. After 24 hours, the samples were filtered, rinsed 

with water and air dried at room temperature.  

 

 

2.2.2 In situ preparation of gold / silver nanoparticles in the presence of 

polyurethane K5000 latex paint base polymer and their 

subsequent binding to the polymer matrix 

 

 

The supplied K5000 is a polyurethane latex paint base polymer on a 

polyether/polyester/acrylic composite backbone. The preparation of nanosilver or 

nanogold hybrid polyurethane K5000 paint materials proceeded using the 

following methodology. Aqueous gold tetrachloride or silver nitrate solution 

(2.5 mL, 20-2000 mg kg-1 Au3+ / Ag+; or 1.5 mL, 33-3333 mg kg-1 Au3+ / Ag+) 

was slowly added to 5 g Kamthane 5000 liquid polyurethane via a pipette under 

constant stirring. High concentrations of acidic metal ion solutions may cause 

flocculation of the paint. To prevent the flocculation of the paint, the solution 

was diluted with water (whilst keeping the polymer to metal ion ratio constant). 

Increasing the pH of the gold solution with NaOH from its initial value of 

approximately 1.5 to a value of approximately 5 avoids the flocculation. Once 

Au3+ / Ag+ was added, the reactions tubes were heated in a water bath (50 °C 

for gold and 70 °C for silver samples) for up to 24 hours. The ideal temperature 

for the preparation of the nanogold and nanosilver hybrid PU K5000 materials 

proved to be room temperature. However, this needed at least seven days of 

reaction time to reduce Au3+ or Ag+ to Au0 or Ag0 respectively. The reduction of 

metal ions to Au0 and Ag0 was indicated by the development of stable colours, 
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purple for nanogold and brown for nanosilver hybrid PU K5000 materials 

respectively.  

 

For characterisation, the samples were spread out on a clean optical microscope 

slide and placed on a window sill or in the dark to dry. The preparation process 

was scaled up by a direct scaling of the procedure above. 

 

 

2.2.3 Preparation of nanosilver halide hybrid polymers  

 

 

Nanosilver halide hybrid polyurethane and nylon 6,6 materials were produced via 

the following two approaches. In the first approach PU or nylon 6,6 polymer 

substrates were soaked in silver nitrate solution for 2 hours at room 

temperature. The substrates were then removed from the solution, thoroughly 

rinsed with distilled water and air dried at room temperature. With the 

assumption that Ag+ had been absorbed by the polymers, the samples were then 

soaked in NaX (X=Cl, Br, I) solution for 2 hours at room temperature. However, 

this method was not successful and a second approach was utilised. In this 

second approach, the polymer substrates were first soaked in a halide solution 

(Cl-, Br-, I-) at RT for different amounts of time, rinsed and air dried. These were 

then immersed in a silver nitrate solution in the absence of light. Samples that 

were isolated from light did not develop any colour once the silver nitrate 

solution was added to the samples. Once they were exposed to UV-Vis light 

(direct light), they changed in colour depending upon the dopant. This is 

discussed in further detail in Chapter 5. 
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2.2.3.1 Preparation of nanosilver halide hybrid polymers in the 

presence of polyurethane and nylon 6,6 

 

 

PU sheets (1.5 g, 20 x 20 x 3 mm) and nylon 6,6 sheets (0.5 g, 20 x 20 x 1 

mm) were immersed in 10 mL of 0.1 M NaX (X= Cl, I, Br) solution. The reaction 

vials were agitated on a shaking table at room temperature in order to allow the 

polymer sheets to absorb the Cl-, I- or Br- ions. After 12 hours the plastics were 

removed, rinsed with distilled water and allowed to air dry. Subsequently, the 

doped plastics were added to a silver nitrate solution (10 mL, 200 mg kg-1 Ag+) 

and agitated for 12 hours at room temperature. The reaction vials were wrapped 

in aluminium foil. When removed from the solution, the silver chloride and silver 

bromide hybrid plastic materials were white in colour, silver iodide hybrid 

materials were yellow in colour. 

 

 

2.2.3.2 Preparation of nanosilver halide hybrid paint materials in the 

presence of polyurethane K5000 latex paint base polymer 

 

 

The synthesis of nanosilver halide hybrid PU K5000 latex paint base polymer 

materials was achieved via the following methodology. 1 mL of 0.5 M NaX 

solution was added to 5 g of liquid polyurethane Kamthane 5000 latex paint 

base. The mixture was set on a shaking table at room temperature for two 

hours. Thereafter, the reaction was completed by the drop wise addition of a 

silver nitrate (1.5 mL, 3333 mg kg-1 Ag+) solution under vigorous stirring. The 

reaction tubes were covered in aluminium foil and as expected the silver chloride 

(or bromide, iodide) containing PU K5000 paint materials remained white in 

colour. Upon exposure to sun light a purple to brown colour development 

occurred within hours (for silver chloride and silver bromide samples). Silver 

iodide samples remained white in colour. For characterisation, the samples were 

spread out on clean optical microscope slides and placed on a window sill or in 

the dark as required for drying to form thin films. 
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2.2.4 Gold and silver uptake 

 

 

During the preparation of nanogold and nanosilver hybrid materials the uptake 

of metal ions by the substrates was quantitatively analysed by means of atomic 

absorption spectroscopy (AAS) (Section 2.3.3). This involved immersing the 

plastic beads (1 g) or sail cloth (0.2 g) in a gold tetrachloride or silver nitrate 

solution (10 mL, 10-100 mg kg-1 Au3+ / Ag+) at room temperature to 90 ⁰C. After 

different periods of time, (15 minutes, 30 minutes and up to 24 hours), the 

plastics were removed and the residual solution was quantitatively analysed by 

AAS for any remaining gold or silver ions.  

 

 

2.2.5 Leaching test for nanogold and nanosilver hybrid PU and PU K5000 

materials 

 

 

The amount of silver or gold leached from the nanogold and nanosilver hybrid PU 

beads or PU K5000 paint materials was determined. Nanogold and nanosilver 

hybrid PU beads and polyurethane K5000 paint base samples were produced via 

the methods outlined in Sections 2.2.1 and 2.2.2 respectively. For the leaching 

test, 1 g of produced nanogold or nanosilver hybrid PU samples was rinsed with 

distilled water, air dried and immersed in 10 mL of distilled water. As for the 

produced nanogold and nanosilver hybrid PU K5000 materials, the samples were 

dried on microscope glass slides, the dry paint films were peeled off the 

microscope slide, resulting in ca. 3 g of dry paint. The paint samples then were 

rinsed with distilled water and immersed in 30 mL distilled water. All samples 

were agitated for seven days at room temperature. The samples were removed 

and the residual solutions were quantitatively analysed by atomic absorption 

spectroscopy (Section 2.3.3) for any leached gold or silver. 
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2.3 Characterisation 

2.3.1 Scanning Electron Microscopy 

 

 

Scanning electron microscopy (SEM) is an important characterisation method for 

studying the surface morphology of the produced hybrid polymer materials 

comparing it to that of the untreated plastic substrates. Backscatter conditions 

were used as these give a better contrast between the metals and the polymers 

due to the high atomic weight of metals and the lower atomic weight of the C, N, 

and O elements in the polymers. In order to get an overall picture of the surface 

morphology of the materials, imaging was carried out at various positions 

throughout the samples. A JEOL 6500 F field emission gun scanning electron 

microscope operating in a high-vacuum mode at 15 kV was used with a working 

distance of 9 and 11 mm. 

 

The dispersion of nanoparticles in the polymer matrix and the size of the 

particles were analysed by SEM. Samples were prepared for SEM analyses by 

cutting the plastic beads, sheets and dry paint films in half and mounting the 

cross section area upwards on an aluminium stub using double sided carbon 

adhesive tape. Six coats of carbon were applied by a JEOL JEC-560 carbon 

coater to allow discharge of electrons from the surface of the sample. Bulk 

isolute® sorbent and hybrid sail cloth materials were spread out on double sided 

carbon adhesive tape which was stuck on top of an aluminium stub. Liquid 

hybrid polyurethane K5000 paint materials were studied under cryogenic 

conditions. By means of the Cryo SEM attachment the sample can be frozen 

rapidly in liquid nitrogen, thus preserving the pristine matrix structure of the 

resin. The frozen hybrid PU K5000 materials were fractured under vacuum. A 

thin layer of carbon was sputtered onto the fractured surface of the material to 

provide conductance of electrons. The imaging of the surface of the inner 

structure was carried out. 

 

Energy-dispersive X-ray spectroscopy (EDS) was utilized in 2D scans to give the 

distribution of elements such as Au, Ag, Cl, C, N, O on the surface of the 

polymer samples for their corresponding SEM image. The technique enables the 
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study of the correlation between the metals and other elements in the plastic 

matrix. 

 

 

2.3.2 Transmission Electron Microscopy 

 

 

High resolution transmission electron microscopy (HRTEM) and scanning 

transmission electron microscopy (STEM) are complementary techniques to SEM 

and EDS but due to their higher spatial resolution, a more accurate picture of 

the morphological fine structure of the nanoparticles within the polymer matrices 

can be obtained. TEM analyses of the hybrid materials were carried out on a 

JEOL 2011 high-resolution instrument with a LαB6 filament operated at a 200 kV 

accelerating voltage. Solid polymer samples were dissolved in high purity 

dimethylformamide or methanol. A drop of the resulting solution was placed 

onto carbon-coated copper grid (200 mesh), air dried and further carbon coated 

by a JEOL JEC-560. Elemental analyses and elemental maps of the samples were 

performed on the JEOL 2011 TEM microscope in STEM mode. 

 

 

2.3.3 Atomic Absorption Spectroscopy 

 

 

The analyses for Au and Ag in the solutions used in the uptake studies were 

performed by means of flame Atomic Absorption Spectroscopy (AAS). Following 

the hybrid materials preparation and also leaching tests (Section 2.2) the 

resulting solutions were analysed for the residual amounts of gold or silver on a 

GBC 906AA. The operating conditions for the Atomic Absorption Spectrometer 

followed those recommended by the manufacturer. An air-acetylene flame, light 

with a wavelength of 242.8 nm for gold and 324.0 nm for silver was used. All 

solutions were diluted so that gold or silver concentrations were within the 

optimum working range (1 to 14 mg kg-1 for gold and 1 to 12 mg kg-1 for silver). 

Calibration curves were obtained with standard solutions of the following 
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concentrations: Au3+: 3.5, 7.5, 10, 12, 14 mg kg-1 and Ag+: 3, 5, 7, 9, 

11 mg kg-1. 

 

 

2.3.4 X-ray Diffraction  

 

 

X-ray Diffraction (XRD) is an experimental non-destructive technique which is 

used to provide structural information of crystal lattices and to identify a 

crystalline substance. XRD was used to obtain information on the 

crystallographic form and the mean crystallite size of the gold, silver and silver 

halide nanoparticles within the hybrid polymer materials.  

 

XRD measurements were carried out using PANalytical X’Pert Pro to analyse the 

hybrid materials which contained higher gold, silver and silver chloride 

concentrations. The instrument utilised the Bragg-Brentano geometry in which 

the sample is fixed horizontally and both the X-ray tube and detector rotate. 

Typically, scans were run using the Cu Kα radiation. In order to determine the 

exact peak position and peak width for the crystallite size determination of the 

nanoparticles, the peaks obtained in XRD data were deconvoluted with 

PANalytical HighScore software. The reference patterns were taken from the 

ICDD Powder Diffraction File Version 4+242 and were of either Star or Indexed 

quality. A silicon standard was used to ascertain and correct the instrumental 

broadening. The standard was run under identical instrumental conditions to 

those used to obtain patterns for the samples, and thus the broadening of the 

standard is exactly the same as the instrumental broadening in the pattern of 

the samples. 

 

To estimate the mean particle size of gold, silver and silver halide nanoparticles 

in the hybrid materials, in the simplest case where particles are stress-free, a 

single diffraction peak from the XRD pattern was used for the Scherrer 

equation:243  
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where, d is the mean crystallite size of the nanoparticles, B is the Scherrer 

constant (0.89 for integral breadth of spherical crystals w/ cubic symmetry), λ is 

the wavelength of X-ray radiation source, β is the angular full width at half 

maximum (FWHM) of the X-ray diffraction peak and θ is the diffraction angle 

(the angle between incident beam and the lattice planes).244  

 

 

2.3.5 Infrared Spectroscopy 

 

 

Infrared Spectroscopy (IR) is an absorption spectroscopic technique and deals in 

the infrared region of the electromagnetic spectrum. IR was used to study the 

interactions between the metallic nanoparticles and the polymers. Spectra of 

untreated substrates were compared to the spectra of hybrid materials 

containing metallic nanoparticles to determine any changes in the vibrational 

modes. Spectra were recorded on a Perkin Elmer Spectrum One FT-IR 

Spectrometer.  

 

 

2.3.6 X-ray Photoelectron Spectroscopy 

 

 

X-ray photoelectron spectroscopy (XPS) is a spectroscopic technique that is 

based on the process of photoemission. XPS provides analytical and chemical 

information about the top 5-10 nm of a material. XPS was used to elucidate the 

nature of the chemical bonding between the substrates and nanoparticles in the 

produced hybrid materials. The XPS spectra were collected under a high vacuum 

with an aluminium Kα X-ray source operating at 15 kV. XPS analyses were 
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performed using Kratos XSAM800 photoelectron spectrometer at the University 

of Auckland, Surface Science Department with the assistance of Dr Colin Doyle. 

Charging caused by the samples was minimised by the charge neutraliser – a 

thoria coated filament with tuneable current, filament voltage and bias settings 

of 1.95-2.1 A, 2.9-3.3 V and 1.1-1.3 V respectively. Spectra for Ag, Au, Cl, C, N, 

S, O were obtained and Gaussian-Lorentzian (70:30) peaks were fitted to the 

recorded spectra using the CasaXPS Version 2.3.13 program. All collected 

spectra were calibrated to the C 1s line at 285.0 eV.  

 

 

2.3.7 UV-Visible Spectroscopy 

 

 

Ultra violet visible (UV-Vis) spectroscopy was utilised to characterise the optical 

properties of the produced hybrid materials. As gold and silver nanoparticles 

exhibit distinctive absorptions in the visible region, UV-Vis spectroscopy was 

used to determine the presence of nanoparticles in the produced hybrid polymer 

samples. Also by comparing the UV-Vis spectra between various hybrid materials 

it was possible to compare the size of the present nanoparticles by determining 

the absorption peak positions and their shifts and peak broadenings. Absorption 

and reflectance (incorporating Kubelka-Munk transformations) UV-Vis spectra 

were collected on a Varian Cary 100 scan spectrometer UV-Vis 

spectrophotometer, in the spectral region of 200-800 nm. The Kubelka-Munk 

theory provides a correlation between reflectance and absorbance and the 

reflectance values are transformed into Kubelka-Munk units (K/S), using the 

equation below: 
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where R is the absolute reflectance of the sampled layer, k is the molar 

absorption coefficient and s the scattering coefficient of the sample at a given 

wavelength245. This transformation was performed by software which was 

incorporated in the spectrometer’s analysis program. 

 

 

2.3.8 Antimicrobial and antifouling testing 

 

 

The antimicrobial effectiveness of the produced hybrid plastic materials was 

tested against Escherichia coli (E. coli) bacteria. The microorganism is a gram 

negative commensal commonly found in both human and animal intestines. E. 

coli was chosen as it is easy to grow and reproduce. Most E. coli strains are 

harmless.246 Furthermore, the nanogold and nanosilver hybrid polyurethane 

paint materials were tested for their potential as marine antifouling agents. 

 

 

2.3.8.1 Antimicrobial testing 

 

 

Due to time constraints, only the antimicrobial activity of produced hybrid 

polyurethane dog bone test strips and hybrid polyurethane K5000 paint 

materials were tested against E. coli. The tests were performed in triplicate for 

each sample and were achieved via the following method: a 5 mL stationary 

phase (16 hour) overnight culture of E. coli strain W3110 was grown in Luria 

Bertani Broth (LB). 3 mL of culture were pelleted in sterile Eppendorf tubes and 

resuspended and mixed in 3 mL of standard phosphate-buffered saline (PBS). 

This process was repeated twice to wash the cells and remove all traces of LB. 

50 µL aliquots of the washed and homogenously resuspended E. coli and 20 mg 

of hybrid polymer sample (each sample was cut finely cut into small pieces) was 

transferred into sterile Eppendorf tubes. It was important that the polymer 

sample pieces were completely covered by the liquid bacteria suspension. The 

Eppendorf tubes were incubated for up to 7 days (nanosilver halide hybrid 



66 

samples were also incubated in the dark). For the quantification of viable 

bacteria, the plastic samples were resuspended in 1 mL PBS and then vortexed 

for 30 seconds. 10 µL from each tube was transferred to 990 µL fresh PBS (10-2 

dilution) followed by shaking and vortexing the suspension. The process was 

repeated to give a 10-4 dilution for each sample. 100 µL of each dilution was 

then plated onto individual LB agar plates. Plates were incubated at 37 °C for 16 

hours, and the resulting colonies were counted. The total colony-forming unit 

(CFU) was calculated by multiplying the mean number of colonies for each 

sample by the dilution factor. CFU is a measure of viable bacterial numbers. All 

samples were tested against reference samples, notably untreated polyurethane 

dog bone or dry untreated PU K5000 paint base. The antimicrobial activity was 

determined on the basis of the relative difference in CFU between new hybrid 

samples and their reference sample.  

 

 

2.3.8.2 Antifouling testing 

 

 

Antifouling effects of nanogold, nanosilver and nanosilver chloride hybrid PU 

K5000 materials were investigated. The experiment on prevention of marine 

biofouling on hybrid PU K5000 materials was performed by Polymer Group Ltd in 

Auckland. Pieces of wooden surfaces were painted with hybrid polyurethane 

K5000 materials and set in seawater (Whangaparaoa Peninsula). A control 

surface was painted with an untreated PU K5000 paint and also kept under the 

same conditions. After approximately six months the painted panels were taken 

out of sea water and the extent of marine growth on the surfaces were 

compared to that of control sample. 
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3 Nanogold and nanosilver hybrid polymer materials: 

nanoparticles formed in the presence of polyurethane and 

nylon 6,6 using their reducing nature 

 

 

Hybrid polyurethane and nylon 6,6 materials containing gold and silver 

nanoparticles were synthesised using the approach described in Section 2.2.1. 

The methodology involved immersing the substrates (polyurethane or nylon 6,6 

beads or sheets respectively) in aqueous hydrogen tetrachloroaurate or silver 

nitrate solutions followed by heating the reaction vials to 50 °C for gold or 90 °C 

for silver samples to complete the reduction of metal ions to metal 

nanoparticles. Unless otherwise mentioned, the mass of the substrates was 1 g 

for PU and nylon 6,6 beads and 1.5 g for PU and 0.5 g for nylon 6,6 sheets; the 

solution volume was 10 mL. All experiments were stopped after 24 hours in 

order to keep the process more economical. PU and nylon 6,6 simultaneously act 

as the substrate and reducing agents due to their amine functionality. For larger 

scale preparation a reaction vessel of ten times the size was designed and 

constructed, to produce suitably larger amounts of the nanogold and nanosilver 

hybrid polymer materials (Section 2.2.1.1) which were then moulded into plastic 

sheets, and dog bone test strips. 

 

The sample names for the hybrid polymer materials produced and their 

respective reaction parameters are summarised in Table 3.1. The sample names 

for the hybrid PU beads produced which were moulded into dog bone test strips 

are summarised in Table 3.2. 
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Table 3.1: The names and their respective reaction parameters for the hybrid 

polymer materials. The reaction time for all samples was 24 hours; the solution 

volume was 10 mL. 

Name of 

hybrid 

material 

Substrate  Metal ion 

conc. 

[mg kg-1] 

Metal 

ion 

species  

Reaction 

temp. 

[°C] 

% of metal 

in polymer 

PU-b-10Au PU bead 10 Au3+ 50 0.01 

: : : : : : 

PU-b-1000Au PU bead 1000 Au3+ 50 1 

PU-s-10Au PU sheet 10 Au3+ 50 0.008 

: : : : : : 

PU-s-1000Au PU sheet 1000 Au3+ 50 0.77 

PU-b-10Ag PU bead 10 Ag+ 90 0.01 

: : : : : : 

PU-b-1000Ag PU bead 1000 Ag+ 90 1 

PU-s-10Ag PU sheet 10 Ag+ 90 0.008 

: : : : : : 

PU-s-1000Ag PU sheet 1000 Ag+ 90 0.77 

Ny-b-10Au Nylon 6,6 bead 10 Au3+ 50 0.01 

: : : : : : 

Ny-b-1000Au Nylon 6,6 bead 1000 Au3+ 50 1 

Ny-s-10Au Nylon 6,6 sheet 10 Au3+ 50  0.02 

: : : : : : 

Ny-s-1000Au Nylon 6,6 sheet 1000 Au3+ 50 2 

Ny-b-10Ag Nylon 6,6 bead 10 Ag+ 90  0.01 

: : : : : : 

Ny-b-1000Ag Nylon 6,6 bead 1000 Ag+ 90  1 

Ny-s-10Ag Nylon 6,6 sheet 10 Ag+ 90 0.02 

: : : : : : 

Ny-s-1000Ag Nylon 6,6 sheet 1000 Ag+ 90  2 
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Table 3.2: Nomenclature of moulded hybrid PU dog bone strips names and their 

respective precursor hybrid PU beads. 

Name of PU dog bone strip Hybrid PU beads used for moulding PU dog bone 

strips 

PU-db Untreated PU beads 

PU-db-1Au PU-b-10Au 

PU-db-5Au PU-b-5Au 

PU-db-10Au PU-b-10Au 

PU-db-50Au PU-b-50Au 

PU-db-100Au PU-b-100Au 

PU-db-1Ag  PU-b-1Ag 

PU-db-10Ag PU-b-10Ag 

PU-db-50Ag  PU-b-50Ag 

 

 

The formation of nanogold or nanosilver on and within the nylon 6,6 and 

polyurethane polymers is evident by the appearance of a pink-purple or yellow-

brown colour resulting from the surface plasmon resonance scattering of light by 

gold and silver nanoparticles respectively (Section 1.4.2). The shade and 

intensity of the colour can be altered by systematically altering the concentration 

of Au3+ or Ag+ ions, the reaction time and the temperature. An example of this 

can be seen in Figure 3.1 below.  

 

 

Figure 3.1: Hybrid PU beads prepared from a) gold solution and b) silver 

solution with increasing gold / silver concentrations (5 – 100 mg kg-1 Au3+ or 

Ag+ from left to right). 

 

b 

a 

2 cm 
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3.1 Uptake studies 

 

 

The uptake of dissolved gold (Au3+) and silver (Ag+) by substrates such as PU 

and nylon 6,6 was quantitatively analysed by atomic absorption spectroscopy 

(Section 2.3.3) This was facilitated by soaking the polymer substrates in 

different concentrations of gold or silver solutions for different periods of time at 

different temperatures, then analysing the resulting solution for any residual 

gold or silver. The difference between the starting concentration and the residual 

concentration in the soaking solution was determined to be the amount of gold 

or silver ions absorbed by the polymer substrates. The effect of concentration 

and temperature of the ion solution on uptake were studied. 

 

 

3.1.1 Extent of gold uptake by polyurethane and nylon 6,6 

 

 

Figure 3.2 and Figure 3.3 present the effect of concentration on the uptake of 

gold ions by PU and nylon 6,6. All experiments were run at a constant 

temperature of 50 °C with starting solution concentrations of 10, 20 and 50 mg 

kg-1 Au3+ and 5, 10 and 50 mg kg-1 Au3+ for PU and nylon 6,6 samples 

respectively. The solutions were analysed for residual gold within 24 hours of 

absorption. 

 

It was observed that the uptake rate of metal ions by both PU and nylon 6,6 

increased with increasing concentrations of metal ions in the starting solutions. 

For example, when 10 mg kg-1 of Au3+ solution was employed, the total uptake 

after 24 hours at 50 °C was 8.2 mg kg-1 which conforms to ca. 81.3 % of gold 

ions taken up by polyurethane, whereas the absorption from the 20 and 50 mg 

kg-1 Au3+ conform to 95.5 % and 97.4 % respectively. Similar results were 

observed for nylon 6,6.  

 

Taking these results into consideration, the uptake process can be described 

with Fick’s law:247 
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where Ji is the rate of diffusion transport per unit area, A is the area across 

which diffusion is taking place, D is the diffusion coefficient, Ci is the 

concentration and z is the distance over which the diffusion is taking place. Thus, 

the rate of uptake increases directly with the concentration of metal ions, in 

other words the increase in concentration gradient (dCi/dz) acts as increase to 

the driving force of diffusion.  

 

 

 

Figure 3.2: Gold uptake by PU beads at 50 °C, utilising a solution with an initial 

gold concentration of 10, 20 and 50 mg kg-1 Au3+. 
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Figure 3.3: Gold uptake by nylon 6,6 beads at 50 °C, utilising a solution with an 

initial gold concentration of 5, 10 and 50 mg kg-1 Au3+. 

 

 

When changing the reaction temperature from 50 to 90 °C and keeping the 

starting concentration constant, it was shown that the temperature at which the 

uptake process occurs greatly affects the value of the diffusion coefficient. This 

is illustrated with a 50 mg kg-1 gold solution (Figure 3.4 and Figure 3.5) showing 

that for both PU and nylon 6,6 substrates an increase in temperature results in 

an increased gold absorption rate.  
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Figure 3.4: Gold uptake by PU beads measured at 50, 70 and 90 °C. 

 

 

 

Figure 3.5: Gold uptake by nylon 6,6 beads measured at 50, 70 and 90 °C. 

 

 

Due to the porosity of the PU and nylon 6,6 structures both substrates have the 

capacity to absorb significant amounts of gold ions within 24 hours when tested 

at a temperature of 50 °C. Figure 3.6 shows that the amount of gold absorbed 

by PU is slightly higher than being absorbed by nylon 6,6. The maximum 

absorption level of gold ions by both substrates is reached after about 16 hours 
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and amounts to ca. 97 % for polyurethane and 89 % for nylon 6,6. The 

difference in the total amount of gold absorbed between polyurethane and nylon 

6,6 may be due to the fact that polyurethane has higher porosity than nylon 6,6. 

In order to keep the experiments more economical and provide gentle reaction 

conditions for the substrates the reaction temperature for production of all 

nanogold hybrid polyurethane and nylon 6,6 materials was set to 50 °C. 

 

 

 

Figure 3.6: Comparison of gold uptake by PU versus nylon 6,6 beads. The 

experiment was undertaken at 50 °C. 

 

 

3.1.2 Extent of silver uptake by polyurethane and nylon 6,6 

 

 

Similar to gold, uptake studies were undertaken to determine the effect of 

temperature on the absorption of silver ions by polyurethane or nylon 6,6 

substrates. Figure 3.7 and Figure 3.8 show that the shape of the uptake curves 

of silver are generally similar to that observed for gold. The absorption 

temperature was set to 50, 70 and 90 °C for polyurethane (Figure 3.9) and 50 

and 90 °C for nylon 6,6 (Figure 3.10). For both substrates absorption was not 

complete - even after 24 hours. At 50 or 70 °C the uptake was more limited with 

only 20 % of the silver ions absorbed by PU or nylon 6,6. To achieve the 
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maximum silver ion absorption the reaction temperature of 90 °C was used for 

preparation of the nanosilver hybrid polyurethane and nylon 6,6 materials. 

 

 

 

Figure 3.7: Silver uptake by PU beads at 90 °C, utilising a solution with an 

initial silver concentration of 10, 20 and 50 mg kg-1 Ag+. 

 

 

 

Figure 3.8: Silver uptake by nylon 6,6 beads at 90 °C, utilising a solution with 

an initial silver concentration of 10, 20 and 50 mg kg-1 Ag+. 
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Figure 3.9: Silver uptake by PU beads measured at 50, 70 and 90 °C utilising a 

solution with an initial silver concentration of 50 mg kg-1 Ag+. 

 

 

 

Figure 3.10: Silver uptake by nylon 6,6 beads measured at 50 and 90 °C 

utilising a solution with an initial silver concentration of 50 mg kg-1 Ag+. 

 

 

In terms of the differences between the two substrates on the uptake of silver 

ions, it was shown that PU absorbed slightly more silver ions than nylon 6,6. 

Figure 3.11 shows silver uptake with a starting concentration of 50 mg kg-1. 
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After a period of 24 hours at 90 °C polyurethane absorbed ca. 70 % of silver 

ions with nylon 6,6 only absorbing 62 %. This confirms the observations made 

during the absorption of gold by PU and nylon 6,6 – whereby a more porous 

polymer matrix (as seen in PU) allows for a greater absorption. 

 

 

 

Figure 3.11: Comparison of silver absorption by PU beads versus nylon 6,6 

beads. The experiment was undertaken at 90 °C. 

 

 

When comparing the uptake of gold and silver ions by both PU and nylon 6,6 it 

can be seen that the uptake of silver is not as efficient nor complete even after a 

24 hour absorption period at 90 °C (Figure 3.11). One possible reason for this 

observation could be that under the slightly acidic reaction conditions (pH 4-5) 

employed substrates may be protonated and thus exhibit a net positive charge. 

Because gold ions are being absorbed as the [AuCl4]- complex21 it is possible 

that there would be an electrostatic attraction between the gold complex and the 

positively charged substrates. Silver ions are positively charged and therefore 

they would be electrostatically repelled by the substrates providing a slower 

uptake rate.  

 

A second reason for the differences in gold and silver absorption might be due to 

the greater chemical affinity of gold for nitrogen functional groups compared to 
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silver. The comparison of the respective metal-nitrogen bond enthalpies in the 

metal-ammonia complexes has shown that the enthalpy of formation for the 

Au-NH3 bond is −30.17 kJ mol−1 and for Ag-NH3 the enthalpy is −20.45 kJ 

mol−1.248 A further reason for the difference in uptake rate could likely be due to 

the different reduction potentials of gold and silver ions to their corresponding 

metallic nanoparticles. As mentioned above, while the absorption process is 

taking place, a reduction of gold or silver ions to metallic gold or silver also 

occurs. The driving force for the reduction reaction is provided by the difference 

between the two potentials; the reduction of the metal ion to the metal and the 

corresponding oxidation of the amine functional groups of the polymer 

substrates. These potential differences are known as the electrochemical 

overpotential. Table 3.3 shows that the standard redox potential for the 

reduction of Au3+ or [AuCl4]- to Au0 is higher than that of Ag+ to Ag0. As such, 

the reduction of gold ions/complexes to gold nanoparticles is the 

thermodynamically preferred reaction, the gold ions reduce more readily 

providing the driving force for more [AuCl4-] ions to be absorbed and 

subsequently reduced. 

 

 

Table 3.3: Summary of standard reduction potentials for gold and silver couples 

in aqueous solutions.249 

Reaction Standard potential, E0 (V) 

Au3+ + 3e  Au 1.42 to 1.52 

AuCl4- + 3e  Au + 4Cl- 0.994 to 1.002 

Ag+ + e  Ag 0.799 

 

 

Overall, the results show that the majority of the gold (at 50 °C) and more than 

60 % of the silver content (90 °C) in the 10 mL starting solutions is taken up by 

the 1 g quantities of PU or nylon 6,6 beads. 

 

 

 



79 

3.2 Formation of gold and silver nanoparticles within the polymer 

matrix 

 

 

During the uptake of gold or silver ions by the substrates at different 

temperatures the appearance of pink-purple or yellow-brown colours within the 

substrates were observed which are evidence for the formation of gold and silver 

nanoparticles respectively. Here the PU or nylon 6,6 acted both as the substrates 

and simultaneously as the reducing agents presumably due to their carbamate 

and amide functionalities respectively. The purple colour was observed in the 

hybrid PU and nylon 6,6 materials after approximately 15 minutes for PU and 3 

hours for nylon 6,6 into the gold ion uptake process from a 500 mg kg-1 gold 

starting solution concentration. When using a 500 mg kg-1 silver starting solution 

the typical yellow colour of silver nanoparticles appears in the PU samples 

approximately 90 minutes into the silver ion uptake process. However, it takes 

approximately 5 hours to observe the yellow colour in nylon 6,6 materials. 

Figure 3.12 shows the colour development of hybrid PU beads in gold and silver 

solutions with different initial concentrations after 30 minutes (for gold) and 90 

minutes (for silver) into metal ion absorption and the nanoparticle formation 

process. This observation together with the respective uptake curves confirms 

that both the absorption of the gold ions and their reduction to metallic gold 

nanoparticles is taking place simultaneously.  
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Figure 3.12: PU beads during absorption process a) after 30 minutes in contact 

with gold solution with an initial concentrations of 10, 20, 50, 500 mg kg-1 Au3+ 

(from left to right); b) after 120 min in silver solution with an initial 

concentrations of 10, 20, 50, 500 mg kg-1 Ag+. 

 

 

The beads were not uniformly coloured; this is due to the contact area between 

the solution and the polymer beads which was not provided evenly to every bead 

in the reaction vial (Figure 3.14a-d). This behaviour was not observed in 

production of the nanogold and nanosilver hybrid polymer beads during the 

scaling up process (Section 3.3). 

 

The perceived colours of the hybrid polymer materials derive from response of 

light receptors in the human eye to the particular wavelengths of light absorbed, 

transmitted or reflected by the produced hybrid polymer materials. These 

wavelengths are the result of the resonance interaction of the incident light with 

the conduction band electrons of gold or silver nanoparticles formed within the 

polymers. When conduction electrons confined in a very small volume interact 

with light they undergo a collective oscillation with respect to the positive ion 

nuclei, creating a negative charge distribution at the surface. This effect is 

surface plasmon resonance phenomenon (Section 1.4.2). The excitation of 

surface plasmon resonances on the metal nanoparticles is what creates a very 

selective absorption and strong scattering of light of particular colours.  

 

Various factors such as reaction temperature, time, initial metal ion 

concentration and ratio of metal ion to polymer beads (or sheets) influence the 

a b 
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colour of the produced hybrid polymer materials. The colour change of the 

hybrid polymer materials and the relationship between the size and shape of 

nanogold and nanosilver particles were characterised through the use of UV-Vis 

spectroscopy, SEM, TEM and XRD. 

 

 

3.3 Scale up of nanogold and nanosilver hybrid PU materials 

 

 

The nanogold and nanosilver hybrid polymer materials were produced in ten 

times greater quantities in a reactor designed and operated as discussed in 

Section 2.2.1.1. After 24 hours of reaction the beads were uniform in colour as 

the flow of reaction solution through the beads ensured a better contact between 

the solution and the PU polymer beads in comparison to the reaction which took 

place on a small scale in a glass vial. The nanogold and nanosilver hybrid PU 

beads produced in this way were moulded into dog bone strips via a 

conventional thermoplastic moulding process by the Centre for Advanced 

Composite Materials and the Plastics Centre of Excellence at the University of 

Auckland. The resulting dog bone strips produced from the nanogold and 

nanosilver hybrid PU beads are illustrated in Figure 3.13. These are very uniform 

in colour and show that nanogold and nanosilver entities are distributed evenly 

through the moulded plastic (uniform coloured cross section of the dog bone 

strips), confirming that these nano-entities do not affect the thermoplastic 

forming properties of the polymer substrates.  
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Figure 3.13: a) From left to right moulded dog bone strips from the untreated 

PU beads, beads which were produced from 1, 5, 10, 50, 100 mg kg-1 Au3+ 

solution; b) from left to right moulded dog bone strips from the untreated PU 

beads, beads which were produced from 1, 10 and 50 mg kg-1 Ag+ solution. 

 

 

3.4 UV visible spectroscopy - colour of nanogold and nanosilver hybrid 

polyurethane and nylon 6,6 materials 

 

 

As mentioned above, the pink-purple or yellow brown colour development that 

was observed in the PU and nylon 6,6 substrates during the uptake of gold or 

silver ions indicated the subsequent reduction of these ions to metallic 

nanoparticles. Figure 3.14 shows a picture of the nanogold and nanosilver hybrid 

PU and nylon 6,6 polymer beads after a period of 24 hours of reaction with Au3+ 

and Ag+ containing solution of different concentrations. During the reaction, gold 

or silver ions were absorbed by the polymer substrates and simultaneously 

reduced to gold or silver nanoparticles respectively. With increasing initial gold 

concentrations the colour of the resultant materials changes from a pink to 

purple and then brown. Similarly, with increasing initial silver concentrations, the 

colour of the resultant materials changes from yellow to dark brown.  

 

a b 

2 cm 
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Figure 3.14: Photograph of the nanogold and nanosilver hybrid PU and nylon 

6,6 beads: a) (from left to right) untreated PU beads, PU-b-5Au, PU-b-10Au, 

PU-b-20Au and PU-b-50Au samples; b) (from left to right) untreated PU beads, 

PU-b-5Ag, PU-b-10Ag, PU-b-20 and PU-b-50Ag samples; c) (from left to right) 

untreated nylon 6,6 beads, Ny-b-5Au, Ny-b-10Au, and Ny-b-50Au samples; d) 

(from left to right) untreated nylon 6,6 beads, Ny-b-5Ag, Ny-b-10Ag, and 

Ny-b-50Ag samples. 

 

 

In order to ascertain the extent of the formation and distribution of the 

nanoparticles through the interior of the hybrid polymer materials, the nanogold 

and nanosilver hybrid PU and nylon 6,6 beads were cut into slices (Figure 3.15). 

At low gold concentrations the surface of the PU was coloured purple due to the 

surface plasmon resonance effect, and the centre was almost colourless 

(PU-b-20Au sample). However, when the gold concentration of the solution was 

increased to 50 mg kg-1 Au3+ to prepare the PU-50-Au sample, the cross section 

of this bead showed that the purple colour, which was the same on the surface 

of the bead, became lighter when moving towards the centre of the bead and 

eventually became colourless around the core of the bead. Increasing the 

concentration of the gold solution further to 500 mg kg-1 Au3+ (as in PU-b-500Au 

sample) resulted in a change in the colour of the surface of the bead from purple 

to brown. Moving towards the centre of such a bead saw a gradual colour 

change back to purple due to discrete and separated gold nanoparticles. Similar 

a 

b 

c 

d 
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observations were made for the nanosilver hybrid PU beads. For the PU-b-20Ag 

sample, the yellow colour, which is the typical colour for silver nanoparticles due 

to surface plasmon resonance, was observed on the surface of the bead. With 

increasing concentration, the PU-b-50Ag sample was evenly yellow throughout 

the entire hybrid PU bead. As the concentration was further increased to 

500 mg kg-1 Ag+ to prepare the PU-b-500Ag sample, the beads were brown on 

the surface turning yellow when moving towards the centre of the beads.  

 

The cross sectional variation in colour seen in the PU beads produced from 

solutions with increasing gold or silver concentrations, notably from purple or 

yellow on the outer edge and colourless in the centre to purple or yellow all of 

the way through and finally brown on the outer edge and purple or yellow in the 

centre is likely due to the formation of different sized gold or silver nanoparticles 

exhibiting different extents of agglomeration. With a low initial gold or silver 

concentration the majority of metal ions would form as discrete nanoparticles on 

the outer edges of the beads. Increasing the gold or silver concentration slightly 

would increase the rate of absorption and diffusion, meaning there would be a 

greater spread of metal ions right throughout the bead, resulting in the 

formation of nanoparticles both on the surface and also within the interior of the 

beads. Increasing the gold or silver concentration further may saturate the 

beads. On the outer edges of the beads the gold or silver concentration would be 

so high that more nanoparticles may form than are able to be stabilised by the 

substrate, resulting in particle growth via agglomeration and hence the 

appearance of a brown colour. Due to diffusion, the concentration of metal ions 

in the centre of the beads produced with a high gold or silver concentration 

would be less than that on the outer edges, and hence the amount of 

nanoparticles formed would be less. As these produce a purple or yellow colour 

respectively it is likely that they are sufficiently stabilised by the polymer matrix 

and exist as discrete nanoparticles sufficiently separated, and therefore do not 

undergo agglomeration.  

 

The observation made for the nanogold and nanosilver hybrid nylon 6,6 beads 

was slightly different. The sliced Ny-b-50Au sample (Figure 3.15b) was purple on 

the surface and as the concentration was increased the colour penetrated the 

bead admittedly not as intensive as for the analogue PU sample (Figure 3.15a) 
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which is likely due to the different porosity degrees of the polymers. This agrees 

well with the uptake study results (Section 3.1), the amount of the gold ions 

absorbed by the PU beads was higher than the amount of the gold ions absorbed 

by the nylon 6,6 beads. 

 

 

 

Figure 3.15: Photograph of the sliced nanogold and nanosilver hybrid PU and 

nylon 6,6 beads: a) (from left to right) PU-b-20Au, PU-b-50Au and PU-b-500Au 

samples; b) (from left to right) Ny-b-50Au and Ny-b-500Au samples. 

 

 

3.4.1 UV visible spectroscopy - nanogold hybrid polyurethane and nylon 

6,6 materials 

 

 

For gold, the absorption edge due to the interband transitions is in the visible 

range at around 470 nm250, yielding the distinct golden yellow colour. A thin film 

of gold absorbs in the blue region at 480 nm.251 Gold nanoparticles exhibit an 

a 

b 
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intense visible absorption, generally centred between approximately 

500-700 nm.106 For example spherical gold nanoparticles exhibit an intense ruby 

red colour and an extinction band around 520 nm with nanoparticles of an 

approximate size between 10 and 20 nm dispersed in water.108,110 As mentioned 

in Section 1.4.2, the surface plasmon resonance band depends strongly not only 

on the size and the shape of the nanoparticle but also on the dielectric constant 

of the surrounding medium, presence of the adsorbed species and the distance 

between neighbouring nanoparticles.252 

 

Figure 3.16 shows the Kubelka Munk transformed UV-Vis reflectance spectra for 

the nanogold hybrid polyurethane materials prepared from different 

concentrations of gold in the uptake solutions ranging from 5 to 50 mg kg-1 Au3+. 

Their respective photographed colours are presented in Figure 3.14a. For all 

samples two peaks, around 505 and 700 nm, should be ignored as the peaks are 

artefacts of the UV Vis spectrometer used. The PU beads prepared from a 

5 mg kg-1 gold solution exhibit two absorption peaks, one at around 512 nm and 

another one at 547 nm. The peak around 512 nm which is clearly blue-shifted 

from the typical surface plasmon resonance band at 520 nm for small spherical 

gold nanoparticles matches with the peaks reported on gold nanoparticles which 

absorb between 500 and 510 nm and are around 2 nm and smaller in size.253–255 

The peak position and shape depend on the dielectric constant of the 

surrounding medium of the nanoparticles. The optical properties of spherical 

metal particles can be calculated by Mie theory. As previously introduced 

(Section 1.4.2), in the equation shown below: 
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the resonance condition is fulfilled when ε' = -2εm for spheres. For noble metal 

nanoparticles ε' is negative and decreases with increasing wavelength so that as 

εm increases, the resonance condition is fulfilled at higher wavelengths. 

Additionally the peak shifts to higher wavelengths with increases in the 

refractive index of the surrounding medium.256 The refractive index of the 

surrounding medium is close ca. 1.5 for polyurethane, therefore as expected the 

peak is red-shifted from 520 nm absorption band for small gold nanoparticles 

which are dispersed in aqueous solution with refractive index of 1.33 for water. 

Thus, the peak at 547 nm represents very small nanoparticles appearing to 

reflect a pink colour to the eye. Due to the small concentration of the 

nanoparticles in this sample the particle size could not be determined by TEM 

analyses. When analysing the spectrum curve for PU beads produced from a 10 

mg kg-1 gold solution the absorption peaks have shifted and broadened. The first 

peak is slightly shifted from 512 to 514 nm, indicating particle growth due to an 

increased number of absorbed gold ions by the substrate. The second peak is 

broadened significantly and has its absorption maxima at 555 nm. If it is 

assumed the particles are spherical then the broadening and red-shift is caused 

by the increased particle diameter and also possible agglomeration of the 

particles which results in the coupling of surface plasmon resonance bands of 

closely adjacent nanoparticles. Larger spherical gold nanoparticles scatter more 

light257 due to larger optical cross sections and increasing ratio of scattering to 

total extinction with increasing size. The colour changed from pink to slightly 

purple shade. 
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Figure 3.16: Kubelka Munk transformed UV-Vis reflectance spectra of the 

nanogold hybrid PU polymer materials with different quantities of gold. 

 

 

As the concentration of the soaking solution was increased from 10 to 100 mg 

kg-1 Au3+ to produce the PU-b-100Au sample, the colour changed from purple to 

dark purple and then brown (Figure 3.14a), covering the entire range in the UV-

Vis absorption spectrum. The broadening and the intensity suggest an 

inhomogeneity in particle size and shape and a possible presence of aggregates 

of the nanoparticles as was confirmed by the SEM and TEM analyses 

(Sections 3.5.1 and 3.6.1).  

 

Figure 3.17 presents the Kubelka Munk transformed UV-Vis reflectance spectra 

for the nanogold hybrid nylon 6,6 beads materials prepared with different levels 

of Au3+ in the uptake solutions from 5 to 50 mg kg-1 Au3+. The beads show the 

typical pink-purple colours for gold nanoparticles which were presented in Figure 

3.14c. 
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Figure 3.17: Kubelka Munk transformed UV-Vis reflectance spectra of the 

nanogold hybrid nylon 6,6 beads polymer materials with different quantities of 

gold. 

 

 

For all samples the peaks at around 505 and 700 nm should be ignored as 

mentioned above. Nylon 6,6 beads prepared from a solution with an initial gold 

concentration of 5 mg kg-1 exhibit a peak at 510 nm and an additional peak at 

535 nm which could mean the sample contains gold nanoparticles with the size 

of smaller than 2 nm and also nanoparticles with the size between 2 and 20 nm 

assuming the nanoparticles are spherical (Figure 3.17). As mentioned above, the 

peak position is strongly dependent on the refractive index of surrounding 

medium. In this case the refractive index of nylon 6,6, similar to PU, has the 

value of ca. 1.5 and is higher than water, resulting in a redshift to a higher 

wavelength. After the increasing of the Au3+ content from a 5 mg kg-1 to 

10 mg kg-1 in the soaking solution the peak at 510 nm remains and a second 

peak appears at around 538 nm, which is slightly broadened due to an increase 

of the particle diameter and also the presence of different particle sizes of the 

gold nanoparticles. The colour change from light pink to pink is shown in Figure 
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3.14c. The third curve of Figure 3.17 characterises the sample of nylon 6,6 

beads produced from a soaking solution of 50 mg kg-1 Au3+. The shift of the peak 

maximum from 538 nm to 556 nm and also the significant peak broadening 

indicates a range of particle sizes, the increase in available Au3+ ions leads to the 

formation of new small nanoparticles in addition to growth of existing particles. 

Furthermore, a possible aggregation of gold nanospheres results in a 

pronounced colour transition from pink to purple (Figure 3.14c). This is due to 

plasmonic coupling between particles.258 TEM analysis of the Ny-b-50Au sample 

confirmed that the gold nanoparticles exist in a variety of sizes and shapes, 

additionally some agglomerates of the gold nanoparticles in this material were 

observed (Section 3.6.1). 

 

 

3.4.2 UV visible spectroscopy - colour of nanosilver hybrid polyurethane 

and nylon 6,6 materials 

 

 

In comparison with gold, the interband transition for silver occurs in the 

ultraviolet region at 320 nm due to the wider energy gap between the 4d to 5sp 

orbitals, giving silver its shiny grey colour.259,260 Surface plasmon absorption 

bands of silver nanoparticle sols in water vary enormously in position ranging 

from 375 to 405 nm97, Berry reported that spherical silver nanoparticles 5.6 nm 

in size dispersed in water exhibit an absorption band at 376 nm.261 However, 

due to several factors such as particle size and shape as well as the dielectric 

constant of the surrounding medium, the presence of adsorbed species and the 

distance between neighbouring nanoparticles, the surface plasmon resonance 

band of silver nanoparticles can be shifted to longer wavelengths, in the blue 

region of the visible spectrum from about 400 – 490 nm22 appearing yellow to 

the eye. Another important factor is that silver nanoparticles are sensitive to 

oxidation and the presence of a silver oxide outer surface also causes a red shift 

of the SPRB.215 

 

The Kubelka Munk transformed UV-Vis reflectance spectra for the nanosilver 

hybrid polyurethane dog bone strips moulded from nanosilver hybrid PU beads 
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prepared with different levels of silver in the uptake solutions from a 1 to 

50 mg kg-1 Ag+, are presented in Figure 3.18. Their respective colours can be 

seen in Figure 3.14b. The sample which was produced from a 1 mg kg-1 Ag+ 

solution showed that at around 437 nm a small peak started to form. The peak 

can be ascribed to the surface plasmon resonance absorption band of silver 

nanoparticles. This peak was more pronounced for the sample with 10 times 

more silver content but at an unchanged absorption position of 437 nm meaning 

the particle size remained the same but the particle concentration increased. 

Klein and Metz observed silver spheres of a size larger than 20 nm in dry 

gelatine which gave an absorption peak near 450 nm.261 The refractive index of 

gelatine (n=1.5)97 is very similar to those of PU and nylon 6,6 thus it is 

reasonable to assume that the formed silver nanoparticles in the polyurethane 

matrix are smaller than 20 nm. As the concentration increased to 

50 mg kg-1 Ag+ the peak of the hybrid PU dog bone sample broadened and the 

absorption maxima shifted to around 466 nm indicating an increasing size of the 

nanoparticles as well as a variation in particle size and the formation of some 

agglomerates of the silver nanoparticles as confirmed by TEM (Section 3.6.2). 

Again, here for all samples the peaks at around 505 and 700 nm should be 

ignored as these are artificial signals caused by the spectrometer. 
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Figure 3.18: Kubelka Munk transformed UV-Vis reflectance spectra for the 

nanosilver hybrid polyurethane dog bone samples with different amounts of 

silver. 

 

 

For the UV-Vis reflectance spectrum measurement of the nanosilver hybrid nylon 

6,6 beads the peaks appearing for all samples at 410 nm can be ascribed to the 

nylon 6,6 itself. Figure 3.19 shows the spectra for the nanosilver hybrid nylon 

6,6 beads prepared with different levels of silver in the uptake solutions from 5 

to 50 mg kg-1 Ag+. The 450 nm peak is not discernible in the hybrid nylon 6,6 

beads prepared from a 5 mg kg-1 silver solution but is discernible for the hybrid 

polymer materials prepared from a 10 mg kg-1 Ag+ solution. This peak becomes 

progressively more prominent for the hybrid polymer material prepared from a 

50 mg kg-1 silver solution. The 450 nm peak may contain, as reported earlier 

similar to the nanosilver hybrid PU beads, silver nanoparticles which are around 

20 nm in size. Because the peak position remains at 450 nm this could mean the 

particle size is not changing but more particles are formed with increasing Ag+ 

concentration which reflects in no colour change but in increase in intensity of 

the yellow colour shown in Figure 3.14d.  
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Figure 3.19: Kubelka Munk transformed UV-Vis reflectance spectra for the 

nanosilver hybrid nylon 6,6 beads with different amounts of silver. 

 

 

Figure 3.20 presents the UV-Visible reflectance spectra for the nanosilver hybrid 

nylon 6,6 polymer materials in the form of sheets. The samples were prepared 

from solutions with starting concentrations of 10, 20, 50 and 100 mg kg-1 of Ag+. 

The sample which was prepared from a 10 mg kg-1 Ag+ solution exhibits a peak 

at 430 nm. With increasing the Ag+ concentration to 20 mg kg-1 there is 

essentially no shift or broadening of the peak, meaning the particle size does not 

change with higher levels of Ag+ in the uptake solution. Rather, again more 

nanoparticles of the same size are formed which provides an increase in colour 

intensity. There is a noticeable peak broadening of the sample which was 

prepared from a 100 mg kg-1 Ag+ soaking solution. The broadening is most likely 

due to particle agglomeration. 
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Figure 3.20: Kubelka Munk transformed UV-Vis reflectance spectra of 

nanosilver hybrid nylon 6,6 sheets with different amounts of silver. 

 

 

3.5 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanogold and nanosilver hybrid polymer materials 

 

 

SEM analyses were run on the hybrid polymer samples with at least 0.05 % 

metal loading on the beads. The typical colour for gold or silver nanoparticles 

could already be seen in samples which contained 0.005% of metal, due to the 

very high extinction coefficient in the visible region from the surface plasmon 

resonance effect of nanogold or nanosilver. However, in the SEM nanoparticles 

could only be observed on samples with a higher amount of particles. To observe 

the interior of the hybrid polymer materials, cross sections of the PU samples 

were made by freezing the PU beads or sheets in liquid nitrogen following by 

breaking the beads or sheets into two fractions. Due to the small size of nylon 

6,6 beads and the thickness of the nylon 6,6 sheets, cross sections were made 

by cutting the samples with a clean razor blade into two halves. 
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3.5.1 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanogold and nanosilver hybrid polyurethane materials 

 

 

Figure 3.21 shows SEM micrographs of surfaces of the untreated PU beads. 

Organic matrices such as PU and nylon 6,6 seem to suffer beam damage under 

high energy electron beam resulting in dark areas, an example can be seen in 

Figure 3.21b. The surface of the untreated PU beads appears to be smooth. SEM 

micrographs of the nanogold hybrid PU beads, the PU-b-50Au sample and the 

PU-b-500Au sample confirmed the presence of gold nanoparticles on the 

polymer surface at low resolution (Figure 3.22a and Figure 3.23a). The gold 

nanoparticles are observable in the backscatter mode as white dots. The 

contrast between the metal and the polymer is due to the high atomic weight of 

gold and the low atomic weight of the polymer atoms. A further magnification of 

the Pu-b-50Au sample to 8000 times (Figure 3.22.b) shows a surface with high 

coverage of gold nanoparticles which are predominantly spherical; however, 

occasional larger triangular, hexagonal and rod shapes were observed. This 

result matched well the TEM results of the sample (Section 3.6.1). EDS 

elemental mapping analysis confirmed that the nanoparticles present on the PU 

surface are gold (Figure 3.22c). The distribution of the gold nanoparticles is 

reasonably uniform across the PU surface, and the intense surface plasmon band 

of these gold nanoparticles is responsible for the dark purple colouration of the 

hybrid polymer (Figure 3.24a). When the gold solution was increased from 50 to 

500 mg kg-1 Au3+ to produce the PU-b-500Au sample, nanoparticles found on the 

surface of the sample were larger and showed a wider spread in particle size. A 

few very large particles of about 1 - 2 µm were present (Figure 3.23b) which 

EDS analysis verifies as being gold (Figure 3.23c). Increasing the gold 

concentration possibly saturated the surface of the beads such that the gold 

concentration on the bead surfaces was so high that more nanoparticles were 

formed than were able to be stabilised by the substrate matrix. This resulted in 

particle growth via agglomeration. These particles produce the brown and 

metallic shiny colour of the nanogold hybrid PU beads (Figure 3.24b). As 

previously mentioned, the SPRB of gold or silver nanoparticles depends on the 

particle size and shape. Since at higher gold concentrations the formed particles 

on the surface of the bead have a wide range of sizes and likely exist as 
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agglomerates, the particles do not exhibit a distinct absorption band but cover 

the entire range in visible absorption spectrum thus appearing brown to our eye. 

A further increase of gold ion concentration results in the formation of even 

bigger gold particles on the surface of PU materials. These particles then assume 

the optical properties of the bulk metal and appear a shiny metallic colour to the 

eye. Additionally, EDS analysis did not detect any peaks for chlorine, implying all 

gold ions were reduced to metallic gold. The Cl- ions were washed out of the 

beads following the reduction step in the preparation. 

 

 

 

Figure 3.21: SEM micrographs in backscatter mode of the untreated PU bead 

surface at a) 230 and b) 7500 times magnification. 

 

a b 
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Figure 3.22: SEM micrographs in backscatter mode of the surface of the 

PU-b-50Au sample at a) 230 and b) 8000 times magnification with c) the 

respective EDS elemental analysis Au map. 

a b 

c 
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Figure 3.23: SEM micrographs in backscatter mode of the surface of the 

PU-b-500Au sample at a) 230 and b) 8000 times magnification with c) the 

respective EDS elemental analysis Au map. 

 

 

 

Figure 3.24: Photographs of the a) PU-b-50Au, b) PU-b-500Au, c) PU-b-50Ag 

and d) PU-b-500Ag samples. 

 

 

At a low magnification, SEM images of nanosilver hybrid PU beads, the 

PU-b-50Ag and the PU-b-500Ag samples appeared similar to the untreated PU 

a b 

c 

a b c d 
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beads. However, at a high magnification of 9500 times, the surface of the 

PU-b-50Ag sample exhibits high coverage of spherical bright dots smaller than 

100 nm in diameter (Figure 3.25a). However, it is difficult to determine the 

precise size by SEM. EDS confirmed that the particles are silver (Figure 3.25c). 

Magnification of one of the brighter areas of high silver content shows that the 

silver nanoparticles are smaller than the gold nanoparticles of the PU-b-50Au 

sample. This was expected as studies have shown that the uptake of silver ions 

by polymers is generally much poorer than the uptake of gold (Sections 3.1.1 

and 3.1.2) therefore less ions are present so less particle growth and 

agglomeration is expected. As the silver ion concentration was increased to 

produce the PU-b-500Ag sample, the colour of the hybrid PU beads turned from 

yellow to brown with metallic shimmering effect (Figure 3.24b-c). The 

examination of the surface by SEM revealed the formation of silver 

agglomerates. Figure 3.26a shows the surface of the PU-b-500Ag sample at a 

magnification of 8000 times. Although the nanoparticles are well distributed on 

the surface of the substrate, there are some different areas of varying 

brightness which show different densities of silver nanoparticles across the 

hybrid PU surface. A further magnification to 37000 times shows some areas 

with well distributed spherical silver nanoparticles smaller than 100 nm in 

diameter coexisting with some agglomerates appearing as bright round areas 

consisting of little spherical dots (Figure 3.26b). These agglomerates were also 

confirmed to be silver by the EDS mapping analysis (Figure 3.26c). Similar to 

the nanogold hybrid PU materials, increasing of the silver ion concentration led 

to particle growth on the surface of the PU polymer which is responsible for the 

metallic appearance of the surface of the nanosilver hybrid PU beads. 
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Figure 3.25: SEM micrographs in backscatter mode of the surface of the 

PU-b-50Ag sample at a) 9500 and b) 27000 times magnification with c) the 

respective EDS elemental analysis spectrum. 

a b 

c 
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Figure 3.26: SEM micrographs in backscatter mode of the surface of the 

PU-b-500Ag sample at a) 8000 and b) 37000 times magnification with c) the 

respective EDS elemental analysis Ag map. 

 

 

A cross sectional analysis was undertaken to determine the nanoparticle 

distribution in the polymer interior relative to the surface coverage. Figure 

3.27a-c shows SEM images recorded in the backscatter mode of a cross section 

of the PU-b-50Au sample. At lower resolution only occasional bright particles 

located on the cross sectioned surface are noted, however these particles are in 

fact contamination particles sitting loosely on the surface. With a higher 

magnification an image was taken near the edge, the gold particles, appearing 

bright, are found on the surface and just below the surface of the PU-b-50Au 

sample. Some occasional spherical gold nanoparticles smaller than 100 nm in 

diameter were found in the centre of the bead (Figure 3.27c). However, due to 

instability of organic matrix under the SEM beam it was difficult to obtain higher 

resolution images at higher magnifications and thus to ascertain the exact size 

a b 

c 
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and shape of the gold particles. The distribution of gold nanoparticles in the 

interior of the bead was very irregular. The colour of the cross section and hence 

the interior is shown in Figure 3.28a, as going from the surface towards the 

centre of the bead the colour loses its intensity, turning from purple to very light 

purple and almost transparent in the centre. The increasing of the gold solution 

concentration to produce the PU-b-500Au sample resulted in a complete 

colouration of the PU bead interior, the colour of the bead core turned dark 

purple while the surface appeared brown with a metallic shiny effect as 

previously mentioned (Figure 3.28b). The reason for the colour development in 

the centre of the bead is due to the higher amount of absorbed gold ions which 

could penetrate further into the polymer matrix where they were reduced to 

metallic gold nanoparticles. The colour is dependent on the particle size and 

shape (Section 1.4.2). Because the concentration of absorbed gold ions 

decreases with increasing distance to the surface, it is likely that formed gold 

nanoparticles in the centre of the bead are fully stabilised and isolated by the 

polymer matrix and therefore do not undergo agglomeration. This contrasts with 

the surface where the particles exhaust the stabilisation capability of the 

polymer resulting in aggregates and therefore exhibiting a brown colour. At a 

very low magnification the cross section of the PU-b-500Au sample shows a rich 

coverage of gold particles only on the surface (Figure 3.29a). A further 

magnification to 22000 times, which is presented in Figure 3.29b, shows a 

surface cross section of the sample near the edge. The surface of the bead is 

depicted on the right hand side of the image and is covered by larger gold 

particles, most likely agglomerates. The particles in the centre of the bead, 

which appeared spherical, were easily detectable (Figure 3.29c) and well 

distributed.  
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Figure 3.27: SEM micrographs in backscatter mode of a cross section of the 

PU-b-50Au sample at a) 55 times magnification, b) 22000 times magnification 

on the edge of the bead and c) 25000 times magnification in the centre of the 

bead. 

 

 

 

Figure 3.28: Photographs of sliced cross sections of the PU-b-50Au (left) and 

PU-b-500Au (right) samples. 

a b 

c 
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Figure 3.30 shows SEM micrographs and corresponding gold EDS maps of a 

nanogold hybrid polyurethane dog bone strip which was moulded from the PU 

beads produced from a 50 mg kg-1 gold solution (PU-b-50Au). The sample is 

brown in colour. SEM confirmed that during the moulding process the gold 

nanoparticles were distributed evenly throughout the plastic. At a magnification 

of 6500 times, the particles were found to be varying in sizes and shapes but 

mostly spherical particles could be seen. However, occasional triangles, 

hexagonal and rod shaped particles were also observed. 

 

 

 

Figure 3.29: SEM micrographs in backscatter mode of a cross section area of 

the PU-b-500Au sample at a) 25 times magnification, b) 500 times 

magnification on the edge of the bead and c) 7000 times magnification around 

the centre of the PU bead. 

 

a b 
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This confirms that during the moulding process of the PU-b-50Au the larger 

particles which were located on the surface were mixed with smaller gold 

particles of the bead interior. This result is consistent with the UV-Vis spectrum 

(Figure 3.16) of the PU-b-50Au sample showing no typical distinct surface 

plasmon resonance band for gold nanoparticles at about 530 nm but rather 

covering the whole visible absorbance range. EDS confirmed the bright white 

particles evident within the nanogold hybrid PU dog bone sample were gold. In 

TEM analysis of the PU-b-50Au sample particles up to 450 nm in size and 

particle agglomerates were observed.  

 

 

 

Figure 3.30: SEM micrograph of the nanogold hybrid PU dog bone strip (left) 

the corresponding Au EDS map (right). 
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Figure 3.31: SEM micrographs in backscatter mode of a cross section area of 

the PU-b-50Ag sample at a) 1400 times magnification on the edge of the bead 

and b) at 40 000 times magnification in the centre of the bead together with c) 

the respective EDS spectrum. 

 

 

SEM analyses of cross sections of the nanosilver hybrid PU materials proved to 

be somewhat difficult. Similar to the surface analysis, the particles in the interior 

seem to be smaller and scarcer than those observed in the corresponding 

a b 

c 
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nanogold hybrid PU materials. Uptake studies have shown that uptake of silver 

ions by the polymer substrates was not as efficient or abundant as that of gold 

ions. Thus, imaging at a higher magnification was required. Figure 3.31a 

presents the image of the cross section area of the PU-b-50Ag sample. At a 

magnification of 1400 times, silver particles appear to be on the surface and just 

under the surface respectively (Figure 3.31b). The EDS elemental analysis 

verified the particles as being silver. When analysing the area near the centre of 

the bead single sparsely distributed spherical particles were observed. The size 

of the particles was smaller than 100 nm in diameter; however, it was difficult to 

determine the exact size by SEM. These particles give rise to the interior of the 

bead being evenly yellow coloured with a dark yellow tending to a brown surface 

colour instead of gradually changing colour when moving towards the centre, as 

observed in the nanogold hybrid PU beads. TEM analysis of this sample showed 

that in general the particles were spherical and of a size between 5 and 50 nm in 

diameter. Figure 3.32a-b shows a SEM image of the cross section of the 

PU-b-500Ag sample. The silver nanoparticles observed in the bead interior were 

spherical and smaller than 100 nm in diameter. The coverage over the entire 

bead seems to be rich and uniform, indicating that the Ag+ penetrated the entire 

bead where they were reduced to Ag0 and simultaneously stabilised by PU 

matrix. 

 

 

 

Figure 3.32: SEM micrographs in backscatter mode of a cross section of the 

PU-b-500Ag sample at a) 2200 and b) 25000 times magnification near the edge 

of the bead. 

a b 
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3.5.2 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanogold and nanosilver hybrid nylon 6,6 materials 

 

 

The examination of the surface of the untreated and the nanogold and 

nanosilver hybrid nylon 6,6 beads was similarly carried out via SEM analyses. 

Figure 3.33 presents secondary electron and backscatter mode of the surface of 

the untreated nylon 6,6 bead at a low magnification. The surface appears to be 

relatively smooth. SEM studies, recorded in backscatter mode, show that at low 

magnifications the Ny-b-50Au sample appears similar to the untreated nylon 6,6 

bead (Figure 3.34a). However, on increasing the magnification to 40000 times 

(Figure 3.34b) bright white spots become observable, which were confirmed by 

EDS elemental analysis to be gold. The particles appeared to be smaller than 

100 nm, however some agglomerates were observed. In general the particles 

seem to be smaller than the analogue polyurethane sample, which could be due 

to the available gold ions in the nylon 6,6 matrix that can be reduced by the 

polymer to gold nanoparticles. As the uptake studies have shown, PU is able to 

absorb higher amounts of gold ions than nylon 6,6 substrate which is 

presumably due to the higher porosity of the PU compared to the nylon 6,6 

substrates. Examination of the Ny-b-500Au sample has revealed a high coverage 

of gold particles on the surface of the bead which were easily detectable at a low 

magnification of 60 times (Figure 3.35a). At a higher magnification of 9500 

times, gold particles with distinct geometrical shapes, such as triangular, 

hexagonal and rods were observed (Figure 3.35b). Although occasionally 

spherical particles smaller than 100 nm are seen, most gold particles were 

formed on the microscale. The gold particles were confirmed by EDS (Figure 

3.35c-d). Similar to the nanogold hybrid PU materials, due to the oversaturation 

of the bead surface with gold ions, more particles were formed than were able to 

be stabilised by the polymer matrix of the nylon 6,6 substrate. This resulted in 

the continued aggregation of the nanoparticles producing large, microscale gold 

particles. This lowers the surface energy of the nanoparticles, and stabilises the 

nanoparticles by aggregation. As expected, the Ny-b-500Au sample in 

comparison to the Ny-b-50Au sample was dark purple, almost brown in colour 

and exhibited a typical gold lustre, similar to the comparable nanogold hybrid PU 

samples. Figure 3.36 presents the photographs of both samples. In the EDS 
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elemental analysis for the Ny-b-50Au and the Ny-b-500Au samples respectively, 

chlorine was also detected, which is due to unreduced [AuCl4]- and also free Cl- 

ions. However, this is discussed further in Section 3.8.1.  

 

 

 

Figure 3.33: SEM micrographs of the untreated nylon 6,6 bead surface 

(secondary electron and backscatter mode). 

 

 

 

Figure 3.34: SEM micrographs in backscatter mode at increasing magnifications 

of the surface Ny-b-50Au sample. 

 

 

a b 
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Figure 3.35: SEM micrographs in backscatter mode at increasing magnifications 

of a-b) the surface of the Ny-b-500Au sample with c-d) respective elemental 

analyses spectrum and Au map. 

a b 

c d 
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Figure 3.36: Photographs of Ny-b-50Au (left) and Ny-b-500Au (right) samples 

with their respective cross sections below. 

 

 

Figure 3.37 shows SEM photographs of the surface of the Ny-b-50Ag sample at 

different magnifications with the respective EDS elemental analysis spectrum. At 

a low magnification the surface of the Ny-b-50Ag sample seems to be similar to 

the untreated nylon 6,6 bead. However, with further magnification to 9500 times 

the surface shows a high coverage of bright dots which EDS confirms as being 

silver (Figure 3.37c). The particles are in nanoscale however it is difficult to 

accurately ascertain the size of the silver nanoparticles on the surface of the 

nylon 6,6 bead due to the resolution limit of the SEM and slight charging of the 

materials. Thus, particle agglomeration cannot be excluded.  
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Figure 3.37: SEM micrographs in backscatter mode at increasing magnifications 

of a-b) the surface of the Ny-b-50Ag sample with c) the respective elemental 

analysis spectrum. 

a b 

c 
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Figure 3.38: SEM micrographs in backscatter mode at increasing magnifications 

of a-b) the surface of the Ny-b-500Ag sample with c) the respective elemental 

analysis spectrum. 

 

 

As the silver ion concentration was increased to synthesise Ny-b-500Ag sample, 

the surface colour of the hybrid PU beads turned light brown. Figure 3.38 shows 

SEM images of the surface of the Ny-b-500Ag sample with the corresponding 

a b 

c 
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EDS elemental analysis spectrum shown in Figure 3.38c. In contrast to the 

Ny-b-50Ag sample the surface of the Ny-b-500Ag sample at the magnification of 

700 times shows small bright spots depicting silver. Increasing the silver ion 

concentration, from 50 to 500 mg kg-1 Ag+ led to particle propagation and a 

possible particle growth via agglomeration on the surface of nylon 6,6. A further 

magnification to 9500 times shows that the surface has essentially a full 

coverage of silver particles (Figure 3.38b). Again, the particle size could not be 

measured accurately due to the resolution of the SEM and charging behaviour of 

the materials. Generally, the silver nanoparticles appear to be spherical and 

smaller than the analogue nanogold sample. Similar behaviour was seen in 

nanogold and nanosilver hybrid PU materials and is again believed to be due to 

the difference in the uptake of gold and silver ions by the polymer substrates. As 

reported in Sections 3.1.1 and 3.1.2 the uptake studies have shown that the 

uptake of silver ions by the polymer substrates is usually much poorer than the 

uptake of gold. Thus, smaller amounts of silver ions are present for reduction to 

nanosilver particles, which are stabilised by the nylon 6,6 matrix.  

 

In a similar approach to characterise the interior of synthesised hybrid nylon 6,6 

materials, cross sections were prepared by cutting the nylon 6,6 beads into 

slices. The slices were then studied by SEM and EDS. Figure 3.39 shows a cross 

section of the untreated nylon 6,6 bead. The surface appears very smooth due 

to the clean cut with a blade. 
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Figure 3.39: SEM micrograph in backscatter mode of the surface cross section 

of an untreated nylon 6,6 bead. 

 

 

Figure 3.40a presents the SEM micrographs recorded in the backscatter mode of 

the cross section surface of the Ny-b-50Au sample. At a magnification of 90 

times, a bright ring about 60 µm from the edge into the bead interior was 

observed. The bright ring in the backscatter image corresponds with the area of 

high gold concentration in the gold EDS analysis image (Figure 3.40b). This 

suggests that within the 24 hours reaction time the gold ions (in form of 

[AuCl4]-) penetrated the first ca. 60 µm of the nylon 6,6 bead where they were 

reduced to metallic gold and subsequently stabilised by the surrounding nylon 

6,6 matrix. When the concentration of the gold ion solution was increased to 

500 mg kg-1Au3+, the gold ions penetrated the beads further into the matrix. A 

similar behaviour to the cross section of the Ny-b-50Au sample was observed for 

the Ny-b-500Au sample. The gold particles were concentrated mostly in a 160 

µm thick ring which was ca. 80 µm in from the edge of the bead (Figure 3.41a). 

A further magnification to 15000 times revealed that the particles within this 

ring are spherical and generally smaller than 100 nm in diameter. However, 

some randomly distributed agglomerates were observed which are several 100 
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nm in size, indicating that the nylon 6,6 matrix, composed of randomly 

orientated polymer chains, is not able to provide an uniform stabilisation of gold 

particles. The penetration of the gold was also confirmed by the photographs of 

a cross section area of the Ny-b-50Au and Ny-b-500Au sample respectively 

which are shown in Figure 3.36. The sample with the lower concentration of gold 

(Ny-b-50Au) appears purple only on the surface or just below the surface, 

whereas the sample with higher concentration of gold (Ny-b-500Au) has a rather 

transparent edge and dark purple ring in from the edge of the nylon 6,6 bead. 

As previously mentioned, these colours are due to surface plasmon resonance 

effect of gold nanoparticles. To investigate how the soaking time and reaction 

temperature influenced the penetration of the gold into the polymer matrix the 

reaction conditions were changed slightly and a new nanogold hybrid nylon 6,6 

sample was prepared. Instead of heating the beads in 500 mg kg-1 gold solution 

for 24 hours, the beads were immersed in 500 mg kg-1 gold solution and left at 

room temperature for 24 hours. Subsequently the sample was heated to 50 °C 

for another 24 hours. It was hoped that in first 24 hours the gold ions had time 

to penetrate the polymer matrix further without being reduced to Au0. Then, a 

temperature increase to 50 °C for further 24 hours was employed to promote 

the reduction of absorbed ions in order to form metallic gold nanoparticles. 

Within the first 24 hours at the room temperature, the colour of the gold solution 

progressively lost its yellow intensity due to the (AuCl4-) ions in solution while 

the beads became yellow showing that these (AuCl4-) ions had diffused into the 

polymer matrix. The typical purple colour for gold nanoparticles first started to 

appear when the temperature was increased to 50 °C. Figure 3.42a-b presents 

SEM micrographs of the cross section of such sample with the respective EDS 

map. The gold particles were mostly concentrated in the centre and on the 

surface of the nylon 6,6 bead. 
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Figure 3.40: SEM micrograph in backscatter mode of a) a surface cross section 

of the Ny-b-50Au sample with b) respective EDS elemental analysis map. 

 

a b 
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Figure 3.41: SEM micrographs in backscatter mode at increasing magnifications 

of a-b) a surface cross section of the Ny-b-500Au sample with c) the respective 

EDS elemental analysis spectrum. 

 

a b 

c 
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Figure 3.42: SEM micrographs in backscatter mode of the cross section area of 

a) the nanogold hybrid nylon 6,6 bead prepared by soaking the bead in 500 

mg kg-1 gold solution at room temperature for 24 hours subsequently 

increasing the temperature to 50 °C for further 24 hours; b) the respective EDS 

elemental analysis spectrum. 

 

 

Examination of the nanosilver hybrid nylon 6,6 beads proved to be rather 

difficult. For the cross section area of the Ny-b-50Ag sample no silver could be 

detected in the centre of the bead. Rather the silver nanoparticles seemed to be 

located on the surface or just below the surface. However, it could not be ruled 

out that the nanoparticles found below the surface were particles carried by the 

razor blade while cutting the cross section. The cross sectioned bead was 

colourless throughout the bead but exhibited yellow colour on the surface. This 

colour is consistent with surface plasmon resonance band of silver nanoparticles 

(Section 1.4.2). When the concentration of silver ions was increased to prepare 

the Ny-b-500Ag sample, the colour of the surface became brown. However the 

interior of the bead again remained colourless. Figure 3.43 presents the SEM 

micrographs of a cross section area of the Ny-b-500Ag sample at different 

magnifications. Again, due to the resolution of the SEM and charging of the 

material silver particles it was difficult to image at higher magnifications. 

However, very small nanoparticles were found just under the surface. Since the 

silver solution is slightly acidic (pH 5) the nylon 6,6 polymer functional groups 

are protonated during the production of nanosilver hybrid nylon 6,6 materials 

and thus have a positive net charge. This positive net charge hinders the 

positive charged silver ions from penetrating the polymer matrix further where 

a b 
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they then can be reduced and stabilised. Thus, the absorption and reduction of 

silver ions to metallic silver takes place on the top layer of the nylon 6,6 surface. 

By contrast, the gold ions are absorbed in form of [AuCl4]-. There is 

electrostatical interaction of protonated nylon 6,6 functional groups and the 

[AuCl4]- ions, thus the gold nanoparticles are formed within the polymer matrix, 

as already reported. 

 

 

 

Figure 3.43: SEM micrographs in backscatter mode of the cross section area of 

the Ny-b-500Ag sample at different magnifications.  

 

 

3.6 Transmission electron microscopy and energy dispersive X-ray 

analysis of nanogold and nanosilver hybrid polymer 

 

 

The sample preparation conditions used for TEM analyses on the hybrid polymer 

materials were extremely harsh, and it is possible that the distribution of the 

metal nanoparticles may have been affected and therefore may not be a true 

representation of those present in the hybrid polymer materials. Also there were 

difficulties imaging samples, prepared from solutions with metal ion 

concentrations below 50 mg kg-1, as the nanoparticle concentration in the 

polymer sample was too low for them to be observed by the TEM. With the 

available cutting technique it was not possible to cut the nanogold and 

nanosilver hybrid polymer materials into thin cross sections because of the soft 

a b 
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nature of the polymers, which then could be analysed by TEM. Thus, the 

information on the relationship between the different particle sizes and shapes to 

their respective location in the polymer beads or sheets could not be obtained. 

Therefore in order to characterise the nanoparticles the nanoparticle hybrid PU 

beads were dissolved in DMF and the nanogold hybrid nylon 6,6 beads were 

dissolved in 6 molar HCl. A drop of resulting solution was placed on a copper grid 

where the solvent then was evaporated and the residual solid carbon coated. All 

imaged particles were also characterised by EDS elemental analyses. EDS 

showed the existence of carbon, nitrogen and oxygen which are present in PU, 

as well as copper X-ray peaks from the copper grid on which the sample was 

placed. Peaks for magnesium, silicon, sulfur and chromium are either due to 

impurity in the beads or from other contaminations in the laboratory. Hence they 

can be ignored. 

 

 

3.6.1 Transmission electron microscopy and energy dispersive X-ray 

analysis of nanogold hybrid polyurethane and nylon 6,6 materials 

 

 

As a face centred cubic metal, gold nanoparticles can take a variety of 

geometrical shapes, defined by the crystallographic orientation of the surface 

facets.262 Figure 3.44 presents TEM micrographs of a nanogold hybrid PU 

material which was treated with a 50 mg kg-1 gold solution (PU-b-50Au sample). 

The particles show a variety of particle shapes and sizes. Spherical, hexagonal, 

cubic and triangular-shaped (including truncated triangles) nanoparticles of 

different sizes covering a wide interval of sizes from approximately 5 to 450 nm 

were observed. As reported in Section 3.4.1, the UV-Vis spectrum confirmed the 

presence of particles with different sizes and shapes and also particle 

agglomeration, making the sample appear brown in colour. The presence of gold 

within the nanogold hybrid polymer material was confirmed by a peak at 2.12 

keV corresponding to Au Mα in EDS spectrum (Figure 3.44 in the right side). 
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Figure 3.44: TEM micrographs of some geometrical shape examples of gold 

nanoparticles found in the PU-b-50Au sample (left) with the respective EDS 

elemental analyses (right): a-b) spherical, c) triangular, d) truncated 

triangular, e) hexagonal, f) cubical and g) fivefold twinned particle and h) 

particle agglomeration. 

 

 

Since the hybrid nylon 6,6 beads were dissolved in concentrated HCl, only 

nanogold hybrid nylon 6,6 samples were investigated by TEM as there was a 

possibility to form silver chloride particles as a byproduct during the dissolution 

process of the nanosilver hybrid nylon 6,6 materials. Figure 3.45 shows a TEM 

micrograph of the Ny-b-500Au sample. EDS elemental analysis confirmed the 

presence of gold by a peak located at 2.12 keV corresponding to the Au Mα line. 

The gold nanoparticles were mostly spherical or spherical like in shape however 

some hexagonal, truncated triangular and rod shaped particles were occasionally 

g 

h 
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found. The spherical particles were less than 60 nm in diameter. However, as a 

result of the high concentration of dissolved organic matrix of nylon 6,6 it was 

difficult to image at a higher magnification in order to determine the size of the 

smallest gold nanoparticles.  

 

 

  

Figure 3.45: TEM micrograph of gold nanoparticles found in a) the Ny-b-500Au 

sample with b) the respective EDS elemental analysis spectrum (right). 

 

 

3.6.2 Transmission electron microscopy and energy dispersive X-ray 

analysis of nanosilver hybrid polyurethane materials 

 

 

Figure 3.46 presents TEM micrographs of the nanosilver hybrid PU beads which 

were produced from a 50 mg kg-1 Ag+ solution (PU-b-50Ag sample). In the case 

of silver, particles found in the sample were mostly spherical, from 

approximately 2 to 50 nm in diameter. Some particle agglomerations were also 

observed which was consistent with the UV-Vis spectrum showing a broadening 

of the SPR band for the silver nanoparticles (Section 3.4.2). SEM analysis also 

confirmed that the silver particles on the surface of the bead were agglomerated 

due to the lack of stabilisation from the polymer matrix. The presence of silver 

within the nanosilver hybrid polymer material was confirmed by a peak at 2.98 

keV corresponding to the Ag Lα line in the EDS elemental analysis spectrum 

(Figure 3.46). 

a b 
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Figure 3.46: TEM micrographs of silver nanoparticles found in a) the PU-b-50Ag 

sample with b) the respective EDS elemental analysis spectrum. 

 

 

3.7 X-ray diffraction analysis of nanogold and nanosilver hybrid 

polyurethane and nylon 6,6 materials 

 

 

Confirmation of the formation of gold and silver nanoparticles in the PU and 

nylon 6,6 polymer matrices was carried out using X-ray diffraction analyses. 

XRD patterns matched nicely with the standard PDF 04-001-2616 for gold and 

the PDF 04-001-2617 for silver pattern.242 The XRD patterns were analysed to 

determine peak intensity, position and width. To determine the mean particle 

diameter, full width at half maximum (FWHM) values were used in the Scherrer 

equation. 

 

 

 

 

 

 

 

a b 
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3.7.1 X-ray diffraction analysis of nanogold and nanosilver hybrid 

polyurethane materials 

 

 

Due to having a flat surface and an even distribution of metal nanoparticles 

throughout the PU matrix, hybrid dog bone samples were well suited for XRD 

measurements. The XRD patterns of hybrid PU dog bone strips, PU-b-50Au 

sample, PU-b-50Ag sample and blank PU dog bone strip, PU-db, are shown in 

Figure 3.47. Results from X-ray diffraction analyses indeed demonstrate the 

presence of gold nanoparticles in the hybrid PU dog bone strip. The Bragg 

diffraction peaks centred at 2θ = 38.22° (1 1 1), 44.37° (2 0 0), 64.56° (2 2 0), 

77.54° (3 1 1) and 81.70° (2 2 2) are indexed to the face centred cubic 

structure of gold and are a good match with the database.242 The synthesized 

gold nanoparticles were primarily dominated by (1 1 1) facets.  

 

From TEM analysis, the Au nanoparticles in the PU-b-50Au sample appear to 

range in size from ca. 5 - 450 nm (Section 3.6.1). Due to the residual PU on the 

TEM grid it was difficult to locate and view these particles on the TEM, and as 

such the average size of the particles or the relative percentage of different size 

particles could not be determined. Larger particles were much easier to view and 

image than smaller ones. Using the Scherrer equation (Section 2.3.4) the 

average estimated crystallite particle size of this PU-db-50Au sample was 44 nm. 
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Figure 3.47: XRD patterns for the nanogold and nanosilver hybrid PU materials: 

PU dog bone strip by itself, PU-db-50Ag and PU-db-50Au samples. 

 

 

The XRD pattern for the PU-db-50Ag sample showed only a background curve 

with no observable peaks for silver. Although silver was present as shown by the 

typical nanosilver SPRB in UV-Vis spectrum (Figure 3.18) and also in TEM 

analyses (Figure 3.46), it was not possible to detect any silver nanoparticles by 

XRD or SEM. This was due to the very small amount present within the PU 

polymer and also the small size of silver nanoparticles which were further 

distributed when the beads were moulded into the dog bone test strips. As 

mentioned in Section 3.1, the uptake studies showed that the uptake of gold 

ions from the solution by PU substrates were higher than that for silver ions (for 

gold almost 100 % of gold ions and 70 % of silver ions were absorbed after 24 

hours soaking time) which would have affected the number of nanoparticles 

formed.  

 

The nanogold and nanosilver hybrid PU sheets were also analysed by XRD. The 

presence of gold and silver nanoparticles was confirmed by the characteristic 

peaks observed in the XRD patterns shown in Figure 3.48 and Figure 3.49. All 

the diffraction peaks correspond to the characteristic face centred cubic gold 
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(PDF 04-001-2616) and silver (PDF 04-001-2617) lines respectively.242 The 

diffraction patterns were observed at 2θ angle 38.17° (1 1 1), 44.36° (2 0 0), 

64.68° (2 2 0) and 77.61° (3 1 1) for gold (PU-s-500Au sample) and 38.26° 

(1 1 1), 44.10° (2 0 0), 64.61° (2 2 0) and 77.49° (3 1 1) for silver (PU-s-500Ag 

sample). The mean crystallite size of gold nanoparticles was estimated as 29 nm 

for the PU-s-100Au sample, 34 nm for the PU-s-500Au sample, 21 nm for the 

PU-s-100Ag sample and 25 nm for the PU-s-500Ag sample. The results obtained 

by Scherrer equation show an increase in the crystallite size with increasing 

concentration of gold solution used to produce nanogold hybrid PU sheets.  

 

 

 

Figure 3.48: XRD patterns for the nanogold hybrid PU materials: PU sheet by 

itself, PU-s-100Au and PU-s-500Au samples. 
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Figure 3.49: XRD patterns for nanosilver hybrid PU materials: PU sheet by 

itself, PU-s-100Ag and PU-s-500Ag samples. 

 

 

3.7.2 X-ray diffraction analysis of nanogold and nanosilver hybrid nylon 

6,6 materials 

 

 

The XRD pattern of the untreated nylon 6,6 beads is shown in Figure 3.50. The 

black curve in the spectrum exhibits two broad peaks at 2θ angles of 37.6° and 

40.8° and a third peak at around 2θ = 81.4° depicting the semi-crystalline 

structure of nylon 6,6 beads.  
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Figure 3.50: XRD patterns for nanogold and nanosilver hybrid nylon 6,6 beads 

and nylon 6,6 beads by themselves.  

 

 

No diffraction peaks for gold were detected for the nanogold hybrid nylon 6,6 

beads which were prepared using 50 mg kg-1 gold solution. However, when the 

reaction solution concentration was increased to 500 mg kg-1 of gold solution to 

produce nanogold hybrid nylon 6,6 beads (Ny-b-500Au sample) the XRD pattern 

showed the characteristic Bragg diffraction peaks of gold in the face centred 

cubic phase confirming the presence of gold nanoparticles on the surface of 

hybrid nylon 6,6 beads. These diffraction peaks located at 2θ angle 37.9°, 

44.08°, 64.35°, 77.29° and 81.42° respectively, have been indexed as (1 1 1), 

(2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes for gold respectively. The calculation 

for the mean crystallite size for gold (2 0 0), (2 2 0), (3 1 1) peaks yielded an 

average value of 22 nm, whereas no calculation was done for (1 1 1) and (3 1 1) 

peaks as they are located at a very similar position to the peaks of the untreated 

nylon 6,6 beads. A slight angular offset between the XRD peaks of the 

Ny-b-500Au sample and the reference peaks was observed as the result from 

the hybrid beads not sitting at the correct height in the XRD stage. Secondly, 

slight variations in the position of the peaks indicate the existence of some strain 

in the crystal structure, often characteristics of nanocrystals.263 
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The XRD analysis of the Ny-b-500Ag sample showed no Bragg diffraction peaks 

that can be indexed on the basis of the fcc structure of silver. However, with a 

closer look, the broader peak from nylon 6,6, which was located at around 2θ 

angle 37.6°, exhibits a shift to around 37.8°. Additionally, its intensity is slightly 

increased in proportion to the nylon’s second broad peak at 2θ = 40.8°. This 

suggests the possible presence of the silver (1 1 1) peak in the Ny-b-500Ag 

sample. 

 

 

3.8 X-ray photoelectron spectroscopy analysis of nanogold and 

nanosilver hybrid polyurethane and nylon 6,6 materials 

 

 

As described in Sections 1.3.1.2 and 1.3.1.3 polyurethane and nylon 6,6 possess 

nitrogen-containing groups. In order to understand how the carbamate groups of 

PU and amide groups of nylon 6,6 are involved in the reduction of gold or silver 

ions to their respective metallic nanoparticles and their subsequent binding to 

the polymer matrix, XPS study of the hybrid polyurethane and nylon 6,6 

materials was carried out. An initial survey scan from a binding energy of 600 to 

0 eV for all polymer samples showed the presence of carbon, nitrogen and 

oxygen groups on the polymer surface, together with gold for nanogold hybrid 

polymers and silver for nanosilver hybrid polymers. High resolution scans were 

subsequently carried out across the peaks for each of the elements in the 

nanogold and nanosilver hybrid polymer materials respectively, and also for 

carbon, nitrogen and oxygen in the untreated PU or nylon 6,6, as the control 

samples. The control samples were prepared under the same conditions 

employed to prepare the hybrid polymer materials. Hence the control samples 

were heated for 24 hours in 50 or 90 °C in distilled water, the pH of water was 

adjusted to 4.5 - 5, subsequently all control samples were rinsed with distilled 

water. Peaks for calcium and silicon should be ignored due to contamination of 

the samples. 
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3.8.1 X-ray photoelectron spectroscopy analysis of nanogold hybrid 

polyurethane materials 

 

 

Peaks from characteristic elements (C, O, N) of the untreated polyurethane and 

the nanogold hybrid polyurethane beads (C, O, N and Au) were observed in the 

survey XPS scan of the PU-b-500Au sample (Figure 3.51).  

 

 

 

Figure 3.51: Survey XPS scans of a) a cross section of the untreated PU bead 

and b) the cross section of the PU-b-500Au sample. 

 

 

Figure 3.52 (a, c, e) shows C, N and O 1s high resolution XPS spectra acquired 

from the cross section area of the untreated polyurethane bead. This high 

resolution C 1 s spectrum was deconvoluted into four components at positions 

285 eV, 285.6 eV, 286.6 eV and 289.4 eV which can be attributed to a carbon 

bound to adjacent carbon (C-C), a carbon singly bound to nitrogen environment 

(C-N), a carbon singly bound to oxygen (C-O) and a carbonyl carbon derived 

from the urethane linkages of PU matrix (RNH-COOR’).264 Examination of the 

deconvoluted high resolution, narrow scan N 1s revealed that PU possess a 

major peak at about 400.3 eV which is due to the transition from the N 1s core 

level into the antibonding π∗ orbital of the carbamate bond. The XPS O 1s 

spectrum was deconvoluted into one peak with the maximum at around 

a b 

O 1s 

C 1s 

N 1s 

O 1s 

C 1s 

N 1s 
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532.7 eV and was assigned to the average oxygen environment of PU. A 

complete list of peak assignments is presented in Table 3.4. 

 

 

Table 3.4: XPS assignments for the untreated PU bead and the PU-b-500Au 

sample. 

  Untreated PU beads Nanogold hybrid PU beads 

  Binding Energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 285.00 (0.97) 285.00 (1.15) 

 C-N 285.58 (0.73) 285.60 (0.83) 

 C-O 286.57 (1.16) 286.75 (1.29) 

 O-C=O 289.35 (1.27) 289.60 (1.16) 

 C-N-Au - 284.09 (1.33) 

N 1s N-H 400.31 (1.06) 400.45 (1.31) 

 N-Au - 398.58 (1.12) 

O 1s Average O 

environment 

532.71 (1.77) 533.03 (1.69) 

 Unidentified O 

species 

- 531.10 (1.17) 

Au 4f Au0 7/2 - 82.87 (0.81) 

 Au+ 7/2 

Au3+ 7/2 

- 83.59 (1.02) 

84.55 (1.48) 

 Au0 5/2 - 86.54 (0.81) 

 Au+ 5/2 

Au3+ 5/2 

- 87.26 (1.02) 

88.14 (1.48) 
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Figure 3.52: Deconvoluted high resolution XPS spectra for the untreated PU: a) 

C 1s peaks, c) N 1s peaks and e) O 1s peaks; for the PU-b-500Au sample: b) 

C 1s peaks, d) N 1s peaks and f) O 1s peaks. Experimental data points are 

shown by circles.  

 

a 

c 

b 

d 

e f 

C-N-Au 

N-Au 

Unidentified O 

species 

  

 
 

 
 



136 

Owing to the affinity of gold for nitrogen in the carbamate group, PU offers an 

opportunity to reduce gold ions to nanoparticles and subsequently bind them to 

the polymer matrix. This gold nitrogen interaction was confirmed in XPS analysis 

of the nanogold hybrid PU sample. The interaction was first observed in the high 

resolution C 1s scan of the cross section of the nanogold hybrid PU bead sample. 

The cross section of the bead provided a cleaner surface, therefore stronger XPS 

peaks, and the opportunity to examine the interior matrix of hybrid PU. Figure 

3.52b shows that the treatment of the PU beads with 500 mg kg-1 gold solution 

for 24 hours at 50 °C (PU-b-500Au sample) led to changes in the positions of 

C-O, C-N and carbamate C 1s peaks suggesting O- and N-containing moieties of 

the polyurethane matrix were involved in the reduction of gold ions to gold 

nanoparticles. Additionally a new peak which was consistent with the formation 

of a C-N-Au bond24 was observed at 284.1 eV.  

 

Likewise, the high resolution N1s spectrum of the PU-b-500Au sample provided 

further confirmation of the potential binding (Figure 3.52d). Deconvolution of the 

N 1s spectrum using a two-peak fitting routine revealed binding energies of 

400.5 eV and 398.6 eV. The latter peak is representative of a N-Au 

interaction21,24,265 consistent with the chemical affinity of gold for nitrogen. This 

is provided by the interaction of the electrons on the nitrogen with gold to form 

an Au-N bond, which lowers the electron density on the nitrogen atom. Similar 

binding energies were reported for gold to nitrogen interaction.24,266 As the 

amount of gold in this sample which corresponds to less than 0.5 wt % gold 

loading and more gold was formed on the surface rather than interior of the 

bead (Section 3.5.1), the changes of the nitrogen were expected to be minimal, 

as most of the nitrogen is associated with the remaining polymer and only 4.3 % 

area of nitrogen species form bonds to gold. The N 1s spectral component 

occurring at higher binding energy values showed a shift of ~ 0.14 eV compared 

to the untreated PU sample, as well as an increase in full (FWHM) value. It is 

considered that the reduction of the Au3+ ions to Au0 is facilitated by the 

oxidation of the carbamate groups in the polyurethane matrix, resulting in a shift 

to higher binding energies which indicates the formation of oxidised nitrogen 

species. The corresponding increase in FWHM is due to a consequent increase in 

the variability of the binding environment of the nitrogen. 
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The high resolution O 1s spectrum of the hybrid PU material shows a shift of 

around 0.3 eV to higher binding energies and additionally a new peak which was 

not seen in the untreated PU sample (Figure 3.52f). The shift to higher binding 

energies is consistent with the oxidation of the nitrogen in the PU, which is 

necessary for the gold ions to be reduced. The peak at lower binding energy is 

centred at ca. 531.1 eV. According to Wagner et al., for all known oxides or 

hydroxides the binding energy of the oxygen 1s electron varies between 525 and 

531 eV.267 Reports showed that an Au-O bond is expected to have a peak 

centred at approximately 529.7 eV for Au2O3.268 It is most unlikely that there is a 

formation of oxidised gold species in the nanogold hybrid PU materials. Au2O3 is 

normally formed only under exceptional conditions such as the exposure of Au to 

highly reactive ozone269, atomic oxygen270 or oxygen plasma.271 Gold 

nanoparticles can catalyse the oxidation of CO however it is necessary for them 

to be highly dispersed and deposited on reducible semiconductor metal oxides, 

hydroxides of alkaline earth metals or amorphous ZrO2.272 Since none of the 

support materials are present in the PU matrix, the formation of an Au-O bond 

can be ruled out. Although Au(III) hydroxide is more likely to be formed, 

because it is more thermodynamically stable than Au2O3
273, the formation of 

such gold(III)hydroxide can be eliminated as basic conditions are required for its 

formation, whereas acidic conditions prevail here.274 

 

In this case the peak at lower binding energies is likely to be due to an 

interaction between partially reduced gold ions, Au+, which are present on the 

surface of the gold nanoparticles and the lone pairs of oxygen in the carbamate 

group of PU polymer matrix. In a similar way, Burridge reported on the 

interaction of TSC with positively charged gold nanoparticles resulting in O 1s 

peak at around 530 eV.21 There are many more oxygens compared to nitrogen 

species present in the PU polymer matrix, which interact with unreduced surface 

of gold nanoparticles. As such, the variation of oxygen environment appears to 

be greater than that for nitrogen. However, to confirm this proposed assignment 

it would be interesting to measure the XPS spectra of ex situ produced gold 

nanoparticles which are introduced into the PU matrix. This would be the subject 

of further research work. 
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Figure 3.53: Deconvoluted high resolution Au 4f XPS spectrum for the cross 

section of the bead PU-b-500Au sample. 

 

 

Figure 3.53 shows the high resolution Au 4f XPS spectrum for the cross section 

area of the PU-b-500Au sample. The spectrum comprises a doublet of 

the 7/2 and 5/2 photoemission peaks due to spin orbit splitting.275 The doublet 

peaks with an intensity ratio of 4:3 are positioned around 82.9 eV (4f7/2) and 

86.6 eV (4f5/2) and are attributable to Au0, which further confirms that gold ions 

were reduced to metallic gold when PU substrate was soaked with gold ion 

solution at 50 °C for 24 hours. While the spacing between the two peaks 

matches that of the bulk metal, both peaks are shifted to lower binding energies 

by approximately 1 eV. Similar effects have been observed for gold 

nanoparticles capped with nitrogen-containing groups.24 The negative shift is 

believed to be due to the N of the carbamate groups bound to the gold providing 

greater negative charge at the gold surface, leading to greater screening of the 

gold and therefore a lower binding energy. A second broader doublet composed 

of asymmetrical Au 4f5/2 and Au 4f7/2 peaks was located at around 83.6 eV and 

87.3 eV respectively, consistent with the characteristic separation of these Au 4f 

peaks (3.67 eV) and indicating a higher oxidation state of gold. These peaks 

were attributed to Au+ that bind to the polymer matrix via Au-N bonds to the 

nitrogen-containing carbamate group of the PU. However, they may also 
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represent partially reduced Au+ on the surface of the nanoparticles, which do not 

bond to the PU matrix. Additional broad peaks indicative of Au3+ were present at 

approximately 84.6 eV and 88.1 eV suggesting a small percentage of unreduced 

Au3+. It is likely that the gold nanoparticles bound to the polymer matrix of the 

PU have Au0 cores which are surrounded by Au+ ions, with some of them binding 

to the polymer via Au-N bonds, through the nitrogen-containing carbamate 

groups of PU, as discussed above. The unreduced Au3+ species may accumulate 

on the formed nanoparticles or in the polymer matrix. Some interaction between 

gold and oxygen may exist to stabilize the Au nanoparticles although no obvious 

evidence for any oxidised gold species is available. 

 

 

3.8.2 X-ray photoelectron spectroscopy analysis of nanogold hybrid 

nylon 6,6 materials 

 

 

It was not possible to prepare a cross section of the nylon 6,6 sheet samples. 

Thus, XPS analyses were carried out of the top 10 nm of the surface of nylon 6,6 

samples. Figure 3.54 presents wide XPS spectra of an untreated nylon 6,6 sheet 

and a nanogold hybrid nylon 6,6 sample (Ny-s-500Au) with their characteristic 

elements (C, N, O and Au), which additionally confirm the presence of gold in 

the Ny-s-500Au sample. In contrast to the nanogold hybrid PU sample, an X-ray 

peak for chlorine was detected in all the nanogold hybrid nylon 6,6 samples.  
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Figure 3.54: Survey XPS scan of a) the untreated nylon 6,6 sheet and b) the 

Ny-s-500Au sample. 

 

 

Figure 3.55a-b shows the C 1s, O 1s and N 1s spectra, respectively, for the 

untreated nylon 6,6 sheet which was employed as a control. The high resolution 

C 1s spectrum of the untreated nylon 6,6 sheet was deconvoluted into three 

main peaks, 285.0 eV, 285.5 eV and 288.1 eV, respectively. The lowest binding 

energy peak at 285 eV is due to the C–C or C–H carbons in the nylon 6,6 

polymer chain while the higher binding energy peaks at approximately 285.5 eV 

and 287.8 eV are attributable to the carbon nitrogen bond (C–N) and the amide 

group of nylon 6,6 (NH–C=O) respectively. The resolved N 1s spectrum of the 

untreated nylon 6,6 is shown in Figure 3.55c. Theoretically only one species of 

amide nitrogen should be present in the nylon 6,6 material. However, in the 

case of these nylon 6,6 samples the N 1s spectrum was deconvoluted into two 

nitrogen peaks. Due to complexity and disorder of the polymer chains within the 

nylon 6,6 matrix it is possible that the amide functional groups exist in a number 

of environments depicted by fitting the experimental envelope to two end 

number peaks representing the range of these different chemical environments. 

Hence one type of amide group is interacting more with some adjacent electron 

withdrawing groups (e.g. oxygen containing groups) than the other, resulting in 

slightly higher binding energy. Hence both peaks at 399.7 eV and 400.1 eV 

respectively were assigned to amide group (N-C=O) of nylon 6,6.276 In a similar 

way to nitrogen, the analysis of the O 1s spectrum proved to be difficult as there 

are likely three chemical environments of oxygen atoms contributing to the O 1s 

a b 
C 1s 

N 1s 

O 1s 

C 1s 

N 1s 
Au 4f 

Cl 2p 
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peak. Hence, in all samples, the O 1s spectra were fitted into three peaks (with 

equal FWHM), corresponding to oxygen in the carbonyl group of polyamide 

linkage centred at ca. 531.4 eV and two another types of carrier oxygen atom 

belonging presumably to some additives of nylon 6,6 at approximately 532.4 eV 

and 533.5 eV. Table 3.5 presents a complete list of peak assignments. 

 

 

Table 3.5: XPS assignments for the untreated nylon 6,6 sheet and the 

Ny-s-500Au sample. 

  Untreated nylon 6,6 

sheet 

Nanogold hybrid 

nylon 6,6 sheet 

  Binding Energy [eV]  and  (FWHM) [eV] 

C 1s C-C, C-H 

C-N 

N-C=O 

C-N-Au 

285.00 (0.87) 

285.54 (1.52) 

288.08 (1.13) 

- 

285.00 (1.04) 

285.72 (1.61) 

287.91 (1.87) 

283.79 (0.81) 

N 1s N-H 

 

N-Au 

NH3
+ 

399.67 (0.95) 

400.06 (1.16) 

- 

- 

399.64 (1.22) 

400.27 (1.31) 

398.44 (1.18) 

401.21 (1.50) 

O 1s N-C=O 

Unidentified O species 

531.38 (1.12) 

532.29 (1.12) 

533.24 (1.12) 

531.31 (1.42) 

532.22 (1.42) 

533.40 (1.42) 

Au 4f Au0 7/2 

Au+ 7/2 

Au3+ 7/2 

Au0 5/2 

Au+ 5/2 

Au3+ 5/2 

- 

- 

- 

- 

- 

- 

84.76 (1.19) 

85.41 (1.23) 

87.06 (1.58) 

88.41 (1.19) 

89.08 (1.23) 

90.73 (1.58) 
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Figure 3.55: Deconvoluted high resolution XPS spectra for the untreated 

nylon 6,6 sheet: a) C 1s peaks, c) N 1s peaks and e) O 1s peaks; for the 

Ny-s-500Au sample: b) C 1s peaks, d) N 1s peaks and f) O 1s peaks. 

 

 

As previously mentioned, gold has an affinity for nitrogen and this interaction 

was seen in high resolution spectrum of carbon for the nanogold hybrid 

a b 

c d 

e f 

  

O 1s 

C-N-Au 

N-Au NH3
+ 
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nylon 6,6 sample. A summary of the XPS data is shown in Table 3.5. Figure 

3.55b shows that the experimental envelope of the C 1s spectrum of the 

nanogold hybrid nylon 6,6 sheet has two maxima. However, the spectrum was 

deconvoluted into four components. The weak peak centred at 283.8 eV 

suggests a formation of a C-N-Au bond, in a similar peak postion as that 

observed for the nanogold hybrid polyurethane sample (Section 3.8.1) and being 

consistent with similar values for binding energy of Au-N bond reported in the 

literature24. Nylon 6,6 has a considerable number of nitrogen-containing groups, 

thus it was expected that the amount of Au-N bonds formed would give only 

small signal in the C 1s spectrum due to 1 wt % of gold loading in the nylon 6,6 

sheet (0.5 g). For the C-N peak of the nanogold hybrid nylon 6,6 sample, a shift 

from 285.5 to 285.7 eV as well as broadening of the peak was noted when 

comparing to the C-N peak of the untreated nylon 6,6 sample. The shift of this 

peak to higher binding energy suggests a higher oxidation state of nitrogen, the 

greater width at half maximum of the peak is due to an increase in the 

variability of the binding environment. Both factors suggest that the nitrogen 

group is likely to be involved in the reduction of the gold ions to metallic gold 

and also in the binding of formed gold nanoparticles to the nylon 6,6 polymer 

matrix. 

 

The significant broadening of N-C=O peak which is located at approximately 

287.92 eV could mask an additional HO-C=O peak at slightly higher binding 

energies which can result from the hydrolysis of the amide linkage of nylon 6,6 

in acidic gold solution (pH 4.5). This hydrolysis reaction for the amide occurs 

according to the equation below:277 

 

 

C

O

NHR 2R1

+ H
+
, H2O + H3N

+
R2C

O

OHR1  

 

 

Examination of the high resolution N 1s XPS spectrum for the nanogold hybrid 

nylon 6,6 sheet (Ny-s-500Au sample) supports the conclusion that nitrogen has 
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an affinity to gold resulting in nitrogen gold interaction. Figure 3.55d shows the 

XPS spectrum in the region of the N 1s envelope for the Ny-s-500Au sample 

which was deconvoluted into four peaks. The two peaks centred at 

approximately 399.6 eV and 400.3 eV respectively were assigned to the nitrogen 

of the amide group in the nylon 6,6 matrix. Both peaks, in comparison to the 

peaks of the untreated nylon 6,6 sheet, exhibit greater FWHM values, implying 

greater variations in the nature of the bonding around the nitrogen species, as 

well as changes in the surrounding environment. The peak locating at 400.3 eV 

is shifted by 0.2 eV towards higher binding energies implying a formation of 

some oxidised nitrogen entities. While this peak also decreased in intensity, two 

new peaks for nitrogen appeared upon absorption and subsequent reduction of 

Au3+ as ([AuCl4]-) to Au0 by the nylon 6,6 polymer matrix. The peak at lower 

binding energy was ascribed to a N-Au bond as its binding energy of ca. 

398.4 eV matched the binding energy of N-Au bond found in nanogold hybrid PU 

materials (Section 3.8.1). The peak observed at around 401.2 eV indicates the 

presence of protonated nitrogen.278,279 Addition of gold solution to nylon 6,6 

materials leads to hydrolysis of the amide groups in the polymer matrix as 

shown in equation above, resulting in positively charged nitrogen groups. The 

positive charge on the nitrogen atom invokes a core-level chemical shift to 

higher energies. As such, there exists the possibility of an ionic interaction 

between the free [AuCl4]- ions and protonated nitrogen groups of nylon 6,6. The 

protonated nitrogen peak could not be detected in nanogold hybrid polyurethane 

materials. However, Chapman studied amides and polyurethanes under the acid 

conditions (pH 1.34) and reported that the polyurethanes are somewhat more 

stable than the amides.280 

 

O 1s spectrum acquired after nylon 6,6 was reacted with gold solution is shown 

in Figure 3.55f. The high resolution O 1s spectrum was deconvoluted into three 

peaks centred at ca. 531.4 eV, 532.3 eV and 533.6 eV respectively. It is evident 

from these spectra that the chemical environment of O in general does not 

change to a great extent. The increasing of width-at half-maximum of the peaks 

is due to an increase in the variability of the binding environment. It is also 

expected that protonation of the oxygen occurs. However, because the nylon 6,6 

matrix is very complex it is difficult to confirm with any certainty an interaction 
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between oxygen and gold or whether oxygen was involved in the reduction of 

gold ions to metallic gold. 

 

 

 

Figure 3.56: Deconvoluted high resolution Au 4f XPS spectrum for the 

Ny-s-500Au sample. 

 

 

Figure 3.56 shows a high resolution Au 4f spectrum for the Ny-s-500Au sample. 

The deconvolution of the lineshape resulted in three doublets, indicating three 

different species of gold being present in the nanogold hybrid nylon 6,6 sheet. 

All three doublets have the required intensity ratio of 4:3 and the spin orbital 

separation of 3.67 eV. The presence of Au0 in the nanogold hybrid nylon 6,6 

sample is marked by the appearance of the doublet located at apporoximately 

84.8 (4f7/2) and 88.4 eV (4f5/2) confirming that Au3+ ions were reduced to 

metallic gold. These values are located at higher binding energies in comparison 

to the values of Au0 present in the analogue nanogold hybrid PU materials. The 

binding energy depends on the particle size, where such binding energy is larger 

in nanoparticle clusters than in the bulk metal and increases with decreasing 

size.281 Hence, it is assumed the nanoparticles present in the nanogold hybrid 

nylon 6,6 materials are smaller than the ones formed in the PU matrix. This was 

confirmed by TEM. The doublet occurring at slightly higher binding energies from 

Au 4f 
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the Au0 doublet is indicative of Au+ and has component peaks at 85.4 eV (4f7/2) 

and 89.0 eV (4f5/2) respectively. It is similarly considered that the gold 

nanoparticles formed in the nylon 6,6 matrix comprise Au0 cores, surrounded by 

Au+. Thus, these latter peaks may be due to partially reduced gold within the 

nylon 6,6 matrix. However, they are most likely due to the surface Au+ ions of 

the nanoparticle bound to the nylon 6,6 surface via the Au-N bond through the 

main containing amide groups of the polymer, and those Au+ ions on the surface 

of the nanoparticle, not bound to the polymer matrix. It is evident from the high 

resolution N 1s spectrum that there is a presence of a further nitrogen species at 

higher binding energies (Figure 3.55d) which was not seen in nanogold hybrid 

PU materials, thus the nitrogen species are assigned to positively charged 

nitrogen groups. Kitagawa et al. reported on tetrabutylammoium gold 

tetrachloride compound, [(C4H9)4N][AuCl4], whose Au 4f7/2 peak was located at 

around 86.9 eV282, McNeillie also investigated some gold compounds and found 

that the Au 4f7/2 peak of the tetra-alkylammonium tetrachloroaurate(III) was 

cetred at approximately 87 eV.283 Thus, protonated nitrogen groups can also be 

involved in gold – nitrogen interaction. As such, the third doublet of the 

Ny-s-500Au sample which is centred at around 87.0 (4f7/2) and 90.7 eV (4f5/2) 

respectively, is indicative of an ionic interaction between the unreduced 

negatively charged [AuCl4]- complex and the protonated nitrogen groups of 

nylon 6,6. The existence of [AuCl4]- species was also confirmed by the chlorine 

peak in the XPS wide scan of all the nanogold hybrid nylon 6,6 samples (Figure 

3.54b). The broadness of the doublet could be due to the variation in the binding 

energies of the [AuCl4]- ions to different binding sites in the polymer matrix, such 

as protonated oxygen groups. Table 3.5 shows a summary of the XPS data 

obtained for the Ny-s-500Au sample. 

 

In order to understand the extent to which the amide groups of nylon 6,6 are 

involved in reduction of Au3+ to Au0 the pH of the reaction medium was 

decreased from 4.5 to 1.4 to increase the number of protonated nitrogen groups 

and consequently reduce the number of original nitrogen-containing amide 

groups, which potentially act as reducing agents. A new sample was prepared as 

follows. A nylon 6,6 sheet (or beads) was immersed in 10 mL of 500 mg kg-1 

gold solution with pH 1.4 and heated at 50 °C for 24 hours. Contrary to the dark 

purple Ny-s-500Au sample, the resulting nylon 6,6 product was yellow in colour. 
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An identical yellow colour was noted when nylon 6,6 beads were used as the 

substrate in a similar reaction. Figure 3.57 shows the photograph of such 

resulting hybrid nylon 6,6 beads from the 500 mg kg-1 gold solution with pH 

value of 1.4 versus the Ny-b-500Au sample. The dark purple colour of the 

Ny-b-500Au sample is typical of the surface plasmon resonance colour observed 

for gold particles in the nanoscale (Section 1.4.2). The yellow colour of the nylon 

beads 6,6 suggests that there are either no gold nanoparticles formed or the 

particles are very small in size; the colour is rather due to the absorbed [AuCl4]- 

ions.  

 

 

 

Figure 3.57: Photographs of the Ny-b-500Au beads (left) and the beads 

prepared via the same method but with a changed pH value of 1.4 (right). 

 

 

The deconvoluted, high resolution Au 4f XPS spectra of the yellow coloured nylon 

6,6 sheet (prepared from a 500 mg kg-1 gold solution, pH 1.4, and heating at 

50 °C for 24 hours) is shown in Figure 3.58. The examination of the spectrum 

showed that the dominant doublet is located at higher binding energies, around 

87.4 eV and 91.0 eV respectively. Thus, the gold in this material exists mainly as 

unreduced [AuCl4]- (62 %) which presumably forms an ionic interaction with the 

protonated nitrogen groups. It is evident from this spectrum that there also exist 

small amounts of Au+ and Au0 species. The doublet peaks located approximately 

85.1 eV and 88.7 eV respectively suggests that some Au3+ have been reduced to 
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Au+. The percentage of Au+ species is 28 % which can interact with the nitrogen 

of the nylon 6,6 matrix via an Au-N bond through the amide functional groups of 

nylon 6,6. Although there was no appearance of a typical pink-purple colour of 

gold nanoparticles in the sample, a doublet for Au0 was evident at ca. 84.7 eV 

and 88.4 eV respectively. Presumably the concentration of formed gold 

nanoparticles was too low to exhibit a purple colour. Since nylon 6,6 possesses a 

considerable number of amide groups the decrease of pH value to 1.4 did not 

hydrolyse the amide functional groups completely so the reduction of Au3+ to 

Au+ and Au+ to Au0 facilitated by the amide groups took place to a small extent. 

The relative percentage of formed Au0 (75 %) in the Ny-s-500Au sample, which 

was prepared in the reaction medium with pH value of 4.5, was significantly 

higher than the relative percentage of Au0 (10 %) found in the sample prepared 

at lower pH of 1.4. The binding energies of gold species present in both samples 

and their relative percentages are summarised in Table 3.6. Through the 

hydrolysis at pH 1.4, more polymer chains of nylon 6,6 break via the amide 

groups into positively charged amine and carboxylic acid terminated polymer 

chains. This process decreases the amount of amide functional groups in the 

nylon 6,6 matrix influencing the oxidation ability of the amide groups thus 

decreasing reduction of [AuCl4]- ions to Au0. The increase in protonated nitrogen 

groups, in turn, causes an attraction of [AuCl4]- ions forming an ionic bond.  
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Figure 3.58: Deconvoluted high resolution Au 4f XPS spectrum for hybrid nylon 

6,6 sheet prepared from a 500 mg kg-1 gold solution at 50 °C for 24 hours.  

 

 

Table 3.6: XPS assignments for gold present in the Ny-s-500Au sample and 

hybrid nylon 6,6 sheet prepared from a 500 mg kg-1 gold solution at 50 °C for 

24 hours. 

  Ny-s-500Au 

 

Ny-s-500Au 

prepared in pH 1.4 

  Binding Energy [eV] and (relative percentage)  

Au 4f Au0 7/2 

Au+ 7/2 

Au3+ 7/2 

Au0 5/2 

Au+ 5/2 

Au3+ 5/2 

84.76 (42.62 %) 

85.41 (12.28 %) 

87.06 (2.24 %) 

88.41 (31.97 %) 

89.08 (9.21 %) 

90.73 (1.68 %) 

84.74 (5.92 %) 

85.07 (15.74 %) 

87.37 (35.66 %) 

88.41 (4.44 %) 

88.74 (11.80 %) 

91.04 (26.45 %) 

 

 

Although the typical pink – purple colour for gold nanoparticles was not visible in 

the sample prepared at pH 1.4, the presence of metallic gold was also confirmed 

via XRD measurements. Figure 3.59 shows XRD patterns of an untreated nylon 

6,6 sheet, a Ny-s-500Au sample and a nylon 6,6 sheet treated with a 

500 mg kg-1 gold solution (pH 1.4) at 50 °C for 24 hours, respectively. For the 
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Ny-s-500Au sample the XRD pattern showed the characteristic Bragg diffraction 

peaks of gold in the face centred cubic phase confirming the presence of gold 

nanoparticles on the surface of the hybrid nylon 6,6 sheet. The diffraction 

pattern of the nanogold hybrid nylon 6,6 sheet which was produced at pH 1.4 

confirms the presence of gold in the sample as shown by the (1 1 1) diffraction 

peak at a 2θ angle of 37.9°. Gold nanoparticles larger than 2 nm in size exhibit 

size- and shape-dependent surface plasmon resonance absorption bands 

(Section 1.4.2) thus the Ny-s-500Au sample appears dark purple to our eye 

(Figure 3.57a). However, for gold nanoparticles smaller than 2 nm in diameter, 

the surface plasmon resonance absorption band disappears because the electron 

density in the conduction band becomes very small.107 Thus, formed gold 

nanoparticles in the sample produced from the gold solution with pH 1.4 are 

very small and the colour appears yellow (Figure 3.57b) resulting from absorbed 

and mainly unreduced [AuCl4]-. 

 

 

 

Figure 3.59: XRD patterns of the nanogold hybrid nylon 6,6 sheets produced 

employing 500 mg kg-1 gold solutions with different pH values.  
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3.8.3 Proposed mechanism of formation of gold nanoparticles in hybrid 

PU and nylon 6,6 materials 

 

 

As presented and discussed above, the preparation of the nanogold hybrid PU 

and nylon 6,6 materials involved the reduction of gold ions to metallic 

nanoparticles on the surface and within the polymer matrix. The polymer matrix 

acts as a reducing agent and simultaneously as a stabilising agent for the gold 

nanoparticles which were bound chemically to the matrix. The reduction was 

facilitated by nitrogen-containing groups which are present in PU and nylon 6,6 

polymers. The oxidation of the nitrogen functional groups form a redox couple 

and provide the electrons required for gold ions to be reduced to metallic gold.  

 

In light of the results presented in Sections 3.8.1 and 3.8.2, the following 

mechanism is proposed for the formation of the nanogold hybrid polyurethane 

and nylon 6,6 materials produced through the redox properties of the 

nitrogen-containing functional groups of the polymers. When immersing the 

polymer substrates in the aqueous gold solution, the dissociated hydrogen ions 

and gold ions as [AuCl4]- complex penetrate the polymer. Some of the amide 

linkages of nylon 6,6 matrix will be hydrolysed, however polyurethane seems to 

be more stable under acidic conditions, thus presumably protonation of 

carbamate nitrogens takes place. The resulting positively charged nitrogen 

groups electrostatically attract Cl- ions and destabilise the [AuCl4]- complex. This 

facilitates the reduction of Au3+ to Au+ by carbamate functional groups of 

polyurethane or unhydrolysed amide functional groups of nylon 6,6. As only a 

low concentration of gold solution is employed (up to 1 wt % of gold loading in 

the polymer) for production of the nanogold hybrid polymer materials, a large 

concentration of unoxidised nitrogen-containing functional groups would still 

remain. The resulting Au+ ions bind to the polymer matrix via Au-N bonds, 

through the carbamate group of polyurethane or amide group of nylon 6,6, 

involving the expansion of the valence shell of gold to its 6s orbitals. Additional 

Au3+ ions will be reduced to Au+ simultaneously coupled with further oxidation 

reaction of carbamate or amide groups respectively. Owing to the aurophilicity 

effect21 it is likely that the Au+ in the Au-N complexes would be attracted to each 

other resulting in the formation of nanoclusters on which the additional Au3+ may 
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accumulate and be reduced accordingly to Au0 forming gold nanoparticles in the 

polymer matrix. It is not necessary for the nitrogen-containing groups to be in 

direct contact with the gold nanoclusters because the reaction is carried out in 

ionic solutions and electrons liberated from the carbamate or amide group 

oxidation can be transferred to the adjacent gold nanoclusters, providing the 

required electrons for the Au3+ to Au0 reduction. Since these gold nanoparticles 

are bound to the polymer matrix Au-N bonds (Sections 3.8.1 and 3.8.2), the 

surface energy of the nanoparticles will be decreased, making the nanoparticles 

stable against the aggregation. 

 

Increasing of the pH of the reaction solution ([AuCl4]-) causes enhanced 

hydrolysis of the nylon 6,6 polymer chains resulting in a large number of broken 

amide linkages. Because less amide entities are available for oxidation in order 

to provide electrons for reduction of gold ions to metallic gold, metallic gold is 

formed to a smaller extent. Unreduced gold ions in [AuCl4]- form ionic bonds to 

positively charged nitrogen atoms resulting in the yellow colour of the product.  

 

 

3.8.4 X-ray photoelectron spectroscopy analysis of nanosilver hybrid 

polyurethane materials 

 

 

XPS analysis was carried out on the surface of the PU-b-500Ag sample because, 

as it was observed by SEM, silver nanoparticles were mostly formed and found 

on the polyurethane bead surface. Figure 3.60 provides the survey XPS scans of 

the untreated polyurethane and the nanosilver hybrid polyurethane beads with 

their respective characteristic elements (C, N, O and Ag). 
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Figure 3.60: Survey XPS scans of the surfaces of the untreated PU bead (a) and 

PU-b-500Au sample.  

 

 

From the examination of the deconvoluted high resolution C 1s spectra for the 

untreated polyurethane bead and the PU-b-500Ag sample (not illustrated) it was 

evident that the chemical environment of C did not change to a notable extent 

upon the reaction of polyurethane with silver. The high resolution N 1s and O 1s 

XPS spectra for the untreated PU and the nanosilver hybrid PU bead sample 

(PU-b-500Ag) are provided in Figure 3.61 and the list of the peak assignments is 

listed in Table 3.7. In the N 1s spectrum for the untreated PU bead a single peak 

was assigned to the carbamate group at 400.4 eV. In the spectrum for the 

PU-b-500Ag sample there was no significant shift to higher binding energies, 

however a significant broadening of the peak was observed. The increase of the 

FWHM by 0.3 eV suggests a greater range in the nature of the nitrogen species 

in addition to changes in the surrounding environment. As only 0.5 wt % of 

silver was employed to produce nanosilver hybrid PU material, very small 

changes are expected. Thus, it is also possible that the N 1s peak would mask 

further minor peaks at lower binding energies attributable to interaction of 

nitrogen with silver in the form of Ag-N bond, as well as a peak at higher binding 

energies representing oxidised nitrogen species, which provide electrons for the 

reduction of Ag+ to Ag0.  

 

 

a b 

O 1s 

C 1s 

N 1s 

O 1s 

C 1s 

Ag 3d 

N 1s 
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Figure 3.61: Deconvoluted high resolution XPS spectra for the untreated 

polyurethane bead: a) N 1s peaks and c) O 1s peaks; for the PU-b-500Ag 

sample: b) N 1s peaks, d) O 1s peaks and e) Ag 3d peaks. 

a b 

c d 

e 
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The XPS O 1s spectrum was deconvoluted into one peak only with the maximum 

at around 532.8 eV and was considered to depict the average oxygen 

environment of PU. The analysis of high resolution O 1 s spectrum of the 

PU-b-500Ag sample showed similar broadening of the oxygen peak by 0.25 eV 

upon reaction with Ag+ ions. An interaction between silver and the lone pair 

electrons of oxygen species presented in PU is therefore likely.  

 

 

Table 3.7: XPS assignments for the untreated PU bead and the PU-b-500Ag 

sample. 

  Untreated PU beads Nanosilver hybrid PU beads 

  Binding Energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 285.00 (1.00) 285.00 (1.17) 

 C-N 285.62 (0.92) 285.61 (0.98) 

 C-O 286.73 (1.20) 286.70 (1.47) 

 O-C=O 289.41 (0.97) 289.44 (1.05) 

 C-N-Ag - - 

N 1s N-H 400.41 (1.12) 400.42 (1.44) 

 N-Ag - - 

O 1s Average O 

environment 

532.76 (1.78) 532.78 (2.03) 

Ag 3d Ag0 5/2 - 368.52 (1.14) 

 Ag0 
3/2 - 374.52 (1.14) 

 

 

The high resolution Ag 3d spectrum of the PU-b-500Ag sample was deconvoluted 

into one doublet (Figure 3.61e). The peaks with an intensity ratio of 3:2 and the 

typical spin orbit splitting of 6 eV are positioned around 368.5 (3d5/2) and 374.5 

(3d3/2) eV. These peaks are attributable to Ag0, which confirmed that silver ions 

were reduced to metallic silver when PU was exposed to AgNO3 solution at 90 °C 

for 24 hours of reaction time. The position of the 3d5/2 peak is shifted slightly to 

higher binding energies compared with the binding energy of 3d5/2 peak of bulk 

silver which according to the literature is typically located between 368.0 to 

368.3 eV.22 These shifts of the Ag 3d peaks of the nanosilver hybrid PU sample 

can be associated with decreasing particle size with respect to the Ag bulk value. 

The FWHM of the Ag0 peaks seem to be somewhat broader than expected. The 
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FWHM increases with decreasing of particle size; however it also may indicate 

more than one oxidation state of silver is present. It could also indicate that the 

association of silver with the nitrogen or oxygen groups of the polymer 

contributes to this peak. However, it is difficult to ascertain the nature of the 

bond existing between silver and the polymer matrix, since as mentioned above, 

the analyses of the N 1s and the O 1s spectra are not conclusive.  

 

 

3.8.5 X-ray photoelectron spectroscopy analysis of nanosilver hybrid 

nylon 6,6 materials 

 

 

For XPS analysis the Ny-s-1000Ag sample was chosen as a representative of the 

nanosilver hybrid nylon 6,6 materials in order to investigate how the amide 

groups of the nylon 6,6 matrix are involved in the reduction of silver ions to 

silver nanoparticles and their subsequent binding to the polymer matrix. By 

treating the nylon 6,6 sheet which with 1000 mg kg-1 Ag+ solution at 90 °C for 

24 hours, it was hoped to increase the likelihood of detecting any changes 

between the XPS spectra of the untreated nylon 6,6 sheet and its corresponding 

nanosilver hybrid polymer. The Ny-s-1000Ag sample possesses a very high 

concentration of silver nanoparticles on the hybrid polymer surfaces, thus the 

formation of an increased quantity of silver nanoparticles would necessitate the 

oxidation of an increased percentage of functional groups of the nylon 6,6 

matrix. Figure 3.62 shows the survey XPS scans of the untreated nylon 6,6 

sheet and the nanosilver hybrid nylon 6,6 sheet with their respective 

characteristic elements (C, N, O and Ag). A list of the peak assignments can be 

seen in Table 3.8. 
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Figure 3.62: Survey XPS scan for (a) the untreated nylon 6,6 sheet and b) the 

Ny-s-1000Ag sample. 

 

 

Table 3.8: XPS assignments for the untreated nylon 6,6 sheet and the 

Ny-s-1000Ag sample. 

  Untreated nylon 6,6 

sheet 

Nanosilver hybrid 

nylon 6,6 sheet 

  Binding Energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 

C-N 

N-C=O 

285.00 (0.98) 

285.59 (1.59) 

288.04 (1.17) 

285.00 (0.99) 

285.79 (1.62) 

288.07 (1.24) 

N 1s N-H 

 

399.69 (1.14) 

400.24 (1.52) 

399.79 (1.15) 

400.53 (1.80) 

O 1s N-C=O 

Unidentified O species 

531.16 (1.21) 

532.19 (1.21) 

533.28 (1.21) 

531.35 (1.22) 

532.41 (1.22) 

533.44 (1.22) 

Ag 3d Ag0 5/2 

Ag+ 5/2 

Ag0 3/2 

Ag+ 3/2 

- 

- 

- 

- 

368.14 (0.86) 

368.77 (1.89) 

374.14 (0.86) 

374.77 (1.89) 

 

 

From a comparison of the deconvoluted high resolution C 1s spectra for the 

untreated nylon 6,6 sheet and the Ny-s-1000Ag sample it was apparent that the 

chemical environment of C changed upon the reaction of nylon 6,6 with silver. 

a b 

O 1s 

C 1s 

N 1s 

O 1s 

C 1s 

Ag 3d 

N 1s 
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The high resolution C 1s spectra for the untreated nylon 6,6 sheet and the 

nanosilver hybrid nylon 6,6 sheet were deconvoluted into three peaks 

respectively (Figure 3.63a-b). As described in Section 3.8.2, the peak of the 

untreated nylon 6,6 sheet at 285.0 eV was attributed to C–C or C–H carbons in 

the nylon 6,6 polymer chain, while the higher binding energy peaks at 

approximately 285.6 eV and 288.0 eV were assigned to the carbon nitrogen 

bond (C–N) and the carbon in the amide group of the nylon 6,6 (NH–C=O) 

respectively. The change in the Ny-s-1000Ag sample was notable in C-N peak 

which showed a positive core level shift by 0.2 eV. This shift can be associated 

with the higher oxidation state of the nitrogens consistent with the reduction of 

the Ag+ ions to Ag0 being facilitated by the oxidation of the amide groups of the 

nylon 6,6 matrix. A similar shift of ca. 0.2 eV was observed in the Ny-s-500Au 

sample (Section 3.8.2). The slight increase in FWHM of the C-N peak as well as 

the NH-C=O peak of the nanosilver hybrid sample is due to an increase in the 

variability of the environments surrounding these entities.  

 

As previously mentioned (Section 3.8.2), owing to the complexity and the 

disorder of the nylon 6,6 polymer chains, it is likely that the amide functional 

groups exist in two different chemical environments. Thus, using a two-peak 

fitting routine deconvolution of the N 1s spectrum resulted in two peaks with the 

respective binding energies of 399.7 eV and 400.2 eV for the untreated 

nylon 6,6 sheet (Figure 3.63c). These peaks essentially represent the end 

number of a range of slightly different environments. After the reaction with 

silver, the two peaks which were assigned to amide nitrogen groups shifted to 

399.8 eV and 400.5 eV respectively (Figure 3.63d). The shift to higher binding 

energies of both peaks implies oxidation of the nitrogen groups confirming the 

results seen in C 1s spectra analyses. Due to the broadness of peak at ca. 

400.5 eV, it is also possible that this would mask any minor peaks which can be 

associated with protonated nitrogen groups formed during the reaction with 

silver solution with the pH value of 5. 
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Figure 3.63: Deconvoluted high resolution XPS spectra for the untreated nylon 

6,6 sheet: a) C 1s peaks and c) N 1s peaks; for the Ny-s-1000Ag sample: b) 

C 1s peaks, d) N 1s peaks and e) Ag 3d peaks. 

 

a b 

c d 

e 
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Figure 3.63e shows the high resolution Ag 3d spectrum obtained of the 

Ny-s-1000Ag sample. Unlike the PU-b-500Ag sample (Section 3.8.4), the 

spectrum of the Ny-s-1000Ag sample was deconvoluted into two doublets. 

Matching the intensity ratio of 3:2 and the spin orbit splitting (6 eV) of bulk 

silver, the peaks positioned around 368.1 (3d5/2) eV and 374.1 (3d3/2) eV were 

attributed to Ag0, which confirmed that silver ions were reduced to metallic silver 

upon exposure of nylon 6,6 to AgNO3 solution at 90 °C for 24 hours of reaction 

time. Evidence for the presence of a second species of silver was observed by 

the second doublet at higher binding energies with a positive core level shift of 

ca. 0.7 eV from the Ag0 doublet. Although unlike other metals, silver shows a 

shift to lower binding energy with increased oxidation state, there are reports of 

shifts towards higher binding energies when silver is bound to sulphur or 

oxygen. Gerenser studied XPS measurements of Ag at the 

silver-poly(p-phenylene sulphide) interface and observed a positive shift of 

0.6 eV for the Ag 3d5/2 peak, which was interpreted as the interaction of Ag with 

the S atoms of the poly(p-phenylene sulfide) polymer due to the strong affinity 

of Ag for S.284 Wagner reported on binding energy of 368.8 eV for Ag 3d5/2 peak 

for silver trifluoroacetate.285 Thus, with silver having a an affinity for 

nitrogen,241,286 the peaks found on the surface of the Ny-s-1000Ag sample 

located at around 368.8 eV and 374.8 eV respectively were attributed to the 

association of silver with the nitrogen atoms of nylon 6,6 matrix. The interaction 

of silver with oxygen atoms is likely. However, it is difficult to ascertain the 

nature of the bonding existing between silver and the polymer matrix. As 

reported above the interpretation of the high resolution of N 1s and O 1s 

spectrum analyses are similarly not conclusive.  

 

The formation of nanosilver entities on nylon 6,6 surface were also confirmed by 

means of XRD analyses of the Ny-s-1000Ag sample. Figure 3.64 shows XRD 

pattern of the sample representing the appearance of (1 1 1), (2 0 0), (2 2 0) 

and (3 1 1) Bragg diffraction peaks of the fcc structure of silver. 
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Figure 3.64: XRD patterns of the untreated nylon 6,6 sheet and the 

Ny-s-1000Ag sample.  

 

 

3.8.6 Proposed mechanism of formation of silver nanoparticles in hybrid 

PU and nylon 6,6 materials 

 

 

From the XPS results discussed in Sections 3.8.5 and 3.8.6, no unambiguous 

conclusion can be reached concerning the bonding nature of silver and the 

polymer matrix of polyurethane or nylon 6,6. However, the following mechanism 

for the formation of silver nanoparticles within the PU or nylon 6,6 polymer 

matrix can be suggested. Silver ions are firstly absorbed by the polymers. Due 

to their affinity for nitrogen, silver ions associate with nitrogen-containing groups 

such as carbamates or amides. The interaction between the silver ions and 

oxygen atoms of the polymer matrices is also possible. Acting as reducing 

agents nitrogen functionalities are oxidised and provide the electrons for Ag+ 

ions to be reduced to Ag0, resulting in the formation of silver nanoparticles in the 

polymer matrix. The matrix restricts the size of the nanoparticles. 
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For a more conclusive statement of the proposed mechanism for the formation 

of silver nanoparticles in hybrid PU and nylon 6,6 materials further XPS studies 

are required, which could be carried out in the future. This work would include 

preparation of higher loading of silver in the polymers in order to achieve greater 

changes in the XPS spectra to confirm the proposed mechanism. 

 

 

3.9 Infrared and Raman spectroscopy analysis of nanogold and 

nanosilver hybrid PU and nylon 6,6 materials 

 

 

Infrared spectroscopy was used in an effort to further clarify the nature of 

bonding between the gold and silver nanoparticles and the polymer matrices of 

polyurethane and nylon 6,6 respectively. It was hoped that by comparing the 

spectra of the untreated polymers with the spectra of the nanogold and 

nanosilver hybrid polymers, such further clarification about the role of the 

carbamate and amide groups in the reduction of Au3+ to Au0 or Ag+ to Ag0 

respectively would emerge. The PU-b-500Au, PU-b-500Ag, Ny-b-500Au and 

Ny-b-500Ag samples were chosen as a representative of the nanogold and 

nanosilver hybrid PU and nylon 6,6 materials. These samples exhibit a very high 

concentration of metal nanoparticles at the hybrid polymer surfaces, increasing 

the probability of detecting any changes between the spectra of the untreated 

polymers and their respective hybrid polymers. The formation of an increased 

amount of nanoparticles would require the oxidation of an increased percentage 

of functional groups of the polymer matrix. Figure 3.65 shows a comparison 

between the untreated polyurethane, the PU-b-500Au and the PU-b-500Ag 

samples.  
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Figure 3.65: FT-IR spectra for the untreated PU sheet, nanogold and nanosilver 

hybrid PU sheets. 

 

 

The characteristic features of polyurethane in the IR spectra are the 

3420-3200 cm-1 bands assigned to N-H stretch, 3000-2800 cm-1 bands of the 

CH2 and CH3 stretch, 1701 cm-1 and 1726 cm-1 bands of the H-bonded urethane 

C=O and non-bonded urethane group respectively, the 1530 cm-1 band of the 

N-H bend and the 1080 cm-1 band of the C-O-C stretch.287,288 The nanogold and 

nanosilver hybrid PU samples exhibited identical peaks to those of the 

corresponding untreated PU sample (Figure 3.65). There were also no notable 

changes in the IR spectrum of the untreated nylon 6,6 compared with the hybrid 

nylon 6,6 samples upon reaction with gold or silver (not illustrated). Thus, due 

to the similarity of the two polymers to their resultant hybrid polymers, it was 

not possible to obtain any further information on the bonding between the 

metallic nanoparticles and PU or nylon 6,6 polymers using IR spectroscopy. This 

is likely due to the fact that IR spectroscopy is a bulk analysis technique on such 

samples, and hence is not particularly sensitive to the small quantity of 
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nanoparticles on the surface of the polymers relative to the quantity of polymer 

present. 

 

Raman spectroscopy analysis showed that any potentially useful Raman signals 

were obscured by the fluorescent characteristics of the polymers, which also 

impaired the collection of spectra for the untreated polymers and their resultant 

nanogold and nanosilver hybrid polymers. 

 

 

3.10 Leaching test on nanogold and nanosilver hybrid polyurethane 

materials 

 

 

Nanoparticles are used in a host of consumer products. The antimicrobial 

properties of silver have encouraged many companies to incorporate silver 

nanoparticles in to plastic food containers, clothing, baby goods, cosmetic 

products etc. The lack of information however regarding the long term health or 

environmental impacts of these nanoparticles, the use of these consumer 

products is cause for concern. Hence, it is important to minimise the leaching of 

the nanoparticles from the consumer products. As such, quantitative AA 

analyses of the leaching solutions were undertaken in order to investigate the 

amount of gold and silver leached from the nanogold and nanosilver hybrid 

polymer materials. The PU-b-100Au and PU-b-100Ag samples were chosen as 

representatives for the hybrid polymer materials.  

 

The preparation of the leaching solutions of these samples was achieved 

following the method described in Section 2.2.5. This was accomplished by 

immersing the produced nanogold or nanosilver hybrid PU samples in 10 ml of 

distilled water and agitating them for seven days at room temperature. The 

residual leaching solutions were analysed by AA spectroscopy for any gold or 

silver content respectively. AA spectroscopy studies showed that a small 

percentage of gold (0.27 wt % of total gold loading in the PU beads) and silver 

(0.19 wt % of total silver loading in the PU beads) was leached from the hybrid 

polyurethane materials (Table 3.9). These results endorse the XPS analyses 
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results of the materials suggesting that the gold and silver nanoparticles are 

chemically bound to the polymer matrix via Au-N and Ag-N bonds respectively 

(Sections 3.8.1 and 3.8.4). The detected amounts of gold or silver are likely 

related to the free gold or silver ions which are, as a result of an incomplete 

reduction reaction, confined in the PU matrix. 

 

 

Table 3.9: Gold or silver leached from nanogold and nanosilver hybrid PU 

materials, leaching tests were carried out at room temperature for seven days.  

Sample Metal 

species  

Amount of metal 

in polymer  

[wt %] 

Amount of 

leached 

metal [µg] 

Amount of leached 

metal [% total 

metal loading] 

PU-b-100Au gold 0.1 2.7  0.27 

PU-b-100Ag silver 0.1 1.9  0.19 

 

 

3.11 Antimicrobial properties of nanogold and nanosilver hybrid  

 PU materials 

 

 

Since the occurrence of antibiotic resistance by common microbes is increasing, 

it has become more challenging to treat microbial infections. Thus, there is 

growing interest in creating new and more effective antimicrobial materials and 

treatments. The antimicrobial properties of gold and silver in various forms have 

been used throughout history (Section 1.4.6). Silver is the element with the 

highest toxicity for microorganisms, followed by Hg > Cu > Cd > Cr > Pb> Co > 

Au > Zn > Fe > Mn > Mo > Sn.289 Due to their high surface area and high 

fraction of surface atoms, the use of gold and silver nanoparticles should exhibit 

more effective antimicrobial activity compared to their bulk metals. 

Consequently the nanogold and nanosilver hybrid PU dog bone strips were 

tested for their antimicrobial activity. Due to the time limitations, the test was 

performed only on the PU-db-50Au and PU-db-50Ag samples against the gram 

negative Escherichia coli bacteria (strain W3110). The tests were carried out 

using the method described in Section 2.3.8; in summary the untreated PU dog 

bone strip as the reference sample, the PU-db-50Au and the PU-db-50Ag 
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samples were cut into small pieces and dispersed in aqueous standard 

phosphate-buffered saline (PBS) suspension containing bacteria to provide 

contact between the hybrid polymer materials and the bacteria. The 

antimicrobial activity was determined on the basis of the relative difference in 

total colony-forming units (CFU) between the nanogold and nanosilver hybrid PU 

dog bone strips and the reference sample after seven days of contact with the 

bacteria. CFU is a measure of viable bacterial numbers. 

 

Figure 3.66 presents the percentage of CFU remaining after the untreated PU 

dog bone strip, the PU-db-50Au and the PU-db-50Ag samples were exposed to 

E. coli bacteria for seven days. While the reference sample, the untreated PU, 

was as expected, not effective against the bacteria, ca. 51.74 % and 99.97 % of 

bacteria were killed for the PU-db-50Au and the PU-db-50Ag samples 

respectively after seven days of exposure.  

 

 

 

Figure 3.66: Percentage cell survival relative to the untreated PU as control 

sample after 7 days of bacteria being in contact with the PU and gold and silver 

hybrid PU materials. (Note the vertical axis is in log scale.) 
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Gold and silver nanoparticles have been explored for their broad-spectrum 

antimicrobial activity.192,290,291 When gold or silver nanoparticles are released into 

the pathogenic environment, the metallic nanoparticles attach to the surface of 

the bacterial cells and can also penetrate the cells. The nanoparticles exhibit 

strong binding affinity to the electron-donating groups in the bacterial cells, 

resulting in their antimicrobial activity.192 However, the mechanism of 

antimicrobial effects of gold or silver is still not fully understood (Section 2.3.8).  

 

The gold and silver nanoparticles present in the hybrid PU and nylon 6,6 

materials are chemically bound to the polymer matrix (Sections 3.8), thus the 

nanoparticles are not released into the pathogenic environment where they 

physically can interact with the bacteria. Burridge reported on bacteriostatic 

properties of gold nanoparticles wool composites, where gold nanoparticles 

chemically bound to wool resisted microbial attack.21 As shown by the XPS study 

(Section 3.8.1) the surface of formed nanoparticles is positively charged due to 

the presence of partially reduced Au+ ions. Thus, there likely exists an 

electrostatic attraction between the positively charged gold ion and negatively 

charged bacterial cell wall resulting in association between the nanoparticles of 

the PU-db-50Au sample and the bacteria. This can facilitate electron transfer 

between the gold and the bacteria disrupting the cell function.  

 

Another possibility is that the antibacterial activity of the nanogold hybrid PU 

materials may be related to the formation of free radicals from the surface of 

gold nanoparticles. It can be assumed that the Au+ ions, which are on the 

surface of gold nanoparticles, catalyse the production of oxygen radicals which 

then oxidise the molecular structure of bacteria. Free radicals can then attack 

membrane lipids which leads to a breakdown of membrane function.207 During 

the antimicrobial tests the hybrid PU samples were immersed in aqueous PBS 

solution containing the bacteria. This would not exclude the formation of reactive 

oxygen species according to chemical reaction292 below: 

 

 

 

H2O + ½ O2                    H2O2   H2O + O· 
Metal ions 
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Because the reactive oxygen diffuses through the polymer matrix to the 

surrounding environment, there was no need for any direct contact between the 

nanogold of the hybrid PU material and the bacteria to induce the damage of the 

microorganism. However, the proposed model and the assumed formation of 

radicals needs to be studied further in order to verify it. This is work that could 

be carried out in the future. 

 

As anticipated when comparing the nanogold and nanosilver hybrid PU dog bone 

strips (Figure 3.66) there is a major decrease in percentage of surviving E. coli 

cells for the PU-db-50Ag sample. Unlike gold, silver nanoparticles are not inert 

and are sensitive to oxidation.215 Thus, the efficacious properties of silver are 

considered to arise through the partial oxidation and release of silver ions into 

an aqueous or moist environment.217 The necessary conditions for this exist in 

the aqueous PBS suspension containing the E. coli bacteria. Once the suspension 

diffused into the PU-db-50Ag sample, the contact between the silver 

nanoparticles and water molecules leads to the slight dissolution of silver 

nanoparticles to silver ions and the subsequent migration of silver ions through 

the hybrid PU material leading to their release from the hybrid PU material to the 

aqueous environment. These released silver ions then can moderate the 

denaturation of proteins, leading to cell death. Additionally it is known that the 

binding of Ag+ to bacterial DNA and RNA inhibits bacterial replication.209,293,294 

Kaur reported that silver ions react with nucleophilic amino acid residues in 

proteins, and attach to sulfhydryl, amino, imidazole, phosphate and carboxyl 

groups of membrane or enzyme proteins.295 The reaction of silver ions with 

sulfhydryl (-S-H) groups on the cell wall to form R–S–S–R bonds, blocks 

respiration and causes cell death.296 Moreover, due to the electrostatic 

interaction with negatively charged bacterial cell walls the attachment of silver 

ions to the bacteria leads to cell death via the rupturing of the cell membrane.296 

Reports have shown that low concentrations of silver ions induce a massive 

proton leakage through the bacterial membrane and cell death.297,298  

 

Additionally, the positively charged silver nanoparticles within the polymer 

matrix may form free radicals enhancing their antimicrobial properties. To verify 

this proposed effectiveness, it would be interesting to study the formation of free 

radicals in such a system. This work could be carried out in the future. 
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3.12 Conclusions 

 

 

Nanogold and nanosilver hybrid polyurethane and nylon 6,6 polymer materials 

were successfully produced. For the redox reaction the carbamate and amide 

functional groups present in PU and nylon 6,6 matrices respectively were utilised 

in order to reduce Au3+ or Ag+ to Au0 or Ag0. Simultaneously formed metal 

nanoparticles were bound to the surface and within the polymer matrix of PU or 

nylon 6,6. Additionally, the polymer matrices provided stabilisation for gold and 

silver nanoparticles. The resultant hybrid materials showed to exhibit the typical 

colours for gold and silver nanoparticles. 

 

For the redox reaction the ideal temperature was determined to be 50 °C for the 

production of nanogold and 90 °C for nanosilver hybrid polymer materials. 

Atomic absorption studies showed that after 24 hours of reaction time the 

majority of gold (in the form of AuCl4-) and more than 60 % of silver ions were 

absorbed by the polymer substrates. In general, the absorbed amount of metal 

ions was slightly higher by PU than by nylon 6,6 substrates. The reaction 

parameters, such as time, temperature and the concentration of the metal ion 

solution influenced the uptake rate of Au3+ / Ag+ by the substrates and therefore 

the colour of the resultant hybrid materials. 

 

The nanogold and nanosilver hybrid polymer materials were shown to exhibit 

absorption bands in the visible region of light consistent with the surface 

plasmon resonance bands of gold and silver nanoparticles respectively. When 

the concentration of the employed metal ion solution for the synthesis of the 

hybrid polymer materials was increased, the respective absorption bands 

showed not only broadening but also shifts towards higher wavelengths due to 

an increase in particle size and some agglomerations. The surface plasmon 

resonance absorption bands of gold and silver nanoparticles are influenced by 

particle size, shape and the dielectric constant of the surrounding medium.  

 

Electron microscopy studies of the nanogold and nanosilver hybrid PU and nylon 

6,6 materials demonstrated that the metal nanoparticles were formed not only 

on the surfaces but also within the polymer matrices. The gold or silver particle 
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distribution on the surface of the polyurethane or nylon 6,6 substrates was 

uniform. The higher the concentration of the employed metal ion solution for the 

production of the hybrid materials was the more particle agglomerates were 

formed on the surface of the polymer substrates due to the lack of stability by 

the substrates. This resulted in a brown colouration of the sample with a metallic 

shiny effect (for both nanogold and nanosilver hybrid polymer samples). The 

increased concentration of the metal ions also influenced the morphology of the 

interior of the substrates. The more the metal ions were absorbed the deeper 

they penetrated the substrates where they subsequently were reduced to metal 

nanoparticles. The interior of the polymer substrates provided better stabilisation 

of the nanoparticles resulting in smaller particle size compared to the particles 

found on the surface of the polymers. Generally, silver nanoparticles seem to be 

smaller than gold nanoparticles in both PU and nylon 6,6 substrates. The 

particles found in the PU polymer appear to be larger than the analogue hybrid 

nylon 6,6 materials which is believed to be due to the higher amount of metal 

ion uptake by PU compared to nylon 6,6 substrates. The gold nanoparticles in 

the hybrid polymer materials were mostly spherical or spherical like in shape, 

however some hexagonal, truncated triangular and rod shaped particles were 

observed. Silver nanoparticles were found to be predominantly spherical. 

 

XPS studies suggest the gold and silver nanoparticles bind to the PU or nylon 6,6 

matrix through the covalent Au-N and Ag-N bonds respectively in the nitrogen-

containing carbamate or amine groups. Additionally, it was found that there is an 

ionic interaction between the unreduced negatively charged [AuCl4]- complex 

and the protonated nitrogen groups of nylon 6,6. 

 

The proposed mechanism of formation of the nanogold hybrid polyurethane and 

nylon 6,6 materials involves the reduction of Au3+ to nanoparticulate Au0 by the 

coupled oxidation of the carbamate functional groups of polyurethane or amide 

functional groups of nylon 6,6. It is proposed that during the reaction some of 

the Au3+ ions will be reduced to Au+ by nitrogen-containing groups, forming the 

Au-N bonds and acting as nucleation sites. Further Au3+ are attracted to these 

Au-N nucleation sites where they will be reduced to Au0, again facilitated by the 

oxidation of nearby nitrogen-containing groups of the polymers. No 

unambiguous conclusions concerning the bonding nature of silver and the 
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polymer matrix of polyurethane or nylon 6,6 could be made. However, the 

following can be suggested. Due to their affinity for nitrogen, silver ions interact 

with nitrogen-containing groups such as carbamates or amides. The interaction 

between the silver ions and oxygen atoms of the polymer matrices is not to be 

excluded. Acting as reducing agents nitrogen entities are oxidised and provide 

the electrons for Ag+ ions to be reduced to Ag0, resulting in the formation of 

silver nanoparticles in the polymer matrix. The matrix restricts the size of the 

nanoparticles. The leaching tests confirmed that the gold and silver 

nanoparticles were chemically bound to the polymer matrix. It was 

demonstrated that only a very small amount of gold and silver leached out of the 

hybrid PU materials after seven days of leaching. These amounts are likely due 

to loosely bound gold or silver nanoparticles on the surface of the polymers. 

 

It was found that the nanogold and nanosilver hybrid polyurethane materials 

have antimicrobial effects against gram negative E. coli bacteria.  

 

The production of the nanogold and nanosilver hybrid PU materials has been 

scaled up to produce sufficient amounts of the materials which were moulded 

into dog bone test strips via a conventional thermoplastic moulding process by 

the Centre for Advanced Composite Materials and the Plastics Centre of 

Excellence at the University of Auckland. The resulting test strips show that 

nanogold and nanosilver entities are distributed evenly through the moulded 

plastic, confirming that these nanoparticles do not affect the thermoplastic 

forming properties of the polymer substrates. 
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4 Nanogold and nanosilver hybrid polymer materials: 

nanoparticles formed in the presence of alternative 

substrates such as amine coated polyethylene terephthalate 

sail cloth and silica based Bulk isolute® sorbent 

 

 

Materials such as amine coated polyethylene terephthalate (PET) sail cloth and 

silica based Bulk isolute® sorbent (NH2) were utilised as substrates. These 

substrates were used for the purpose of building up a simple model to confirm 

the ability of the nitrogen-containing functional groups to reduce Au3+ / Ag+ to 

Au0 / Ag0 respectively and subsequently bind the resultant metal nanoparticles 

to the substrate matrix (Section 3). 

 

Hybrid PET sail cloth and silica based Bulk isolute® sorbent (NH2) containing 

gold and silver nanoparticles were synthesised following the approach described 

in Section 2.2.1.2. The methodology involved immersing the substrates in 

aqueous hydrogen tetrachloroaurate or silver nitrate solutions followed by 

heating the reaction vials to complete the reduction of metal ions to metal 

nanoparticles. The employed temperatures are summarised in Table 4.1. Unless 

otherwise mentioned, the mass of the substrates was 0.2 g for PET sail cloth and 

0.2 g for Bulk isolute® sorbent (NH2) materials; the metal ion solution volume 

was 10 mL. All experiments were stopped after 24 hours. It was intended that 

the amine groups on the surface of the substrates would reduce Au3+ and Ag+ to 

Au0 and Ag0 respectively, whilst simultaneously stabilising the resultant metal 

nanoparticles and binding them to the substrate matrix.  

 

The names for the hybrid polymer materials and their respective reaction 

parameters are listed in Table 4.1.  
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Table 4.1: The sample names and their respective reaction parameters for the 

nanogold and nanosilver hybrid materials. The mass for each substrate was 0.2 

g. The reaction time for all samples was 24 hours. The solution volume was 10 

mL. 

Name of 

hybrid 

polymer 

material 

Substrate  Metal ion 

conc. 

[mg kg-1] 

Metal 

ion 

species  

Reaction 

temp. 

 [°C] 

wt % of 

metal in 

polymer 

PET-50Au PET sail cloth 50 Au3+ 80 0.25 

PET-50Ag PET sail cloth 50 Ag+ 80 0.25 

NH2-500Au Bulk isolute® 

sorbent (NH2)a 

500 Au3+ 70 2.5 

NH2-500Ag Bulk isolute® 

sorbent (NH2)a 

500 Ag+ 70 2.5 

 

a Bulk isolute® sorbent (NH2) substrates will be discussed below. 

 

 

4.1 Nanogold and nanosilver hybrid PET sail cloth and ISOLUTE 

sorbents materials 

 

 

In contrast to PU and nylon 6,6 materials, PET polymer does not contain any 

nitrogen-containing functional groups which are able to reduce Au3+ or Ag+ to 

Au0 or Ag0 respectively. To inhibit the aging of polymers, such as the PET sail 

cloth materials from the long term degradation effects of oxygen and UV light, 

stabilisers are used during the production of these materials. According to XPS 

analysis nitrogen-containing groups are present on the surface of the PET sail 

cloth. These are probably hindered amine light stabilisers. Figure 4.1 shows the 

survey XPS scans of the untreated sail cloth material with its respective 

characteristic major elements such as carbon and oxygen (X-ray peaks for Ca 

and Si should be ignored due to contaminations in the laboratory). Additionally, 

a peak for nitrogen was detected. The XPS analysis provided a quantitative 

estimation of nitrogen content on the surface of the sail cloth. The surface of the 

sail cloth substrate contained 0.6 % of nitrogen. 
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Hence, there exists an opportunity for these nitrogen-containing functional 

groups to reduce gold or silver ions to metallic gold or silver on the surface of 

the PET sail cloth and bind the metallic nanoparticles through the Au-N or Ag-N 

interaction.  

 

 

 

Figure 4.1: Survey XPS scan of the untreated PET sail cloth fabric. 

 

 

Silica based Bulk isolute® polar sorbent (NH2) is commonly utilised in solid 

phase chromatography to extract organic compounds such as drugs. They are 

irregular shaped aminopropyl functionalized silica particles with a size of ca. 50 

µm. Typical NH2 is shown below: 

 

 

3

Si Si CH2O NH2

O

Si

Si

OH

 

 

 

After immersing the fabrics or the sorbent materials in tetrachloroaurate or silver 

nitrate solutions for 24 hours at 80 °C or 70 °C respectively, the formation of 

metal nanoparticles on the substrates was apparent by the appearance of a pink 
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or yellow colour. As previously mentioned, these colours are typical for gold and 

silver nanoparticles respectively, resulting from the surface plasmon resonance 

scattering of light by these metallic nanoparticles (Section 1.4.2). The shade and 

intensity of the colour can be altered by systematically altering the concentration 

of the AuCl4- or Ag+ solution and the reaction time. The resulting nanogold and 

nanosilver hybrid PET sail cloth and sorbent materials are shown in Figure 4.4 

and Figure 4.5 respectively. For the control reaction 0.2 g of pure PET polymer 

beads or Silica based Bulk isolute® sorbents C18 sorbent material were 

immersed in equal concentrated tetrachloroaurate or silver nitrate solutions for 

24 hours at 80 °C or 70 °C respectively. Silica based Bulk isolute® C18 sorbent 

are irregular shaped octadecyl-functionalized silica particles. After 24 hours of 

reaction time the PET beads or the C18 sorbent particles did not change their 

original colour. Hence, it is possible to rule out that the ester functional groups 

of the PET or silica groups of the C18 sorbent material are not involved in 

reduction of Au3+ or Ag+ to Au0 or Ag0 respectively. 

 

 

4.2 Extent of gold and silver uptake by PET sail cloth and silica based 

BULK ISOLUTE® NH2 sorbent materials  

 

 

The uptake of dissolved gold ([AuCl4]-) and silver (Ag+) by the PET sail cloth 

material was quantitatively analysed by atomic absorption spectroscopy (Section 

2.3.3). Similar to the PU and the nylon 6,6 substrates (Section 3.1.1) the PET 

sail cloth fabrics were soaked in 50 mg kg-1 of gold or silver solutions for 

different periods of time at 80 °C. Subsequently the resulting solutions were 

analysed for any residual gold or silver. The difference between the starting 

concentration and the residual concentration was determined to be the amount 

of the gold or silver ions absorbed by the PET sail cloth substrates. Figure 4.2 

and Figure 4.3 show the trend of gold and silver uptake by the PET sail cloth 

within 24 hours of absorption period. 
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Figure 4.2: Gold uptake by the PET sail cloth at 80 °C, utilising a solution with 

an initial gold concentration of 50 mg kg-1Au3+. 

 

 

 

Figure 4.3: Silver uptake by the PET sail cloth at 80 °C, utilising a solution with 

an initial silver concentration of 50 mg kg-1 Ag+. 
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When comparing the uptake of gold and silver ions by the PET sail cloth, the 

resulting curves show that nearly all of the gold and only ca. 40 % of silver 

content of the 10 mL starting solutions was absorbed by the 0.2 g of the PET sail 

cloth fabric after 24 hours absorption period at 80 °C. Similar behaviour was 

observed when PU or nylon 6,6 were used as substrates (Section 3.1). A 

possible explanation for this observation is that under slightly acidic reaction 

conditions (pH 4-5) the functional groups of the employed PET sail cloth 

substrates become protonated. Therefore these functional groups have a net 

positive charge. Gold ions are being absorbed as the [AuCl4]- complex. Thus, it 

can be assumed that an electrostatic attraction exists between the gold complex 

and the positively charged PET sail cloth. Positive silver ions are electrostatically 

repelled by the PET substrates because of their positive charge leading to a 

decreased uptake rate.  

 

Atomic absorption spectroscopy (Section 2.3.3) was also used to quantitatively 

analyse the uptake of dissolved gold and silver by the NH2 sorbent material. 

However, due to the shortage of the material the uptake of gold or silver was 

only measured after 24 hours of reaction time. This was achieved by soaking the 

NH2 particles (0.2 g) in 500 mg kg-1 of gold or silver solutions at 70 °C. After 24 

hours the resulting solutions were analysed for any residual gold or silver. The 

difference between the starting concentration and the residual concentration was 

determined to be the amount of the gold or silver ions absorbed by the NH2 

sorbent substrates. After 24 hours of uptake period ca. 99 % of gold and 

approximately 80 % of silver ions were absorbed by these substrates. Again, as 

for the PET sail cloth substrate, under slightly acidic reaction conditions (pH 4-5) 

the amine groups of the employed NH2 sorbent particles are protonated 

resulting in a net positive charge. The electrostatic attraction between the gold 

complex ([AuCl4-]) and the positively charged amine groups of NH2 substrate 

lead to a complete uptake of the ions.  
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4.3 UV Visible spectroscopy – colour of nanogold and nanosilver 

hybrid PET sail cloth and silica based BULK ISOLUTE® NH2 sorbent 

materials 

 

 

The pink-purple or yellow-brown colour development of the nanogold and 

nanosilver hybrid PET sail cloth and silica based NH2 sorbent samples was 

indicative of the reduction of the absorbed Au3+ or Ag+ to their respective metal 

nanoparticles. These colours are due to the interaction of light with nanosized 

gold or silver particles formed on the surface of the PET or NH2 sorbent 

substrates. Similar pink and yellow colours were achieved for the nanogold and 

nanosilver hybrid PU and nylon 6,6 materials (Section 3). Figure 4.4 and Figure 

4.5 show the photographs of the resultant hybrid PET or NH2 materials next to 

their respective untreated substrates after a period of 24 hours of reaction, 

during which gold or silver ions were absorbed by the substrates, reduced to 

gold or silver nanoparticles respectively and simultaneously stabilised by the 

substrate matrix. 

 

 

 

Figure 4.4: Photograph of the untreated PET sail cloth, PET-50Au and PET-50Ag 

samples (from left to right). 
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Figure 4.5: Photograph of the NH2-500Au, NH2-500Ag and untreated NH2 

sorbent material samples (from left to right). 

 

 

The formation of gold and silver nanoparticles in these substrates was studied by 

UV-Vis spectroscopy. When nanoparticles form, an intense visible surface 

plasmon resonance absorption band appears. The position of the SPR bands is 

dependent upon the size, shape of the nanoparticles and the dielectric constant 

of the surrounding medium.252 Kubelka Munk transformed UV-Vis reflectance 

spectra for the nanogold and nanosilver hybrid PET materials as well as for the 

untreated PET sail cloth fabric are shown in Figure 4.6. The PET sail cloth sample 

prepared from a 50 mg kg-1 gold solution (PET-50Au) exhibits an absorption 

peak at approximately 545 nm. The peak position is consistent with the surface 

plasmon resonance absorption of gold nanoparticles and similar positions were 

observed for SPR bands of the purple coloured nanogold hybrid PU and nylon 6,6 

materials (Section 3.1.1). The peak at about 455 nm for the PET-50Ag sample is 

similarly consistent with the surface plasmon resonance absorption of silver 

nanoparticles appearing yellow to the eye. The broadness of both peaks 
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indicates a range of particle sizes and shapes as well as a possible presence of 

particle aggregates which was confirmed by the SEM analysis (Section 4.3). 

 

 

 

Figure 4.6: Kubelka Munk transformed UV-Vis reflectance spectra of the 

untreated PET sail cloth, nanogold and nanosilver hybrid PET sail cloth 

materials. 

 

 

Figure 4.7 presents the Kubelka Munk transformed UV-Vis reflectance spectra for 

the nanogold and nanosilver hybrid NH2 materials next to the untreated NH2 

sorbent material. The spectrum for the NH2-500Au sample compared to the 

spectrum of the untreated NH2 sorbent material shows that there is the 

development of a broad visible region absorption after the substrate reacted with 

the gold ion containing solution. This broad absorption band indicates the 

presence of gold nanoparticles in a wide range of particle size and shape as well 

as possible particle agglomeration resulting in a dark purple colouration of the 

sample shown in Figure 4.5. The Kubelka Munk transformed UV-Vis spectrum of 

the NH2-500Ag sample (Figure 4.7) also displays a broad visible region 

absorption with its maximum between 400 nm and 500 nm, giving the sample 
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its brown appearance. This is consistent with the surface plasmon resonance 

band of silver nanoparticles. 

 

 

 

Figure 4.7: Kubelka Munk transformed UV-Vis reflectance spectra of the 

untreated NH2 sorbent particles, nanogold and nanosilver hybrid NH2 sorbent 

materials. 

 

 

As such, the UV-Vis spectroscopy analyses confirmed that both substrates (PET 

and NH2 sorbent material) when exposed to gold or silver ion solutions are able 

to reduce Au3+ and Ag+ to gold and silver nanoparticles respectively. 
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4.4 SEM and EDS analyses of hybrid PET sail cloth and silica based 

BULK ISOLUTE® NH2 sorbent materials 

 

 

SEM and EDS analyses were carried out on the PET-50Au, PET-50Ag, NH2-500Au 

and NH2-500Ag samples in order to view the morphology of the produced hybrid 

materials and to confirm the formation of gold or silver nanoparticles on their 

surface. To observe the interior of the hybrid PET polymer materials, cross 

sections of the sail cloth samples were made by cutting the samples with a clean 

razor blade into two halves. 

 

Figure 4.8 offers SEM micrographs of the surface of the PET-50Au sample at 

increasing magnifications, confirming the presence of gold nanoparticles. The 

gold nanoparticles are observable in the backscatter mode as white dots. The 

contrast between the metal and the polymer is due to the higher atomic weight 

of gold and the lower atomic weight of the polymers. At a magnification of 25 

times, the PET fibres of the PET-50Au sample, which are woven together to 

make the sail cloth (Figure 4.8a), do not differ from the fibres of the untreated 

PET sail cloth. However, with further magnification to 2500 times and 23000 

times (Figure 4.8b-c) a surface with a rich coverage of gold nanoparticles can be 

observed. The gold nanoparticles are predominantly spherical accompanied by 

some bigger triangular gold platelets. The nanoparticles vary in size, most of the 

spherical nanoparticles were below 100 nm in diameter. Some particle 

agglomerates were also present. This is consistent with the results obtained 

from the UV-Vis analysis of these materials (Section 4.3). EDS elemental 

analysis confirmed that the nanoparticles present on the PET surface were gold 

(Figure 4.8d). The distribution of the gold nanoparticles is reasonably uniform 

across the PET fibres. Due to the intense surface plasmon band of these gold 

nanoparticles the hybrid PET sail cloth exhibits a purple hue (Figure 4.4).  
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Figure 4.8: SEM micrographs of the surface of the PET-50Au sample a) at 25 

times (SEI), b) 2500 times (COMPO), c) 23000 times magnification (COMPO) 

with d) the respective EDS elemental analysis spectrum. 

 

 

The SEM analysis of the surface of the PET-50Ag sample confirmed the presence 

of silver nanoparticles (Figure 4.9). EDS analyses of the samples provided 

information about the elemental composition of the analysed surface of the 

hybrid sample. Similar to the PET-50Au sample, the surface analysis revealed 

high and uniform coverage over the entire surface of the sail cloth fibre, 

indicating that the absorbed Ag+ ions were reduced to Ag0 and simultaneously 

stabilised by the PET polymer matrix. The resulting nanoparticles were verified 

as silver by the EDS analysis (Figure 4.9b). The particles of the surface were 

spherical and generally smaller than the one found on the surface of the 

PET-50Au sample. However, particle aggregates were also present. These 

particles give rise to the surface of the PET fibres being yellow coloured (Figure 

4.4). 

a b 

c d 
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Figure 4.9: SEM micrographs of the PET-50Ag surface a) at 11000 times 

(COMPO) with b) the respective EDS elemental analysis map. 

 

 

Figure 4.10 shows SEM image of a cross section of the PET-50Au sample 

recorded in backscatter mode. It is evident that the gold nanoparticles in these 

hybrid PET materials were confined to the surface of the fibres, rather than 

spread throughout the centre of the fibre. The SEM analysis of the cross section 

of the PET-50Ag sample led to the same result, the silver nanoparticles were 

formed on the surface of the PET fibres (not displayed). Hence, it can be 

assumed that the stabilisers containing the nitrogen groups which are essential 

for the Au3+ or Ag+ reduction are located on the surface of the PET fibres. 

 

 

 

 

 

a b 
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Figure 4.10: SEM micrograph (COMPO) of a cross section of the PET-50Au 

sample at a) 7000 times magnification (COMPO) with b) the respective EDS 

elemental analysis spectrum. 

 

 

Figure 4.11 presents the SEM micrographs recorded in backscatter mode of the 

NH2-500Au sample. At a low magnification of 170 times the irregular shapes of 

the silica based NH2 sorbent particles can be seen (Figure 4.11a). Further 

magnifications of the sample to 1300 and 23000 times (Figure 4.11b-c) show a 

surface with a high coverage of bright white spots, which were confirmed by EDS 

elemental analysis to be gold (Figure 4.11d-e). In general the particles appeared 

to be spherical and smaller than 100 nm in size, however some larger triangles 

and particle agglomerates were observed. The distribution of these gold 

nanoparticles is uniform across the hybrid NH2 sorbent particles. As mentioned 

in Section 4.3, the intense surface plasmon resonance absorption band in the 

visible region is responsible for the dark purple colouration of the sample (Figure 

4.5).  

 

Figure 4.12 shows a SEM micrograph and the corresponding EDS spectrum of 

the NH2-500Ag sample. The bright white spots visible in the backscatter mode 

are silver nanoparticles which was confirmed by the EDS analysis. This implies 

that during the synthesis of the hybrid material silver ions were reduced to silver 

nanoparticles by the NH2 sorbent material. These silver nanoparticles are 

predominantly spherical with a diameter of less than 100 nm. However, 

occasional large agglomerations were observed. 

a b 
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Figure 4.11: SEM micrographs in backscatter mode of the NH2-500Au surface a) 

at 170 times, b) 1300 times and c) 23000 times magnification with d) the 

respective EDS elemental analysis spectrum. 

a b 

c d 

e 
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Figure 4.12: SEM micrographs in backscatter mode of the NH2-500Ag surface a) 

at 12000 times and b) 45000 times with c) the respective EDS elemental 

analysis spectrum. 

 

 

a b 

c 
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4.5 X-ray diffraction on nanogold and nanosilver hybrid PET sail cloth 

and silica based BULK ISOLUTE® NH2 sorbent materials 

 

 

XRD characterisation of nanogold and nanosilver hybrid PET and NH2 sorbent 

materials was carried out in order to confirm the formation of crystalline gold 

and silver nanoparticles. In the XRD patterns, the Bragg peak positions and their 

intensities were compared with the standard PDF 04-001-2616 for gold and PDF 

04-001-2617 for silver pattern.242 FWHM values were used in the Scherrer 

equation which was introduced in Section 2.3.4 in order to determine the mean 

particle size.  

 

The XRD patterns of the untreated PET sail cloth together with the nanogold and 

nanosilver hybrid PET materials (PET-50Au and PET-50Ag samples) are 

presented in Figure 4.13. For the PET-50Au sample only one diffraction peak is 

observed. The discernible peak at 2θ = 38.26° can be indexed to the (1 1 1) 

lattice plane of a cubic unit cell, which corresponds to the cubic structure of gold 

(PDF 04-001-2616).242 This XRD pattern confirms that Au3+ ions were reduced to 

Au0 and simultaneously stabilised by the PET polymer matrix. The average 

crystallite size of the gold nanoparticles was estimated from the FWHM of the 

(1 1 1) diffraction peak. The particles were found to be ca. 19 nm for the 

PET-50Au sample. Although the UV-Vis and SEM analyses of the nanosilver 

hybrid PET material confirmed the presence of silver nanoparticles (Sections 4.3 

and 4.4), the XRD pattern obtained for the PET-50Ag sample did not show any of 

the typical diffraction peaks for fcc silver. A possible reason for the absence of 

the diffraction peaks is that the silver nanoparticles on the surface of the PET sail 

cloth are very small, resulting in a low signal to noice ratio.  
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Figure 4.13: XRD patterns of the untreated PET sail cloth and the nanogold and 

nanosilver hybrid PET materials. 

 

 

Figure 4.14 illustrates the XRD patterns obtained from the untreated NH2 

sorbent material as well as the nanogold and nanosilver hybrid NH2 materials. 

The diffraction pattern of the NH2-500Au sample provided further confirmation 

that during the synthesis of the hybrid material crystalline gold was formed 

within the NH2 sorbent matrix. The diffraction peaks at 2θ = 38.18°, 44.28°, 

64.58°, 77.57° and 81.71° can be indexed as the (1 1 1), (2 0 0), (2 2 0), 

(3 1 1) and (2 2 2) diffraction peaks of face centred cubic structure of gold 

(PDF 04-001-2616).242 Using the Scherrer equation the mean crystallite size of 

the gold nanoparticles was estimated to be 25 nm. Similar to the PET-50Ag 

sample described above, the XRD pattern obtained for the NH2-500Ag sample 

did not show the presence of the typical diffraction peaks for crystalline silver. 

This might be due to the small size of the silver nanoparticles and low level of Ag 

in the materials. 
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Figure 4.14: XRD patterns of the untreated PET sail cloth and the nanogold and 

nanosilver hybrid PET materials at higher concentration of Au and Ag. 

 

 

4.6 X-ray photoelectron spectroscopy on nanogold and nanosilver 

hybrid PET sail cloth materials 

 

 

As described in Section 1.3.1.4, PET is mainly composed of hydrocarbon 

backbones which contain ester linkages. However, it is important to note that 

polymers also contain stabilisers which are used to protect them from the effects 

of light, UV radiation, heat or aging. Incorporation of such compounds to the 

polymers such as PET sail cloth materials impart these polymers with new 

functional groups which are able to reduce absorbed Au3+ or Ag+ to Au0 or Ag+ 

respectively. XPS analyses of the untreated and the nanogold and nanosilver 

hybrid PET sail cloth materials were carried out in order to investigate how the 

PET sail cloth was involved in the reduction of gold or silver ions to the 

respective metallic nanoparticles. Additionally, the nature of the bonding 

between the gold or silver nanoparticles and the PET sail cloth was studied. 
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An initial survey scan from a binding energy of 600 to 0 eV for the untreated PET 

sail cloth, the PET-50Au and the PET-200Ag samples showed the presence of 

carbon, oxygen groups as well as a weak peak for nitrogen on the PET sail cloth 

surface, together with gold and silver for the nanogold and nanosilver hybrid PET 

(Figure 4.15). This confirmed that the stabilisers present on the surface of the 

PET sail cloth contain nitrogen-containing functional groups. X-ray peaks for 

calcium and silicon should be ignored due to common laboratory contamination 

of the samples. Subsequently high resolution scans were carried out on carbon, 

nitrogen and oxygen for all samples, in addition to gold and silver for the hybrid 

PET sail cloth materials. Comparison of the C 1s XPS spectra for the PET sail 

cloth alone with its analogue nanogold and nanosilver hybrid samples did not 

show any significant changes.  

 

 

 

 

Figure 4.15: Survey XPS scans of the surface of a) the untreated PET sail cloth 

b) the PET-50Au and c) the PET-50Ag samples.  

a 

b c 
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The N 1s spectra of the untreated PET sail cloth and the nanogold hybrid PET 

sample (PET-50Au) are presented in Figure 4.16a-b. When comparing both 

spectra, both N 1s peaks are located at ca. 399.7 eV and were attributed to 

amines275,299 related to the stabilising compounds on the surface of the sail cloth 

materials. Despite the unchanged position of the N 1s peak upon reaction of sail 

cloth with gold, a minimal broadening of the FWHM by around 0.3 eV was 

observed. The increase in the FWHM of the nitrogen in the amine groups 

suggests a greater range in the nature of the nitrogen species in addition to 

changes in the surrounding environment of these N entities. Because only 

0.25 wt % of gold was employed to produce this nanogold hybrid PET material, 

very small changes are expected. Hence, it is not possible to exclude that the 

N 1s peak would mask further minor peaks at lower binding energies related to 

an Au-N interaction, but also a peak at higher binding energies representing 

oxidised nitrogen species, which provide the required electrons for the reduction 

of Au3+ to Au0.  

 

Two distinct peaks were observed in the high resolution Au 4f spectrum obtained 

for the PET-50Au sample (Figure 4.16c). These peaks showed an intensity ratio 

of 4:3 and a spin orbital separation of 3.7 eV which matches the spacing of the 

bulk gold.275,299 The peaks centred at approximately 83.7 eV (4f7/2) and 87.4 eV 

(4f5/2) were assigned to Au0 275,299 confirming that during the reaction Au3+ ions 

were reduced to metallic gold nanoparticles. Similar to the N 1s spectrum of the 

sample, due to the broadness of the FWHM of the doublet (1.2 eV) there is a 

possibility for an existence of an additional gold species attributable to Au+ in 

form of a Au-N interaction or partially reduced Au+ ions located on the surface of 

the formed Au0 nanoparticles. Similar results were obtained from the XPS 

analysis of the nanogold hybrid PU materials (Section 3.8.1). 
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Figure 4.16: Deconvoluted high resolution XPS N 1s spectra for a) the untreated 

PET sail clot and b) the PET-50Au sample. Deconvoluted high resolution Au 4f 

XPS spectrum for the hybrid PET sail cloth prepared from a 50 mg kg-1 gold 

solution at 80 °C for 24 hours is shown in c). Experimental data points are 

shown by circles. 

 

 

The N 1s spectrum of the nanosilver hybrid PET sample, when compared to the 

N 1s spectrum obtained for the untreated PET sample (Figure 4.17a-b), did not 

show any change in the position of the N 1s peak (~ 399.7 eV). However, a 

minimal broadening of the FWHM by around 0.3 eV was detected. As for the N 

1s spectrum obtained for the PET-50Au sample (described above), the increase 

in the FWHM of the nitrogen in the amine groups of the stabiliser on the surface 

a b 

b b 

N 1s 

c 
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of the PET sail cloth indicates a variability of the environments surrounding these 

N entities. Thus, an interaction between the formed Ag nanoparticles and N is 

possible. Due to the low intensity and high amount of background noise in both 

N 1s spectra, it was not possible to assure the nature of the association existing 

between silver and the nitrogen atoms located on the surface of the PET polymer 

matrix.  

 

The high resolution Ag 3d spectrum for the PET-50Ag sample is shown in Figure 

4.17c. The spectrum was deconvoluted into one doublet with an intensity ratio of 

3:2 and a spin orbit splitting of 6 eV which is typical for bulk silver.275,299 The two 

peaks positioned at around 368.0 (3d5/2) eV and 374.0 (3d3/2) eV are 

attributable to Ag0, which confirmed that silver ions were reduced to metallic 

silver when PET sail cloth was exposed to AgNO3 solution at 80 °C for 24 hours 

of reaction time. Due to the broad FWHM of 1.6 eV it is possible that another 

silver species is masked by the Ag0 peaks which associates with Ag+ in form of 

an Ag-N interaction.  

 

In light of these results, during the preparation of the nanogold and nanosilver 

hybrid PET materials, the reduction of Au3+ or Ag+ to Au0 or Ag0 respectively by 

the PET sail cloth can be confirmed. There is an indication of an Au-N or Ag-N 

interaction between the formed metallic nanoparticles and the sail cloth. 

However, due to the low concentration of the metal ion solutions used and hence 

the metals in the polymers, high noise and low intensity of the spectra the exact 

nature of the bonding between the metal nanoparticles and the substrate cannot 

be ascertained.  
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Figure 4.17: Deconvoluted high resolution XPS N 1s spectra for a) the untreated 

PET sail clot and b) the PET-50Ag sample. Deconvoluted high resolution Ag 3d 

XPS spectrum for the hybrid PET sail cloth prepared from a 50 mg kg-1 silver 

solution at 80 °C for 24 hours is shown in c). Experimental data points are 

shown by circles. 
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4.7 Conclusions 

 

In order to build up a simple model for the confirmation of the nitrogen’s 

chemical affinity for gold and silver amine coated polyethylene terephthalate sail 

cloth and silica based Bulk isolute® sorbent (NH2) were utilised as alternative 

substrates for the production of hybrid materials.  

 

The temperature for the redox reaction was set to 70 °C for the production of 

nanogold and 80 °C for nanosilver hybrid polymer materials. After 24 hours of 

reaction time Atomic absorption studies showed that the majority of gold (in the 

form of AuCl4-) and ca. 40 % of silver ions were absorbed by the PET polymer 

substrates.  

 

Produced hybrid PET sail cloth and silica based Bulk isolute® sorbent (NH2) 

materials were shown to exhibit absorption bands in the visible region of light. 

These absorption bands are consistent with the surface plasmon resonance 

bands of gold and silver nanoparticles respectively. 

 

Electron microscopy studies of the nanogold and nanosilver hybrid PET sail cloth 

materials revealed that the nanoparticles varied in size, most of the spherical 

nanoparticles were below 100 nm in diameter. Some particle agglomerates were 

also present. It was evident that the nanoparticles in the hybrid PET materials 

were confined to the surface of the fibres, rather than spread throughout the 

centre of the fibre. SEM analyses of the nanogold and nanosilver hybrid isolute® 

sorbent (NH2) materials showed that the metal nanoparticles appeared to be 

spherical and smaller than 100 nm in size, however some larger triangles and 

particle agglomerates were also observed. The distribution of the gold and silver 

nanoparticles was uniform across the hybrid NH2 sorbent particles. In general, 

silver nanoparticles seem to be smaller than gold nanoparticles in both PET and 

isolute® sorbent (NH2) substrates.  

 

XRD analyses confirmed the presence of crystaline gold in the nanogold hybrid 

PET and isolite® sorbent samples. XRD patterns obtained for the nanosilver 
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hybrid PET and isolite® sorbent materials did not show the presence of the 

typical diffraction peaks for crystalline silver.  

 

XPS studies confirmed that during the preparation of the nanogold and 

nanosilver hybrid PET materials, the reduction of Au3+ or Ag+ to Au0 or Ag0 

respectively by the amine coated PET sail took place. There was an indication of 

an Au-N or Ag-N interaction between the formed metallic nanoparticles and the 

sail cloth. Due to the low concentration of the metal nanoparticles in the 

polymers the exact nature of the bonding between the metal nanoparticles and 

the substrate could not be ascertained.  
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5 Nanogold and nanosilver hybrid materials: nanoparticles 

formed directly in polyurethane K5000 latex paint base 

material 

 

 

Nanogold and nanosilver hybrid PU K5000 materials containing gold and silver 

nanoparticles were produced. The amine groups in the polyurethane were used 

to reduce Au3+ and Ag+ to Au0 and Ag0 respectively and bind the resulting 

nanoparticles to the polymer matrix. Simultaneously the nanoparticles were 

stabilised by the polymer matrix. The preparation of the hybrid polyurethane 

K5000 latex paint polymer materials used the methodology described in Section 

2.2.2. The approach comprised the slow addition of aqueous gold tetrachloride 

or silver nitrate solution to the liquid polyurethane K5000 paint base via a 

pipette under vigorous stirring. High concentrations of acidic metal ion solutions 

can destabilise the polyurethane suspension and cause flocculation of the paint. 

To prevent this, the metal ion solution was first diluted with distilled water, 

however too much water led to a undesirable watery paint product. For 

preparation of more concentrated nanogold and nanosilver hybrid PU K5000 

paint samples (0.1 wt % metal content in paint) the two dilution volumes, 2.5 or 

1.25 ml of metal ion solution to 5 g of PU K5000 paint base were chosen whilst 

keeping the polymer to metal ion ratio constant. The pH of all employed gold 

solutions was adjusted with NaOH to a value around 4.5 - 5 in order to avoid a 

possible flocculation of the paint substrate. Once the Au3+ / Ag+ solutions were 

added to the PU K5000 paint respectively, the reaction tubes were heated in a 

water bath (50 °C for gold samples and 70 °C for silver samples) for 24 hours in 

order to affect the redox reaction. These temperatures however, proved to be 

too high resulting in polymerisation of the paint. Thus, the ideal temperature for 

the preparation of the nanogold and nanosilver hybrid PU K5000 materials was 

found to be room temperature. For this temperature, seven days of reaction 

time was required to reduce Au3+ or Ag+ to Au0 or Ag0 respectively. During this 

time the sample vials were kept on a shaking table. The reduction of metal ions 

to Au0 and Ag0 was indicated by the development of stable purple colour for gold 

samples and brown colour for silver samples. The shade and intensity of the 
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colour could be altered by systematically altering the concentration of Au3+ or 

Ag+ ions.  

 

The sample names for the hybrid polyurethane K5000 latex paint base materials 

and their respective reaction parameters are summarised in Table 5.1.  

 

 

Table 5.1: The names and their respective reaction parameters for the nanogold 

and nanosilver hybrid polyurethane K5000 latex paint base materials. All 

samples were prepared at room temperature, reaction time was seven days. 

Name of hybrid 

material 

Mass of 

K5000 

substrate 

[g] 

Metal ion 

species  

Metal ion 

conc. 

[mg kg-1] 

Vol. of 

metal ion 

solution 

[ml] 

wt % of 

metal in 

K5000 

paint 

K5000-100Au-1:2 5 Au3+ 20 2.5 0.01 

: : : :  : 

K5000-1000Au-1:2 5 Au3+ 2000 2.5 0.1 

K5000-100Au-1:4 5 Au3+ 40 1.25 0.01 

: : : :  : 

K5000-1000Au-1:4 5 Au3+ 4000 1.25 0.1 

K5000-100Ag-1:2 5 Ag+ 20 2.5 0.01 

: : : :  : 

K5000-1000Ag-1:2 5 Ag+ 2000 2.5 0.1 

K5000-100Ag-1:4 5 Ag+ 40 1.25 0.01 

: : : :  : 

K5000-1000Ag-1:4 5 Ag+ 4000 1.25 0.1 

 

 

For the initial scale performance testing, the nanogold and nanosilver hybrid PU 

K5000 materials were produced in 80 times greater quantity (Figure 5.1). The 

preparation process was scaled up by a direct scaling of the procedure described 

above.  

 

The nanogold and nanosilver hybrid PU K5000 paints were sent to The Polymer 

Group Ltd in Auckland, where the hybrid PU K5000 paint samples were further 

formulated into a marine paint which was used to coat surfaces of pieces of 
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wood. These pieces were subsequently immersed in seawater for six months in 

order to test the hybrid materials for their antifouling properties.  

 

 

 

Figure 5.1: Picture nanogold (left) and nanosilver (right) hybrid polyurethane 

K5000 paint materials containing 0.1 wt % of Au3+ / Ag+. 

 

 

5.1 Formation of gold and silver nanoparticles within the polyurethane 

K5000 latex paint base polymer 

 

 

During the reaction time for the reduction of gold or silver ions by the 

polyurethane K5000 substrate, a visible colour development was observed. The 

pink-violet-purple and yellow-brown colours of the resulting hybrid PU K5000 

paint materials were evidence of the formation of gold and silver nanoparticles 

respectively. The excitation of surface plasmon resonances of nanoparticles by 

incident light gives rise to a very selective absorption of the light thus imparting 

distinct colours to the nanogold and nanosilver hybrid materials (Section 1.4.2). 

 

K5000 is a polyurethane latex paint base polymer with a 

polyether/polyester/acrylic composite backbone. As previously shown 

(Chapter 3), polyurethane is able to reduce gold or silver ions to metallic 

nanoparticles and stabilise these nanoparticles within the polymer matrix. Here, 
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the PU K5000 paint simultaneously acts as the substrate, stabilising and 

reducing agent due to its carbamate functional groups.  

 

Depending on the employed metal ion concentration, the colour change of the 

PU K5000 paint base from original white to pink or yellow can occur within the 

first day due to the formation of gold or silver nanoparticles respectively. Figure 

5.2 presents the photographs of the nanogold hybrid polyurethane K5000 paint 

samples with different amounts of gold after different reaction times in days 

compared to the untreated PU K5000 paint sample. All samples were prepared 

at room temperature. When preparing the K5000-1000Au-1:2 and 

K5000-1000Au-1:4 samples, the sample turned pink within the first two hours of 

the reaction time, increasing in intensity and eventually turning dark purple in 

the following seven days. No visual difference was noted between these two 

samples. When preparing the K5000-200Au-1:2 or the K5000-200Au-1:4 

materials, the samples did not change their colour after the first 24 hours of 

reaction time. In the subsequent seven days the samples became violet. 

Similarly, during the preparation of the K5000-1000Ag-1:2 and 

K5000-1000Ag-1:4 samples, a light brown colour was observed within the first 

two hours of the reaction. This colour increased in intensity and became dark 

brown during the following seven days. Figure 5.3 shows the photographs of the 

untreated PU K5000 paint sample and the colour development of the 

K5000-1000Ag-1:2 sample during the seven days of the reaction. No visual 

difference was observable to the human eye between the samples which were 

prepared from a 1.25 ml Ag+ solution to their analogue samples prepared from a 

2.5 ml Ag+ solution. 
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Figure 5.2: Photographs of the a) untreated PU K5000 paint base, b) 

K5000-1000Au-1:2 (left) and K5000-200Au-1:2 (right) after 24 hours of 

reaction time and c) K5000-1000Au-1:2 (left) and K5000-200Au-1:2 (right) 

after seven days of reaction time. 

 

 

 

Figure 5.3: Photographs of the a) untreated PU K5000 paint base and b) the 

K5000-1000Ag-1:2 sample on day 1, day 2, day 3 and day 7 of reaction time 

(from left to right). 

 

 

 

a b c 

a b 
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5.2 UV Visible spectroscopy - colour of nanogold and nanosilver hybrid 

polyurethane K5000 latex paint base materials 

 

 

The colours of the nanogold and nanosilver hybrid PU K5000 paint base 

materials were studied with UV-Vis spectroscopy. Bulk gold exhibits an intense 

yellow colour, due to its absorption of light in the blue region of the UV-Vis 

spectrum as its interband transition takes place at around 470 nm. Bulk silver 

appears in shiny grey colour due to its interband transition occurring in the 

ultraviolet region at 320 nm.259,260 When the particle size is reduced to a size in 

the nanometer range the metals will no longer have their characteristic colour 

appearance. For example by tuning the particle size or shape of the gold 

nanoparticles, the colour can be varied from pink through violet to red.300 For 

gold nanoparticles the absorption is generally centred between 500–700 nm106 

and for silver nanoparticles between ca. 320-800 nm.260,301 These absorptions 

range over a broad wavelength as they are significantly influenced by not only 

the size and the shape of the nanoparticle but also on the dielectric constant of 

surrounding medium, presence of adsorbed species and the distance between 

neighbouring nanoparticles.252  

 

For the UV-Vis absorption measurements, the prepared nanogold and nanosilver 

hybrid PU K5000 paint base materials were dried on glass slides after seven 

days of reaction time, during which gold or silver ions were reduced to gold or 

silver nanoparticles and simultaneously stabilised by the PU K5000 polymer 

matrix. Once the hybrid PU K5000 paint base dried, it was peeled off and rinsed 

with distilled water. Figure 5.4 shows a picture of the nanogold and nanosilver 

hybrid polyurethane K5000 paint samples. At low gold concentrations, when 2.5 

ml or 1.25 ml of 400 or 800 mg kg-1 Au3+ solution was added to the PU K5000 

latex paint base (K5000-200Au-1:2 or K5000-200Au-1:4 sample), the nanogold 

hybrid PU K5000 paint was light violet in colour. When the gold concentration of 

the solution was increased to 1200 or 2400 mg kg-1 Au3+ to produce the 

K5000-600Au-1:2 or the K5000-600Au-1:4 sample respectively, the colour of 

both samples turned to purple. Increasing the gold concentration of the reaction 

solution further to 2000 or 4000 mg kg-1 Au3+ (K5000-600Au-1:2 or 
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K5000-600Au-1:4 sample) respectively resulted in a slight increased intensity of 

the purple colour. However, this change was hardly visible to the human eye.  

 

 

 

Figure 5.4: Photographs of dried nanogold and nanosilver hybrid PU K5000 

paint films: a) K5000-200Au-1:4, b) K5000-600Au-1:4, c) K5000-1000Au-1:4, 

d) K5000-200Au-1:2, e) K5000-600Au-1:2, f) K5000-1000Au-1:2, g) 

K5000-200Ag-1:4, h) K5000-600Ag-1:4, i) K5000-1000Ag-1:4, j) 

K5000-200Ag-1:2, k) K5000-600Ag-1:2 and l) K5000-1000Ag-1:2. 

j k l 

g h i 

d e f 

a b c 
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Similarly, with increasing initial silver concentrations, the colour of the resultant 

hybrid paint materials turned from dark orange to dark brown. By contrast, the 

untreated PU K5000 paint base dried to give a colourless, transparent film (not 

displayed in Figure 5.4).  

 

Figure 5.5 shows the UV-Vis absorption spectra for the nanogold hybrid PU 

K5000 paint materials prepared from 2.5 ml solutions containing different 

amounts of gold ranging from 800 to 4000 mg kg-1. As previously mentioned, 

small gold nanoparticles with a diameter of 10 - 20 nm exhibit the surface 

plasmon resonance absorption band at around 520 nm,108 these nanoparticles 

show the typical ruby red colour.302 However, with increasing particle sizes there 

is a shift in the absorption band to longer wavelengths, for example as the 

diameter of the spherical gold nanoparticles increases from 20 to 100 nm, the 

SPR band shifts from about 520 to 580 nm and the bandwidth of the peak also 

increases.108,303 The absorption peak for the violet coloured K5000-200Au-1:4 

sample (Figure 5.4a) is broadened and its maximum is centred at around 570 

nm (Figure 5.5), an unusual result. As this sample was prepared from the most 

diluted gold solution, smaller nanoparticles would be expected providing a blue-

shifted SPR absorption band in comparison to the K5000-600Au-1:4 sample with 

higher gold content. A possible reason for such SPR absorption of the sample is 

that during the reduction of gold ions to gold nanoparticles only a small number 

of nucleation centres were formed. These nucleation centres are sufficiently 

stabilised by the surrounding PU K5000 polymer matrix. As such, nanoparticle 

growth occurs through the reduction of gold ions adsorbed onto the nanocluster 

surface, resulting in the formation of larger particles, rather than forming a 

higher number of nucleation centres which grow into smaller gold particles. The 

low intensity of the absorption peak is consistent with the formation of only a 

small number of larger gold nanoparticles present in the sample. The sizes and 

shapes of the gold particles formed within the K5000-200Au-1:4 sample could 

not be ascertained by the TEM as the nanoparticle concentration was too low for 

them to be observed. Hence, the variation of particle sizes cannot be excluded. 

The UV-Vis analyses of the K5000-600Au-1:4 and K5000-1000Au-1:4 samples 

showed absorption peaks with their maxima located at ca. 540 nm. An increase 

in the intensities of the surface plasmon resonance bands was observed. Thus, it 

is assumed that the particle size of gold is not changing but more particles are 
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formed when increasing the Au3+ concentration of the solution added to the PU 

K5000 paint base. This results in no colour change but an increase in intensity of 

the purple colour shown in Figure 4.4b-c. Due to the similar shape and position 

of the peak observed for the analogue concentrated K5000-1000Au-1:2 sample 

(see below) the gold particles formed in the K5000-600Au-1:4 and 

K5000-1000Au-1:4 samples are likely to be spherical and 20 - 40 nm in 

diameter (Section 5.4).  

 

 

 

Figure 5.5: UV-Vis absorption spectra of the nanogold hybrid polyurethane 

K5000 latex paint base materials prepared from 1.25 ml solution with different 

amounts of Au3+ to 5 g of polyurethane K5000 paint base. 

 

 

The UV-Vis spectra for the dried nanogold hybrid PU K5000 paint materials that 

were prepared from a 2.5 ml solution containing different levels of gold ranging 

from 400 to 2000 mg kg-1 Au3+ are shown in Figure 5.6. Their respective colour 

can be seen in Figure 5.4d-f. In general, the peak shapes and positions are 

similar to their analogue samples which were prepared from 1.25 ml gold 
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solutions (Figure 5.5). The sample with the lowest concentration of gold, the 

K5000-200Au-1:2 sample, showed the broad SPR band with the absorption 

maxima at around 570 nm. As reported above, the unusual absorption band is 

ascribed to the formation of the fewer nuclei, which subsequently grew to larger 

gold particles resulting in the violet colouration of the sample. The very low 

intensity of the peak suggests the formation of only a small number of gold 

nanoparticles. The purple K5000-600Au-1:2 sample exhibits its absorption peak 

at ca. 540 nm, the identical position of its analogue concentrated 

K5000-600Au-1:4 sample, confirming the formation of gold nanoparticles. No 

visual difference between the dried samples could be noted by the eye. When 

increasing the gold concentration from 1200 to 2000 mg kg-1 Au3+ to produce the 

K5000-1000Au-1:2 sample, there is essentially no shift or broadening of the 

absorption peak, confirming the particle size does not change. Rather, more 

nanoparticles of the same size are formed which results in an increased intensity 

of the purple colour of the K5000-1000Au-1:2 sample (Figure 5.4e-f). TEM 

analysis of the K5000-1000Au-1:2 sample confirmed the presence of mostly 

spherical gold nanoparticles with a diameter ranging from ca. 20 – 40 nm 

(Section 5.4). 

 

 

 

 



208 

 

Figure 5.6: UV-Vis absorption spectra of the nanogold hybrid polyurethane 

K5000 latex paint base materials prepared from 2.5 ml solution with different 

amounts of Au3+ to 5 g of PU K5000 paint base. 

 

 

Figure 5.7 shows the UV-Vis absorption spectra for the dried nanosilver hybrid 

PU K5000 paint materials prepared from a 1.25 ml solution containing different 

levels of silver ranging from 800 to 4000 mg kg-1 Au3+. The respective colours of 

these samples are shown in Figure 5.4g-i. The absorption maxima of the 

K5000-200Ag-1:4, K5000-600Ag-1:4 and K5000-1000Ag-1:4 samples are 

centred at 424, 434 and 436 nm respectively. These surface plasmon absorption 

bands are characteristic for silver nanoparticles, confirming that silver ions were 

reduced to metallic nanoparticles. With their blue-shifted surface plasmon 

resonance band, silver nanoparticles in the K5000-1000Ag-1:4 sample are most 

likely to be slightly smaller than those in the analogue K5000-1000Ag-1:2 

sample, on average smaller than 50 nm (see below). Similarly sized spherical 

silver nanoparticles in aqueous solution protected by PVP polymer (50 nm) have 

been reported to exhibit their absorption maximum at 424 nm.304 As such, this 

absorption is centred at a somewhat lower wavelength. Since the SPR properties 

of nanoparticles depend on their size, shape and surrounding dielectric medium, 

the position of SPRB of silver nanoparticles embedded in the K5000-1000Ag-1:4 

or K5000-1000Ag-1:2 sample shifts towards higher wavelengths because the 
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refractive index of PU (ca. 1.5) is higher than that of water (1.33). The red shift 

upon increased added silver ion content in the PU K5000 paint samples implies 

nanoparticle growth either through the reduction of silver ions adsorbed onto the 

nanocluster surface or through coalescence/aggregation of the particles. As 

previously mentioned, larger nanoparticles scatter more light257 as a result of the 

larger optical cross sections and increasing ratio of scattering to total extinction 

with increasing size. Moreover, all three peaks are broadened, exhibiting a 

shoulder towards higher wavelengths. The broadening suggests inhomogeneity 

in particle size and shape. Furthermore, when nanoparticles are sufficiently close 

together, the conduction electrons near each particle surface become delocalized 

and are shared amongst adjacent nanoparticles. Thus, the models for isolated 

particles do not apply, and the optical absorption of the agglomerates is 

observed, resulting in a broadening and a shift to longer wavelengths of the 

peak.305  

 

 

 

Figure 5.7: UV-Vis absorption spectra of nanosilver hybrid polyurethane K5000 

latex paint base materials prepared from 1.25 ml solution with different 

amounts of Ag+ to 5 g of PU K5000 paint base. 
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There were no visible differences noticeable in the colouring between the 

nanosilver hybrid PU K5000 paint samples prepared from a 1.25 ml silver 

solution to their analogue concentrated samples prepared from a 2.5 ml silver 

solution (Figure 5.4j-l). However, the UV-Vis spectra of the K5000-200Ag-1:2, 

K5000-600Ag-1:2 and K5000-1000Ag-1:2 samples showed a slight red shift in 

absorption maxima as well as an increase in full width at half maximum for all 

three samples (Figure 5.8). The peaks were centred at 428, 436 and 448 nm. 

Both, the red shift and the broadening of the peaks suggest a broader size 

distribution as well as particle agglomeration. The silver solutions used for the 

preparation of these samples contained a greater quantity of water (whilst the 

polymer to Ag+ ratio was kept constant) in comparison to the samples prepared 

from the 1.25 ml silver solution. Thus, the concentration of polyurethane K5000 

paint base is decreased, resulting in a reduced ability of the polymer paint to 

stabilise the formation of silver nanoparticles in the polymer matrix. Generally, 

polymers sterically prevent direct contact between the nanoclusters by ligation 

of surface atoms of a nanocluster and also by physically occupying space around 

the nanoclusters. Some studies have shown that any H2O present during 

nanocluster formation influences their formation and stability.306 More water 

content in the polymer ensures less of a strong protective surface coverage; 

small nanocrystals have a strong affinity to coalescence and form either large 

particles or large ‘clumps’ of smaller nanoparticles. As a result of coalescence, 

the particles decrease their exposed surface area, resulting in a lower surface 

energy and therefore increasing their stability in the polyurethane matrix in the 

PU K5000 paint formulation. TEM analysis of the K5000-1000Ag-1:2 sample 

showed the presence of predominantly spherical silver or spherical-like 

nanoparticles ranging in size from 10 to 60 nm. However, some scarce rod like 

and triangular particles as well as particle agglomerates were observed 

(Section 5.4). 
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Figure 5.8: UV-Vis absorption spectra of nanosilver hybrid polyurethane K5000 

latex paint base materials prepared from 2.5 ml solution with different amounts 

of Ag+ to 5 g of PU K5000 paint base. 

 

 

5.3 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanogold and nanosilver hybrid polyurethane K5000 

latex paint base materials 

 

 

The morphologies of the dried hybrid polyurethane K5000 paint samples were 

analysed by scanning electron microscopy. Dried films of the PU K5000 paint 

were broken into two halves providing a clean cross sectional area for the SEM 

analyses. Additionally, in order to investigate the internal structure of the 

produced nanogold and nanosilver hybrid polyurethane K5000 materials, Cryo-

SEM analyses were undertaken allowing the pristine conditions of the samples to 

be preserved. The EDS analyses under cryogenic conditions proved to be 

difficult. The irradiation of a surface by the electron beam was only allowed to 

happen over a short period of time as the energy of the beam increased the 

temperature, causing the sample to melt. Analyses of the hybrid PU K5000 paint 

samples at higher magnifications were not possible. Only samples with higher 
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concentrations of gold and silver (K5000-1000Au-1:2 and K5000-1000Ag-1:2) 

were examined. EDS analyses of the samples provide information about the 

elemental composition of the analysed surface of a sample. X-ray peaks for 

elements such as calcium, magnesium, silicon and sodium are either due to 

impurities in the PU K5000 paint samples or from other contaminations in the 

laboratory. The X-ray peaks for aluminium and copper derive from sample 

holders and platinum peaks are due to the coating process of the samples. 

Hence, these peaks can be ignored. 

 

 

 

 

Figure 5.9: a-b) Cross sectional SEM micrographs in backscatter mode of the 

dry film nanogold hybrid polyurethane K5000 latex paint base sample 

(K5000-1000Au-1:2) at increasing magnification with c-d) the corresponding 

elemental analysis spectrum and gold EDS map. 

 

a b 

c 
d 
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Figure 5.9 presents cross sectional SEM micrographs of the K5000-1000Au-1:2 

sample. Organic matrices, for example PU, seem to suffer under high energy 

electron beam resulting in dark areas. An example for such electron beam 

damage can be seen in the micrographs shown in Figure 5.9a-b. The surface of 

the sample at low magnification appears to be smooth and similar to the surface 

cross section of the untreated PU K5000 paint base sample (not displayed). A 

further magnification of the K5000-1000Au-1:2 sample to 30000 times (Figure 

5.9b) shows a surface with a high coverage of gold nanoparticles. The intensity 

of the backscatter signal is directly related to the atomic number of an element, 

with heavier elements reflecting more signal than lighter elements and 

consequently appearing whiter, or brighter. When observed under backscatter 

conditions, the metal nanoparticles, which have higher atomic numbers in 

comparison to the main constituents of the PU K5000 polymer matrix, 

particularly C, O and N, should appear much brighter. The high concentrations of 

Au depicted in the EDS micrograph (Figure 5.9d) match with the white dots 

confirming that these are in fact nanoparticles of gold on the surface cross 

section of the nanogold hybrid PU K5000 paint sample. These gold nanoparticles 

are predominantly spherical with a diameter of less than 100 nm. However, 

occasional large agglomeration was observed. This is in agreement with the TEM 

micrographs (Section 5.4). The distribution of these gold nanoparticles is 

uniform across the hybrid polyurethane K5000 latex paint base, and the intense 

surface plasmon resonance band of these gold nanoparticles is responsible for 

the dark purple colouration of the hybrid polymer material (Figure 5.4f). There 

are also low concentrations of chlorine, as can be seen in the EDS spectrum 

(Figure 5.9c), likely a residue of [AuCl4-] or free Cl- ions. 
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Figure 5.10: Cryo-SEM micrograph in backscatter mode of a) an untreated 

polyurethane K5000 latex paint base with b) the corresponding EDS micrograph 

and c) EDS spectrum. 

 

 

Figure 5.10a-b illustrates the Cryo-SEM micrograph recorded in backscatter 

mode and the corresponding EDS micrograph of the untreated PU K5000 paint 

base sample comprised 5 g of the PU K5000 paint base and 2.5 ml H2O, whilst 

a b 

c 
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Figure 5.10c shows the EDS spectrum of the sample with C, N and O peaks. The 

sample exhibits two domains, the smooth and slightly darker areas (Figure 

5.10a) represent water whereas the lighter areas are the carbon-based 

polyurethane polymer itself which can be seen as a green colour on the EDS 

map (Figure 5.10b).  

 

Figure 5.11 offers a Cryo-SEM micrograph recorded in backscatter mode and the 

corresponding EDS micrographs of the K5000-1000Au-1:2 sample. The bright 

white spots which can be seen in the backscatter mode are gold nanoparticles. 

Of note is that where there are high concentrations of carbon, from the polymer, 

there are also bright white dots of gold nanoparticles. These are most apparent 

in the overlay micrograph (Figure 5.11d) as yellow-orange areas, implying that 

gold ions were reduced to metallic gold nanoparticles within the polymer domain 

and not within the adjacent aqueous solution of the PU K5000 paint base.  
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Figure 5.11: Cryo-SEM micrograph in backscatter mode of a) the 

K5000-1000Au-1:2 sample with b-c) the corresponding EDS micrographs and d) 

the EDS C and Au overlay map. 

 

 

A Cryo-SEM micrograph of the K5000-1000Au-1:2 sample at a higher 

magnification of 30000 times is shown in Figure 5.12a. The concentrated energy 

of the electron beam caused melting of the sample leading to some vibrational 

movements. Due to these vibrations EDS mapping of the surface and collection 

of crisp images at this magnification proved to be difficult. The spherical bright 

dots, which are smaller than 100 nm in diameter, were found to be relatively 

well distributed on the surface of the polyurethane K5000 latex paint base. The 

EDS spectral analysis confirmed that the particles are gold (Figure 5.12b).  

 

a b 

c d 
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Figure 5.12: Cryo-SEM micrograph in backscatter mode a) of a 

K5000-1000Au-1:2 sample and b) respective EDS spectrum at higher 

magnification. 

a 

b 



218 

The Cryo SEM micrograph recorded in secondary electron mode and the 

respective EDS micrographs of the nanosilver hybrid PU K5000 paint sample 

(K5000-1000Ag-1:2) are shown in Figure 5.13. Unfortunately, due to the sample 

instability under the electron beam, EDS mapping could not be collected for a 

significant period of time in order to obtain better resolved EDS micrographs. 

Additionally, obtaining clearer images of the sample at higher magnifications 

proved to be difficult. Similar to the analogue gold sample, silver nanoparticles 

were found to be confined to the polymer rather than simply dispersed 

throughout the liquid phase. This can be seen as yellow spots on the overlay 

EDS micrograph (Figure 5.13d). The silver nanoparticles found in the 

polyurethane K5000 polymer matrix where spherical and smaller than 100 nm in 

diameter. However, it was not possible to ascertain the exact size of silver 

nanoparticles by SEM. TEM analyses of the K5000-1000Ag-1:2 revealed that the 

silver nanoparticles were mostly spherical and 10 nm - 60 nm in diameter. 
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Figure 5.13: Cryo-SEM micrograph of a) a nanosilver hybrid PU K5000 paint 

sample with b-c) the corresponding EDS micrographs and d) the EDS Ag and C 

overlay map. 

 

 

5.4 Transmission electron microscopy and energy dispersive X-ray 

analysis of nanogold and nanosilver hybrid polyurethane K5000 

latex paint base materials 

 

 

TEM offers increased spatial resolution thus allowing for a more precise 

identification of the size and shape of gold and silver nanoparticles formed within 

the polyurethane K5000 paint matrix. Relative to the amount of the 

polyurethane K5000 paint, the metal nanoparticles are present in very low 

concentrations. To increase the chance of detecting these particles under TEM, 

only higher concentration samples containing 0.1 wt % of metal 

a b 

c d 
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(K5000-1000Au-1:2 and K5000-1000Ag-1:2 samples) were analysed. In order 

to characterise the nanoparticles, the samples were dissolved in high purity 

methanol, and a drop of resulting solution was placed on a copper grid. Once the 

solvent was evaporated the residual grid was carbon coated. All imaged particles 

were verified by EDS elemental analyses. EDS showed the existence of carbon, 

nitrogen and oxygen which are the main constituents of the polyurethane K5000 

paint polymer matrix, as well as a copper X-ray peak from the copper grid on 

which the sample was placed. The X-ray peaks for silicon should be ignored as 

this arises from laboratory contamination.  

 

Figure 5.14 offers TEM micrographs of the nanogold hybrid PU K5000 paint 

material which was prepared from 2.5 ml of 1000 mg kg-1 Au3+ solution in 5 g of 

PU K5000 paint base (K5000-1000Au-1:2). The presence of gold within the 

nanogold hybrid PU K5000 paint material was confirmed by a peak at 2.12 keV 

corresponding to the Au Mα line in EDS spectrum (Figure 5.14b). The analysis of 

the sample revealed the gold nanoparticles to be predominantly spherical in 

morphology and approximately 20-40 nm in diameter. Particle aggregates were 

also present, but in much lower concentrations (Figure 5.14d). This is in 

agreement with the UV-Vis analysis of the sample (Section 5.2), which 

suggested particle aggregation due to the broadening of the surface plasmon 

resonance absorption band. Due to equipment constraints, it was not possible to 

carry out TEM analysis of the analogue concentrated K5000-1000Au-1:4 sample. 

However, from comparisons of the colour of the sample and also the position of 

its surface plasmon resonance absorption peak (Section 5.2), it is likely that the 

gold nanoparticles present in the K5000-1000Au-1:4 sample are of the same 

morphology and size as the particles found in the K5000-1000Au-1:2 sample. 
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Figure 5.14: TEM micrographs of a,c,d) gold nanoparticles found in the 

K5000-1000Au-1:2 sample with b) the EDS spectrum of the particle shown in 

a). 

 

 

  

Figure 5.15: TEM and corresponding Au STEM micrographs of the 

K5000-1000Au-1:2 sample. 

a b 

c d 
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Scanning transmission electron microscopy (STEM) also confirmed the 

nanoparticles in the K5000-1000Au-1:2 sample to be gold. Figure 5.15a offers a 

TEM micrograph of the nanogold hybrid PU K5000 paint material, whereas the 

corresponding Au STEM map (Figure 5.15b) shows that where the nanoparticles 

are located, there are very high concentrations of gold (illustrated in red).  

 

Figure 5.16 shows TEM micrographs of the nanosilver hybrid PU K5000 paint 

sample which was prepared from 2.5 ml of 1000 mg kg-1 Ag+ solution in 5 g of 

PU K5000 paint base (K5000-1000Ag-1:2 sample). The silver in this hybrid 

material is present as a variety of nanoparticulate morphological forms. The 

most commonly found particles were spherical or spherical-like shapes including 

five-fold twinned particles in a broad size distribution from 10 to 60 nm in 

diameter. Additionally, alternate anisotropic geometric shapes were observed. 

The formation of anisotropic particles might be attributed to preferential addition 

of silver atoms at the twin sites, which are of high energy, leading to the 

formation of relatively short rods, truncated triangles, or to the geometric 

limitations imposed by the faceted character of the silver crystal.305 Particle 

aggregates were also found in the sample. This is consistent with the UV-Vis 

analysis result of the K5000-1000Ag-1:2 sample (Section 5.2). This UV-Vis 

spectrum shows a broad surface plasmon resonance absorption peak with a 

shoulder towards higher wavelengths, suggesting a non-uniform size and shape 

distribution of the particles as well as a presence of particle aggregation. The 

presence of silver within the nanosilver hybrid PU K5000 material was confirmed 

by a peak at 2.98 keV corresponding to the Ag Lα line in EDS elemental analysis 

(Figure 5.16b, d, f). Similar to the analogue K5000-1000Au-1:4 sample, TEM 

analysis of the K5000-1000Ag-1:4 sample could not be carried out due to limited 

equipment availability. However, it is likely that the silver nanoparticles present 

in this sample are slightly smaller in size. This assumption is inferred from the 

UV-Vis spectral analysis of the sample, which showed that the UV-Vis absorption 

peak was slightly blue-shifted (Section 5.2). Additional confirmation about the 

sizes of silver nanoparticles in both samples was achieved by analysing the XRD 

patterns and calculating the mean particle diameter by using the Scherrer 

equation (Section 2.3.4). 
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Figure 5.16: TEM micrographs of the K5000-1000Ag-1:2 sample: a, c) various 

shaped silver nanoparticles with b, d) their respective EDS spectra, e-f) 

nanosilver particle aggregates. 

 

 

a b 

c d 

e f 
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5.5 X-ray diffraction analysis of nanogold and nanosilver hybrid 

polyurethane K5000 latex paint base materials 

 

 

XRD characterisation was carried out in order to confirm the formation of 

crystalline gold and silver nanoparticles in the nanogold and nanosilver hybrid 

polyurethane K5000 latex paint base materials. In the XRD patterns, the Bragg 

peak positions and their intensities were compared with the standard 

PDF 04-001-2616 for gold and PDF 04-001-2617 for silver pattern.242 The mean 

particle size of the gold or silver nanoparticles was determined using Scherrer’s 

equation, which was described in Section 2.3.4. The calculated mean crystallite 

particle sizes and the parameters for X-ray diffraction patterns for the nanogold 

and nanosilver hybrid polyurethane K5000 samples which are presented in 

Figure 5.17 - Figure 5.20 can be seen in Table 5.2 and Table 5.3 respectively. 

 

Figure 5.17 and Figure 5.18 show XRD patterns of the nanogold hybrid PU 

K5000 paint materials prepared from 1.25 and 2.5 ml solution with different 

quantities of gold. For the samples containing 0.2 wt % of gold 

(K5000-200Au-1:4 and K5000-200Au-1:2), only diffraction peaks with low 

intensity are observed as the signal to noise ratio is very low. The discernible 

peak at 2θ = 38.20° and 38.90° respectively can be indexed to the (1 1 1) 

lattice plane of a cubic unit cell, which corresponds to the cubic structure of gold 

(PDF 04-001-2616).242 These XRD results confirm that Au3+ ions were reduced to 

Au0 and simultaneously stabilised by the PU K5000 polymer matrix. By 

increasing the concentration of the gold solutions employed to produce the 

K5000-600Au-1:4 sample and its more concentrated analogue K5000-600Au-1:2 

sample, the (1 1 1) peak for both samples increased in intensity. Calculations for 

the mean crystallite size were done using Scherrer’s equation and the results are 

given in Table 5.2. The mean crystallite size was found to be ca. 40 nm for both 

samples. The XRD patterns for samples containing the highest loading of gold 

(K5000-1000Au-1:4 and K5000-1000Au-1:2 samples) showed four peaks of 

Bragg reflections at 2θ = 38.07°, 44.27°, 64.55° and 77.50° for the 

K5000-1000Au-1:4 sample and at 2θ angles = 38.12°, 44.29°, 64.64° and 

77.61° for the K5000-600Au-1:2 sample. These peaks can be indexed to the 

(1 1 1), (2 0 0), (2 2 0) and (3 1 1) diffraction peaks based on the face centred 
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cubic structure of gold. Thus, XRD patterns confirm that the gold nanoparticles 

formed in both samples are crystalline in nature. The average sizes of the gold 

nanoparticles were estimated from the FWHM of the most intense respective 

(1 1 1) peaks. The mean crystallite size was estimated to be 43 nm for the 

K5000-1000Au-1:4 sample and 48 nm for the K5000-1000Au-1:2 sample. The 

results are consistent with those obtained in the UV-Vis analyses results (Section 

5.2) for both samples exhibiting a similar purple colour. The UV-Vis spectra show 

that the surface plasmon resonance absorption bands for both samples are 

located at the same position suggesting that similar particle sizes are present in 

the K5000 1000Au-1:4 and K5000-1000Au-1:2 sample respectively.  

 

 

Table 5.2: Parameters for X-ray diffraction patterns of the nanogold hybrid 

K5000 samples shown in Figure 5.17 -Figure 5.18. 

Hybrid material Peak position 

[º 2θ] 

FWHM 

 [º 2θ] 

Mean crystal diameter 

[nm]  

K5000-1000Au-1:4 38.07 0.39 43 

K5000-1000Au-1:2 38.21 0.35 48 

K5000-600Au-1:4 38.07 0.39 40 

K5000-600Au-1:2 38.51 0.42 40 
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Figure 5.17: XRD patterns of the nanogold hybrid PU K5000 latex paint base 

materials prepared from 1.25 ml solution with different quantities of gold. 

 

 

 

Figure 5.18: XRD patterns of the nanogold hybrid PU K5000 latex paint base 

materials prepared from 2.5 ml solution with different quantities of gold. 
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The XRD patterns of the nanosilver hybrid PU K5000 polymer samples prepared 

with different quantities of silver in 1.25 and 2.5 ml solution are shown in Figure 

5.19 and Figure 5.20. All samples indicate the presence of silver. Similar to their 

analogue concentrated gold samples, the K5000-200Ag-1:4 and 

K5000-200Ag-1:2 samples exhibit only low X-ray intensity diffraction peaks at 

around 2θ = 38°. The scarcely discernible Bragg diffraction peak present in both 

samples is identified as the (1 1 1) lattice plane of a cubic unit cell, 

corresponding to the cubic structure of silver (PDF 04-001-2617)242. As the Ag+ 

concentration was increased to produce the K5000-600Ag-1:4 or 

K5000-600Ag-1:2 samples, the (1 1 1) peak in both samples became more 

pronounced. The results are consistent with the colour change of these samples 

from yellow to brown (Figure 5.1). The peak positions (2θ = 38.30º for the 

K5000-600Ag-1:4 sample and 2θ = 38.17° for the K5000-600Ag-1:2 sample) 

and their FWHM have been employed in Scherrer’s equation to calculate the 

mean crystallite size of the silver particles. For the K5000-600Ag-1:4 sample the 

particle size was estimated to be 54 nm whereas for the K5000-600Ag-1:2 

sample the particle size was found to be approximately 62 nm (Table 5.3). As 

the silver concentration was further increased to produce the K5000-1000Ag-1:4 

or the K5000-1000Ag-1:2 sample, the XRD patterns of both samples showed the 

characteristic number of Bragg diffraction peaks for silver in the face centred 

cubic phase unequivocally indicating that the particles present in the 

K5000-1000Ag-1:4 and K5000-1000Ag-1:2 samples are composed of silver. In 

both samples three additional broad bands are observed at angle 2θ = 44.44°, 

64.58° and 77.53° (K5000-1000Ag-1:4 sample) or 44.33°, 64.52° and 77.46° 

(K5000-1000Ag-1:2 sample) which correspond to the (2 0 0), (2 2 0), and 

(3 1 1) planes of silver, matching the database pattern well242. The peaks at 

2θ = 38.30° or 2θ = 38.17° were used to calculate the crystallite size of the 

formed silver nanoparticles as these are primarily dominated by the (1 1 1) 

facets. The size of the silver nanoparticles was found to be ca. 58 nm for the 

K5000-1000Ag-1:4 sample and 67 nm for the K5000-1000Ag-1:2 sample (Table 

5.3). This agrees well with TEM analysis results of the K5000-1000Ag-1:2 

sample, where the spherical particle diameter was measured to be between 10 

nm and 60 nm. 

 

 



228 

Table 5.3: Parameters for X-ray diffraction patterns of the nanosilver hybrid PU 

K5000 samples shown in Figure 5.19 -Figure 5.20. 

Hybrid material Peak position 

[º 2θ] 

FWHM 

 [º 2θ] 

Mean crystal diameter 

[nm]  

K5000-1000Ag-1:4 38.30 0.29 58 

K5000-1000Ag-1:2 38.12 0.25 67 

K5000-600Ag-1:4 38.16 0.31 54 

K5000-600Ag-1:2 38.17 0.27 62 

 

 

 

Figure 5.19: XRD patterns of the nanosilver hybrid polyurethane K5000 latex 

paint base materials prepared from 1.25 ml solution with different quantities of 

silver. 
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Figure 5.20: XRD patterns of the nanosilver hybrid polyurethane K5000 latex 

paint base materials prepared from 2.5 ml solution with different quantities of 

silver. 

 

 

It is significant to note that the mean crystallite size of the silver nanoparticles is 

not only increasing with increased concentration of silver solutions, but also with 

the increased water content of those silver solutions. As previously mentioned, 

when preparing the hybrid PU K5000 materials from 2.5 ml of metal ion solution 

instead of 1.5 ml (whilst keeping the polymer to metal ion ratio constant), the 

concentraton of the PU K5000 polymer is diluted and therefore decreased. The 

protective surface coverage of these silver particles, which is provided by the 

polymer, is reduced, leading to further growth and agglomeration of the 

particles. This also matches the results acquired from the UV-Vis analyses 

(Section 5.2) of the hybrid PU K5000 paint samples. Nanosilver hybrid samples 

with higher H2O content underwent a red shift of their surface plasmon 

resonance absorption bands, suggesting particle growth.  
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5.6 X-ray photoelectron spectroscopy analysis of nanogold and 

nanosilver hybrid polyurethane K5000 latex paint base materials 

 

 

As described in x, K5000 is a polyurethane latex paint base polymer with a 

polyether/polyester/acrylic composite backbone. Polyurethane possesses 

nitrogen-containing carbamate groups. An XPS study of the hybrid PU K5000 

paint materials was carried out in order to understand how these carbamate 

groups were involved in the reduction of Au3+ or Ag0 to their respective metallic 

nanoparticles and their subsequent binding to the PU K5000 polymer matrix. As 

representatives for nanogold and nanosilver hybrid PU K5000 paint materials, 

the K5000-1000Au-1:2 and K5000-1000Ag-1:2 samples were chosen for the 

XPS analyses due to the high concentration of formed metal nanoparticles at the 

analysed hybrid polymer surfaces. During the preparation of both samples, the 

reaction vials containing the samples were heated for 24 hours (50 °C for gold 

and 90 °C for silver). As reference samples, two samples each containing 5 g of 

PU K5000 paint base were heated at 50 and 90 °C respectively for 24 hours. By 

increasing the reaction temperature from room temperature to 50 °C and 90 °C 

respectively, it was hoped to increase the amount of gold or silver ions reduced 

to their respective metal nanoparticles. Thus, the probability of detecting any 

changes between the spectra of the reference PU K5000 paint samples and their 

respective hybrid polymers will be increased, as the formation of an increased 

amount of nanoparticles would require the oxidation of an increased percentage 

of functional groups of the PU K5000 polymer matrix. An initial survey scan from 

a binding energy of 600 to 0 eV for all PU K5000 latex paint polymer samples 

showed the presence of carbon, nitrogen and oxygen groups on the PU K5000 

paint polymer surface, together with gold for the nanogold hybrid PU K5000 

polymers and silver for the nanosilver hybrid PU K5000 polymers. High 

resolution scans were carried out across the peaks for each of the elements in 

the nanogold and nanosilver hybrid PU K5000 polymer materials, and also for 

carbon, nitrogen and oxygen in the reference PU K5000 paint samples. X-ray 

peaks for calcium and silicon should be ignored due to contamination of the 

samples. 
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5.6.1 X-ray photoelectron spectroscopy analysis of nanogold hybrid 

polyurethane K5000 latex paint base materials - proposed 

mechanism for gold nanoparticles formation and their binding to 

the PU K5000 matrix 

 

 

Figure 5.21 presents wide XPS scans for the reference PU K5000 paint used as a 

sample and the nanogold hybrid PU K5000 paint sample (K5000-1000Au-1:2) 

with their characteristic elements (C, N, O and Au), confirming the presence of 

gold in the nanogold hybrid PU K5000 sample.  

 

 

  

Figure 5.21: Survey XPS scans of a) the reference PU K5000 paint sample and 

b) the K5000-1000Au-1:2 sample which was heated to 50 °C during its 

preparation. 

 

 

Figure 5.22 offers high resolution C 1s, N 1s and O 1s XPS spectra collected from 

both samples, the reference PU K5000 paint and the nanogold hybrid PU K5000 

paint sample. A complete list of peak assignments is given in Table 5.4. The 

examination of the deconvoluted, high resolution C 1s spectrum of the reference 

PU K5000 paint sample revealed the presence of four components corresponding 

to aliphatic C–C or C-H (285 eV), C–N (285.6 eV), C–O (286.1 eV) and C=O 

(289.2 eV) bonds in the polymer chain.264 The high resolution N 1s spectrum 

was deconvoluted into one peak at 400.0 eV which is attributable to the nitrogen 

a b 
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of the carbamate group in the polymer matrix of the reference PU K5000 

sample. The high resolution O 1s XPS spectrum can be deconvoluted into two 

peaks with their maxima at ca. 531.8 eV and 533.5 eV. These peaks were 

assigned to the carbonyl oxygen (C=O) and the oxygen singly bound to the 

carbon (C-O) in the PU K5000 matrix.  

 

 

Table 5.4: XPS assignments for dry films of the reference PU K5000 paint 

sample and the K5000-1000Au-1:2 sample. 

  Reference K5000 Nanogold hybrid K5000 

 Binding energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 285.00 (1.10) 285.00 (1.10) 

 C-N 285.63 (0.81) 285.56 (0.81) 

 C-O 286.14 (1.80) 286.17 (1.96) 

 O-C=O 289.16 (1.21) 289.11 (1.06) 

N 1s N-H 400.00 (1.74) 399.97 (1.67) 

 N-Au - 398.36 (1.01) 

 NOx  407.69 (1.24) 

O 1s O=C  531.84 (1.64) 531.86 (1.64) 

 O-C  533.48 (1.92) 533.53 (1.72) 

Au 4f Au0 7/2 - 83.57 (1.24) 

 Au+/Au3+ 7/2 - 84.75 (2.48) 

 Au0 5/2 - 87.33 (1.24) 

 Au+/Au3+ 5/2 - 88.42 (2.48) 
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Figure 5.22: Deconvoluted high resolution XPS spectra for the reference PU 

K5000 paint sample: a) C 1s peaks, c) N 1s peak and e) O 1s peaks; for the 

K5000-1000Au-1:2 sample: b) C 1s peaks, d) N 1s peaks and f) O 1s peaks. 

Experimental data points are shown by circles. 

 

 

a b 

c d 

e f 

NOx N-Au 
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The analysis of the high resolution C 1s XPS spectrum acquired for the nanogold 

hybrid PU K5000 sample did not show any significant changes in relation to the 

reference sample. The deconvolution of the C 1s spectrum using a four-peak 

fitting routine revealed four carbon species attributable to an aliphatic carbon 

bound to adjacent carbon or hydrogen (285 eV), a carbon singly bound to 

nitrogen environment (285.6 eV), carbon singly bound to oxygen (286.2 eV) and 

a carbonyl carbon derived from the PU K5000 matrix (289.1 eV). The values for 

their binding energies and the respective FWHM can be seen in Table 5.4. 

 

As mentioned in Chapter 3, nitrogen in the carbamate group of PU shows an 

affinity for gold. As such, the PU K5000 latex paint base polymer offers an 

opportunity to attract and reduce gold ions to gold nanoparticles, stabilise the 

particles and subsequently bind them to the PU K5000 polymer matrix. The gold 

nitrogen interaction was first detected in the high resolution N 1s scan obtained 

for the nanogold hybrid PU K5000 paint sample. Although the binding energy of 

the peak for nitrogen in the carbamate group of the matrix did not change 

(~ 400.0 eV), Figure 5.22d shows that the treatment of 5 g of the PU K5000 

paint base with 2.5 ml of a 1000 mg kg-1 Au3+ solution for 24 hours at 50 °C 

resulted in the formation of two new nitrogen components. This confirms that N-

containing moieties of the PU K5000 matrix were involved in the reduction of 

gold ions to gold nanoparticles. The peak at ca. 398.4 eV is consistent with the 

formation of a N-Au bond21,24,265,266 confirming the chemical affinity of gold for 

nitrogen. The interaction between the electrons on the nitrogen with gold to 

form an Au-N bond decreases the electron density on the nitrogen atom leading 

to the peak formation at lower binding energies. The K5000-1000Au-1:2 sample 

only contains 0.1 wt % of gold, hence, the changes of the nitrogen are expected 

to be minimal, as most of the nitrogen is associated with the remaining polymer 

and only 3.5 % area of nitrogen species form bonds to gold. Due to the extra 

columbic interaction between the photo-electron and the ion core, atoms of a 

higher positive oxidation state exhibit a higher binding energy.307 Therefore, the 

third N 1s spectral component which is located at 407.7 eV suggests the 

presence of a new nitrogen moiety of a higher oxidation state (NOx). This 

oxidation of the nitrogen in the carbamate groups of the PU K5000 paint base is 

facilitated by the reduction of the Au3+ ions to Au0. Similar binding energies were 

reported for nitrate compounds.275,308,309 
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Figure 5.22f shows that the envelope of the O 1s spectrum for the nanogold 

hybrid PU K5000 material has two maxima. The spectrum was deconvoluted into 

two components attributable to C-O and C=O bonds with the maxima centred at 

531.9 eV and 533.5 eV respectively. When comparing the spectrum to that of 

the reference PU K5000 sample, it is evident that the chemical environment of 

oxygen does not change to any significant extent. This is to be expected, as it 

should be noted that because of the low concentration of employed gold solution 

in the production of these nanogold hybrid PU K5000 materials (approximately 

0.1 wt %), following the reduction of Au3+ to Au0, a large proportion of the 

polymer will still remain unoxidised.  

 

 

 

Figure 5.23: Deconvoluted high resolution Au 4f XPS spectrum for the nanogold 

hybrid PU K5000 paint sample (K5000-1000Au-1:2). 

 

 

The high resolution Au 4f XPS spectra of the purple coloured nanogold hybrid PU 

K5000 sample (prepared from 2.5 ml of a 1000 mg kg-1 gold solution, at 50 °C 

for 24 hours) is shown in Figure 5.23. The deconvolution of the line shape 

resulted in two doublets, indicating two different species of gold present in the 

sample. Both doublets with an intensity ratio of 4:3 show a spin orbital 

separation of 3.67 eV matching the spacing of the bulk metal.275 The doublet 



236 

peaks centred at approximately 83.6 eV (4f7/2) and 87.3 eV (4f5/2), are 

attributable to Au0 according to the literature275,310,311 and provide further 

confirmation that gold ions are reduced to metallic gold during the reaction of 

the PU K5000 matrix with gold solution at 50 °C for 24 hours. These values for 

the binding energies show a slight shift towards lower binding energies in 

comparison to those of bulk gold.275 The negative shift is assumed to be due to 

the nitrogen of the carbamate functional groups bound to the gold resulting in 

greater negative charge at the gold surface, which in turn leads to greater 

screening of the gold. Similar shifts have been reported in the literature.21,24 A 

second set of broader doublet peaks found at around 84.8 eV (4f7/2) and 88.42 

eV (4f5/2), indicates the existence of a higher oxidation state of gold. It is 

considered that the gold nanoparticles possess Au0 cores which are surrounded 

by Au+ ions. Thus, these latter peaks were assigned to partially reduced Au+ that 

are bound to the PU K5000 matrix via Au-N bonds through the nitrogen-

containing carbamate group of the polyurethane K5000 matrix. However, they 

may also represent partially reduced Au+ on the surface of the nanoparticles, 

which do not undergo any bond to the polymer matrix. Due to the broadness of 

the peaks, it is not possible to exclude the fact that they may mask an additional 

set of doublet peaks attributable to unreduced Au3+ in form of [AuCl4-] ions. 

These ions may accumulate on the surface of the gold nanoparticles or exist 

freely in the PU K5000 polymer matrix. SEM analysis of the sample showed the 

presence of chlorine (Section 5.3).  

 

From the XPS results discussed the following is proposed for the mechanisms of 

the formation of gold nanoparticles within the polyurethane K5000 polymer 

matrix. When adding the aqueous gold solution to the PU K5000 paint base 

substrate, the dissociated H+ and [AuCl4]- diffuse through the PU K5000 

polymer. Hydrogen ions protonate the nitrogen-containing groups. The resulting 

positively charged nitrogen groups electrostatically attract Cl- ions and 

destabilise the [AuCl4]- complex, leading to the reduction of Au3+ to Au+ by the 

carbamate functional groups of polyurethane. Subsequently the resultant Au+ 

ions associate with the polymer matrix via Au-N bonds, through the carbamate 

group of polyurethane. Additional Au3+ ions will be reduced to Au0 

simultaneously coupled with a further oxidation reaction of carbamate groups 

which gives rise to a formation of a new NOx species. Owing to the aurophilicity 
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effect21 it is likely that the Au+ in the Au-N bonds would be attracted to each 

other resulting in the formation of nanoclusters on which the additional Au3+ may 

accumulate and be further reduced to Au0, forming gold nanoparticles within the 

PU K5000 polymer. It is not necessary for the nitrogen-containing carbamate 

groups to be in direct contact with the gold nanoclusters because the reaction is 

carried out in ionic solution. Thus, electrons released from the carbamate 

oxidation can be transported to the adjacent gold nanoclusters, providing the 

required electrons for the Au3+ to Au0 reduction. Since these gold nanoparticles 

are bound to the polymer matrix via Au-N bonds, the surface energy of the 

nanoparticles will be decreased, making the nanoparticles stable against the 

aggregation. 

 

Since only a low concentration of gold solution is employed (up to 0.1 wt % of 

gold loading in the PU K5000 polymer) in the production of these nanogold 

hybrid PU K5000 materials, most of the nitrogen is associated with the bulk 

polymer. 

 

 

5.6.2 X-ray photoelectron spectroscopy analysis of nanosilver hybrid 

polyurethane K5000 latex paint base materials – proposed 

mechanism for silver nanoparticles formation and their binding to 

the PU K5000 matrix 

 

 

The survey XPS scans for the reference PU K5000 paint sample and the 

nanosilver hybrid PU K5000 paint sample (K5000-1000Ag-1:2) with their 

respective characteristic elements (C, N, O and Ag) are presented in Figure 5.24.  



238 

 

Figure 5.24: Survey XPS scans of the surfaces for a) the reference PU K5000 

paint and b) the K5000-1000Ag-1:2 sample. 

 

 

The high resolution C 1s, N 1s and O 1s XPS spectra acquired for the reference 

PU K5000 paint and the nanosilver hybrid PU K5000 paint sample are shown in 

Figure 5.25. Table 5.5 presents a complete list of peak assignments. 

 

 

Table 5.5: XPS assignments for dry films of the reference PU K5000 paint 

sample and K5000-1000Ag-1:2 sample. 

  Reference K5000 Nanosilver hybrid K5000 

  Binding energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 285.00 (0.98) 285.00 (1.00) 

 C-N 285.51 (0.79) 285.53 (0.78) 

 C-O 286.52 (1.29) 286.53 (1.28) 

 O-C=O 288.96 (0.87) 288.97 (0.87) 

    

N 1s N-H 

N-Ag 

399.82 (1.53) 

- 

399.83 (1.64) 

397.77 (1.00) 

 NOx - 407.11 (1.25) 

O 1s O=C  

O-C 

532.03 (1.19) 

533.48 (1.31) 

532.06 (1.22) 

533.49 (1.30) 

Ag 3d Ag0 5/2 - 368.10 (0.98) 

 Ag0 
3/2 - 374.10 (0.98) 

a b 
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The comparison of the deconvoluted high resolution C 1s spectra for the 

reference PU K5000 sample and the K5000-1000Ag-1:2 sample revealed that 

the chemical environment of C does not change upon the reaction of the PU 

K5000 polymer matrix with silver. The XPS C 1s spectra for both samples were 

deconvoluted into three peaks (Figure 5.25a-b). As for the polyurethane K5000 

samples described in Section 5.6.1, the peaks located at 285.0 eV are associated 

with aliphatic C–C or C–H carbons in the PU K5000 polymer matrix, whilst the 

peaks centred at ca. 285.5 eV and 286.5 eV were attributed to the carbon 

nitrogen (C–N) and the carbon oxygen bond (C-O) respectively. The peaks at 

higher binding energies found at around 289.0 eV for both samples correspond 

to the carbonyl carbon (O=C-N) of polyurethane chains in the PU K5000 matrix. 

All values for binding energies are a good match with the values found for PU in 

the literature.264,312 

 

Similar to gold, silver is known to have an affinity for nitrogen.241,313 As 

expected, the interaction between nitrogen and silver was observed by 

comparing the high resolution N 1s spectra obtained for the reference PU K5000 

sample and the nanosilver hybrid PU K5000 paint sample (Figure 5.25c-d). After 

the reaction of the PU K5000 matrix with silver (2.5 ml of a 1000 mg kg-1 Ag+ 

solution at 90°C for 24 hours) two new peaks emerged in addition to the 

unchanged peak located at 399.8 eV which was attributed to the nitrogen in the 

carbamate group of PU.264 The peak at lower binding energies, centred at ca. 

397.8 eV, is consistent with the formation of a N-Ag bond314. Again, since the 

nanosilver hybrid PU K5000 materials only contain 0.1 wt % silver, very minor 

changes to the N 1s spectrum are expected, thus only 3.3 % by area of nitrogen 

is in the form of bonds to silver. A further indication for the involvement of 

nitrogen-containing moieties of the PU K5000 matrix in the reduction of Ag+ to 

Ag0 was noted by the formation of a peak at around 407.1 eV. The peak was 

assigned to an oxidised species of nitrogen (NOx). As previously reported, a peak 

with similar binding energy value was observed for the nanogold hybrid PU 

K5000 materials (Section 5.6.1), confirming that the reduction of gold ions to 

metallic gold was facilitated by the oxidation of carbamate groups in the 

polymer. 
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Figure 5.25: Deconvoluted high resolution XPS spectra for the reference PU 

K5000 paint sample: a) C 1s peaks, c) N 1s peak and e) O 1s peaks; for the 

K5000-1000Ag-1:2 sample: b) C 1s peaks, d) N 1s peaks and f) O 1s peaks. 

Experimental data points are shown by circles. 
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Similar to carbon, a comparison of the high resolution O 1s spectra for the 

reference PU K5000 sample and the K5000-1000Ag-1:2 sample showed that 

there was no significant change in the oxygen environment upon reaction of the 

PU K5000 matrix with silver (Figure 4.25e-f). Considering the small amount of 

silver used to prepare the sample (0.1 wt % Ag) and there is no chemical 

interaction between the silver and oxygen in the PU polymer, it is expected that 

the change of the oxygen environment is negligible and the oxygen environment 

is that of the polymer itself. The XPS O 1s spectra were deconvoluted into two 

oxygen components found at 532.0 eV and 533.5 eV for both samples. The 

latter peak is consistent with the oxygen singly bound to a carbon (C-O) and the 

peak at lower binding energies is attributable to a carboxyl oxygen in the 

carbamate group of the PU K5000 polymer matrix.264  

 

 

 

Figure 5.26: Deconvoluted high resolution Ag 3d XPS spectrum for the 

nanosilver hybrid PU K5000 paint sample (K5000-1000Ag-1:2). 

 

 

The high resolution Ag 3d spectrum of the K5000-1000Ag-1:2 sample is shown 

in Figure 5.26. It was difficult to achieve a good signal to noise ratio in this 

spectrum because of the low level of silver. The spectrum was deconvoluted into 

one set of doublet peaks with an intensity ratio of 3:2 and the spin orbit splitting 
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of 6 eV. The peaks are positioned around 368.1 (3d5/2) and 374.1 (3d3/2) eV. 

These peaks are attributable to metallic silver 275 which further confirm that silver 

ions were reduced to metallic silver when the PU K5000 paint was exposed to 

AgNO3 solution at 90 °C for 24 hours. Owing to the affinity that silver has for 

nitrogen, it was hoped that another set of doublet peaks would be detected, 

showing an association of silver with the nitrogen atoms of the PU K5000 matrix. 

However, due to the low intensity and high amount of background noise in the 

Ag 3d spectrum, it was not possible to ascertain the nature of the bonding 

existing between silver and the PU K5000 polymer matrix using the Ag 3d XPS 

spectrum.  

 

In light of the XPS results, the following is suggested for the mechanism of the 

formation of silver nanoparticles within the polyurethane K5000 polymer matrix. 

On addition of an aqueous AgNO3 solution to the PU K5000 substrate, silver ions 

diffuse through the polymer matrix. Owing to it’s affinity for nitrogen, silver ions 

undergo an interaction with nitrogen-containing carbamate groups in PU 

resulting in an Ag-N bond. Adjacent carbamate functional groups act as a 

reducing agent, providing electrons for reduction of Ag+ to Ag0. Coupled 

oxidation reaction of the nitrogen groups leads to the formation of oxidised NOx 

species. The PU K5000 polymer matrix ensures the stabilisation of formed silver 

nanoparticles.  

 

 

5.7 Infrared spectroscopy analysis of nanogold and nanosilver hybrid 

polyurethane K5000 latex paint base materials 

 
 

Infrared spectroscopy analyses were carried out in an attempt to provide 

additional clarification on the bonding nature between the gold and silver 

nanoparticles and the polymer matrix of the polyurethane K5000 paint base. It 

was hoped that the comparisons of the IR spectra of the nanogold and 

nanosilver hybrid PU K5000 paint materials with the untreated PU K5000 paint 

would provide further information on the nature of the interaction between the 

nanoparticles and the substrate and confirm the role of carbamate groups in this 

bonding. The K5000-1000Au-1:2 and K5000-1000Ag-1:2 samples were chosen 
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as representatives of the nanogold and nanosilver hybrid K5000 materials. These 

samples have higher concentration of metal nanoparticles at the hybrid polymer 

surfaces, increasing the probability of detecting any changes between the IR 

spectra of the substrate and its respective hybrid polymers, as the formation of 

an increased amount of nanoparticles would require the oxidation of an 

increased percentage of functional groups of the polymer matrix. The IR spectra 

of the untreated PU K5000, K5000-1000Au-1:2 and K5000-1000Ag-1:2 samples 

are given in Figure 5.27. From the figure it can be observed that there are no 

distinguishable differences in the IR spectra of the untreated K5000 paint sample 

and the hybrid PU K5000 materials upon reaction with gold or silver; all three 

samples show identical peaks which are characteristic for PU (Section 3.9). 

Hence, the IR spectroscopy did not provide any further information on the 

bonding between the gold and silver nanoparticles and the polymer matrix of the 

PU K5000 paint base. This is probably attributable to the fact that IR 

spectroscopy is a bulk analysis method on such samples, thus it is not 

particularly sensitive to the small quantity of nanoparticles on the surface of the 

PU K5000 paint polymer relative to the bulk quantity of paint present 

 

Figure 5.27: FT-IR spectra of the dry untreated PU K5000 paint and the 

nanogold and nanosilver hybrid PU K5000 paint materials. 
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5.8 Leaching tests on nanogold and nanosilver hybrid polyurethane 

K5000 latex paint base materials 

 

 

The list of consumer products containing metal nanoparticles is growing despite 

the fact that little is known about the long term health or environmental impacts 

of these nanoparticles. Thus, it is essential to limit their leaching from consumer 

products. As such, quantitative AA analyses of the leaching solutions were 

carried out in order to determine the amount of gold and silver leached from the 

nanogold and nanosilver hybrid PU K5000 materials. The K5000-1000Au-1:2 and 

K5000-1000Ag-1:2 samples were chosen as representatives of the hybrid PU 

K5000 materials. The leaching solutions of these samples were prepared as 

described in Section 2.2.5. Briefly, this was achieved by drying the produced 

nanogold or nanosilver hybrid PU K5000 paint samples on microscope slides, 

rinsing the resultant dry films with distilled water and placing them in 30 ml of 

distilled water. Subsequently the samples were agitated for seven days at room 

temperature and the residual leaching solution was analysed by means of AA 

spectroscopy for any gold or silver content respectively. AA spectroscopy studies 

revealed that a small percentage value of gold (0.15 wt % of total gold loading 

in paint) and silver (0.07 wt % of total silver loading in paint) was leached from 

the hybrid PU K5000 materials (Table 5.6). These amounts complement the 

results obtained from XPS analyses of the materials which suggest that most of 

the gold and silver nanoparticles are chemically bound to the polymer matrix via 

Au-N and Ag-N bonds respectively (Section 5.6). The detected amounts of gold 

or silver arise from the free gold or silver ions, which are trapped in the PU 

K5000 matrix due to an uncompleted reduction reaction.  
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Table 5.6: Gold or silver leached from nanogold and nanosilver hybrid PU K5000 

materials, leaching tests were carried out at room temperature for seven days.  

Sample Metal 

species 

Amount of 

metal in 

polymer 

[wt %] 

Amount of 

leached 

metal [µg] 

Amount of 

leached metal 

(% total metal 

loading) 

K5000-1000Au-1:2 gold 0.1 7.5 0.15 

K5000-1000Ag-1:2 silver 0.1 3.6 0.07 

 

 

5.9 Antimicrobial and antifouling properties of nanogold and 

nanosilver hybrid polyurethane K5000 latex paint base materials 

 

 

Bacterial infection remains a leading cause of death in both the Western and 

developing world.315 Most notable is that due to the growing occurrence of 

antibiotic resistance by common microbes, the treatment of microbial infections 

has become more challenging. Also traditional biocides, which are components of 

antifouling paints, have revealed limited efficacy against biofouling in aquatic 

and terrestrial environments. Hence, in order to ascertain the potential to create 

more effective antimicrobial and antifouling surfaces which inhibit the growth of 

biofilms and thus preventing the spread of microbial infections in healthcare, 

commercial and domestic facilities, or the attachment of undesired marine life to 

boat hulls, nanogold and nanosilver hybrid PU K5000 paint base materials were 

tested for their antimicrobial and antifouling activity.  

 

For reasons of time constraints, it was only possible to test the 

K5000-1000Au-1:2 and the K5000-1000Ag-1:2 samples against the gram 

negative Escherichia coli bacteria (strain W3110). The test was performed via 

the method described in Section 2.3.8.1. In summary, the untreated PU K5000 

reference sample, the K5000-1000Au-1:2 and the K5000-1000Ag-1:2 samples 

were spread out on a microscope slide and dried at room temperature. The dry 

films of the PU K5000 paint base samples were then peeled off and rinsed with 

distilled H2O. Dry paint samples were cut into small pieces and dispersed in 

aqueous standard phosphate-buffered saline (PBS) suspension containing E. coli 
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bacteria to provide contact between the hybrid materials and bacteria. On the 

basis of the relative difference in total colony-forming units (CFU) between the 

nanogold and nanosilver hybrid PU K5000 samples and their reference samples, 

it was possible to determine the change in antimicrobial activity after two and 

four days of contact with the bacteria. CFU is a measure of viable bacterial 

numbers. 

 

Figure 5.28 and Figure 5.29 show the percentages of remaining CFU after 

contact with the untreated PU K5000, the K5000-1000Au-1:2 and 

K5000-1000Ag-1:2 samples after two and four days of exposure. After two days 

of testing the CFU for the K5000-1000Au-1:2 and K5000-1000Ag-1:2 samples 

was ca. 82.1 % and 0.02 % respectively. It was expected for the sample 

containing silver nanoparticles to be more effective than its analogue sample 

containing gold nanoparticles because silver has a greater toxicity than gold 

towards microorganisms. The results obtained after four days of testing revealed 

a 30.7 % reduction in bacteria count after the contact with the 

K5000-1000Au-1:2 sample. The value of CFU for the tested K5000-1000Ag-1:2 

sample showed the bacteria count decreased by 99.99% which demonstrates 

the excellent antimicrobial properties of this nanosilver hybrid PU K5000 paint. 

 

Figure 5.28: Percentage cell survival relative to untreated PU K5000 paint as 

control after two days of bacteria being in contact with the control, gold and 

silver hybrid PU K5000 materials. (Note the vertical axis is a log scale.) 
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Figure 5.29: Percentage cell survival relative to untreated PU K5000 paint as 

control after four days of bacteria being in contact with the control, gold and 

silver hybrid PU K5000 materials. (Note the vertical axis is a log scale.) 

 

 

As previously reported (Section 3.11), gold and silver nanoparticles possess a 

broad spectrum of antimicrobial effectiveness.192,203,204,290,291 Although, gold and 

silver nanoparticles exhibit a strong binding affinity to the electron-donating 

groups in the bacterial cells, resulting in their antimicrobial activity192, the 

mechanism of antimicrobial effects is still not entirely understood (Section 3.11).  

 

The metallic nanoparticles present in the hybrid PU K5000 paint materials are 

considered to be chemically bound to the polymer matrix (Sections 5.6.1 and 

5.6.2). Consequently, the gold or silver nanoparticles will not be released into 

the pathogenic environment where they are able to interact physically with the 

E. coli bacteria. It has been reported that gold nanoparticles which were 

chemically attached to wool were classified as bacteriostatic; these wool 

composites resisted Staphylococcus aureus growth21. As such, the nanogold 

hybrid PU K5000 paint materials provide surfaces that kill microbes on contact, 

i.e., they do not release gold nanoparticles or gold ions into the bacteria and 

they are not exhausted. 
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It is important to note that the antimicrobial properties of the nanogold hybrid 

PU K5000 paint materials could be due to the presence of partially reduced Au+ 

ions on the surface of the gold nanoparticles (Section 5.6.1). Hence, an 

electrostatic attraction between the positively charged gold ions and negatively 

charged bacterial cell walls, which results in an association between the gold 

nanoparticles of the K5000-1000Au-1:2 sample and the bacteria, should not be 

excluded. This association can facilitate electron transfer between the bacteria 

and the gold resulting in an interference of bacteria’s cell function. Additionally, 

it should be noted that the antibacterial activity of the nanogold hybrid PU K5000 

materials could be related to the formation of free reactive oxygen species from 

the surface of gold nanoparticles. Previously this also was suggested as a 

possible mechanism for the antimicrobial properties of hybrid nanogold PU 

materials (Section 3.11). Metal ions are able to catalyse the production of 

reactive oxygen species292 which subsequently oxidise the molecular structure of 

bacteria, attack membrane lipids and lead to a breakdown of membrane 

function, damage bacterial DNA or mitochondria.207,316 The direct contact 

between the gold nanoparticles within the PU K5000 matrix and the bacteria is 

not needed to induce harm to the microorganism since the reactive oxygen 

species diffuse through the polymer matrix to the surrounding medium.  

 

Regarding the nanosilver hybrid PU K5000 materials, the comparison between 

the antimicrobial activities of the K5000-1000Au-1:2 and K5000-1000Ag-1:2 

samples, (Figure 5.28 - Figure 5.29) revealed an almost complete reduction in 

the percentage of surviving E. coli cells for the sample containing silver 

nanoparticles. The nanogold hybrid PU K5000 materials were less effective. 

Despite many recent publications on the antimicrobial activity of silver particles 

and their polymer composites, which is believed to be attributable to 

morphological and structural changes found in the bacterial cells, so far the 

exact mechanism remains unclear.  

 

Researchers attribute the toxicity of silver nanoparticles to dissolved silver.216,217 

Unlike gold, silver nanoparticles are sensitive to oxidation.215,317 Partial oxidation 

of silver nanoparticles leads to dissolution Ag0 and the slow release of silver ions 

to an aqueous or moist environment.216,217 
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The required conditions for the dissolution of silver nanoparticles are provided 

when the K5000-1000Ag-1:2 sample is added to the suspension containing the 

E. coli bacteria. The contact between the silver nanoparticles and water 

molecules within the hybrid PU K5000 sample results in the slight release of 

mobile silver ions which subsequently migrate through the polymer matrix into 

the surrounding aqueous media. The possible consequences of the contacts 

between the bacteria and the released silver ions have been mentioned 

previously (Section 3.11). However, the brief explanation of the antimicrobial 

mechanism of silver ions provided is that: metal ions can damage or cross the 

cell membrane, where they bond to the −SH groups of cellular enzymes.318 The 

resulting serious decrease of enzymatic activity of the microorganism causes a 

metabolism change and inhibits its growth leading to the cell’s death.  

 

An additional factor that may give rise to the antimicrobial activity of the tested 

K5000-1000Ag-1:2 sample is the electrostatic interaction between the 

negatively charged bacterial cell walls and the positively charged silver ions. The 

attachment of Ag+ to the bacteria results in cell death via the rupturing of the 

cell membrane.296 

 

Antifouling effects of the nanogold and nanosilver hybrid PU K5000 materials 

were investigated. The K5000-1000Au-1:2, K5000-1000Au-1:4, 

K5000-1000Ag-1:2 and K5000-1000Ag-1:4 samples were sent to Polymer Group 

Ltd in Auckland. The hybrid PU K5000 materials together with the untreated 

K5000 paint were used to paint surfaces of panels (dimensions) which 

subsequently were set in the sea for approximately six months. After the testing 

period the surfaces containing the nanogold and nanosilver hybrid PU K5000 

materials were compared to the surface which was painted with the untreated 

PU K5000 paint base. Figure 5.30 presents photographs of such surfaces after 

the panels were taken out of the sea water. In contrast to the panel containing 

the untreated PU K5000 paint (Figure 5.30a), the panels painted with the 

nanogold and nanosilver PU K5000 samples are free of shell and macro fouling 

(Figure 5.30b-e). The minimal growth on these panels is micro alga that is 

exhibiting some adhesion to the coating but they are free of the usual 

diatomaceous slime. 
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Figure 5.30: Photographs of panel surfaces painted with a) the untreated PU 

K5000 paint, b) the K5000-1000Au-1:2, c) the K5000-1000Au-1:4, d) the 

K5000-1000Ag-1:2 and e) the K5000-1000Ag-1:4 samples after being 

submerged in seawater for six months.  

 

 

In light of the preliminary results obtained for the antimicrobial and antifouling 

tests of the nanogold and nanosilver hybrid PU K5000 materials, the following 

can be concluded. Nanogold and nanosilver hybrid PU K5000 materials were 

successfully tested against Escherichia coli bacteria, in particular the hybrid 

materials containing silver nanoparticles showed almost a complete reduction of 

the bacteria after four days of testing. Furthermore, these materials effectively 

prevented the growth of marine organisms on treated surfaces during the six 

a 

b c d e 
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months of the antifouling tests. Hence, these materials have a great potential as 

antimicrobial and antifouling materials for applications in the health and 

biomedical device industry, food industry, personal hygiene industry and marine 

coating industry. 

 

 

5.10 Conclusions 

 

 

Nanogold and nanosilver hybrid PU K5000 polymer materials were successfully 

produced. For the redox reaction the carbamate functional groups of the K5000 

material were used with the aim to reduce Au3+ or Ag+ to Au0 or Ag0 respectively. 

Simultaneously formed gold or silver nanoparticles were chemically bound to the 

polymer matrix of the PU K5000 paint. The polymer matrix provided stabilisation 

for these gold and silver nanoparticles. 

 

For the synthesis of the hybrid materials the ideal temperature was determined 

to be room temperature. The hybrid PU K5000 materials were produced at two 

dilutions, one set of samples used a 2.5 ml Au3+ / Ag+ solution and the second 

was produced from a 1.25 ml metal ion solution whilst the polymer to metal ion 

ratio for these samples was kept constant. The reaction parameters, such as 

time and the concentration of the utilised metal ion solution influenced the 

colour of the resultant nanogold and nanosilver hybrid PU K5000 materials. 

However, there was no visual difference between the samples produced with the 

two dilution factors. 

 

The nanogold and nanosilver hybrid polyurethane K5000 materials were shown 

to exhibit the characteristic UV-Vis absorption bands for gold and silver 

nanoparticles in the visible region of light. It was demonstrated that the SPR 

absorption bands of the nanogold hybrid PU K5000 samples prepared from a 2.5 

ml Au3+ solution were comparable to those obtained for the samples prepared 

from a 1.25 ml Au3+ solution. The nanosilver hybrid polyurethane K5000 samples 

prepared from the more diluted solution showed a red shift of the respective 
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absorption peaks as well as an increase in FWHM suggesting a broader particle 

size distribution and particle agglomeration. 

 

Electron microscopy analyses of the nanogold and nanosilver hybrid PU K5000 

materials demonstrated that the metal nanoparticles were formed and uniformly 

distributed in the PU K5000 polymer phase and not the water phase. The gold 

nanoparticles in the samples containing 0.1 wt % of gold are predominantly 

spherical with a diameter of 20 - 40 nm. The silver nanoparticles of the analogue 

nanosilver hybrid PU K5000 samples were mostly spherical and 10 – 60 nm in 

diameter.  

 

The XRD studies of these materials confirmed the presence of crystalline gold / 

silver within the PU K5000 materials. It was found that the mean crystallite size 

of the formed metal nanoparticles increased with increased concentration of 

employed ion solutions, and with the increased water content of those solutions. 

 

XPS studies suggest the gold and silver nanoparticles bind to the PU K5000 

matrix through the covalent Au-N and Ag-N bonds respectively in the nitrogen-

containing carbamate functional groups.  

 

The proposed mechanism of formation of the nanogold and nanosilver hybrid PU 

K5000 materials involves the reduction of Au3+ or Ag+ to nanoparticulate Au0 or 

Ag0 by the carbamate functional groups of polyurethane in the PU K5000 matrix 

coupled with the oxidation reaction of these functional groups. It is proposed 

that the addition of a gold ion solution to the PU K5000 latex paint base leads to 

a reduction of Au3+ to Au+ by the carbamate entities of polyurethane. The 

resultant Au+ ions bind to the polymer matrix via Au-N bonds. Additional Au3+ 

ions are reduced to Au0, coupled by a further oxidation reaction of the 

carbamate groups resulting in a formation of the NOx species. Au-N bonds are 

attracted to each other resulting in the formation of nanoclusters on which the 

additional Au3+ ions accumulate and are further reduced to Au0, resulting in gold 

nanoparticles within the polymer matrix. For the nanosilver hybrid PU K5000 

materials it is proposed that due to the affinity for nitrogen, silver ions 

simultaneously undergo an interaction with nitrogen atoms in the carbamate 

groups of the PU K5000 matrix resulting in an Ag-N bond. Adjacent carbamate 
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functional groups act as a reducing agent, providing electrons for the reduction 

of Ag+ to Ag0. Coupled oxidation reaction of the nitrogen groups leads to the 

formation of oxidised NOx species. The polyurethane K5000 polymer matrix 

ensures the stabilisation of formed gold and silver nanoparticles in these 

materials. The leaching tests confirmed that the gold and silver nanoparticles 

were chemically bound to the polymer matrix. It was shown that only a very 

small amount of gold and silver leached out of the hybrid PU K5000 latex paint 

base materials after seven days of leaching. These amounts are believed to be 

due to residual unreduced gold or silver ions which are trapped in the polymer 

matrix.  

 

The production of the nanogold and nanosilver hybrid PU K5000 materials has 

been scaled up to produce larger amounts of the paints which were successfully 

tested for their antifouling properties at The Polymer Group Ltd in Auckland. 

Additionally, it was found that the nanogold and nanosilver hybrid PU K5000 

paint materials are antimicrobial against gram negative E. coli bacteria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



254 

6 Nanosilver halide hybrid materials: silver halide formed in 

the presence of polyurethane, nylon 6,6 and polyurethane 

K5000 latex paint base materials 

 

 

Nanosilver halide hybrid PU, nylon 6,6 and polyurethane K5000 latex paint base 

materials were produced using the experimental procedure outlined in Sections 

2.2.3.1 and 2.2.3.2. The methodology for solid substrates comprised the 

immersing of PU (1.5 g) or nylon 6,6 (0.5 g) as sheets in in 10 mL of 0.1 M NaX 

(X= Cl, I, Br) solution, then agitating the reaction vials on a shaking table for 12 

hours. It was hoped that the polymer sheets would absorb the Cl-, I- or Br- ions. 

Following the soaking process, the doped samples were then rinsed with distilled 

water and allowed to air dry. The doped plastics were then added to a silver 

nitrate solution (10 mL, 200 mg kg-1 Ag+) and agitated for 12 hours. For the 

synthesis of nanosilver halide hybrid polyurethane K5000 latex paint base 

materials, the procedure was slightly altered. 1 mL of 0.5 molar NaX solution 

was added to 5 g of liquid polyurethane Kamthane 5000 paint base. The mixture 

was agitated for two hours on a shaking table. Subsequently, the reaction was 

completed by the drop-wise addition of 1.5 mL of a 3333 mg kg-1 Ag+ solution 

under vigorous stirring and agitating the samples for further two hours on a 

shaking table. All reaction steps were carried out at room temperature. As 

mentioned in Section 1.4.5 silver halide particles are not stable under light 

irradiation. Thus, before the addition of the silver nitrate solution the reaction 

vials were wrapped in aluminium foil. As a result of their photosensitive 

properties, upon exposure to light, the AgX particles in matrices of the resultant 

hybrid polymer materials were converted to Ag/AgX particles. Samples 

containing silver chloride and silver bromide particles changed their colour from 

white to purple. Hybrid materials containing silver iodide nanoparticles remained 

yellow under direct light exposure.  

 

The sample names for the nanosilver halide hybrid polymer materials and their 

respective reaction parameters are summarised in Table 6.1.  
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Table 6.1: The sample names and their respective reaction parameters for the 

silver hybrid PU, nylon 6,6 and polyurethane K5000 latex paint base materials. 

All samples were prepared at room temperature. 

 Names of hybrid materials 
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Substrate 

species 
PU PU PU 

Nylon 

6,6 

Nylon 

6,6 

Nylon 

6,6 
K5000 K5000 K5000 

Substrate 

mass [g] 
1.5 1.5 1.5 0.5 0.5 0.5 5 5 5 

NaX NaCl NaBr NaI NaCl NaBr NaI NaCl NaBr NaI 

Conc. of 

NaX sol. 

[M] 

0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 

Vol. of NaX 

sol. [mL] 
10 10 10 10 10 10 1 1 1 

Soaking 

time [hr] 
12 12 12 12 12 12 2 2 2 

AgNO3 sol. 

conc. 

[mg kg-1] 

200 200 200 200 200 200 3333 3333 3333 

Vol. of 

AgNO3 sol. 

[mL] 

10 10 10 10 10 10 1.5 1.5 1.5 

wt % of 

AgX in 

polymer 

0.1 0.1 0.1 0.4 0.4 0.4 0.1 0.1 0.1 

Soaking 

time [hr] 
12 12 12 12 12 12 2 2 2 
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6.1 UV Visible spectroscopy - colour of nanosilver halide hybrid 

polymer materials 

 

 

Silver chloride and silver bromide have wide band gaps (Table 6.2). Therefore, 

absorption of light with a wavelength larger than 380 nm is not possible. By 

contrast, silver iodide’s direct band of ca. 3 eV allows the material to absorb light 

in the visible region giving the material its yellow appearance. Figure 6.1, Figure 

6.2 and Figure 6.3 show photographs of the produced nanosilver halide hybrid 

PU, nylon 6,6 and PU K5000 materials. Silver chloride and silver bromide hybrid 

materials are white in colour. Although not clearly visible on the photographs, 

the silver iodide hybrid polymer materials appeared to have a slight yellow 

colouration. These white and yellow colours were indicative of AgX particles 

being formed within the polymer substrates. Owing to their photosensitive 

properties, silver halides are not stable under UV visible light radiation (Section 

1.4.5). With exposure to light, silver halide particles undergo a self-

photosensitisation process resulting in partial reduction of Ag+ to Ag0 

nanodomains or nanoparticles at the surface of the silver halide particles and 

releasing small amounts of halides as their respective halogen gas.168,319 As a 

result of the process the AgX nanoparticles within the polymer matrix will be 

converted in situ to Ag/AgX nanoparticles. The self-photosensitisation process 

has an effect on the colours of the hybrid polymer materials. Once exposed to 

light, the hybrid materials containing silver chloride (PU-200AgCl, Ny-200AgCl, 

K5000-1000AgCl samples) or silver bromide nanoparticles (PU-200AgBr, 

Ny-200AgBr, K5000-1000AgBr samples) changed from being white to purple 

(Figure 6.1 - Figure 6.3). The purple colour is due to the broad visible spectral 

absorption of these materials (which will be discussed further in following 

sections). The purple colour development of the nanosilver chloride hybrid PU, 

nylon 6,6 and polyurethane K5000 materials could be observed within the first 

30 minutes of direct light exposure. In the following four days of natural light 

radiation the hybrid PU, nylon 6,6 and polyurethane K5000 latex paint base 

materials turned from purple to brown indicating an increased formation of silver 

nanoparticles. The brown colour is consistent with the formation of silver 

nanoparticles and was previously reported for nanosilver hybrid PU, nylon 6,6 

and PU K5000 materials (Chapters 3 and 4). The hybrid polymer materials 
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containing silver bromide nanoparticles needed at least one day of direct light in 

order to change their colour from white to purple. However, the colour of the 

hybrid materials containing silver iodide nanoparticles (PU-200AgI, Ny-200AgI, 

K5000-1000AgI samples) remained unchanged upon exposure to light. Kelly and 

Tate have reported on similar colours of wool composites containing silver 

chloride, silver bromide and silver iodide nanoparticles.22,180  

 

 

Table 6.2: Band gap values for silver halides.320 

Silver halide Indirect band gap [eV] Direct band gap [eV] 

AgCl 3.3 5.2 

AgBr 2.7 4.3 

AgI 2.0 3.0 

 

 

 

Figure 6.1: Photographs of a) the untreated polyurethane sheet and nanosilver 

hybrid polyurethane sheets; b) the PU-200AgCl sample before (top) and after 

exposure to light for four days (bottom); c) the PU-200AgBr sample before 

(top) and after exposure to light for four days (bottom). 

a b c 
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Figure 6.2: Photographs of a) the untreated nylon 6,6 sheet and nanosilver 

hybrid nylon 6,6 sheets; b) the Ny-200AgCl sample before (top) and after 

exposure to light for four days (bottom); c) the Ny-200AgBr sample before 

(top) and after exposure to light for four days (bottom); d) the Ny-200AgI 

sample before (top) and after exposure to light for four days (bottom). 

a b c d 
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Figure 6.3: Photographs of dried films of a) the untreated PU K5000 sample; b) 

the K5000-1000AgCl sample before (left) and after exposure to light for four 

days (right); c) the K5000-1000AgBr sample before (left) and after exposure to 

light for four days (right); d) the K5000-1000AgI sample before (left) and after 

exposure to light for four days (right). The photographs were taken on a black 

background in order to improve the image contrast.  

 

 

UV–Vis spectroscopy was utilised in order to demonstrate the presence of silver 

halide nanoparticles in the hybrid polymer materials as well as the formation of 

Ag/AgX nanoparticles as the result of the self-photosensitisation process. Due to 

their uniform thickness, nanosilver halide hybrid nylon 6,6 sheets appeared to be 

most suitable for the UV-Vis absorbance measurements. Thus, these materials 

a 

b 

c 

d 
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were chosen as representatives for the nanosilver halide hybrid polymer 

materials. The UV-Vis absorption spectra obtained for the nanosilver halide nylon 

6,6 materials before and after light exposure are shown in Figure 6.4, Figure 6.5 

and Figure 6.6. The spectra are typical for the semi-conductor silver halides. 

Figure 6.4 shows the absorption spectra for the Ny-200AgCl sample. The sample 

before being exposed to direct light shows the typical UV-Vis absorption between 

230 – 300 nm corresponding to the direct band gap of AgCl.321–323 After being 

exposed to light the Ny-200AgCl sample shows absorption of light not only in the 

UV region with a discernible shoulder peak at ca. 380 nm but also in the visible 

region. AgCl exhibits direct and indirect band gap of 5.15 eV (~ 240 nm) and 

3.25 eV (~ 380 nm), respectively (Table 6.2). As such, absorption of light with a 

wavelength greater than 380 nm is not possible by AgCl alone. This visible light 

absorption is due to the formation of Ag nanodomains on the surface of the AgCl 

particles. As described in the introduction, these Ag nanodomains develop 

through the photochemical reaction where the Ag+ in the AgCl lattice is partially 

reduced to Ag0 (Section 1.4.5). This photographic process is described through 

the mechanism first proposed by Gurney and Mott:157 

 

 

hv + AgX  Ag+ + e- + ½ X2 

 

Ag+ + e-  Ag0 

 

 

It is believed that on the nanoscale, once sufficient Ag0 particles are formed, the 

resultant Ag/AgX nanoparticles become photostable under further irradiation, 

preventing a total reduction of Ag+ to Ag0.173–175 As mentioned in the 

introduction, noble metal nanoparticles, such as silver, display unique optical 

properties in contrast to their bulk forms (Section 1.4). The colour reflected by 

the metal nanoparticles is due to strong visible absorptions known as Surface 

Plasmon Resonances (SPR).92 As such, the broad absorption peak in the visible 

region for the Ny-200AgCl sample with the maximum at around 470 nm is 

consistent with the SPR absorption band of Ag nanoparticles. Surface plasmon 

resonance absorption bands of spherical Ag nanoparticles in aqueous solutions 
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can vary in position ranging from 375 to 405 nm.97 The red-shift of the 

absorption band to 470 nm and the reflected purple-brown colour of the Ny-

200AgCl sample after exposure to light (Figure 6.2) is due to the dielectric 

constant of the AgCl surface (n=2) on which the Ag nanodomains are formed.  

 

 

 

Figure 6.4: UV-Vis spectra of nanosilver chloride hybrid nylon 6,6 materials 

before and after light exposure. 

 

 

The UV-Vis absorption spectra for the Ny-200AgBr sample before and after 

exposure to light are presented in Figure 6.5. The respective colours of the 

hybrid nylon 6,6 materials are shown in Figure 6.2. The spectrum for the sample 

before being exposed to light shows that the wavelengths in the range between 

240 and 350 nm were absorbed, indicating the presence of the AgBr particles. 

These values are well in agreement with the absorption maxima for AgBr 

reported in the literature.324–326 Similar to the Ny-200AgCl sample, the spectrum 

recorded for the Ny-200AgBr sample after exposure to light shows an absorption 

in both the ultraviolet and visible region. Silver bromide undergoes a self-

sensation process for the same reasons discussed previously. However, the 
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absorption in the visible spectral region seems to be broader and less intense 

than that of the Ny-200AgCl sample. This can be due to a lower number of silver 

nanodomains formed on the AgBr particles, reflecting a broader size and shape 

distribution.  

 

 

 

Figure 6.5: UV-Vis spectra of nanosilver bromide hybrid nylon 6,6 materials 

before and after light exposure. 

 

 

As mentioned previously, the nanosilver iodide hybrid polymer materials are 

yellow in colour and this colour remains despite light exposure (Figure 6.2). This 

is noticeable when comparing the UV-Vis absorbance spectra of the Ny-200AgI 

sample before and after light exposure (Figure 6.6). Both spectra feature the 

typical absorbance for AgI confirming its presence.327,328 A peak with the 

absorption maximum at around 420 nm is responsible for the yellow colouration 

of the nanosilver iodide hybrid polymer materials. However, there was no 

obvious difference in the UV-Vis spectra of the Ny-200AgI sample after being the 

exposed to light. The reason for the observed phenomenon could be due to the 

low susceptibility of AgI to photolysis when compared to AgCl and AgBr, thus 

only a small amount of AgI is converted to Ag/AgI.329 Although the mechanism 
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of the photolysis is the same as for AgCl and AgBr, the rate is much slower.330 

This is believed to be due to the direct smaller band gap of AgI (Table 5.2) which 

causes a shorter lifetime of the excited state.331 In AgCl and AgBr the indirect 

band gaps result in a long lifetime of the excited state before the recombination 

of a photoelectron and an electron hole. This promotes the likelihood of a 

combination of a photoelectron with an interstitial Ag+ ion resulting in the 

formation of Ag0. The shorter lifetime of the excited state of AgI is inconvenient 

for the combination of an interstitial Ag+ ion with a photoelectron in order to 

form this Ag0. Moreover, the Ag–Ag binding energy between interstitial Ag+ ions 

and lattice cations is smaller as compared to the Ag–I bonding energy.330 

 

 

 

Figure 6.6: UV-Vis spectra of nanosilver iodide hybrid nylon 6,6 materials 

before and after light exposure. 
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6.2 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanosilver halide polymer materials 

 

 

SEM was used as a characterisation method to investigate the morphologies of 

the nanosilver halide hybrid polymer materials (PU, nylon 6,6 and polyurethane 

K5000 paint), to confirm the presence of the silver halide nanoparticles within 

the polymer substrates and to study the distribution of these nanoparticles. To 

observe the interior of the hybrid polymer materials, cross sections of the PU 

and nylon 6,6 samples were made by freezing the materials in liquid nitrogen 

and subsequently breaking them into two fractions. Furthermore, the internal 

structure of the nanosilver halide hybrid PU K5000 materials as frozen latexes 

was studied by Cryo-SEM analyses. The EDS analyses of the samples provided 

information about the elemental composition of the analysed surface of a 

sample. X-ray peaks for elements such as calcium, magnesium, nickel, 

phosphorus and silicon are either due to impurities in the paint samples or from 

other contaminations in the laboratory. Due to pre-treatment of the substrates 

with NaX (Cl, Br and I) X-ray peaks for sodium are common. Peaks for 

aluminium arise from sample holders and platinum peaks are due to the coating 

process of the samples. Hence, these X-ray peaks can be ignored. Some EDS 

mapping images show dark areas. These areas should be ignored. The sample 

preparation for the SEM analyses created an uneven polymer surface. The dark 

areas represent the hollows in the surface, thus, the EDS detector was not able 

to observe these areas. 

 

 

6.2.1 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanosilver halide hybrid polyurethane materials 

 

 

Figure 6.7a presents the SEM micrograph of a surface cross section of the 

PU-200AgCl sample recorded in the backscatter mode. The sample was exposed 

to light prior to SEM analysis. At a magnification of 200 times, a bright line about 

20 µm from the edge into the PU sheet interior was observed, which depicted 
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the presence of the AgCl particles (white dots). In backscatter mode, the 

contrast between the metal and the polymer is due to the higher atomic weight 

of silver chloride and the lower atomic weight of the polymer atoms (C, H, O, N). 

The presence of silver chloride was confirmed by the EDS analysis (Figure 6.7e). 

The corresponding images of the EDS mapping analysis show that where the 

particles, which form the bright line, are located, there are very high 

concentrations of silver and chlorine (Figure 6.7b-c). Their overlay image, shown 

in Figure 6.7d, further confirms that there has been silver halide nanoparticle 

formation within the PU matrix during the synthesis. The concentration of the 

formed silver chloride particles in the PU matrix decreases quickly with the 

increasing distance from the edge towards the centre of the substrate.  

 

The mechanism for the formation of the silver halide particles within the polymer 

matrix is believed to be one of precipitation. The porous polymer matrix provides 

the stabilisation of the particles and the control of their size. The doped 

substrates contain halide ions distributed throughout the polymer matrix. The 

subsequent washing process removes the detached halide ions from the surface 

of the polymer leaving only halide ions beneath the surface and in the bulk of 

the substrate. Once introduced to a silver nitrate solution the Ag+ ions will 

migrate through the porous polymer surface resulting in diffusion of the Ag+ ions 

through the polymer matrix. Simultaneously, the mobile halide ions migrate 

towards the Ag+ ions within the polymer matrix. Once the Ag+ and X- (X= Cl, Br, 

I) encounter each other, the silver halide nanoparticles precipitate in the 

polymer matrix, which are insoluble in aqueous environments. A higher number 

of silver halide particles are formed just below the surface of the polymer 

compared to the centre of the polymer sheet. 
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Figure 6.7: SEM micrograph in backscatter mode of the surface cross section of 

the PU-200AgCl sample at a magnification of 200 times with b-c) the 

corresponding EDS micrographs, d) the EDS Ag and Cl overlay map and e) the 

corresponding elemental analysis spectrum. The sample surface is located to 

the right side of the red arrow.  

a b 

c d 

e 

Edge 
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Figure 6.8: SEM micrographs a-b) of the surface cross section of the 

PU-200AgCl sample (secondary electron and backscatter mode) at a 

magnification of 23000 times with c-d) the corresponding EDS micrographs and 

e) the corresponding elemental analysis spectrum. 

 

 

The magnification of 23000 times has revealed that the particles within the 

bright line observed in Figure 6.7a are cubic, a very common shape for silver 

a b 

c d 

e 
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halide particles (Figure 6.8a-b).331 EDS analysis confirmed that the particles 

were indeed silver chloride (Figure 6.8e). At this magnification, the particles 

observed were generally between 100 and 1000 nm in size, suggesting that the 

PU matrix is not able to provide a sufficient stabilisation of the silver halide 

particles. It is important to note, that the surfaces of these particles were 

covered by smaller sized nanoparticles of higher atomic weight. The micrographs 

presenting the EDS mapping analysis show that the nanoparticles on the surface 

are silver (Figure 6.8c). This confirms that the produced nanosilver halide hybrid 

PU materials are sensitive to photolysis under exposure to light, resulting in a 

formation of nanosized silver particles or domains on the surface of the AgCl 

particles through a photolytic reaction described above. It is also not possible to 

exclude the fact that the electron beam of the SEM promotes further photolysis 

of the AgCl to Ag0 nanoparticles. A closer look at one of those AgCl cubes, which 

is shown in Figure 6.9, reveals that the formed silver nanoparticles are not 

uniform in size and shape. Due to the surface plasmon resonance phenomenon 

(Section 1.4.2) a typical colour for spherical silver nanoparticles with an uniform 

size dispersed in water is yellow. The resonance wavelength not only depends on 

the size and the shape of the nanoparticle but also on the dielectric constant of 

the surrounding medium.252 Because the Ag nanoparticles on the surface of the 

AgCl particles in the PU-200AgCl sample show a variety of particle sizes and 

shapes and the dielectric constant of AgCl is higher than water, the colour visible 

to the human eye of these materials is brown (Figure 6.1). At a further 

magnification of 55000 times, the AgCl particles smaller than 100 nm could be 

seen, however, it is difficult to determine the precise size by SEM (Figure 6.10a). 

EDS spectral analysis verified that the nanoparticles were silver chloride (Figure 

6.10b).  

 

Figure 6.11a-b presents the SEM micrographs of a surface cross section of the 

PU-200AgBr sample recorded in the secondary electron and backscatter mode. 

The edge which separates the interior area from the surface of the sheet is 

depicted by a red arrow. At a magnification of 2000 times, several bright lines 

which are formed just below the surface were observed. 
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Figure 6.9: SEM micrograph in backscatter mode of the surface cross section of 

the PU-200AgCl sample at a magnification of 50000 times with b) the 

respective EDS elemental analysis spectrum. 

 

 

 

Figure 6.10: SEM micrograph in backscatter mode of the surface cross section 

of the PU-200AgCl sample at a magnification of 55000 times with b) the 

respective EDS elemental analysis spectrum. 

 

 

The total thickness of the formed lines is ca. 20 µm, starting below the surface 

and becoming brighter, more concentrated towards the centre of the sheet. EDS 

spectral analysis verified that the particles which form these lines were AgBr 

(Figure 6.11d). The images taken at a magnification of 30000 times have 

revealed that the AgBr particles have irregular shapes and sizes, ranging from 

less than 100 nm to ca. two hundred nanometres (Figure 6.11c). Similar to for 

the PU-200AgCl sample, the PU matrix is not able to provide a sufficient 

a b 

a b 
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stabilisation for the silver bromide particles. It was not possible to determine the 

precise size of the AgBr nanoparticles by SEM. Analyses at higher magnifications 

caused damage to the samples due to the instability of the organic matrices such 

as PU and nylon 6,6 under higher energy SEM beam. As reported above, the 

mechanism of the particle formation within the PU substrate is believed to be 

one of precipitation. 

 

 

 

 

Figure 6.11: SEM micrographs a-b) of the surface cross section of the 

PU-200AgBr sample (secondary electron and backscatter mode). Above the red 

arrow is the interior, below the red arrow is the surface of the PU sheet and the 

red represents the edge of the sheet), c) at an increasing magnification of 

30000 times with d) the respective EDS elemental analysis spectrum. 

a b 

c d 

Edge Edge 
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Figure 6.12: SEM micrograph in backscatter mode of the surface cross section 

of the PU-200AgI sample at a magnification of 3300 times with b-c) the 

corresponding EDS micrographs, d) the EDS Ag and Cl overlay map and e) the 

corresponding elemental analysis spectrum. 

a b 

c d 

e 
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Figure 6.13: SEM micrograph in backscatter mode of the surface cross section 

of the PU-200AgI sample at a magnification of 12000 times with b) the 

respective EDS elemental analysis spectrum. 

 

 

The nanosilver iodide hybrid PU materials differ slightly from the nanosilver 

chloride and bromide hybrid PU materials. The SEM micrograph of the cross 

sectioned PU-200AgI sample is shown in Figure 6.12a. The EDS elemental 

mapping analysis of the sample shows high concentration of silver and iodine on 

the surface of the PU sheet (Figure 6.12b-c). There was good overlap (Figure 

6.12d) for silver with the respective iodine, confirming that there has been silver 

iodide nanoparticle formation, mostly on the surface of the PU sheet. However, 

at a higher magnification of 12000 times, the analysis of the interior PU-200AgI 

sample, has shown that some sparsely distributed silver iodide nanoparticles 

were formed just below the surface of the sample (Figure 6.13).  

 

 

6.2.2 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanosilver halide hybrid nylon 6,6 materials 

 

 

Due to time limitations only the nanosilver chloride hybrid nylon 6,6 sheet was 

analysed by the SEM. Figure 6.15 offers the SEM micrograph of a surface cross 

section of the PU-200AgCl sample recorded in the backscatter mode. Similar to 

the PU-200AgCl sample (Section 6.2.1), bright spots were found just below the 

a b 
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surface of the nylon 6,6 sheet, ca. 2 µm from the edge towards the centre of the 

(Figure 6.14a). These bright spots were assigned to the AgCl nanoparticles, as 

the presence of AgCl was confirmed by the EDS analysis (Figure 6.14b). 

 

 

  

Figure 6.14: SEM micrograph in backscatter mode of the surface cross section 

of the Ny-200AgCl sample with b) the respective EDS elemental analysis 

spectrum. 

 

 

Figure 6.15 presents a SEM micrograph of the Ny-200AgCl sample at a higher 

magnification. The corresponding images of the EDS mapping analysis show that 

where the particles are located, there are high concentrations of silver and 

chlorine (Figure 5.15b-c). Additionally, their overlay image further confirms the 

formation of silver chloride within the nylon 6,6 matrix during the synthesis of 

this material (Figure 5.15d).  

a b 
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Figure 6.15: SEM micrograph in backscatter mode of the surface cross section 

of the Ny-200AgCl sample with b-c) the corresponding EDS micrographs, d) the 

EDS Ag and Cl overlay map and e) the corresponding elemental analysis 

spectrum.    

 

 

a b 

c d 
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The particles with non-uniform shapes were generally smaller than 100 nm. 

However, some larger AgCl particles as well as particle agglomerates were 

observed. The mechanism of the silver chloride formation within the nylon 6,6 

would be the same as the nanosilver halide hybrid PU materials (Section 6.2.1). 

This is the mechanism via precipitation, where growth is controlled by the nylon 

6,6 matrix. 

 

 

6.2.3 Scanning electron microscopy and energy dispersive X-ray 

analysis of nanosilver halide hybrid polyurethane K5000 latex 

paint base materials 

 

 

Due to the limited equipment availability only nanosilver chloride hybrid PU 

K5000 material was analysed by Cryo-SEM. Figure 6.16 illustrates a Cryo-SEM 

micrograph recorded in backscatter mode of the K5000-1000AgCl sample which 

comprised 5 g of the PU K5000 latex paint base, 1 ml NaCl (0.5 molar) and 1.5 

ml of a 3333 mg kg-1 Ag+ solution. The sample consists of two domains, namely 

the smooth and slightly lighter shaded areas which represent the carbon-based 

polyurethane polymer whereas the darker shaded areas are water. A 

magnification of 7000 times on one of these light shaded areas recorded in 

backscatter mode is shown in Figure 6.17a. The bright dots in the polymer have 

been assigned to AgCl, confirming the precipitation reaction during the synthesis 

of these products. EDS spectral analysis verified the nanoparticles as AgCl 

(Figure 6.17e). The high concentrations of Ag and Cl depicted in the EDS 

micrographs (Figure 6.17b-c) provide a good overlay and match with the white 

dots further confirming that these are nanoparticles of silver chloride in the 

nanosilver chloride hybrid PU K5000 paint sample. The particles were found to 

be relatively well distributed in the polyurethane K5000 latex paint base. It was 

not possible to ascertain the exact size of silver chloride nanoparticles by SEM. 

TEM analyses of the K5000-1000AgCl sample revealed that the silver chloride 

nanoparticles were approximately 15 – 100 nm in size (Section 6.3). It is 

important to note that the silver chloride nanoparticles were formed only within 



276 

the PU K5000 domains and not in the water phase. The polymer matrix of PU 

K5000 latex paint base provides stabilisation for the nanoparticles.  

 

 

 

Figure 6.16: Cryo-SEM micrograph in backscatter mode of the K5000-1000AgCl 

sample. 
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Figure 6.17: Cryo-SEM micrograph in backscatter mode of the K5000-1000AgCl 

sample with b-c) the corresponding EDS micrographs, d) the EDS Ag and Cl 

overlay map and e) the corresponding elemental analysis spectrum.    
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6.3 Transmission electron microscopy and energy dispersive X-ray 

analysis of nanosilver halide hybrid polymer materials 

 

 

TEM was used to analyse the nanosilver halide hybrid polyurethane K5000 latex 

paint base materials in order to obtain information on the size and shape of 

silver halide particles formed within the polymer matrix. Due to instrument 

constraints, the ease of the sample preparation and the high concentration of 

silver halide particles present in the polymer matrix, the K5000-1000AgCl, 

K5000-1000AgBr and K5000-1000AgI samples were chosen as representatives 

of these hybrid materials. After exposure to light the samples were dissolved in 

high purity methanol, and a drop of resulting solution was placed on a copper 

grid. After the evaporation of the solvent the residual grid was carbon coated. All 

imaged particles were verified by EDS elemental analyses. The copper X-ray 

peak in the EDS spectra arises from the copper grid on which the sample was 

placed. Due to laboratory contamination, the peaks for silicon and zinc should be 

ignored. Due to the presence of dried polymer in the sample it was difficult to 

obtain crisp images of the lattice fringes of the analysed silver halide 

nanoparticles.  

 

The TEM analyses of the K5000-1000AgCl, K5000-1000AgBr and K5000-1000AgI 

samples revealed a wide variety of shapes and sizes for the AgX nanoparticles. 

All particles were found to exhibit darker regions on the surface and edges of the 

central structure. The particles were difficult to image due to the electron beam 

causing increased decomposition of such silver halide particles. This was 

observed by continuous movements and growth of the dark regions under the 

irradiation with the electron beam. Figure 6.18 shows TEM micrographs of some 

examples of the nanoparticles found in the K5000-1000AgCl sample. The 

respective EDS spectral analyses, present on the right side of each photograph, 

confirmed the presence of silver chloride. These silver chloride nanoparticles in 

the hybrid PU K5000 polymer paint base had a predominantly cubic structure of 

AgCl. However, some spherical, irregular shaped particles and particle 

agglomerates could be observed. There was a range of particle sizes from 

approximately 15 – 100 nm.  
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Figure 6.18: TEM micrographs of the Ag/AgCl nanoparticles found in the 

K5000-1000AgCl sample after the exposure to light (left) with their 

corresponding EDS spectra (right).  

 

 

As mentioned above, mostly spherical-like particles and particle agglomerates, 

which are of darker contrast, could be found on the surface and edges of the 

AgCl nanoparticles. In the literature these dark regions have been previously 

identified as metallic silver.168,332 This further indicates that during light 

Ag 

AgCl 
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irradiation, the silver halide particles in the nanosilver halide hybrid polymer 

materials are converted to Ag/AgX particles. The size of these non-uniformly 

shaped Ag0 nanodomains varies between very small discrete domains (ca. 

5 nm), to large agglomerates (> 100 nm) (Figure 6.18). 

 

Elemental mapping of the nanoparticles within the nanosilver halide hybrid 

polyurethane K5000 latex paint base materials was accomplished using Scanning 

Transmission Electron Microscopy. STEM confirmed the distinct relationship 

between silver and chlorine and additionally that the dark regions on the surface 

of the central AgCl nanoparticle were metallic silver. Figure 6.19 offers a TEM 

micrograph of a typical AgCl nanoparticle found in the K5000-1000AgCl sample. 

The corresponding Ag and Cl STEM maps suggest that the particle is composed 

of silver chloride. Furthermore, where the dark regions are located, there are 

very high concentrations of silver (depicted in red).  

 

 

  

Figure 6.19: TEM micrograph of the silver chloride particle in the 

K5000-1000AgI sample, the corresponding Ag and Cl STEM micrographs and 

the Ag and Cl overlay. 
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Figure 6.20: TEM micrographs of the Ag/AgCl nanoparticles found in the 

K5000-1000AgCl sample after the exposure to light (left) with their 

corresponding EDS spectra (right). 

 

 

TEM examination of the K5000-1000AgBr sample, which was exposed to light 

prior to the analysis, showed that the AgBr particles appear to be cubic or 

spherical in morphology (although some irregular shapes were present) with a 

wide size distribution between 40 nm to 500 nm. Figure 6.20 offers some TEM 

Ag 

AgBr 
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images with the corresponding EDS analyses spectra of the AgBr particles in the 

K5000-1000AgBr sample. The particles exhibit dark areas, similar to the AgCl 

particles mentioned above, which are assigned to Ag0 nanodomains (depicted 

with the arrows in the Figure 6.20).  

 

During the exposure of the K5000-1000AgBr sample to the TEM beam, 

movements of the darker Ag0 nanodomains on the surface of the central AgBr 

crystal were observed. The series of images (Figure 6.21a-c), which was taken 

over a period of three minutes, show the dark silver nanodomains of the 

Ag/AgBr particle undergo agglomeration. Similar to an Ostwald ripening 

mechanism, the smaller dark regions are slowly growing into a larger region. 

The growth of these dark regions, which continued as long as the crystal was 

irradiated, could easily be followed. A likely explanation for such observation is 

that the beam causes a photolysis of the AgBr to Ag0 nanoparticles or 

nanodomains, resulting in two different phases within the one particle. The 

existence of these two different phases is in agreement with forming silver 

nanodomains on the AgBr nanoparticle upon exposure to light resulting in 

Ag/AgBr particles (Sections 6.1 and 6.4). Furthermore, although the self-

photosensitisation is taking place under the electron beam, the particle does not 

fully convert to a single silver particle. During the electron beam irradiation 

period the spherical geometry and size of the AgBr crystal remains unchanged. A 

strong X-ray peak for bromine could still be detected by the EDS spectral 

analysis confirming the presence of AgBr (Figure 6.21d).  

 



283 

 

Figure 6.21: a-c) TEM micrographs of an Ag/AgBr particle found in the 

K5000-1000AgBr sample taken over a period of three minutes with d) the 

respective EDS analysis spectrum of the particle shown in a). 

 

 

Figure 6.22 offers TEM micrographs of the nanosilver iodide hybrid PU K5000 

paint base material (K5000-1000AgI) which was exposed to light. The presence 

of silver iodide within the hybrid PU K5000 paint base material was confirmed by 

the peaks at 2.98 keV and 3.94 keV corresponding to the Ag Lα and I Lα line 

respectively in the EDS spectra (Figure 6.22). Generally, the most common 

shapes of the AgI particles were spherical, hexagonal and triangular. 

Additionally, anisotropic geometric shapes and particle agglomerates were also 

present. The particles have a broad size distribution, ranging from 20 nm to 500 

nm and exhibit dark regions on the surface of the central AgI crystal, 

comparable to the analogue K5000-1000AgCl and K5000-1000AgBr samples 

described above. The dark regions were attributed to Ag0 nanoparticles which 

are formed through a photolysis process with exposure to light (Section 1.4.5). 

Although the mechanism of the photolysis for the AgI is the same as for AgCl 

and AgBr, the rate is believed to be much slower.330 

a b 

c d 
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Figure 6.22: TEM micrographs of the Ag/AgI nanoparticles found in the 

K5000-1000AgCl sample after the exposure to light (left) with their 

corresponding EDS spectra (right). 

 

 

A typical AgI particle was further analysed by STEM. Figure 6.23 presents a TEM 

micrograph of the nanosilver iodide hybrid polyurethane K5000 paint base 

material with the corresponding Ag and I STEM maps. The overlay map of Ag 

and I substantiates that the particle consists of silver iodide. This is confirmed by 
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the distinct relationship between silver and iodine; whereby again high levels of 

silver correspond to high levels of iodine. Additionally, it can be seen where the 

most dark regions of the particle are located there is a higher concentration of 

silver (illustrated in red in the Ag and I overlay map). As such, silver iodide 

nanoparticles were successfully formed within the polyurethane K5000 matrix 

and converted to Ag/AgI particles during the exposure of the sample to natural 

light.  

 

 

 

  

Figure 6.23: a) TEM micrograph of the silver iodide particles in the 

K5000-1000AgI sample, the corresponding b) Ag and c) I STEM micrographs. 

The Ag and I overlay is shown in d).  
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6.4 X-ray diffraction analysis of nanosilver halide hybrid polymer 

materials 

 

 

XRD analyses were carried out in order to confirm the presence of silver halide 

nanoparticles in the hybrid polymer materials. The XRD patterns were used to 

compare the Bragg peak positions and their intensities with the standard 

PDF 04-001-2617 for silver, PDF 01-071-5209 for silver chloride, 

PDF 04-005-4490 for silver bromide and PDF 00-009-0374 for silver iodide 

diffraction patterns.242 The mean particle size of the silver halides was calculated 

using Scherrer’s equation, which was introduced in Section 2.3.4. For the 

samples containing AgCl and AgBr, the most intense (2 0 0) peak was used for 

the calculation, whereas for the sample containing AgI particles the most intense 

(1 1 0) peak seemed to be suitable for the calculation. The calculated mean 

crystallite particle sizes and the parameters for X-ray diffraction patterns for the 

nanosilver halide hybrid PU and polyurethane K5000 samples are listed in Table 

6.3. 

 

Figure 6.24 illustrates the XRD patterns obtained from the nanosilver halide 

hybrid PU sheets prior to their exposure to light. For all three samples, the 

PU-200AgCl, PU-200AgBr and PU-200AgI, the patterns confirm that during the 

syntheses of the hybrid materials crystalline silver halides were formed within 

the PU matrix. The diffraction peaks at 2θ = 27.84°, 32.26°, 46.26°, 54.84°, 

57.50° and 76.75° in the XRD pattern for the PU-200AgCl sample can be 

indexed as the (1 1 1), (2 0 0), (2 2 0), (3 1 1), (2 2 2) and (4 2 0) reflection 

peaks of face centred cubic AgCl (PDF 01-071-5209.242 The XRD pattern for the 

PU-200AgBr sample showed six reflection peaks at 2θ = 26.72°, 30.94°, 44.29°, 

54.98°, 64.44°, 73.18° and 81.55° which can be attributed to the (1 1 1), 

(2 0 0), (2 2 0), (2 2 2), (4 0 0), (4 2 0) and (4 2 2) reflection peaks of the fcc 

AgBr (PDF 04-005-4490).242 The XRD pattern obtained for the PU-200AgI 

sample showed the presence of seven broader Bragg reflection peaks in 

comparison to peaks found in the PU-200AgCl and PU-200AgBr samples 

respectively, indicating smaller crystallite size.333 The peaks found at 2θ = 

22.29°, 23.60°, 25.17°, 32.77°, 39.04°, 42.43° and 46.12° correspond 

respectively to the (1 0 0), (0 0 2), (1 0 1), (1 0 2), (1 1 0), (1 0 3) and (1 1 2) 
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crystal planes of the hexagonal wurtzite β-AgI (PDF 00-009-0374).242 As 

expected, it is noted that for all three samples no peaks corresponding to 

elemental Ag were discerned. The mean crystallite size of the silver halide 

particles was estimated to be 86 nm for the PU-200AgCl sample, 69 nm for the 

PU-200AgBr sample and 40 nm for the PU-200AgI sample (Table 6.3). 

 

 

Table 6.3: Parameters for X-ray diffraction patterns of the nanosilver halide 

hybrid PU and polyurethane K5000 latex paint base samples. 

Hybrid material Peak position 

[º 2θ] 

FWHM 

 [º 2θ] 

Mean crystal diameter 

[nm]  

PU-200AgCl 32.30 0.19 86 

PU-200AgBr 30.94 0.24 69 

PU-200AgI 39.04 0.42 40 

K5000-1000AgCl 32.28 0.29 56 

K5000-1000AgBr 30.90 0.27 62 
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Figure 6.24: XRD patterns of the nanosilver halide hybrid PU materials before 

exposure to light. 

 

 

The XRD patterns obtained from the nanosilver halide hybrid nylon 6,6 sheets 

are presented in Figure 6.25. Although UV-Vis and SEM analyses of these 

materials showed the presence of silver halide particles within the nylon 6,6 

matrix (Sections 6.1 and 6.2.2), the XRD patterns of the nanosilver halide hybrid 

nylon 6,6 samples did not show any of the typical Bragg diffraction peaks for 

AgCl, AgBr or AgI. A possible reason for the absence of the diffraction peaks for 

all three samples is that the formation of the halide particles in the nylon 6,6 
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matrix took place below the penetration depth of the X-rays into the samples. 

Furthermore, pore structure in nylon 6,6 substrates is likely to be smaller than in 

PU substrates hence the silver halide particles may be very small. The small size 

of the particles results in a low signal to noice ratio. Due to the semicrystalline 

nature of nylon 6,6 matrix the weak diffraction peaks can be masked. To verify 

this proposed statement, further XRD studies accompanied by TEM analyses of 

these materials are required.  

 

 

 

Figure 6.25 XRD patterns of the nanosilver halide hybrid nylon 6,6 materials 

before exposure to light. 
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Figure 6.26 presents the XRD patterns obtained from the nanosilver halide 

hybrid polyurethane K5000 latex paint base materials. Silver chloride- and silver 

bromide-containing hybrid polyurethane K5000 materials (K5000-1000AgCl and 

K5000-1000AgBr sample) were found to have formed their respective silver 

halides in the polyurethane K5000 matrix. Silver iodide could not be detected in 

the K5000-1000AgI sample. Four Bragg diffraction peaks were found in the 

K5000-1000AgCl sample at 2θ = 27.88°, 32.28°, 46.25° and 54.842° and 

indexed as the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) peaks based on the face 

centred cubic structure of AgCl (PDF-01-071-5209).242 The mean particle size of 

the silver chloride nanoparticles was estimated to be 56 nm. The 

K5000-1000AgBr sample revealed five diffraction peaks at 2θ = 30.90°, 44.30°, 

55.02°, 64.46° and 73.24° identifiable as the (2 0 0), (2 2 0), (2 2 2), (4 0 0) 

and (4 2 0) reflection peaks, corresponding to the fcc structure of AgBr 

(PDF 04-005-4490).242 Using the position and the FWHM of the most intensive 

(2 0 0) peak the mean particle size was found to be ca. 62 nm (Table 6.3). 

Although the presence of the AgI nanoparticles in the K5000-1000AgI sample 

was confirmed by TEM analysis (Section 6.3), for unknown reasons, the XRD 

pattern of the sample did not detect any AgI within the PU K5000 paint base 

matrix. It is likely the concentration was too diluted. Therefore further XRD 

studies of more concentrated samples containing AgI particles are required. 
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Figure 6.26: XRD patterns of the nanosilver halide hybrid polyurethane K5000 

latex paint base materials before exposure to light. 

 

 

XRD analyses were also carried out on the nanosilver halide hybrid PU and 

polyurethane K5000 materials in order to confirm if light exposure did in fact 

cause photolysis of silver halides particles leading to the formation of metallic 

silver nanoparticles on the surface of the silver halides within the polymer 

matrices.  
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The XRD analyses of the PU-200AgCl and PU-200AgBr samples were carried out 

over a period of time, on the day of the synthesis before the samples were 

exposed to light, and after the samples were exposed to natural light for 4, 26 

and 61 days respectively. Figure 6.27 and Figure 6.29a illustrate the XRD 

patterns and the respective photographs of the PU-200AgCl sample upon 

exposure to light. As expected, before exposure to light, the sample only 

exhibited the typical diffraction peaks of the fcc AgCl as discussed earlier. 

Immediately after the sample was prepared, its colour was white, also 

characteristic for AgCl due to the wide band gaps (Sections 1.4.5 and 6.1). After 

four days of natural light, the sample showed dark purple colouration and the 

XRD pattern indicated the presence of two new discernible peaks which were 

indexed to the (1 1 1) and (2 0 0) diffraction peaks of fcc silver (PDF 

04-001-2617).242 The longer the PU-200AgCl sample was exposed to light the 

more pronounced these diffraction peaks for Ag became and the the colour of 

the PU-200AgCl sample grew browner. A similar effect was noted for the 

PU-200AgBr sample. Figure 6.28 and Figure 6.29b present the XRD patterns and 

the respective photographs of the sample upon exposure to light. Before 

exposure to light, the sample was white in colour and showed the characteristic 

Bragg diffraction peaks of the fcc AgBr structure. Although the purple colouration 

of the sample was well noticeable on day four of natural light exposure, the XRD 

pattern from the sample obtained after 61 days of light first showed the 

presence of a very weak peak which was identifiable as the (1 1 1) Bragg 

diffraction peak of fcc silver (PDF 04-001-2617).242 As such, it is assumed that 

more metallic silver was formed in the PU-200AgCl sample compared to the 

PU-200AgBr sample after being exposed to natural light for 61 days. 
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Figure 6.27: XRD patterns of the nanosilver chloride hybrid PU materials before 

and after exposure to light. 
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Figure 6.28: XRD patterns of the nanosilver bromide hybrid PU materials before 

and after exposure to light. 
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Figure 6.29: Photographs of a) the PU-200AgCl sample before the exposure to 

light, 4 and 61 days of exposure to natural light (from left to right) and b) the 

PU-200AgBr sample before the exposure to light, 4 and 61 days of exposure to 

natural light (from left to right). 

 

 

The XRD patterns obtained for the K5000-1000AgCl and K5000-1000AgBr 

samples before and after exposure to natural light (4 days) are shown in Figure 

6.30 and Figure 6.31. The respective photographs of the samples are shown in 

Figure 6.3. Upon exposure to natural light for four days, the K5000-1000AgCl 

sample changed the colour from white to brown, whereas the K5000-1000AgBr 

a 

b 

t = 0 d t = 4 d t = 61 d 

t = 0 d t = 4 d t = 61 d 
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sample turned purple. The XRD patterns for the K5000-1000AgCl sample 

showed in addition to the expected characteristic diffraction peaks of the fcc 

AgCl the (1 1 1) peak of the fcc Ag (PDF-04-001-2617).242 However, the 

intensity of the silver peak was very weak suggesting that very small amount of 

Ag was formed. In the XRD analysis of the K5000-1000AgBr sample after being 

exposed to light, no peaks corresponding to elemental Ag were discernable.  

 

As reported in Sections 1.4.5 and 6.1, due to their photosensitive characteristics, 

silver halides are not stable under UV visible light. Once exposed to light, these 

silver halide particles go through a self-photosensitisation process leading to a 

partial reduction of Ag+ to Ag0 nanodomains or nanoparticles at the surface of 

the silver halide particles.168,319 Thus, it can be assumed that the AgX 

nanoparticles within the PU and PU K5000 polymer matrix were converted in situ 

to Ag/AgX nanoparticles. Due to their wide band gaps (Table 6.2), silver chloride 

and bromide are not able to absorb light above 380 nm as was shown by the 

UV-Vis analyses of the nanosilver halide hybrid nylon 6,6 materials (Section 

6.1). Therefore, the purple/brown colour is due to the SPR effect of the formed 

Ag0 domains resulting in a broad visible spectral absorption of these materials 

(Sections 1.4.5). XRD analyses revealed that the hybrid PU and polyurethane 

K5000 polymer materials containing AgCl are more photosensitive than the ones 

containing AgBr. 
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Figure 6.30: XRD patterns of the nanosilver chloride hybrid polyurethane K5000 

latex paint base materials before and after exposure to light. 

 

 

 

Figure 6.31: XRD patterns of the nanosilver bromide hybrid polyurethane 

K5000 latex paint base materials before and after exposure to light. 
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6.5 X-ray photoelectron spectroscopy analysis of nanosilver halide 

hybrid polymer materials 

 

 

An XPS study of the hybrid PU materials was carried out in order to further 

confirm the formation of silver halide nanoparticles within the polymer matrix 

and to investigate their chemical interaction with the polymer matrix. As 

representatives for the nanosilver halide hybrid polymer materials the 

PU-200AgCl, PU-200AgBr and PU-200AgI samples were chosen for the XPS 

studies. For every nanosilver halide PU sample, a reference sample was 

prepared. The preparation of the reference samples was attempted via the same 

method as the preparation of the nanosilver halide hybrid PU samples (Section 

2.2.3.1), however, instead of immersing the NaX-doped PU sheets in the AgNO3 

solution, distilled H2O was used. During the preparation and the loading process 

of the samples into the X-ray photoelectron spectrometer, the samples were 

kept out of light in order to avoid the photolysis of the silver halide 

nanoparticles. However, the complete prevention of the light radiation could not 

be guaranteed. An initial survey scan from a binding energy of 700 to 0 eV for 

all polyurethane samples showed the presence of carbon, nitrogen and oxygen 

groups on the polymer surface, together with silver, chlorine, bromine and 

iodine for the nanosilver halide hybrid PU polymers respectively. High resolution 

scans were carried out across the peaks for each of the elements. X-ray peaks 

for calcium and silicon should be ignored due to contamination of the samples. 

 

The wide XPS scans for the nanosilver halide hybrid PU materials (PU-200AgCl, 

PU-200AgBr and PU-200AgI samples) and their respective PU sheet reference 

samples are shown in Figure 6.32. Each sample shows the presence of the 

characteristic elements (C, N and O) of PU. Additionally, for the nanosilver halide 

hybrid PU samples the peaks for Ag and the respective halides were observed.  
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Figure 6.32: Survey XPS scans of a) the PU sheet used as reference sample, b) 

the PU-200AgCl sample, c) the PU-200AgBr sample and d) the PU-200AgI 

sample. 

 

 

The high resolution C 1s, N 1s and O 1s XPS spectra obtained for both samples, 

the PU reference and nanosilver chloride hybrid PU samples, are presented in 

Figure 6.33. A complete list of peak assignments is shown in Table 6.4. The 

analyses of the high resolution C 1s, N 1s and O 1s XPS spectra collected for the 

PU-200AgCl sample do not show any significant changes in comparison to the 

spectra obtain for the PU reference sample. In agreement with the literature264, 

the deconvolution of the C 1s spectrum revealed the presence of four carbon 

species attributable to an aliphatic carbon bound to an adjacent carbon or a 

hydrogen (285 eV), a carbon singly bound to a nitrogen (285.7 eV), a carbon 

singly bound to an oxygen (286.7 eV) and a carbonyl carbon (289.5 eV) in the 

PU polymer matrix. The deconvoluted, high resolution N 1s spectrum of the 

a b 

c d 
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reference (Figure 6.33c) and the PU-200AgCl sample (Figure 6.33d) show the 

presence of one nitrogen species which is attributable to the nitrogen of the 

carbamate group in the PU polymer matrix. Just as with the PU reference 

sample, the XPS O 1s spectrum of the PU-200AgCl sample was deconvoluted 

into one peak with the maximum at around 532.9 eV and was assigned to the 

average oxygen environment of PU. The values for the binding energies and the 

respective FWHM are presented in Table 6.4. 

 

 

Table 6.4: XPS assignments for the PU sheet as the reference sample and the 

nanosilver chloride hybrid PU material. 

  Reference PU PU-200AgCl 

 Binding energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 285.00 (1.02) 285.00 (1.03) 

 C-N 285.65 (0.65) 285.74 (0.67) 

 C-O 286.70 (1.16) 286.64 (1.15) 

 O-C=O 289.43 (1.18) 289.51 (0.75) 

N 1s N-H 400.32 (1.34) 400.31 (1.21) 

O 1s Average O 

environment  

532.86 (1.75) 532.91 (1.67) 

Ag 3d Ag0 5/2 - - 

 Ag+ 
5/2 - 367.80 (0.88) 

 Ag0 3/2 - - 

 Ag+ 
3/2 - 373.80 (0.88) 

Cl 2p Cl- 3/2 - 198.14 (0.86) 

 Cl- 1/2 - 199.74 (0.86) 

 

 

Two distinct peaks were observed in the high resolution Ag 3d spectrum relating 

to the PU-200AgCl sample (Figure 6.34a). The doublet with an intensity ratio of 

3:2 shows a spin orbital separation of 6.0 eV which matches the spacing of the 

bulk silver.275,299 According to the literature the peaks centred at ca. 367.8 eV 

(3d5/2) and 373.8 eV (3d3/2) were assigned to Ag+ in form of AgCl179,181,334 

thereby confirming the formation of silver chloride in the PU matrix. 
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Figure 6.33: Deconvoluted high resolution XPS spectra for the PU sheet used as 

used as reference sample: a) C 1s peaks, c) N 1s peak and e) O 1s peaks; for 

the PU-200AgCl sample: b) C 1s peaks, d) N 1s peaks and f) O 1s peaks. 

Experimental data points are shown by circles. 

 

a b 

c d 

e f 
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Figure 6.34: Deconvoluted high resolution XPS spectra for the PU-200AgCl 

sample: a) Ag 3d peaks and b) Cl 2p peaks. Experimental data points are shown 

by circles. 

 

 

The high resolution Cl 2p spectrum of the PU-200AgCl sample is presented in 

Figure 6.34b. The binding energies of Cl 2p1/2 and Cl 2p3/2 deriving from Cl− are 

198.1 eV and 199.8 eV, respectively. The doublet has the required intensity ratio 

of 2:1 and the spin orbital separation of 1.6 eV. These values are in good 

agreement with the reported values for AgCl nanoparticles.177,179,275,299,335 Hence, 

the XPS results are in agreement with the results obtained from the SEM and 

XRD analyses of the PU-200AgCl sample (Sections 6.2.1 and 6.4) further 

confirming that the AgCl nanoparticles were successfully formed within the PU 

polymer matrix.  

 

The high resolution C 1s, N 1s and O 1s spectra collected for the nanosilver 

bromide hybrid PU material (PU-200AgBr sample) and the respective PU 

reference sample are shown in Figure 6.35. The values for the binding energies 

and their respective FWHM are given in Table 6.5.  

 

 

 

 

 

 

a b 
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Table 6.5: XPS assignments for the PU sheet as the reference sample and the 

nanosilver bromide hybrid PU material. 

  Reference PU PU-200AgBr 

 Binding energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 285.00 (0.98) 285.00 (0.95) 

 C-N 285.59 (0.79) 285.67 (0.73) 

 C-O 

COO-Ag 

286.74 (1.14) 

- 

286.66 (1.17) 

288.79 (1.16) 

 O-C=O 289.68 (0.86) 289.58 (0.80) 

N 1s N-H 400.43 (1.07) 400.39 (1.35) 

O 1s Average O 

environment  

O-Ag 

532.84 (1.56) 

 

- 

532.84 (1.62) 

 

531.51 (1.29) 

Ag 3d Ag0 5/2 - 368.09 (1.18) 

 Ag+
5/2 - 367.86 (0.77) 

 Ag0 3/2 - 374.09 (1.18) 

 Ag+ 
3/2 - 373.86 (0.77) 

Br 3d Br- 
5/2 - 68.51 (0.83) 

 Br- 
3/2 - 69.56 (0.83) 

 

 

When comparing the C 1s spectra of the PU-200AgBr sample to the respective 

PU sheet reference sample (Figure 6.35a-b), it can be clearly seen that the 

exposure of PU sheet to the sodium bromide solution followed by a treatment of 

silver nitrate solution leads to changes in relative intensities of the C 1s peaks. 

The decrease in intensity of the C 1s peak located at approximately 286.7 eV 

attributable to C-O, and a formation of a new C 1s peak centred at ca. 288.8 eV, 

indicate that the chemical environment of carbon is perturbed by the presence of 

the formed AgBr nanoparticles. A reason for the decrease in the intensity of the 

C 1s peaks for C-O after the formation of AgBr particles, as well as the new peak 

at higher binding energies is possibly due to a formation of a new interaction 

between silver and oxygen (Ag-O-C) in the PU matrix. The formation of this Ag-

O-C species would induce a charge transfer to the carbon atoms through the 

oxygen atoms. Hence, this decrease in the intensity results in a change in the 

chemical environment of carbon. Additionally, it can be assumed that the 

presence of AgBr nanoparticles on the surface of the PU can also influence the 
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intensity of the C-O due to a screening effect. Such an effect causes the 

photoelectrons which are ejected from carbon atoms to be partially trapped by 

the silver bromide present on the surface of PU. Similar behaviour regarding the 

decrease in the intensity of components in an XPS spectrum has been reported 

previously in the literature.314,336  

 

The N 1s spectrum of the nanosilver bromide hybrid PU sample, when compared 

to the PU reference sample (Figure 6.35c-d), sees a minimal broadening of the 

FWHM by around 0.3 eV. The increase in the FWHM of the nitrogen in the 

carbamate group of the PU indicates a variability of the environments 

surrounding these N entities. Thus, an interaction between the formed AgBr and 

N is possible.  

 

Figure 6.35f shows the envelope of the O 1s spectrum for the PU-200AgBr 

sample with one maximum and an apparent shoulder towards lower binding 

energies. The spectrum was deconvoluted into two oxygen components. The 

peak at higher binding energies, at ca. 532.8 eV, is attributable to the average 

oxygen environment of the PU matrix. When comparing this O 1s peak to that of 

the PU sheet reference sample (Figure 6.35e), the position of the peak remains 

comparable. However, a slight increase in the FWHM value of this peak means 

that more varied surrounding environment for the oxygen is provided upon 

formation of the AgBr in the PU matrix. The second peak located at 

approximately 531.5 eV is indicative of a formation of a new oxygen species 

which was ascribed to a Ag-O-C bond. Compounds containing Ag-O-C bonds 

have been shown to posses binding energies of around 531.5 eV.314,337,338 This 

supports the statement for the C 1s spectrum made above, further confirming 

the formation of the new interaction between silver and oxygen upon formation 

of the AgBr nanoparticles in the polymer matrix. 
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Figure 6.35: Deconvoluted high resolution XPS spectra for the PU sheet used as 

used as reference sample: a) C 1s peaks, c) N 1s peak and e) O 1s peaks; for 

the PU-200AgBr sample: b) C 1s peaks, d) N 1s peaks and f) O 1s peaks. 

Experimental data points are shown by circles. 

 
 
 

a b 

c d 

e f 
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Figure 6.36: Deconvoluted high resolution XPS spectra for the PU-200AgBr 

sample: a) Ag 3d peaks and b) Br 3d peaks. Experimental data points are 

shown by circles. 

 

 

The high resolution Ag 3d XPS spectrum for the nanosilver bromide hybrid PU 

sample (PU-200AgBr) is shown in Figure 6.36a. The deconvolution of the line 

shape resulted in two doublets, implying that two different species of silver are 

present in the sample. Both doublets with an intensity ratio of 3:2 show a spin 

orbital separation of 6 eV matching the spacing of the bulk silver.275,299 The 

doublet peaks at lower binding energies, namely at ca. 367.9 eV (3d5/2) and 

373.9 eV (3d3/2), have been ascribed to Ag+ in AgBr.182,275,299,339 A second set of 

broader doublet peaks centred at around 368.1 eV (3d5/2) and 374.1 eV (3d3/2) 

respectively, is indicative of the existence of metallic silver.182,275,299,339 The 

sample was protected from light during the preparation process; however the 

chamber storing the samples during the XPS analyses has a glass window. Thus, 

a photolysis of the sample which results in a formation of Ag0 nanodomains on 

the surface of the AgBr particles cannot be ruled out. Such nanodomains were 

observed in the TEM analyses of hybrid polymer materials containing Ag/AgBr 

nanoparticles (Section 6.3). The spectrum of the Br 3d electrons in Figure 6.36b 

shows that the binding energies of Br 3d5/2 and Br 3d3/2 are approximately 

68.5 eV and 69.5 eV respectively. These values match well the values for Br- in 

AgBr found in the literature.175,179 

 

Figure 6.37 presents the high resolution C 1s, N 1s and O 1s spectra obtained 

for the nanosilver iodide hybrid PU material (PU-200AgI sample) and for the 

a b 
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respective PU reference sample. The values for the binding energies and their 

respective FWHM are given in Table 6.6.  

 

Again comparing the high resolution XPS C 1s spectra for the PU-200AgI and the 

PU reference sample revealed similar changes observed for the PU-200AgBr 

sample (Figure 6.37a-b). The Ag-O-C bond was evident in the high resolution 

C 1s spectrum of the hybrid PU material incorporating AgI nanoparticles. The 

spectrum showed a new peak centred at 288.7 eV, which was absent in the PU 

reference sample. This peak has been reported to be representative of a Ag-O-C 

bond.340,341 Additional changes to the spectrum upon formation of the AgI 

nanoparticles included the decrease in intensities of the C-O and C-N peak 

respectively. As mentioned previously, the decrease may have been caused by 

the formation of a new interaction of oxygen and nitrogen groups in the PU 

matrix with the silver iodide nanoparticles. The new bonds (Ag-O-C or Ag-N-C) 

induce a charge transfer to the carbon atoms through the oxygen and nitrogen 

atoms respectively resulting in a change in the chemical environment of carbon 

and thus causing the decrease of the intensities.  

 

The N 1s spectrum of the PU-200AgI sample, when compared to the PU 

reference sample, shows a new peak which was not present in the reference 

sample (Figure 6.37c-d). This peak exhibits a shift of ca. 0.8 eV towards lower 

binding energies from the N 1s peak of the reference sample consistent with the 

nitrogen of the carbamate groups in PU found in both samples. The peak may 

suggest a further interaction of silver from the AgBr particles to the nitrogen 

groups of PU. As previously reported in Chapters 3 and 4, nitrogen has an 

affinity for silver.241,313 Thus, an Ag-N-C bond is likely.  
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Table 6.6: XPS assignments for the PU sheet as the reference sample and the 

nanosilver iodide hybrid PU material. 

  Reference PU PU-200AgI 

 Binding energy [eV] and (FWHM) [eV] 

C 1s C-C, C-H 285.00 (0.99) 285.00 (1.12) 

 C-N 285.65 (0.60) 285.87 (0.79) 

 C-O 

COO-Ag 

286.71 (1.13) 

- 

286.78 (1.15) 

288.72 (1.37) 

 O-C=O 289.62 (0.88) 289.51 (0.75) 

N 1s N-H 

N-Ag 

400.40 (1.17) 

- 

400.41 (1.16) 

399.59 (1.53) 

O 1s Average O 

environment  

COO-Ag 

532.80 (1.63) 

 

- 

532.90 (1.70) 

 

531.22 (1.19) 

Ag 3d Ag0 5/2 - 368.01 (1.09) 

 Ag+ 
5/2 - 366.68 (0.77) 

 Ag0 3/2 - 374.01 (1.09) 

 Ag+ 
3/2 - 372.68 (0.77) 

I 3d I- 
5/2 - 619.06 (1.38) 

 I- 
3/2 - 630.56 (1.38) 

 
 

The high resolution O 1s spectra for the nanosilver iodide and the respective PU 

reference sample are shown in Figure 6.37e-f. For the PU-200AgI sample the 

XPS O 1s spectrum was deconvoluted into two oxygen components. The position 

of the peak owing to the average oxygen environment of the PU remains at 

532.9 eV, the same position as the PU reference sample. The new peak at a 

lower binding energy, 531.2 eV, again indicates significant changes in the 

surrounding environment. It suggests an interaction of oxygen to silver of the 

AgI nanoparticles, a potential Ag-O-C bond which was also detected for the 

PU-200AgBr sample. This complements the observation made for the C 1s 

spectrum above.  



309 

 

 

Figure 6.37: Deconvoluted high resolution XPS spectra for the PU sheet used as 

used as reference sample: a) C 1s peaks, c) N 1s peak and e) O 1s peaks; for 

the PU-200AgI sample: b) C 1s peaks, d) N 1s peaks and f) O 1s peaks. 

Experimental data points are shown by circles. 

 

a b 

c d 
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Figure 6.38: Deconvoluted high resolution XPS spectra for the PU-200AgI 

sample: a) Ag 3d peaks and b) I 3d peaks. Experimental data points are shown 

by circles. 

 

 

The high resolution Ag 3d spectrum of the PU-200AgI sample is presented in 

Figure 6.38a. The deconvolution of the spectrum revealed two sets of doublet 

peaks. The peaks centred at 366.68 eV (3d5/2) and 372.68 eV (3d3/2) relate to 

Ag+ of the AgI nanoparticles.182,275,299,339 According to the literature, the doublet 

positioned at higher binding energies, around 368.0 (3d5/2) and 374.0 (3d3/2) eV, 

is attributable to Ag0.182,275,299,339,342 This suggests that silver ions of the AgI 

nanoparticles were converted to Ag0 nanodomains via the photolysis process, 

similar to the PU-200AgBr sample described above. Both doublets have the 

required intensity ratio of 3:2 and the spin orbital separation of 6.0 eV.275,299 

Figure 6.38b shows the high resolution I 3d spectrum. It can be seen that the 

doublet possesses binding energies of ca. 619.1 eV (3d5/2) and 630.6 eV (3d3/2), 

matching the values found in the literature for the I- as AgI well.343–346 As such, 

this further confirms that silver iodide nanoparticles have been successfully 

formed within the PU matrix.  

 

From the XPS results discussed above, it can be concluded that silver halide 

nanoparticles have been successfully produced in situ within the PU polymer 

matrix. The PU polymer matrix provides stabilisation of the halide nanoparticles. 

XPS results show that the hybrid PU materials containing AgBr and AgI 

nanoparticles respectively underwent a photolysis process resulting in a 

a b 
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formation of Ag0 nanodomains on the surface of these silver halide 

nanoparticles. The C 1s and O 1s spectra for these materials imply an interaction 

between the silver on the surface of the silver bromide and iodide respectively 

and the oxygen groups present within the PU matrix. In addition to silver - 

oxygen interaction, nitrogen is also implied to interact with the silver on the 

silver iodide nanoparticles. This interaction is suggested by the position of the 

new N 1s peak of the nanosilver iodide hybrid PU material.  

 

 

6.6 Infrared spectroscopy analysis of nanosilver halide hybrid polymer 

materials 

 

 
Infrared spectroscopy analyses were carried out in an attempt to complement 

the XPS results obtained from the nanosilver halide hybrid polymers (Section 

6.5). It was hoped get a clarification on the nature of the interaction between 

the silver halide nanoparticles and the polymer matrix. The K5000-1000AgCl, 

K5000-1000AgBr and K5000-1000AgI samples were chosen as representatives 

of the nanosilver halide hybrid PU K5000 materials. Because these materials 

have higher concentration of silver halide particles at the hybrid polymer 

surfaces, the probability of detecting any changes between the IR spectra of an 

untreated PU K5000 sample and its respective hybrid polymers is increased. 

 

The IR spectra of the untreated PU K5000, K5000-1000AgCl, K5000-1000AgBr 

and K5000-1000AgI samples are presented in Figure 6.39. When comparing the 

IR spectra of the untreated PU K5000 sample to the nanosilver halide hybrid U 

K5000 samples no distinguishable differences can be observed. All four samples 

show identical peaks characteristic for PU (Section 3.9). As such, the IR 

spectroscopy analysis of these materials did not provide any further indication 

on the nature of the interaction between the silver halide nanoparticles and the 

polyurethane K5000 polymer matrix. This is probably due to the fact that IR 

spectroscopy is a bulk analysis method on such samples, and is not particularly 

sensitive to the small quantity of nanoparticles present on the surface of the 

polymer relative to the bulk quantity of the paint. 
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Figure 6.39: FT-IR spectra of the dry untreated PU K5000 paint base and the 

nanosilver halide hybrid polyurethane K5000 latex paint base materials. 

 

 

6.7 Antimicrobial properties of nanogold and nanosilver hybrid 

polymer materials 

 

 

In recent years the availability of medicines to treat infections effectively with 

resistant organisms has become a major concern. As mentioned in Chapters 3 

and 4, the creation of new antimicrobial materials has attracted increasing 

interest in order to combat the challenge of antimicrobial resistance. Silver and 

silver compounds have a great potential as antimicrobial agents and have been 

used as such for many centuries. They have low toxicity toward mammalian cells 

and do not easily provoke microbial resistance.347 Hence, the nanosilver halide 

hybrid polymer materials were tested for their antimicrobial activity. In order to 

see whether the photolysis of the samples would influence their antimicrobial 

activity, two sets of samples were prepared and tested. For the duration of the 

preparation and testing process respectively, one set of the samples was 
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prepared under natural light exposure while the other set was prepared in dark 

conditions. Due to the time limitations, only nanosilver halide hybrid PU K5000 

materials were tested against the gram negative E. coli bacteria (strain W3110). 

The tests were carried out following the technique described in Section 2.3.8. 

However briefly, this included cutting the dried films of the K5000-1000AgCl, 

K5000-1000AgBr and K5000-1000AgI samples into small pieces and immersing 

them in aqueous standard phosphate-buffered saline (PBS) suspension 

containing E. coli bacteria in order to create a contact between the hybrid 

polymer materials and the microbes. The determination of the antimicrobial 

activity was achieved on the basis of the relative difference in total colony-

forming units (CFU) between the nanosilver halide hybrid PU K5000 samples and 

the control sample after five days of contact with the bacteria. As the control 

sample the dry untreated polyurethane K5000 polymer was used. 

 

The graphical result of the antimicrobial test is provided in Figure 6.40 

illustrating the percentage of CFU remaining after the reference sample and the 

nanosilver halide hybrid PU K5000 samples were exposed to bacteria for five 

days. Table 6.7 represents the obtained CFU values for the nanosilver halide 

hybrid PU K5000 materials. As expected, the untreated PU K5000 sample used 

as the reference did not show any effect on the bacteria. When analysing the 

results obtained for both sets of samples, which were tested in natural light and 

in dark conditions, the samples containing silver chloride nanoparticles seem to 

show higher efficacy against the bacteria compared to the samples containing 

silver bromide nanoparticles. AgBr-containing samples, in turn, are more 

antimicrobial than their analogue AgI-containing samples. Despite many recent 

publications on the antimicrobial activity of silver, silver compounds and their 

polymer composites, the exact mechanism still remains unclear. The proposed 

modes of action for silver towards the microbes that have been reported in the 

literature are discussed in detail in Sections 1.4.6 and 3.1.11. It has been 

accepted that the antimicrobial effects of silver depend on the dissolution rate of 

silver nanoparticles and silver compounds, releasing the effective silver ions into 

the pathogenic environment.217,348 Hence, the reason for the greater 

antimicrobial activity of the hybrid materials containing AgCl nanoparticles over 

those containing the AgBr and AgI particles respectively could be due to their 
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corresponding solubility constants. The solubility constants of some silver 

compounds are given in Table 1.5.  

 

 

 

Figure 6.40: Percentage cell survival relative to untreated PU K5000 paint as 

control after five days of bacteria being in contact with the control and the 

nanosilver halide hybrid PU K5000 samples. The bars depicted in red represent 

the samples tested in dark conditions, whereas the bars depicted in blue relate 

to the samples tested in natural light. (Note the vertical axis is in log scale.) 
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Table 6.7: Remaining percentage of E. coli CFU after being in contact with the 

nanosilver halide hybrid PU K5000 materials for five days. 
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 Tested in natural 

light 

Tested in dark 

conditions 

CFU after 5 days of testing  

against E. coli [%] 
43 52 56 27 43 45 

 

 

When comparing the samples which were tested in dark conditions to their 

analogue samples tested in natural light, it is clearly observable the nanosilver 

halide hybrid PU K5000 samples tested in the natural light are more effective 

against E. coli than the analogue samples tested in dark conditions. As 

previously mentioned, as a result of their photosensitive characteristic silver 

halide nanoparticles are not stable under light irradiation. The absorption of a 

photon by the semiconductor AgX results in the corresponding generation of an 

electron and a positive hole. The formed electron will combine with an interstitial 

silver ion to form a separate silver atom. With repeating cycles of light 

absorption partial reduction of Ag+ will lead to formation of Ag0 nanodomains on 

the surface of the AgX particles. As such, the enhanced antibacterial activity of 

the hybrid materials may be correlated with the release of the silver ions 

deriving both from silver halide nanoparticles and from metallic silver 

nanoparticles present on the AgX surface. 

 

Silver/silver halide nanoparticles have been found to be active in visible light 

photocatalysis and progressively used as plasmonic photocatalysts. These 

materials have been reported to show excellent photocatalytic performance in 

the degradation of dyes, decomposition of harmful organic compounds and 

killing microorganisms.175,177,342,348,349 The literature suggests the mechanism for 

the degradation of these organic compounds is through radical formation. When 
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excited by light the electron-hole pair is created in the Ag/AgX system which 

then separates and migrates to the Ag and AgX regions of the particle 

respectively. Then both the electron and hole induce the radical formation. In an 

aqueous environment, the Ag0 region forms super oxide and other radical 

oxygen species that are able to oxidise and therefore degrade the organic 

compounds by the reduction of dissolved oxygen in solution.225,335,348,349 

Additionally, in a similar manner the hole in the AgX region forms X0 radical 

species. These X0 radical species are also able to degrade organic compounds by 

becoming reduced to halide ions again.168,174,178 Some examples for free radical 

formations are shown in the chemical equations below: 

 

 

X-  +  h+
  Cl0 

O2  +  e-    O2
˙- 

Cl0  +  organic compound    CO2  +  H2O  Cl- 

 

 

Hence, the enhanced antimicrobial activity of the nanosilver halide hybrid 

polyurethane K5000 latex paint base materials under exposure to light may be 

due to the photocatalytic destruction of microbial cells by formed radical species. 

Nevertheless, detailed investigations are required on the releasing mechanism of 

silver from the nanosilver halide hybrid polyurethane K5000 latex paint base 

materials as well as on formation of radical species. 

 

The nanosilver halide hybrid materials may find use as antimicrobial coatings for 

a wide variety of applications in the health and biomedical device industry, food 

industry, and personal hygiene industry. 
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6.8 Conclusions 

 

 

Nanosilver halide hybrid polymer materials were successfully produced using the 

synthesis procedures outlined in Section 2.2.3. The polymer matrices included 

polyurethane, nylon 6,6 and PU K5000 latex paint base. The silver halide 

nanoparticles were formed within the polymer matrices which provided 

simultaneously stabilisation for these nanoparticles. 

 

Owing to their wide band gaps silver chloride and silver bromide are not able to 

absorb light in the visible region. However, silver iodide absorbs light in the 

visible region. As such, nanosilver chloride and bromide hybrid polymers were 

white in colour; silver iodide containing hybrid polymer materials had slight 

yellow colouration. Because silver halide nanoparticles are photo-sensitive 

materials, upon exposure to light silver halide hybrid polymers changed in 

colour. In a self-photosensitisation process the Ag+ in the AgX are partially 

reduced to Ag0 nanodomains or nanoparticles at the surface of the AgX 

nanoparticles and small amounts of halides as their respective halogen gas are 

released.168,319 UV-Vis spectroscopy analyses of the nanosilver halide hybrid 

nylon 6,6 materials have shown that the samples containing AgCl and AgBr 

nanoparticles exhibit the characteristic absorbance in the UV region. Once 

exposed to light, the samples exhibit the absorbance in the UV and also in the 

visible region of light. The visible light absorbance is due to the SPR effect of the 

silver nanodomains formed at the AgX nanoparticle surface. It was 

demonstrated that the absorption peaks in the visible region of light are broad 

indicating the existence of a variety of silver nanoparticle sizes and shapes. 

These samples were purple-brown in colour. For the nanosilver iodide hybrid 

nylon 6,6 sample there was no obvious difference in the UV-Vis spectra after 

exposure to light which was ascribed to the low susceptibility of AgI to photolysis 

when compared to AgCl and AgBr. 

 

Electron microscopy analyses of the nanosilver halide hybrid polymer materials 

showed that silver halide particles were formed on the surface and within the 

polymer substrates. It was shown that a higher number of silver halide particles 

are formed just below the surface compared to the centre of the polymer 
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substrates. In the case of polyurethane as the substrate, the AgCl particles were 

varying in size between less than about 100 nm and up to about 1000 nm. 

Mostly the AgCl particles were found as cubes covered by non-uniform shaped 

and sized silver nanoparticles as a result of self-photosensitisation process. The 

AgBr particles were found to have irregular shapes and sizes, ranging from less 

than 100 nm to two hundred nanometres. For the nanosilver iodide hybrid PU 

materials the particles were mostly found on the surface of the polymer. For the 

nylon 6,6 samples the AgCl particles with non-uniform shapes were generally 

smaller than 100 nm. Occasionally some larger AgCl particles as well as particle 

agglomerates were observed. The AgX particles with a wide variety of shapes 

and sizes found in the nanosilver halide hybrid PU K5000 materials were well 

distributed within the PU K5000 matrix. The K5000-1000AgCl sample showed 

the presence of the AgCl nanoparticles between 15 and 100 nm in size. For the 

K5000-1000AgBr sample the formed AgBr nanoparticles were between 40 and 

500 nm in size, whereas the AgI particles in the K5000-1000AgI sample ranged 

from 20 nm to 500 nm in size. Upon exposure to light, it was shown that all AgX 

particles possessed non-uniform shaped silver nanoparticles formed on their 

surfaces. 

 

The XRD studies of these materials before exposure to direct light confirmed the 

presence of crystalline silver halides within the PU and polyurethane K5000 

materials. No diffraction peaks were detected for the nanosilver halide nylon 6,6 

materials presumably due to the low concentration of AgX particles in the 

polymer matrix. After being exposed to light the nanosilver halide hybrid PU and 

PU K5000 materials showed the presence of metallic silver which is due to the 

photosensitive characteristics of silver halide nanoparticles. The samples 

containing AgCl nanoparticles were more susceptible to light than those 

containing AgBr nanoparticles. The longer the samples were exposed to light the 

more silver halide was converted to metallic silver.  

 

XPS studies suggest an interaction between the silver on the surface of the AgX 

nanoparticles and the nitrogen and oxygen groups present in the PU matrix.  

 

Nanosilver halide hybrid polymer materials were shown to exhibit antimicrobial 

performance against the gram negative E. coli bacteria. The K5000-1000AgCl 
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sample was more effective against the bacteria than the K5000-1000AgBr which 

in turn killed more bacteria than the K5000-AgI sample. This fact was attributed 

to the relative solubilities of the silver halides which are responsible for the 

dissolution of different amounts of active Ag+ ions. The samples which were 

tested in direct light in comparison with the samples tested in dark conditions 

showed greater antimicrobial activity. The enhanced antibacterial activity of 

these hybrid materials is correlated with the release of the silver ions originating 

from silver halide nanoparticles and from metallic silver nanoparticles present on 

the AgX surface which are formed in the direct light. 
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7 Summary of Thesis 

 

 

This thesis has been focused on the synthesis of the new generation hybrid 

polymer materials and the characterisation of their novel optical, antimicrobial 

and antifouling properties. 

 

 

7.1 Nanogold and nanosilver hybrid polyurethane and nylon 6,6, 

materials 

 

 

Nanogold and nanosilver hybrid polyurethane and nylon 6,6 polymer materials 

have been successfully synthesised. For the redox reaction the carbamate and 

amide functional groups in PU and nylon 6,6 matrices respectively have been 

used to reduce Au3+ or Ag+ to Au0 or Ag0. Simultaneously, the polymer matrices 

stabilise the metal nanoparticles. The formed gold or silver nanoparticles are 

chemically bound to the surface and within the polymer matrix of PU or nylon 

6,6. The resultant hybrid materials exhibit the characteristic pink/purple and 

yellow/brown colours for gold and silver nanoparticles respectively due to their 

surface plasmon resonance effects. The reaction took place at 50 °C and 90 °C 

for the reduction of gold and silver ions respectively to metal nanoparticles. After 

24 hours the atomic absorption analyses demonstrated that the majority of gold 

and more than 60 % of silver ions were absorbed by the polymer substrates. 

The reaction parameters, such as time, temperature and the concentration of 

the metal ion solution influenced the uptake rate of Au3+ / Ag+ by the substrates 

and therefore the resultant colours of the hybrid materials. The hybrid polymer 

materials exhibit the characteristic SPR bands in the visible region of light for 

gold and silver. Increased metal ion contents in the solution for the synthesis of 

the hybrid polymer materials resulted in the peak broadening and peak shifts 

towards higher wavelengths reflecting the increase of the particle size and 

indicating the presence of particle agglomerations.  
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Electron microscopy studies of the nanogold and nanosilver hybrid PU and nylon 

6,6 materials have shown that the metal nanoparticles are formed on the 

surfaces and within the polymer matrices. The polymer interior provided better 

stabilisation of the nanoparticles resulting in smaller particle size compared to 

the particles found on the surface of the polymers. Silver nanoparticles are 

smaller than gold nanoparticles in both PU and nylon 6,6 substrates. The 

particles found in the PU polymer are larger than the analogue hybrid nylon 6,6 

materials which is believed to be due to the higher amount of metal ion uptake 

by PU compared to nylon 6,6 substrates. The gold nanoparticles in the hybrid 

polymer materials are spherical or spherical like in shape, few hexagonal, 

truncated triangular and rod shaped particles are also present. Silver 

nanoparticles are predominantly spherical.  

 

XPS studies suggest the gold and silver nanoparticles bind to the PU or nylon 6,6 

matrix through the covalent Au-N and Ag-N bonds respectively in the nitrogen-

containing carbamate or amine groups. There is also an ionic interaction 

between the unreduced negatively charged [AuCl4]- complex and the protonated 

nitrogen groups of nylon 6,6.  

 

The proposed mechanism of formation of the nanogold hybrid polyurethane and 

nylon 6,6 materials involves the reduction of Au3+ in the [AuCl4-] complex to 

nanoparticulate Au0 by the coupled oxidation of the carbamate groups of PU or 

amide groups of nylon 6,6. During the reaction some of the Au3+ ions will be 

reduced to Au+ by the nitrogen groups, forming the Au-N bonds and acting as 

nucleation sites. Further Au3+ are attracted to these Au-N nucleation sites where 

they are reduced to Au0, facilitated by the oxidation of adjacent nitrogen groups 

of the polymers. As a result of their affinity for nitrogen, silver ions interact with 

nitrogen groups in carbamates or amides. Additionally, the interaction between 

the silver ions and oxygen atoms of the polymer matrices is likely. Nitrogen 

entities are oxidised and provide the electrons for Ag+ ions to be reduced to Ag0, 

resulting in the formation of silver nanoparticles in the polymer matrix. The 

matrix restricts the size of the nanoparticles. The leaching tests have confirmed 

that the gold and silver nanoparticles are chemically bound to the polymer 

matrix. Only a very small amount of gold and silver leached out of the hybrid PU 
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materials within seven days of testing. These amounts are likely due to loosely 

bound gold or silver nanoparticles on the surface of the polymers.  

 

The nanogold and nanosilver hybrid polyurethane materials exhibit antimicrobial 

properties against gram negative E. coli bacteria. The production of the nanogold 

and nanosilver hybrid PU materials has been scaled up to produce larger 

amounts of the materials which were moulded into dog bone test strips via a 

conventional thermoplastic moulding process by the Centre for Advanced 

Composite Materials and the Plastics Centre of Excellence at the University of 

Auckland. The test strips show that the metal nanoparticles are distributed 

evenly through the moulded plastic, confirming that these nanoparticles do not 

affect the thermoplastic forming properties of the polymer substrates. 

 

 

7.2 Nanogold and nanosilver hybrid polyethylene terephthalate and 

silica based BULK ISOLUTE® SORBENTS (NH2) 

 

 

In order to build up a simple model for the confirmation of the nitrogen’s 

chemical affinity for gold and silver amine coated polyethylene terephthalate sail 

cloth and silica based Bulk isolute® sorbent (NH2) were utilised as alternative 

substrates for the production of hybrid materials. UV-Vis, SEM, XRD and XPS 

analyses demonstrated that the nitrogen-containing functional groups in these 

substrates are able to reduce Au3+ and Ag+ to Au0 and Ag0 respectively and 

subsequently bind the resultant metal nanoparticles to the substrate matrix. 

 

 

7.3 Nanogold and nanosilver hybrid polyurethane K5000 latex paint 

base materials 

 

 

Nanogold and nanosilver hybrid PU K5000 polymer materials have been 

successfully produced. In the redox reaction the carbamate functional groups of 

the PU K5000 material have been utilised to reduce in situ, the Au3+ or Ag+ to 
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Au0 or Ag0 respectively. The formed metal nanoparticles are chemically bound to 

the polymer matrix of the PU K5000 paint. The polymer matrix provides 

stabilisation for these gold and silver nanoparticles. The reaction took place at 

room temperature for 24 hours. The hybrid PU K5000 materials were produced 

at two dilutions, one set of samples (5g of liquid K5000 paint) has been 

produced from a 2.5 ml Au3+ / Ag+ solution and the second set from a 1.25 ml 

metal ion solution whilst the polymer to metal ion ratio for these samples was 

kept constant. The reaction parameters, such as time and the concentration of 

the utilised metal ion solution influenced the extent of nanoparticle formation 

and hence the colour of the resultant hybrid PU K5000 materials. The nanogold 

and nanosilver hybrid polyurethane K5000 materials have the characteristic SPR 

bands for gold and silver nanoparticles in the visible region of light. The SPR 

absorption bands of the nanogold hybrid PU K5000 samples prepared from a 2.5 

ml Au3+ solution are comparable to the SPR bands of the samples prepared from 

a 1.25 ml Au3+ solution. The nanosilver hybrid polyurethane K5000 samples 

prepared from the 2.5 ml Ag+ solution show a red shift an increase in FWHM of 

the respective absorption peaks suggesting a broader particle size distribution 

and particle agglomeration.  

 

The electron microscopic analyses of the nanogold and nanosilver hybrid PU 

K5000 materials demonstrate that the metal nanoparticles are uniformly 

distributed in the PU K5000 polymer phase and not the water phase of the paint 

formulation. The gold (~ 20 - 40 nm) and silver (~ 10 – 60 nm) nanoparticles 

are mostly spherical.  

 

The XRD studies of these materials confirm the presence of crystalline gold / 

silver within the hybrid PU K5000 materials. The mean crystallite size of the 

formed metal nanoparticles increases with increased concentration of employed 

ion solutions, and with the increased water content of those solutions. The XPS 

studies suggest the gold and silver nanoparticles bind to the PU K5000 matrix 

through the covalent Au-N and Ag-N bonds respectively to the nitrogen-

containing carbamate functional groups. The proposed mechanism of formation 

of the nanogold and nanosilver hybrid PU K5000 materials when metal ion 

solution is added to the PU K5000 latex paint base is believed to be the same 

one as for the formation of gold and silver nanoparticles in the hybrid 
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polyurethane materials as described in Section 7.1. Briefly, the metal ions are 

reduced by a coupled oxidation reaction of the carbamate groups in PU resulting 

in the formation of a new NOx species in the polymer matrix. The polymer matrix 

ensures the stabilisation of formed gold and silver nanoparticles in these 

materials. The leaching tests confirm the integrity of the chemical bond between 

the gold and silver nanoparticles and the polymer matrix. Only a very small 

amount of gold and silver leached out of the hybrid PU K5000 latex paint base 

materials after seven days of leaching. These amounts are believed to be due to 

residual unreduced gold or silver ions which are trapped in the polymer matrix. 

The production of the nanogold and nanosilver hybrid PU K5000 materials has 

been scaled up to produce larger amounts of the paints which were successfully 

tested by The Polymer Group Ltd in Auckland for their antifouling properties. 

Furthermore these materials show antimicrobial effects against gram negative E. 

coli bacteria. 

 

 

7.4 Nanosilver halide hybrid polyurethane, nylon 6,6 and PU K5000 

latex paint base materials 

 

 

Nanosilver halide hybrid polymer materials have successfully produced. 

Polyurethane, nylon 6,6 and PU K5000 latex paint base have been used as 

substrates. The substrate matrices were first doped with Cl-, Br- or I- (X-) ions 

and the reaction is completed by addition of silver nitrate solution. The 

mechanism of particle formation within the polymer matrix is believed to be one 

of precipitation of nanosize particles of AgX, with size control and stabilisation of 

the particles being mediated by the polymer itself. Due to their wide band gaps 

silver chloride and silver bromide do not absorb light in the visible region. Silver 

iodide, however, absorbs light in the visible region. As such, nanosilver chloride 

and bromide hybrid polymers are white in colour; nanosilver iodide hybrid 

polymer materials have yellow colouration. Silver halide nanoparticles are photo-

sensitive, as such, upon exposure to light, silver halide hybrid polymers change 

in colour. In a self-photosensitisation process the Ag+ in the AgX are partially 

reduced to Ag0 nanodomains or nanoparticles at the surface of the AgX 
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nanoparticles and small amounts of halides as their respective halogen gas are 

released. The UV-Vis spectroscopic analyses of the nanosilver chloride and 

bromide hybrid polymer materials have shown that the samples exhibit the 

characteristic absorbance peaks for AgCl and AgBr respectively in the UV region. 

After exposure to light, the samples exhibit an absorbance in the UV and the 

visible region of light. The visible light absorbance is due to the SPR effect of the 

silver nanodomains formed at the AgX nanoparticle surface. It has been 

demonstrated that the absorption peaks in the visible region are broad indicating 

the existence of a variety of silver nanoparticle sizes and shapes resulting in a 

purple-brown colouration of the samples. For the nanosilver iodide hybrid 

polymer materials no obvious difference in the UV-Vis spectra after exposure to 

light could be observed which is justified by the low susceptibility of AgI to 

photolysis when compared to AgCl and AgBr.  

 

Electron microscopy analyses of the nanosilver halide hybrid polymer materials 

confirm the silver halide particles form on the surface and within the matrix of 

the polymer substrates. It has been shown that a higher number of silver halide 

particles are formed just below the surface compared to the centre of the 

polymer substrates. For the polyurethane samples, the AgCl particles are cube 

shaped and vary in size between less than about 100 nm and up to about 1000 

nm. These AgCl particles are covered by non-uniform shaped and sized silver 

nanoparticles as a result of self-photosensitisation process. The AgBr particles 

have irregular shapes and sizes, ranging from less than about 200 nm. For the 

nanosilver iodide hybrid PU materials the particles were mostly found on the 

surface of the polymer. For the hybrid nylon 6,6 samples the AgCl particles with 

non-uniform shapes are smaller than 100 nm. However, some larger AgCl 

particles as well as particle agglomerates have been found. The AgX particles 

with a wide variety of shapes and sizes found in the nanosilver halide hybrid PU 

K5000 materials are well distributed within the PU K5000 matrix. The AgCl 

nanoparticles are between 15 and 100 nm in size, the AgBr nanoparticles are 

between 40 and 500 nm in size, whereas the AgI particles range from 20 nm to 

500 nm in size. Upon exposure to light, it has been demonstrated that all AgX 

particles possess non-uniform shaped silver nanoparticles formed on their 

surfaces.  
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The XRD studies of these materials before exposure to direct light confirmed the 

presence of crystalline silver halides within the PU and polyurethane K5000 

materials. No diffraction peaks were detected for the nanosilver halide nylon 6,6 

materials presumably due to the low concentration of AgX particles in the 

polymer matrix. After the exposure to light the nanosilver halide hybrid PU and 

PU K5000 materials show diffraction peaks for metallic silver which due to the 

photosensitive characteristics of these silver halide nanoparticles. The samples 

containing AgCl nanoparticles are more susceptible to light than those containing 

AgBr nanoparticles. The longer the samples are exposed to light the more silver 

halide is converted to metallic silver. The XPS analyses suggest an interaction 

between the silver on the surface of the AgX nanoparticles and the nitrogen and 

oxygen groups present in the PU matrix.  

 

The nanosilver halide hybrid polymer materials show antimicrobial performance 

against the gram negative E. coli bacteria. The sample containing AgCl 

nanoparticles is more effective against the bacteria than the one containing AgBr 

which in turn kills more bacteria than the sample with AgI nanoparticles. This 

effect is believed to be due to the solubilities of the silver halides which are 

responsible for the dissolution of different amounts of active Ag+ ions. The 

samples tested in direct light in comparison with the samples tested in dark 

conditions show greater antimicrobial activity which is correlated with the 

release of the silver ions originating from silver halide nanoparticles and also 

from metallic silver nanoparticles present on the AgX surface. 
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