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Abstract
The sheer volume of data to be produced by the next generation of radio
telescopes — exabytes of data on hundreds of millions of objects — makes
automated methods for the detection of astronomical objects (“sources”)
essential. Of particular importance are low surface brightness objects,
which are not well found by current automated methods.

This thesis explores Bayesian methods for source detection that use Dirich-
let or multinomial models for pixel intensity distributions in discretised
radio astronomy images. A novel image discretisation method that in-
corporates uncertainty about how the image should be discretised is de-
veloped. Latent Dirichlet allocation — a method originally developed
for inferring latent topics in document collections — is used to estimate
source and background distributions in radio astronomy images. A new
Dirichlet-multinomial ratio, indicating how well a region conforms to a
well-specified model of background versus a loosely-specified model of
foreground, is derived. Finally, latent Dirichlet allocation and the Dirichlet-
multinomial ratio are combined for source detection in astronomical im-
ages.

The methods developed in this thesis perform source detection well in
comparison to two widely-used source detection packages and, impor-
tantly, find dim sources not well found by other algorithms.
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Chapter 1

Source detection in radio
astronomy

The sheer volume of data to be produced by next generation radio tele-
scopes makes automated methods for the detection of astronomical objects
(“sources”) essential. Current methods require time-intensive parameter
tuning and do not find all sources, particularly scientifically interesting
low surface brightness objects.

This thesis explores Bayesian methods that use Dirichlet or multinomial
models for pixel intensity distributions in source detection in discretised
radio astronomy images.

The methods developed in this thesis exploit the consistency of image
background, while minimising the problems inherent in modelling the
diversity of astronomical objects. The posterior probability that a given
region is source or background is inferred, avoiding the difficulties in ap-
proaches based on comparing “typical” exemplars of source and back-
ground.

1



2 CHAPTER 1. SOURCE DETECTION IN RADIO ASTRONOMY

1.1 Source detection in radio astronomy

Existing automated approaches to detecting scientifically important as-
tronomical objects require time-intensive manual parameter tuning, and
manual post-processing by an astronomer. The sheer volume of data to be
produced by the next generation of radio telescopes — exabytes of data
on hundreds of millions of objects — will make efficient and timely detec-
tion of astronomical objects by such manually intensive processing at best
impracticable and at worst impossible. Fully automated approaches that
do not require manual tuning and post-processing are therefore essential
to finding objects of interest in astronomical images [53].

Further, current algorithms for automatic source detection are not fully
adequate to find all objects of interest. Spatially extended sources, partic-
ularly those that are faint, are poorly handled by existing automated ap-
proaches, as are sources in the presence of artefacts1, and sources in images
in which the signal-to-noise ratio varies across the image [30, 53, 55].

1.1.1 Characteristics of radio astronomy images

Radio astronomy images can be thought of as primarily background (made
up of unresolved sources) with an unknown number of spatially extended
sources. Identifying the sources requires distinguishing them from back-
ground, a task made difficult by the diversity of pixel intensities within
and between sources. In general, source pixels are brighter than back-
ground pixels, though there is considerable overlap between background
and source intensity ranges.

The intensity of background pixels in radio telescope images is non-uniform,

1“Artefacts” are patterns in radio astronomy images which do not represent actual
signal but rather reflect the lack of full sampling of the Fourier plane by the radio tele-
scope.
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but follows a Gaussian distribution in local areas. The variability of back-
ground however is lower than that of sources and in that sense it is easier
to identify.

The noise in radio astronomy images varies over an image. Images typi-
cally display more noise around their edges (for example, see Figure 4.2 in
Chapter 4).

Sources in radio astronomy images can be divided into the following classes:

• Point sources (Figure 1.1), which are unresolved sources in an image;
at or below the resolution element of a telescope. Point sources are
abundant in radio astronomy images. They are relatively bright and
not spatially extended, and are well-found by existing algorithms2.

• Galaxy clusters and associated structures, which are of interest to
astronomers. These include:

– Radio galaxies, which consist of a small, circular, central source
from which two roughly symmetrical, elliptical lobes emanate
180 degrees from each other (“bipolar” lobes). The central source
is typically brighter than the lobes. Radio galaxies such as the
linear source Centaurus A (Figure 1.2) may be bright and ex-
tended, or they may be diffuse, extended, low surface bright-
ness sources. One or more of the lobes or central source may be
absent or may be distorted. A galaxy’s symmetry may be dis-
torted, and lobes may be warped and may differ in size, shape,
and brightness. One lobe may appear brighter than the other.
Unrelated objects (for example, point sources) may appear on
or near the galaxy. Tailed radio galaxies are a sub-class of radio
galaxies (Figure 1.3).

2Hancock et. al. [27] report that ∼ 99% of point sources are found by widely used
source detection packages (that is, a ∼ 1% false negative rate); similarly ∼ 99% of re-
ported point sources are actual point sources (a ∼ 1% false positive rate).
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– Radio relics (found on the periphery of clusters) appear as dim,
diffuse, extended single or double arcs (Figure 1.4).

– Radio halos (found around the centres of galaxy clusters) are
diffuse, circular structures.

• Supernova remnants (SNRs; Figure 1.5) are also of interest to as-
tronomers. SNRs generally appear as hollow circular rings, although
regions of the rings are often occluded, and symmetry may be dis-
torted. Old and near SNRs appear faint, diffuse and large in images.
Young and distant SNRs may be miss-classified as point sources.

Artefacts in images appear as bright circles, rings and radial lines. Arte-
facts will be less prevalent in next generation radio telescope images, due
to the increased number of elements in next generation arrays [53].

A number of characteristics of astronomical objects of interest to astronomers
make the object-detection task non-trivial. These include distorted sym-
metry and other variations in the appearance of sources, occlusions, and
low surface brightness, particularly in diffuse objects with intensities close
to background.

Image format

Radio telescope images are typically stored in FITS (Flexible Image Trans-
portation System) format. For the astronomical images used in this thesis,
image data is stored in two dimensional arrays of pixel intensities with
implicit Cartesian coordinates. Pixel intensity values are continuous, and
range from small positive to small negative values in any given image.
Image meta-data including information about the equatorial coordinates
of the image is also stored with this format [73].
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Figure 1.1: A point source. The red contours show the 1.4 GHz radio
data and the blue show the 2.4 GHz data overlaid on the optical image
from the Digitized Sky Survey. The resolution of these radio data are 8.8×
4.6 arcseconds at position angle of 2.4 degrees and 5.0 × 2.6 arcseconds
at 2.5 degrees at 1.4 and 2.4 GHz, respectively. Despite the fact that the
optical host galaxy is clearly seen, the radio data are unresolved at both
frequencies and so this is a point source in a radio image. The source
appears elliptical due to the beam of the telescope [35].
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Figure 1.2: The radio galaxy Centaurus A. Centaurus A is the nearest
powerful radio galaxy of the Fanaroff-Reilly class 1 radio galaxies, which
typically have bipolar jets [17]. The image is false colour graded from
white (bright pixel intensities) to purple to black (dim pixel intensities).
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Figure 1.3: The tailed radio galaxy PKS J0334-3900 [58]. Note the bright
compact knots and the low surface brightness emission associated with
the jets.

1.1.2 Existing approaches to source detection

An ideal source-finding algorithm should locate regions in an image that
differ from the background and are unlikely to have arisen by statistical
variation in noise. False positives are more acceptable than false nega-
tives (as astronomers can do post-processing to confirm and characterise
sources), however, a large number of false positives would make output
difficult to interpret at best and unusable at worst.

In a 2012 review, Masias et. al. [46] characterised current approaches to au-
tomated and semi-automated source detection in astronomy as a two-step
process: an image transformation step followed by a detection step.

Masias et. al. divided approaches in the transformation step into ba-
sic transformation methods, Bayesian approaches, matched filtering, and
multi-scale approaches. Basic transformation methods predominate, and
include median filtering, local thresholding using information such as pixel
intensity mean and standard deviation, Gaussian image convolution, di-
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Figure 1.4: Radio relic ABELL 3667. The yellow contours are the radio
continuum data, shown overlaid on a coloured X-ray image [34].
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Figure 1.5: Supernova remnant SN 1987A. A high frequency (44 GHz) ra-
dio image of SN 1987A [77]. The image is false colour graded from white
(bright) to red to black (dim). Note that SNRs are dynamic structures, ex-
panding outwards. The SNR is expanding out into the surrounding molec-
ular gas, which is not uniform. The bright arcs (limb-brightened structure)
are due to the SNR expanding into denser material, which is hotter, at the
locations of the bright arcs.
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lation and erosion, and template matching.

Bayesian approaches transform pixel intensity data to a probability map
indicating regions where sources are likely to be located (for example: [20];
also see Section 1.1.3 below). Matched filtering involves convolving an im-
age using an expected source profile as a filter (for example: [70]), while
multi-scale approaches work by applying a transform to decompose im-
ages into different frequencies (for example: [57]).

In the detection step Masias et. al. categorised the majority of methods
into thresholding (local or adaptive) and local peak search (region grow-
ing from peaks in, for example, pixel intensities). The authors also list a
small number of “other” techniques (neural networks, watershed trans-
form, contrast radial function, and connected component trees).

The majority of automated source detection algorithms can therefore be
described as flood-filling or region-growing driven by (possibly transformed)
pixel intensities [46].

Such intensity based thresholding algorithms often require a parameter to
be set (either manually or automatically as part of the algorithm) that re-
stricts the sources to be found as those that are at least as bright as some
threshold: typically 3σ or 5σ above root mean square (rms) noise. How-
ever, as noted earlier in this chapter, some of the most scientifically impor-
tant objects in astronomy are dim, low surface brightness sources, with
intensities in the range of background noise [53]. Restricting the search
for sources that contain pixels above a particular threshold restricts the
set of sources that may be found. This is due to the nature of threshold-
ing algorithms: if the search is not restricted in this way, far too many
background regions will be identified as “sources”, and the output will be
unusable.

Threshold-based algorithms are often reported to have very high rates of
true detections with very low rates of false detections and missed sources.
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However, these rates must be taken with caution, as they are often re-
stricted to the sub-set of sources in an image above a particular bright-
ness. For example, Hancock et. al. [27] report perfect detection rates with
no false detections or missed sources — in the case of simulated point
sources 10σ above rms noise.

The source detection algorithms developed in this thesis are evaluated
against two source detection software packages commonly used in radio
astronomy: Duchamp [74] and BLOBCAT [26]; both of which perform
pixel-intensity based thresholding in the transformation step and flood-
filling in the detection step.

1.1.3 Bayesian source detection methods

Beside the many thresholding and flood-filling / region-growing algo-
rithms, there are a small number of Bayesian source detection algorithms
[46].

Most of these Bayesian source detection algorithms use Markov-chain Monte
Carlo sampling (MCMC) to estimate the relative probability that each pixel
(or pixel grouping) in an image is a background pixel or a source pixel
[20, 46].

Savage and Oliver [63] used MCMC for source detection in infrared astro-
nomical images. Each pixel was labelled with the relative probability of
being a background pixel or a source pixel, with a flat and uniform back-
ground model, and a source model consisting of background plus a point
source modeled as a circularly symmetric Gaussian of known size. This
labelling yields a probability map which can be used to find local maxima
(subject to some threshold) corresponding to locations of point sources.
Once the location of putative sources is found by this method, the nature
of the source is identified: MCMC sampling is used to find the best-fit
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model of uniform background, point source, or extended source models
(where point sources are circularly symmetric and of known size, and ex-
tended sources are circularly symmetric with variable size).

Similarly, Hobson and McLachlan [29] performed Bayesian model selec-
tion using MCMC to explore the parameters of background and source
models, with a source model of circularly symmetric Gaussian-shaped ob-
jects and a background model of Gaussian noise. They present two ver-
sions of the algorithm: one in which all sources are found simultaneously,
and one in which sources are found iteratively. A significant speed up to
this technique is presented in Carvalho et. al. [9], in which multiple local
maximisation of the posterior distribution replaces sampling, and a Gaus-
sian approximation to the posterior is used for the evaluation of Bayesian
evidence in model selection. Brewer et. al. [7] have successfully scaled a
model similar to Hobson and McLachlan’s [29] up to∼ 1000 sources.

Guglielmetti et. al. [24] developed a Bayesian source detection method for
X-ray data. They used a two component mixture model where an astro-
nomical image is assumed to consist of a smooth background with addi-
tive source signal; therefore the two models are 1. background plus noise
and 2. background plus source plus noise.

Feroz and Hobson [20] developed one of the few non-MCMC based Bayesian
source detection algorithms. They used the Bayesian model selection algo-
rithm nested sampling [66], which they argue outperforms MCMC based
methods, and is computationally less expensive. Similarly to other Bayesian
source detection methods, circularly symmetric Gaussian-shaped sources
are assumed.

The Bayesian source detection methods developed in this thesis have some
similarities with the existing algorithms in astronomy. For example, in
Chapter 3, in latent Dirichlet allocation (LDA), Gibbs sampling is per-
formed on individual pixels which are probabilistically assigned back-
ground or source labels, with flood-filling performed on the transformed
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image to identify islands of source pixels. In Chapters 4 and 5, a Bayesian
Dirichlet-multinomial ratio (“DMR”) is derived to iteratively find Gaus-
sian elliptical shaped regions that conform to a source model (or differ
from a background model).

In contrast to the existing Bayesian source detection methods however,
source and background are modelled as distributions over ranges of pixel
intensities. As with the existing Bayesian algorithms, the DMR assumes a
parametrised form for astronomical sources and estimates these parame-
ters from a posterior distribution, however sources are not assumed to be
circularly symmetric or of a particular size. LDA does not require a rigid
model for the size or shape of sources.

It is worth noting that in several cases, these Bayesian source detection
methods are tested on simulated data in which the sources are generated
with the same parameters as the model of source used in the detection
methods. For example [20, 29, 63] generate circularly symmetric Gaussian
sources of a particular size, and use a circularly symmetric Gaussian of
that size as a source model. Using the same parameters for simulated
sources and the method’s source model is likely to artificially inflate the
success of the model, and is unjustified in the case of radio astronomy
data, where sources can take a great variety of shapes and sizes.

1.2 Outline of the thesis

Within the framework provided by Masias et. al. [46], the source detection
algorithms in this thesis can be characterised as follows:

• Image transformation step: the continuous valued pixel intensities
in astronomical images are converted to discrete values by histogram
binning or discretisation. This process is described in Chapter 2.
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• Detection step: two approaches are taken:

– Background and source models are inferred using the topic mod-
elling technique latent Dirichlet allocation, these models are used
to classify pixels according to which model they were most likely
generated by. Flood-filling is then performed to find contigu-
ous regions of “likely to be source” pixels. The use of LDA for
source detection is described in Chapter 3. Results of this tech-
nique as compared to results obtained by a standard source-
detection package are presented.

– A Dirichlet-multinomial ratio (DMR) is derived, and, given a
background model and a loosely specified source model, gra-
dient ascent is performed to find peaks in the ratio indicating
regions that are unlikely to be background. The derivation of
the DMR is outlined in Chapter 4. Results of the DMR on real
and simulated data are presented in Chapter 5.

A combined LDA-DMR technique is described and evaluated in Chapter
6. The work in the thesis and its limitations are summarised and possible
future work suggested in Chapter 7.

1.3 Original contributions

The contributions of this thesis are as follows:

• A novel method for incorporating uncertainty about where bin bor-
ders should be located in discretised data is introduced in Chapter
2.

• The first use of the topic modelling technique latent Dirichlet allo-
cation (developed to extract latent topics from collections of doc-
uments) in source detection in astronomical images is described in
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Chapter 3. This application of LDA to source detection differs from
that taken in previous approaches to the segmentation of non-astronomical
images in that it relies only on pixel intensity and location, whereas
previous approaches employ techniques to extract image interest points
and pre-segment images before applying LDA.

• A new Dirichlet-multinomial ratio, indicating how well a region con-
forms to a model of background versus a model of foreground is de-
rived in Chapter 4.

• LDA output is utilised in the DMR in Chapter 6.





Chapter 2

Discretising images

Astronomical images have continuous-valued pixel intensities. These con-
tinuous values can be converted to discrete values — “discretised” — by
histogram binning.

Histogram binning is a method of mapping a large number of continuous
values (in this case, pixel intensities) to a smaller set of discrete values
(or “bins”), where all values within a range are assigned a discrete label
representing that range [76].

Discretisation of continuous pixel intensity values makes it possible to
model the data according to a multinomial distribution, and to use the
Dirichlet distribution, which is the conjugate prior for the multinomial
distribution [12, 21, 33, 40]. This allows the use of the topic modelling
technique latent Dirichlet allocation [6] (LDA; Chapter 3) and the deriva-
tion of a Dirichlet-multinomial ratio (DMR; Chapters 4 and 5). LDA and
the DMR are combined in Chapter 61.

1Note that a compound Dirichlet-multinomial distribution is used in both LDA and
the DMR. In both cases the multinomial parameter is integrated out, leaving only the
data and the Dirichlet hyperparameter. LDA estimates a conditional distribution while
the DMR calculates a marginal joint distribution [6, 51].

17
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Discretisation is a simplification and reduction in the complexity of the in-
formation in the data. It is therefore important that the process of discreti-
sation does not destroy information essential to the task at hand. In the
case of source finding in radio astronomy images, it is important that in-
formation that can be used to discriminate source pixels from background
pixels is not lost. Though discriminative ability may be decreased by dis-
cretisation, an ideal discretisation retains or improves discriminative accu-
racy [39, 42].

In this chapter, simple data partitioning methods for defining histogram
bins for discretisation are described in Section 2.1. A novel way of “soften-
ing” bin borders to incorporate uncertainty about the location of partition-
points in the data is described in Section 2.2. An exploratory approach to
source finding in discretised images is described in Section 2.3.

2.1 Histogram binning strategies

Histogram binning is the simplest of a range of discretisation methods
[39, 42, 76].

The majority of existing discretisation methods are supervised (using a
training set of instances with known class labels) [39, 42, 76]; these meth-
ods are not appropriate for radio astronomy images as the class (source or
background) of an image’s pixels is not known a priori.

Of the few unsupervised algorithms, cluster-based [10] and dynamic-qualitative
[43] — both of which seek to reduce within-interval variation and max-
imise between-interval variation — would be appropriate, but, given the
time-consuming nature of these algorithms (particularly relative to his-
togram binning), neither is practical [76].

A histogram of pixel intensities can be constructed by assigning each pixel
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in an image to an interval or “bin” on the basis of its intensity, where bins
are ranges of intensity values defined2 as [mink,maxk). A pixel x falls into
bin k ifmink ≤ x < maxk (except in the case of the last/top binK, which is
defined as [minK ,maxK ]: a pixel x is assigned binK ifminK ≤ x ≤ maxK).
For adjacent ranges [mini,maxi) and [minj,maxj), maxi ≤ minj and so
each data instance falls into exactly one bin; coverage is ensured by setting
minj = maxi.

In order to discretise intensity values by histogram binning, bin borders
(values that define mink and maxk for each bin k ∈ K) must be defined.
The number of bins must also be set (either manually, or by the binning
method itself).

A simple way to create bins in data is to partition the data on the basis
of either interval-width or bin-occupancy. These methods are described
below.

2.1.1 Width-based partitions

Width-based methods divide the number-line between xmin and xmax where
xmin is the minimum pixel intensity value in the data, and xmax is the max-
imum value [76].

Equal width partitions

One of the simplest ways to partition data into K bins is to create K

equal width partitions in the data range [xmin, xmax]. The width of in-
tervals is defined as w = (xmax − xmin)/K, and the bins are defined at
[xmin, xmin +w), [xmin +w, xmin + 2w), .., [xmin + (K − 1)w, xmax]. This is an
equal partitioning of the number-line between xmin and xmax [76].

2Note that some authors use the definition (mink,maxk], i.e., x ∈ k if mink < x ≤
maxk [39].
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Equal width discretisation of non-uniformly distributed data may result in
an inaccurate representation of the data; for example, outliers may skew
the histogram binning [14, 39, 42].

In the case of radio astronomy data, the vast majority of an image’s pixels
are typically within a small range at the bottom of end of the data range,
with a few, relatively small, peaks at the top of the range (see Figure 2.1).
This means that an equal width binning scheme will produce many empty
bins (which means wasted representation power) and, more importantly,
a lack of resolution at the low end of the intensity range. Because many
scientifically interesting objects have pixel intensities close to background
intensities, equal width binning strategies risk losing information that dif-
ferentiates background from source pixels. In the case of radio astronomy
data, some of these effects may be alleviated with an iterative binning pro-
cess that removes bright source pixels (outliers) from the histogram bin-
ning process once the sources containing these pixels have been identified
(for an example, see Chapter 5).

Exponentially increasing width partitions

This problem of including source pixels and background pixels in the
same bin(s) may be addressed by exponentially increasing the interval-
widths in a partition.

In this method, intervals are defined recursively with interval k having
width 0 < γ < 1 times less wide than interval k + 1. The last (top) interval
widk is defined as γ(xmax − xmin), with bin K − 1 having width γwidk.
For this partitioning method, the number of bins K will be defined by the
parameter γ and the range of the data.

Depending on the γ value used, there may still not be sufficient resolution
in the low values to differentiate source from background in radio astron-
omy images.
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Figure 2.1: A histogram of pixel intensities in an astronomical image.
Pixel intensities from the Australia Telescope Large Area Survey Chandra
Deep Field-South (ATLAS CDFS) [54], with the log count in each of 1000

equal width bins. Note the large peak in the low intensities and the out-
liers in the high intensities.
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2.1.2 Frequency-based partitions

Alternatively, bins may be defined according to their occupancy. In con-
trast to width-based methods that partition the number line, frequency-
based partitions rank the data and make partitions on this ranking [76].

Equal occupancy partitions

Equal occupancy partitions are constructed by dividing the count of pixels
N by K bins, to determine the number of pixels n that should fall into
each bin k. Pixels are allocated to bins by ranking pixels by intensity and
partitioning this ranking into K partitions of (approximately, depending
on whether N is divisible by K) n data points each. The minimum and
maximum values in the partition defining the bin boundaries [mink,maxk)

are those of the first and last ranked data points within the partition.

In contrast to width-based partitions, there are no empty bins in equal oc-
cupancy partitions (no “wasted” bins). With respect to astronomical data,
low intensity source pixels are less likely to be subsumed into a bin with
mostly background pixels (though this is not guaranteed). However, in-
formation with respect to the number line, such as bright “peaks” in the
data, is lost, as the resulting distribution of data into bins is not represen-
tative of the distribution of the original, non-uniform, data [11].

Exponentially decreasing occupancies

An exponentially decreasing partitioning of data with respect to occu-
pancy divides the pixel ranking such that each bin k has 0 < γ < 1 times
as many pixels as bin k − 1.

The first (bottom) bin occupancy occ1 is created by assigning it the first
γN -many pixels (where N is the total number of pixels in the data) and
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defining the minimum and maximum values for bin 1 as the intensities
of the first ranked and last ranked pixels within [min1,max1) respectively.
The rest of the bins are defined recursively (bin 2 has the next γocc1-many
pixels in the ranking, and so on).

2.2 A novel method for softening bin borders

There are three major problems with the simple discretisation/binning
methods described in Section 2.1 for radio astronomy data:

1. there is a lack of any informed basis for deciding on what bin bound-
aries to use and so any particular choice amounts to an unjustified
assertion;

2. because radio astronomy data is non-uniform, relevant groupings of
values may be split across bins or combined in bins in a way that
reduces discriminative power [11]; and

3. discretisation results in sudden changes at partition values, which
introduces variation into the system that did not previously exist —
moreover, data-points that lie near a boundary of a bin are less well
represented by that bin than data-points that lie towards the middle
of the bin’s interval [75].

For the source-detection algorithms used in this thesis, bin identities are
used to convert pixels in an image or a region in that image into counts in
bins. Given that there is a lack of any informed basis for the choice of bin
boundaries used, and the problems inherent in binning non-uniform data,
it would be more principled to assign proportions of each pixel across a
range of bins to reflect uncertainty about which bin a pixel belongs to.

Instead of making a “hard” assignment of pixels to bins where each pixel is
allocated to one bin only, it is possible to create several sets of bins b ∈ B,
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each of size K, with bin sets bi and bj having differing partition points.
Each pixel would then have a number of “possible” bin assignments across
sets of bins (each pixel x will fall into one bin k for each set of bins b).

Given a number of plausible sets of bins B, it is possible to count how
often a given pixel x appears in each bin k ∈ B. Once normalised (by
dividing the counts in each bin by the number of b ∈ B, so that the sum
of counts for each pixel x across bins is equal to 1) this gives a distribution
over all the bins for x, which reflects uncertainty about where the borders
should lie.

This solves the problem of the sudden changes at bin borders, and is a
method for converting continuous values into distributions over discrete
values (counts) in a way that is smooth. It reduces the impact both of the
uninformed choice of bins and of any within-class splitting over bins and
between-class combining in bins [11]3.

2.2.1 Creating sets of bins with the Dirichlet distribution

The Dirichlet distribution is a natural way to create such sets of bins. In
this section, the Dirichlet distribution is described, followed by an expla-
nation of how it may be used to create sets of bins.

3Note that there are existing techniques for transforming continuous attributes to dis-
tributions over intervals/bins. Ishibuchi et. al. [31] use labelled data and fuzzy logic to
create linguistic association rules; Yang and Webb [75] create overlapping, rather than
disjoint, intervals constructed such that a given data-point falls near the middle of its
interval, away from interval boundaries. In contrast, the approach developed in this
chapter directly addresses uncertainty about where those boundaries lie.
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The Dirichlet distribution

Informally, a Dirichlet distribution can be thought of as a distribution over
categorical or multinomial probability mass functions (pmfs) of size K; or,
in other words, a distribution over the (K − 1) dimensional probability
simplex [21, 51].

Firgyik et. al. [21] illustrate the intuition behind the Dirichlet distribution
using dice. A die can be thought of as a pmf with K = 6. A given die may
be fair (with equal probability of rolling each number) or it may have im-
perfections that result in a biased or weighted die. A Dirichlet distribution
can be thought of as a bag of dice, from which dice may be drawn. The
bag may contain dice that are all reasonably fair, biased in some particular
manner, or some mixture.

A Dirichlet distribution has a parameter α = α1, ..., αK and probability
density function on the (K − 1) dimensional simplex:

f(p1, ..., pK−1;α1, ..., aK) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

pai−1i (2.1)

where Γ(.) denotes the gamma function; and with pi ∈ [0, 1],
∑K−1

i=1 pi < 1,
and pK = 1−p1−...−pK−1 (this parametrisation of the Dirichlet probability
density function is due to the fact that the probability density is positive
only on the (K − 1) dimensional simplex and zero elsewhere; the simplex
exists in K dimensional space) [21, 28, 33, 40, 48, 51].

The α parameter controls where the density on the probability simplex
lies. In the special case when αi = αj = 1 ∀i, j ∈ K, the density is
uniformly distributed over the simplex. Every multinomial distribution
over K is equally likely to be drawn from the Dirichlet distribution with
this α parameter. The Dirichlet with uniform α parameter αi = αj < 1

pushes the density to the corners of the simplex; multinomial distribu-
tions with one pk much greater than all the others (with (1− pk) << 1 and
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pi << 1 ∀i 6= k) are typical of the Dirichlet with this α parameter. When
αi = αj > 1, the density lies towards the middle of the simplex. Distribu-
tions drawn from the Dirichlet with αi = αj >> 1 approximate uniform
distributions over K. When α parameters are not uniform, the density on
the simplex is not symmetric. For non-uniform α parameters with values
> 1, if αi > αj , distributions are likely to be drawn with pi > pj [21]. Figure
2.2 illustrates these cases.

Interpreting Dirichlet samples as bin borders

A single sample from a Dirichlet distribution with an α-vector of K com-
ponents yields a K-element vector p for which

∑K
k=1 pk = 1 and all pk > 0

(such as p = [0.1, 0.7, 0.2] with K = 3). The cumulative sum of the el-
ements of p, denote pd, can be interpreted as partition-points over [0, 1]

(such as pd = [0.1, 0.8, 1.0]).

To translate pd into bins, these partitions can either be interpreted over the
number-line between minimum and maximum pixel values [xmin, xmax] or
over a ranking of pixels, as described in Sections 2.1.1 and 2.1.2.

A Dirichlet distribution with symmetric α-vector with αi = αj > 1 ∀i, j
will produce roughly even values for all pk ∈ p (and the larger the α val-
ues, the more uniform the distributions drawn). Draws from a Dirichlet
distribution with such an α-vector can be used as partition points in a set
of roughly equal width or roughly equal-occupancy bins.

To produce increasing or decreasing bins (width or occupancy), a “stretch
factor” β can be applied to the α values, such that αj = βαi, similar to the
derivation of exponentially increasing width bin borders (Section 2.1.1)
and exponentially decreasing occupancy bin borders (Section 2.1.2).

Figure 2.3 shows examples of bin borders produced by Dirichlet distribu-
tions with symmetric and asymmetric α-vectors.
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Figure 2.2: Dirichlet samples on the simplex. α-vectors: [1, 1, 1] (top left),
[10, 10, 10] (top right), [0.1, 0.1, 0.1] (bottom left), [2, 5, 20] (bottom right).
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Figure 2.3: Dirichlet bin borders. Sets of bin borders created by sampling
from a Dirichlet distribution. The borders on the left are generated from a
Dirichlet with symmetric α-vector with αi = 10 ∀i. On the right, αi+1 =

β × αi, with the stretch factor β = 1.3. Their sum A =
∑

i αi is set to
100 in both cases. In the top-most plots, each row shows an independent
draw from the Dirichlet with this α-vector. The bottom plots show the
distribution of pixel intensities across bins for a set of Dirichlet bins, using
a colour map from black (zero) to red (low) to white (high). For example
in the plots at right, a pixel intensity of 0.8 falls into bin 9 in most cases,
but sometimes falls into bin 8.
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Figure 2.4: Different views of an image with different binning strate-
gies. The image is shown at top, created by generating three sources (at
left), and then adding zero-mean Gaussian noise (right). The next four
images show the image discretised by four different histogram binning
methods: equal width (middle left), Dirichlet equal width (middle right),
equal occupancy (bottom left), and Dirichlet equal occupancy (bottom
right). K = 10 bins for all four binning strategies. For the Dirichlet bins,
αi = αj = 10 ∀i, j ∈ K.
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2.3 Source detection in discretised images: ex-

ploration

Within the framework of discretisation of continuous-valued images by
histogram binning,4 an exploratory approach to classifying sub-windows
of images as source or background was implemented.

In this approach, the distribution of pixel intensities in an image or win-
dow (sub-image) was modelled as a multinomial distribution [40, 72] across
bins.

The task of finding sources in a radio astronomy image was framed as
finding and identifying background, with sources defined by proxy as
non-background regions. This approach exploits the fact that the vari-
ability of image background is much lower that for sources: while there
is a great deal of diversity between astronomical objects — every source
is different — the background in astronomical images is much more con-
sistent. This approach avoids the difficulties inherent in approaches based
on comparing “typical” exemplars of source and background5.

The following exploratory algorithm was implemented:

• An equal width binning of the overall image was created, that is,
equal width bins were created by dividing the pixel intensity range
into a set of equally spaced intervals bK (as described in Section
2.1.1). Given that radio astronomy images are dominated by back-

4The quantisation of intensities in radio astronomy images was first described by Gull
and Daniell; see: [25].

5Note that previous approaches have framed the source detection problem as one of
identifying and removing background. For example, the software package SExtractor [2]
approximates an image’s background by a low-order polynomial, as a function of the
mean and median pixel intensity. The background is then subtracted from the image and
flood-filling performed to find islands of connected pixels. This background subtraction
is likely however to remove dim sources along with background [9].
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ground pixels, the counts in bK for the whole image (denoted MB)
was used as a model for background.

• Using a square window of size N pixels, the image was iterated
across by moving the window from the top-left to the bottom-right
corner in steps of y pixels.

• For each such window, the distribution of pixel intensities in the bins
bK (denoted X) was compared to the overall distribution MB, re-
turning the likelihood of the window’s pixel intensities X , under the
background model MB.

• The image was output with the 10 percent least likely windows un-
der the background model highlighted.

With the equal width binning of the overall image as the background
model, the probability pk of a pixel’s intensity falling within bin k ∈ [1..K]

(where
∑K

k=1 pk = 1) is the normalised counts in the bins of the histogram
of pixel intensities in the overall image.

Given this model MB, the likelihood of pixel intensities for each window
(where xk is the count of pixels in the window that fall into bin k; with a
total of N pixels in the window) is calculated using the probability mass
function of the multinomial distribution. That is,

f(x1, .., xK ;N, p1, .., pK) = Pr(X1 = x1, .., Xk = xk)

=
N !

x1!..xK !
px11 ..p

xK
K (2.2)

where

K∑
i=1

xi = N

The log likelihood was calculated to avoid working with extremely small
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numbers:

logPr (X1 = x1, .., XK = xk) = log(N !)− log

(
K∏
k=1

xk!

)
+ log

K∏
k=1

pxkk

=
N∑
n=1

log (n)−
K∑
k=1

xk∑
m=1

log (m) +
K∑
k=1

xk log(pk)

(2.3)

where xk is the count in the kth ∈ [1..K] bin for a given window, and pk is
the background model probability of a pixel falling into the window (the
normalised count in that bin for whole image).

In practice, a look-up table of cumulative sums of logs of integers [1..N ]

can be constructed; then the first term in Equation 2.3 is the N th entry in
the table; the second term is a sum of entries in the table (one per bin-
count). Because the window-size does not vary as it moves across the
image, the first term in Equation 2.3 is a constant and so can be dropped
from the calculation.

The third term in Equation 2.3 is the dot product of two vectors: the counts
in each bin xk for the window and the log probabilities for each bin pk (the
normalised counts in each bin for the overall image).

It is important to note that one of the assumptions of the multinomial
distribution is violated; the counts in each bin are not independent be-
cause the intensity of a particular pixel is not independent of its neigh-
bours [40, 72]. Pixels are not randomly distributed across an image, but
are found together as “sources” and “background” in an image.

Figure 2.5 shows some sample output for this method, illustrating that
the simple multinomial model explored in this chapter correctly identi-
fies regions containing sources as unlikely to be background regions. This
indicates that:
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Figure 2.5: Sources found by the exploratory multinomial model. A
small section of a radio astronomy image (from the Extended Chandra
Deep Field South [47], contrast-adjusted to show sources) showing the 10

per cent least likely windows under the multinomial model with the equal
width histogram binning of the overall image as the background model
MB. The window size is 50 and the step size is 50 (that is, there is no over-
lap between windows). The windows unlikely to be background under
the model MB are shown by red bounding boxes. The transparency of the
each window’s borders is scaled according to how unlikely the window is:
more unlikely windows are given less transparent borders and vice-versa.
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1. discretisation via histogram binning preserves enough information
to locate sources in astronomical images (at least in this example);

2. a multinomial distribution is a reasonable model for the distribution
of pixels in an image; and

3. using an entire astronomical image — including both source and
background pixels — as a model for background does not prevent
regions in which sources are located from being correctly found.

For these reasons, the exploratory approach was extended, as described in
the next section.

2.4 Extending the exploratory approach

The ideas developed in this chapter — discretisation via histogram bin-
ning and the exploratory approach to source detection using a multino-
mial model of background — are extended in the remainder of this the-
sis.

In Chapter 3, multinomial models for background and source are inferred
via Gibbs sampling on a conditional distribution of a compound Dirichlet-
multinomial generative model described by latent Dirichlet allocation [6].
These models are used to segment images into background and source
regions.

In the exploratory multinomial approach in this chapter, the observation
that images are primarily made up of background pixels motivated the
use of the histogram binning of a whole image as a proxy for background.
In this framework, the task is primarily that of identifying and removing
background; sources are defined as “non-background” (or regions that are
unlikely to be background).
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In Chapters 4 and 5, whole images are again used as a model of back-
ground. A likelihood of how well a region conforms to a model of back-
ground is derived, and peaks in the likelihood are found using gradient as-
cent. In contrast to the exploratory approach in this chapter however, the
binned image is used as pseudocounts in an α-vector of the Dirichlet hy-
perparameter of the marginal joint of a compound Dirichlet-multinomial
distribution, rather than directly as a multinomial distribution.

Both latent Dirichlet allocation (Chapter 3) and the Dirichlet-multinomial
ratio (Chapters 4 and 5) are performed on discretised images. Histogram
binning methods, both “hard” and “softened” as described in this chapter,
are used for this discretisation.





Chapter 3

Latent Dirichlet allocation

In this chapter, the topic modelling technique latent Dirichlet allocation [6]
is used to infer multinomial models for background and source in discre-
tised images. These models are used to segment the images, in order to
identify sources.

3.1 Problem framework

As described in Chapter 1, radio astronomy images can be thought of as
primarily background with an unknown number of point and spatially
extended sources. Identifying the sources requires distinguishing them
from background, a task made difficult by the diversity within and be-
tween sources. The variability of background is lower than that of sources
and in that sense it is easier to identify.

Source detection may be approached as a problem of identifying and ex-
cluding regions of background and merging what remains into a modest
number of sources. This requires specification of a method for labelling a
region as likely or unlikely to be background.

37
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One plausible approach is to assume background is equivalent to “non-
signal” with some noise, and this is the basis for many existing algorithms
[46]. However, this assumption can fail. Background pixels may not be
restricted to a single narrow range of pixel intensities, or to just one such
band, and may lie in source intensity ranges [53].

A second possible approach is to use a human domain expert to identify
“valid” background regions, and use this to build a probabilistic model for
segmentation. However, such manual intervention is problematic given
the volumes of data to be produced by next generation telescopes [53],
and is vulnerable to biases of the human perceptual system.

In this chapter, a method for producing models of background and source
without manual intervention is proposed, where the models are extracted
from image data containing both background and sources. This task is
nontrivial: individual pixels in an astronomical image are not spatially in-
dependent (source pixels are more likely to be found with other source
pixels, and similarly, background pixels are more likely to be found to-
gether than with source pixels), but regions of the image may contain only
background pixels, only source pixels, or an unknown mixture. This moti-
vates the use of the “mixed-membership model” latent Dirichlet allocation
(LDA) [6].

Though the problem of finding sources in astronomical images is framed
as one of building a good model of background (so as to identify non-
background — i.e., source — regions), LDA allows background and source
models to be built concurrently [6].

Source detection in radio astronomy images is performed via flood-filling,
based on a probabilistic model of pixel intensities inferred by LDA. An
additional application of this technique in segmenting grayscale images is
presented.
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3.2 Latent Dirichlet allocation

3.2.1 The generative model

A “topic model” is a generative model for documents1 based on latent
topics, where topics are modelled as distributions over a vocabulary of
words and documents are modelled as mixtures of topics [67].

Informally, a topic can be thought of as a “semantic theme”. The words
that have high probability under a particular topic would be expected to
convey some sense of meaning [5]. For example, words like “environ-
ment”, “conservation”, “sustainable”, and “ecology” found together with
high probability in a particular topic might convey a theme of “environ-
mental sustainability”.

Topics are discovered by fitting the generative model to data and finding
the best set of latent variables to explain the observed data; for example,
the best mixture of topics in a document and distributions of words in a
topic [67].

LDA [6] is one such generative probabilistic model for sets of discrete data
such as collections of documents, where a document is a multinomial dis-
tribution over topics, and topics are multinomial distributions over the
vocabulary of words in the collection2.

Each document in a collection of documents is represented as a “bag of

1A “generative model” is a description of a probabilistic procedure for generating
documents, used to form a conditional probability density function and infer the latent
topics (rather than actually generate documents) [67].

2Note that categorical distributions would be most appropriate for distributions over
words in topics and distributions over topics in documents; however the multinomial
distribution is used for its convenient properties, including its conjugacy with the Dirich-
let distribution (and in fact a K dimensional categorical distribution is equivalent to one
trial of a K dimensional multinomial distribution [6, 12, 41].
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Figure 3.1: Graphical model for LDA. Nodes are random variables
(shaded are observed; unshaded are latent), directed edges show depen-
dence. Boxes denote replication. Image adapted from [4].

words” in LDA. Under the generative model described by LDA, a docu-
ment is generated by:

1. drawing topic proportions for that document; and then

2. given the document’s topic proportions, for each word that will be
in the document:

(a) drawing the topic for that word;

(b) generating the actual word by drawing it from the distribution
corresponding with its assigned topic [3].

More formally, and with reference to the graphical model in Figure 3.1,
the generative model assumes there are K topics, each βk of which is a
multinomial distribution over all of the words in the collection of doc-
uments (the collection’s vocabulary). The topic distributions are drawn
from a Dirichlet distribution with parameter vector η (a Dirichlet distribu-
tion can informally be thought of as a distribution of multinomial distri-
butions [21]).

There are D documents in a collection, each with topic proportions θd, a
multinomial distribution over topics drawn from a Dirichlet distribution
with parameter vector α (where θd,k is the topic proportion for the kth topic
in the dth document).
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The nth word in the dth document is assigned topic zd,n (drawn from the
multinomial distribution θd), with the observed word wd,n drawn from the
multinomial topic distribution for topic βzd,n ∈ (β1, .., βK) [6].

The generative model corresponds to the joint distribution of latent and
observed variables [3, 6]:

P (β1:K , θ1:D, z1:D, w1:D) =
K∏
k=1

P (βk|η)
D∏
d=1

P (θd|α)

(
N∏
n=1

P (zd,n|θd)P (wd,n|β1:K , zd,n)

)
(3.1)

To summarise, in the generative model, K topics β1..βK are each drawn
fromDir(η) (the Dirichlet distribution with parameter η). Each document
d is then generated by:

1. drawing θd ∼ Dir(α)

2. for each word Wd,n drawing:

(a) topic assignment Zd,n ∼Mult(θd); and

(b) generating Wd,n ∼ βZd,n
[3, 6, 67].

3.2.2 Inferring the latent variables

The following few paragraphs outline the derivation of the conditional
distribution for inferring the latent variables in LDA, as given by Blei et.
al. (2003) and Steyvers and Griffiths (2007) [6, 67]. The full derivation can
be found in these papers, particularly, [6].

The posterior distribution of the latent variables given the observed data
and assuming topics β1:K are fixed is [3, 6]:

P (θ1:D, z1:D|w1:D, β1:K) =
P (θ|α)

∏N
n=1 P (zn|θ)P (wn|zn, β1:K)∫

θ

P (θ|α)
∏N

n=1

∑K
z=1 P (zn|θ)P (wn|zn, β1:K)

(3.2)
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This is intractable to calculate (a “multiple hypergeometric function” [6,
13]). However, the latent topic assignments zd,n can be estimated via Gibbs
sampling3 [22] on a conditional distribution over a compound Dirichlet-
multinomial distribution with the multinomial parameters θd (the per-
document topic distributions) and βk (the per-topic distributions over words)
integrated out [6, 67]:

P (zi|z−i, w1:N) ∝ P (wi|β1:K)
K∏
k=1

Γ(nk(z−i)) (3.3)

where nk(z−i) is the number of times topic k has been seen in the collection
of topic assignments z−i (i.e., all the topic assignments except for assign-
ment zi).

Integrating out the multinomial parameters in the model leaves the ob-
served words wd,n, and the α and η hyperparameter vectors. These hyper-
parameters may be inferred or simply set with empirically-derived values
[67].

The distribution in Equation 3.4 can be iteratively sampled from to infer
each latent topic assignment zi given the observed words wi in each docu-
ment di in the collection, and all other topic assignments z−i.

p(zi = j|z−i, wi, di) ∝
CWT
wij

+ η∑W
w=1C

WT
wj +Wη

CDT
dij

+ α∑K
k=1C

DT
dik

+Kα
(3.4)

To perform Gibbs sampling, each word in each document in the collection
is initially randomly assigned a topic, and two count matrices are created:
CWT of topic assignments to each word in the vocabulary (with CWT

wj the
number of times topic j is assigned to word w in the collection), and CDT

of topic assignments per document (with CDT
dik

the number of times topic k
is assigned in document di) [67] (see Figure 3.2).

3An algorithm for sampling from a multivariate probability distribution by iteratively
generating an instance of each variable conditioned on all others.
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Figure 3.2: Matrices used in LDA. Direct counts from the data are grey,
inferred ones involving topics are blue, and hyperpriors are yellow. The
arrows represent summation if a dimension is being lost, and repeated ad-
dition if a dimension is being gained. The CDT and CWT matrices are used
in Gibbs sampling to infer the latent topic assignments zd,n. The multi-
nomial distributions θd (per-document topic proportions) and βk (distri-
butions of words per topic) can be derived by normalising these matrices
respectively [6, 67].
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One iteration of Gibbs sampling involves decrementing the matrices at
the entry corresponding to each word in the collection in turn, allocating
that word a topic from the distribution in Equation 3.4, and increment-
ing the matrices accordingly [67]. Sampling is run until equilibrium is
reached.

The first term in Equation 3.4:

CWT
wij

+ η∑W
w=1C

WT
wj +Wη

describes the probability of word wi under topic j (the number of times
word wi is assigned topic j as a proportion of the number of times any
word is assigned topic j). The second term:

CDT
dij

+ α∑K
k=1C

DT
dik

+Kα

describes the probability of topic j under the current topic distribution in
document di (the number of times topic j is found in document di as a
proportion of all topic assignments in document di).

The distributions of words per topic, β, and topics per document, θ, can
be calculated using the first and second terms respectively [67].

In essence, LDA uncovers latent topics in a document collection, where
words that are likely to co-occur in documents in the collection are found
together with high probability within a particular topic or topics (weighted
by their overall representation in the document collection).

As an example, a collection of documents might have a vocabulary of
words [“ball”, “game”, “win”, “film”, “actor”, “scene”]. The first three
words in the vocabulary might be found to occur together in documents
with high frequency, but rarely with the last three words (and vice versa).
Two topics might be extracted accordingly, a “sports” topic (under which
the first three words are highly likely and the latter three unlikely) and,
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similarly, a “movie” topic. A document might be primarily made up of
words from one topic, or some mixture of both topics (for example, a re-
view of a sports movie).

3.2.3 Application of LDA to images

The following analogy can be made between document collections and im-
ages: a single greyscale image is a document collection, which comprises d
non-overlapping subimages (the documents). The image “vocabulary” is
constructed by taking a histogram of pixel intensities in the entire image,
where each of w bins (pixel intensity intervals) is a word in the vocabu-
lary. Any of the binning strategies described in Chapter 2 can be used to
construct the histogram binning. The number of occurrences of a word wi

for document dj is the count of pixels in subimage dj that fall into bin wi

of the overall image histogram. Topics are normalised distributions over
bins.

Using this model, Gibbs sampling (as described in Section 3.2) can be run
on greyscale images to uncover latent “topics”: distributions of pixel in-
tensities that commonly co-occur in the image, for example a “background
topic”.

These topics can then be used to segment the image on a pixel-by-pixel
or region-by-region basis. This can be done by assigning a pixel/region
a topic based on the most likely topic to have generated the pixel/region.
This can be calculated using the probability mass function of the multino-
mial distribution (Equation 3.5, where xi is the count of pixels in the ith

bin,
∑k

i=1 xi = n, and pi is the probability of the ith bin under a particular
topic).

Pr(X1 = x1, .., Xk = xk) =
n!

x1!..xk!
px11 ..p

xk
k (3.5)
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For source detection in radio astronomy images, flood-filling4 can then be
performed on the segmented image to identify the location and size of
sources in the image.

Related work in image segmentation

This application of LDA to source-detection in images differs from the ap-
proach taken in [8, 18, 19, 59, 61, 64, 65, 69, 71], in which derivations of LDA
and other topic models are applied to image segmentation and object and
scene classification tasks. The approach in this chapter relies only on pixel
intensity and location, whereas previous approaches employ techniques
to extract image interest points and pre-segment images before applying
LDA.

A document is a single image in a collection in [18], represented by counts
of visual words or “textons” extracted from the image collection. This
model is extended in [8], in which each image is segmented into homoge-
neous regions, and each region comprises several interest point patches.
Similarly, Russell et. al. [61] compute multiple segmentations on each im-
age in a collection, and compute visual words (interest points) for each
candidate segmentation. Interest points are similarly employed in “bag
of words” models in [19, 59, 64, 65, 69]. Wang and Grimson [71] added
spatial information to their LDA model by grouping visual words close to
each other in an image.

In comparison to other flood-filling based astronomical source detection
algorithms [46], the use of LDA-derived probabilities as a precursor to
flood-filling is more powerful than many thresholding algorithms (such
as those discussed in [23]); in LDA, commonly co-occurring bins needn’t
be adjacent intensity ranges. Consider an image in which the background
is made up of medium-intensity pixels while foreground objects comprise

4Labelling contiguous regions of pixels that have same topic label as a single region.
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Table 3.1: Astronomical images used for evaluation

Image Description Source
A1 ATLSB5survey region A at 50” resolution [62, 68]
A2 ATLSB survey region A at 6” resolution [62, 68]
B1 ATLSB survey region B at 50” resolution [62, 68]
B2 ATLSB survey region B at 6” resolution [62, 68]
C ATLAS CDFS6 [54]

both dark and bright pixels. LDA allows the topics to reflect this, with
medium-intensity bins found in one topic, and bright and dark bins in the
other.

3.3 Methods

LDA was performed for segmentation and source detection in five radio
astronomy images (Table 3.1) Non-astronomical greyscale images were
segmented as a demonstration of this application of LDA (see Figures 3.3
and 3.4).

Astronomical images were in FITS format [73]; non-astronomical images
were greyscale JPEG images.

For each image a histogram of pixel intensities was generated. An equal
width binning strategy was employed with 100 or 1000 bins for astronom-
ical images, and 10 or 100 bins for non-astronomical images.

Images were decomposed into subimages (“documents”), and counts of
pixels in bins were calculated for each. A range of subimage sizes was
trialled for each image.

5Australia Telescope Low Surface Brightness.
6Australia Telescope Large Area Survey Chandra Deep Field-South.
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Gibbs sampling was run to infer per-word topic assignments zi, on the
distribution in Equation (3.4), as described in section 3.2. The α and η-
vectors were set with the empirically derived values αi = αj = 0.1 ∀i, j;
ηi = ηj = 0.01 ∀i, j [67].

Gibbs sampling was run for 100 iterations (where each iteration was a
sweep through every pixel in the image, allocating each pixel a topic based
on the current distributions of words to topics and topics to documents).
The final distributions of words for each topic (βk for k ∈ {β1 .. βK})
were calculated from the hundredth sample. An average over samples
was not taken as it was found that the sampler converged quickly after
which the topic distributions changed very little if at all: sample 1000
was virtually identical to sample 500 and sample 100 (that is, the poste-
rior distribution was very narrow, i.e., the model parameters were very
well-constrained).

To segment the images using the inferred topic distribution, each pixel
in the image was assigned the topic that it was most likely generated by
using Equation (3.5). When considering a single pixel, this equation sim-
plifies to just pi for a given bin i. That is, if the pixel being considered
falls into bin i in the overall pixel intensity histogram, the topic with the
greatest probability for bin i is assigned7.

In the case of the astronomical images, the performance of LDA was com-
pared with the thresholding and region growing astronomical source de-
tection software Duchamp [74], on source catalogues generated by manual
inspection by an astronomer (a “ground truth” reference) [62, 68].

Precision and recall were calculated in order to evaluate the performance
of the LDA. Precision is the proportion of true sources of all found sources

7Note that this may be weighted by the topic’s overall proportion in the collection,
however this was not done here.
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(that is, all found sources that are really sources):

precision =
tp

tp + fp
(3.6)

and recall is the proportion of found sources of all true sources in the im-
age (all true sources that are found):

recall =
tp

tp + fn
(3.7)

where tp = “true positive”, fp = “false positive”, and fn = “false nega-
tive”8 [56].

In the case of non-astronomical images, two examples of segmented im-
ages are shown for illustrative purposes only (see Figures 3.3 and 3.4).

3.4 Results

Figure 3.5 demonstrates the segmentation of an astronomical image (Im-
age A1), and the results of flood-filling on the segmented image to identify
radio sources in the image.

For the astronomical images, the results of both LDA and Duchamp were
compared to a source catalogue generated by manual inspection by an
astronomer. Although LDA and Duchamp perform roughly equivalently
with respect to spatially extended, multi-component sources, LDA had
more false positives and false negatives than Duchamp (see Figure 3.7 for
an example).

Table 3.2 shows the performance of LDA and Duchamp as compared to
source catalogues generated via manual inspection by an astronomer on

8Precision and recall are sometimes called “completeness” and “reliability” in the as-
tronomical source detection literature [27].
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Figure 3.3: Image segmentation. Each pixel is assigned to the topic it was
most likely generated by, as inferred by LDA (for illustrative purposes,
each topic is assigned a greyscale value, and each region is coloured ac-
cording to its topic). Left to right, top to bottom: the original image, fol-
lowed by the segmented image with two, three, four, five, and six topics.
Increasing the number of topics may increase the level of detail revealed
by segmentation, but may also introduce spurious segmentations. Origi-
nal image (top left) from [45].
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Figure 3.4: The number of bins in the pixel intensity histogram can affect
results. Top row from left to right: a greyscale JPEG image, the segmented
image using 10 bins, and 100 bins. Bottom row from left to right: an as-
tronomical image (with contrast adjusted to see sources), the segmented
image using 100 bins, and 1000 bins. Image sources: [37, 62, 68].
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Figure 3.5: Radio astronomy images segmented by LDA. From left to
right, top to bottom: a radio astronomy image, the image with contrast ad-
justed and colours inverted in order to see sources, the image segmented
using topics derived by LDA (with two topics), the contrast adjusted,
colour inverted image overlaid with bounding boxes showing sources
identified by flood-filling on the segmented image. Blue borders have
been added to delineate the images. Image source: [62, 68].
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Figure 3.6: LDA results on an image polluted with artefacts. An astro-
nomical image (top left) with contrast adjusted to see artefacts (top right),
seen as concentric circles and radial spikes. LDA (bottom left) falsely iden-
tified fewer artefact pixels as sources than Duchamp (bottom right). Blue
borders have been added to delineate the images. Image source: [54].
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Table 3.2: Performance of LDA versus Duchamp

Image LDA Duchamp
Precision Recall Precision Recall

A1 0.83 0.93 0.98 1.0
A2 0.98 0.99 1.0 1.0
B1 1.0 0.99 1.0 0.96
B2 1.0 0.89 1.0 1.0

sources for which the total flux (intensity) is less than 1.63 mJy9. LDA
performed similarly to Duchamp.

LDA sometimes reported a single source where Duchamp correctly sep-
arated several; however this is due to the post-processing flood-filling,
rather than the LDA algorithm itself. In other cases LDA correctly identi-
fied sources that Duchamp mistakenly merged.

Bright peak pixels seem key to detection by LDA. For example, in image
A2 LDA detects several sources below 1.63 mJy, all of which have peak
pixels at least 6σ above the rms noise10; in contrast LDA’s false negatives
above 1.63 mJy all have peak pixels less than 6σ above rms noise.

LDA identified fewer artefact pixels as sources than Duchamp in the arte-
fact polluted Image C (Figure 3.6). This is a clear demonstration of the
strength of using a probabilistic model of background. To avoid the ef-
fects of such artefacts using Duchamp or similar software, an astronomer
would need to manually decompose the image into a number of smaller
regions and manually adjust region thresholds. Our implementation of
LDA avoids such manual interventions.

91Jy ≡ 1× 10−26W/Hz/M2

10Noise was manually determined by an astronomer.
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Figure 3.7: Performance of LDA (blue) and Duchamp [74] (red; green) on
four representative regions from Image A2. Top left: a region containing
a radio galaxy with two large jets (and no detected core) seen in projection
with other point sources. Both algorithms identify multiple components.
Top right: A false positive and a false negative for LDA. Bottom left: A
false positive and a false negative for LDA; Duchamp detects three sources
less than 2.5σ above the rms, missed by LDA (green). Bottom right: A
radio galaxy with three components, and a point source. Both algorithms
split the radio galaxy into three components. Only Duchamp detects the
point source less than 2.5σ above the rms (green). Image source: [62, 68].
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3.5 Discussion

With regards to the real astronomical images, LDA performed similarly
to the standard source-detection software Duchamp [74] on a representa-
tive sample of radio astronomy images, particularly for sources with inte-
grated source flux 2.5σ above the rms noise.

The two algorithms performed similarly with respect to extended, multi-
component sources, but LDA had more false positive detections and non-
detections than Duchamp.

Bright peak pixels seem to be essential for a source to be detected by the
current implementation of LDA. The current implementation of LDA is
therefore unlikely to detect any diffuse sources (spatially extended sources
with low brightness overall and no bright peak pixels). Possible solutions
to this problem are discussed in Section 3.5.2.

LDA outperformed Duchamp on the image polluted with artefacts — an
image that would require labourious manual intervention by an astronomer
to detect sources using software such as Duchamp. This is a clear demon-
stration of the utility of the probabilistic model employed.

3.5.1 Parameter and computational issues

In document collections there is a natural segregation of words and docu-
ments; LDA was developed for such discrete data [6]. However, there is no
natural segregation of pixels into intensity ranges or images into regions.
In this chapter, histogram binning of the image and decomposition of the
image into subimages was used to discretise the images to resemble doc-
ument collections. This introduces new parameters to be set. In practice,
it was found that the final topics extracted did not vary over a wide range
of subimage sizes chosen, however, results did vary based on the number
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of bins in the histogram (see Figure 3.4). The approach taken to histogram
binning in the current chapter is likely to be responsible for this imple-
mentation of LDA’s poor performance on faint sources in radio astronomy
images; this should be addressed in future implementations.

The analogy of pixels to words may be inaccurate for radio astronomy
images. The resolution element of a radio telescope is generally several
pixels, and so individual pixels are better thought of as having sub-word
size (perhaps “syllables”). The performance of LDA may change if the
smallest unit in the model (an individual “word”) is adjusted to take this
into account.

The number of topics must be set manually. For source detection two may
be sufficient (one each for source and background topics); however for
image segmentation in general a different number of topics may give dif-
ferent results. Figure 3.3 shows a grayscale image segmented with two
to six topics. With two topics, the object in the image is clearly segmented
from the background; increasing the number of topics reveals more details
of the image; in general terms increasing the number of topics might be ex-
pected to increase the level of detail shown, but may introduce irrelevant
detail, for example the segmentation of the sky in Figure 3.3. For astro-
nomical images, more than two topics could possibly improve results: for
example, three topics may result in a background topic and two source
topics with one each for bright and dim sources. This may improve per-
formance on diffuse sources without bright peak pixels.

LDA is a “bag of words” model [3, 6, 67] and so ignores the natural or-
dering of pixel intensities. However this may be a benefit, rather than a
drawback, as this allows objects made up of non-neighbouring pixel in-
tensity ranges to be correctly segmented from images.

Gibbs sampling to infer the latent topics in LDA is expensive both in terms
of computation and time. One Gibbs sample involves iterating through
each pixel in the image, allocating each a topic based on the current distri-
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butions of words to topics and topics to documents, and so is linear in the
number of pixels multiplied by the number of topics. As it is not unusual
for astronomical images to be 8000 × 8000 pixels, this can be computa-
tionally difficult. Additionally, at least one large three dimensional array
(CDWT indexing words by documents by topic) must be kept in memory.
However, LDA need not necessarily be run for every image, nor on the
whole image. LDA could be run on a small representative section of one
image in a collection of similar images in order to extract topics for the
whole collection. This would reduce the computational expense of the ap-
proach.

3.5.2 Future work

The approach described in this chapter shows how LDA can be used for
image segmentation and source detection.

The use of the final topic distributions — segmentation by assigning each
pixel a hard topic label and source detection by flood-filling on the seg-
mented image — is crude. A more nuanced approach would eliminate
this hard assignment and take a more probabilistic approach to region la-
belling. For example, given the multinomial models for background and
source, gradient ascent could be performed to find regions that have high
likelihood under a particular model.

Given the reliance on bright peak pixels for source detection by LDA, more
work needs to be done to improve LDA’s performance on faint sources. In
the particular cases analysed, the addition of more bins in the low range
of pixel intensities would likely improve performance; in the general case,
the optimal use of bins should be investigated.

In many cases, final background and source topics derived by LDA were
simple thresholds in bins, with the background distribution over bins plac-
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ing almost all weight on bins from 0 to some bin i, and the source distri-
bution placing almost all weight from bin i to bin K. This is not ideal for
discovery of all sources in images in which source and background pixel
ranges overlap, and may in fact prevent the discovery of faint sources. In
this way, the implementation of LDA in this chapter performs no better
than pixel-intensity based thresholding algorithms that restrict search to
those sources that contain pixels above a particular threshold. Exploration
into why this thresholding in the distribution of pixels happens and how
to prevent it is an important avenue for future work.

The implementation of LDA in this chapter does not allow for the use of
“soft” (Dirichlet) bin borders, as described in Chapter 2. This is due to
the fact that Gibbs sampling is done at the individual pixel (“word”) level
— estimating the topic assignment of each pixel conditioned on the topic
assignments of all others by:

• decrementing the CDWT matrix at the given pixel’s entry,

• estimating a topic assignment for that pixel from the posterior distri-
bution, and

• incrementing the matrix accordingly.

In the implementation of LDA in this chapter, individual pixels are de-
scribed by the bin in which they belong, and topics are distributions over
bins. The Dirichlet binning strategies described in Chapter 2 result in dis-
tributions over bins, with partial counts in a number of bins for each pixel:
and so each pixel becomes a distribution over words, rather than a single
word. Future work should investigate how latent topic assignments can
be estimated given distributions over words, rather than discrete counts
of words.

With regards to the additional application of LDA in segmenting non-
astronomical grayscale images, the performance of this could be assessed
by comparing the obtained segmentation with human segmentation of the
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same images, using a large public database of images such as [45]. This
would also allow comparison to the results obtained by other image seg-
mentation algorithms.

3.6 Conclusions

This chapter presents a preliminary investigation into use of the topic
model latent Dirichlet allocation for image segmentation in grayscale im-
ages and source detection in astronomical images. The method builds a
probabilistic model of “non-source” pixel distributions.

LDA performed similarly to the standard source-detection software Duchamp
[74] on a representative sample of radio astronomy images, however, for
fainter sources and in particular diffuse sources, there is still some work to
be done to determine whether the LDA method will be an improvement
over existing algorithms.

A particular success of the approach is the superior result obtained in Im-
age C, which is polluted with artefacts, as compared to the relatively poor
performance of Duchamp.

The algorithm could be refined to take a more probabilistic approach to
region labelling rather than the hard assignment described in the current
chapter, along with further exploration of the optimal pixel binning strat-
egy.



Chapter 4

A Dirichlet-multinomial ratio:
derivation

Given an astronomical image and a model for background, it is possible
to assign a likelihood to a particular region of that image on the basis of
how well the region conforms to the model. If, in addition to the model
for background, there is a model for foreground, a likelihood can be con-
structed to indicate which model best fits the region.

This chapter describes how a Dirichlet-multinomial distribution may be
used to calculate such a likelihood on discretised images, in the form of an
optimisable ratio, where images are discretised by methods such as those
discussed in Chapter 2.

To find peaks in ratio-space — that is, regions which poorly conform to a
background model, and/or regions which conform well to a foreground
model — one approach is to exhaustively calculate the ratio’s value for
all possible regions of the data. This is inefficient and time-consuming,
particularly as the size of the data and the number of parameters defining
a region grows. Alternatively, the gradient of the ratio may be calculated,
and gradient-ascent performed to find peaks in the ratio.

61
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To illustrate the development of the ratio, one dimensional data is used
as well as two dimensional data. In the context of two-dimensional as-
tronomical images, one-dimensional data is a 1 × X “slice” through the
image at some y-position; each pixel location x ∈ [0..X] has an intensity
value ∈ R. The methods described for one dimensional data are extended
to two-dimensional data in each section of this chapter.

Two parameters are used to describe regions in one-dimensional data: an
x-position m and an approximate half-width σ, which are denoted collec-
tively as θ.

Gaussian elliptical regions are used for two-dimensional data, where the
region’s parameters θ are center coordinatesmx andmy, approximate half-
widths in orthogonal direction σx and σy, and rotation parameter φ.

The gradient of the Dirichlet-multinomial ratio (DMR) with respect to θ

for one and two dimensional data is derived.

Similarities and differences between the Dirichlet-multinomial ratio and
latent Dirichlet allocation (Chapter 3) are discussed in Section 4.6; the two
methods are combined in Chapter 6.

In Chapter 5 the results of source detection via gradient ascent on the
Dirichlet-multinomial ratio are presented.

4.1 Notation

4.1.1 Representing an image in terms of binned values

Each pixel in an astronomical image has an intensity value ∈ R; these val-
ues can be discretised by “binning” them under some predefined scheme,
as described in Chapter 2. Within any given region in an image, a his-
togram of counts n in K bins can be formed.
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Wherever possible x is used to refer to a pixel in an image in the case of
one dimensional data, and k to refer to a bin index. The raw but binned
image is denoted by b, and so bx is the index of the bin that results from
the pixel intensity at point x in the image.

It will be useful to define the variable Cx
k = δbx,k where δi,j = 1 iff i = j,

and is zero otherwise. Here C is an indicator variable: in effect, simply a
verbose way of representing the integer bx as an entire vector consisting of
a single 1 (corresponding to bk, the index of the bin k that contains pixel
x) and K − 1 many 0’s. This notation appears cumbersome, but it is intro-
duced in order to be able to extend it to normalised vectors, thus allowing
C to represent “partial counts” across more than one bin1.

The aggregated bin counts for some region R can then be written:

n
(θ)
k =

∑
x∈R

Cx
k (4.1)

The variable Cx
k = δbx,k described in Equation 4.1 in may be extended to

Cx,y
k = δb(x,y),k for two-dimensional data by denoting the aggregated bin

counts for some region R:

n
(θ)
k =

∑
(x,y)∈R

Cx,y
k (4.2)

where δix,y ,j = 1 iff i = j (that is, if pixel i at position (x, y) falls into bin j),
and is zero otherwise.

Definition of a hard region: one dimensional data

A hard region has hard (“all or nothing”) borders, which can be thought of
as a rectangular bounding-box around some region of the data (see Figure

1Specifically, it is introduced to facilitate the use of Dirichlet borders (a novel way to
derive partial counts as a direct consequence of the uncertainty about where bin borders
should be placed, as described in Section 2.2 in Chapter 2).
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4.1). For such a region, R is defined as:

R(θ) ∈ [xm−σ, xm+σ] (4.3)

Where the parameters θ are m denoting x-position and σ denoting half-
width.

A hard region can also be described by a weighting function W
(θ)
x over

points x in the region:

W (θ)
x =

1, if x ∈ R.

0, otherwise.
(4.4)

Alternatively, a graded weighting may be applied to a region to “soften”
the borders of that region.

Definition of a soft region: one dimensional data

A region with “soft” borders can similarly be defined by a weighting func-
tion W

(θ)
x . The function’s parameters θ could, for example, involve a cen-

ter point m and approximate half-width σ, as in the Gaussian function
[72]:

W (θ)
x = exp

(
−(x−m)2

2σ2

)
(4.5)

Such a region with “soft” borders can be thought of as a weighted curve
across the image, rather than a rectangular bounding box, as depicted in
Figure 4.1. Soft bordered test regions may be expected to better reflect
the nature of astronomical data: astronomical objects do not have hard
borders but rather their intensity fades toward their edges.
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Figure 4.1: Two methods for defining a region of data with m = 30 and
σ = 10. The pink rectangular region illustrates a “hard-bordered” region
as defined in Equation 4.3: each pixel within the pink region contributes a
count of 1 to its corresponding bin. The region under the blue curve illus-
trates a “soft-bordered” region as defined in Equation 4.5: a pixel at posi-
tion x contributes a count corresponding with the blue curve’s position on
the y-axis: for example, a pixel at position 20 on the x-axis increments the
count in bin j by approximately 0.4.
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Definition of a soft region: two dimensional data

For two dimensional data, a region with “soft” borders can be defined by
a weighting function W θ

x,y over points (x, y), with parameters θ specifying
the position and shape of the region.

For example, to specify a Gaussian elliptical region, the function’s param-
eters θ could involve center coordinates mx and my, approximate half-
widths in orthogonal direction σx and σy, and rotation parameter φ.

Without the rotation parameter, the weighting function could be defined
as in [60]:

W θ
x,y = ef , with f = −∆2

x

2σ2
x

−
∆2
y

2σ2
y

(4.6)

where ∆ signifies a displacement from the central position,

∆x = x−mx, and ∆y = y −my (4.7)

This elliptical region can be rotated by applying a rotation matrix (incor-
porating the rotation parameter φ into ∆x and ∆y) [60]:[

∆
′
x

∆
′
y

]
=

[
cos(φ) − sin(φ)

sin(φ) cos(φ)

][
∆x

∆y

]
=

[
∆x cos(φ)−∆y sin(φ)

∆x sin(φ) + ∆y cos(φ)

]
(4.8)

The weighting function with the rotation matrix applied is therefore:

W θ
x,y = exp

(
−∆

′2
x

2σ2
x

−
∆

′2
y

2σ2
y

)
(4.9)

Expanding the terms ∆
′2
x and ∆

′2
y gives:

∆
′2
x = (∆x cos(φ)−∆y sin(φ))2 (4.10)

= ∆2
x cos2(φ)− 2(∆x cos(φ)∆y sin(φ)) + ∆2

y sin2(φ) (4.11)
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and:

∆
′2
x = (∆x sin(φ) + ∆y cos(φ))2 (4.12)

= ∆2
x sin2(φ) + 2(∆x sin(φ)∆y cos(φ)) + ∆2

y cos2(φ) (4.13)

Putting equations 4.11 and 4.13 back into 4.9 and simplifying yields:

f = exp
(
−
(
a∆2

x + 2b∆x∆y + c∆2
y

))
(4.14)

with:

a =
cos2(φ)

2σ2
x

+
sin2(φ)

2σ2
y

(4.15)

b =
− sin(2φ)

4σ2
x

+
sin(2φ)

4σ2
y

(4.16)

c =
sin2(φ)

2σ2
x

+
cos2(φ)

2σ2
y

(4.17)

Bin counts in a region

For one dimensional data, the aggregated bin counts in a region (using
any of the histogram binning strategies described in Chapter 2) can be
multiplied by the weighting function (such as those given in Equations 4.4
and 4.5) to give “weighted counts”, Ĉ:

Ĉx
k = Cx

k W
θ
x (4.18)

Similarly, for two dimensional data:

Ĉx,y
k = Cx,y

k W θ
x,y (4.19)

(Note: to avoid clutter, Ĉ’s dependence on θ is omitted in this notation).

The aggregated bin counts for the region defined by θ in one dimensional
data can then be denoted:

n
(θ)
k =

∑
x

Ĉx
k (4.20)
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and similarly for two dimensional data:

n
(θ)
k =

∑
x,y

Ĉx,y
k (4.21)

Note that if a region is defined with “soft” borders as in Equation 4.5 the
sum is extended to potentially all pixels in the image. However in practice,
for one dimensional data, the sum over x can be truncated to a local mask
for which W (θ)

x ≥ ε, for some suitably small value of ε, or alternatively, by
applying the weighting function to the data as in Equation 4.20 and trun-
cating the resulting vector to the region defined by R(θ) ∈ [xm−aσ, xm+aσ]

for some value of a.

For two dimensional data, the Equation in 4.21 could be similarly trun-
cated to a local mask or by applying Equation 4.21 and truncating the re-
sulting array, for example to a bounding box centered on (mx,my).

4.2 Scoring a region

4.2.1 The Dirichlet-multinomial distribution

The Dirichlet-multinomial distribution is a compound probability distri-
bution, where the parameter vector p = p1, ..., pK of a multinomial distri-
bution (with the probability that value k is drawn from p given by pk), is
drawn from a Dirichlet distribution with parameter vector α = α1, ..., αK

[40, 51].

For some vector of counts n(θ) in K bins of a histogram (where the counts
are taken within a region defined by W (θ)), integrating out the multino-
mial distribution gives the following marginal joint likelihood in terms of
hyperparameter α [40, 51]:
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P (n(θ)|α) =
Γ(A)

Γ(N + A)

∏
k

Γ(nk + αk)

Γ(αk)
(4.22)

where

A =
∑
k

αk (4.23)

N =
∑
k

nk (4.24)

The logarithm of this is:

logP (n(θ)|α) = log Γ(A)− log Γ(N + A) +
∑
k

log Γ(nk + αk)− log Γ(αk)

(4.25)

4.2.2 A Dirichlet-multinomial ratio

A good objective function should give an indication of how poorly a his-
togram of pixel intensities in a particular region (that is, binned counts)
conforms to a model of background, where the model is histograms that
might be expected in regions of pure “background” signal. (Or alterna-
tively, how poorly a region’s histogram conforms to a model of back-
ground as compared to how well it conforms to a model of foreground).

Such a function can be derived from the ratio of posterior probabilities
under the two models2:

2This is a form of a Bayes factor, which is a Bayesian model selection method for
data D and M1 and M2 the two competing models, with P (D|M1)

P (D|M2)
[38]. Evaluating terms

involves integrating over the parameters of the model. For the Dirichlet-multinomial
ratio, conveniently the integral is analytic (Equation 4.22).
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DMR = log
P (S|n(θ))

P (B|n(θ))
(4.26)

= log
P (n(θ)|S)

P (n(θ)|B)
+ log

P (S)

P (B)
(4.27)

where S is the Dirichlet-multinomial distribution with hyperparameter
vector αS and similarly for B with αB.

If it is assumed that there is an equal mixture of source and background
pixels in an image, the second term in Equation 4.27 is equal to zero and
may be dropped. This may be a fair assumption if nothing is known about
the actual mixture of background and source in images or regions within
an image. However, because it is known that background pixels far out-
weigh source pixels in radio astronomy images, this information can be
incorporated into the DMR.

For the gradient calculation, the second term is a constant and so may be
dropped, leaving:

log
P (n(θ)|S)

P (n(θ)|B)
= logP (n(θ)|S)− logP (n(θ)|B) (4.28)

Writing out Equation 4.28 in full gives:

logP (n(θ)|S)− logP (n(θ)|B) =
∑
k

log Γ(nk + αSk )− log Γ(N + AS)

−
∑
k

log Γ(nk + αBk ) + log Γ(N + AB) (4.29)

Note that no reparameterisation of Equation 4.29 is necessary for extension
to two-dimensional data, as nθ, αS , and αB are allK-length vectors (where
K is the number of bins in a histogram binning of the data).
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4.3 The gradient of the DMR

It is possible to find peaks in the DMR by exhaustively iterating through all
combinations of values of θ and calculating the value of the ratio for each.
However this is obviously time consuming, and potentially intractable
with increasing sizes of images and number of parameters θ. A more effi-
cient approach is to perform gradient ascent to find maxima.

Taking the derivative of the DMR (equation 4.29) with respect to region
parameters θ (denoting the derivative of the log of the Γ function by ψ),
yields:

∂

∂θ
DMR(θ) =

∑
k

[ψ(nk + αSk )− ψ(nk + αBk )︸ ︷︷ ︸
denote Qk

]
∂n

(θ)
k

∂θ

− [ψ(N + AS)− ψ(N + AB)]
∑
k

∂n
(θ)
k

∂θ
(4.30)

=
∑
k

Qk
∂n

(θ)
k

∂θ
−
∑
k

[ψ(N + AS)− ψ(N + AB)︸ ︷︷ ︸
denote Qbase

]
∂n

(θ)
k

∂θ
(4.31)

=
∑
k

(Qk −Qbase)
∂n

(θ)
k

∂θ
(4.32)

with the above definitions for Qk and Qbase.

The remaining gradient term can then be calculated from Equation 4.20
for one dimensional data:

∂nθk
∂θ

=
∑
x

Cx
k

∂W θ
x

∂θ
(4.33)

=
∑
x

Cx
k W

θ
x

∂f

∂θ
(4.34)

=
∑
x

Ĉx
k

∂f

∂θ
(4.35)
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where f = logW θ
x

And similarly for two dimensional data from Equation 4.21:

∂nθk
∂θ

=
∑
x,y

Cx,y
k

∂W θ
x,y

∂θ
(4.36)

=
∑
x,y

Cx,y
k W θ

x,y

∂f

∂θ
(4.37)

=
∑
x,y

Ĉx,y
k

∂f

∂θ
(4.38)

where f = logW θ
x,y

Putting these equations back together, in general the gradient of the DMR
for one dimensional data is:

∂

∂θ
DMR(θ) =

∑
k

(Qk −Qbase)
∑
x

Ĉx
k

∂f

∂θ
(4.39)

and similarly for two dimensional data:

∂

∂θ
DMR(θ) =

∑
k

(Qk −Qbase)
∑
x,y

Ĉx,y
k

∂f

∂θ
(4.40)

Notice the data are involved in (up to) four places:

• Qk, which depends on nk, the kth bin in n(θ), the aggregated weighted
counts in K bins in the region defined by θ,

• Qbase, which depends on N =
∑

k nk (note that this does not vary
with the position of the region, except for edge effects at the edges of
the image, but does vary with the region’s size),

• Ĉx
k or Ĉx,y

k ; some simplification is possible in the case that this is a
strict “indicator function” (zero everywhere except one bin), but not
in general, and

• ∂f
∂θ

but always via the weighted counts Ĉ.
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4.3.1 The gradient, given a specific parameterisation forW

Any window function W may be used in Equation 4.39 (one dimensional)
or 4.40 (two dimensional) to arrive at the full DMR and its gradient calcu-
lation.

The gradients calculated can be substituted into Equation 4.39 or 4.40 giv-
ing the full gradient, which can then be provided to any gradient-based
optimisation routine.

One dimensional data

Using the function for a soft window given in Equation 4.5 as an example,
whose parameters θ are (m,σ), the gradient is as follows.

The derivative with respect to m (the x-position of the mid-point of the
window) is:

∂f

∂m
= W (θ)

x

(x−m)

σ2
(4.41)

and so

∂

∂m
DMR(θ) =

∑
k

(Qk −Qbase)
∑
x

Ĉx
k

(x−m)

σ2
(4.42)

With respect to σ, it is

∂f

∂σ
= W (θ)

x

(x−m)2

σ2

1

σ
(4.43)

and so

∂

∂σ
DMR(θ) =

∑
k

(Qk −Qbase)
∑
x

Ĉx
k

(x−m)2

σ3
(4.44)

These two numbers can be substituted into Equation 4.39 to calculate the
gradient of the DMR with respect to the complete parameter set.
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Two dimensional data

Similarly for two dimensional data, using the function for a two-dimensional
ellipse given in Equation 4.14 as an example, whose parameters θ are
(mx,my, σx, σy, φ) the gradient can be calculated as follows.

The derivative with respect to mx is:

∂

∂mx

DMR(θ) =
∑
k

(Qk −Qbase)
∑
x,y

Ĉx,y
k

∂f

∂mx

(4.45)

differentiating Equation 4.14, with the definition for ∆x and ∆y as per
Equation 4.7, gives

∂f

∂mx

= 2a∆x + 2b∆y (4.46)

so the gradient calculation for this parameter is:

∂

∂mx

DMR(θ) =
∑
k

(Qk −Qbase)
∑
x,y

Ĉx,y
k

[
2a∆x + 2b∆y

]
(4.47)

More generally, differentiating equation 4.14 with respect to each of the
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five parameters mx,my, σx, σy and φ, gives the following:

∂f

∂mx

= 2a∆x + 2b∆x (4.48)

∂f

∂my

= 2b∆x + 2c∆y (4.49)

∂f

∂σx
=

1

σ3
x

(
∆2
x cos2(φ)−∆x∆y sin(2φ) + ∆2

y sin2(φ)

)
(4.50)

∂f

∂σy
=

1

σ3
y

(
∆2
x sin2(φ) + ∆x∆y sin(2φ) + ∆2

y cos2(φ)

)
(4.51)

∂f

∂φ
=

1

2

(
1

σ2
x

− 1

σ2
y

) (
(∆2

x −∆2
y) sin(2φ) + 2∆x∆y cos(2φ)

)
(4.52)

4.4 The DMR in higher dimensions

It would be relatively straightforward to extend the DMR to three (or
higher) dimensional data, following the steps outlined in this chapter. As
for one (equation 4.5) and two (equation 4.9) dimensional data, a Gaussian
weighting function could be used to describe a soft region in three dimen-
sional data. The general form of the multidimensional Gaussian function
[72] is:

f(x) = exp
(
−
(
xTAx

))
(4.53)

where x = {x1, .., xn} are the n dimensions of the data, xT is the column x
transposed and A is a positive-definite n×n matrix. Weighted counts Ĉ of
binned pixels could be derived as for one and two dimensional data with
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aggregated bin counts for the region denoted:

nk =
∑

x

Ĉx
k (4.54)

The DMR (equation 4.29) could be used for multidimensional data with
no reparameterisation necessary, as this function is given in terms of K-
length vectors (where K is the number of bins in a histogram binning of
the data). To find peaks in the function’s value its derivative could be
derived as in section 4.3.

4.5 Comparison with other Bayesian methods

Of the existing Bayesian source detection methods described in Chapter
1, the DMR is most closely related to the work of Hobson and McLach-
lan [29] and Feroz and Hobson [20]. Hobson and McLachlan performed
Bayesian model selection using MCMC to explore the parameters of back-
ground and source models, with a source model of circularly symmetric
Gaussian-shaped objects and a background model of Gaussian noise. In
one version of the algorithm sources are found iteratively. Feroz and Hob-
son used the Bayesian model selection algorithm nested sampling with cir-
cularly symmetric Gaussian-shaped sources. In this Chapter, a Dirichlet-
multinomial function was derived; in the following Chapter the DMR is
used to iteratively find Gaussian elliptical shaped regions that differ from
a background model.

Source and background are modelled as distributions over ranges of pixel
intensities in the DMR. A parametrised form for astronomical sources is
assumed and these parameters estimated from a posterior distribution,
however sources are not assumed to be circularly symmetric or of a par-
ticular size.
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4.6 Comparison with latent Dirichlet allocation

There are many similarities between latent Dirichlet allocation (as used in
Chapter 3) and the Dirichlet-multinomial ratio.

Both techniques use multinomial distributions over bins as models for
source and background; and in both methods these distributions are part
of a compound Dirichlet-multinomial distribution with the multinomial
parameter integrated out, leaving only the data and the Dirichlet hyper-
parameter(s).

However, LDA estimates a conditional distribution while the DMR cal-
culates a marginal joint distribution [6, 51]. In addition, the multinomial
models for source and background are easily derived from the LDA pro-
cess, but remain latent in the DMR.

These differences are relatively minor; however there are two differences
between the models that are more fundamental. In LDA, there is one α hy-
perparameter over all topic distributions βk ∈ K (where K = 2 for source
and background in radio astronomy images). In the case of the DMR, there
are two α hyperparameters: one each for source and background distribu-
tions. Under LDA’s generative model the multinomial distributions over
bins for source and background are fixed across the whole image; while
under the generative model for the DMR, they may vary between sub-
images.

With regards to these two points, there is a conceptual similarity between
the DMR described in this chapter and the DCMLDA model described in
[15, 16, 44] (DCMLDA is: Dirichlet compound multinomial latent Dirichlet
allocation).

DCMLDA is largely the same as LDA as described in Chapter 3, except for
one key difference: LDA has one multinomial distribution βk for each ofK
topics, all of which have the same Dirichlet hyperparameter η. In the case
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of DCMLDA however, each topic k has its own Dirichlet hyperparameter
ηk, from which a multinomial topic distribution over words βk,d is drawn
for each topic k and each document d in the document collection [15].

The DCMLDA model was developed to model the phenomenon of “bursti-
ness”, a term which describes the behaviour of words appearing in “bursts”
— that is, if a word appears once in a document, it is more likely to appear
again in that same document, even if that word is relatively rare in the
corpus and does not appear in most documents. This phenomenon is not
well modelled by LDA, where a document is a mixture of topics, and each
topic describes how likely each word in the vocabulary is to appear under
that topic. Under the LDA model, each word in a topic has a particu-
lar probability of occurring, which is static from document to document
[15, 16, 44].

Doyle and Elkan [15] give the following example: given a “sports” topic
in a document collection, in which the words “rugby” and “hockey” have
equal probability of occurring, the LDA model will give both these words
equal probability of occurring within a document. However, this is a
poor model given that one occurrence of the word “rugby” in a document
means a subsequent occurrence of the word “rugby” is more likely than a
first occurrence of the word “hockey”.

In the context of the DMR for radio astronomy images, this allows the vari-
ability of source and background distributions, particularly over an image,
to be accounted for. For example, the variability of an image’s background
distribution, background regions at the edge of radio astronomy images
are more noisy than those at the centre of an image (see Figure 4.2 for an
illustration of this point).



4.6. COMPARISON WITH LATENT DIRICHLET ALLOCATION 79

Figure 4.2: Background variation. Two radio astronomy images with con-
trast adjusted to show the variation in background across an image. Note
the greater noise at the edges of the images. Images: Chandra Deep Field
South (CDFS; top) and European Large Area ISO Survey S1 (ELAIS; bot-
tom) [54]





Chapter 5

A Dirichlet-multinomial ratio:
evaluation

The Dirichlet-multinomial ratio (DMR) developed in Chapter 4 is evalu-
ated in this chapter.

The performance of the DMR in identifying astronomical sources is eval-
uated against simulated data as well as against subimages from two large
astronomical images. Performance is compared to a ground truth cat-
alogue constructed using the source detection software BLOBCAT [26]
with manual postprocessing by an astronomer. The Dirichlet bin border-
softening technique, described in Chapter 2 is employed, and results ob-
tained using this technique are compared to “hard” binning strategies.

5.1 Methods

The Dirichlet-multinomial ratio was applied to real and simulated data,
in order to test whether peaks in the function corresponded to locations
and sizes of sources (i.e., non-background regions of the images). The

81
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method was tested using hard-bordered and soft-bordered test regions de-
fined by a Gaussian curve (one dimensional data) or Gaussian ellipse (two
dimensional data). Equal occupancy and equal width histogram binning
strategies (as described in Section 2.1 in Chapter 2) were employed, and
the Dirichlet-border “softening” of both types of bin borders (Section 2.2,
Chapter 2) was also used. Gradient ascent was performed to find peaks in
the DMR. A potential improvement to the DMR (background compensa-
tion) is described.

Outline of the procedure

1. Given:

• data (real or simulated),

• a weighting function W θ for test regions, and

• a binning strategy (equal width, Dirichlet equal width, equal
occupancy, or Dirichlet equal occupancy)

2. Exhaustively calculate the DMR over a range of values for parame-
ters θ (optional);

3. Perform gradient-ascent to locate sources in the data (iteratively re-
moving found sources from the data); and

4. Compare the parameters of found sources against those of actual
sources to evaluate performance.

Each of these steps is described in more detail below.
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5.1.1 Parameters

Data: one dimensional

Both real and simulated data were used in early exploration of the meth-
ods described in this chapter; simulated data was used for evaluation.

Real data comprised 1 ×X “slices” through astronomical images at some
y-position. An example of these data is shown in Figure 5.1.

Simulated data were created by generating three “sources” and then over-
laying the sources with Gaussian noise. In each simulated image, one
source was generated using the Gaussian function (wherem is an x-position
and σ an approximate half-width; A controls the height of the peak):

A exp

(
−(x−m)2

2σ2

)
(5.1)

with noise added such that faint sources had lower than average variance.
Two sources were generated by a skewed generalised Gaussian [49]:[

β

2αΓ( 1
β
)

exp

(
−
(
|x−m|

α

)β)
S (ε(x−m))

]
A

maxx′
(5.2)

wherem is an x-position, α is a scale parameter and β is a shape parameter
(β < 2 produces tails that are heavier than Gaussian, β = 2 produces
Gaussian tails, and β > 2 produces lighter than Gaussian tails [49]). The
skewness is provided by S, which is the sigmoid function:

S(t) =
1

1 + exp−t
(5.3)

applied to t = ε(x − m) with ε a random value ∈ [0, 1]. The multiplier
A

maxx′
controls the peak of the curve, with maxx′ the maximum value re-

turned by the weighting function. One of these sources was overlaid with
zero-mean, fixed-variance Gaussian noise (with the same variance as back-
ground pixels); the other with zero-mean Gaussian noise with variance
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Figure 5.1: One dimensional data. A “slice” through an astronomical im-
age. The image is shown at top-left, and at top-right with contrast adjusted
to see sources. The slice through the data is shown as a red line in both im-
ages. At bottom, a plot of x-position by pixel intensity is shown. Image
source: [62, 68].
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that increases proportionally with the height of the generated source. Ex-
amples of curves created by Equation 5.2 are shown in Figure 5.2.

This skewed generalised Gaussian function (Equation 5.2) was chosen as
well as the Gaussian function (Equation 5.1) to generate sources as the soft-
bordered test region used for evaluation of the DMR is the Gaussian func-
tion (Equation 4.5). It is important therefore that all of the sources are not
generated using the same function that generates the test region, as this
would likely artificially inflate the success of the Dirichlet-multinomial ra-
tio.

Some examples of the simulated data are shown in Figure 5.3.

Data: two dimensional

In the case of two dimensional data, simulated data were used for ex-
ploratory work, and real data were used to test the methods described
in this chapter.

Real data comprised 500 × 500 pixel windows of two large astronomical
images [54]. Each window was treated as a whole image for purposes of
evaluation of the DMR; windows had an average of 35.9 sources each (see
Table 5.1 and Figure 5.4).

“Ground truth” sources and their parameters (central position and coor-
dinates describing a bounding box around each source) were identified
using the source-finding package BLOBCAT [26] with manual postpro-
cessing by an astronomer. Note that the noisy borders of the images were
excluded from source detection in construction of the ground truth cata-
logue 1.

1The area of the two images for source extraction was dened by: rms noise ≤ 100µ Jy
beam1; bandwidth smearing ≥ 80%; and mosaicked primary beam response ≥ 40%. The
defined area covers 3.566 square degrees of the CDFS image; 2.697 square degrees of the
ELAIS image [1].
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Figure 5.2: Skewed generalised Gaussian curves. Examples of curves
generated by the skewed generalised Gaussian formula in Equation 5.2.
The parameters are: m ∈ [0, 100], α ∈ [2, 10], β ∈ [0.5, 5] and A

maxx′
∈ [0.5, 5].
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Figure 5.3: Simulated one dimensional data. The data (sources plus
Gaussian noise) are shown as black dots with the underlying sources
shown as coloured curves. The blue curve is generated by the Gaussian
formula (Equation 5.1), while the red and green curves are generated by
the skewed generalised Gaussian formula (Equation 5.2). The parameters
for the Gaussian curve are: m ∈ [0, 500], σ ∈ [6, 14], A ∈ [0.5, 5]; and for
the skewed generalised Gaussian: m ∈ [0, 500], α ∈ [6, 14], β ∈ [0.5, 5] and
A

maxx′
∈ [0.5, 5].
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Table 5.1: Astronomical images used for evaluation

ELAIS2[54] CDFS3[54]
Total number “ground truth” sources in image 2067 3079
Number of sub-windows used 13 12
Mean (std dev) sources per window 34.7 (11.7) 37.2 (8.7)
Min, max number of sources per window 16, 53 20, 49

To obtain the set of windows used for evaluation, 50 windows were se-
lected at random from the images (25 each). Windows were discarded
from the evaluation set if they were outside the area used in construction
of the ground truth catalogue. This yielded 25 images for evaluation of the
DMR (13 from ELAIS and 12 from CDFS).

Note that for the construction of the ground truth catalogue, BLOBCAT
was restricted to finding sources at least 4σ above rms noise; and the final
catalogue was restricted to sources at least 5σ above rms noise. This is a
key point — some of the most scientifically important objects in astron-
omy are those that are dim, with intensities in the range of background
noise [53]. Current source detection methods restrict search such that dim
sources cannot be found. This is due to the nature of the pixel-intensity
based thresholding methods that make up the vast majority of current
search detection algorithms. If the search is not restricted in this way, the
methods will identify far too many background regions as “sources”, and
the output will be unusable. The DMR does not restrict search in this way,
and so can be expected to be more effective at finding dim objects.

Simulated data were created by generating three “sources” and then over-
laying the sources with Gaussian noise4 (zero-mean and, fixed-variance

2Australia Telescope Large Area Survey European Large Area ISO Survey S1
3Australia Telescope Large Area Survey Chandra Deep Field-South.
4This is typical of how simulated data were created for evaluation of Bayesian source

detection methods, for examples, see: [9, 20, 24, 29, 63], each of which simulated sources
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Figure 5.4: Examples of astronomical data used for evaluation of the
DMR. The images shown are 500 × 500 windows from (top) CDFS and
(bottom) ELAIS [54]. Note that all images are contrast adjusted to show
sources.
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with the same variance of background pixels for one source, variance that
increases proportionally with the height of the source for another source,
and such that faint sources have lower than average variance for the third
source). The sources were generated using the Gaussian ellipse function
(with center coordinates mx and my, approximate half-widths in orthog-
onal direction σx and σy, and rotation parameter φ, and A controlling the
height of the peak):

A exp
(
−
(
a(x−mx)

2 + 2b(x−mx)(y −my) + c(y −my))
2
))

(5.4)

with:

a =
cos2(φ)

2σ2
x

+
sin2(φ)

2σ2
y

(5.5)

b =
− sin(2φ)

4σ2
x

+
sin(2φ)

4σ2
y

(5.6)

c =
sin2(φ)

2σ2
x

+
cos2(φ)

2σ2
y

(5.7)

Some examples of the simulated data are shown in Figure 5.5.

Performance of the DMR on simulated two dimensional data is given in
Table 5.3, however these results should be read with caution: the sources
in the simulated data were generated by a Gaussian ellipse function — the
same function used to generate test regions in an image — and this may
cause the success of the Dirichlet-multinomial ratio to be artificially in-
flated. It is worth noting, however, that authors of other Bayesian source
detection methods have used a two dimensional Gaussian to both gen-
erate simulated data and as a model for sources in their detection algo-
rithms; for examples, see: [20, 29, 63].

using the Gaussian formula and overlaid the sources with uncorrelated Gaussian noise.
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Figure 5.5: Simulated astronomical images. Two images with three sim-
ulated sources each are shown at left. The images overlaid with noise are
shown at right.
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A note comparing simulated data with real data for evaluation

Using simulated data for evaluation means that “ground truth” is known
exactly: that is, the parameters of sources in the image are precisely known
because they are generated; they do not need to be manually labelled by
an astronomer (a time-consuming task), or found by an existing source
detection package, or some combination of both methods. This allows
precise evaluation of results. However, simulated data do not perfectly
mimic the statistical properties of real (astronomical) data5.

On the other hand, labelled data may be incorrectly labelled. In particu-
lar, dim sources are often missed by existing source detection packages.
If labelled data is missing such sources which are found by the source
detection method being evaluated, the detection of these scientifically im-
portant sources will be designated as false detections.

In this thesis, early exploration work was done on both simulated and real
data. Final evaluation of the DMR on one dimensional data was done
using simulated data, and on two dimensional data was done on both
simulated data and real data labelled by the BLOBCAT source detection
package with manual postprocessing.

Test region

For one dimensional data, both “hard” (Equation 4.4) and “soft” (Equation
4.5) test regions were used in early exploration (see Figure 5.10). A soft test
region was used for evaluation.

For two dimensional data, a Gaussian elliptical test region was used for
both early exploration and evaluation; its weighting functionW (θ)

x,y is given
in Equation 4.14.

5Simulated data that do emulate the properties of real data well were sought but not
available in time for inclusion in this thesis.
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Binning strategies

Equal occupancy and equal width bin border strategies with K = 10

(Chapter 2, Section 2.1) were used, and the Dirichlet-border “softening”
of both types of bin borders (Chapter 2, Section 2.2) was also used with
both strategies. Dirichlet bin border strategies used a symmetric α-vector
with αi = 10 ∀i ∈ K, to make 50 sets of bins.

5.1.2 Derivation of αS and αB

The Dirichlet-multinomial ratio (Equation 4.27) compares the binned counts
in a region with theoretical “background” and “source” distributions. More
precisely, it compares the α-vectors of Dirichlet distributions from which
multinomial distributions over bins for “background” and “source” dis-
tributions are drawn.

The α-vectors may be derived from a process such as latent Dirichlet allo-
cation (Chapter 3), where the distribution over bins in “source” and “back-
ground” topics may be used for the respective α-vectors. This approach is
explored6 in Chapter 6.

Alternatively, the data itself may be treated as pseudocounts, and be used
directly as α-vectors.

As an example of using the data directly as α-vectors, a human expert
(such as an astronomer) might manually select a source-free area of “typi-
cal background” within an astronomical image. Binning the pixels in this
region into bins defined on the whole image would yield an αB-vector
that could be used in the DMR in Equation 4.27. Such manual selection is

6Note that topic distributions inferred by LDA are multinomial distributions, not
Dirichlet distributions; however they may be used to approximate each other [32, 33];
this is discussed more in Chapter 6.
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however costly and impractical, and may be biased by the idiosyncrasies
of the human perceptual system.

Obviating the need for manual selection of a “typically background” re-
gion, the whole image may be used as the αB-vector. That is, the whole
image is binned according to a particular binning strategy, and the binned-
counts are used as the αB-vector. In terms of a generative model for back-
ground, distributions over bins for background regions are drawn from
a Dirichlet with this αB-vector. This is particularly appropriate for astro-
nomical images in which background pixels far outnumber source pixels
— in any particular background region, one would expect relatively few
source pixels. This “whole image as background” approach is taken in this
chapter.

The αS-vector may similarly be derived from a process such as latent
Dirichlet allocation or manually defined by an astronomer.

A source model with the symmetric α-vector with αi = αj = 1 ∀i, j ∈
1, ..., K does not incorporate any knowledge about what a source distribu-
tion might be; all multinomial distributions over K bins are equally likely
to be drawn from the Dirichlet distribution with this α-parameter [21]. In
this chapter, αS was set to this α-vector.

Given these parameterisations for αB and αS , background regions are ex-
pected to have a similar distribution over bins as the whole image does;
while a source region may have any distribution overK bins. A high DMR
value using Equation 4.27 means that the counts n in a region are highly
dissimilar to those expected under multinomial distributions drawn from
a Dirichlet distribution having parameter vector αB. So, for example, a
region in which there is a higher proportion of bright pixels than is typical
in the image would receive a high DMR value. More generally, regions in
the image with any “unusual” distributions across bins will correspond to
peaks in the function.
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Because any unusual distribution conforms better to the source model
than the background model using this parametrisation, a region with more
dark pixels than is typical would get a higher DMR value than a region
that conforms perfectly to the background model. Similarly, regions of
lower than usual variance in an image would conform better to the “ag-
nostic” source model than the whole-image-as-background model (for ex-
amples of simulated low variance sources, see Figures 5.7 and 5.10).

This broad definition of non-background like regions in an image allows
a great deal of flexibility in the use of the DMR to find different types of
features in astronomical images.

However in the context of identifying sources (which are generally brighter
than background pixels), such dark or low variance regions are, although
possibly worthy of attention, unlikely to be real sources. The αS-vector
could therefore be adapted to have high values in the region of bright pix-
els, for example ai > 1 where i > ε, and ε is some brightness threshold.
Similarly, the αS-vector could otherwise be set to identify features of an
image with particular known characteristics. This approach was not taken
in this chapter (however see Chapter 6 in which the αS-vector is set ac-
cording to the source model derived by LDA).

5.1.3 Dirichlet-multinomial ratio

A heuristic value for the prior for the ratio of source to background pixels
in the image of 0.05/0.95 was used in place of the second term in Equa-
tion 4.27. This reflects the prior belief that radio astronomy images are
dominated by background.
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Exhaustive calculation of the DMR for one dimensional data

For illustrative purposes, the DMR and its gradient was exhaustively cal-
culated over a range of values for parameters θ on a number of simulated
one dimensional images.

Figures 5.6 to 5.8 show the DMR and its gradient overm ∈ [0..500] and σ ∈
[0..250]. Each of the six plots has three subplots: a plot of the data (black
dots) with blue lines at the location of bin borders; a plot of the binned
data (blue square dots); and a plot of the function-space, with parameter
m on the x-axis and σ on the y-axis. Each point in the space is coloured
along a continuum indicating whether background or source is favoured.
Gradient lines (black) are superimposed.

Note that in each of the three figures, in general, high DMR values corre-
spond to the location of sources, while the rest of the image has values that
tend strongly towards the background model. Gradient lines converge at
the peaks of the regions of values indicating sources.

Unsurprisingly, bright and large sources appear to be the easiest to find:
the peak at m = 38 in Figure 5.6, at m = 410 in Figure 5.7, and at m = 275

in Figure 5.8 correspond with the darkest blue (most source-like) regions
in the DMR space. Note however that the dim, low variance source at
m = 466 in Figure 5.7 is also well found.

Background-compensation correction to the DMR

The parametrisation of αB and αS described in Section 5.1.2 biases the
Dirichlet-multinomial ratio towards higher values for smaller regions.

This is due to the fact that the whole (binned) image is taken as pseudo-
counts for the background model, and the source model is constructed to
give all multinomial distributions over K bins equal probability. When
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Figure 5.6: Exhaustive calculation of the DMR and its gradient. Three
sources have parameter m = (38, 219, 389). The top plot uses Dirichlet
equal width bins; the bottom Dirichlet equal occupancy. Details are in text
in Section 5.1.3.
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Figure 5.7: Exhaustive calculation of the DMR and its gradient. Three
sources have parameter m = (165, 410, 446). The top plot uses equal width
bins, the bottom Dirichlet equal occupancy. Details are in text in Section
5.1.3. Note that the source at m = 446 has lower variance than is typical of
the image.
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Figure 5.8: Exhaustive calculation of the DMR and its gradient. Three
sources have parameter m = (145, 275, 354). The top plot uses Dirichlet
equal width bins, the bottom equal occupancy. Details are in text in Section
5.1.3.
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the number of pixels N in a region n gets small, the binned counts in that
region are more likely to be dissimilar to the binned counts in the whole
image by chance alone. In fact, where the number of pixelsN in a region n
is smaller than the number of bins K, there is guaranteed to be at least one
empty bin (a bin with a count of 0); in the extreme, a region of one pixel
will have one bin occupied and K− 1 bins empty. Such small regions look
dissimilar to the background model. As all multinomial distributions are
equally favoured by the source model, these small regions are favoured by
the source model. Therefore the DMR’s value in such regions is artificially
inflated.

This biasing of the DMR towards small regions can be seen in Figure
5.9.

To compensate for this biasing, a background correction can be added to
the DMR:

DMR’ = DMR−DMRB (5.8)

Where DMRB is the Dirichlet-multinomial ratio on the vector nB, defined
to be:

nB =
αB

AB
N (5.9)

That is, the vector nB is constructed to have proportionally the same counts
in bins as αB, scaled by the size of the region. This therefore compensates
for the effect of smaller windows having an artificially inflated DMR value
by virtue of size alone.

The gradient of this corrected DMR is readily calculated:

Gradient’ = Gradient−GradientB (5.10)

as nB simply replaces n in the DMR and gradient calculations, both of
which are binned counts in a region.
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Figure 5.9: Background compensation correction to the DMR. Both plots
show an exhaustive calculation of the DMR and its gradient over parame-
ters θ = (m,σ) on simulated one dimensional data. The DMR is shown as
a red to blue colour gradient, the gradient of the DMR as black lines. All
parameters are the same in both plots. The upper plot shows the uncor-
rected DMR, while the lower shows the corrected function using Equation
5.8. Numerous spurious peaks in the DMR into which gradient lines con-
verge can be seen in the plot of the uncorrected function as peaks at low
y-values (that is, small test regions). In the corrected version these have
disappeared.
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This background compensation to the DMR was used for one dimensional
data only; early exploration indicated that is was not needed for two di-
mensional data. It is possible that this is due to the fact that “small re-
gions” in one dimensional space are more likely to have fewer pixels than
such regions in two dimensional space. A thorough exploration is war-
ranted but was not done for this thesis.

5.1.4 Gradient ascent

For one dimensional data, the gradient of the DMR was calculated us-
ing the Gaussian function parametrisation of the window function W (θ)

(Equation 4.5) used to define a test region. For the derivative with respect
to m and σ for this parametrisation, see Equations 4.42 and 4.44.

For illustrative purposes, the gradient was exhaustively calculated over a
range of values for parameters θ = (m,σ) on a number of images, real and
generated; see Figures 5.6 to 5.8.

Similarly, for two dimensional data, the gradient of the DMR was calcu-
lated using the Gaussian function parametrisation of the window function
W (θ) (Equation 4.14) for a test region. The gradient with respect to θ for this
parametrisation can be found in Section 4.3.1 of Chapter 4.

The fmin tnc function from the Python package scipy.optimize [36]
was used to implement gradient ascent. This function uses a Newton
Conjugate-Gradient algorithm, and allows each parameter to have bounds:
user-defined minimum and maximum values that a parameter can take
[36, 50, 52]. For example, the parameter mx would have its minimum
value = 0 and its maximum value = X where there are X pixels in a
one dimensional image.

In the case of one dimensional data, one “round” of source finding con-
sisted of 50 trials of gradient ascent, each with random initial values for
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parameters θ.

For two dimensional data one “round” of source finding consisted of 50
trials of gradient ascent for simulated data, and just one trial of gradient
ascent for real data (to speed up execution time). For both real and simu-
lated two dimensional data, initial values for parameters mx,my were set
to the coordinates of the brightest pixel in the image7, with random initial
values for σx, σy, and φ. Initialising search at the brightest point saved
computational time and made use of the domain knowledge that sources
are brighter than background.

The peak with the highest value in each round was recorded as a found
source. That source was then removed from the data by replacing the pix-
els of the found source with NaNs. The pixels of the found source were de-
fined by m± 1.5σ for one dimensional data, and similarly, the pixels in the
ellipse defined by the found source’s parameters (mx,my, 1.5σx, 1.5σy, φ)

for two dimensional data.

After each source removal, the histogram bin borders and the αB-vector
were re-calculated on the remaining data.

For simulated data, three rounds were performed per image.

For two dimensional real data, rounds of gradient ascent continued un-
til the top-scoring source of a round had a value that indicated it was
more likely to be background than source, or after 53 rounds (the maxi-
mum number of sources in any window, see Table 5.1), whichever came
first.

7In the case where there was more than one pixel with the maximum intensity value
in the image, one of these pixels was chosen at random to set the initial values formx,my .
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5.1.5 Evaluation methods

Because the test regions are continuous in the image, for the purposes of
evaluation the region of a found source is restricted to m ± 2σ for one
dimensional data, and the ellipse defined by the parameters θ = (mx,my,

2σx, 2σy, φ) for two dimensional data. This is equal to 95 per cent of the
area under the curve generated by the Gaussian function [72].

In the case of real data, “true sources” were those identified by the source-
finding package BLOBCAT [26] with manual postprocessing by an as-
tronomer. These sources have position parameters including the x, y co-
ordinates of a source’s centre, and minimum and maximum pixel coordi-
nates in both directions: minx,maxx,miny,maxy. These coordinates can
be used to describe a “bounding box” around the source. Note that the
sources in this ground truth catalogue are restricted to those at least 5σ

above rms noise — because the DMR has no such restriction this means
that any sources below 5σ above rms noise found by the DMR will be
designated false positives when comparing them against the ground truth
catalogue.

In the case of simulated one dimensional data, a “true source” was de-
fined as m ± 2σ for Gaussian sources, and [xa, xb] for skewed generalised
Gaussian sources where xa and xb are the minimum and maximum pixel
coordinates for the region where each pixel is ≥ 0.05 × xmax (and xmax is
the maximum intensity value of the curve).

Precision and recall were calculated in order to evaluate the performance
of the Dirichlet-multinomial ratio. Precision is the proportion of true sources
of all found sources (that is, all found sources that are really sources):

precision =
tp

tp + fp
(5.11)

and recall is the proportion of found sources of all true sources in the im-
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age (all true sources that are found):

recall =
tp

tp + fn
(5.12)

where tp = “true positive”, fp = “false positive”, and fn = “false nega-
tive”8 [56].

A true positive is defined where the location of at least 50 per cent of a
found source’s pixels overlap with at least 50 per cent of a real source’s
pixels. A false positive is a found source that does not meet these criteria,
a false negative is a true source that does not meet these criteria. In the
case of simulated data, because there are three sources per image, and
three rounds of gradient ascent producing three found sources per image,
fp = fn and so precision = recall.

For simulated one dimensional and two dimensional data, precision and
recall was additionally calculated over a range of proportions from prop =

0.05 to prop = 0.95 where a true positive is defined where at least the
given proportion of a found source’s pixels overlap with at least that same
proportion of a real source’s pixels, in order to compare the performance
of different binning strategies at different thresholds. These results are
shown in Figures 5.12 and 5.12.

5.2 Results and discussion

5.2.1 One dimensional data

Early exploration on one dimensional data suggested soft-bordered test re-
gions improved the performance of the DMR as compared to hard-bordered

8Precision and recall are sometimes called “completeness” and “reliability” in the as-
tronomical source detection literature [27].
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Table 5.2: Performance of the DMR on simulated one dimensional data

Binning method Precision Recall
Equal width 0.84 0.84
Dirichlet equal width 0.77 0.77
Equal occupancy 0.68 0.68
Dirichlet equal occupancy 0.71 0.71

test regions. Figure 5.10 shows representative plots illustrating an im-
provement to the DMR’s performance on simulated one dimensional data
using soft-bordered, as compared to hard-bordered test regions. For this
reason, soft bordered test regions were used for the remainder of the anal-
ysis of the DMR.

Figure 5.11 shows an exhaustive calculation of the DMR for a one dimen-
sional “slice” of an astronomical image, as well as the top scoring peaks
of five rounds of gradient ascent, for each of the four different binning
strategies used in this chapter.

Table 5.2 shows the performance of the DMR on 50 simulated one dimen-
sional images (such as those shown in Figure 5.3), each of which contains
three sources. Note that the rates for precision and recall are identical
within each binning method, due to the fact that three rounds of gradi-
ent ascent were performed for each image. Therefore the number of false
positives = the number of false negatives = (1− the number of true pos-
itives). Precision and recall are moderate to high for each of the binning
strategies. It is worth noting that the Dirichlet softening of bin borders im-
proved results only for the equal occupancy strategy, and actually wors-
ened performance in the case of equal width bin borders. An investigation
into why this might be would be worth pursuing but was not done for this
thesis.

Precision and recall was also calculated over a range of proportions from
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Figure 5.10: Hard and soft borders. Results of the DMR with hard-
bordered (Equation 4.4; top) versus soft-bordered (Equation 4.5; bottom)
test regions on one dimensional simulated data. The plots at left have three
subplots; from top to bottom: the data (black dots) with bin borders su-
perimposed (blue lines; with histogram binning at right), the binned data
(blue dots), and a plot of the DMR over a range of values for θ = (m,σ).
The plots at right show the data (black dots) with sources shown as blue
curves (with m± 1σ shown as green dots). The red lines are at 1 where the
DMR’s value > 0, and 0 elsewhere. Note that number of false positives
drastically reduces when using soft-bordered test regions. Note also the
low variance source (far right of each plot), found by the DMR.
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Figure 5.11: The DMR on a one dimensional “slice” of an astronomi-
cal image (ATLSB survey region A at 50” resolution [62, 68]; see Figure
5.1). Results using equal occupancy (top left), equal width (top right),
Dirichlet equal occupancy (bottom left), and Dirichlet equal width (bottom
right) histogram binning strategies. The main body of each plot shows
an exhaustive calculation of the DMR over parameters θ = (m,σ) with
m ∈ [0..X] and σ ∈ [0..X

2
]. The top scoring maxima from five rounds of

gradient ascent with 50 trials each are shown as black x marks. In the top
two plots, the top sub-plot shows the data in black with blue bin borders
superimposed; the next sub-plot down is the binned data (blue dots). Note
that for this example peaks in gradient best correspond to the actual peaks
in data in the case of the Dirichlet equal width binning strategy.
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Figure 5.12: The performance of the DMR at different thresholds (one
dimensional data, 50 simulated images, three sources each). Thresholds
are defined as the proportion of a true source and an estimated source that
must overlap to be defined as a true positive. For example at a threshold
of 0.5, a true positive is defined where the location of at least 50 per cent of
a found source’s pixels overlap with at least 50 per cent of a real source’s
pixels. Note that the precision exceeds 1.0 for some binning strategies at
thresholds ≤ 0.3, as each estimated source may meet the definition of true
positive for more than one true source at such a low threshold.
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prop = 0.05 to prop = 0.95 (defining the proportion of pixels that must
overlap between a true source and found source to be considered a true
positive). These results are shown in Figure 5.12. The performance of each
binning strategy drops off as the proportion increases. The relative perfor-
mance of each of the four binning strategies remain relatively even across
all thresholds, except that at very low thresholds the Dirichlet equal width
binning strategy outperforms the equal width binning strategy.

5.2.2 Two dimensional data

Early exploration of the DMR on two dimensional data used simulated
images (such as those shown in Figure 5.5).

Figure 5.13 illustrates an exhaustive calculation of the DMR on two dimen-
sional simulated data over x and y positions θ = (mx,my) with other pa-
rameters kept constant. The positions of the original sources are recovered
almost perfectly, despite the fact that they are obscured with noise.

Precision and recall were calculated for the 50 simulated images (with
three sources per image), with results9 shown in Table 5.3. Values were
high for three of the four binning strategies, but perplexingly low for the
Dirichlet equal width binning strategy. Figure 5.14 shows the performance
of the four binning strategies over a range of thresholds defining a true
positive. This reveals that the poor performance of the Dirichlet equal
width strategy held only at thresholds ≥ 0.4; under this threshold, the
Dirichlet equal width strategy performed in the range of (and often better
than) the other strategies.

A closer inspection of the results shows that this may be explained by the

9Note that as for the simulated one dimensional data, the rates for precision and re-
call are identical within each binning method, as three rounds of gradient ascent were
performed for each image; therefore the number of false positives = the number of false
negatives = (1− the number of true positives).
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Table 5.3: Performance of DMR on simulated two dimensional data

Binning method Precision Recall
Equal width 0.83 0.83
Dirichlet equal width 0.57 0.57
Equal occupancy 0.79 0.79
Dirichlet equal occupancy 0.84 0.84

Table 5.4: Performance of the DMR on real two dimensional data

Binning method Precision Recall
Equal width 0.51 0.74
Dirichlet equal width 0.59 0.75
Equal occupancy 0.30 0.30
Dirichlet equal occupancy 0.32 0.34

fact that Dirichlet equal width binning strategy resulted in found sources
that are in most cases much smaller than the actual sources, but located
in the correct position (see Figure 5.15) for examples. This may be due
to the fact that equal width binning places the brightest pixels alone in
bins, when these bright pixels are outliers and the vast majority of pixels
lie in a small dim intensity range (as with radio astronomy images). The
Dirichlet softening of equal width bin borders may shift bright pixels that
are close to bin borders pixels down to dimmer bins. It is possible that
the background compensation correction to the DMR, described in Section
5.1.3 may address this issue (although this correction was not applied to
two dimensional data for this thesis).

The performance of the DMR on 25 windows from two large astronomical
images [54] is shown in Table 5.4.

Results obtained using equal occupancy binning (with and without Dirich-
let softening of bin borders) are very low, in comparison both to results ob-
tained on simulated data, and equal width results on real data. This may
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Figure 5.13: An exhaustive calculation of the DMR on two dimensional
simulated data over x and y positions θ = (mx,my) with parameters σx, σy
and φ kept constant. From left to right: three simulated sources; the im-
age overlaid with Gaussian noise; the noisy image binned with Dirichlet
equal occupancy bins; the DMR over (mx,my) calculated using these bins,
shown using a colour gradient from red (background) to blue (source).
Note that all three sources are recovered. The blue peaks in function-space
for two of the three sources in the image at right indicate high values for
these sources, and roughly equal values despite the bottom source being
brighter than the top one. The DMR’s value for the dim source is rela-
tively lower than that for the other two sources, however it still exceeds a
value that would indicate “background”, relative to the true background
regions.
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Figure 5.14: The performance of the DMR at different thresholds (two
dimensional data, 50 simulated images, three sources each). Thresholds
are defined as the proportion of a true source and an estimated source that
must overlap to be defined as a true positive. For example at a threshold
of 0.5, a true positive is defined where the location of at least 50 per cent of
a found source’s pixels overlap with at least 50 per cent of a real source’s
pixels.
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Figure 5.15: Results of gradient ascent on the DMR using Dirichlet equal
width bins on simulated two dimensional images (shown without noise
for clarity). The found sources are shown as green ellipses with a red cross
at the central x, y coordinates of the found source. Note that the found
sources are much smaller than the actual sources, which may account for
the poor performance of this binning strategy at thresholds over 0.4, where
thresholds are defined as the proportion of a true source and an estimated
source that must overlap to be defined as a true positive.
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possibly be attributed to the source finding process, in which each round
of gradient ascent is initialised at a bright point in the data, and finishes
with the removal of the found source and recalculation of the αB-vector
and bin borders. For radio astronomy data where the vast majority of pix-
els fall into a low intensity range with a small number of bright outliers,
this process lends itself to equal width binning strategies. In such strate-
gies, the brightest pixels will be binned alone; iterative removal of these
pixels and recalculation of the bins will reveal the next brightest pixels,
and so on. Figure 5.16 illustrates this point.

With regards to the equal width binning strategies, the precision and recall
of the DMR on the real two dimensional data is lower than the results on
the simulated one dimensional and two dimensional data. Though the
rate of recall is good (0.74 and 0.75), precision, in particular, is very low
(< 0.6) on the full set of sources found.

Low precision can in part be explained by the fact that the DMR found
more sources than appear in the ground truth catalogue. While some of
these additional found sources are spurious, some do appear to be sources
that were missed by BLOBCAT with manual postprocessing. This is not
surprising given that the ground truth catalogue only contained sources at
least 5σ above rms noise, while the DMR was not restricted in this way. In
fact, even the raw BLOBCAT output (without manual postprocessing) had
precision of only 0.69 when compared to the ground-truth catalogue.

Examples of found sources that were not found by BLOBCAT and are not
in the ground truth catalogue can be seen in Figure 5.17.

The Dirichlet bin border softening improved results for both equal width
and equal occupancy strategies on this data.
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Figure 5.16: Iterative source removal and rebinning. After each round of
gradient ascent, the found source is removed from the data and bin bor-
ders and the αB-vector are recalculated on the remaining image. From
left to right: the binned view of the initial image (a window from CDFS
using Dirichlet equal width bins), the binned image after one, two and
three rounds of gradient ascent. Notice that removing sources and rebin-
ning the remaining data reveals sources that were previously hidden in
background bins.

5.3 Conclusions and future work

5.3.1 Simulated data

Precision and recall rates for the DMR on both one and two dimensional
simulated data were moderate to good, especially given the nature of the
simulated data — care was taken to generate sources that differed from
the DMR’s model for sources. In comparison, the simulated data used by
other authors of Bayesian source detection methods generate sources with
the same parameters as the model of source used in the detection meth-
ods. For example, many authors generate circularly symmetric Gaussian
sources of a particular size, and use a circularly symmetric Gaussian of
that size as a source model (see: [20, 29, 63]). Using the same parame-
ters for simulated source and the method’s source model is likely to ar-
tificially inflate the success of the model, and is unjustified in the case of
radio astronomy data, where sources can take a great variety of shapes
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Figure 5.17: Comparison with the ground truth catalogue. A section of
one of the CDFS test-windows is shown at top left. Top right shows the
sources identified by BLOBCAT (raw, unprocessed output). Bottom left
shows the sources in the ground-truth catalogue, and bottom right the
sources identified by the DMR. Note that the DMR has identified all the
sources in the ground truth catalogue, and in addition, has found part of
a low brightness source (radio galaxy tail; pink ring). The DMR has also
correctly identified two separate sources that the ground truth catalogue
identified as one source (blue ring), though one of the DMR’s width pa-
rameters for the upper source is incorrect.
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and sizes.

A particular strength of the DMR is illustrated in Figures 5.7 and 5.10:
the identification of low variance sources. The ability to set the source
model to an α-vector that is completely “agnostic” creates a broad defini-
tion of non-background like regions in an image that allows a great deal
of flexibility in the use of the DMR to find different types of features in
astronomical images.

With regards to the background-compensation correction to the DMR, ini-
tial investigation indicates that this correction improves results for one di-
mensional but not two dimensional data. The reasons for this are not clear
and further investigation is warranted.

5.3.2 Real data

The performance of the DMR using the Dirichlet equal width binning
strategies on 25 windows from two large astronomical images yielded
good recall (0.75), and moderate precision (0.59).

This moderate precision can in part be attributed to the fact that the ground
truth catalogue was restricted to sources at least 5σ above rms noise. Though
some of the DMR’s false positives were regions of noise, many were real
sources below this threshold (Figure 5.17).

As noted earlier in this chapter, some of the most scientifically important
objects in astronomy are dim, with intensities in the range of background
noise [53]. The nature of pixel-intensity based thresholding algorithms
such as BLOBCAT restricts their ability to find such dim sources without
also finding such a large number of noise regions that the results are un-
usable.

The DMR does not restrict the objects found on the basis of some thresh-
old above rms noise, and produces raw results containing most real ob-
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jects, including dim sources not well found by other other algorithms,
while returning only a moderate number of false positives in regions of
noise.

Though further development of the DMR is needed, the DMR finds sources
well and is in many cases better at finding scientifically important dim
sources. It is approaching a usable algorithm that does not require the in-
tensive manual parameter tuning of existing algorithms — the need for
source finding software with a minimum of manual tuning is pressing,
given the huge volumes of data to be produced by the next generation of
radio astronomy telescopes [53].

A significant drawback of the implementation of the DMR in this thesis
however, is that the gradient ascent process was too slow to be practical
(or even possible) on full-sized images. Future work to improve this is
needed. One aspect that could be improved to speed up this process is the
use of a test region with finite support. The use of a Gaussian distribution
for test regions mean that regions extend potentially across the whole im-
age, slowing down the gradient ascent process. This was also an issue for
at least one other Bayesian source detection algorithm [20] for which in-
vestigation into alternative distributions to the Gaussian is ongoing.

An issue with the process within which the DMR is used in this chapter
is that the iterative removal of found sources sometimes leaves artefacts
around the removed source. This can cause multiple “found sources”
where in fact only one source lies (see Figure 5.18 for an example). Ad-
dressing this issue may reduce the number of false positives caused by
multiple found sources on one true source.
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Figure 5.18: False positives due to multiple peaks on one source. Iter-
ative removal of sources can leave artefacts around the removed source,
which can cause the DMR to find more “sources” than there actually are
in an image. The pink circles indicate regions where this has occurred.
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5.3.3 Binning strategies

The results of the DMR in this chapter are inconclusive with regards to
which binning strategy is best, and whether or not the novel method for
incorporating uncertainty about bin border locations — Dirichlet soften-
ing — improves the performance of the equal width and equal occupancy
binning strategies.

While the width-based strategies were superior for simulated one dimen-
sional and real two dimensional data (improving results more than two-
fold for the latter), the occupancy-based strategies yielded better results
in the case of simulated two dimensional data. A fuller comparison of
binning strategies is warranted.

In the case of simulated data, the Dirichlet softening of bin borders im-
proved performance for equal occupancy binning but deteriorated per-
formance for equal width binning strategies (however, note the impact of
changing the threshold at which true positives are defined; Figure 5.14).
For real data, Dirichlet softening improved both equal width and equal
occupancy strategies.

The Dirichlet softening of bin borders in this chapter used a symmetric
α-vector with αi = 10. The Dirichlet with this α-vector produces more
uniform distributions overK bins than one with values< 10, for example.
Lower α values would introduce more variation into the location of bin
borders. The effects of different α-vectors in softening bin borders is worth
investigating further.

5.3.4 Potential extensions to the DMR

The second term in the DMR (Equation 4.27) weights the likelihood of
a region being source or background by the relative proportion of each
in the image. This term was set heuristically in this chapter, to reflect the
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prior belief that astronomical images are dominated by background pixels.
However, the DMR could be extended to incorporate a Dirichlet hyperpa-
rameter over the source and background mixing proportions in an image
or regions within that image. The mixing proportions could be modelled
as a multinomial distribution, similar to the mixing proportions over top-
ics in LDA (Chapter 3).

In this chapter, the αS-vector of the DMR was set to the symmetric α-
vector with αi = 1, in order to give equal likelihood to all multinomial
distributions over K for source regions (so that source regions were de-
fined as “non-background”). It would be useful to explore ways of setting
the αS-vector such that particular distributions are favoured over others.
Chapter 6 explores one such setting of the αS-vector, by using the source
and topic distributions output by LDA as α-vectors in the DMR.

Chapter 4 included a discussion of how the DMR could be extended to
higher dimensional data. In practical terms, however, this would not be
possible until the speed of the gradient ascent is addressed.



Chapter 6

The Dirichlet-multinomial ratio
using LDA output

This chapter presents an exploration into combining latent Dirichlet allo-
cation (Chapter 3) with the Dirichlet-multinomial ratio (Chapters 4 and 5)
on astronomical images discretised by histogram binning (Chapter 2).

LDA and the DMR were combined by using the unnormalised source and
background distributions1 derived by LDA as the αS and αB parameters
in the DMR. These unnormalised topic distributions are the per-bin counts
of pixels for each topic, as estimated by Gibbs sampling.

Because the Dirichlet distribution is the conjugate prior to the multinomial
distribution2, the unnormalised topics can be viewed as pseudocounts in
K bins, which can be treated as an α-vector from a Dirichlet distribution3

[40, 51, 67].

1Where source and background distributions are multinomial distributions over bins.
2That is, if a data point x comes from a multinomial distribution, and the prior for its

parameter p(θ) comes from a Dirichlet distribution, then the posterior distribution of its
parameter given the data point p(θ|x) also comes from a Dirichlet distribution.

3This is how the topic distributions are treated in the Gibbs sampling process in LDA.
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6.1 Methods

Test data comprised five windows of 500 × 500 pixels from the two large
astronomical images [54], chosen randomly from the set of 25 used for
the evaluation of the DMR in Chapter 5. Sources were labelled by the
source-finding package BLOBCAT [26] with manual postprocessing by an
astronomer. The windows are shown in Figure 6.1.

The images were discretised by the equal width histogram binning method
described in Chapter 2.

Latent Dirichlet allocation, as described in Chapter 3, was run to extract
multinomial distributions over bins for source and background.

These distributions over bins were then used as αS and αB parameters in
the DMR, and the overall topic proportions derived by LDA were used in
place of the second term in Equation 4.27.

In contrast to the symmetric αS-vector with αi = 1 ∀i used in the DMR in
Chapter 5, the αS-vector derived by LDA is not symmetric, but skewed to-
wards brighter pixel intensities relative to the αB-vector (while still having
counts in the darker intensities). In the DMR in Chapter 5, all multinomial
distributions over K bins are equally likely to be drawn from the Dirichlet
distribution for source, while the αS-vector derived by LDA is more likely
to produce distributions with higher likelihood for brighter pixels.

Similarly, the αB-vector derived by LDA is skewed towards darker pixels,
even more so than using the whole binned image as the αB-vector, which
includes source pixels as well as background pixels.

Gradient ascent, as described in Chapter 5, was performed to find peaks
in the DMR.

Sources found at the end of each round of gradient ascent were removed
from the data, but in contrast to the gradient ascent procedure for DMR in
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Figure 6.1: Astronomical images used for evaluation. The central coor-
dinates and a bounding box around each ground-truth source shown in
green. The images are 500 × 500 windows from ELAIS (top left: ELAIS
W1) and CDFS (top right: CDFS W1, bottom left: CDFS W2, bottom right:
CDFS W3) [54]. Images are contrast adjusted with colour inverted to show
sources.
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Chapter 5 the αB-vector and bin borders were not recalculated. In Chap-
ter 5 the entire image was used as a proxy for background. In this con-
text, removing source pixels from the αB parameter should improve the
background model. However if the background distribution derived from
LDA is regarded as a good model, the αB parameter should not need to
be recalculated.

The performance of the combined method was compared to the perfor-
mance of the DMR using equal width bin borders4 using the procedure
for real two dimensional data described in Chapter 5.

Precision and recall were calculated as in Chapter 5, with the same defini-
tions for true positives, false positives and false negatives.

6.2 Results

Some preliminary results of this technique are presented in Table 6.1. In
general, precision and recall are higher than the results for the DMR alone
(that is, the DMR without LDA topic distributions as α-vectors), as well
as higher than the results in Chapter 5. Given the small sample size of
five images, this can only be taken as a preliminary indication of success
of the combined method. More investigation and comparison between
the two methods, and of the DMR with different αS and αB-vectors, is
needed.

In particular, precision for the DMR with LDA output is much higher than
the precision for the DMR alone. Note however that the ground truth cat-
alogue included only sources at least 5σ above rms noise. The combined
method in this chapter therefore found no sources below this threshold

4The equal width binning strategy is the strategy used for LDA in this chapter. Using
the same binning strategy to compare the results for the DMR using LDA output with
the DMR as described in Chapter 5 allows a fair comparison of the two methods.
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Figure 6.2: Found sources. Sources found by the DMR with α parameters
set using source and background topics derived by LDA. The sources in
the ground-truth catalogue in each image are shown in Figure 6.1. An
example of a low surface brightness source found by the DMR but not in
the ground truth catalogue is circled in blue.
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Table 6.1: Performance of DMR using LDA output

Subwindow DMR alone using LDA output
Precision Recall Precision Recall

ELAIS W1 0.71 0.59 0.87 0.90
CDFS W1 0.75 0.91 0.77 0.93
CDFS W2 0.51 0.93 0.55 1.0
CDFS W3 0.66 0.71 0.70 0.76
CDFS W4 0.29 0.86 1.0 0.71
Total (all windows) 0.58 0.85 0.72 0.87

in window CDFS W4, which yielded precision of 1.0 on the ground truth
catalogue.

For the other images, however, in which precision is lower, there are exam-
ples of sources identified that are missing from the ground truth catalogue
(though in some cases noise was identified as sources). Figure 6.2 shows a
low surface brightness radio galaxy tail, with intensity less than 3σ above
rms noise, identified by the methods in this chapter but missing from the
ground truth catalogue.

6.3 Discussion and future work

The preliminary results in Table 6.1 show good results for recall and pre-
cision, much higher than DMR alone.

Like the DMR in Chapter 5, while some areas of noise were falsely identi-
fied as sources, many so called “false positives” — identified by the com-
bined method in this chapter but not in the ground truth catalogue — are
actual sources that are missing from the catalogue.

The ground truth catalogue contains only sources of intensity at least 5σ
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above rms noise. The nature of pixel-intensity based thresholding algo-
rithms such as BLOBCAT restricts the ability of the algorithms to find dim
sources without also finding such a large number of noise regions that the
results are unusable.

However, some of the most scientifically important objects in astronomy
are dim, with intensities in the range of background noise [53]. Figure
6.2 shows an example of a low surface brightness object identified by the
methods in this chapter but missing from the ground truth catalogue. This
is an object that would likely to also be missed by LDA alone — the imple-
mentation of LDA in Chapter 3 had high rates of precision and recall for
sources with high intensity pixels, but, as concluded in that chapter, was
unlikely to identify low surface brightness sources.

In contrast to the low surface brightness sources identified, the combined
method in this chapter found no sources below the 5σ threshold in window
CDFS W4. This suggests that the values with which the α-vectors are
set could be possibly manipulated to set thresholds in the source finding
task.

Given the encouraging results of this preliminary investigation into the
combination of LDA and the DMR, more experiments would be worth-
while pursuing.





Chapter 7

Conclusions

7.1 Summary

This thesis explored Bayesian methods for source detection that use Dirich-
let or multinomial models for pixel intensity distributions in discretised
radio astronomy images.

• A novel image discretisation method that incorporates uncertainty
about how the image should be discretised was developed.

• Latent Dirichlet allocation — a method originally developed for in-
ferring latent topics in document collections — was used to estimate
source and background distributions in radio astronomy images.

• A new Dirichlet-multinomial ratio, indicating how well a region con-
forms to a well-specified model of background versus a loosely-specified
model of foreground, was derived.

• Latent Dirichlet allocation and the Dirichlet-multinomial ratio were
combined for source detection in astronomical images.
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The methods developed in this thesis perform source detection well in
comparison to two widely-used source detection packages, and impor-
tantly, find scientifically important dim sources not well found by other
other algorithms, while returning only a moderate number of false posi-
tives in regions of noise.

7.2 Future work

This thesis included initial explorations of a number of techniques. The
results of these early experiments reveal some of the shortcomings of the
techniques and suggest a number of avenues for future work. These are
summarised below.

7.2.1 Image discretisation

In this thesis, only simple width and frequency based histogram binning
methods (with and without the Dirichlet softening of bin borders) were
considered. These approaches may be problematic when the underlying
distribution of pixel intensities is not uniform [42], as is the case with ra-
dio astronomy images (Figure 2.1). These strategies can consign pixels that
would otherwise be discriminatory into histogram bins such that their in-
formativity is destroyed. For example, low brightness source pixels may
become lost among background pixels.

Bright outliers can also skew the binned representation of the data1.

1In the case of equal width bins with iterative source removal and rebinning, as in the
DMR, this may actually be an advantage. Isolating the brightest pixels highlights them,
and removing the sources that contain these pixels allow the next brightest pixels to be
revealed and so on until (ideally) all sources have been removed and only background
pixels remain. This may explain the success of the equal width binning schemes in com-
parison to the equal occupancy schemes on astronomical images in Chapter 5.
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It would be worth exploring other, potentially more principled, approaches
to image discretisation. A binning scheme that preserves the underlying
distribution of the data would be worth investigating. Such discretisation
methods could be evaluated on the basis of whether using them improved
source detection results in techniques such as LDA and the DMR.

With regards to the Dirichlet bin-border softening developed in this the-
sis, more exploration of the α-vector used to create the borders should be
undertaken. The symmetric α-vector with αi = 10, which produces fairly
uniform distributions ([21]; Figure 2.2) was used in all cases of Dirichlet
softening in this thesis. Symmetric vectors with different values could be
explored, as could asymmetric vectors with values that cause some bin
borders to be more variable than others.

7.2.2 Latent Dirichlet allocation

Though there were some good early results of LDA, with LDA performing
similarly to Duchamp in detecting sources for which the total flux (inten-
sity) is less than 1.63 mJy, the implementation of LDA in this thesis is in-
sufficient to find the scientifically important sources with intensities close
to background. There are a number of avenues for exploration that could
potentially address this issue.

In many cases, final background and source topics derived by LDA were
simple thresholds in bins, with the background distribution over bins plac-
ing almost all weight on bins from 0 to some bin i, and the source distri-
bution placing almost all weight from bin i to bin K. In this way, the im-
plementation of LDA in this thesis is no better than pixel-intensity based
thresholding algorithms that restrict search to those sources that contain
pixels above a particular threshold.

This thresholding behaviour may be due to the binning scheme used (equal
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width binning), and so an investigation into a better binning scheme may
help. The implementation of LDA in this thesis does not allow for the use
of Dirichlet bin borders, as the Gibbs sampling algorithm on the condi-
tional distribution of topic allocations does not work with partial counts.
The use of Dirichlet bin borders in LDA should be investigated.

Thresholding may also be due to the Dirichlet priors over topic distribu-
tions, which have α values < 1. Such values produce sparse distributions
([21]; Figure 2.2) over bins; using an α-vector that encourages more even
distributions over bins may help address the thresholding observed.

Pixels are treated as fundamental units (words) in the implementation of
LDA in this thesis. As the resolution element of a radio telescope is gen-
erally several pixels, individual pixels may be better thought of as having
sub-word size (perhaps “syllables”). The implementation of LDA may be
adjusted accordingly.

The use of the final topic distributions derived by LDA — segmentation
by assigning each pixel a hard topic label and source detection by flood-
filling on the segmented image — is crude. A more nuanced approach
would eliminate this hard assignment and take a more probabilistic ap-
proach to region labelling. For example, given the multinomial models
for background and source, gradient ascent could be performed to find
regions that have high likelihood under a particular model.

7.2.3 The Dirichlet-multinomial ratio

Again, an investigation into the optimal binning scheme is needed, as no
clear conclusions can be drawn on this point given the results of the DMR
in this thesis.

The α-vectors in the DMR could similarly be investigated. In this thesis,
the αS-vector was set to the symmetric α-vector with αi = 1, in order to
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give equal likelihood to all multinomial distributions overK for source re-
gions (defining source regions as any “non-background” region). It would
be useful to explore ways of setting the αS-vector such that particular dis-
tributions are favoured over others.

With regards to the background compensation correction to the DMR, ini-
tial investigation indicated that this correction improves results for one
dimensional but not two dimensional data. The reasons for this are not
clear and further investigation is warranted.

Procedural issues

The gradient ascent process used in this thesis was too slow to be practical
(or even possible) on full-sized large images. If the DMR is to be usable on
the large amounts of data produced by next generation telescopes, speed
must be addressed. The use of a Gaussian distribution for test regions
meant that regions extend potentially across the whole image, slowing
down gradient ascent. One aspect that could be improved to speed up
the gradient ascent process therefore is the use of a test region with finite
support.

The iterative removal of sources found by the DMR sometimes left arte-
facts around the removed source. This can cause multiple “found sources”
where in fact only one source lies (Figure 5.18). Addressing this issue may
reduce the number of false positives the DMR yields.

Extensions

With regards to future extensions, the second term in the DMR (Equation
4.27) weights the likelihood of a region being source or background by the
relative proportion of each in the image. This term is set heuristically in
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this thesis, to reflect the prior belief that astronomical images are domi-
nated by background pixels. However, a Dirichlet hyperparameter could
be placed over the source and background mixing proportions in an im-
age, and inferred, rather than set heuristically.

7.2.4 The Dirichlet-multinomial ratio using LDA output

Early experiments into the combination of LDA with the DMR suggest bet-
ter performance than either algorithm alone. More evaluation to confirm
this result would be worthwhile.

On the other hand, like LDA, the combination of LDA with the DMR
seems to miss a number of low intensity sources. As with LDA, an in-
vestigation into an optimal binning scheme may address this.

Though sources were iteratively removed with this version of the DMR,
there was no recalculation of the α-vectors or of the bin borders. Doing
so may improve performance on dim sources. However unlike the DMR
implementation in Chapter 5 where the initial αB-vector and bin borders
were calculated using the whole image as a proxy for background, there
is no readily apparent way of performing this iterative recalculation. One
possible approach would be to simply reduce the counts in the αS and αB-
vector bins corresponding to the bins of the pixels of the removed source.
Further exploration into rebinning schemes would be worthwhile.

7.2.5 From exploration to usable software

The need for new tools for source detection in radio astronomy is press-
ing: the sheer volume of data to be produced by next generation radio
telescopes makes automated methods for the detection of astronomical
objects essential. As discussed in the opening of this thesis, current meth-
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ods require time-intensive parameter tuning and do not find all sources,
particularly scientifically interesting low surface brightness objects.

A number of steps would be required to take any of the methods discussed
in this thesis from exploration stage to software for public use. More test-
ing and validation of the algorithms would be required on a greater set of
test data.

Both Gibbs sampling (in latent Dirichlet allocation) and the gradient ascent
process (DMR) were much too slow to be practically useful. Significant
speed gains would need to be made before building software using these
algorithms.

Once these issues are addressed, a software package using any combi-
nation of the algorithms described in this thesis could start to be devel-
oped. Design decisions would need to be made, including what parame-
ters would be tunable by the end-user and how they may be tuned (e.g.
in predefined steps or absolutely). A user-interface (whether command-
line, graphical, browser-based, etc) would need to be designed and built.
Any software that is developed would need to be thoroughly tested before
being released publicly.

There are many existing algorithms that are sufficient to find point sources,
which are abundant in radio astronomy images [27]. With this in mind, it
may be prudent to make, for example, the DMR part of a pipeline in which
one of the existing faster and simpler algorithms is first used to identify
and remove all (or most) point sources in an image, with the DMR then
used to find spatially extended and faint objects.
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