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Abstract 

 

Understanding the different types of genetic population structure that characterise 

marine species, and the processes driving such patterns, is crucial for establishing links 

between the ecology and evolution of a species. This knowledge is vital for management 

and conservation of marine species. Genetic approaches are a powerful tool for revealing 

ecologically relevant insights to marine population dynamics. Geographic patterns of genetic 

population structure are largely determined by the rate at which individuals are exchanged 

among populations (termed ‘population connectivity’), which in turn is influenced by 

conditions in the physical environment. The complexity of the New Zealand marine 

environment makes it difficult to predict how physical oceanographic and environmental 

processes will influence connectivity in coastal marine organisms and hence the type of 

genetic structure that will form. This complexity presents a challenge for management of 

marine resources but also makes the New Zealand region an interesting model system to 

investigate how and why population structure develops and evolves over time.  

Paphies subtriangulata (tuatua) and P. australis (pipi) are endemic bivalve ‘surf 

clams’ commonly found on New Zealand surf beaches and harbour/estuary environments, 

respectively. They form important recreational, customary and commercial fisheries, yet 

little is known about the stock structure of these species. This study aimed to use genetic 

techniques to determine population structure, levels of connectivity and ‘seascape’ genetic 

patterns in P. subtriangulata and P. australis, and to gain further knowledge of common 

population genetic processes operating in the New Zealand coastal marine environment. 

Eleven and 14 novel microsatellite markers were developed for P. subtriangulata 

and P. australis, respectively. Samples were collected from 10 locations for P. subtriangulata 

and 13 locations for P. australis (35-57 samples per location; total sample size of 517 for P. 

subtriangulata and 674 for P. australis). Geographic patterns of genetic variation were 

measured and rates of migration among locations were estimated on recent and historic 

time scales. Both species were characterised by genetic population structure that was 
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consistent with their habitat. For P. subtriangulata, the Chatham Island population was 

strongly differentiated from the rest of the sampled locations. The majority of mainland 

locations were undifferentiated and estimated rates of migration among locations were 

high on both time scales investigated, although differentiation among some populations 

was observed. For P. australis, an overall isolation by distance (IBD) pattern was likely to be 

driven by distance between discrete estuary habitats. However, it was difficult to distinguish 

IBD from hierarchical structure as populations could be further subdivided into three 

significantly differentiated groups (Northern, South Eastern and South Western), providing 

evidence for barriers to dispersal. Further small scale patterns of genetic differentiation 

were observed in some locations, suggesting that complex current patterns and high self-

recruitment drive small scale genetic population structure in both P. subtriangulata and P. 

australis. 

These patterns of genetic variation were used in seascape genetic analyses to test 

for associations with environmental variables, with the purpose of understanding the 

processes that might shape genetic population structure in these two species. Although 

genetic population structure varied between the two species, common physical and 

environmental variables (geographic distance, sea surface temperature, bed slope, tidal 

currents) are likely to be involved in the structuring of populations. Results suggest that 

local adaptation, in combination with restricted dispersal, could play a role in driving the 

small scale patterns of genetic differentiation seen among some localities. 

Overall, the outcomes of this research fill a gap in our knowledge about the rates 

and routes by which populations are connected and the environmental factors influencing 

such patterns in the New Zealand marine environment. Other studies have highlighted the 

importance of using multi-faceted approaches to understand complex processes operating 

in the marine environment. The present study is an important first step in this direction as 

these methods are yet to be widely applied to New Zealand marine species. Importantly, 

this study used a comparative approach, applying standardised methodology to compare 

genetic population structure and migration across species. Such an approach is necessary if 

we wish to build a robust understanding of the spatial and temporal complexities of 

population dynamics in the New Zealand coastal marine environment, and to develop 

effective management strategies for our unique marine species. 



Acknowledgements 

| v  

Acknowledgements 

 

This PhD thesis would not have been possible without the guidance and support of 

many people. I thank my primary supervisor, Dr Peter Ritchie, for allowing me the freedom 

to develop and manage my research project, and for always being available in times of 

need. I am also grateful to my co-supervisors, Professor Jonathan Gardner, Associate 

Professor James Bell and Associate Professor Joe Zuccarello for their advice and valuable 

feedback on the content of this thesis. The feedback and knowledge that I have received 

from all of my supervisors has allowed me to mature as both a researcher and an academic. 

I would like to thank the other PhD students involved in the ‘coastal connectivity’ 

research group (Heather Constable and Catarina Silva) and those that shared the KK811 lab 

space with me, for their advice, help and friendship. In particular, Heather’s help was 

valuable in the early stages of developing the field and laboratory methods for this research. 

I have many fond memories of our great sample collecting road trip where we partook in 

many beers and ice creams at the beach. I would also like to thank everyone else who 

assisted me in sample collection: Bridgit Bretherton-Jones, Nick Devereaux, Douglas Long 

and James Williams (NIWA). 

This thesis was greatly improved by comments from Dr Monica Gruber and Darcy 

Webber. In particular Monica has been a fantastic office mate over the past few years and I 

am very grateful to her for sharing her knowledge and experience with me. I am also 

thankful to the administrative and technical staff at the School of Biological Sciences for 

their cheerful faces and assistance throughout my PhD. 

I would like to acknowledge Dr Andrew Munkacsi, Dr Sharyn Goldstien and Dr Chris 

Burridge for their time and effort spent in examining my thesis. They set a challenging and 

thorough test of my knowledge and skills, and certainly made me work hard to deservedly 

achieve my PhD. I appreciate the feedback they gave on my thesis, which will add value to 

the publications that arise from this research. I would also like to thank the staff of the 

Faculty of Graduate Research for their assistance with the examination process. 



Acknowledgements 

vi | 

Funding for this research was supplied via the Ministry for Primary Industries 

Biodiversity Research Advisory Group project ZBD2009-10. I am thankful for the financial 

support that they have supplied and it was a privilege as a post-graduate student to have 

the opportunity to participate in BRAG meetings and interact with some of New Zealand’s 

most prominent marine scientists. I am also grateful to Victoria University of Wellington for 

their financial assistance via a Doctoral Submission Scholarship. 

Finally I would like to thank all my family, friends and flatmates for their support and 

understanding over the last three years. I would like to thank the beautiful and talented 

ladies of the Victoria University Netball Club (NBHFL) for their incredible comradeship and 

for providing many a welcome distraction.  

My sister Adrienne and her partner Scott gave me a place to stay upon arrival in 

Wellington and have supplied a poor student with many a roast dinner.  

To my parents, Janet and Brian, I would not be where I was today if it wasn’t for the 

love and opportunities that you have supplied me with, and the encouragement and belief 

that I can always achieve and succeed beyond my own expectations in whatever I set my 

mind to. 

 



Table of Contents 

| vii  

Table of Contents 

 

Abstract .......................................................................................................................... iii 

Acknowledgements .......................................................................................................... v 

Table of Contents ........................................................................................................... vii 

List of Figures .................................................................................................................. xi 

List of Tables ................................................................................................................. xiii 

Abbreviations ................................................................................................................ xvii 

 

1 Introduction ............................................................................................................ 1 

1.1 Genetic population structure and connectivity in the marine environment .............. 1 

1.1.1 The link between genetic population structure, connectivity and larval 

dispersal ............................................................................................................. 1 

1.1.2 Theoretical considerations of genetic population structure and connectivity .. 2 

1.2 The New Zealand context ............................................................................................ 5 

1.3 Background to the study species ................................................................................. 6 

1.3.1 Biology and ecology of the study species .......................................................... 7 

1.3.2 Management of Paphies subtriangulata and Paphies australis fisheries .......... 9 

1.4 Research needs and predictions ................................................................................ 10 

1.5 Aims of the present research .................................................................................... 13 

 

2 Characterisation of novel microsatellite markers for Paphies subtriangulata and 

Paphies australis.................................................................................................... 17 

2.1 Introduction ............................................................................................................... 17 

2.2 Methods ..................................................................................................................... 18 



Table of Contents 

viii | 

2.3 Results ........................................................................................................................ 20 

2.4 Discussion .................................................................................................................. 29 

 

3 Spatially variable patterns of genetic population structure and connectivity in 

Paphies subtriangulata .......................................................................................... 31 

3.1 Introduction ............................................................................................................... 31 

3.2 Methods ..................................................................................................................... 34 

3.2.1 Sample collection and laboratory methods ..................................................... 34 

3.2.2 Data quality checks and genetic diversity analyses ......................................... 35 

3.2.3 Genetic population differentiation analyses.................................................... 37 

3.2.4 Estimation of migration rates........................................................................... 40 

3.3 Results ........................................................................................................................ 41 

3.3.1 Data quality checks and summary statistics .................................................... 41 

3.3.2 Genetic population differentiation .................................................................. 45 

3.3.3 Estimates of contemporary and historical migration ...................................... 60 

3.4 Discussion .................................................................................................................. 65 

3.4.1 Genetic diversity ............................................................................................... 65 

3.4.2 Genetic population structure ........................................................................... 66 

3.4.3 Patterns of migration ....................................................................................... 69 

3.4.4 Possible explanations for observed genetic population structure and 

migration .......................................................................................................... 71 

3.4.5 Conclusions ....................................................................................................... 74 

 

4 Interaction between habitat availability and oceanographic processes structure 

populations of an estuarine species: population genetics and connectivity in Paphies 

australis ................................................................................................................ 77 

4.1 Introduction ............................................................................................................... 77 



Table of Contents 

| ix  

4.2 Methods ..................................................................................................................... 80 

4.2.1 Sample collection and laboratory methods ..................................................... 80 

4.2.2 Genetic diversity, differentiation and migration analyses ............................... 81 

4.3 Results ........................................................................................................................ 84 

4.3.1 Data quality checks and summary statistics .................................................... 84 

4.3.2 Genetic population differentiation .................................................................. 87 

4.3.3 Estimates of contemporary and historical migration ...................................... 98 

4.4 Discussion ................................................................................................................ 102 

4.4.1 Genetic diversity ............................................................................................. 102 

4.4.2 Genetic population structure ......................................................................... 103 

4.4.3 Patterns of migration ..................................................................................... 106 

4.4.4 Possible explanations for observed genetic population structure and 

migration ........................................................................................................ 108 

4.4.5 Conclusions ..................................................................................................... 114 

 

5 Seascape genetic analysis of Paphies subtriangulata and Paphies australis: 

correlation between environmental and genetic variation and evidence for local 

adaptation in New Zealand’s coastal marine species ............................................ 115 

5.1 Introduction ............................................................................................................. 115 

5.2 Methods ................................................................................................................... 118 

5.2.1 Sample collection and population genetic data ............................................. 118 

5.2.2 Spatial genetic analyses ................................................................................. 118 

5.3 Results ...................................................................................................................... 121 

5.3.1 Correlation of variables .................................................................................. 121 

5.3.2 Generalised linear modelling ......................................................................... 125 

5.3.3 BEST analyses ................................................................................................. 132 



Table of Contents 

x | 

5.4 Discussion ................................................................................................................ 139 

5.4.1 Key variables driving genetic population structure ....................................... 140 

5.4.2 Links between genetic and environmental variation ..................................... 143 

5.4.3 Limitations to the seascape genetics approach and future directions .......... 148 

5.4.4 Conclusions ..................................................................................................... 150 

 

6 General Discussion .............................................................................................. 153 

6.1 Context and aims of the research............................................................................ 153 

6.2 Major findings .......................................................................................................... 154 

6.3 Synthesis .................................................................................................................. 157 

6.3.1 Comparison to other coastal marine species in New Zealand ....................... 162 

6.4 Implications of the research .................................................................................... 163 

6.4.1 Fishery management ...................................................................................... 163 

6.4.2 Local adaptation and the evolution of coastal marine species ..................... 166 

6.5 Contribution to the field and future research ......................................................... 169 

 

References ................................................................................................................... 173 

Appendix 1: Raw allelic frequency data ......................................................................... 193 

Appendix 2: Allele frequency graphs ............................................................................. 211 

Appendix 3: Allele discovery curves .............................................................................. 219 

Appendix 4: GLM and BEST input data .......................................................................... 227 

 

 



List of Figures 

| xi  

List of Figures 

 

Figure 1.1: A: The New Zealand marine environment, showing the location of notable 

landforms, major current patterns and water masses, bathymetry and the New Zealand 

exclusive economic zone (EEZ). B: Location of quota management areas (QMA) used for 

management of the commercial and recreational Paphies subtriangulata fishery. C: QMAs 

used for management of the commercial and recreational Paphies australis fishery ............. 4 

Figure 3.1: Collection locations for Paphies subtriangulata ................................................... 36 

Figure 3.2: Output of LOSITAN analysis for outlier loci for Paphies subtriangulata ............... 44 

Figure 3.3: Global FST for each locus for Paphies subtriangulata ............................................ 47 

Figure 3.4: Results of Mantel tests for IBD for all Paphies subtriangulata locations .............. 49 

Figure 3.5: Results of Mantel tests for IBD for mainland Paphies subtriangulata locations, 

excluding the Chatham Island population ............................................................................... 49 

Figure 3.6: Principal component analysis (PCA) for Paphies subtriangulata showing patterns 

of genetic population differentiation ...................................................................................... 50 

Figure 3.7: Plots to determine optimum K values for STRUCTURE analyses for Paphies 

subtriangulata .......................................................................................................................... 53 

Figure 3.8: Plots to determine optimum K values for AWclust analyses for Paphies 

subtriangulata .......................................................................................................................... 54 

Figure 3.9: Output from cluster analyses for all Paphies subtriangulata locations showing the 

proportion of each cluster assigned to each location ............................................................. 58 

Figure 3.10: Output from cluster analyses for mainland Paphies subtriangulata locations 

(excluding Chatham Island) showing the proportion of each cluster assigned to each 

population ................................................................................................................................ 59 

Figure 3.11: Recent migration rates for Paphies subtriangulata determined by BAYESASS .. 63 

Figure 4.1: Collection locations for Paphies australis ............................................................. 83 

Figure 4.2: Output of LOSITAN analysis for outlier loci for Paphies australis ......................... 86 

Figure 4.3: Global FST for each locus for Paphies australis ...................................................... 88 

Figure 4.4: Results of Mantel tests for IBD for Paphies australis ............................................ 91 



List of Figures 

xii | 

Figure 4.5: Principal component analysis (PCA) for Paphies australis showing patterns of 

genetic differentiation among locations ................................................................................. 92 

Figure 4.6: Plots to determine optimum K values for STRUCTURE and AWclust analyses ..... 95 

Figure 4.7: Output from cluster analyses for Paphies australis showing the proportion of 

each cluster assigned to each location .................................................................................... 97 

Figure 4.8: Recent migration rates for Paphies australis as determined by BAYESASS ........ 100 

Figure 5.1: Principal component analysis for geospatial and Marine Environment 

Classification variables conducted in STATISTICA v.10 for Paphies subtriangulata .............. 124 

Figure 5.2: Principal  component  analysis  for  Paphies  australis conducted  in  STATISTICA 

v.10 ......................................................................................................................................... 124 

Supplementary Figure 1: Total frequency of observed alleles at each locus for all locations 

of Paphies subtriangulata ...................................................................................................... 211 

Supplementary Figure 2: Total frequency of observed alleles at each locus for all locations 

of Paphies australis ................................................................................................................ 211 

Supplementary Figure 3: Allele discovery curves for all Paphies subtriangulata loci 

generated in the R package PopGenKit (Rousset 2008) ........................................................ 219 

Supplementary Figure 4: Allele discovery curves for all Paphies australis loci generated in 

the R package PopGenKit (Rousset 2008) ............................................................................. 219 

 

 

 

 

 



List of Tables 

| xiii  

List of Tables 

 

Table 2.1: Summary of 454 sequencing reads and microsatellite primer design for Paphies 

subtriangulata and P. australis ................................................................................................ 21 

Table 2.2: Characteristics of the microsatellite markers developed for Paphies 

subtriangulata and P. australis ................................................................................................ 22 

Table 3.1: Location, number of samples and geographical co-ordinates for Paphies 

subtriangulata samples used in this study .............................................................................. 37 

Table 3.2: Hardy-Weinberg equilibrium (HWE) p-values for each locus and location for 

Paphies subtriangulata ............................................................................................................ 43 

Table 3.3: Genetic diversity statistics for Paphies subtriangulata loci.................................... 44 

Table 3.4: Genetic diversity statistics for each location and total for Paphies subtriangulata

.................................................................................................................................................. 44 

Table 3.5: Pairwise FST values among Paphies subtriangulata locations ................................ 48 

Table 3.6: Pairwise φ’ST values among Paphies subtriangulata locations .............................. 48 

Table 3.7: AMOVA analyses for Paphies subtriangulata ......................................................... 51 

Table 3.8: Proportion of clusters found at Paphies subtriangulata locations from STRUCTURE 

and AWclust analyses .............................................................................................................. 56 

Table 3.9: Results of an assignment test to detect first generation (F0) migrants at each 

Paphies subtriangulata location, conducted in GENECLASS2 ................................................. 62 

Table 3.10: Estimates of the number of migrants per generation (Nem), the population size 

parameter theta (θ), their credible intervals and effective population size (Ne, using the 

mutation rate 1 x 10 -4) for Paphies subtriangulata ................................................................ 64 

Table 4.1: Location, number of samples and geographical co-ordinates for Paphies australis 

samples used in this study ....................................................................................................... 82 

Table 4.2: Hardy-Weinberg equilibrium (HWE) p-values for each locus and location for 

Paphies australis ...................................................................................................................... 85 

Table 4.3: Diversity statistics for Paphies australis loci used in this study ............................. 86 

Table 4.4: Genetic diversity statistics for each location and total for Paphies australis ........ 86 

Table 4.5: Pairwise FST values among Paphies australis locations .......................................... 89 



List of Tables 

xiv | 

Table 4.6: Pairwise φ’ST values among Paphies australis locations ......................................... 90 

Table 4.7: AMOVA analyses for Paphies australis ................................................................... 93 

Table 4.8: Proportion of clusters found at Paphies australis locations from STRUCTURE and 

AWclust analyses ..................................................................................................................... 96 

Table 4.9: Results of an assignment test to detect first generation (F0) migrants at each 

Paphies australis location, conducted in GENECLASS2 ........................................................... 99 

Table 4.10: Estimates of the number of migrants per generation (Nem), the population size 

parameter theta (θ), their credible intervals and effective population size (Ne, using the 

mutation rate 1 x 10 -4) for Paphies australis ........................................................................ 100 

Table 5.1: Environmental variables, definitions, abbreviations and units from A: the Marine 

Environment Classification (MEC) scheme (New Zealand Ministry for the Environment 2005) 

and B: the Estuarine Environment Classification (EEC) scheme (Hume et al. 2007)  ............ 119 

Table 5.2: Correlations between Marine Environment Classification variables for Paphies 

subtriangulata ........................................................................................................................ 122 

Table 5.3: Correlations between A: Marine Environment Classification variables, B: Estuarine 

Environment Classification and C: Marine and Estuarine Environment Classification variables 

combined for Paphies australis ............................................................................................. 123 

Table 5.4: Results of generalised linear model analyses for Paphies subtriangulata 

implemented in STATISTICA v.10 ........................................................................................... 127 

Table 5.5: Results of generalised linear model analyses for Paphies subtriangulata 

implemented in STATISTICA v.10 where separate models were run for geospatial and 

environmental variables ........................................................................................................ 128 

Table 5.6: Results of generalised linear model analyses for Paphies australis implemented in 

STATISTICA v.10 ..................................................................................................................... 129 

Table 5.7: Results of generalised linear model analyses for Paphies australis implemented in 

STATISTICA v.10 where separate models were run for geospatial, MEC and EEC variables. 131 

Table 5.8: Results of BEST analyses for Paphies subtriangulata as implemented in Primer v.6

................................................................................................................................................ 136 

Table 5.9: Results of BEST analyses for Paphies australis as implemented in Primer v.6.. .. 136 

Table 5.10: Summary and comparison of GLZ and BEST results ........................................... 141 

Supplementary Table 1: Raw allele frequencies for 11 Paphies subtriangulata microsatellite 

loci for each location and total frequency for all individuals sampled.................................. 193 



List of Tables 

| xv  

Supplementary Table 2: Raw allele frequencies for 13 Paphies australis microsatellite loci 

for each location and total frequency for all individuals sampled ........................................ 193 

Supplementary Table 3: Raw input data used in generalised linear model (GLM) and 

biological environmental stepwise (BEST) analyses for Paphies subtriangulata .................. 227 

Supplementary Table 4: Raw input data used in generalised linear model (GLM) and 

biological environmental stepwise (BEST) analyses for Paphies australis ............................ 227 

 

  



List of Tables 

xvi | 

 

 



Abbreviations 

| xvii  

Abbreviations 

 

°C Degrees Celsius 

°C km-1 Degrees Celsius per kilometre 

ACC Antarctic Circumpolar Front 

AIC Akaike information criterion 

AMOVA Analysis of molecular variance 

BEST Biological environmental stepwise 

BLU Bluff 

bp Base pair 

CGP Chaotic genetic patchiness 

CHA Chatham Island 

CI Credible Interval 

cm Centimetre 

COL Collingwood 

DBT Doubtful Sound 

DC D’Urville Current 

ddH2O Double distilled water 

dNTP Deoxynucleotide triphosphate 

E East 

EAUC East Auckland Current 

ECC East Cape Current 

ECE East Cape Eddy 

EEC Estuarine Environment Classification 

EEZ Exclusive economic zone 

F0 First generation migrant 

FDR False discovery rate 

GLZ Generalised linear model 

HAK Hakahaka Bay 

HE Expected heterozygosity 

HO Observed heterozygosity 

HUI Huia 



Abbreviations 

xviii | 

HWE Hardy-Weinberg equilibrium 

IBD Isolation by distance 

KAK Kakamatua 

KAR Karamea 

km Kilometre 

LGM Last glacial maximum 

LYT Lyttelton 

µ Mutation rate 

µl Microlitre 

µM Micromole 

m Metre 

m Migration rate 

MAR Marfell Beach 

MCMC Markov chain Monte Carlo 

MEC Marine Environment Classification 

mg Milligram 

MgCl2 Magnesium chloride 

mL Millilitre 

mm Millimetre 

mM Millimole 

m s-1 Metres per second 

n Sample size 

N Census population size 

Na Number of alleles 

NAP Napier 

NCE North Cape Eddy 

Ne Effective population size 

Nem Effective number of migrants 

NF Frequency of null alleles 

ng Nanogram 

NGS Next generation sequencing 

OAK Oakura 

OKU Okuru 

PA Private alleles 



Abbreviations 

| xix  

PAP Papamoa 

PCA Principal component analysis 

PCR Polymerase chain reaction 

PET Petone 

P(HWE) Hardy-Weinberg equilibrium probability value 

PKR Paekakariki 

PLD Pelagic larval duration 

QMA Quota management area 

QMS Quota management system 

Ra Allelic richness 

RAG Raglan 

RS Spearman rank co-efficient 

RUA Ruakaka 

S South 

SAF SubAntarctic Front 

SC Southland Current 

SRS Sweepstakes reproductive success 

SST Sea surface temperature 

STF Subtropical Front 

θ Population size parameter ‘theta’ 

t Tonnes 

TACC Total allowable commercial catch 

TAP Tapotupotu Bay 

TAU Tauranga 

TF Tasman Front 

W West 

WAI Waiwera 

WAUC West Auckland Current 

WC Westland Current 

WCC Wairarapa Coastal Current 

WE Wairarapa Eddy 

W m-2 Watts per metre squared 

WMR Waimarama 

WPK Waipapakauri 



Abbreviations 

xx | 

 

 



Introduction 

| 1  

1 Introduction 

1.1 Genetic population structure and connectivity in the marine 

environment 

1.1.1 The link between genetic population structure, connectivity and larval dispersal 

Understanding the different types of genetic population structure that characterise 

marine species, and the processes driving such patterns, is crucial for establishing links 

between the ecology and evolution of a species. The geographic distribution of individuals 

within a species’ range (i.e., population structure) is largely determined by the rate at which 

individuals are exchanged between geographically separated populations, termed 

‘population connectivity’ (Cowen et al. 2007). Many marine species are characterised by a 

bi-phasic life history, whereby adults are relatively sedentary compared to their larvae, 

which are released into the ocean environment. Therefore, it is the processes operating at 

the larval stage that largely determine the ability of larvae to disperse between 

geographically distinct locations and the type of population structure that will form. These 

processes are related to both the life history characteristics of the organism and the physical 

features of the ocean environment (Cowen & Sponaugle 2009). The small size of larvae 

relative to the large ocean environment poses a challenge when it comes to tracking 

dispersal routes among geographic locations. A range of methods are available to 

investigate population structure and connectivity (Levin 2006), of which population genetics 

is an increasingly powerful tool for revealing population processes operating at a range of 

spatial and temporal scales. 

In the marine environment a continuum of genetic population structure exists, which 

ranges from ‘open’ to ‘closed’, and is attributed to relative levels of connectivity. In ‘open’ 

populations individuals are received and exported among populations, gene flow is high, 

random genetic drift is limited and there should be little opportunity for accumulation of 

genetic differences among populations. In ‘closed’ populations there is limited exchange of 

individuals among geographically separated populations, leading to reduced gene flow and 
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differentiation of populations via genetic drift or natural selection. Due to the inter-

connected nature of the marine environment and perceived lack of barriers to larval 

dispersal, it has been predicted that most species should be characterised by ‘open’ 

population structure. Early studies using allozyme markers tended to support this view 

(Levin 2006).  

The recent development of molecular markers with higher resolution has revealed 

that marine populations can possess genetic structure that is consistent with a ‘closed’ 

population model, meaning that barriers to larval dispersal do exist in the ocean and that 

populations may rely on self-recruitment to varying extent (Swearer et al. 2002). This 

phenomenon has been particularly well documented for reef fish (Jones et al. 1999; Swearer 

et al. 1999) as well as an increasing number of invertebrate taxa such as crabs, oysters, 

mussels, tiger shrimp, starfish, copepods and snails (Palumbi 2003). In the past much has 

been made of the role of pelagic larval duration (PLD) in shaping population structure, based 

on the assumption that longer PLD will allow larvae to disperse greater distances and 

populations will have greater connectivity (Bohonak 1999). However, re-examination of this 

relationship has provided conflicting views as to whether population connectivity can be 

considered a simple function of PLD (Bradbury et al. 2008b; Shanks 2009; Shanks et al. 2003; 

Weersing & Toonen 2009). Although there is some value in considering PLD as a simplistic 

proxy for dispersal ability, it seems that larvae cannot be viewed as passive particles at the 

mercy of ocean currents. Instead a number of factors, such as spawning output, 

oceanographic features, larval behaviour, predator/prey interactions, availability of suitable 

habitat, local adaptation and post-settlement survival (Cowen & Sponaugle 2009) can 

interact to modify larval distribution, promote self-recruitment and shape the genetic 

structure of populations.  

1.1.2 Theoretical considerations of genetic population structure and connectivity 

The inherent variability of the physical marine environment poses a challenge for 

analysing the genetic attributes of a species. For this reason population genetic analyses 

often involve matching measured genetic population structure to a few models that are 

based on simplified and stable population states. The theoretical basis of these models 

dates back to the work of Sewall Wright (1931, 1951), who proposed an ‘island’ model 

where populations of equal size are linked by equal numbers of migrants being exchanged 
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at a constant rate per generation. The island model is unlikely to be a realistic 

representation of the structure of most natural populations. The ‘stepping-stone’ model 

(Slatkin 1993) is thought to more realistically represent the ‘linear’ distribution of marine 

populations along a coastline. Under the stepping-stone model, populations exchange 

migrants with neighbouring populations at a greater rate than they do with more 

geographically distant populations. This migration model should result in an isolation by 

distance (IBD) pattern of genetic population structure, where geographically proximate 

populations are more genetically similar. Alternatively, populations that have unrestricted 

dispersal and lack geographic patterns of genetic structure are considered to have a single 

‘panmictic’ gene pool. 

The classical view of population genetics is that the type of population structure that 

forms is determined by the relative contribution and interaction of four forces: random 

genetic drift, gene flow, mutation and selection. Of these forces gene flow, or the effective 

exchange of migrants among populations per generation, is usually of most interest to 

population geneticists when determining connectivity among populations. Mutation and 

selection often receive little attention and are considered to be negligible, whereas the 

impact of genetic drift on allele frequencies should only become significant when gene flow 

and population sizes are relatively low (Hellberg et al. 2002). It is estimated that an effective 

migration rate of only one individual per generation is sufficient to counteract the effects of 

drift (Slatkin 1987). However, it is important to remember that low levels of gene flow might 

not be ‘demographically’ significant and populations may not be ecologically connected 

until the migration rate is greater than 10% of the population size (Hastings 1993). 

As our knowledge of population genetics in marine species develops it is becoming 

increasingly evident that these simple theoretical models cannot sufficiently account for the 

complexity of processes and patterns that are observed. A greater understanding of the 

physical and ecological processes experienced by marine species has highlighted the 

stochastic and unpredictable nature of these processes (Siegel et al. 2008). It is becoming 

increasingly recognised that multi-disciplinary approaches combining genetic and ecological 

information are required to fully understand how population genetic structure is formed 

and evolves over time (Selkoe et al. 2010).  
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Figure 1.1: A: The New Zealand marine environment, showing the location of notable landforms, 

major current patterns and water masses, bathymetry and the New Zealand exclusive economic 

zone (EEZ). Abbreviations used for currents and water masses are as follows: Tasman Front (TF), East 

Auckland Current (EAUC), West Auckland Current (WAUC), North Cape Eddy (NCE), East Cape Eddy 

(ECE), East Coast Current (ECC), Wairarapa Eddy (WE), D’Urville Current (DC), Wairarapa Coastal 

Current (WCC), Westland Current (WC), Southland Current (SC), Subtropical Front (STF), Sub-

Antarctic Front (SAF), Antarctic Circumpolar Current (ACC). Redrawn after Laing & Chiswell (2003). B: 

Location of quota management areas (QMA) used for management of the commercial and 

recreational Paphies subtriangulata fishery. C: QMAs used for management of the commercial and 

recreational Paphies australis fishery. 
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1.2 The New Zealand context 

New Zealand is an archipelago of over 700 islands, stretching from the subtropical 

Kermadec Islands at 29 S to sub-Antarctic Campbell Island at 52 S (Figure 1.1A). The 

oceanography of the region is complex; it straddles the subtropical convergence and is 

influenced by the inflow of both warm sub-tropical and cold sub-Antarctic water masses 

(Laing & Chiswell 2003). Major westerly flowing current systems reach the continental shelf 

and are divided into numerous coastal currents and eddies. The latitudinal extent of the 

country means that significant north-south gradients exist in the environmental variables 

that characterise the physical ocean environment (Francis & Nelson 2003). It  is difficult to 

predict the effect this complexity might have on the populations of marine organisms 

inhabiting the coastal marine environment (Ross et al. 2009). However, it is the complexity 

of the region that makes it ideal for investigating how current systems and variability in 

environmental characteristics can influence patterns of genetic structure and connectivity in 

coastal marine species. New Zealand’s large exclusive economic zone (EEZ) contains a huge 

diversity of marine organisms, many of which are endemic and commercially valuable 

(Gordon et al. 2010). Understanding the patterns of connectivity that can exist among 

coastal marine species in the New Zealand region, and how they might arise, is essential for 

sustainable fisheries management, conservation and for biosecurity purposes.  

To understand the effect that complex coastal marine environments can have on 

genetic population structure it is often useful to compare population genetic patterns across 

many species in the same region. This can be a powerful way to identify common or 

unexpected geographic barriers and patterns of connectivity, and can suggest hypotheses 

about the processes that form such patterns. Studies from the north-eastern Pacific have 

demonstrated the merit of this approach. For example, Kelly and Palumbi (2010) compared 

the genetic population structure of 50 rocky intertidal species from Alaska to California and 

found evidence for unexpected regional patterns of genetic variation. Furthermore, they 

found that habitat (in terms of height in the intertidal zone) had a strong influence on levels 

of genetic subdivision within a species. A further example from Pacific reef fish 

demonstrates how, by comparing connectivity patterns among several species, unexpected 

cases of gene flow could be detected across a well-established biogeographic barrier, which 

was previously thought to be largely impermeable (Lessios & Robertson 2006). These 



Introduction 

6 | 

studies demonstrate the value of comparing patterns of genetic population structure 

between species to understand connectivity at the ecosystem wide level required for large-

scale management efforts. The attributes of the New Zealand coastal marine environment 

(as described above) make it an ideal region in which to repeat similar multi-species 

investigations. 

The patterns of genetic population structure observed in New Zealand coastal 

marine species have been reviewed elsewhere (Gardner et al. 2010; Ross et al. 2009). 

Gardner et al. (2010) identified common patterns of genetic population structure by 

reviewing 58 studies of 42 coastal marine organisms, and summarised the patterns of 

observed genetic structure into five categories. Sixteen of these studies reported no genetic 

structure among populations, 9 reported isolation by distance, 12 reported divergence 

within and/or among populations, one reported east-west divergence and 19 north-south 

divergence. In studies that reported genetic breaks among populations, sampling effort was 

often insufficient to determine the geographic location of the barrier but studies that 

described north-south differentiation commonly reported the location of that break at 

around 41-42° S, the approximate location of Cook Strait. The review also identified habitat 

types (such as estuarine, soft substrate and open coast habitats) and geographic locations 

that had been poorly surveyed, and recommended that these knowledge gaps be filled. 

Choice of study species for the present research is therefore based on the 

recommendations of Gardner et al. (2010). 

1.3 Background to the study species 

The tuatua (Paphies subtriangulata; Wood 1928) and pipi (P. australis; Gmelin 1791) 

are bivalve molluscs belonging to the family Mesodesmatidae. In New Zealand the genus 

Paphies is comprised of large, edible ‘surf clams’, which also include the toheroa (P. 

ventricosa) and deep water tuatua (P. donacina). All four species form important 

recreational and customary fisheries and some support modest commercial catches (< 205 

tonnes; Hooker 1997; New Zealand Ministry for Primary Industries 2013a; b; Redfearn 

1987). 

Paphies subtriangulata and P. australis have a widespread distribution around all of 

New Zealand and on offshore islands, including the Chatham Islands (both species) and 
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Auckland Island (P. australis) (Powell 1979). Paphies subtriangulata is one of the most 

abundant infaunal bivalves on fine-sand, open coast beaches and can be found from the low 

intertidal to depths of about four metres (Redfearn 1987). Paphies australis is characteristic 

of coarse shell and sand substrates in sheltered harbour and estuary environments, and can 

be found from the intertidal to depths of seven metres in channel areas (Morton & Miller 

1968). The two species are known to coexist where these two habitats overlap, such as 

harbour entrances or sheltered sandy beaches (Grant et al. 1998). 

1.3.1 Biology and ecology of the study species 

1.3.1.1 Paphies subtriangulata 

Paphies subtriangulata is gonochoristic and reproduces sexually by free-spawning of 

gametes, followed by external fertilisation. In the north-east of the North Island spawning is 

known to occur from February to April, followed by regeneration of the gonad from May to 

late August and resumption of spawning activity from September to November (Grant & 

Creese 1995). Only a small proportion of the population spawns at one time and there are 

large variations in spawning activity over the spawning period (Grant & Creese 1995). Due to 

similarities in their reproductive behaviour, P. subtriangulata and P. australis have been 

observed spawning synchronously in areas where their habitat overlaps, suggesting the 

possibility of hybridisation. In vitro experiments suggest that hybridisation can occur 

between these two species at high sperm concentrations, although in the natural 

environment it is likely to be minimal due to potential prezygotic reproductive 

incompatibility (Grant et al. 1998). 

The pelagic larval period lasts two to three weeks before settlement to the adult 

habitat (Redfearn 1987). Settlement occurs high in the intertidal, but spat and juveniles are 

highly mobile, moving around in the swash zone and quickly reburying themselves. 

Mortality at this stage is thought to be high, as is common with most surf clam species (New 

Zealand Ministry for Primary Industries 2013b). Growth is rapid but variable, with a shell 

length of 40 to 70 mm reached in about 3 years. Maximum length varies among areas, 

ranging from about 50 to 80 mm (New Zealand Ministry for Primary Industries 2013b). As 

individuals grow larger they migrate down the beach to occupy the lower intertidal and 

shallow subtidal. Adults are filter feeders and can be found wedged a few centimetres 
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below the surface of the sand, with the siphon end often exposed and discoloured by a 

green or brown algal film (Richardson et al. 1982). Maximum age is probably about five or 

more years (New Zealand Ministry for Primary Industries 2013b). 

There has been some confusion over the status of tuatua in New Zealand due to the 

morphological similarity of the tuatua (P. subtriangulata) and the deep water tuatua (P. 

donacina). Initially it was proposed that the two species represented two ends of a 

geographic cline as P. subtriangulata is more commonly found on northern beaches and P. 

donacina more common on southern beaches (Beu & de Rooij-Schuiling 1982). Their status 

was resolved by examination of shell shape and colour, adductor muscle colour, and an 

electrophoretic marker which clearly revealed that they were separate species (Richardson 

et al. 1982). Variability in P. subtriangulata morphology has been noted from different 

populations around New Zealand. Shells from the north-east coast of the North Island have 

a different shape to those from Wellington beaches, large animals (> 80 mm) are found on 

east coast South Island beaches (Smith et al. 1989), and shells from the Chatham Islands 

have been considered a third species of tuatua, P. porrecta (Beu & de Rooij-Schuiling 1982). 

An investigation of allozyme polymorphism at four loci from 13 locations around New 

Zealand indicated the presence of three geographical groups of P. subtriangulata: north, 

central, and Chatham Island (Smith et al. 1989). Samples from Stewart Island may represent 

a fourth southern group owing to this population’s geographical isolation and genetic 

differences with the central group (Smith et al. 1989). 

1.3.1.2 Paphies australis 

Paphies australis has a similar reproductive cycle to P. subtriangulata. Separate 

sexes release gametes into the water column, followed by external fertilisation. Sexual 

maturity occurs at a shell length of about 40 mm (Hooker & Creese 1995a). Gametes begin 

to form in autumn and by late winter gonads are mature and ready to spawn (Hooker & 

Creese 1995b). The gametes are released over an extended spawning period from late 

winter to late summer, usually as a series of partial spawning events (Hooker & Creese 

1995a). The fertilised eggs develop into planktotropic larvae, which spend approximately 

three weeks in the pelagic environment before metamorphosis and settlement to the adult 

habitat (Hooker 1997). After settlement juveniles are generally sedentary, but there is 
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evidence that juveniles can actively migrate via drifting by buoying themselves up using 

mucus threads secreted by their siphons (Hooker 1995). 

Juvenile growth appears to be rapid at first, with a length of 40 mm reached in 

approximately 18 months, and 55 to 60 mm reached by three to four years of age (Hooker 

1997). Adults can reach up to 90 mm shell length. There appears to be a strong seasonal 

difference in growth rates, with rapid growth occurring in spring and summer, and slower 

growth rates during autumn and winter (Hooker 1997). Adults are suspension feeders with 

short siphons, and can be found in quite high densities just below the surface of the sand 

with their posterior end protruding (Williams et al. 2007).  

Little is known about mortality and longevity in P. australis but it has been suggested 

that they can live up to 10 years (Williams et al. 2007). Post-recruitment mortality is known 

to be high in juveniles, and appears to be related to extremely localised recruitment and 

high population densities on a small spatial scale (Cole et al. 2000). Salinity is also known to 

affect mortality as prolonged exposure to low salinity environments results in increased 

mortality (McLeod & Wing 2008). Paphies australis inhabits a dynamic environment that is 

subject to continual erosion and sedimentation processes caused by both natural and 

anthropogenic events. Prolonged exposure will result in predation mortality, whereas their 

short siphons mean that burial will result in starvation and a lack of oxygen. An investigation 

of burrowing behaviour in this species suggests that in their natural orientation, they are 

able to rebury and can survive sediment inundations of up to 10 cm per day (Hull et al. 

1998). Burrowing ability is slow compared to other New Zealand clams, such as P. 

subtriangulata and the trough shell (Mactra discors), but they have the ability to support 

anaerobic energy production whilst buried (Carroll & Wells 1995). 

1.3.2 Management of Paphies subtriangulata and Paphies australis fisheries 

Paphies subtriangulata and P. australis are both managed under the quota 

management system (QMS) yet there is little information on the stock structure of these 

species. The fisheries are primarily recreational and customary with shellfish being gathered 

by hand, but the level of recreational/customary harvest is unknown and there is no 

minimum legal size (New Zealand Ministry for Primary Industries 2013a; b). The recreational 

daily catch limit for both species is 150 per person. Many stocks are assumed to be near 
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virgin biomass but there is concern for depletion of some local stocks, especially in the 

Auckland-Coromandel region where the limit has been reduced to 50 per person per day. 

High variability in larval recruitment is likely to mean that biomass is also highly variable 

(New Zealand Ministry for Primary Industries 2013a; b).  

Commercial harvest of P. subtriangulata is a dredge fishery restricted to the Kaipara 

Harbour in the TUA 9 quota management area (QMA) with a total allowable commercial 

catch (TACC) of 43 t per year (Figure 1.1B; New Zealand Ministry for Primary Industries 

2013b). Commercial harvest of P. australis primarily comes from Mair Bank Whangarei, in 

the PPI 1A QMA, with a TACC of 200 t per year (Figure 1.1C; New Zealand Ministry for 

Primary Industries 2013a). It has been estimated that P. australis is harvested below the 

maximum sustainable yield but it is unknown if these levels of harvest are sustainable in the 

long term (New Zealand Ministry for Fisheries 2010). The status of all P. subtriangulata 

stocks is unknown (New Zealand Ministry for Primary Industries 2013b).  

1.4 Research needs and predictions 

While a previous study of allozyme variation in P. subtriangulata suggests that some 

population differentiation might be present in this species (Smith et al. 1989), it is unknown 

if genetically distinct populations of P. australis exist and how patterns of genetic variation 

might be geographically structured. Further investigation of P. subtriangulata genetic 

population structure using microsatellite markers is worthwhile as microsatellites can 

provide more resolution than allozyme markers. Patterns and rates of larval movement 

among populations, and the physical/environmental variables that influence genetic 

population structure are also unknown for both species. Information regarding a species’ 

genetic structure and population connectivity is required for sustainable management of 

fisheries. Additionally, such information will contribute to a growing body of literature on 

patterns of genetic population connectivity in the New Zealand marine environment, 

particularly as these species are characteristic of habitats that have been under-represented 

in past studies (Gardner et al. 2010). As patterns of marine connectivity in New Zealand 

become better understood, this will assist with marine biosecurity, fisheries management 

and identification of appropriate sites for marine protected areas. 
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Based on what is known about the ecology and reproductive biology of P. 

subtriangulata and P. australis, some predictions can be made about the type of genetic 

population structure likely to be observed in this study. Both species have pelagic larval 

durations of approximately three weeks, allowing larvae to potentially disperse among 

populations separated by several hundred kilometres (Shanks 2009; Shanks et al. 2003). The 

primary way in which these two species differ is in their habitat. The open sandy coastlines 

inhabited by P. subtriangulata are thought to be characterised by fewer barriers to larval 

dispersal. Several studies of bivalves inhabiting such environments, such as the soft-shell 

clam (Mya arenaria; Strasser & Barber 2008), the Arctic surf clam (Mactromeris polynyma; 

Cassista & Hart 2007) and the surf clams Donax serra  and D. deltoides (Laudien et al. 2003; 

Murray-Jones & Ayre 1997), have revealed little genetic structure among populations 

separated by thousands of kilometres. Other studies have revealed some structure among 

populations but usually associated with a biogeographic break (Merceneria merceneria; 

Baker et al. 2008) a physical barrier (Coelomactra antiquate; Kong et al. 2007) or isolation by 

distance (Mactra veneriformis; Hou et al. 2006). As mentioned previously, an earlier study of 

P. subtriangulata suggests that some genetic differentiation among populations may exist, 

implying that there are barriers to dispersal for the larvae of this species (Smith et al. 1989). 

In comparison, the estuarine habitats favoured by P. australis often represent 

discrete environments separated from each other by ecological and geographic barriers. 

Therefore it is expected that the exchange of individuals between estuaries will be limited, 

leading to the genetic differentiation of populations (Bilton 2002). However, on a geological 

timescale estuaries can be transitory. The origin of many present day estuaries is likely to be 

recent, so it is possible that there has been little time for the accumulation of genetic 

differentiation among populations in such habitats (Williams et al. 2008). Presently the only 

study of an estuarine bivalve in New Zealand has been of the common cockle (Austrovenus 

stutchburyi), which reported genetic differentiation among populations consistent with 

isolation by distance (Ross et al. 2011). There are also examples of genetic differentiation 

among populations of estuarine bivalves outside New Zealand waters, such as the lagoon 

cockle Cerastoderma glaucum (Tarnowska et al. 2010), the oyster Crassostrea ariakensis 

(Xiao et al. 2010), as well as among estuarine amphipods (Kelly et al. 2006) and fish 

(Bradbury et al. 2008a; McCraney et al. 2010).  
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If habitat differences between the two species are considered, then based on results 

of the studies cited above it seems likely that connectivity among P. australis populations 

may be limited in comparison to connectivity among P. subtriangulata populations. This 

should result in higher levels of genetic differentiation among P. australis populations 

compared to P. subtriangulata populations. However, while habitat considerations are 

important, the cited studies often highlight the role that physical oceanographic features, 

environmental variability, historical events and natural selection can have on shaping the 

genetic population structure of marine species. It is difficult to predict the extent to which 

these factors will influence genetic population structure in the study species. 

To date studies of genetic population structure in New Zealand marine organisms 

have primarily focussed on determining the geographic patterns of genetic diversity. With 

the exception of Wei et al. (2013a), no attempts have been made to quantify rates or 

patterns of migration among populations. Instead population connectivity is implied based 

on genetic similarities or differences among populations. Many studies often speculate on 

the physical or environmental processes that could be responsible for the observed patterns 

of genetic structure but few have attempted to quantify these variables and test for 

associations with the observed genetic patterns.  

Recent advances in computational power and theoretical frameworks have made it 

possible to measure levels of connectivity among populations on a variety of temporal and 

spatial scales, allowing for better understanding of the genetic population structure 

uncovered by more traditional population genetic methods (Hauser & Carvalho 2008; 

Pearse & Crandall 2004). The value of these methods have been demonstrated by studies 

from outside the New Zealand region (e.g.,  Fraser et al. 2007; Harris et al. 2012; Jolly et al. 

2009; Weetman et al. 2006) but are yet to be widely applied to the New Zealand context. As 

more is understood about how the biological characteristics of a species interacts with its 

physical environment to produce observed patterns of genetic population structure, there is 

a growing awareness of the need for multi-disciplinary analyses that incorporate genetic 

and ecological information. This has led to a rapidly developing field of ‘seascape’ genetics, 

which attempts to use environmental variation to shed light on complex genetic patterns 

(Galindo et al. 2010; Riginos & Liggins 2013; Selkoe et al. 2010). Furthermore, there is 

growing awareness of the need for comparative studies incorporating multiple species 
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(Riginos & Liggins 2013). By using standardised methods to compare population genetic 

patterns to environmental patterns across multiple species we gain an understanding of 

commonalities in the population processes occurring in a region (Bohonak 1999). It may be 

possible to generalise these findings to other ecologically similar species within that region. 

These recent developments in the field of marine population genetics lead us closer to our 

goal of understanding the links between the ecology and evolution of marine species. 

 Currently we have a good understanding of the types of genetic structure that can 

be observed in New Zealand marine organisms (Gardner et al. 2010; Ross et al. 2009) but 

there is a lack of knowledge about rates of connectivity among populations and the 

environmental variables responsible for driving patterns of population structure. There is a 

need to move beyond simplistic investigations of genetic population structure and instead 

focus on multi-faceted analyses that can provide a more realistic picture of the complex 

processes shaping marine populations over time. 

1.5 Aims of the present research 

The primary goal of this research was to determine patterns of genetic population 

structure and genetic connectivity in P. subtriangulata and P. australis, and to determine 

the location of any potential barriers to connectivity.  This section of the study tested a null 

hypothesis of panmixia (i.e., no genetic population structure), which implies high 

connectivity and no barriers to dispersal. This information will be valuable for management 

of P. subtriangulata and P. australis fisheries, and may also be of relevance for management 

of surf clam fisheries as a whole. Management of these species is not currently backed up by 

information on the location of discrete stocks or knowledge of recruitment sources and 

sinks for such stocks. Furthermore, this study adds to our knowledge on the types of genetic 

population structure that can exist in New Zealand coastal marine species. This study also 

begins to fill a gap that has been identified in our knowledge of New Zealand marine 

population connectivity, in terms of estimating the routes and rates by which populations 

are connected. 

Secondly, this study aimed to identify any environmental variables that were likely to 

explain the observed patterns of genetic structure and connectivity. This section of the 

study tested the null hypothesis that there was no significant correlation between genetic 
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and environmental variation. Next, this study sought to determine patterns of genetic 

population structure, genetic connectivity, barriers to dispersal and environmental variables 

that were common between the two study species. Finally, the patterns of genetic 

population structure and connectivity, and the barriers to dispersal observed in the present 

study were compared to those seen in other New Zealand coastal marine species, to identify 

patterns that are common across multiple species. By identifying common patterns 

between the two study species and other New Zealand coastal marine species it could be 

possible to understand the features of these species that might be responsible for driving 

their genetic population structure. Likewise, identifying the reasons for differences in 

genetic population structure between species can be equally informative. Comparisons of 

genetic population structure and connectivity in this study were based on the hypothesis 

that differences between the two study species are likely to be a result of their habitat 

differences, whereas any similarities are likely to be a result of their similar reproductive 

strategies. If we can understand how and why genetic population structure forms and 

changes over time this will allow for the development of effective management and 

conservation strategies in the present and in the face of impending climate change expected 

in the near future. 

To achieve these aims this thesis is divided into a further five chapters, focussing on 

the following topics: 

Chapter 2 described novel microsatellite markers developed for P. subtriangulata 

and P. australis that were used in all population genetics and connectivity analyses. 

Chapter 3 measured genetic diversity and determined spatial patterns of genetic 

structure among ten P. subtriangulata locations. Rates and patterns of migration among 

these locations were estimated at both recent and historical time scales. 

 Chapter 4 measured genetic diversity and determined spatial patterns of genetic 

structure among thirteen P. australis locations. Rates and patterns of migration among 

these locations were estimated at both recent and historical time scales. 

Chapter 5 used the levels of genetic variation measured for P. subtriangulata and P. 

australis populations in chapters 3 and 4 to test for associations with a number of geospatial 
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and environmental variables. The purpose of these analyses was to determine if genetic 

variation among locations was correlated with variation in environmental features. This is a 

first step to understanding how key environmental processes might shape the evolution of 

populations of marine species. 

Chapter 6 summarises the major findings of the research and presents a synthesis of 

results from each chapter. Genetic population structure and connectivity patterns from the 

two study species were compared and contrasted to determine the processes involved in 

shaping population structure in New Zealand’s coastal marine species. The results from the 

present study were also compared to genetic population structure observed in other New 

Zealand marine species to identify common patterns that may assist with development of 

management and conservation strategies. The implications for management and 

conservation of marine species are discussed and directions for future research are 

presented. 
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2 Characterisation of novel microsatellite 

markers for Paphies subtriangulata and 

Paphies australis 

2.1 Introduction 

Microsatellite markers are increasingly becoming the genetic tool of choice for 

population genetics studies due to their ease of use and power to answer a wide range of 

ecologically relevant questions (Selkoe & Toonen 2006).  Microsatellite markers consist of 

short motifs, typically two to six base pairs in length, which are repeated in tandem. Due to 

the nature of these repeated DNA motifs they are thought to be prone to slippage during 

DNA replication, resulting in high variation in repeat number between individuals. This high 

mutation rate, along with their co-dominant nature, means that they are ideal for fine-scale 

investigation of population structure. In particular, they can be used to identify patterns of 

genetic variation between populations within a species on relatively recent time scales, 

which may be of relevance to contemporary demographic processes. 

Recent advances in next generation sequencing (NGS) technologies mean that it is 

now cheap and efficient to develop microsatellite markers for a range of non-model 

organisms (Abdelkrim et al. 2009). Microsatellite development can be particularly 

challenging for marine invertebrates as high fecundity is often associated with high 

mutation rates, meaning that large numbers of null alleles (alleles that fail to amplify via 

polymerase chain reaction) can be present in the genome (Cruz et al. 2005; Hedgecock et al. 

2004). Furthermore, such species often fail to meet idealised Hardy-Weinberg equilibrium 

(HWE) expectations that form the underlying basis of many population genetics analyses 

(Addison & Hart 2005). By systematically screening loci and measuring potential sources of 

error, it is possible to mitigate these problems or at least be aware of the scale to which 

they might influence results. 
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In addition, the NGS data used for microsatellite development represents a 

significant genetic resource that can be mined for other purposes. In particular, it is possible 

to identify single nucleotide polymorphisms (SNPs) that can also be used in population 

genetic studies. SNPs are found in high frequency throughout the genome and are highly 

informative in large numbers (Morin et al. 2004). However, the expense associated with 

identifying enough SNPs for meaningful population genetics analysis has, until recently, 

been prohibitive. Furthermore, if candidate loci associated with local adaptation to 

environmental variation are identified and homologous sequences from closely related 

species are known, then these loci can be identified for the target species from available 

NGS data. 

The primary aim of this chapter was to describe novel microsatellite markers that 

were developed for the New Zealand surf clams Paphies subtriangulata (tuatua) and P. 

australis (pipi). Markers were developed for the purposes of investigating genetic 

population structure, connectivity patterns and associations with environmental variation 

for these two species. This knowledge will aid in the management of these species and lead 

to a better understanding of the overall patterns of gene flow and connectivity among 

populations of coastal marine species in New Zealand. In addition, 454 sequence data was 

screened and numbers of putative SNP markers reported. 

2.2 Methods 

Genomic DNA was extracted from the foot tissue of P. subtriangulata collected from 

Paekakariki (-40.99° S, 174.95° E) and P. australis collected from Petone (-41.23° S, 174.86° 

E) using a standard proteinase K digestion followed by phenol-chloroform purification and 

ethanol precipitation. DNA extracts were used for two 1/8 run on the Roche 454 GS-FLX 

platform. Resulting sequences were searched for microsatellite repeats with motifs of 

between two and six base pairs (bp) in iQDD 1.3 (Meglécz et al. 2010), using default 

parameters. For P. australis the Phobos 3.3.12 plugin (http://www.rub.de/spezzoo/cm/ 

cm_phobos.htm) as implemented in GENEIOUS 5.5.6 (Biomatters) was also used to search 

for microsatellite repeats of between two and eight base pairs, using default parameters. 

Primers were designed for microsatellite regions containing five or more repeat units using 

Primer3 1.1.4 (Rozen & Skaletsky 2000). 

http://www.rub.de/spezzoo/cm/%20cm_phobos.htm
http://www.rub.de/spezzoo/cm/%20cm_phobos.htm
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Primers were screened via polymerase chain reaction (PCR) using a GeneAmp 2700 

(Life TechnologiesTM) thermocycler in a final reaction volume of 10 µl containing: ~50 ng 

template DNA (as quantified by a Implen Nanophotometer), 1X Reaction Buffer (Fisher 

Biotec), 3 mM MgCl2, 0.4 mg/mL Bovine Serum Albumen, 50 µM of each dNTP, 0.4 µM of a 

fluorescently labelled M13 primer (Schuelke 2000), 0.4 µM reverse primer, 0.1 µM forward 

primer, 1 unit of Taq polymerase (Fisher Biotec) and ddH2O to volume. Cycle conditions 

were as follows: 94°C for 5 minutes; followed by 22 cycles of 94°C for 30 seconds, 62°C for 

45 seconds, 74°C for 60 seconds; followed by 8 cycles of 94°C for 30 seconds, 53°C for 45 

seconds, 74°C for 60 seconds; followed by a final extension at 74°C for 10 minutes. PCR 

products were visualised on a 1.5% agarose gel using ethidium bromide staining and, if 

successfully amplified, PCR products were then size separated and the fluorescently labelled 

amplicons detected using an ABI3730XL (Life TechnologiesTM) automated capillary 

sequencer. Allele sizes were determined using Peak Scanner 1.0 (Life TechnologiesTM) and 

binned using Autobin (http://www4.bordeaux-aquitaine.inra.fr/biogeco/Media/Ressources/ 

Logiciels/Autobin). 

 Eleven loci for P. subtriangulata and fourteen loci for P. australis were found to be 

polymorphic and amplify consistently. Markers were tested for their ability to cross-amplify 

with non-target species within the genus Paphies (i.e., P. australis, P. subtriangulata and P. 

donacina). However, none of the markers could be consistently amplified or scored for any 

species other than the one that they were developed for. The 5’ ends of the forward 

primers were tagged with the fluorescent labels FAM, VIC, NED or PET (Table 2.2). Multiplex 

Manager 1.2 (Holleley & Geerts 2009) was used to arrange loci into two multiplex PCR 

panels for each species using the same PCR conditions as above with the following 

modifications:  (1) Removal of the M13 primer, equal amounts of forward and reverse 

primer were used at concentrations listed in Table 2.2; (2) Removal of the M13 annealing 

step, instead 34 cycles with an annealing temperature of 62°C were used .  

For each species 10 individuals from five locations (50 individuals in total) were 

genotyped and basic statistics were calculated for each locus. This sample size was deemed 

sufficient to determine if levels of across population polymorphism were adequate for loci 

to be informative in further population genetic analyses. Loci were checked for scoring 

errors and large allele dropout using MICROCHECKER 2.2.3 (van Oosterhout et al. 2004). 

http://www4.bordeaux-aquitaine.inra.fr/biogeco/Media/Ressources/%20Logiciels/Autobin
http://www4.bordeaux-aquitaine.inra.fr/biogeco/Media/Ressources/%20Logiciels/Autobin
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GENEPOP 4.2 (Rousset 2008) was used to test for linkage disequilibrium among loci and 

deviation from HWE expectations (Markov-chain parameters: 10,000 dememorization steps, 

1,000 batches and 10,000 iterations per batch). Comparisons were considered significant if 

p < 0.05 after implementing the false discovery rate (FDR) correction for multiple tests 

(Verhoeven et al. 2005). The FST outlier method, implemented in LOSITAN (Antao et al. 

2008; Beaumont & Nichols 1996) was used to identify potential outlier loci that may be 

influenced by selection (50,000 simulations using a stepwise mutation model). FreeNA 

(Chapuis & Estoup 2007) was used to estimate proportions of null alleles at each locus using 

1,000 bootstrap replicates. FSTAT 2.9.3.2 (Goudet 1995) was used to calculate the number 

of alleles and allelic richness. ARLEQUIN 3.5 (Excoffier & Lischer 2010) was used to calculate 

observed (HO) and expected (HE) heterozygosity for each location and total for each locus. 

GENEPOP 4.2 (Rousset 2008) was used to calculate the inbreeding co-efficient FIS. 

A de novo assembly of the 454 sequences was performed for each species using 

default parameters in GENEIOUS 5.5.6 (Biomatters). Contigs were screened for putative 

SNPs using the ‘Find Variations/SNPSs’ tool with  a minimum coverage of 5 sequences and a 

minimum variant frequency of 0.25. 

2.3 Results 

A 1/8 run on the Roche 454 GS-FLX platform generated 153,761 sequences (mean 

length 546 bp) for P. subtriangulata and 108,871 sequences (mean length 246 bp) for P. 

australis (Table 2.1). From the available microsatellite containing sequences, primers were 

designed for 47 P. subtriangulata loci and 73 P. australis loci (Table 2.1). Loci were discarded 

if they failed to amplify in PCR, displayed high levels of allelic drop out, were confounded by 

artefacts or were monomorphic. The screening process resulted in the final panels of 11  P. 

subtriangulata loci and 14 P. australis loci that were polymorphic and amplified consistently 

in multiplex (Table 2.2).  

No evidence was found for scoring errors, large allele drop out or linkage dis-

equilibrium among loci. Significant HWE deviation was observed for two P. subtriangulata 

loci (Psub_5 and Psub_7) and eight P. australis loci (Paus_2, Paus_3, Paus_4, Paus_6, 

Paus_8, Paus_9, Paus_11, Paus_14; Table 2.2). LOSITAN indicated that two P. australis loci 

(Paus_6 and Paus_9) were potential FST outliers that may be influenced by selection. Four P. 
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subtriangulata loci and eight P. australis loci had levels of null alleles (>10%; Chapuis & 

Estoup 2007) that may affect population differentiation estimates (Table 2.2).  

The number of alleles ranged from 4-13 for P. subtriangulata and 5-19 for P. 

australis (Table 2.2). Allelic richness ranged from 2.39-6.80 for P. subtriangulata and 2.63-

10.45 for P. australis (Table 2.2). Total observed heterozygosity (HO) for each locus ranged 

from 0.16-0.62 for P. subtriangulata and 0.20-0.70 for P. australis. Total expected 

heterozygosity (HE) ranged from 0.19-0.83 for P. subtriangulata and 0.30-0.89 for P. 

australis (Table 2.2).  FIS ranged from -0.11-0.77 for P. subtriangulata and -0.04-0.95 for P. 

australis (Table 2.2). 

A de novo assembly of the 454 sequences obtained 278 contigs for P. subtriangulata 

and 832 contigs for P. australis with a coverage of 10 or more reads. A total of 745 and 613 

putative SNPs were identified for P. subtriangulata and P. australis, respectively. These SNPs 

represent heterozygote variation in the individuals used for 454 sequencing are a potential 

genetic resource that could be developed for these species in the future. 

 

 

 

 

 
Table 2.1: Summary of 454 sequencing reads and microsatellite primer design for Paphies 

subtriangulata and P. australis. 

 Paphies subtriangulata Paphies australis 

Number of Reads 153,761 108,871 

Average Length 546 246 

Microsatellite Containing Reads 13,366 1,618 

Number of Reads with Primers Designed 713 161 

Dinucleotide Repeats (%) 74.9 79.9 

Trinucleotide Repeats (%) 16.8 14.8 

Tetranucleotide Repeats (%) 7.1 3.4 

Pentanucleotide Repeats (%) 1.0 0.7 

Other Repeats (%) 0.0 1.2 

Number of Loci Tested 47 73 

Number of Loci Selected 11 14 
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Table 2.2 (over page): Characteristics of the microsatellite markers developed for Paphies 

subtriangulata and P. australis, showing arrangement of multiplexes, fluorescent tag, primer 

concentration, forward and reverse primer sequence, and repeat motif. Genetic diversity indices (Na: 

number of alleles, Ra: allelic richness, HO: observed heterozygosity, HE: expected heterozygosity, 

P(HWE): HWE p-value, NF: estimated frequency of null alleles, FIS: inbreeding co-efficient) were 

calculated for n number of samples in total and 10 individuals from each of the following locations: 

for P. subtriangulata Waipapakauri (WPK -35.04° S, 173.17° E), Paekakariki (PKR -40.99° S, 174.95° E) 

Marfell Beach (MAR -41.72° S, 174.20° E), Waimarama (WMR -39.83° S, 177.00° E) and Papamoa 

(PAP -37.70° S, 176.29° E); and for P. australis Waiwera (WAI -36.54° S, 174.71° E), Huia (HUI -37.00° 

S, 174.57° E), Raglan (RAG -37.80° S, 174.87° E), Lyttelton (LYT -43.64° S, 172.75° E) and Doubtful 

Sound (DBT -45.28° S, 166.91° E). Bold values represent significant HWE p-values after false 

discovery rate correction for multiple tests (α = 0.05). 
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Table 2.2.  
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Table 2.2 continued.  
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Table 2.2 continued.  
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Table 2.2 continued.  
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Table 2.2 continued.  
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Table 2.2 continued.  

2.4 Discussion 

These microsatellite markers represent the first novel 

markers developed for P. subtriangulata and P. australis. The 

markers have been developed in a way that will allow for easy 

multiplexing and genotyping of further samples. They can be 

used to investigate and compare aspects of genetic 

population structure in these two species; for example, the 

degree of differentiation among populations, levels of gene 

flow and environmental factors that are associated with the 

observed patterns of genetic population structure. In 

addition, a number of putative SNPs have been identified that 

could be further tested and used in future studies if required.   

Identifying loci that were unaffected by HWE 

deviations and null alleles was challenging. Heterozygote 

deficiencies were observed for most of the locations that 

were sampled but different patterns in HWE deviation were 

observed across loci, indicating that several processes could 

be contributing to the observed HWE deviations. For some 

loci most of the sampled locations deviate from HWE (i.e., 

Paus_2, Paus_4, Paus_8, Paus_9) suggesting that it is 

characteristics of the locus itself that are problematic. For 

other loci only single locations deviate from HWE (i.e., 

Psub_2, Psub_7, Psub_10, Paus_11) suggesting that 

population-level processes might be responsible for the 

observed deviations. Some processes are expected to have 

locus-wide effects (e.g., null alleles, genotyping error, 

selection), whereas others are expected to have population 

specific effects (e.g.,  non-random mating, Wahlund effect; 

DeWoody et al. 2006; Selkoe & Toonen 2006). 
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Loci with widespread HWE deviation could be affected by genotyping error and null 

alleles (DeWoody et al. 2006). MICROCHECKER found no evidence that genotyping error was 

an issue in this case. Null alleles are often observed in fecund species with high levels of 

early mortality, such as bivalves, as a high mutation load is expected (Hedgecock et al. 

2004). In microsatellite loci this can result in alleles that fail to amplify due to mutations in 

the primer annealing sites. Alleles may also fail to amplify due to other technical problems 

with the PCR reaction, such as low DNA quality/quantity and preferential amplification of 

smaller alleles (Chapuis & Estoup 2007), the latter of which could be a problem for multiplex 

PCR. Estimates of null allele frequency indicate that most of the loci described here are 

affected by null alleles to a varying extent. Loci with widespread HWE deviation could also 

be influenced by selection: LOSITAN indicated that two loci (Paus_6 and Paus_9) might be 

affected by positive selection and most locations tested for these loci are not in HWE. 

Other potential causes of the observed heterozygote deficiencies include non-

random mating and spatial/temporal genetic patchiness. Non-random mating is unlikely in 

free-spawning species with large population sizes, especially among individuals sampled 

from the same location. However, when unrecognised population structure exists, 

genetically distinct groups can be inadvertently joined into a single sampling unit, (‘Wahlund 

effect’; Broquet & Petit 2009; Selkoe & Toonen 2006). The effect can occur spatially due to 

the isolation of discrete population units, and temporally due to the variable nature of larval 

dispersal in the marine environment (Hedgecock 1994; Hellberg 2009). It is unknown if the 

small number of samples genotyped for this marker development are a representative 

population sample so it is difficult to draw conclusions as to whether or not the observed 

heterozygote deficiencies are a result of unrecognised population structure. 

Genetic differences among populations will be further investigated in chapters 3 and 

4, and this will help to clarify the relationship between genetic population structure and 

heterozygote deficiency in P. subtriangulata and P. australis. However, similar to what has 

been reported for other bivalve species (e.g., Arias-Pérez et al. 2012; Benzie & Smith-Keune 

2006; Kenchington et al. 2006), null alleles were widespread among the microsatellite 

markers developed for P. subtriangulata and P. australis. Further population genetic 

analyses will need to be interpreted with consideration of the effect that null alleles might 

be having on observed patterns of genetic structure and connectivity. 



 Population genetics & connectivity in Paphies subtriangulata 

| 31  

3 Spatially variable patterns of genetic 

population structure and connectivity 

in Paphies subtriangulata 

3.1 Introduction 

The seemingly continuous nature of the marine environment means that marine 

species can often inhabit large geographic ranges. To effectively manage and/or conserve a 

marine species we require knowledge of how individuals are distributed and move around 

within the species’ range. For ease of interpretation, the distribution of a species is often 

divided into spatially discrete ‘populations’, forming the basic evolutionary units on which to 

test hypotheses (Waples & Gaggiotti 2006). A fundamental question of population genetics 

is how many of these ‘population units’ exist within a species and what is their structure, 

i.e., how is genetic diversity distributed across a landscape?  

In practice, levels of genetic diversity are measured in terms of the allele variants 

observed within a population and genetic population structure determined by the way 

frequencies of variants change over a species range. In chapter 1 I introduced the concept of 

opposing evolutionary forces (i.e., drift, gene flow, mutation, selection), which should 

equilibrate over time to determine the geographic distribution of allelic variation within a 

species (Hedgecock et al. 2007). In an evolutionary sense, population units can be defined 

by significant differences in the frequency at which alleles are observed at different 

geographic locations. When we consider the spatial and temporal scales at which variation 

is observed, it is possible to make inferences about the rates and routes that connect 

geographically separate populations or the locations where barriers to dispersal might exist.  

The type of genetic population structure that is observed in a species is dependent 

on the ability of individuals to disperse among geographic locations. For many marine 

species opportunities for dispersal are limited to the larval stage. Therefore it is the life 

history characteristics of the organism (effective population size, reproductive output, 



Population genetics & connectivity in Paphies subtriangulata 

32 | 

pelagic larval duration, post-settlement mortality) and the physical characteristics of the 

ocean environment (currents, land form features, distance between suitable habitat) that 

determine the genetic population structure of a species (Pineda et al. 2007). The traditional 

view of the coastal marine environment as a simple linear model characterised by large 

scale, unstructured processes is no longer considered relevant (Selkoe et al. 2008). Instead 

physical processes in the near shore environment are stochastic, unpredictable and can 

change over short time scales in comparison to the offshore ocean environment (Cowen & 

Sponaugle 2009; Siegel et al. 2008). It is exactly this type of open coast environment that 

Paphies subtriangulata (tuatua) inhabits. While certain characteristics of this species (large 

populations, high fecundity, moderate larval duration) suggest that populations could be 

well connected it is unclear how physical processes will interact to modify connectivity and 

shape genetic population structure. 

Among New Zealand’s coastal marine organisms a variety of genetic population 

structures have been observed and patterns of connectivity inferred from this information. 

These patterns were summarised into five categories by Gardner et al. (2010): (i) no 

structure, (ii) isolation by distance, (iii) divergence within and/or among populations, (iv) 

north-south divergence, (v) east-west divergence. Often these studies have relied on simple 

summary statistics and analyses based on the FST fixation index. While these types of 

analyses are valuable and allow for comparison among studies (Neigel 2002), recent 

theoretical and computation advances allow us to deduce much more about population 

demography from the available data than just simple summary statistics (Meirmans & 

Hedrick 2010; Pearse & Crandall 2004).  

One limitation of many of the population genetics studies reviewed by Gardner et al. 

(2010) is that they only go as far as inferring population connectivity and don’t attempt to 

estimate rates of migration. Estimating migration can be challenging when dealing with the 

high gene flow situations that commonly characterise marine species. Furthermore, the 

models that are currently available for estimating migration are often based on unrealistic 

and restrictive assumptions, meaning that results must be interpreted with caution. 

However it has been shown that it is possible to distinguish situations where low but 

significant patterns of genetic patchiness have arisen because gene flow is intermittent (e.g., 

Knutsen et al. 2011; Selkoe et al. 2006; Stenseth et al. 2006). Furthermore variation in 
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oceanographic conditions and larval production mean that gene flow among populations is 

often not temporally consistent (Hedgecock 1994; Hedgecock & Pudovkin 2011; Hedrick 

2005). When determining levels of gene flow, it helps to use complementary methods that 

will provide estimates over different time scales. It is important to quantify the rate and 

direction of migration among localities, and how it varies over time, if we want to gain an 

understanding of the ecological importance of connections within a species. Ideally we want 

to build up a picture of the types of genetic population structure and connectivity that can 

occur within a region across multiple species. This approach allows for a more integrative, 

eco-system wide understanding of genetic population structure and connectivity, which is 

more effective from a management perspective than working on a per-species basis. 

The purpose of this chapter was to determine genetic population structure and 

estimate rates of migration for P. subtriangulata, testing the null hypothesis of panmixia 

(i.e., no genetic population structure) and the high rates of migration implied by such 

structure. A previous study of genetic structure in P.  subtriangulata using allozyme markers 

suggested north-south divergence of populations (Smith et al. 1989). However, allozymes 

often do not have the power to detect fine scale patterns of genetic structuring, so re-

examination using higher resolution microsatellite markers is required. Comparison of the 

genetic population structure observed between the two studies may also provide an 

indication as to whether this structure has been stable over time. Additionally, patterns of 

migration among populations have not been previously investigated in P. subtriangulata. In 

this chapter Bayesian frameworks were used to estimate levels of migration among the 

sampled localities, something that has been done for few other coastal marine organisms in 

New Zealand (but see Wei et al. (2013a) for one example). This study allows for a 

comprehensive understanding of genetic diversity, structure and connectivity in P. 

subtriangulata, and will form the basis for further multi-disciplinary and multi-species 

investigations into environmental drivers of genetic population structure and connectivity. 

The panel of microsatellite markers described in chapter 2 were used to gather 

genetic data for P. subtriangulata from ten locations, to specifically: 

1. Quantify levels of genetic diversity in P. subtriangulata sampled from ten 

locations; 
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2. Investigate levels of differentiation among the sampled locations to determine 

which of the five categories from Gardner et al. (2010) best describes the genetic 

population structure of P. subtriangulata; 

3. Estimate the rate and direction of migration among P. subtriangulata locations 

over both recent and long-term time scales. 

3.2 Methods 

3.2.1 Sample collection and laboratory methods 

Samples of Paphies subtriangulata were collected between June 2010 and January 

2013 from ten locations (Figure 3.1; Table 3.1). The biogeographic classification scheme of 

Shears et al. (2008) and the New Zealand fishery quota management areas were used as a 

basis for selecting sampling sites. The aim was to sample at least one site within each 

biogeographic/fishery area, dependent on being able to locate suitable populations for 

sampling within those areas. Samples were gathered by hand at low tide, photographed, 

shell length was measured to the nearest 0.5 cm and a sub-sample of foot tissue was taken 

and stored in 80% ethanol at 4°C.  

For each sample a piece of tissue approximately 25 mm2 was used for DNA 

extraction, using one of the following methods: 

1. A standard proteinase K digestion followed by phenol-chloroform purification 

and ethanol precipitation; 

2. A Qiagen DNeasy Blood and Tissue extraction kit, following the manufacturer’s 

protocols; 

3. A Geneaid Genomic DNA Mini Kit, following the manufacturer’s protocols; 

4. A Zygem prepGEM extraction kit, following the manufacturer’s protocols. 

DNA extracts were quantified using an Implen Nanophotometer and diluted in 

ddH2O to a concentration of approximately 100 ng/µl for use in a PCR reaction.  

Eleven P. subtriangulata microsatellite loci were amplified in multiplex polymerase 

chain reaction (PCR) following the protocols listed in chapter 2. PCR products were size 

separated and the fluorescently labelled amplicons detected using an ABI3730XL (Life 

TechnologiesTM) automated capillary sequencer. Allele sizes were determined using Peak 
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Scanner 1.0 (Life TechnologiesTM) and binned using Autobin (http://www4.bordeaux-

aquitaine.inra.fr/biogeco/Media/Ressources/Logiciels/Autobin). For each plate of 96 

samples genotyped, four previously genotyped samples were included as a positive control 

and to estimate levels of genotyping error. The mean error rate per allele was calculated 

following Pompanon et al. (2005). 

3.2.2 Data quality checks and genetic diversity analyses 

Genotype data was checked for scoring errors and large allele drop out using 

MICROCHECKER 2.2.3 (van Oosterhout et al. 2006). Loci were checked for linkage 

disequilibrium and conformance to Hardy-Weinberg equilibrium (HWE) using GENEPOP 4.2 

(Rousset 2008; Markov-chain parameters: 10,000 dememorization steps, 1,000 batches and 

10,000 iterations per batch). Comparisons were considered significant if p < 0.05 after false 

discovery rate (FDR) correction for multiple tests (Verhoeven et al. 2005). To determine if 

sufficient allelic variation had been sampled allele discovery curves were calculated using 

the ‘jackmsatpop’ function in the PopGenKit package (Rousset 2008) implemented in R (R 

core team 2012). Jackknife resampling was used to calculate the number of sampled alleles 

for a given constant increase in sample size; 1000 replicates with an interval of 1 were used.  

LOSITAN (Antao et al. 2008) was used to detect outlier loci (50,000 simulations using 

a stepwise mutation model). The FST outlier method is based on the relationship between FST 

and expected heterozygosity (HE) to identify loci that have excessively high or low FST 

compared to neutral expectations. A 95% confidence interval was used to determine which 

loci were outliers. The number of alleles, allelic range and allele frequencies for each locus 

were calculated in GENEPOP 4.2 (Rousset 2008). The proportion of null alleles at each locus 

was estimated using the algorithm of Dempster et al. (1977) as implemented in FreeNA 

(Chapuis & Estoup 2007) using 1,000 bootstrap replicates.  

For each population the mean number of alleles (Na) and allelic richness (Ra) were 

calculated using FSTAT 2.9.3.2 (Goudet 1995). Allelic richness is a measure of allele diversity 

corrected for the smallest sample size (n = 40 for P. subtriangulata). Observed (HO) and 

expected (HE) heterozygosity were calculated using ARLEQUIN 3.5 (Excoffier & Lischer 2010). 

The inbreeding co-efficient FIS was calculated using GENEPOP 4.2 (Rousset 2008). Private 

alleles for each location were calculated by hand. 

http://www4.bordeaux-aquitaine.inra.fr/biogeco/Media/Ressources/Logiciels/Autobin
http://www4.bordeaux-aquitaine.inra.fr/biogeco/Media/Ressources/Logiciels/Autobin
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Figure 3.1: Collection locations for Paphies subtriangulata. Location abbreviations refer to those 

listed in Table 3.1. Red dashed lines represent the location of putative genetic breaks among 

populations detected by the present study. A major genetic break was detected between Chatham 

Island and mainland New Zealand locations (A). Five other possible locations where gene flow is 

limited among P. subtriangulata populations are indicated by the thinner dashed lines (i-v). 
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Table 3.1: Location, number of samples and geographical co-ordinates for Paphies subtriangulata 

samples used in this study. 

Location Abbreviation Sample Size     Geographical Co-ordinates 

Ruakaka RUA 53 -35.91° S 174.46° E  

Papamoa PAP 51 -37.70° S 176.29° E  

Waimarama WMR 51 -39.82° S 177.00° E  

Marfell Beach MAR 56 -41.72° S 174.20° E  

Paekakariki PKR 55 -40.99° S 174.95° E  

Collingwood COL 52 -40.68° S 172.69° E  

Oakura OAK 40 -39.12° S 173.95° E  

Kakamatua KAK 57 -37.01° S 174.60° E  

Waipapakauri WPK 54 -35.04° S 173.17° E  

Chatham Island CHA 48 -43.80° S -176.35° W  

 

 

3.2.3 Genetic population differentiation analyses 

All population differentiation analyses were first performed using all loci, then were 

repeated excluding loci identified as outliers by LOSITAN. This was to assess the impact that 

these outlier loci were having on the patterns of genetic differentiation that were observed. 

Global FST was calculated in FreeNA (Chapuis & Estoup 2007) both with and without 

correction for null alleles to determine the impact that null alleles might have on population 

differentiation estimation. Pairwise FST was calculated using GENEPOP 4.2 (Rousset 2008).  

An exact test of population differentiation using the G log likelihood ratio test (Goudet et al. 

1996) was performed in GENEPOP 4.2 (Markov-chain parameters: 10,000 dememorization 

steps, 1,000 batches and 10,000 iterations per batch). Comparisons were considered 

significant if p < 0.05 after implementing the FDR correction for multiple tests (Verhoeven et 

al. 2005). Modified pairwise phi-statistics (φ’ST) were calculated in GENODIVE 2.0b23 

(Meirmans & van Tienderen 2004). The φ’ST index, based on the AMOVA (analysis of 

molecular variance) framework (Excoffier et al. 1992), is designed for use with multi-allelic 

data and is standardised by the maximum possible φST  value. This should allow for more 

accurate estimation of population differentiation than FST and standardisation allows for 

better comparison among species. The significance of pairwise φ’ST values was assessed 
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using the AMOVA φST test for population differentiation with 1,000 permutations, 

implemented in GENODIVE 2.0b23 (Meirmans & van Tienderen 2004). Comparisons were 

considered significant if p < 0.05 after FDR correction. 

Tests were conducted to determine if the patterns of genetic population structure 

observed for other New Zealand coastal marine species, as reported by Gardner et al. 

(2010), were present for P. subtriangulata populations (i.e., no structure, IBD, divergence 

within and/or among populations, north-south divergence, east-west divergence). Mantel 

tests were used to determine if an IBD pattern was present, as implemented in FSTAT 

2.9.3.2 (Goudet 1995). Correlation between measures of genetic differentiation (FST) and 

geographic distance (km) was assessed using 10,000 randomisations and was considered 

significant if p < 0.05. FST was calculated in two different ways: (1) FST/1-FST calculated 

following Weir and Cockerham (1984); and (2) FST/1-FST calculated using the ENA correction 

method to account for null alleles, as described in Chapuis and Estoup (2007). The shortest 

distance between sampling sites was determined using Google Maps. IBD tests were 

conducted both including and excluding the Chatham Island population. 

Patterns of genetic differentiation among locations were visualised using a principal 

component analysis (PCA) implemented in PCA-Gen 1.2 (http://www2.unil.ch/popgen/ 

softwares/pcagen.htm). This program determines the inertia of each axis and tests for 

significance of each axis. One thousand randomisations were used and axes were 

considered significant if p < 0.05. AMOVA tests were used to determine if the groupings 

observed in PCA analyses were significant and to test for north-south/east-west 

differentiation. AMOVA tests were conducted in ARLEQUIN 3.5 (Excoffier & Lischer 2010) 

with 10,000 permutations (significant if p < 0.05 after FDR correction). 

The genetic structure of P. subtriangulata locations was assessed using two 

clustering methods: STRUCTURE 2.3.4 (Pritchard et al. 2000) and AWclust (Gao & Starmer 

2008). STRUCTURE is a Bayesian clustering algorithm that attempts to assign each individual 

into K number of clusters to minimise departures from HWE and gametic disequilibrium. 

Although the data violates some of the assumptions of this analysis (i.e., departure from 

HWE), by comparing STRUCTURE results to those obtained from AWclust (which does not 

assume HWE) it is possible to determine the sensitivity of this analysis to these violations.  

http://www2.unil.ch/popgen/%20softwares/pcagen.htm
http://www2.unil.ch/popgen/%20softwares/pcagen.htm
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Ten independent STRUCTURE runs were performed for values of K ranging from 1 to 

10, using 100,000 iterations and a burn-in length of 10,000. The ‘admixture’ model and 

‘correlated allele frequencies’ options were used (Falush et al. 2003), and sampling locations 

were used as a prior as this is known to improve the performance of the program when 

genetic population structure is weak (Hubisz et al. 2009). The Evanno method (Evanno et al. 

2005) as implemented in STRUCTURE HARVESTER (Earl & vonHoldt 2011) was used to 

determine the value of K that best fit the data. This method is based on the rate of change 

in the log probability of data between successive K values, i.e., the most likely K value 

precedes the greatest rate of decline in the log probability. The optimal arrangement of 

clusters from the 10 replicates was determined in CLUMPP 1.1.2 (Jakobsson & Rosenberg 

2007) using the ‘Greedy’ algorithm with 1,000 random input orders. Genetic population 

structure was visualised using DISTRUCT 1.2 (Rosenberg 2003).  

The non-parametric clustering algorithm AWclust was used to determine genetic 

population structure without relying on the assumptions of HWE and linkage disequilibrium 

(Gao & Starmer 2008). Microsatellite data was converted into a presence/absence matrix 

where each allele was treated as a locus and allocated a 0, 1 or 2 to indicate the number of 

copies of that allele for each individual. The AWclust package was implemented in R (R core 

team 2012) to firstly calculate an allele sharing distance matrix then assign each individual 

to one cluster. A gap statistic that compares the pooled within-cluster sum of squares with 

expectations from a null reference distribution was calculated for values of K ranging from 1 

to 8 (maximum range of K allowed by AWclust) using 100 null simulations. The K value with 

the largest deviation from the expected distribution was determined to be the optimal value 

(Gao & Starmer 2008). Genetic population structure was visualised using DISTRUCT 1.2 

(Rosenberg 2003). Both clustering analyses were first conducted including all sampling 

locations then repeated excluding the Chatham Island population to examine genetic 

population structure among mainland New Zealand locations only. Spearman rank 

correlation tests were used to determine if there were any significant latitudinal or 

longitudinal gradients in the distribution of clusters identified by STRUCTURE and AWclust (p 

< 0.05 after FDR correction). 
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3.2.4 Estimation of migration rates 

Contemporary migration among locations was estimated using the ‘detection of first 

generation migrants’ option as implemented in GENECLASS2 (Piry et al. 2004). This method 

detects individuals in the current generation (F0) that are in genotypic disequilibrium 

relative to their sampled population and are therefore likely to have originated from a 

population other than where they were sampled. The test statistic Lh/Lhmax (ratio of the 

likelihood of drawing an individual’s genotype from the population in which it was sampled 

to the maximum likelihood observed for this genotype in any population; Paetkau et al. 

2004) and the Bayesian approach of Rannala and Mountain (1997) were used to detect 

migrants. The probability of an individual’s multilocus genotype originating from each 

location was calculated using the Markov chain Monte Carlo (MCMC) resampling method of 

Paetkau et al. (2004). Ten thousand individuals were simulated and a probability detection 

threshold of α = 0.01 was used, below which an individual was assigned as a migrant. 

Contemporary migration among locations was also estimated using the Bayesian 

assignment approach implemented in BAYESASS 3.0.3 (Wilson & Rannala 2003). BAYESASS is 

similar to GENECLASS2 in that it detects the temporary genetic disequilibrium that recent 

migrant genotypes are expected to show relative to their sampled population and uses this 

information to infer rates of migration among populations. The approaches differ in that 

GENECLASS2 can only detect F0 migrants, whereas BAYESASS detects migrants within the 

past few generations, typically equivalent to the number of cohorts present in the 

population (approximately five years for P. subtriangulata). Approximately 10 runs of 

BAYESASS were conducted to determine the number of iterations required for the MCMC 

chain to converge and appropriate values for the mixing parameters ∆a, ∆f and ∆m, which 

determine rate at which parameters are accepted for each iteration. The optimal 

acceptance rate should be in the range of 40-60%, but this may not be possible when the 

log-likelihood surface is relatively flat, which can be the case when population structure is 

weak (Wilson & Rannala 2003). However, as long as the MCMC chain was observed to 

converge then it can be assumed that sufficient mixing has occurred (Wilson & Rannala 

2003). Final results were based on the average of three independent runs using 1 x 107 

iterations, the first 1 x 106 iterations being discarded as burn-in. Samples were taken every 

500 iterations. The mixing parameters used for each run were ∆a 0.8, ∆f 0.8 and ∆m 0.6.  
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Long-term migration rates among locations were estimated using MIGRATE 3.5.1 

(Beerli 2006). MIGRATE estimates two parameters: the population size parameter θ, which 

is equivalent to four times the effective population size scaled by mutation rate (4Neµ) and a 

mutation scaled migration rate M (mµ). A Bayesian MCMC strategy was used with a static 

heating scheme (temperatures: 1.0, 1.5, 3.0, 100,000; swapping interval 1). Uniform prior 

distributions were used for θ and M. Preliminary runs determined that the best prior 

intervals to use were 0-10 for θ and 0-10,000 for M. Three replicates were run for 1 x 105 

iterations with a sample taken every 100 steps, resulting in a total of 30,000 recorded steps 

over the three replicate runs. The first 10,000 steps of each replicate were discarded as 

burn-in. Values of θ, M and their credible intervals (CI) were averaged over the three runs. 

Chain convergence was assessed by comparing the correlation between parameter 

estimates between independent runs. θ and M were multiplied to give the effective number 

of migrants per generation (Nem) between each pair of sampling locations. The effective size 

of each population (Ne) can also be estimated from θ if the mutation rate of the markers 

used is known. Mutation rate per generation for microsatellite loci is estimated to be in the 

range of 1 x 10-4 to 1 x 10-3 (Ellegren 2000, 2004). 

Based on the results of genetic population differentiation analyses, all three 

migration estimation methods were carried out excluding outlier loci. In some cases the 

data violated some of the assumptions of the analyses (e.g., HWE, FST). However by 

comparing results across multiple types of analyses it was possible to determine the level of 

sensitivity to these violations. Because analyses that estimated migration among all 

population pairs were unlikely to have high enough FST to detect significant levels of 

migration the analyses were repeated to estimate migration among population groupings 

identified as significantly differentiated by exact G and AMOVA tests.  

3.3 Results 

3.3.1 Data quality checks and summary statistics 

A total of 517 Paphies subtriangulata individuals from ten locations were genotyped 

(Figure 3.1; Table 3.1). Despite reports that P. subtriangulata is distributed throughout the 

South Island (Powell 1979), it was not possible to find this species further south than -42° S 

on the New Zealand mainland in the present study. Therefore the majority of P. 
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subtriangulata locations sampled in this study were from the North Island except for two 

locations at the top of the South Island (Collingwood and Marfell Beach) and one Chatham 

Island location, approximately 700 km east of mainland New Zealand. 

Thirty eight P. subtriangulata samples (7.4% of samples) were repeat genotyped and 

the mean rate of genotyping error was calculated at 4.8%. The majority of error (63%) was 

associated with allele drop out, rather than mistyping of alleles. MICROCHECKER found no 

evidence for genotype scoring errors or large allele drop out and there was no significant 

linkage disequilibrium among loci. Only two loci were in HWE for the total sample (Psub_3 

and Psub_4; Table 3.2). Two loci (Psub_5 and Psub_7) were not in HWE for any of the 

locations tested and LOSITAN detected one outlier locus (Psub_2; Figure 3.2). Although this 

locus was a statistically significant outlier, removal of the locus from analyses had little 

effect on estimates of genetic population structure. However analyses both including and 

excluding this locus are presented for completeness. Allele frequency graphs and discovery 

curves can be seen in appendices 2 and 3. For all loci allele discovery curves look to have 

reached or are approaching an asymptote, suggesting that apart from a few rare alleles, 

most of the allelic diversity has been sampled for this species. The number of alleles per 

locus ranged from 5-28 (Table 3.3). For most loci observed heterozygosity was lower than 

expected, but for Psub_3 observed heterozygosity was similar to expected (Range HO: 0.105-

0.551; HE: 0.121-0.791; Table 3.3). The frequency of null alleles ranged from 0.035-0.278 and 

FIS ranged from 0.007-0.610 (Table 3.3). 

The mean number of alleles ranged from 6-8.091, allelic richness ranged from 5.290-

6.566 and private alleles ranged from 0-13 (Table 3.4). The frequency of private alleles was 

generally low (<2%; Appendix 1); i.e., these alleles can be considered ‘rare’.  The Chatham 

Island population had a much larger number of private alleles than other P. subtriangulata 

populations and some of these alleles were observed in high frequency (up to 14%; 

Appendix 1). Observed heterozygosity was lower than expected for all locations (Range HO: 

0.298-0.399; HE: 0.521-0.588) and no locations were in HWE (Table 3.4). FIS was above zero 

for all locations due to an excess of homozygotes (Range: 0.242-0.442; Table 3.4). 
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Table 3.2: Hardy-Weinberg equilibrium (HWE) p-values for each locus and location for Paphies 

subtriangulata. Values in bold represent significant departures from HWE expectation after false 

discovery rate (FDR) correction for multiple tests (p < 0.05). Location abbreviations as per Table 3.1. 
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Figure 3.2: Output of LOSITAN analyses for outlier loci for Paphies subtriangulata. Blue dots 

represent the relationship between FST and HE for each locus. Loci falling within the grey area 

represent ‘neutral’ loci, loci falling within the red or yellow areas represent FST outliers as 

determined by a 95% confidence interval. 

 

 

Table 3.3: Genetic diversity statistics for Paphies subtriangulata loci used in this study (Na: number 

of alleles, HO: observed heterozygosity, HE: expected heterozygosity, NF: estimated frequency of null 

alleles, FIS: inbreeding co-efficient). 

 

Locus Statistic     

 Na Allele Size Range (bp) HO HE NF FIS 

Psub_1 20 140-244 0.542 0.683 0.101 0.209 

Psub_2 28 107-148 0.405 0.680 0.173 0.411 

Psub_3 6 186-201 0.551 0.556 0.035 0.007 

Psub_4 7 204-222 0.105 0.121 0.040 0.132 

Psub_5 12 89-113 0.269 0.693 0.257 0.610 

Psub_6 13 212-250 0.327 0.590 0.190 0.446 

Psub_7 23 103-247 0.303 0.791 0.278 0.610 

Psub_8 12 202-248 0.402 0.649 0.160 0.338 

Psub_9 12 133-155 0.197 0.231 0.046 0.149 

Psub_10 21 171-235 0.405 0.565 0.119 0.283 

Psub_11 5 96-112 0.404 0.518 0.065 0.168 
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Table 3.4: Genetic diversity statistics for each location and total for Paphies subtriangulata (Na: 

mean number of alleles, Ra: allelic richness, PA: private alleles, HO: observed heterozygosity, HE: 

expected heterozygosity, FIS: inbreeding co-efficient). FIS values in bold show significant departure 

from HWE expectations after FDR correction (p < 0.05). Location abbreviations as per Table 3.1. 

 

 

 

3.3.2 Genetic population differentiation 

There was no clear relationship between change in global FST and proportion of null 

alleles as correcting for null alleles increased FST for some loci and decreased FST for other 

loci. Global FST ranged from 0.004-0.090 for P. subtriangulata loci and 0.008-0.087 when 

corrected for null alleles (Figure 3.3). Pairwise FST among P. subtriangulata populations 

ranged from 0-0.140 when calculated using all loci and 0-0.153 when the outlier locus 

Psub_2 was removed from the analysis (Table 3.5). FST values were generally higher with the 

outlier locus excluded, suggesting that this locus was masking population differentiation. 

The highest FST values were between Chatham Island and mainland New Zealand locations, 

and the Chatham Island population was found to be significantly differentiated from all 

other locations. Among mainland locations, Ruakaka and Waimarama were significantly 

differentiated from all other locations, and Kakamatua and Waipapakauri were 

differentiated from most locations. Pairwise φ’ST showed a similar pattern to FST with 

significant differentiation of the Chatham Island and Ruakaka populations from all other 

Location Statistic      

 Na Ra PA HO HE FIS 

RUA 7.818 6.489 5 0.353 0.588 0.388 

PAP 7.091 5.928 4 0.358 0.559 0.352 

WMR 7.182 6.044 2 0.352 0.553 0.356 

MAR 7.636 5.797 5 0.322 0.541 0.405 

PKR 7.636 5.647 3 0.399 0.550 0.275 

COL 7.000 5.797 2 0.298 0.543 0.442 

OAK 6.273 5.485 0 0.368 0.542 0.318 

KAK 8.091 6.566 3 0.394 0.569 0.301 

WPK 7.364 5.943 4 0.357 0.558 0.339 

CHA 6.000 5.290 13 0.390 0.521 0.242 

Total 14.455 6.542 40 0.355 0.553 0.348 
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locations. Values ranged from 0-0.279 when calculated using all loci and 0-0.289 when the 

outlier locus Psub_2 was removed from the analysis (Table 3.6). 

Mantel tests using all sampling locations revealed a significant pattern of IBD with 

both measures of FST (p-value range 0.0001-0.0003; Figure 3.4A-D). When the Chatham 

Island population was excluded the IBD pattern among mainland locations was weaker; a 

significant pattern was only detected using FST corrected for null alleles (p-value range 

0.0388-0.0835; Figure 3.5A-D). A PCA using all loci showed that the X axis explains 38.41% of 

variation (p = 0.001) and the Y axis 21.81% of variation (p = 0.024; Figure 3.6A). The 

Chatham Island and Ruakaka populations group separately from the remainder of the 

locations. When the locus Psub_2 is removed from the analysis a similar pattern of 

population grouping is shown with the X axis explaining 40.20% of variation (p = 0.001) and 

the Y axis 22.69% of variation (p = 0.021; Figure 3.6B). 

An AMOVA (Table 3.7) of all sampling locations using all loci showed that 63.2% of 

variation was partitioned among individuals and 33.6% of variation among individuals within 

populations. Exclusion of the Psub_2 outlier locus had little effect, with 63.8% of variation 

partitioned among individuals and 32.7% of variation partitioned among individuals within 

populations. There were no significant north-south (All loci: {RUA, PAP, WMR, KAK, WPK} vs 

{MAR, PKR, COL, OAK}, p = 0.052; non-outlier loci {RUA, PAP, WMR, KAK, WPK} vs {MAR, 

PKR, COL, OAK}, p = 0.055) or east-west groupings (All loci: {RUA, PAP, WMR, MAR} vs {WPK, 

KAK, OAK, PKR, COL}, p = 0.466; non-outlier loci: {RUA, PAP, WMR, MAR} vs {WPK, KAK, OAK, 

PKR, COL}, p = 0.490). The arrangement of populations that explained the most variation 

among groups was {CHA} {RUA} {WMR} {KAK} {PAP, MAR, PKR, COL, OAK, WPK} (p = 0.001 

both including and excluding Psub_2). 
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Figure 3.3: Global FST for each locus for Paphies subtriangulata. Dark grey bars represent FST 

uncorrected for null alleles, light grey bars represent FST corrected for null alleles using the algorithm 

described by Dempster et al. (1977). 
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Table 3.5: Pairwise FST values among Paphies subtriangulata locations using all loci (lower diagonal) 

and excluding the outlier locus Psub_2 (upper diagonal). Values in bold represent significant 

differentiation after FDR correction (p < 0.05) as assessed by an exact G test (Goudet et al. 1996). 

Location abbreviations as per Table 3.1. 

 RUA PAP WMR MAR PKR COL OAK KAK WPK CHA 

RUA - 0.038 0.021 0.041 0.031 0.046 0.045 0.035 0.023 0.074 

PAP 0.034 - 0.031 0.000 0.006 0.000 0.005 0.021 0.012 0.129 

WMR 0.019 0.027 - 0.028 0.012 0.025 0.014 0.003 0.008 0.108 

MAR 0.036 0.000 0.024 - 0.003 0.000 0.002 0.014 0.007 0.133 

PKR 0.027 0.005 0.010 0.002 - 0.004 0.000 0.004 0.005 0.117 

COL 0.040 0.000 0.021 0.000 0.003 - 0.003 0.014 0.006 0.144 

OAK 0.040 0.004 0.012 0.001 0.000 0.002 - 0.005 0.007 0.153 

KAK 0.031 0.018 0.002 0.011 0.002 0.011 0.003 - 0.004 0.130 

WPK 0.023 0.015 0.010 0.009 0.007 0.008 0.007 0.006 - 0.116 

CHA 0.069 0.114 0.099 0.121 0.105 0.130 0.140 0.117 0.116 - 

 

Table 3.6: Pairwise φ’ST values among Paphies subtriangulata locations using all loci (lower diagonal) 

and excluding the outlier locus Psub_2 (upper diagonal). Values in bold represent significant 

differentiation after FDR correction (p < 0.05) as assessed by an AMOVA φ’ST test for population 

differentiation. Location abbreviations as per Table 3.1. 

 RUA PAP WMR MAR PKR COL OAK KAK WPK CHA 

RUA - 0.060 0.033 0.067 0.057 0.046 0.076 0.068 0.027 0.141 

PAP 0.056 - 0.058 0.000 0.007 0.000 0.000 0.041 0.009 0.242 

WMR 0.030 0.053 - 0.051 0.020 0.035 0.019 0.000 0.005 0.206 

MAR 0.062 0.000 0.046 - 0.002 0.000 0.000 0.026 0.001 0.248 

PKR 0.052 0.006 0.017 0.000 - 0.000 0.000 0.005 0.002 0.229 

COL 0.042 0.000 0.030 0.000 0.000 - 0.000 0.020 0.000 0.238 

OAK 0.069 0.000 0.017 0.000 0.000 0.000 - 0.004 0.000 0.289 

KAK 0.061 0.035 0.000 0.022 0.002 0.017 0.002 - 0.000 0.259 

WPK 0.028 0.017 0.009 0.005 0.007 0.000 0.000 0.005 - 0.217 

CHA 0.139 0.228 0.199 0.238 0.218 0.230 0.279 0.245 0.225 - 
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Figure 3.4: Results of Mantel tests for IBD for all Paphies subtriangulata locations (significant if p < 

0.05). A: based on FST for all loci (p = 0.0001); B: based on FST corrected for null alleles using the ENA 

method described in Chapuis and Estoup (2007) for all loci (p = 0.0001); C: based on FST for non-

outlier loci (p = 0.0002); D: based on ENA corrected FST for non-outlier loci (p = 0.0003). 

 

Figure 3.5: Results of Mantel tests for IBD for mainland Paphies subtriangulata locations, excluding 

the Chatham Island population (significant if p < 0.05). A: based on FST for all loci (p = 0.0640); B: 

based on FST corrected for null alleles using the ENA method described in Chapuis and Estoup (2007) 

for all loci (p = 0.0388); C: based on FST for non-outlier loci (p = 0.0835); D: based on ENA corrected 

FST for non-outlier loci (p = 0.0488). 
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Figure 3.6: Principal component analysis (PCA) for Paphies subtriangulata showing patterns of 

genetic population differentiation A: using all loci; B: excluding outlier loci. The percentage of inertia 

explained by each axis and significance of the axis are displayed. An axis was considered significant if 

p < 0.05. Location abbreviations as per Table 3.1. 
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Table 3.7: AMOVA analyses for Paphies subtriangulata. Population structure was considered 

significant if p < 0.05 after false discovery rate correction for multiple tests. 
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STRUCTURE analyses of all locations revealed two genetic clusters with similar 

results when the outlier locus Paus_2 was included and excluded (Figure 3.7A, B; Figure 

3.9A, B). Cluster 1 was most prevalent among the mainland New Zealand locations and 

cluster 2 was most prevalent in the Chatham Island population, although cluster 2 was 

found at all of the mainland locations to varying degrees, most notably at Ruakaka (Table 

3.8). The strong genetic structure between Chatham Island and mainland New Zealand was 

supported by a Spearman rank correlation test, which showed a significant longitudinal 

difference in the distribution of clusters (Spearman’s r -0.72-0.72; p = 0.018-0.022). AWclust 

analyses revealed eight genetic clusters when all loci were used and five clusters when 

Paus_2 was excluded (Figure 3.8A, B). For both analyses cluster 1 was dominant at Chatham 

Island but rare among mainland locations (Table 3.8; Figure 3.9C, D). There was no 

significant correlation among the proportion of clusters and latitude or longitude. 

STRUCTURE and AWclust analyses both detected a difference in population structure 

between mainland New Zealand locations and Chatham Island, but AWclust also detected 

much more structure within the mainland New Zealand populations.  

When STRUCTURE analyses were repeated for mainland New Zealand locations four 

genetic clusters were observed when Psub_2 was both included and excluded from the 

analysis (Figure 3.7C, D). There was admixture of clusters within each location although 

Ruakaka was characterised by a high proportion of cluster 1 (Table 3.8; Figure 3.10A, B). 

AWclust analyses using only mainland New Zealand locations revealed six genetic clusters  

for all loci and three clusters when Psub_2 was excluded (Figure 3.8C, D; Figure 3.10C, D). As 

with STRUCTURE analyses, admixture of clusters was present at all locations and there was 

little evidence for a pattern to the geographical distribution of clusters. No significant 

correlations between cluster proportion and latitude/longitude were found for mainland 

New Zealand locations with both STRUCTURE and AWclust analyses. 

Figure 3.1 summarises the findings of analyses for genetic population structure in P. 

subtriangulata. The location of a major genetic break between mainland New Zealand 

populations and Chatham Island is illustrated (A) along with five other putative locations 

where dispersal among populations may be restricted (i-v). 
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Figure 3.7: Plots to determine optimum K values for STRUCTURE analyses for Paphies 

subtriangulata. DeltaK values were derived from the Evanno et al. (2005) method and generated in 

STRUCTURE HARVESTER (Earl & vonHoldt 2011) to determine the optimal value of K  for A: all 

locations using all loci (K = 2); B: all locations using non-outlier loci (K = 2); C: excluding Chatham 

Island using all loci (K = 4); and D: excluding Chatham Island using non-outlier loci (K = 4).  
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Figure 3.8: Plots to determine optimum K values for AWclust analyses for Paphies subtriangulata. 

Gap statistics generated from AWclust (Gao & Starmer 2008) to determine the optimal value of K  

for A: all locations using all loci (K = 8); B: all locations using non-outlier loci (K = 5); C: excluding 

Chatham Island using all loci (K = 6); and D: excluding Chatham Island using non-outlier loci (K = 3). 
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Figure 3.8 continued. 
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Table 3.8: Proportion of clusters found at Paphies subtriangulata locations from STRUCTURE and 

AWclust analyses. Cluster colours relate to those used in Figure 3.9 and Figure 3.10. 
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Table 3.8 continued. 
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Figure 3.9: Output from cluster analyses for all Paphies subtriangulata locations showing the 

proportion of each cluster assigned to each location. Each colour denotes a different cluster as 

specified in Table 3.8. A: STRUCTURE analysis using all loci (K = 2); B: STRUCTURE analysis using non-

outlier loci (K = 2); C: AWclust analysis using all loci (K = 8); D: AWclust analysis using non-outlier loci 

(K = 5). For STRUCTURE analyses each line represents an individual and individuals can belong to 

multiple clusters. For AWclust analyses individuals are assigned to a single cluster, the width of the 

bars indicates the proportion of each cluster allocated to that location. 
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Figure 3.10: Output from cluster analyses for mainland Paphies subtriangulata locations (excluding 

Chatham Island) showing the proportion of each cluster assigned to each population. Each colour 

denotes a different cluster as specified in Table 3.8. A: STRUCTURE analysis using all loci (K = 4); B: 

STRUCTURE analysis using non-outlier loci (K = 4); C: AWclust analysis using all loci (K = 6); D: 

AWclust analysis using non-outlier loci (K = 3). For STRUCTURE analyses each line represents an 

individual and individuals can belong to multiple clusters. For AWclust analyses individuals are 

assigned to a single cluster, the width of the bars indicates the proportion of each cluster allocated 

to that population. 
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3.3.3 Estimates of contemporary and historical migration 

GENECLASS2 detected low numbers of first generation migrants (F0). The number of 

F0 migrants with a probability less than 0.01 for all P. subtriangulata locations was 22 (4% of 

individuals sampled; Table 3.9A) and the number of F0 migrants detected at each location 

ranged from one to three. The low number of migrants was probably an underestimation of 

the true number of migrants as low levels of differentiation and linkage disequilibrium 

among most populations mean that migrant genotypes will differ little from ‘home’ 

genotypes. This is supported by log-likelihood plots which suggested that Ruakaka and 

Chatham Island were the only sufficiently differentiated populations with enough power to 

detect migrants (data not shown). By repeating the analysis using the five population 

groupings shown to be significantly differentiated by exact G and AMOVA tests the power to 

detect F0 migrants was increased. Twelve F0 migrants were detected among the five groups 

(2% of individuals samples; Table 3.9B). The number of F0 migrants in each population 

ranged from one to four. The majority of migrants were exchanged among mainland New 

Zealand locations; only one F0 migrant was detected at Chatham Island and one migrant 

originated from this location. 

BAYESASS detected modest rates of recent migration among most locations, 

although a limited number of source populations were found. Migration rates ranged from 

4-19% and self-recruitment rates ranged from 67-95% (Figure 3.11A). Three main sources of 

migrants were detected (Waimarama, Paekakariki and Collingwood). The six locations that 

were identified as having no significant differentiation (PAP, MAR, PKR, COL, OAK, WPK) 

were well connected and tended to show higher migration rates. Despite being significantly 

differentiated from all other locations Waimarama supplied moderate numbers of migrants 

to Kakamatua (13%) and Waipapakauri (10%) and smaller numbers of migrants to Marfell 

Beach (4%). Ruakaka also received a small number of migrants from Collingwood (7%) 

despite being significantly differentiated from this location. No recent migration among 

Chatham Island and mainland New Zealand was detected. Due to the limitations of the 

BAYESASS program (i.e., assumes that migration is less than 1/3; Faubet et al. 2007) and low 

FST values between some locations, the power to detect true migration rates is decreased, 

and therefore these are likely to be underestimates of the true rates. As a consequence it is 

possible that such locations could experience relatively unrestricted connectivity. However 
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by repeating this analysis among the five genetically differentiated groups the power to 

accurately estimate migration rates was increased. This analysis showed that the grouping 

of PAP, MAR, PKR, COL, OAK and WPK was the main source of migrants (Figure 3.11B). 

There were high levels of migration to Waimarama (29%) and Kakamatua (31%), and lower 

levels of migration to Ruakaka (8%). No migration to Chatham Island was detected (Figure 

3.11B). 

Long-term migration rates among all locations estimated by MIGRATE displayed a 

large range of values but showed that migration has occurred among all locations when 

averaged over time. Migration rates ranged from 1.59-53.03 migrants per generation and 

the population size parameter θ ranged from 0.06-0.23 (Table 3.10A). Using a mutation rate 

of 1 x 10-4 this equates to an effective population size range of 108.33 to 608.33 individuals. 

On average, northern locations (Ruakaka, Waipapakauri) had the largest population sizes 

and supplied the largest number of migrants. Long-term migration rates estimated among 

the five genetically differentiated P. subtriangulata groups ranged from 1.83-49.50 migrants 

per generation (Table 3.10B). θ ranged from 0.05-0.18, resulting in effective population sizes 

that ranged from 125.00 to 441.68 individuals. Again, this combined analysis identified 

Ruakaka as a large source of migrants, followed by the grouping of PAP, MAR, PKR, COL, 

OAK and WPK (referred to as ‘REST’ in results tables). A moderate level of migration from 

mainland New Zealand to Chatham Island was detected, but few migrants were sourced 

from Chatham Island. 
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Table 3.9: Results of an assignment test to detect first generation (F0) migrants at each Paphies 

subtriangulata location, conducted in GENECLASS2. Migrants were detected using the Lh/Lhmax 

statistic with a probability < 0.01. A: Migrants exchanged among all locations. B: Migrants exchanged 

among genetically differentiated population groups as determined by exact G and AMOVA tests. 

‘REST’ referrs to the grouping of PAP, MAR, PKR, COL, OAK and WPK.  
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Figure 3.11: Recent migration rates for Paphies subtriangulata as determined by BAYESASS. Values 

in grey circles represent self-recruitment rates for each location (95% confidence intervals in 

brackets). Arrows represent migration among locations with the proportion of migrants indicated in 

bold (95% confidence interval in brackets). Arrow thickness indicates the relative contribution of 

migrants from each putative source location. A: Migration among all locations; B: Migration among 

genetically differentiated population groups as determined by exact G and AMOVA tests. 
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Table 3.10: Estimates of the number of migrants per generation (Nem), the population size 

parameter theta (θ), their credible intervals and effective population size (Ne, using the mutation 

rate 1 x 10 -4) for Paphies subtriangulata. A: Migrants exchanged among all locations. B: Migrants 

exchanged among genetically differentiated population groups as determined by exact G and 

AMOVA tests. ‘REST’ referrs to the grouping of PAP, MAR, PKR, COL, OAK and WPK.  
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3.4  Discussion 

Relatively continuous open coast marine areas are often viewed as a habitat that 

should promote high connectivity among locations with few barriers to dispersal and few 

opportunities for population differentiation (Hedgecock et al. 2007). Despite this 

perception, there is growing evidence that coastal habitats can be characterised by complex 

and stochastic physical processes that form barriers to connectivity and result in the genetic 

differentiation of populations (An et al. 2012; Kong et al.2007; Li et al. 2013; St-Onge et al. 

2013). In this chapter, the influence of these processes on connectivity rates and the 

resulting patterns of genetic population structure were assessed for ten populations of the 

surf clam, Paphies subtriangulata. Many of the sampled locations appeared to be well 

connected with high levels of migration detected, and little evidence for the genetic 

differentiation of populations was observed. However, in other parts of the sampled range 

connectivity processes appear less straight-forward, as barriers to dispersal appeared to be 

present in some locations that have restricted larval dispersal and promoted localised 

genetic differentiation of populations. These patterns could be related to both geographic 

distance among locations and complexity in oceanographic processes. 

3.4.1 Genetic diversity 

Levels of genetic diversity in P. subtriangulata were similar to what has been 

reported for other clam species (e.g., Cassista & Hart 2007; Ni et al. 2011; Kang et al. 2012; 

Su et al. 2012). The high FIS values, homozygote excess and large scale departures from HWE 

observed in P. subtriangulata are also commonly reported in other bivalve species (e.g., 

Cassista & Hart 2007; Kong et al. 2007; Varela et al. 2009; An et al. 2012). A likely cause of 

HWE departures are null alleles, which for unknown reasons are particularly common in 

bivalves (e.g., Launey & Hedgecock 2001; Varela et al. 2009; Zhan et al. 2009). Estimates of 

null allele frequency were high for some loci; when a locus had a null allele frequency 

greater than 20% no populations were in HWE. Although null alleles are commonly observed 

in microsatellite studies little is known about how they might affect estimates of population 

differentiation (Chapuis & Estoup 2007). In general it is thought that high frequencies of null 

alleles will reduce population genetic diversity, inflating FST and estimates of the level of 

population differentiation (Paetkau et al. 1997; Slatkin 1995). Simulations suggest that if 

effective population size (Ne) and gene flow are high, and frequency of null alleles is 
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moderate (5-20%) then FST estimates should be unbiased by null alleles (Chapuis & Estoup 

2007). Correcting FST for null alleles was not found to have a consistent effect across loci in 

the present study. While null alleles are not predicted to have a large influence on estimates 

of population differentiation in this study, results suggest that, if anything, null alleles could 

be masking population structure rather than inflating it, as evidenced by the increased slope 

of the of the regression line in IBD analyses where null allele corrected FST was used. 

At a population level, all of the sampled locations failed to meet HWE expectations, 

although some individual loci were in HWE within populations. The observed patterns of 

HWE deviation suggest that biological factors other than null alleles were responsible. 

Undetected spatial or temporal patterns of genetic structure (i.e., Wahlund effect) could 

explain some of these observations. Clustering analyses did not provide evidence for a 

spatial Wahlund effect, but a temporal effect cannot be ruled out. Alternatively, there is 

known to be a strong correlation between marine invertebrate life histories and deviation 

from HWE, whereby species with free-spawned planktonic sperm have significantly higher 

FIS (Addison & Hart 2005). The mechanisms behind this correlation are unknown but could 

be caused by higher mutation rates and variability in reproductive success associated with 

high reproductive output (Addison & Hart 2005; Launey & Hedgecock 2001). 

3.4.2 Genetic population structure 

Fitting the pattern of genetic population structure observed for P. subtriangulata 

into the categories described for other New Zealand coastal marine species by Gardner et 

al. (2010) was not straight forward as the type of structure was dependent on the spatial 

scale of the analysis. When all of the sampled locations are considered, a strong IBD pattern 

was observed. However this pattern was driven by the strong genetic differentiation of the 

Chatham Island population, and is likely to reflect hierarchical structure rather than true 

IBD. Among mainland locations it was difficult to reject the null hypothesis of panmixia as 

many of the sampled locations formed a genetically undifferentiated group. However, in 

other parts of the sampled range divergence among populations was also observed. In 

general, pairwise FST was low, as is usual for marine invertebrates (Hedgecock et al. 2007), 

although there was still sufficient power to detect significant population differentiation. The 

patterns of genetic population differentiation and connectivity seen in P. subtriangulata 

serve as a reminder that there is spatial variation in the processes that shape populations of 
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marine organisms. The result is that, even for species where panmictic population structure 

is predicted, spatially complex patterns of genetic population structure can form and could 

change over time, a phenomenon referred to as ‘chaotic’ genetic patchiness (Hellberg et al. 

2002; Johnson & Black 1982). 

The most striking feature of genetic population structure in P. subtriangulata was 

the differentiation of the Chatham Island population from other mainland populations. 

Differentiation of the Chatham Island population was mainly due to differences in the 

frequency of alleles shared with mainland populations but some private alleles were also 

found at high frequency, which would contribute to differentiation. FST and φ’ST between 

Chatham Island and other mainland locations was very high, even when compared to what 

has been reported for other marine bivalves that inhabit large geographic ranges (e.g., 

Benzie & Smith-Keune 2006; Lind et al. 2007; Ni et al. 2011; St-Onge et al. 2013; Xiao et al. 

2010). It is similar to the levels of differentiation that have been reported for populations of 

the cockle Cerastoderma glaucum across the Mediterranean region (Tarnowska et al. 2010) 

and across the Atlantic Ocean for populations of the softshell clam Mya arenaria (Strasser & 

Barber 2008). In these studies genetic differentiation of this magnitude was observed over 

ranges of 3,000 to 5,000 km, rather than the 700 km between Chatham Island and mainland 

New Zealand. The Chatham Island population of P. subtriangulata was previously shown to 

be differentiated from mainland populations based on allozyme markers (Smith et al. 1989) 

and morphological analyses provide support that this population may represent a separate 

species of tuatua (Beu & de Rooij-Schuiling 1982), although species status has never been 

formally proposed or verified. Genetic differentiation of Chatham Island populations has 

been previously reported for other coastal marine species (e.g., Goldstien et al. 2009; Hickey 

et al. 2009; Stevens & Hogg 2004; Will et al. 2011) but for others there appears to be little to 

no restrictions on gene flow to mainland New Zealand (e.g., Buchanan & Zuccarello 2012; 

Ross et al. 2009).  

Among mainland P. subtriangulata, most locations were found to be genetically 

undifferentiated from each other. Although weak IBD was detected the effect of null alleles 

and deviation from HWE on genetic population structure make it difficult to determine the 

significance of this pattern. Several lines of evidence suggest that Papamoa, Marfell Beach, 

Paekakariki, Collingwood, Oakura and Waipapakauri can be considered as one population 
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unit, suggesting few restrictions to connectivity among these locations. Ruakaka, 

Waimarama and Kakamatua are differentiated from this group to varying degrees. Of all the 

mainland populations Ruakaka was the most genetically distinct from other locations but 

interestingly, the Ruakaka population also showed the highest degree of genetic similarity to 

the Chatham Island population. Why this pattern exists is unclear but could represent the 

remnants of historic gene flow, be an artefact of the markers used or be related to other 

stochastic effects independent of gene flow. There was also evidence for genetic similarities 

between Waimarama and Chatham Island populations and this is the mainland population 

with the closest proximity to Chatham Island. 

The pattern of genetic population differentiation observed in P. subtriangulata 

differs somewhat from that reported by Smith et al. (1989). These authors reported a 

‘northern’ group and a ‘central’ group with evidence that Stewart Island samples may form 

a third ‘southern’ group. Smith et al. (1989) did sample populations in close proximity to 

Ruakaka and Waimarama (but not to Kakamatua). In contrast to the present study, these 

populations were not found to be differentiated from other ‘northern’ populations, but 

there was evidence that they were differentiated from populations at the top of the South 

Island and bottom of the North Island (i.e., the ‘central’ group). Differences in the 

population structure inferred by different marker types is commonly observed, e.g., the 

greenshell mussel Perna canaliculus (Apte & Gardner 2001; Star et al.  2003) and the cockle  

Austrovenus stutchburyi (Lidgard 2001; Ross et al. 2011). Alternatively, the differences 

observed between the two studies might mean that genetic population structure in P. 

subtriangulata has changed over time, which could be the result of temporal variability in 

connectivity. 

The pattern of population differentiation seen among mainland P. subtriangulata 

locations is unusual among New Zealand coastal marine species, although not unexpected. 

Large areas of panmictic genetic population structure were predicted based on the life 

history characteristics of the species and results from previous genetic analyses. Isolated 

cases of genetic population differentiation are not unexpected for coastal marine species 

and the areas of restricted dispersal identified for P. subtriangulata in this study have also 

been reported for other species. Differentiation of populations from the northern part of 

the North Island has been reported in the seaweed Carpophyllum maschalocarpum 
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(Buchanan & Zuccarello 2012) and the cockle Austrovenus stutchburyi (Ross et al. 2011). A 

genetic break at the East Cape on the eastern side of the North Island has also been 

commonly reported (e.g., amphipods Paracorophium lucasi and P. excavatum, Stevens & 

Hogg 2004; black-foot abalone Haliotis iris, Will et al. 2011), similar to that seen in the 

Waimarama population. There is little evidence from other marine organisms for 

differentiation on the west coast of the North Island but the Kakamatua population is 

unusual as it is the only P. subtriangulata population in this study that is located inside a 

harbour. 

There was little evidence for the north-south differentiation pattern that has 

commonly been observed in New Zealand coastal marine species. The two populations from 

the top of the South Island (Marfell Beach and Collingwood) were undifferentiated from 

most North Island populations, although similar genetic population structure has been seen 

in the greenshell mussel Perna canaliculus. Star et al. (2003) reported a genetic break for P. 

canaliculus at -42° S. Evidence from Smith et al. (1989) suggests that a similar pattern of 

differentiation could exist for P. subtriangulata (i.e., there was evidence that the 

southernmost sample from Stewart Island was differentiated from other populations). 

Because samples from mainland populations south of this latitude could not be obtained it 

was not possible to test for this pattern. 

3.4.3 Patterns of migration 

Patterns and rates of migration generally support the population structure that was 

observed for P. subtriangulata. It appears that little to no migration has occurred between 

Chatham Island and mainland New Zealand in the recent past. The vast majority of the 

Chatham Island population has originated from self-recruitment (95-97%), resulting in 

significant differentiation of this population due to restricted gene flow. Some genetic 

similarities to mainland populations remain, but it is unclear whether these similarities 

represent contemporary gene flow or are maintained due to slow rates of genetic drift. The 

two F0 migrants exchanged among the mainland and Chatham Island populations suggest 

that rare migration events could occasionally occur. Long-term migration rates provide 

support for past gene flow, although migration rates to and from Chatham Island were low 

compared to migration rates among mainland locations. 
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Among mainland locations both recent and historic migration rates were high, 

particularly among locations that were not genetically differentiated. Recent migration 

among locations was found to be unidirectional (i.e., gene flow between locations was 

detected in one direction only) and not detected at all among some locations, but migration 

among all locations in both directions was detected in the long-term. All analyses suggested 

that the group consisting of the six undifferentiated locations (PAP, MAR, COL, PKR, OAK, 

WPK) were well connected via gene flow. Waimarama and Kakamatua appear to be well 

connected to this group in both the short and long-term, despite their significant genetic 

differentiation. In contrast, Ruakaka appears to be more heavily reliant on self-recruitment 

(85-90%), which is consistent with the significant genetic differentiation detected at this 

location. However, long-term analyses indicate that the Ruakaka population may 

occasionally be connected to other populations. 

It seems unusual that genetic differentiation could develop among locations when 

migration estimates are high; however this finding could also be a consequence of 

temporally patchy larval dispersal and recruitment (Hedgecock et al. 2007). Temporal 

variation in reproductive output and/or physical oceanographic conditions means that 

fluctuations in the supply of larvae from different source populations can occur (Hedgecock 

& Pudovkin 2011). Populations may be well connected in some years and rely on large 

amounts of self-recruitment at other times, allowing genetic differentiation to occur via 

genetic drift, mutation or selection. The contrasting patterns of short versus long-term 

migration reported here for P. subtriangulata provide evidence for this phenomenon and 

studies reporting temporal variability in population connectivity are common for marine 

species (e.g., Planes & Lenfant 2002; Selkoe et al. 2006; Varela et al. 2009). Furthermore, 

given that the distance among some of the locations sampled was greater than the 

estimated dispersal distance for P. subtriangulata larvae, it seems highly likely that some 

locations will only be connected by rare long-distance dispersal events. These results 

provide evidence that consistent connectivity occurs among many genetically 

undifferentiated locations, but in some places it could be more intermittent, allowing 

genetic differentiation to arise between populations. Furthermore, these results highlight 

how larval dispersal for marine species can be temporally variable.  
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Temporal variability in population connectivity is expected to have a more 

pronounced effect on the genetic structure of populations when effective population size is 

low (Lowe & Allendorf 2010). Effective population size is hypothesised to be low among 

species that are characterised by high fecundity and high mortality in early life stages 

(Hedrick 2005; Palstra & Ruzzante 2008) and long-term Ne for P. subtriangulata was found 

to be low compared to estimates for other marine invertebrate populations (e.g., Cassista & 

Hart 2007; Jolly et al. 2009; Sui et al. 2009). Low Ne is often attributed to ‘sweepstakes 

reproductive success’ (Hedgecock 1994), whereby chance events mean that a small number 

of breeders may be responsible for producing the majority of offspring in each generation. 

This can result in a very low Ne/N ratio, where N is the census size of the population. 

Frankham (1995) calculated that the average Ne/N ratio from published studies was 0.11 but 

ratios as low as 10-5 to 10-6 have been observed in Pacific oysters (Hedgecock 1994). This 

means that despite low estimates of Ne, actual population size for P. subtriangulata may be 

very large, possibly in the range of 106 or 107 individuals per population. Low Ne will also 

have implications for how opposing gene flow, genetic drift and mutational forces will 

structure populations. Theoretically, gene flow will override the effects of random genetic 

drift when m > 1/4Ne (where m is the migration rate; Wright 1931). Despite low Ne, 1/4Ne is 

still much higher than m for the majority of P. subtriangulata populations so it is likely that 

genetic drift is a dominant force in structuring populations for this species. Coupled with the 

high mutation rates expected for invertebrate microsatellite loci (Gow et al. 2005) and low 

effective population size it might be possible for populations to become significantly 

differentiated over short time periods despite on-going long-term gene flow (Lowe & 

Allendorf 2010). 

3.4.4 Possible explanations for observed genetic population structure and migration 

The genetic population structure observed in P. subtriangulata is consistent with 

what is expected for a free-spawning marine bivalve with a three week pelagic larval 

duration. From a simplistic point of view, this period should be sufficient for short scale 

dispersal among populations over hundreds of kilometres (Shanks 2009; Shanks et al. 2003) 

and over larger scales via the stepping-stone model of connectivity thought to characterise 

many coastal marine species (Hellberg 2009). The relatively continuous nature of the open 

coast habitat of P. subtriangulata means that larvae should quickly disperse into coastal 
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currents and suitable habitat should be readily available for settlement, resulting in well-

connected, undifferentiated populations. Certainly this is the case for the majority of 

mainland locations, which show little genetic differentiation and consistent levels of 

migration at all timescales investigated. However, the genetic differentiation observed 

among some populations provides evidence that this simplistic model is not applicable 

across the whole of the range sampled in this study. Instead, restrictions to gene flow are 

occurring in some parts of New Zealand that are allowing more complex patterns of genetic 

population structure to form. 

For the Chatham Island population the obvious explanation for genetic 

differentiation from the mainland is that distance is limiting larval dispersal. The distance 

between Chatham Island and mainland New Zealand seems to pose no limitations to 

dispersal for some species but does limit gene flow to varying degrees for other species. The 

offshore flow of the East Cape and Southland currents across the Chatham Rise is 

hypothesised to transport larvae away from the coast into unsuitable open ocean habitat 

(Hadfield et al. 2007; Heath 1985). However, some authors have proposed this as a 

mechanism of connectivity from mainland populations to Chatham Island for some 

organisms with pelagic larval duration of sufficient length to survive the crossing (e.g., Ross 

et al. 2011).  

The inconsistent pattern of genetic population differentiation seen at Chatham 

Island across multiple species is probably due to the unique reproductive and life history 

characteristics of each species. For example, it is not unexpected that the seaweed 

Carpophyllum maschalocarpum shows little differentiation at Chatham Island as seaweed is 

known for dispersing large distances via rafting (Buchanan & Zuccarello 2012). However it is 

unclear why P. subtriangulata populations would be genetically differentiated when the 

bivalve Austrovenus stutchburyi, with similar reproductive characteristics and larval 

duration, shows no differentiation at Chatham Island (Ross et al. 2011). A possible 

explanation is that A. stutchburyi is likely to have larger, higher density populations 

compared to P. subtriangulata (personal observation), which could result in higher 

reproductive output and provide more opportunity for long distance dispersal events. 

Genetic similarities and detection of F0 migrants between the Chatham Island population 

and some mainland locations provides evidence for P. subtriangulata that infrequent long-
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distance migration events may occur to Chatham Island. Alternatively, if the Chatham Island 

population represents a separate, recently diverged species of tuatua, as suggested by 

previous authors (Beu & de Rooij-Schuiling 1982; Smith et al. 1989), time since divergence 

may make it possible for mainland and Chatham Island populations to still share alleles but 

other biological mechanisms, such as reproductive isolation, may be driving differentiation. 

The majority of mainland P. subtriangulata locations were found to be genetically 

undifferentiated, suggesting that larval dispersal between these locations has been 

unrestricted in both the short and long-term. Where genetic differentiation was observed 

among mainland populations there are several mechanisms that could have contributed to 

these patterns forming. It is possible that the distance between locations may be 

responsible for limiting gene flow, although not to the same extent as observed for the 

Chatham Island population. This would be consistent with the weak IBD pattern that was 

found among mainland locations. Finding a small degree of IBD was not surprising because 

the sampling sites in this study were further apart than what larvae should be able to travel 

in a single generation. Where populations were genetically differentiated (e.g., Ruakaka and 

Waimarama) it is possible that eddies may be entraining larvae to promote self-recruitment 

and prevent larval exchange with other populations.  

The North Cape Eddy (Stanton et al. 1997) and Wairarapa Eddy (Chiswell 2003; 

Chiswell & Roemmich 1998), located in the Northland and East Coast regions respectively, 

may be the mechanism behind the genetic differentiation observed in P. subtriangulata 

populations from these regions (see Figure 1.1). High levels of self-recruitment estimated 

for these populations provide support for local larval retention, but evidence for temporal 

variability in migration rates implies that this population structure could be transient and 

change over time. Differences between the genetic population structure reported in the 

present study and that reported by Smith et al. (1989) provide evidence for such temporal 

instability in P. subtriangulata genetic population structure, despite apparently high levels 

of genetic connectivity. This is supported by low estimates of Ne, suggesting that genetic 

drift should be a powerful force in shaping P. subtriangulata genetic population structure by 

promoting the differentiation of populations. 
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Differentiation of the Kakamatua population could be attributed to its location inside 

the Manukau Harbour. Tidal circulation inside harbours is known to retain larvae, limit 

connectivity and promote genetic population differentiation (Bilton 2002). Furthermore, the 

characteristics of a harbour habitat are very different from those of the open coast beach 

habitat where P. subtriangulata more commonly occurs. As a consequence the Kakamatua 

population may be locally adapted to this different habitat type, which could be driving 

population differentiation.  

Life history characteristics (e.g., habitat, pelagic larval duration) and ocean 

circulation can be invoked to explain much of the genetic population structure and 

migration patterns that were observed in P. subtriangulata. However, these processes are 

often not able to adequately explain why genetic differentiation has occurred in some 

locations (e.g., Kakamatua). Chapter 5 will further investigate the environmental factors that 

may be responsible for influencing the patterns of genetic population structure and 

connectivity that were observed in P. subtriangulata. 

3.4.5 Conclusions 

The types of genetic population structure seen in P. subtriangulata showed spatial 

variation across the sampled range. Overall, genetic population structure was found to be 

characterised by an isolation by distance pattern, although this pattern is likely to represent 

hierarchical structure driven by the high level of genetic differentiation between the 

Chatham Island population and the remaining mainland New Zealand populations. This 

structure is likely to be a result of the distance between these locations, which poses a 

barrier for the dispersal of larvae. Among mainland P. subtriangulata, most locations were 

undifferentiated and well-connected, suggesting that to some extent the paradigm of 

unrestricted linear gene flow along a relatively unstructured coast is applicable to P. 

subtriangulata. However, there was also evidence that genetic divergence has occurred 

among some populations. 

While most locations were found to be genetically well connected over historic time 

scales, recent migration rates suggest that gene flow may be variable on a temporal scale. 

This is likely to be a consequence of oceanographic features that restrict larval dispersal and 

promote self-recruitment for some populations. As a consequence, isolated occurrences of 
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significant population differentiation among mainland P. subtriangulata might not be 

temporally stable, i.e., genetic population structure could change over time. Although 

barriers to connectivity appear to exist in some locations for P. subtriangulata these barriers 

might not be absolute. Instead they may be semi-permeable, allowing for gene flow among 

locations on occasion. The results of this study have highlighted how despite reproductive 

characteristics and habitat preferences that are suggestive of well-connected and ‘open’ 

genetic population structure, species inhabiting open coastal marine environments can have 

unpredicted population structure consistent with restricted connectivity; these patterns can 

show variation over time and over the geographic range of a species. 
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4 Interaction between habitat availability 

and oceanographic processes structure 

populations of an estuarine species: 

population genetics and connectivity in 

Paphies australis 

4.1 Introduction 

In chapter 3 I highlighted that while the oceans are seemingly continuous and free of 

restrictions to dispersal, it is still common for genetic diversity within a species to become 

geographically structured into distinct population units. It is important for population 

geneticists to define the number and geographic location of these units, as well as the rates 

and pattern of gene flow among them, to assist with management and/or conservation of 

marine species. While the biological characteristics of a species are important drivers of 

population connectivity, the complex physical nature of the coastal marine environment can 

have unpredictable and variable effects on how populations are genetically structured over 

time and space (Cowen et al. 2007; Pineda et al. 2007). The way in which environmental 

complexity influences genetic population structure is particularly relevant for organisms 

living in estuaries and harbours, such as Paphies australis (pipi), as the geographical features 

of these habitats are likely to create barriers that will restrict larval dispersal to varying 

degrees. Estuaries are the type of habitat where connectivity is likely to become ‘crinkled’ 

(Ovenden 2013); gene flow may be restricted to the point where genetic connectivity can be 

maintained in the long-term, but short-term demographic connectivity may be limited and 

variable, allowing populations to become genetically differentiated. 

Compared to open coastal habitats, estuaries are typically enclosed, discrete 

environments, separated from other such habitats by considerable geographical distance 

(Bilton 2002). The organisms that inhabit estuaries cope with variable and extreme 
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environmental gradients (e.g., temperature, salinity, sedimentation), and complex 

circulation regimes (Watts & Johnson 2004). Locally adapted and genetically distinct 

estuarine populations are common for many organisms (e.g., Caudill & Bucklin 2004; 

McCairns & Bernatchez 2008; McCraney et al. 2010; Tarnowska et al. 2010). These habitats 

contain both specialised estuarine organisms as well as estuarine ecotypes of typically 

marine species (Bilton 2002). Furthermore, the geologically recent origin of many estuaries 

means that sufficient time might not have passed for populations to reach migration-drift 

equilibrium and population genetic signals may be influenced by historic events (Williams et 

al. 2008). The characteristics of estuarine habitats along with the high spatial and temporal 

variation in the physical processes operating within estuaries can cause complex and 

unpredictable genetic signals to arise in estuarine organisms (Pelc et al. 2009). 

Understanding how populations of estuarine organisms are genetically structured 

and connected is important; estuaries are on the interface of the terrestrial/marine 

environment and are heavily impacted by human activity (Cole et al. 2000). They are highly 

diverse environments, providing habitat for important fishery species and providing 

spawning grounds for coastal fishery species (Watts & Johnson 2004). Studies of genetic 

population structure in New Zealand estuarine organisms are few (Gardner et al. 2010) and 

have been limited to sea grass (Jones et al. 2008), amphipods (Knox et al. 2011; Stevens & 

Hogg 2004), cockles (Ross et al. 2011) and triplefin fish (Hickey et al. 2009). All of these 

studies found high levels of genetic structuring, with divergence of northern and southern 

populations around the location of Cook Strait being commonly reported. In addition, most 

of these studies reported further population subdivision with genetic breaks observed in 

locations additional to Cook Strait (Knox et al. 2011; Ross et al. 2011; Stevens & Hogg 2004). 

Marine organisms inhabiting fiords are expected to experience similar restrictions to 

dispersal and the divergence seen among Fiordland populations of black coral (Miller 1997), 

red coral (Miller et al. 2004) and starfish (Perrin et al. 2004) provide support for this. 

Studies of genetic structure in estuarine species, such as those mentioned above, 

have a strong emphasis on habitat as a controlling factor in the genetic structuring of 

populations. The expectation is that, because coastal marine habitats are often viewed as a 

‘linear’ environment, and estuaries are discontinuous ‘islands’ distributed along the coast, a 

simple one-dimensional isolation by distance (IBD) pattern will form (Kimura & Weiss 1964; 
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Slatkin 1993). However, P. australis is not strictly an estuarine species and can also be found 

in sheltered harbour and coastal areas (Morton & Miller 1968). Coastal currents may play a 

more significant role in structuring and connecting P. australis populations and it is possible 

that more complex patterns could be observed than those previously reported for other 

estuarine species. For example, Pampoulie et al. (2004) found a complex pattern of 

significant population differentiation coupled with high gene flow for a species of goby that 

is distributed through estuarine, coastal and marine habitats. 

In chapter 3 P. subtriangulata populations were found to be well connected by gene 

flow with isolated cases of genetic differentiation that were likely to be the result of 

geographic distance or localised current circulation. In this chapter, the more complex 

nature of P. australis habitat presents an opportunity to further investigate the effect of 

habitat on determining genetic population structure. Genetic population structure and 

connectivity in P. australis is likely to be driven by two main processes. Firstly, suitable 

estuarine/harbour habitat must be available for settlement within the distance that larvae 

can disperse during their pelagic larval duration (PLD). For estuarine species this distance 

may be shorter than that of open coast species, as larvae originating in estuaries must first 

overcome any barriers associated with exiting the estuary and entering coastal currents 

(Bilton 2002). If suitable habitat can be reached within the PLD then connectivity is likely to 

be high and stepping-stone IBD patterns could be observed. If suitable habitat is not 

available then this may present a barrier to dispersal and should manifest as a sudden 

genetic discontinuity. Secondly, despite the availability of suitable habitat, dispersal could 

be restricted or promoted by local oceanographic conditions. Circulation of coastal currents 

may act to restrict the dispersal of larvae, resulting in the formation of genetically 

differentiated populations over small spatial scales. Alternatively, fast flowing linear 

currents could disperse larvae over long distances, allowing for high genetic connectivity 

over long stretches of coastline, even where large gaps between suitable habitat exist.  

In this study of genetic population structure and connectivity in P. australis, I 

explored the relationship between habitat availability and coastal current patterns to 

investigate how their interaction can shape the genetic population structure of estuarine 

species. This study examined the relevance of the simple one-dimensional IBD model for 

estuarine species and whether distance between suitable habitats could be used as a proxy 
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for levels of genetic population differentiation. Alternatively, habitat availability could 

combine with oceanographic processes to create a more complex genetic structure where 

levels of connectivity vary spatially and temporally to create regions of high gene flow and 

barriers in other locations. As a clearer understanding of the genetic population structure 

and connectivity patterns found in estuary/harbour species develops, it will have 

implications for how these species are managed. 

 In this chapter genetic population diversity, differentiation and gene flow were 

estimated using the panel of microsatellite markers described for P. australis in chapter 2. 

Specifically, this chapter aimed to test a null hypothesis of panmictic genetic population 

structure by: 

1. Quantifying levels of genetic diversity in P. australis sampled from thirteen 

locations; 

2. Investigating levels of genetic differentiation among the sampled localities to 

determine which of the five categories from Gardner et al. (2010) best describes 

the genetic population structure of P. australis; 

3. Estimating levels of migration among P. australis locations over both recent and 

historic time scales. 

4.2 Methods 

4.2.1 Sample collection and laboratory methods 

Samples of Paphies australis were collected between June 2010 and February 2012 

from 13 locations (Table 4.1; Figure 4.1). The biogeographic classification scheme of Shears 

et al. (2008) and the New Zealand fishery quota management areas were used as a basis for 

selecting sampling sites. The aim was to sample at least one site within each biogeographic 

and fishery area, dependent on being able to locate suitable populations within those areas. 

Samples were gathered by hand at low tide, photographed, shell length was measured to 

the nearest 0.5 cm and a sub-sample of foot tissue was taken and stored in 80% ethanol at 

4°C. DNA extraction and quantification followed the protocols described in chapter 3. 
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Fourteen P. australis microsatellite loci were amplified in multiplex PCR reactions 

following the protocols described in chapter 2. PCR products were visualised and alleles 

scored following the protocols described in chapter 3. Each plate of 96 samples that was 

genotyped contained four previously genotyped samples as a positive control and to 

estimate levels of genotyping error. The mean error rate per allele was calculated following 

Pompanon et al. (2005). 

4.2.2 Genetic diversity, differentiation and migration analyses 

Data quality checks were carried out following the methods described in chapter 3. 

Briefly, genotype data was checked for scoring errors, large allele drop out, linkage 

disequilibrium and Hardy-Weinberg equilibrium (HWE). Allele discovery curves were 

calculated and simulations were run to check for FST outlier loci. The number of alleles, 

allelic range, proportion of null alleles and allele frequencies were calculated for each locus. 

The diversity statistics mean number of alleles (Na), allelic richness (Ra), private alleles, 

observed heterozygosity (HO), expected heterozygosity (HE) and inbreeding co-efficient (FIS) 

were calculated for each location. 

All population differentiation analyses were first performed using all loci, then were 

repeated excluding loci identified as outliers by LOSITAN (Antao et al. 2008) to determine 

any effects of outlier loci on genetic population structure. Global FST, pairwise FST and φ’ST 

were calculated and tested for significance following the methods described in chapter 3. 

Tests were conducted to determine if the patterns of genetic population structure observed 

for other New Zealand coastal marine species (Gardner et al. 2010), were present for P. 

australis populations (i.e., no structure, IBD, divergence within and/or among populations, 

north-south divergence, east-west divergence). Mantel tests, principal component analyses 

(PCA) and analyses of molecular variance (AMOVA) were used to test for genetic population 

structure, as described in chapter 3. 

Paphies australis individuals were clustered into genetically similar groups using the 

Bayesian method implemented in STRUCTURE 2.3.4 (Pritchard et al. 2000) and the non-

parametric method implemented in AWclust (Gao & Starmer 2008). Analyses were 

conducted using the methods and parameters described in chapter 3 except that the range 

of K values tested for P. australis in STRUCTURE was 1 to 13. Results from both clustering 
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analyses included all P. australis populations sampled and were conducted both including 

and excluding outlier loci.  

Recent migration rates among P. australis locations were estimated using 

GENECLASS2 (Piry et al. 2004) and BAYESASS 3.0.3 (Wilson & Rannala 2003) using the same 

parameters as described in chapter 3. Long-term migration rates and effective population 

size (Ne) were estimated using MIGRATE 3.5.1 (Beerli 2006; Beerli & Felsenstein 2001) using 

the same parameters as described in chapter 3. Based on results of population 

differentiation analyses, all three migration estimation methods were carried out excluding 

outlier loci. Analyses were first performed to estimate migration among all sampling 

locations, then were repeated to estimate migration among population groupings identified 

as significantly differentiated by exact G (Goudet et al. 1996) and AMOVA (Excoffier et al. 

1992) tests. 

 

 

 

Table 4.1: Location, number of samples and geographical co-ordinates for Paphies australis samples 

used in this study. 

Location Abbreviation Sample Size     Geographical Co-ordinates 

Raglan RAG 55 -37.82° S 174.83° E 

Huia HUI 54 -37.01° S 174.57° E 

Tapotupotu Bay TAP 55 -34.43° S 172.71° E 

Waiwera WAI 54 -36.54° S 174.71° E 

Tauranga TAU 53 -37.66° S 176.13° E 

Napier NAP 50 -39.48° S 176.89° E 

Petone PET 56 -41.23° S 174.86° E 

Hakahaka Bay HAK 55 -41.31° S 174.11° E 

Lyttelton LYT 52 -43.64° S 172.75° E 

Bluff BLU 51 -46.57° S 168.49° E 

Doubtful Sound DBT 53 -45.28° S 166.91° E 

Okuru OKU 35 -43.89° S 168.92° E 

Karamea KAR 51 -41.26° S 172.11° E 
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Figure 4.1: Collection locations for Paphies australis. Location abbreviations refer to those listed in 

Table 4.1. A, B and C denote putative genetic breaks detected in the present study, although the 

exact location of these breaks could not be pinpointed. The dashed red lines either side of the letters 

represent the possible geographic range where these genetic breaks may occur. I, II and III denote 

three significantly differentiated groups detected by AMOVA analyses. Dashed black lines indicate 

the geographic areas that encompass these grouping. 
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4.3 Results 

4.3.1 Data quality checks and summary statistics 

A total of 674 P. australis individuals from 13 locations were genotyped (Table 4.1; 

Figure 4.1). Paphies australis was found to be common and widespread around the main 

islands of New Zealand; seven North Island and six South Island locations were sampled for 

this study. Forty-five P. australis samples (6.7% of total samples) were repeat genotyped 

and the observed mean error rate was calculated at 3.7%. The majority of error (76%) was 

associated with alleles that had dropped out, rather than mistyping of alleles. One locus 

(Paus_6) was unable to be consistently genotyped and had a large number of null alleles so 

was excluded from all analyses. 

MICROCHECKER found no evidence for genotype scoring errors or large allele drop 

out and there was no significant linkage disequilibrium among loci. One locus was in HWE 

for the total sample (Paus_5) and seven loci were not in HWE for any of the locations tested 

(Paus_2, Paus_3, Paus_4, Paus_8, Paus_9, Paus_11, Paus_14; Table 4.2). LOSITAN detected 

one outlier locus (Paus_9; Figure 4.2). Allele frequency graphs and discovery curves can be 

seen in appendices 2 and 3. For all loci allele discovery curves seem to have reached or are 

approaching an asymptote, suggesting that apart from a few rare alleles, most of the allelic 

diversity has been sampled for this species. The number of alleles per locus ranged from 11-

48, the frequency of null alleles ranged from 0.011-0.295 and FIS ranged from -0.078-0.664 

(Table 4.3). For most loci observed heterozygosity was lower than expected except for one 

locus (Paus_5) where it was higher than expected (Range HO: 0.240-0.660; HE: 0.411-0.871; 

Table 4.3). As well as having similar levels of observed and expected heterozygosity, Paus_5 

was also the locus with the lowest proportion of null alleles and FIS values closest to zero. 

The mean number of alleles at each location ranged from 8.231-11.231, allelic 

richness ranged from 7.072-8.259 and the number of private alleles ranged from 1-10 (Table 

4.4). In general the frequency of these private alleles was low (<2%; Appendix 1), suggesting 

that they represent ‘rare alleles’ that have not contributed significantly to genetic 

population variation. Observed heterozygosity was lower than expected for all locations 

(Range HO: 0.378-0.497; HE: 0.635-0.719) and no locations were in HWE (Table 4.4). FIS was 

above zero for all locations due to an excess of homozygotes (0.284-0.456; Table 4.4). 
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Table 4.2: Hardy-Weinberg equilibrium (HWE) p-values for each locus and location for Paphies 

australis. Values in bold text represent significant departures from HWE expectation after false 

discovery rate (FDR) correction for multiple tests (p < 0.05). Location abbreviations as per Table 4.1.  
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Figure 4.2: Output of LOSITAN analyses for outlier loci for Paphies australis. Blue dots represent the 

relationship between FST and HE for each locus. Loci falling within the grey area represent ‘neutral’ 

loci, loci falling within the red or yellow areas represent FST outliers as determined by a 95% 

confidence interval. 

 

Table 4.3: Diversity statistics for Paphies australis loci used in this study (Na: number of alleles, HO: 

observed heterozygosity, HE: expected heterozygosity, NF: estimated frequency of null alleles, FIS: 

inbreeding co-efficient). 

 

Locus Statistic     

 Na Allele Size Range (bp) HO HE NF FIS 

Paus_1 14 153-217 0.570 0.729 0.094 0.218 

Paus_2 48 227-303 0.409 0.871 0.245 0.527 

Paus_3 22 131-209 0.411 0.720 0.187 0.425 

Paus_4 18 258-300 0.240 0.693 0.274 0.653 

Paus_5 12 186-230 0.540 0.500 0.011 -0.078 

Paus_7 11 86-110 0.431 0.612 0.118 0.288 

Paus_8 22 210-276 0.265 0.791 0.294 0.664 

Paus_9 16 103-169 0.246 0.758 0.295 0.661 

Paus_10 19 164-216 0.606 0.813 0.110 0.242 

Paus_11 11 218-263 0.395 0.662 0.159 0.405 

Paus_12 13 173-209 0.660 0.662 0.047 -0.021 

Paus_13 14 100-136 0.354 0.411 0.057 0.136 

Paus_14 34 138-257 0.405 0.815 0.225 0.500 
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Table 4.4: Genetic diversity statistics for each location and total for Paphies australis (Na: mean 

number of alleles, Ra: allelic richness, PA: private alleles, HO: observed heterozygosity, HE: expected 

heterozygosity, FIS: inbreeding co-efficient). FIS values in bold indicate significant departure from 

HWE expectations after FDR correction (p < 0.05). Location abbreviations as per Table 4.1. 

 

4.3.2 Genetic population differentiation 

Estimates of global FST showed that correcting for null alleles seemed to have little 

effect on FST values, except for the outlier locus Paus_9, where corrected FST was much 

lower than uncorrected FST.  Global FST ranged from 0-0.660 for P. australis loci and 0.002-

0.016 when corrected for null alleles (Figure 4.3). Pairwise FST among P. australis locations 

was low, ranging from 0-0.030 when calculated using all loci and 0-0.024 when the outlier 

locus Paus_9 was excluded (Table 4.5). Exact G tests indicated that 67 out of 78 pairwise FST 

comparisons showed significant differentiation when all loci were used and 62 out of 78 

pairwise comparisons were significantly differentiated when Paus_9 was excluded. Pairwise 

φ’ST was higher than FST but showed a similar pattern of differentiation. φ’ST ranged from 0-

0.082 when calculated using all loci and from 0-0.060 when the outlier locus Paus_9 was 

excluded (Table 4.6). AMOVA φST tests for population differentiation indicated that 63 of the 

78 pairwise φ’ST comparisons were significantly differentiated when all loci were used and 

51 of the 78 pairwise comparisons were significant if Paus_9 was excluded. In general FST 

Location Statistic      

 Na Ra PA HO HE FIS 

RAG 9.077 7.210 4 0.449 0.635 0.289 

HUI 10.308 8.253 5 0.380 0.691 0.439 

TAP 10.000 7.912 3 0.426 0.689 0.376 

WAI 9.615 7.360 5 0.453 0.646 0.284 

TAU 9.538 7.582 2 0.390 0.704 0.436 

NAP 9.308 7.714 3 0.389 0.680 0.416 

PET 9.462 7.659 4 0.400 0.699 0.415 

HAK 11.231 8.259 10 0.463 0.672 0.303 

LYT 9.769 7.789 6 0.482 0.699 0.298 

BLU 10.692 8.270 10 0.497 0.700 0.285 

DBT 9.000 7.072 3 0.448 0.669 0.315 

OKU 8.231 7.498 3 0.380 0.719 0.456 

KAR 9.154 7.700 1 0.378 0.709 0.450 

Total 19.538 8.202 59 0.462 0.688 0.372 
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and φ’ST values were lower when the outlier locus was excluded from analysis, suggesting 

that this locus was inflating estimates of differentiation. In general FST and φ’ST values were 

highest when comparing North Island locations to South Island locations. FST and φ’ST were 

also higher among North Island locations than they were among South Island locations. 

Consistent with the population differentiation results, Mantel tests showed a 

significant IBD pattern using both measures of FST when the outlier locus Paus_9 was 

included, indicating that the further apart locations were, the more differentiated they 

became (p-value range 0.0002-0.0004; Figure 4.4A, B). When Paus_9 was excluded the IBD 

pattern was still significant for FST when corrected for null alleles (p = 0.0224; Figure 4.4D) 

but was not significant for uncorrected FST (p = 0.1035; Figure 4.4C). A PCA using all loci 

showed that the X axis explained 29.92% of variation (p = 0.001) and the Y axis 19.17% of 

variation (p = 0.001; Figure 4.5A). Locations from the South Island grouped together and 

locations from the North Island grouped together, with samples from the Petone (at the 

bottom of the North Island) between the two groups. When the analysis was repeated 

without the Paus_9 outlier locus the X axis explained 16.46% of variation (p = 0.036) and the 

Y axis 25.57% of variation (p = 0.001; Figure 4.5B). Similar patterns of genetic population 

structure were seen but Petone was grouped with South Island locations. 

 

Figure 4.3: Global FST for each locus for Paphies australis. Dark grey bars represent FST uncorrected 

for null alleles, light grey bars represent FST corrected for null alleles using the algorithm described by 

Dempster et al. (1977). 
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Table 4.5: Pairwise FST values among Paphies australis locations using all loci (lower diagonal) and 

excluding the outlier locus Paus_9 (upper diagonal). Values in bold represent significant genetic 

population differentiation after FDR correction for multiple tests (p < 0.05) as assessed by an exact G 

test (Goudet et al. 1996). Location abbreviations as per Table 4.1. 

 

 RAG HUI TAP WAI TAU NAP PET HAK LYT BLU DBT OKU KAR 

RAG - 0.017 0.009 0.003 0.023 0.005 0.012 0.011 0.006 0.006 0.006 0.011 0.019 

HUI 0.016 - 0.013 0.020 0.007 0.000 0.001 0.021 0.010 0.015 0.015 0.001 0.008 

TAP 0.009 0.012 - 0.005 0.008 0.004 0.009 0.013 0.006 0.008 0.010 0.006 0.012 

WAI 0.004 0.020 0.005 - 0.022 0.011 0.017 0.010 0.006 0.012 0.013 0.016 0.023 

TAU 0.022 0.007 0.007 0.019 - 0.003 0.011 0.024 0.018 0.022 0.022 0.006 0.013 

NAP 0.005 0.000 0.004 0.010 0.002 - 0.001 0.011 0.006 0.009 0.011 0.000 0.006 

PET 0.014 0.002 0.009 0.016 0.010 0.001 - 0.014 0.001 0.005 0.007 0.000 0.000 

HAK 0.020 0.030 0.022 0.013 0.028 0.017 0.015 - 0.008 0.007 0.007 0.008 0.016 

LYT 0.016 0.019 0.015 0.011 0.022 0.012 0.003 0.008 - 0.002 0.004 0.000 0.003 

BLU 0.022 0.029 0.022 0.018 0.030 0.020 0.009 0.006 0.003 - 0.004 0.002 0.012 

DBT 0.014 0.022 0.016 0.014 0.024 0.016 0.009 0.008 0.005 0.005 - 0.005 0.007 

OKU 0.029 0.017 0.022 0.025 0.017 0.010 0.004 0.011 0.003 0.003 0.009 - 0.001 

KAR 0.028 0.017 0.019 0.024 0.017 0.012 0.002 0.013 0.002 0.011 0.006 0.003 - 
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Table 4.6: Pairwise φ’ST values among Paphies australis locations using all loci (lower diagonal) and 

excluding the outlier locus Paus_9 (upper diagonal). Values in bold represent significant genetic 

population differentiation after FDR correction for multiple tests (p < 0.05), as assessed by an 

AMOVA φST test for population differentiation. Location abbreviations as per Table 4.1. 

 

 RAG HUI TAP WAI TAU NAP PET HAK LYT BLU DBT OKU KAR 

RAG - 0.043 0.022 0.004 0.060 0.005 0.030 0.022 0.013 0.012 0.014 0.022 0.048 

HUI 0.037 - 0.025 0.048 0.001 0.000 0.000 0.044 0.019 0.032 0.037 0.000 0.005 

TAP 0.018 0.020 - 0.008 0.007 0.000 0.015 0.026 0.010 0.015 0.023 0.000 0.020 

WAI 0.004 0.044 0.006 - 0.051 0.018 0.043 0.019 0.012 0.026 0.032 0.034 0.055 

TAU 0.052 0.000 0.002 0.040 - 0.000 0.020 0.051 0.046 0.056 0.058 0.000 0.019 

NAP 0.004 0.000 0.000 0.015 0.000 - 0.000 0.014 0.006 0.014 0.026 0.000 0.000 

PET 0.030 0.000 0.015 0.032 0.012 0.000 - 0.030 0.000 0.007 0.016 0.000 0.000 

HAK 0.051 0.071 0.052 0.026 0.063 0.033 0.032 - 0.014 0.009 0.015 0.004 0.030 

LYT 0.046 0.051 0.040 0.024 0.057 0.024 0.000 0.011 - 0.000 0.009 0.000 0.000 

BLU 0.062 0.079 0.059 0.045 0.082 0.048 0.019 0.006 0.000 - 0.007 0.000 0.024 

DBT 0.039 0.059 0.042 0.029 0.060 0.039 0.014 0.012 0.004 0.006 - 0.009 0.014 

OKU 0.081 0.033 0.051 0.060 0.029 0.009 0.000 0.011 0.000 0.000 0.013 - 0.000 

KAR 0.075 0.035 0.045 0.057 0.030 0.014 0.000 0.020 0.000 0.018 0.004 0.000 - 
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Figure 4.4: Results of Mantel tests for IBD for Paphies australis (significant if p < 0.05). A: based on 

FST for all loci (p = 0.0004); B: based on FST corrected for null alleles using the ENA method described 

in Chapuis and Estoup (2007) for all loci (p = 0.0002); C: based on FST for non-outlier loci (p = 0.1035); 

D: based on ENA corrected FST for non-outlier loci (p = 0.0224). 

 

An AMOVA (Table 4.7) of all locations using all loci showed that 61% of variation was 

partitioned among individuals and 37% of variation among individuals within populations. 

Exclusion of the outlier locus Paus_9 had little effect, with 64% of variation partitioned 

among individuals and 35% of variation among individuals within populations. There was 

significant support for a north-south grouping (All loci: {RAG, HUI, TAP, WAI, TAU, NAP, PET} 

vs {HAK, LYT, BLU, DBT, OKU, KAR}, p < 0.001; non-outlier loci: {RAG, HUI, TAP, WAI, TAU, 

NAP} vs {PET, HAK, LYT, BLU, DBT, OKU, KAR}, p = 0.007) but not for an east-west grouping 

(All loci: {TAP, HUI, RAG, PET, OKU, KAR} vs {WAI, TAU, NAP, HAK, LYT, BLU, DBT}, p = 0.46; 

non-outlier loci: {HUI, RAG, PET, KAR, OKU, DBT} vs {TAP, WAI, TAU, NAP, HAK, LYT, BLU}, p = 

0.218). There was also strong support for further division of the southern locations; the 

arrangement of locations that explained the most variation among groups was {RAG, HUI, 

TAP, WAI, TAU, NAP} {HAK, LYT, BLU, DBT} {PET, KAR, OKU} (p = 0.001 both including and 

excluding Paus_9). 
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Figure 4.5: Principal component analysis (PCA) for Paphies australis showing patterns of genetic 

differentiation among locations A: using all loci; B: excluding outlier loci. The percentage of inertia 

explained by each axis and significance of the axis is displayed. An axis was considered significant if p 

< 0.05. Location abbreviations as per Table 4.1. 
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Table 4.7: AMOVA analyses for Paphies australis. Genetic population structure was considered 

significant if p < 0.05 after FDR correction for multiple tests. 
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STRUCTURE analyses revealed seven genetic clusters for P. australis when all loci 

were used and only two clusters when Paus_9 was excluded (Figure 4.6A, B). Each location 

showed a high degree of cluster admixture and the proportion of each cluster varied among 

locations (Table 4.8; Figure 4.7A, B). There was no obvious geographic pattern to the 

distribution of clusters, although for the analysis using all loci cluster 5 had a significant 

north-south cline (Spearman’s r -0.84; p = 0.0004) while clusters 1 and 2 showed a 

significant east-west cline (Spearman’s r -0.91, 0.73; p = 0.00002-0.0005). AWclust analyses 

produced similar results to SRUCTURE. Gap statistics revealed six genetic clusters for P. 

australis when all loci were used and only two clusters when Paus_9 was excluded (Figure 

4.6C, D). AWclust also showed high levels of cluster admixture among locations (Table 4.8; 

Figure 4.7C, D). When the analysis was conducted using all loci, clusters 2, 3 and 4 showed a 

significant north-south cline (Spearman’s r -0.81-0.86; p =0.0001-0.002).  

Figure 4.1 summarises the findings of analyses for genetic population structure in P. 

australis and illustrates the location of putative population groupings and genetic breaks. In 

summary, P. australis in New Zealand can be divided into three significantly different 

genetic groups with three putative barriers to dispersal (A – C) between these groups: 

I. Northern group consisting of Raglan, Huia, Tapotupotu Bay, Waiwera, 

Tauranga and Napier 

II. South Eastern group consisting of Hakahaka Bay, Lyttelton, Bluff and 

Doubtful Sound 

III. South Western group consisting of Petone, Karamea and Okuru.  
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Figure 4.6: Plots to determine optimum K values for STRUCTURE and AWclust analyses. DeltaK 

values were derived from the Evanno et al. (2005) method and generated in STRUCTURE HARVESTER 

(Earl & vonHoldt 2011) to determine optimal K values for Paphies australis A: using all loci (K = 7) 

and B: using non-outlier loci (K = 2). Gap statistics generated from AWclust (Gao & Starmer 2008) to 

determine optimal K values for P. australis C: using all loci (K = 6) and D: using non-outlier loci (K = 2). 
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Table 4.8: Proportion of clusters found in Paphies australis locations from STRUCTURE and AWclust 

analyses. Cluster colours relate to those used in Figure 4.7. 
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Figure 4.7: Output from cluster analyses for Paphies australis showing the proportion of each cluster 

assigned to each location. Each colour denotes a different cluster as specified in Table 4.8. A: 

STRUCTURE analysis using all loci (K = 7); B: STRUCTURE analysis using non-outlier loci (K = 2); C: 

AWclust analysis using all loci (K = 6); D: AWclust analysis using non-outlier loci (K = 2). For 

STRUCTURE analyses each line represents an individual individuals can belong to multiple clusters. 

For AWclust analyses individuals are assigned to a single cluster, the width of the bars indicates the 

proportion of each cluster allocated to that location. 
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4.3.3 Estimates of contemporary and historical migration 

GENECLASS2 detected low levels of contemporary migration; the number of first 

generation migrants (F0) with a probability less than 0.01 for all P. australis locations was 52 

(8% of individuals; Table 4.9A). The number of F0 migrants detected at each location ranged 

from one to seven. Group I locations were the largest source of migrants (33/52); group II 

and III locations supplied modest numbers of F0 migrants. As discussed in chapter 3, the 

true number of F0 migrants could be higher, as this test may not have sufficient power to 

detect all F0 migrants. Repeating this analysis for the three differentiated population groups 

identified 23 F0 migrants (3% of individuals sampled; Table 4.9B). The number of migrants 

exchanged was low but similar among the three groups, ranging from three to four. 

BAYESASS identified limited source populations for migrants and migration rates 

showed high spatial variation, ranging from 3-26% (Figure 4.8A). Self-recruitment rates 

ranged from 67-93%. Raglan and Huia were the main source locations, but Petone and 

Hakahaka Bay supplied lower numbers of migrants to some locations. For reasons described 

in chapter 3, some migration rates could be underestimates due to lack of power and the 

restrictive assumptions of the analysis. Migration estimates among the three differentiated 

groups showed high levels of migration from group I to III (27%; Figure 4.8B). Groups I and II 

exchanged similar amounts of migrants (5-7%) and 6% of group III individuals originated 

from group II. Self-recruitment was high for groups I and II (93-95%) but lower for group III 

(67%; Figure 4.8B). 

A large range of long-term migration rates were estimated by MIGRATE but 

migration was detected among all locations. Migration rates ranged from 2.50-38.61 

migrants per generation (Table 4.10A). The population size parameter θ ranged from 0.07-

0.46. Using a mutation rate of 1 x 10-4 this equated to an effective population size range of 

175.00 to 1,158.33 individuals. Long-term migration rates estimated among the three 

genetically differentiated groups ranged from 24.83-72.41 migrants per generation (Table 

4.10B). Group I was the largest source of migrants, supplying 72.41 and 57.63 migrants per 

generation to groups II and III, respectively. Large numbers of migrants were also exchanged 

among the two southern groups (II→III: 42.17; III→II: 34.77) but there was lower migration 

from the two southern groups to the north (II→I: 29.39, III→I: 24.83). θ ranged from 0.38-

0.50, resulting in effective population sizes that ranged from 958.33 to 1,241.68 individuals. 
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Table 4.9: Results of an assignment test to detect first generation (F0) migrants at each Paphies 

australis location, conducted in GENECLASS2. Migrants were detected using the Lh/Lhmax statistic 

with a probability < 0.01. A: Migrants exchanged among all locations. B: Migrants exchanged among 

genetically differentiated population groups as determined by exact G and AMOVA tests.  
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Figure 4.8: Recent migration rates for Paphies australis as determined by BAYESASS. Values in grey 

circles represent self-recruitment rates for each location (95% confidence intervals in brackets). 

Arrows represent migration among populations with the proportion of migrants indicated in bold 

(95% confidence interval in brackets). Arrow thickness indicates the relative contribution of migrants 

from each putative source location. A: Migration among all locations; B: Migration among genetically 

differentiated population groups as determined by exact G and AMOVA tests. 
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Table 4.10: Estimates of the number of migrants per generation (Nem), the population size 

parameter theta (θ), their credible intervals and effective population size (Ne, using the mutation 

rate 1 x 10 -4) for Paphies australis. A: Migrants exchanged among all locations. B: Migrants 

exchanged among genetically differentiated population groups as determined by exact G and 

AMOVA tests. 
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4.4 Discussion 

Increasing evidence for estuarine species suggests that their habitat characteristics 

can restrict dispersal opportunities, leading to genetic differentiation among populations 

inhabiting different estuaries (Watts & Johnson 2004). This chapter assessed this feature for 

populations of a New Zealand estuarine bivalve, Paphies australis, by estimating levels of 

genetic diversity, population differentiation and migration for thirteen populations 

encompassing both the North and South Islands of New Zealand. The results of these 

analyses (i.e., the three population groups that were detected and significant FST 

comparisons over small spatial scales) provide evidence for restricted dispersal among some 

locations, disproving the null hypothesis of panmictic genetic structure. However, 

inconsistent patterns of genetic differentiation and evidence for long-range migration 

among some locations suggest that factors other than simple geographic separation of 

habitat (e.g., oceanographic processes) may be influencing patterns of genetic population 

structure in this species. 

4.4.1 Genetic diversity 

High FIS and homozygote excess was observed in P. australis, indicating widespread 

departures from HWE for all locations tested, similar to the patterns seen in P. 

subtriangulata. As with P. subtriangulata, the high frequency of null alleles was probably the 

main reason for the observed HWE departures, but undetected spatial or temporal 

population differentiation, and other reproductive characteristics of the species could also 

have contributed (as discussed in chapter 3, but see also Addison & Hart 2005). Null alleles 

could be affecting the genetic population structure reported here for P. australis as IBD 

analyses showed increased slope of regression lines when FST was corrected for null alleles. 

Despite this, there was still sufficient power to detect significant patterns of population 

differentiation in P. australis. One locus (Paus_9) had very high FST even when corrected for 

null alleles and was identified as an outlier locus. This locus could be subject to positive 

selection, which is inflating estimates of genetic population differentiation and structure as 

a consequence. For this reason the most conservative approach is to base conclusions on 

analyses that exclude this locus. 

Levels of genetic diversity in P. australis were lower than what has been reported for 

other estuarine bivalve species (e.g., Martínez et al. 2009; Melo et al. 2012; Tarnowska et al. 
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2010) but higher than what was reported in chapter 3 for P. subtriangulata in terms of Na, 

Ra and HE. It is difficult to determine if the higher genetic diversity observed in P. australis 

(compared to P. subtriangulata) is a true indicator that populations of this species are more 

diverse. Alternatively it could be an artefact of the different markers used, differences in 

population size or the higher number of locations/individuals sampled for P. australis over a 

larger geographic range (Selkoe & Toonen 2006). 

4.4.2 Genetic population structure 

In relation to the patterns described for other New Zealand coastal marine species 

by Gardner et al. (2010), the overall genetic population structure in P. australis can be 

described as an isolation by distance pattern. This result suggests that at a large scale, the 

traditional estuarine species paradigm that habitat availability controls population structure 

is applicable to P. australis. However, it is difficult to assess the importance of this 

relationship as Mantel tests for IBD appeared to be influenced by null alleles, and PCA and 

AMOVA analyses suggested that hierarchical structure could also be present. The IBD 

pattern was further confounded by significant FST values over small geographic distances. 

Tests for IBD are known to be confounded by hierarchical structure, and vice versa, making 

it challenging to tease apart true population genetic structure in such instances (Meirmans 

2012). 

A stepping-stone model of connectivity, whereby populations in close geographic 

proximity exchange more migrants (Kimura & Weiss 1964), is thought to characterise many 

populations of coastal marine species, especially those inhabiting discrete areas of habitat 

such as estuaries. In terms of genetic population structure, stepping-stone connectivity 

should manifest as an IBD pattern because distance will increasingly act as a barrier to larval 

dispersal as populations become more remote. The exact relationship between geographic 

distance and genetic differentiation will depend on the configuration of the stepping-stones, 

migration rate, mutation rate and whether populations have reached migration-drift 

equilibrium (Hellberg et al. 2002). The basic stepping-stone model assumes that populations 

are continuously distributed over their range so that there is a consistent relationship 

between distance and dispersal (Slatkin 1993). This basic model can be modified to 

incorporate populations that occupy discontinuous habitat (i.e., harbour and estuarine 

habitat) if the distance between habitat is less than the ‘saturation distance’ that a species 
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can potentially dispersal (Rousset 1997). However, the relationship between genetic and 

geographic distance can become decoupled when distance between habitat is large, 

migration-drift equilibrium has not been reached or other controlling factors, such as 

currents, become complex (Selkoe & Toonen 2011). Decoupling of this relationship appears 

to have occurred among the P. australis locations sampled for this study. 

Isolation by distance patterns have been commonly reported among New Zealand 

estuarine organisms (e.g., Hickey et al. 2009; Perrin et al. 2004; Stevens & Hogg 2004). 

However, many of these studies report enhanced population differentiation on smaller 

geographic scales and several lines of evidence suggest that this is also the case for P. 

australis. Principal component analysis and AMOVA provide evidence for medium scale 

hierarchical structure (i.e., the three genetically differentiated population groups). Results 

from these analyses were consistent with the genetic discontinuity observed among many 

New Zealand coastal marine species around the location of the Cook Strait. However, 

reports on the location of this discontinuity differ (Gardner et al. 2010; Ross et al. 2009). A  

division at approximately 39° S on the east coast of the North Island has been reported for 

some species, e.g., amphipods (Stevens & Hogg 2004), snapper (Bernal-Ramírez & Adcock 

2003) and cockles (Ross et al. 2011). However, for other species a division  at approximately 

42° S (location of Cape Campbell on the east coast of the South Island) has been reported, 

e.g.,  cushion stars (Ayers & Waters 2005; Waters & Roy 2004), limpets (Goldstien et al. 

2006) and greenshell mussels (Apte et al. 2003; Star et al. 2003). The inclusion of Petone 

with other South Island locations suggests that for P. australis this division occurs 

somewhere between 39.5° S and 41° S. However, Cook Strait may also act as a barrier to 

dispersal as AMOVA analyses indicated that Petone and Hakahaka Bay are in different 

groups and significantly differentiated, despite their close proximity to each other.  

Interestingly, analyses using the outlier locus Paus_9 suggested that Petone was 

more closely aligned to other North Island populations; further confounding attempts to 

pinpoint the exact location of this north-south division. This locus strongly affected genetic 

population structure and is possibly under selection, suggesting that this barrier around the 

Cook Strait area is placing selective pressure on certain parts of the P. australis genome. A 

similar effect has been documented in the greenshell mussel Perna canaliculus (Wei et al. 

2013a) where a locus that is apparently under selection shows strong north-south 
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differentiation of populations either side of the Cook Strait region. Further analysis of P. 

australis populations from these latitudes and more detailed investigation of this potential 

outlier locus would be required to pinpoint the exact location of this barrier and gain insight 

to the selective pressure it has on marine species. 

The genetic break on the south-western coast of the South Island between Okuru 

and Doubtful Sound is similar to what was reported for the cockle Austrovenus stutchburyi 

(Ross et al. 2011) and the estuarine triplefin Grahamina nigripenne (Hickey et al. 2009). 

Fiordland populations are known to be genetically distinct for some species (e.g., sea 

urchins, Mladenov et al. 1997; sea stars, Perrin et al. 2004) but it is more common for 

genetic breaks to be reported on the east coast of the South Island (e.g., Hickey et al. 2009; 

Ross et al. 2009; Will et al. 2011). This west coast genetic break that is seen in P. australis 

appears to be unusual among New Zealand coastal marine species. 

Significant pairwise FST and φ’ST comparisons observed among locations within the 

three P. australis groups suggest that further small scale patterns of ‘chaotic’ genetic 

patchiness are present among some locations. For example, significant genetic 

differentiation among some North Island locations shows that differentiation can occur over 

small spatial scales of 100-200 km. Both statistics were in agreement that a larger amount of 

divergence exists between North and South Island locations, as well as among North Island 

locations, and divergence among South Island locations was lower by comparison. This 

observation implies more restricted dispersal among North Island locations and higher 

dispersal among South Island locations. 

Overall there is evidence that the stepping stone model of gene flow that leads to 

IBD genetic population structure seems to be operating among many of the P. australis 

locations that were sampled in this study. However it appears that barriers to dispersal exist 

that lead to the breakdown of stepping stone migration and IBD patterns, and drive the 

hierarchical structure detected by PCA and AMOVA analysis. Furthermore, the Cook Strait 

and Fiordland regions do not seem to represent absolute barriers to gene flow among the 

three groups, as some locations showed low levels of genetic differentiation despite 

belonging to different population groups. Despite showing some evidence for a north-south 

cline, clustering analyses appeared to lack the sensitivity required to detect the patterns of 
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genetic population structure uncovered by other analyses. However clustering algorithms 

such as STRUCTURE are known to perform poorly when IBD structure is present (Schwartz & 

McKelvey 2008). The admixture of clusters observed among all locations suggests that all 

locations are connected to some degree. These findings are in agreement with historical 

rates of genetic connectivity estimated by MIGRATE, which showed that all locations were 

connected by migration when averaged over long periods of time. The hierarchical structure 

and small scale ‘chaotic’ patterns of genetic structure provide evidence that, while habitat 

availability might be important for driving overall IBD genetic structure, variability in 

oceanographic processes at smaller scales can restrict dispersal and create complex patterns 

of genetic population structure. 

Interestingly, the only other study of an estuarine bivalve in New Zealand 

(Austrovenus stutchburyi, Ross et al. 2011) reported similar genetic population structure to 

P. australis. Although A. stutchburyi populations were divided into seven genetically 

differentiated groups, evidence for IBD and some connectivity among groups was reported. 

Similar genetic patterns have been observed in estuarine bivalves from outside the New 

Zealand region (e.g., Tarnowska et al. 2010; Xiao et al. 2010). 

4.4.3 Patterns of migration 

Estimates of migration rates and geographic patterns of connectivity support the 

patterns of genetic population structure seen in P. australis. Migration rates were found to 

be highly variable in the short-term, but all populations were well connected in the long-

term. The variability in short-term migration rates is likely to be contributing to the small 

scale patterns of genetic differentiation seen, and implies that these patterns of genetic 

differentiation might not be temporally stable. In contrast, the regular exchange of migrants 

observed when gene flow was averaged over long time periods is probably maintaining 

large scale IBD genetic structure and the admixture seen in cluster analyses. 

Short-term gene flow estimates highlighted how migration can be an important 

source of recruits for some locations but self-recruitment can be high for others. 

GENECLASS2 indicated that first generation migration is low, a result that is supported by 

increasing evidence for limited larval dispersal and high self-recruitment in coastal marine 

invertebrates (e.g., Broekhuizen et al. 2011; Stephens et al. 2006). BAYESASS estimated 
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migration averaged over the number of cohorts that are present in the population 

(approximately five to ten years) and showed how over that period, some locations received 

large proportions of migrants but for other locations migration was low and self-recruitment 

more important. The detection of high gene flow rates among some locations is at odds 

with the significant genetic differentiation observed among many locations as measured by 

FST, φ’ST and AMOVA. Similar to P. subtriangulata, recent migration among P. australis 

locations is patchy; limited source locations were identified, migration was mostly 

unidirectional and was not detected among some locations. For the reasons discussed in 

chapter 3, temporal variation in the exchange of larvae could allow significant genetic 

differentiation to develop over short time scales if effective population size is low and rates 

of genetic drift and mutation are high (Hedgecock 1994; Hedgecock et al. 2007). These 

processes would quickly break down the types of gametic equilibrium that short-term 

Bayesian analyses such as GENECLASS2 and BAYESASS are designed to detect. Again, this 

result suggests temporal variability of recruitment processes in estuarine species. 

Both methods used to estimate recent migration rates were consistent with an 

asymmetric pattern of gene flow among populations. The main source of migrants is from 

the northern group. These source locations are well connected to other locations within the 

northern group, as well as to populations in the two southern groups. In contrast, very few 

migrants disperse in the opposite direction from locations in the southern groups to 

northern locations. This pattern is primarily driven by high levels of connectivity along the 

west coast of the North and South Islands (i.e., from Huia and Raglan to Karamea, Okuru, 

Doubtful Sound and Bluff). In comparison, a low proportion of individuals in group I were 

sourced from the southern groups II and III, a pattern that persists for historic gene flow 

estimates. However, the recent high levels of connectivity that were detected along the 

west coast seem to be less important in the long-term. Importantly, despite the variability in 

recent estimates of connectivity, when averaged over long time periods all locations were 

found to be genetically connected. This finding provides evidence that despite the presence 

of barriers to dispersal, rare gene flow events can overcome these barriers to connect 

populations and/or stepping-stone migration could maintain genetic similarities among 

distant populations over long periods of time. 
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Long-term effective population size for P. australis was also lower than what has 

been reported for other bivalve species (see references in chapter 3) but was higher than 

that reported for P. subtriangulata. The ratio of Ne to census population size is also likely to 

be very low in P. australis (Frankham 1995; Palstra & Ruzzante 2008) meaning that actual 

population size could be five to six orders of magnitude larger than the effective population 

sizes reported here. Similar to the trend reported by Palstra & Ruzzante (2008), migration 

was higher into P. australis populations that had lower effective population sizes. This is 

expected to be a function of density (Pulliam 1988) and the effects of gene flow will be 

more pronounced over genetic drift for populations that are small in size. This could explain 

why differentiation is lower among South Island populations; low Ne and net flow of 

migrants from north to south would homogenise allele frequencies and counteract the 

effects of genetic drift occurring in each population. In general, low Ne means that changes 

to the genetic population structure of P. australis could occur quickly as the migration-drift 

equilibrium changes in response to variable oceanographic conditions and intermittent 

influxes of external recruitment, a finding that is consistent with the small scale patterns of 

genetic differentiation that were observed. 

Few studies have attempted to estimate migration among populations of New 

Zealand marine invertebrates using the Bayesian methods described here, so it is difficult to 

know if the patterns observed for P. australis are typical. Wei et al. (2013a) estimated 

recent migration for the greenshell mussel Perna canaliculus, which also shows a pattern of 

north-south differentiation. Although few F0 migration events were observed between the 

two groups, higher migration from south to north was observed. However, it is difficult to 

make comparisons due to the small number of F0 migrants detected and because their 

study included more populations from the South Island than North Island. Other studies of 

marine invertebrates that have used Bayesian methods to estimate migration rates on both 

recent and historic time scales have often reported asymmetric migration rates and high 

spatial variation in migration, within a range similar to that seen in P. australis (e.g., Crandall 

et al. 2012; Einfeldt & Addison 2013; Richards et al. 2007; Weetman et al. 2006). 

4.4.4 Possible explanations for observed genetic population structure and migration 

In general, the genetic population structure and patterns of migration observed for 

P. australis are in agreement with what might be expected for a free-spawning marine 
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bivalve with a three week pelagic larval duration, occupying a discontinuous habitat type. 

This period should be sufficient for short scale dispersal among populations over 

approximately 100-200 km each generation (Shanks 2009; Shanks et al. 2003) and over 

longer distances via indirect migration. However, small scale population differentiation as 

well as long distance migration events were observed, suggesting that IBD for this species 

may not be a simple, constant relationship between genetic and geographic distance. 

Instead, other environmental factors are likely to be influencing dispersal by creating 

barriers in some locations (as evidenced by the three significantly differentiated groups) and 

by promoting regular long-distance dispersal in other locations (e.g., along the west coast). 

Where enhanced genetic population differentiation and IBD have been reported 

among other New Zealand estuarine species (e.g., Hickey et al. 2009; Perrin et al. 2004; 

Stevens & Hogg 2004), it has often been attributed to restricted access to coastal currents, 

dispersal ability and habitat availability (Watts & Johnson 2004). The variable and stochastic 

interaction of these processes means that there is great potential for small scale genetic 

differentiation of populations to arise and change over time, similar to the patterns 

observed in P. australis. For gene flow to occur, larvae that are spawned in estuaries must 

first overcome tidal flows and complex freshwater/estuarine circulation patterns to reach 

open water and enter coastal currents, then must re-enter an estuary to find suitable 

settlement habitat. The discrete nature of the estuarine environment and distance between 

suitable estuarine habitat is expected to limit the dispersal potential of larvae for estuarine 

organisms (Bilton 2002). Therefore the potential dispersal distance reported by Shanks 

(2009) for coastal marine organisms with similar larval duration might not equate to the 

same dispersal distance for an estuarine species like P. australis. Simulations of propagule 

dispersal from New Zealand harbours by Chiswell and Rickard (2011) show how the distance 

between harbour/estuary habitat and oceanographic processes interact to modify patterns 

of larval dispersal. Their study found that dispersal rate was highly dependent on both the 

velocity and direction of currents, meaning that the distance larvae could disperse within a 

set time period was highly variable for different parts of the country.  Dispersal between 

some harbours (e.g., Bay of Islands and Whangarei) was achieved within a matter of days.  

But the dispersal time between most of the harbours that were modelled is much longer 

than P. australis larval duration (Chiswell & Rickard 2011). This study helps to explain why 
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significant genetic differentiation was observed among many of the P. australis populations 

that were sampled in the present study. 

The combined effect of habitat availability and oceanographic processes on genetic 

population structure is further illustrated by the contrasting patterns of population 

subdivision observed among North Island versus South Island locations. Suitable P. australis 

habitat is more available and continuous in the northern regions of New Zealand (Hume et 

al. 2007) so high connectivity and low genetic differentiation could be expected among 

group I populations. However within-group genetic differentiation is actually highest among 

group I populations; in this case differentiation is more likely to be driven by small scale 

differences in local physical/oceanographic features in the north of New Zealand, rather 

than by absence of habitat. Similarly, the west of the North and South Islands contain large 

sections of coastline that are unsuitable habitat for P. australis yet short-term migration 

rates show that west coast populations can have high levels of connectivity. Lower 

connectivity for west coast populations in the long-term and the genetic demarcation 

detected on the South Island’s west coast further demonstrate how distance between 

suitable habitat can be overcome on occasion and suggest temporal variation in rates of 

connectivity along this coast. The differences observed between recent and historic 

migration rates also suggest that there is an element of temporal variability to the genetic 

population structure of this species. Where small scale patterns of genetic variation have 

been observed in other marine species it has been suggested that this structure may change 

over time (Hedgecock & Pudovkin 2011). 

Current direction and velocity are likely to explain much of the migration patterns 

and rates that were observed in P. australis (see Figure 1.1). On a large scale, the 

predominant direction of current flow around New Zealand is west to east. On the west 

coast of the North Island the southward flowing West Auckland Current (WAUC) would 

transport larvae from northern populations to locations on the west coast of the South 

Island and to the east coast via the D’Urville Current (DC) through Cook Strait, explaining the 

asymmetrical migration rates from north to south. At a regional scale, oceanographic 

processes are likely to have led to the formation of three areas of significant genetic 

discontinuity. The explanations that have been proposed for the genetic discontinuities 

observed in other New Zealand coastal marine organisms include coastal current circulation 
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(Sponer & Roy 2002; Star et al. 2003), upwelling (Ayers & Waters 2005; Waters & Roy 2004) 

and historical events such as glaciation (Ross et al. 2011; Stevens & Hogg 2004).  

The north-south division observed in many New Zealand marine species coincides 

with the mixing and upwelling of the southward flowing East Cape Current (ECC) and the 

northward flowing Southland Current (SC; Laing & Chiswell 2003). Additionally, the 

Westland Current (WC) and WAUC mix on the west coast of New Zealand and are 

channelled into the Cook Strait, creating fast flowing currents and turbulent mixing through 

the Strait (Stanton et al. 2001). This speed of this current could act as a barrier to dispersal 

across the Strait and might explain why differentiation was observed between Petone and 

Hakahaka Bay despite the narrowness of this body of water. The combined flow of Cook 

Strait, ECC and SC interact to create complex eddies on the east coast of New Zealand, and 

forces current flow offshore across the Chatham Rise (Laing & Chiswell 2003).  Mixing of 

larvae between northern and southern current systems is potentially restricted and larvae 

will be transported offshore to unsuitable open ocean habitat. This area of current mixing is 

also associated with a known division between biogeographic provinces (Shears et al. 2008) 

where the warmer northern water mass meets the cooler southern water mass. The 

difference in water temperature regimes may also form a barrier, preventing locally adapted 

populations from becoming established outside their biogeographic province. This could 

provide a mechanism for the selective pressure that is potentially being placed on the 

Paus_9 outlier locus. 

Temporal variation in migration along the west coast of New Zealand is supported by 

the variation that has been observed in current patterns for this region. Both the WAUC and 

the northerly flowing WC on the west coast of the South Island are weak, variable and 

influenced by wind driven events (Chiswell & Rickard 2011; Sutton & Bowen 2011). 

Furthermore, the weakness of these currents and their susceptibility to wind driven events 

could explain why some long-term migration rates estimated for west coast locations are 

contrary to what might be expected given the predominant current patterns (e.g., high 

levels of long-term migration from Karamea to North Island locations). Southwards of 

Fiordland (in a similar location to where a genetic demarcation was observed in P. australis) 

the predominant current direction changes to a southerly flow, joining the SC which flows 

along the bottom of the South Island then northwards up the east coast (Laing & Chiswell 
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2003). This current is one of the least variable and most predictable of the coastal currents 

(Chiswell & Rickard 2011) so it is not surprising that long-term migration estimates identified 

Bluff as one of the largest sources of migrants, (particularly to other east coast locations) 

and this higher level of connectivity could help explain the lower levels of genetic 

differentiation among South Island locations.  

The east coast of the North Island is characterised by a more complex situation. The 

East Auckland Current (EAUC) and ECC create a series of complex coastal eddies, which act 

to retain larvae and limit dispersal (Chiswell & Roemmich 1998; Stanton et al. 1997). 

Consequently, long-term migration rates were much lower among most North Island 

locations and this restricted connectivity could explain the higher levels of differentiation 

observed among North Island locations in spite of greater habitat availability. Despite what 

we know about the predominant flow of New Zealand’s coastal currents, they are all 

modified to an extent by tides, winds, upwelling and changes in velocity (Laing & Chiswell 

2003). This variability will in turn influence rates and direction of larval dispersal, resulting in 

estimates of both short and long-term migration rates that are counter to what might be 

expected based on typical current patterns. 

Long-term genetic signals from range restrictions and fragmentation of populations 

associated with the last glacial maximum (LGM) are thought to still influence genetic 

structure of some coastal marine organisms, particularly in the South Island (Wallis & 

Trewick 2009). Barriers that formed during the fragmentation of South Island P. australis 

populations during the LGM would have promoted population differentiation. The genetic 

disjunction between Doubtful Sound and Okuru could be the result of this historic signal.  

Glaciation has been invoked as an explanation for decreased diversity in South Island 

populations of triplefin fish and as an explanation for a genetic demarcation on the west 

coast of the South Island for Grahamina nigripenne (Hickey et al. 2009). This same genetic 

demarcation has been attributed to glaciation for New Zealand terrestrial invertebrates 

(Trewick & Wallis 2001). Glaciation has also been invoked as an explanation for the genetic 

structure observed in Northern Hemisphere and Pacific bivalve populations (Arnaud-Haond 

et al. 2003; Ilves et al. 2010; Ni et al. 2012). Glaciation could explain the lower levels of 

differentiation seen among South Island P. australis populations as the number of source 

populations for post-glacial range expansion would have been restricted.  As populations re-
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colonised suitable habitat they would have maintained a similar genetic signal to their 

source population, potentially resulting in genetically similar individuals inhabiting a large 

range. 

A further mechanism that could explain the genetic population structure and 

connectivity observed in P. australis is human-mediated dispersal. Patterns of population 

genetic structure are often explained in light of natural dispersive processes. Human-

mediated dispersal is often overlooked, but can result in patterns of genetic structure that 

are independent of natural routes and barriers to dispersal (Carlton 2003). Species living in 

harbours and near ports are known to be affected by human-mediated dispersal (Marins et 

al. 2010; Preda et al. 2012; Torkkola et al. 2013), although the focus of these studies is often 

on invasion of exotic species. The impact of human-mediated dispersal on the genetic 

population structure of native species is often overlooked and difficult to tease apart from 

natural dispersal processes due to the confounding nature of past dispersal processes within 

the natural range of the species. However it has been suggested as an explanation for 

unusual or inconsistent patterns of genetic population structure seen in other New Zealand 

coastal marine invertebrates (Apte & Gardner 2001; Ross et al. 2011). Human mediated 

dispersal could explain the long distance estimates of connectivity that were observed in 

this study, especially where connectivity occurred over distances that exceeded the 

probable dispersal distances for larvae, as simulated by Chiswell and Rickard (2011). It could 

also explain instances of geographically unstructured genetic similarity among populations, 

e.g., Raglan and Napier are genetically undifferentiated despite being significantly different 

from geographically proximate populations, suggesting recent connectivity between these 

two locations but not to locations in between. 

While habitat availability, current patterns and historical glaciation can be invoked to 

explain much of the population structure and patterns of migration observed in P. australis, 

it is likely that other environmental characteristics also play a role. As mentioned previously, 

estuaries are typically discrete environments characterised by variable physical and 

environmental features (Bilton 2002). It is possible that physical/environmental differences 

in the estuaries sampled for this study could be driving local adaptation, and hence genetic 

differentiation, in the populations that inhabit them; a possibility that will be further 

investigated in chapter 5. 
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4.4.5 Conclusions 

Similar to other estuarine and harbour species, P. australis was characterised by 

isolation by distance genetic population structure, suggesting that habitat availability plays a 

role in shaping P. australis populations. However, significant genetic differences were 

observed among many populations, even those in close proximity, and three areas of 

genetic demarcation were observed where barriers to dispersal are likely to exist. These 

findings suggest that the relationship between genetic and geographic distance may not be 

a simple linear one for P. australis and that distance between populations by itself may not 

be a suitable proxy for levels of genetic differentiation. Instead, oceanographic processes 

act in unison with habitat availability to drive genetic population structure and connectivity 

in this species. Furthermore, the relative importance of habitat availability versus 

oceanographic processes in shaping the genetic population structure of P. australis 

appeared to vary across the range sampled for this study. Around the North Island of New 

Zealand, complex circulation patterns are likely to retain larvae and restrict dispersal, 

despite large areas of suitable habitat, whereas further South, high levels of connectivity are 

possible despite large gaps between areas of suitable habitat. 

In addition to spatial variation in the processes driving P. australis genetic population 

structure there is also likely to be an element of temporal variation to this structure. Overall, 

genetic population structure and connectivity in P. australis is a good example of ‘crinkled 

connectivity’ (Ovenden 2013), where barriers are somewhat permeable and dispersal is 

restricted rather than absolute. Crinkled connectivity can result in the type of migration 

patterns observed in P. australis: spatial variation in short-term migration but more 

consistent levels of connectivity among all locations when averaged over time. Temporal 

variability in larval dispersal is a strong possibility for P. australis and may lead to a situation 

where genetic population differentiation will build up and break down over short time 

scales but would result in a signal of high connectivity and population admixture when 

averaged over long time scales. This study has provided further evidence that the unique 

habitat characteristics of estuaries can influence population genetic patterns in the species 

that inhabit these environments, and that this structure can be modified by oceanographic 

and other processes. The result is complex patterns of genetic population structure that 

change across spatial scales, ranging from hundreds to thousands of kilometres. 
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5 Seascape genetic analysis of Paphies 

subtriangulata and Paphies australis: 

correlation between environmental 

and genetic variation and evidence for 

local adaptation in New Zealand’s 

coastal marine species 

5.1 Introduction 

Populations of marine species often show significant genetic differentiation but it 

can be challenging to identify clear geographic patterns in how this genetic variation is 

structured (Selkoe et al. 2010). Results presented in chapter 3 and 4 certainly suggest that 

this is the case for Paphies subtriangulata (tuatua) and P. australis (pipi).  While both species 

displayed genetic structure that was somewhat consistent with larval duration, coastal 

current patterns and habitat availability, unusual patterns of small scale genetic 

differentiation and connectivity were observed between some populations that cannot be 

explained by these factors alone. These types of patterns are often dismissed as ‘chaotic’ 

and not ecologically meaningful (Hedgecock 1994; Selkoe et al. 2006, 2010; Siegel et al. 

2008). In this situation the emerging field of ‘seascape genetics’ can be applied to 

investigate how spatially variable environmental features can influence patterns of genetic 

variation in marine species (Riginos & Liggins 2013). 

Results presented for P. subtriangulata and P. australis in previous chapters highlight 

the problems associated with population genetic analyses in marine species. Processes in 

the marine environment are spatially and temporally heterogeneous (Kinlan & Gaines 2003; 

Levin 2006), which is generally unaccounted for in simple panmictic, island or stepping-

stone models of genetic population structure. This variation, coupled with large population 
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sizes that respond weakly (if at all) to genetic drift and are slow to reach equilibrium 

conditions, means that statistical power to detect spatial genetic patterns can be low 

(Selkoe et al. 2008). By using a multi-disciplinary approach such as seascape genetics, 

traditional population genetics techniques can be complemented with ecologically 

meaningful information. The power to detect subtle patterns of spatial genetic variation is 

increased, allowing for better understanding of the processes that might be driving these 

patterns. Despite the relatively recent origin of the field, seascape genetics has already 

revealed fascinating insights to how and why marine species are spatially structured (Banks 

et al. 2007; Galindo et al. 2006; González-Wangüemert et al. 2009), particularly for 

commercially important species (Coscia et al. 2012; Jørgensen et al. 2005; Kenchington et al. 

2006; Wei et al. 2013b). These studies have provided evidence for strong associations 

between genetic variation and environmental gradients, such as sea surface temperature 

(SST) and salinity. They have shown the value of seascape genetics methods for identifying 

locations where oceanographic features are limiting or promoting gene flow and how, 

coupled with the variable life history characteristics of the organism, this can lead to the 

fine-scale patchy genetic structure that characterises many marine species. 

Seascape genetics methods are yet to be widely applied to New Zealand coastal 

marine species (but see Wei et al. (2013b) for one example). The scale and complexity of the 

New Zealand marine environment means that marine species will experience a large degree 

of temporal and spatial environmental variability (Laing & Chiswell 2003; Shears et al. 2008). 

These conditions are ideal for testing correlations between environmental and genetic 

variation to understand the processes that drive population structure in the New Zealand 

marine environment. Furthermore, comparative studies of multiple species, such as the 

present study, can help us understand where and why common patterns of genetic 

population variation exist, and conversely how variation in environmental features can 

create different patterns of genetic population structure. This is particularly important for 

commercially and recreationally valuable species, such as P. subtriangulata and P. australis, 

as the insights gained from these analyses may be directly applicable to the management of 

the fisheries of these two species, and also to other fishery species. 

In this chapter several different but complementary seascape genetic analyses were 

used to investigate the relationship between genetic variation among populations and 



 Seascape genetic analysis of Paphies subtriangulata & P. australis 

| 117  

variability in environmental and geospatial features, for both P. subtriangulata and P. 

australis. Population differentiation metrics, based on microsatellite markers, were derived 

from the genetic data described in chapters 3 and 4. The recommendations of Bird et al. 

(2011) and Meirmans & Hedrick (2010) were followed: both a fixation index (FST) and 

measure of genetic distance (φ’ST) were used, as they represent different aspects of genetic 

population differentiation. In addition, raw allelic frequency data were also used to 

summarise further aspects of population genetic variation. Environmental variables were 

derived from readily available public data sets. Following Wei et al. (2013b), two statistical 

approaches were implemented: (1) a generalised linear model (GLZ) that uses multiple 

regression to analyse the relationship between a dependent variable and a number of 

predictor variables, and (2) a biological environmental stepwise (BEST) model that tests for 

associations among resemblance matrices of dependent and predictor variables. Agreement 

between different methods and genetic distance measures can provide confidence that 

variables identified as significant in resulting models are truly associated with population 

genetic variation. Such methodology can help overcome the problem of low statistical 

significance commonly associated with genetic analyses of marine species. However, it is 

important to keep in mind when interpreting these analyses that correlation among genetic 

and environmental variation does not necessarily imply causation; for this, demonstration of 

a mechanistic link is required (Faurby & Barber 2012), something that is beyond the scope of 

this project. 

Specifically, this chapter aimed to further examine patterns of spatial genetic 

variability among P. subtriangulata and P. australis populations by: 

1. Using the population genetic data from chapters 3 and 4 to test for associations 

between population genetic variability and geospatial/environmental variability, 

testing the null hypothesis that there is no correlation between genetic and 

geospatial/environmental variables. 

2. Revisiting patterns of population genetic structure reported in chapters 3 and 4 

to verify if the geospatial/environmental variables identified as significant are 

consistent with genetic patterns previously reported for the study species, and to 

establish further testable hypotheses on how these population genetic patterns 

might have formed. 
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3. Comparing the results of analyses for both species to look for common 

geospatial/environmental variables that could be responsible for driving genetic 

population structure of New Zealand coastal marine species, and to understand 

species-specific responses to environmental variation. 

5.2 Methods 

5.2.1 Sample collection and population genetic data 

Seascape genetic analyses for P. subtriangulata were based on 517 samples from ten 

locations, genotyped with ten non-outlier microsatellite loci, as described in chapter 3. 

Seascape genetic analyses for P. australis were based on 674 samples from 13 locations, 

genotyped with 12 non-outlier microsatellite loci, as described in chapter 4. Allele 

frequencies and pairwise Weir and Cockerham (1984) FST values were calculated using 

GENEPOP 4.2 (Rousset 2008). Standardised pairwise φ’ST values (Meirmans 2006) were 

calculated between locations using GENODIVE 2.0b23 (Meirmans & van Tienderen 2004). 

From these genetic data two dependent variables, representing different aspects of 

population genetic variation, were calculated: (1) a mean multilocus FST or φ’ST value for 

each location, derived from nine pairwise FST or φ’ST values for P. subtriangulata and 12 

pairwise FST or φ’ST values for P. australis; and (2) the frequency of allele variants observed 

at each location.  

5.2.2 Spatial genetic analyses 

For both species, site-specific environmental data were obtained from the New 

Zealand Marine Environment Classification (MEC) scheme (New Zealand Ministry for the 

Environment 2005) for seven variables (Table 5.1A). These variables have a spatial 

resolution of 1 km and are based on long-term averages. For P. australis additional site-

specific data were obtained from the New Zealand Estuarine Environment Classification 

(EEC) system (Hume et al. 2007) as this information is of direct relevance to the habitat of 

this species. Variables in the EEC are derived from a variety of sources but primarily from 

the New Zealand Digital Topographic Database. Eleven variables were obtained for each 

location (Table 5.1B). In addition to environmental variables, three geospatial variables were 

obtained for both species  for each site:  (1)  latitude,  (2)  longitude and  (3) a distance index 
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Table 5.1: Environmental variables, definitions, abbreviations and units from A: the Marine 

Environment Classification (MEC) scheme (New Zealand Ministry for the Environment 2005) and B: 

the Estuarine Environment Classification (EEC) scheme (Hume et al. 2007) that were used in 

generalised linear models (GLZ) implemented in Statistica v.10 (StatSoft Inc.) and biological 

environmental stepwise (BEST) models implemented in Primer v.6. 

 

Variable Definition Abbreviation Units 

A: Marine Environment Classification   
 Annual mean solar 

radiation 
Mean extra atmospheric solar radiation 
modified by mean annual cloud cover 

rad_mean W m-2 

 Winter sea surface 
temperature 

Mean of daily data from early 
September when SST is typically lowest 

SSTwint °C 

 Annual amplitude 
of sea surface 
temperature 

Smoothed annual amplitude of SST SSTanamp °C 

 Spatial gradient 
annual mean sea 
surface 
temperature 

Smoothed magnitude of the spatial 
gradient of annual mean SST 

SSTgrad °C km-1 

 Mean orbital 
velocity 

Orbital velocity at the bed for the mean 
significant wave height calculated from 
a 20-year wave hindcast 

orb_v_mean m s-1 

 Tidal current Depth averaged maximum tidal current tidal m s-1 
 Seabed rate of 

change of slope 
The rate of change of slope for each cell bed_slope 0.01 m-1 

B: Estuarine Environment Classification   
 Spring tidal range  The tidal range for a mean spring tide spring_TR m 
 Spring tidal prism  The volume of water entering an 

estuary on the flood or incoming spring 
tide 

spring_TP m 

 Width of mouth  Width of the seaward boundary or 
mouth of an estuary where the estuary 
water body meets the ocean 

mouth_width m 

 Catchment area  The area of the land catchment that 
drains into the estuary. 

catch_area km2 

 Shoreline length  The length of the shoreline of the 
estuary 

shore_length m 

 Intertidal area The area of estuary exposed at spring 
low tide 

intertidal % of high 
tide area 

 Mean depth  The total estuary volume at spring high 
water divided by the estuary area at 
high water spring tide 

mean_depth m 

 Estuary area at low 
tide  

The total water area at spring low tide area_LT m2 

 Estuary area at 
high tide  

The total water area at spring high tide area_HT m2 

 Total volume at 
spring high tide 

The total volume of water at spring high 
tide 

tot_vol_SHT m3 

 Mean annual river 
discharge 

Mean annual river flow into the estuary river_discharge cumecs 
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(geo_dist, sum of all shortest coastal distances between locations in km). All three 

geospatial variables were drawn from Google Maps. Variables were tested for 

independence using a Pearson correlation test and a principal component analysis (PCA) as 

implemented in the statistical package STATISTICA v.10 (StatSoft Inc.). A subset of 

independent environmental variables were determined for each species and the three 

geospatial variables were assumed to be independent.  

A generalised linear model (GLZ) was run using the GLZ routine in STATISTICA v.10, to 

test the effect of the independent variables on FST or φ’ST. The following models were run 

using a mean calculated from all pairwise estimates of both FST and φ’ST for each location as 

the dependent variable: 

1. All P. subtriangulata locations using MEC and geospatial independent variables; 

2. Mainland P. subtriangulata locations (i.e., excluding the Chatham Island 

population) using MEC and geospatial independent variables; 

3. All P. australis locations using MEC and geospatial independent variables; 

4. All P. australis locations using EEC and geospatial independent variables. 

5. All P. australis locations used MEC, EEC and geospatial independent variables. 

These analyses were then repeated using only geospatial variables or only 

environmental variables. This was to determine the relative importance of geospatial versus 

environmental variables in explaining genetic variation. For P. australis, MEC and EEC 

variables were first treated separately and then together. This was to make results 

comparable between species because the MEC was the only set of environmental variables 

used for P. subtriangulata analyses.  Models were built using the ‘best subsets’ option and 

all models were ranked by the Akaike information criterion (AIC). The best fit model was the 

one with the lowest AIC score and was considered significant if p-values were less than 0.05. 

Results of tests for the contribution of all effects to the model were also presented. 

The BEST routine was implemented in PRIMER v.6 (Clarke & Gorley 2006) to test for 

associations between site-specific allele frequencies (dependent variable) and 

environmental/geospatial variation (independent variables). The same five models 

employed in GLZ analyses were also run for BEST analyses and the same sets of independent 

variables were used. A Bray-Curtis resemblance matrix was calculated for allele frequencies 



 Seascape genetic analysis of Paphies subtriangulata & P. australis 

| 121  

and a matrix of Euclidean distances was calculated for the environmental/geospatial 

variables. The BIOENV routine was used to test for correlation between the two matrices 

using the Spearman correlation coefficient (RS). All possible models were tested and ranked 

by their correlation coefficient. Models with higher correlation coefficients contained 

environmental and geospatial variables that better explained the variation in allele 

frequencies among populations. Models were considered significant if p-values were less 

than 0.05 after 1,000 permutations. 

5.3 Results 

5.3.1 Correlation of variables 

A total of 131 different alleles were observed across ten P. subtriangulata locations 

and 237 different alleles were observed across 13 P. australis locations (Appendix 1). The 

number of alleles at each locus ranged from 5-28 for P. subtriangulata and 11-48 for P. 

australis. Mean multilocus FST ranged from 0.021-0.121 for P. subtriangulata and 0.005-

0.014 for P. australis (Appendix 4). Mean multilocus φ’ST ranged from 0.029-0.230 in P. 

subtriangulata and 0.006-0.031 in P. australis (Appendix 4). The location specific values for 

the geospatial and environment variables that were used in both GLZ and BEST analyses are 

listed in appendix 4.  

Pearson correlation tests and PCA for all ten P. subtriangulata locations showed that 

five MEC environmental variables (orb_v_mean, rad_mean, SSTgrad, tidal, bed_slope) were 

independent of all other variables. SSTwint was correlated with latitude and SSTanamp was 

correlated with rad_mean, therefore SSTwint and SSTanamp were not used in any analyses 

of all P. subtriangulata locations (Table 5.2A; Figure 5.1A). When the Chatham Island 

population was excluded, four of the environmental variables were independent 

(SSTanamp, SSTgrad, tidal, bed_slope). SSTwint and rad_mean were both correlated with 

latitude and geographic distance, and orb_v_mean was correlated with SSTgrad (Table 5.2B; 

Figure 5.1B). 

Pearson correlation tests for P. australis locations also showed that five MEC 

environmental variables (orb_v_mean, SSTanamp, SSTgrad, tidal, bed_slope) were 

independent. SSTwint and rad_mean were correlated with latitude and longitude so were 

excluded from further analysis (Table 5.3A; Figure 5.2A). A Pearson correlation test and PCA 
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of the EEC environmental variables revealed that many of these variables were correlated, 

but eight were independent (spring_TR, mouth_width, shore_length, intertidal, 

mean_depth, area_LT, area_HT, tot_vol_SHT; Table 5.3B; Figure 5.2B). Catch_area and 

spring_TP were correlated with shore_length, and river_discharge was correlated with 

tot_vol_SHT. None of the EEC variables were correlated with any of the three geospatial 

variables. When MEC and EEC variables were combined for P. australis nine environmental 

variables were independent (orb_v_mean, SSTgrad, SSTwint, tidal, bed_slope, 

mouth_width, shore_length, intertidal, tot_vol_SHT; Table 5.3C, Figure 5.2C). The final set 

of independent geospatial, MEC and EEC variables that were used for each analysis are 

listed in Table 5.2 for P. subtriangulata and Table 5.3 for P. australis. 

 

 

Table 5.2: Correlations between Marine Environment Classification variables for Paphies 

subtriangulata A: for all locations; B: for mainland locations only (excluding Chatham Island). 

Independent variables are listed along with variables that are significantly correlated as determined 

by a Pearson’s Correlation test implemented in STATISTICA v.10 (α = 0.05). These represent the set 

of independent variables that were used in GLZ and BEST analyses. 

 

Independent Variables Correlated Variables Pearson 
Co-efficient 

p-value 

A: All locations    

 latitude SSTwint 0.953 0.001 

 longitude -   

 geo_dist -   

 orb_v_mean -   

 rad_mean SSTanamp 0.848 0.002 

 SSTgrad -   

 tidal -   

 bed_slope -   

B: Mainland locations    

 latitude rad_mean 0.939 0.001 

  SSTwint 0.928 0.001 

 longitude -   

 geo_dist rad_mean 0.821 0.007 

  SSTwint 0.721 0.028 

 SSTanamp -   

 SSTgrad orb_v_mean 0.781 0.022 

 tidal -   

 bed_slope -   
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Table 5.3: Correlations between A: Marine Environment Classification variables, B: Estuarine 

Environment Classification and C: Marine and Estuarine Environment Classification variables 

combined for Paphies australis. Independent variables are listed along with variables that are 

significantly correlated as determined by a Pearson’s Correlation test implemented in STATISTICA 

v.10 (α = 0.05). These represent the set of independent variables that were used in GLZ and BEST 

analyses. 

 

Independent Variables Correlated Variables Pearson 
Co-efficient 

p-value 

A: Marine Environment Classification 
  

 
latitude rad_mean 0.981 0.001 

  
SSTwint 0.927 0.001 

 
longitude rad_mean 0.799 0.001 

 
geo_dist -   

 
orb_v_mean - 

   SSTanamp -   

 
SSTgrad - 

   tidal -   

 
bed_slope - 

  B: Estuarine Environment Classification 
  

 
latitude - 

  
 

longitude - 
  

 
geo_dist - 

   spring_TR -   
 mouth_width -   

 
shore_length catch_area 0.653 0.015 

  spring_TP 0.898 0.001 

 
intertidal - 

   mean_depth -   
 area_LT -   
 area_HT -   

 
tot_vol_SHT river_discharge 0.698 0.008 

C: Marine and Estuarine Environment Classification   
 latitude rad_mean 0.981 0.001 
 longitude SSTanamp 0.644 0.017 
 geo_dist -   
 orb_v_mean -   
 SSTgrad -   
 SSTwint -   
 tidal -   
 bed_slope -   
 mouth_width -   
 shore_length spring_TP 0.898 0.001 
  catch_area 0.653 0.015 
  area_LT 0.806 0.001 
  area_HT 0.941 0.001 
 intertidal spring_TR 0.686 0.049 
 tot_vol_SHT mean_depth 0.993 0.001 
  river_discharge 0.698 0.008 



Seascape genetic analysis of Paphies subtriangulata & P. australis 

124 | 

 

Figure 5.1: Principal component analysis for geospatial and Marine Environment Classification 

variables conducted in STATISTICA v.10. A: for all Paphies subtriangulata populations; B: for 

mainland P. subtriangulata populations, excluding the Chatham Islands. 

 

 

 

 

Figure 5.2: Principal component analysis for 

Paphies australis conducted in STATISTICA v.10 

using geospatial variables and A: Marine 

Environment Classification variables; B: Estuarine 

Environment Classification variables; C: both 

Marine and Estuarine Environment Classification 

variables 
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5.3.2 Generalised linear modelling 

Generalised linear models based on data from all P. subtriangulata locations showed 

that all possible models were statistically significant (p < 0.001), i.e., removing or adding 

variables to the model did not have a large overall effect on the model fit. This result is most 

likely attributed to the Chatham Island population, which was an outlier for many of the 

variables included in the models. The best fit model using FST included the variables 

geo_dist, orb_v_mean, SSTgrad and bed_slope (p < 0.001) and using φ’ST included the 

variables geo_dist, rad_mean, tidal and bed_slope (p < 0.001; Table 5.4A). Both geo_dist 

and bed_slope were identified as explaining genetic distance when both FST and φ’ST were 

included as the dependent variable. When the Chatham Island population was excluded 

from GLZ analyses p-values for models were much lower, although a number of models 

were still significant (31 significant models for FST and 24 for φ’ST). The best fit model for FST 

included longitude, geo_dist, SSTanamp, SSTgrad, tidal and bed_slope (p = 0.004; Table 

5.4B). For φ’ST the best fit model included geo_dist, SSTanamp and bed_slope (p = 0.010; 

Table 5.4B).  

When GLZ analyses were repeated using only geospatial or environmental variables 

the results showed that both groups of variables were important in explaining genetic 

variation among all P. subtriangulata locations. Best fit models for geospatial variables 

included latitude and geo_dist when both FST and φ’ST were used (p < 0.001; Table 5.5A). 

SSTgrad and orb_v_mean were identified as important environmental variables when both 

FST and φ’ST were used (Table 5.5B). Geospatial variables explained much less of the genetic 

variation for mainland locations (i.e., Chatham Island population excluded); best fit models 

for FST and φ’ST included geo_dist only and were not significant (FST: p = 0.086; φ’ST: p = 

0.131; Table 5.5C). Environmental variables were able to better explain genetic variation 

among mainland populations; the best fit model for FST was SSTanamp, tidal and bed_slope 

(p = 0.042) and for φ’ST the best fit model included bed_slope only (p = 0.045; Table 5.5D). 

A GLZ for P. australis using geospatial and MEC variables identified 20 significant 

models using FST and only three significant models using φ’ST (Table 5.6A). The best fit model 

for FST included latitude, longitude, geo_dist, SSTanamp, SSTgrad and bed_slope (p = 0.010). 

Using φ’ST, the best fit model included geo_dist, orb_v_mean, SSTgrad, tidal and bed_slope 

(p = 0.034). There was a difference in the variables that best explained variation in FST versus 
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those that best explained variation in φ’ST; the only variables that were common to both 

models were geo_dist, SSTgrad and bed_slope. A GLZ using geospatial and EEC variables 

resulted in a large number of highly significant models (p < 0.001; Table 5.6B) and while one 

best fit model was identified, many of the p-values for the individual variables were also 

highly significant, meaning that adding or removing different variables had little effect on 

the fit of subsequent models. The best fit model for FST included all variables except area_LT 

and the best fit model for φ’ST included all variables except intertidal. Similar results were 

seen when analyses were run using a combination of geospatial, MEC and EEC variables. All 

possible models were highly significant (p < 0.001) and all variables were included in the 

best fit models for both FST and φ’ST (Table 5.6C). 

A GLZ using just geospatial variables showed that these variables contributed little to 

explaining the genetic variation seen among P. australis locations (Table 5.7A). Latitude was 

the geospatial variable that best explained FST but this model was not significant (p = 0.089). 

For φ’ST latitude and geo_dist was the best fit model but this model was also not significant 

(p = 0.169). A GLZ using MEC variables showed that these variables were also unable to 

explain much genetic variation in P. australis (Table 5.7B). For FST the best fit model included 

only orb_v_mean and was not significant (p = 0.238). Similarly, the best fit model for φ’ST 

was not significant and included only tidal (p = 0.408). In contrast, models using EEC 

variables were significant, suggesting that these variables were able to better explain the 

genetic variation seen in P. australis (Table 5.7C). Both FST and φ’ST produced similar best fit 

models (FST: spring_TR, mouth_width, intertidal, mean_depth, area_HT, tot_vol_SHT, p = 

0.003; φ’ST: intertidal, mean_depth, area_HT, tot_vol_SHT, p = 0.002). When MEC and EEC 

variables were combined the models were highly significant. A five factor model best 

explained variation in FST (SSTgrad, SSTwint, tidal, intertidal, tot_vol_SHT; p < 0.001) and a 

seven factor model best explained variation in φ’ST (SSTgrad, SSTwint, tidal, bed_slope, 

shore_length, intertidal, tot_vol_SHT; p < 0.001; Table 5.7D). 
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Table 5.4: Results of generalised linear model analyses for Paphies subtriangulata implemented in 

STATISTICA v.10. Analyses were run both using both geospatial and MEC variables including (all 

locations; A) and excluding (mainland locations; B) the Chatham Island population. The best fit 

model is shown, as determined by lowest AIC score, for the dependent and independent variables 

listed. The model was considered significant if p < 0.05. 

 

Test Dependent 
Variable 

Independent 
Variables 

p-value  All 
effects 

Best Fit 
Model 

p-value 
Model 

A: All locations FST latitude 0.133 geo_dist <0.001 

  longitude 0.244 orb_v_mean  

  geo_dist 0.053 SSTgrad  

  orb_v_mean <0.001 bed_slope  

  rad_mean 0.708   

  SSTgrad 0.268   

  tidal 0.278   

  bed_slope <0.001   

 φ'ST latitude 0.373 geo_dist <0.001 

  longitude 0.269 rad_mean  

  geo_dist 0.164 tidal  

  orb_v_mean 0.130 bed_slope  

  rad_mean 0.604   

  SSTgrad 0.420   

  tidal 0.134   

  bed_slope 0.006   

B: Mainland locations FST latitude 0.337 longitude 0.004 

  longitude 0.003 geo_dist  

  geo_dist <0.001 SSTanamp  

  SSTanamp 0.001 SSTgrad  

  SSTgrad 0.138 tidal  

  tidal 0.028 bed_slope  

  bed_slope <0.001   

 φ'ST latitude 0.659 geo_dist 0.010 

  longitude 0.879 SSTanamp  

  geo_dist 0.038 bed_slope  

  SSTanamp 0.189   

  SSTgrad 0.883   

  tidal 0.912   

  bed_slope 0.001   
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Table 5.5: Results of generalised linear model analyses for Paphies subtriangulata implemented in 

STATISTICA v.10 where separate models were run for geospatial variables including all locations (A), 

MEC variables including all locations (B), geospatial variables for mainland locations only (C), and 

MEC variables for mainland locations only (D). The best fit model is shown, as determined by lowest 

AIC score, for the dependent and independent variables listed. The model was considered significant 

if p < 0.05. 

Test Dependent 
Variable 

Independent 
Variables 

p-value  All 
Effects 

Best Fit 
Model 

p-value 
Model 

A: All locations FST latitude 0.014 latitude <0.001 

 geospatial 
 

longitude 0.977 geo_dist 

 

  

geo_dist <0.001 

   φ'ST latitude 0.096 latitude <0.001 

 
 

longitude 0.362 geo_dist 

 

  

geo_dist 0.007 

  B: All locations FST orb_v_mean <0.001 orb_v_mean <0.001 

 Marine Environment 
 Classification  

rad_mean 0.285 SSTgrad 

 

 

SSTgrad <0.001 tidal 

 

  

tidal 0.074 

  

  

bed_slope 0.288 

   φ'ST orb_v_mean 0.019 orb_v_mean <0.001 

 
 

rad_mean 0.910 SSTgrad 

 

  

SSTgrad <0.001 

  

  

tidal 0.278 

  

  

bed_slope 0.430 

  C: Mainland locations FST latitude 0.400 geo_dist 0.086 

 geospatial 
 

longitude 0.746 

  

  

geo_dist 0.076 

   φ'ST latitude 0.800 geo_dist 0.131 

 
 

longitude 0.459 

  

  

geo_dist 0.302 

  D: Mainland locations FST SSTanamp 0.029 SSTanamp 0.042 

 Marine Environment 
 Classification  

SSTgrad 0.727 tidal 

 

 

tidal 0.030 bed_slope 

 

  

bed_slope 0.007 

   φ'ST SSTanamp 0.050 bed_slope 0.045 

 
 

SSTgrad 0.865 

  

  

tidal 0.089 

  

  

bed_slope 0.005 
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Table 5.6: Results of generalised linear model analyses for Paphies australis implemented in 

STATISTICA v.10. Analyses were run using Marine Environment Classification variables (A), Estuarine 

Environment Classification variables (B) and both Marine and Estuarine Environment Classification 

variables combined (C). The best fit model is shown, as determined by lowest AIC score, for the 

dependent and independent variables listed. The model was considered significant if p < 0.05. 

 

Test Dependent 
Variable 

Independent 
Variables 

p-value  All 
Effects 

Best Fit Model p-value 
Model 

A: Marine 
Environment 
Classification 

FST latitude 0.042 latitude 0.010 

 

longitude 0.145 longitude 

 

 

geo_dist 0.025 geo_dist 

 

  

orb_v_mean 0.381 SSTanamp 

 

  

SSTanamp 0.736 SSTgrad 

 

  

SSTgrad 0.001 bed_slope 

 

  

tidal 0.235 

  

  

bed_slope 0.001 

  

 
φ'ST latitude 0.232 geo_dist 0.034 

  

longitude 0.327 orb_v_mean 

 

  

geo_dist 0.017 SSTgrad 

 

  

orb_v_mean 0.368 tidal 

 

  

SSTanamp 0.958 bed_slope 

 

  

SSTgrad 0.015 

  

  

tidal 0.130 

  

  

bed_slope 0.003 

  B: Estuarine 
Environment 
Classification 

FST latitude <0.001 latitude <0.001 

 

longitude <0.001 longitude 

 

 

geo_dist <0.001 geo_dist 

 

  

spring_TR <0.001 spring_TR 

 

  

mouth_width <0.001 mouth_width 

 

  

shore_length <0.001 shore_length 

 

  

intertidal <0.001 intertidal 

 

  

mean_depth <0.001 mean_depth 

 

  

area_LT <0.001 area_HT 

 

  

area_HT <0.001 tot_vol_SHT 

 

  

tot_vol_SHT <0.001 
 

 

 
φ'ST latitude 0.021 latitude <0.001 

  

longitude <0.001 longitude 
 

  

geo_dist <0.001 geo_dist 
 

  

spring_TR <0.001 spring_TR 
 

  

mouth_width <0.001 mouth_width 
 

  

shore_length <0.001 shore_length 
 

  

intertidal 0.199 mean_depth 
 

  

mean_depth <0.001 area_LT 
 

  

area_LT <0.001 area_HT 
 

  

area_HT <0.001 tot_vol_SHT 
 

  

tot_vol_SHT <0.001 
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Table 5.6 continued. 

Test Dependent 
Variable 

Independent 
Variables 

p-value  All 
Effects 

Best Fit Model p-value 
Model 

C: Marine and 
Estuarine 
Environment 
Classification 

FST latitude <0.001 latitude <0.001 

 

longitude <0.001 longitude 

 

 

geo_dist <0.001 geo_dist 

 

 

orb_v_mean <0.001 orb_v_mean 

 

  

SSTgrad <0.001 bed_slope 

 

  

SSTwint <0.001 SSTgrad 

 

  

tidal <0.001 tidal 

 

  

bed_slope <0.001 tot_vol_SHT 

 

  

mouth_width <0.001 mouth_width 

 

  

shore_length <0.001 shore_length 

 

  

intertidal <0.001 intertidal 

 

  

tot_vol_SHT <0.001 SSTwint 

 

 
φ'ST latitude <0.001 latitude <0.001 

  

longitude <0.001 longitude 

 

  

geo_dist <0.001 geo_dist 

 

  

orb_v_mean <0.001 orb_v_mean 

 

  

SSTgrad <0.001 bed_slope 

 

  

SSTwint <0.001 SSTgrad 

 

  

tidal <0.001 tidal 

 

  

bed_slope <0.001 tot_vol_SHT 

 

  

mouth_width <0.001 mouth_width 

 

  

shore_length <0.001 shore_length 

 

  

intertidal <0.001 intertidal 

 

  

tot_vol_SHT <0.001 SSTwint 
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Table 5.7: Results of generalised linear model analyses for Paphies australis implemented in 

STATISTICA v.10 where separate models were run for geospatial variables only (A), MEC variables 

only (B), EEC variables only (C) and MEC and EEC variables combined (D). The best fit model is 

shown, as determined by lowest AIC score, for the dependent and independent variables listed. The 

model was considered significant if p < 0.05. 

 

Test Dependent 
Variable 

Independent 
Variables 

p-value All 
Effects 

Best Fit Model p-value 
Model 

A: Geospatial 
Variables 

FST latitude 0.272 latitude 0.089 

 
longitude 0.540 

  

  
geo_dist 0.138 

  

 

φ'ST latitude 0.451 latitude 0.169 

 
longitude 0.555 geo_dist 

 

  
geo_dist 0.062 

  
B: Marine 
Environment 
Classification 

FST orb_v_mean 0.216 orb_v_mean 0.238 

 
SSTanamp 0.068 

  

 
SSTgrad 0.100 

  

  
tidal 0.066 

  

  
bed_slope 0.498 

  

 
φ'ST orb_v_mean 0.066 tidal 0.408 

  
SSTanamp 0.008 

  

  
SSTgrad 0.039 

  

  
tidal 0.012 

  

  
bed_slope 0.291 

  
C: Estuarine 
Environment 
Classification 

FST spring_TR 0.066 spring_TR 0.003 

 
mouth_width 0.211 mouth_width 

 

 
shore_length 0.398 intertidal 

 

  
intertidal 0.067 mean_depth 

 

  
mean_depth 0.001 area_HT 

 

  
area_LT <0.001 tot_vol_SHT 

 

  
area_HT <0.001 

  

  
tot_vol_SHT <0.001 

  

 
φ'ST spring_TR 0.189 intertidal 0.002 

  
mouth_width 0.093 mean_depth 

 

  
shore_length 0.974 area_HT 

 

  
intertidal 0.003 tot_vol_SHT 

 

  
mean_depth 0.003 

  

  
area_LT <0.001 

  

  
area_HT <0.001 

  

  
tot_vol_SHT <0.001 
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Table 5.7 continued. 

Test Dependent 
Variable 

Independent 
Variables 

p-value All 
Effects 

Best Fit Model p-value 
Model 

D: Marine and 
Estuarine 
Environment 
Classification 

FST orb_v_mean 0.433 SSTgrad <0.001 

 
SSTgrad <0.001 SSTwint 

 

 
SSTwint <0.001 tidal 

 

 
tidal 0.017 intertidal 

 

  
bed_slope 0.349 tot_vol_SHT 

 

  
mouth_width 0.766 

  

  
shore_length <0.001 

  

  
intertidal <0.001 

  

  
tot_vol_SHT <0.001 

  

 
φ'ST orb_v_mean 0.225 SSTgrad <0.001 

  
SSTgrad <0.001 SSTwint 

 

  
SSTwint <0.001 tidal 

 

  
tidal 0.001 bed_slope 

 

  
bed_slope 0.013 shore_length 

 

  
mouth_width 0.216 intertidal 

 

  
shore_length <0.001 tot_vol_SHT 

 

  
intertidal <0.001 

  

  
tot_vol_SHT <0.001 

  
 

5.3.3 BEST analyses 

An analysis based on geospatial and MEC variables using  all P. subtriangulata 

locations identified two best fit models that included combinations of rad_mean, bed_slope 

and SSTgrad (RS: 0.643, p = 0.039; Table 5.8A). The remainder of the top 10 best models all 

had the same RS value (0.634) and all included the variables geo_dist and orb_v_mean. 

Using just geospatial variables resulted in four best fit models that included all three 

geospatial variables, with geo_dist included in all four models (RS: 0.613, p = 0.040; Table 

5.8B). Using only MEC environmental variables two best fit models were identified that 

included combinations of rad_mean, bed_slope and SSTgrad (RS: 0.643, p = 0.050; Table 

5.8C). Other models also identified rad_mean and bed_slope as important variables in 

explaining allelic variation.  

When the Chatham Island population was excluded from BEST analyses the ten best 

models using geospatial and MEC variables all had the same correlation coefficient and were 

not significant (RS: 0.285, p = 0.590; Table 5.8D), suggesting that these variables poorly 
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explained allelic variation among mainland P. subtriangulata. The top ten models identified 

geospatial variables as important with geo_dist included in all ten models. An analysis using 

just geospatial variables identified three best fit models which also all included geo_dist (RS: 

0.285, p = 0.200; Table 5.8E). Using only MEC environmental variables resulted in two best 

fit models that included combinations of rad_mean, bed_slope and SSTgrad (RS: 0.327, p = 

0.470; Table 5.8F). Rad_mean and bed_slope also occurred in most of the ten best models.  

All BEST analyses for P. australis had low correlation coefficients and models were 

not significant, suggesting that the variables used were not able to explain much of the 

allelic variation seen among P. australis locations. Using geospatial and MEC variables a best 

fit model of SSTgrad, tidal and bed_slope was obtained (RS: 0.233, p = 0.460; Table 5.9A). 

Tidal current was included in eight of the ten best models and of the geospatial variables 

latitude was the only one included in any of the ten best models (8/10 models). Using 

geospatial and EEC variables the best fit model included latitude only (RS: 0.159, p = 0.790; 

Table 5.9B). The remaining nine models all had the same correlation coefficient and all 

included area_HT in combination with one other geospatial or EEC variable (RS: 0.151). 

Combining geospatial, MEC and EEC variables showed that MEC variables were able to 

explain more of the allelic variation seen in P. australis (Table 5.9C). The best fit model 

included SSTgrad, tidal and bed_slope (RS: 0.233, p = 0.610) and tidal featured in all ten 

models.  

Using only geospatial variables resulted in a best fit model that only included latitude 

(RS: 0.159, p = 0.370; Table 5.9D). Using only MEC variables again resulted in a best fit model 

of SSTgrad, tidal and bed_slope, with tidal included in nine of the ten best models (RS: 0.233, 

p = 0.420; Table 5.9E). Using only EEC variables resulted in the same correlation coefficient 

for all ten models, suggesting that EEC variables in particular were poor at explaining allelic 

variation. All models included the variable area_HT (RS: 0.151, p = 0.450; Table 5.9F). When 

MEC and EEC variables were combined the best model was SSTgrad, tidal and bed_slope (RS: 

0.233, p = 0.660; Table 5.9G) but catch_area and river_discharge were also included in eight 

of the models.  

To aid interpretation of all testing, the results of the GLZ and BEST analyses for both 

species are summarised in Table 5.10. 
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Table 5.8. 
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Table 5.8 continued.  
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Table 5.8 (previous pages): Results of BEST analyses for Paphies subtriangulata as implemented in 

Primer v.6. Models were run using all non-correlated variables for all locations (A), only geospatial 

variables for all locations (B), only MEC environmental variables for all locations (C), all non-

correlated variables for mainland locations only (D), only geospatial variables for mainland locations 

(E), and only MEC environmental variables for mainland locations (F). The top 10 models, as 

determined by Spearman’s rank co-efficient (RS), are shown; X indicates the variables that were 

included in each model and the number of times each variable appears is summed at the bottom 

(note for geospatial variables all possible models are shown). The p-value for each model, as 

determined by 1,000 permutations is shown (α = 0.05). Grey columns represent variables that were 

not included in the analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.9 (over page): Results of BEST analyses for Paphies australis as implemented in Primer v.6. 

Models were run using geospatial and non-correlated MEC variables (A), geospatial and non-

correlated EEC variables (B), geospatial and non-correlated MEC and EEC variables (C), only 

geospatial variables (D), only MEC environmental variables (E), only EEC environmental variables (F), 

and MEC and EEC environmental variables (G). Variables used in the models were latitude (1), 

longitude (2), geo_dist (3), orb_v_mean (4), rad_mean (5), SSTanamp (6), SSTgrad (7), SSTwint (8), 

tidal (9), bed_slope (10), spring_TR (11), spring_TP (12), mouth_width (13), catch_area (14), 

shore_length (15), intertidal (16), mean_depth (17), area_LT (18), area_HT (19), tot_vol_SHT (20) 

and river_discharge (21). The top 10 models, as determined by Spearman’s rank co-efficient (RS), are 

shown; X indicates the variables that were included in each model and the number of times each 

variable appears is summed at the bottom (note for geospatial variables all possible models are 

shown). The p-value for each model, as determined by 1,000 permutations is shown (α = 0.05). Grey 

columns represent variables that were not included in the analysis.   
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Table 5.9. 
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Table 5.9 continued.  
Te

st
 

N
o

. 
V

ar
ia

b
le

s 
R

S 
V

ar
ia

b
le

s 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
p

-
va

lu
e 

1 
2

 
3 

4 
5 

6 
7 

8 
9 

1
0 

1
1 

1
2 

1
3 

1
4 

1
5

 
1

6 
1

7 
1

8 
1

9 
2

0 
2

1 

D
: G

eo
sp

at
ia

l 
va

ri
ab

le
s 

1 
0

.1
5

9 
X

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

2 
0

.0
9

3 
X

 
X

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
1 

0
.0

3
2 

 
X

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
1 

-0
.0

6
3 

 
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
2 

-0
.0

6
3 

X
 

 
X

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
2 

-0
.0

6
3 

 
X

 
X

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
3 

-0
.0

6
3 

X
 

X
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
Su

m
: 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
0

.3
70

 

E:
 M

EC
 

3 
0

.2
3

3 
 

 
 

 
 

 
X

 
 

X
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

en
vi

ro
n

m
en

ta
l 

va
ri

ab
le

s 

2 
0

.2
3

1 
 

 
 

 
 

 
X

 
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 
2 

0
.2

1
4 

 
 

 
 

 
 

 
 

X
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 
1 

0
.1

9
1 

 
 

 
 

 
 

 
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
4 

0
.1

6
7 

 
 

 
 

 
 

X
 

X
 

X
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 
3 

0
.1

6
6 

 
 

 
 

 
 

 
X

 
X

 
X

 
 

 
 

 
 

 
 

 
 

 
 

 

 
2 

0
.1

6
5 

 
 

 
 

 
 

 
X

 
X

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
3 

0
.1

6
5 

 
 

 
 

 
 

X
 

X
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
2 

0
.1

5
2 

 
 

 
 

 
 

X
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
4 

0
.1

5
2 

 
 

 
 

X
 

 
X

 
 

X
 

X
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

Su
m

: 
 

 
 

0 
1 

0 
6 

5 
9 

5 
 

 
 

 
 

 
 

 
 

 
 

0
.4

20
 

F:
 E

EC
 

1 
0

.1
5

1 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
X

 
 

 
 

en
vi

ro
n

m
en

ta
l 

va
ri

ab
le

s 

2 
0

.1
5

1 
 

 
 

 
 

 
 

 
 

 
X

 
 

 
 

 
 

 
 

X
 

 
 

 
2 

0
.1

5
1 

 
 

 
 

 
 

 
 

 
 

 
 

X
 

 
 

 
 

 
X

 
 

 
 

 
2 

0
.1

5
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

X
 

 
 

 
X

 
 

 
 

 
2 

0
.1

5
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
X

 
 

 
X

 
 

 
 

 
2 

0
.1

5
1 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

X
 

 
X

 
 

 
 

 
3 

0
.1

5
1 

 
 

 
 

 
 

 
 

 
 

X
 

 
X

 
 

 
 

 
 

X
 

 
 

 

 
3 

0
.1

5
1 

 
 

 
 

 
 

 
 

 
 

X
 

 
 

 
X

 
 

 
 

X
 

 
 

 

 
3 

0
.1

5
1 

 
 

 
 

 
 

 
 

 
 

X
 

 
 

 
 

X
 

 
 

X
 

 
 

 
  

3 
0

.1
5

1 
 

 
 

 
 

 
 

 
 

 
X

 
 

 
 

 
 

X
 

 
X

 
 

 
 

  
 

Su
m

: 
 

 
 

 
 

 
 

 
 

 
5 

0 
2 

0 
2

 
2 

2 
0 

1
0 

0 
0 

0
.4

50
 

 



 Seascape genetic analysis of Paphies subtriangulata & P. australis 

| 139  

Table 5.9 continued. 

5.4 Discussion 

In previous chapters it was shown that 

low but significant levels of genetic 

differentiation exist among many Paphies 

subtriangulata and among many P. australis 

locations. However, the geographic patterns of 

differentiation were often unclear or in conflict 

with what might be expected based on life 

history characteristics of the species and known 

oceanographic current patterns. In cases such as 

these seascape genetics can be a useful tool to 

search for associations among the patterns of 

genetic variation observed within a species and 

the environmental variation present in the 

marine environment (Riginos & Liggins 2013; 

Selkoe et al. 2008).  

Three measures of genetic variation (FST, 

φ’ST and allelic frequency) were used to gain 

more comprehensive insight into how 

environmental variation might be influencing 

different aspects of genetic variation. In general, 

many significant associations were found 

between the genetic and environmental 

variables, disproving the null hypothesis of no 

correlation between genetic and 

geospatial/environmental variation. However, 

results showed that some measures of genetic 

variation (i.e., allele frequency) were less able to 

be explained by environmental variation, as 
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evidenced by the non-significant BEST models for P. australis and, to a lesser extent, P. 

subtriangulata. Genetic measures based on FST and φ’ST showed a stronger association with 

environmental variation. The P. subtriangulata GLZ models run with FST tended to result in 

lower p-values compared to φ’ST but p-values were similar when both indices were tested 

for P. australis. FST and φ’ST were often associated with different sets of variables for both 

species, although some commonalities were seen. Despite some issues with low 

significance, GLZ and BEST models did show some commonality in the variables that were 

included in best fit models; it is these common variables that I have focused on when 

attempting to summarise the results of all models in Table 5.10. 

5.4.1 Key variables driving genetic population structure 

5.4.1.1 Paphies subtriangulata 

The most striking aspect of genetic population variation in P. subtriangulata was the 

differentiation of the Chatham Island population from the remainder of the mainland New 

Zealand locations. The large genetic distance between the Chatham Island population and 

mainland populations, in terms of FST, φ’ST and allelic frequency, made this population an 

outlier. It was also an outlier in many of the environmental variables that were used.  As a 

consequence it was difficult to assess the meaningfulness of results from GLZ models as 

they were all highly significant; addition and removal of different variables made little 

difference to model performance. Similar results were seen in BEST analyses where a large 

number of models with the same correlation coefficients were observed.  Excluding the 

Chatham Island population resulted in a smaller number of significant models and smaller 

correlation coefficients, as lower levels of genetic variation among mainland locations made 

it difficult to identify significant correlations. However it was easier to assess the importance 

of different variables on model performance. 

Results from GLZ and BEST analyses using all P. subtriangulata locations were in 

agreement that geospatial and environmental variables were both important in explaining 

genetic variation among populations. Both analyses identified geographic distance among 

populations as an important explanatory variable, suggesting that the large distance 

between mainland New Zealand and Chatham Island populations is the most significant 

factor determining  large scale genetic population structure in P. subtriangulata.  In terms of  
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Table 5.10: Summary and comparison of GLZ and BEST results. The variables that were most 

important in explaining genetic variation (as determined by model p-values, effect p-values, RS 

coefficients and number of times a variable appeared in models) are shown along with any 

correlated variables that were not included in model runs. The relative importance of geospatial and 

environmental variables in explaining genetic variation is also summarised. 

 

Test Analysis 
Type 

Important 
Variables 

Correlated 
Variables 

Comments 

P. subtriangulata  GLZ geo_dist  Geospatial and 
environmental variables 
were both important in 
explaining genetic distance 
among populations 

all populations  orb_v_mean  
  SSTgrad  
  bed_slope  

 BEST geo_dist  Geospatial and 
environmental variables 
were both important in 
explaining allelic variation 
between populations 

  orb_v_mean  
  rad_mean SSTanamp 
  SSTgrad  
  bed_slope  

P. subtriangulata 
mainland 
populations  

GLZ geo_dist SSTwint, 
rad_mean 

Environmental variables 
explained a larger amount 
of genetic distance  than 
geospatial variables 

 SSTanamp  
 bed_slope  

 BEST geo_dist SSTwint, 
rad_mean 

Geospatial and 
environmental variables 
were both important in 
explaining allelic variation 
between populations 

 bed_slope  
   

P. australis GLZ latitude rad_mean, 
SSTwint 

EEC variables were able to 
better explain genetic 
distance than MEC 
variables 

  geo_dist  
  SSTgrad  
  tidal  
  intertidal spring_TR 
  tot_vol_SHT mean_depth, 

river_discharge 

 BEST latitude rad_mean, 
SSTwint 

MEC variables were able to 
better explain allelic 
variation among 
populations than EEC 
variables 

  SSTgrad  
  tidal  
  bed_slope  
  area_HT  
  catch_area  
  river_discharge tot_vol_SHT 
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environmental variables, both analyses identified a similar set of key variables (SSTgrad, 

orb_v_mean and bed_slope). Results were less clear when the Chatham Island population 

was excluded from analyses; GLZ analyses suggested that MEC variables, but not geospatial 

variables, were significantly correlated with population genetic structure, whereas BEST did 

not find any significant models and the importance of geospatial versus environmental 

variables was similar. In general, the results of these analyses using all locations versus only 

mainland locations have shown that a similar set of geospatial and environmental variables 

(geographic distance, SST, bed slope) are associated with genetic variation in P. 

subtriangulata regardless of spatial scale. Although model performance was poorer for 

mainland populations, due to lower levels of genetic variation among these locations, the 

results suggest that similar processes are working at different geographic scales to influence 

genetic population structure in this species.  

Overall, distance among populations appears to be the most significant variable 

influencing P. subtriangulata genetic population structure, but there is evidence that at 

smaller spatial scales environmental variation might also be important. Sea surface 

temperature has been implicated in population genetic structuring of other marine species 

in New Zealand waters (Wei et al. 2013b) and elsewhere (Banks et al. 2007; Selkoe et al. 

2010). Mean orbital velocity and bed slope are both related to the physical morphology of 

the sea bed. Given that P. subtriangulata are buried within the sea bed on high energy surf 

beaches, variation in current velocity and the slope of the bed between sampling locations 

could have the potential to affect the genetic makeup of the population via adaptation to 

local conditions. 

5.4.1.2 Paphies australis 

It is important to keep in mind when interpreting analyses for P. australis that many 

of the models (particularly for BEST) were not significant or showed low correlation 

coefficients. This problem is further compounded by the observation that for some models, 

GLZ and BEST analyses tended to highlight different sets of variables as being important. 

However, by taking a conservative approach of focussing only on those variables that were 

common between the two approaches we can be confident that the associations observed 

are meaningful. 
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GLZ results showed that models with geospatial and MEC variables tended to be less 

significant, whereas models with EEC variables were highly significant with most variables 

included in the best fit model. Since P. australis is an estuarine organism it is not unexpected 

that EEC variables were able to explain more genetic variation among populations as they 

are more representative of the physical environment experienced by this species, compared 

to MEC variables which are measured from the open coast. However, interpretation of 

model significance is challenging as the addition or removal of EEC variables had little effect 

on p-values. BEST analyses were unable to find significant models using any of the sets of 

variables. BEST results differed from GLZ results as BEST models that included MEC variables 

tended to have higher correlation coefficients and lower (although still non-significant) p-

values. Results from the two approaches were similar in that models with EEC variables 

resulted in many different models with the same correlation coefficient.  

GLZ and BEST analyses both identified latitude as the most important geospatial 

variable, and indicated that SST and radiance levels also play a role in shaping P. australis 

genetic variation. Similar to P. subtriangulata, variables associated with the characteristics 

of the intertidal area inhabited by P. australis (tidal, bed_slope, intertidal) and with the size 

of the estuaries/harbours sampled (catch_area, area_HT, tot_vol_SHT) were also common 

in best fit models. Both GLZ and BEST analyses also identified that the volume of freshwater 

entering the estuary, in terms of river discharge, was an important explanatory variable. 

These results indicate that, while latitude and distance among estuarine habitat appear to 

have an important influence on genetic population structure, differences in the physical 

nature of the beds where P. australis are found as well as the extent of the surrounding 

habitat could also be influencing genetic structure in this species. It is difficult to pinpoint 

specific habitat variables that could be driving population structure due to the 

aforementioned problem of highly significant or similarly correlated models that are 

unaffected by addition or removal of specific EEC variables. 

5.4.2 Links between genetic and environmental variation 

Chapters 3 and 4 reported isolation by distance (IBD) population structure for both 

P. subtriangulata and P. australis, the significance of which varied depending on the 

geographic scale being considered. Therefore it was not surprising that geospatial variables 

such as geographic distance and latitude appeared often in best fit models. This is 
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particularly evident for the Chatham Island P. subtriangulata population, where distance 

from external sources of mainland New Zealand recruits is likely to have resulted in genetic 

differentiation of this population. Distance between Chatham Island and mainland New 

Zealand has also been invoked as an explanation for genetic differentiation in other coastal 

marine species (Goldstien et al. 2006; Hickey et al. 2009; Stevens & Hogg 2004; Will et al. 

2011). Among mainland P. subtriangulata many populations were not genetically 

differentiated from each other, meaning that geospatial and environmental variation 

probably do not have a large influence on the genetic structure of these populations. Where 

populations were differentiated it is possible that distance from other populations plays a 

role; the distance between many populations is further than larvae can potentially cover 

within their lifespan (Shanks 2009; Shanks et al. 2003). When coupled with coastal eddies 

that restrict larval dispersal (see chapter 3), this could drive differentiation of isolated 

populations. 

Sampling of P. australis populations covered a large geographic and latitudinal range 

so patterns of genetic variation associated with geographic distance and latitude are not 

unexpected. In chapter 4 I discussed how the distance between suitable habitat (i.e., habitat 

availability) can drive the IBD pattern commonly reported for estuarine organisms. I 

concluded that patterns of population differentiation seen in P. australis provide some 

support for this concept, and the significance of latitude and geographic distance in the 

models presented here is consistent with this conclusion. However, I also reported that 

contrasting patterns of small scale genetic differentiation in some parts of New Zealand 

versus long distance dispersal events in other areas provide evidence that the relationship 

between geographic and genetic distance has become decoupled and is not a simple 

function of habitat availability. The results of GLZ models presented here provide further 

support for this observation: geospatial variables on their own were not significant, but 

were significant in combination with other EEC variables. These results suggest an 

interaction between processes operating at different stages during the larval life cycle (e.g., 

current patterns, distance between habitat, local adaptation), resulting in the complex 

patterns of observed genetic population structure. 

Closely associated with latitude and distance are measures of SST. Sea surface 

temperature range from the north to the south of the New Zealand region is large, with 
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differences of up to 15°C observed during the summer months (Heath 1985). Therefore, SST 

is likely to play an important role in the genetic structure of New Zealand marine species 

(e.g., Wei et al. 2013b), possibly creating warm and cold-adapted populations, similar to 

patterns seen among Northern Hemisphere marine species (Case et al. 2005; Powers & 

Schulte 1998). Changes in SST associated with the convergence of currents and upwelling 

have also been proposed as an explanation for the genetic disjunction seen in many marine 

organisms around the Cook Strait area (Apte & Gardner 2002; Ayers & Waters 2005; 

Goldstien et al. 2006; Ross et al. 2011; Star et al. 2003; Stevens & Hogg 2004). Seascape 

genetic analyses of the New Zealand greenshell mussel Perna canaliculus provide evidence 

that genetically differentiated northern and southern groups may represent warm and cold-

adapted populations of this species (Wei et al. 2013b). The three genetically distinct P. 

australis groups described in chapter 4 could similarly represent warm and cold-adapted 

populations.  

There were also indications that SST could be influencing genetic structure among P. 

subtriangulata populations. The SST conditions experienced within the range of sampled 

populations is less extreme than those described above for P. australis, but SSTwint values 

still varied by approximately 4°C over the range sampled. In particular SST could help explain 

the differentiation of the Ruakaka population, which is known to be influenced by the 

warmer subtropical waters of the East Auckland current (Stanton et al. 1997), potentially 

resulting in warm-adapted northern populations. Variation in allele frequency and 

expression levels of heat shock proteins have been shown to play a role in responses to 

temperature gradients in other bivalve species (Dutton & Hofmann 2009) and marine fish 

(Hemmer-Hansen et al. 2007). Heat shock proteins are associated with general stress 

responses in many species (Hoffmann & Willi 2008), and are likely to respond in a similar 

way in P. subtriangulata and P. australis, presenting a method for testing the underlying 

genetic mechanisms of how these species respond to changes in SST. 

More difficult to interpret are the results suggesting that the physical characteristics 

of the habitats of P. subtriangulata and P. australis are influencing their genetic population 

structures. For P. subtriangulata, orb_v_mean and bed_slope can be considered indices of 

beach type, which can range from high-energy reflective to low-energy dissipative beaches. 

Burrowing ability, shape and density of surf clams is known to vary according to beach type 



Seascape genetic analysis of Paphies subtriangulata & P. australis 

146 | 

(McLachlan et al. 1995) and in the deep water tuatua, Paphies donacina, large variability in 

terms of size frequency distribution has been observed along the length of a beach, possibly 

due to variation in environmental conditions (Marsden 2000). If there is an underlying 

genetic basis to variation in the physical characteristics of the organism (i.e., burrowing 

ability, size, shape, physiological stress tolerance, etc.), it is possible that variation in orbital 

velocity and bed slope could be placing selective pressure on populations, and individuals 

may become adapted to particular beach types. In particular there is a strong relationship 

between FST/φ’ST whereby beaches with a steeper bed slope are characterised by lower 

FST/φ’ST values, possibly because only select morphotypes are adapted to live in a reflective 

style beach. Physical characteristics of the beach could be particularly relevant to 

differentiation of the Kakamatua population, which is located in a sheltered harbour 

compared to the open coast habitat of other sampled locations. The observed relationship 

between FST/φ’ST and bed slope suggests that one or more loci are somehow linked to 

physiological responses to bed slope in the organisms, a hypothesis that could be further 

investigated by testing how allele frequencies change with variations in bed slope. 

Physical parameters of estuary habitat were also important in explaining genetic 

variation in P. australis. It is not unreasonable to expect estuaries of different size and shape 

to be characterised by variable bivalve community composition (Cole et al. 2000), and for 

these communities to experience different selective pressures. Variables associated with the 

intertidal area inhabited by P. australis often featured in best fit models. Intertidal areas are 

known for their extreme range of environmental conditions, so the size of the intertidal area 

and flow of tidal currents could represent strong selective agents (Schmidt et al. 2008). 

Indices of estuary size also featured in best fit models and it could be expected that larger 

estuaries could accommodate larger, more variable populations. However, there does not 

seem to be any clear relationship between these environmental variables and effective 

population size (data not shown), possibly due to the low statistical power for many of the 

P. australis models. Interestingly, freshwater discharge was associated with genetic 

variation in GLZ and BEST analyses. Exposure to freshwater is known to significantly 

decrease survivorship for P. australis (McLeod & Wing 2008) and has previously been used 

to explain patterns of genetic variation in marine organisms (Jørgensen et al. 2005; Puritz & 

Toonen 2011). Variation in freshwater discharge among estuaries could be a strong selective 
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force for P. australis populations depending on an individual’s tolerance to low salinity 

conditions.  

Variation in selective pressure related to the physical properties of different 

estuaries could help explain some of the small scale population differentiation observed in 

P. australis if it has resulted in local adaptation of populations. Selection has been 

implicated in previous studies of estuarine organisms where patterns of genetic variation 

are associated with changes in environmental variables (Schmidt et al. 2008). For example 

variation in the Lap locus is associated with variation in salinity in Mytilus edulis (Hilbish & 

Koehn 1987) and variation in the Ldh-B locus is associated with temperature in Fundulus 

heteroclitus (Crawford & Powers 1989; Powers & Place 1978). The effect that variable 

intertidal conditions can have on genetic variation is illustrated by Littorina saxatilis, where 

variation in the Aat locus is related to the amount of physiological stress experienced by low 

versus high intertidal organisms (Panova & Johannesson 2004).  

The links discussed between genetic and environmental variation in P. 

subtriangulata and P. australis are purely speculative at present. However the candidate loci 

identified in previous studies form a good basis for further investigating the mechanisms 

behind how environmental variation drives genetic variation in these two species. 

Furthermore, the large amount of next generation sequence data generated for these two 

species provides an excellent genomic resource for identifying the candidate loci mentioned 

above if homologous sequence is available. Establishing the nature of these relationships 

provides a promising area of further research. 

Finally, the comparative approach taken in this study has allowed for identification 

of common environmental drivers of genetic population structure (i.e., geographic distance, 

SST, physical habitat features) and forms a good basis for simplifying 

management/conservation strategies across multiple species (Riginos & Liggins 2013). 

However, it can also be useful to look at the ways that two closely related species contrast, 

i.e., are there any species specific environmental variables that can help to explain the 

differences seen in patterns of genetic population structure? The main difference observed 

between the two study species was that MEC variables were poorly correlated with genetic 

variation in P. australis whereas models containing EEC variables tended to be more 
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significant by comparison (particularly for GLZ analyses). Because the EEC is more likely to 

represent the environmental variables that P. australis populations are exposed to, this 

finding provides evidence that habitat is contributing to the different patterns of genetic 

population structure seen in these two species.  

5.4.3 Limitations to the seascape genetics approach and future directions 

Seascape genetics assumes that we have some prior expectation that the geospatial 

and environmental variables used will be able to explain the genetic variation seen among 

populations in the species of interest. In fact the opposite situation might be true; none of 

the variables used in an analysis may truly be associated with genetic variation and other 

unknown variables might be more important. Often there are limits to the variables 

available for testing as they must be drawn from existing and readily available data sets, 

such as the MEC and EEC variables used in this study. The upside of using such readily 

available data sets is that results from studies across multiple species using the same 

environmental data are comparable.  

Use of the MEC data set has several drawbacks. Firstly, the nature of the 

environmental variables used in this data set is that they will fluctuate on a temporal basis 

and so are averaged for ease of use. However, we know that genetic structure in marine 

organisms can be temporally patchy, and it is often the type of extreme events that are not 

captured by ‘average conditions’ that can highly influence estimates of genetic structure, 

e.g., rare long-distance dispersal events (Selkoe et al. 2010). Secondly, the MEC data set was 

designed to cover the entire New Zealand exclusive economic zone (EEZ) and be applicable 

to a broad range of biological applications (New Zealand Ministry for the Environment 2005) 

so the resolution of some variables is coarse and in places does not extend all the way to the 

coast. This was particularly problematical for P. australis as often values were not available 

for sites within harbours or estuaries, meaning the closest available value had to be used 

(which is not necessarily a good proxy for the real value at the sampling location) or treated 

as a missing data point. Results reported here demonstrate that the EEC data set represents 

a more appropriate set of variables to describe genetic variation in P. australis. Additionally, 

EEC variables are largely based on relatively stable physical characteristics of the estuary 

that are unlikely to change over time.  
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The EEC data set contains a large number of variables that are correlated, as 

illustrated by PCA plots, presenting a challenge when determining an appropriate 

independent data set for testing. Few seascape genetic studies have attempted to test as 

many variables as in the present study, usually focussing on a small set that are believed a 

priori to have a relationship with the genetic measure of interest (Riginos & Liggins 2013). 

Results from the present study illustrate the effect of including too many variables in an 

analysis: runs with large numbers of variables (particularly EEC variables) performed poorly, 

resulting in models with highly significant p-values or similar correlation coefficients, which 

included most variables. Addition or removal of variables made little difference to results, 

suggesting that the large number of variables made it difficult for the true signal to be 

detected. However the risk of excluding too many variables is that important and 

unexpected associations could be missed. In the present study these problems were largely 

overcome by splitting variables into geospatial and environmental groupings. Furthermore, 

by using different but complementary approaches with several genetic measures and 

analysis methods, it was possible to detect variables that were deemed significant across 

methods. This approach can give us confidence that a true signal was detected.  

Seascape genetics is still an emerging field and the number of studies using these 

methods is limited. Many different methods and measures of genetic distance are used 

(Storfer et al. 2007, 2010) and making meaningful comparisons among species is 

challenging. Few studies have used the GLZ and BEST approaches implemented here. 

Perhaps the most comparable study is that of Wei et al. (2013b), described previously, 

which used the same methods and variables (genetic, geospatial and MEC) to test for 

associations between genetic and environmental variation in the New Zealand greenshell 

mussel Perna canaliculus. Furthermore, comparative seascape genetics studies that assess 

patterns between two or more species (such as in the present study) are rare, presumably 

due to the difficulties of working with multiple species (Riginos & Liggins 2013). However, 

such studies can be highly valuable for detecting common drivers of genetic patterns within 

a biological system. An excellent example of this approach comes from Selkoe et al. (2010), 

who used a linear modelling method to show that the same environmental variables were 

driving similar patterns of genetic structure in three different coastal marine species in 

Southern California. This study demonstrates how the power to interpret subtle patterns of 
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population structure can be increased by comparing genetic patterns and environmental 

processes across multiple species. This level of understanding is needed if we want to make 

robust management and conservation decisions, particularly in a marine environment that is 

as environmentally complex and ecologically diverse as New Zealand. 

Finally, seascape genetic analyses have begun to demonstrate the types of 

environmental processes that might be responsible for driving local adaption to marine 

environments (Moller-Hansen & Hemmer-Hansen 2007). The results presented here suggest 

that local adaptation may be occurring for P. subtriangulata and P. australis populations and 

previous studies have highlighted several promising candidate genes that could provide the 

mechanistic links between local adaptation and environmental variation. This allows us to 

formulate hypotheses that can be further tested, particularly by measuring allele variation 

or expression in candidate genes across environmental gradients. 

5.4.4 Conclusions 

Seascape genetic analyses for P. subtriangulata and P. australis highlight the value of 

using an integrative biological, ecological and physical oceanographic approach to 

investigate subtle patterns of population genetic variation. By using standardised methods 

across species it is possible to determine both the common and species-specific factors that 

may be responsible for shaping genetic variation of coastal marine populations in New 

Zealand. For both P. subtriangulata and P. australis geographic distance between 

populations, sea surface temperature and measures of the organism’s physical habitat were 

associated with genetic variation. Species-specific patterns were also observed between the 

two species, and it is notable that estuarine environmental variables were much better at 

explaining genetic variation in P. australis than variables measured from an open coastal 

environment.  

Studies of coastal marine species tend to emphasise how distance between suitable 

habitat drives population differentiation; a valid observation seeing as habitat availability is 

necessary for recruitment to occur. The present study supports this concept as geographic 

distance was identified as a potential driver of population differentiation. In chapter 4 I 

emphasised how habitat availability and oceanic processes can interact to modify 

population structure in coastal marine species. This is further supported by the associations 
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observed between distance, latitude, sea surface temperature and genetic variation, which 

are likely to be responsible for the three genetically differentiated groups observed for P. 

australis and some of the isolated cases of genetic differentiation observed in P. 

subtriangulata.  

The physical measures of beach and estuary habitat that were identified as 

significant suggest that adaptation to local environments could also play a role in some of 

the small scale genetic differentiation seen. This observation is significant; it implies that not 

only is larval dispersal and recruitment modified by oceanographic processes and habitat 

availability, but once recruitment to suitable habitat has been successful, the environmental 

characteristics of the habitat might further modify genetic variation by favouring locally 

adapted individuals for post-settlement survival. Presently the mechanisms behind local 

adaptation are unknown but several promising candidate genes for further investigation 

have been identified.  

The potential for seascape genetics to explore previously unknown associations 

between a species’ genetic population structure and its environment are substantial. This 

type of comparative study shows how two species with differing but complex patterns of 

genetic variation can both be influenced by common environmental drivers. It seems likely 

that the same environmental variables could be influencing the population genetic patterns 

seen across a range of species and it is encouraging that results from this study correspond 

to those reported for P. canaliculus by Wei et al. (2013b). As this emerging field continues to 

be applied to other New Zealand marine species it will be of interest to see if the patterns 

reported here for P. subtriangulata and P. australis will be observed in populations of other 

species. 
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6 General Discussion 

6.1 Context and aims of the research 

The New Zealand marine realm is unique in its size, complexity of 

oceanographic/environmental processes and diversity of species (Gordon et al. 2010; Laing 

& Chiswell 2003), all of which present a challenging but fascinating situation in which to 

study the processes that shape the genetic population structure of marine species. Not only 

are genetic studies of marine species contributing to a growing body of knowledge on how 

and why genetic population structure is formed, but there is a growing realisation that this 

knowledge is required for the successful management and conservation of marine species. 

Increasingly there will be a demand for this information in the face of growing exploitation 

of marine resources and with the threat that climate change is expected to pose to the 

oceans and the species that inhabit them in the near future (Waples & Naish 2009). 

Population genetics represents one tool that can potentially be used to tackle these 

challenges. The rapid development of computational power and analytical approaches 

means that we are increasingly able to use genetic tools to address a broader range of 

ecologically relevant questions about populations of marine organisms. 

In this study population genetic techniques have been applied to two New Zealand 

species of surf clam – Paphies subtriangulata (tuatua) and P. australis (pipi). Both species 

support recreational, customary and commercial fisheries but it is unknown how stocks of 

either species are structured and whether harvest is sustainable (New Zealand Ministry for 

Primary Industries 2013a; b). Furthermore, little is known about population dynamics of 

New Zealand surf clams in general, or for species that inhabit estuarine and sandy open 

coast habitats (Gardner et al. 2010). The overall goal of this thesis was to determine genetic 

population structure in P. subtriangulata and P. australis, estimate rates and patterns of 

migration among populations (including the location of possible barriers to gene flow), and 

to examine the relationship of these to environmental variation to identify some of the 

important processes that might result in similar or disparate patterns of genetic structure 

and migration.  
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This thesis began with a description of novel microsatellite markers developed for P. 

subtriangulata and P. australis using next generation sequencing (NGS) methods (chapter 

2). In chapter 3 the genetic population structure of P. subtriangulata was determined and 

levels of migration among locations estimated, focussing on the paradigm that species 

occupying open coast habitats have well connected populations and experience few 

restrictions on dispersal. Chapter 4 presented similar analyses for P. australis, which 

focussed on the interaction of habitat availability versus oceanographic processes in 

structuring populations of estuarine species. Finally, the analyses presented in chapter 5 

were a test for associations between geographic patterns of genetic variation and 

environmental variation. The purpose of this latter section of the study was to understand 

how variation in environmental processes and the ecology of the organism influence 

patterns of genetic population structure, particularly where small scale ‘chaotic’ patterns of 

differentiation exist. 

In this discussion I firstly review the major findings of the study. Next, I present a 

synthesis of the major findings of chapters 3, 4 and 5. These chapters addressed separately 

the patterns of population differentiation and migration observed for each species, and 

associations with environmental variation. To understand how patterns of genetic 

population structure arise and are maintained it is necessary to compare and contrast 

results from both species, and to compare these findings to what is already known about 

population structure and connectivity in other coastal marine species from New Zealand.  

Thirdly, I discuss the management and conservation implications that arise from the 

research. Finally, I discuss how this study has significantly contributed to furthering 

understanding in the field of marine population genetics in New Zealand and highlight areas 

of further research. 

6.2 Major findings 

The patterns of genetic diversity, population structure and connectivity observed for 

P. subtriangulata and P. australis were similar to what has been commonly reported for 

other species of highly fecund marine invertebrates (Hedgecock et al. 2007). In general, 

gene flow was high and genetic population structure weak. However, significant 

differentiation was observed at both large and small spatial scales in both species. These 
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findings also emphasise how connectivity between populations can be highly variable over 

time, as evidenced by the differences seen in short and long-term migration estimates. 

Microsatellite markers developed for P. subtriangulata and P. australis were 

characterised by homozygote excess and deviations from Hardy-Weinberg equilibrium 

(HWE; chapter 2). The main cause of HWE deviation was likely to be null alleles, which was 

not unexpected given the high mutation rate that characterises the genomes of marine 

invertebrates (Hedgecock et al. 2004; Launey & Hedgecock 2001). However, null alleles 

were unlikely to be the sole contributor to HWE deviation; spatial/temporal population 

structure could also have played a role and there was evidence that one P. australis locus 

(Paus_9) may be strongly influenced by selection. Overall, levels of null alleles were unlikely 

to be significantly influencing the conclusions of this study (Chapuis & Estoup 2007); if 

anything they appeared to be masking population structure.  

The main feature of P. subtriangulata genetic population structure (chapter 3) was 

the highly significant differentiation of the Chatham Island population from other locations 

on the New Zealand mainland. Contemporary migration between Chatham Island and the 

mainland appeared to be severely restricted. However, alleles were shared between 

Chatham Island and mainland populations, suggesting that historical gene flow or rare 

dispersal events have occurred. Mainland populations showed genetic structure that was 

consistent with an ‘open’ model of population connectivity. Many locations were 

undifferentiated and long-term migration estimates showed high levels of connectivity. 

However, this pattern was not consistent across the whole range sampled for this study; in 

some locations significant differentiation of populations was observed. This finding indicates 

that while large parts of the P. subtriangulata range were free from restriction to dispersal, 

barriers do exist in some locations, allowing for differentiation of isolated populations. In P. 

subtriangulata areas of restricted gene flow coincided with geographic distance among 

populations (i.e., between mainland New Zealand and Chatham Island), coastal current 

features (i.e., North Cape Eddy, East Cape Eddy, Wairarapa Eddy) and physical landforms 

(i.e., Kakamatua population located in the relatively enclosed Manukau Harbour). 

When results from the present study were compared to a previous study of allozyme 

variation in P. subtriangulata by Smith et al. (1989) some differences in genetic population 
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structure were evident among mainland locations. However, both studies reported 

significant differentiation of the P. subtriangulata population at Chatham Island. Differences 

in genetic population structure are most likely due to the different marker types used in the 

two studies, which has previously been used as an explanation where differences are seen 

in genetic population structure within a species (e.g., Apte & Gardner 2002, 2001; Lidgard 

2001; Ross et al. 2011). Additionally, low levels of differentiation among mainland locations 

or changes in population structure over time could also be responsible for the differences 

observed between the two studies. If gene flow patterns are variable over time it is 

conceivable that P. subtriangulata population structure could have changed in the 24 year 

period between this study and the one conducted by Smith et al. (1989). 

A further finding from chapter 3 surrounds the accuracy of the reported distribution 

of P. subtriangulata. Reports that P. subtriangulata is distributed around the entire South 

Island of New Zealand (Powell 1979) were found to be inaccurate. In this study P. 

subtriangulata could not be found south of 42° S. Smith et al. (1989) also failed to include 

any populations further south than the Golden and Tasman Bay areas at the top of the 

South Island, apart from one Stewart Island population. Records held by the Museum of 

New Zealand Te Papa Tongarewa show that apart from a population on Stewart Island, 

there are limited reports of P. subtriangulata occurring south of 42° S (B. Marshall, Te Papa 

Wellington, personal communication). Many of these reports date from prior to 1960, so it 

is possible that species misidentification has occurred or that the species distribution has 

changed over time. If P. subtriangulata is present in south of 42° S it must be extremely rare 

or very patchy in its distribution. 

Overall P. australis genetic population structure (chapter 4) was in agreement with 

the IBD model that is expected for estuarine species where distance between discrete 

habitats results in a stepping-stone model of migration (Bilton 2002). However, habitat 

availability alone cannot explain the patterns of genetic population differentiation that were 

observed. Three areas of reduced gene flow were observed, which coincided with coastal 

current features, resulting in three genetically differentiated population groups. Small scale 

patterns of differentiation were present among North Island locations, whereas South Island 

locations showed less genetic divergence. More complex current circulation around parts of 

the North Island could be contributing to this pattern of genetic differentiation by restricting 
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larval dispersal and promoting self-recruitment. Migration is likely to be highly variable, 

meaning that genetic connectivity among populations is present when averaged over long 

periods of time but in the short-term levels of connectivity could be more intermittent. 

Seascape genetic analyses provide a further explanation for small scale population 

differentiation in P. australis as there was evidence suggesting that adaptation to local 

estuary conditions may have occurred (chapter 5). Sea surface temperature (SST) and the 

geospatial location of populations could influence genetic structure in P. australis, but the 

most significant finding was that the physical measures of the estuaries/harbours sampled 

were most strongly associated with genetic variation among locations. For P. subtriangulata, 

geographic distance between the Chatham Island and mainland New Zealand populations 

was strongly associated with genetic variation. In comparison, correlation between genetic 

variation and coastal environmental variables was not as strong among mainland 

populations (i.e., p-values were higher), probably due to lower levels of genetic 

differentiation among locations. Where correlations were detected, they were suggestive of 

local adaptation to beach characteristics. 

6.3 Synthesis 

When devising management or conservation strategies for a marine region it is 

useful to know where common patterns of genetic population structure and connectivity 

exist across multiple species. This information can be used to make predictions about 

patterns and drivers of genetic population structure, and/or to simplify management and 

conservation strategies across similar species. Likewise, if we can identify the ways in which 

genetic population structure and connectivity differ between species and understand why 

these differences arise, then this information can also assist with management. To achieve 

these outcomes comparative studies with standardised methods, such as the present one, 

are preferable (Bohonak 1999). Paphies subtriangulata and P. australis are closely related 

species that have similar reproductive strategies. However, they differ in terms of their 

habitat preferences, population densities and geographic distributions. Therefore, 

similarities in genetic population structure could be a result of reproductive strategy and it is 

reasonable to assume that similar population structure could occur in species with similar 

reproductive strategies, i.e., other species of surf clam.  Differences in genetic population 

structure and connectivity are likely to be a result of habitat preference and species 
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occupying similar habitats could share similar patterns of population structure (e.g., 

estuarine species). 

The patterns of genetic population structure and connectivity observed in P. 

subtriangulata and P. australis emphasise how population dynamics of marine species and 

the processes that drive them can be variable over spatial and temporal scales. Both species 

showed differing patterns of genetic population structure in different parts of the sampled 

range. In some areas connectivity was high and consequently, genetic population structure 

was weak. This was particularly evident along the west coast of the North Island for both 

species and continued along the west coast of the South Island for P. australis. In 

comparison, the north-east of the North Island showed more restricted dispersal and 

stronger population differentiation in both species. Current circulation systems off the coast 

of Northland, Bay of Plenty and Wairarapa were implicated in the restriction of larval 

dispersal for both species. Estimates of migration in both species provided evidence for 

temporal variation in larval dispersal and recruitment. Contemporary migration estimates 

showed that the number of source populations was limited, migration was often 

unidirectional, levels of migration were high among some locations (often over long 

distances) and absent among other locations (even among nearby locations), and that self-

recruitment could be high. In comparison, historical migration estimates averaged over 

many generations showed that all locations were genetically well connected.  

The differences seen between contemporary and historic migration estimates are 

consistent with a ‘crinkled’ model of connectivity (Ovenden 2013). Barriers to dispersal are 

present in similar locations for both species, but rather than being absolute, the barriers are 

permeable and dispersal is restricted, rather than prevented. This form of connectivity can 

lead to a situation where populations are characterised by ‘chaotic’ genetic patchiness (CGP) 

(Hellberg et al. 2002; Johnson & Black 1982; Selkoe et al. 2006). Species characterised by 

CGP often show significant genetic differentiation over small spatial scales (similar to that 

observed in P. australis, and to a lesser extent in P. subtriangulata) related to site-specific 

recruitment history, despite genetic similarity of populations at larger spatial scales (i.e., low 

global FST; Hedgecock & Pudovkin 2011). A further process likely to be contributing to CGP is 

‘sweepstakes reproductive success’ (SRS; Hedgecock 1994), whereby the chance of larval 

cohorts successfully recruiting to an adult population depends on encountering favourable 
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oceanographic conditions, resulting in spatially and temporally variable patterns of dispersal 

and recruitment. As a consequence, a small number of breeders can be responsible for the 

majority of recruitment in a population. This can result in the small effective population 

sizes that were observed in P. subtriangulata and P. australis, relative to what has been 

reported in other marine invertebrates.  

Temporal variability in recruitment events and oceanographic processes mean that 

the CGP patterns observed in the study species may be present on short time scales and 

change quickly depending on the balance of gene flow and genetic drift. The theoretical 

relationship between genetic drift and gene flow (gene flow overrides drift when m > 1/4Ne; 

Wright 1931) suggests that genetic drift should act relatively rapidly on P. subtriangulata 

and P. australis populations. Two populations may be isolated for a period of time long 

enough to allow for development of genetic differentiation via drift, mutation and selection. 

However, a sudden rare influx of migrants may homogenise allele frequencies among the 

two populations. For these reasons, the possibility of ‘non-equilibrium’ conditions must be 

kept in mind when considering areas where populations are genetically undifferentiated, 

particularly for P. subtriangulata. Just because two locations are genetically undifferentiated 

does not necessarily mean they are connected by consistent gene flow events. There is an 

increasing awareness that temporal genetic structure may be just as significant as spatial 

genetic structure in marine species and there is growing evidence for a lack of temporal 

stability in the processes that drive genetic population structure in many species (Hedgecock 

& Pudovkin 2011; Selkoe et al. 2006; Siegel et al. 2008). The results presented here provide 

further evidence that a lack of temporal stability for some P. subtriangulata and P. australis 

populations may need to be incorporated into management strategies. 

Geographic distance between populations was identified as an important factor 

shaping genetic population structure in both species, supported by the significant IBD signal 

detected in Mantel tests. Although Mantel tests are known to be problematical due to high 

type I error and can be influenced by hierarchical structure (Legendre & Fortin 2010; 

Meirmans 2012) the correlation between genetic variation and geographic distance 

detected by generalised linear models (GLZ) provides further support for the importance of 

geographic distance. This finding that geographic distance between available habitat can 

restrict dispersal in the two study species provides support for the paradigm in coastal 
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marine species that connectivity is higher among neighbouring populations than it is among 

distant ones (i.e., a stepping-stone migration model; Slatkin 1993). However, results from 

this study suggest that the relevance of the stepping-stone model is dependent on the 

spatial scale being considered. In particular, distance between mainland New Zealand and 

Chatham Island acted as a barrier to dispersal for P. subtriangulata but distance was less of 

a barrier among mainland populations and IBD was weaker as a consequence. Despite an 

overall IBD pattern in P. australis, the barriers to dispersal and genetic patchiness observed 

at smaller spatial scales resulted in the formation of a hierarchical structure (i.e., three 

genetically distinct groups) that is likely to be a more significant contributor to genetic 

population structure in this species. These findings suggest that for both species a 

decoupling of the relationship between distance and migration has occurred in some 

locations, probably due to localised oceanographic processes that create restrictions to 

gene flow and/or local adaptation to specific beach/estuary types or temperature regimes.  

Local adaptation has been proposed as a mechanism for genetic population 

differentiation where small scale, geographically unstructured genetic patterns have been 

observed (Moller-Hansen & Hemmer-Hansen 2007; Selkoe et al. 2010). There is likely to be 

an intricate relationship between local adaptation and complex circulation patterns 

(particularly in the north and east of the North Island) that are driving the observed patterns 

of genetic population structure. In P. australis and the Kakamatua P. subtriangulata 

population, the restrictive nature or harbour/estuary habitat is likely to be further 

complicating dispersal processes.  

Overall, similarities were observed in the genetic population structure of P. 

subtriangulata and P. australis in terms of large scale IBD genetic structure coupled with 

small scale CGP. This structure is likely to be driven by temporally variable migration rates 

and SRS, modified by stochastic current patterns, semi-permeable barriers to dispersal and 

possibly influenced by local adaptation. These factors result in the type of non-equilibrium 

population dynamics that are often seen in marine invertebrates with large population sizes 

and high reproductive output (Hedgecock et al. 2007). In P. subtriangulata and P. australis 

these findings illustrate how similar reproductive strategies can result in similar patterns of 

genetic population structure and connectivity. However, the differences observed between 

the two species can probably be attributed to habitat preference and population size.  
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Despite similarities in pelagic larval duration, the relatively continuous nature of 

open coast beach habitat preferred by P. subtriangulata seemed to promote higher levels of 

connectivity, resulting in weaker genetic population structure consistent with an ‘open’ 

model of population structure. In comparison, the more separated estuary/harbour habitat 

of P. australis has resulted in stronger patterns of genetic population subdivision. The 

genetic demarcation seen around the Cook Strait area in P. australis was not observed in P. 

subtriangulata (i.e., P. subtriangulata populations north and south of Cook Strait were 

genetically undifferentiated). However, there are various reports from different species 

regarding the location of this break (Gardner et al. 2010); in P. australis the break appears to 

be north of Cook Strait. It is entirely possible that such a break occurs in P. subtriangulata 

but is located south of Cook Strait (i.e., south of the sampling range of this study) in a similar 

location to that reported for greenshell mussels (Perna  canaliculus; Apte & Gardner 2002). 

The differences observed in genetic population structure between the two study species are 

supported by estimates of migration. Although estimated migration rates were higher for P. 

australis, there was a higher degree of variation in those estimates. Furthermore, P. 

australis populations were larger and more genetically diverse than P. subtriangulata 

populations, so even if migration is high the homogenising effect of gene flow is likely to 

have a less significant influence on allele frequencies in larger P. australis populations.  

Selection and local adaptation could play a more significant role in shaping P. 

australis genetic population structure, compared to P. subtriangulata. Estuarine habitat is 

known for its extreme environmental variation, which can place strong selective pressure on 

organisms inhabiting such environments (Bilton 2002). Furthermore, within an estuary P. 

australis beds are often spatially localised with high population densities, compared to the 

more dispersed distribution of P. subtriangulata (personal observation). In locations where 

P. australis population density is high, locally adapted individuals could be favoured over 

immigrants, maintaining population subdivision even if levels of migration are high. Lower 

population density for P. subtriangulata means that this species is unlikely to experience the 

same degree of selective pressure but genetic population structure could change more 

rapidly in response to changes in the migration-drift equilibrium. 
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6.3.1 Comparison to other coastal marine species in New Zealand 

Very few studies of coastal marine species that had a New Zealand-wide sampling 

range have failed to report some sort of genetic population subdivision. Studies that have 

reported no structure generally used less discriminatory allozyme markers (e.g., Apte & 

Gardner 2001; Lidgard 2001) or were species with long pelagic larval duration (e.g., Hickey 

et al. 2009; Ovenden et al. 1992). This observation suggests that the complexity of the New 

Zealand coastal marine environment is conducive to producing genetic differentiation 

among populations of coastal marine species to varying extent. In P. subtriangulata and P. 

australis areas of restricted dispersal were observed along the north-east coast of the North 

Island, at East Cape and along the Wairarapa coastline, at Cook Strait, on the west coast 

north of Fiordland and between mainland New Zealand and Chatham Island. All of these 

areas of restricted dispersal are associated with pronounced changes in coastal current 

direction or complex circulation patterns (or distance in the case of Chatham Island) and 

patterns of genetic population subdivision associated with these areas have been reported 

for many other coastal marine species (as described in chapters 3 and 4). Many studies have 

reported IBD population structure (Hickey et al. 2009; Perrin et al. 2004; Veale & Lavery 

2012) and in estuarine/fiord species enhanced population subdivision is commonly reported 

(Hickey et al. 2009; Knox et al. 2011; Miller 1997; Ross et al. 2011).  

The role of local adaption in structuring populations of New Zealand marine species 

has been poorly studied to date but Wei et al. (2013b) suggest that it has played a role in 

the genetic structuring of Perna canaliculus populations, resulting in a warm-adapted 

northern population and a cold-adapted southern population, similar to the genetic 

structure seen in P. australis. As seascape genetic studies become more commonplace, this 

is a pattern that is likely to hold up for other species showing a similar pattern of north-

south differentiation (e.g., Goldstien et al. 2006; Jones et al. 2008; Sponer & Roy 2002; 

Stevens & Hogg 2004; Waters & Roy 2004; Will et al. 2011). Other studies that have 

investigated local adaptation in the marine environment illustrate how it can have a 

significant impact on genetic population structure, even over very small spatial scales 

(Dutton & Hofmann 2009; González-Wangüemert et al. 2009; Hemmer-Hansen et al. 2007). 

The present study has illustrated how a combination of genetic and environmental data can 

be used to make comparisons across species, and has revealed a surprising level of 
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complexity in marine population dynamics across spatial scales. This finding has implications 

for how we manage populations of marine species in New Zealand. 

6.4 Implications of the research 

6.4.1 Fishery management  

The results from this study have implications for the management of fisheries for P. 

subtriangulata and P. australis and potentially for management of other coastal fishery 

species. One surprising finding from this study was that even for a species where weak 

genetic structure and high connectivity were predicted, such as P. subtriangulata, isolated 

cases of genetic population differentiation can occur. For P. australis, higher levels of 

genetic population subdivision were predicted, but this study found a surprising level of 

small scale differentiation, even among locations where it was reasonable to assume that 

dispersal may be unrestricted (i.e., over the 100 km between Huia and Raglan). While 

stochastic current patterns, intermittent gene flow and high self-recruitment can probably 

explain much of the small scale genetic differentiation that was observed, there was often 

no obvious geographic pattern to the distribution of this genetic variation, so local 

adaptation could also play a role. In addition, there was evidence that null alleles could be 

masking population structure and some populations might not meet migration-drift 

equilibrium assumptions. This means that genetic differentiation between populations 

might actually be higher than estimated and connectivity could be low even among non-

differentiated locations. As a consequence it may be necessary to reassess the spatial scales 

at which marine species are currently managed. 

When connectivity is intermittent and populations unlikely to meet equilibrium 

expectations, then populations will be genetically connected when migration is averaged 

over long time periods, but levels of migration will not be high enough to demographically 

connect populations over short time scales. Demographic connectivity is crucial for fisheries 

management; to ensure the on-going sustainability of a fishery it is necessary that the 

reduction in stock biomass due to fishing mortality is replenished by recruitment. The 

implication for P. subtriangulata and P. australis fisheries is that many stocks may not be 

demographically connected at the rates required for sustainable fishing. Instead, 

populations many be heavily reliant on self-recruitment and will need to be managed at a 
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localised scale as a consequence. While this study has provided evidence for historical 

genetic connectivity, the challenge is to determine if and where populations exist that 

exchange consistent levels of migrants at a high enough rate to achieve the demographic 

connectivity required for sustainable fishing. This could be achieved through oceanographic 

or Lagrangian particle modelling, or with temporally spaced sampling of genetic population 

structure. Where Lagrangian modelling has been used to track larvae of other New Zealand 

marine invertebrates it has shown that self-recruitment is likely to be high and sporadic, 

with larvae travelling no more than tens of kilometres from their natal sites (Broekhuizen et 

al. 2011; Stephens et al. 2006). If areas that receive consistent levels of recruits over time 

can be identified this will form the basis for a sustainable fishery and will help determine the 

appropriate geographic scale on which stocks should be managed. 

North Island P. australis populations tended to show a higher degree of population 

differentiation, resulting in lower genetic and demographic connectivity. This is concerning 

for fisheries management as separate stocks may cover smaller geographic areas than 

currently accounted for by the quota management system. Lower differentiation among 

South Island populations suggests that separate stocks could cover larger areas. There was 

evidence for many populations of both study species that external sources of recruits may 

be intermittent and self-recruitment may play an important role in maintaining stocks. This 

reliance on self-recruitment poses a risk when stocks become depleted; it may be a long 

time before recruitment from external sources is able to rebuild biomass to sustainable 

levels (McClanahan et al. 2007; Worm et al. 2009), especially if recruits are not adapted to 

local conditions. This finding is concerning for recreational and customary fisheries for which 

very little is known about harvest rates and how biomass might be affected when self-

recruitment is high. There is evidence that some shellfish stocks have become locally 

depleted around the Auckland and Coromandel areas and recreational quotas have been 

restricted as a result (New Zealand Ministry for Primary Industries 2013a; b). In general, the 

P. australis fishery is probably much more vulnerable to over-exploitation given the high 

densities and spatially discrete nature of their beds. Furthermore, estuary habitats are 

threatened by sedimentation, pollution and climate change (Cole et al. 2000; Thrush et al. 

2003), which could also contribute to a decline in P. australis biomass. In comparison the 
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large spatial scale of P. subtriangulata habitat and higher levels of connectivity are likely to 

make this species more resilient to fishing pressure and changing environmental conditions. 

The commercial P. australis fishery at Mair Bank is of particular concern. The nearby 

P. subtriangulata population at Ruakaka showed significant genetic differentiation from all 

other populations and relied heavily on self-recruitment. It is likely that a similar situation 

exists at Mair Bank, meaning that this fishery could be vulnerable to over-exploitation. 

Although harvest of this fishery has been sustainable in the past, the New Zealand Ministry 

for Primary Industries is unsure about whether the present level of harvest is sustainable in 

the future (New Zealand Ministry of Fisheries 2010). Anecdotal evidence suggests that P. 

australis biomass has recently declined at this location (R. Ford, MPI Wellington, personal 

communication). Restricted connectivity and the extent of self-recruitment are also of 

relevance to the P. subtriangulata commercial fishery located in the Kaipara Harbour 

entrance. As demonstrated by P. australis genetic population structure, populations within 

harbours are likely to experience lower connectivity to populations outside the harbour, 

resulting in genetic differentiation of harbour populations. This situation is illustrated by the 

nearby P. subtriangulata population from Kakamatua within the Manukau Harbour, which 

was significantly differentiated from some other populations. There is also the possibility 

that individuals within the Kaipara Harbour fishery are locally adapted to harbour conditions 

rather than the more typical surf beach environment of P. subtriangulata. The implication is 

that this fishery could be at risk from over-exploitation and stocks may take some time to 

recover if reliant on intermittent external sources of recruits that are suitably adapted to 

harbour conditions.  

If commercial fishing of these two species (or other surf clam species) is expanded 

then source-sink dynamics, levels of self-recruitment and the appropriate scale for stock 

management need to be considered. In areas where larval dispersal is restricted and self-

recruitment is high (e.g., between the North and South Islands, northern and eastern coasts 

of the North Island and Chatham Island) stocks should be managed with the assumption 

that connectivity to external sources of recruits is low. This finding can be extrapolated to 

other coastal fishery species where similar restrictions to larval dispersal are observed. 

However, the small scale CGP patterns that were observed in both species show that 

unexpected patterns of differentiation can arise and possibly change over time, and that it is 
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difficult to make predictions about the exact geographic locations where this differentiation 

may occur. Ideally, where new commercial fisheries are being considered, it is 

recommended that small scale investigations of spatial and temporal genetic population 

structure and connectivity be conducted to determine the appropriate scale on which to 

manage the fishery. Having knowledge of genetic stock structure (and the scale on which it 

could potentially change over time) prior to undertaking fishing activity means that 

management decisions can be underpinned by scientific information, and fisheries can be 

managed sustainably from the outset. A long history of exploitation in many New Zealand 

fisheries means that in practice this recommendation is difficult to implement, but small 

scale investigations of genetic connectivity have been attempted for fisheries where 

overexploitation is of concern and it is suspected that dispersal is limited or localised (e.g., 

South Island black-foot abalone Haliotis iris, McCowan 2013; Coromandel scallops Pecten 

novaezealandiae, C. Silva in preparation). Furthermore, when determining management 

units the degree of temporal variation in genetic stock structure and connectivity should 

also be quantified to ensure that these units persist over time. Such investigations of 

temporal genetic stock structure are rare and have provided contradictory results. Temporal 

stability of genetic stock structure has been suggested for coastal (Pagrus auratus; Bernal-

Ramírez & Adcock 2003) and pelagic fish species (Palstra & Ruzzante 2010; Therkildsen et al. 

2010). Studies that specifically investigate temporal genetic structure in coastal invertebrate 

species are few and tend to show variability over time (Barshis et al. 2011; Calderón et al. 

2011), although temporal stability in genetic population structure was observed in Arctic 

surf clams (Cassista & Hart 2007). 

6.4.2 Local adaptation and the evolution of coastal marine species 

In addition to the implications for fisheries management discussed above, the 

discovery that local adaptation could be influencing genetic population structure has 

implications for our understanding of how coastal marine populations evolve and speciate. 

It is significant that the only published study of seascape genetics for a New Zealand marine 

species has implicated adaptation to SST as playing a role in the genetic structuring of 

populations (Wei et al. 2013b) and it is very likely that future studies will find a similar 

pattern in other species. In addition to evidence that SST is structuring P. australis 

populations, results from this study suggest that adaptation to the physical properties of 



 General Discussion 

| 167  

estuary and beach habitat are influencing population structure in both species. Selection 

and adaptation are widely recognised as playing important roles in structuring populations 

of intertidal organisms (see Schmidt et al. 2008 and references therein).  

The suggestion of local selection in P. australis is not surprising given the range of 

differences in the physical parameters of the estuaries/harbours sampled for this study. 

Sampling sites included large enclosed harbours (Huia), coastal lagoons (Okuru), open 

embayments (Hakahaka Bay), deep narrow fiords (Doubtful Sound) and surf beaches (Bluff). 

If local adaptation is widespread among coastal marine organisms (a likely scenario for 

estuarine species) it has significant implications for connectivity among populations. 

Populations may receive large numbers of migrants but if a settlement site has a high 

population density then competition and post-settlement mortality are likely to be high. If 

new immigrants are not well adapted to environmental conditions at the settlement site 

they are likely to experience higher mortality than self-recruited individuals. If immigrants 

do not survive to reproductive age then migration is essentially ineffective and the genetic 

signal of connectivity will not exist. However, it is important to remember that without 

knowledge of the mechanistic links between genetic variation and adaptation to local 

environmental conditions, it is difficult to speculate further about the relative importance of 

local adaptation versus other processes that were identified as being potentially important 

in the genetic structuring of P. subtriangulata and P. australis populations (i.e., larval 

duration, distance between habitats, current patterns). 

The prospect of locally adapted populations also has consequences for conservation 

of marine species. The preservation of locally adapted traits is often a high priority in 

conservation strategies (Conover et al. 2006; Hauser & Carvalho 2008; Nielsen et al. 2009). 

This study suggests that local adaptation may be more widespread and significant for 

coastal marine species than previously imagined and locally adapted populations could 

easily be lost through over-exploitation. This is particularly pertinent given that climate 

change and associated changes in sea level are expected to have a significant impact on the 

physical dynamics of estuarine systems (Thrush et al. 2003). Furthermore, changes in SST 

gradients are expected to occur as a result of climate change, which is likely to have an 

impact on populations adapted to particular SST regimes. As a consequence, locally adapted 

populations may face extinction due to changes in their environment. There is potential for 
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re-colonisation by individuals that are better adapted to the altered estuary and SST 

conditions, but this likely to result in an overall decrease in the genetic diversity of a species. 

The presence of locally adapted populations provides insight to the larger scale 

processes that might be contributing to the evolution of marine species in New Zealand. As 

mentioned previously, species with a New Zealand-wide distribution often exhibit genetic 

differentiation between northern and southern populations, and there is evidence that this 

could be related to SST adaptation. There are species that are generally more common in 

the north (red moki, snapper, parore) or south (bull kelp, black cod, blue cod, black-foot 

abalone, dredge oysters) of New Zealand and it is often assumed that their distributions are 

restricted by adaptation to warm or cold temperature regimes (Francis & Nelson 2003). It is 

conceivable that adaptation to the warm or cold water masses that characterise different 

parts of the New Zealand region could represent a first step towards speciation.  

Local adaptation to SST is a plausible scenario leading to speciation of the two tuatua 

species, P. subtriangulata and P. donacina. While both species supposedly have a New 

Zealand-wide distribution, P. subtriangulata is more common in the north and P. donacina 

more common in the south. In the past it was suggested that these species represent a 

geographic cline driven by water temperature until it was established that they are actually 

separate species (Richardson et al. 1982). It is plausible that speciation may have occurred 

from a common tuatua ancestor when warm and cold adapted populations were isolated, 

possibly during the last glacial maximum, which has been proposed as a mechanism of 

speciation in other New Zealand marine and terrestrial species (Wallis & Trewick 2009). The 

fact that cross-amplification of microsatellite markers was not possible between these 

species suggests that genetic divergence is reasonably high (and therefore presumably 

relatively ancient) and morphological similarity could be maintained due to their similar 

habitat. The implication for P. australis and the many other coastal marine species that are 

characterised by north-south divergence is that local adaptation to SST could potentially 

drive speciation in the future if the average current patterns of the present day were to 

change (e.g., in response to climate change).  

A further method of speciation is illustrated by the Chatham Island P. subtriangulata 

population, which showed strong genetic differentiation and was rarely connected to 
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mainland populations by gene flow. The results of the present study are consistent with a 

previous suggestion that this population represents a separate species of tuatua (Beu & de 

Rooij-Schuiling 1982). Furthermore the Chatham Islands are known for high levels of 

endemism in both their marine and terrestrial flora and fauna (Heenan et al. 2010; 

McDowall 2004; Nelson & Broom 2008). The genetic differentiation of Chatham Island P. 

subtriangulata illustrates how distance can form a barrier to dispersal and provides an 

example of how allopatry can drive speciation in the New Zealand marine environment. 

6.5 Contribution to the field and future research 

The findings of this research are significant in two primary ways. Firstly, this study 

has provided valuable and previously unknown information about genetic stock structure 

and connectivity in P. subtriangulata and P. australis that can be used for management of 

these species, and could potentially be applicable to fisheries of other surf clam species with 

similar life history and ecological characteristics. The findings and recommendations of this 

study may also be applicable to fisheries of estuarine species. Secondly, it has contributed to 

a growing body of knowledge about population processes and evolution of coastal marine 

species in New Zealand.  

Few previous genetic studies have focussed on bivalves or species that inhabit soft-

shore environments; the information provided by the present study helps to fill a gap in our 

knowledge of population genetics for these types of species. This study has shown that, 

despite the challenges of working with multiple species, comparative population genetics 

studies are highly valuable. By using standardised methods to compare two closely related 

species it is possible to reveal a more detailed understanding of how similar or differing 

patterns of genetic population structure can arise. The approach taken in this study was 

analytically comprehensive compared to the types of population genetic studies previously 

undertaken for New Zealand coastal marine species, primarily as a consequence of the 

recent development of the methods and computing capabilities required to handle large 

multilocus microsatellite data sets. Previous studies have presented standard population 

differentiation statistics, although recently Bayesian methods have become more 

commonplace. Very few studies have attempted to quantify rates of connectivity or to 

incorporate environmental variables into their analyses. In this study I have followed the 

recommendations of several authors who advocate using an integrative approach, 
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combining traditional population genetics methodology with more advanced (but 

complementary) computational methods that incorporate ecologically relevant information 

(Hedgecock et al. 2007; Pearse & Crandall 2004; Riginos & Liggins 2013; Selkoe et al. 2008). 

This approach increases our power to tease apart the complexities of how and why 

populations of marine organisms are structured over time and space, and to provide 

biologically meaningful information to assist with their management and conservation. The 

present research is significant as it represents one of the first studies of marine population 

genetics in New Zealand to implement such an approach. 

Additionally, this study has highlighted several exciting directions for future research. 

Firstly, this study showed that most of the sampled populations are genetically connected 

for both species, but that many might not be demographically connected at the short time 

scales relevant to fishery management. To improve fishery management strategies a better 

understanding of demographic connectivity patterns is required. This could be achieved by 

incorporating data from ecological studies, modelling of propagule dispersal/oceanographic 

processes or by temporal genetic sampling of populations. Temporal sampling would 

confirm non-equilibrium population dynamics in the two study species and would further 

demonstrate how genetic population structure changes over time in response to variable 

levels of connectivity. Comparison of P. subtriangulata population structure reported in this 

study to that reported by Smith et al. (1989) has already suggested that genetic population 

structure could be variable over time in this species. Unfortunately samples from the Mair 

Bank and Kaipara Harbour commercial fisheries were unable to be obtained in the present 

study. Inclusion of these populations would provide useful information about the impact of 

commercial fishing on population dynamics and the future sustainability of these stocks. 

While the present study has provided an overview of New Zealand-wide genetic 

population structure in P. subtriangulata and P. australis, small scale sampling would also 

provide new insight to patterns of demographic connectivity. While large scale 

investigations of genetic population structure are highly valuable, a draw-back of this 

approach (as highlighted by Gardner et al. 2010) is that they often do not have the 

resolution to pinpoint the exact location of barriers to dispersal. In this study it was only 

possible to report a broad geographic range for the location of potential barriers. This study 

has suggested that it may be necessary to manage fisheries on a smaller scale than present, 
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so it is crucial to accurately pinpoint the location of stock boundaries, something that can be 

achieved by conducting population genetics studies on a small spatial scale. For this type of 

small scale investigation higher resolution SNP markers would be highly beneficial, and 

existing genomic sequence data provides a good basis for development of these markers. A 

further advantage of SNP markers is that they are unaffected by null alleles and it is possible 

to sample genetic variation from a higher proportion of the genome compared to 

microsatellite markers (Morin et al. 2004). Consequently, portions of the genome affected 

by selection are more likely to be sampled, which could shed more light on the role that 

local adaptation plays in the genetic population structuring of marine species. 

Perhaps the most interesting line of future research is to investigate the extent to 

which local adaptation influences genetic population structure and to confirm links to 

specific loci that might be under selection. A number of loci have already been implicated in 

adaptation to environmental variation in other marine species. These loci could easily be 

identified in P. subtriangulata and P. australis from existing genomic sequence data. 

Variation in allele frequency or expression level across an environmental gradient could be 

investigated. Evidence of selection was observed in one P. australis locus, suggesting that 

this locus may be linked to a gene undergoing selection. Further investigation of the genetic 

population structure revealed by this locus and comparison to results from ‘neutral’ loci 

would be a good starting point for investigating the role of natural selection in shaping P. 

australis population structure. 

Finally, further investigation of genetic population structure in P. subtriangulata and 

P. australis would benefit from establishing the phylogenetic relationships among the 

species within the Paphies genus. This would help to establish whether Chatham Island P. 

subtriangulata is indeed a separate species. Knowledge of the phylogenetic relationships 

within this genus would provide a link between the microevolutionary local adaptation 

processes observed in this study and the macroevolutionary processes that lead to 

speciation within the marine environment. 
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Appendix 1: Raw allelic frequency data 

 

Supplementary Table 1: Raw allele frequencies for 11 Paphies subtriangulata microsatellite 

loci for each location and total frequency for all individuals sampled. 

 

Supplementary Table 2: Raw allele frequencies for 13 Paphies australis microsatellite loci 

for each location and total frequency for all individuals sampled. 
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Supplementary Table 1. 
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Supplementary Table 1 continued. 
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Supplementary Table 1 continued. 
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Supplementary Table 1 continued. 
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Supplementary Table 1 continued. 
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Supplementary Table 2. 
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Supplementary Table 2 continued. 
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Supplementary Table 2 continued. 
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Supplementary Table 2 continued.  
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Appendix 2: Allele frequency graphs 

 

Supplementary Figure 1: Total frequency of observed alleles at each locus for all locations 

of Paphies subtriangulata. X axis = allele length, Y axis = observed frequency of allele. 

 

Supplementary Figure 2: Total frequency of observed alleles at each locus for all locations 

of Paphies australis. X axis = allele length, Y axis = observed frequency of allele. 
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Supplementary Figure 1.
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Supplementary Figure 1 continued.
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Supplementary Figure 1 continued. 
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Supplementary Figure 2.
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Supplementary Figure 2 continued.
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Supplementary Figure 2 continued.
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Appendix 3: Allele discovery curves 

 

Supplementary Figure 3: Allele discovery curves for all Paphies subtriangulata loci 

generated in the R package PopGenKit (Rousset 2008). X axis = number of individuals 

samples, Y axis = number of alleles observed. 

 

Supplementary Figure 4: Allele discovery curves for all Paphies australis loci generated in 

the R package PopGenKit (Rousset 2008). X axis = number of individuals samples, Y axis = 

number of alleles observed. 
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Supplementary Figure 3.
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Supplementary Figure 3 continued. 
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Supplementary Figure 3 continued. 
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Supplementary Figure 4.
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Supplementary Figure 4 continued.
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Supplementary Figure 4 continued.

 



Appendix 3 

226 | 

Supplementary Figure 4 continued. 
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Appendix 4: GLM and BEST input data 

 

Supplementary Table 3: Raw input data used in generalised linear model (GLM) and 

biological environmental stepwise (BEST) analyses for Paphies subtriangulata, as 

implemented in Statistica v.10 (StatSoft Inc.) and PRIMER v.6 (Clarke & Gorley 2006). FST and 

φ’ST were derived from the average of pairwise multilocus FST or φ’ST estimates for each 

location. Latitude, longitude and geo_dist were derived from Google Earth. Environmental 

variables were derived from the New Zealand Marine Environment Classification system 

(New Zealand Ministry for the Environment 2005). 

 

Supplementary Table 4: Raw input data used in generalised linear model (GLM) and 

biological environmental stepwise (BEST) analyses for Paphies australis, as implemented in 

Statistica v.10 (StatSoft Inc.) and PRIMER v.6 (Clarke & Gorley 2006). FST and φ’ST were 

derived from the average of pairwise multilocus FST or φ’ST estimates for each population. 

Latitude, longitude and geo_dist were derived from Google Earth. Environmental variables 

were derived from the New Zealand Marine Environment Classification systema (New 

Zealand Ministry for the Environment 2005) and the New Zealand Estuarine Environment 

Classification systemb (Hume et al. 2007). 
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Supplementary Table 3. 
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Supplementary Table 4. 
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Supplementary Table 4 continued. 
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Ian Chesterton          “Doctor, why do you always show the 

greatest interest in the least important things?” 

 

The Doctor           “The least important things, sometimes, 

my dear boy, lead to the greatest discoveries.” 

 

“The Space Museum”, BBC, 1965 


