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Abstract
Auctions are an economic mechanism for allocating goods to interested

parties. There are many methods, each of which is an Auction Protocol.
Some protocols are relatively simple such as English and Dutch auctions,
but there are also more complicated auctions, for example combinatorial
auctions which sell multiple goods at a time, and secure auctions which
incorporate security solutions. Corresponding to the large number of pro-
tocols, there is a variety of purposes for which protocols are used. Each
protocol has different properties and they differ between how applicable
they are to a particular domain.

In this thesis, the protocols explored are privacy preserving secure com-
binatorial auctions which are particularly well suited to our target domain
of computational grid system resource allocation. In grid resource alloca-
tion systems, goods are best sold in sets as bidders value different sets of
goods differently. For example, when purchasing CPU cycles, memory is
also required but a bidder may additionally require network bandwidth.
In untrusted distributed systems such as a publicly accessible grid, secu-
rity properties are paramount. The type of secure combinatorial auction
protocols explored in this thesis are privacy preserving protocols which
hide the bid values of losing bidder’s bids. These protocols allow bidders
to place bids without fear of private information being leaked.

With the large number of permutations of different protocols and con-
figurations, it is difficult to manage the idiosyncrasies of many different
protocol implementations within an individual application. This thesis
proposes a specification, design, and implementation for a General Auc-
tion Framework (GAF). GAF provides a consistent method of implement-
ing different types of auction protocols from the standard English auction



through to the more complicated combinatorial and secure auctions. The
benefit of using GAF is the ability to easily leverage multiple protocols
within a single application due to the consistent specification of protocol
construction.

The framework has be tested with three different protocols: the Secure
Polynomial auction protocol, the Secure Homomorphic auction protocol
and the Secure Garbled Circuits auction protocol. These three protocols
and a statistics collecting application is a proof of concept for the frame-
work and provides the beginning of an analysis designed at determining
suitable protocol candidates for grid systems.
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Chapter 1

Introduction

Auctions are an economic mechanism for allocating goods to interested
parties. In a standard auction a single good is allocated to a single bidder,
but there are more complex auction types such as combinatorial auctions,
where a set of goods is allocated between multiple bidders. Each type
of auction is called an auction protocol and there are many, including a
large number for performing combinatorial auctions. All of the protocols
implemented for this thesis are combinatorial auctions, as they are better
suited to our target domain.

Auctions are used to distribute resources for many applications, in-
cluding selling household goods, cars, allocating trucking and bus routes,
airport takeoff and landing slots, frequency spectrums and grid comput-
ing. Grid computing is the use of distributed networks for the purpose
of resource sharing [21]. Grid systems are platforms which allow applica-
tions to engage in grid computing. For grid systems, combinatorial auc-
tions are a good solution for resource allocation, as resources such as mem-
ory, bandwidth, or storage may have an individual value but subsets of
goods may have different values for different bidders. One such system is
Nomad [9]: a middle-ware framework in which distributed applications
are divided into a series of mobile agents. A marketplace within Nomad
uses combinatorial auctions to distribute resources between agents at run-
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2 CHAPTER 1. INTRODUCTION

time. One major concern with using auctions in an environment without
a trusted party is that public information can be abused for competitive
advantage [12]. Although there are a variety of different protocols using
embedded security, it is the special case of privacy preserving combinato-
rial auctions with bid hiding which are used to solve this issue.

GAF (General Auction Framework) is a framework designed for the
development of consistent auction protocols. This thesis develops the de-
sign of GAF, and describes a proof of concept prototype. The prototype
is used to implement three privacy preserving auction protocols and an
application for analysing them. These three protocols provide case studies
for the framework but are also potential solutions for grid system resource
allocation.

1.1 Objectives

The primary objective of this project is to develop a framework for con-
sistent auction protocol development. The framework will offer services
to two developer types: protocol developers who build auction protocols
within GAF, and application developers which use a GAF implementa-
tion to leverage implemented protocols. It is important to show that GAF
is useful from both perspectives and therefore three secure combinatorial
auction protocols are implemented within GAF, and also a GAF imple-
mentation included within a protocol statistics gathering tool. The data
gathered on the different protocols will be analysed and compared for fu-
ture discussion on compatibility with grid systems.

1.2 Contributions

1. This thesis develops a specification and design of an auction frame-
work called General Auction Framework (GAF) for the structured
development of auctions protocols and applications.
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2. An implementation of GAF has been built for this project in JAVA
providing the base infrastructure for auction protocol development.
In addition the work includes an implementation of a sample auction
application called AuctionComposer which tests and gathers statis-
tics on auction protocols included as GAF protocols. The application
provides a proof of concept for the framework as it runs different
types of auctions using GAF.

3. Three case studies of secure combinatorial auction protocols have
been implemented in GAF. The first two, which were implemented
for this thesis by interpreting the original papers, are Polynomial se-
cret sharing, using dynamic programming [63], and Threshold ho-
momorphic encryption, using dynamic programming [69]. The third
is Garbled Circuits [38] which was initially built outside of GAF [40],
but has been ported into GAF by the author for this thesis.

4. Explanations and worked examples are provided for the two dy-
namic programming protocols as both original papers are difficult
to understand and missing detail required for implementation.

5. An introductory performance analysis of the three secure combina-
torial auction protocols. This analysis is intended to form the begin-
ning of more detailed future work analysing the protocols.

6. A proposed modification of the Polynomial secret sharing auction
protocol which significantly improves scalability.

1.3 Thesis Organisation

This thesis is organised as follows. Chapter two provides related work
on auction theory and framework development. Chapter three introduces
the topic through three auction scenarios before providing a high level
description of GAF. Detailed descriptions including worked examples of
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the two dynamic programming protocols are provided in chapter four.
Chapter five provides implementation information of GAF, the perfor-
mance recording tool and the three protocols. Chapter six discusses the
implementation of GAF, the protocols and a statistics gathering applica-
tion called AuctionComposer which were all developed for this thesis.
Chapter seven contains an evaluation of the protocols and framework fol-
lowed by chapter eight concluding the thesis and listing future work.



Chapter 2

Related Work

This chapter surveys related work with specific interest in combinatorial
auction protocols and framework design. Section 2.1 discusses work re-
lated to auctions, including combinatorial auctions and the winner de-
termination problem, combinatorial auction protocols, auction rules, bid-
ding languages and security concerns. The section also provides examples
of existing combinatorial auction implementations. Section 2.2 provides
work on framework design, including domain analysis, framework de-
velopment and hotspots (variable framework aspects).

2.1 Auctions

Auctions are used to distribute goods between interested parties. Inter-
ested parties are called bidders who bid on auctions controlled by auc-
tioneers. An auctioneer may sell or purchase goods, with the latter type
called a procurement auction. Auctions are useful when the value of goods
is unknown, facilitating discovery of a market value (called price discov-
ery). Auction theory [29] is the study of auctions, including the study of
different types of auctions and their possible use.

5
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2.1.1 Combinatorial Auctions

Combinatorial auctions sell multiple goods in a single auction, where bid-
ders bid on subsets of the total auction goods. When bidding in combi-
natorial auctions, goods can either be complements or substitutes. Com-
plementary goods are required by a bidder as a complete package (set of
goods). If a bidder cannot acquire all goods then there will be no inter-
est in subsets of those goods. Substitutable packages are not required as a
whole and so goods can be acquired individually [17].

2.1.2 The Winner Determination Problem (WDP)

The combinatorial auction has had much interest in the last fifty years,
of which most study has been spent on creating solutions to the winner
determination problem (WDP). The WDP is the problem of determining
an optimal allocation of goods to bidders (also called pareto efficient). This
is difficult because of the number of potential allocations. As the number
of goods increases the potential allocations grow exponentially.

Lehmann et al. explain three optimisation models for solving the WDP
with OR and XOR languages: integer linear programming, weighted sta-
ble set in graphs, knapsack and matching. The WDP is shown to be NP-
Complete which means there is most likely no algorithm which can find a
solution within a polynomial time in relation to the size of the input [37].
Under certain conditions however (by restricting some aspect of a proto-
col such as expressiveness or using approximation) some algorithms allow
tractable runtime for some auction instances [34, 37].

Müller attempts to discover what conditions make certain input in-
stances in combinatorial optimisation algorithms solvable in polynomial
time [37]. It is demonstrated that restricting bundles which can be bid
on or the values which can be represented can allow for polynomial-time
solvable solutions. Possible algorithms given were created using integer
programs and stable sets in intersection graphs.
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Sandholm studies winner determination algorithms which can be proved
to find an optimal solution [50]. When using modern search algorithms he
claims that only the minority of instances will be slow. Sandholm uses
a search tree, discussing construction, searching and improving perfor-
mance. By removing unnecessary bids (ones which will not win) as early
as possible depending on certain criteria, performance can be increased.
This can be achieved with search trees by placing cuts on nodes or edges
so that unneeded nodes are not traversed. The search algorithms given
are:

• Depth-First Search keeps the currently found optimal solution in
memory which can be used if the algorithm instance takes too long.

• Depth-First-Branch-and-Bound Search (DFBnB) is a simple algorithm
which prunes branches which are not of greater value than the solu-
tion in memory.

• A* creates the smallest possible search tree but often runs out of
memory.

• Iterative Deepening A* Search (IDA*) uses as little memory as depth-
first and DFBnB. It is claimed that IDA* is two orders of magnitude
faster than depth-first search.

Sandholm explains his implementation and customisation of a DFBnB
algorithm called Combinatorial Auction Branch on Bids (CABOB). CABOB
creates a tree on which each parent node is a bid for a bundle and has two
children. Given a node and a bid, one child of that node will correspond
to the bid being accepted and the other child as not accepted (A Branch on
Bids strategy).

When determining the winner of an auction additional constraints may
affect the outcome. More so in procurement auctions, auctioneers may
specify requirements that bidders must also bid on, such as service quality
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aspects. In multi-attribute English auctions [19] bidders offer the auction-
eer a profile, which is scored according to the attributes specified by the
auctioneer. The winner is the bidder with the highest scoring profile. The
difficulty is scoring attributes and relating the score to a price (if supplied),
i.e. does the auctioneer prefer a higher score or a lower price?

2.1.3 Auction Protocols

Protocols define the method and basic rules of an auction. Four common
auction protocols are known: English, Dutch, Sealed-Bid and Vickrey [14,
29]. The English auction is the standard ascending price auction, the price
in Dutch auctions descends from some maximum amount until a bid is
made. Bidders in sealed-bid auctions submit a single bid which is not
opened by the auctioneer until the auction ends, a vickrey auction is a
sealed-bid auction where the winner pays the second highest bid price.

For clarity a distinction is made between protocols and auction rules.
Protocols are the different types or models of auction and specify pre-
established rules. Within protocols rules may be modified and so a dis-
tinction is made: the choice of protocol for an auction is not an auction
rule, an auction rule is an addition or modification of pre-established pro-
tocol rules.

Combinatorial Auction Protocols

There are many combinatorial auction protocols including the Vickrey Clarke-
Groves auction (VCG or GVA) [4], the iterative combinatorial auction [42],
the ascending proxy auction [5], the simultaneous ascending auction [17]
and PAUSE [32].

The Vickrey Clarke-Groves auction is an extended form of the Vick-
rey auction. Once winners have been found a discount is applied to the
winning bidders’ prices (because there are multiple goods, there can be
multiple winners, hence there usually is not a single second highest price).
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There are several benefits of using VCG auctions [4]: each bidder’s domi-
nant (best) strategy is to bid according to their true values, communication
and computational cost is reduced, average revenues are no less than in
other efficient protocols and additional winner determination rules can be
added to the algorithm.

Ausubel [4] claims that in practice VCG is not often used because seller
revenue can be low or nothing and it is vulnerable to collusion which re-
duces seller revenue. By making substitute preferences for goods required,
Ausubel shows the problem is removed.

Iterative combinatorial auctions are a class of combinatorial auctions
which are run in a similar fashion to English auctions. The auctioneer pro-
vides information about the state of the winners or winnings, such as the
winning packages of goods and prices in the given round and the bidders
submit bids based on this information. Parkes [42] identifies two types
of iterative combinatorial auctions: price-based and non-price-based. In
price-based auctions, the bidders are expected to provide the auctioneer
with the price of their current bid. In non-price-based auctions, the auc-
tioneer expects bidders to supply some other representation of a bid.

The benefit of using an iterative combinatorial auction over a VCG auc-
tion is that even when substitute preferences are not used the seller rev-
enue is guaranteed to be reasonable. One potential problem with iterative
combinatorial auctions is the amount of computation and communication
required to solve the WDP repeatedly, whenever bidders need to be sup-
plied with current auction state. However Sandholm suggests an algo-
rithm to update the WDP instead of rerunning it [50].

Bid communication can also be high, as there must be at least two
rounds if the auction is round-based, or enough time for several submis-
sions of bids in a time-based protocol. Examples of implemented iterative
combinatorial auction protocols are given in [42].

The ascending proxy auction [5] is an iterative combinatorial auction
protocol. Bidders submit package valuations for packages they are inter-
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ested in to an intermediary called a proxy bidder. The prices for packages
at the start of the auction are set at some minimum amount and raised by a
set amount in each round. At the end of each round the auctioneer solves
the WDP to find a set of provisionally winning bidders. If the proxy bid-
der determines a package to be profitable and is not already a provision-
ally winning bidder, it bids the set amount for that round on behalf of the
bidder.

As it is an iterative auction the outcome is as efficient as a VCG auction
when substitute bids are present, and more efficient when not present. Bid
signaling is a technique where bidders may communicate through bids
and this is a concern in iterative combinatorial auctions. For efficiency
when proxy bidders bid on behalf on multiple bidders, they can forward
only the highest bids, reducing the number of transmissions but more im-
portantly reducing the number of possible allocations. If this mechanism
is used, care needs to be taken to avoid corrupt proxy bidders favouring
particular bidders.

PAUSE [32] describes an iterative protocol which distributes computa-
tion of the WDP (see section 2.1.2) amongst bidders. Auction rounds are
spread amongst a number of stages equal to the number of goods. Bidders
bid on individual goods in the first stage, but in subsequent stages, bidders
offer solutions to the WDP using any combination of disjoint packages
made by any of the bidders in previous stages. When creating packages,
the maximum size is equal to the round number. This version of an itera-
tive protocol requires little computation from the auctioneer, and bidders
are able to verify the outcome by comparing the offered solutions [32]. It
is possible that bidders could attempt to represent false bids as other bid-
der’s bids so verification is an important consideration. Although compu-
tation is cheap for the auctioneer (proportional to the number of bidders),
it is expensive for bidders. Not only do bidders have to generate their
valuations, they need to solve the WDP in each round.

Simultaneous ascending auctions, although not true combinatorial auc-
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tions, have been used in auctions of related goods with combined revenue
totaling over $200 billion [17]. Bids are made on separate goods as if run-
ning multiple English auctions so determining the set of winners is com-
putationally cheap, as English auctions are computationally cheap. The
problem with this approach is that bidders can win only a subset of com-
plementary goods, which may not be useful as a whole. This is mitigated
slightly by allowing bidders to withdraw bids for goods when they can-
not win complementary goods. Despite this, in practice this scheme has
proven to provide efficient allocations as little resale of goods have been
recorded [17]. Simultaneous auctions suffer from low seller revenue with
low levels of competition and are also susceptible to bid signaling. To
mitigate these problems, concealing bidder identities, setting high reserve
prices and offering preferences for small businesses has been suggested
[17].

2.1.4 Auction Rules

Auction rules are properties of an auction protocol which may be spec-
ified by the owner of the auction and they provide for variability in the
auction. Wurman et al. [65] cover some basic ground-defining bidding
rules, clearing rules (here called winner determination rules) and privacy
rules (which here is a subset of another set of auction rules: security rules).

Bidding Rules

Bidding rules govern who can bid, when bids will be accepted, what con-
stitutes a bid and what goods can be bid on.

Activity rules [3, 6, 42, 65] state how active a valid bidder must be in
order to continue bidding in an auction. The rules may stop a bidder from
further bidding on particular packages of goods or possibly the entire auc-
tion if the bidder is not active enough, or too active.

One type of activity rule requires bidders in iterative combinatorial
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auctions to bid on packages they are interested in from the first round.
The purpose behind this is to improve price discovery and minimise the
number of rounds in the auction. If bidders are allowed to bid on any
packages late in the auction they may try to hold off bidding until the
end of the auction, when there is no time for competition to grow (called
sniping) [5]. Other ways of achieving this are: in multi-unit auctions as
prices increase, quantities must not, keeping a total of goods being bid on
and ensuring that amount does not increase, recording bidder preferences
and ensuring they stay the same [5]. Each of these strategies have related
problems and loopholes which need to be considered when designing a
protocol. Another example is the auto-extend feature in traditional En-
glish online auctions such as that on the auction sites trademe.co.nz and
ebay.com.

Activity rules can also be used to reduce retaliatory bidding in combi-
natorial auctions [18]. For example if bidder A bids on a package bidder B
desires, B might retaliate by bidding on a package bidder A desires (forc-
ing the price to be increased). By restricting bidders to bidding on pack-
ages they have bid on in previous rounds, a bidder who wishes to retaliate
can only do so on packages they are already interested in.

Bid restrictions determine how a bidder can make bids, for example re-
serve prices define a minimum size of a bid for a particular good or pack-
age. This is more complex for combinatorial auctions as sets of goods may
have different minimum values than the sum of their individual goods.

Language restrictions determine what language or format the bids must
be in, see section 2.1.5. A rounding rule requires bidders to submit rounded
bids. This may be required in situations where bidders may try and com-
municate using bid signaling [42].

Timing rules restrict when bidders can submit bids. For example in
iterative round-based auctions, only one bid is accepted per round per
bidder. Subsequent bids may be thrown away or replace previous bids.

Bid improvement rules restrict the acceptance of bids based on their
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value or intent. Bid improvement rules include bid withdrawal conditions
(if allowed), minimum bid increments and reduced bids [18].

An example of a bid improvement rule is the bid dominance rule which
prohibits bidders from bidding a lower value than that which they have
previously made for the same package [65, 18].

Minimum bid increments restrict bidders to bidding a minimum amount
more than has already been bid. The goal of this is to encourage meaning-
ful bidding. It would be pointless and even detrimental for a bidder to bid
in increments of a dollar when their valuation and others bidder’s valua-
tions are thousands of dollars higher. Not only would this waste time, but
also communication and computation [17]. Increments may be specified
as a price or a percentage and may either be fixed or offered as quotes by
the auctioneer. Quotes are expected to be beaten by the bidder [65].

A reduced bidding rule allows bidders to reduce their previous bids
[41]. This allows bidders to refine their bids for packages. For instance in a
simultaneous auction where bid withdrawal is not permitted but reduced
bidding is and a bidder is interested in one of two goods but not both.
If one becomes too expensive the bidder can reduce the amount they are
willing to pay for the former and start bidding more on the second.

Withdrawal conditions are used in auctions where benefit is gained
from bidders being able to back out of bids. A good example of a protocol
which takes advantage of this is the simultaneous ascending auction. By
allowing bidders to back out of packages they have bid on, the protocol
simulates a combinatorial auction. As bidders can back out of failed at-
tempts at acquiring complementary items (refining their bids), an efficient
allocation can be found [17, 42]. Penalties may be introduced to discour-
age insincere bidding, for example Cramton suggests fining the bidder the
difference between the withdrawn bid and the final sale price [17].
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Winner Determination Rules

Winner determination rules modify the outcome of the auction in consid-
eration of factors other than prices or valuations. These rules are often
domain specific, but generalised rules are:

1. A quantity cap on the number of goods or packages a bidder can win
encourages competition [17].

2. Restricting the number of winners allows the auctioneer to only deal
with a specified number of winners [34]. For example if signing con-
tracts with multiple vendors is costly, a limited number of winners
may be beneficial.

3. Side constraints factor business rules into the WDP. Examples in-
clude legal constraints, prior contractual obligations, reputation and
delivery time [34]. In these cases bidders either need to supply ad-
ditional information with their bids, or the auctioneer needs another
method of obtaining these types of information.

Security Rules

Security rules are put in place for a variety of reasons for example verifica-
tion of auction results or bidder privacy. As secure combinatorial auction
protocols are a focus of this thesis, auction security is explored in more
depth than the other rule types in section 2.1.6.

2.1.5 Bidding Languages

The way that bids are represented in an auction, especially a combinatorial
auction, can make a considerable difference to the expressiveness of bid-
der preferences, the outcome of the auction, and the level of computation
and communication required. Two types of languages are discussed here:
logical and graphed.
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Nisan [39] presents different ways that bids can be represented in com-
binatorial auctions:

1. Atomic bids allow bidders to submit a set of goods and a valuation
of that set.

2. OR bids contain multiple atomic bids of which the bidder is willing
to accept any number of disjoint components for the total valuation
of the components.

3. XOR bids contain multiple atomic bids of which the bidder is willing
to accept one for the valuation of that atomic bid.

4. OR-of-XORs and XOR-of-ORs give a higher level of expressiveness,
allowing multiple disjoint XOR bids from a set of XOR bids or a sin-
gle OR bid from a set of OR bids to be accepted respectively.

5. OR* bids can express everything that OR-of-XORs and XOR-of-ORs
can, but is expressed in OR bids. This is achieved by providing each
bidder with a personal set of dummy goods. The XOR bid A XOR B
XOR C can be represented using dummy item Z as the OR bid AZ
OR BZ OR CZ [39].

Nisan gives some extensions: logical notation, budget limits, limits on
numbers of goods, using graphs for homogenous goods, allowing ALL
and MIN notation and k-OR, which allows a bidder to express a desire for
a maximum k number of atomic bids from an OR statement.

Instead of asking bidders for bids, in preference elicitation the auction-
eer asks bidders specific questions about packages of goods. By carefully
asking bidders different questions, an optimal allocation should be possi-
ble with less communication [51]. Questions may be phrased such as ”Do
you prefer package A or B?” or What is your valuation for package ”Y?”.

Resource description graphs (RDG) [9, 16, 11] are used to describe re-
source requirements. The party interested in purchasing resources cre-
ates an RDG which is used by bidders to decide whether to bid, what to
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bid on and how to formulate their bid. Bidders submit RDGs to the auc-
tioneer which contain some subset of the original graph corresponding to
their interests of supply. An RDG is a rooted-directed acyclic graph where
the edges correspond to resources and the vertices are used to indicate
whether a path will be accepted as a bid. Edges have attached constraints
which indicate resource requirements. The bidders RDG edges have corre-
sponding fulfillment values. A sentence is a path which can be accepted as
a bid and starts at the root of the graph and ends at an accept state. Accept
states match tasks that the agent placing the auction wishes to complete.
A grammar is available for conversion to a textual representation for use
by humans.

This language can reduce the WDP slightly (see 2.1.2) as bids are lim-
ited to the initial RDG [9] and allow bidders to easily determine if their
constraints permit them to bid. RDGs were designed for use with NO-
MAD [10] but may be useful for other systems.

2.1.6 Auction Security

Security properties of an auction protocol are factors which ensure cor-
rect performance of an auction. Correct performance includes the cor-
rect calculation of the auction allocation, but also non-functional require-
ments which may be desirable such as privacy. Security properties can be
achieved through the use of corresponding auction rules which are imple-
mented within protocols.

Secure Auction Properties

A classification of security properties for sealed-bid auction protocols is
given by Peng et al. [43]. The first two properties are required in any auc-
tion protocol but the other properties can be useful in different situations
and are offered by some protocols.
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1. Correctness ensures a correct outcome from submitted bids accord-
ing to auction rules when participants are honest.

2. Fairness is a property which varies under different auction protocols.
The definition given states that no bidder should have knowledge of
other bidders valuations before the bids are opened, a bidder cannot
modify their bid (which could be assumed to include withdrawals
and resubmitting) and a bidder cannot deny their submitted bids.
Although somewhat relevant to sealed-bid auctions, the definition
can be generalised. A better definition would state that a fair pro-
tocol is one that does not allow bidders (trustworthy or otherwise)
to deviate from protocol rules. For example a protocol may allow
bidders conditional withdrawals which would be fair as long as any
bidder can withdraw their bid, as long as they meet the requirements
and cannot otherwise.

3. Confidentiality requires that bids are not revealed. For sealed-bid
auctions, confidentiality is required until bids are opened. Anonymity
is a modified form of confidentiality where bidders identities are
kept secret.

4. Privacy in auctions requires losing bidders bids to be kept confiden-
tial to all participants including the auctioneer.

5. Public verifiability allows anyone to verify the outcome of the auc-
tion.

6. Robustness guarantees a correct outcome when a corrupt participant
attempts something malicious.

7. Price flexibility allows bids to be as precise as the participants re-
quire.

8. Protocol and Rule flexibility means the outcome will not be changed
if the protocol or rules are changed. In addition, winner determina-



18 CHAPTER 2. RELATED WORK

tion rules and approximation protocols can affect the outcome of the
auction.

There are two requirements of a secure auction protocol. An auction
must achieve the first three properties, including the new definition of fair-
ness. The second requirement is that any of the subsequent six properties
must hold if specified in the protocol rules.

2.1.7 Secure Auctions and Trust

There is little point in using an auction protocol which theoretically im-
plements one or more of the properties of section 2.1.6 if there is no trust
that the authority will carry out the protocol properly. With auctions being
financial tools by nature, there is motivation for unscrupulous parties to
cheat. A corrupt auctioneer for example in a sealed bid auction could drop
or change bids. Techniques for running secure auctions are [14]:

• Pre-existing trust: participants have pre-established trust with the
auction facilitator, such as the auctioneer. The main difficulty of us-
ing a system which relies on pre-established trust is the difficulty of
establishing trust in the first instance. Also, establishing trust is prob-
lematic in economies requiring many small scale auctions as many
trusted parties will be required. In addition, an auctioneer’s motiva-
tion may change or become corrupted by another party.

• Reputation services: reputation services can reduce the primary prob-
lem of establishing trust initially as the number of pre-existing trusted
parties required is reduced. Auction participants can refer to the rep-
utation service in order to verify collective trust of another partici-
pant, such as an auctioneer.

• Bid-encryption protocols [14, 43]: protocols using bid-encryption pro-
vide a procedure to ensure correct functioning so that no pre-established



2.1. AUCTIONS 19

trust is required. The advantage of protocols with bid-encryption is
that it is not possible for auctioneers to learn or manipulate bids.
Peng et al. give two examples: in hash function sealing bidders sup-
ply signed digests of their bids, confidentiality is guaranteed until
the bidder supplies an unencrypted bid. In encryption sealing, bids
are encrypted when submitted. If winning bids can be found with-
out decryption then they are the only bids to be revealed which pre-
serves the privacy of losing bidders.

• Threshold bid-encryption protocols: threshold trust schemes allow
for trust dependent on whether a number of auctioneers are trusted.
Some secure auction protocols take advantage of such techniques as
[55, 56, 58, 66].

2.1.8 Secure Combinatorial Auctions

Combinatorial auction protocols can have additional security issues, such
as bid signaling and pseudonymous bidder strategies:

One potential concern in combinatorial auctions and possibly multi-
unit auctions is bidder signaling. Signaling is not an issue in single item
auctions as there is little purpose and limited strategies. Bidders may en-
code messages in their bids by adding small values to bids to communicate
a message, or retaliating to particular bids. Retaliation can for example be
used by a large bidder who bids on a package of goods it is uninterested
in because a smaller bidder bid in a package it is interested in (clearly
sending the smaller bidder the message that is unhappy about something
the smaller bidder did) [18]. The possibility of bidder signaling can be
mitigated by rounding [18], concealing bidder identities, proxy auctions
[18] or possibly by setting high reserve prices and offering preferences for
small businesses have been suggested [17].

Bidders in combinatorial auctions may have a pseudonymous bidder
strategy where it is advantageous to bid under multiple identities [67].
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Bidders may attempt this to alter VCG payments [67] or to purchase com-
plementary items separately (presumably at a lower price) [41]. Yokoo in-
troduces the concept of a pseudonymous-bid-strategy-proof protocol where
the dominant strategy for a bidder is to not use pseudonymous. He proves
that there is no pseudonymous-bid-strategy-proof combinatorial auction
protocol which has pareto efficiency. Yokoo develops a pseudonymous-
bid-proof protocol called the Leveled Division Set (LDS) protocol.

Privacy Preserving WDP Algorithms

A subset of secure auctions is privacy preserving combinatorial auctions,
in which the WDP algorithm performs operations on encrypted bids. Bid-
ders submit encrypted bids of which malicious auctioneers can only deter-
mine the optimal allocation and its corresponding bids. Some component
of a bid may need to be decrypted to find prices for goods and the general
approach to this problem is to use threshold encryption to restrict decryp-
tion to a minimum. None of the following algorithms provide a method
for implementing business rules, though some could be implemented in
monetary terms.

Yokoo et al. [68] provides a combinatorial threshold bid-encryption
WDP algorithm using dynamic programming and homomorphic thresh-
old encryption. Values encrypted with homomorphic encryption can be
multiplied, retaining the product of the encrypted values when decrypted.
Vectors of encrypted values, called weights, can be created representing
bids, e.g. if e(z) represents z encrypted and z is a number not equal to
one, then the vector e(z), e(z), e(z), e(1), e(1) will represent the number
three. Notice that the number of values not equal to one represent the
total weight. If two vectors are multiplied together, the resulting vector is
the greater of the two vectors. An example is shown below.

{e(z), e(z), e(1), e(1), e(1)}
× {e(z), e(z), e(z), e(1), e(1)}
{e(z2), e(z2), e(z), e(1), e(1)}
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An acyclic directed graph is created containing all the combinations
of goods as nodes, while edges represent the highest bid for a bundle of
goods (which as shown can be found without revealing any bids). The
technique for threshold encryption is not specified, however any mecha-
nism should be possible. The winning allocation is the longest path through
the graph. Without threshold encryption and with a trustworthy auc-
tioneer this algorithm provides confidentiality, privacy and increases ro-
bustness, however with a corrupt auctioneer all properties fail. These can
be restored with threshold encryption, using multiple auctioneers. If the
number of corrupt auctioneers is below the threshold then it is not possible
to break the confidentiality.

This algorithm by itself does nothing for verifiability, and removes the
obvious form of bidders solving the WDP themselves. The scheme has
been implemented for combinatorial auctions using a single auctioneer
[14]. A modification for verification is provided by Palmer [40].

Polynomial secret sharing for combinatorial auctions [62] is another
threshold bid-encryption WDP algorithm. Instead of using homomorphic
encryption, bids are represented by polynomials. Threshold properties are
provided using polynomial secret sharing [56] which simplifies the design
as it matches the bid. Dynamic programming is used and the secure prop-
erties hold. This has been implemented for this thesis as explained in [13].

The Secure Generalised Vickrey Auction (SGVA) [63] is another se-
cure combinatorial auction WDP algorithm using homomorphic encryp-
tion and threshold encryption. SGVA does not use dynamic program-
ming. Instead the bidders each submit their bids to the auctioneer by
adding their bids to a table. The columns of the table represent the dif-
ferent ways that goods can be allocated amongst bidders. The first row
represents the total bids for each allocation and the subsequent rows rep-
resent the totals without a corresponding bidder. Finding the winners and
computing the VCG prices is easy but can be expensive. The number of
columns is given by bg where b is the number of bidders and g is the num-
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ber of goods, the number of rows is b + 1 and so the table would usually
be large, and searching lengthy. The same properties of the two secure
dynamic programming schemes hold.

A modified version of SVGA [69] does not distribute encryption amongst
multiple auctioneers but amongst the bidders instead. Prices for bundles
are calculated first and bidders do not operate on their own submitted
bids. With threshold encryption, bidders are no more able to influence the
outcome of an auction than auctioneers are in the other schemes. The al-
gorithm still uses homomorphic encryption and dynamic programming.
The secure properties still hold but there is no requirement for additional
third-parties. A problem not discussed is what to do in the case of not
enough bidders. One solution would be to add auctioneers to make up the
difference. However systems running many auctions may have to hold a
spare number of auctioneers in reserve.

Garbled circuits [38] is a method of securely computing the result of
an auction and ensuring no information, other than what is requested is
leaked. Programs (circuits) are created by a trusted third party called an
Auction Issuer (AI) and used by the auctioneer and bidders. To run an
auction, an auctioneer requests a program from the third party (an auction
issuer), in the form of a garbled circuit [66]. The auctioneer acts as a proxy
for an oblivious protocol for bidders and the AI to encrypt bids suitable
for input into the circuit. The auctioneer then passes the encrypted bids
through the circuit which returns the winners and prices paid (as specified
by the circuit).

Naor claims that circuits can be created to any auction specification
required, without exposing private information other than the result. It
is a concern that for large-scale systems, using garbled circuits would be
too difficult [68] or too large to use (Naor suggests sending the circuit on
a CD or DVD). Garbled circuits allow public verifiability while retaining
privacy. Naor claimed that it is possible to run combinatorial auctions
with garbled circuits and this has been proven to be possible [40].
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2.1.9 Combinatorial Auction Implementation

This section on combinatorial auction implementation is divided into three
parts: the first part outlines documented combinatorial auction imple-
mentations, the second describes a testing framework called CATS and
the third describes an implementation which optimises itself by choosing
from different WDP algorithms using approximation.

Industry Implementation

It has been proposed that airport take off and landing slots in the United
States of America be allocated with combinatorial auctions. Currently air-
planes do not have allocated times, but join a queue when taking off and
landing. It is believed that purchasing slots in combinatorial auctions will
make long-term strategic route planning possible [6]. Ball et al. suggests
using a simultaneous multiple round ascending auction for price discov-
ery with XOR bidding for a high level of expressiveness. There is a large
number of goods in such an auction, as each takeoff or landing slot must be
represented in time as a single good. However, time may not be required
if sold in blocks or re-occuring times such as everyday at a particular time.

In the USA, combinatorial auctions are used for procurement of truck
shipping routes. Bidders [15] bid for an expected volume of shipping
across routes they are interested in for a particular rate. Third party com-
panies hold the auctions on behalf of the companies interested in ship-
ping their goods. Complications in this type of auction come from two
directions: Shipping companies are interested in minimising the amount
of time their trucks are empty, and the complexity of requirements for the
WDP due to the large number of properties for consideration in addition
to price. In addition to route rates, purchasers may be interested in the rep-
utation of carrier, location, carrier response times or the size of the carrier.
Caplice et al. suggest that different bidding languages may be required
depending on WDP requirements.
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Experimental Implementation

iBundle [41] is an iterative combinatorial auction. There are three different
versions allowing for different types of price increments: iBundle(2) pro-
vides the same bid increment to each bidder, iBundle(3) provides different
increments for each bidder to support efficient allocations and iBundle(d)
switches between the two strategies. The bidding language used is XOR
and the WDP algorithm is DFBnB (but is intended to be interchangeable
with other algorithms). iBundle returns efficient optimal allocations [41]

Sandholm [50] claims that in practice WDP algorithms have found
optimal solutions (when distributions of packaged goods are simple) for
hundreds of thousands of items in seconds. With harder distributions he
claims optimal solutions for tens of items can be found within a minute.
Unfortunately no specifications of the software or hardware are given.

A critique [24] of the Ascending Proxy Auction [5] in regards to imple-
mentation shows potential problems: required bidding by non-winning
bidders in each round and bidding increments may lead to bidders pay-
ing more than their valuations or bidders winning goods which other bid-
ders value more highly. These problems can both occur if the final incre-
ment raises a package bid above bidder valuation. Modifications to solve
this solution include finding the greatest bids for a package, finding the
maximum increment, scaling the increment so that it reduces to a (hope-
fully) minimal error level in the final round, and adding a rollback phase
to the end of the auction for correction [24]. If bidder privacy is important,
consideration should be taken as to whether the auctioneer can learn true
bidder valuations.

Test Suites

The combinatorial auction suite (CATS) [35] is a package for generating
sets of realistic data for combinatorial auctions. Compared with other
auction protocol testing models, the CATS generators create realistic bid
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packages of (specifically not randomly) related goods [35] . Goods can be
marked as substitutes or complements. Several classes of problems are
given:

• Paths in Space are groups of goods related by linked points. An ex-
ample is trucking routes where bidders would be interested in sup-
ply routes which have collection and delivery points joined together.

• Proximity in Space considers groups of goods related by proximity.
For example, bidders may be more interested in adjacent blocks of
land to subdivide or blocks of adjacent frequency bands.

• Temporal Matching considers groups of goods related by time, such
as airport takeoff and landing slots.

• Temporal Scheduling considers time constraints on goods. The ex-
ample given is job-shop scheduling where some jobs must be com-
pleted at particular times or at some ranking in a list.

• Arbitrary Relationships are between goods which cannot be speci-
fied by a pattern. An example would be different coloured bowling
pins, individually they would probably have little value but in sets
of the same colour they would have the highest value.

2.2 Framework Design

The purpose of this thesis is to develop an application framework. Devel-
oping an application framework is somewhat different from developing
an individual application. The development approach must consider a
generic perspective across an entire domain, balancing reuse with flexi-
bility. Standard application design objectives still apply; determining sys-
tem participants and relationships, functionality and flow of control. The
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major challenge of framework design, is identifying the fixed and vari-
able aspects and designing how they are integrated. The integration be-
tween fixed and variable aspects is important, as flexibility directly relates
to what is dictated by the fixed aspects.

Bosch et al. [8] define six activities in framework development; Domain
analysis, architectural design, framework design, framework implemen-
tation, framework testing and documentation. The definition of a frame-
work design methodology used in this section incorporates the first three
activities. Domain analysis captures the functionality of the domain and
identifies requirements and framework aspects (fixed and variable). The
architectural design develops the underlying architecture of the frame-
work, for example batch sequential, pipes and filters or layers [8, 57]. In
the framework design step, the complete framework is designed, includ-
ing traditional design goals, hotspots (variable aspects) and their integra-
tion.

Framework design is an ongoing research topic and there is a large
number of publications in the area. The first set of publications outlined
focus on domain analysis for frameworks. The second set of publications
aimed to provide a full application framework development methodology
but did not detail domain analysis effectively.

2.2.1 Domain Analysis for Frameworks

Boone [7] discusses (by example) harvesting domain knowledge from ex-
isting applications, but does not include explicit steps or explanations.
Aksit et al. [1, 2] provides detailed steps on building ’knowledge graphs’
from domain knowledge developed by analysing domain literature. Hotspots
can then be determined and are mapped to an object model, but the paper
does not provide a methodology for mapping. In addition, Aksit notes
that the mapping is not straightforward as concerns may be cross cutting
which cannot be directly mapped to objects. Pree [44] identifies hotspots
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by facilitating discussion with domain experts using hotspot cards, de-
termining aspects which differ between applications. The problem with
this approach is that it is not systematic and as it is essential that the
interviewer asks the correct questions, therefore experience and luck are
both required. Hot spot integration is guided by the hotspot descriptions
and their degree of flexibility (i.e. whether the hotspot implementation is
bound at run time or configured during development). Miller et al. [36]
have developed heuristics to identify hotspots by abstracting use cases
from requirement sets of multiple applications.

There is much work on applying patterns to frameworks, for example
[25, 27, 26, 33, 48, 52, 59]. Although patterns are very useful for compos-
ing applications and frameworks, by themselves, they do not provide a
methodology. Covering all aspects of a framework with patterns, is un-
likely and so at least a standard application design methodology would
still be required. It can also be difficult for a framework developer as
using patterns requires knowledge of the different patterns, a strong un-
derstanding of the domain to be able to apply patterns, and experience
using patterns with frameworks. Riehle [47] develops frameworks using
role models. Role models specify sets of object collaborations in a system
which can be mapped to patterns [45, 46]. Role models may provide a
useful way to identify patterns, but a mapping methodology for mapping
domain knowledge to role models, and filling in any extra functionality
outside of the patterns is still required.

2.2.2 Framework Development

A methodology detailed by Schmid [53, 54] develops frameworks using
generalisation of application object models. The methodology requires
hotspots to be extracted from existing object models but does not explain
how. It does however provide a detailed process to generalise the original
object models by applying patterns using heuristics to a hotspot specifica-
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tion. The hotspot specification is the framework’s hotspots classified with
set attributes. Koskimies [31] also develops frameworks by generalising
an existing application. Instead of using patterns to generalise the appli-
cation, Koskimies asks the following two questions ’Which concepts of the
problem domain exist in variants and should be determined uniformly?’
and ’Is it possible to find a concrete concept that can be generalised into a
more abstract concept?’ The other difference is that once the framework is
generalised as much as possible, he builds a framework for each generali-
sation level, starting at the most abstract. Building many framework vari-
ants could obviously get expensive. A similar methodology to Schmid,
Sherlock [60, 64] requires domain analysis, and developing a domain ter-
minology vocabulary [28]. The vocabulary is mapped to a UML model
and then refined into a framework. It seems that no method is provided
to develop the mapping, but is left to experience.

2.2.3 Framework Types

There are two framework types: black-box frameworks require the devel-
oper to choose existing hotspot implementation while white-box frame-
works require the developer to implement new behaviour. In reality, frame-
works will neither be simply black-box or white-box. The two types are
more like different framework views [54]. Required adaption should be
minimal and reuse of existing implementation should be maximised (with-
out reducing required flexibility) to reduce application developers’ required
knowledge of framework internals.

2.2.4 Hotspot Dependencies

A hotspot dependency occurs when a hotspot cannot be replaced indepen-
dently from another [49]. There are four categories of techniques which
are commonly used to enforce hotspot dependencies [49]: closely coupled
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classes, consistent object creation, data-driven classes and meta-level con-
figuration.

Closely coupled classes contain references to each other in their def-
initions and so cannot be created independently. Consistent object cre-
ation uses factories to generate dependent types consistently without nec-
essarily requiring knowledge of underlying type. The behaviour of data-
driven classes is dependent on the data being processed and so depen-
dent hotspots, which will use the same data type to perform consistently.
Meta-level configuration is used to enforce dependencies during applica-
tion construction.

Dependency enforcement for protocol dependent hotspots must be dy-
namic because binding for all of them is at run time. They cannot be
closely coupled as each is independently created within a resource con-
tainer, potentially in a distributed environment. Closely coupled classes
also increase difficulty when trying to replace one implementation with
another, especially with a large number of classes and many references to
modify. Data-driven classes include the behaviour of each supported type,
which limits scalability and there are potentially an unlimited number of
possible protocols. There are two types of factories for consistent object
creation. Abstract factories create consistent objects of the correct type
based on the factory’s implementation. State-driven factories create con-
sistent objects, based on the factory’s state. Although scalability of state-
driven factories can be limited in the same way which data-driven classes
can be, the factory can be parameterised with objects created with reflec-
tion [49]. This was not possible with data-driven classes because they are
defined as including behaviour, although this definition could be adapted.
However the change to the structure would be incompatible with the re-
quired hotspot subsystem which requires state.
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Chapter 3

Introduction to GAF

This chapter provides an introduction to the General Auction Framework
(GAF), firstly introducing simple protocols and protocol extensions that
are prerequisite to the secure protocols used in this thesis. The examples in
sections 3.1.1, 3.1.2 and 3.1.3 build on one another with the first being the
standard English auction, followed by a sealed bid auction and a sealed
combinatorial auction. The outcome of the sealed combinatorial protocol
is computed using an auction graph and this forms the basic component
for two of three protocols used as case studies for GAF. Extensions to the
combinatorial protocol are presented in section 3.2 which are further re-
quirements of the protocols explored in chapter 4.

The framework itself is introduced in section 3.3 outlining the differ-
ent components and participants which it is made up of. This work is
extended in chapter 5, which provides the full specification for the frame-
work.

3.1 Auction Protocols

Auctions determine the optimal allocation of a set of goods to interested
parties called bidders. Bidders are auction participants who offer an amount
(their bid) for a set of goods in the auction based on their valuation of the

31
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goods they are interested in. Probably the most widely known auction
type is the open outcry, ascending bid English auction. The type of auc-
tion is the auction protocol. It defines: the different participants and their
behaviour (including participant communication), how goods are offered,
winner determination and pricing algorithms, bid representation, the auc-
tion closure rule and any protocol specific settings (required and optional).
Reasons for choosing between protocols are numerous and outside the
scope of this thesis. The reader is directed to auction theory surveys such
as [30, 29].

This section explores three different protocols, contrasting the different
attributes. The protocols are English, sealed bid first price and combinato-
rial auctions using directed graphs (an unsecured version of [68]). The En-
glish auction is an example of a single good auction with a large amount
of dynamic communication. The sealed bid auction is similar in nature
but the interaction between participants differs. The combinatorial auc-
tion protocol is an extension of the sealed bid protocol for combinatorial
auctions. The communication pattern between participants and settings
are the same as for sealed bids, but bids are made on multiple goods and
the outcome is computed using a graph.

3.1.1 An English Auction

In a standard English auction, only one good is sold (offered) per auction,
which is allocated to the bidder with the highest bid at the price of their
bid. There are three types of participants: the auctioneer collects bids, de-
termines the winner and informs the participants of the outcome; bidders
submit their bids to the auctioneer; observers (optional) watch the entire
process. Bids or bidders are not anonymous and all bids are published, so
it is publically verifiable.

There are two common forms of bidding in English auctions; either the
auctioneer announces prices and bidders inform whether they are still in-
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terested or bidders announce offers which the auctioneer records. So bids
either represent whether the bidder is still interested or the amount of-
fered. The auction closes when there is no longer any interest at a higher
price. Required protocol settings are the minimum bid and auction time-
out (the length of time to wait for additional bids before closing the auc-
tion). The only optional setting is a reserve price, which is the minimum
bid the good will sell at. The reserve price also may be publicised when it
is achieved during the auction, or it may be private to the auctioneer.

An Example Auction

Three bidders Adam, Barry and Claude each have valuations for ’Good A’
at $30, $50 and $65 respectively. The protocol settings are: a reserve price
of $30, bid increment of $10, the auction timeout is 2 minutes, the bidding
is by bidder offer and there is no reserve price.

The auctioneer announces to the bidders and observers that bidding is
open at $30. The auction proceeds as follows:

1. The auction opens with a reserve of $30.
2. The auctioneer notifies participants that the minimum bid is $30.
3. Adam sends a bid of $30 for ’GOOD A’ to the auctioneer.
4. The auctioneer notifies participants that the minimum bid is $40.
5. Claude sends a bid of $40 for ’GOOD A’ to the auctioneer.

(Adam drops out at this point).
6. The auctioneer notifies participants that the minimum bid is $50.
7. Barry sends a bid of $50 for ’GOOD A’ to the auctioneer.
8. The auctioneer notifies participants that the minimum bid is $60.
9. Claude bids $60 for ’Good A’ to the auctioneer.

(Barry drops out at this point).
10. The auctioneer notifies participants that the minimum bid is $70.
11. Two minutes pass without any new bids, the auctioneer closes the

auction and notifies (publishes) the participants that the last bidder
Claude won ’GOOD A’ as $60
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The order of bidding does not affect the outcome in this scenario. How-
ever it may if multiple bidders have the same valuation. In which case, ad-
ditional bids of the same value need to be dropped. Also note that in this
case when the bidder drops out they do not need to notify the auctioneer,
as they will no longer be considered.

3.1.2 A Sealed Bid Auction

Like English auctions, sealed bid auctions sell a single good at a time. Bid-
ders submit a single sealed bid which cannot be opened until the auction
closes. This is achieved by encrypting bids and providing the keys once
the auction is finished. When the auctioneer has the keys, it can publish
the result (picking the highest bid). The protocol can provide verification
by publishing (instead of just providing the auctioneer with the keys) both
the encrypted bids and the keys.

The participants are the same as for English auctions; an auctioneer,
the bidders and observers. But unlike English auctions, bidders each only
submit one bid. The auctioneer determines the winner after the auction
closes, and isn’t required to update the participants at any point. Once the
auction is closed the bidders publish their keys, the auctioneer decrypts
the bids and the result is found and published as per the English auction.
Obviously, observers have little to observe until the auction is closed as
nothing is known but who has bid.

The auction length is fixed, required protocol settings are the minimum
bid, auction length and encryption settings. The only optional setting is a
reserve price which will be private until the end of the auction as it cannot
be determined whether a bid is greater than the reserve until the decryp-
tion key is provided. A public reserve is not useful as a minimum bid
serves the same purpose.
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An Example Auction

In this scenario, the same three bidders Adam, Barry and Claude have the
same valuations for ’GOOD A’ as in the English auction example, $30, $50
and $65 respectively. The auction length is set at 5 minutes. There is no
minimum bid, but the reserve is set at $35. To demonstrate why verifica-
tion is important, bids are not published and it uses a trusted auctioneer.

The auctioneer announces to the bidders and observers that bidding is
open for 5 minutes with no minimum bid. The auction may proceed as
follows:

1. The auction opens for bidding, the auctioneer sets a 5 minute timer.

2. Adam sends an encrypted bid of $30 to the auctioneer.

3. Barry sends an encrypted bid of $50 to the auctioneer.

4. Claude sends an encrypted bid of $65 to the auctioneer.

5. The auctioneer’s timer expires and the auctioneer notifies partici-
pants that the auction is closed.

6. Adam, Claude and Barry each send the decryption key for their bid
to the auctioneer.

7. The auctioneer decrypts the bids, discarding Adam’s bid as it is be-
low the reserve. The auctioneer compares the other bids and then
informs the participants that Claude has won ’GOOD A’ at $65.

The problem with this version of the protocol is that a corrupt auction-
eer can easily change the auction outcome. For instance the auctioneer
could award the auction to a losing bidder or award it at any price and
no participant would be able to prove the auctioneer incorrect. In another
version of the auction, bidders publish their bids and keys (once the auc-
tion closes) to a board, which allows the scheme to be publicly verifiable.
Once the decryption keys have been published, all observers can check the
allocation the auctioneer publishes.
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3.1.3 A Combinatorial Auction with a Directed Graph

Combinatorial auctions are a type of auction used to sell multiple goods
in a single auction of which there are many different protocols [18]. A
sealed bid combinatorial auction can be run using a directed graph [68].
Unlike the first two protocols introduced in sections 3.1.1 and 3.1.2, bid-
ders submit valuations for each combination of goods under auction. Bids
are eventually added to the graph where vertices represent each of the dif-
ferent combinations of unallocated goods and edges represent allocations.
Each path through the graph is a disjoint set of the different combinations,
allocating all goods.

The communication pattern is the same as for sealed bid auctions, as
the bidders submit their bids and decryption keys once. The auctioneer
runs the winner determination algorithm once. Participant behaviour is
more complex because the participants have to value sets of goods. The
auctioneer must perform some pre-auction setup, generating the different
combinations of goods and the graph. Bidders traverse the graph and as-
sign valuations to edges of which the collection of their valuations is their
bid. The auction closes after a set time at which point the auctioneer de-
crypts the bids, adding the highest valuations (over the reserve if used) for
each edge to the graph. To determine the optimal solution, the auctioneer
finds the highest cost path through the graph from the root node (which
contains all of goods, unallocated) to an empty node with all goods allo-
cated. The auctioneer publishes the highest bid for each edge as a winning
bid.

An Example Auction

The auction offers two goods, ’GOOD A’ and ’GOOD B’ with the combi-
nations {GOODA,GOODB}, {GOODA} and {GOODB}. Two bidders,
Adam and Barry have valuations for each combination of (50, 20, 30) and
(0, 40, 15) respectively. Note that Barry is interested in one good or the
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other but not both. The auction length is five minutes.
The auctioneer generates the three different combinations of goods and

builds the auction graph. Each of the combinations becomes a vertex in
the graph, directed edges connect each edge ’A’ and ’B’ where |A| ≥
|B|/2. Duplicate paths should be removed for optimisation, along with
any edges which become disconnected. The example graph provided in
Figure 3.1 is optimised, with vertex C removed because edges (A,C) and
(C,D) provide the same path as (A,B) and (B,D). The combinations and
graph are published for retrieval by bidders. Each bidder iterates through
the different goods combinations, finding its valuation for each. The bid is
made up of the valuations referenced against the corresponding edges on
the graph.

{ }

{ GOODA }

Vertex B

{ GOODA , GOOD B }

Vertex A

Vertex D

{ GOODA , GOOD B }

{ GOODA }

{ GOODB }

Figure 3.1: Basic optimised dynamic programming graph for two goods.
Nodes represent unallocated goods, edges represent allocation of goods to
bidders.

The auctioneer publishes the combinations and graph and announces
to the bidders and observers that bidding is open (providing the combi-
nations and graph) for 5 minutes with no minimum bid. The auction may
proceed as follows:

1. The auction opens for bidding, the auctioneer sets a 5 minute timer.
2. Adam retrieves the combination and graph and forms the bid con-

taining valuations for each edge: v(A, B) = $30, v(B,D) = $20 and v(A,
D) = $50. The bid is sent to the auctioneer.
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3. Barry retrieves the combination and graph and forms the bid con-
taining valuations for each edge: v(A, B) = $15 and v(B,D) = $40. His
bid does not include a valuation for edge (A,D). The bid is sent to
the auctioneer.

4. The auctioneer’s timer expires and the auctioneer notifies partici-
pants that the auction is closed.

5. Adam and Barry each send the decryption key for their bid to the
auctioneer.

6. The auctioneer decrypts the bids and adds each edge valuation to
the graph where there is no valuation or the current valuation is
lower. The graph is provided in Figure 3.2. The crossed out valu-
ations were either dropped or replaced by higher valuations. The
auctioneer finds the path from vertex A to D which is (A,B) and
(B,D), with Adam winning ’GOOD B’ and Barry winning ’GOOD
A’. The auctioneer publishes the result.

{ }

{ GOODA }

Vertex B

{ GOODA , GOOD B }

Vertex A

Vertex D

{ GOODA , GOOD B }

{ GOODB }

Barry @ $15

{ GOODA }

Adam @ $50

Adam @ $30

Barry @ $40

Adam @ $20

Figure 3.2: Basic optimised graph for two goods with bidder valuations.
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3.2 Dynamic Programming for Combinatorial

Auctions

The combinatorial auction protocol introduced in the previous section can
be adapted to use a method of determining the optimal path, called dy-
namic programming [62]. The main advantage of dynamic programming
is that it reduces the search space by removing paths which can not be
optimal, but it is also a prerequisite to the first two secure combinatorial
protocols studied in chapter 4.

Dynamic programming techniques solve complex problems by recur-
sively solving subproblems. A graph can be used when each potential
solution can be represented by a path on a graph with subproblems as
sub-paths between two nodes. The optimal path is found by determining
optimal sub-paths until the optimal path between the graph’s source and
destination node is discovered. The optimal value of a node is the most op-
timal of the incoming edges with their corresponding source nodes. This is
possible because the optimal path between any node on the optimal path
and the start node must be optimal. The search space is therefore reduced
as not all potential solutions require searching, i.e. paths can be ignored
where sub-paths can be discounted.

Dynamic programming with a graph can be used to solve the combina-
torial allocation problem by representing allocations of goods to bidders
on edges [62]. The optimal edge f(a, b), between two nodes na and nb is
the edge between the two nodes with the highest bid. The optimal value
of node nb, f(b), is the sum of the optimal edges from the start node n0 to
nb, which is equivalent to the highest f(a) + f(a, b) for all incoming edges
(a, b). An optimal node value can only be discovered once the optimal val-
ues of each source node on incoming edges has been found. Note that the
value of the start node f(0) = 0.

Example: Four goods {g1, g2, g3, g4} are offered to bidders, for the dif-
ferent combinations {g1}, {g2}, {g1, g2}, {g3, g4}, and {g1, g2, g3, g4}. An
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example auction graph is provided by Figure 3.3. It shows the edges be-
tween nodes with the highest bid, with the others trimmed. Two bidders
b0 and b1 each value a subset of the possible combinations:

Bidder Bids

{g1} {g2} {g1, g2} {g3, g4} {g1, g2, g3, g4}
b0 4 2 7 1 9

b1 1 5 6 − −

The optimal values for each node are recursively calculated and the opti-
mal path is discovered. For this example all nodes except n3 have a single
incoming edge simplifying evaluation. The optimal values paths for each
node are:

Node n0 n1 n2 n3

Optimalvalue 0 1 6 10

Optimalpath {0} {0, 1} {0, 1, 2} {0, 1, 2, 3}

When f(0), f(1) and f(2) have been determined, f(3) can also be deter-
mined. For each of the edges between n3 and the other nodes, the total
values are compared to find the optimal path from n0 to n3. The values to
compare are 9, 8 and 10 for {(0, 3)}, {(0, 1), (1, 3)} and {(0, 1), (1, 2), (2, 3)}
respectively. With standard pricing (see section 4.4.3), bidder b0 is awarded
{g1, g3, g4} at $5 and b1 is awarded {g2} also at $5.

3.2.1 Edge Traceback

Instead of storing the optimal path during evaluation, an edge traceback
step can be added to the process. During edge traceback the graph is tra-
versed backwards, and optimal edges are detected where f(a) + f(a, b) =

f(b) from an optimal node nb.
This is the method used for the two secure schemes SGVA (section 4.2)

and polynomials (section 4.1) as the optimal edges cannot be determined
during an initial pass through the graph. This technique can also be used
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b0
b0

b0

b0

{}

{g1, g2, g3, g4}

{g1, g2}
g3, g4}

{g1, g2,
{g1}

{g2} {g1}{g3,g4}

{g1, g2}

$9

$7

$5 $4$1 b1

0 1 2 3

Figure 3.3: An example auction solved using dynamic programming. The
highest bid for an allocation between nodes is provided with the bidder
and amount bid.

to reduce the memory requirement in large graphs, as the optimal path
needs to be stored only once, as opposed to storing an optimal path for
each node.

3.2.2 Secure Dynamic Programming

Secure dynamic programming finds the highest cost path without reveal-
ing valuations for edges which are not on it. As dynamic programming
requires only addition and comparison of values, if these are provided by
an encryption scheme then dynamic secure programming is possible.

3.2.3 Graph Generation

Auction graphs can either be generated before the auction is run to be
advertised with an auction description, or when bids are received. If an
auction is advertised with a graph, the bidders relate bids to edges and
the auctioneer adds the bids to the correct edges. If there is a node index,
this is simple and efficient. On the other hand, it may require trimming
before evaluation to remove edges containing combinations without bids.
If the graph is built just before evaluation, the auctioneer can create an op-
timal graph once, but needs to search through all the bids to find matching
combinations.
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For the secure auction schemes discussed in this thesis, the graph must
be created in advance as separate evaluators are assigned to nodes with
specific encryption information. For the remaining part of this thesis, the
graph is assumed to be generated in advance, although it does not affect
the graph generation technique.

In [62, 68] the graph generation technique used creates a node for each
combination of goods under offer. An edge connects node na to nb where
the goods from each: G(a) and G(b) respectively, meet the following cri-
teria: G(b) ⊂ G(a) and |G(b)| ≥ |G(a)|/2. The set of goods allocated on
the edge is the difference between the two nodes G(a) \G(b). This method
generates an inefficient graph as duplicate paths and unnecessary nodes
are included in the graph, increasing generation and graph traversal cost.
An example graph for two goods using this method is shown in Figure
3.4, with an optimised version in Figure 3.5. An optimised graph can be
created by trimming the excess edges and nodes from the graph. This
however can be memory intensive and time consuming as determining
duplicate paths in graphs requires a full traversal of each path, storage for
discovered paths, and a search through the storage for each path.

{}

{g1}

{g2}

1

2

{g2}

{g2}

{g1, g2}

{g1}

0 3{g1, g2}

{g1}

Figure 3.4: Naive graph.

{}

{g1}

1

{g2}

{g1, g2}0 2

{g1}

{g1, g2}

Figure 3.5: Optimal graph example 1.

A graph generation technique is now introduced, which generates an
optimal graph in the first instance. To evaluate a combinatorial auction,
every possible allocation of goods must be represented by a path through
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the graph. Allocations are generated of disjoint allocation subsets. Each
allocation is then recursively added to the graph. The source node for the
allocation subset is the previous node added, or the node containing all
goods if it is the combination’s first allocation subset. The unallocated set
contains the goods within the destination node, which is created if one
containing the goods does not already exist. If there is already an edge
between the source and destination nodes, then this allocation is skipped
and the process continues with the next allocation subset and the destina-
tion node. When the end node is reached, the next allocation is added to
the graph and this continues until all allocations have been added.

Example: Three goods are under auction {g1, g2, g3}. The different
allocation subsets are: {g1}; {g2}; {g3}; {g1, g2}; {g1, g3}; {g2, g3} and
{g1, g2, g3}. The different allocations are shown in Figure 3.6.

The initial graph is created with the start and end nodes containing
the sets of goods {g1, g2, g3} and {} respectively. For the first subset of the
first allocation, a node is created for the unallocated goods {g2, g3} and the
first edge spans from the start node to this new node allocating {g1}. The
second edge placed spans from the node just created to another new node
containing {g3} allocating {g2}. The final edge for this allocation spans
from the second node to the end node and allocates the remaining good
{g3}. The complete optimal graph is shown in Figure 3.7.

An alternative solution is to store graph templates for frequently used
auctions. Optimal templates can be generated in advance and loaded
when required.

3.3 An Introduction to GAF

Without a unified approach and reusable code, auction protocol develop-
ment and system integration requires strenuous repetitive development.
With many different auction protocols differing significantly, but with the
same goal, auction systems can benefit from a general auction framework.
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Allocations

1 {{g1}, {g2}, {g3}}
2 {{g1}, {g2, g3}}
3 {{g2}, {g1, g3}}
4 {{g3}, {g1, g2}}
5 {{g1, g2, g3}}

Figure 3.6: Possible allocations.

{ }
{g1, g2, g3}0

{g3}{g2, g3}

{g1, g3}

{g2}

{g1} {g2} {g3}

{g2, g3}

{g1, g3}

{g1, g2}
{g3}

{g1, g2, g3}

{g1, g2}

1

2

3

4

5

Figure 3.7: Optimal graph example
two.

Frameworks define the variable and persistent aspects of a system do-
main, providing a consistent design and reusable components. GAF is
a framework which facilitates reuse of protocol utilities and basic com-
ponents for protocol developers, as well as allowing protocol integration
within different systems for minimum effort.

The varying aspects of a framework are called its hotspots [49, 54],
while the persistent aspects are called its frozen spots [54]. Protocol de-
velopers build their protocols within a GAF implementation by filling in
protocol hotspots. Application developers can then easily include differ-
ent protocols within applications as well as being able to switch between
protocols dynamically. This reduces effort during protocol development,
protocol integration and testing. Although it is not possible to make auc-
tion protocols within GAF completely plug-and-play for every application
without restricting protocols, integration of each protocol should require
little to no additional work.

Protocols implemented in GAF are defined in terms of auction partici-
pants and resources. Auction resources are distributed components which
run an auction, such as an auctioneer or evaluator. Some resources are
prescribed but additional types can also be added as required. Figure 3.8
shows the different resources and participants divided between the frame-
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work, protocol and application. The framework contains the system inter-
faces, frozen spot implementations and default hotspot implementations.
Protocols implement the majority of the framework hotspots, while an ap-
plication using GAF implements bidders and auction owners, as well as
optional observers and/or verifiers.

publisher
Bid

Evaluator publisher
Result Verifier

Observerpublisher
Auction

Resource

Auctioneer Auction
creator

Bidder
Auction
owner observer

External
Verifier
External

Participant Protocol
hot spot

bid

Fetch Publish

result

Fetch

result

Publish
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Fetch bid

Protocol message

Contains *

Figure 3.8: GAF overview. For brevity the diagram does not show auction-
eer, auction creator, bid publisher, auction publisher, evaluator and result
publisher as resources, nor observer and verifier as participants. For a list
of framework hotspots see section 5.4.

The different auction activities are divided into six required resources
with separate interfaces. The auction creator instantiates the auction, set-
ting up the different resources provided by the application via the owner.
It is the auction creator that the auction owner interacts with. An auction-
eer is responsible for the collection of bids and auction facilitation such as
managing phases throughout the auction. The bid publisher records bids,
the result publisher records the result and the auction publisher manages
events. It may be the case that a protocol only requires one resource which
implements all of the interfaces. However separation of concerns is im-
portant as some protocols need to distribute behaviour. For instance, a
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protocol implementation may require one auction manager but multiple
auctioneers located throughout a distributed system (for example, near
different groups of bidders). Another probable example would be a re-
source implemented by plural servers for redundancy.

Resources communicate using standard interfaces as well as custom
events and protocol messages. Although the framework may be used in
a variety of different distributed applications, using different communi-
cation types (such as Sockets or Remote Method Invocation), the protocol
developer ignores the method of communication.

GAF offers several low level services to facilitate auction protocol de-
velopment. Two examples are authentication and authorisation, both im-
portant for auction systems. Resources should be able to identify partici-
pants making requests, as well as work out what they are authorised for.
Although it has not been developed yet, future development of GAF will
include a sub-framework to accomplish this.

As a proof of concept three protocols have been included within GAF;
combinatorial auctions using threshold homomorphic encryption [13, 69],
combinatorial auctions using threshold polynomials [13, 62], and Garbled
circuits for combinatorial auctions [38]. A prototype application using
GAF to test and collect statistics for auctions of each type are presented
in chapter 7.



Chapter 4

Secure Combinatorial Auction
Protocols

There are many secure auction protocols offering different types of secu-
rity [40]. One such type is privacy-preserving auction protocols. Privacy-
preserving auctions maintain bidder privacy for valuations of non-winning
bids. This chapter describes three privacy-preserving combinatorial se-
cure auction protocols which have been included as case studies within
GAF. The first two protocols were implemented for this thesis, both using
dynamic programming with graphs, while the third was implemented by
Palmer [40] and wrapped to be used in GAF.

Section 4.1 describes a combinatorial auction protocol, which repre-
sents bidder valuations in the degree of a polynomial [13, 62]. The polyno-
mials are divided between several evaluators using a method which pre-
vents bid resolution without evaluator concensus. Section 4.2 describes a
similar protocol [14, 69], which represents bids as a vector of values en-
crypted with a threshold cipher. Similarly to the polynomial protocol,
multiple evaluators must agree to decrypt bids. Section 4.3 outlines a pro-
tocol where the bid processing uses a garbled circuit of logic gates [38, 40].
This protocol is built in such a way that three parties must collude in or-
der to decrypt bids that should not be decrypted. Section 4.4 discusses

47
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limitations of each of the protocols.

4.1 Case Study One: Polynomial Auction Proto-

col

Suzuki and Yokoo [62] developed a secure combinatorial auction proto-
col where bids are encoded in the degree of a polynomial. The protocol
is a (t, n) threshold scheme where at least t of n evaluators are required
to decrypt bids. Bids are divided between evaluators using well known
threshold polynomial techniques [56] into evaluator shares which are the
polynomials solved with unique evaluator resolve values. If enough eval-
uators publish their shares, bids are reconstructed using interpolation by
consensus. This required consensus provides the security of the protocol,
where decryption should only take part at specific points of the protocol.

Dynamic programming is possible using polynomial encryption, as the
largest degree of two polynomials can be found using addition, and the
sum of the degree of two polynomials found using multiplication. Each
auctioneer finds the total of the graph using their shares with a combina-
tion of addition for alternate paths and multiplication to add edge costs to-
gether. Auctioneers cooperate during a traceback step to determine poly-
nomial degrees for optimal edges using Lagrange interpolation.

Some aspects of the protocol are not adequately described in the orig-
inal literature but the scheme is better described in [13, 12] which is re-
produced here with more detail. A description is provided with a worked
example illustrating the scheme.

4.1.1 Protocol Description

This description divides the scheme into five phases, exploring each with
a worked example. The phases are: initialisation; bid submission; evalua-
tor setup, total value determination and optimal path determination.
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Phase 1: During initialisation, information is published by the auction ini-
tiator and evaluators for bid generation.

When evaluators are created, they each generate a unique resolving value.
This value is published to a bulletin board for solving polynomials by bid-
ders and mask publishers. Other information published for bidders in-
cludes the details of goods under auction, the different combinations of
goods available and an initial auction graph. A constant value c is pub-
lished for weight resolution as well as the threshold value t.
Example: Ten evaluators {e1, e2, . . . e9, e10} publish resolve values {1, 2, 3,
. . . 9, 10}. The auction initiator publishes details of two goods {g1, g2}, the
three available combinations ( {g1}, {g2}, {g1, g2} ), an initial graph and the
constant value 100. The threshold value and maximum polynomial coeffi-
cient are both set as 1 for simplicity. These details are illustrated in Figure
4.1. Two mask publishers are used.

{}

{g1}

Resolve values = {1, 2, 3, ..., 9, 10}

Goods = {g1, g2}

Combinations = ( {g1}, {g2}, {g1, g2} )

Constant = 100
1

{g2}

{g1, g2}2 0

{g1}

{g1, g2}

Max coefficient = 1

Threshold = 1

Figure 4.1: An initial graph for two goods.

Phase 2: After the initilisation phase, bidders generate and submit bids to
each evaluator.
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Bidders calculate their valuations for all combinations of goods they are
interested in. Iterating through the edges in the published graph, a weight
is generated based on the valuation for each edge’s goods combination. To
form the weight w a threshold modifier t(j − i) is added to the valuation
where j and i are the identification numbers of the source and destination
nodes respectively. The threshold modifier increases the number of shares
required to interpolate by the threshold t, and it is multiplied by the edge
identifier difference so that the total amount added is equal on each path.

A bid is generated for each evaluator for each set of goods that the
bidder is interested in: a random polynomial of degree w and constant 0
solved with the evaluator’s resolve value. The solved value s is sent with
the node identifiers to the evaluator. As each evaluator receives bids, a
new edge is created on their copy of the graph from j to i with weight s.
Example: Valuations for two bidders b0 and b1 for the three combinations (
{g1}, {g2}, {g1, g2} ) are shown in Table 4.1. The bidders iterate through the
graph, creating weights by adding the threshold modifiers shown in Table
4.2. The polynomials used in this example have coefficients of one, which
compromises security by reducing attacker search space but simplifies the
example. The random polynomials for b0 and b1 are:

b0 =

(2, 0) x6 + x5 + x4 + x3 + x2 + x

(2, 1) x3 + x2 + x

(1, 0) x2 + x

b1 =

(2, 0) x4 + x3 + x2 + x

(2, 1) x2 + x

(1, 0) x2 + x

The two bidders resolve their polynomials with each evaluator’s re-
solve values as shown in table 4.3. and send them to each respective eval-
uator. The evaluators store their bids on their own copy of the auction
graph. The graph maintained by evaluator e1 is shown in Figure 4.2.
Phase 3: Evaluators setup for evaluation, calculating their shares of the
optimal value of each node.
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Bidder {g1} {g2} {g1, g2}
b0 1 2 4
b1 1 1 2

Table 4.1: Bidder valuations.

Edge b0 b1

(2, 1) 2 + 1 (2 - 1) = 3 2
(2, 0) 4 + 1 (2 - 0) = 6 4
(1, 0) 1 + 1 (1 - 0) = 2 2

Table 4.2: Bidder edge valuations
with added threshold modifier.

Bidder b0 Bidder b1
Evaluator (2, 1) (2, 0) (1, 0) (2, 1) (2, 0) (1, 0)

e1(1) 13 + 12 + 1 = 3 6 2 2 4 2

e2(2) 23 + 22 + 2 = 14 126 6 6 30 6

e3(3) 33 + 32 + 3 = 39 1092 12 12 118 12

. . . . . . . . . . . . . . . . . . . . .
e9(9) 93 + 92 + 9 = 819 597870 90 90 7380 90

e10(10) 103 + 102 + 10 = 1110 1111110 110 110 11110 110

Table 4.3: Bids for the two bidders b0 and b1. The first column for b0 shows
the full calculation.

The optimal value of the auction is the sum of bidder valuations on
the greatest path through the graph. As the bids are distributed amongst
the evaluators, valuations must be reconstructed by interpolating shares
published by evaluators. An evaluator’s share of the optimal value is the
sum of the paths through their copy of the graph. There are two properties
of polynomials that make the calculation possible:

• The degree of a polynomial resulting from the addition of two poly-
nomials is equal to the larger degree of the two.

• The degree of a polynomial resulting from the multiplication of two
polynomials is equal to the sum of the degrees.

An evaluator’s share is found using dynamic programming and then
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{}

{g1}

1

{g1, g2}2 0

v(b0) = 6

v(b0) = 2v(b0) = 3

v(b1) = 4

v(b1) = 2v(b1) = 2

Figure 4.2: Graph maintained by e1 after receiving bids from b0 and b1.

published. The sum of all paths in the graph is the cost of node n0 denoted
f(0). Secure dynamic programming for this protocol works as follows:
iteratively calculate the cost of each node from root node nN (where N

is the number of nodes). The node cost f(x) is the sum of the cost of
all alternative paths to node nx from node nN . The cost of a path from
node nx to nx−1 where the nodes are connected by at least one edge is
f(x− 1) multiplied by the sum of the cost of all alternative edges between
the nodes. Note that f(N) = 0.
Example: Evaluator e1 calculates its share of the node costs.

f(2) = 0

f(1) = 3 + 2 = 5

f(0) = ((2 + 2) ∗ 5) + (4 + 6) = 30

Node costs for all evaluators are given in Table 4.4.
Phase 4: Binary search is used to discover the optimal value.

Using Lagrange interpolation, a polynomial can be recovered with a de-
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Evaluator f(2) f(1) f(0)

e1 0 5 30

e2 0 20 396

e3 0 51 2436

. . . . . . . . . . . .
e9 0 909 768870

e10 0 1220 1390620

Table 4.4: Evaluator node costs.

gree of one less than the number of shares used. The constant value of the
polynomial is used as the indicator in a modified form of binary search.

As the threshold modifier is added to each of the edges, the sum of
the modifiers is the minimum optimal value. The initial smallest possible
optimal value s therefore is t(N − 1) and the maximum optimal value m

is E − 1. A recursive binary search calculates the current search value d =

b(m−s)/2c+s and requests d+1 evaluators publish masked shares. Masks
are created by M masking agents who generate a random polynomial of
degree d+ 1 and constant c. If the lagrange polynomial using d+ 1 shares
has a constant equal to M ∗ c, the optimal value is less than or equal to d

and m becomes d−1. If the constant is not equal to m∗ c the optimal value
is greater than d and s becomes d+1. Without being able to directly check
whether d is the optimal value, it is found where d ≤ o and d+ 1 > o.

The optimal value is different from the actual outcome of the auction as
valuations are modified in step two with the threshold modifiers. The total
price paid will be d− (t(N − 1)), i.e. subtract the threshold modifier. Only
one evaluator needs to perform and publish the interpolation, although
other evaluators may wish to verify that the correct result is published.

Example: The minimum optimal value is 0, the maximum is 9 and ini-
tially d = 4. Masks are sent to the evaluators from the mask publishers.
The masks are polynomials of degree 4 and coefficient 1 (again for sim-
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plicity) which are resolved with the respective evaluator’s resolve value.
Because random coefficients are not used in this example, both mask pub-
lishers generate the same masking polynomial x4 + x3 + x2 + x and the
evaluators have the following total masks:

e1 208

e2 260

e3 440

. . . . . .

e9 14960

e10 22420

Each evaluator then adds the total masking value to their share of the op-
timal value and publishes it. If evaluators e1, e2, e3, e9 and e10 publish their
shares then the published shares are:

e1 30 + 208 = 238

e2 396 + 260 = 656

e3 2436 + 440 = 2876

e9 768870 + 14960 = 783830

e10 1390620 + 222420 = 1413040

The lagrange polynomial from these five points is 1988x4 − 15211x3 +

46185−60334x2+28480. As the constant is not equal to 100, o > 4. Table 4.5
shows the binary search for the optimal value which finds that the optimal
value is 6.
Phase 5: An optimal path is traced from node nN−1 to the root node n0

using binary search.

Once the optimal value is discovered, an optimal path can be traced to
discover an optimal allocation of goods. There can be multiple optimal
paths and allocations but this protocol returns the first found. It is possible
to modify the protocol to find all of the optimal paths but they would
be meaningless without revealing more information (i.e. the bidders or a
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d Polynomial Constant
4 195x4 − 1293x3 + 3784x2 − 4808x+ 2360 2360 o > 4

7 2x7 + 3x6 + 5x5 + 10x4 + 12x3 + 8x2 + 4x+ 200 200 o ≤ 7

5 26x5 − 165x4 + 747x3 − 1616x2 + 1768x− 520 −520 o > 5

6 3x6 + 5x5 + 10x4 + 12x3 + 8x2 + 4x+ 200 200 o ≤ 6

Table 4.5: Using binary search to find the optimal value.

time stamp which could be used to match bids to bidders). This would
contradict the primary goal of privacy preservation.

As the cost of an optimal node nx is the greatest path cost from nx to the
root node, the cost of an optimal edge added to the cost f(y) of a connected
node y is f(x). Starting with x = N − 1, and f(N − 1) = o, an optimal path
is found by iteratively evaluating the cost of each edge from x added to
the cost of the destination node. Binary search as in step four is used to
check edges from x for f(x).

Edge costs will differ from the actual cost and are modified accordingly
by subtracting the threshold modifier.

Example: The edges from n0 are searched and all but (2, 0) are not equal
to f(0). Once this edge is found the search ends because the destination
is n2. The actual cost is 6 − (1(2 − 0)) = 4 and the optimal allocation is
published as b0 wins {g1, g2} at $4.

4.2 Case Study Two: Homomorphic Auction Pro-

tocol

In a Homomorphic encryption scheme there exists an algebraic operation
which is transitive from cipher-text to its corresponding plain-text. The
Homomorphic auction protocol [14, 69] encrypts bids as vectors of homo-
morphic ciphers which are transitive on multiplication. Vectors are con-
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structed of a series of encrypted public constant values followed by a se-
ries of encrypted 1s. Such vectors can be multiplied together, resulting in
a vector of the largest value. This technique allows paths in an auction
graph to be compared without complete decryption. With these vectors
and other techniques described in this section, the protocol implements
secure dynamic programming.

To preserve the privacy of losing bids, the auction protocol uses a thresh-
old homomorphic encryption cryptosystem. Each node in the auction
graph has a set of assigned evaluators, each set having a shared public
key and a private key for each evaluator. Bids are made for each edge
encrypted with the public key of the destination node of the evaluation
group. Evaluators collaborate when required to decrypt vectors or vector
elements.

4.2.1 Vector Preliminaries

Representation

Homomorphic bid vectors are made from a series of encrypted constants
(not equal to one) followed by a series of encrypted 1s. Each element in
the vector is encrypted with the public key PK+ of the relevant evaluator
group. The value of the vector is equal to the number of elements not equal
to one. For example, a bid of three in a vector with a maximum bid of five
and constant 2 is represented by: PK+

0 (2), PK+
0 (2), PK+

0 (2), PK+
0 (1), PK+

0 (1).
It is important that the homomorphic cryptosystem used must produce
unique ciphertext each time the same value is encrypted so that vectors
are indistinguishable.

The maximum bid is the length of the vector which must be decided
before bidding begins. Variable length vectors could indicate value.
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Comparison

Vectors need to be compared for alternate bidders on edges and alternate
paths to nodes. Two vectors cannot be directly compared without decryp-
tion, instead a vector encrypting the higher of two values can be computed
with multiplication if they have been encrypted with the same key. For in-
stance, if two bidders bid four and two for the same edge then they would
be multiplied as follows:

PK+
0 (3), PK+

0 (3), PK+
0 (3), PK+

0 (3), PK+
0 (1) = 4

× PK+
0 (3), PK+

0 (3), PK+
0 (1), PK+

0 (1), PK+
0 (1) = 2

PK+
0 (9), PK+

0 (9), PK+
0 (3), PK+

0 (3), PK+
0 (1) = 4

The result shows that the highest of the two vectors is four. The new vec-
tor can now be decrypted, and the value of the higher vector determined
without knowledge of what vector it is.

Addition (Left-shifting)

A constant value v can be added to an encrypted vector by left shifting
the vector by the value required. v elements are removed from the right
side, and v public constants encrypted with the same key as the vectors
are added to the left. A modified vector must be ’randomised’ by multi-
plying unchanged elements by an encrypted one. When a modified vector
is added to the bulletin board, randomisation prevents participants from
counting the number of modified elements.

Cryptosystem

The implementation of homomorphic vector encryption in this thesis uses
the ElGamal cryptosystem [55]. The original Elgamal specification can be
modified and used as a threshold cryptosystem [56].
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4.2.2 Protocol Description

Phase 1: An auction graph is generated as per section 3.2.3. An auctioneer
and evaluators are chosen, and the evaluators assigned nodes. Dependent
on security requirements, there are n evaluators per node, where a thresh-
old t of them is required to decrypt bids on incoming edges. For each node
v, a shared public key PK+

v is generated along with n private keys PK−1
v,

PK−2
v ,..., PK−n

v for each evaluator. Information published for bidders are:
the graph with public keys mapped to edges, the bid vector length B and
a common value C used for encryption.

Example: An optimised graph is shown in Figure 4.3, created for two
goods; {g1, g2} and three bundles; {g1}, {g2} and {g1, g2}. The graph is
published with B = 5 and C = 3.

{g1, g2} {g1} {}

{g2} {g1}

0

{g1, g2}

2 1

B = 5

C = 3

Figure 4.3: An optimised graph for two items.

Phase 2: Bidders value each of the offered bundles, generating bids for
each edge containing a bundle they are interested in and submit bids to
the auctioneer. A bid contains a homomorphic bid vector encrypted with
public key PK+

v of the edge (the shared public key of the destination
node) with a reference to the edge. If the bidder’s valuation is v, the homo-
morphic bid vector contains C encrypted, v times followed by 1 encrypted
B − v times.

Example: Bidders b0 and b1 generate valuations and bid vectors for each
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Edge Goods Valuation Bid Vector

b0

(n2, n0) {g1, g2} 4 PK+
0 (3), PK+

0 (3), PK+
0 (3), PK+

0 (3), PK+
0 (1)

(n2, n1) {g2} 2 PK+
1 (3), PK+

1 (3), PK+
1 (1), PK+

1 (1), PK+
1 (1)

(n1, n0) {g1} 1 PK+
0 (3), PK+

0 (1), PK+
0 (1), PK+

0 (1).PK+
0 (1)

b1

(n2, n0) {g1, g2} 2 PK+
0 (3), PK+

0 (3), PK+
0 (1), PK+

0 (1), PK+
0 (1)

(n2, n1) {g2} 1 PK+
1 (3), PK+

1 (1), PK+
1 (1), PK+

1 (1), PK+
1 (1)

(n1, n0) {g1} 1 PK+
0 (3), PK+

0 (1), PK+
0 (1), PK+

0 (1).PK+
0 (1)

Table 4.6: Bids for b0 and b1.

of the edges, shown in Table 4.6. The bids are packaged and sent to the
auctioneer.

Phase 3: Once bidding has closed, evaluation using dynamic program-
ming begins by recursively discovering the optimal values of each node.
The optimal value of a node d, f(d) is the sum of the edges on the highest
cost path from the end node nn to nv. The optimal value of the graph is the
optimal value of the root node n0 which provides the total of the highest
cost path in the graph. An optimal edge value is the optimal value of its
source node, added to the highest bid vector for that edge. The highest
incoming optimal edge value for each node is computed, which is the de-
cryption of the multiplicative sum of all incoming bid vectors left-shifted
by the optimal value of their source node.

The evaluators of a node each decrypt the highest incoming optimal
edge value using their private keys, and publish their share. Once t shares
have been published, the optimal value of the node can be decrypted by
an evaluator of that edge and it is added to all outgoing edges by left-
shifting and randomising. These new vectors are published as the incom-
ing edges for their respective destination nodes. Edges for which there are
no bids should have a dummy bid of 0 added, so missing edges do not
break paths.

Example: As there are no incoming edges for n2, f(2) = 0, the bid vectors
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on the outgoing edges from n2 do not need to be left shifted. The corre-
sponding bid vectors for the destination nodes n0 and n1 are multiplied
together:

PK+
0 (3), PK+

0 (3), PK+
0 (3), PK+

0 (3), PK+
0 (1)

× PK+
0 (3), PK+

0 (3), PK+
0 (1), PK+

0 (1), PK+
0 (1)

PK+
0 (9), PK+

0 (9), PK+
0 (3), PK+

0 (3), PK+
0 (1)

PK+
1 (3), PK+

1 (3), PK+
1 (1), PK+

1 (1), PK+
1 (1)

× PK+
1 (3), PK+

1 (1), PK+
1 (1), PK+

1 (1), PK+
1 (1)

PK+
1 (9), PK+

1 (3), PK+
1 (1), PK+

1 (1), PK+
1 (1)

These are published as the highest bid vectors from n2 to n0 and n1 re-
spectively. The evaluators for n1 can now determine the optimal value, as
the only incoming optimal edge value has been published. The evalua-
tors each use their private key to decrypt a share of the bid vector. Once
t shares have been published, the optimal value is decrypted from the
shares to find that f(1) = 2. The outgoing edge to n0 is left shifted by
two, randomised and then published. The evaluators of n0 multiply the
two incoming edges together:

PK+
0 (3), PK+

0 (3), PK+
0 (3), PK+

0 (3), PK+
0 (1)

× PK+
0 (3), PK+

0 (3), PK+
0 (3), PK+

0 (1), PK+
0 (1)

PK+
0 (9), PK+

0 (9), PK+
0 (9), PK+

0 (3).PK+
0 (1)

and perform shared decryption, finding that f(0) = 4. This value is pub-
lished as the optimal value of the graph.
Phase 4: The total optimal value is used to trace back the optimal path
through the optimal bid vectors. An edge is on the optimal path, if its
optimal bid vector is equal to d = f(v) where v is the edge’s destination
node. It is possible to discover this without decrypting bid values of edges
not on the winning path by only checking position d of the optimal edge
vector for a value greater than one. The process starts from the root node
n0 and works backwards towards nn. When an optimal edge is found, its
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source node is published and the incoming edges of that node are checked.
When nn is reached, the search ends. The decryption is performed in the
same manner as in phase 3, with evaluators publishing shares of the bid
vector position.

Example: Position 4 of n0’s incoming optimal bid vectors are checked
for a value greater than 1. The evaluators each publish their shares and
the decrypted values are found as 3 and 1 for edges (2, 0) and (2, 1) re-
spectively. n1 is published as not optimal, 2 is published as optimal and
because n2 = nn, the optimal path has been found and it is also published
as the single edge (2, 0).

Phase 5: Once the optimal path has been traced back the bidders for
each optimal edge can be found. Using the original bid vectors for each
of the optimal edges, the same technique used in phase 4 to identify opti-
mal edges is used to identify optimal bid vectors and hence the winning
bidders. The difference is that the position to check is the actual value that
the edge provides, i.e. f(destination)− f(source).

Example: Position 4 : (4 − 0) for both bids on (2, 0) are checked for
a value greater than 1. The value from b0’s vector is 4 and the value from
b1’s vector is 2. The result is published; b0 having won both goods {g1, g2}
for $4.

4.3 Case Study Three: Garbled Circuits Auction

Protocol

Garbled circuits [38, 40] is a mechanism for securely computing the out-
come of an auction using two primary parties: an auctioneer and an eval-
uator. It is designed so that communication between bidders and the auc-
tion evaluator is performed through a proxy participant. The proxy trans-
fers required information between the auctioneer and evaluator retaining
information which is not required.



62 CHAPTER 4. SECURE COMBINATORIAL AUCTION PROTOCOLS

A circuit can be built to solve a combinatorial auction while maintain-
ing the privacy of losing parties [40] through an evaluation protocol called
verifiable proxy oblivious transfer (VPOT) [38]. This scheme is equivalent
to a (2, 2) threshold protocol, where if the auctioneer does not collude with
the evaluator, privacy is guaranteed.

The scheme contains three phases. During setup, the auction is adver-
tised and the garbled circuit created. Once the bidding phase is complete
the VPOT protocol is run, with the different participants communicating
via the proxy. After the VPOT protocol is complete the allocation is calcu-
lated by the proxy and then published. There are four parts to the VPOT
protocol. The proxy first retrieves commitment values for each of the bid-
ders from the evaluator and sends them to the bidders. The bidders then
send bid proofs for the commitment values to the proxy. One portion of
the bid proof is kept by the proxy and the other portion is passed to the
evaluator who computes the garbled input. The garbled input is sent to
the proxy who verifies it before determining the solution using the garbled
input and circuit.

4.4 Secure Auction Protocol Limitations

This section comments on the limitations of the secure protocols described
in this chapter. The limitations are in regards to the lack of extensibility of
each of the first two protocols.

4.4.1 Bid Scaleability

In polynomial auctions the number of bidder valuations which can be rep-
resented is limited as the maximum bid is directly related to the number
of evaluators. This is because the valuation of an edge or node is discov-
ered using interpolation upon a number of evaluator shares greater than
its cost by one. As each edge represents a bid on a set of a least one good,



4.4. SECURE AUCTION PROTOCOL LIMITATIONS 63

the graph’s maximum length is equal to the number of goods G.

The maximum bundle valuation is further limited by the threshold
modifier. The threshold modifier is added to the valuation so that the min-
imum number of shares required to decrypt is greater than t. If the same
threshold modifier was used for all edges then the sum of the modifiers
would differ between paths and the optimal value would not be able to
be determined. By multiplying the threshold with the difference between
two node identifiers, the threshold modifier sum will be equal on each
path. The threshold modifier q is q = t(j − i) where j and i are the nodes
connected by the edge. As the smallest node identifier is 0 the largest
value of j − i is the largest node identifier N − 1. The maximum valuation
v is therefore v = E − 1− t(N − 1) and the maximum valuation per good
is bv/Gc. The maximum pricing does not have to be divided equally be-
tween the goods as long as it is stipulated to bidders in advance. However,
no matter how the maximum pricing is divided between goods, it is still
all but completely unusable for the average auction.

In comparison the maximum bid in the Homomorphic protocol is the
length of the vector, as each element in a bid vector represents one. This
provides a more scalable bid representation than for the polynomial scheme.
In the Garbled Circuit protocol the possible maximum bid is even greater
where it is 2b where b is the number of bits used. Increasing the number
of bits used to represent prices, increases evaluation cost a small amount
linearly as can be seen in Figure C.9.

4.4.2 Polynomial Threshold Property

The polynomial protocol is a threshold scheme in the sense that at a mini-
mum t of n evaluators are required to decrypt a bid. However, more often
than not, more than t evaluators are required. As the threshold modifier
must be evenly distributed amongst edges, the threshold must always be
less than (E−1)/(N−1) where E is the number of evaluators and N is the
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number of nodes in the graph. This is quite limiting for example with just
three goods even a (2, 8) threshold scheme is not possible: Say that with a
scaler modifier x from the domain of natural numbers, 2x of 8x evaluators
are required to decrypt bids and the number of nodes is six (an optimised
graph). Trying to determine a suitable x, 2x < 8x−1

5
≡ 10x < 8x−1 it can be

seen that this is not possible. The problem remains the same as the number
of goods increases as the number of nodes will increase exponentially.

The number of evaluators required can be reduced or the threshold in-
creased by modifying the threshold property so that it is proportional to
the number of goods instead of the number of nodes in the graph. This
reduces the effect of the threshold modifier from an exponential increase
in evaluators to a linear increase when increasing the number of goods.
The purpose of the threshold modifier is to increase each bid by at least
the threshold but keep the total threshold modifier added on each path
the same. Instead of multiplying the threshold by the difference in node
identifiers to add to a bid, a much more efficient method is to multiply
the difference in size between the two nodes. Before where the threshold
modifier was q = t(j− i) it would not be q = t(|nj|− |ni|) where j and i are
the nodes connected by the edge. Although in almost all cases the thresh-
old number of evaluators required to decrypt will decrease, the security of
the protocol is not reduced. This modification to the protocol would bring
the protocol more inline with what the threshold property was intended
to achieve.

With this modification the maximum threshold modifier will become
equal to the size of the largest node, and therefore will be equal to the
number of goods. The maximum threshold will become (E−1)/G where G
is the number of goods. With the same example from above it can be seen
that a (2, 8) threshold scheme is now possible for three goods (6x < 8x−1),
though if the number of goods is increased then the ratio between the
threshold number of evaluators and the total number of evaluators must
be reduced. However as stated the threshold ratio will be reduced linearly.
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Figures 4.4 and 4.5 show the difference in threshold modifiers for a
graph of three goods using the two approaches to adding threshold mod-
ifiers. As can be seen in Figure 4.5 some bids still require more than t

evaluators for decryption. The protocol could be further modified to use
additional nodes attached to the end node n0 which filter incoming edges,
increasing the path cost by the amount required for the total threshold
modifier to be Gt.

Figure 4.4: Threshold modifier for
an optimised three good graph using
node identifiers.

Figure 4.5: Threshold modifier for
an optimised three good graph using
node size.

In addition to the increased maximum threshold the maximum bid can
also be increased. Where the maximum amount for a bid was previously
E−1−t(N−1)

G
, with the modification the maximum bid is E−1−tG

G
. If the num-

ber of evaluators and threshold remains the same between the two ver-
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sions of the protocol then with a threshold of three, an increased maxi-
mum bid by one for a three good auction with fourty evaluators. With one
hundred evaluators, a threshold of three and four goods the maximum bid
would be increased from thirteen to twenty-two. Testing and implemen-
tation of this modification is left to future work.

4.4.3 GVA Pricing

Generalised Vickrey auctions or commonly called Vickrey-Clark-Grove
(VCG) auctions offer a specific pricing scheme for sealed bid combinato-
rial auctions. GVA auctions are similar to second priced auctions in that
the pricing is shown to be strategy-proof [4]. In a strategy-proof auction,
there is no incentive for bidders to not bid their true valuations.

GVA winners pay their opportunity cost which is the difference be-
tween the sum of the highest bids and the sum of the highest bids without
the winner’s bids. For example three bidders b1, b2 and b3 bid ($4, $2, $5),
($3, $6, $7) and ($2, $3, $5) respectively for bundles ({g1}, {g2}, {g1, g2}).
The optimal allocations are b1 wins g1 and b2 wins g2. The sum of the
highest bids with all bidders is $10, without b1 it is $8 and without b2 it is
$7. So b1 pays $10− $8 = $2 for g1 and b1 pays $10− $7 = $3 for g2.

It would not be possible to run GVA priced secure auctions using either
the polynomial or homomorphic graph protocols in their current form.
The primary problem in both is that determining the winner without de-
tecting the amount they won is currently unsupported. The evaluation
procedure would have to be re-run with each winning bidder removed
once the winners have been determined. This unfortunately breaks the
security properties of the protocol as more than just the winning (GVA)
prices are revealed. The highest bids would be revealed as they are re-
quired to find the winning bidder during the optimal edge traceback step.
It is possible to run secure GVA auctions using homomorphic vectors in
a matrix [63] , but the matrix must contain every potential allocation of



4.4. SECURE AUCTION PROTOCOL LIMITATIONS 67

goods to bidders. This protocol in comparison is much more expensive
than the dynamic programing version and completely unscalable.

To run a GVA auction with the Garbled Circuit protocol, the circuit
generator would need to be modified to include the pricing in the circuit.
Although this is said to be possible, it is as yet unproven [40]. GVA pric-
ing support can however be added to the polynomial and homomorphic
protocols with less modification.

4.4.4 Bidder Preferences

In all three protocols bidders specify valuations for complementary bun-
dles. However, as the protocols are currently defined and implemented,
bidders cannot specify substitutable bundles. For instance the protocols
do not allow for an auction with four goods {g1, g2, g3, g4} where a bidder
is interested in {g1, g2} or {g3, g4} but not both. If the bidder provides val-
uations for both bundles then he will win both if his bids are the highest
valuations for the bundles on the optimal path.

For the first two protocols: polynomials and homomorphic, it is possi-
ble to modify the auction graph to allow substitutable preferences. Each
path containing a substitutable set of bundles must be duplicated for each
permutation of bidders specifying the same substitutable set. Bids for bid-
ders who are interested in all bundles are placed on each of the respective
edges on the different paths.

Sub-paths can be reused when the bidders on different edges are dis-
joint, but the number of additional edges required significantly increases
as the number of substitutable bundles or bidders increases. Without reusing
edges there will be BD additional edges added to the graph where B is the
number of bidders interested in the set of substitutable bundles and D is
the number of substitutable bundles. This may add a significant cost to
solving the graph although a few small sets may be manageable. An al-
gorithm for supporting substitutable bundles while reusing edges would
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then be required but that it is outside of the scope of this thesis.
For example, three bidders have the following subset of valuations in

an auction with five goods:

Bidder {g1, g2} {g3, g4} {g5}
b1 2 2 2

b2 3 4 1

b3 1 2 3

The two first two bidders, b1 and b2 are only interested in one of {g1, g2}
of {g3, g4}, while b3 would like them both. A visual depiction of this is
provided by Figure 4.6.

Because information required to bid is tied to the nodes in the graph,
the two protocols would also need to be modified to have a preference
phase before bidding is opened. Bidders would submit their preferences,
the graph could be generated and information sent to the bidders. Then
bidders could encrypt and submit their bids.

{g5}g4, g5}

{g1, g2, g3
{}

v(b3) = 3

v(b2) = 1

v(b1) = 2
{g3, g4, g5}

{g3, g4, g5}

{g3, g4}

{g3, g4}

v(b1) = 2

v(b3) = 1

{g1, g2}

{g1, g2}

v(b2) = 3

v(b3) = 2

v(b2) = 4

v(b1) = 2

{g5}

v(b3) = 1 v(b3) = 2

Figure 4.6: A auction sub-graph showing substitutable bids.

4.4.5 Additional Protocol Extensions

Extending the protocols to incorporate different functionality is possible
to some extent but will add complexity and cost. Because the prices are
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encrypted, extensions which deal with the price are unlikely to be possible.
Extensions which deal with goods allocation can be possible by modifying
the bid processing mechanism. This is done for example by modifying
the graph for the polynomial and homomorphic protocols or modifying
circuit generation algorithm for garbled circuits.

For instance, a fair share policy limits the number of goods a bidder
can win to a certain quota. To implement this in an auction graph, spe-
cific bidders must be assigned to edges in a similar way to that of the last
section. The number of paths must be increased for every combination
of bundles allocated to bidders with the maximum number of allocations
for a bidder on each path less than or equal to the quota. The number of
bundles which can be bid on in the auction can be reduced as they must
be smaller than the quota, but the cost of the extra paths will be high.
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Chapter 5

GAF Specification

This chapter develops the specification for the auction framework I have
designed and used to implement the auction protocols in this thesis. The
General Auction Framework (GAF) has been developed to facilitate im-
plementation, testing and comparison of auction protocols. GAF defines
the general behaviour and interfaces for the different participants required
to run auctions. The different aspects of an auction are divided to provide
a structured approach to building centralised and distributed auction sys-
tems.

Section 5.1 explains the framework design methodology used in this
thesis. Requirements for GAF are drawn from domain knowledge in sec-
tion 5.2.2, analysis of the behaviour of a standard English auction, the se-
cure auction protocols [38, 43, 62, 63, 68, 69], and the different combina-
torial auction protocols in [18]. Building on the requirements, section 5.3
provides a domain model (an approach from [2]). The domain model is
used to produce a design for each area of adaptability within the frame-
work in section 5.4. Finally, the high level design of GAF is presented in
section 5.6 which is developed into the object model provided in chapter
6.

71
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5.1 Framework Design Methodology used in this

Thesis

There are two types of framework design methodologies [36]. The first at-
tempts to design a framework without any existing applications or models
and the second type generalises a framework from existing applications.
The first approach is called an ’a priori’ approach [36], and the second is
called an ’a posteriori’ approach. Although framework design literature
commonly states that frameworks must be built a priori, it is possible for
a framework to be successfully built a posteriori [36]. The difference is that
domain knowledge is inherently built into existing applications while with
a priori it needs to be extracted from literature or domain experts.

An a priori approach is used in this thesis because there are no auction
applications or models available to generalise. Most auction applications
are industry built and closed source, especially those which provide com-
binatorial auctions. Domain knowledge is therefore extracted from stan-
dard auction examples such as the three given in chapter 3: combinatorial
auction protocols [18]; secure combinatorial auctions [38, 43, 62, 63, 68, 69];
and a few auction protocol application prototypes built to collect statistics.
Concepts from the domain have been extracted into a series of require-
ments which are provided in section 5.2, and form the basis of a domain
analysis.

The approach used to develop a domain model (including hotspot iden-
tification and description) from the requirements and literature is knowl-
edge graphs, a methodology by Askit et al. [1, 2]. This scheme provides
the first step identified by Bosch et al. [8] of domain analysis, but how
to map the modeled domain to an object model is not adequately de-
scribed. Instead, the third aspect of framework design is achieved with
Schmid’s, more formal method [53, 54]. A hotspot specification is built
from the hotspots identified in the domain model and then patterns are
mapped using Schmid’s heuristics. This merging of schemes is reason-
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able as the requirement of building a hotspot specification is a list of well
defined hotspots which are provided by both schemes. The difference be-
tween the two methodologies, in terms of discovering hotspots, is that in
Askit’s scheme they are identified using graphs of domain knowledge. In
Schmid’s they are identified from application models, which were them-
selves distilled from domain knowledge. Therefore without any applica-
tion models, knowledge graphs is the best method of domain analysis.

The design methodology process is shown in Figure 5.1. It is broken
into the three phases identified; building a domain knowledge model,
choosing an architecture and designing the framework.

Phase one: Building a Knowledge Model

A domain knowledge model represents the different concerns of a frame-
work’s domain [2]. It is an intermediary step, analysed to develop a more
complex model. Domain knowledge can be extracted from literature, prior
experience or other applications. The GAF requirements identified in sec-
tion 5.2 provide the basis for this knowledge model. The approach is semi-
formal, but this suits the current problem as it is not especially complex.

Step 1. Identify the top-level knowledge graph. The top-level knowledge
graph represents the basic concepts required in the system. It is not
unlike drawing a doodle of a system upon initial investigation. The
vertices on the knowledge graph represent concepts required in all
application implementations using the framework. The edges repre-
sent relationships between concepts.

Step 2. Refine the top-level knowledge graph into knowledge domains.
This involves splitting each concept (vertex) into behavioural com-
ponents and identifying potential specialised implementations of each.
There is no rigorous formula to do this. The behavioural components
are found through an informal analysis of domain literature.
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Figure 5.1: Design methodology process.
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Step 3. Define hotspots and hotspot dependencies. In this step, each knowl-
edge domain is investigated individually to determine which con-
cerns can be implemented as fixed inside the framework. Concerns
which may change between applications using the framework be-
come hotspots which must be implemented or chosen when using
the framework. The specialisation of concerns identified in the pre-
vious step should point towards areas of required adaptability in the
framework.

Hotspots may have dependencies between them which need to be
identified. Dependencies can be identified by looking for hotspots
which cannot be modified independently [49].

Phase Two: Choosing an Architecture

This framework follows a distributed object model using proxies to sup-
port different types of communication (see section 5.4).

Phase Three: Designing the Framework

There are two parts to designing a framework; the hotspot integration and
the fixed aspect design. The fixed aspect design is developed using stan-
dard use case analysis, supported by use cases and sequence diagrams.
Hotspot integration is achieved using Schmid’s hotspot specification and
heuristics [53, 54] by assigning patterns to each hotspot. The hotspot spec-
ification for a hotspot contains the following attributes:

1. Hotspot name

2. Short description.

3. Examples of hotspot specialisations.

4. Bind time: the point at which specialisation is bound to a hotspot (ei-
ther at implementation or run time) and whether it can be rebound.
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5. Responsibility: the different behaviour of the hotspot required by
other components in the framework.

6. Variability: the aspects of adaptability required. A hotspot is classi-
fied as elementary if it contains a single elementary variable aspect.
An elementary aspect is one which cannot be decomposed into sep-
arate non-dependent sub-aspects. If the hotspot is non-elementary,
then the reasons why it is not should be supplied.

7. Multiplicity: whether the hotspot can use multiple instances of the
hotspot simultaneously. For example, while a graph can only have
one underlying structure at a time, a window can have multiple si-
multaneous decorations.

The multiplicity is either one (a single instance) or n (n simultane-
ous alternatives). If the hotspot multiplicity is n it is further char-
acterised by its structure, either chain-structured or tree-structured.
If the hotspot is chain-structured, each instance contains a reference
to one or zero other instances. If the hotspot is tree-structured then
each implementation contains a reference to a set of other instances.
When the hotspot implementation is called, all instances are called
recursively.

The multiplicity also defines whether the variability can be provided
by parameterisation. For example if the hotspot was storage for a
collection, the storage type could be specified using parameters upon
creation (e.g. the method used by the Java collection framework to
manage different types through generics).

The design for integrating a hotspot within a framework is called a
hotspot subsystem, and it is based on these attributes. The design can
either be mapped from the variability and multiplicity to a design pattern,
or one created if no existing pattern is suitable [54]. Schmid categorises the
well known patterns [23] by their multiplicity which narrows the pattern
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Non-recursive hot-spot subsystem design patterns:
Interface inheritance, Abstract Factory, Builder, Factory Method,
Prototype, Adapter, Bridge, Proxy, Command, Iterator, Mediator,
Observer, State, Strategy, Template method, Visitor

1 : 1 recursive hot-spot subsystem design patterns:
Chain of responsibility, Decorator

1 : n recursive hot-spot subsystem design patterns:
Composite, Interpreter

Figure 5.2: Hotspot subsystem categories with corresponding design pat-
terns from [54].

search. The variability is then used to pick between the different patterns
in the category. The pattern mapping [54] is provided for convenience in
Figure 5.2.

5.2 Framework Requirements

The requirements are divided into two concerns: the requirements of dif-
ferent protocols and the requirements of different applications. For in-
stance, protocols may require different communication between partici-
pants which is protocol specific, whereas different applications may use
different types of communication which is application specific.

Requirements for a framework cannot be arbitrarily decided or related
to one particular application. They must be logically drawn from the
framework’s target domain to suit varying applications. The auction re-
quirements in this section are drawn from domain knowledge, analysing
the behaviour of a standard English auction, the secure auction protocols
[38, 43, 62, 63, 68, 69] and the different combinatorial auction protocols in
[18]. Experience from previously developing two isolated auction proto-
cols has also been incorporated. Section 5.2.1 provides required definitions
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before section 5.2.2 sets out the application and protocol specific require-
ments.

5.2.1 Definitions

• Framework developer: The developer of a GAF implementation.

• Protocol developer: The developer of a protocol implementation to
run within a GAF implementation.

• Application developer: The developer of an application which uses
a GAF implementation to run auctions.

• Auction participant: An auction participant is anything which per-
forms an operation in the auction, even simply by registering as an
observer.

• Framework boundary: The boundary of the framework defines the
participants and interfaces of the system. All communication flows
and behaviour inside the boundary are defined by the framework
(and implemented by the framework or protocol developer). Auc-
tion participants can operate both outside and within the GAF bound-
ary but behaviour outside of the boundary is not defined by the
framework (except for convenience) and must be designed by the
application developer.

• External participant: An external participant is one which sits out-
side the boundary of the framework. It has an interest in the auction,
but does not perform any internal protocol procedures. The majority
of the behaviour of external participants is not defined by the frame-
work and is application specific.

• Auction resource: An auction resource is a participant which per-
forms some set of operations to run the auction, for example an auc-
tioneer or evaluator. Behaviour of the auction resources is totally
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inside the boundary defined by the framework or protocols within
GAF.

5.2.2 Requirements

This section provides the requirements of the auction framework. They are
divided into the protocol and application specific requirements. These are
the requirements to support multiple auction protocols within an imple-
mentation of GAF and those to support using an implementation of GAF
within different applications. For reference, each requirement is labeled
with a number and a prefix. The prefix is either ’PR’ or ’AR’ indicating
protocol and application specific requirements respectively.

Protocol Specific Requirements:

PR1. Auction fundamentals: An auction instance is one occurrence of
an auction, with multiple coordinating participants. The framework
should provide a systematic method of creating and running auction
instances. An auction consists of bidders who bid on goods offered
by an auction owner which are collected by an auctioneer. Evalua-
tors solve the auction (finding the optimal allocation of goods) and
publish the results.

PR2. Auction protocols: The framework should support multiple auc-
tion protocols where participants may use different protocols con-
currently or consecutively. Each protocol will define the different
resources it requires to run.

PR3. Auction resources: The framework should support multiple auction
resources used to run an auction. Resources may be used for mul-
tiple auction instances at a time (auction pooling). There are set re-
sources required for every auction to perform standard tasks. Pro-
tocols however may need to define custom resources, for example a
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bulletin board to store working data. Some protocol specific setup
will be required for most, if not all, resources before the resource can
participate.

Some protocols require resource behaviour which would normally
be included in a single resource to be implemented by multiple re-
sources. For example, a protocol which requires plural auctioneers
to prevent a single rogue auctioneer manipulating the auction. Some
protocols may require behaviour which would normally be divided
between multiple resources to be included in a single resource. For
instance, an English auctioneer usually performs all required activ-
ities: receiving bids, determining the winner and announcing the
progress at all stages of the auction. To enable this, resources must
be able to represent themselves as multiple types dependent on the
protocol (note that simple casting is not possible in a distributed en-
vironment).

PR4. Bidder behaviour: The majority of bidder behaviour is defined by
the application using GAF. However, bid generation is protocol de-
pendent and should be implemented by the protocol developer. Note
that in this context bid generation does not include valuation of goods.
Goods valuation is at least application dependent and may differ be-
tween bidders in the same application.

PR5. Auction owner behaviour: What the auction owner does before an
auction, (for example deciding what goods to offer) is application
specific and left to the application developer. The only behaviour
defined by the framework is the call to create the auction.

There is protocol specific behaviour which the auction owner will
need to perform. For instance, creating a representation of the bids
to match the protocol.

PR6. Participant communication: Communication order and message con-
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tent of non-standard auction behaviour is protocol dependent and
should be left to the protocol developer. The ability to send custom
messages needs to be facilitated by the framework.

PR7. Protocol adaption: For dynamic adaption protocols, participant be-
haviour should be modifiable using protocol specific auction set-
tings.

PR8. Auction input and output: The inputs to an auction instance are the
bundles under auction and the settings for the auction instance. A
bundle is a subset of goods. Both the bundles and settings which can
be used in an auction are protocol specific. For example, in an En-
glish auction only one bundle containing a single good can be auc-
tioned. In a combinatorial auction the auction may sell a subset of
the different possible combination of the goods, each of which is a
bundle.

The result of the auction maps bundles to bidders with prices. There
may be multiple results if the protocol cannot decide on the outcome.
For instance, a protocol may defer tie-break decisions to the applica-
tion. The representation of an auction result can be generalised for
different protocols but custom data should be able to be provided
with a mapping. For example, a sealed bid auction may defer tie-
breaks to the application and provide the application with the time
each bid was placed.

PR9. Separation of bidding language and goods representation: The frame-
work should not enforce bidding language or representation of goods.
Both may change with different protocols and settings.

PR10. Protocol dependencies: Each instance of an auction will require par-
ticipants and their behaviour to be compatible. For example, the al-
gorithm used to evaluate an auction should be compatible with bid-
ders’ bids. Dependencies should be enforced by the framework.
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PR11. Verification: Some auction protocols require or allow the auction
outcome to be verified. The framework must allow for outcome ver-
ification by all participants if the protocol supports it. Verification
may require access to any stage of the auction data; the auction set-
tings, the initial bids, any intermediate results and the end result.

PR12. Observation: Multiple participants will be interested in observing
the auction. What an observer can observe and who is permitted to
observe will be dependent on the auction protocol and policies.

Application Specific Requirements:

AR1. Communication: The method of communication between partici-
pants should not be defined by the framework but left to the appli-
cation developer.

AR2. Authentication and authorisation: Participants must be able to au-
thenticate requests as certain requests will require authorisation. For
example a request for auction cancellation must be made by the auc-
tion owner.

AR3. Minimal external interaction: There should be minimal entry points
into the frameworks, reducing the amount of work required for inte-
gration with external systems.

5.3 Domain Knowledge Model

GAF maps well to a top-level knowledge graph, as auction protocols for
the most part are a set of similar interactions between the same partici-
pant types. The top-level knowledge graph is provided in Figure 5.3. Ta-
ble 5.1 lists all identified concerns with the corresponding requirements
referenced.
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All vertices except outcome, protocol and policy are participants which
inherit from a standard auction participant or auction resource (which in
turn inherits from auction participant).

Auction owner

Auctioneer

OutcomeVerifier

Bidder

Bid generation

Evaluator

Observer

Protocol

Settings

Auction participant

Auction resource

Create auction

Bid

Verify

Publish outcome

(offering resources)

Evaluate

GAF top−level knowledge graph

Provide bids

Observe

Choose

Observe

Adapt
Choose

Adapt

Communicate

Figure 5.3: The top-level knowledge graph for GAF. Although the di-
rected edges appear to imply a chronological ordering, this cannot be as-
sumed. They indicate which concept initiates an interaction but not when.

Each concern (knowledge vertices) in the top-level knowledge graph
has been divided into the knowledge domains provided in Figure 5.4. To
be more concise, the diagram does not include any protocol specialisation
examples. Instead, the specialisation given is “Protocol specific”. There
are many examples including English, Dutch, Secure Homomorphic and
Secure Polynomial (see chapters 3 and 4). Generally the different domains
are easily mapped to the requirements and are not discussed. The few that
are less obvious are set out below.

• Auction participant: Auction identification is introduced from re-
quirement PR1 to allow participation in multiple auction instances.
When the participant is sent a message from another participant, the
message will need to contain a reference to the auction instance.
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Knowledge Vertex Requirements
Bidder PR1
Auctioneer PR1
Verifier PR11
Auction owner PR1,PR5
Outcome PR1
Evaluator PR1
Protocol PR2, PR3, PR7
Settings PR7, PR9
Auction resource PR3
Observer PR12
Auction participant PR1

Table 5.1: Top-level knowledge requirements reference.

Each participant needs to be able to uniquely identify themselves
within an auction instance. Identification should be attached to re-
quests and is required for authentication and/or authorisation. Par-
ticipants need to be sure requests are authentic, and that a partici-
pant making a request or providing data is authorised for the related
action.

A participant who has a reference to another participant may require
a different interface than the one currently held. This would, for ex-
ample, be required in the case of an auction resource performing the
duties of two different resource types. Casting will not always be
possible as the participant may be holding a remote reference to the
other participant. The participant who needs the reference (inter-
face) will need to request the other to provide a new reference. This
is called participant transformation. Before transformation can take
place, the types the participant supports will need to be checked for
the type the requester requires. Transformation is included in par-
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ticipant instead of auction resource to allow for more flexibility as
this will be required. For instance, an auction owner who is also an
observer.

Supported types
identification

Protocol specific

Setup

Auction
resource

SetupTransform

Transform
Protocol specific

Identification
Application specific

Settings
Protocol specific

Protocol SettingsResource
requirements

Resource requirements
Protocol specific

Auctioneer

Bid publishing

Bid status

Bid processing

Protocol specific

Bid collection Bid storage

Standard object collection

WhiteboardDatabase

Bid generation

Bidder

Protocol specific

Bid generation

Create auction

Auction owner

Pre−auction
setup
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setup

Protocol specific
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Protocol specific
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Verifier

Protocol specific

Verification

Fetch intermediate
results

Fetch initial bids
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RMI Sockets
(single process)
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Communication

Communication type Message

Application specific

Authentication

Authentication
Protocol specific

recognition
Auction

identification
Participant

Observer

Registration
Message

Protocol specific

Authentication

GAF knowledge domains

Figure 5.4: Knowledge domains for GAF. Unlike [2], the diagram includes
the concerns, not just the domains in each concern. This provides a better
overview of all domain knowledge. Because the concerns are included, a
distinction is required between domain aggregation and the specialisation
of sub-domains. A directed line is used for aggregation, and specialisation
is shown by standard UML inheritance notation.

Two patterns in the diagram are important and are noted in the next
step. First, each domain with a specialisation is a good candidate for
adaptability. Second, because the context is a single auction instance and
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Domain parent Domain Dependence
Bidder Bid generation Protocol
Auctioneer Bid processing Protocol
Auctioneer Bid storage Application
Auctioneer Bid status Protocol
Verifier Verification Protocol
Verifier Fetch data for verification Protocol
Auction owner Pre-auction setup Protocol
Auction owner Create auction Protocol
Evaluator Evaluation Protocol
Protocol Resource requirements Protocol
Protocol Settings Protocol
Auction participant Authentication Protocol & Application
Auction participant Communication type Application
Auction participant Message Protocol
Auction resource Transform Protocol
Auction resource Setup Protocol
Auction resource Supported types identification Protocol
Auction resource Supported types identification Protocol

Table 5.2: Hotspots identified from knowledge domains.

only one protocol may be used per instance, there are dependencies be-
tween each domain with a “Protocol specific” child.

All of the vertices from Figure 5.4 with specialisation are areas of adapt-
ability (either by the protocol or application developer) which are the hotspots
for the framework. Hotspot dependencies exist between every vertex with
a protocol specific child, as each will have to be compatible within an auc-
tion instance. Table 5.2 contains the list of hotspots, identifying the depen-
dences between them.
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5.4 Hotspots

Hotspots are the variable aspects of a framework [49, 54], similar to the
blanks in a ’fill in the blanks’ worksheet. Hotspots are the most impor-
tant concern in framework development as they support varying applica-
tions. Hotspots also separate the tasks of the framework developer and
the application developer. The framework developer builds the structure
around the hotspots while the application developer fills them in. Once
the hotspots in a framework have been filled with existing and/or new
implementations, the system should be usable.

In GAF, the two different views represent two different developers.
The black-box view is used by the application developer who only requires
knowledge of the required input and external interfaces. The white-box
view is used by the protocol developer who will need to have an under-
standing of internal framework aspects.

The method of including a hotspot in the framework design is called
its hotspot subsystem [54]. To design the subsystems, each hotspot must
be identified, defined and analysed. The hotspot analysis matches the
hotspots against design patterns to determine how they can be imple-
mented. The different hotspots in GAF were identified in table 5.2 from
section 5.3. Three hotspots are not included to reduce complexity: Proto-
col policy, Application policy and Authentication. As discussed in section
5.2.2, policies are not included in the design. Because authentication is
based solely on policies (both protocol and application), it is also not in-
cluded.

The next two sections will first define the hotspots and then the hotspot
subsystems.

5.4.1 Hotspot Specification

The description of a hotspot is called its hotspot specification [53, 54]. The
specification is given by the attributes defined in section 5.1; name, de-
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scription, examples, bind time, responsibility, variability and multiplicity.

5.4.2 Hotspot Subsystems

As all GAF hotspots have a multiplicity of one, the hotspots are limited
to the first group of patterns. For each of the protocol algorithm hotspots
(setup, bid processing, evaluation, create auction, bid generation, verifica-
tion) the only patterns which are suitable for the variability are interface
inheritance and the factory method. All of these, except bid generation
require state to be kept by the resources during operations. The only way
to use state with factory methods is to pass it to each method when called.
Therefore, interface inheritance is chosen for all of the protocol algorithm
hotspot subsystems, except for bid generation, which can use the factory
method pattern, overloaded in the protocol class.

The bid storage hotspot is quite simple and needs no additional func-
tionality other than what interface inheritance provides.

5.4.3 Hotspot Dependencies

As stated in section 2.2.4, a hotspot dependency occurs when a hotspot
cannot be replaced independently from another [49]. In GAF this is the
case with all protocol specific hotspots as only one protocol can be used
within a single auction instance and the hotspot implementations must be
compatible.

5.5 System Architecture

A software architecture describes an underlying design; decomposing the
system into components with patterns of interactions between them [57].
The architecture is shown in Figure 5.5. As described in section 5.2.1, there
are three developers; the application developer chooses between protocols
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Name Bind time Parameterisation
Bidder bid generation Run time No
Auctioneer bid processing Run time No
Auctioneer bid storage Run time No
Auctioneer bid status Run time No
Verifier verification Run time No
Verifier, fetch verification data Implementation Yes
Auction owner pre-auction setup Run time No
Auction owner create auction Run time No
Evaluator evaluation Run time No
Protocol resource requirements Run time No
Protocol settings Run time No
Auction participant authentication Implementation Yes
Auction participant communication Implementation No
Auction participant message Implementation Yes
Auction resource transform Implementation Yes
Auction resource setup Run time No
Auction resource supported Run time No
Auction resource types identification Run time Yes

Table 5.3: Hotspot specification summary. The variability and multiplicity
of the hotspots are not shown because they are all the same. The variability
is elementary and multiplicity is one.
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and a few other hotspots, the protocol developer develops implementa-
tions of the protocol specific hotspots and the framework developer builds
the fixed aspects of the framework and maybe some default implementa-
tions of non-protocol specific hotspots.

It is useful to think of the system in terms of three subsystems, each
corresponding to one of the different developers. The application is built
by the application developer whose operations interact with the infras-
tructure provided by the framework subsystem. The protocol developer
builds a protocol in the protocol subsystem, implementing the different
protocol specific hotspots. The protocol subsystem interacts for the most
part with services provided by the framework subsystem except for com-
munication with participants if required, which is passed by the applica-
tion. An application uses GAF to leverage the different protocols imple-
mented within it.
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Figure 5.5: GAF system architecture. For brevity the diagram does not
show auctioneer, auction creator, bid publisher, auction publisher, evalua-
tor and result publisher as resources, nor observer and verifier as partici-
pants.
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5.6 High Level Design

A high level design builds a model from the requirements specification,
defining the different participants in the system, their behaviour and com-
munication. The high level model is analysed to build a lower level model
such as an object model. The design in this section uses the functionality
identified in section 5.3, and includes the hotspot subsystems from section
5.4 as well as the framework’s frozen spots. Frozen spots are the areas of
functionality which are fixed between applications [54].

This section starts by discussing two important concerns; auction phases
in section 5.6.1 and communication in section 5.6.2. Participant behaviour
is expressed with use cases and sequence diagrams in section 5.6.3 and the
patterns used within GAF are presented in chapter 6.

5.6.1 Auction Phases and Events

Auction phases and events are an important part of auctions as they are
time based and/or event driven. For instance, the bidding phase in a
sealed bid auction usually ends after a fixed period. On the other hand,
bidding in English auctions often lasts as long as bidders keep bidding.
As events cannot be predetermined and phases may not be able to be pre-
determined (depending on the protocol), a method for participants to be
informed of phases and events is required.

To ensure that messages are consistent and minimal, publishing of events
is centralised using the observer pattern [23]. Observers register with an
auction publisher and are notified when a resource publishes to it. As
different protocols may require events to be sent to different participants,
resources will filter by including the participant types to publish in the
publish request. One concern with this is that authentication and autho-
risation is required to stop an observer from falsely registering its part in
the auction.
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5.6.2 Participant Communication

As requirement AR1 in section 5.2 states, communication must not be de-
fined by the framework. This is difficult as participants within the frame-
work interact with each other and the protocol developer does not know
how communication will be implemented. To provide this requirement,
the proxy pattern is used [23].

In the proxy pattern, a ’proxy object’ stores a reference to its real object
and they both share the same interfaces. Behaviour is managed by the real
object, but communication is forwarded through the proxy. Proxies are
used in GAF to provide a transparent method of implementing different
types of communication thereby satisfying requirement AR1.

Use of remote proxies enable protocol developers to specify communi-
cation between participants without the concern of how communication is
actually implemented.

Resources need to be aware of their proxy, as at some point they will
need to pass a reference to themselves to another participant.The resource
will need to pass a reference to its proxy for communication to work.

5.6.3 Framework Participants

This section describes each of the possible participants in an auction pro-
tocol. Although most of the participants were identified in section 5.2, a
full description of each is now provided. Participants identified from the
domain knowledge are given first, followed by three which are introduced
to separate different concerns. The use cases for the external participants
are listed in table 5.4 which are fully described in the appendix. The high
level interaction between participants is shown in Figure 5.6.

Participants Identified from Domain Knowledge

• Auction participant: Each participant involved in the framework has
four base requirements, they must be able to: be referenced by an
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identifier unique to the auction; inform other participants what par-
ticipant types it supports; and transform into any of them.

• Auction owner: The auction owner initiates an auction instance, in-
teracting with an auction creator. It is the auction owner’s responsi-
bility to provide (having selected and negotiated with) all resources
except possibly verifiers and observers. The auction owner is pro-
vided by the application using the framework and has no unique
functionality defined other than a call to create the auction. An auc-
tion owner is automatically an auction observer.

• Bidder: Each bidder values a set of goods offered by the auction ap-
plication and sends bids to the auctioneer if so desired. How a bidder
values goods is not defined by the framework. The only behaviour
which is, is bid formulation. A bidder is automatically an auction
observer.

• Auction resource: Each internal component in the framework is an
auction resource. Auction resource behaviour is completely defined
by the framework and protocol. There are four types of auction re-
sources from the domain knowledge: auction creator; auctioneer;
evaluator and verifier.

It is important to separate the different auction protocol concerns
into different resources as functionality may be divided in distributed
applications and with different protocols.

• Auction creator: It is the responsibility of the auction creator to set up
the auction as per the specification provided by the auction owner.
Interactions between the auction creator and the resources are proto-
col dependent.

• Auctioneer: The auctioneer facilitates the auction, collects bids, and
manages the auction phases.
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• Evaluator: The evaluator determines the optimal allocation. Results
and possibly partial results (if required for verification) are provided
to the result publisher (a resource which is introduced) for retrieval
by the other participants. The algorithm used for solving the auction
is protocol dependent.

• Auction verifier: An auction verifier may be some subset of the other
components participating in an auction, or it may be an external au-
ditor. It may not be possible or required to verify the different aspects
of the auction, so the auction verifier is not always required.

Result verification requires checking that the allocation of goods and
pricing matches the partial and final results of the auction, according
to the protocol used.

• Auction observer: An auction observer is any component or external
object which needs to observe the auction outcome. By subscribing,
the observer will be updated of outcome changes. All bidders and
the auction owner are mandatory observers.

Introduced Participants

• Bid publisher: The bid publisher provides storage and retrieval ca-
pacity for bids. This resource has been introduced to separate the
concern of bid collection from bid storage.

• Result publisher: A result publisher stores the final result of the auc-
tion. Introducing this resource separates the concern of result stor-
age from bid collection and bid storage. This also allows results to
be stored after auctions have been closed without storing other infor-
mation. As it is possible that the result publisher could store results
for an extended period, storage of working results should be sepa-
rated from result storage.
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Participant Use case
Auction owner Create auction

Cancel auction
Adapt auction
Open bidding
Close bidding

Bidder Create bid
Bid
Cancel bid
Get bid status

Auction verifier Retrieve result
Retrieve bids

Auction observer Register interest
Unregister

Table 5.4: GAF Use Cases.

• Auction publisher: An auction publisher was introduced in section
5.6.1. Auction publishing follows the observer pattern. Events in-
clude the different phases and the result, but also any other protocol
specific events such as a bid placed (a bid event) in an English auc-
tion.

5.6.4 Frozen Spots

The number of frozen spots are limited as the majority of functionality is
protocol specific, so much reuse is achieved using parameterised hotspots.
The fixed aspects in the framework are:
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GAF
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Bid Publisher
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Auction Verifier
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Auctioneer
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Auction Publisher

Observe

Publish

Auction resource

Auction creator

Publish

Publish

result

CommandCreate instance

Retrieve bids

Retrieve bids

Post result

Figure 5.6: High-level GAF design.

Auction Recognition

As participants may be involved in multiple auctions simultaneously, mes-
sages must include an auction reference. A participant receiving a mes-
sage must first check whether it is participating in the auction. If it is not,
then the message is discarded, otherwise the requested operation is per-
formed in the context of the auction instance provided by the reference.

Participant Identification

Participants must be able to identify each other to check whether requests
are authorised. For instance, a malicious bidder should not be able to
cancel an auction. Messages must include a participant reference to be
checked against known participants. Participant references for resources
should be passed in the auction reference. Other participant references
should be passed as required, for example when a bidder bids, its refer-
ence can be passed to the auctioneer.
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Auction Publishing

Auction resources sends events to be published to the auction publisher
(see section 5.6.1). The auction publisher needs to maintain a list of reg-
istered observers and allow for registering and unregistering. When the
auction publisher recieves an event, it either sends it to all observers or a
list specified by a filter list if present.
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Chapter 6

Implementation

This chapter details the design and implementation of the development
performed for this thesis. As outlined in chapter 5 there are three dis-
tinct developers involved with GAF. The framework developer designs
and implements the framework determining how to best provide shared
functionality and bind hotspot implementations. The protocol developer
implements protocol specific hotspots to provide reusable protocols. The
application developer leverages GAF in their application to take advan-
tage of different protocols already implemented and binds implementa-
tion to any application specific hotspots required. The sections in this
chapter correspond to each of the respective views.

Section 6.1 provides a sample of the low level design components and
how they have been implemented. The method of including each of the
three combinatorial auction protocols within GAF is specified in section
6.2. Section 6.3 discusses an auction application called AuctionComposer
which has been built to read and run auction test scenarios defined from
XML and output performance statistics with activity logs.

99
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6.1 GAF Implementation Design

The GAF specification provides the framework requirements, it develops
definitions of the different components, involved including hotspots and
frozen spots. This section presents the high level object-oriented design of
GAF and describes several patterns used to implement GAF.

6.1.1 Object Model

The object model is divided into two parts, internal and external behaviour.
Internal behaviour occurs within an auction instance as specified by the
protocol developer. External behavior is application specific though it may
take advantage of protocol developer provided hotspot implementations.
For example, generating a bid is external behaviour as bidders determine
when and what to bid which is dependent on the application. However,
bidders use a bid generation object provided by the protocol developer as
bid construction is protocol specific.

This high level object model is presented with three UML diagrams.
Figure 6.1 provides the high level system behaviour in a general case us-
ing a sequence diagram, Figure 6.2 displays the classes involved in exter-
nal interactions, and Figure 6.3 presents the classes used in the internal
auction process.

High Level Sequence Diagram

Protocol Resource Setup. The high level sequence diagram in Figure 6.1
depicts the life-cycle of an auction-instance providing context to commu-
nication between auction participants. It ignores external participant be-
haviour, for example auction owner setup and instead starts with the call
to a ’create auction’ method by the auction owner. This assumes that the
auction owner has found resources to run the auction, wrapped them in
the required proxy, and performed any protocol specific setup. The se-
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quence diagram ends with the optimal allocation being published and the
auction resources deallocated.

Three important protocol specific hotspots are shown: protocol resource
setup; bid processing, and, winner determination. As these hotspots are
implemented at a lower level than the diagram depicts, the participant
behaviour can not be defined further at this point. In addition, other par-
ticipant behaviour is protocol specific but the communication pattern will
most commonly be equivalent to that in the diagram.

The auction begins with a call by the auction owner to the auction cre-
ator to create the auction. Auction creation involves instantiating auction
resources and any other protocol specific setup such as generating encryp-
tion keys. It is assumed that the auction owner has determined the auc-
tion settings and acquired the use of auction resources previously, other-
wise the resources may reject the auction creator’s request. The auction
owner passes back an auction reference to the auction owner including a
reference to the auction which the auction owner uses to start the auction
(open bidding) when desired. The auctioneer informs observing partici-
pants through the auction publisher.

Upon completion of the auction, an evaluator publishes the outcome
via the auction publisher who informs each of the participants. When the
creator is informed of the outcome, it deallocates the resources.

Bid Processing. During the bidding phase, bidders submit their bids to
the auctioneer who processes and stores them as required by the protocol.
For example, protocol specific bid processing in an English auction is that
the auctioneer must use the auction publisher to inform bidders of the
current highest bid. Most commonly the auctioneer may also be the bid
publisher and retain bids, but in some cases, for example if bids need to
be kept for historical evidence, an additional bid publisher or service may
be required.
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Winner Determination. The auction then closes and the auctioneer in-
forms observers via the auction publisher. This may be due to a protocol
rule such as a timeout or an auction owner command. The auctioneer also
requests the evaluators to find the auction solution. Winner determination
is driven by a set of auction evaluators but is protocol specific and may re-
quire any of the auction participants to take part. The optional solution
is provided to the result publisher who may store it and pass it to the ac-
tion publisher or the auctioneer may directly pass the result to the auction
publisher to inform the observers. Once the auction is closed, the auction
creator requests deallocation of auction resources.
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External Class Diagram

There are three areas of interest in the external class diagram (Figure 6.2):
auction creation, resource instantiation, and bidding. Auction creation is
performed by the auction owner and involves choosing a protocol, setting
up the auction and acquiring resources to run it. Resource instantiation
is used to create resources, based on the protocol for the auction. This
may be performed by the auction owner or by another party, for instance
a resource provider.

During auction creation, the auction owner chooses a set of bundles
under auction and the protocol for the auction. The protocol is used to
retrieve resource requirements and potential auction settings, with some
application specific process to determine how the settings should be cho-
sen. Independent of who supplies the resources, they have to be instan-
tiated, which is performed by passing requirements to the resource fac-
tory. The resource factory uses reflection to dynamically instantiate the re-
sources based on the classes specified in the resource requirements. Once
the owner has the resources for the auction it can create auction instruc-
tions to supply to the auction creator. The instructions contain the pro-
tocol, settings, bundles of goods and each of the resources wrapped in
a proxy (using the proxy factory). An auction reference is returned to the
owner once the auction has been created, containing a reference string and
the resources performing the auction. The reference may also be subtyped
by a protocol for protocol specific data, such as encryption keys.

The application must then provide the auction reference to bidders ei-
ther directly or through another service such as an auction advertising ser-
vice. Bidders retrieve a bid generator from the protocol which is contained
within the auction reference. Any protocol specific options are created and
with the bidder’s valuation and mapping to the goods bundle the bidder
is interested in, is formed the bid settings. The bid settings are used with
the reference and bid generator to create a bids.
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Internal Auction Class Diagram

Figure 6.3 displays the relationship between resources during an auction
instance. The auction publisher publishes auction events to each of the ob-
servers registered. Auction resources can also send protocol specific mes-
sages to each other, allowing communication for hotspots. When a bidder
places a bid, the auctioneer provides the bidder with a bid reference. The
bidder can use the reference to request the current status of a bid. What
the current status may be is protocol specific, but it may need to retrieve
the bid from the bid publisher. The auctioneer creates a bid status object
for the bid and returns it to the bidder.



6.1. GAF IMPLEMENTATION DESIGN 107

A
u
c
t
i
o
n
O
w
n
e
r

+
s
e
t
u
p
(
)

+
c
r
e
a
t
e
A
u
c
t
i
o
n
(
i
n
 
i
n
s
t
r
u
c
t
i
o
n
s
 
:
 
A
u
c
t
i
o
n
I
n
s
t
r
u
c
t
i
o
n
s
,
 
i
n
 
r
e
s
o
u
r
c
e
s
 
:
 
A
u
c
t
i
o
n
R
e
s
o
u
r
c
e
[
]
)

A
u
c
t
i
o
n
C
r
e
a
t
o
r

*

-
c
r
e
a
t
e
s
 
a
u
c
t
i
o
n

*

+
s
e
t
u
p
(
)

+
d
e
a
l
l
o
c
a
t
e
(
)

+
s
u
p
p
o
r
t
s
T
y
p
e
(
i
n
 
t
y
p
e
 
:
 
i
n
t
)

+
t
r
a
n
s
f
o
r
m
(
i
n
 
t
y
p
e
 
:
 
i
n
t
)
 
:
 
P
r
o
x
y

+
s
e
t
P
r
o
x
y
(
i
n
 
p
r
o
x
y
 
:
 
P
r
o
t
o
c
o
l
)

-
s
u
p
p
o
r
t
e
d
T
y
p
e
s
 
:
 
i
n
t
[
]

A
u
c
t
i
o
n
R
e
s
o
u
r
c
e

*

-
s
e
t
s
 
u
p

*

+
o
p
e
n
B
i
d
d
i
n
g
(
)

+
c
l
o
s
e
B
i
d
d
i
n
g
(
)

+
b
i
d
(
i
n
 
b
i
d
 
:
 
B
i
d
)
 
:
 
B
i
d
R
e
f
e
r
e
n
c
e

+
g
e
t
B
i
d
S
t
a
t
u
s
(
i
n
 
b
i
d
 
:
 
B
i
d
R
e
f
e
r
e
n
c
e
)

+
b
i
d
P
r
o
c
e
s
s
i
n
g
(
)

+
b
i
d
S
t
o
r
a
g
e
(
)

A
u
c
t
i
o
n
e
e
r

B
i
d
d
e
r

*

-
b
i
d
s

*

+
s
t
o
r
e
B
i
d
(
i
n
 
b
i
d
 
:
 
B
i
d
)

+
s
t
o
r
e
B
i
d
s
(
i
n
 
b
i
d
s
 
:
 
B
i
d
[
]
)

+
g
e
t
B
i
d
s
(
)
 
:
 
B
i
d
[
]

+
g
e
t
B
i
d
(
i
n
 
b
i
d
 
:
 
B
i
d
R
e
f
e
r
e
n
c
e
)
 
:
 
B
i
d

B
i
d
P
u
b
l
i
s
h
e
r

*

-
p
u
b
l
i
s
h
e
s
 
b
i
d
s

*

+
s
o
l
v
e
A
u
c
t
i
o
n
(
)

E
v
a
l
u
a
t
o
r

-
f
e
t
c
h
e
s
 
b
i
d
s

* *

+
p
u
b
l
i
s
h
R
e
s
u
l
t
(
i
n
 
r
e
s
u
l
t
 
:
 
A
u
c
t
i
o
n
R
e
s
u
l
t
[
]
)

+
g
e
t
R
e
s
u
l
t
(
)
 
:
 
A
u
c
t
i
o
n
R
e
s
u
l
t
[
]

+
a
d
a
p
t
A
u
c
t
i
o
n
(
i
n
 
m
e
s
s
a
g
e
 
:
 
P
r
o
t
o
c
o
l
M
e
s
s
a
g
e
)

+
c
a
n
c
e
l
A
u
c
t
i
o
n
(
)

R
e
s
u
l
t
P
u
b
l
i
s
h
e
r

*

-
p
u
b
l
i
s
h
e
s
 
r
e
s
u
l
t

*

+
p
u
b
l
i
s
h
E
v
e
n
t
(
)

O
b
s
e
r
v
e
r

+
r
e
g
i
s
t
e
r
(
i
n
 
p
a
r
t
i
c
i
p
a
n
t
 
:
 
A
u
c
t
i
o
n
R
e
f
e
r
e
n
c
e
)

+
u
n
r
e
g
i
s
t
e
r
(
i
n
 
p
a
r
t
i
c
i
p
a
n
t
 
:
 
P
a
r
t
i
c
i
p
a
n
t
R
e
f
e
r
e
n
c
e
)

+
p
u
b
l
i
s
h
E
v
e
n
t
(
i
n
 
e
v
e
n
t
 
:
 
A
u
c
t
i
o
n
E
v
e
n
t
)

A
u
c
t
i
o
n
P
u
b
l
i
s
h
e
r

-
p
u
b
l
i
s
h
e
s

*

-
r
e
g
i
s
t
e
r
s

*

*

-
p
u
b
l
i
s
h
e
s

*

V
e
r
i
f
i
e
r

-
v
e
r
i
f
i
e
s

*

*
*

-
f
e
t
c
h
e
s
 
b
i
d
s

*

*

-
f
e
t
c
h
e
s
 
r
e
s
u
t

*

B
i
d

*

-
s
t
o
r
e
s

*

B
i
d
S
t
a
t
u
s

1

1

B
i
d
R
e
f
e
r
e
n
c
e

1

1

1

*

-
r
e
f
e
r
e
n
c
e
 
:
 
s
t
r
i
n
g

-
e
v
e
n
t
 
:
 
i
n
t

-
e
v
e
n
t
N
a
m
e
 
:
 
s
t
r
i
n
g

-
e
v
e
n
t
D
a
t
a
 
:
 
o
b
j
e
c
t

A
u
c
t
i
o
n
E
v
e
n
t

-
r
e
c
i
e
v
e
s

*

*

-
r
e
c
i
e
v
e
s

*

*

A
u
c
t
i
o
n
R
e
s
u
l
t
[
]

1

*

+
s
e
r
i
a
l
i
z
e
(
)

P
r
o
t
o
c
o
l
M
e
s
s
a
g
e

*

-
r
e
c
i
e
v
e
s
 
/
 
s
e
n
d
s

*

-
s
u
p
p
o
r
t
e
d
T
y
p
e
s
 
:
 
i
n
t
[
]

A
u
c
t
i
o
n
P
a
r
t
i
c
i
p
a
n
t

*
-
s
e
n
d
s
 
p
r
o
t
o
c
o
l
 
m
e
s
s
a
g
e

*

-
t
y
p
e
s
S
e
n
d
T
o
 
:
 
i
n
t
[
]

E
v
e
n
t
F
i
l
t
e
r

1
1

Fi
gu

re
6.

3:
A

uc
ti

on
cl

as
s

di
ag

ra
m

.T
o

sa
ve

sp
ac

e,
se

tt
er

an
d

ge
tt

er
m

et
ho

ds
ar

e
no

ts
ho

w
n.

A
n

au
ct

io
n

re
fe

re
nc

e
al

so
co

nt
ai

ns
th

e
pr

ot
oc

ol
an

d
se

tt
in

gs
fo

r
th

e
au

ct
io

n,
bu

tt
he

lin
k

be
tw

ee
n

th
es

e
cl

as
se

s
is

no
ts

ho
w

n.



108 CHAPTER 6. IMPLEMENTATION

6.1.2 Design Patterns

Design patterns are standard solutions to well defined recurring design is-
sues [23]. Several GAF components use design patterns in order to achieve
their requirements. The following design patterns are defined in the pat-
tern catalog [23] and are briefly described here with detail about their use
within GAF. The first five facilitate hotspot development, providing trans-
parency to either the application or protocol developer. The final pattern
facilitates consistent communication within auctions.

• Abstract factory: An abstract factory is a single object which can cre-
ate families of related objects. It is used to produce a consistent set of
concrete classes throughout an auction instance, and the application
need only deal with abstract classes.

An abstract factory is used within GAF to create concrete auction re-
sources in accordance with the protocol in use. An object wishing to
instantiate an auction resource, such as a resource provider, retrieves
a resource factory and generates the requested resource by parame-
terising the factory with an auction resource requirement and proto-
col. The factory uses reflection to instantiate a concrete resource of
the requested protocol and type.

• Proxy pattern: As discussed in section 5.6.2, participant communica-
tion is abstracted from the framework using the proxy pattern. Each
resource is wrapped within a remote proxy which channels partici-
pant communication using the type required by the application. A
proxy abstract factory specified by the auction owner is used to wrap
resources. The auction owner or resource provider passes the re-
sources through the factory, which determines the type of resource
and returns a corresponding proxy of the communication proxies
type.

• Command: The command pattern is a design for the issuing of ab-
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stract commands. The auction owner may need to issue protocol or
policy dependant commands to the auction creator. Abstract com-
mands are represented by an object which can be passed between
components. The component executes the request without knowing
what the concrete class or actual request is.

• Template method: A template method defines a series of operations
that are required in an algorithm, but leaves the detail to subclasses.
The detail left for subclasses are the hotspots in the framework.

• Observer: An observer can subscribe to a publisher so that when
publisher state changes, the observer is updated. For auction com-
ponents to be aware of the events in the auction they subscribe to the
auction publisher, becoming an auction observer.

6.2 Auction Protocol Implementation

Two methods of implementation have been used to include the three dif-
ferent protocols within GAF: the Homomorphic protocol has been im-
plemented completely within GAF resources using a few base libraries.
The Polynomial and Garbled circuit protocols have been previously im-
plemented and these implementations have been wrapped within simple
GAF resources.

6.2.1 Case Study One: Polynomial Auction Protocol

The Polynomial protocol was first implemented as a stand-alone single
threaded application. In order to run polynomial protocols within GAF,
each of the different components has to be separated and wrapped within
auction resources. Six different auction resources were used: an auction
creator, auctioneer, auction publisher, bulletin-board, mask publisher, and
a result publisher. The bulletin board and mask publisher are protocol
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specific resources which extend from the base type AuctionResource and
communicate using proxies.

The auction creator behaves exactly as specified in the GAF specifi-
cation, retrieving goods and the auction settings from the auction instruc-
tions which are: the threshold parameter (the minimum number of evalua-
tors required to decrypt), the maximum polynomial coefficient and the tar-
get constant (for decryption resolution). The auction creator generates an
auction graph using the provided goods, the maximum bid as described
in section 4.4.1, and a resolve value for each of the auctioneers. The set-
tings and generated objects are used to create an auction reference. Using
that auction reference, the auction creator instantiates the other resources
which have been provided by the auction owner and returns the auction
reference to the auction owner.

Bidders in the Polynomial protocol send their evaluators who are the
auctioneers. Several polynomial auctioneers are used in each auction in-
stance, each implementing both the auctioneer and evaluator interfaces.
When an auctioneer is requested to set up, it instantiates a polynomial
evaluator which is an object from the lower level library and a bulletin
board translator. The translator is a proxy object which wraps the meth-
ods of the polynomial bulletin board and is provided to the evaluator as
the original library was not intended for use in a distributed environment.
It is able to do this by implementing the base libraries bulletin board in-
terface. The translator stores a reference to the GAF bulletin board auc-
tion resource (which is actually the remote proxy) and translates between
the two high and low level implementations. Figure 6.4 displays the re-
lationship between GAF and the low level classes and Figure 6.5 shows
a wrapped message that the bulletin board translator provides to the low
level polynomial evaluator.

There is a single bulletin board which implements only the auction re-
source interface in order to receive protocol messages. It works much the
same as the auctioneer, with auctioneer translators used to communicate
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Figure 6.4: Relationship between GAF resources, GAF proxies, GAF trans-
lators and base polynomial libraries auctioneer and bulletin classes.

public void setOptimalBidder ( i n t step , PolynomialBidder

bidder ) throws . . . {
i f ( t h i s . i s D e a l l o c a t e d ) return ;

t h i s . bb . sendProtocolMessage ( re ference , new
PolyBBSetOptimalBidderMessage ( step , bidder ) )

;

}

Figure 6.5: A code snippet from the bulletin board translator showing the
method which marks a bidder as optimal for a particular step in the pro-
tocol. If the resource has been deallocated then the method will return
without performing any action, otherwise it will send a protocol message
to the bulletin board. Note that each protocol message has its own type in
order to store different objects. For instance, the set optimal bidder mes-
sage contains the optimal bidder and the step the bidder is being set for.
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with each of the auctioneers. The auctioneer translators are instantiated,
wrapping each auctioneer when the bulletin board is setup. There are
several mask publishers, depending on security requirements, which also
simply implement the auction protocol interface and send protocol mes-
sages as required. The results are sent to the result publisher which then
forwards it on to the auction publisher.

6.2.2 Case Study Two: Homomorphic Auction Protocol

All of the behaviour for the Homomorphic auction protocol is specified
within the GAF implementation of the protocol as it had not previously
been fully implemented. A single threaded application without thresh-
old encryption has been [14], but the implementation would have been
too difficult to extend. The Homomorphic protocol is implemented using
five auction resources, where all are one of the standard types: auctioneer,
evaluator, bid publisher, result publisher and auction publisher.

There is a single auctioneer, which is also the auction creator. The auc-
tioneer when requested, instantiates the auction instance using the goods,
the different resources, the key size and the vector length. One of the auc-
tion creator’s tasks is to assign evaluators to evaluator groups with match-
ing threshold keys. A single public key is provided for each of the evalu-
ator groups, with private keys for each of the evaluators. In a production
environment this would require the auctioneer to be a trusted party or the
protocol could be modified to perform group key generation.

When requested to find the auction solution, homomorphic evalua-
tors each start an evaluation thread which solves the auction by running
through the different steps as specified in section 4.2. The bid publisher
and result publisher are used to store the bids by the auctioneer and the
results from the evaluators respectively. These are not specifically required
by the protocol and could be replaced by simple behaviour within the auc-
tioneer if the protocol was not modified to take advantage of the separa-
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tion of concerns. The auction publisher publishes auction events to regis-
tered observers.

6.2.3 Case Study Three: Garbled Circuit Auction Protocol

The Garbled Circuit protocol wraps the behaviour of a lower level library
in a similar manner that the polynomial protocol does. The auctioneer
wraps the garbled auction manager, and the evaluator wraps the garbled
auction issuer. Communication in the Garbled Circuit protocol is mini-
mal and so translators are not used, with the communication translated in
the resource objects themselves. The bid publisher, result publisher and
auction publisher behave exactly the same as in the other two protocols.

6.3 AuctionComposer Design and Implementa-

tion

AuctionComposer is intended to be a simple distributed system to test
and compare auction protocols. It provides the ability to gather and ex-
port auction performance statistics and logged event details. This sys-
tem’s implementation verifies that the framework can be used with an
application and shows that the development required to use a variety of
pre-implemented protocols is minimal. Auction resources are provided by
remote resource providers and auctions are either simulated from existing
auction descriptions or by randomly generating auction scenarios. Future
extensions will enable the auction composer to generate and run random
auctions as well as export auction results which can then be compared
either against other protocols or expected solutions.
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6.3.1 AuctionComposer Applications

AuctionComposer consists of three applications: an auction resource provider,
an auction test manager and the composer application. Each application
is able to run on a different host as communication runs through Remote
Method Invocation (RMI) [61]. The resource provider generates auction
resources based on predefined resource definitions provided when the ap-
plication is started. The test manager reads test definition files and sub-
mits tests to the AuctionComposer application which runs and controls
simulations.

AuctionComposer

The AuctionComposer application runs auction simulations, playing the
part of the auction owner. It maintains a pool of resources which it has
been informed of and pending test simulations which have been requested
by an auction test manager. When the application is started, several auc-
tion threads are created which monitor the pools of tests and resources,
each running an auction at a time. The threads cycle through the pool of
simulations attempting to run each test. If there are not enough resources
of the required type to run a simulation then the simulation is added back
to the pool and attempted at a later point.

For each protocol the composer must support a corresponding test run-
ner which is provided by the protocol class. Test runners are implemented
to interact with a protocol specific subclass of auction test which is used
to create auction settings. In addition, the test runner interacts with the
auction resources to run the auction as required by the protocol.

An auction thread when running an auction starts three services: the
aforementioned test runner and two listeners, one listens for auction statis-
tics, the other logging auction events. In order to retrieve auction statistics,
a protocol must be set up to publish events of a GAF auction statistic type.
The listeners record the events to a file specified within the auction test
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definition.

Resource Provider

When the resource provider application is started it is passed as arguments
the IP address and port that the auction composer has opened for connec-
tions and a file location of XML resource definitions. Resource definitions
specify a list of protocol resource types with the corresponding number
the provider can maintain simultaneously. When the application starts it
reads this file but only instantiates resources as required to the limit con-
figured in the test definition.

Once the resource provider has started it connects to the AuctionCom-
poser application, informing it of the resource types the provider supports.
When the composer requests a resource it is instantiated and passed to the
composer. The composer will inform the resource provider to deallocate
the resource at the end of the auction, at which point the provider can
instantiate another when requested.

Auction Test Manager

An auction test manager reads XML auction test scenarios and submits
them to an AuctionComposer for simulation. Scenarios are are read by a
corresponding protocol specific parser which is included within the test
manager and instantiated using reflection on the class name from an at-
tribute in the test file. A snippet of an example test file showing the def-
inition of a polynomial test auction scenario is given in Figure 6.6, where
the different attributes are:

• parser: the protocol specific test parser class which parses the XML
file. An initial reader will read this before instantiating it using re-
flection. The remainder of the file is parsed by this protocol specific
test reader.



116 CHAPTER 6. IMPLEMENTATION

• timeout: A timeout after which the auction is disbanded with the
resources being requested to be deallocated.

• biddingPhase: A timeout after which the auctioneer closes the bid-
ding phase and the auction is evaluated.

• maxBidders: The maximum number of bidders to wait for if used in
conjunction with the wait for maximum bidders tag.

• waitForMax: A flag which if set informs the auctioneer to close bid-
ding once the maximum number of bidders have placed their bid.
This is useful when testing in order to not have to wait for the bid-
ding phase to end as a set number of bidders are expected.

• numEvaluators: The evaluator group size, i.e. the number of evalu-
ators for each node.

• numMaskPublishers: The number of mask publishers to use.

• threshold: The threshold number of evaluators required to decrypt
bids.

• constant: The constant value for weight resolution.

• maxCoefficient: The maximum coefficient which can be used for a
random polynomial.

• toLog: A flag which indicates that events should be logged to a log
file.

• logDir: The directory containing event logs.

• log: The filename of the log.

• requiresStatistics: A flag which indicates whether to log statistics.

• statsDir: The directory containing statistics logs.
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• statsLog: The filename of the statistics log.
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<t e s t s>
<parser>

nz . ac .vuw. mcs . dsrg . a u c t i o n p r o t o c o l s . secure . polynomial . t e s t i n g . XMLPolynomialTestParser
</parser>

<auct ion timeout=” 900000 ” biddingPhase=” 105000 ” maxBidders=”30” waitForMax=” true ” numEvaluators=”21”
numMaskPublishers=”2” threshold=”1” constant=”5” maxCoeff ic ient=”10” toLog=” f a l s e ” logDir=” ˜/

polynomial/ r e s u l t s /” log=” bidders 3−log . t x t ” r e q u i r e s S t a t i s t i c s =” true ” s t a t s D i r =” ˜/ auct ion/
polynomial/ r e s u l t s ” s t a t s l o g =” bidders 3 . t x t ”>

<t i t l e>Polynomial−bidders −3, R1</ t i t l e>
<goods>
<good id=”0” name=”GOOD1” d e s c r i p t i o n =”1”/>
<good id=”1” name=”GOOD2” d e s c r i p t i o n =”2”/>
<good id=”2” name=”GOOD3” d e s c r i p t i o n =”3”/>

</goods>

<bundles>
<bundle id=”0” name=”G1” d e s c r i p t i o n =”G1”>

<good id=”0”/>
</bundle>
<bundle id=”1” name=”G2” d e s c r i p t i o n =”G2”>

<good id=”1”/>
</bundle>
<bundle id=”2” name=”G3” d e s c r i p t i o n =”G3”>

<good id=”2”/>
</bundle>
<bundle id=”3” name=”G1 , G2” d e s c r i p t i o n =”G1 , G2”>

<good id=”0”/>
<good id=”1”/>

</bundle>
<bundle id=”4” name=”G1 , G3” d e s c r i p t i o n =”G1 , G3”>

<good id=”0”/>
<good id=”2”/>

</bundle>
<bundle id=”5” name=”G2 , G3” d e s c r i p t i o n =”G2 , G3”>

<good id=”1”/>
<good id=”2”/>

</bundle>
<bundle id=”6” name=”G1 , G2 , G3” d e s c r i p t i o n =”G1 , G2 , G3”>

<good id=”0”/>
<good id=”1”/>
<good id=”2”/>

</bundle>
</bundles>

<bidders>
<bidder name=” Bidder 1 ” behaviour=”nz . ac .vuw. mcs . dsrg . a u c t i o n p r o t o c o l s . secure .

polynomial . t e s t i n g . PolynomialBidBehaviour ” >

<valuat ion value=”1” goods=”0”/>
<valuat ion value=”1” goods=”1”/>
<valuat ion value=”1” goods=”2”/>
<valuat ion value=”1” goods=” 0 ,1 ”/>
<valuat ion value=”1” goods=” 0 ,2 ”/>
<valuat ion value=”1” goods=” 1 ,2 ”/>
<valuat ion value=”1” goods=” 0 ,1 ,2 ”/>

</bidder>
. . .

</bidders>
</auct ion>

. . .
</ t e s t s>

Figure 6.6: Snippet from sample test definition file.



Chapter 7

Evaluation

This chapter empirically evaluates GAF and the three protocols which
have been implemented directly within it. Having implemented three pro-
tocols in GAF within a testing application allows self-reflection to be made
on the framework usability, from both a protocol developer’s and an ap-
plication developer’s perspective. The primary objective of this chapter is
to determine whether the framework adds overhead to auction protocols
and if so, by how much. This evaluation provides a test case of the frame-
work and can be built on for a more detailed auction protocol analysis.

Section 7.1 provides the framework evaluation, section 7.2 evaluates
each of the different protocols, and section 7.3 concludes the chapter by
comparing the three protocols.

7.1 Framework Evaluation

7.1.1 Framework Overhead

In this section GAF is emperically evaluated for added overhead, by com-
paring polynomial auctions run independently and within (using simple
object proxies) the framework without distributed message handling. For
a sense of the RMI overhead incurred when using GAF in a distributed

119
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system, the statistics for the first two tests are compared against polyno-
mial auctions running in GAF on a single machine using RMI proxies.

Due to the nature of the winner determination problem, the single vari-
able with the largest impact on a combinatorial auctions is the number of
goods. Therefore this variable is used to compare autonomous polyno-
mial auctions with those run within GAF with the respective proxy types.
Auction evaluation time is plotted as this is the most computationally ex-
pensive of an auction’s various phases and is the primary concern when
comparing protocols.

The machine used for these experiments is a Toshiba Satellite M110
1.7GHZ Centrino Duo with 1GB of Memory. All experiments were run 30
times using the Sun 1.5.0 JVM. The machine was running no other appli-
cations other than the KDE x-windows operating system and its standard
processes.

GAF Overhead Example 
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Figure 7.1: Overhead introduced by GAF for the polynomial protocol.

Figure 7.1 shows the comparative performance of the three different
tests: autonomous (protocol running independently from GAF), auctions
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within GAF, and RMI proxies. This experiment shows that running an
auction protocol within GAF adds virtually no overhead to a protocol. The
raw data showed an average maximum difference of no more than three
seconds. However running the protocols in a distributed system using
RMI proxies introduces significant costs which is to be expected as RMI
is well known to be a costly communication solution. More interestingly,
this experiment shows that the overhead from RMI has less of a relative
impact as the number of goods increases. The reduction in communica-
tion overhead is due to the increase in evaluation time which outweighs
communication costs as more evaluation computation is required.

7.1.2 Framework Usability

There are two different users of a GAF implementation which need to be
considered. Protocol developers implement protocol specific auction be-
haviour conforming to GAF. Application developers leverage GAF’s auc-
tion mechanism within their application, benefiting from the protocols.
This section briefly explores what is required of each developer and the
author’s experience using GAF.

Protocol Developer

The protocol developer must divide auction behaviour between protocol
specific implementations of the different auction resource types. Protocol
specific messages are wrapped within standard message objects conform-
ing to GAF. An application using GAF can use the protocol as long as it
has been built to create auction parameters for it.

Application Developer

An application developer builds auction support into their application in
three parts: auction resource allocation, communication, and protocol sup-
port. Resource allocation is the acquisition of auction resources to facili-



122 CHAPTER 7. EVALUATION

tate the auction, communication is the provision of a communication layer
for resources to communicate, and protocol support bridges protocol be-
haviour for the application implementation such as resource configuration
and auction instantiation.

The difficulty of distributing resources to the auction is as simple or
difficult as the application requires. For the simulation application Auc-
tionComposer described in section 6.3, resources are randomly selected
from a set which registered with the central test server upon startup. This
is a simple solution for a test application, but other systems would have a
variety of mechanisms for choosing, distributing and selecting resources.

Providing a communication layer for resources involves wrapping GAF
objects with remote proxies. Implementation of proxies in terms of tech-
nology and detail depends on the the implementation of GAF, but the
technology for communication would depend primarily on application re-
quirements. Although it is desirable that communication in independent
from protocol development there may be some requirements of a proto-
col which have implications on communication, such as a requirement for
secure communication between participants.

Integration for protocol support is required for each protocol. This is
required given the variety of interactions between participants, and the
different specifications of messages. For example, a user may need to
transform auction parameters such as minimum bid into a representa-
tion specific to the protocol in question. The complexity of supporting
each protocol depends on the complexity of the protocol itself, that is how
much translation is required for elements. The auction protocols discussed
in this thesis do not require a large amount of specialised parameters, or
interactions with external participants so protocol support was relatively
simple.

GAF is a relatively small framework and is kept simple by maintain-
ing a small number of simple interfaces. Supporting the protocols imple-
mented in this thesis within GAF was straight forward, implementing a
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handful of resources which delegated to auction protocol libraries. It was
more difficult to add resource wrappers for communication with RMI, but
this was mainly due to difficulities with memory leaks due to Java RMI
objects not always being closed. The greatest difficultly was the initial im-
plementation of the secure auction protocol libraries.

As discussed in chapter 6 the protocols for the case studies in this the-
sis were developed in two different ways. The polynomial and garbled
ciruit protocols were developed as a library independently of GAF and
wrapped within GAF auction resources. The homomorphic protocol was
implemented within GAF objects directly. When developing the homo-
morphic protocol, this made the development task slightly harder, in that
testing the system was more difficult as additional application compo-
nents were required. In comparison, if the protocol has been developed
independently, then wrapped with GAF objects, it is relatively simple if
the protocol elements are divided in a way that they can be used as auc-
tion resources. One disadvantage of developing a protocol independently
is that synchronisation may not be a primary concern from the beginning
of development if it is believed that GAF will be responsible for commu-
nication. It is important however to include a synchronisation strategy in
the development of any distributed system.

7.1.3 Framework Security

GAF does not offer auction protocols running within it any additional se-
curity above what they provide themselves. The primary aim of GAF is
to facilitate the use of multiple protocols in a systematic way so that pro-
tocols can be swapped at runtime with as little individual development
for each protocol as possible. Services could, however be added to GAF
to facilitate security requirements. One such concern is that currently, re-
quests between resources are not authenticated and so any request would
be responded to. There are several ways that GAF could be extended to



124 CHAPTER 7. EVALUATION

include authentication and authorisation of requests, such as a security
layer or framework hooks which could be implemented by an application
developer. Another concern is that messages between resources are not
themselves encrypted. This could also be offered by GAF as a low level
optional service which would secure some subset of auction messages.

7.2 Protocol Evaluation

Experiments have been performed for each of the three protocol case stud-
ies: polynomial, homomorphic and garbled circuit auctions.

The sensitivity of performance to different choices of variable is ex-
plored with respect to the number of goods, the number of bidders and
the maximum bid price. Together in terms of scaleability, these primary
variables are the most important factors as they determine how flexible the
protocols are. These, therefore, provide the basis for how each of the pro-
tocols: can be used. The additional variables which are examined are the
security properties of the protocols; the maximum coefficient, evaluator
threshold and the number of mask publishers for the Polynomial Protocol
and the keysize, as well as the evaluator threshold for the Homomorphic
protocol.

The different variables may have a differing impact on each of the pro-
tocols different phases. The two auction phases which are present in all
protocols are bid generation and total evaluation time, however each of
the protocols also have protocol specific phases. In the Polynomial and
Homomorphic protocols, total evaluation time is comprised of optimal
value and optimal path determination. In the Garbled Circuit protocol, as
discussed in section 4.3, the phases are structured quite differently, with
part of the evaluation being predetermined during the bid submission.

In this chapter each of the phases in the Polynomial protocol are eval-
uated, but not for the other two protocols. In the Homomorphic protocol
only the evaluation phase is evaluated as the protocol phases are so similar
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to the Polynomial protocol that the same patterns occur. The Garbled Cir-
cuits results are divided into the different phases, however only evaluation
is provided within the chapter for the primary variables. The remaining
phases are provided in the appendix for the reader’s reference. The Poly-
nomial and Garbled Circuit results were generated and evaluated for this
thesis, and the Homomorphic results were originally collected by Palmer
[40]. The primary variables are evaluated for the Garbled Circuits protocol
as a sample of the possible variables.

Experiments have been performed on up to 33 Dell Optiplex GX755
machines, each of which is a Intel Core 2 Duo 2.4GHz with 2GB of mem-
ory running NetBSD. All applications have been written in Java 5.0 and
each resource was run in a Sun 1.5.0 JVM with a maximum heap space of
256mb. Bids were placed for all bundles (each combination of goods) and
randomised from between one and the maximum bid.

Values graphed for each experiment are the average of 30 runs to re-
duce the effect of outliers. All machines are in a shared laboratory and are
available to many users, however the experiments have been performed
during off-peak periods to minimise any effect of outliers. Communica-
tion between all processes is through the GAF RMI proxies. The set num-
ber of goods and bidders where the respective variable is not under test is
three and ten respectively. It is not possible to have a consistent maximum
bid price because of the different mechanisms used by the protocols. These
values are not necessarily a true reflection of the average auction, but they
are non-trivial defaults which allow the effect of variables on scaleability
to be explored. The default values of the other protocol-specifc variables
are provided in each of the relevant sections.

The following experiments have been run for each of the protocols:

Increasing the Number of Goods

The scalability of a combinatorial auction protocol in terms of the number
of goods is the most important concern. As the motivation for combinato-
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rial auctions is to sell related goods in a single auction, this is the primary
concern for flexibility. If the number of related goods requiring sale are
greater than that of which the auction protocol can manage, a different
protocol would be required, or the goods packaged into bundles. Almost
all combinatorial auction protocols and certainly the protocols explored in
this thesis will occur an exponential evaluation cost when increasing the
number of goods. The simple reason being that as the number of goods
increases, the number of potential solutions increase exponentially. The
exception to this rule are auctions which use approximation evaluating on
only a limited number of potential solutions, such as those in [20, 22].

Increasing the Number of Bidders

The number of bidders a protocol can reasonably support is also an impor-
tant consideration, second to the number of goods. Increasing the number
of bidders should result in a linear cost increase as the number of potential
solutions will increase linearly.

Increasing the Maximum Bid

The maximum bid is the third most important performance consideration,
as the number of potential bids is important when choosing a protocol for
a particular purpose. Because of the different mechanisms for representing
bids, the performance of different auctions under different maximum bids
will differ.

7.2.1 Case study one: Polynomial Auction Protocol

The independent variables to vary for the Polynomial Protocol are the
number of goods under auction, number of bidders participating, maxi-
mum bid price, threshold number of evaluators required to decrypt bids,
number of mask publishers and the maximum coefficient. The different
phases are bid generation, total evaluation time and its component phases:
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optimal value and optimal path determination. Evaluation time makes up
the majority of time taken to run an auction and this is provided for each
experiment. Bid generation time is provided for each of the experiments,
except where it is not relevant as bid generation is independent of other
bidders. It is also not included in the mask publisher’s experiment, as
mask publishers are involved only in evaluation. Optimal value and opti-
mal path determination are divided for the number of goods and bidders
experiments, as the ratio of work is consistent over the other variables.

The protocol specific default variables for the polynomial protocol that are
held constant are:

Variable default Default value
Maximum bid 5
Threshold 1
Number of evaluators Varies according to other variables
Number of mask publishers 2
Maximum coefficient 10

The default maximum bid and threshold are not sufficient for a real
auction. They have been kept low because of the relationship between the
maximum bid, the threshold and number of evaluators. This relationship
cripples the scheme as was explained in section 4.4.1. A proposed modifi-
cation to the protocol to reduce the effect of the relationship was provided
in section 4.4.2. The number of mask publishers and maximum coefficient
is also low, though there are currently no recommendations in the related
work for suitable values.

Increasing the Number of Goods

This experiment shows that the number of goods under auction has a sig-
nifiant effect on scalability. An increase in goods, as shown in Figures
7.2 and 7.3, corresponds to an exponential increase in evaluation and bid
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generation time respectively. Both of these figures grow exponentialy due
to the exponential increase in goods combinations requiring evaluation.
For this experiment, a maximum number of five goods has been used be-
cause a number greater than this requires the JVM heapspace to be in-
creased past 256mb for each evaluator. Increasing the heapspace past
256mb would be unreasonable for the number of auction resources re-
quired to run for some of the experiments and, in addition, it would need
to be greatly increased with more goods. It can be seen from the graph
though that with an additional two goods, evaluation would take well
over one thousand seconds per auction. Future work should investigate
methods of reducing the memory usage of each protocol and providing a
way in which a larger number of goods can be supported, such as caching
intermediate results.

In the evaluation phase breakdown shown in figure 7.4, it is apparent
that the growth of optimal path determination is less than that of value de-
termination. Optimal path determination, though, is initially higher, due
to the number of evaluations required during bidder search. The num-
ber of edges to search in optimal path determination is significantly lower
than that in optimal value determination, due to the nature of edge trace-
back with dynamic programming. Therefore as the number of edges in-
creases, the number of decryptions required during optimal value deter-
mination begins to outweigh the number of decryptions required when
determining optimal edges and bidders.

Increasing the Number of Bidders

The effects of increasing the number of bidders on evaluation time are
provided by Figures 7.5 and 7.6, as the total evaluation time and the break
down of evaluation phases respectively. Increasing the number of bidders
increases the evaluation time a slight amount linearly. This increase is min-
imal as all bids for a particular bundle are added together and evaluated
together until the winning bidders need to be determined.
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Polynomial auction evaluation time (increasing goods)
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Figure 7.2: Effect of increasing the number of goods on total evaluation
time.
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Figure 7.3: Effect of increasing the number of goods on bid generation
time.
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Polynomial auction evaluation time (increasing goods)
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Figure 7.4: Effect of increasing the number of goods, optimal value deter-
mination vs optimal path determination.

The difference between optimal path and optimal value determination
varies erratically, most likely due to demand of system resources by other
users. As the evaluation times are short, they are greatly susceptible to
other process demands.

Increasing the Maximum Bid

As shown in figure 7.7, evaluation time for the Polynomial Protocol does
not scale well as the size of the maximum bid increases. This is due to
the relationship between the number of goods, evaluators and the thresh-
old (see section 4.4.2). For this experiment the number of goods and the
threshold have been maintained at the defaults, so to increase the maxi-
mum bid the number of evaluators has to be increased. One consequence
of this is that the security is reduced as the ratio of threshold to evaluators
(t, n).

The exponential increase in evaluation time is due to the large number
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Polynomial auction evaluation time (increasing bidders)
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Figure 7.5: Effect of increasing the number of bidders on total evaluation
time

Polynomial auction evaluation time (increasing bidders)
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Figure 7.6: Effect of increasing the number of bidders, optimal value de-
termination vs optimal path determination.
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of evaluators which have been spread accross a consistent number of ma-
chines. Not only does the number of messages and amount of processing
increase with the number of evaluators but, as the machines are limited,
the resources must contend for system resources.
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Figure 7.7: Effect of increasing the maximum bid on total evaluation time.
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Polynomial bid generation time 

(increasing maximum bid)

0.0

1.0

2.0

3.0

10 20 30 40 50

Maximum bid

B
id

 g
e

n
e

ra
ti

o
n

 t
im

e
 

(s
e

c
o

n
d

s
, 

p
e

r 
b

id
d

e
r)

Figure 7.8: Effect of increasing the maximum bid on bid generation time.
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Figure 7.9: Effect of increasing the maximum bid, optimal value determi-
nation vs optimal path determination.
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Increasing the Threshold Number of Evaluators

Exponential growth occurs when increasing the threshold number of eval-
uators, as depicted in Figure 7.10. Similarly to increasing the maximum
bid, when increasing the threshold the number of evaluators used also
has to be increased because of the circular dependency between evalua-
tors, threshold and maximum price. As in the maximum bid experiment,
increasing the number of evaluators introduces an exponential cost.
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Figure 7.10: Effect of increasing the threshold number of evaluators on
total evaluation time.

Increasing the Number of Masking Agents

Figure 7.11 shows the effect of increasing the number of mask publishers
on total evaluation time and Figure 7.12 provides the breakdown of evalu-
ation phases. Increasing the number of mask publishers has a linear effect
on the total evaluation time. This is because of the time each evaluator
must wait for the additional masking values from the added mask pub-
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Polynomial auction evaluation time
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Figure 7.11: Effect of increasing the number of mask publishers on total
evaluation time.

lishers. It is not due to the additional masks themselves, as they require
only an extra addition operation which is trivial compared to the commu-
nication required to send the mask.

The number of mask publishers has a greater effect on determining the
optimal path than on determining the optimal value. The minimal effect
when determining the optimal value is due to a much smaller number of
node evaluations required, compared to the number of bids which must be
evaluated when determining the optimal path (hence a reduced number
of masks required).

Increasing the Maximum Coefficient

There is no effect on evaluation or bid generation when increasing the
maximum coefficient, therefore it is not shown. This is because increas-
ing the maximum coefficient increases the pool that polynomials can be
generated from, but polynomial operations remain constant irrespective
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Polynomial auction evaluation time 
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Figure 7.12: Effect of increasing the number of mask publishers, optimal
value determination vs optimal path determination.

of polynomial size.

7.2.2 Case study two: Homomorphic Auction Protocol

The Homomorphic Auction Protocol shares the independent variables of
the polynomial and Garbled Circuit Protocol: number of goods, bidders
and maximum bid. The security variables are the threshold number of
evaluators required to decrypt bid vectors and the keysize used for en-
cryption. The different phases are the same as for polynomial auctions and
are not explored individually as the phases exhibit the same behavioural
patterns.

The experimental results evaluated in this section were produced by
Palmer [40]. They do not include exploring the number of evaluators or
threshold number of evaluators. Although they would be desirable ex-
periments to perform, as one of the contributions of this thesis was imple-
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menting Homomorphic Auctions with threshold encryption they are left
to future work to reduce scope.

The following table provides the default protocols’ specific variables
used for the Homormophic auction tests. The number of evaluators and
threshold are three and two respectively to provide a (2, 3) threshold scheme
which is equivalent to the Garbled Circuit protocol. The maximum bid is
sixteen as this is the minimum bid for Garbled Circuit.

Variable default Default value
Maximum bid 16
Threshold 2
Number of evaluators 3
Keysize 128

Increasing the Number of Goods

The impact of increasing the number of goods on evaluation time for the
Homomorphic Protocol is shown in Figure 7.13. Similar to the effect of
increasing the number of goods on the performance of the polynomial
auction, increasing the number of goods in the Homomorphic Auction
Protocol increases evaluation time exponentially.

Interestingly, the graph shows that evaluation time does not change
between one and two goods. This is because actual evaluation is so cheap
that the times recorded are equal to the minimum overhead. During eval-
uation, evaluators submit their calculations to the bulletin board and then
wait until other evaluators have published their calculations. The mini-
mum overhead is equal to the time threads spent sleeping while waiting
for other evaluators.
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Homomorphic auction evaluation time (increasing goods)
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Figure 7.13: Effect of increasing the number of goods on total evaluation
time.

Increasing the Number of Bidders

The effect of increasing the number of bidders on evaluation time shown in
Figure 7.14 appears to be linear. There is an unusual kink between eighty
and one hundred bidders, most likely due to increased load from other
processes on the shared machines.

During optimal value determination, edge vectors have been multi-
plied together and so there is no impact from increasing the number of bid-
ders. During optimal edge traceback, an additional bidder corresponds to
an additional vector which will require decryption. Therefore the growth
will be equal to the number of edges in the graph multipled by the addi-
tional number of bidders for each edge searched.
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Homomorphic auction evaluation time  (increasing bidders)
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Figure 7.14: Effect of increasing the number of bidders on total evaluation
time.

Increasing the Maximum Bid

The maximum bid in the Homomorphic Protocol corresponds directly to
the length of the bid vector used for bidding. Figure 7.15 shows that the
relationship between the vector length and evaluation time is linear. For
each vector element which is added (the vector size increased) an addi-
tional decryption is required for each edge. Therefore, during optimal
edge traceback, the number of decryptions will be increased by the num-
ber of edges, multiplied by the additional vector elements added and the
number of bidders for each edge searched. During optimal value determi-
nation the effect will be neglible for smaller vector increases as decryptions
are only carried out once for each node and multiplication (for masking)
is neglible.
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Homomorphic auction evaluation time (increasing bid 
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Figure 7.15: Effect of increasing the maximum bid on total evaluation time.

Increasing the Encryption Key Size

The cost of increasing the encryption key size is exponential as shown in
figure 7.16. This is due to the greatly increased time to perform opera-
tions on the increased ciphertext components [40]. The cost of increasing
key size is wide ranging as vectors include many encrypted values and
there are many vectors for each bidder. Increasing this variable will also
marginally increase time to setup and communications costs, as key gen-
eration will be more expensive and the bid vectors will be larger.
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Homormophic aution evaluation time (increasing keysize)

1

10

100

1000

128 256 384 512 640 768 896 1024

Keysize (bits)

E
v

a
lu

a
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

s
)

Figure 7.16: Effect of increasing the keysize on total evaluation time.

7.2.3 Case study three: Garbled Circuits Auction Protocol

The Garbled Circuit Protocol has been used as a third proof of concept,
with performance statistics collected through GAF similarly to the first
two protocols. Although a full collection of results for each variable and
phase has been generated for this thesis, only a sample of the primary
variables for the auction setup phase is provided, as a full analysis of the
Garbled Circuits auction protocol is provided by Palmer [40]. The auction
setup phase is the most computationally expensive part of a Garbled Cir-
cuit auction, as it includes pre-computation of part of the solution. The
remaining graphs are included in appendix C for the reader’s reference.

The only protocol specific default variable in the Garbled Circuit pro-
tocol is the maximum bid, which was sixteen. Figures 7.17, 7.18, 7.19 de-
pict the effect on evaluation time for the Garbled Circuits protocol for the
primary variables goods, bidders and maximum bid respectively. As in
the first two protocols, increasing the number of goods increases evalu-
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ation cost exponentially, while increasing the number of goods increases
the evaluation cost linearly. The effect of increasing the maximum bid on
evaluation is minimal and linear, much improved over the other protocols.
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Figure 7.17: Garbled Circuit evaluation time: number of goods.
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Garbled Circuit Evaluation Time  (Increasing Bidders)
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Figure 7.18: Garbled Circuit evaluation time: number of bidders.
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Figure 7.19: Garbled Circuit evaluation time: number of bits (max bid is 2b

where b is the number of bits used.
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7.3 Protocol Comparison

A performance comparison of the three protocols under an increasing num-
ber of goods and bidders is provided in figures 7.20 and 7.21 respectively.
How performance time scales as the maximum bid is increased is not pro-
vided as the three protocols are not comparable: the maximum bid for the
polynomial protocol is in the tens, the homomorphic protocol in the hun-
dreds; the garbled circuit protocol supports bids in the thousands. The
security properties are not compared either, as future work is required to
provide comparable values for the different security variables.
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Figure 7.20: Comparative evaluation time: number of goods.

Each of the three protocols have exponential growth for an increas-
ing number of goods, with the most expensive being the Garbled Circuit
protocol. The Polynomial Protocol displays exponential growth while the
Garbled Circuit protocol fluctuates. The Homomorphic Protocol arcs up-
wards but without further experiments with a higher number of goods the
general performance pattern can not be determined.
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Comparative Evaluation Time  (Increasing Bidders)
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Figure 7.21: Comparative evaluation time: number of bidders.

When increasing the number of bidders, all three protocols have a
steady linear increase in evaluation cost, however the garbled circuit pro-
tocol has the steepest growth. The Homomorphic and Polynomial proto-
cols are much less affected, with the Homomorphic protocol being slightly
more expensive. The reason is in the Garbled Circuit protocol the circuit
is greatly increased by the addition of a new bidder, while in the other
two protocols the additional multiplication or addition of encrypted val-
ues adds little cost. What little additional cost there is in the Homomorphic
and Polynomial protocols is due to the added number of bids which need
to be decrypted when determining which bidder placed the winning bid.
This is minimal as only bids on the optimal path need to be decrypted

Although the Garbled Circuit protocol in these experiments has a higher
evaluation cost and is affected the most by an increase in variables, this is
artificially so. The figure provided for Garbled Circuits includes circuit
generation which is the most costly part of the protocol and can be pre-
computed [40]. Once this is subtracted from the evaluation cost, Garbled
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Circuits is a less costly protocol than the other two. The primary reason
is that in the other two protocols, many evaluators must repeatedly per-
form decryption. In Garbled Circuits, once bidding has closed and the
auctioneer has received each bidder’s garbled input, the single auctioneer
need only run the circuit which is much cheaper than running hundreds
of decryptions.

Further work is required in order to run these auction protocols with
a comparable security cost. In addition, optimisation is required of the
protocols in order to run auctions with a higher number of goods. This
would provide for a more thorough comparison.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

Auctions have a diverse range of applications including selling household
goods, cars, allocating trucking and bus routes, airport takeoff and land-
ing slots, frequency spectrums and grid system resources. There are also
a large number of varying auction protocols to suit different applications,
with differing attributes such as the supported number of goods, bidding
language, solution algorithm and various types of auction rules. Without
a structured approach to implementing auction protocols the developer of
an auction application must learn the idiosyncrasies of many protocols.
Forcing the use of mismatched protocols into a single application is dif-
ficult to implement, difficult to maintain and is not good design practice.
This thesis develops the design of an auction framework which provides
a structured approach to developing auction protocols and auction appli-
cations.

8.1.1 Contributions

The contributions of this thesis as listed in chapter one are:

1. This thesis develops a specification and design of an auction frame-

147
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work called General Auction Framework (GAF) for the structured
development of auctions protocols and applications.

2. An implementation of GAF has been built for this project in JAVA
providing the base infrastructure for auction protocol development.
In addition the work includes an implementation of a sample auction
application called AuctionComposer which tests and gathers statis-
tics on auction protocols included as GAF protocols. The application
provides a proof of concept for the framework as it runs different
types of auctions using GAF.

3. Three case studies of secure combinatorial auction protocols have
been implemented in GAF. The first two, which were implemented
for this thesis by interpreting the original papers, are Polynomial se-
cret sharing, using dynamic programming [63], and Threshold ho-
momorphic encryption, using dynamic programming [69]. The third
is Garbled Circuits [38] which was initially built outside of GAF [40],
but has been ported into GAF by the author for this thesis.

4. Explanations and worked examples are provided for the two dy-
namic programming protocols as both original papers are difficult
to understand and missing detail required for implementation.

5. An introductory performance analysis of the three secure combina-
torial auction protocols. This analysis is intended to form the begin-
ning of more detailed future work analysing the protocols.

6. A proposed modification of the Polynomial secret sharing auction
protocol which significantly improves scalability.



8.2. FUTURE WORK 149

8.2 Future Work

8.2.1 GAF

• For GAF to be of use in production systems, it requires further devel-
opment, offering additional low level services. One such service is a
system for authentication and authorisation. This would enable an
application to provide an interface that auction resources can use to
identify and authenticate participants as well as determine what re-
quests are permitted. Authorisation of participants needs to be spec-
ified partially by the protocol developer as to what protocol actions
(such as closing an auction or withdrawing a bid) are permissible
and whether there are any attached conditions are protocol specific.

• Further analysis of the framework should be performed which com-
pares the effort of developing a protocol within GAF against devel-
oping a protocol individually. This could involve some form of time
based analysis or comparing lines of code.

• Additional proxy types could be added to the framework in order
to facilitate its usefulness to application developers. For example a
secure proxy could be added to be nested inside other proxies offer-
ing encryption, or other types of communication technologies such
as network sockets. In addition, the framework needs to be mod-
ified to allow multiple proxy types running within an application.
Another potential requirement is determining whether GAF could
be used in a virtually state-less environment such as web services.

8.2.2 Auction Protocol Development

• The auction protocols discussed in this thesis are inflexible. Fur-
ther work is required to determine how the secure schemes could be
modified to allow for modifications to the protocols. This includes



150 CHAPTER 8. CONCLUSION AND FUTURE WORK

for example GVA pricing and a offering a more extensive range of
bidding languages.

• The exponential nature of combinatorial auctions is a limiting factor,
which can be mitigated in some instances with protocols which ap-
proximate the solution. It should be investigated whether an approx-
imation combinatorial auction protocol can be implemented with
privacy preserving properties.

• An extension to the polynomial auction protocol has been offered
which requires implementation, testing and analysis.

8.2.3 Auction Protocol Evaluation

The three protocols used as cases studies in this thesis require more eval-
uation. The Garbled Circuit protocol implementation has been evaluated
well in [40], however the Polynomial and Homomorphic protocols require
additional work. Three future tasks for providing better auction evalua-
tion are:

• The Homomorphic protocol requires evaluation of performance un-
der differing numbers of evaluators and different threshold sizes.
This is important as it is the threshold ratio of evaluators which pro-
vide the primary security of the scheme.

• Optimising protocols to enable running auctions of any number of
goods. In order to provide a more thorough pattern of increased cost
for increased goods, the protocols should support at least ten goods
but it would be ideal if they were capable of running a higher num-
ber. This would involve adapting the protocols to reduce their mem-
ory usage as much as possible, and providing a method for caching
the internal calculations.
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• For a complete comparison of protocols, a study is required to de-
termine how secure each scheme actually is, including identifying
comparable values for each of the security properties. A baseline
may be the length of the time required to break bid encryption, or the
number of participants required to cheat in order to disrupt or break
security requirements. This would also make it possible to make an
advised decision when choosing between the protocols, as currently
the quality of security of each protocol is relatively abstract.

In addition to these tasks, a formal analysis is required, contrasting
each of the different protocols using the identified comparable security
requirements. Included in this is determining the primary strengths and
weaknesses of each scheme and under what conditions it could be suit-
ably used. These conditions could then be used to determine if one of
these protocols could be used for resource allocation in a grid system, or,
if not, provide more insight into what is required of a secure combinational
auction for grid resource allocation.

8.2.4 AuctionComposer

AuctionComposer needs to be extended in order to provide the ability to
compare different protocols in terms of their outcome and test protocols
by comparing actual outcome with an expected outcome.

8.2.5 Summary

The General Auction Framework (GAF) which is developed in this thesis
provides a structured approach to building auction protocols and appli-
cations. GAF’s design divides auction behaviour into logical components
which all studied auction protocol can be divided into. The framework de-
fines two sets of functionality: frozen spots, which the framework devel-
oper provides are fixed behaviour which all protocols use, and hotspots,
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which are the variable aspects of GAF. The variable aspects are further di-
vided into two types, firstly protocol hotspots which are implemented by
a protocol developer effectively forming the protocol. The second type is
application hotspots, which define behaviour which must be implemented
by an application developer providing application specific behaviour such
as communication.

The framework has been shown to be useful and versatile through the
use of case study protocols and a test application. With minimal effort,
protocols can be included within GAF and used by applications leverag-
ing the framework. The protocols, being quite different in design, provide
good test cases as they show GAF to be flexible enough to manage diverse
protocols. As auction resource behaviour is completely defined within
protocol specific hotspots it is possible to implement a protocol however a
protocol developer wishes. The added value that GAF brings is the stan-
dardised interfaces containing the hotspots, the distinction between dif-
ferent auction resources and the frozen spots which form the underlying
infrastructure of an auction protocol.

The test application provides both a test case for the framework, as an
example application built with GAF, and it is also a useful tool in itself.
The application provides the ability to record statistics for any protocol
auction built using GAF which publishes GAF statistics events. When a
new protocol is required to be integrated within the testing application,
the application developer only needs to add a test runner and a test parser.
Once complete, XML tests of the corresponding protocol type can be sub-
mitted to an AuctionComposer through an auction manager. The Auc-
tionComposer statistics listener will output the results to a file specified in
the test XML which can be collated as required.

AuctionComposer currently supports three protocols: secure combina-
torial polynomial auctions, secure combinatorial homomorphic auctions,
and secure garbled circuit auctions. Combinatorial auctions allocate mul-
tiple goods amongst bidders in a single auction. Secure auctions provide
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security related auction properties to an auction. One such security prop-
erty is privacy preservation where valuations of losing bidders are not
discovered. All three of the case study protocols are privacy preserving
combinatorial auctions.

The first two protocols, which were implemented especially for this
thesis, have been fully described with worked examples in this work where
in the original papers there was ambiguity. Included in this description is
explanation on how to run Homomorphic protocols with threshold en-
cryption, which had previously only been stated as possible. The garbled
circuits protocol has not been fully defined as it was not implemented for
this thesis and is adequately described in the original literature. In ad-
dition to the protocol descriptions, a proposed modification for the Poly-
nomial protocol is given which should improve performance and pricing
flexibility. As the number of goods increases, the relative gain from the
modification is increased significantly.
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Appendix A

GAF Auction Resource Use Cases

Use case name CreateAuthenticatedRequest
Participating actors Initiated by AuctionComponent
Flow of events 1. Create signature for request.

2. Attach signature to request.

Entry conditions • The AuctionComponent has a request to be signed.

Exit conditions • The AuctionComponent has a signed request.

Quality conditions

Figure A.1: AuctionComponent use case: CreateAuthenticatedRequest.

Use case name AuthenticateRequest
Participating actors Initiated by AuctionComponent

Communicates with AuthenticationService
Flow of events 1. The AuctionComponent requests any required data from the AuthenticationService.

2. The AuthenticationService returns the required data.

3. The AuctionComponent checks whether the request was authentic.

Entry conditions • The AuctionComponent has a signature to authenticate.

Exit conditions • The AuctionComponent knows whether the request is authentic or not auction.

Quality conditions

Figure A.2: AuctionComponent use case: AuthenticateRequest.
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Use case name SetupAuction
Participating actors Initiated by AuctionOwner

Communicates with AuctionCreator
Flow of events 1. The AuctionOwner requests the AuctionCreator create an auction instance using specified participants,

protocol and policy.

2. The request is authenticated.

3. If the request was authentic, the AuctionCreator creates the auction and returns the auction details.

Entry conditions • The AuctionOwner has selected and successfully negotiated to use an AuctioneerGroup, PolicyManager,
BidPublisher, EvaluatorGroup ResultPublisher, AuctionVerifier

• The AuctionOwner has chosen an auction protocol and corresponding policies.

Exit conditions • An auction owner has either had an auction instance created and received the auction details, or an error
message was returned.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

Figure A.3: AuctioneerOwner use case: SetupAuction.

Use case name WithdrawAuction
Participating actors Initiated by AuctionOwner

Communicates with AuctionCreator
Flow of events 1. The AuctionOwner requests the AuctionCreator delete an auction instance. An AuctionReference is attached.

2. The request is authenticated.

3. If the request was authentic, the AuctionCreator finds the auction instance process matching the
AuctionReference. If no instance was found an error is returned.

3. If the request was authentic and the auction instance was found, the AuctionCreator attempts to
delete the auction and returns either an error or success message.

4. The AuctionOwner receives a success or error message.

Entry conditions • The AuctionCreator has previously created an auction instance for the AuctionOwner.

• The AuctionOwner posses the AuctionReference for the auction instance.
Exit conditions • An AuctionOwner has received an error or success message corresponding to whether the auction instance

was deleted.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

Figure A.4: AuctioneerOwner use case: WithdrawAuction.
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Use case name CreateAuction
Participating actors Initiated by AuctionCreator

Communicates with AuctioneerGroup, PolicyManager, BidPublisher, EvaluatorGroup ResultPublisher, AuctionVerifier
Flow of events 1. The AuctionCreator requests participation by the auction participants concurrently (AuctioneerGroup,

PolicyManager, BidPublisher, EvaluatorGroup ResultPublisher, AuctionVerifier).

2. The participants verify the requests.

3. The participants attempt to start auction instance processes.

4. The participants return error or success messages.

5. If any of the participants returned a success message the auction instance creation is canceled.

6. If creation was canceled, any participants who accepted are sent cancellation requests.

Entry conditions • The AuctionComponent has been informed which participants to use for the auction instance.

Exit conditions • Either the auction was created and all the participants returned success messages, or at least one participant
returned an error.

• If creation was canceled, all accepted participants have been informed of auction instance cancellation.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

• The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 4.

Figure A.5: AuctionCreator use case: CreateAuction.
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Use case name CancelAuction
Participating actors Initiated by AuctionCreator

Communicates with AuctioneerGroup, PolicyManager, BidPublisher, EvaluatorGroup ResultPublisher, AuctionVerifier
Flow of events 1. The AuctionCreator checks whether the policies and auction instance state allow the auction to be cancelled.

2. The AuctionCreator is informed of whether the auction can be cancelled.

3. If the auction can be canceled, a cancel request is sent to each participant. An AuctionReference matching
the auction instance is included with the request.

4. The participants verify the requests.

5. If the requests are authentic, the participants locate the auction instance processes.

5. If the auction instance processes were located, the participants cancel their instance processes.

6. The participants inform the AuctionCreator whether the auction instance was cancelled.

7. The AuctionCreator receives either success messages indicating the participants canceled their processes
or messages indicating the auction processes were not found.

Entry conditions • The AuctionCreator has an AuctionReference for an auction instance to be cancelled.

Exit conditions • The auction instance has been cancelled.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 3.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 4.

Figure A.6: AuctionCreator use case: CancelAuction.

Use case name PlaceBid
Participating actors Initiated by Bidder

Communicates with AuctioneerGroup
Flow of events 1. The Bidder sends the bid to an AuctioneerGroup.

2. The AuctioneerGroup authenticates the request.

3. If the bid is acceptable and the request was authentic the AuctioneerGroup adds the bid to the
bid collection.

4. If the request was authentic, the AuctioneerGroup returns a BidReference to the Bidder.

5. The Bidder receives the BidReference.

Entry conditions • The bidder has created a bid for an auction.
Exit conditions • The bidder’s bid has been recorded or rejected.
Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

Figure A.7: Bidder use case: PlaceBid.
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Use case name WithdrawBid
Participating actors Initiated by Bidder

Communicates with AuctioneerGroup
Flow of events 1. The Bidder sends a BidReference with a request to withdraw the bid to the AuctioneerGroup.

2. The AuctioneerGroup authenticates the request.

3. If the request was authentic, the AuctioneerGroup finds the bid matching the BidReference. If
no bid was found an error is returned.

4. If the request was authentic and the bid was found, the AuctioneerGroup attempts to remove
the bid and returns either an error or success message.

5. The Bidder receives a BidStatus or error message.

Entry conditions • The bidder has a BidReference for the bid to withdraw.

Exit conditions • If the request was authentic the bidders bid has been withdrawn or the request has been rejected.

• If the request was not authentic, an error message was returned.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

Figure A.8: Bidder use case: WithdrawBid.

Use case name RequestBidStatus
Participating actors Initiated by Bidder

Communicates with AuctioneerGroup
Flow of events 1. The Bidder sends a BidReference with a request for BidStatus to the AuctioneerGroup.

2. The AuctioneerGroup authenticates the request.

3. If the bid exists and the request was authentic, the AuctioneerGroup returns a new BidStatus.

4. The Bidder receives a BidStatus or error message.

Entry conditions • The bidder has placed a bid matching the BidReference.

Exit conditions • The bidder received a BidStatus matching the BidReference submitted or an error.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

Figure A.9: Bidder use case: RequestBidStatus.
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Use case name AddBid
Participating actors Initiated by AuctioneerGroup

Communicates with BidPublisher
Flow of events 1. The AuctioneerGroup sends a Bid to the BidPublisher.

2. The BidPublisher authenticates the request.

3. If the request was authentic, the BidPublisher adds the bid to the bid collection and returns a
BidReference.

4. The AuctioneerGroup receives a BidReference or error message.

Entry conditions • The AuctioneerGroup has received a bid from a bidder.

Exit conditions • The AuctioneerGroup received a BidReference matching the bid submitted or an error.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

Figure A.10: AuctioneerGroup use case: AddBid.

Use case name RemoveBid
Participating actors Initiated by AuctioneerGroup

Communicates with BidPublisher
Flow of events 1. The AuctioneerGroup checks whether the policies and auction instance state allow the bid to be removed.

2. The AuctioneerGroup is informed of whether the bid can be removed.

3. If the bid can be removed the AuctioneerGroup sends a BidReference to the BidPublisher.

2. The BidPublisher authenticates the request.

3. If the request is authentic, the BidPublisher locates the bid.

4. If the bid was located, the BidPublisher removes the bid.

5. The BidPublisher returns a new BidStatus.

6. The AuctioneerGroup receives a BidStatus.

Entry conditions • The AuctioneerGroup has received a BidReference from a bidder for a bid to be withdrawn.

Exit conditions • The AuctioneerGroup received a BidStatus matching the BidReference.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

Figure A.11: AuctioneerGroup use case: RemoveBid.
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Use case name SolveAuction
Participating actors Initiated by EvaluatorGroup

Flow of events 1. EvaluatorGroup requests bids from the BidPublisher.

2. The BidPublisher authenticates the request.

3. If the request is authentic, the BidPublisher returns the bids.

4. The EvaluatorGroup uses a protocol specific algorithm to solve the auction (finding the optimal allocation).

5. The EvaluatorGroup requests the results be published by the ResultPublisher.

6. The ResultPublisher authenticates the request.

7. If the request is authentic, the ResultPublisher publishes the result.

Entry conditions • The auction is ready to be solved, this will be dictated by protocol or policy.

Exit conditions • The optimal allocation has been found, and the result published to the ResultPublisher.

Quality conditions • The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 1.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 2.

• The inherited AuctionComponent use-case CreateAuthenticatedRequest is included in step 5.

• The inherited AuctionComponent use-case AuthenticateRequest is included in step 6.

Figure A.12: EvaluatorGroup use case: SolveAuction.

Use case name VerifyOutcome
Participating actors Initiated by AuctionVerifier

Flow of events 1. The AuctionOwner requests the selected PolicyManager, BidPublisher, AuctioneerGroup, EvaluatorGroup
and ResultPublisher to run an auction.

Entry conditions • The AuctionOwner has selected a PolicyManager, BidPublisher, AuctioneerGroup, EvaluatorGroup and
ResultPublisher.

Exit conditions • The AuctionOwner has either found a full set of objects to run the auction, or SetupAuction has
been canceled.

Quality conditions

Figure A.13: AuctionVerifier use case: Verify outcome.
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Use case name AdaptComponent
Participating actors Initiated by PolicyManager

Flow of events 1. The AuctionOwner requests the selected PolicyManager, BidPublisher, AuctioneerGroup, EvaluatorGroup
and ResultPublisher to run an auction.

Entry conditions • The AuctionOwner has selected a PolicyManager, BidPublisher, AuctioneerGroup, EvaluatorGroup and
ResultPublisher.

Exit conditions • The AuctionOwner has either found a full set of objects to run the auction, or SetupAuction has
been canceled.

Quality conditions

Figure A.14: PolicyManager use case: AdaptComponent.

Use case name ObserveAuction
Participating actors Initiated by AuctionObserver

Flow of events 1. The AuctionOwner requests the selected PolicyManager, BidPublisher, AuctioneerGroup, EvaluatorGroup
and ResultPublisher to run an auction.

Entry conditions • The AuctionOwner has selected a PolicyManager, BidPublisher, AuctioneerGroup, EvaluatorGroup and
ResultPublisher.

Exit conditions • The AuctionOwner has either found a full set of objects to run the auction, or SetupAuction has
been canceled.

Quality conditions

Figure A.15: AuctioneerOwner use case: ObserveAuction.



Appendix B

Full GAF Hotspot Specification

Bidder, bid generation:

The bidder uses the bid generation hotspot to generate a bid from pro-
vided settings and the protocol for the auction instance the bids will be
submitted to.

• Examples: For an English auction, the bidder just needs to combine
the auction reference with the amount to bid. In a homomorphic auc-
tion, the bidder needs to encrypt values for combinations of goods
using particular keys, and match them to the combinations and the
auction reference.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.

• Responsibility: The hotspot generates a bid for some provided set-
tings and protocol.

• Variability: The single variable aspect is the algorithm the bidder
uses to generate the bid including communication between other
participants and order of operations. This is elementary so the hotspot
is also elementary.
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• Multiplicity: Only one bid generation hotspot implementation can
be used per auction instance. The hotspot can not be parametrised
as the algorithm will be completely different for different protocols.

Auctioneer, bid processing:

The auctioneer processes incoming bids from bidders. Each bid may have
a protocol specific operation performed on it.

• Examples: In an English auction, the auctioneer receives bids checks
that they are greater than the reserve price. Bids lower than the re-
serve price are discarded and the bid reference provided to the bid-
der informs of this. In the homomorphic auction, the bids are stored
immediately, as it is the evaluators that decrypt the bids.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.

• Responsibility: The hotspot must process incoming bids.

• Variability: The variable aspect is the algorithm the auctioneer uses
including communication between other participants and order of
operations. Bid references should be generated by this hotspot be-
cause they will be protocol specific and directly related to (and can
not be separated from) the way bids are processed. For instance the
reference passed back to the bidder may contain whether the bid was
accepted or not or how it was modified by the bid processor. These
are both elementary aspects so the hotspot is also elementary.

• Multiplicity: Only one bid processing hotspot implementation can
be used per auction instance. The hotspot can not be parametrised
as the algorithm will be completely different for different protocols.
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Auctioneer, bid storage:

This hotspot stores and retrieves bids for a bidder and manages refer-
ences that the auctioneer can use to identify bids. All competing bids are
recorded in bid storage.

• Examples: An auctioneer using a standard hash map could just set
the bid for the bid reference generated during bid processing. A
database implementation will require operations to interact with a
database.

• Bind time: Bid storage is application specific and so will be specified
during implementation.

• Responsibility: The bid storage should provide storage and retrieval
capabilities, as well as generate bid references.

• Variability: The variable aspect is the type of storage for bids.

• Multiplicity: Only one hotspot implementation can be used at a
time.

Auctioneer, bid status:

Bid status is protocol dependent but indicates the state that a bid is in,
for example ’considering’ or ’outbid’. The bid status is provided by the
auctioneer to a bidder who requests the status of a bid they have placed.

• Examples: In an English auction, the auctioneer checks to see whether
the bidders bid is winning and if not then it informs the bidder that
it has been outbid. In a sealed bid auction, either the bid is being
considered or not.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.



166 APPENDIX B. FULL GAF HOTSPOT SPECIFICATION

• Responsibility: The auctioneer checks the status of the bids and re-
ports the status back to the bider.

• Variability: The variable aspect is the algorithm for determiing the
status of the bid.

• Multiplicity: Only one hotspot implementation can be used at a
time.

Verifier, verification:

The verifier performs some protocol specific algorithm to determine that
the outcome of the auction was correct.

• Examples: A verifier in an English auction would use the sets of bid-
ders and bids and perform the same operation as the auctioneer. The
verifier would then determine whether the result was correct. In one
version of the sealed bid auction protocol, bidders submit encrypted
bids but don’t publish the decryption keys until bidding is closed.
The verifier decrypts the bids using the published keys, checking
that the result found is the same by the evaluator.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.

• Responsibility: The hotspot performs some algorithm to verify the
outcome of the auction.

• Variability: The single variable aspect is the algorithm the verifier
uses including communication between other participants and the
order of operations. This is elementary so the hotspot is also elemen-
tary.

• Multiplicity: Only one verification implementation can be used per
auction instance.
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Verifier, fetch verification data:

The verifier fetches data required for verification.

• Examples: In a standard English auction, the verifier can fetch all
bid details, including bidder names, valuations and time of bid. In
a secure English auction which hides bidder details, the verifier will
only be allowed to fetch the valuations.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.

• Responsibility: The hotspot fetches the data the caller is permitted
to fetch for the protocol and/or participant.

• Variability: The single variable aspect is what the verifier is permit-
ted to fetch.

• Multiplicity: Only one fetch verification data can be used per auc-
tion instance as. The hotspot be generalised for any protocol using
parametrisation to limit what can be fetched.

Auction owner, create auction:

The auction owner creates the auction. This hotspot performs any protocol
specific pre-auction setup, generating an auction reference.

• Examples: In the English auction, the auctioneer uses auction set-
tings and/or polices to define the length of the auction and a reserve
price. These are included in an auction reference which is returned to
the auction owner. In the secure homomorphic auction the auction-
eer has to generate encryption keys for bids and requests the other
resources to be set up.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.
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• Variability: The single variable aspect is the algorithm the evaluator
uses including communication between other participants and the
order of operations. This is elementary so the hotspot is also elemen-
tary.

• Multiplicity: Only one auction creation hotspot implementation can
be used per auction instance. The hotspot can not be parametrised
as the algorithm will be completely different for different protocols.

Evaluator, evaluation:

Evaluators use protocol specific algorithms to determine the optimal allo-
cation of goods to winners.

• Examples: The auctioneer in the English auction is the only eval-
uator. The auctioneer sorts the bids by amount bid and picks the
highest as the winner. Multiple evaluators in the secure homomor-
phic protocol work together to solve the auction. Each evaluator
solves it’s part of the problem and submits it to shared storage, once
the threshold number of evaluators have solved their part of the al-
gorithm the set of winners with corresponding goods can be deter-
mined.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.

• Responsibility: The hotspot must process incoming bids and pass
them to the bid storage hotspots.

• Variability: The single variable aspect is the algorithm the evaluator
uses including communication between other participants and order
of operations. This is elementary so the hotspot is also elementary.
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• Multiplicity: Only one evaluation hotspot implementation can be
used per auction instance. The hotspot can not be parametrised as
the algorithm will be completely different for different protocols.

Protocol, resource requirements:

Different protocols require different auction resources types, and when es-
tablishing the auction an auction owner must what resources are required.

• Examples: In an English auction a single auctioneer is required, but
in comparison the Polynomial protocol requires an auctioneer, mul-
tiple evaluators, mask publishers, and auction publishers.

• Bind time: The hotspot is protocol specific, so it is rebound at run-
time for each auction instance.

• Responsibility: The protocol must provide a list of the resources
required and the number of each, for an auction instance.

• Variability: The variable aspect is the algorithm required to deter-
mine the type and number of required resources.

• Multiplicity: A single auction resource requirement hotspot imple-
mentation is bound per auction instance.

Protocol, settings:

Protocol settings store the settings for an auction instance.

• Examples: The maximum bid in a sealed bid protocol or the number
of evaluators in a secure auction.

• Bind time: The settings are bound at runtime during auction setup.

• Responsibility: The protocol settings store the settings for the auc-
tion instance.
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• Variability: The variable aspect is the different settings which are
stored.

• Multiplicity: There is only one auction settings used in an auction
instance as it uniquely identifies the parameters for the auction. It
can be parametrised by using a simple map of settings to protocol
values.

Auction participant, communication:

Different applications will require different methods of communication,
some may require multiple types of communication within an application.

• Examples: With a single application, single process application sim-
ple objects can be passed around, casting can be used to transform
participants between types. In a RMI (Remote Method Invocation)
application, it is not so simple. Interfaces and skeletons are required
by both participants, to transform the participant to another type a
new interface and skeleton is required.

• Bind time: Communication can be bound by the application at im-
plementation or run time, it will not affect the framework.

• Variability: The variable aspect is the type of communication. The
concern for the framework is that communication is transparent. Pro-
tocol developers must not need to consider communication and frame-
work developers should not need to implement any communication
specific behaviour.

• Multiplicity: Each participant may use multiple types of commu-
nication at once and so, multiple communication implementations
may be bound.
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Auction resource, setup:

Each resource requires setup for an auction instance it will participate in.
The auction owner requests the setup behaviour of the auction creator be-
fore starting the auction. During setup the auction creator requests the
other resources to be used in the instance to also set themselves up.Once a
resource is setup, it is ready to perform its part in the auction.

• Examples: In an English auction only the auctioneer is used, it only
needs to set up storage. In the secure homomorphic auction, there
are multiple resources: for instance the auctioneer and evaluators.
Both need to setup different types of storage, but when the auction-
eer supplies the auction resource to an evaluator, the evaluator sets
references to shared boards, and retrieves or generates its encryption
keys.

• Bind time: As this hotspot is protocol specific and multiple protocols
may be operating at one time within an application, the bind time is
at run time and it will be rebound for every auction instance.

• Responsibility: Setup will be requested once for each auction in-
stance. The resource will use auction instance parameters and the
current policies to perform it’s behaviour.

• Variability: There are several sub-aspects which will change between
resources and protocols: the algorithm the resource uses including
communication between other participants and the order of opera-
tions, setting up any resources (such as storage or external connec-
tions) and pre-auction computation). All of these are bound to the
protocol and cannot be decomposed without interdependencies, so
the hotspot is elementary.

• Multiplicity: Only one setup hotspot implementation can be used
per auction instance, per resource type. The hotspot can not be parametrised
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as the algorithm will be completely different for different resources
and protocols.

Auction participant, authentication and authorisation:

This is outside the scope of this thesis and left to future work.
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Figure C.1: Effect of increasing the number of goods on circuit generation.
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Figure C.2: Effect of increasing the
number of goods on auction setup.
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Figure C.3: Effect of increasing the
number of goods on evaluation.
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Figure C.4: Effect of increasing the
number of goods on evaluator com-
mitment generation.
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Figure C.5: Effect of increasing the
number of goods on bidder commit-
ment generation.
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Figure C.6: Effect of increasing the number of bidders on circuit genera-
tion.
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Figure C.7: Effect of increasing the
number of bidders on auction setup.
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Figure C.9: Effect of increasing the number of bits on circuit generation.
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Figure C.10: Effect of increasing the
number of bits on setup.
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Figure C.11: Effect of increasing the
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Figure C.12: Effect of increasing the
number of bits on evaluator commit-
ment generation.
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