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Te Kura Mātai Tatauranga, Rangahau Pūnaha
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Abstract

In this thesis, we analyse the matroids which have the property that every

pair of elements belongs to both a 4-circuit and a 4-cocircuit. In particular,

we show that if a matroid with this property has at least 13 elements, then

it is a spike. We also study the matroids with fewer than 13 element that

have this property.
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Chapter 1

Introduction

When writing inductive arguments about classes of 3-connected matroids,

we wish to find elements to delete or contract while remaining 3-connected.

When there are no such elements, the induction fails and we have to deal

with the exceptional cases.

Tutte’s Wheels-and-Whirls Theorem [7] shows that if we cannot find a

single element to delete or contract while maintaining 3-connectivity, then

the matroid is a wheel or a whirl. In other words there are only very specific

exceptional cases. Seymour’s Splitter Theorem [5] extends this result by

showing that we can even choose the element to delete or contract such that

the matroid maintains a fixed minor.

Sometimes, we wish to find a pair of elements to delete or contract while

remaining 3-connected. An obvious situation that would lead to exceptional

cases here, is when every pair of elements of the matroid belongs to both a

4-circuit and a 4-cocircuit.

To see this, let M be any matroid containing at least 6 elements and with

the property that every pair of elements belongs to both a 4-circuit and a 4-

cocircuit. Let {x, y} be any pair of elements in M . There must be a 4-circuit

C and a 4-cocircuit R both containing the pair {x, y}. This means that

M\x, y contains the series pair R − {x, y} and M/x, y contains the parallel

pair C − {x, y}. Series and parallel pairs are 2-separating and both M\x, y
and M/x, y contain at least 4 elements. Hence neither M\x, y nor M/x, y

can be 3-connected for any pair {x, y} in M . Therefore the matroids with

this property are not among the matroids that remain 3-connected when we

delete or contract a pair of elements.
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CHAPTER 1. INTRODUCTION 2

Jim Geelen (private communication) has stated that a much shorter proof

of Rota’s Conjecture for GF(4) (Geelen, Gerards and Kapoor [1]) is possible

if we can easily deal with the matroids with this property. The potential to

eliminate many of the exceptional cases in this and other problems motivates

the main goal of this thesis. This is to determine exactly which matroids are

such that every pair of elements belongs to both a 4-circuit and a 4-cocircuit.

The theorem we will prove, in the case of matroids with at least 13 ele-

ments, is as follows.

Theorem 1.1. Let M be a matroid such that every pair of elements belongs

to both a 4-circuit and a 4-cocircuit. If |E(M)| ≥ 13, then M is a spike.

We will also specify exactly which smaller matroids with the property

are not spikes, with the exception of the 8-element, rank-4 sparse paving

matroids. For the full statement of the theorem, we will need to define some

of these matroids. These definitions will be given throughout Chapter 3.

Therefore we will defer the statement of the full theorem (Theorem 3.25)

until the end of the Chapter 3.



Chapter 2

Preliminaries

In this chapter we introduce some definitions, notation and basic results that

will be used in this thesis. We assume that the reader is familiar with the

basic concepts and terminology of matroid theory. A good introduction to

matroid theory can be found in Oxley [2]. Our notation and definitions

will follow [2] unless otherwise specified. In particular we will refer to some

common matroids without definition. These can be found in the Appendix

of [2].

2.1 Circuits, cocircuits, stars and spikes

Unsurprisingly, circuits and cocircuits are of fundamental importance to the

results in this thesis. We are particularly interested in the ways that circuits

and cocircuits can interact with each other. The following well-known result

is often referred to as orthogonality, and will be used freely many times

throughout the thesis.

Lemma 2.1. Let C be a circuit and R be a cocircuit of a matroid. Then

|C ∩R| 6= 1.

Proof. Suppose C and R are a circuit and a cocircuit of a matroid M with

C ∩ R = {x}. We know that the complement of a cocircuit is a hyperplane.

Hence the set H = E(M)−R is a hyperplane. Clearly x 6∈ H and C−x ⊆ H.

But x ∈ cl(C − x) ⊆ cl(H) = H, a contradiction.

We will soon introduce a family of matroids called spikes. Spikes have

been given several definitions in the literature. What we call a spike is

3



CHAPTER 2. PRELIMINARIES 4

sometimes referred to as a tipless spike. It suits us to define spikes in terms

of a matroid structure which we will make use of later, stars.

Definition 2.2. Let M be a matroid. For some k ≥ 3, let the subset

A = {a1, b1, . . . , ak, bk} of M be such that {ai, bi, aj, bj} is a circuit for all i

and j with 1 ≤ i < j ≤ k. Then the A is a k-star of M , and the pairs {ai, bi}
are called arms of A. Dually, if A is a k-star of M∗, then it is a k-costar of

M .

Applying Lemma 2.1 to this definition, we get the following result. By

duality we can replace cocircuit with circuit, and star with costar to get the

dual result.

Lemma 2.3. If R is a cocircuit containing an element x in some arm of

a star, then either R contains both elements of that arm or R contains an

element from every arm of the star.

Proof. Let A be a k-star labelled as in the definition. We may assume by

relabelling that x = a1. Suppose R does not contain b1. To avoid a single

element intersection between R and one of the circuits of the star, R must

contain an additional element from each of the 4-circuits {a1, b1, ai, bi} for

2 ≤ i ≤ k. This means that R contains a1 and one from each of {ai, bi} for

2 ≤ i ≤ k, an element from each arm of the star.

We now define spikes, and prove some basic facts about them.

Definition 2.4. Let M be a matroid whose ground-set is both an r-star and

an r-costar with the same collection of arms. Then M is an r-spike, or spike.

The arms of the star and costar are called the legs of M .

It is not hard to see that this definition is equivalent to Oxley’s charac-

terization of tipless spikes given in Proposition 2.1.28 of [2]. An important

thing to note about r-spikes is that they have rank and corank equal to r.

Lemma 2.5. An r-spike has rank and corank r.

Proof. Let M be an r-spike. Label the elements of M as in Definition 2.2

relative to its underlying star. Clearly, r({a1, b1}) ≤ 2 = 1 + 1. Also we

know that for all i with 2 ≤ i ≤ r that {a1, b1, ai, bi} is a circuit. Therefore,
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if r({a1, b1, . . . , ai−1, bi−1}) ≤ (i−1)+1 = i then we have bi ∈ cl({a1, b1, ai}) ⊆
cl({a1, b1, . . . , ai−1, bi−1, ai}) and so

r({a1, b1, . . . , ai, bi}) = r({a1, b1, . . . , ai−1, bi−1, ai})

≤ r({a1, b1, . . . , ai−1, bi−1}) + 1

≤ i+ 1.

Hence, inductively we know that r({a1, b1, . . . , ar−2, br−2}) ≤ (r−2)+1 = r−
1. But {ar−1, br−1, ar, br} is a 4-cocircuit and so E(M)−{ar−1, br−1, ar, br} =

{a1, b1, . . . , ar−2, br−2} is a hyperplane. Therefore r(M) ≤ r. But by duality

r∗(M) ≤ r. We know that r(M) + r∗(M) = |E(M)| = 2r, so we must have

r(M) = r∗(M) = r.

We now show which subsets of a spike may be circuits and, by duality of

the spike definition, cocircuits.

Lemma 2.6. Let C be a circuit of an r-spike. Then C is either the union of

two legs, a circuit-hyperplane containing exactly one element from each leg,

or a spanning circuit containing both elements from one leg and exactly one

element from every other leg.

Proof. Let M be an r-spike labelled as in Definition 2.2 relative to its un-

derlying star and costar. Let C be a nonspanning circuit of M . Circuits are

nonempty, so we can assume by relabelling that a1 ∈ C.

Suppose b1 ∈ C. The leg {a1, b1} is properly contained in many circuits, so

cannot be a circuit itself. Therefore we may assume by relabelling that a2 ∈
C. The set {a1, b1, a2} is still properly contained in the circuit {a1, b1, a2, b2},
so C must still contain an additional element. If b2 ∈ C then C contains

the circuit {a1, b1, a2, b2}, so must be equal to that circuit. This circuit is

the union of two legs so we are done. Otherwise the dual of Lemma 2.3

tells us that C must contain an element of every leg. Already we must have

|C| ≥ r+1. Hence C is a spanning circuit and can contain no other elements.

Now we know that C contains at most one element of every leg. But

then by the dual of Lemma 2.3, C must contain an element of every leg.

Therefore C contains exactly one element from every leg. By relabelling

we can assume that C = {a1, . . . ar}. Assume for contradiction that C is

not a hyperplane. Clearly r(C) = |C| − 1 = r − 1 = r(M) − 1. Hence
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we can assume by relabelling that b1 ∈ cl(C). But then by the circuits of

the form {a1, b1, ai, bi}, every bi is in cl(C). Therefore r(C) = r(M) = r, a

contradiction.

From here it is easy to show that spikes are self-dual. To see this, we note

that a matroid of fixed rank is uniquely determined by its set of nonspanning

circuits [3].

Lemma 2.7. If M is an r-spike then M is self-dual, with the map ψ, which

swaps the elements of each leg, an isomorphism between M and M∗.

Proof. Let M be an r-spike. Clearly M∗ is also an r-spike from the definition

of a spike.

If C is a 4-circuit of M , then it is the union of two legs. Therefore

ψ(C) = C. We know that C is also a 4-cocircuit of M , so a 4-circuit of M∗.

Conversely, if C is a 4-circuit of M∗, then ψ(C) = C is a 4-circuit of M .

If C is a circuit-hyperplane of M , then it consists of exactly one element

from each leg. Therefore ψ(C) = E(M) − C. The complement of a circuit-

hyperplane is a cocircuit-cohyperplane, so E(M)−C is a circuit-hyperplane

of M∗. Conversely, if C is a circuit-hyperplane of M∗, then ψ(C) = E(M)−C
is a circuit-hyperplane of M .

We have now considered all nonspanning circuits of M and M∗. Since M

and ψ(M∗) have the same rank and same set of nonspanning circuits, they

are equal.

2.2 Connectivity and cones

We now give some definitions and results relating to connectivity.

Definition 2.8. Let M be a matroid and X a set of elements of M . Let

λM(X) = r(X) + r(E(M)−X)− r(M).

We call λM the connectivity function of M . Where it is unambiguous as to

which matroid we are referring, we will omit its label.

It is clear from this definition that λM(E(M)−X) = λM(X). The follow-

ing well-known lemma gives an alternate way of computing the connectivity

function. It is a restatement of Lemma 8.1.4 from [2]. We omit the proof.
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Lemma 2.9. Let M be a matroid and X a set of elements of M . Then

λM(X) = r(X) + r∗(X)− |X| .

Corollary 2.10. Let M be a matroid and X a set of elements of M . Then

λM(X) = λM∗(X)

We now define separations and connectedness.

Definition 2.11. Let M be a matroid and X a set of elements of M . If

λM(X) < k, then the set X is said to be k-separating. If we also have

|X| , |E(M)−X| ≥ k, then we say that the partition (X,E(M) − X) is a

k-separation. If M has no k-separations for k < n, then M is n-connected.

Some good examples which will be useful later are that parallel and series

pairs are 2-separating, and triangles and triads are 3-separating. Also, we

call a 4-element subset of a matroid a quad if it is both a 4-circuit and a

4-cocircuit. It is easy to see that quads are 3-separating.

Now we consider elements which appear in the closures of both sides of

a separation.

Lemma 2.12. Let (A,B) be a k-separation of a matroid M . Then

r(cl(A) ∩ cl(B)) < k.

Proof. By the submodularity of the rank function

r(cl(A) ∩ cl(B)) ≤ r(cl(A)) + r(cl(B))− r(cl(A) ∪ cl(B))

= r(A) + r(B)− r(M)

= λ(A)

< k.

In addition to connectivity, we also use the related notion of local con-

nectivity.

Definition 2.13. Let M be a matroid and X and Y sets of elements of M .

Let

uM(X, Y ) = r(X) + r(Y )− r(X ∪ Y ).
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We call uM the local connectivity function of M , and uM(X, Y ) the local

connectivity between X and Y in M . Where it is unambiguous as to which

matroid we are referring, we will omit its label.

It is clear from this definition that u(X,E(M) − X) = λ(X). The fol-

lowing is a basic property of u. It is a restatement of Lemma 8.2.3 from [2].

We omit the proof.

Lemma 2.14. Let A and B be sets of elements of a matroid M , let A′ ⊆ A

and let B′ ⊆ B. Then

u(A′, B′) ≤ u(A,B)

The following lemma gives some useful inequalities on the local connec-

tivity function. Similar results exist in the literature. We give our own proofs

for these particular inequalities.

Lemma 2.15. Let A and B be disjoint sets of elements of a matroid M , let

A′ and A′′ be disjoint subsets of A, and let B′ ⊆ B. Then

u (A,B′) + u(A′, B) ≤ u(A,B) + u(A′, B′) (2.1)

and

u (A′, B) + u(A′′, B) ≤ u(A,B) + u(A′, A′′). (2.2)

Proof. By the submodularity property of the rank function, we know that

r(A ∪B′) + r(A′ ∪B) ≥ r((A ∪B′) ∪ (A′ ∪B)) + r((A ∪B′) ∩ (A′ ∪B)

= r(A ∪B) + r(A′ ∪B′).

Therefore

u(A,B′) + u(A′, B) = r(A) + r(B′)− r(A ∪B′) + r(A′) + r(B)− r(A′ ∪B)

= r(A) + r(B′) + r(A′) + r(B)− [r(A ∪B′) + r(A′ ∪B)]

≤ r(A) + r(B′) + r(A′) + r(B)− [r(A ∪B) + r(A′ ∪B′)]

= r(A) + r(B)− r(A ∪B) + r(A′) + r(B′)− r(A′ ∪B′)

= u(A,B) + u(A′, B′),

completing the proof of (2.1). Again by the submodularity property of the
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rank function, we know that

r(A′ ∪B) + r(A′′ ∪B)− r(B) ≥ r((A′ ∪B) ∪ (A′′ ∪B))

+ r((A′ ∪B) ∩ (A′′ ∪B)− r(B)

= r(A′ ∪ A′′ ∪B) + r(B)− r(B)

= r(A′ ∪ A′′ ∪B) + r(A)− r(A)

≥ r((A′ ∪ A′′ ∪B) ∪ A)

+ r((A′ ∪ A′′ ∪B) ∩ A)− r(A)

= r(A ∪B) + r(A′ ∪ A′′)− r(A).

Therefore

u(A′, B) + u(A′′, B) = r(A′) + r(B)− r(A′ ∪B) + r(A′′) + r(B)− r(A′′ ∪B)

= r(A′) + r(A′′) + r(B)− [r(A′ ∪B) + r(A′′ ∪B)− r(B)]

≤ r(A′) + r(A′′) + r(B)− [r(A ∪B) + r(A′ ∪ A′′)− r(A)]

= r(A) + r(B)− r(A ∪B) + r(A′) + r(A′′)− r(A′ ∪ A′′)

= u(A,B) + u(A′, A′′).

We now describe a convenient construction which is, in some sense, the

span of a point relative to a separation, or part of a separation.

Definition 2.16. Let (A,B) be a partition of the ground-set of a matroid

M . Let a be some element in A and let B′ ⊆ B be such that u(A,B′) ≥ 1.

Then the cone of a in (A,B) opposite B′ is

C(A,B)(a,B
′) = cl(B′ ∪ a) ∩ cl(A).

If B′ = B, then we simply call this the cone of a in (A,B), or C(A,B)(a).

Lemma 2.17. C(A,B)(a,B
′) is a flat of rank at most u(A,B′) + 1.

Proof. C(A,B)(a,B
′) is an intersection of two flats so it must itself be a

flat. Now suppose for contradiction that A′ is an independent subset of
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C(A,B)(a,B
′) of size |A′| = u(A,B′) + 2. So A′ ⊆ cl(B′ ∪ a)∩ cl(A), but then

u(A′, B′) = r(A′) + r(B′)− r(A′ ∪B′)

≥ r(A′) + r(B′)− r(A′ ∪B′ ∪ a)

= r(A′) + r(B′)− r(B′ ∪ a)

≥ r(A′) + r(B′)− [r(B′) + 1]

= u(A,B′) + 2 + r(B′)− r(B′)− 1

= u(A,B′) + 1

> u(A,B′)

≥ u(A′, B′),

a contradiction.

Note that if (A,B) is a k-separation then u(A,B′) + 1 ≤ λ(A) + 1 ≤ k.

So in this case, r(C(A,B)(a,B
′)) ≤ k.

The next result relates cones to 4-circuits that go across a separation.

Lemma 2.18. Let (A,B) be a k-separation of a simple matroid M , a ∈ A,

b ∈ B and a, b 6∈ cl(A) ∩ cl(B). Then {a, a′, b, b′} is a 4-circuit if and only if

i) up to labelling, a′ ∈ A− a and b′ ∈ B − b,

ii) a′, b′ 6∈ cl(A) ∩ cl(B),

iii) a′ ∈ C(A,B)(a, {b, b′}) and b′ ∈ C(B,A)(b, {a, a′}), or a′ ∈ C(A,B)(a) and

b′ ∈ C(B,A)(b) if k = 2.

Also, when in fact {a, a′, b, b′} is a 4-circuit, we have C(A,B)(a, {b, b′}) =

cl({a, a′}) and C(B,A)(b, {a, a′}) = cl({b, b′}).

Proof. Suppose {a, a′, b, b′} is a 4-circuit. If both a′, b′ ∈ A, then since b ∈
cl({a, a′, b′}) we must have b ∈ cl(A), a contradiction. Similarly we can’t have

both a′, b′ ∈ B. Thus, up to labelling, a′ ∈ A− a and b′ ∈ B − b. Therefore

(i) holds. Now suppose a′ ∈ cl(B). Then as before since a ∈ cl({a′, b, b′}) we

must have a ∈ cl(cl(B)) = cl(B). This contradicts the initial assumptions.

Hence a′ 6∈ cl(A)∩cl(B). Similarly b′ 6∈ cl(A)∩cl(B). Thus (ii) holds. Finally

a′ ∈ cl({a, b, b′}), hence a′ ∈ cl({b, b′} ∪ a) ∩ cl(A) = C(A,B)(a, {b, b′}) ⊆
C(A,B)(a). Similarly b′ ∈ C(B,A)(b, {a, a′}) ⊆ C(B,A)(b). So (iii) holds.
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Conversely, suppose a′ ∈ A − a, b′ ∈ B − b, a′, b′ 6∈ cl(A) ∩ cl(B), a′ ∈
C(A,B)(a, {b, b′}) and b′ ∈ C(B,A)(b, {a, a′}). Then

u(A, {b, b′}) = r(A) + r({b, b′})− r(A ∪ {b, b′})

= r(A) + 2− [r(A) + 1]

= 1.

Similarly, u({a, a′}, B) = 1. If k = 2 then by Lemma 2.15, this means that

u(A,B) + u({a, a′}, {b, b′}) ≥ u(A, {b, b′}) + u({a, a′}, B)

= 1 + 1

≥ u(A,B) + u(A,B)

≥ u(A,B) + u({a, a′}, {b, b′}).

Therefore u(A,B) = 1 = u({a, a′}, {b, b′}). Otherwise, we know that a′ ∈
cl({b, b′}∪ a) and a 6∈ cl(B). In any case r({a, a′, b, b′}) = 3, but since a, a′ 6∈
cl(B) and b, b′ 6∈ cl(A) every 3-element subset of {a, a′, b, b′} is independent.

Thus {a, a′, b, b′} is a 4-circuit.

Finally, suppose {a, a′, b, b′} is in fact a 4-circuit. Clearly we have a, a′ ∈
cl(A) and a, a′ ∈ cl({a, b, b′}). Therefore a, a′ ∈ C(A,B)(a, {b, b′}). But

C(A,B)(a, {b, b′}) is a flat, so we must have cl({a, a′}) ⊆ C(A,B)(a, {b, b′}).
Clearly r(cl({a, a′})) = 2. However we must have

r(C(A,B)(a, {b, b′})) ≤ u(A, {b, b′}) + 1

= r(A) + r({b, b′})− r(A ∪ {b, b′}) + 1

= r(A) + 2− (r(A) + 1) + 1

= 2.

Therefore cl({a, a′}) = C(A,B)(a, {b, b′}). By a similar argument we get that

cl({b, b′}) = C(B,A)(b, {a, a′}).

The final lemma of this chapter shows that a 4-circuit that contains an

element in the closure of both sides of a separation, must be contained entirely

in the closure of one side of the separation.

Lemma 2.19. Let (A,B) be a partition of the ground-set of a matroid M
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and g ∈ cl(A)∩cl(B). Then if C is a 4-circuit containing g, either C ⊆ cl(A)

or C ⊆ cl(B).

Proof. Suppose C is a 4-circuit containing g. By relabelling we may assume

that two out of the three remaining elements of C are contained in A, say

a1 and a2. But then since C is a circuit, the fourth element of C must be

contained in cl({g, a1, a2}) ⊆ cl(A).



Chapter 3

The Main Theorem

In this chapter we present the main theorem of this thesis. Throughout this

chapter we will refer to the property of having every pair of elements belong-

ing to both a 4-circuit and a 4-cocircuit, as the 4-circuit-cocircuit property.

Therefore, if M is a matroid such that every pair of elements belongs to

both a 4-circuit and a 4-cocircuit, we say that M has the 4-circuit-cocircuit

property.

The first part of the analysis is to establish that matroids with the 4-

circuit-cocircuit property are 3-connected. In fact there is one exception to

this. This is the matroid R6, which is isomorphic to the 2-sum of two copies

of U2,4. Even though R6 is not 3-connected, it is a 3-spike. This means that

R6 is not an exception to the main theorem. Also, it follows that R6 is the

only spike which is not 3-connected.

Proposition 3.1. Let M be a matroid with the 4-circuit-cocircuit property.

Then M is either 3-connected or isomorphic to R6.

Proof. M must be connected, as every pair of elements belongs to a circuit.

Also we note that M cannot contain any parallel or series pairs, because such

a pair cannot belong to a 4-circuit or a 4-cocircuit respectively. Hence M is

both simple and cosimple. Suppose that M has a 2-separation (A,B). We

will show that in this case M ∼= R6.

Claim 3.1.1. cl(A) ∩ cl(B) = ∅

Proof. Suppose there is an element g of M in cl(A) ∩ cl(B). In this case g

is the only element in cl(A) ∩ cl(B), as by Lemma 2.12 r(cl(A) ∩ cl(B)) has

rank at most 1 and M has no parallel pairs. Also, g is clearly a member of

13
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both C(A,B)(a1) and C(B,A)(b1). Let a1 ∈ A−g and b1 ∈ B−g and let C be a

4-circuit containing both a1 and b1. Then by Lemma 2.18, C = {a1, a′1, b1, b′1}
where a′1 ∈ A−a1, b′1 ∈ B−b1, a′1 6= g, b′1 6= g, a′1 ∈ C(A,B)(a1), b

′
1 ∈ C(B,A)(b1).

Now let G be a 4-cocircuit containing both a1 and b1. Then E(M)−G is a

hyperplane. There are two cases, either g ∈ E(M)−G or g ∈ G.

Suppose g ∈ E(M)−G. Then all other elements in one of C(A,B)(a1) or

C(B,A)(b1) are in G or else either a1 or b1, respectively, is in the hyperplane

E(M)−G. We know |G| = 4, so we must have G = {a1, a′1, b1, b′1} = C and

thus C(A,B)(a1) = {a1, a′1, g} and C(B,A)(b1) = {b1, b′1, g}. Clearly a1, a
′
1 6∈

cl(E(M) − {a1, a′1, b1, b′1}) and therefore a1, a
′
1 6∈ cl(A ∪ g − {a1, a′1}). So

r(A ∪ g − {a1, a′1}) < r(A ∪ g). We know that

r(A ∪ g − {a1, a′1}) + r(B ∪ g)

≥ r((A ∪ g − {a1, a′1}) ∩ (B ∪ g)) + r((A ∪ g − {a1, a′1}) ∪ (B ∪ g)).

Hence

r(E(M)− {a1, a′1}) = r((A ∪ g − {a1, a′1}) ∪ (B ∪ g))

≤ r(A ∪ g − {a1, a′1}) + r(B ∪ g)

− r((A ∪ g − {a1, a′1}) ∩ (B ∪ g))

= r(A ∪ g − {a1, a′1}) + r(B)− r({g})

= r(A ∪ g − {a1, a′1}) + r(B)− 1

< r(A ∪ g) + r(B)− 1

= r(A) + r(B)− 1

= r(M)

and so {a1, a′1} is a series pair, a contradiction.

Now suppose g ∈ G. Let D be a 4-circuit containing both a1 and g. By

Lemma 2.19, D ⊆ cl(A). So D contains an element a2 ∈ A− C(A,B)(a1). By

finding a 4-circuit containing a2 and b1, there is an element a′2 ∈ C(A,B)(a2)−
{a2, g}. Similarly we have b2 ∈ B − C(B,A)(b1) and b′2 ∈ C(B,A)(b2)− {b2, g}.
At least one of each of {a2, a′2} and {b2, b′2} is in G or else one of these sets is

contained entirely in E(M)−G, which would mean that g ∈ cl(E(M)−G).

This means that there are at least 5 elements in G, a contradiction.
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Therefore cl(A) ∩ cl(B) = ∅. By duality, cl∗(A) ∩ cl∗(B) = ∅.

Claim 3.1.2. Each cone of (A,B) contains at least two elements.

Proof. Suppose a ∈ A and b ∈ B and let C be a 4-circuit containg both a and

b. By Lemma 2.18, this circuit contains additional elements a′ ∈ C(A,B)(a)

and b′ ∈ C(B,A)(b).

Let G be a 4-cocircuit containing elements a1 ∈ A and b1 ∈ B. We know

from the dual of Lemma 2.18 that G must also contain elements a′1 ∈ A and

b′1 ∈ B. Let H = E(M) − {a1, a′1, b1, b′1}. Then H is the complement of a

cocircuit, so is a hyperplane.

Claim 3.1.3. H contains at most one element from each cone.

Proof. Suppose H contains two elements from a cone. Then H contains

an entire cone as cones in a 2-separation have rank at most 2. We may

assume by relabelling that H contains C(A,B)(a2) for some a2 ∈ A. Then

for any other element c 6∈ C(A,B)(a2) in the hyperplane, the entire cone of

c must be in the hyperplane. To see this let a′2 be an additional element

of C(A,B)(a2). If c ∈ B and we let c′ ∈ C(B,A)(c) − c, then by Lemma

2.18 {a2, a′2, c, c′} is a 4-circuit, and thus c′ ∈ cl({a2, a′2, c}) ⊆ cl(H). On

the other hand, suppose c ∈ A and let c′ ∈ C(A,B)(c) − c. We know that

c 6∈ cl({a2, a′2}) so r({a2, a′2, c, c′}) ≥ 3 and hence u({a2, a′2}, {c, c′}) ≤ 1.

Also u(A,B) = λ(A) = 1 and u({a2, a′2}, B) = u({c, c′}, B) = 1. By Lemma

2.15, this means that

u(A,B) + u({a2, a′2}, {c, c′}) ≥ u({a2, a′2}, B) + u({c, c′}, B)

= 1 + 1

= u(A,B) + 1

≥ u(A,B) + u({a2, a′2}, {c, c′}).

Therefore u({a2, a′2}, {c, c′}) = 1 which means that {a2, a′2, c, c′} is a circuit

and thus c′ ∈ cl({a2, a′2, c}) ⊆ cl(H). We can see that in either case the entire

cone of c is in the hyperplane. This means that we must have the whole of

the cones of a1, a
′
1, b1 and b′1 contained in {a1, a′1, b1, b1}. Thus C(A,B)(a1) =

{a1, a′1} and C(B,A)(b1) = {b1, b′1}. Clearly a1, a
′
1 6∈ cl(E(M)−{a1, a′1, b1, b′1})
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and therefore a1, a
′
1 6∈ cl(A− {a1, a′1}). So r(A− {a1, a′1}) < r(A). We know

that

1 ≥ u(A− {a1, a′1}, B) ≥ u({a2, a′2}, {b1, b′1}) = 1.

Hence

r(E(M)− {a1, a′1}) = r((A− {a1, a′1}) ∪B)

= r(A− {a1, a′1}) + r(B)− 1

< r(A) + r(B)− 1

= r(M)

and so {a1, a′1} is a series pair, a contradiction.

So H doesn’t contain more than one element from each cone. Equiva-

lently, the 4-cocircuit {a1, a′1, b1, b′1} misses at most one element from each

cone. So A contains either one or two cones. If A contains two cones then a1

must be on one and a′1 must be on the other. Each of these cones must contain

exactly one other element. But then these cones are series pairs, a contra-

diction. Hence A has only one cone. Similarly B has only one cone. Each of

these cones must contain at least three elements or else it would be a series

pair. But neither can contain more than three elements or else {a1, a′1, b1, b′1}
would miss more than one element of a cone. So M ∼= U2,4⊕2 U2,4

∼= R6.

We now begin to restrict the maximum size that a star of a matroid M

with the 4-circuit-cocircuit property can be, with M not being a spike.

Lemma 3.2. Let M be a matroid with the 4-circuit-cocircuit property. If M

contains a 5-star A, then M is a spike.

Proof. Let {a1, b1} and {a2, b2} be arms of A. Let G be a 4-cocircuit con-

taining a1 and a2. Then G cannot contain an element from the other arms

of the star A. Hence every pair of arms of A is a 4-cocircuit as well as being

a 4-circuit, so A is also a 5-costar with the same arms.

Now suppose that M contains a k-star B for some k ≥ 5 which is also a

k-costar with the same arms, labelled as in Definition 2.2. If B is the whole

ground set of M , then by our definition of spikes, M is a k-spike and we

are done. Otherwise we have an additional element x 6∈ B. For each arm

{ai, bi} of B, there is a 4-cocircuit containing x and ai, which must contain
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bi or else by Lemma 2.3 it would have to contain an element from each of the

at least four other arms of B, a contradiction. The fourth element cannot

belong to B or else the 4-cocircuit will intersect a circuit at a single element.

Therefore the fourth element is an additional element xi 6∈ B ∪ x and so

for all i with 1 ≤ i ≤ k, {x, xi, ai, bi} is a 4-cocircuit with the xi possibly

not pairwise distinct. Dually, a 4-circuit containing x and a1 must contain

b1 and no other elements of B, but it must also contain all of x2, x3, . . . , xk

in order not to intersect one of the above 4-cocircuits at a single element.

Therefore x2 = x3 = · · · = xk = y and {x, y, a1, b1} is a 4-circuit. Similarly

a 4-circuit containing x and a2 must contain b2 and must also contain y and

x1. Therefore x1 = y and {x, y, a2, b2} is a 4-circuit. Finally a 4-circuit

containing x and ai for any i with 1 ≤ i ≤ k must contain bi and y. Hence

B ∪{x, y} is both a (k+ 1)-star and a (k+ 1)-costar with the arms of B and

{x, y} being its arms.

By induction on k, M must be a spike.

In order to start putting bounds on the size of a matroid with the 4-

circuit-cocircuit property, we need to restrict the number of points that can

occur in a rank-2 flat. The following small lemma restricts the number of

points in a rank-2 flat to three. We call a rank-2 4-element set that does not

contain any loops or parallel pairs a U2,4-restriction. Note that any 3-element

subset of a U2,4-restriction is a triangle, and conversely, the union of any two

triangles sharing exactly two elements is a U2,4-restriction, provided it does

not contain a parallel pair.

Lemma 3.3. Let M be a matroid with the 4-circuit-cocircuit property. Then

M does not contain a U2,4-restriction.

Proof. Suppose M has a U2,4-restriction {a, b, c, d}. Clearly M 6∼= R6 so by

Proposition 3.1, M is 3-connected. A 4-circuit containing a and b must con-

tain two elements not in cl({a, b, c, d}). Thus, there are at least two elements

e, f 6∈ cl({a, b, c, d}). The 4-cocircuit containing a and e must contain two

other elements of {a, b, c, d} so by relabelling we can assume that {a, b, c, e}
is a 4-cocircuit. The 4-cocircuit containing d and e must also contain two

other elements of {a, b, c, d} so by relabelling we can assume that {b, c, d, e}
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is a 4-cocircuit. Therefore a, d ∈ cl∗({b, c, e}) so r∗({a, b, c, d}) ≤ 3. Hence

λ({a, b, c, d}) = r({a, b, c, d}) + r∗({a, b, c, d})− |{a, b, c, d}|

≤ 2 + 3− 4

= 1.

Since M contains at least two elements not in {a, b, c, d}, the partition

({a, b, c, d}, E(M) − {a, b, c, d}) is a 2-separation. This contradicts the 3-

connectedness of M .

It is now possible to put an upper bound on the size of a non-spike matroid

with the 4-circuit-cocircuit property.

Proposition 3.4. Let M be matroid with the 4-circuit-cocircuit property. If

E(M) ≥ 38 then M is a spike.

Proof. Let G = {a, b, c, d} be a 4-cocircuit of M . If x 6∈ G is another element

of M , then there must be a 4-circuit containing x and either two or three

elements of G.

Consider the collection of 4-circuits containing {a, b, c} and not d. Let

A1 be the set of elements not in G belonging to one of these 4-circuits. Then

A1 ⊆ cl({a, b, c}) so r({a, b, c} ∪ A1) = 3. Evidently, a, b, c 6∈ cl(A1) as those

elements belong to the cocircuit G which is disjoint from A1. Therefore

r(A1) ≤ 2. On the other hand, Lemma 3.3 means that M does not contain a

U2,4-restriction. So |A1| ≤ 3. The same applies to the sets of elements not in

G that we get from the other three 3-element subsets of G (A2, A3 and A4).

Now consider the collection of 4-circuits containing {a, b} and not c and

d. Let B1 be the set of elements not in G belonging to one of these 4-

circuits. Suppose we have elements x1, y1, x2, y2 ∈ B1 such that {a, b, x1, y1}
and {a, b, x2, y2} are 4-circuits. Clearly

u({x1, y1}, {a, b}) = u({x2, y2}, {a, b}) = 1.

Since {x1, y1, x2, y2} is contained in a hyperplane not containing a and b,

a, b 6∈ cl{{x1, y1, x2, y2}. Therefore

r({x1, y1, x2, y2, a, b}) = r({x1, y1, x2, y2}) + 1.
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Hence u({x1, y1, x2, y2}, {a, b}) = 1. Therefore by Lemma 2.15 if {x1, y1}
and {x2, y2} are disjoint then u({x1, y1}, {x2, y2}) ≥ 1 meaning that

r({x1, y1, x2, y2}) ≤ 3.

We cannot have a U2,4-restriction, so r({x1, y1, x2, y2}) = 3, which means

that r({x1, y1, x2, y2, a, b}) = 4. Suppose {x1, y1, x2, y2} contains a triangle

which we can assume by relabelling is {x1, y1, x2}. By circuit elimination

there is a circuit contained in {y1, x2, a, b}. We know a, b 6∈ cl({y1, x2})
because of the 4-cocircuit and y1, x2 6∈ cl({a, b}) because that would create

triangles inside 4-circuits so {y1, x2, a, b} must be a 4-circuit. Recall that

r({x1, y1, x2, y2, a, b}) = 4. But x1 ∈ cl({y1, a, b}) and y1 ∈ cl({x2, a, b})
so r({x2, y2, a, b}) = 4, a contradiction. Therefore {x1, y1, x2, y2} does not

contain a triangle and so must be a 4-circuit. Hence {a, b}, {x1, y1} and

{x2, y2} are arms of a 3-star.

If {x1, y1} and {x2, y2} are not disjoint, by relabelling suppose x1 = x2 =

x, then by circuit elimination there is a circuit contained in {b, x, y1, y2}.
We cannot have b 6∈ cl({x, y1, y2}) so {x, y1, y2} must be a triangle. Also by

circuit elimination there is a circuit contained in {a, b, y1, y2} which cannot

contain a triangle so it must be a 4-circuit. So overall if two pairs {x1, y1}
and {x2, y2} form 4-circuits with {a, b} then either the two pairs form a 3-

star with {a, b} or form a triangle whose 2-element subsets all form 4-circuits

with {a, b}. If two pairs already form a triangle, then a third pair cannot

also form a triangle with one of the first two pairs or else we would have a

U2,4-restriction. If a pair doesn’t form a triangle with two pairs which already

form a 3-star with {a, b} then it must form a 3-star with {a, b} and each of

the other pairs, so overall we get a 4-star. Similarly an extra pair not forming

triangles with the other three pairs creates a 5-star. Now suppose that M is

not a spike. Then M cannot contain a 5-star, and so |B1| ≤ 3 + 3 + 3 = 9.

The same applies to the sets of elements not in G that we get from the other

five 2-element subsets of G (B2, B3, B4, B5 and B6).

Finally, we note that each element in E(M)−G must be contained in at

least two of the sets among the Ai and Bj, in order to belong to a 4-circuit

containing each of the elements of G. This means that

2 |E(M)−G| ≤ |A1|+|A2|+|A3|+|A4|+|B1|+|B2|+|B3|+|B4|+|B5|+|B6| .
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So overall, if M is not a spike, then

E(M) = |G|+ |E(M)−G|

≤ 4 +
4 · 3 + 6 · 9

2

= 4 +
12 + 54

2

= 4 + 33

= 37.

This reduces the problem to a finite case analysis. The next few propo-

sitions get the cases for matroids with fewer than 8 elements out of the way.

We remind the reader to refer the Appendix of [2] for definitions of each of

the named matroids which follow.

Proposition 3.5. Let M be a matroid with the 4-circuit-cocircuit property.

If |E(M)| ≤ 5 then M is isomorphic to one of U0,0, U0,1 or U1,1.

Proof. By Proposition 3.1, M must be 3-connected. If M has fewer than

2 elements then the property is vacuously true. If M has 2 or 3 elements

then M contains a pair of elements but no 4-set of elements so the property

is false. Finally, if M has 4 or 5 elements then both M and its dual must

contain a 4-circuit so have rank at least 3, contradicting the fact that the

rank and corank of a matroid sum to its size.

Proposition 3.6. Let M be a matroid with the 4-circuit-cocircuit property.

If |E(M)| = 6 then M is a rank-3 spike (which are R6, U3,6, P6, Q6, W3 and

M(K4)).

Proof. By Proposition 3.1, M is 3-connected or isomorphic to R6. Both M

and its dual must contain a 4-circuit so have rank at least 3, hence M has rank

exactly 3. The 4-circuits of M are spanning, so its only non-spanning circuits

are its triangles. Hence M can be completely described by its triangles. By

Lemma 3.3, M cannot have a U2,4-restriction Therefore every triangle of M

is a hyperplane so its complement is a triad. Dually, the complement of every

triad of M is a triangle.

If M contains two disjoint triangles, then these are also triads and there-

fore 2-separating sets so M is not 3-connected and hence M is isomorphic to

R6, a rank-3 spike.
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Otherwise distinct triangles of M intersect at exactly one element. Also

we cannot have three triangles all intersecting at one element or else the

three triangles must contain 6 other distinct elements, a contradiction. Let

E(M) = {a, b, c, d, e, f}. If M has no triangles then M is isomorphic to the

unique rank-3 matroid on 6 elements with no non-spanning circuits U3,6, a

rank-3 spike.

Otherwise M has a triangle which we can assume is {a, b, c}. If M has

no other triangles then M is isomorphic to the unique rank-3 matroid on 6

elements with a single triangle as its only non-spanning circuit P6, a rank-3

spike.

Otherwise M has an additional triangle intersecting {a, b, c} at exactly

one element, which we can assume is {a, d, e}. If M has no other triangles

then M is isomorphic to the unique rank-3 matroid on 6 elements with two

triangles intersecting at one element as its non-spanning circuits Q6, a rank-3

spike.

Otherwise M has an additional triangle intersecting both {a, b, c} and

{a, d, e} at exactly one element. This triangle cannot contain a so we can

assume that it is {b, d, f}. If M has no other triangles then M is isomorphic

to W3, a rank-3 spike.

OtherwiseM has an additional triangle not containing a, b or d. Therefore

this triangle must be {c, e, f}, which we can see does indeed intersect each

of the other triangles at exactly one element. Every element is now in two

triangles so M cannot have any more triangles. Now M is isomorphic to

M(K4), a rank-3 spike.

Proposition 3.7. Let M be a matroid with the 4-circuit-cocircuit property.

If |E(M)| = 7 then M is isomorphic to one of F7, F
−
7 , P7 or their duals.

Proof. By Proposition 3.1, M must be 3-connected. By duality we may as-

sume that r(M) = 3. The three elements which complement any 4-cocircuit

have rank 2 so must be a triangle. By Lemma 3.3, M does not contain a

U2,4-restriction. This means that every triangle of M is a hyperplane so the

four elements which complement it form a 4-cocircuit.

Claim 3.7.1. If some 4-cocircuit of M contains a triangle, then M ∼= P7.

Proof. Let {a, b, c, d} be a 4-cocircuit containing the triangle {a, b, c}. Then

{e, f, g} must be a triangle and {d, e, f, g} must be a 4-cocircuit. Let A be a
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4-cocircuit containing a and e. Then A must contain another element from

both triangles {a, b, c} and {e, f, g}. By relabelling we can assume that A

contains b and f so A = {a, b, e, f} and hence {c, d, g} is a triangle.

Let B be a 4-cocircuit containing c and g. As before, by relabelling we

can assume that B contains b and f so B = {b, c, f, g} and hence {a, d, e} is

a triangle.

Finally let C be a 4-cocircuit containing a and g. Then d 6∈ C as C must

contain another element from each of {a, b, c} and {e, f, g}. Also C must

contain another element from each of {a, d, e} and {c, d, g} so C contains e

and c and hence C = {a, c, e, g} and {b, d, f} is a triangle.

Now every pair of elements belongs to one of the 4-cocircuits identified

above. Any triple of elements not already identified as a triangle must contain

two elements of one of the above triangles so we cannot have any other

triangles without creating a U2,4-restriction. The unique rank 3 matroid

with the above triangles as its non-spanning circuits is isomorphic to P7.

Note that the 4-cocircuits which don’t contain d do not contain a triangle

so they must also be spanning 4-circuits. A spanning 4-circuit containing

d and, without loss of generality, a is {a, b, d, g} as this does not contain a

triangle. Therefore P7 is indeed a matroid in which every pair of elements

belongs to both a 4-circuit and a 4-cocircuit.

Now we know that no 4-cocircuit of M contains a triangle. Let {a, b, c, d}
be a 4-cocircuit and let {e, f, g} be its complementary triangle. Let A be a 4-

cocircuit containing a and f . Then A must contain exactly one more element

of the triangle {e, f, g}. By relabelling we can assume that A contains g and

b so that A = {a, b, f, g} and {c, d, e} is a triangle.

Let B be a 4-cocircuit containing a and e. Then B must contain exactly

one more element of each of the triangles {e, f, g} and {c, d, e}. By relabelling

we can assume that B contains f and d so that B = {a, d, e, f} and {b, c, g}
is a triangle. Let C be a 4-cocircuit containing b and e. Then C must

contain exactly one more element of each of the triangles {b, c, g}, {c, d, e}
and {e, f, g}. By relabelling we can assume that C contains c and not g.

Therefore C contains f so that C = {b, c, e, f} and {a, d, g} is a triangle.

Let D be a 4-cocircuit containing d and g. Then D must contain exactly

one more element of each of the triangles {b, c, g}, {c, d, e} and {e, f, g},
and not contain a or else it would contain all of the triangle {a, d, g}. By
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relabelling we can assume that D contains c and not e. Therefore D contains

f so that D = {c, d, f, g} and {a, b, e} is a triangle.

Let F be a 4-cocircuit containing e and g. Then F must contain exactly

one more element of each of the triangles {b, c, g}, {c, d, e}, {a, b, e} and

{a, d, g}, and not contain f or else it would contain all of the triangle {e, f, g}.
By relabelling we can assume that F contains b and not a or c. Therefore F

contains d so that F = {b, d, e, g} and {a, c, f} is a triangle.

Now every pair of elements belongs to one of the 4-cocircuits identified

above. The unique rank-3 matroid with the above triangles as its non-

spanning circuits is isomorphic to F−7 . The triple {b, d, f} is the only ad-

ditional triangle we can have without creating a U2,4-restriction. In this case

the unique rank-3 matroid with the above triangles as its non-spanning cir-

cuits is isomorphic to F7. Note that in both cases no 4-cocircuit contains a

triangle so they are also spanning 4-circuits of M and hence F−7 and F7 are

indeed matroids in which every pair of elements belongs to both a 4-circuit

and a 4-cocircuit.

At this point we need to define some matroids which are not among the

common named matroids found in [2]. The following two matroids M1 and

M2 are 8-element rank-4 matroids that have the 4-circuit-cocircuit property,

but are not spikes. Both M1 and M2 contain one triangle, one triad and are

self-dual. We have verified these properties of these matroids, and determined

their collection of non-spanning circuits using the sage-matroid package [4]

for Sage Mathematics Software [6]. These matroids will be used in the results

that follow.

Let M1 be the matroid represented over GF(3) by the following matrix.



1 2 3 4 5 6 7 8

1 0 0 0 1 1 1 −1

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 0


A geometric representation of M1 is given in Figure 3.1.
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Figure 3.1: A geometric representation of M1.

Let M2 be the matroid represented over GF(3) by the following matrix.



1 2 3 4 5 6 7 8

1 0 0 0 1 1 0 1

0 1 0 0 1 0 1 −1

0 0 1 0 0 1 1 1

0 0 0 1 −1 1 1 1


A geometric representation of M2 is given in Figure 3.2.
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Figure 3.2: A geometric representation of M2.
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Lemma 3.8. Let M be a matroid with the 4-circuit-cocircuit property. If

|E(M)| ≥ 8 and M contains a triangle or a triad then M is isomorphic to

one of M(K3,3), M∗(K3,3), M1 and M2.

Proof. By Proposition 3.1, M must be 3-connected. Suppose thatM contains

a triangle or a triad. By duality we can assume that M contains a triangle

{a, b, c}. There is a 4-circuit containing a and b. A triangle cannot be

contained in a 4-circuit, so there must be additional distinct elements d and

e in this 4-circuit. We know that c ∈ cl({a, b}) ⊆ cl({a, b, d, e}) and so

r({a, b, c, d, e}) = 3. Note that a, b 6∈ cl({d, e}) but {c, d, e} may or may not

be a triangle.

Claim 3.8.1. If the set {a, b, c, d, e} contains a 4-cocircuit, then M ∼= M1.

Proof. Suppose {a, b, c, d, e} contains a 4-cocircuit R. Then by relabelling

we can assume that a, d ∈ R.

Claim 3.8.1.1. The 4-cocircuit R does not contain a triangle.

Proof. Suppose R contains a triangle. We may assume by relabelling that R

contains {a, b, c}. Therefore R = {a, b, c, d} and {c, d, e} may or may not be

a triangle. There is a 4-cocircuit G containing c and e. In order to avoid a

single element intersection between the triangle {a, b, c} and 4-cocircuit G, by

relabelling we can assume that a ∈ G. If G ⊆ {a, b, c, d, e} then e ∈ cl∗(R).

But then

λ({a, b, c, d, e}) = r({a, b, c, d, e}) + r∗({a, b, c, d, e})− |{a, b, c, d, e}|

= 3 + 3− 5

= 1.

Since {a, b, c, d, e} and E(M)−{a, b, c, d, e} both contain at least 2 elements,

this contradicts the 3-connectivity of M .

Therefore G must contain an additional element f so that G = {a, c, e, f}.
This means that f ∈ cl∗({a, c, e}) ⊆ cl∗(R∪e) and so r∗({a, b, c, d, e, f}) ≤ 4.
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Now suppose that f ∈ cl({a, b, c, d, e}). Then

λ({a, b, c, d, e, f}) = r({a, b, c, d, e, f}) + r∗({a, b, c, d, e, f})− |{a, b, c, d, e, f}|

= 3 + r∗({a, b, c, d, e, f})− 6

≤ 3 + 4− 6

= 1.

Since {a, b, c, d, e, f} and E(M)− {a, b, c, d, e, f} both contain at least 2 ele-

ments, this contradicts the 3-connectivity of M .

Therefore f 6∈ cl({a, b, c, d, e}). Now let B be a 4-circuit containing b and

f . We know that e ∈ cl({a, b, c, d}) and trivially e ∈ cl(E(M)− {a, b, c, d}).
So by Lemma 2.19 e 6∈ B. We must have |G ∩B| 6= 1 and B cannot contain

the triangle {a, b, c}. So exactly one of a and c must be in B. We cannot

have d ∈ B or else B is independent. Hence the fourth element of B must

be an additional element g ∈ cl({a, b, c, d, e, f}).
Let H be a 4-cocircuit containing c and g. Every three element subset of

{a, b, d, e} has rank 3 so contains c in its closure. This means that H contains

two elements of {a, b, d, e}. Therefore g ∈ cl∗({a, b, c, d, e}) = cl∗(R ∪ e). As

was the case above for f , this means that g 6∈ cl(a, b, c, d, e). Since {a, b, c}
is a triangle, whether a or c is in B, {a, b, f, g} and {b, c, f, g} must both be

4-circuits by circuit elimination as neither set can contain a triangle, noting

in particular that neither {a, f, g} nor {c, f, g} can be triangles in order to

avoid a single-element intersection with the 4-cocircuit R = {a, b, c, d}. Now

we notice that

λ({a, b, c, d, e, f, g}) = r({a, b, c, d, e, f, g}) + r∗({a, b, c, d, e, f, g})

− |{a, b, c, d, e, f, g}|

= 4 + r∗({a, b, c, d, e, f, g})− 7

≤ 4 + 4− 7

= 1.

So by 3-connectivity |E(M)− {a, b, c, d, e, f, g})| < 2. Therefore |E(M)| = 8

and M contains one more element h. Since R = {a, b, c, d} is a 4-cocircuit,

{e, f, g, h} is a hyperplane.

By applying Lemma 2.19 to ({a, b, c, d}, {e, f, g, h}), the 4-circuit con-
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taining e and f must be entirely contained within {e, f, g, h}. Therefore

h ∈ cl({e, f, g}). Also this means that r(M) = 4, since the hyperplane

{e, f, g, h} has rank 3. We know r({a, b, c, d, e}) = 3 so {f, g, h} must be a

triad as we cannot have coloops or series pairs. The hyperplane {b, d, g, h}
complementary to G has rank 3 so h ∈ cl({b, d, g}).

Now consider the 4-circuit C containing a and h. We cannot have b, c ∈ C
or else either f or g is in cl({a, b, h}) but g ∈ cl({a, b, f}) so {d, e} would

be a series pair. By again applying Lemma 2.19 to ({a, b, c, d}, {e, f, g, h}),
e 6∈ C. But since R = {a, b, c, d} and G = {a, c, e, f} are both cocircuits

C must contain a second element from each. The only choices left are d

and f , so C = {a, d, f, h}. Similarly the 4-circuit containing c and h must

be D = {c, d, f, h}. So a, c ∈ cl({d, f, h}). But b, e ∈ cl({a, c, d}) and

g ∈ cl({e, f, h}), so {d, f, h} spans a rank 4 matroid, a contradiction.

Now we know that R ⊆ {a, b, c, d, e} contains a and d but not a triangle.

Hence R must contain e and either b or c. If R contains c then {c, d, e} is

not a triangle so we can relabel so that R = {a, b, d, e} and {c, d, e} may

or may not be a triangle. We now know that {a, b, d, e} is a quad, and so

({a, b, d, e}, E(M)− {a, b, d, e}) is an exact 3-separation.

LetG be a 4-cocircuit containing c and d. We cannot have |{a, b, c} ∩G| =
1 so by relabelling we can assume that a ∈ G. If G ⊆ {a, b, c, d, e} then

c ∈ cl∗(R). As before, this would mean that λ({a, b, c, d, e}) = 1, contradict-

ing the 3-connectivity of M . Therefore G must contain an additional element

f so that G = {a, c, d, f}. This means that f ∈ cl∗(R ∪ c) so as before if

f ∈ cl({a, b, c, d, e}) then λ({a, b, c, d, e, f}) = 1. This would contradict the

3-connectivity of M . Therefore f 6∈ cl({a, b, c, d, e}).
Now let B be a 4-circuit containing b and f . We have both c ∈ cl(R) and

c ∈ cl(E(M) − R) so by Lemma 2.19 c 6∈ B. We cannot have |G ∩B| = 1

so B must contain one of a and d. Also e 6∈ B or else B is independent.

Similarly we cannot have both a, d ∈ B. Hence the fourth element of B must

be an additional element g ∈ cl({a, b, c, d, e, f}).
Let H be a 4-cocircuit containing c and g. Every three element subset of

{a, b, d, e} has rank 3 so contains c in its closure. This means that H contains

two elements of {a, b, d, e}. Therefore g ∈ cl∗({a, b, c, d, e}) = cl∗(R ∪ c).
As was the case for f , this means that g 6∈ cl({a, b, c, d, e}). As before

λ({a, b, c, d, e, f, g}) = 1, so |E(M)| = 8 and M contains one more element
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h.

We know R = {a, b, d, e} is a 4-cocircuit so {c, f, g, h} is a hyperplane.

By Lemma 2.19 the 4-circuit containing c and f must be entirely contained

within {c, f, g, h}. Therefore {c, f, g, h} is a 4-circuit. Also this means that

r(M) = 4, since the hyperplane {c, f, g, h} has rank 3. The set {a, b, c, d, e}
has rank-3. Hence it must be a hyperplane and {f, g, h} must be a triad as

we cannot have coloops or series pairs. Note that {f, g, h} cannot also be a

triangle or else it is 2-separating.

The 4-circuit containing c and d must be contained in {a, b, c, d, e} by

Lemma 2.19 and cannot contain both a and b so it must contain e. Therefore

{c, d, e} is not a triangle and both {a, c, d, e} and {b, c, d, e}must be 4-circuits.

It is clear at this point that {a, b, c} is the only triangle of M . The hyperplane

complementary to G has rank-3 and cannot contain a triangle so {b, e, g, h}
is a 4-circuit.

Recall that the 4-circuit B contains b, f , g and either a or d. If B =

{a, b, f, g}, then by Lemma 2.18 {c, f, g} is a triangle, a contradiction. There-

fore B = {b, d, f, g}. Similarly, {a, b, f, h} and {a, b, g, h} cannot be 4-circuits

so each of {a, b, c, f}, {a, b, c, g} and {a, b, c, h} is a hyperplane, so each of

{d, e, f, g}, {d, e, f, h} and {d, e, g, h} is a 4-cocircuit. Also by Lemma 2.18

no other elements can be in cl(B) without forming a triangle. Hence B is a

hyperplane and {a, c, e, h} is a 4-cocircuit. The 4-cocircuit containing a and

g must contain at least one of b and c, and the fourth element must also be

in {a, b, c, d, e} because of the 4-circuits {a, b, d, e}, {a, c, d, e} and {b, c, d, e}.
But {c, f, g, h} is a 4-circuit so the 4-cocircuit must also contain a second

element from this. Therefore the 4-cocircuit contains c. The 4-cocircuit

must also contain another element from each of the 4-circuits {b, d, f, g} and

{b, e, g, h}. Therefore b is in the 4-cocircuit and the 4-circuit is {a, b, c, g}.
This means that {d, e, f, h} is a hyperplane not containing a triangle, so it

must be a 4-circuit.

To summarise so far, ({a, b, d, e}, {c, f, g, h}) is an exact 3-separation with

cl({a, b, d, e}) ∩ cl({c, f, g, h}) = {c}, {a, b, c} is a triangle, {f, g, h} is a

triad, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}, {c, g, f, h}, {b, d, g, f}, {b, e, g, h} and

{d, e, f, h} are 4-circuits, and {a, b, c, g}, {a, b, d, e}, {a, c, d, f}, {a, c, e, h},
{d, e, f, g}, {d, e, f, h} and {d, e, g, h} are 4-cocircuits. The 4-circuit contain-

ing a and g must contain one of f and h, we can assume f by relabelling.
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It must also contain one more from each of {a, b, d, e} and {a, c, e, h}, so the

fourth element is e and the 4-circuit is {a, e, f, g}. This must be also be a

hyperplane to avoid creating additional triangles, so {b, c, d, h} must be a

4-cocircuit. The 4-circuit containing a and h cannot contain c by Lemma

2.19 and cannot contain b or else will create a triangle. But it must contain

another element of the 4-cocircuit {b, c, d, h} so it must contain d. It also

must contain another element of the 4-cocircuit {a, b, c, g} so it must contain

g. Therefore the 4-circuit is {a, d, g, h}. This must be a hyperplane or else we

have another triangle, so {b, c, e, f} is a 4-cocircuit. At this point we can see

that M has the 4-circuit-cocircuit property. It is easy to check that any more

4-circuits would force another triangle. Hence we have found the complete

list of non-spanning circuits so M must be isomorphic to M1 as described

above and is self-dual.

We can now assume that {a, b, c, d, e} does not contain a 4-cocircuit.

Nevertheless there must be a 4-cocircuit R containing a and d.

Claim 3.8.2. If {c, d, e} is a triangle, then M ∼= M∗(K3,3).

Proof. Suppose {c, d, e} is a triangle. The 4-cocircuit R must contain an ele-

ment x1 not in {a, b, c, d, e} and since |{a, b, c} ∩R| 6= 1 and |{c, d, e} ∩R| 6=
1, c ∈ R. So R = {a, d, c, x1}. Similarly the 4-cocircuits containing a and

e, b and e, and b and d are {a, e, c, x2}, {b, e, c, x3} and {b, d, c, x4}, where

x1, x2, x3, x4 6∈ {a, b, c, d, e}, and the xi are possibly non-distinct.

Now we show that {a, b, c, d, e} cannot contain a triad. If {a, b, c, d, e}
contains a triad containing c then the triad must contain one of a and b, and

one of d and e. But then the triad is contained in one of the 4-cocircuits listed

above, a contradiction. A triad in {a, b, c, d} must contain two elements from

one of the triangles {a, b, c} and {c, d, e}, and one from the other triangle, a

contradiction. So {a, b, c, d, e} doesn’t contain a triad.

Now suppose x1 = x2. Then by applying cocircuit elimination to the

cocircuits {a, d, c, x1} and {a, e, c, x2} there must be cocircuit contained in

{a, c, d, e}, a contradiction. So x1 6= x2. Similarly x2 6= x3, x3 6= x4 and

x4 6= x1, though we possibly still have x1 = x3 and x2 = x4.

The 4-circuit A containing c and a cannot contain b but must contain a

second element from both the 4-cocircuits {b, e, c, x3} and {b, d, c, x4} so A

must contain one of e and x3 and one of d and x4. It cannot contain both
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d and e or else it contains the triangle {c, d, e}. If it contains d and x4 then

the rank-3 set {a, b, c, d, x4} contains the 4-cocircuit {b, d, c, x4}, so we can

relabel to get into the other case. Similarly if it contains e and x3. So A must

contain x3 and x4 and hence A = {c, a, x3, x4}. Similarly we have 4-circuits

B = {c, b, x1, x2}, D = {c, d, x2, x4} and E = {c, e, x1, x4}.
Suppose M contains an additional element y 6∈ {a, b, c, d, e, x1, x2, x3, x4}.

Then the 4-cocircuit containing y and c contains one of a and b, and one of

d and e, by relabelling suppose a and d. But then the 4-cocircuit must

also contain an additional element of B, a contradiction. So E(M) =

{a, b, c, d, e, x1, x2, x3, x4}. Therefore 8 ≤ |E(M)| ≤ 9. If |E(M)| = 8 then

by relabelling we can assume that x1 6= x3 and x2 = x4.

The 4-cocircuit containing a and x3 must contain either b or c. If it

contains c then the fourth element must be d or e. But then it shares exactly

one element with the 4-circuit B = {c, b, x1, x2}, a contradiction. So the 4-

cocircuit must contain b. The fourth element must be contained in both of the

4-circuits B = {c, b, x1, x2} and C = {c, d, x2, x3} but cannot be c, so it must

be x2 and the 4-cocircuit must be {a, b, x2, x3}. But then it shares exactly

one element with the 4-circuit E = {c, e, x1, x4} as x4 = x2, a contradiction.

Therefore x1 6= x3 and x2 6= x4 so the xi are pairwise distinct, and hence

|E(M)| = 9. By applying circuit elimination to the circuits {a, b, c} and

B = {c, b, x1, x2} there must be a circuit contained in {a, c, x1, x2}. This set

shares exactly one element, c, with the 4-cocircuit {c, x3, b, e} so c cannot be

in this circuit. By 3-connectivity {a, x1, x2} must be a triangle. Similarly

{b, x3, x4}, {d, x1, x4} and {e, x2, x3} are triangles. Applying circuit elimi-

nation to intersecting pairs of triangles, we must have the sets {a, e, x1, x3},
{a, d, x2, x4}, {b, d, x1, x3} and {b, e, x2, x4} each containing a circuit. If we

were to remove any element from any of these sets then it would share exactly

one element with one of the 4-cocircuits {a, d, c, x1}, {a, e, c, x2}, {b, e, c, x3}
and {b, d, c, x4}, so by 3-connectivity the four sets must all be 4-circuits.

We now have that every pair of elements of M belongs to a 4-circuit.

From the 4-cocircuits we know that E(M) ⊆ cl∗({a, b, c, d, e}) so r∗(M) ≤
5. Therefore r(M) ≥ 4 and so x1, x2, x3, x4 6∈ cl({a, b, d, e}) otherwise the

matroid would be spanned be the 4-circuit {a, b, d, e}. So r(M) = 4 and

{a, b, c, d, e} is a hyperplane making {x1, x2, x3, x4} a 4-cocircuit. Similarly

any other intersection of intersecting triangles is a hyperplane and so we get
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the 4-cocircuits {x1, x4, a, b}, {x2, x3, a, b}, {x1, x2, d, e} and {x3, x4, d, e}.
We now have that every pair of elements of M belongs to a 4-cocircuit.

Using symmetry it is now easy to show that M cannot have any other non-

spanning circuits than the six triangles and nine 4-circuits already identified.

Hence M is now uniquely determined and is isomorphic to M∗(K3,3).

Note that its dual M(K3,3) also has the property.

We can now assume that {c, d, e} is not a triangle. As {a, b, c} is a

triangle, |{a, b, c} ∩R| 6= 1 so by relabelling we can assume that b ∈ R. The

fourth element of R cannot be contained in {a, b, c, d, e} so there must be an

additional element f ∈ R. Hence R = {a, b, d, f} is a 4-cocircuit. Note that

f 6∈ cl({a, b, d}) or else {a, b, d, f} is a 4-circuit and {a, b, c, d, f} contains the

4-cocircuit R so we can relabel to be in the other case. There is a 4-cocircuit

G containing c and e. By relabelling we can assume that b ∈ R. The fourth

element must be g 6∈ {a, b, c, d, e}, possibly equal to f , so G = {b, c, e, g}.
Note that g 6∈ cl({b, c, e}) or else {b, c, e, g} is a 4-circuit and {a, b, c, e, g}
contains the 4-cocircuit G so we can relabel to be in the other case.

Claim 3.8.3. If g = f , then M ∼= M2.

Proof. Suppose g = f . Then by cocircuit elimination there is a cocircuit

contained in {a, b, c, d, e}. Any triad would mean that some element in only

one of the two 4-cocircuits is in the coclosure of the other 4-circuit, which

would mean all six elements are in the coclosure of one of the 4-cocircuits.

Hence

λ({a, b, c, d, e}) = r({a, b, c, d, e}) + r∗({a, b, c, d, e})− |{a, b, c, d, e}|

= 3 + 3− 5

= 1.

Therefore {a, b, c, d, e} is 2-separating, a contradiction. There cannot be a

4-cocircuit contained in {a, b, c, d, e} so it must itself be a cocircuit. There

must be an element h 6∈ {a, b, c, d, e, f}. The 4-cocircuit containing h and b

must contain another element from the triangle {a, b, c}, by relabelling we

can assume a. But it must also contain another element from the 4-cocircuit

{b, c, d, e}. Therefore f, h ∈ cl∗({a, b, c, d, e}) and so r∗({a, b, c, d, e, f, h}) =

4. Also, a 4-circuit containing f and h must contain one and therefore two
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elements of the cocircuit {a, b, c, d, e} and hence r({a, b, c, d, e, f, h}) = 4.

Hence

λ({a, b, c, d, e, f, h}) = r({a, b, c, d, e, f, h}) + r∗({a, b, c, d, e, f, h})

− |{a, b, c, d, e, f, h}|

= 4 + 4− 7

= 1.

Therefore {a, b, c, d, e, f, h} is 2-separating so M must have only one more

element i 6∈ {a, b, c, d, e, f, h}, and r(M) = r∗(M) = 4. As with f and h,

i must belong to a 4-cocircuit whose other three elements are members of

{a, b, c, d, e}, so f, h, i 6∈ cl({a, b, c, d, e}). This means that {a, b, c, d, e} is a

hyperplane and hence {f, h, i} is a triad. Because {a, b, d, f} and {b, c, e, f}
are both cocircuits, their complements {c, e, h, i} and {a, d, h, i} are hyper-

planes and hence rank-3 sets. Since both {a, b, c, d, e} and {f, h, i} are co-

circuits, the rank-3 sets cannot contain a triangle so they must be 4-circuits.

The 4-cocircuit containing f and h cannot contain i or else it would con-

tain the triad {f, h, i}. Both or neither of the remaining two elements may

belong to the triangle {a, b, c}. It cannot be both or else we have a single

element intersection with one of the 4-circuits in {a, b, c, d, e}. Therefore the

4-cocircuit contains d and e and is {d, e, f, h}. By the same argument the

4-cocircuit containing f and i is {d, e, f, i} and the 4-cocircuit containing h

and i is {d, e, h, i}.
The 4-circuit containing b and h must contain one of f and i but cannot

contain both or else it has a single element intersection with the cocircuit

{a, b, c, d, e}, so by one of the 4-cocircuits we have just listed the 4-circuit

must contain d or e. We may assume by relabelling that it contains d. The

fourth element is either f or i. If it is i then by applying circuit elimination

to this 4-circuit and {a, d, h, i} there must be a circuit in {a, b, d, h}. It

cannot contain h because of the triad {f, h, i} but {a, b, d} is contained in a

4-circuit, a contradiction. So the 4-circuit is {b, d, h, f}. The complement of

this rank-3 set, {a, c, e, i}, cannot contain a triad without creating a single

element intersection with one of the circuits so it must be a 4-cocircuit.

The 4-circuit containing b and i cannot contain h or else the fourth ele-

ment must be contained in all of the cocircuits {a, b, c, d, e}, {a, b, d, f} and
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{b, c, e, f}, a contradiction. But the 4-circuit must contain an additional el-

ement from the triad {f, h, i} so must contain f . The fourth element must

belong to both of the 4-cocircuits {d, e, h, i} and {a, c, e, i} so it must be e and

hence {b, e, f, i} is a 4-circuit. The complement of this rank-3 set, {a, c, d, h},
cannot contain a triad without creating a single element intersection with one

of the circuits so it must be a 4-cocircuit.

The 4-circuit containing a and f must contain exactly one of h or i be-

cause of the triad and hyperplane {f, h, i} so the 4-circuit must also contain

either d or e due to the 4-cocircuit {d, e, h, i}. But it must contain another

element from the 4-cocircuit {b, c, e, f}, so the 4-circuit contains e. Finally,

the 4-cocircuit {a, c, d, h} means that the fourth element is h and so the 4-

circuit is {a, e, f, h}. By the same a similar argument {c, d, f, i} is a 4-circuit.

The complements of these two rank-3 sets, {b, c, d, i} and {a, b, e, h}, cannot

contain any triads without having a single element intersection with one of

the circuits so both of these sets are 4-cocircuits.

We have now identified a 4-circuit and a 4-cocircuit containing each pair

of elements of M . It is easy to check that having any other non-spanning

circuits would create a single element intersection with one of the cocircuits.

Therefore the triangle {a, b, c} and the nine 4-circuits identified above are

exactly the non-spanning circuits of the rank-4 matroid M . Hence M is

uniquely determined and is isomorphic to M2, which is self-dual.

Now we can assume that f 6= g. Let x 6∈ {a, b, c, d, e, f, g} be an additional

element of the matroid, and let B be a 4-circuit containing b and x. Then B

must contain an additional element from each of the 4-cocircuits {a, b, d, f}
and {b, c, e, g}. Hence B must contain one of a, d and f , and one of c,

e and g. This means that B − x ⊆ {a, b, c, d, e, f, g} and therefore x ∈
cl({a, b, c, d, e, f, g}). Therefore r(M) ≤ 5. The 4-cocircuit containing x and

b must contain one of a and c, and then another element from the 4-circuit

{a, c, d, e} so that x is its only element not in {a, b, c, d, e}. This means that

x ∈ cl∗({a, b, c, d, e}). Hence r∗(M) ≤ 5 and |E(M)| ≤ 10. Let S be a

4-cocircuit containing f and g. Then S cannot contain an element of the

triangle {a, b, c} or else it would have to contain a second element of the

triangle and still intersect one of the 4-circuits in {a, b, c, d, e} at a single

element. Hence S either contains both d and e or neither of them, or else S

intersects the 4-circuit {a, b, d, e} at a single element.
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Suppose S contains neither d nor e so that S = {f, g, h, i} is a 4-cocircuit

for additional elements h, i 6∈ {a, b, c, d, e, f, g}.
Suppose M contains no additional elements so that |E(M)| = 9. Then

E(M) − S = {a, b, c, d, e} is a hyperplane. But r({a, b, c, d, e}) = 3 and so

r(M) = 4 and r∗(M) = 5. A 4-circuit B containing h and b must contain

one of a, d and f , and one of c, e and g. But it must also contain an

additional element from the 4-cocircuit S = {f, g, h, i}, so one of f and g is

in B. In addition, we know that there is a 4-cocircuit containing i, b and

one of {a, c, d, e}, so a member of {a, c, d, e} is in B. By relabelling we can

assume that f ∈ B and one of c and e is also in B. But if c ∈ B, then

B = {b, c, f, h} is a 4-circuit. Applying circuit elimination to B and the

triangle {a, b, c}, {a, b, f, h} contains a circuit. In order to avoid a single

element intersection with the 4-cocircuit G = {b, c, e, g}, this circuit cannot

contain b. Therefore {a, f, h} is a triangle. But a 4-cocircuit containing i and

a must contain two elements from {b, c, d, e}. This 4-cocircuit intersects the

triangle {a, f, g} at a single element, a contradiction. Therefore e ∈ B, so

that B = {b, e, f, h} is a 4-circuit. By symmetry, a 4-circuit containing i and

b is either {b, e, f, i}, or {b, d, g, i}. If {b, e, f, i} is a circuit, then by circuit

elimination with B = {b, e, f, h}, there is a circuit contained in {e, f, h, i}.
However this set intersects both R = {a, b, d, f} and G = {b, c, e, g} at a

single element, so the circuit must be contained in {h, i}. This contradicts

the 3-connectivity of M . Therefore {b, d, g, i} is a 4-circuit. A 4-cocircuit

containing c and f must contain two elements from {a, b, d, e}. Suppose this

4-cocircuit contains b. Then it must contain an additional element of the

4-circuit {b, d, g, i}, which must be d. Hence {b, c, d, f} is a 4-cocircuit. But

then the set {e, g, h, i} is disjoint from both of the 4-cocircuits R = {a, b, d, f}
and {b, c, d, f}, and so is contained in two different hyperplanes. Therefore

r({e, g, h, i}) ≤ 2, so {e, g, h, i} is a U2,4-restriction, contradicting Lemma 3.3.

Hence a 4-cocircuit containing c and f cannot contain b so must contain a.

The fourth element of this 4-cocircuit is either d or e. But it must contain an

additional element from the 4-circuit B = {b, e, f, h}. Therefore {a, c, e, f}
is a 4-cocircuit. But a 4-cocircuit containing c and e cannot contain f , or

else we can relabel into the case where g = f .

Now suppose M contains an additional element j so that |E(M)| = 10.

Therefore r(M) = r∗(M) = 5. Let C be a 4-circuit containing h and j.
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Suppose i ∈ C. Then exactly one of element of C is in {a, b, c, d, e, f, g}.
But that means that C intersects one of the 4-cocircuits R = {a, b, d, f}
or G = {b, c, e, g} at a single element, a contradiction. So i 6∈ C. But C

must contain an additional element of the 4-cocircuit S = {f, g, h, i}. By

relabelling we can assume that f ∈ C. The fourth element of C must be an

additional element of R = {a, b, d, f}, but cannot belong to G = {b, c, e, g}
or the triangle {a, b, c} without creating a single element intersection. Hence

d ∈ C, and so C = {d, f, h, j} is a 4-circuit. A 4-cocircuit containing h and a

must contain two elements from {b, c, d, e}. This 4-cocircuit must contain an

additional element of C = {d, f, h, j}, hence the 4-cocircuit contains d. The

fourth element must be an additional element of the triangle {a, b, c}. So the

4-cocircuit containing h and a must contain d and either b or c. Similarly

for the 4-cocircuits containing h and b, and h and c. Therefore {a, b, c, d, h}
contains two different 4-cocircuits so we must have r∗({a, b, c, d, h}) = 3.

By the same process of considering 4-cocircuits containing j and an ele-

ment of the triangle {a, b, c}, {a, b, c, d, j} contains two different 4-cocircuits

so we must have r∗({a, b, c, d, j}) = 3. Therefore j ∈ cl∗({a, b, c, d}), mak-

ing r∗({a, b, c, d, h, j}) = 3. The 4-cocircuit R = {a, b, d, f} means that

f ∈ cl∗({a, b, d}). Therefore r∗({a, b, c, d, f, h, j}) = 3. There must be a co-

hyperplane properly containing {a, b, c, d, f, h, j}. But then {e, g, i} contains

a circuit with two or fewer elements, contradicting the 3-connectivity of M .

Therefore the 4-cocircuit S must contain both d and e, so that S =

{d, e, f, g}. Furthermore there can be no other 4-cocircuits containing f and

g.

Suppose |E(M)| = 8. Then there is exactly one additional element h 6∈
{a, b, c, d, e, f, g}. We can’t have h ∈ cl({a, b, c, d, e}) or else {f, g} is a cocir-

cuit, contradicting the 3-connectivity of M . Therefore h 6∈ cl({a, b, c, d, e}).
This makes {a, b, c, d, e} a hyperplane and {f, g, h} a triad. We now know

r(M) = r∗(M) = 4. Let A be a 4-circuit containing h and a. Suppose

b ∈ A. Then A must contain an additional element of the 4-cocircuit

G = {b, c, e, g}. We can’t have c ∈ A or else A contains the triangle {a, b, c}.
We also cannot have e or g in A or else A contains a single element of the

4-cocircuit S = {d, e, f, g}. Therefore b 6∈ A. But A must still contain an

additional element of the 4-cocircuit R = {a, b, d, f}. Hence one of f and

d is in A. The fourth element of A must be an additional element of the
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4-cocircuit S = {d, e, f, g}, but A cannot contain a single element of the

4-cocircuit G = {b, c, e, g}. Hence both d and f are members of A, so that

A = {a, d, f, h} is a 4-circuit. Similarly a 4-circuit containing h and c must

be {c, e, g, h}. A 4-cocircuit containing f and c must contain two elements

from {a, b, d, e}. But the 4-cocircuit must contain an additional element

of the 4-circuit {c, e, g, h}. Hence e is a member of the 4-cocircuit. The

fourth element of the 4-cocircuit must be an additional element of the trian-

gle {a, b, c}. But the 4-cocircuit must contain an additional element of the

4-circuit A = {a, d, f, h} Therefore a is in the 4-cocircuit, so the 4-cocircuit

is {a, c, e, f}. But a 4-cocircuit containing c and e cannot contain f , or else

we can relabel into the case where g = f .

Suppose |E(M)| = 9. Then there are two additional element h, i 6∈
{a, b, c, d, e, f, g}. A 4-cocircuit containing h and i cannot contain any el-

ement of the triangle {a, b, c}, or else it would have to contain two other

members of {a, b, c, d, e}. The 4-cocircuit must contain either both of d

and e, or neither of them, or else the 4-cocircuit intersects the 4-circuit

{a, b, d, e} at a single element. But {f, g, h, i} cannot be a 4-cocircuit, so

{d, e, h, i} is a 4-cocircuit. Let A be a 4-circuit containing h and a. Sup-

pose b ∈ A. Then A must contain an additional element of the 4-cocircuit

G = {b, c, e, g}. We can’t have c ∈ A or else A contains the triangle {a, b, c}.
We also cannot have e or g in A or else A contains a single element of the

4-cocircuit S = {d, e, f, g}. Therefore b 6∈ A. But A must still contain an

additional element of the 4-cocircuit R = {a, b, d, f}. Hence one of f and

d is in A. The fourth element of A must be an additional element of the

4-cocircuit S = {d, e, f, g}, but A cannot contain a single element of the

4-cocircuit G = {b, c, e, g}. Hence both d and f are members of A, so that

A = {a, d, f, h} is a 4-circuit. Similarly a 4-circuit containing i and a must be

{a, d, f, i}. Therefore r({a, d, f, h, i}) = 3. In the same way, {c, e, g, h} and

{c, e, g, i} are 4-circuits, making r({c, e, g, h, i}) = 3. But {a, d, f, h, i} and

{c, e, g, h, i} complement the 4-cocircuits R = {a, b, d, f} and G = {b, c, e, g},
making {a, d, f, h, i} and {c, e, g, h, i} hyperplanes. Therefore r(M) = 4

and r∗(M) = 5. The fact that {f, g, h, i} is not a 4-cocircuit means that

{a, b, c, d, e} is not a hyperplane. But r({a, b, c, d, e}) = 3, so it must be

properly contained in a hyperplane. We know that f, g 6∈ cl({a, b, c, d, e}),
so one of h and i is on cl({a, b, c, d, e}). We cannot have both h and i in
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cl({a, b, c, d, e}), or else {f, g} is a series pair, contradicting the 3-connectivity

of M . Hence we may assume by relabelling that h ∈ cl({a, b, c, d, e}), making

{a, b, c, d, e, h} a hyperplane and {f, g, i} a triad. But the triad {f, g, i} and

the 4-circuit A = {a, d, f, h} share a single element, a contradiction.

Suppose |E(M)| = 10. Then there are three additional elements h, i, j 6∈
{a, b, c, d, e, f, g}. A 4-cocircuit containing h and i cannot contain any el-

ement of the triangle {a, b, c}, or else it would have to contain two other

members of {a, b, c, d, e}. The 4-cocircuit must contain either both of d and

e, or neither of them, or else the 4-cocircuit intersects the 4-circuit {a, b, d, e}
at a single element. But {f, g, h, i} cannot be a 4-cocircuit, so {d, e, h, i} is a

4-cocircuit. Similarly, 4-cocircuits containing h and j, or i and j, must con-

tain both d and e. Therefore {d, e, h, j} and {d, e, i, j} are also 4-cocircuits.

A 4-circuit A containing b and h, must contain a member of {a, d, f} and

a member of {c, e, g}. But A must also contain an additional element of

the 4-cocircuit {d, e, h, i}, so either d or e is in A. Also, A must contain an

additional element of the 4-cocircuit {d, e, i, j}, so both d and e are in A.

Therefore A = {b, d, e, h}. Similarly, 4-circuits containing b and i, and b and

j, must contain both d and e. Therefore {b, d, e, i} and {b, d, e, j} are also

4-circuit. But then r({a, b, c, d, e, h, i, j} = 3, so {f, g} contains a cocircuit,

contradicting the 3-connectivity of M .

We can rule out matroids containing triangles and triads from our anal-

ysis. As we did for rank-2 flats in Lemma 3.3, we can restrict the size of

a rank-3 flat by disallowing U3,5-restrictions. A U3,5-restriction is a rank-

3 5-element set containing no loops, parallel pairs or triangles. Dually, a

U2,5-corestriction is a corank-3 5-element set containing no coloops, series

pairs or triads. We note that every 4-element subset of a U3,5-restriction is

a 4-circuit and every 4-element subset of a U2,5-corestriction is a 4-cocircuit.

Conversely, the union of two 4-circuits that intersect at exactly 3 elements

is a U3,5-restriction, provided it contains no loops, parallel pairs or triangles,

and the same dually for two 4-coircuits. The following results dualise to

restrict the size of a corank-3 coflat by disallowing a U2,5-corestriction.

Lemma 3.9. Let M be a matroid with the 4-circuit-cocircuit property. If

|E(M)| ≥ 7, then M cannot contain a U3,6-restriction.

Proof. Let {a, b, c, d, e, f} be a U3,6-restriction in M and g 6∈ {a, b, c, d, e, f}
be another element of M . Every 4-element subset of {a, b, c, d, e, f} is a
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4-circuit. A 4-cocircuit containing a and g must contain 3 more elements

from {a, b, c, d, e, f} in order to not have a single element intersection with a

4-circuit, a contradiction.

Lemma 3.10. Let M be a matroid with the 4-circuit-cocircuit property. If

|E(M)| ≥ 8 and M contains no triangles or triads, then M cannot contain

a U3,5-restriction.

Proof. By Lemma 3.9 and its dual, r(M) ≥ 4 and r∗(M) ≥ 4. Let {a, b, c, d, e}
be a U3,5-restriction in M and x 6∈ {a, b, c, d, e} be another element of M .

By Lemma 3.9, x 6∈ cl({a, b, c, d, e}). Every 4 element subset of {a, b, c, d, e}
is a 4-circuit. A 4-cocircuit containing a and x must contain two more el-

ements from {a, b, c, d, e} in order to not have a single element intersection

with a 4-circuit. By relabelling we can assume that {a, b, c, x} is a 4-cocircuit.

Suppose the 4-cocircuit containing d and x contains two from {a, b, c}, say

a and b making {a, b, d, x} a 4-cocircuit. Then c, d ∈ cl∗({a, b, x}) mak-

ing r∗({a, b, c, d, x}) = 3. The 4-cocircuit containing e and x must contain

two elements from {a, b, c, d}, making r∗({a, b, c, d, e, x}) = 3, in contradic-

tion with the dual of Lemma 3.9. Therefore the 4-cocircuit containing d

and x contains one element from {a, b, c} and must contain e, so we may

assume by relabelling that {a, d, e, x} is a 4-cocircuit. By applying circuit

elimination to the 4-cocircuits {a, b, c, x} and {a, d, e, x} there is a cocircuit

contained in {a, b, c, d, e}. This means that r∗({a, b, c, d, e}) ≤ 4. But for all

x 6∈ {a, b, c, d, e}, x ∈ cl∗({a, b, c, d, e}) so r∗(M) = 4. Suppose r(M) = 4.

Then |E(M)| = 8, and {a, b, c, d, e} is a hyperplane. But this makes the

complement of {a, b, c, d, e} a triad, a contradiction. Therefore r(M) ≥ 5

and |E(M)| ≥ 9. This means that we can choose y 6∈ cl({a, b, c, d, e, x}).
Any 4-set containing x, y and two elements from {a, b, c, d, e} must be in-

dependent, so the 4-circuit containing x and y must contain one and only

one member of {a, b, c, d, e}. In order to avoid a single element intersection

with either of the 4-cocircuits {a, b, c, x} and {a, d, e, x}, this member must

be a. Hence {a, x, y, z} is a 4-circuit for some element z 6∈ {a, b, c, d, e, x, y}.
Let w 6∈ {a, b, c, d, e, x, y, z} be the ninth element of M . The 4-cocircuit con-

taining a and w must contain one additional member of {a, x, y, z} and two

additional members of {a, b, c, d, e}, a contradiction.

At this point we note that if |E(M)| = 8 and M has no triangles or

triads, then M is a rank-4 sparse paving matroid. For these matroids, every
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nonspanning circuit is a circuit-hyperplane. If M is indeed a spike, this

means that the choice of partition of E(M) to get the legs of the spike is

not necessarily unique. This makes these matroids particularly difficult to

analyse. We will omit the full analysis of these matroids from this thesis

In Lemma 3.2, we showed that M can’t have a 5-star without being a

spike. We now extend that result to 4-stars, giving two families of ma-

troids as non-spike exceptions. We need to define two more matroids. These

matroids, along with the result of relaxing any combination of their circuit-

hyperplanes, will be the only exceptions here. The 4-circuits are easy to

see in the representations given. The fact that these matroids are self-dual

gives us the 4-cocircuits. We will give a geometric representation for each of

these matroids, and another for the matroids attained by relaxing all circuit-

hyperplanes.

Let M3 be the matroid represented over GF(2) by the following matrix.



1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 1 0 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1


A geometric representation of M3 is given in Figure 3.3. We note that M3

contains 8 circuit-hyperplanes. These are the 6-element sets containing either

{1, 4} or {2, 3}, either {5, 8} or {6, 7}, and either {9, 12} or {10, 11}. A

geometric representation of the matroid M−8
3 , attained by relaxing all of

these circuit-hyperplanes, is given in Figure 3.4.

Let M4 be the matroid represented over GF(3) by the following matrix.



1 2 3 4 5 6 7 8 9 10

0 1 0 1 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0

0 0 1 1 0 1 0 1 0 0

0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1 1 −1


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Figure 3.3: A geometric representation of M3.
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Figure 3.4: A geometric representation of M−8
3 .

A geometric representation of M4 is given in Figure 3.5. We note that

M3 contains 4 circuit-hyperplanes. These are {1, 4, 5, 8, 9}, {1, 4, 6, 7, 10},
{2, 3, 5, 8, 10} and {2, 3, 6, 7, 9}. A geometric representation of the matroid

M−4
4 , attained by relaxing all of these circuit-hyperplanes, is given in Figure

3.6.

We can show that there are matroids which are have all of the non-

spanning circuits of M−4
4 , as well as either {1, 4, 5, 8, 9} or {1, 4, 5, 8, 10},

either {1, 4, 6, 7, 9} or {1, 4, 6, 7, 10}, either {2, 3, 5, 8, 9} or {2, 3, 5, 8, 10}, and

either {2, 3, 6, 7, 9} or {2, 3, 6, 7, 10}, as circuit-hyperplanes. We call this class

of matroids T (M−4
4 ).

Lemma 3.11. Let M be a matroid with the 4-circuit-cocircuit property. If

|E(M)| ≥ 9, M contains no triangles or triads, contains a 4-star and is not

a spike, then it is isomorphic to either M3, M4, or one of their relaxations.
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Figure 3.5: A geometric representation of M4.
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Figure 3.6: A geometric representation of M−4
4 .

Proof. Let A be a 4-star in M . Let A be labelled as in Definition 2.2 and let

x be an element not in A. For each arm {ai, bi} of A, there is a 4-cocircuit

containing x and ai, which must contain bi or else it would have to contain an

element from each of the other three arms of A, a contradiction. The fourth

element cannot belong to A or else the 4-cocircuit will intersect a circuit

at a single element. Therefore the fourth element is an additional element

xi 6∈ A∪x and so G1 = {x, x1, a1, b1}, G2 = {x, x2, a2, b2}, G3 = {x, x3, a3, b3}
and G4 = {x, x4, a4, b4} are 4-cocircuits with the xi possibly not pairwise

distinct.

Suppose |{x1, x2, x3, x4}| = 4. Then the xi are pairwise distinct. Any

4-circuit containing x must contain an element from each of the disjoint sets

{x1, a1, b1}, {x2, a2, b2}, {x3, a3, b3} and {x4, a4, b4}, a contradiction.

Suppose |{x1, x2, x3, x4}| = 3. We may assume by relabelling that x1 = x2

and x1, x3 and x4 are pairwise disjoint. Let C be some 4-circuit containing

x and a1. This 4-circuit must contain one from each of the disjoint sets

{x1, a2, b2}, {x3, a3, b3} and {x4, a4, b4}, a contradiction.

Suppose |{x1, x2, x3, x4}| = 2. One case is that three of the xi are equal,
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so that by relabelling we may assume x1 = x2 = x3 6= x4. Let C be some

4-circuit containing x4 and a1. Suppose x 6∈ C. Then x1 6∈ C or else C must

contain one from each of {a2, b2}, {a3, b3} and {a4, b4}. Therefore b1 ∈ C.

The fourth element of C must be one of {a4, b4}, so we may assume by

relabelling that a4 ∈ C and C = {a1, b1, a4, x4}. But then {a1, b1, a4, b4, x4}
is a U3,5-restriction, a contradiction. Hence x ∈ C. The fourth element of

C must belong to both {x1, a2, b2} and {x1, a3, b3}, so must be x1 making

C = {a1, x, x1, x4} a 4-circuit. Similarly, a 4-circuit containing x4 and a2

must be {a2, x, x1, x4}. But then {a1, a2, x, x1, x4} is a U3,5-restriction, a

contradiction.

The other case where |{x1, x2, x3, x4}| = 2 is that two of the xi are equal

and so are the other two, so that by relabelling we may assume x1 = x2 6=
x3 = x4.

Claim 3.11.1. M is isomorphic to M3 or one of its relaxations.

Proof. Let C be some 4-circuit containing x and a1. This 4-circuit must

contain one from each of the sets {x1, a2, b2}, {x3, a3, b3} and {x3, a4, b4}.
The only way this is possible is to have x3 ∈ C.

Suppose for contradiction that x1 ∈ C, so that C = {x, x1, x3, a1}. A

4-circuit containing x and b1 must similarly contain x3 and an additional

element from the 4-cocircuit G2 = {x, x1, a2, b2}. It cannot contain x1 or else

{x, x1, x3, a1, b1} is a U3,5-restriction. Hence we can assume by relabelling

that it contains b2 so that {x, x3, b1, b2} is a 4-circuit. A 4-circuit containing

x and a2 must also contain x3 and an additional element from the 4-cocircuit

G1 = {x, x1, a1, b1}. However this 4-circuit cannot contain x1 or a1 without

overlapping C = {x, x1, x3, a1} at three elements creating a rank-5 3-set. It

also cannot contain b1 without overlapping {x, x3, b1, b2} at three elements

creating a rank-5 3-set, a contradiction.

Therefore, the fourth element of C cannot be x1, so it is either a2 or b2.

By relabelling we may assume a2 ∈ C so that C = {x, x3, a1, a2}. Similarly,

a 4-circuit containing x and a3 must contain x1 and either a4 or b4, so by

relabelling we may assume that {x, x1, a3, a4} is a 4-circuit. Also, a 4-circuit

containing x and b1 must contain x3 and either a2 or b2. But if {x, x3, b1, a2}
is a 4-circuit then {x, x3, a1, a2, b1} is a U3,5-restriction contradicting Lemma

3.10. Hence {x, x3, b1, b2} is a 4-circuit. Similarly {x, x1, b3, b4} is a 4-circuit.
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Let Q be some 4-cocircuit containing a1 and a3. If b1 ∈ Q then the

fourth element of Q must belong to both of the 4-circuits {a2, b2, a3, b3} and

{a3, b3, a4, b4}, so b3 ∈ Q making Q = {a1, b1, a3, b3}. But then |C ∩Q| =

1, a contradiction. Therefore Q must contain one element from each arm

of the 4-star A and no other elements. In order to avoid single element

intersections with the 4-circuits {x, x3, a1, a2} and {x, x1, a3, a4} we must have

a3, a4 ∈ Q making Q = {a1, a2, a3, a4} a 4-cocircuit. Similarly {a1, a2, b3, b4},
{b1, b2, a3, a4} and {b1, b2, b3, b4} must all be 4-cocircuits.

Let R be some 4-cocircuit containing x1 and x3. Then R must contain an

additional element from each of the 4-circuits {x, x1, a3, a4}, {x, x1, b3, b4},
{x, x3, a1, a2} and {x, x3, b1, b2}. This is only possible if x ∈ R. In order to

avoid intersecting one of the 4-circuits of the 4-star at a single element, the

fourth element of R must be an additional element y 6∈ A ∪ {x, x1, x3}, and

so R = {x, y, x1, x3} is a 4-cocircuit.

Let D be some 4-circuit containing y and a1. Then D must contain an

additional element from each of the 4-cocircuits {a1, a2, a3, a4}, {a1, a2, b3, b4}
and R = {x, y, x1, x3}. This is only possible if a2 ∈ D. The fourth element

must be one of x, x1 and x3. In order to avoid D∪C being a U3,5-restriction,

we must have x1 ∈ D making D = {y, x1, a1, a2} a 4-circuit. Similarly,

{y, x1, b1, b2}, {y, x3, a3, a4} and {y, x3, b3, b4} are 4-circuits.

Let B be some 4-circuit containing x and y. Then B must contain an

additional element from each of the 4-cocircuits G1 = {x, x1, a1, b1}, G2 =

{x, x1, a2, b2}, G3 = {x, x3, a3, b3} and G4 = {x, x3, a4, b4}. This is only

possible if x1, x3 ∈ B and so B = R = {x, y, x1, x3}. If M contains some

additional element z 6∈ A ∪ B, then a 4-circuit containing z and x would

similarly have to be {x, z, x1, x3}, creating a U3,5-restriction, a contradiction.

So M contains no additional elements and E(M) = A ∪ B. We now have

the property that every pair of elements in M belongs to a 4-circuit. We

also now note that {a1, a2, b1, b2} ∪B is a 4-star with arms {a1, a2}, {b1, b2},
{x, x3} and {y, x1}, and {a3, a4, b3, b4} ∪ B is a 4-star with arms {a3, a4},
{b3, b4}, {x, x1} and {y, x3}.

Let S be a 4-cocircuit containing y and a1. Then S cannot contain an

element from each arm of the 4-star A, so b1 ∈ S. Also, S cannot contain

an element from each arm of the 4-star {a3, a4, b3, b4} ∪ B, so x3 ∈ S and

S = {y, x3, a1, b1} is a 4-cocircuit. Similarly, {y, x3, a2, b2}, {y, x1, a3, b3} and
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{y, x1, a4, b4} are 4-cocircuits.

Let P be a 4-cocircuit containing a1 and b2. Then P must contain an

additional element from each of the 4-circuits {a1, b1, a3, b3}, {a1, b1, a4, b4},
{a1, b2, x, x3} and {a1, a2, y, x1}. This is only possible if b1, a2 ∈ P so P =

{a1, b1, a2, b2} is a 4-cocircuit. Similarly {a3, b3, a4, b4} is a 4-cocircuit. We

now have the property that every pair of elements in M belongs to a 4-

cocircuit as well as a 4-circuit.

From here that we can easily check using circuit elimination that every

6-element set we get by removing the common element from the union of two

4-circuits that overlap at exactly one element, is a 6-circuit. If M contains

no other non-spanning circuits, then by comparing non-spanning circuits, M

is isomorphic to M−8
3 .

We can easily check that M can contain no other 4-circuits and no 5-

circuits. We can also check that other than the 6-circuits mentioned above,

the only 6-circuits we can have are the eight circuit-hyperplanes in M3. Hence

M is isomorphic to M3 or one of its relaxations.

Now suppose |{x1, x2, x3, x4}| = 1. This means that x1 = x2 = x3 = x4.

Claim 3.11.2. The matroid M is isomorphic to one of T (M−4
4 ) or a relax-

ation of one of these matroids.

Proof. Let C be a 4-circuit containing x and a1. C must contain an additional

element from each of the 4-cocircuits G2 = {x, x1, a2, b2}, G3 = {x, x1, a3, b3}
and G4 = {x, x1, a4, b4}. This is only possible if x1 ∈ C.

Suppose for contradiction that there is some additional element y ∈ C

so that C = {x, x1, a1, y}. Then by Lemma 2.3, a 4-cocircuit containing a1

and a2 must contain either both b1 and b2, or one of each of {a3, b3} and

{a4, b4}. In either case, this 4-cocircuit intersects C at a single element, a

contradiction.

Now suppose for contradiction that b1 ∈ C so that C = {x, x1, a1, b1}.
As before, a 4-cocircuit containing a1 and a2 must contain either both b1

and b2, or one of each of {a3, b3} and {a4, b4}. In order to avoid a single ele-

ment intersection with C, the 4-cocircuit has to be {a1, b1, a2, b2}. Similarly,

{a1, b1, a3, b3} and {a1, b1, a4, b4} must be 4-cocircuits. A 4-circuit containing

x and a2 must contain x1. It cannot contain a1 or b1 without intersecting

the 4-cocircuit {a1, b1, a3, b3} at a single element. But it must contain an
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additional element from the 4-cocircuit {a1, b1, a2, b2}. Hence {x, x1, a2, b2}
is a 4-circuit. Similarly, {x, x1, a3, b3} and {x, x1, a4, b4} are 4-circuits. But

that means that A ∪ {x, x1} is a 5-star whose arms are the four arms of the

4-star A and {x, x1}. By Lemma 3.2, M must be a spike, a contradiction.

We know C contains x, x1 and a1 but cannot contain b1 or a new ele-

ment. Therefore the fourth element of C must lie on one of the other three

arms of the 4-star A. By relabelling we can assume that a2 ∈ C so that

C = {x, x1, a1, a2}. Let R be a 4-cocircuit containing a1 and b2. By Lemma

2.3, R must contain either both b1 and a2, or one of each of {a3, b3} and

{a4, b4}. But R must also contain an additional element of C = {x, x1, a1, a2}.
Hence a2, b1 ∈ R so that R = {a1, a2, b1, b2}. Note that R is also a 4-circuit,

so a quad. As with C, a 4-circuit containing x and b1 must contain x1 and

an element on one of the other three arms of the 4-star A. But it must also

contain an additional element of the quad R = {a1, a2, b1, b2}. Therefore

the fourth element of this 4-circuit must be either a2 or b2. But it can’t be

a2 or else {x, x1, a2, b1, a1} is a U3,5-restriction. Hence the fourth element is

b2 and {x, x1, b1, b2} is a 4-circuit. As with C, a 4-circuit containing x and

a3 must contain x1 and an element on one of the other three arms of the

4-star A. But it cannot contain an element of the quad R = {a1, a2, b1, b2}.
Therefore it must contain an element from the arm {a4, b4}. By relabelling

we can assume it contains a4, making {x, x1, a3, a4} a 4-circuit. Similarly, a

4-circuit containing x and b3 must contain x1 and an element from the arm

{a4, b4}. It cannot contain a4 or else {x, x1, b3, a3, a4} is a U3,5-restriction.

Hence {x, x1, b3, b4} is a 4-circuit. We know M cannot contain an additional

element y or else a 4-cocircuit containing y and a1 must contain a2 (the

other element on the arm {a1, a2}) and therefore must contain x or x1 in or-

der to avoid intersecting the 4-circuits C = {x, x1, a1, a2} and {x, x1, b1, b2}
at a single element, creating a single element intersection with the 4-circuit

{x, x1, a3, a4}. We now have that every pair of elements in M belongs to

a 4-circuit. Similarly to how we found the 4-cocircuit R, a 4-cocircuit con-

taining a3 and b4 must be a quad {a3, a4, b3, b4}. A 4-cocircuit containing

a1 and a3 must contain either both b1 and b3, or one of each of {a2, b2}
and {a4, b4}. It must also contain an additional element from each of the

4-circuits C = {x, x1, a1, a2} and {x, x1, a3, a4}. Therefore {a1, a2, a3, a4} is

a 4-cocircuit. Similarly, {a1, a2, b3, b4}, {b1, b2, a3, a4} and {b1, b2, b3, b4} are
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4-cocircuits. Note that A is now also a 4-costar with arms {a1, a2}, {b1, b2},
{a3, a4} and {b3, b4}. We now have that every pair of elements in M belongs

to a 4-cocircuit as well as a 4-circuit.

Let the 4-circuit C1 be either {x, x1, a1, a2} or {x, x1, b1, b2} and let the

4-circuit C2 be either {x, x1, a3, a4} or {x, x1, b3, b4}. We can easily check

using circuit elimination that every 5-element set we get by removing either

x or x1 from the union of C1 and C2 is a 5-circuit. This method gives us

different 5-circuits. If M contains no other non-spanning circuits, then by

comparing non-spanning circuits, M is isomorphic to M−4
4 .

We can easily check that M can contain no other 4-circuits. We can also

check that other than the 5-circuits mentioned above, the only 5-circuits we

can have contain either {a1, b2} or {a2, b1}, either {a3, b4} or {a3, b4}, and

either x or x1. These sets are all circuit-hyperplanes. However we cannot

have both x and x1 in the closure of a 4-element set containing either {a1, b2}
or {a2, b1}, and either {a3, b4} or {a3, b4}, or else this set contains the whole

matroid in its closure. We can check that there are no restrictions on whether

a 5-circuit containing either {a1, b2} or {a2, b1}, and either {a3, b4} or {a4, b3},
contains x or x1. Hence M is isomorphic to one of T (M−4

4 ) or a relaxation

of one of these matroids.

This completes the proof of Lemma 3.11.

The remaining analysis deals with matroids containing no 4-stars or 4-

costars.

Lemma 3.12. Let M be a matroid with the 4-circuit-cocircuit property. Sup-

pose |E(M)| ≥ 9, and M contains no triangles or triads. Suppose M has a

4-cocircuit G with the property that no 4-circuit contains exactly three ele-

ments of G. Then every 4-circuit containing an element in G and an element

not in G must contain two elements in G and two elements not in G. Also,

if distinct elements x, y 6∈ G both belong to separate 4-circuits containing a

pair {a, b} ⊆ G, say {x, x′, a, b} and {y, y′, a, b}, then x, x′, y, y′ are pairwise

distinct and {x, x′, y, y′} is a 4-circuit making {a, b, x, x′, y, y′} a 3-star with

arms {a, b}, {x, x′} and {y, y′}. If there are any other elements not in G

contained in a 4-circuit containing a and b, then they must also belong to a

star containing this 3-star.
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Proof. Let C be a 4-circuit containing x 6∈ G and a ∈ G. Then |G ∩ C| 6= 1, 3,

so C must contain exactly two elements in G and two elements not in G.

Now suppose {x, x′, a, b} and {y, y′, a, b} are distinct 4-circuits with a, b ∈ G
and x, x′, y, y′ 6∈ G. Clearly x 6= x′ and y 6= y′. In order to avoid a U3,5-

restriction, we cannot have |{x, x′, a, b} ∩ {y, y′, a, b}| = 3. We also cannot

have |{x, x′, a, b} ∩ {y, y′, a, b}| = 4 or else the 4-circuits are not distinct.

Therefore |{x, x′, a, b} ∩ {y, y′, a, b}| = 2, making x, x′, y, y′ pairwise distinct.

By circuit elimination there is a circuit contained in {x, x′, a, b}∪{y, y′, a, b}−
b = {x, x′, y, y′, a}. In order to avoid a single element intersection with the

cocircuit G, a cannot belong to this circuit. In order to avoid a triangle

the circuit must be {x, x′, y, y} so that {a, b, x, x′, y, y′} is a 3-star with arms

{a, b}, {x, x′} and {y, y′}. Inductively, for each additional element z 6∈ G

contained in 4-circuit containing a and b, there must be an additional element

z′ so that the 4-circuit is {z, z′, a, b}, and {z, z′} forms a 4-circuit with each

of the other arms of the star, making {z, z′} an arm of a larger star.

Lemma 3.13. Let M be a matroid with the 4-circuit-cocircuit property. Sup-

pose |E(M)| ≥ 9, M contains no triangles or triads, and no 4-stars or 4-

costars. Let G = {a, b, c, d} be a 4-cocircuit of M with the property that no

4-circuit contains exactly three elements of G and let e 6∈ G be an additional

element of M . Then, up to labels, either e is contained in two 4-circuits

containing complementary pairs {a, b} and {c, d}, or e is contained in three

4-circuits, each containing one of the three pairs in G containing an element

a, {a, b}, {a, c} and {a, d}.

Proof. Suppose e does not belong to two 4-circuits containing complementary

pairs of G. We may assume by relabelling that {a, b, e, f} is a 4-circuit

containing a and e, for an additional element f 6∈ G ∪ e. There cannot be

a 4-circuit containing {c, d} and e. Therefore a 4-circuit containing c and e

must contain one of a and b, so we may assume by relabelling that {a, c, e, g}
is a 4-circuit for some additional element g 6∈ G ∪ {e, f} (g 6= f otherwise

we have a U3,5-restriction). Now we know that there cannot be a 4-circuit

containing {b, d} and e. Therefore a 4-circuit containing d and e must contain

a and some additional element h 6∈ G ∪ {e, f} (h 6= f, g otherwise we have a

U3,5-restriction) making {a, d, e, h} a 4-circuit.

One type of 4-cocircuit with this property is a quad. The following lem-

mas deal with matroids that contain a quad.



CHAPTER 3. THE MAIN THEOREM 48

Lemma 3.14. Let M be a matroid with the 4-circuit-cocircuit property. Sup-

pose |E(M)| ≥ 9, M contains no triangles or triads, and no 4-stars or 4-

costars. If M has a quad Q = {a, b, c, d}, then up to labelling there cannot

be an element e 6∈ Q contained in three 4-circuits, each containing one of the

three pairs in G containing an element a, {a, b}, {a, c} and {a, d}.

Proof. Suppose there is such an element e. The fourth element in each of

the three 4-circuits must be additional distinct elements in order to avoid

a U3,5-restriction. Hence {a, b, e, f}, {a, c, e, g} and {a, d, e, h} are 4-circuits

with f, g, h 6∈ Q∪ e and distinct. Let i be an additional element of M . Then

the 4-cocircuit G containing a and i, must contain an additional element

of the quad Q. By relabelling we may assume that b ∈ G. The fourth

element cannot be f in order to avoid a three element intersection with the

4-circuit {a, b, e, f}. But G must contain an additional element of the other

two 4-circuits {a, c, e, g} and {a, d, e, h}, a contradiction.

Corollary 3.15. Let M be a matroid with the 4-circuit-cocircuit property.

Suppose |E(M)| ≥ 9, M contains no triangles or triads, and no 4-stars or

4-costars. If M has a quad Q = {a, b, c, d}, then every element x 6∈ Q is

contained in two 4-circuits containing complementary pairs of elements of

Q.

Proof. The result follows immediately from Lemmas 3.13 and 3.14, taking

the quad Q as the 4-cocircuit G.

Lemma 3.16. Let M be a matroid with the 4-circuit-cocircuit property. Sup-

pose |E(M)| ≥ 9, M contains no triangles or triads, and no 4-stars or 4-

costars. If M has a quad Q = {a, b, c, d}, then there cannot be an element

e 6∈ Q contained in two 4-circuits, each containing one of the three pairs in

G containing an element a, say {a, b} and {a, c}.

Proof. Suppose there is such an element e. The fourth element in each of the

two 4-circuits must be additional distinct elements in order to avoid a U3,5-

restriction. Hence {a, b, e, f} and {a, c, e, g} are 4-circuits with f, g 6∈ Q ∪ e
and distinct. By Lemma 3.14, there is no 4-circuit containing {a, d} and e.

A 4-circuit containing d and e cannot contain a so it must contain one of b

and c. Therefore we may assume by relabelling that {c, d, e, h} is a 4-circuit

for some h 6∈ Q ∪ {e, h} but possibly h = f .
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Suppose h 6= f . We know that

u(Q,E(M)−Q) = r(Q) + r(E(M)−Q)− r(M)

= 3 + (r(M)− 1)− r(M)

= 2.

Therefore u(Q, {e, f, g, h}) ≤ u(Q,E(M)−Q) = 2. Clearly,

r(Q ∪ {e, f, g, h}) = r(Q ∪ e)

= r(Q) + 1

= 4,

as e 6∈ cl(Q) or else we would have a U3,5-restriction. Hence

r(Q) + r({e, f, g, h})− r(Q ∪ {e, f, g, h}) ≤ 2

3 + r({e, f, g, h})− 4 ≤ 2

r({e, f, g, h}) ≤ 3.

So {e, f, g, h} is a 4-circuit. Let i 6∈ Q ∪ {e, f, g, h} be an additional element

of M and let G be a 4-cocircuit containing e and i. The two other elements

of G must be an additional element from each of the 4-circuits {a, b, e, f}
and {c, d, e, h}, exactly one of which must belong to the 4-circuit {a, c, e, g}.
But G must contain an additional element from the 4-circuit {e, f, g, h}.
Therefore we may assume by relabelling that f ∈ G. The fourth element of

G must be c so that G = {c, e, f, i}. But then G intersects with Q at the

single element c, a contradiction.

Therefore h = f . This makes Q ∪ {e, f} a 3-star with arms {a, b}, {c, d}
and {e, f}. Since E(M) ≥ 9, there must be two additional elements i, j 6∈
Q ∪ {e, f, g}.

Let G be a 4-cocircuit containing g and i and R be a 4-cocircuit containing

containing g and j. Both of these 4-cocircuits must contain an additional

element of the 4-circuit {a, c, e, g}. But a, c and e are all on an arm of the 3-

star Q∪{e, f}. Since the 4-cocircuits can only contain one more element, they

must contain the other element on that arm. Hence the other two elements

of G and R must be one of the arms of the 3-star. Both G and R must
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contain a different arm of the 3-star or else their union is a U2,5-corestriction.

Therefore at least one of G and R must contain one of {a, b} and {c, d}. By

relabelling we can assume that G = {a, b, g, i} is a 4-cocircuit. There must

be a cocircuit contained in Q ∪ G − b = {a, c, d, g, i}. In order to avoid a

single element intersection with the 4-circuit {a, b, e, f}, this cocircuit must

be {c, d, g, i}, making Q∪{g, i} a 3-costar with arms {a, b}, {c, d} and {g, i}.
If R contains either {a, b} or {c, d}, then we have a U2,5-corestriction. Hence

R = {e, f, g, j} is a 4-cocircuit.

Let C be a 4-circuit containing a and i. Then C must contain exactly one

additional element from the quad {a, b, c, d} in order to avoid intersecting it at

a single element or forming a U2,5-corestriction. Hence exactly one of {b, c, d}
is in C. If b ∈ C then C contains a single element of the 4-cocircuit {c, d, g, i}.
So we must have g ∈ C. But then C intersects R = {e, f, g, j} at a single

element. Therefore one of c and d is in C. The fourth element cannot be in

R = {e, f, g, j} or else C would intersect it at a single element. Therefore

the fourth element must be some additional element k 6∈ Q∪R∪ i. But then

the 4-cocircuit containing g and k must contain one of the arms of the 3-star

Q ∪ {e, f}, creating a U2,5-corestriction when we take the union with one of

the 4-cocircuits {a, b, g, i}, {c, d, g, i} and {e, f, g, i}, a contradiction.

Corollary 3.17. Let M be a matroid with the 4-circuit-cocircuit property.

Suppose |E(M)| ≥ 9, M contains no triangles or triads, and no 4-stars or

4-costars. If M has a quad Q = {a, b, c, d}, then every element x 6∈ Q is

contained in two 4-circuits containing complementary pairs of elements of

Q, and no other 4-circuits containing elements of Q.

Proof. The result follows immediately from Corollary 3.15 and Lemma 3.16,

since every other pair of elements of Q apart from the complementary pairs,

must be copunctual to those pairs.

Let M5 be the matroid represented over GF(4) by the following matrix.



1 2 3 4 5 6 7 8 9 10

1 1 1 1 0 0 0 0 0 0

0 1 0 1 0 0 0 1 1 0

0 0 1 1 0 1 1 0 0 0

0 0 0 0 0 0 ω ω ω2 1

0 0 0 0 1 1 1 1 1 ω





CHAPTER 3. THE MAIN THEOREM 51

A geometric representation of M5 is given in Figure 3.7.
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Figure 3.7: A geometric representation of M5.

Lemma 3.18. Let M be a matroid with the 4-circuit-cocircuit property. Sup-

pose |E(M)| ≥ 9, M contains no triangles or triads, and no 4-stars or 4-

costars. If M has a quad, then M is isomorphic to M5.

Proof. Let Q = {a, b, c, d} be a quad in M . Let e 6∈ Q be an additional

element of M . By relabelling we can assume that e belongs to 4-circuits

{a, b, e, f} and {c, d, e, g}, with f, g 6∈ Q ∪ e additional element of M and

possibly equal.

Suppose g 6= f . By Corollary 3.17, the only 4-circuit other than {a, b, e, f}
containing f and an element of Q must contain the pair {c, d}. Hence

{c, d, f, h} is a 4-circuit for some h 6∈ Q ∪ {e, f, g}, making {c, d, e, g, f, h} a

3-star with arms {c, d}, {e, g} and {f, h}. Similarly {a, b, g, i} is a 4-circuit

for some i 6∈ Q ∪ {e, f, g}, making {a, b, e, f, g, i} a 3-star with arms {a, b},
{e, f} and {g, i}. The 3-stars mean that {e, f, g} spans h and i, so we must

have i = h in order to avoid a U3,5-restriction, so {e, f, g, h} is 4-circuit. Let

j 6∈ Q ∪ {e, f, g, h} be an additional element of M . A 4-cocircuit G contain-

ing e and i must contain an additional element from each of the 4-circuits

{a, b, e, f} and {c, d, e, g}. In order to avoid intersecting {e, f, g, h}, G must

contain exactly one of f and g. But then the fourth element of G must belong

to the quad Q, creating an intersection of a single element, a contradiction.

Therefore g = f . This makes Q ∪ {e, f} a 3-star with arms {a, b}, {c, d}
and {e, f}. Let h 6∈ Q ∪ {e, f} be an additional element of M . A 4-circuit

containing a and h cannot contain b or we would create a 4-star. Therefore

we can assume by relabelling that {a, c, h, i} is a 4-circuit for some additional

element i 6∈ Q ∪ {e, f, h}. There must also be a 4-circuit containing h and
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{b, d}. The fourth element of this 4-circuit must be i or else we can relabel

to get into the case where g 6= f . Hence {b, d, h, i} is a 4-circuit, making

Q ∪ {h, i} a 3-star with arms {a, c}, {b, d} and {h, i}.
Let j 6∈ Q ∪ {e, f, h, i} be an additional element of M . A 4-circuit con-

taining a and j cannot contain b or c or we would create a 4-star. Therefore

{a, d, j, k} is a 4-circuit for some additional element k 6∈ Q ∪ {e, f, h, i, j}.
Also, {b, c, j, k} must be a 4-circuit, making Q ∪ {j, k} a 3-star with arms

{a, d}, {b, c} and {j, k}. There can be no other elements in M without

creating a 4-star.

A 4-cocircuit G containing a and e cannot be the 4-circuit {a, b, e, f} or

else it would intersect the 4-circuit {a, c, h, i} at a single element. Because

Q∪{e, f} is a 3-star with arms {a, b}, {c, d} and {e, f}, G must contain one

of c and d. We may assume by relabelling that c ∈ G. The fourth element of

G must be an additional element of the 4-circuit {b, c, j, k}. We can’t have

b ∈ G or else G intersects the quad Q at three elements. Therefore we may

assume by relabelling that G = {a, c, e, k} is a 4-cocircuit. There must be

a cocircuit contained in Q ∪ G − c = {a, b, d, e, k}. But in order to avoid a

single element intersection with the 4-circuit {a, c, h, i}, a cannot be in the

cocircuit so {b, d, e, k} is a 4-cocircuit since there can be no triads. This

makes Q ∪ {e, k} a 3-costar with arms {a, c}, {b, d} and {e, k}.
A 4-cocircuit R containing a and h cannot be the 4-circuit {a, c, h, i} or

else it would intersect the 4-circuit {a, b, e, f} at a single element. Because

Q∪ {h, i} is a 3-star with arms {a, c}, {b, d} and {h, i}, R must contain one

of b and d. We may assume by relabelling that d ∈ R. The fourth element of

R must be an additional element of the 4-circuit {a, b, e, f}. We can’t have

b ∈ R or else R intersects the quad Q at three elements. By the dual of

Corollary 3.17, e cannot belong to any other 4-cocircuits containing elements

of Q. Hence f ∈ R and R = {a, d, f, h}.
There must be a cocircuit contained in Q∪R− d = {a, b, c, f, h}. But in

order to avoid a single element intersection with the 4-circuit {a, d, j, k}, a
cannot be in the cocircuit so {b, c, f, h} is a 4-cocircuit since there can be no

triads. This makes Q ∪ {f, h} a 3-costar with arms {a, d}, {b, c} and {f, h}.
A 4-cocircuit containing j and elements of the quad Q cannot contain the

pairs {a, c}, {b, d}, {a, d} or {b, c} or else we would create a 4-costar. Hence

there must be 4-cocircuits containing {a, b, j} and {c, d, j}. By the dual of



CHAPTER 3. THE MAIN THEOREM 53

corollary 3.17, these 4-cocircuits cannot contain any of e, f , h or k. Therefore

{a, b, i, j} and {c, d, i, j}must be 4-cocircuit, making Q∪{i, j} a 3-costar with

arms {a, b}, {c, d} and {i, j}.
Let C be a 4-circuit containing e and h. Then C must contain an addi-

tional element from each of the 4-cocircuits {a, c, e, k} and {a, d, f, h} But by

Corollary 3.17, 4-circuits containing e and elements of Q must contain either

{a, b} or {c, d}, and 4-circuits containing h and elements of Q must contain

either {a, c} or {b, d}. Hence C cannot contain elements of Q, so must con-

tain k and f , making C = {e, f, h, k} a 4-circuit. Similarly, {e, i, j, k} and

{f, h, i, j} must also be 4-circuits, making {e, f, h, i, j, k} a 4-star with arms

{e, k}, {f, h} and {i, j}. By the dual process, {e, f, h, i, j, k} is also a 3-costar

with arms {e, f}, {h, i} and {j, k}.
From here it is straightforward to check that M cannot have any more

4-circuits or 4-cocircuits than the ones already identified. There are also 12

5-circuits which must also be in M due to circuit elimination. Again it is

straightforward to check that M cannot have any more 5-circuits. Given

that r(M) = 5, by comparing non-spanning circuits we can now see that

M ∼= M5.

We now only have to consider matroids which don’t contain a quad. The

next lemma deals with matroids that contain a 4-circuit and a 4-cocircuit

that overlap at exactly three elements.

Lemma 3.19. Let M be a matroid with the 4-circuit-cocircuit property. If

|E(M)| ≥ 9, and M contains no triangles, triads, or quads, then M contains

no 4-circuit C and 4-cocircuit R such that |C ∩R| = 3.

Proof. Suppose for contradiction that R = {a, b, c, d} is a 4-cocircuit of M

and C = {a, b, c, e} is a 4-circuit of M . Let G be a 4-cocircuit containing

d and e. Then G must contain an additional element of the 4-circuit C =

{a, b, c, e}, so we may assume by relabelling that c ∈ G. Neither a nor b can

be in G or else {a, b, c, d, e} is a U2,5-corestriction. Hence f ∈ G for some

additional element f 6∈ {a, b, c, d, e}, so that G = {c, d, e, f}.

Claim 3.19.1. The set {a, b, c, d, e, f} is spanning.

Proof. Suppose there is some element g such that g 6∈ cl({a, b, c, d, e, f}).
Let D be a 4-circuit containing g and c. Then D must contain an additional
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element h 6∈ cl({a, b, c, d, e, f}). The fourth element of D must be an addi-

tional element of both of the 4-cocircuits R = {a, b, c, d} and G = {c, d, e, f}.
Therefore d ∈ D so that D = {c, d, g, h} is a 4-circuit. By cocircuit elimina-

tion, there must be a cocircuit contained in R∪G−c = {a, b, d, e, f}. In order

to avoid a single element intersection with the 4-circuit D = {c, d, g, h}, d
cannot be a member of this cocircuit. Hence {a, b, e, f} must be a 4-cocircuit,

making {a, b, c, d, e, f} a 3-costar with arms {a, b}, {c, d} and {e, f}.
Let A be a 4-circuit containing g and a. Then A must contain some other

element x 6∈ cl({a, b, c, d, e, f}). The fourth element of A must belong to the

same arm as a in the 3-costar {a, b, c, d, e, f}. Therefore d ∈ A so that A =

{a, b, g, x} is a 4-circuit. Suppose x = h. Then by circuit elimination there is

a circuit contained in A ∪D − h = {a, b, c, d, g}. But g 6∈ cl({a, b, c, d, e, f}),
so {a, b, c, d} is circuit. This makes R = {a, b, c, d} a quad. Therefore x 6= h,

so x must be some additional element i 6∈ {a, b, c, d, e, f, g, h}. Hence A =

{a, b, g, i}. Similarly, a 4-circuit containing g and e must contain f , and an

x 6∈ cl({a, b, c, d, e, f}) which isn’t h or i. Therefore {e, f, g, j} is a 4-circuit

for some additional element j 6∈ {a, b, c, d, e, f, g, h, i}.
Let B1 be a 4-circuit containing h and a and let B2 be a 4-circuit con-

taining j and a. Both B1 and B2 must contain some other element x 6∈
cl({a, b, c, d, e, f}), and b. In either 4-circuit, x cannot be g or i or else

{a, b, g, h, i} is a U3,5-restriction. Therefore either B1 = B2 = {a, b, h, j},
or B1 = {a, b, h, k} and B2 = {a, b, j, l} for additional elements k, l 6∈
{a, b, c, d, e, f, g, h, i, j}. Note that k 6= l or else {a, b, h, j, k} is a U3,5-

restriction. In the second case, by circuit elimination {g, i, h, k, b}, {g, i, j, l, b}
and {h, k, j, l, b} must all contain circuits. But in order to avoid a sin-

gle element intersection with the 4-cocircuit R = {a, b, c, d}, we must have

{g, i, h, k}, {g, i, j, l} and {h, k, j, l} all 4-circuits. This makes {a, b, g, h, i, j, k, l}
a 4-star with arms {a, b}, {g, i}, {h, k} and {j, l}. Therefore B1 = B2 =

{a, b, h, j} is a 4-circuit. Similarly {c, d, i, j} and {e, f, h, i} are 4-circuits. By

circuit elimination, there is a circuit contained in A ∪B1 − a = {g, i, h, j, b}.
In order to avoid a single element intersection with the 4-cocircuit R =

{a, b, c, d}, {g, i, h, j} must be a 4-circuit. Continuing like this, we can show

that {g, i, h, j} must be a quad, a contradiction.

Therefore {a, b, c, d, e, f} is a spanning set of the matroid M . Suppose f ∈
cl({a, b, c, d, e}). Then r({a, b, c, d, e, f}) = r∗({a, b, c, d, e, f}) = 4. Hence
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λ({a, b, c, d, e, f}) = 2. Let A be a subset of M disjoint from {a, b, c, d, e, f}
and containing 3 elements. By the 3-connectivity of M , λ(A) ≥ 2. But

λ(A) = λ(E(M)− A)

= r(E(M)− A) + r∗(E(M)− A)− |E(M)− A|

≤ r(E(M)− A) + (r∗({a, b, c, d, e, f}) + |E(M)− A− {a, b, c, d, e, f}|)

− |E(M)− A|

= 4 + (4 + |E(M)− A| − 6)− |E(M)− A|

= 2

≤ λ(A).

Hence λ(A) = 2. But then A is a triangle or a triad, a contradiction. There-

fore f 6∈ cl({a, b, c, d, e}).
Let A be a 4-circuit containing d and e. Then A must contain some

element of {a, b, c} and an additional element g ∈ cl({a, b, c, d, e}). By the

duals of the previous two paragraphs, {a, b, c, d, e, g} is a cospanning set of

the matroid M , and g 6∈ cl∗({a, b, c, d, e}). We know now that r(M) =

r({a, b, c, d, e, g}) = 5 and r∗(M) = r∗({a, b, c, d, e, g}) = 5. This means that

M has 10 elements. From here, a finite case check will give us a contradiction.

Now Lemma 3.13 becomes useful again as any 4-cocircuit that we choose

has the property that a 4-circuit cannot contain exactly three elements of it.

Lemma 3.20. Let M be a matroid with the 4-circuit-cocircuit property. Sup-

pose |E(M)| ≥ 9, M contains no triangles or triads, no 4-stars or 4-costars,

no quads and no 4-circuit C and 4-cocircuit R such that |C ∩R| = 3. Let

R = {a, b, c, d} be a 4-cocircuit of M . Then there cannot be an element e 6∈ R
contained in three 4-circuits, each containing a different pair of R containing

a single element a.

Proof. Suppose there is such an element e. The fourth element in each of

the three 4-circuits must be additional distinct elements in order to avoid

a U3,5-restriction. Hence {a, b, e, f}, {a, c, e, g} and {a, d, e, h} are 4-circuits

with f, g, h 6∈ R ∪ e and distinct.

Claim 3.20.1. The set {a, f, g, h} is a 4-cocircuit.
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Proof. Suppose {a, f, g, h} is not a 4-cocircuit. Let G be a 4-cocircuit con-

taining a and f . Then G already contains two elements of the 4-circuit

{a, b, e, f}. Hence b, e 6∈ G. But G must contain an additional element each

of the 4-circuits {a, c, e, g} and {a, d, e, h}. Hence one of c and g, and one

of d and h are members of G. We can’t have both g, h ∈ G as {a, f, g, h}
is not a 4-cocircuit. Also we can’t have both c, d ∈ G or else {a, b, c, d, e} is

a U2,5-corestriction. So by relabelling we can assume that g, d ∈ G. Hence

G = {a, d, f, h} is a 4-cocircuit. We can assume by relabelling that a 4-

cocircuit a and h is {a, b, g, h}. By cocircuit elimination there is a cocircuit

contained in G ∪ {a, b, g, h} − a = {b, d, f, g, h}. In order to avoid a sin-

gle element intersection with the 4-circuit {a, c, e, g}, {b, d, f, h} must be a

4-cocircuit. Similarly, there is a cocircuit contained in {b, c, d, g, h} which

must be {c, d, g, h}, and a cocircuit contained in {b, c, d, f, g} which must be

{b, c, f, g}.
Let C be a 4-circuit containing b and h. Then C cannot contain any

additional elements from the 4-cocircuits {b, d, f, h} and {a, b, g, h}. Hence

a, d, f, g 6∈ C. But C must contain an additional element from the 4-cocircuit

{c, d, g, h}. Therefore c ∈ C. Let S be a 4-cocircuit containing b and e. Then

S cannot contain a or f from the 4-circuit {a, b, f, e}. But S must contain

an additional element from each of the 4-circuits {a, c, e, g} and {a, d, e, h}.
Therefore S must contain one of c and g, and one of d and h. We cannot have

both c and d in S or else {a, b, c, d, e} is a U2,5-corestriction. We cannot have

both g and h in S or else {a, b, e, g, h} is a U2,5-corestriction. We cannot have

both c and h in S or else |C ∩ S| ≥ 3. Hence d, g ∈ S and so S = {b, d, e, g}
is a 4-cocircuit. The 4-circuit C cannot contain any more elements of the 4-

cocircuit {c, d, g, h}, so d, g 6∈ C. But C must contain an additional element

of the 4-cocircuit S = {b, d, e, g}. Therefore e ∈ C and so C = {b, c, e, h} is a

4-circuit. Similarly to how we found C, a 4-circuit containing d and f must

contain c and e. Therefore {c, d, e, f} is a 4-circuit.

We now have three 4-circuits containing c and e. These are {a, c, e, g},
{b, c, e, h} and {c, d, e, f}. Therefore a 4-cocircuit containing c and e cannot

contain any of a, b, d, f , g and h. This contradicts the fact that this 4-

cocircuit must also contain an additional element of the 4-circuit {a, d, f, e}.

Therefore {a, f, g, h} is a 4-cocircuit. A 4-cocircuit containing e and one
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of {b, c, d, f, g, h}, cannot contain a without intersecting one of the 4-circuits

at three or four elements. Hence such a 4-cocircuit must contain one from

each of {b, f}, {c, g} and {d, h} in order to avoid intersecting one of the 4-

circuits at a single element. However such a 4-cocircuit cannot contain all of

{b, c, d} or {f, g, h} or else it would intersect one of the other two 4-cocircuits

at three elements. Therefore we may assume by relabelling that {b, d, e, g}
is a 4-cocircuit.

Claim 3.20.2. The set {c, e, f, h} must also be a 4-cocircuit.

Proof. Suppose it is not. We know a 4-cocircuit containing e and f cannot

contain both g and h. It also cannot contain both g and d without forming

a U2,5-corestriction with the 4-cocircuit {b, d, e, g}. By our assumption it

cannot contain both c and h. That only leaves c and d as a possibility,

making {c, d, e, f} a 4-cocircuit. Similarly a 4-cocircuit containing e and h

must be {b, c, e, h}. By cocircuit elimination on these two 4-cocircuits, there

is a cocircuit contained in {b, c, d, f, h}. In order to avoid a single element

intersection with the 4-circuit {a, c, e, g}, this cocircuit must be {b, d, f, h}.
Let C be a 4-circuit containing b and h. In order to avoid intersecting the

4-cocircuits {b, d, f, h} and {b, c, e, h} at three or four elements, we must have

d, f, c, e 6∈ C. In order to avoid a single element intersection with either of

the 4-cocircuits {a, b, c, d} and {b, d, e, g}, we must have both a, g ∈ C so that

C = {a, b, g, h}. But then C intersects the 4-cocircuit {a, f, g, h} at three

elements, a contradiction.

We now know that {c, e, f, h} is a 4-cocircuit. Let G be a 4-cocircuit

containing b and h. If a ∈ G, then we cannot have e ∈ G or elseG shares three

elements with the 4-circuit {a, b, e, f}. Also if a ∈ G, we cannot have either

of c or g in G without forming a U2,5-corestriction with one of the 4-cocircuits

{a, b, c, d} or {a, f, g, h}. So in order to avoid a single element intersection

with the 4-circuit {a, c, e, g} we must have a 6∈ G. Similarly, e 6∈ G. Hence in

order to avoid single element intersections with the 4-circuits {a, b, e, f} and

{a, d, e, g}, we must have G = {b, d, f, h} a 4-cocircuit. Let C be a 4-circuit

containing b and h. In order to avoid a three element intersection, we must

have d, f 6∈ C. But then in order to avoid a single element intersection with

one of the 4-cocircuits {a, b, c, d}, {a, f, g, h}, {b, d, e, g} and {c, e, f, h}, C
must contain one from each of {a, c}, {a, g}, {e, g} and {c, e}. But if both
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a, e ∈ C, then C forms a U3,5-restriction with the 4-circuit {a, b, e, f}. Hence

c, g ∈ C so that C = {b, c, g, h} is a 4-circuit. Similarly, a 4-circuit containing

d and f must be {c, d, f, g}. By circuit elimination, there must be a circuit

contained in each of {b, d, f, h, c} and {b, d, f, h, g}. However deleting any

element from either of these 5-element sets gives a set intersecting the 4-

cocircuit {b, d, f, h} at three or four elements. Hence both of these 5-element

sets themselves must be circuits. A 4-cocircuit containing c and g must

contain an additional element from each of these 5-element sets. But that

creates a three element intersection with one of the 4-circuits {b, c, g, h} or

{c, d, f, g}, a contradiction.

Corollary 3.21. Let M be a matroid with the 4-circuit-cocircuit property.

Suppose |E(M)| ≥ 9, M contains no triangles or triads, no 4-stars or 4-

costars, no quads and no 4-circuit C and 4-cocircuit R such that |C ∩R| = 3.

Let R = {a, b, c, d} be a 4-cocircuit of M . Then every element x 6∈ R is

contained in two 4-circuits containing complementary pairs of elements of

Q.

Proof. The result follows immediately from Lemmas 3.13 and 3.20, taking R

as the 4-cocircuit G.

Lemma 3.22. Let M be a matroid with the 4-circuit-cocircuit property. Sup-

pose |E(M)| ≥ 9, M contains no triangles or triads, no 4-stars or 4-costars,

no quads and no 4-circuit C and 4-cocircuit R such that |C ∩R| = 3. Let

R = {a, b, c, d} be a 4-cocircuit of M . Then there cannot be an element e 6∈ R
contained in two 4-circuits, each containing a different pair of R containing

a single element a, say {a, b} and {a, c}.

Proof. This proof is basic case checking and is left to the reader.

Corollary 3.23. Let M be a matroid with the 4-circuit-cocircuit property.

Suppose |E(M)| ≥ 9, M contains no triangles or triads, no 4-stars or 4-

costars, no quads and no 4-circuit C and 4-cocircuit R such that |C ∩R| = 3.

Let R = {a, b, c, d} be a 4-cocircuit of M . Then every element x 6∈ R is

contained in two 4-circuits containing complementary pairs of elements of

R, and no other 4-circuits containing elements of R.

Proof. The result follows immediately from Corollary 3.21 and Lemma 3.22,

since every other pair of elements of R apart from the complementary pairs,

contains exactly one element from each of those pairs.
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Lemma 3.24. Suppose M is a matroid such that |E(M)| ≥ 9, M contains

no triangles or triads, no 4-stars or 4-costars, no quads and no 4-circuit C

and 4-cocircuit R such that |C ∩R| = 3. Then M contains a pair which is

not contained in both a 4-circuit and a 4-cocircuit.

Proof. Let R = {a, b, c, d} be a 4-cocircuit. We now know that every ele-

ment x ∈ R is contained in two 4-circuits containing complementary pairs of

elements of R, and no other 4-circuits containing elements of R. Again, the

rest is easy case checking and is left to the reader.

This completes the analysis. We are now ready to state the main theorem

in full. It follows easily from the propositions throughout this chapter.

Theorem 3.25. Let M be a matroid in which every pair of elements belongs

to both a 4-circuit and a 4-cocircuit.

• If |E(M)| ≥ 13, then M is a spike.

• If |E(M)| = 12, then M is a 6-spike, or is isomorphic to M3, or a

matroid attained by relaxing some of its circuit-hyperplanes.

• |E(M)| 6= 11.

• If |E(M)| = 10, then M is a 5-spike, or is isomorphic to one of T (M−4
4 )

or a relaxation of one of these matroids, or M5.

• If |E(M)| = 9, then M is isomorphic to M(K3,3) or M∗(K3,3).

• If |E(M)| = 8, then M is a rank-4 sparse paving matroid, or is iso-

morphic to M1 or M2.

• If |E(M)| = 7, then M is isomorphic to F7, F−7 , P7, F
∗
7 , (F−7 )∗ or P ∗7 .

• If |E(M)| = 6, then M is a 3-spike.

• If |E(M)| ≤ 5, then |E(M)| = 0, 1.
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