
 

 

 

 

Antioxidant Activities of Sonchus oleraceus L. 

 

 

 

 

 

 

 

 

Sundara Mudiyanselage Maheshini Rangika Mawalagedera 

 

 

 

 

 

 

A thesis 

submitted to the Victoria University of Wellington 

in fulfilment of the requirements for the degree of 

Doctor of Philosophy in Ecology and Biodiversity 

 

 

 

 

 

 

 

Victoria University of Wellington 

2014 



ii 

 

ABSTRACT 

 

Supernumerary free radicals and other reactive species can cause oxidative damage in 

animal cells, potentially leading to non-infectious diseases. Diets rich in low molecular 

weight antioxidants (LMWAs) may prevent or arrest the pathogenesis of these diseases. 

Leaves of Sonchus oleraceus L. may be an excellent dietary LMWA source for humans 

given their apparent strong antioxidant activities in vitro. However, different S. oleraceus 

plants vary in their antioxidant capacity. Nothing is known of possible environmental 

effects on antioxidant potential. Equally, the effects of cooking and gastrointestinal 

digestion are unknown. The goals of this research were: (i) to study the effects of plant 

age, locality, and abiotic stressors on antioxidant potential; (ii) to study the effects of 

cooking and in vitro gastrointestinal digestion on antioxidant activity and uptake in 

human cells; and (iii) to study extractable antioxidant activities of S. oleraceus cell 

suspension cultures in relation to abiotic stressors. 

 

Antioxidant activities and levels of total phenolics, hydroxycinnamic acids and ascorbate 

increased as plants aged. An ecotype from Acacia Bay had a higher phenolic content and 

antioxidant activities than one from Oamaru; these differences were maintained across 

generations as well as in calli from in vitro cultures. This indicates heritability and genetic 

fidelity of antioxidant potential. 

 

Chilling and salinity had variable effects on concentrations of phenolics and antioxidant 

activities in plants, and the combination of the two stressors was not synergistic. This 

indicates that these two stressors share signalling and response pathways. Stressor-

induced increases in antioxidant activities of leaf extracts correlated with improved 

cellular antioxidant activities (CAA) inside HepG2 cells. Antioxidants were released from 

leaves following in vitro gastrointestinal digestion, which were then subsequently uptaken 

by Caco2 and HepG2 cells wherein they displayed CAAs. Thus, elevated levels of 

antioxidants in stressor-imposed plants provide potentially more antioxidant protection to 

live human cells. 

 

Caftaric, chlorogenic and chicoric acids accounted for 92% of the phenolic compounds in 

S. oleraceus leaves. Of these, only chlorogenic acid was inducible by stressors, both in 



iii 

 

intact plants and in calli. In young stressor-applied plants, chlorogenic acid was enhanced 

to the levels achievable with plant ageing.  

 

Boiling leaves prior to digestion did not diminish the caftaric and chlorogenic acid levels 

released through digestion, but chicoric acid levels were. Out of the nine phenolic 

compounds in leaves, only chicoric, chlorogenic and caftaric acids were released into the 

medium during in vitro gastrointestinal digestion. Digestion of leaves resulted in effective 

release of caftaric and chlorogenic acids from leaves but the levels of released chicoric 

acid were diminished by digestion.  

 

This study offers insights into the factors that influence the antioxidant potential of S. 

oleraceus L. in vivo, in vitro, during cooking and in vitro gastrointestinal digestion. These 

results provide the foundation for: (1) encouraging the consumption of its fresh shoots as 

an antioxidant rich food; (2) further improving its antioxidant activities through 

manipulation of agronomy, ecotype and breeding; (3) developing its cell cultures as a 

commercial platform for phyto-antioxidant production aimed at formulating dietary 

supplements or food additives in biopharmaceutical industry.  
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CHAPTER 1: REVIEW OF LITERATURE 

 

1.1 REACTIVE SPECIES AND ANTIOXIDANT DEFENCES 

 

A wide range of free radicals and other reactive species (Table 1.1) are capable of 

damaging the lipids, proteins, and DNA in plant and animal cells, and are associated with 

the development of various diseases. Of these reactive species the radical and non-radical 

derivatives of oxygen, collectively known as reactive oxygen species (ROS) are the most 

abundant type in plants and animals (Lushchak, 2011). ROS are either generated 

internally within the various tissues of organisms, or may be absorbed from external 

sources. ROS are formed internally by leakage of electrons to molecular oxygen in the 

photosynthetic and respiratory electron transport chains (Halliwell and Gutteridge, 2007). 

The formation of ROS in organisms can be induced externally by exposure to cigarette 

smoke, environmental pollutants, radiation, ultraviolet light, some chemicals and ozone 

(Halliwell and Gutteridge, 2007).  

 

A system of antioxidant defences effectively neutralizes the ROS and counteracts their 

negative effects. However, when antioxidant defences are overwhelmed by the generation 

of supernumerary reactive species, tissues may be subjected to oxidative assault, resulting 

in damage to biomolecules. In humans, this can potentially lead to premature aging 

(Kregel and Zhang, 2007), inflammation (Federico et al., 2007), cancer (Halliwell, 2007), 

atherosclerosis (Singh and Jialal, 2006), diabetes (Baynes and Thorpe, 1999; Mehta et al., 

2006), liver injury (Parola and Robino, 2001; Choi and James Ou, 2006), Alzheimer‘s 

disease (Mamelak, 2007), Parkinson‘s disease (Fahn, 1992), and coronary heart problems 

(Singal et al., 1998; Madamanchi et al., 2005).  

 

The antioxidant defences in organisms comprise: (i) enzymes, which catalytically remove 

ROS; (ii) enzymes that regenerate oxidised antioxidants; (iii) proteins that minimise the 

availability of pro-oxidant ions such as iron and copper; (iv) proteins that protect 

biomolecules against oxidative damage; and (v) a variety of low molecular weight 

antioxidants (LMWAs), which scavenge ROS (Halliwell and Gutteridge, 2007). Humans 

synthesise some LMWAs in vivo; these include glutathione, α-keto acids, sex hormones, 

melatonin, lipoic acid, coenzyme Q10, uric acid, histidine, and melanins. Others are 



2 

 

derived from ingested food particularly derived from plants, and include tocopherols 

(vitamin E), ascorbic acid (vitamin C), carotenoids (vitamin A), and an assortment of 

phenolic and polyphenolic compounds (Halliwell and Gutteridge, 2007).  

 

Table 1.1 List of selected free radicals and other reactive species 

 

Radicals Non-radicals 

Reactive oxygen species (ROS) 

 Superoxide (O2
•-
) 

 Hydroxyl (OH
•
) 

 Peroxyl (RO2
•
) 

 Alkoxyl (RO
•
) 

 Hydroperoxyl (HO2
•
) 

 Hydrogen peroxide (H2O2) 

 Hypochlorous (HOCl) 

 Ozone (O3) 

 Singlet oxygen (
1
O2) 

 Peroxynitrite (ONOO
-
) 

Reactive nitrogen species  

 Nitric oxide (NO
•
) 

 Nitrogen dioxide (NO2
•
) 

 Nitrous acid (HNO2) 

 Nitrosyl cation (NO
+
) 

 Nitroxyl anion (NO
-
) 

 Alkyl peroxynitriles (ROONO) 

Reactive chlorine species  

 Atomic chlorine (Cl
•
)  Chlorine gas (Cl2) 

 Bromine chloride (BrCl) 

 Chlorine dioxide (ClO2) 

Sulphur centered radicals 

 Thiyl radicals (RS
•
) 

 Perthiyl (RSS
•
) 

 

Carbon centred radicals 

 Trichloromethyl (CCl3
•
)  

Transition metal ions 

  Iron ions (Fe
2+

, Fe
3+

) 

 Copper ions (Cu
2+

) 

 Manganese ions (Mn
2+

) 

Source: Halliwell and Gutteridge (2007) 

Source (Halliwell and Gutteridge, 2007) 
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1.2 LOW MOLECULAR WEIGHT ANTIOXIDANTS OF DIETARY ORIGIN 

 

1.2.1 Ascorbic acid 

 

Animals lack the capacity to synthesise ascorbic acid, and therefore obtain it exclusively 

from their diet (Halliwell and Gutteridge, 2007). Because plants are the only natural 

dietary source of ascorbic acid for humans, efforts are underway to enhance ascorbic acid 

levels in plants through breeding and manipulation of growth conditions (Smirnoff, 

2011). Several putative pathways of ascorbic acid biosynthesis occur simultaneously in 

plants (Smirnoff, 2011). In biological systems ascorbic acid functions as an antioxidant 

by donating electrons to neutralise ROS (Halliwell and Gutteridge, 2007). Donation of 

one electron by ascorbate forms the ascorbyl radical, which then disproportionates to 

monodehydroascorbate (MDHA). Further oxidation of MDHA produces 

dehydroascorbate (DHA). MDHA and DHA can be reduced to form ascorbate by energy 

dependent reactions, each catalysed by MDHA reductase (MDHAR) and DHA reductase 

(DHAR) enzymes; these reactions comprise the ascorbate-glutathione cycle (Figure 1.1). 

 
 L-ascorbic acid 

-H
+
 

→ 

← 
+H

+
 

             
ascorbate 

-e
-
 

→ 
         

ascorbyl radical 

        

    

      2H 

 +e
-

+H
+
 -H

+↓↑+H
+
 

  

 
dehydroascorbate 

 

-e
- 

←  
monodehydroascorbate 

 

Figure 1.1 L-ascorbic acid and its oxidation products 

Source: Smirnoff (2011) 

(Smirnoff, 2011) 

Sufficient supply of vitamin C has been associated with reduced onset of diseases such as 

Alzheimer‘s (Zandi et al., 2004), diabetes (Murthy et al., 1992), cardiovascular diseases 

(Diaz et al., 1997) and other oxidative stress disorders (Grassmann et al., 2002) possibly 

due to its antioxidant activity in vivo. 
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1.2.2 Carotenoids 

 

Carotenoids are a family of pigmented antioxidants such as α-carotene, β-carotene, 

lycopene, lutein and zeaxanthin. They have a characteristic long chain of conjugated 

double bonds (Figure 1.2), with bilateral symmetry around the central double bond 

(Britton, 1995). Modification of the basic structure at the end groups by hydrogenation, 

dehydrogenation, cyclization, oxidation or any combination of these processes results in 

formation of derivatives with specific colours and antioxidant properties (Raoa and Raob, 

2007).  

 

 

Figure 1.2 Structures of several carotenoids found in plants and animals 

Source: Meléndez-Martínez et al. (2007) 

(Meléndez-Martínez et al., 2007) 
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Fruits and vegetables constitute the major sources of carotenoids in the adult human diet 

(Johnson, 2002). Some carotenoids such as β-carotene and β-cryptoxanthin serve as the 

precursor for fat-soluble vitamin A (Maiani et al., 2009). Carotenoids are distributed in 

the membranes, lipoproteins, and adipocytes of the human body because of their 

lipophilic nature. Carotenoids display in vivo antioxidant properties by quenching ROS 

such as singlet oxygen (formed during lipid peroxidation). Quenching activity leaves the 

carotenoid structure intact, thus regeneration is not required (Sies and Stahl, 1995). 

Carotenoids were shown to have preventive activity against cardiovascular diseases (Ford 

and Giles, 2000) and UV-induced erythema (Stahl et al., 2001).  

 

1.2.3 Vitamin E 

 

Vitamin E refers to a group of lipid-soluble, naturally occurring antioxidants comprising 

α-, β-, γ- and δ-tocopherol and α-, β-, γ- and δ-tocotrienol (Table 1.2), which are capable 

of neutralising a variety of ROS (Halliwell and Gutteridge, 2007). Tocopherols and 

tocotrienols scavenge lipid peroxyl radicals and singlet oxygen, thereby preventing lipid 

peroxidation and subsequent oxidative injury in biological systems (Niki, 2013). Ingested 

tocopherols have been correlated with reduced indices of oxidative stress (Roberts II et 

al., 2007) in patients with cardiovascular disease (Rimm et al., 1993) and coronary artery 

disease (Devaraj et al., 2007).  

 

Table 1.2 Structures of tocopherols and tocotrienols 

(Dörmann, 2007) 

Basic structure Example  R1 R2 R3 

Tocopherols   

 

α-tocopherol CH3 CH3 CH3 

β-tocopherol  CH3 H CH3 

γ-tocopherols H CH3 CH3 

δ-tocopherols H H CH3 

Tocotrienol   

 

α-tocotrienol CH3 CH3 CH3 

β-tocotrienol  CH3 H CH3 

γ-tocotrienol H CH3 CH3 

δ-tocotrienol H H CH3 

Source: Dörmann (2007) 
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1.2.4 Phenolic compounds 

 

Plants contain a large variety of phenolic compounds such as phenolic acids, flavonoids, 

stilbenes and their various derivatives. Phenolic compounds in plants are ubiquitous, 

diverse and are extremely important as compounds that affect pigmentation, astringency, 

antibacterial, anticancer, antioxidant and antiviral properties of plant derived products and 

foods (Jaganath and Crozier, 2010). Phenolic compounds in plants are synthesised from 

phenylalanine through the phenylpropanoid pathway (Halliwell and Gutteridge, 2007). 

Phenolic compounds are characterized by at least one hydroxyl group attached to a 

benzene ring (Halliwell and Gutteridge, 2007).  

 

1.2.4.1 Phenolic acids  

 

There are two major groups of phenolic acids: hydroxybenzoic acids and 

hydroxycinnamic acids (Table 1.3) and their associated derivatives. Derivatives of 

phenolic acids occur when they bind with cellulose, lignin, sugars and proteins through 

ester bonds (Halliwell and Gutteridge, 2007). Examples of hydroxycinnamic acid 

derivatives include: chlorogenic acid, which is an ester of caffeic acid and quinic acid; 

caftaric acid, which is an ester of caffeic acid and tartaric acid; and chicoric acid, which 

comprises of two caffeic acid molecules (Table 1.4). 

 

Table 1.3 Classification, occurrence and structure of selected phenolic acids in plants 

 

Basic structure Phenolic acid R1 R2 R3 Occurrence 

Hydroxybenzoic acid 

 

Hydroxybenzoic H OH H Apples, cherries, grapefruit, 

grapes, kiwi fruit, olives, 

oranges, peaches, pears, 

potatoes, wine (Tomás-

Barberán and Clifford, 2000) 

Protocatechuic  OH OH H 

Vannilic OCH3 OH H 

Syringic OCH3 OH OCH3 

Gallic OH OH OH 

Hydroxycinnamic acid 

 

Caffeic  H OH H Apples, blueberries, cereal 

bran, cherries, citrus species, 

coffee, kiwi fruit, olives, 

peaches, pears, potatoes, 

tomatoes, white grapes, white 

wine (Clifford, 1999) 

Ferulic OH OH H 

Cinnamic OCH3 OH H 

Sinapic  OCH3 OH OCH3 
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Table 1.4 Selected hydroxycinnamic acid derivatives and occurrence in plants 

 

Basic structure Occurrence  

Chlorogenic acid (5-caffeoylquinic acid) 

  

Commercial coffee beverage (Mateos et al., 2006) 

Echinacea spp (Pellati et al., 2004) 

Caftaric acid 

 

Ocimum basilicum (Lee and Scagel, 2009)  

Echinacea spp (Perry et al., 2001; Pellati et al., 2004) 

Chicoric acid 

 

Echinacea purpurea (Pellati et al., 2004) 

Taraxacum officinale (Chkhikvishvili and Kharebava, 2001) 

Lactuca sativa (Nicolle et al., 2004) 

Ocimum basilicum (Lee and Scagel, 2009) 

Syringodium filiforme (Nuissier et al., 2010) 

 

 

1.2.4.2 Flavonoids  

 

Flavonoids (Figure 1.3) are characterized by two benzene rings (A and B), which are 

linked together by a γ-pyrone ring (C). Flavonoids are a broad class of LMWAs in plants 

through various modifications to the basic structure by the addition of hydroxyl, methyl 

or glycoside moieties (Tables 1.5 and 1.6). In plants, these compounds function as 

pigments, perform a number of regulatory roles in plant development and may provide 

protection against ultraviolet radiation, pathogens, and herbivores (Gould, 2004; Treutter, 

2006). 

 

 

Figure 1.3 Basic structure of flavonoid molecule 
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Table 1.5 Classification, occurrence and structure of selected flavonoids naturally occurring in plants 

 

Classes and their basic 

structure 

Examples R1 R2 R3 Occurrence  

Flavones 

  

Apigenin H OH H Celery, citrus fruits, 

parsley, red pepper, red 

wine (Hollman and Arts, 

2000) 

Luteolin H OH OH 

Flavanones 

  

Hesperetin H OCH3 OH Citrus fruits (Erlund, 2004; 

Peterson et al., 2006a; 

Peterson et al., 2006b) 

Naringenin  H OH H 

Flavonols 

  

Quercetin  H OH OH Apples, berries, black tea, 

grapefruit, grapes,  

olives, onions, red wine 

(Hollman and Arts, 2000; 

Erlund, 2004) 

Kaempferol  H OH H 

Myricetin  OH OH OH 

 Flavan-3-ols 

 

 

Epicatechin H H - Apples, apricots, cherries, 

green tea, black tea, 

peaches, plums, red wine 

(Hollman and Arts, 2000; 

Monagas et al., 2005) 

Epicatechin 

gallate 

H gallate - 

Epigallocatechin OH H - 

Epigallocatechin 

gallate 

OH gallate - 

Anthocyanidins  

 

Peonidin  OCH3 OH H Berries, blood oranges, red 

cabbage, eggplant, grapes, 

plums, red wine, rhubarb 

(Clifford, 2000a)  
Malvidin  OCH3 OH OCH3 

Delphinidin  OH OH OH 

Cyanidin  H OH OH 

Isoflavones 

 

Genistein  5 

OH 

7 

OH 

4 

OH 

Bean, chick pea, cowpea, 

mung bean, peanut, 

soybean (Erlund, 2004) Genistin  OH O-

gluc 

OH 

Daidzein   OH OH 

gluc: glucose 
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Table 1.6 Examples for selected glucoside derivatives of flavonoids naturally occurring in plants 

 

Glucoside derivatives of flavonoids Examples R1 R2 R3 R4 

 

Luteolin-7-O-β-D-

glucoside  

H OH H -β-D-

gluc 

Apigenin-7-O-β-D-

glucoside 

H H H -β-D-

gluc 

Kaempferol-3-O-β-D-

glucoside  

O-β-D-

gluc 

H H H 

Quercetin-3-O-β-D-

glucoside 

O-β-D-

gluc 

OH H H 

gluc: glucose 

 

1.2.4.3 Stilbenes 

 

Stilbenes comprise a 1,2-diphenyl-ethylene backbone with two phenyl groups arranged in 

either cis or trans configuration (Table 1.7). Stilbenes are widely distributed in plants and 

particularly abundant in grapevine and peanuts (Versari et al., 2001; Hasan et al., 2012). 

Multiple health benefits such as anti-inflammatory, antitumor, and antioxidant activities 

have been postulated for stilbenes, particularly for resveratrol (Paredes-López et al., 

2010). Stilbenes are also potent phytoalexins in plants. 

 

Table 1.7 Classification and structure of selected derivatives of stilbenes in plants 

 

Basic structure Examples R1 R2 R3 R4 

 

cis-Stilbene  H H H H 

cis-Resveratrol OH OH H OH 

 

trans-Resveratrol OH OH H OH 

trans-Resveratrol-3-O-

glucoside 

O-gluc OH H OH 

gluc: glucose 
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1.2.4.4 Antioxidant activities of phenolic compounds 

 

The strong antioxidant activity of phenolic compounds is attributable to (i) their ready 

ability to donate protons or electrons; (ii) the property of the resultant radical to stabilize 

and delocalize unpaired electrons; and (iii) their ability to chelate with transition metal 

ions (Rice-Evans et al., 1996).  

 

The antioxidant capacity of phenolic compounds varies according to the number and 

position of the hydroxyl groups (Rice-Evans et al., 1996; Pietta, 2000; Akdemir et al., 

2001; Villaño et al., 2005). Hydroxyl groups on the B-ring donate hydrogen and an 

electron to ROS radicals, stabilizing them and giving rise to a relatively stable flavonoid 

radical (Figure 1.4). Among structurally homologous flavones and flavanones, radical 

scavenging increases according to the total number of OH groups (Cao et al., 1997).  

 

 

Figure 1.4 Oxidation-dependent changes in the structure of flavonoids; (a) flavonoid, (b) flavonoid 

radical stabilized by a hydrogen bond, (c) flavonoid phenoxy radical and (d) further oxidation of the 

flavonoid radical leads to the formation of an orthodiquinone, which is stable.  

Source: Jacob et al. (2012) 

(Jacob et al., 2012) 
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The antioxidant activities of phenolic compounds are not only governed by their degree 

of hydroxylation; but ortho hydroxylation on the benzene ring also influences radical 

scavenging (Burda and Oleszek, 2001; Nenadis et al., 2003). For example, ortho 

hydroxylated chlorogenic acid is 35% more potent than kaempferol in scavenging DPPH 

(2,2-diphenyl-1-picrylhydrazyl) radicals (Tabart et al., 2009). 

 

Additionally, the antioxidant activities of flavonoids are influenced by the position and 

structural properties of the sugar moiety (Rice-Evans et al., 1996). The antioxidant 

properties of flavonoids decreases as the number of glycosidic moieties increases (Plumb 

et al., 1999b), and thus glycosylated flavonoids are lower in radical scavenging capacity 

than their corresponding aglycones (Shahidi et al., 1992).  

 

In addition to scavenging ROS, phenolic compounds can also prevent ROS injury to cells. 

Phenolic compounds can modify the lipid packing order of cell membranes, which 

decreases the fluidity of the membranes sterically hindering the diffusion of ROS thus 

restricting peroxidation reactions in lipid membranes (Arora et al., 2000).  

 

In addition to their function as antioxidants, phenolic compounds display various other 

properties, which are potentially beneficial for human health (Stevenson and Hurst, 

2007). These include; antibacterial, anticarcenogenic, antimutagenic, antiallergic, anti-

inflammatory, antiviral and antiproliferative activities (Rao et al., 1995; Fernandez et al., 

1998; De Mejı́a et al., 1999; Tuck and Hayball, 2002; Lee et al., 2005; Miles et al., 2005; 

Roy et al., 2007; Medeiros et al., 2008; Suárez et al., 2010).  
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1.3 EVIDENCE FOR INFLUENCE OF DIETARY LMWAS ON OXIDATIVE 

STRESS-INDUCED DISEASES 

 

Certain food sources and diets, which provide rich intakes of LMWAs correlate with low 

incidences of non-infectious diseases of the consumers, according to epidemiological 

evidence (Table 1.8) and clinical feeding trials (Tables 1.9 and 1.10). For example, 

epidemiological studies have shown that diets rich in phenolic compounds are associated 

with a reduction in the initiation and occurrence of some cancers (Table 1.8). However, 

caution is necessary in interpreting epidemiological data since such correlations do not 

necessarily imply causality. Clinical feeding trials are more appropriate than 

epidemiological studies, to draw specific conclusions regarding possible benefits of 

specific LMWAs. However, in clinical studies the individual effects of LMWAs are hard 

or impossible to isolate since in a whole organism there are many complicated effects, 

which occur simultaneously. Therefore mechanistic studies are required to understand 

specific cause and effect. 

 

The majority of clinical feeding trials involving humans afflicted with oxidative stress-

related hypertension, inflammation, cardiovascular disease, cancer and atherosclerosis 

have shown that dietary intake of phenolic compounds such as fresh fruit and vegetables 

or in their concentrated forms is associated with reduced disease indices compared to the 

placebo group (Tables 1.9 and 1.10). The benefit of phenolic rich fruit and vegetable 

intake was seen in clinical trials where participants were under heavy oxidative stress and 

when the measured parameters were cardiovascular, plasma or bowel related low-density 

lipoprotein (LDL) oxidation and DNA damage (Tables 1.9 and 1.10). However in the few 

studies where dietary LMWAs intake did not reduce indicators of oxidative stress, the 

measures were done in sites such as lungs where the bioavailability of phenolic 

compounds are low (Cerda et al., 2005). Furthermore among relatively young and healthy 

participants the protective effects of dietary phenolic compounds were less observable 

and below the measurable lower limits since their cells were experiencing lower degree of 

oxidative stress (Chang et al., 2010).  
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Table 1.8 Selected epidemiological studies on dietary intake of phenolic compounds and cancer  

 

Compound/s  Cancer Result/ 

correlation  

Number of 

human 

subjects 

Reference 

Flavones and flavanones Squamous cell 

carcinoma 

Sig. inverse 

association 

1061/1425 a (Christensen et 

al., 2012) 

Epicatechin catechin, quercetin, 

and kaempferol 

Lung Sig. inverse 

association 

558/837 a (Cui et al., 

2008) 

Flavanones and 

proanthocyanidins 

Lung  Sig. inverse 

association 

34,708 b (Cutler et al., 

2008) 

Flavonols, flavones, flavanones, 

flavan-3-ols and anthocyanidins 

Lung Sig. inverse 

association 

2,590 b (Mursu et al., 

2008) 

Cinnamic acids, 

secoisolariciresinol and 

coumestrol 

Gastric  Sig. inverse 

association 

257/478 a (Hernández-

Ramírez et al., 

2009) 

Flavonoids  Colorectal Sig. inverse 

association 

424/401 a (Wahle et al., 

2010) 

Flavonol and catechin Colorectal Sig. inverse 

association 

120,852 b (Simons et al., 

2009) 

Catechin Rectal Sig. inverse 

association 

120,852 b (Simons et al., 

2009) 

Flavones and flavanones Adenocarcinoma ns 1061/1425 a (Christensen et 

al., 2012) 

Thearubigins, hesperetin, 

naringenin, and myricetin 

Lung  ns 558/837 a (Cui et al., 

2008) 

Flavones Colorectal  ns  120,852 b (Simons et al., 

2009) 

Flavonols, flavones, flavanones, 

flavan-3-ols and anthocyanidins 

Prostate and 

colorectal 

ns 2,590 b (Mursu et al., 

2008) 

Sig. : Significant  

a:
 
cohort study (disease cases /healthy cases) 

b: population-based case-control studies  

ns: not significant 
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Table 1.9 Selected randomized, controlled, crossover clinical feeding trial on effects of food and 

LMWAs on oxidative stress related diseases and conditions among humans  

 

Diseases/ 

conditions  

Number 

of 

patients  

Food or LMWA Measures  Result  Reference  

Atherosclerosis  42 Cocoa beverage Biomarkers of 

atherosclerosis  

Significant 

reduction  

(Monagas et 

al., 2009) 

Cardiovascular 

disease (CVD) 

risk 

24 Orange juice 

(hesperidin) 

Blood pressure Significant 

reduction 

(Morand et 

al., 2011) 

Oxidation of 

human low-

density 

lipoprotein (LDL) 

8 Olive oil 

(phenolic 

compounds) 

LDL oxidation  Significant 

reduction  

(De La Torre-

Carbot et al., 

2010) 

DNA oxidation 182 Olive oil 

(phenolic 

compounds) 

DNA oxidation Significant 

reduction 

(Machowetz 

et al., 2007) 

Inflammation and 

oxidative damage 

 

20 Almond (α-

tocopherol) 

Inflammation and LDL 

oxidation 

Significant 

reduction 

(Liu et al., 

2012) 

Coronary artery 

disease 

21 Walnut (α-

tocopherol and 

α-linolenic) 

Total cholesterol and 

LDL cholesterol and 

endothelium 

vasodilation 

Significant 

reduction 

(Ros et al., 

2004) 

DNA damage and 

repair 

28 Fruits and 

vegetables 

DNA damage in 

lymphocytes 

ns 

 

(Chang et al., 

2010) 

ns: not significant 
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Table 1.10 Selected randomized, double-blind, placebo-controlled clinical feeding trial on influence of 

food and LMWAs on oxidative stress related diseases among humans 

 

Diseases  Number 

of 

patients  

Food or LMWA Measures  Result  Reference  

Chronic 

inflammation 

106 Encapsulated fruit 

and vegetable 

powder 

concentrate 

Chronic 

inflammation  

(DNA damage 

in blood 

lymphocytes)  

Significant 

reduction  

 

 

(Cui et al., 

2012) 

 

Inflammatory 

bowel disease 

44 Aloe vera  Clinical 

remission 

More frequent 

among treated 

patients  

(Langmead 

et al., 2004) 

Histological 

disease activity 

Significant 

reduction 

CVD 32 Cranberry juice Lipid oxidation  Significant 

reduction 

(Basu et al., 

2011) 

Plasma 

antioxidant 

capacity 

Significant 

increase 

CVD risk in 

subjects with type 2 

diabetes 

48 Flavonoid rich 

dietary 

supplement 

Diabetes control Significantly 

improved 

(Zibadi et 

al., 2008) 

CVD risk 

factors 

Significant 

reduction 

Chronic obstructive 

pulmonary disease 

30 Pomegranate 

juice 

Clinical 

symptoms of the 

disease 

ns (Cerda et 

al., 2005) 

Oxidative stress 

related 

hypertension and 

endothelial 

dysfunction 

69 

 

Grape-seed 

polyphenols 

Blood pressure ns  

 

(Ward et al., 

2005) 

ns: not significant 
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1.4 THE BIOACCESSIBILITY, BIOAVAILABILITY, BIOACTIVITY AND 

STABILITY OF PHENOLIC COMPOUNDS 

 

For a phenolic compound to exert any beneficial biological effect, it must reach target 

tissues in chemically active form and at appropriate concentrations. Thus bioaccessibility, 

bioavailability, bioactivity and stability of an antioxidant-rich food source should be 

considered in order to fully utilize the possible health benefit of antioxidants in food 

plants. Bioaccessibility can be defined as the fraction of the ingested antioxidant(s) that is 

released and solubilised from the food matrix by gastrointestinal digestion and, which has 

the potential to be absorbed from the gastrointestinal tract into the intestinal epithelium 

(Hedren et al., 2002). In this context, the stability of an antioxidant refers to the ability of 

the compounds to retain their antioxidant properties following digestion (Dinnella et al., 

2007). Bioavailability can be defined as the proportion of an administered dose that 

reaches the systemic circulation intact, and bioactivity is the ability to induce a biological 

response in an organism that consumes it (Finley, 2005). 

 

The bioaccessibility of various components from foods has been studied using in vitro 

simulations of gastrointestinal digestion and absorption (Table 1.11). Similarly, the 

stability of LMWAs in food has been studied using in vitro antioxidant activity 

measurements of food products before and after simulated gastrointestinal incubation 

(Table 1.11). Recently, techniques have been developed to accommodate the three aspects 

of bioaccessibility, bioactivity and stability of food components using in vitro 

gastrointestinal simulations followed by cell culture models, which mimic uptake of 

LMWAs from the lumen of the gastrointestinal tract and the subsequent bioactivity within 

the cellular environment (Table 1.11). However, bioavailability also requires 

consideration of the complex effects of hepatic metabolism and activity of plasma 

enzymes on LMWAs following absorption from gastrointestinal tract. Therefore, to 

assess bioavailability, studies that mimic complex physiological conditions need to be 

done on human subjects due to the difficulty of designing in vitro models (Funes et al., 

2009; Ranga Rao et al., 2010).  

 

 

 

 



17 

 

Table 1.11 Selected studies on bioaccessibility, bioactivity and stability of antioxidants from various 

food sources 

Food  Technique
a
 Reference 

Solanum esculentum 1 (Toor et al., 2008) 

Camellia sinensis and Salvia officinalis 1 (Vermaak et al., 2009) 

Aronia melanocarpa 2 (Bermúdez-Soto et al., 2007) 

Punica granatum 2 (Pérez-Vicente et al., 2002) 

Rubus idaeus  2 (McDougall et al., 2005a) 

Prunus dulcis 3 (Mandalari et al., 2010) 

Malus domestica  3 (Bouayed et al., 2007) 

Prunus avium 3 (Fazzari et al., 2008) 

Fruits  3 (Tarko et al., 2009) 

Fruit juices  3 (Cilla et al., 2011) 

Vitis vinifera  3 (Tagliazucchi et al., 2010) 

Olea europaea 3 (Dinnella et al., 2007) 

Red wine 3 (Noguer et al., 2008) 

Vegetable juices  3 (Wootton-Beard et al., 2011) 

Rubus sp.  4 (Tavares et al., 2012) 

―Feijoada‖ whole meal
b
 4 (Faller et al., 2012) 

Agaricus bisporus, Lentinula edodes and Boletus edulis 5 (Soler-Rivas et al., 2009b) 

a 
List of techniques used 

1. In vitro gastrointestinal simulation + in vitro chemical antioxidant activity measures   

2. In vitro gastrointestinal simulation + diffusion across cellulose membrane (D) 

3. In vitro gastrointestinal simulation + D + in vitro chemical antioxidant activity measures 

4. In vitro gastrointestinal simulation + D + in vitro chemical antioxidant activity measures + cellular 

uptake and cellular antioxidant activity (CAA) using human cell culture models  

5. In vitro gastrointestinal simulation + cellular uptake and CAA using human cell culture models  

b
 A traditional Brazilian meal rich in plant food  

 

Not all phenolic compounds survive in vitro gastrointestinal digestion and their release 

and survival during digestion depends on the type of food that contained the compound 

(Tables 1.12 – 1.14). Additionally, not all compounds released in the bioaccessible 

fraction following in vitro gastrointestinal digestion were able to permeate across 

cellulose membranes or animal cell membranes (Tables 1.12 – 1.14). Passive absorption 

of phenolic compounds across cell membranes depends on the partition coefficient of the 

compound in question, polarity, size of the molecule and the moieties attached to the 

compound (Karakaya, 2004; Zhao and Moghadasian, 2010). For active absorption, the 

presence of specific transporters in cell membranes will be required (Ader et al., 1996). 
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Table 1.12 Compounds detected following in vitro gastrointestinal digestion of selected phenolic acids 

and their derivatives in food 

 

Compound Detected
 a
  Food  References  

1-caffeoylquinic acid,  

3,4-dicaffeoylquinic acid,  

3,5-dicaffeoylquinic acid,  

3-caffeoylquinic acid,  

4,5-dicaffeoylquinic acid and 

5-feruloylquinic acid 

Nd
1
 Crithmum maritimum  (Siracusa et al., 2011) 

Derivatives of caffeic, ferulic, 

sinapic and p-coumaric acid  
Nd

2
 Commercial orange juice  (Gil-Izquierdo et al., 2001) 

4-caffeoylquinic acid  
Yes

1
 Capparis spinosa  

(Siracusa et al., 2011) 

Nd
1
 Crithmum maritimum 

4-feruloylquinic acid  
Yes

1
 Capparis spinosa  

Nd
1
 Crithmum maritimum 

5-p-coumaroylquinic acid  Yes
1
 

Crithmum maritimum 

Capparis spinosa  

Caffeic acid Yes
2
 Prunus avium  (Fazzari et al., 2008) 

Chlorogenic acid Yes
1 and 2

 

Brassica oleracea 

Prunus avium 

Capparis spinosa 

Crithmum maritimum 

Prunus dulcis 

Malus domestica  

(Vallejo et al., 2003b; Kahle 

et al., 2007; Fazzari et al., 

2008; Mandalari et al., 

2010; Siracusa et al., 2011) 

Neochlorogenic acid Yes
2
 

Aronia melanocarpa 

Prunus avium  

(Bermúdez-Soto et al., 

2007; Fazzari et al., 2008) 

Neochlorogenic acid Nd
2
 

Brassica oleracea  

 
(Vallejo et al., 2003b) Derivatives of ferulic and 

sinapic acid  
Yes

2
 

Gallic acid Yes
1
 Camellia sinensis  (Record and Lane, 2001) 

p-Hydroxybenzoic acid  
Yes

2
 Prunus dulcis (Mandalari et al., 2010) 

trans p-Coumaric acid  

p-Coumaroylquinic acid Yes
2
 Prunus avium  (Fazzari et al., 2008) 

Carnosol  Yes
3
 Rosmarinus officinalis  (Soler-Rivas et al., 2009a) 

a 
Compounds detected (Yes) or not detected (Nd) following in vitro gastrointestinal digestion;  

1. in release buffer,  

2. in cellulose dialysis tube or 

3. in cytoplasm of human cell cultures treated with extracts obtained after in vitro gastrointestinal 

digestion. 
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Table 1.13 Compounds detected following in vitro gastrointestinal digestion of selected flavonoids and 

their derivatives in food  

Compound Detected
a
 Food  References 

Epicatechin  Yes
1 and 2

 

Camellia sinensis 

Malus domestica 

Prunus dulcis  

(Record and Lane, 2001; Kahle et 

al., 2007; Mandalari et al., 2010) 

Catechin  Yes
2
 

Malus domestica 

Prunus dulcis 

(Kahle et al., 2007; Mandalari et 

al., 2010) 

Epicatechin gallate Yes
1
 

Camellia sinensis  (Record and Lane, 2001) 
Epigallocatechin 

Nd
1
 Epigallocatechin gallate 

Gallocatechin gallate 

Isorhamnetin 
Yes

2
 Prunus dulcis  (Mandalari et al., 2010) 

Isorhamnetin-3-O-glucoside  

Isorhamnetin-3-O-rutinoside  
Nd

1
 Capparis spinosa  (Siracusa et al., 2011) 

Yes
2
 Prunus dulcis  (Mandalari et al., 2010) 

Kaempferol  Yes
2
 

Brassica oleracea 

Prunus dulcis  

(Vallejo et al., 2003b; Mandalari 

et al., 2010) 

Kaempferol-3-O-glucoside 
Nd

1
 Capparis spinosa  (Siracusa et al., 2011) 

Yes
2
 Prunus dulcis  (Mandalari et al., 2010) 

Kaempferol-3-O-rutinoside  
Nd

1
 Capparis spinosa  (Siracusa et al., 2011) 

Yes
2
 Prunus dulcis  (Mandalari et al., 2010) 

Quercetin Yes
2
 

Aronia melanocarpa 

Brassica oleracea 

Prunus dulcis  

(Vallejo et al., 2003b; Bermúdez-

Soto et al., 2007; Mandalari et al., 

2010) 

Quercetin-3-O-glucoside 
Yes

2
 

Prunus dulcis 

Malus domestica 

Aronia melanocarpa  

(Bermúdez-Soto et al., 2007; 

Kahle et al., 2007; Mandalari et 

al., 2010) 

Nd
1
 Capparis spinosa  (Siracusa et al., 2011) 

Quercetin-3-O-galactoside Yes
2
 

Malus domestica 

Aronia melanocarpa 

Prunus dulcis  

(Bermúdez-Soto et al., 2007; 

Kahle et al., 2007; Mandalari et 

al., 2010) 

Quercetin-3-O-rutinoside Yes
2
 

Prunus dulcis 

Aronia melanocarpa  

(Bermúdez-Soto et al., 2007; 

Mandalari et al., 2010) 

Quercetin arabinoside 

Yes
2
 Malus domestica  (Kahle et al., 2007) Quercetin rhamnoside 

Quercetin xyloside 

Rutin  Nd
1
 Capparis spinosa  (Siracusa et al., 2011) 

Flavan-3-ols Yes
2
 Aronia melanocarpa  (Bermúdez-Soto et al., 2007) 

a 
Compounds detected (yes) or not detected (Nd) following in vitro gastrointestinal digestion;  

1. in release buffer or 

2. in cellulose dialysis tube. 
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Table 1.14 Compounds detected following in vitro gastrointestinal digestion of selected anthocyanins 

and their derivatives in food 

 

Compound Detected
a
 Food References  

Cyanidin 

Yes 

 

Aronia melanocarpa  
(Bermúdez-Soto et al., 

2007) 
Cyanidin-3-arabinoside 

Cyanidin-3-galactoside 

Cyanidin-3,5-diglucoside Punica granatum (Pérez-Vicente et al., 2002) 

Cyanidin-3-glucoside 
Yes 

Aronia melanocarpa 

Punica granatum 

Prunus avium 

(Pérez-Vicente et al., 2002; 

Bermúdez-Soto et al., 2007; 

Fazzari et al., 2008) 

Nd Red wine (McDougall et al., 2005b) 

Cyanidin-3-rutinoside Yes Prunus avium (Fazzari et al., 2008) 

Cyanidin-3-xyloside Yes Aronia melanocarpa 
(Bermúdez-Soto et al., 

2007) 

Delphidin-3-O-glucosides 

Nd 

Red wine 

Punica granatum 

(Pérez-Vicente et al., 2002; 

McDougall et al., 2005b) 

Delphinidin-3,5-diglucoside Punica granatum (Pérez-Vicente et al., 2002) 

Delphinidin-3-O-coumaroylglucoside  Red wine (McDougall et al., 2005b) 

Malvidin-3-O-acetylglucoside 

Yes Red wine (McDougall et al., 2005b) Malvidin-3-O-coumaroylglucoside 

Malvidin-3-O-glucosides 

Pelargonidin-3,5-diglucoside 
Yes Punica granatum (Pérez-Vicente et al., 2002) 

Pelargonidin-3-glucoside 

Peonidin-3-O-acetylglucoside  
Nd 

Red wine (McDougall et al., 2005b) Peonidin-3-O-coumaroylglucoside 

Peonidin-3-O-glucosides 
Yes 

Peonidin-3-rutinoside Prunus avium (Fazzari et al., 2008) 

Petundin-3-O-acetylglucoside 

Nd Red wine (McDougall et al., 2005b) Petundin-3-O-coumaroylglucoside 

Petundin-3-O-glucosides 

Naringenin  

Yes Prunus dulcis (Mandalari et al., 2010) 
Naringenin-7-O-glucoside  

Eryodictiol  

Eryodictiol-7-O-glucoside  

a 
Compounds detected (Yes) or not detected (Nd) in cellulose dialysis tube following in vitro 

gastrointestinal digestion. 
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In vitro digestion by gastrointestinal enzymes and those produced by colonic microflora 

causes certain phenolic compounds to undergo chemical changes to form new compounds 

(Tables 1.15 and 1.16). In vitro digestion by colonic microbes resulted in the formation of 

wide variety of metabolites (Table 1.16) compared to digestion by gastrointestinal 

enzymes: pepsin, lipase and amylase (Table 1.15). Microflora in the gut can cause ring-

fission, degycosylation, methylation, deconjugation of phenolic compounds (Aura, 2008), 

while gastrointestinal enzymes are incapable of ring-fission and methylation.  

 

Table 1.15 Changes in metabolites detected following in vitro gastrointestinal digestion of selected 

phenolic compounds in food  

 

Compounds Compounds released following digestion
a
 Food References 

 Metabolites 

Chlorogenic aid Yes
1
 Neochlorogenic acid 

Camellia 

sinensis  

(Record and 

Lane, 2001) 

Protocatechuic acid  Yes
1
 

3-(2,4-dihydroxyphenyl)propionic 

acid 

o-Hydroxyphenylacetic acid 

p-hydroxybenzoic acid  

Phenylacetic acid 

Prunus dulcis  
(Mandalari et al., 

2010) 

Carnosic acid Yes
2
 Carnosol  

Rosmarinus 

officinalis  

(Soler-Rivas et 

al., 2009a) 

Carnosol 

Carnosic acid 

Methyl carnosate 

Yes
2
 Unidentified derivatives of abietanes 

Anthocyanins Yes
1
 Ionised chalcones of anthocyanins 

Punica 

granatum  

(Pérez-Vicente et 

al., 2002) 

Procyanidin  Yes
1
 Catechin 

Malus 

domestica  

(Kahle et al., 

2007) 

Hesperetin  Nd
1
 Chalcones of hesperetin 

Crithmum 

maritimum  

(Siracusa et al., 

2011) 
Hesperidin  Yes

1
 Chalcones of hesperidin 

Narirutin  Nd
1
 Chalcones of narirutin 

a 
Compounds detected (Yes) or not detected (Nd) following in vitro gastrointestinal digestion;  

1. in cellulose dialysis tube or  

2. in cytoplasm of human cell cultures treated with extracts obtained after in vitro gastrointestinal 

digestion. 
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Phenolic compounds are largely absorbed through the jejunum and to a smaller extent, 

through the ileum and to a lesser degree in the stomach before reaching the microflora in 

the colon (Spencer et al., 1999; Clifford, 2000b; Mandalari et al., 2013). Furthermore the 

microbial conversion processes do not affect all compounds in a similar manner; for 

example, deglycosylation of flavonoids depends on the sugar moiety, while the chain 

length inversely influenced the conversion of proanthocyanidins into phenolic acids 

(Keppler and Humpf, 2005; Bazzocco et al., 2008). 

 

Table 1.16 Changes in metabolites detected following in vitro digestion by colonic microflora or in situ 

digestion by rats of selected phenolic compounds in food 

 

Compound Compounds released following digestion
a
 References 

Original 

compound 

Metabolites 

Caffeic and Chicoric 

acid 
Yes

1
 m-hydroxyphenylpropionic acid Echinacea purpurea 

(Ye, 2009) 
Caftaric acid Nd

1
 m-hydroxyphenylpropionic acid 

Chlorogenic acid Yes
2
 

Caffeic acid 

Quinic acid 

Chlorogenic acid 

(Plumb et al., 1999a) 

Gallic acid Yes
2
 

3-(4-Hydroxyphenyl)propionic acid 

Phenylacetic acid 

p-Hydroxyphenylacetic acid 

Protocatechuic acid 

Flavonoids and 

phenolic acids  

(Serra et al., 2012) 

 

Protocatechuic acid Yes
2
 Unchanged 

Luteolin Yes
2
 3-(2,4-Dihydroxyphenyl)propionic acid 

Myricetin Yes
2
 

3-(2,4-Dihydroxyphenyl)propionic acid 

3,4-Dihydroxyphenylacetic acid 

Phenylacetic acid 

Quercetin Yes
2
 

3-(3,4-Dihydroxyphenyl)propionic acid 

3,4-Dihydroxyphenylacetic acid 

Homovainillic acid 

m-Hydroxyphenylacetic acid 

o-Hydroxyphenylacetic acid 

p-Hydroxybenzoic acid 

p-Hydroxyphenylacetic acid 

Protocatechuic acid 

Phenylacetic acid 

Rutin Yes
3 None  Hypericum perforatum 

(Ye, 2009) Quercetin galactoside Yes
3
 None  
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Table 1.16 continued  

 
   

Quercetin rhamnoside Yes
2
 

3,4-Dihydroxyphenylacetic 

Dihydroxyphenyl)propionic acid 

m-Hydroxyphenylacetic acid 

o-Hydroxyphenylacetic acid 

Phenylacetic acid 

p-Hydroxybenzoic acid 

p-Hydroxyphenylacetic acid 

Protocatechuic acid 

Flavonoids and 

phenolic acids 

(Serra et al., 2012) 

Quercetin rutinoside Yes
2 

3-(3,4-Dihydroxyphenyl)propionic acid 

3,4-Dihydroxyphenylacetic acid 

m-Hydroxyphenylacetic acid 

Phenylacetic acid 

   

Kaempferol rutinoside Yes
2 

o-Hydroxyphenylacetic acid 

Phenylacetic acid 

p-Hydroxybenzioc acid 

Naringenin 

 
Yes

2 

3-(2,4-Dihydroxyphenyl)propionic acid 

3-(4-Hydroxyphenyl)propionic acid 

o-Hydroxyphenylacetic acid 

Phenylacetic acid 

p-Hydroxyphenylacetic acid 

Protocatechuic acid 

a 
Compounds detected (Yes) or not detected (Nd) following in vitro gastrointestinal digestion;  

1. following in vitro fermentation using human, mouse or rat colonic microflora, 

2. following in vitro digestion using extracts of human small intestine, liver, plasma and human colonic 

microflora, or 

3. in plasma after in situ gastric administration to rats.  
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1.5 CHEMICAL ANTIOXIDANT ACTIVITY ASSAYS  

 

A number of chemical assays and in vitro cellular techniques have been used to measure 

antioxidant capacities of food and metabolites in a number of physiological matrices 

including gastrointestinal fluids, urine and plasma (Prior et al., 2005; Torres et al., 2008). 

These antioxidant activity assays can be classified into two types based on their reaction 

mechanism and type of radical scavenged (Table 1.17).  

 

Table 1.17 Comparison of types of in vitro chemical antioxidant activity assays 

 

Characteristic  Antioxidant activity assays 

Hydrogen atom transfer (HAT) 

measures 

Single electron transfer (SET)  

measures 

Mechanism  Ability of an antioxidant to quench free 

radicals by proton donation 

Ability of an antioxidant to transfer single 

electron, reducing the reactive species 

Type of  

radical 

scavenged  

The antioxidant and substrate compete for 

thermally generated peroxyl radicals 

through the decomposition of azo-

compounds 

Assays measure the capacity of an 

antioxidant in the reduction of an oxidant, 

which is then correlated with the 

antioxidant concentrations 

Examples  Oxygen radical absorbance capacity 

(ORAC) 

Total radical trapping antioxidant 

parameter (TRAP)  

Crocin bleaching assays 

2, 2‘-Azino-bis(3-ethylbenz-thiazoline-6-

sulfonic acid (ABTS) assay 

Ferric ion reducing antioxidant power 

(FRAP) 

DPPH radical scavenging assay 

 

Further details on DPPH radical scavenging assay and ORAC (oxygen radical absorbance 

capacity) assay are detailed briefly (Sections 1.5.1 – 1.5.2) because they are most 

commonly used. They are also featured in the experimental sections of this thesis because 

the two techniques employ scavenging of two different radical species, at different 

temperature and pH conditions increasing the reliability of data (Sections 1.5.1 – 1.5.2).  

 

1.5.1 DPPH radical scavenging assay 

 

DPPH is a stable organic nitrogen radical with a non paired electron (Brand-Williams et 

al., 1995). In the presence of antioxidants (AH), which are capable of donating H, the 

DPPH radical (DPPH
•
) reduces to the stable non-radical DPPH (Equation 1.1). This 



25 

 

reduction of the DPPH radical by an antioxidant causes the colour change (from violet to 

yellow), resulting in the loss of absorbance at 515 nm.  

 

DPPH

 + AH DPPH + A


 ______________________ Equation 1.1 

 

 

The degree of absorbance loss is correlated with concentration of the antioxidant to 

calculate the EC50, which is the concentration of antioxidant that causes 50% loss of 

initial DPPH concentration (Figure 1.5). The EC50 of the sample can be expressed as 

equivalents of an appropriate standard such as ascorbic acid or trolox (commercial name 

for a vitamin E analogue).  

 

 

        

  

 

         

 

 

 

 

       

                             EC50     Antioxidant concentration (mg mL
-1

) 

Figure 1.5 Percentage decrease in absorbance (A515nm) by DPPH (2,2-diphenyl-1-picrylhydrazyl) 

against concentration of antioxidant, where EC50 denotes the concentration of antioxidant causing 

50% loss of initial absorbance. 

 

There are a few drawbacks to the use of the DPPH method. Importantly, the DPPH 

radical differs from the highly reactive and transient peroxyl radicals involved in lipid 

peroxidation in biological systems (Huang et al., 2005). Thus, antioxidants may display 

slower rate of scavenging towards the DPPH radical than towards peroxyl radicals 

(Ndhlala et al., 2010). Furthermore, steric inaccessibility of radical site of DPPH may 

result in an overestimation of the antioxidant capacity of those smaller molecules, which 

have better access to the DPPH radical, and vice versa (Goupy et al., 2002). For example, 

addition of two (CH2) units to the molecular spacer of 3,5-Di-tert-butyl-4-hydroxybenzyl 

acid diminished its DPPH radical scavenging by 13-fold (Vol‘eva et al., 2011). Therefore, 
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efficient peroxyl radical scavengers can be inert in DPPH radical scavenging since they 

may have less access to the DPPH radical site (Goupy et al., 2002). Nonetheless, the 

DPPH assay is a simple, rapid technique, which does not require special equipment and 

provides useful information on the capacity of phytochemical sources in scavenging free 

radicals, aiding screening of potent antioxidant sources. Furthermore, the technique is 

routinely used in assays of the antioxidant potential of foodstuffs (Huang et al., 2005). 

 

1.5.2 ORAC assay 

 

ORAC measures antioxidant inhibition of peroxyl radical induced oxidations and thus 

reflects radical chain breaking antioxidant activity by H
+
 transfer (Dávalos et al., 2003). 

A synthetic free radical generator is thermally decomposed, supplying a continuous flux 

of peroxyl radicals (ROO

), which oxidises a fluorescent probe (PH) and reducing 

fluorescence intensity (Equation 1.2 and 1.3). The antioxidants (AH) inhibit the oxidation 

of the fluorescent probe by competing for peroxyl radicals, thus maintaining the 

fluorescence intensity (Equation 1.4 and 1.5).  

 

ROO

 + PH   ROOH + P


 _____________________________ Equation 1.2 

P
 
+ ROO

 
  ROOP _____________________________ Equation 1.3 

ROO

 + AH   ROOH + A


 _____________________________ Equation 1.4 

A
 
+ ROO

 
  AOOP _____________________________ Equation 1.5 

 

Fluorescence decay curves (Figure 1.6) reflect the protective effect of the antioxidants in 

the sample and can be numerically quantified as net integrated areas under the 

fluorescence decay curves (AUC). A standard curve is generated using the net AUC for 

concentrations gradient of trolox, and the trolox equivalents of the sample are calculated 

from the standard curve.  
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Figure 1.6 Fluorescence decay curve for antioxidant sample, blank (without antioxidant) and shaded 

area showing net area under the curve (AUC) 

Source: Gillespie et al. (2007) 

(Gillespie et al., 2007) 

The ORAC assay is technically more complex compared to the DPPH radical scavenging 

assay, requiring temperature control throughout the assay period and a fluorometer to 

monitor fluorescence during the 1 h of analysis. The ORAC assay can be automated, 

reducing inter-assay variability by reducing errors and time spent in manual handling. In 

contrast to the DPPH assay, ORAC measures the scavenging of biologically relevant 

peroxyl radicals at physiologically relevant pH (7.4) and temperature (37 
o
C), which 

simulates the antioxidant reactions involving lipids in biological systems (Ou et al., 2001; 

Huang et al., 2005). The ORAC values are more representative of total radical scavenging 

capacity since the ORAC values encompass the rate and time taken for scavenging the 

radicals by an antioxidant source into a single value. This is because the AUC of the 

florescence decay curve in ORAC is dependent on decaying rate and time taken for 

complete decay (Ou et al., 2001; Huang et al., 2005). 

 

1.6 THE CELLULAR ANTIOXIDANT ACTIVITY (CAA) ASSAY 

 

Extractable antioxidant activities measured by in vitro chemical assays (such as ORAC 

and DPPH) does not necessarily correlate positively with their in vivo antioxidant effects. 

The CAA assay is an in vitro technique that is used to evaluate the uptake, metabolism, 

and distribution of LMWAs in human hepatoma cells (Spencer et al., 2004). Therefore, 

the CAA assay has several advantages over traditional chemical antioxidant activity 
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assays. The CAA assay has been used to quantify antioxidant activities of isolated 

antioxidant compounds (Wolfe and Liu, 2008), as well as those in fruits (Wolfe and Liu, 

2007; Wolfe et al., 2008), vegetables (Song et al., 2010) and foliar extracts (McDowell et 

al., 2011). 

 

It is important when determining the health benefit of antioxidants in an ingested food 

matrix to evaluate their ability to be absorbed through the stomach and intestine into 

systemic circulation, to reach target tissues, and to exert physiological effects. However, 

monitoring the lumen of the human intestines and adjunct blood vessels and the target 

tissues in vivo, can be complex. Therefore, the development of suitable models that mimic 

human metabolism is useful for bioavailability and bioactivity studies (Grajek, 2005; 

Wolfe and Liu, 2007; Wolfe et al., 2008; Wolfe and Liu, 2008; Song et al., 2010; 

McDowell et al., 2011). Cell lines such as L-02 (human normal hepatocytes) and HepG2 

(human hepatoma cells) have most frequently been used for this work, since the liver is 

the central organ where the metabolism and detoxification takes place in humans. Human 

HepG2 cells are well differentiated experimental models that display biochemical 

responses comparable to the hepatocytes, and have been used successfully to evaluate 

cytotoxic and antioxidant potential of pure chemicals and plant extracts in the CAA assay 

(Wolfe and Liu, 2007; Wolfe et al., 2008; Wolfe and Liu, 2008; Song et al., 2010; 

McDowell et al., 2011).  

 

The CAA values positively correlated to ORAC antioxidant activities and total phenolic 

content in fruits such as Vaccinium corymbosum, Rubus fruticosus, Fragaria ananassa, 

Rubus idaeus and Vaccinium macrocarpon (Wolfe et al., 2008) and in vegetables such as 

Beta vulgaris, Capsicum annuum and Brassica oleracea var. italica (Song et al., 2010). 

The CAA assay has been conducted on foliar extracts of Sonchus oleraceus, for which the 

antioxidants were shown to be effectively absorbed into HepG2 cells and display 

antioxidant activity in the cytoplasm (McDowell et al., 2011).  

 

The low CAAs of certain LMWAs may be due to their poor or slower uptake into HepG2 

cells. The CAA assay using pure compounds has shown that quercetin had the highest 

activity, while ascorbic acid was 100-fold lower in the CAA assay compared to quercetin 

(Table 1.18).  
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Table 1.18 Cellular Antioxidant Activity (CAA) in human hepatoma cells by selected phytochemicals 

listed from highest to lowest CAA 

 

Antioxidant EC50 (µM)
a
 

Quercetin 5.1 ± 0.2 

Kaempferol 6.3 ± 0.2 

Epigallocatechin gallate 15.8 ± 0.4 

Myricetin 15.4 ± 0.5 

Luteolin 23.1 ± 1.0 

Gallic acid 335 ± 26 

Caffeic acid 525 ± 38 

Ascorbic acid >500 

Source: Wolfe and Liu (2007) 

a
 EC50 reflects the median effective antioxidant concentration eliciting 50% CAA, obtained from dose-CAA 

response curves.(Wolfe and Liu, 2007) 

 

1.6.1 Cytotoxicity 

 

High intakes of dietary LMWAs may have cytotoxic effects on human tissues. For 

example, the flavonoids luteolin, hydroxygenkwanin, and kaempferol possess significant 

in vitro cytotoxic effects on cultured L-02 and HepG2 cells (Li et al., 2008). The 

cytotoxic effect of quercetin on HepG2 cells was dose- and time-dependant (Meyers et 

al., 2003; Wolfe et al., 2003). In contrast, chlorogenic acid and (-)-epicatechin were not 

toxic on HepG2 cells, within the tested upper limit of 1000 µM (Meyers et al., 2003).  

 

Measures of cytotoxicity of isolated phenolic compounds are higher than those for fruit 

and vegetable extracts, which naturally contain those compounds. For example, doses 

exceeding 6 µg mL
-1

 of quercetin were cytotoxic on HepG2 cells, while most fruits and 

vegetables required doses of greater than 150 mg mL
-1

 to be cytotoxic (Wolfe and Liu, 

2007; Wolfe et al., 2008; Song et al., 2010; McDowell et al., 2011; Faller et al., 2012). 

The reason could be that the concentration of a specific LMWA in fruits and vegetables is 

lower, therefore to reach cytotoxic levels higher doses of a whole food is required 

compared to the pure compound alone.  
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1.7 TRADITIONAL DIET OF MĀORI AND INCIDENCE OF COLORECTAL 

CANCER  

 

In New Zealand, a lower incidence of colorectal cancer has been reported for Māori than 

for non-Māori New Zealanders, according to colonoscopy records (from 2001 to 2005 

involving 3000 participants) and statistics (from International Agency for Research on 

Cancer from 1980 to 1998 for nearly 4 x 10
6
 individuals). The prevalence of colorectal 

adenomas was 50% less in Māori than in non-Māori New Zealanders of European origin 

(Ferguson et al., 1995; Thomson, 2002; Dickson et al., 2010). These lower colorectal 

cancer rates in Māori occur, despite higher prevalence of oncogenic risk factors for 

colorectal cancers among Māori (Ferguson et al., 1995; Thomson, 2002). Such oncogenic 

risk factors among Māori are: higher intakes of red meat, saturated fat and alcohol, higher 

food portion sizes, a higher prevalence of obesity and lower proportions of individuals 

who consume the recommended daily servings of fruit and vegetables. To explain this 

apparent paradox, it has been postulated that specific food plants, which are favoured 

especially by Māori might offer protection against the onset of colorectal cancers. Of the 

51 food plants eaten by New Zealanders, four were eaten significantly more frequently by 

Māori than by European and Pacific Island descended New Zealanders (Ferguson et al., 

1995). These foods were sow thistle (Sonchus oleraceus), silverbeet (Beta vulgaris var. 

cicla), watercress (Nasturtium offcinale) and sweet potato (Ipomoea batatas); of these, 

methanolic extracts of sow thistle, silverbeet and watercress showed antimutagenic 

properties possibly leading to cancer prevention (Botting et al., 1999). However sow 

thistle was indicated as the most frequently eaten plant food among Māori according to a 

survey of about 2000 Māori respondents, (Rush et al., 2010).  

 

1.8 Sonchus oleraceus L. 

 

The Sonchus oleraceus (the smooth sow thistle known as ―puha‖ by Māori) and possibly 

S. asper and S. kirkii were predominantly boiled or sometimes steamed before 

consumption in the traditional Māori diet (Whyte et al., 2001; Cambie and Ferguson, 

2003b). S. oleraceus has also been used in traditional medical practices of Hawaiian 

islands to treat a wide variety of disorders via both external application and internal 

administration (Leonard, 1998). 
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1.8.1 Biology of S. oleraceus 

 

S. oleraceus L. (Compositae) is an annual herb (Holm and Center, 1977). It is native to 

Europe, North Africa, and Asia, and successfully grows and reproduces over a diverse 

range of habitats (Holm and Center, 1977). The older leaves form a basal rosette close to 

the ground, but later-formed leaves are on the flowering stem, which terminates in an 

inflorescence (Plate 1.1). The first leaves are orbicular with a slightly serrate margin. The 

mature leaves are pinnatifid with irregularly-toothed margins, and become increasingly 

lobed with maturity, reaching 10 – 25 cm in length. Bolting occurs when plants have 20 – 

25 leaves (Cici et al., 2009). After the appearance of the first floral buds, rapid elongation 

of internodes increases the plant height to 1 m or more (Holm and Center, 1977). The 

self-compatible flowers develop achenes one week after flowering. The average number 

of seeds per capitulum is around 140, and the mean number of capitula per plant is 4.4 

(Cici et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 1.1 Sonchus oleraceus whole plant and capitulum (inset) 
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S. oleraceus seeds germinate approximately two weeks after sowing and require light for 

germination (Hutchinson et al., 1984). Maximum germination rates are observed in trays 

filled with sand: potting mixture mixed in 1:1 ratio (Ellwood, 2007). Their germination is 

not greatly influenced by temperature (Chauhan et al., 2006). The maximum germination 

occurred from seeds sown at the soil surface, while increasing osmotic potential and pH 

(by 160 mM NaCl and pH 10) resulted in low germination percentage (Chauhan et al., 

2006).  

 

1.8.2 Nutrients in leaves of S. oleraceus 

 

Leaves of S. oleraceus contain vitamin C, carotenoids, oxalic acid (Table 1.19), various 

elements (Table 1.20) and short chain fatty acids (Mercadante and Rodriguez-Amaya, 

1990; Guil-Guerrero et al., 1998; Liu et al., 2002). The concentration of vitamin C and 

carotenoids in S. oleraceus leaves were 20- and three-fold lower respectively than those 

present in tomato on the same dry weight basis (Table 1.19). 

 

 Table 1.19 Nutrient composition of S. oleraceus leaves collected from natural habitats in Spain  

 

Component  Content (g kg
-1

 DW)
a
  

(Mean ± SD) 

Water
1
  872.4 ± 14.0 

Protein  31.7 ± 1.5 

Digestible carbohydrates  18.2 ± 1.4 

Fibre  32.5 ± 2.4 

Lipids   7.5 ± 0.9 

Ash 29.9 ± 1.8 

Oxalic acid
 2
  1.3 ± 0.3 

Vitamin C
 3
  0.8 ± 0.1 

Carotenoids
 4
   0.2 ± 0.0 

Energy
5
 1098 ± 155 

Source: Guil-Guerrero et al. (1998) (Guil-Guerrero et al., 1998) 

a
 except for water and energy 

1. g kg
-1

 FW 
2. 4.4,  
3. 16.4 and 
4. 0.6 accordingly in Solanum esculentum (Guil-Guerrero and Rebolloso-Fuentes, 

2009). 
5. kJ kg

-1
 DW 
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Table 1.20 Mineral elements (mg kg
-1

 DW) in S. oleraceus leaves collected from natural habitats in 

Spain 

Mineral elements Content (mean ± SD) 

Na  2582 ± 282 

K  6225 ± 783 

Ca    324 ± 102 

Mg  759 ± 99 

P  580 ± 96 

Fe  38 ± 4 

Cu   3 ± 1 

Zn   8 ± 2 

Mn  12 ± 2 

                                                        Source: Guil-Guerrero et al. (1998)Source: (Guil-Guerrero et al., 1998) 

 

1.8.3 LMWAs of S. oleraceus 

 

Vegetative shoots of S. oleraceus are exceptionally rich in LMWAs; DPPH radical 

scavenging capacities of methanol-soluble extracts prepared from leaves of S. oleraceus 

were found to be four-fold greater than those for blueberry (Vaccinium corymbosum) 

extracts on dry weight basis (Gould et al., 2006). Cauline leaves of S. oleraceus held 

higher levels of extractable antioxidants than did rosette leaves (Ellwood, 2007). DPPH 

radical scavenging capacities of methanolic extracts were greater than aqueous and 

ethanolic extracts of leaves (Yin et al., 2007). S. oleraceus leaf extracts are more potent in 

LMWA activity than are related species, S. asper and S. kirkii (Ellwood, 2007). 

 

Measurements of antioxidant activity in methanolic extracts of S. oleraceus leaves 

correlate to the presence of phenolic compounds (Simopoulos, 2004). In one study, 

caffeic acid derivatives were the major phenolic compounds present (0.8% DW), while 

luteolin-7-glucoside and apigenin-7-glucoside collectively accounted for 0.2% DW 

(Table 1.21). In addition, flavonoids (luteolin, apigenin, kaempferol and quercetin) and 

their glucoside derivatives were identified from whole plant extracts (Table 1.21). 

Recently caftaric acid has also been identified from leaf methanolic extracts (Ou et al., 

2012). Table 1.16 lists the DPPH radical scavenging activities of flavonoids and their 

derivatives in S. oleraceus extracts, where scavenging activities of glycosidic derivatives 

were lower than their original flavonoid aglycones (Yin et al., 2007; Yin et al., 2008).  
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The S. oleraceus foliar extracts were only cytotoxic on HepG2 cells at concentrations 

exceeding 100 mg DW mL
-1 

(McDowell et al., 2011). This indicates their safety for 

consumption as sources of dietary LMWAs.  

 

Table 1.21 Composition and antioxidant activities of phenolic compounds from leaf extracts of S. 

oleraceus 

 

Phenolic compounds Concentration
a
 DPPH

b
 scavenging 

EC50
c
 

Mean ± SE 

(mg g
-1

 leaf DW) 

 

(µM) 

 

(µg mL
-1

) 

Caffeic acid derivatives 2.6 ± 0.3 nq nq 

Chlorogenic acid 1.5 ± 0.2 nq nq 

Chicoric acid 12.5 ± 1.3 nq nq 

Luteolin-7-O-β-D-glucoside 3.6 ± 0.4 131 61 

Apigenin-7-O-β-D-glucoside 1.7 ± 0.2 206 89 

Luteolin   nd 42 12 

Apigenin  nd 144 39 

Kaempferol  nd 45 13 

Quercetin  nd 36 11 

Kaempferol-3-O-β-D-glucoside nd 100 45 

Quercetin-3-O-β-D-glucoside nd 47 22 

 

a
 S. oleraceus leaves collected from natural habitats in Italy (Gatto et al., 2011) 

b 
2,2-diphenyl-1-picrylhydrazyl radical 

c 
Antioxidant activities of isolated phenolic compounds from whole plants of S. oleraceus collected from 

natural habitats in South Korea (Yin et al., 2008)  

nq: not quantified 

nd: not detected 

 

1.8.4 Variation in antioxidant potential of S. oleraceus 

 

S. oleraceus shows geographical variation in extractable antioxidant activity 

(Simopoulos, 2004; Schaffer, 2005; Ellwood, 2007). The antioxidant activity and 

polyphenol content of S. oleraceus leaves collected from wild populations in Spain, 

Greece and Italy varied two-fold (Schaffer, 2005). For plants naturalised in different parts 

of New Zealand, the antioxidant activity varied four-fold (Ellwood, 2007; Table 1.22). 

Plant growth conditions, too, may affect the antioxidant status of S. oleraceus leaves. In 
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one study, the antioxidant activity as measured by the DPPH assay was found to be higher 

in greenhouse grown plants than in those collected from the field, however, reasons for 

this effect were not identified (Ellwood, 2007). The antioxidant activity parent plants 

correlated to those of the F1 offspring for selfed plants, indicating heritability of 

antioxidant traits (Ellwood, 2007). Thus it is likely that combinations of genetic and 

environmental factors contribute to variability in LMWA in S. oleraceus. It is possible to 

enhance the LMWA activities in S. oleraceus by imposing abiotic stresses, since there are 

numerous examples of this in other species (Section 1.9). 

 

Table 1.22 Antioxidant activities of methanolic extracts from S. oleraceus leaves collected from 

natural habitats throughout New Zealand listed according to descending order of antioxidant 

capacity 

 

Location DPPH
a
 radical scavenging capacity EC50  

(mg leaf DW L
-1

) 

Alexandra
1
 42.4 ± 2.0 

Akaroa
2
 42.7 ± 1.2 

Dunedin
3
 47.6 ±3.3 

Acacia Bay
4
 48.9 ± 4.9 

Otago Peninsula
3
 50.2 ± 1.6 

Kuratau Dam
4
 50.6 ± 2.0 

Arrowtown
1
 52.1 ± 8.0 

Rotoaira Forest
4
 59.9 ± 5.8 

Halfmoon Bay
5
   60.1 ± 20.1 

Roxburg
1
 61.3 ± 7.0 

Tokaanu
4
 62.8 ± 4.6 

Oamaru
3
 62.9 ± 2.5 

Mokai
4
 63.4 ± 7.5 

Source: Ellwood (2007) 

a
2,2-diphenyl-1-picrylhydrazyl  

1
Central Otago, 

2
Cantebury, 

3
Coastal Otago, 

4
Central North Island and 

5
Stewart Island.  

Source (Ellwood, 2007) 
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1.9 EFFECT OF STRESS ON ANTIOXIDANT LEVELS IN PLANTS 

 

ROS production in plants is an unavoidable by-product of aerobic metabolic processes 

such as photosynthesis and respiration. ROS serve a useful function as secondary 

messengers in signal transduction cascades (Mittler et al., 2004; Foyer and Noctor, 2005; 

Miller et al., 2008). However, in excess, they have the same capacity to adversely affect 

plant cell components as they do in humans. Many studies have shown that plants 

subjected to UV radiation, ozone, drought, salinity and temperature accumulate 

supernumerary free radicals and ROS (Mittler, 2002; Foyer and Noctor, 2003; Tausz et 

al., 2004). In addition, pathogens and herbivore wounding are known to trigger the 

production of ROS (Orozco-Cardenas and Ryan, 1999); these apoplastic ROS mediate 

pathogen recognition by plants, which ultimately may lead to enhanced disease resistance 

(Lamb and Dixon, 1997; Grant et al., 2000). ROS-yielding processes such as the Mehler 

reaction in chloroplasts, the glycolate oxidase reaction in peroxisomes and electron 

leakage in mitochondria are enhanced by such environmental conditions (Table 1.23).  

 

Plants have evolved numerous mechanisms to limit the production of ROS during 

photosynthesis under excess excitation energy. For example, leaf anatomical adaptations 

(Mittler et al., 2001), photoprotective pigments (Gould, 2004), and biochemical pathways 

such as water-water cycle can all retard rates of ROS production (Asada, 1999). However, 

when stressors generate ROS in excess of the plants‘ capacity to quench them, they bring 

about signal transduction cascades, which induce the production of both enzymatic (Table 

1.24) and LMWAs (Sections 1.9.1 – 1.9.4), ultimately resulting in enhanced stress 

tolerance (Mano and Komatsuda, 2002).  

 

Abiotic stresses upregulate key enzymes such as phenylalanine-ammonia-lyase (PAL), 

chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and flavonol synthase (FLS) 

of phenylpropanoid and flavonoid pathway; leading to elevated levels of phenolic 

compounds in the tissues under stress (Leyva et al., 1995; Janas et al., 2000; Niggeweg et 

al., 2004; Løvdal et al., 2010). Further details on enhancement of LMWAs in plants by 

abiotic stresses such as drought, chilling, salinity and light are detailed briefly (Sections 

1.9.1 – 1.9.4) because these stresses are featured in the experimental sections of this 

thesis. 
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Table 1.23 Examples of primary reactive species, which are induced by abiotic and biotic stressors 

and their possible mechanism for induction  

 

Stressor  Reactive species  Mechanisms  

Strong light O2
•-
, H2O2, 

1
O2 Enhanced Mehler activity; photorespiration; triplet chlorophyll 

excitation  

Heat O2
•-
, H2O2, NO

•
 Impairment of photosynthetic and mitochondrial electron transport; 

enzyme inhibition; increased membrane permeability 

Cold  O2
•-
, H2O2 Enhanced Mehler activity; suppression of Calvin cycle enzymes; 

reduced antioxidant activity; decreased membrane fluidity 

UV-B 

radiation 

OH
•
, O2

•-
, H2O2 Inhibition of PSII reaction centre enzymes; possibly fission of H2O2 

Drought  O2
•-
, H2O2, NO

•
 Inhibition of rubisco; uncoupling of electron transport from ATP 

synthesis; enhanced Mehler activity; photoinhibition; inhibition of 

mitochondrial antioxidants; enhanced root respiration 

Wounding  O2
•-
, H2O2, NO

•
 Elicitation by cell wall fragments; interference by with redox systems on 

plasma membrane 

Salinity O2
•-
, H2O2, NO

•
 Stomatal closure, causing NADP

+
 deficit and O2 reduction in 

mitochondria; suppression of Calvin cycle enzymes, by enhanced 

Mehler reaction and ion leakage through damaged membranes 

Pathogens O2
•-
, H2O2, NO

•
 Activation of membrane bound NADP oxidase or cell wall peroxidise 

Source: Reproduced after permission from Gould (2003) 

Source: (Gould, 2003) 

 

Table 1.24 Stress conditions that stimulate increased levels or activities of enzymatic antioxidants in 

plants  

 

Antioxidant enzymes Functions  Stress conditions 

Ascorbate peroxidase Convert H2O2 to water. Drought, high CO2, high light intensity, 

ozone, paraquat 

Catalase Convert H2O2 to water and oxygen Chilling 

Glutathione peroxidase 

and reductase 

Glutathione peroxidase 

decomposes H2O2 and glutathione 

reductase regenerates glutathione. 

Chilling, drought, high CO2, ozone, 

paraquat 

Superoxide dismutase Converts superoxide anion 

radicals to H2O2. 

Chilling, high CO2, high light, increased 

O2, ozone, paraquat, SO2 

Sources: Buchanan et al. (2000); Halliwell and Gutteridge (2007) 

Sources: (Buchanan et al., 2000; Halliwell and Gutteridge, 2007) 
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1.9.1 Drought stress on LMWA production in plants 

  

There is a large body of evidence to indicate that LMWAs accumulate in plants in 

response to drought stress. Particularly phenolic compounds have the ability to mitigate 

effects of oxidative stress from water deficit either by scavenging ROS directly or by 

reducing light energy received by chloroplasts. This helps photosystems of drought 

stressed plants to process radiation without the formation of ROS (Bilger et al., 2001). 

The response of the antioxidant system to water deficit varies among plant species and 

varieties, and may change with development of the plant, as well as the duration and 

intensity of the stress (Table 1.25). 

 

1.9.2 Chilling stress on LMWA production in plants 

 

The enhancement of antioxidant capacity and level of phenolic compounds in response to 

cold stress has been observed in many species (Solecka et al., 1999; Janas et al., 2000; 

Rivero et al., 2001; Kirakosyan et al., 2003; Pennycooke et al., 2005; Olenichenko et al., 

2006; Liu et al., 2007; Koc et al., 2010). The hawthorn species (Crataegus laevigata and 

C. monogyna) upregulated different phenolics (such as vitexin-2''-O-rhamnoside, 

acetylvitexin-2''-O-rhamnoside, hyperoside, quercetin) at different magnitudes in 

response to identical conditions of cold stress (Kirakosyan et al., 2003) indicating that 

species and varieties differ in their antioxidants defences facing the same stress. 

 

1.9.3 Light stress on LMWA production in plants 

 

Increasing light intensities enhanced the accumulation of phenolic compounds in species 

such as Populus trichocarpata, Solanum esculentum, Vitis vinifera  and Punica granatum 

(Dumas et al., 2003; Warren et al., 2003; Pereira et al., 2006; Gautier et al., 2008; 

Schwartz et al., 2009). Anthocyanins in particular, accumulate in vacuoles under high 

light, where they contribute to light screening, pigmentation and photoprotection among 

other functions (Gould, 2004; Hernández et al., 2009). Increased ascorbic acid levels 

were associated with increasing light intensities in Solanum esculentum (Lee and Kader, 

2000; Dumas et al., 2003). 
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Table 1.25 Selected examples for effects of drought on increased low molecular weight antioxidants 

(LMWAs) in plant species under experimental conditions 

 

Enhanced LMWAs Plant species References 

 

Phenolic compounds 

  

Chlorogenic acid 

Quercetin 

Rutin 

Quercetin glucoside 

1,5-dihydroxyxanthone 

Hypericin 

Hypericum perforatum  

Hypericum brasiliense  

 

(Gray et al., 2003; Nacif de Abreu and Mazzafera, 

2005; Zobayed et al., 2007) 

Chlorogenic acid 

Epicatechin  

Catechin 

Crataegus sp. 

 

(Kirakosyan et al., 2003) 

-Tocopherol  

Arbutus unedo  

 

(Munné-Bosch and Peñuelas, 2004; Šircelj et al., 2005) 

Triticum aestivum 

Festuca arundinacea  

Agrostis palustris  

(Bartoli et al., 1999; Herbinger et al., 2002) 

Rosmarinus officinalis  (Munné-Bosch et al., 1999) 

Lavandula stoechas  (Munné-Bosch et al., 2001) 

Ascorbate  

Arbutus unedo  

 

(Munné-Bosch and Peñuelas, 2004; Šircelj et al., 2005) 

Rosmarinus officinalis 

Salvia officinalis 

Melissa officinalis 

(Munné-Bosch et al., 1999; Munné-Bosch and Alegre, 

2003) 

Carotenoids  

Rosmarinus officinalis  

 

(Munné-Bosch et al., 1999) 

Triticum aestivum (Bartoli et al., 1999; Herbinger et al., 2002) 

 

 

1.9.4 Salinity stress on LMWA production in plants 

 

Numerous studies have indicated that plants subjected to salinity, in addition to regulating 

water and ionic relations; enhanced LMWAs in their tissues to remove excess ROS. The 

type of LMWAs accumulated and effective range of salinity is specific to plant species 

(Table 1.26).  
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Table 1.26 Selected examples for effects of salinity on enhanced low molecular weight antioxidants 

(LMWAs) in plant species under experimental conditions 

 

Enhanced LMWAs Species  NaCl concentration 

(mM) 

References  

Phenolic compounds    

Polyphenolic content Cakile maritime  100 and 400 (Ksouri et al., 2007) 

Isoorientin, orientin, rutin and 

vitexin 

Fagopyrum esculentum 10, 50, 100, and 200 (Lim et al., 2012) 

Oleuropein  Olea europaea 75 - 125 (Petridis et al., 

2012) 

Ascorbate Catharanthus roseus 50 - 100 (Jaleel et al., 2007) 

Solanum esculentum Saline water (Raffo et al., 2006) 

Carotenoids     

Lycopene Capsicum annuum 15 - 30 (Navarro et al., 

2006) 

Carotenoid Fagopyrum esculentum 50 and 100 (Lim et al., 2012) 

Tocopherols Solanum esculentum 50 - 150 (Incerti et al., 2008) 

 

Enhancement of LMWAs due to abiotic stresses is not limited to intact plants but extends 

to in vitro cultured plant cells, as demonstrated for various plant species (Section 1.10; 

Table 1.27). Further, extraction of LMWAs from cell cultures have numerous advantages 

over extraction from whole plants (Section 1.10), thus S. oleraceus cell cultures may 

provide an effective and efficient means of LMWAs production. 

 

 

1.10 PLANT CELL CULTURE FOR THE PRODUCTION OF LMWAS 

 

Plant cell culture may be a viable option for the commercial scale extraction of 

antioxidants from S. oleraceus, avoiding the substantial variation of antioxidant content 

across plant material itself. Ideally, S. oleraceus cell cultures would continuously produce 

phenolic antioxidants, while the content could be controlled by manipulating culture 

conditions and imposing abiotic stressors. Abiotic stressors has been used successfully, to 

enhance LMWAs in experimental plant cell cultures of other species (Table 1.27), and the 

harvestable product has been manipulated by changing the source of explant, growth 

conditions, and nutrient medium composition. Many plant metabolites have been 
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produced via cell culture production at the industrial scale, such as anthocyanins, 

berberines, carthamin, ginsenosides, rosmarinic acid, scopolamine, shikonin and taxol 

(Sajc et al., 2000; Verpoorte et al., 2002; Kolewe et al., 2008; Wilson and Roberts, 2012).  

 

Table 1.27 Selected examples for the effects of abiotic stresses on enhanced low molecular weight 

antioxidants (LMWAs) in plant cell cultures under experimental conditions  

 

Enhanced LMWAs Species  Abiotic elicitor  References  

Phenolic compounds    

Flavonoids, flavonols and 

saponins 

Glycine max NaCl (10 mM) (Radhakrishnan et al., 

2012) 

p-coumaric acid and 2-3-O-

glucosylresveratrol 

Vitis vinifera Hydrostatic pressure 

(40 MPa) 

(Cai et al., 2011) 

Taxol  Taxus yunnanensis La
3+ 

(5.8 µM) (Wu et al., 2001) 

Saponins  Panax ginseng Ultrasound (0.1 W cm
-3

 

at 38.5 kHz)  

(Wu and Lin, 2002) 

 Panax notoginseng Hydrostatic pressure 

(670 kPa) 

(Zhang et al., 1995) 

Anthocyanins  Vitis vinifera Pulsed electric field 

(0.32 J kg
-1

) 

(Saw et al., 2012) 

Ascorbate Arabidopsis thaliana 

 

Nicotiana tabacum 

 

Methyl jasmonate
1
 (50 

µM) 

(Wolucka et al., 2005) 

Carotenoids    

β-carotene and violaxanthin Ipomoea batatas NaCl (100 – 200 mM) (Kim et al., 2012) 

Zeaxanthin Scutellaria baicalensis NaCl (100 mM),  

ABA
2 
(200 µM) 

(Tuan et al., 2013) 

Tocopherols    

α-tocopherol  Carthamus tinctorius NaCl (0.9 – 1.2 M)  (Chavan et al., 2011) 

1. methyl jasmonate mediate biotic and abiotic stress responses in plant cells 

2. Abscisic acid can simulate osmotic stress  
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Plant cell cultures are often preferred over whole plants for the extraction of 

phytochemicals at a commercial scale, since commercial extraction requires 

phytochemicals from sources, which are not limited by compound availability, compound 

variability, seasonal availability, species abundance and variable growth rate of the intact 

plants (Wilson and Roberts, 2012). Additionally, the extraction of phytochemicals from 

plant cell cultures may be a more economical option, since chemical synthesis is complex 

and costly (Zhang et al., 1995; Sajc et al., 2000). In a few cases, cell cultures have been 

found to produce higher levels of secondary metabolites than the differentiated mother 

plant itself (Rao and Ravishankar, 2002). 

 

 

1.11 THESIS INTRODUCTION  

 

S. oleraceus may be able to protect human cells from oxidative stress given their superb 

extractable antioxidant activities. However to substantiate this claim, further studies on 

the antioxidant properties of S. oleraceus are needed. Thus, the broad aim of this research 

was to study the antioxidant activities of S. oleraceus leaves based on following specific 

objectives:  

 

1.11.1 Objectives  

 

1. To study the effects of age of a plant, its original locality, and the imposition of 

abiotic stressors on the extractable antioxidant activities of S. oleraceus leaves; 

and the effects of stressor-induced leaf variations on cellular antioxidant activities 

of cultured human cells.  

 

2. To study the effects of cooking and in vitro gastrointestinal digestion on 

extractable antioxidant activities and in vitro cellular antioxidant activities of S. 

oleraceus leaves.  

 

3. To study extractable antioxidant activities of S. oleraceus cell suspension cultures 

in relation to abiotic stressors. 
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This dissertation is divided into three main chapters to test the above hypotheses, each 

corresponding to a stand-alone publication, and therefore a certain extent of overlap 

between background information is inevitable.  

 

Chapter 2 outlines the general materials and methodology that were followed in Chapters 

3 – 5. Chapter 3 identifies the variables that affect the extractable and cellular antioxidant 

activities of S. oleraceus leaves. Chapter 4 presents the effects of cooking and in vitro 

gastrointestinal digestion on extractable and cellular antioxidant activities of phenolic 

compounds in S. oleraceus leaves. Finally, Chapter 5 presents a protocol that allows 

continuous extraction of phenolic antioxidants from the S. oleraceus cell suspension 

cultures where the production varied with abiotic stressor applied. Chapter 6 presents 

general discussion based on findings from previous chapters and possible future 

directions.  
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

 

2.1 CHEMICALS 

 

2,2‘-Azobis(2-amidino-propane) dihydrochloride (AAPH) and chlorogenic acid were 

purchased from Sapphire Bioscience (Hamilton, New Zealand). 2,2‘-Azobis(2-

methylpropionamididine) dihydrochloride (ABAP), 2‘,7‘-dichlorofluorescin diacetate 

(DCFH-DA), 2,2-diphenyl-1-picrylhydrazyl (DPPH), caftaric acid, chicoric acid, 

Dulbecco‘s modified Eagle‘s medium (DMEM), fluorescein disodium, Folin–Ciocalteu 

reagent, Hank‘s balanced salt solution (HBSS), pepsin from porcine gastric mucosa, 

pancreatin from porcine pancreas, phosphate buffered saline solution (PBS) and quercetin 

dihydrate were purchased from Sigma-Aldrich (St Louis, MO). 6-Hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox) and sodium carbonate (Na2CO3) were 

purchased from Thermo Fisher Scientific Australia (Scoresby, Australia). Tannic acid 

was purchased from Carl Roth Gmbh (Karlsruhe, Germany). Ascorbate assay kit 

(700420) from Cayman Chemical Company (Ann Arbor, MI, USA). Quercetin was 

kindly provided by Plant and Food Research, Chemistry Department, University of 

Otago, Dunedin, New Zealand. Solvents were of HPLC grade. Human hepatocellular 

carcinoma (HepG2) cells were gratefully obtained from the Pathology Department at the 

University of Otago, Dunedin, New Zealand. Human epithelial colorectal 

adenocarcinoma cells (Caco2) cells were kindly provided by Victoria University of 

Wellington, Wellington, New Zealand. 

 

2.2 TOTAL PHENOLICS ASSAY 

(Waterhouse, 2001) 

Total phenolics were measured using the Folin–Ciocalteu method, modified after 

Waterhouse (2001). Duplicate 1:2 serial dilutions of samples or a 0 – 60 µM tannic acid 

standard series were introduced into the wells of 96 well plates. Each well held a 25 μL 

sample, standard or blank (ddH2O), plus 125 μL of 0.1 M Folin-Ciocalteu reagent. Plates 

were incubated in the dark on an orbital shaker (10 rpm) at room temperature for 3 min, 

and then 125 µL 0.6 M Na2CO3 added to each well and incubated for a further 30 min. 

Absorbance at 760 nm was read using an EnSpire 2300 multimode reader (PerkinElmer, 
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San Jose, CA). Total phenolic concentrations were expressed as mg tannic acid 

equivalents g
-1

.  

 

2.3 DPPH (2,2-diphenyl-1-picrylhydrazyl) RADICAL SCAVENGING ASSAY 

 

DPPH radical scavenging capacity was measured for duplicate serial dilutions of the 

samples as described by Philpott et al. using 1mM Trolox as the standard (Philpott et al., 

2003). A 200 µL aliquot of 100 μM DPPH in methanol was added to 50 µL sample or 

standard, incubated in darkness on an orbital shaker for 30 min, and absorbance measured 

at 515 nm. Antioxidant activity was estimated as the reciprocal of EC50, the concentration 

of sample or standard which resulted in a 50% reduction in A515. 

 

2.4 OXYGEN RADICAL ABSORBANCE CAPACITY (ORAC) ASSAY 

 

The ORAC-fluorescein assay, adapted for manual handling, was performed on serial 

dilutions of samples in black 96-well plates (Dávalos et al., 2003). Into each well were 

dispensed 120 μL of 117 nM fluorescein disodium in 75 mM phosphate buffer at pH 7.4, 

and 20 μL of sample or Trolox in the same phosphate buffer. Plates were incubated at 37 

°C for 5 min, and then 60 μL of 40 mM AAPH added to generate peroxyl radicals. Wells 

were excited at 485 nm, and fluorescence emission at 538 nm was read at minute intervals 

over 1 h using an EnSpire 2300 multimode reader, with 5 s shaking between readings. 

The areas under fluorescence decay curves (AUC) of samples were calculated, from 

which the AUC of the antioxidant-free blank (75 mM phosphate buffer) was subtracted. 

ORAC values for samples were expressed as µmol Trolox equivalents g
-1

 using 

regression equations between net AUC and Trolox concentration. 

 

2.5 ASCORBATE ASSAY 

 

Ascorbate concentration was measured using the ascorbate assay kit (700420) from 

Cayman Chemical Company (Ann Arbor, MI, USA). The samples were resuspended in 

methanol: ddH2O: diethylenetriaminepentaacetic acid DTPA (75: 22: 2.5, v/v/v) to obtain 

0.05% (w/v) dilution. The concentration of ascorbate was measured using serial dilutions 

of samples in black 96-well plates. Into each well were dispensed 50 μL of DTPA, and 50 

μL of sample or ascorbate standard. Then 100 μL of reconstituted ascorbate substrate was 
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added to all wells excluding sample background wells. Ascorbate assay buffer 100 μL 

was added to sample background wells. The plates were incubated in darkness at 25 °C 

for 10 min, and then 50 μL of ascorbate developer to all the wells. The plates were 

incubated in darkness at 25 °C for 5 min, and well contents were excited at 345 nm, and 

fluorescence emission at 425 nm was read using an EnSpire 2300 multimode reader. 

Ascorbate concentrations of samples were expressed as ascorbate mg g
-1

. 

 

2.6 HUMAN CELL CULTURES (HepG2 and Caco2) 

 

Human HepG2 cells were grown in DMEM growth medium supplemented with 10% heat 

inactivated FBS, 0.2 M GlutaMAX and 0.1 mg mL
-1

 penicillin-streptomycin. Human 

Caco2 cells were grown in complete DMEM medium (containing high glucose 

supplemented with 10% heat inactivated FBS, 10 mL L
-1

 nonessential amino acids, 2 

mmol L
-1

 L-glutamine, 0.5 mg L
-1

 amphotericin B, 50 mg L
-1 

gentamicin, 15 mmol L
-1 

HEPES and 44 mmol L
-1

 NaHCO).  

 

Both HepG2 and Caco2 cell cultures were maintained in 75 cm² flasks at 37 °C in a 

humidified atmosphere with 5% CO2. Cells were routinely passaged every 2-3 d, upon 

reaching 90% confluency (when 90% of the growth surface of the flask is occupied by 

cells). The cells were passaged by removing media and incubating with trypsin for 15 min 

and adding fresh media. The HepG2 cells used for subsequent experiments were between 

passages 12 and 20 while Caco2 cells were between passages 21 and 30. 

 

2.7 CELLULAR ANTIOXIDANT ACTIVITY (CAA) ASSAY 

 

The CAA assay was performed according to Wolfe and Liu (2007). Human HepG2 and 

Caco2 cells were seeded at 6 x 10
4
 per well on a 96 well flat-bottom plate in 100 μL of 

DMEM, and incubated at 37 °C for 24 h. DMEM was removed, and the cells were 

washed with PBS. Samples, were (evaporated and) diluted with DMEM, and 50 μL of 25 

mM DCFH-DA was added to 50 μL of the diluted extracts, to yield final concentrations 

of 1, 3, 10 and 30 g L
-1

 of samples. Cells were treated for 1 h with samples or quercetin 

dihydrate standard (at 5, 10, 15 and 20 µM final concentration) in DCFH-DA. A 100 μL 

aliquot of 600 µM ABAP in HBSS was applied to the cells after PBS wash. The emission 

fluorescence at 538 nm (following excitation at 485 nm), was measured at 37 °C every 5 
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min for 1 h using a Fluoroskan Ascent microplate fluorometer (Thermo Electron, 

Franklin, MA).  

 

CAA values were calculated as the integral of fluorescence emission using the following 

equation: 

CAA unit = 100 – (ʃSA / ʃCA) x 100, 

where ʃSA and ʃCA is the integrated area under the curve of fluorescence versus time for 

sample and control curves, respectively (Wolfe and Liu, 2007). 

 

2.8 ONLINE REVERSE PHASE HPLC-DPPH RADICAL SCAVENGING 

 

The HPLC method reported by Yin et al. was modified and used to separate and quantify 

phenolics in samples (Yin et al., 2008; Ou et al., 2013). We used an Agilent Technologies 

1200 series HPLC system (Agilent Technologies, Palo Alto, CA) equipped with a 

quaternary pump and a diode array detector. Briefly, samples were injected at 4 °C into a 

reverse phase Alltima C18 column (3µm 150 x 2.1mm). Elution (0.2 mL min
-1

) was 

performed using a solvent system comprising 1% formic acid (A) and 100% acetonitrile 

(B) using a gradient starting with 95% A, reducing to 85 % at 15 min; 76% at 27 min, 

70% at 40 min, 20% from 41 to 45 min and 95% from 46 to 55 min. The absorption 

spectra at 320 nm were recorded. The HPLC-separated analytes were reacted postcolumn, 

with the DPPH reagent (250 µM) dissolved in 100% acetonitrile: 0.1 M sodium citrate 

buffer (50:50, v/v) at pH 7.6 and pumped at 0.2 mL min
-1

. The induced bleaching was 

detected photometrically as a negative peak at 518 nm. Identification of main peaks in 

samples were confirmed by co-eluting with authentic compounds.  
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CHAPTER 3: EFFECTS OF AGE, ECOTYPE, CHILLING AND 

SALINITY ON EXTRACTABLE ANTIOXIDANT ACTIVITIES OF 

Sonchus oleraceus L.  

 

 

 

 

 

 

Plate 3.1 Four week old Sonchus oleraceus L. plants growing in Victoria University of Wellington 

glasshouse.  
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3.1 ABSTRACT  

 

Leaves of Sonchus oleraceus L., a traditional component of the Māori diet in New 

Zealand, are rich in phenolics and show high antioxidant potential in vitro. Extractable 

antioxidant activities show considerable variation among plants, which may be due to 

variation in their growing environments and/or genotype, but the precise reasons for this 

variation are unknown. To study possible environmental effects on antioxidant activity, 

two ecotypes from Acacia Bay (ACB) and Oamaru (OAM) in New Zealand were exposed 

to chilling, salinity and their combination for two weeks commencing 8, 10 and 12 weeks 

after germination. Chlorophyll fluorescence parameters, extractable and cellular 

antioxidant activities, ascorbate and total phenolic contents were measured, and HPLC 

profiles obtained for methanolic extracts of leaves. None of the treatments significantly 

diminished the maximum quantum efficiency of photosystem II but rapid light response 

curves for chlorophyll fluorescence indicated acclimation to stressors after two weeks. 

Antioxidant activities and total phenolic content were higher in older plants compared to 

younger plants in both ecotypes, irrespective of the treatment. The ACB ecotype had a 

higher phenolic concentration and antioxidant activities compared to OAM, and these 

levels were maintained from F1 to F2 generation. Chlorogenic acid was enhanced in 

youngest plants by exposing plants to chilling, salinity and their combination. The cellular 

antioxidant activities in HepG2 cells correlated linearly with stressor-induced extractable 

antioxidant activities and LMWAs concentrations from the youngest plants. My data 

indicate that the imposition of stressors on already potent ecotypes can augment the 

extractable antioxidant potential in S. oleraceus. Further, these stressor-induced changes 

were transferable to human cells in vitro. 

 

KEYWORDS: Sonchus oleraceus, antioxidant, phenolics, chilling, salinity 
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3.2 INTRODUCTION 

 

Māori have long used the smooth sow thistle, Sonchus oleraceus L., both as a leafy 

vegetable and for medicinal purposes (Section 1.7). The leaves of S. oleraceus are rich in 

phenolic compounds and thus exceptionally high in extractable antioxidant activities 

(Section 1.8.3). S. oleraceus shoots showed variation in DPPH radical scavenging 

activities among plants collected from different locations in New Zealand (Section 

1.8.4;(Ellwood, 2007). In addition to genotypic variation, some of the variability in 

LMWA activity is likely attributable to differences in development stage, growth 

environment and the degree to which plants are subjected to abiotic stressors. However, 

the exact causes of this variation are unknown.  

 

In other plant species, age-related increases in phenolic compounds and antioxidant 

activities are associated with increasing capacities of mature plants to invest resources in 

secondary metabolic processes, whereas in young plants, limited resources are demanded 

for primary metabolic processes required for growth (Fritz et al., 2001; Barton, 2007). 

For example, the concentration of phenolics and antioxidant activities increased with age 

in species such as Brassica oleracea, Cosmos caudatus and Lactuca sativa (Vallejo et al., 

2003a; Oh et al., 2011; Mediani et al., 2012).  

 

Intraspecific differences in extractable LMWA activities and phenolic concentration may 

be attributable to differences in concentration and activity of enzymes involved in the 

phenylpropanoid pathway. Differences in phenolic concentration and antioxidant activity 

among cultivars have been reported for species, such as Fragaria ananassa, Rosa sp., 

Solanum tuberosum, Rubus idaeus, Vaccinium corymbosum and Solanum esculentum 

(Ehlenfeldt and Prior, 2001; Vinokur et al., 2006; Reddivari et al., 2007; Tulipani et al., 

2008; Løvdal et al., 2010; Krüger et al., 2011).  

 

There are numerous examples in which a single abiotic stressor (Section 1.9) was used to 

elevate phenolic levels and antioxidant activities in vegetative shoots of different species 

(Smirnoff, 1993; Bartoli et al., 1999; Munné-Bosch et al., 1999; Munné-Bosch and 

Alegre, 2000; Zhang and Schmidt, 2000; Munné-Bosch and Alegre, 2002; Kirakosyan et 

al., 2003; Munné-Bosch and Peñuelas, 2004; Šircelj et al., 2005). However, far fewer 
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studies have examined the effects of combinations of these stressors on antioxidant levels 

(Figure 3.1; Mittler, 2006).  

Salinity  Heat Chilling Ozone  UV  

Positive/ 

Negative  

No 

Positive No  Positive Positive Drought 

 Negative  Unknown  No 
Positive/  

No  
Salinity  

   No Negative Heat  

   Unknown  Unknown Chilling  

    Unknown  Ozone 

 

No  : no change by the combination compared to single stressor 

Negative : negative interaction (decrease owing to the combination compared to single stressor) 

Positive  : positive interaction (increase owing to the combination compared to single stressor) 

Unknown : effect of stressor combination unknown 

 

Figure 3.1 Effects of two combined abiotic stressors on extractable antioxidant activities of plants 

Sources: Pääkkönen et al. (1998); Aroca et al. (2003); Koti et al. (2007); Maggio et al. (2007); Shen et 

al. (2010); Silva et al. (2010); Hartikainen et al. (2012); Ahmed et al. (2013a); Ahmed et al., (2013b) 

(Pääkkönen et al., 1998; Aroca et al., 2003; Koti et al., 2007; Maggio et al., 2007; Shen et al., 2010; Silva 

et al., 2010; Hartikainen et al., 2012; Ahmed et al., 2013a; Ahmed et al., 2013b) 

Plant responses to a combination of stressors may be complex, not simply the sum of 

effects of individual stressors. In laboratory experiments and field conditions involving 

different species, stressor combinations have been found to yield additive, antagonistic, 

synergistic effects on plant physiological, phytochemical or yield responses, and cannot 

be predicted through plants responses to the individual stressor. Additive effects are 

defined as when the two stressors together cause a response equal to the effects caused by 
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two stressors individually (i.e. simple addition of each individual response), therefore can 

be either positive or negative (Figure 3.2). Synergistic interaction occurs when two 

stressors together produce an effect greater than the sum of their individual effects 

(Figure 3.3A). Antagonistic interaction occurs when two stressors together produce an 

effect lower than the sum of their individual effects (Figure 3.3B). Additionally, the 

potential effects of stressor combination could also vary depending on the relative level of 

each of the different stressors combined (Mittler, 2006). 

 

A0: without stressor A 

B0: without stressor B 

A1: with stressor A 

B1: with stressor B 

 

Figure 3.2 ANOVA interaction plots for additive effect of two stressors (A1 and B1) together produce 

an effect equal to the sum of their individual stressor effects on the dependent variable (Y), which 

could be either (A) positive or (B) negative. 

Source: Dunne (2010) 
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A0: without stressor A 

B0: without stressor B 

A1: with stressor A 

B1: with stressor B 

 

Figure 3.3 ANOVA interaction plots when two stressors (A1 and B1) together produce either (A) 

synergistic or (B) antagonistic on the dependent variable (Y). (Dunne, 2010) 

Source: Dunne (2010) 

 

Assays for extractable antioxidant activities alone are not themselves sufficient for us to 

conclude that those plants that possess the highest antioxidant levels would provide the 

greatest protection against effects of ROS in the cells of the consumer (Section 1.6). 

Nevertheless, associations between chemical measures of leaf antioxidant activities and 

CAA of S. oleraceus have not yet been studied. It is not known whether variation in the 

phenolic content and recorded antioxidant capacity in leaf extracts is accurately reflected 

in terms of the cellular antioxidant boost supplied to living human cells.  

 

It was hypothesized that extractable LMWA activities of S. oleraceus leaves vary 

depending on age of a plant, its original locality, and the imposition of abiotic stressors; 

and stressor-induced variations correlates with cellular antioxidant activities in cultured 

human cells. Using ecotypes of S. oleraceus already known to possess potent LMWA 

activities, I describe here the effects of applying chilling and salinity treatments, both 

alone and in combination, on the levels of phenolic compounds in the leaves. In 

preliminary trials (Appendix A.1-A.2), these two stressors were shown to have the 

greatest potential for manipulating phenolic compound concentration. 

0

2

4

6

8

10

12

B0 B1

D
e
p

e
n

d
e
n

t 
v

a
r
ia

b
le

 (
Y

)

A1

A0

A

0

2

4

6

8

10

12

B0 B1

D
e
p

e
n

d
e
n

t 
v

a
r
ia

b
le

 (
Y

)

A0

A1

B



54 

 

3.3 MATERIALS AND METHODS 

 

3.3.1 Plant materials and treatments  

 

Two ecotypes of Sonchus oleraceus were grown from seeds obtained from selfed F1 

generation plants, which were themselves raised from seeds collected from wild 

populations at Acacia Bay and Oamaru in New Zealand (hereafter the ecotypes are 

abbreviated as ACB and OAM, respectively). These two ecotypes were selected due to 

their difference original growing environments (Table 3.1) and in antioxidant activities, 

where ACB was 1.6 times more efficient in scavenging DPPH radicals than OAM 

(Ellwood, 2007). OAM originated from a colder region than ACB (Table 3.1). 

 

Table 3.1 Comparison of the regions from which the two ecotypes of Sonchus oleraceus L. were 

collected 

 Ecotypes 

ACB OAM 

Location  Acacia Bay  

Central North Island 

Oamaru 

Coastal South Island 

Coordinates  S 38º 42', E 176º 02' S 45º 05', E 170º 58' 

Temperature (
o
C)

1
 12.4 ± 0.1 9.4 ± 0.1 

Humidity (%)
1
 82.7 ± 0.2 78.4 ± 0.3 

Source: NIWA (2012) 

1 
Annual average for measurements at 3 h interval  

(NIWA, 2012) 

The plants were grown in individual pots (12 x 12 x 15 cm) containing a 1:1 mixture of 

potting mix: sand inside an unheated glasshouse under natural light at Victoria University 

of Wellington campus during January to March 2011 (summer). Two ecotypes and four 

treatments (stressors) were combined to give eight treatments for which each had eight 

replicates. Treatments were imposed for 14 d on 8, 10 and 12 week old plants to test the 

effect of plant age on the responsiveness to abiotic stressors. Control plants were watered 

with tap water at 150 mL day
-1

. For the chilling treatment, plants were repeatedly held at 

5 
o
C for 12 h overnight and returned to the glasshouse during the day. Salinity was 

imposed by irrigating with 150 mL day
-1

 of 50 mM NaCl. The fourth group of plants was 

given both the chilling and salinity treatments.  
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The fully expanded youngest leaves from nodes 5 and 6 on each plant were selected on 

weeks 10, 12 and 14, for chlorophyll fluorescence measurements and then harvested for 

subsequent phytochemical analysis.  

 

3.3.2 Chlorophyll fluorescence measurements 

 

The maximum photosynthetic efficiency of PS II was measured in leaves dark-adapted 

for 8 h using a PAM 2500 chlorophyll fluorometer (Heinz Walz GmbH, 2008, Germany). 

The minimum level of fluorescence (Fo) was determined under low measuring-light 

irradiance (<0.05 µmol m
-2

 s
-1

), and then Fm (maximum fluorescence) determined using a 

saturating pulse (12,000 µmol m
-2

 s
-1

 for 0.8 s). From those parameters, values of Fv/Fm 

(the maximum quantum efficiency of PSII in the dark-adapted state) were approximated, 

where variable fluorescence (Fv) was calculated as Fm–Fo (Table 3.2). 

 

To obtain rapid light response curves, the leaves were irradiated with white actinic light 

supplied by the fluorometer. Steady state fluorescence (F′o) was measured under a light 

ramp comprising 11 intensities from 0 to 3000 µmol m
-2

 s
-1

 at 30 s interval. The 

maximum fluorescence (F′m) was recorded using saturating light pulses superimposed on 

the actinic light (Table 3.2). Accordingly, ΔF/F′m (effective quantum yield) was obtained 

where ΔF (variable fluorescence) was calculated as F′m–F′o (Table 3.2). Non 

photochemical quenching (NPQ) was calculated as (Fm–F′m)/F′m, where Fm is the 

maximum fluorescence measured during light curve. qP (photochemical quenching) was 

calculated as (F′m–Ft)/(F′m–F′o), where Ft defined as steady state yield of fluorescence in 

the light (Table 3.2 – 3.3). Apparent rate of photosynthetic electron transport of 

photosystem II (ETR) was calculated as ΔFv/F′m x 0.5 x 0.84 x PAR, (where PAR is 

photosynthetically active radiation, 400-700 nm; 0.84 is the ETR factor, the fraction of 

absorbed PAR by green leaves and 0.5 is the fraction of quanta distributed to PS II). 
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Table 3.2 Definitions of fluorescence intensity parameters  

 

Symbol  Fluorescence intensity 

parameter 

Definition  

Fo Minimum fluorescence  

(dark adapted leaf) 

Fluorescence intensity with all PS II reaction centres open while 

the photosynthetic membrane is in the non-energized state.  

Fm Maximum fluorescence  

(dark adapted leaf) 

Fluorescence intensity with all PSII reaction centres closed all 

nonphotochemical quenching processes are at a minimum. 

Fv Variable fluorescence  

(dark adapted leaf) 

Maximum variable fluorescence in the state when all non-

photochemical processes are at a minimum, calculated as (Fm–Fo). 

F′o Minimum fluorescence  

(light adapted leaf) 

Fluorescence intensity with PS II reaction centres open in any 

light adapted state.  

F′m Maximum fluorescence  

(light adapted leaf) 

Maximum fluorescence intensity with saturating pulse in any light 

adapted state. 

Ft Steady state fluorescence 

(light adapted leaf) 

Fluorescence immediately before a saturating pulse.  

ΔF Variable fluorescence  

(light adapted leaf) 

Maximum variable fluorescence in any light adapted state, 

calculated as (F′m–F′o). 

Source: Maxwell and Johnson (2000) (Maxwell and Johnson, 2000) 

 

Table 3.3 Definitions of fluorescence quenching parameters  

 

Fluorescence quenching 

parameters 

Definition  Calculation   

Maximum quantum efficiency  

(dark adapted leaf) 

The maximum potential quantum efficiency of PSII in 

the dark adapted state. 

Fv/Fm 

Effective quantum efficiency  

(light adapted leaf) 

The proportion of the light absorbed by the chlorophyll 

associated with PSII that is used in photochemistry. 

ΔF/F′m 

NPQ  

(Non photochemical quenching)   

Quantum yield of regulated non-photochemical energy 

loss in PS II as heat. 

(Fm–F′m)/ 

F′m 

qP  

(Photochemical quenching) 

The proportion of the PSII reaction centers that are open. (F′m–Ft)/ 

(F′m–F′o) 

Source: Genty et al. (1989)(Genty et al., 1989) 

 

The curve fit option in the PamWin-3 software, which has been derived by Eilers and 

Peeters‘ mechanistic model (Eilers and Peeters, 1988) was used to obtain three 

parameters from the ETR versus PAR curves:(i) efficiency of light capture in the light 

limiting region indicated by the initial slope of the curve (α); (ii) maximum 
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photosynthetic capacity indicated by the plateau in ETR at light saturation (ETRmax); and 

(iii) light saturation coefficient of the curve (lk).  

 

3.3.3 Phytochemical extraction 

 

Leaves were removed and bisected longitudinally, one half to be used for phytochemical 

analysis and the other to determine dry matter percentage (all results presented on dry 

weight basis). The remainder of the plant was separated into shoot and root systems and 

oven dried at 70 
o
C for 12 h to obtain dry biomass.  

 

Material intended for phytochemical analysis was snap frozen in liquid nitrogen, ground 

to a fine powder, and dissolved in methanol: ddH2O: acetic acid (70:23:7, v/v/v) to obtain 

a 10% (w/v) slurry. Aliquots were centrifuged at 24000 g for 5 min, and supernatants 

stored under nitrogen at −20 
o
C. Phytochemical analyses were performed within 7 d of 

extraction.  

 

The chemicals used are listed in Section 2.1. The analysis of total phenolic content, 2,2-

diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, oxygen radical 

absorbance capacity (ORAC) assay, Cellular Antioxidant Activity (CAA) assay, 

ascorbate content and online reverse phase HPLC-DPPH radical scavenging were 

performed as described in Sections 2.2 – 2.8.  

 

3.4 STATISTICAL ANALYSIS 

 

A three-way analysis of variance (ANOVA) with Tukey‘s post hoc test was performed to 

identify effects of age, ecotype and abiotic stressors. Mixed repeated measures ANOVA 

was performed on light response curve data and Bonferroni post hoc tests. Probit analysis 

was performed for CAA dose-response data. Correlation analysis was performed between 

CAA and extractable antioxidant activities, total phenolic content, ascorbate content and 

hydroxycinnamic acid concentrations. Significances were defined at P < 0.05. All 

analyses were performed using SPSS 18.0 statistical software. 

 

 

 



58 

 

3.5 RESULTS  

 

3.5.1 Hydroxycinnamic acids in S. oleraceus leaf extracts detected by HPLC 

 

HPLC profiles revealed that caftaric, chicoric and chlorogenic acids were the most 

abundant antioxidants in methanolic leaf extracts of S. oleraceus (Table 3.4). These 

hydroxycinnamic acids collectively accounted for 84 – 93% of the phenolic compounds 

detected by HPLC-DPPH chromatograms (Table 3.4).  

 

Table 3.4 Retention times (RT) of phenolic compounds detected by HPLC at 320 nm and their 

content as a percentage of total peak area  

 

Peak Compound RT (min)
1
 %total

2
 

1 Caftaric acid 11.4 ± 0.1 10.7 ± 1.3 

2 Chlorogenic acid 14.4 ± 0.1 18.3 ± 1.6 

3 Unknown 14.9 ± 0.1 0.5 ± 0.1 

4 Unknown 18.3 ± 1.3 0.9 ± 0.2 

5 Unknown 26.5 ± 0.1 0.2 ± 0.1 

6 Chicoric acid 27.1 ± 0.1 59.7 ± 1.5 

7 Unknown 28.4 ± 0.1 3.5 ± 0.2 

8 Unknown 29.1 ± 0.1 1.9 ± 0.4 

9 Unknown 31.0 ± 0.3 4.3 ± 0.6 

1 
Retention time (mean ± SE, n = 192)   

2 
Means ± SE, n = 192 

 

 

3.5.2 Effect of age on extractable antioxidant activities, concentrations of total 

phenolic compounds and hydroxycinnamic acids  

 

Of the three factors studied (age, ecotype and stressor), plant age had the largest effect on 

extractable antioxidant activities; a three-fold increase was seen at week 12 compared to 

week 10 as measured by both ORAC and DPPH assays (P < 0.001; Figure 3.4A,B). Plant 

age had the largest effect on total phenolic content; two-fold higher at week 12 compared 

to week 10 (P < 0.001; Figure 3.4C). These increases occurred irrespective of ecotype 

and across all treatments (Figure 3.4A-C).  
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The extractable concentrations of caftaric, chicoric and chlorogenic acids were 50% 

higher at week 12 compared to week 10 in both ecotypes irrespective of the stressor 

applied (P < 0.001; Figures 3.4D-F).  

 

3.5.3 Effect of ecotype on extractable antioxidant activities, concentrations of total 

phenolic compounds and hydroxycinnamic acids  

 

Differences between ecotypes were the next largest effect on ORAC activity and content 

of total phenolics and hydroxycinnamic acids in S. oleraceus leaves (Figure 3.4). For 

flowering individuals, the ORAC activities were between 40 and 50% higher in ACB than 

in OAM (P = 0.01; Figure 3.4A). Similarly, DPPH radical scavenging activities of ACB 

were 1.2-fold higher than those of OAM (P = 0.06; Figure 3.4B). Total phenolic contents 

were between 20% and 30% higher in ACB than OAM in older plants (P < 0.001; Figure 

3.4C). In youngest plants, ACB and OAM were similar in antioxidant activities and total 

phenolic content (Figure 3.4A-C). ACB leaves contained 20 – 40 % more caftaric, 

chicoric and chlorogenic acids than OAM leaves specially when the plants were young (P 

< 0.001; Figure 3.4D-F). 
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Figure 3.4 Effects of age and ecotype on (A) ORAC activity, (B) DPPH radical scavenging, 

concentrations of (C) total phenolics, (D) caftaric, (E) chicoric and (F) chlorogenic acids in 

methanolic extracts of leaves of ACB and OAM ecotypes of Sonchus oleraceus L. Means ± SE (n = 

32). Bars with different letters of the same case indicate significant differences among plant ages 

within an ecotype (P < 0.05). *Significant difference between ecotypes (P < 0.05). ns: Ecotypes not 

significantly different (P > 0.05). 
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The plants were vegetative at week 10, but were flowering in weeks 12 and 14 (Plate 3.2 

A-C).  

 

 

 
Control      Chilling   Salinity     Combined 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.2 Shoot morphology of Sonchus oleraceus L. at week (A) 10, (B) 12 and (C) 14, following two 

weeks of chilling, salinity and the combination of the two. Representative plants for each treatment 

are shown. 

10 cm 

 

Control        Chilling          Salinity          Combined 

 

A 

 

20 cm 

B 

 

Control         Chilling            Salinity            Combined 

 

C 
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3.5.4 Effects of stressors on extractable antioxidant activities, concentrations of 

total phenolic compounds and hydroxycinnamic acids  

 

ORAC activities were not influenced by any of the stressor treatments (P = 0.72; Figure 

3.5A) but DPPH radical scavenging activities were (P < 0.05; Figure 3.5B). Plants treated 

with chilling and salinity alone did not differ from the control plants in DPPH radical 

scavenging. However, when chilling and salinity were applied in combination to 

flowering plants, the DPPH radicals were scavenged 20% less efficiently compared to the 

control in both ecotypes (Figure 3.5B).  

 

Concentrations of total phenolics were not affected by chilling and salinity alone 

compared to the control, across ecotypes and plant ages (P = 0.01; Figure 3.5C). However 

when chilling and salinity were applied in combination to older plants, the concentration 

of total phenolics was enhanced compared to the control in both ecotypes (Figure 3.5C). 

 

Concentrations of caftaric (P = 0.92) and chicoric acids (P = 0.47) were not influenced by 

any of the treatments (Figure 3.6A,B). Stressors significantly increased chlorogenic acid 

concentration (P < 0.001; Figure 3.6C). Salinity and combined treatment doubled 

chlorogenic acid concentration compared to the control in both ecotypes (Figure 3.6C). 

Chilling increased chlorogenic acid concentration by three-fold in both ecotypes, but only 

in vegetative plants (Figure 3.6C). HPLC profiles of leaf methanolic extracts did not 

reveal any new peaks resulting from the stressor treatment, indicating that no new 

compounds had been formed (Figure 3.7). 

 

 



63 

 

 

Figure 3.5 Treatment effects on (A) ORAC, (B) DPPH radical scavenging and (C) concentration of 

total phenolic compounds in methanolic extracts of leaves of ACB and OAM ecotypes of Sonchus 

oleraceus L. at week 10, 12 and 14, which had been exposed to treatments for two weeks: control, 

chilling, salinity and the combination of the two. Means ± SE (n = 8). Bars with different letters of the 

same case indicate significant differences across treatments within an ecotype at each week (P < 0.05). 

*Significant difference between ecotypes (P < 0.05). ns: Ecotypes not significantly different (P > 0.05). 
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Figure 3.6 Treatment effects on (A) caftaric (B) chicoric and (C) chlorogenic acid concentrations in 

methanolic extracts of leaves of ACB and OAM ecotypes of Sonchus oleraceus L. at week 10, 12 and 

14, which had been exposed to treatments for two weeks: control, chilling, salinity and the 

combination of the two. Means ± SE (n = 8). Bars with different letters of the same case indicate 

significant differences across treatments within an ecotype at each week (P < 0.05). *Significant 

difference between ecotypes (P < 0.05). ns: Ecotypes not significantly different (P > 0.05). 
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Figure 3.7 RP-HPLC-DPPH chromatograms recorded for ACB methanolic extracts of leaves of 

Sonchus oleraceus L. at week 10 (A-D), 12 (E-H), and 14 (I-L), which had been exposed to treatments 

for two weeks: control (A,E,I), chilling (B,F,J), salinity (C,G,K) and the combination of the two 

(D,H,L). Phenolics (green line) measured at 320 nm; DPPH radical scavenging (blue line) at 518 nm.  

Peaks: 1, caftaric acid, 2, chlorogenic acid and 3, chicoric acid. 
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3.5.5 Effects of age, ecotype and stressors on ascorbate concentration 

 

Plant age had the largest effect on ascorbate concentration; a three-fold increase was 

observed at week 12 compared to week 10 in both ecotypes (P < 0.001; Figure 3.8A). The 

ACB had 30 – 60% higher leaf ascorbate concentration than OAM (P < 0.001; Figure 

3.8). Stressors did not significantly affect leaf ascorbate level concentrations (P = 0.65; 

Figure 3.8).  

 

 

Figure 3.8 Concentration of ascorbate in methanolic extracts of leaves of ACB and OAM ecotypes of 

Sonchus oleraceus L. with (A) plant age and (B) stressors at week 10, 12 and 14, which had been 

exposed to treatments for two weeks: control, chilling, salinity and the combination of the two. Means 

± SE (n = 32 and n = 8). Bars with different letters of same case indicate significant differences within 

an ecotype (P < 0.05).*Significant difference between ecotypes (P < 0.05). ns: Ecotypes not 

significantly different (P > 0.05). None of the treatments was statistically significant (P > 0.05). 
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3.5.6 Effects of stressors on shoot, root and total dry biomass of plants.  

 

None of the stressors significantly influenced the dry biomass of roots (P = 0.86; Figure 

3.9A), shoots (P = 0.15; Figure 3.9B) or total plant (P = 0.86; Figure 3.9C). However 

stressors created differences in plant morphology. Older plants subjected to stressors were 

shorter, had broader stems and more red leaves compared to the controls (Plate 3.2 B-C).  

 

 

 

Figure 3.9 Treatment effects on (A) root, (B) shoot and (C) total dry biomass of ACB and OAM 

ecotypes of Sonchus oleraceus L. at week 14. Means ± SE (n = 8). None of the treatments significantly 

altered the dry biomass (P < 0.05). 
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3.5.7 Chlorophyll fluorescence measurements 

 

3.5.7.1 Maximum efficiency of photosystem II   

 

Maximum efficiency of photosystem II (Fv/Fm) values of leaves averaged 0.81 ± 0.00 for 

all data and none was lower than 0.79 ± 0.00 (Figure 3.10).  

 

 

Figure 3.10 Treatment effects on maximum efficiency of photosystem II (Fv/Fm) of leaves of ACB and 

OAM ecotypes of Sonchus oleraceus L. at week 10, 12 and 14, which had been exposed to treatments 

for two weeks: control, chilling, salinity and the combination of the two. Means ± SE (n = 8). None of 

the treatments was statistically significant (P > 0.05). 

 

 

3.5.7.2 Light response curves for chlorophyll fluorescence 

 

Ecotypes did not significantly influence the parameters ΔFv/F′m, NPQ, qP and ETR as 

derived using rapid light response curves (P > 0.5; Figures 3.11 – 3.13).   

 

Light response curves for ΔF/F′m: There were only small effects of stressors on the 

effective quantum yields of the plants, which became less pronounced as plants aged (P = 
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0.002; Figures 3.11A,B – 3.13A,B). The rate of decline of ΔF/F′m with increasing light 

intensity was lower for plants subjected to stressors than for the respective controls in 

both ecotypes (Figure 3.11A,B).  

 

Light response curves for NPQ: NPQ values were highest in flowering plants across 

ecotypes and all stressors (P = 0.01; Figures 3.11C,D - 3.13C,D). NPQ curves did not 

differ significantly among stressors (P = 0.11; Figures 3.11C,D - 3.13C,D).  

  

Light response curves for qP: For both ecotypes, the impact of stressors was greatest on 

the youngest plants, and became less prominent as plants aged (P < 0.001; Figures 

3.11E,F – 3.13E,F). Rate of decrease in qp with increasing light intensity was lower for 

stressor-imposed plants than the control in both ecotypes (Figures 3.11E,F – 3.12E,F). 

However, these effects due to stressors varied between ecotypes. 

 

Light response curves for ETR: Influences of stressors on light response curves for 

ETR were more pronounced in younger than in older plants; in the oldest plants none of 

the stressors had any impact in both ecotypes (P < 0.001; Figures 3.11G,H - 3.13G,H). 

Rates of increase in ETR with light were greater for stressor treated plants than for 

controls (Figure 3.11G,H). As plants aged, the rate of increase in ETR with increasing 

light diminished across both ecotypes and among all stressors (Figures 3.11G,H - 

3.13G,H). 
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Figure 3.11 Light response curves for quantum yield of PSII (ΔF/F′m; A,B), nonphotochemical 

quenching (NPQ; C,D) and photochemical quenching (qP; E,F) and apparent electron transport rate 

(ETR; G,H) in leaves of ACB (A,C,E,G) and OAM (B,D,F,H) ecotypes of Sonchus oleraceus L. at 

week 10, which had been exposed to treatments for two weeks: control, chilling, salinity and the 

combination of the two. Means ± SE (n = 8).  
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Figure 3.12 Light response curves for quantum yield of PSII (ΔF/F′m; A,B), nonphotochemical 

quenching (NPQ; C,D) and photochemical quenching (qP; E,F) and apparent electron transport rate 

(ETR; G,H) in leaves of ACB (A,C,E,G) and OAM (B,D,F,H) ecotypes of Sonchus oleraceus L. at 

week 12, which had been exposed to treatments for two weeks: control, chilling, salinity and the 

combination of the two. Means ± SE (n = 8).  
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Figure 3.13 Light response curves for quantum yield of PSII (ΔF/F′m; A,B), nonphotochemical 

quenching (NPQ; C,D) and photochemical quenching (qP; E,F) and apparent electron transport rate 

(ETR; G,H) in leaves of ACB (A,C,E,G) and OAM (B,D,F,H) ecotypes of Sonchus oleraceus L. at 

week 14, which had been exposed to treatments for two weeks: control, chilling, salinity and the 

combination of the two. Means ± SE (n = 8).  
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3.5.7.3 The parameters of light response curves for ETR  

 

Initial slope of light response curves for ETR (α): α was higher in older plants than 

young plants irrespective of ecotype or stressor (P < 0.001; Figure 3.14A). α between 

ecotypes were not different (P = 0.94; Figure 3.14). Stressors had variable impacts on α 

between ecotypes (P < 0.01). Chilling and the stressor combination on ACB resulted in 

higher α than control plants irrespective of their age (Figure 3.14B). Stressors did not 

significantly alter α in OAM (Figure 3.14B).  

 

 

Figure 3.14 Initial slope of light response curves for ETR (α) in leaves of ACB and OAM ecotypes of 

Sonchus oleraceus L. with (A) plant age and (B) stressors. Means ± SE (n = 32 and n = 24). Bars with 

different letters of same case indicate significant differences within an ecotype (P < 0.05).  
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Maximum electron transport rate (ETRmax): The ETRmax of OAM diminished as plants 

aged for all the treatments, but not in ACB (P < 0.001; Figure 3.15A). The ETRmax were 

not different between ecotypes (P = 0.32; Figure 3.15A). Stressors had variable impacts 

on ETRmax between ecotypes (P < 0.001). Salinity treated OAM plants had lower ETRmax 

than control, while in ACB stressor treated plants were not significantly different from the 

control (Figure 3.15B). 

 

 

Figure 3.15 Maximum electron transport rate (ETRmax) in leaves of ACB and OAM ecotypes of 

Sonchus oleraceus L. with (A) plant age and (B) stressors at week 10, 12 and 14, which had been 

exposed to treatments for two weeks: control, chilling, salinity and the combination of the two. Means 

± SE (n = 32 and n = 8). Bars with different letters of same case indicate significant differences within 

an ecotype at each week (P < 0.05).  
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Minimum saturating irradiance (lk): The lk declined as plants aged (P < 0.001; Figure 

3.16A). The lk for two ecotypes differed in young plants (P = 0.04; Figure 3.16B). The lk 

of young ACB control plants was three-fold higher than that of the average recorded for 

rest of the data (P < 0.001; Figure 3.16B).  

 

 

 

Figure 3.16 Minimum saturating irradiance (lk) in leaves of ACB and OAM ecotypes of Sonchus 

oleraceus L. with (A) plant age and (B) stressors at week 10, 12 and 14, which had been exposed to 

treatments for two weeks: control, chilling, salinity and the combination of the two. Means ± SE (n = 

32 and n = 8). Bars with different letters of same case indicate significant differences within an 

ecotype at each week (P < 0.05). *Significant differences between ecotypes (P < 0.05). 
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3.5.8 The stressor-induced variations in extractable antioxidant activities in leaves 

correlated with human cellular antioxidant activities  

 

In order to see whether the differences in phenolic composition after stressors translated 

into antioxidant advantages inside human cells, HepG2 cells were infused with leaf 

extracts  from youngest S. oleraceus plants that had been exposed to treatments for two 

weeks. Significant linear correlations between the CAA values in HepG2 cells and leaf 

extracted antioxidant activities and concentrations of total phenolics existed (Figure 3.17). 

Antioxidant activities measured by the ORAC assay better correlated with CAA values 

(Figure 3.17A) than did those obtained by the DPPH technique (Figure 3.17B). 

Concentrations of chlorogenic acid, chicoric acid and ascorbate of leaf methanolic 

extracts significantly linearly correlated with CAA values (Figure 3.18A-C). However, 

concentrations of caftaric acid did not significantly correlate with CAA (Figure 3.18D). 
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Figure 3.17 Linear correlations between cellular antioxidant activities inside HepG2 cells infused 

with leaf extracts of ACB ecotype of Sonchus oleraceus L. at week 10, which had been exposed to two 

weeks of chilling, salinity and the combination of the two, with the extractable antioxidant activities 

measured by (A) ORAC and (B) DPPH techniques and (C) the concentration of total phenolic 

compounds. Means ± SE (n = 5). 
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Figure 3.18 Linear correlations between cellular antioxidant activities inside HepG2 cells infused 

with leaf extracts of ACB ecotype of Sonchus oleraceus L. at week 10, which had been exposed to two 

weeks of chilling, salinity and the combination of the two, with  the concentrations of: (A) chlorogenic 

acid, (B) chicoric acid, (C) ascorbate and  (D) caftaric acid. Means ± SE (n = 5). 
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3.6 DISCUSSION  

 

My study has confirmed that differences among plant age, ecotypes and growing 

conditions can lead to variation in extractable antioxidant activities of S. oleraceus. Of the 

three factors, plant maturation had the largest effect on content of hydroxycinnamic acids, 

total phenolics and on antioxidant activities, followed by ecotype, while stressors had 

minor effects. Older plants were richer in ascorbate, hydroxycinnamic acids and had 

higher antioxidant activities. Of the two ecotypes tested, ACB had the stronger 

antioxidant potential than OAM and was richer in ascorbate and phenolic acid 

concentration. Applications of chilling, salinity and their combination significantly 

increased concentrations of chlorogenic acid in leaves of young plants from both 

ecotypes. Furthermore this study confirmed that the concentration of chlorogenic acid, 

chicoric acid, total phenolics and chemical estimates of antioxidant capacity of the leaf 

extracts from the youngest plants, correlate well with cellular measures of antioxidant 

activities within cultured human HepG2 cells. These results indicate that it is indeed 

possible to manipulate antioxidant levels in S. oleraceus through the judicious use of high 

yielding ecotypes, the harvesting of mature plants, and the imposition of moderate 

stressors. Moreover, the data suggest that improvements in the antioxidant status of leaf 

cells may translate to higher antioxidant protection in cultured human cells. 

 

The transition from vegetative to reproductive growth was associated with an increase in 

the leaf accumulated ascorbate, hydroxycinnamic acids and other phenolic compounds, 

and antioxidant activities. Such increases occurred irrespective of the treatment applied to 

the plants and the ecotype (Figures 3.4 and 3.8A). This may be explained by accelerated 

secondary metabolism during reproduction, which is often accompanied by an enhanced 

production of phenylpropanoid compounds (Acamovic and Brooker, 2005; Papageorgiou 

et al., 2008; Franz et al., 2011). In other species, too, phenolic compounds have been 

shown to increase to their maximum levels at flowering; for example, chlorogenic acid in 

Hypericum origanifolium (Çirak et al., 2007), total phenolic content in Mentha pulegium 

(Karray-Bouraoui et al., 2010), rutin, quercetin, isoquercetin, hypericin, and hyperforin in 

various Hypericum spp (Abreu et al., 2004; Ayan et al., 2006; Çirak et al., 2006; 

Couceiro et al., 2006).  
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That the combined chilling and salinity treatments did not show synergistic effects 

(Figures 3.5 and 3.6) suggests there may be a common mechanism for minimising 

damage that involves the activation and transcription of genes for phenolic biosynthesis 

by both chilling and salinity (Mittler, 2006; Tattersall et al., 2007; Chattopadhyay et al., 

2011). Crosstalk between chilling- and salinity-stressor pathways has been reported 

previously, and is explainable since both stressors generate ROS due to osmotic stress 

(Bohnert and Sheveleva, 1998; Chinnusamy et al., 2007), and they induce different but 

overlapping suites of genes (Narusaka et al., 2004; Fujita et al., 2006; Liu et al., 2008; 

Fraire-Velázquez et al., 2011). In Helianthus annuus, for example, of the genes that were 

activated by chilling or by salinity, 63% were similar for both stressors. In A. thaliana 

similar miRNA accumulated under both cold and salt stressors (Liu et al., 2008). Thus, 

common responses stimulated by both stressors (Fernandez et al., 2008) may have 

abolished possible additive or synergistic accumulations of phenolic acids as might have 

been predicted by the responses to each stressor individually.  

 

Chilling and salinity, when applied separately, did not influence the concentration of total 

phenolics or ORAC antioxidant activities in S. oleraceus (Figure 3.5A,C). In other 

species chilling and salinity enhanced the biosynthesis of phenolic compounds; for 

example, chilling increased ferulic acid in Glycine max and caffeoyl derivatives in 

Solanum esculentum, while root zone NaCl salinity increased chlorogenic and chicoric 

acids in Echinacea angustifolia, and caffeic acid derivatives in Olea europaea (Janas et 

al., 2000; Montanari et al., 2008; Ben Ahmed et al., 2009; Remorini et al., 2009; Løvdal 

et al., 2010). It is noteworthy that prolonged exposure to these stressors caused 

acclimatory responses, which resulted in polymerisation of synthesised phenolic 

compounds and incorporation into the cell wall (Janas et al., 2000; López Pérez et al., 

2007). It is, therefore, possible that in S. oleraceus, too, prolonged exposure to stressors 

resulted in incorporation of phenolic compounds into cell wall phenylpropanoid 

compounds, which rendered them undetectable through the Folin-Ciocalteu method using 

methanolic leaf extracts (Pociecha et al., 2008). Certainly, acclimation to stressors in S. 

oleraceus was indicated by higher rates for NPQ curves (Figures 3.11C,D – 3.13C,D) 

which indicated strong xanthophyll cycle activities, which presumably enabled the 

stressor-imposed plants to maintain lower declining rates for ΔF/F′m, qP and ETR curves 

with increasing PAR compared to controls (Figures 3.11A,B,E-G – 3.13A,B,E-G). 

Similar observations were made in: cold acclimated Triticum aestivum and Secale cereal, 
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salinity treated Sonneratia alba and Rhizophora stylosa and fruiting stressed Malus 

domestica (Oquist et al., 1993; DeEll and Toivonen, 2003; Kitao et al., 2003; Wünsche et 

al., 2005). In my experiments, none of the treatments significantly damaged the PS II 

complexes in S. oleraceus, as indicated by Fv/Fm values, which were within 0.80–0.83 

(Figure 3.10), a typical range for unstressed C3 plant species (Adams III et al., 2006). 

Even if photosystems of S. olearaceus were initially damaged by chilling and salinity, 

they could have recovered prior to the measurements of Fv/Fm through rapid replacement 

of damaged D1 protein (Kornyeyev et al., 2002; Andersson and Aro, 2004; Strauss et al., 

2007). Alternatively, they may have been protected by the direct scavenging activities of 

accumulated antioxidants or through utilizing the excess energy from light harvesting 

complexes for phenylpropanoid biosynthesis (Grace and Logan, 2000; Niggeweg et al., 

2004; Mondolot et al., 2006; Hernández and Van Breusegem, 2010).  

 

Chilling, salinity and their combination upregulated chlorogenic acid production in S. 

oleraceus leaves, while caftaric and chicoric acids were not affected, indicating stressors 

had a variable effect on the accumulation of these hydroxycinnamic acids (Figure 3.6). 

Although chilling and salinity have been shown previously to induce the expression and 

activity of phenylalanine ammonia-lyase (PAL), the subsequent synthesis of each 

phenolic compound was not influenced to the same degree, as documented for Echinacea 

angustifolia (Montanari et al., 2008), Lactuca sativa (Oh et al., 2009), Matricaria 

chamomilla (Kováčik et al., 2007), Glycine max (Janas et al., 2000), Olea europaea 

(Ortega-García et al., 2008) transgenic Nicotiana tabacum (Howles et al., 1996), and 

numerous other species (Blount et al., 2000; Blount et al., 2002). This is because in 

addition to PAL, various other enzymes are involved in the phenylpropanoid pathway. 

After PAL, cinnamic acid 4-hydroxylase (C4H), hydroxylates cinnamic acid into 4-

coumaric acid (Blount et al., 2002), which is then esterified into different 

hydroxycinnamic acids through a number of biosynthetic steps by specific cytochrome 

P450 monooxygenases (Hahlbrock and Scheel, 1989; Ehlting et al., 2006). Transcription 

and activity of genes for the cytochrome P450 monooxygenases are influenced by 

different stressors to variable degrees, as documented for Arabidopsis thaliana (Narusaka 

et al., 2004; Ehlting et al., 2006) resulting in the biosynthesis of different 

hydroxycinnamic acids in different quantities (Blount et al., 2002).  
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Here, the effects of all three stressors on ascorbate concentration was not significantly 

different from the control (Figure 3.8B), which may be due to the null nett effect of 

stressor-enhanced transcription and activity of enzymes: ascorbate peroxidase (APX), L-

galactono-1,4-lactone dehydrogenase (GLDH), monodehydroascorbate reductase 

(MDHAR) and dehydroascorbate reductase (DHAR). GLDH is a key enzyme that 

regulates ascorbate biosynthesis, APX oxidises ascorbate while MDHAR and DHAR 

catalyses the regeneration of ascorbate from its oxidised forms in ascorbate-glutathione 

cycle (Wang and Frei, 2011). For example, salinity increased transcription and activity of 

enzymes catalysing the biosynthesis, recycling and oxidation of ascorbate in Solanum 

esculentum and Fragaria ananassa (Keutgen and Pawelzik, 2007; Sgherri et al., 2007; 

Sgherri et al., 2008). 

 

It is clear, that the antioxidant potential of S. oleraceus ecotypes is heritable across 

generations; a strong genetic component contributes to the variation of antioxidant 

activities among S. oleraceus ecotypes overriding the effects of abiotic stressors. Leaf 

extracts from the ACB ecotype were on average 1.2 times more potent scavengers of 

DPPH radicals than were those of OAM irrespective of the treatment (Figure 3.4B). 

These plants were the F2 progeny of selfed plants, the parents of which showed 1.6-fold 

higher DPPH radical scavenging by ACB than by OAM leaf extracts (Ellwood, 2007). 

These higher antioxidant activities were associated with higher concentrations of phenolic 

compounds (Figures 3.4D-F). This may have arisen via differential expression of the PAL 

multigene family across plant accessions (Emmons and Peterson, 2001) and thus 

changing the concentrations of synthesised phenolics among members of the same 

species. Cultivar and ecotype differences in phenolic compound concentration have been 

reported for various species (Ehlenfeldt and Prior, 2001; Reddivari et al., 2007; Løvdal et 

al., 2010; Krüger et al., 2011), including S. oleraceus (Schaffer, 2005; Ellwood, 2007).  

 

ACB plants had more leaf ascorbate than OAM plants (Figure 3.8A). This may be 

explained by higher rates ascorbate biosynthesis and recycling in ACB compared to 

OAM. Reinforcing this idea, varieties of Diospyros kaki, Solanum esculentum, Setaria 

italica and Triticum aestivum that accumulated more ascorbate had higher transcription 

and activities of enzymes: GLDH, MDHAR, DHAR compared to low ascorbate-yield 

varieties (Sreenivasulu et al., 2000; Bartoli et al., 2005; Zushi and Matsuzoe, 2007). 

Discovery of ecotypes rich in ascorbate is important due to its potent antioxidant 
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activities and multiple health benefits for humans (Section 1.1.1). The DPPH radical 

scavenging capacity of ascorbate was 15 times more efficient than quercetin (LoNostro et 

al., 2000).  

 

Chlorogenic and chicoric acid concentrations in S. oleraceus leaves positively linearly 

correlated with CAA values in HepG2 cells (Figure 3.18A,B) while caftaric acid did not 

(Figure 3.18D). This may be explained by higher lipophilicity and lower polarity of 

chlorogenic and chicoric acid than caftaric acid, which better facilitates the absorbance 

into HepG2 cells and therefore their antioxidant activities within the cells. The 

lipophilicity estimated as the log of octanol-water partition coefficient (log Kow) of 

chicoric acid (log Kow=3), is three-fold higher than that of caftatric acid (log Kow=1), thus 

lowering the ability of caftaric acid to cross cell membranes compared to chicoric acid 

(Iranshahi and Amanzadeh, 2008). Chlorogenic acid, too, is less polar and more lipophilic 

than caftaric acid since the polarity of the quinic acid moiety in chlorogenic acid is lower 

than the tartaric acid moiety in caftaric acid (Clifford et al., 2003; Pellati et al., 2004). 

Because higher lipophilicity ensures better transport of these across cell membranes 

(Burdette et al., 2002; Wu et al., 2007; Zhang et al., 2008), these compounds are better 

antioxidants in cellular compartments compared to caftaric acid. Confocal laser scanning 

microscopy has confirmed that phenolic compounds in S. oleraceus leaf extracts are 

indeed absorbed into HepG2 cells (rather than being bound to external cell membranes) 

whereupon they exhibit antioxidant activities (McDowell et al., 2011).  

 

Total phenolic concentration and extractable antioxidant activities in S. oleraceus leaf 

extracts correlated well with CAA values in HepG2 cells (Figure 3.17). This indicates 

that phenolic compounds may have been largely responsible for the cellular antioxidant 

activities of S. oleraceus. Similarly, in other crops rich in phenolic compounds, strong 

correlations between ORAC values and CAA measures have been observed (Wolfe et al., 

2008). However in crops with lower phenolic antioxidant activities, the correlations 

between ORAC and CAA were not significant (Eberhardt et al., 2005; Song et al., 2010).  

 

The DPPH radical scavenging activities of leaf extracts and CAAs showed a lesser degree 

of correlation than that between ORAC and CAAs values (Figure 3.17A,B). This may be 

because both ORAC and CAA assays measure the ability of antioxidants to scavenge 

peroxyl radicals generated by a free radical generator at physiologically relevant 
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conditions of 37 
o
C and pH 7.4 (Section 4.5-4.6). In contrast, the DPPH assay measures 

the scavenging by antioxidants of the localised free electron on the DPPH molecule, 

which bears very little resemblance with biologically relevant conditions (Prior et al., 

2005).  

 

In summary, the variation of LMWA activities in S. oleraceus is largely associated with 

plant ageing, followed by ecotype that appears to be heritable. There are also some 

beneficial effects of the abiotic environment. Furthermore, an extractable antioxidant 

activities of leaf extracts correlates well with the cellular antioxidant activities inside 

HepG2 cells. In conclusion, leaves with highest antioxidant activities and concentrations 

of LMWAs were obtained at week 12 from ACB, and exposure to cold night 

temperatures further augmented the levels. Agronomic recommendations that can be 

formulated from this study to obtain harvestable leaves rich in antioxidants are: use of 

selfed seeds from superior ecotypes across cropping cycles, harvesting leaves from 

flowering plants, and coinciding harvesting period with the incidences of low night 

temperatures.  
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CHAPTER 4: EFFECTS OF COOKING AND IN VITRO 

GASTROINTESTINAL DIGESTION ON THE ANTIOXIDANT 

ACTIVITIES OF PHENOLIC COMPOUNDS IN Sonchus oleraceus L. 

 

 

 

 

 

 

Plate 4.1 Sonchus oleraceus L. leaves (A) boiled for 5 min and (B) digestate remaining after in vitro 

gastrointestinal digestion for 120 min. 
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4.1 ABSTRACT 

 

Leaves of Sonchus oleraceus L., a traditional component of the Māori diet in New 

Zealand, are rich in phenolics and show potent extractable antioxidant activities. 

However, the stability and antioxidant activities of these compounds after cooking and 

gastrointestinal digestion are unknown. Extractable antioxidant activities, HPLC profiles, 

the concentration of ascorbate and phenolic compounds, and cellular antioxidant activities 

in Caco2 and HepG2 cells were measured in raw and boiled S. oleraceus leaves and in 

their bioaccessible fraction obtained after gastric and intestinal digestion. Boiling 

significantly diminished the concentration of ascorbate, chicoric acid and oxygen radical 

absorbance capacity (ORAC), but did not affect 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

radical scavenging activity or concentrations of total phenolic compounds, caftaric and 

chlorogenic acids in the bioaccessible fraction compared to raw leaves. After 30 min 

gastric digestion, ORAC and DPPH activities, and total phenolic concentration in the 

bioaccessible fraction approached those measured from untreated leaves. Phenolics 

released from gastric digestion were absorbed into Caco2 and HepG2 cells and exerted 

antioxidant activity. Intestinal digestion of leaf residues after gastric digestion released 

further antioxidants. During gastrointestinal digestion only chicoric, chlorogenic, and 

caftaric acid were stable out of nine antioxidants present in untreated leaves. That these 

key phenolics are released from leaves by digestion, and are absorbed into human cells 

wherein they exert antioxidant activity, indicates that S. oleraceus leaves may be suitable 

as an excellent dietary antioxidant source.  

 

KEYWORDS: Sonchus oleraceus, antioxidant stability, gastrointestinal digestion, 

phenolics, HepG2 cells 
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4.2 INTRODUCTION  

 

The sow thistle, Sonchus oleraceus L. has traditionally been eaten by Māori as a leafy 

vegetable after boiling for 5 – 30 minutes (Cambie and Ferguson, 2003; Whyte et al, 

2001). S. oleraceus produces leaves that contain exceptionally high concentrations of 

ascorbic acid and other phenolic compounds (Guil-Guerrero et al., 1998; Simopoulos, 

2004). Indeed, S. oleraceus leaves held the highest concentration of phenolic compounds 

among 16 edible leafy plant species chosen from the Italian cuisine (Conforti et al., 

2009). The in vitro antioxidant activities of S. oleraceus leaves were two times higher 

than those of spinach, which ranked first in antioxidant activity among 27 vegetables 

common in human diet (Song et al., 2009). However, the antioxidant potential measured 

by chemical assays (Chapter 3.0; Section 3.5) does not necessarily translate into 

antioxidant activity in vivo; the compounds need to retain their antioxidant activities 

through the processes of cooking, gastrointestinal digestion, absorption, and transport to 

the target tissues (Chapter 1.0; Section 1.4). Nothing has been documented about the fate 

of antioxidants in S. oleraceus leaves during the cooking and digestion processes. It is not 

known whether they are released from the leaf matrix under physiological conditions of 

the digestive tract, nor whether the antioxidant activities are retained. 

 

In other leafy vegetables, cooking has been found either to increase or decrease the 

concentrations of available phenolic compounds. Some cell wall-bound phenolic 

compounds can be liberated during cooking because high temperatures dissociates the 

covalent, ester, ether, or acetal bonds that held them; thus, the concentrations of phenolic 

compounds and their associated antioxidant capacities may increase beyond the levels 

prior to cooking (Robbin, 2003). For example, cooking liberated more phenolic 

compounds increasing the antioxidant capacity of citrus (Seok-Moon et al., 2004). 

Alternatively, cooking might decrease the levels of some phenolic compounds because 

heat can either polymerise or decompose the aromatic rings, thereby denaturing the 

compounds.  

 

Efforts to simulate gastrointestinal digestion have had variable effects on the apparent 

bioaccessibilty of phenolic compounds in diets (Section 1.4; Tables 1.12 – 1.14). In vitro 

gastrointestinal digestion released either more or lower levels of phenolic compounds 

than the levels that were extracted from the food prior to digestion (Rodríguez-Roque et 
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al., 2013; Tagliazucchi et al., 2010). The increases were attributed to the release of 

phenolic compounds bound to proteins and carbohydrates in the food matrix through acid 

hydrolysis in the gastric phase and enzymatic hydrolysis in gastric and intestinal phases 

(Rodríguez-Roque et al., 2013). For example, caffeic and chlorogenic acids, hesperidin, 

naringenin and rutin levels were higher following in vitro gastrointestinal digestion of 

fruit juices. However, following in vitro gastrointestinal digestion, sinapic acid levels 

from fruit juice diminished, while flavonoid levels remained constant for grapes (Laurent 

et al., 2007).  

 

Monitoring gastrointestinal digestion and uptake of LMWAs into human cells in vivo can 

be complex, and therefore models that simulate human gastrointestinal digestion and 

uptake have often been employed (Section 1.4; Table 1.11 and Section 1.6). 

Consequently, dissolution testing can be used to evaluate the bioaccessibility of LMWAs. 

In vivo gastric and intestinal conditions can be reproduced in dissolution tests by 

employing a paddle type dissolution apparatus (Plate 4.2) and following the protocol for 

conventional release solid dosage forms (Anon,(1988; Hu, 1998; Mann and Pygall, 2012). 

Following in vitro gastrointestinal digestion, the bioaccessible fraction is obtained by 

either filtration or centrifugation of the simulated gastrointestinal solution (Moreda-

Piñeiro et al., 2011). After dissolution testing, the cell models can be employed to study 

the in vivo antioxidant activities of the antioxidant compounds in the bioaccessible 

fraction (Section 1.6).  

 

 

Plate 4.2 Paddle type dissolution apparatus (six-station Erweka DT 600 Dissolution Tester) 
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Here, we identify and quantify the ascorbate, hydroxycinnamic acids, total phenolics and 

antioxidant activities of raw and boiled S. oleraceus leaves during in vitro gastrointestinal 

digestion, and then employ the CAA assay to identify cellular uptake and antioxidant 

activity of the raw, digested leaves. It was hypothesized that in vitro cellular and chemical 

antioxidant activities of S. oleraceus leaves survive cooking and in vitro gastrointestinal 

digestion, and are absorbed into human cells wherein they exert antioxidant activities. 

 

4.3 MATERIALS AND METHODS 

  

4.3.1 Chemicals 

 

Pepsin from porcine gastric mucosa and pancreatin from porcine pancreas were 

purchased from Sigma-Aldrich (St Louis, MO). All other chemicals are listed at Section 

2.1. 

 

4.3.2 Plant Materials 

 

S. oleraceus were grown as described in Section 3.3.1 from seeds collected from a natural 

population at Acacia Bay in North Island of New Zealand. The plants were grown for 84 

days during January to April 2011. The leaves from nodes 5 and 6 were removed from 48 

plants. Leaves were bisected longitudinally, one half (untreated control) was used for 

phytochemical analysis and the other for gastrointestinal digestion. For comparisons of 

antioxidant activities, fresh blueberry fruits (Vaccinium corymbosum) were purchased 

from a local supermarket (sourced from Blueberries Waikato, Ohaupo, New Zealand). 

Material intended for phytochemical analysis was prepared according to Section 3.3.3. 

 

4.3.3 Boiling 

 

Leaf portions were subdivided equally, and one half was boiled in water at 100 °C for 5 

min to study the effects of cooking, and the other half used raw. 

 

 

 

 



90 

 

4.3.4 Gastric and Intestinal Digestion 

 

Artificial gastric juice and intestinal fluid were prepared as described in the British 

Pharmacopoeia (1988) and dissolution test performed according to the protocol for 

conventional release solid dosage forms (Anon, 1988). Gastric juice contained 34.2 mM 

NaCl, 92.4 µM pepsin and 80 mM HCl at pH 1.2. Intestinal fluid was made using 50 mM 

KH2PO4, 15.4 mM NaOH, 1.1 g L
-1

 of pancrease powder, and adjusted to pH 7.5. 

Digestion was performed in a six-station Erweka DT 600 Dissolution Tester (Plate 4.2; 

Erweka International AG, Basel, Switzerland) at 37 °C with a paddle speed of 50 rpm. 

Boiled and raw leaf portions cut into approximately 1 cm
2 

pieces (9 g) were incubated in 

900 mL artificial gastric juice for 1 h, and then the digestate was resuspended in 900 mL 

intestinal fluids for 1 h. Aliquots of the fluids were withdrawn 5, 15, 30, and 60 min into 

each digestion, centrifuged at 24000 g for 5 min, and supernatant stored at –20 °C under 

nitrogen. A blank prepared using the same chemicals but without the leaf material was 

treated identically. 

 

The analysis of total phenolics, DPPH radical scavenging activities, ORAC Assay, 

Cellular Antioxidant Activity (CAA) assay and online reverse phase HPLC-DPPH radical 

scavenging were performed as described in Sections 2.2 – 2.8. 

 

4.4 STATISTICAL ANALYSIS 

 

Differences in antioxidant activities and antioxidant concentrations attributable to boiling 

and digestion were evaluated using repeated measures ANOVA with Bonferroni post hoc 

tests (P< 0.05). Correlations were established by simple linear regressions (P< 0.05). 

Comparisons of linear regression were performed by ANCOVA (P< 0.05). Probit 

analysis was performed for CAA dose-response data. All analysis was performed using 

SPSS 18.0 statistical software. 
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4.5 RESULTS  

 

4.5.1 Antioxidant activities and concentrations of ascorbate and phenolic 

compounds from untreated raw leaf extracts 

 

As measured by the DPPH assay, the antioxidant activities of methanolic extracts of 

fresh, untreated S. oleraceus leaves were on average four times greater than those of 

blueberry fruit on a dry weight comparison (ANOVA; P < 0.001; Table 4.1). In contrast, 

measurements of the same extracts using the ORAC assay were only 1.3-fold greater (P = 

0.5; Table 4.1). Concentration of total phenolic compounds, expressed as tannic acid 

equivalents, were 1.3 times higher in the S. oleraceus leaf extracts than in blueberries (P 

= 0.14; Table 4.1). The extracts from blueberries were three times more concentrated in 

ascorbate than S. oleraceus leaves (P < 0.001; Table 4.1). Antioxidants from the 

methanolic extracts of fresh, untreated leaves entered the HepG2 and Caco2 cells and 

exhibited antioxidant activity in situ (Table 4.2).  

 

Table 4.1 Antioxidant activities as measured by DPPH and ORAC, and concentrations of ascorbate 

and total phenolic compounds for methanolic extracts of Sonchus oleraceus L. raw leaves and 

blueberry fruit
a
 

 

 DPPH
1
 radical scavenging 

activity 

ORAC
2
 

 

Total 

phenolics 

Ascorbate 

Sample  EC50  

(mg L
-1

) 

µmol Trolox 

equiv.g
-1

 

(µmol Trolox 

equiv.g
-1

) 

(mg Tannic 

acid equiv.g
-1

) 

(mg g
-1

) 

S. oleraceus  38.6 ± 2.9 478.5 ± 34.3 24.9 ± 2.6 0.9 ± 0.1 0.8 ± 0.1 

Blueberry   162.0 ± 19.1 120.9 ± 18.8 18.7 ± 8.4 0.7 ± 0.1 2.1 ± 0.1 

Ratio 

S. oleraceus: blueberry     4.0 

 

  1.3 1.3 0.4 

a
Values are means ± SE (n = 6).  

1
2,2-diphenyl-1-picrylhydrazyl  

2
Oxygen radical absorbance capacity 
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Table 4.2 Cellular antioxidant activities (CAA) for methanolic extracts of Sonchus oleraceus L. raw 

leaves in HepG2 and Caco2 cells
a
 

 

Cell line CAA 

 EC50 (g L
-1

) (µmol quercetin equivalent. g
-1

) 

HepG2  0.4 ± 0.1 30.2 ± 2.7 

Caco2 1.4 ± 0.1   3.9 ± 0.1 

a
Values are means ± SE (n = 6).  

 

HPLC profiles of the untreated leaf extracts revealed nine peaks at 320 nm that had 

corresponding DPPH radical scavenging activities (Figure 4.1). Of those, the 

hydroxycinnamic acids were present at the highest concentrations; caftaric, chlorogenic 

and chicoric acids eluted at 11.6, 14.5 and 27.0 min, respectively, at concentrations of 3.5 

± 0.5, 2.2 ± 0.2 and 9.5 ± 0.6 mg g
-1

. These compounds were identified from their 

retention times in comparison with previous reports, and by co-elution with authentic 

standards (Ou et al., 2013). 

 

Figure 4.1 Reverse phase HPLC-DPPH chromatograms for methanolic extracts of Sonchus oleraceus 

L. raw untreated leaves. Phenolic acids (green line) measured at 320 nm; DPPH radical scavenging 

(blue line) at 518 nm. Peaks: 1, caftaric acid; 2, chlorogenic acid; 3, chicoric acid and 4 – 9, unknown. 
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4.5.2 Antioxidant activities and concentrations of ascorbate and phenolic 

compounds after boiling and gastrointestinal digestion 

 

Boiling S. oleraceus leaves for 5 min at 100 °C did not significantly alter concentrations 

of total phenolics (ANOVA; P = 0.14) or antioxidant activities measured as DPPH (P = 

0.84) or ORAC activities (P = 0.99) in their methanolic extracts of untreated leaves 

(Figure 4.2). Boiling diminished concentrations of ascorbate (P = 0.03) and total 

hydroxycinnamic acids (P = 0.03) in methanolic extracts compared to raw leaves (Figure 

4.3).  

 

The bioaccessible fraction from both boiled and raw leaves held comparable 

concentrations of total phenolics (Figure 4.2A). However, raw leaves released more 

ascorbate (Figure 4.3A) and total hydroxycinnamic acids (Figure 4.3B) than boiled leaves 

into the bioaccessible fraction obtained through gastrointestinal digestion. 

 

ORAC values of the bioaccessible fraction were lower for boiled than for raw leaves 

following digestion in both gastric and intestinal conditions (P < 0.001; Figure 4.2C). In 

contrast, DPPH activities were higher for boiled than for raw leaves following gastric 

digestion (P = 0.05; Figure 4.2B), but were comparable following subsequent intestinal 

digestion.  

 

Importantly, the antioxidants in the bioaccessible fraction from raw leaves were absorbed 

into HepG2 (Figure 4.4A) and Caco2 cells (Figure 4.4B). Their CAA in HepG2 (P = 

0.01) and Caco2 cells (P< 0.001) were greater the longer leaves had been digested. The 

CAA values approached levels comparable to those from methanolic extracts of ground, 

untreated leaves just after 5 min of gastric digestion (Figure 4.4). Interestingly, the CAA 

values after 60 min of gastric digestion were three-fold greater than those of raw leaves in 

both cell types. Significant positive linear correlation exists for the CAA values obtained 

for the bioaccessible fraction between the two cell types (Figure 4.5). Increases in CAA in 

both cell types correlated linearly with the increases in hydroxycinnamic acid 

concentration in the bioaccessible fraction of raw leaves (Figure 4.6).  

 



94 

 

 

 

Figure 4.2 Changes in (A) concentration of total phenolic compounds, (B) DPPH radical scavenging 

activity and (C) ORAC activity in the methanolic extracts of Sonchus oleraceus L. leaves and in the 

bioaccessible fraction during in vitro gastric and subsequent intestinal digestion. Means ± SE (n=6). 

*Significant difference between raw and boiled extracts at P< 0.05.  
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Figure 4.3 Changes in concentrations of (A) ascorbate and (B) hydroxycinnamic acids in the 

methanolic extracts of Sonchus oleraceus L. leaves and in the bioaccessible fraction during in vitro 

gastric and subsequent intestinal digestion. Means ± SE (n=6). *Significant difference between raw 

and boiled extracts at P< 0.05.  
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Figure 4.4 Cellular antioxidant activity measured in (A) HepG2 and (B) Caco2 cells infused with the 

methanolic extracts of Sonchus oleraceus L. raw leaves and the bioaccessible fraction following in 

vitro gastric and subsequent intestinal digestion. Means ± SE (n=6). Bars with different letters are 

significantly different (P< 0.05).  
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Figure 4.5 Correlation of cellular antioxidant activities between Caco2 and HepG2 cells infused with 

the bioaccessible fraction following in vitro gastric and intestinal digestion of Sonchus oleraceus L. 

raw leaves. Data are means ± SE (n= 6) for 5, 15, 30, 60 min of gastric and 5, 15, 30 and 60 min 

intestinal digestion. 
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Figure 4.6 Correlation between the concentration of hydroxycinnamic acids in the bioaccessible 

fraction and the cellular antioxidant activities measured in cells: (A) HepG2 and (B) Caco2, infused 

with the bioaccessible fraction following in vitro gastric and intestinal digestion of Sonchus oleraceus 

L. raw leaves. Data are means ± SE (n= 6) for 5, 15, 30 and 60 min of gastric and 5, 15, 30 and 60 min 

intestinal digestion. 

 

As evidenced by HPLC-DPPH chromatograms (Figure 4.1), gastrointestinal digestion 

apparently degraded six of the nine antioxidants present in methanolic extracts of 

untreated leaves and none remained in the digestate at the end of gastrointestinal 

digestion (Figure 4.7). Only caftaric, chlorogenic and chicoric acid were prominent in 

HPLC profiles collected from the bioaccessible fraction during gastric and intestinal 

digestion of leaf material (Figure 4.8 A-B). These three compounds had associated DPPH 

radical scavenging activity shown by the magnitude of the negative peak in the HPLC 

chromatograms.  
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Figure 4.7 Reverse phase HPLC-DPPH chromatogram for methanolic extract of leaf digestate 

remaining after in vitro gastric and subsequent intestinal digestion of Sonchus oleraceus L. leaves. 

Phenolic acids (black line) measured at 320 nm; DPPH radical scavenging (green line) at 518 nm.  

 

 

 

 

Figure 4.8 Reverse phase HPLC-DPPH chromatograms recorded for bioaccessible fraction of 

Sonchus oleraceus L. raw leaves, 60 minutes after in vitro (A) gastric and (B) intestinal digestion. 

Phenolics (green line) measured at 320 nm; DPPH radical scavenging (blue line) at 518 nm. Peaks: 1, 

caftaric acid; 2, chlorogenic acid and 3, chicoric acid. 
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Gastrointestinal digestion of leaves resulted in the release of all the chlorogenic acid 

(ANOVA; P = 0.29; Figure 4.9A) and ascorbate content (P = 0.41; Figure 4.9B), which 

were initially present in their leaves regardless of boiling. The level of chicoric acid 

released through gastrointestinal digestion was significantly lower than those extracted 

from untreated leaves (P< 0.001; Figure 4.9C).  

 

The chicoric acid levels released through digestion by boiled leaves were lower than for 

raw leaves (P = 0.004; Figure 4.9C). However, the release of chlorogenic acid (P = 0.14; 

Figure 4.9A) and caftaric acid (P = 0.24; Figure 4.9D) by digestion was similar for boiled 

and raw leaves. The bioaccessible fraction held a higher proportion of caftaric and 

chlorogenic acids when using boiled rather than raw leaves (Figure 4.10).  

 

The concentrations of total hydroxycinnamic acids in the bioaccessible fraction positively 

linearly correlated with the increases in: total phenolic concentrations (Figure 4.11A) and 

antioxidant capacities determined by ORAC (Figure 4.11B) and DPPH assays (Figure 

4.11C), for both raw and boiled leaves. Linear regression coefficients for DPPH radical 

scavenging versus the hydroxycinnamic acids in the bioaccessible fractions differed 

between boiled and raw leaves; the gradient for boiled leaves was five-fold higher than 

for raw leaves (ANCOVA; P<0.001; Figure 4.11C).  
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Figure 4.9 Concentration of (A) chlorogenic, (B) ascorbic, (C) chicoric and (D) caftaric acids in the 

methanolic extracts of Sonchus oleraceus L. raw and boiled leaves, and in the bioaccessible fraction 

following in vitro gastrointestinal digestion (G). Means ± SE (n=6). Bars with different letters are 

significantly different (P< 0.05). 

 

 

 

Figure 4.10 Proportional contributions of three main hydroxycinnamic acids to the total phenolic 

acids in the bioaccessible fraction of Sonchus oleraceus L. raw and boiled leaves 
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Figure 4.11 Linear correlations between the concentration of hydroxycinnamic acids and (A) 

concentration of total phenolic compounds and antioxidant activities measured by (B) ORAC and (C) 

DPPH techniques for the bioaccessible fraction of Sonchus oleraceus L. raw and boiled leaves during 

in vitro gastric and intestinal digestion. Data are means ± SE (n=6) for 5, 15, 30 and 60 min of gastric 

and 5, 15, 30 and 60 min intestinal digestion.  
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4.6 DISCUSSION  

 

Our study confirmed previous reports that the leaves of S. oleraceus are a particularly rich 

source of phenolic antioxidants. We showed that cooking the leaves by boiling them for 5 

min did not appreciably diminish these antioxidant activities prior to in vitro 

gastrointestinal digestion. Significantly, three of the major phenolic compounds (caftaric, 

chlorogenic, and chicoric acids) were released into solution during gastrointestinal 

digestion. These compounds were absorbed by human HepG2 cells, whereupon they 

exhibited apparent antioxidant activity. Collectively, these data argue a compelling case 

for S. oleraceus as an excellent dietary antioxidant supplement to promote human health. 

 

The high antioxidant potential of untreated S. oleraceus leaf extracts was confirmed using 

both the DPPH and ORAC assays (Table 4.1). DPPH radical scavenging activities were 

comparable to previous reports for this species (Ellwood, 2007; Yin et al., 2007), though 

four times weaker than values documented by McDowell et al. (2011) and three times 

more potent than reported by Simopoulos (2004). Differences are likely due to variation 

in growing environment and ecotypes on antioxidant activity of S. oleraceus (Section 3.5; 

Schaffer, 2005; Ellwood, 2007). ORAC values have not been reported previously for S. 

oleraceus leaves. On a dry weight basis, the leaves were richer sources of LMWAs than 

were blueberry fruit, though the magnitude of the difference varied substantially between 

the two assays (Table 4.1). Of the two, ORAC is likely to have provided the more reliable 

estimate of total antioxidant capacities, because steric restrictions to the radical site of 

DPPH can lead to overestimations of the capacities of the smaller antioxidant molecules 

(Prior et al., 2005). Phenolic acids in S. oleraceus leaves are small molecules and their 

percentage in LMWAs pool was three-fold greater than that in blueberries, possibly 

leading to overestimated DPPH values. The reverse phase HPLC-DPPH profiles confirm 

that caftaric, chlorogenic and chicoric acid accounted for 89% of the LMWAs in S. 

oleraceus leaf extracts (Figure 4.1). These hydroxycinnamic acids have been previously 

documented in S. oleraceus leaves (Gatto et al., 2011; Ou et al., 2013). In contrast, in 

blueberries, large molecules such as anthocyanins and glycosylated flavonols accounted 

for 71% of the phenolic pool while chlorogenic acid accounted for only 29% (Zheng and 

Wang, 2002). Nevertheless, the DPPH assay proved useful when used in conjunction with 

HPLC to measure the activities of known phenolic compounds (Figures 4.1, 4.7, 4.8). 
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Boiling leaves for 5 min sufficiently cooks them (Whyte et al., 2001; Cambie and 

Ferguson, 2003a), and did not significantly diminish their phenolic compound 

concentration (Figure 4.2A). Boiling decreased the levels of released chicoric acid 

(Figure 4.9C), but not chlorogenic (Figure 4.9A) or caftaric acids (Figure 4.9D), which 

are more resistant to heat degradation than chicoric acid (Chkhikvishvili and Kharebava, 

2001; Stuart and Wills, 2003). In other crops, it has been reported that boiling causes 

either a decline (Chu et al., 2000; Turkmen et al., 2005) or an increase (Doǧan et al., 

2005; Lee and Scagel, 2009) in the available phenolic compounds. Decreased levels of 

phenolics are often attributed to polymerisation or decomposition of aromatic rings, 

which denatures the compounds (Granito et al., 2005), or else to their removal in the 

water used for boiling (Turkmen et al., 2005). Alternatively, boiling may increase the 

release of phenolic compounds by enhancing the release of cell wall-bound compounds 

(Dewanto et al., 2002), and/or by halting polyphenol oxidase driven enzymatic oxidation 

(Doǧan et al., 2005; Lee and Scagel, 2009). 

 

Boiling did not significantly diminish the concentrations of ascorbate measured in 

methanolic extracts of leaves (Figure 4.3A) even though ascorbate is highly water soluble 

and heat labile. The ascorbate levels may have been stable because the oxidation of 

ascorbate into dehydroascorbate (DHA) in water at 100 
o
C is reversible (Vieira et al., 

2000). Furthermore, the submerged leaves in boiling water may restrict contact between 

leaf ascorbate and oxygen thus limiting its oxidation; hot air drying of vegetables, for 

example, caused more ascorbate loss compared to boiling them at the same temperature 

(Mo et al., 2006; Gupta et al., 2013). Another possibility is that boiling for 5 min in water 

is insufficient to cause its loss through leaching into water. For example, vegetables that 

were boiled for long durations lost ascorbate through leaching but not when boiled for 

short durations (Lee and Kader, 2000; Oboh, 2005; Cruz et al., 2008). However, 

irreversible hydrolysis of DHA into 2,3-L-diketo-L-gulonate (2,3-DKG) occurred if 

incubation was continued for 60 min at 37 
o
C even without gastric or intestinal enzymes 

(Simpson and Ortwerth, 2000). This may have lowered the ascorbate levels detected in 

the bioaccessible fraction from boiled leaves compared to raw leaves (Figure 4.9B).  

 

The bioaccessible fraction of the boiled leaves held less antioxidants than did raw leaves 

as detected by ORAC measurements (Figure 4.2C) and chicoric acid content (Figure 

4.9C). However, this difference was not evident in the measurements of DPPH radical 
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scavenging (Figure 4.2B), total phenolics (Figure 4.2A), caftaric (Figure 4.9D) or 

chlorogenic acid content (Figure 4.9A). The boiled leaves released proportionately more 

caftaric and chlorogenic acids than did raw leaves in the processes of digestion (Figure 

4.10). The DPPH assay would, therefore, likely overestimate the antioxidant capacity of 

boiled leaves (Figure 4.11C) because caftaric and chlorogenic acids are small molecules 

with coplanar structures than have better access to the radical of the DPPH molecule than 

chicoric acid (Silva et al., 2000; Huang et al., 2005). For example, the molar volumes of 

caftaric (184 cm
3
 mol

-1
) and chlorogenic acids (214 cm

3
 mol

-1
) are respectively 60% and 

30% smaller than that of chicoric acid (289 cm
3
 mol

-1
) according to 

www.chemspider.com (accessed April 2012). This means that antioxidant activities of the 

bioaccessible fraction of S. oleraceus leaves depend largely on the type and proportion of 

the compounds, which remain in the bioaccessible fraction; similarly seen during in vitro 

digestion of Solanum esculentum (Toor et al., 2008). 

 

Temporal changes in antioxidant activities during gastrointestinal digestion recapitulated 

changes in concentrations of hydroxycinnamic acids, indicating that LMWA activities of 

S. oleraceus mainly depended on the release and stability of hydroxycinnamic acids 

during gastrointestinal digestion (Figure 4.11). The release of phenolics during in vitro 

gastric digestion has been attributed to acidity rather than to pepsin activity in a wide 

variety of fruits and vegetables (Bermúdez-Soto et al., 2007; Tagliazucchi et al., 2010). 

The glycosylated and esterified phenolic compounds are hydrolysed by the acidic 

conditions, which exist during gastric simulations (Liyana-Pathirana and Shahidi, 2005). 

Pepsin have lower activity or none towards phenolic compounds because pepsin prefer 

the hydrolysis of peptic bonds in amino acids (Beynon and Bond, 2001). The acid 

hydrolysis of bound phenolics in leaves (Liyana-Pathirana and Shahidi, 2005) would 

likely explain why levels of total phenolics released after combined gastric and intestinal 

digestions were approximately two-fold greater than those in methanolic extracts from 

untreated leaves (Figure 4.2C). 

 

The reverse phase HPLC-DPPH profiles confirm that caftaric, chlorogenic and chicoric 

acids retain their stability (i.e. structure and antioxidant activity) following 

gastrointestinal digestion. There was no evidence that the three phenolics incurred 

structural transformations due to enzymatic action or pH variations that extinguished 

antioxidant activity (Figure 4.8). Gastrointestinal digestion facilitated the release of 

http://www.chemspider.com/
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caftaric, chlorogenic and chicoric acids from the leaves. Consistent with these results, 

chlorogenic acid has been shown to retain its structure in the stomachs of rats (Lafay et 

al., 2006) and in ileostomized humans on a liquid chlorogenic acid supplement (Olthof et 

al., 2001). Furthermore, chlorogenic acid is rapidly absorbed without structural 

transformations into the plasma in the stomachs of rats (Lafay et al., 2006), in normal 

healthy humans (Monteiro et al., 2007) and in ileostomized humans (Olthof et al., 2001). 

Chlorogenic acid is not hydrolysed by intestinal enzymes during in vitro digestion (Plumb 

et al., 1999a), though it was found to be transformed into neochlorogenic acid after 2 h of 

in vitro pancreatic digestion, attributable to the high pH (7.5) rather than to activities of 

pepsin or pancreatin (Bermúdez-Soto et al., 2007). Similar to our results, the 

physiological pH (7.4) and temperature (37 °C) had no impact on structure and activity of 

chicoric acid during in vitro intestinal simulation (Rossetto et al., 2008). Caftaric acid, 

too, maintains its structural integrity in the stomach of rats, and is rapidly absorbed into 

their plasma (Vanzo et al., 2007). 

 

The CAA of undigested and digested raw leaves were measured using Caco2 and HepG2 

cells (Figure 4.4) since they are suitable models to study uptake and metabolism of 

antioxidants by cells, accordingly representing the intestinal epithelium and liver 

(Bornsek et al., 2012). The S. oleraceus digested leaves were several-fold more effective 

in CAA (Figure 4.4A) than those values reported for fresh fruits and vegetables including 

fresh blueberries (Wolfe and Liu, 2007; Wolfe et al., 2008; Song et al., 2010). This 

indicates the potential of S. oleraceus leaves to protect human cells from oxidative stress 

is much higher than most plant food. Confocal laser scanning microscopy of HepG2 cells 

treated with S. oleraceus leaf extract and stained with Naturstoff reagent has confirmed 

that antioxidants entered the cells, rather than being bound to the cell membranes 

(McDowell et al., 2011). Previous reports also verify that chlorogenic acid is readily 

taken up by human HepG2 cells (Mateos et al., 2005), human Caco2 cells (Sato et al., 

2011), and protected human neuroblastoma SH-SY5Y cells from oxidative stress (Sato et 

al., 2011). In addition, mouse erythrocytes (Ohnishi et al., 1994) and granulocytes 

(Bouayed et al., 2007) treated with chlorogenic acid were protected from H2O2 induced 

haemolysis and lipid peroxidation. Chicoric acid, too, was absorbed by neuron-like PC-12 

cells extracted from rat pheochromocytoma, which were than protected from oxidative 

stress and maintained their viability (Heo et al., 2010). 
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Chicoric, chlorogenic and caftaric acids are important dietary LMWAs (Clifford, 1999; 

Clifford, 2000b) with potent radical scavenging activities in vitro (Thygesen et al., 2007; 

Rossetto et al., 2008). Chicoric acid is comparable in activity to certain flavonoids and 

rosmarinic acid, which are efficient antioxidants (Thygesen et al., 2007). It is several 

times more effective in scavenging peroxyl radicals than ascorbic acid in in vitro human 

intestinal conditions (Rossetto et al., 2008). Chlorogenic acid was, respectively, three- 

and seven-fold more potent than ascorbic acid and trolox in simulated human intestinal 

conditions (Rossetto et al., 2008). Despite their strong antioxidant activities, studies on 

bioavailability and stability of chicoric acid (Bailly and Cotelle, 2005) and caftaric acid 

(Nuissier et al., 2010) are far less documented compared to chlorogenic acid. My data 

confirm that these hydroxycinnamic acids in S. oleraceus leaves were stable following 

gastrointestinal digestion as quantified by in vitro and cellular measures of antioxidant 

activity.  

 

In conclusion, gastrointestinal digestion of S. oleraceus leaves resulted in a progressive 

extraction of hydroxycinnamic acids and ascorbate with corresponding antioxidant 

activities, where raw leaves were slightly superior to boiled leaves. The antioxidant 

activities of hydroxycinnamic acids were stable during gastrointestinal digestion, and 

displayed antioxidant activity inside HepG2 and Caco2 cells. Therefore these in vitro 

studies demonstrate that S. oleraceus raw leaves are an excellent dietary antioxidant 

source.  
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CHAPTER 5: EXTRACTABLE ANTIOXIDANT ACTIVITIES OF 

CELL SUSPENSION CULTURES OF Sonchus oleraceus L. IN 

RELATION TO ABIOTIC STRESSORS 

 

 

 

 

 

 

 

 

Plate 5.1 Light micrographs of Sonchus oleraceus L. (A) cells in suspension cultures (bar = 50 µm) 

and (B) a transverse section of a leaf from a greenhouse grown plant (bar = 200 µm). 
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5.1 ABSTRACT 

 

Cell suspension cultures of Sonchus oleraceus L. may provide a continuous, efficient 

antioxidant production system unhindered by climatic and phenological effects associated 

with extraction from plants. Therefore the aim of this work was to examine the effects of 

abiotic stressors on extractable antioxidant activities, and concentrations of ascorbate and 

phenolic compounds in S. oleraceus cell suspension cultures of two ecotypes. Cell 

suspension cultures were initiated from in vitro shoots of two ecotypes originating from 

Acacia Bay (ACB) and Oamaru (OAM) in New Zealand. Cells were exposed to chilling, 

salinity and the combination of both for three weeks, and extractable antioxidant 

activities, concentrations of ascorbate and phenolic compounds were measured for calli 

and media. In both ecotypes all stressors increased antioxidant activities, and 

concentrations of total phenolics, ascorbate and chlorogenic acid compared to the control. 

The most effective stressor differed between ecotypes; the stressor combination for ACB, 

and chilling for OAM. Calli of ACB ecotype were more potent than OAM in antioxidant 

activities, and held higher concentrations of total phenolics, hydroxycinnamic acids and 

ascorbate irrespective of the stressor. At the stationary phase, calli and media of both 

ecotypes yielded highest extractable antioxidant activities, concentrations of ascorbate, 

hydroxycinnamic acids and total phenolics irrespective of the stressor. My data indicate 

that abiotic stressors can be used to augment antioxidant activities of S. oleraceus cells in 

suspension cultures. 

 

KEYWORDS: Sonchus oleraceus, cell suspension culture, antioxidant, phenolics, 

chilling, salinity 
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5.2 INTRODUCTION 

 

Twenty five percent of health-promoting chemicals in all prescribed pharmaceuticals in 

industrialized countries are still extracted from plants (Namdeo, 2007). Of firms that 

produced, distributed or sold bioactive compounds, 51% dealt in plant based LMWAs 

(Tebbens, 2002). This was because the consumer preference for a particular health-

promoting biochemical was more if they were; plant based rather than of ―industrial 

origin‖, extracted from a familiar food plant and possessed validated physiological 

benefits beyond basic nutritional functions (Marriott, 2000; Williams et al., 2004). 

 

However, extraction of the chemicals directly from the plants is problematic since in most 

cases LMWAs were present at low levels, or accumulated only in a specific tissue and at 

a specific growth stage or upon certain growth or environmental conditions (Chapter 1; 

Section 1.10). In Sonchus oleraceus (Compositae) too, yields of LMWAs were variable 

due to climatic, phenological and genetic factors (Chapter 3). For these reasons cell 

cultures of S. oleraceus may be a more reliable commercial method for the production 

and extraction of antioxidants since they lack shortcomings associated with extracting 

from plants. In vitro cell cultures of number of other plant species have already been 

developed to extract LMWAs successfully (Table 5.1 – 5.2; Chapter 1; Section 1.10). 

Further, it may be possible to use abiotic stimuli such as chilling and salinity to further 

enhance LMWA production in S. oleraceus cell cultures. The application of biotic or 

abiotic stimuli, otherwise known as elicitors, is a proven strategy for increasing secondary 

metabolite production in some plant cell cultures (Chapter 1; Section 1.10; Table 1.27). 

An elicitor is defined as a substance which, when introduced in small concentrations to a 

living cell system, initiates or improves the biosynthesis of specific compounds (Radman 

et al., 2003). Biotic elicitors are derived from live organisms, for example pectin, chitin 

and glucan of fungal and yeast origin, while inorganic salts (NaCl), heat shock, chilling, 

heavy metal ions, UV radiation and ultrasound are classified as abiotic elicitors (Zhou et 

al., 2011).  
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Table 5.1 Selected patents for production of phenolic compounds from plant cell suspension cultures 

 

Phenolic compounds Plant species  Patent number References  

Resveratrol  Vitis vinifera US7309591B2 (Martinez et al., 

2007) 

Rutin, Quercetin, Quercetin-3-

glucoside, Kaempferol, Kaempferol-3-

rutinoside, Naringenin, Naringenin-7-

glucoside 

Solanum esculentum US20030101477A1 (Colliver et al., 

2003) 

Catechin  Taxus wallichiana US6620599B1 (Chattopadhyay 

et al., 2003) 

Isoflavone  Glycine max US7354765B2 (Federici et al., 

2008) 

Procyanidins  Theobroma spp. US8568798B2 (Venkatramesh et 

al., 2013) 

Polyphenols Crocus sativus WO2013156862A1 (Yoon et al., 

2013) 

 

Table 5.2 Selected commercial applications of plant cell suspension cultures for the production of 

LMWAs 

 
LMWAs Commercial 

product 

Plant species Manufacturer  Websites
1
  

 

Procyanidins  Cocovanol Theobroma cacao DianaPlantSciences Inc., 

Portland, Oregon, USA 

http://plantcellculture.

com/aboutplantcellcul

ture.html 

Ginseng  Tissue 

cultured 

ginseng 

Panax ginseng Nitto Denko Medical 

Corporation, Osaka, Japan 

http://www.nitto.com/

about_us/corporate/his

tory/  

Rosmarinic 

acid  

Rosmarinic 

acid 

Coleus blumei A. Nattermann a Cie GmbH, 

Cologne, Germany 

http://www.natterman.

nl/index.html  

1
 accessed December 2013 

 

Studies on effect of abiotic stressors on antioxidant activities of S. oleraceus cell 

suspension cultures have not yet been studied. Thus, it was hypothesized that antioxidant 

activities of calli and media obtained from S. oleraceus cell suspension cultures are 

promoted by abiotic stressors. 

 

 

 

http://plantcellculture.com/aboutplantcellculture.html
http://plantcellculture.com/aboutplantcellculture.html
http://plantcellculture.com/aboutplantcellculture.html
http://www.nitto.com/about_us/corporate/history/
http://www.nitto.com/about_us/corporate/history/
http://www.nitto.com/about_us/corporate/history/
http://www.natterman.nl/index.html
http://www.natterman.nl/index.html
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5.3 MATERIALS AND METHODS  

 

5.3.1 Chemicals 

 

Murashige and Skoog (MS) medium, α-naphthaleneacetic acid (NAA), 6-

benzylaminopurine (BAP), agar, sucrose, NaClO and glass vessels were purchased from 

Sigma-Aldrich (St Louis, MO). All other chemicals are listed at Section 2.1. 

 

5.3.2 In vitro culture conditions 

 

Axenically grown plants, callus cultures and cell suspension cultures were maintained in 

a sterile growth room at 25 
o
C and 16 h photoperiod provided from cool white fluorescent 

tubes (94 µmol m
-2

 s
-1

). All cultures were maintained in cylindrical glass vessels (6 x 10 

cm) secured with clear plastic caps.  

 

5.3.3 Establishment of in vitro plants  

 

Plants were raised from seeds obtained from selfed F1 generation plants, which were 

themselves raised from seeds collected from wild populations at Acacia Bay and Oamaru, 

New Zealand (Chapter 3; Section 3.3.1; Table 3.1). The seeds were surface sterilized by 

rinsing in 70% ethanol for 5 min followed by 10% NaClO for 15 min and then using 

sterile ddH2O for 5 min. The seeds were soaked in sterile ddH2O and kept in dark for 12 

h. They were seeded at the rate of 10 – 15 seeds vessel
-1 

in 50 mL MS medium 

supplemented with 6 g L
-1

 agar and 87.7 mM sucrose, devoid of growth regulators.  

 

5.3.4 Establishment of callus culture 

 

Callus cultures of Sonchus oleraceus were initiated using leaf explants (1.0 x 1.0 cm) 

excised from 21 day old in vitro plants. The leaf explants were established on 50 mL MS 

medium supplemented with 6 g L
-1

 agar, 87.7 mM sucrose, 5.4 mM NAA and 4.4 mM 

BAP. The growth regulator concentrations used here were determined through 

preliminary trials (Appendix B.1). Subculturing was performed at 21 day intervals. 
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5.3.5 Establishment of cell suspension culture and culture conditions 

 

Suspension cultures were initiated using 21 day old callus. The cultures were maintained 

in 50 mL of MS liquid medium supplemented with 87.7 mM sucrose, 10.7 mM NAA and 

4.4 mM BAP. The growth regulator concentrations used here were established through 

preliminary trials (Appendix B.2). 

 

Cultures were maintained on a rotary shaker at 50 rpm. Suspension cultures were 

subcultured at 21 day interval. The sixth subculture was used to initiate suspension 

cultures used in Section 5.3.6, using 0.5 g cell FW vessel
-1

.  

 

5.3.6 Treatments  

 

Seven day old suspension cultures were exposed to chilling, salinity or the combination of 

both for three weeks. Control cell suspensions were maintained continuously in the 

growth room. For the chilling treatment, cell suspensions were repeatedly held at 5 
o
C for 

8 h in dark and returned to the light in the growth room. Salinity was imposed by 

dissolving NaCl in the medium to obtain 50 mM. The fourth group of suspension cultures 

was given both the chilling and salinity treatments. Aliquots (10 mL vessel
-1

) were 

withdrawn from 7, 14, 21 and 28 day old cell suspension cultures. 

 

5.3.7 Phytochemical extraction 

 

The aliquots were vacuum filtered to separate cells and extracellular medium. The cell 

fresh and dry biomass was measured. The relative growth rate (RGR) for cell dry biomass 

accumulation was calculated as: 

RGR = [(W1– W0)/(t1 – t0)W0]x100 

Where W0 is the biomass at time t0, W1 is biomass at time t1 and t1–t0 is one week. 

 

Calli intended for phytochemical analysis were prepared according to Section 3.3.3. The 

extracellular medium was vacuum dried and resuspended in 1.5 mL of methanol: ddH2O: 

acetic acid (70:23:7, v/v/v). Calli and media extracts were stored under nitrogen at −20 
o
C 

and phytochemical analyses were performed within 7 d of extraction. 
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The analysis of total phenolic content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical 

scavenging activities, oxygen radical absorbance capacity (ORAC) assay, ascorbate 

content for cells and medium, were performed as described in Sections 2.2 – 2.5. Online 

reverse phase HPLC was performed for cells and medium as described in Section 2.8 

without post column reaction with DPPH reagent.  

 

5.4 STATISTICAL ANALYSIS  

 

Repeated measures ANOVA with Bonferroni post hoc tests (P< 0.05) were performed to 

identify significance of treatments. Analyses were performed using SPSS 18.0 statistical 

software. 
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5.5 RESULTS 

 

5.5.1 In vitro plants, callus and suspension cultures of S. oleraceus L. 

 

The seeds germinated rapidly and well developed cotyledons were present in seven day 

old cultures (Plate 5.2A). The in vitro plant had developed two to four true leaves at day 

21 (Plate 5.2B). Callus cultures had rapid proliferation and appeared green and friable at 

day 21 (Plate 5.2C). 

 

 

 

 

Plate 5.2 Sonchus oleraceus L. (A) 7 day old, (B) 21 day old in vitro plants and (C) 21 day old callus 

cultures on Murashige and Skoog medium. 

 

1 cm 

 

Calli 

 

 

 

Leaf explant 
 

1 cm 

A 

1 cm 

B 
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Seven day old suspension cultures appeared turbid and yellowish green (Plate 5.3A) and 

28 day old cultures were green and formed cell aggregates (Plate 5.3B).  

 

 
             Control                        Chilling                       Salinity                              Combined 

 
                          Control                     Chilling                   Salinity           Combined 

 

Plate 5.3 Suspension cultures of Sonchus oleraceus L. at (A) 07 and (C) 28 days. 

 

5.5.2 Biomass of cells from suspension cultures 

 

Accumulation of cell biomass did not vary significantly across ecotypes or stressor 

treatments (ANOVA; P = 0.48; Figure 5.1). At day 21, the cell dry mass of cultures was 

maximal (0.6 ± 0.1 mg mL
-1

), which was double the weight at day 7 (P< 0.001; Figure 

5.1). 

 

Figure 5.1 Changes in dry biomass of cells from suspension cultures of Sonchus oleraceus L. Means ± 

SE (n = 12).  
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The growth rate of cultures indicated three distinct growth phases: lag, linear and 

stationary phases (Table 5.3). During the initial lag phase, cell dry biomass accumulation 

rate was low. The highest growth rate was during the linear phase. Onset of the stationary 

growth phase occurred following day 21. The stationary phase had the lowest growth rate.   

 

Table 5.3 Rates of cell dry biomass accumulation in suspension cultures of Sonchus oleraceus L.  

Culture age 

(days) 

Relative growth rate
a
 

(mg 100 mg
-1

 week
-1

) 

Growth phase 

7 – 14 28 ± 7 Lag phase 

14 – 21 110 ± 12 Linear phase 

21 – 28   1 ± 3 Stationary phase 

a
Means ± SE (n = 48). 

 

 

5.5.3 Effects of abiotic stressors on extractable antioxidant activities, 

concentrations of total phenolics, hydroxycinnamic acids and ascorbate 

 

Stressors increased the extractable antioxidant activities and concentrations of total 

phenolics, ascorbate and hydroxycinnamic acids excluding chicoric acid (Figures 5.2 – 

5.8). These effects were seen in calli and media of both ecotypes.  

 

In calli, all stressors enhanced the: extractable antioxidant activities measured as DPPH 

radical scavenging capacities (P< 0.001) and ORAC values (P< 0.001), concentrations of 

total phenolics (P< 0.001), chlorogenic acid (P< 0.001) and ascorbate (P< 0.001) 

compared to the controls (Figures 5.2A,B – 5.5A,B and 5.8A,B). Concentrations of 

caftaric acid were increased by the stressor combination and by salinity compared to the 

control, though only in ACB (P< 0.001; Figure 5.6A); these treatments did not 

significantly affect caftaric acid levels in OAM (Figure 5.6B). Treatments did not affect 

concentration of chicoric acid in both ecotypes (P = 0.72; Figure 5.7A,B). The stressor 

which caused highest improvement in antioxidant activities and concentrations of 

LMWAs differed between ecotypes; stressor combination in ACB (Figures 5.2A – 5.6A 

and 5.8A), and chilling in OAM (Figures 5.2B – 5.5B and 5.8B). The stressor-induced 

increases compared to their respective controls were greater in ACB (Figures 5.2A – 5.6A 

and 5.8A) than in OAM (5.2B – 5.5B and 5.8B). 
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Figure 5.2 Changes in DPPH radical scavenging capacity in calli (A,B) and media (C,D) of ACB (A,C) 

and OAM (B,D) ecotypes of Sonchus oleraceus L. suspension cultures. Means ± SE (n = 6). Data 

points with different letters indicate significant differences between treatments within the time point 

(P< 0.05). ns: Treatments are not significantly different within the time point (P> 0.05). 
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Figure 5.3 Changes in ORAC activity in calli (A,B) and media (C,D) of ACB (A,C) and OAM (B,D) 

ecotypes of Sonchus oleraceus L. suspension cultures. Means ± SE (n = 6). Data points with different 

letters indicate significant differences between treatments within the time point (P< 0.05). ns: 

Treatments are not significantly different within the time point (P> 0.05). 
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Figure 5.4 Changes in concentration of total phenolics in calli (A,B) and media (C,D) of ACB (A,C) 

and OAM (B,D) ecotypes of Sonchus oleraceus L. suspension cultures. Means ± SE (n = 6). Data 

points with different letters indicate significant differences between treatments within the time point 

(P< 0.05). ns: Treatments are not significantly different within the time point (P> 0.05). 
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Figure 5.5 Changes in concentration of chlorogenic acid in calli (A,B) and media (C,D) of ACB (A,C) 

and OAM (B,D) ecotypes of Sonchus oleraceus L. suspension cultures. Means ± SE (n = 6). Data 

points with different letters indicate significant differences between treatments within the time point 

(P< 0.05). ns: Treatments are not significantly different within the time point (P> 0.05). 
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Figure 5.6 Changes in concentration of caftaric acid in calli (A,B) and media (C,D) of ACB (A,C) and 

OAM (B,D) ecotypes of Sonchus oleraceus L. suspension cultures. Means ± SE (n = 6). Data points 

with different letters indicate significant differences between treatments within the time point (P< 

0.05). ns: Treatments are not significantly different within the time point (P> 0.05). 
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Figure 5.7 Changes in concentration of chicoric acid in calli (A,B) and media (C,D) of ACB (A,C) and 

OAM (B,D) ecotypes of Sonchus oleraceus L. suspension cultures. Means ± SE (n = 6). Treatments 

are not significantly different (P> 0.05). 
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Figure 5.8 Changes in concentration of ascorbate in calli (A,B) and media (C,D) of ACB (A,C) and 

OAM (B,D) ecotypes of Sonchus oleraceus L. suspension cultures. Means ± SE (n = 6). Data points 

with different letters indicate significant differences between treatments within the time point (P< 

0.05). ns: Treatments are not significantly different within the time point (P> 0.05). 
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The culture medium itself displayed higher antioxidant activities and held higher 

concentrations of total phenolics, chlorogenic acid and ascorbate after treatments of the 

plant cells (Figures 5.2C,D – 5.5C,D and 5.8C,D). However, these changes were less 

prominent than those that occurred in the calli (Figures 5.2A,B – 5.5A,B and 5.8A,B). 

Treatments did not significantly affect concentrations of caftaric and chicoric acids in the 

media (Figures 5.6C,D – 5.7C,D). 

 

5.5.4 Ecotypes differ in extractable antioxidant activities, concentrations of total 

phenolics, hydroxycinnamic acids and ascorbate 

 

Calli of ACB were 40 – 50% more potent than OAM in antioxidant activities as measured 

by DPPH radical scavenging (P< 0.001) and ORAC activities (P< 0.001). ACB calli also 

had 20 – 50% more concentrations of total phenolics (P< 0.001), chlorogenic acid (P< 

0.001), caftaric acid (P< 0.001), chicoric acid (P< 0.001) and ascorbate (P< 0.001) 

irrespective of the stressor applied, and across all growth phases (Figures 5.2A,B – 

5.8A,B). 

 

The culture medium that had contained ACB calli held 20 – 50% of the LMWA load of 

calli whereas media of OAM cultures held 50 – 60% LMWA concentrations of its calli 

(Figures 5.2C,D – 5.8C,D). This was true for all the stressors and growth phases.  

 

5.5.5 Growth phases differ in extractable antioxidant activities, concentrations of 

total phenolics, hydroxycinnamic acids and ascorbate 

 

DPPH radical scavenging (P< 0.001), ORAC activities (P< 0.001), total phenolics (P< 

0.001), and concentrations of chlorogenic (P< 0.001), caftaric (P< 0.001), chicoric (P< 

0.001) and ascorbic acids (P< 0.001) were all greatest at the onset of the stationary phase, 

both in calli and the culture media for all ecotypes and treatments (Figures 5.2 – 5.8).  

 

5.5.6 Extractable antioxidant activities, and concentrations of total phenolics, 

hydroxycinnamic acids and ascorbate are lower in media than in calli 

 

The nutrient media from both ecotypes had consistently lower DPPH radical scavenging 

(P< 0.001) and ORAC activities (P< 0.001), as well as lower concentrations of total 
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phenolics (P< 0.001), hydroxycinnamic acids (P< 0.001) and ascorbate (P< 0.001) 

compared to the calli themselves (Figures 5.2 – 5.8). 

 

5.5.7 Comparison of LMWA concentrations in extracts from calli of suspension 

cultures and from leaves of greenhouse grown plants  

 

Stressor-induced concentrations of LMWAs extracted from calli were 30 – 80% lower 

than those from the leaves of similar stressor-imposed greenhouse grown plants (Table 

5.4). However, in ACB the concentration of chlorogenic acid in calli extracts were three-

fold higher than leaf extracts, when controls of youngest suspensions and plants were 

compared (Table 5.4). The LMWAs accumulated rapidly with lower variability in calli 

than in leaves (Table 5.4). 
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Table 5.4 Comparison of phytochemical concentrations in extracts from calli of suspension cultures 

and from leaves of greenhouse grown plants of ACB and OAM ecotypes of Sonchus oleraceus L. 

following treatments: control, chilling, salinity and combination of the two. 

 

Age 

(weeks) 

Treatment Sample  Ascorbate 

concentration 

Hydroxycinnamic acid concentration 

(mg g
-1

) 

[Calli/   (mg g
-1

) Caftaric Chlorogenic Chicoric 

plant]   ACB OAM ACB OAM ACB OAM ACB OAM 

[2/10] 

Control  Calli
1
  0.5±0.0 0.4±0.0 0.7±0.0 0.6±0.0 2.7±0.0 1.8±0.0 3.5±0.1 3.0±0.1 

 Leaf
2
  0.2±0.1 0.3±0.0 2.0±0.6 1.2±0.1 0.9±0.1 1.1±0.1 5.4±1.2 5.2±0.1 

 Ratio
3
  2.3 1.1 0.4 0.5 3.0 1.5 0.6 0.6 

Chilling  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.2±0.0 2.1±0.0 3.6±0.0 3.0±0.0 

 Leaf  0.4±0.0 0.3±0.0 1.9±0.2 1.2±0.1 3.9±0.4 2.3±0.1 6.9±0.8 5.2±0.3 

 Ratio  1.2 1.2 0.4 0.5 0.8 1.0 0.5 0.6 

Salinity  Calli  0.5±0.0 0.4±0.0 0.7±0.0 0.6±0.0 3.1±0.0 2.0±0.0 3.5±0.0 3.0±0.0 

 Leaf  0.4±0.0 0.4±0.0 1.5±0.2 1.3±0.1 3.8±0.3 2.2±0.1 6.2±0.7 5.1±0.2 

 Ratio  1.3 1.0 0.5 0.5 0.8 0.9 0.6 0.6 

Combined  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.7±0.0 2.3±0.0 3.6±0.0 3.0±0.0 

 Leaf  0.3±0.1 0.4±0.0 1.7±0.4 1.3±0.1 3.9±1.0 2.1±0.0 6.0±1.2 5.2±0.2 

 Ratio  1.8 1.2 0.5 0.5 0.9 1.1 0.6 0.6 

[3/12] 

Control  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.1±0.0 2.1±0.1 3.6±0.0 3.1±0.0 

 Leaf  1.1±0.0 0.9±0.1 2.6±0.2 2.1±0.2 3.4±0.2 3.3±0.0 9.0±0.2 8.5±0.3 

 Ratio  0.5 0.4 0.3 0.3 0.9 0.6 0.4 0.4 

Chilling  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.9±0.0 2.8±0.0 3.6±0.0 3.8±0.0 

 Leaf  1.2±0.1 0.9±0.1 2.3±0.3 2.1±0.2 4.1±0.2 3.5±0.1 8.6±0.8 8.0±0.5 

 Ratio  0.4 0.4 0.3 0.3 1.0 0.8 0.4 0.4 

Salinity  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.3±0.0 2.1±0.0 3.6±0.0 3.0±0.0 

 Leaf  0.9±0.1 0.6±0.1 2.5±0.4 2.0±0.3 3.9±0.2 3.2±0.2 8.8±0.3 7.4±0.6 

 Ratio  0.6 0.7 0.3 0.3 0.9 0.7 0.4 0.4 

Combined  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 4.5±0.0 2.9±0.0 3.7±0.0 3.1±0.0 

 Leaf  0.9±0.1 0.7±0.0 2.2±0.2 2.0±0.2 3.3±0.2 3.1±0.2 8.3±0.2 7.9±0.6 

 Ratio  0.6 0.6 0.4 0.3 1.3 0.9 0.4 0.4 

[4/14] 

Control  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.1±0.0 2.0±0.0 3.6±0.0 3.0±0.0 

 Leaf  0.8±0.1 0.7±0.1 2.6±0.2 2.8±0.3 2.9±0.1 3.0±0.2 8.7±0.3 8.1±0.5 

 Ratio  0.7 0.6 0.3 0.2 1.1 0.7 0.4 0.4 

Chilling  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.8±0.0 2.6±0.0 3.6±0.0 3.0±0.0 

 Leaf  0.7±0.0 0.7±0.0 3.1±0.3 2.3±0.1 3.4±0.1 3.0±0.1 8.5±0.5 7.6±0.2 

 Ratio  0.7 0.6 0.3 0.3 1.1 0.9 0.4 0.4 

Salinity  Calli  0.5±0.0 0.4±0.0 0.8±0.0 0.6±0.0 3.5±0.0 2.3±0.0 3.6±0.0 3.0±0.0 

 Leaf  1.1±0.2 0.6±0.1 3.0±0.2 2.6±0.2 3.6±0.1 3.8±0.2 9.4±0.5 7.9±0.6 

 Ratio  0.5 0.7 0.3 0.2 1.0 0.6 0.4 0.4 

Combined  Calli  0.6±0.0 0.4±0.0 0.8±0.0 0.6±0.0 4.4±0.0 2.7±0.0 3.7±0.0 3.0±0.0 

 Leaf  1.1±0.1 0.8±0.1 3.1±0.2 2.4±0.3 3.6±0.1 4.3±0.3 8.1±0.2 6.8±0.6 

 Ratio  0.5 0.6 0.4 0.3 1.2 0.6 0.5 0.4 
1
Means ± SE (n=6) from Section 5.5.3 (Figures 5.5A,B – 5.8A,B)

 

2
Means ± SE (n=8) from Section 3.5 (Figures 3.5B, 3.6 and 3.9B)

 

3
Calli: Leaf 
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5.6 DISCUSSION 

 

This study shows that antioxidant activities and concentrations of LMWAs in suspension 

cultures were promoted to different degrees depending on the type of stressor and the 

ecotype. Of the two ecotypes, ACB was the richer source of LMWAs, and was more 

potent in antioxidant activity. The stationary phase held the highest concentration of 

LMWAs and displayed most potent antioxidant activities. These results indicate there is 

considerable commercial potential of using abiotic stressors as elicitors to elevate 

antioxidant activities and concentrations of LMWAs of S. oleraceus cells in suspension 

cultures.  

 

Here, S. oleraceus in vitro cultures showed promising traits that are conducive for 

commercial application of cell suspension cultures to produce LMWAs: they produced 

comparable levels of LMWAs with lower variability in a shorter duration compared to plant 

leaves (Table 5.4). This maybe due to the optimum concentrations of plant growth 

regulators in the S. oleraceus cell cultures favoured the production of LMWAs. However, in 

other plant species, the commercial application of plant cell cultures to produce LMWAs was 

constrained by low yield and variability (Kolewe et al., 2008; Lee et al., 2010). The poor 

synthesis and variability of LMWAs in plant cell cultures were due to chromosomal 

aberrations caused by accelerated the rates of cellular-deprogramming and -

reprogramming brought upon by supra-optimal plant growth regulator concentrations in 

the medium (Whitmer et al., 2003; Morcillo et al., 2006; Ekiert et al., 2009; Dubrovina 

and Kiselev, 2012; Cheruvathur et al., 2013; Szopa et al., 2013).  

 

All of the tested stressors resulted in higher concentrations and activities of LMWAs 

extractable from S. oleraceus calli in suspension cultures, than in control cultures and did 

not compromise cell growth (Figures 5.1 – 5.6 and 5.8). This is desirable if these abiotic 

stressors were to be used commercially to increase antioxidants. Usually, growth and 

secondary metabolite production are negatively correlated with one another, though it is 

possible to increase secondary metabolite production without compromising biomass 

accumulation by optimising elicitation conditions such as: type of elicitor, severity, the 

stage of application and the duration of application (Zhao et al., 2010; Cai et al., 2012a; 

Cai et al., 2012b).  
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The combination of chilling and salinity were not synergistic on LMWA concentrations 

and activities in cell cultures (Figures 5.2 – 5.6 and 5.8). These results were similar to the 

effects of this stressor combination on intact plants (Section 3.5). Similarities in stressor-

responses between whole plants and calli were reported when calli were initiated from 

leaf explants (Rus et al., 2001).  

 

The stressors increased the concentrations of chlorogenic acid to a greater or lesser extent, 

but did not affect chicoric acid (Figures 5.5 and 5.7). Differential chlorogenic acid 

accumulation across stressors is possible because different stressors induce differential 

transcription and activity of genes for the cytochrome P450 monooxygenases, as 

discussed in detail in Chapter 3 (Section 3.6). 

 

The concentration of chlorogenic acid in calli extracts was three-fold higher compared to 

leaf extracts (Table 5.4). This indicates higher carbon: nitrogen ratio and near optimal 

plant growth regulator concentrations in the medium may have been conducive for 

chlorogenic acid synthesis. Similarly higher C:N ratio in Cecropia obtusifolia in vitro 

cultures enhanced chlorogenic acid accumulation by three-fold compared to leaves of 

trees (Fritz et al., 2006; Nicasio-Torres et al., 2012). Further, aloesin production was 

three times higher in Aloe vera callus cultures, than leaves from plants which was 

attributed to optimum plant growth regulator concentrations (Matos Acurero, 2008).  

 

The extent to which ascorbate concentration varied between ecotypes after stressor 

treatments (Figure 5.8) may be explained by their different rates of ascorbate 

biosynthesis, recycling, oxidation and catabolism. This is because transcription of genes 

encoding enzymes, which regulate ascorbate biosynthesis, recycling and degradation are 

variably increased or decreased depending on the stressor and cultivar (Cruz-Rus et al., 

2011; Zhang et al., 2011b; Mellidou et al., 2012; Alós et al., 2013; Li et al., 2013). For 

example, accessions of Fragaria ananassa with higher stressor-induced ascorbate content 

had upregulated transcription of genes for ascorbate biosynthetic and recycling enzymes 

(Cruz-Rus et al., 2011; Li et al., 2013). In Solanum esculentum and Capsicum annuum, 

too, cultivars with higher stressor-induced fruit ascorbate content was attributed to 

enhanced transcription of ascorbate biosynthetic and recycling enzymes and lower 

transcription of ascorbate degradation enzymes (Mellidou et al., 2012; Alós et al., 2013).  

 



130 

 

The calli of two ecotypes differed in ability to increase caftaric acid accumulation in 

response to stressors (Figure 5.6A,B). This may imply differences in stressor-inducible 

genes encoding enzymes and transcription factors in phenylpropanoid pathway between 

ecotypes. Differences in founding genotypes and their geographic isolation between the 

two S. oleraceus populations from which the ecotypes originated may have lead to this 

(St John-Sweeting, 2011). For example, in certain accessions of Zea mays, complete or 

partial loss of either, one or both anthocyanin and flavonone biosynthetic pathways 

occurred (Zhang et al., 2011b). 

 

Calli of ACB were richer in LMWAs and had more potent antioxidant activities, than 

OAM (Figures 5.2A,B – 5.8A,B) possibly due to a strong genetic component controlling 

S. oleraceus antioxidant traits across ecotypes. The direction of the difference between 

ecotypes was consistent with that for greenhouse grown plants (Section 3.5; Figure 3.4), 

and with the unpublished results by Ellwood (2007). As discussed in detail in Section 3.6, 

this may be due to differential expression of PAL multigene family across plant 

accessions.  

 

ACB is more tolerant to abiotic stressor in in vitro cultures than OAM. Of the two 

ecotypes, ACB had greater stressor-induced LMWAs levels and better cell membrane 

integrity indicated by proportionally lower LMWAs level in the media (Figures 5.2 – 

5.8). Similarly, a lower efflux of cell contents from calli of a cadmium-tolerant Populus 

nigra ecotype, compared to that of a sensitive ecotype, was attributed to higher Cd-

induced intracellular LMWAs accumulation in the tolerant ecotype aiding its cell 

membrane integrity by scavenging excess ROS efficiently (Iori et al., 2012). In Phoenix 

dactylifera and Triticum aestivum too, these traits have been associated with the stress 

tolerant genotypes in in vitro cultures (Daayf et al., 2003; Moheb et al., 2011; Iori et al., 

2012). 

 

The stationary phase held the highest ascorbate, hydroxycinnamic and total phenolic 

concentrations compared to any other growth phase (Figures 5.4-5.8), which may due to 

higher cell numbers at stationary phase compared to other growth stages. The onset of the 

stationary phase occurs once the cell cultures reach maximum carrying capacity (Naill 

and Roberts, 2005; Cacho et al., 2010). Further, at stationary phase, the G0/G1cell ratio 

exceeds 90% and the G0 cells have higher capacity and rates of secondary metabolism 
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than G1 cells (Cheng et al., 2006; Zhao et al., 2010). In suspension cultures of other 

species, too, phenolic compound accumulation is maximal at the stationary phase (Jeong 

et al., 2009; Cacho et al., 2010; Cai et al., 2012b; Karwasara and Dixit, 2012; Nicasio-

Torres et al., 2012; Yin et al., 2012).  

 

These results indicate the significant features of LMWAs production in S. oleraceus cell 

suspension cultures, which were: highly stressor-induced, lower in variability and 

accumulation within shorter culture duration compared to leaves of whole plants. 

Additionally, the growth of cell cultures was unchallenged by stressors. These basic traits 

are highly preferable in developing large scale commercial production and extraction 

systems of LMWAs from plant cell cultures.  
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CHAPTER 6: GENERAL DISCUSSION 

 

6.1 CONCLUSIONS 

 

This study confirmed that vegetative shoots of Sonchus oleraceus L. are rich in LMWAs 

as shown by in vitro chemical and cellular antioxidant activity (CAA) measures (Chapter 

4). The antioxidant activities and concentration of LMWAs of S. oleraceus leaves and 

calli significantly increased with maturation of plants and cell cultures (Chapters 3 and 5; 

Table 6.1). Furthermore, as shown in Chapters 3 and 5, the ecotype differences in 

antioxidant activities were largely maintained across progenies and in cell cultures 

indicating the heritability and genetic stability of antioxidant potential in S. oleraceus 

(Table 6.1).  

 

Chapters 3 and 5 showed that, the degree of stressor-induced antioxidant activities 

compared to controls, were greater in plant cell cultures than in whole plants (Chapter 5: 

Table 5.4). Furthermore, of the two ecotypes tested here, the antioxidant activities and 

LMWAs content of the superior ecotype were enhanced to a greater degree by imposing 

stressors to plants and cell cultures (Chapters 3 and 5). Chapter 5 also demonstrated that 

for calli from suspension cultures, the most effective stressor differed between ecotypes; 

the stressor combination for ACB, and chilling for OAM. As shown in Chapter 3, leaves 

with highest antioxidant activities and concentrations of LMWAs were obtained from 14 

week old plants originating from Acacia Bay (ACB) that had been exposed to two weeks 

of chilling night temperatures and salinity. Chapter 3 also showed that infusion of HepG2 

cells with extracts from leaves with stressor-promoted antioxidant activities protected the 

cultured human cells from oxidative stress to a greater degree.  

 

Furthermore, as shown in Chapter 4, cooking leaves, diminished the levels of some 

LMWAs in the bioaccessible fraction obtained through in vitro gastrointestinal digestion. 

Also, antioxidants from uncooked leaves that were digested in in vitro gastrointestinal 

conditions were absorbed into human cells in vitro and protected them from oxidative 

stress (Chapter 4).  
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Table 6.1 Simplified summary of results from Chapters 3 – 5 showing factors affecting antioxidant 

activities in Sonchus oleraceus L. leaves and cell cultures  
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Stressor

: 

Control 

Calli  
 

Chilling 
↑ ↑ ↑ 

 

↑ 
↑ 

 

^ 

 

^ 

 

- 

 

↑ 

 

↑ 
 

- 

 

- 

 

^ 

 

↑ 
 

Salinity  ↑ ↑ ↑ ↑ ↑ ^ ^ - ↑ ^ - - ^ ↑  

Combined ↑ ↑ ↑ ↑ ↑ ^ ↑ - ↑ ↑ - - ↑ ↑  

Leaf  
 

Chilling 
↑ ↑ ↑ 

 

- 
↑ ↑ 

 

- 

 

- 
↑ 

 

↑ 
 

- 

 

- 

 

- 

 

- 
 

Salinity  ↑ ↑ ↑ ^ ↑ ↑ - - ↑ ↑ - - - - α 

Combined ↑ ↑ ↑ ^ ↑ ↑ - - ↑ ↑ - - - -  

ACB: 

OAM 

Calli ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑  

Leaf ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑  

Mature: 

Young  

Calli
5
 ↑ ↑ ↑ ↑ ^ ^ ^ ^ ↑ ↑ ^ ^ ^ ^  

Leaf
6
 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑  

Calli: 

Leaf 
 ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓  

Raw: 

Boiled 

Leaves -  -  -  -  -  -  -   

Bioacc
7
 ↑  ↓  -  -  -  ↑  ↑  α

8
 

1. Oxygen Radical Absorbance Capacity  
2. 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity 
3. Concentration (mg g

-1
 DW)  

4. Cellular Antioxidant Activity (in HepG2 cells) 
5. Stationary phase: Lag phase 
6. Flowering stage: Vegetative stage 
7. Bioaccessible fraction from in vitro gastrointestinal digestion 
8. In HepG2 and Caco2 cells 

 

Key 

Symbol  Change/result  Fold change 

  Large increase    1.50 – 6.00 

↑  Moderate increase    1.10 – 1.49 

^  Very small increase    1.00 – 1.09 

  Decrease  <0.99 

-  No change    0.00 

α  Significant positive linear correlation Not applicable 
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6.2 DISCUSSION 

 

There has been a recent drive to produce plants rich in LMWAs to promote consumer 

health. Consequently, increasingly more research is being done on the antioxidant 

properties of food plants (Kaur and Kapoor, 2001; García-Mier et al., 2013). However, to 

commercialise a food plant as a antioxidant source, systematic research is required, 

focused on; (1) enhancing the levels of LMWAs in field grown plants; (2) developing 

commercially applicable in vitro culture techniques for efficient and effective LMWAs 

extraction; (3) the effects of food preparation on LMWAs; and (4) bioaccessibility, 

bioactivity, bioavailability and stability of LMWAs (Figure 6.1). My study on the 

antioxidant activities of S. oleraceus followed the scheme given in Figure 6.1 following 

recent recommendations on using plants as health promoting phytochemical sources 

(Finley, 2005; Rea et al., 2011; Traka and Mithen, 2011; Tounekti and Munné-Bosch, 

2012). 

 

Research stages  Objectives  Key methodologies  
Expected  

endpoints 
       

1. Screening 

plants 
→ 

Identify the source/s 

of variation  in 

LMWAs 

→ 

In vitro cellular and 

chemical antioxidant 

activities  

→ 

Intraspecific 

variation in 

LMWA content  

   ↘    

2. Production 

systems 
→ 

Enhance the LMWAs 

in plants 
→ 

Agronomic practices, 

in vitro culture  
→ 

Enhanced levels of 

LMWAs  

   ↗    

3. LMWAs 

profiling 
→ 

Identify and quantify 

the LMWAs in plants 
→ 

Chromatographic 

techniques 
→ 

LMWAs at 

adequate levels  

 ↘      

 

4. Candidate 

food plant  
→ 

Identify 

bioaccessibility, 

bioactivity and 

stability  

→ 
In vitro gastrointestinal 

digestion models 
→ 

Bioaccessible,  

bioactive and 

stable 

       

5. Marketable 

food plant  
→ 

Identify 

bioavailability and 

bioactivity  

→ 
Animal and human 

trials 
→ Functional food  

Figure 6.1 Process for validating a food plant as a valuable source of dietary LMWAs with evidence 

of health benefits developed based on recommendations of Finley (2005); Rea et al. (2011); Traka and 

Mithen (2011); Tounekti and Munné-Bosch (2012).  
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My work, demonstrated that extractable antioxidant activities of S. oleraceus leaves were 

superior to most commonly consumed food (Table 6.2). This was particularly true when 

leaves were selected from flowering plants of the more potent ecotype (ACB) that were 

exposed to stressors (Table 6.2). These results indicates the commercial potential of 

selecting potent ecotypes and practising correct agronomy to further improve extractable 

antioxidant activities of S. oleraceus leaves.  

 

Table 6.2 Sonchus oleraceus L. leaves and common food categorized into six groups ranked by their 

extractable antioxidant activities 

ORAC
1
 S. oleraceus leaves

2
 Fruits

3
  Vegetables

3
  Dried fruits 

and nuts
3
 

Other food
3
 

0 – 20 

Vegetative plants of 

both ecotypes 

Watermelon 

Cantaloupe 

Nectarine 

Pineapple 

Banana 

Grapes 

Apricot 

Avocado 

Tangerine 

Oranges 

Peach 

Pears  

Cucumber 

Beans 

Green peas 

Celery 

Corn 

Cauliflower 

Onion 

Potato  

Pepper  

Carrot 

Broccoli 

Lettuce 

Brazil nut 

Macadamia  

Cashews 

Bread 

Ready-to-eat 

breakfast cereals 

21 – 40 

 Apple 

Cherry 

Strawberry 

Cabbage 

Spinach 

Beet 

Asparagus 

Peanut 

Dates 

Raisin 

Figs  

 

41 – 60  
Flowering plants of 

OAM ecotype 

Raspberry 

Blackberry 

 Almond   

61 – 80  
Flowering, ACB 

without a stressor 

Blueberry 

Plum 

 Pistachio  Milk chocolate 

81 – 90  Flowering , ACB
4
   Prunes  

91 – 96 Flowering , ACB
5
 Cranberry Artichoke Hazelnut  

97 - 100 Flowering , ACB
6
     

1031     Baking chocolate 

1
Oxygen Radical Absorbance Capacity (µmol TE g

-1
) 

2 
Results from Chapter 3 

3
Source: Wu et al., 2004 

Stressors;
 4
chilling, 

5
salinity and 

6
combined  
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Here, extraction of LMWAs from S. oleraceus in vitro cultures showed advantages over 

leaves because produced LMWA levels were; (1) higher or comparable, (2) had low 

variability and (3) accumulated rapidly (Chapter 5; Table 5.4). These significant features 

displayed by S. oleraceus in vitro cultures have been considered essential first steps in 

commercial projects, such as the European Union project ‗Nutra-Snack‘. Nutra-Snack 

aimed to develop large scale pre-industrial production of antioxidants from cells and in 

vitro cultures of Ocimum basilicum, Mentha piperita, Trifolium heldreichianum, Glycine 

max, Taraxacum officinale and Salvia officinalis. The ultimate goal of the projects was to 

manufacture novel ready-to-eat snacks enriched with antioxidants of plant origin (Rea et 

al., 2011). Further, plant cell cultures are gaining popularity as biofactories of bioactive 

phytochemicals (Lindsay, 2000; Jacobo-Velázquez et al., 2011; Becerra-Moreno et al., 

2012; Jacobo-Velázquez and Cisneros-Zevallos, 2012; Tounekti and Munné-Bosch, 

2012). Thus S. oleraceus cell cultures have the potential to be developed into commercial 

bioreactors to biosynthesise antioxidants that maybe developed into botanical antioxidant 

food products.  

 

The in vitro cultures of S. oleraceus produced all three major hydroxycinnamic acids to 

lesser or comparable levels that were present in leaves harvested from plants (Chapter 5; 

Section 5.5.3; Table 5.4). This is of particular importance since some other plant species 

altogether lacked the capability to accumulate these hydroxycinnamic acids when they 

were grown as in vitro cell cultures than as whole plants (Table 6.3).  Organ cultures too, 

can produce secondary metabolites at levels that are similar to those synthesized in whole 

plants. However, organ cultures unlike cell cultures are expensive and complex to 

maintain in bioreactors at large scale (Verpoorte et al., 2002). Therefore S. oleraceus cell 

suspension cultures have economic feasibility of scaling-up to produce hydroxycinnamic 

acids.  

 

Further, the abiotic stressors that were used here have the potential to be used as elicitors 

particularly the combined stressor in commercial in vitro culture systems (Table 6.4). 

Fold increase in hydroxycinnamic acid levels due to elicitation of in vitro cultures of S. 

oleraceus was comparable with values obtained for other plant species that were in the 

experimental stages of developing into commercialised systems (Table 6.4).  
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Table 6.3 Comparison of concentrations of hydroxycinnamic acids extracted from calli of suspension 

cultures and leaves of greenhouse grown plants of Sonchus oleraceus L. and other selected plant 

species 

 

Species   Hydroxycinnamic acid concentration 

(mg g
-1

 DW) 

References 

  Caftaric Chlorogenic Chicoric  

Sonchus oleraceus Calli
1
  0.8 3.5 3.6 (Chapter 5; Section 5.5.3) 

ACB ecotype Leaf
2
  2.4 3.4 7.8 (Chapter 3; Section 3.5.2) 

 Ratio
3
 0.3 1.0 0.5  

OAM ecotype Calli 0.6 2.3 3.0 (Chapter 5; Section 5.5.3) 

 Leaf  1.9 2.9 6.9 (Chapter 3; Section 3.5.2) 

 Ratio 0.3 0.8 0.4  

Lactuca virosa Calli 0.1 0.1 0.6 (Stojakowska et al., 2012) 

 Leaf  2.0 3.9 1.5  

 Ratio 0.1 0.0 0.4  

Eucommia ulmoides   Calli - 2.2 - (Wang et al., 2003) 

 Leaf  - 2.6 -  

 Ratio - 0.8 -  

Lavandula viridis  Calli - 1.8 - (Costa et al., 2013). 

 Leaf  - 2.3 -  

 Ratio - 0.8 -  

Echinacea angustifolia Calli - - - (Lucchesini et al., 2009) 

 Leaf  4.3 1.2 1.5  

 Ratio - - -  

 
1
 Means (n=72) pooled for ages and stressors  

2
 Means (n=96) pooled for ages and stressors  

3
 Calli: Leaf  

- Compound is not detected 
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Table 6.4 Effects of abiotic elicitors on concentrations of hydroxycinnamic acids extracted from calli 

of suspension cultures of Sonchus oleraceus L. and selected plant species  

 

Species Abiotic 

elicitors 

Hydroxycinnamic acid concentration 

(mg g
-1

 DW) 

References 

  Caftaric Chlorogenic Chicoric  

Sonchus oleraceus
1
  Combined 0.8 4.5 3.7 (Chapter 5; Figure  

          Control 0.8 3.1 3.6 5.3A,C,E) 

 Ratio
2
 1.1 1.5 1.0  

Echinacea purpurea  20 
o
C  4.7 5.2 28.4 (Wu et al., 2007) 

          10 
o
C  4.4 4.9 29.1  

 Ratio 1.1 1.1 1.0  

 Light 6.1 2.3 27 (Abbasi et al., 2007) 

 Dark 4.1 1.0 20  

 Ratio 1.5 2.3 1.4  

 Ultrasound 10.2 1.4 23.4 (Liu et al., 2012) 

 Control 7.7 1.0 16.6  

 Ratio  1.3 1.4 1.4  

 

1
 Means (n=6) calli at stationary phase  

2 
Abiotic elicitor: Control  

 

Combined stressor enhanced the extractable antioxidant activities of calli of suspension 

cultures to a greater degree whereas in leaves of greenhouse grown plants they were not 

improved, compared to their respective controls (Table 6.1). This indicates the possible 

differences between the responses at whole plant and cellular level to abiotic stressors. 

Cells in in vitro cultures may rely on elevated antioxidant activities to mitigate combined 

effects of chilling and salinity, more than whole plants. This is because once chilling 

injures the cell membranes; the increased cell membrane permeability will enhance the 

movement of inorganic ions into cells (Liu et al., 2013). The degree of ion movement into 

undifferentiated cells in suspension cultures would be more compared to whole plants in 

which roots exclude the salts. For example, in Sesuvium portulacastrum salinity-elevated 

antioxidant activities were higher in undifferentiated cells than in whole plants (Lokhande 

et al., 2010).  

 

The discovery of heritable and genetically stable ecotype difference in LMWA activities 

may be significant for growers and breeders (Chapter 3 and 4). Growers may use selfed 
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seeds from superior accessions to produce LMWA-rich leaves across cropping cycles.  

Crop breeding and improvement techniques can be used to further augment their levels in 

leaves once their genetic basis for higher LMWAs content is understood. Presently, crop 

breeding programmes focus on identifying heritable differences in LMWA properties in 

their breeding stock and progenies, and on prioritizing genotypes with improved 

antioxidant properties beneficial to consumer health (Connor et al., 2002; Stushnoff et al., 

2008; Cantín et al., 2009; Yousef et al., 2013). An example is Solanum esculentum for 

which hybrids with four-fold higher fruit lycopene content have been developed by the 

selective elimination of low lycopene-genes and by backcrossing which incorporated high 

lycopene-genes into progenies (Anon, 1998). In addition, the chlorogenic acid content in 

the fruit was doubled in Solanum esculentum through genetic engineering in which 

overexpression of hydroxycinnamoyl-CoA quinate: hydroxycinnamoyl transferase (HQT) 

enzyme was achieved (Niggeweg et al., 2004). (1998) 

 

My work has shown that stressor-enhanced LMWAs in S. oleraceus leaves provide 

improved antioxidant protection to human cells in cultures (Chapter 3; Figures 3.16-3.17). 

This finding is a significant first step because it demonstrates that agronomic efforts to 

increase LMWAs would likely translate into an improvement in the antioxidant status of 

live human cells if treated with LMWAs enriched plant extracts. Much research has 

focused on imposing stress on plants to improve in vitro antioxidant activities and to test 

the cellular antioxidant activities of plant foods, but few attempts have been made to 

correlate the two (Prior et al., 1998; Wolfe et al., 2008; Song et al., 2010; Tsormpatsidis 

et al., 2010; McDowell et al., 2011; Zhang et al., 2011a; Avena-Bustillos et al., 2012; 

Bornsek et al., 2012; Jacobo-Velázquez and Cisneros-Zevallos, 2012).  

 

Here I identified how pre- and post-harvest factors: plant age, ecotype, abiotic stressors 

and cooking, contribute to variation in LMWAs and antioxidant activities of leaves 

(Chapter 3; Chapter 4; Table 6.1). This knowledge is the basis for developing good 

cropping and processing practices to obtain leaves enriched with LMWAs. These findings 

are particularly important, because modern day humans greatly prefer minimally 

processed plant food to fulfil their nutritional and health needs than the formulated 

merchandise such as capsules or tablets (Lindsay, 2000; Williams et al., 2004; Herath et 

al., 2008; Jacobo-Velázquez et al., 2011; Becerra-Moreno et al., 2012; Jacobo-Velázquez 

and Cisneros-Zevallos, 2012; Tounekti and Munné-Bosch, 2012).  



140 

 

Contemporary definition of food security by the Food and Agriculture Organization 

(FAO), recognises the importance of consuming food that would promote human health 

(Nestel et al., 2006; FAO, 2008). However, even in European countries and USA, the 

average fruit and vegetable intake is below the World Health Organisation (WHO) 

recommendation (of ≥400 g d
-1

 person
-1

) for the prevention of diet-related chronic 

diseases (Anon,(2003; Ashfield-Watt et al., 2004). To counteract the problem of low fruit 

and vegetable per capita intake, the Nutritional Enhancement of Plant Foods in European 

Trade (NEODIET) programme advocates a shift in public health strategy towards 

promoting the consumption of plants rich in LMWAs (Lindsay, 2000). In these contexts, 

there is a demand for plant produce that are highly concentrated in LMWAs. S. oleraceus 

can fulfill these expectations by following the basic guidelines provided in this study. 

 

 

6.3 FUTURE DIRECTIONS 

 

Elevated concentrations of LMWAs in S. oleraceus leaves do not automatically guarantee 

higher bioactivity in live organisms since the these compounds need to be stable through 

the interaction with plasma proteins and metabolism in the liver. Thus, bioactivity studies 

require animal and human trials (Schreiner et al., 2012). The antioxidant capacity of plant 

food as measured by in vitro chemical assays and by cellular antioxidant activities 

following in vitro gastrointestinal simulation, may still differ from in vivo antioxidant 

activities, because of: (1) phenolic–microbiota interactions in the sigmoid colon; (2) 

phenolic-plasma protein interactions in the blood; and (3) hepatic metabolism (Rohn et 

al., 2004; Silberberg et al., 2006; Selma et al., 2009). To understand the in vivo fate of 

phenolic compounds in S. oleraceus leaves would require animal and human intervention 

studies, because: (1) the colonic microbial diversity vary between individuals and 

continuously modified depending on the ingested phenolic compounds; (2) the diffusion 

of phenolic compounds from blood to target tissues depends on the degree of binding 

between phenolic compound and the plasma protein; and (3) hepatic metabolism of 

phenolic compounds depends on the location of the metabolizing enzymes in a liver‘s 

acini (Ballinger et al., 1995; Requena et al., 2010; Duarte and Farah, 2011; Xiao and Kai, 

2011). For those reasons, bioactivity studies require intact live animal organs thus 

necessitating animal models prior to human clinical trials.  
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Studies of the in vivo transformation of phenolic compounds in S. oleraceus can done 

using leaves with 
14

C-labelled phenolic compounds obtained from plants grown in 
14

CO2 

supplied growth chambers. The leaves with radiolabeled phenolic compounds can be 

either administered orally or their leaf extracts can be perfused in situ to the colon and/or 

liver of rats. Time course monitoring of the quantitative and qualitative profiles of the 

radiolabeled compounds in target tissues (intestines, blood and liver) would provide 

information on in vivo transformation of phenolic compounds. The bioactivity can be 

quantified by measuring time course changes in cellular antioxidant activities in tissues 

and by antioxidant activities of blood and tissue lysates from sacrificed animals.  

 

In conclusion, this study focused on the leaves of Sonchus oleraceus that are 

exceptionally rich in extractable antioxidants, since they have the potential to protect 

humans cells from oxidative stress. I identified the factors that caused significant 

variation in antioxidant properties of S. oleraceus, namely: maturation (of cell cultures 

and plants), genetic heredity, abiotic stressors, propagation method (whole plants versus 

cells), and cooking. Furthermore, it was observed that cultured human cells infused with 

leaf extracts were protected from oxidative stress even after the leaves had been digested 

in simulated gastrointestinal conditions. Importantly, human cells were more protected 

from oxidative damage if the leaves had stressor-augmented extractable antioxidant 

activities. Collectively, the data provide a compelling argument to explore the 

commercial potential of growing S. oleraceus as a functional food crop. 
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APPENDIX A 

 

A.1 Optimum concentration of NaCl that enhances the DPPH radical scavenging 

activities of leaf extracts  

 

A pilot study was conducted (October – January 2009) to determine, which salinity levels 

are most likely to enhance the DPPH radical scavenging activities of plants. ACB and 

OAM were exposed to two salinity levels (50 and 200 mM NaCl) using eight week old 

plants. Leaf phytochemical analysis for DPPH radical scavenging was performed 

according to 3.3.1 and 3.3.3. Results (Figure A.1) indicated antioxidant activities were 

highest with 50 mM NaCl at 14 weeks in both ecotypes.  

 

 

Figure A.1 Treatment effects on DPPH scavenging in methanolic extracts of leaves from 10, 12 and 14 

week old plants of ACB and OAM ecotypes of Sonchus oleraceus L. Means ± SE (n = 9). Bars with 

different letters of the same case indicate significant differences across treatments within an ecotype, 

and bars without letters indicate no significant effects of stressors within an ecotype (P < 0.05).  
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A.2 Stressors that enhances the DPPH radical scavenging activities of leaf extracts  

 

A pilot study was conducted (April – July 2010) to determine, which stressors are most 

likely to enhance the extractable antioxidant activities of plants. ACB and OAM were 

exposed to chilling (5 
0
C for 12 h overnight per week), salinity (50 mM NaCl), drought 

(withholding irrigation until wilting, followed by re-watering) and chilling in low light 

during daytime (5 
0
C for 12 h at 96 µmol m

-2
 s

-1 
PAR) using eight week old plants. Leaf 

phytochemical analysis was performed according to Sections 2.2 – 2.4 and 3.3.1. Results 

(Figure A.2) indicated antioxidant activities and levels of total phenolics nearly doubled 

in week 14 compared to week 10 regardless of treatment or ecotype. Chilling doubled 

DPPH radical scavenging activities in week 14 compared to the control. Salinity doubled 

ORAC activities in week 14 compared to the control. Antioxidant activities and total 

phenolics content were reduced by 70% by chilling in low light during daytime compared 

to the control in week 14   
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Figure A.2 Effects of age and stressors on (A) ORAC, (B) DPPH scavenging, (C) total phenolic 

content, in methanolic extracts of Sonchus oleraceus L. leaves. Means ± SE (n = 5). * Significant 

difference compared to control (P < 0.05).  
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APPENDIX B 

B.1 Effects of age, ecotype and stressor on antioxidant activity, total phenolic 

content, hydroxycinnamic acid content 

 

Table B.1 ANOVA results (F values) for effects of age, ecotype and stressor on antioxidant activity, 

total phenolic content, hydroxycinnamic acid content of Sonchus oleraceus L. leaf methanolic 

extracts
a 

 

Sources of 

variation 

df
1
 F values 

  Antioxidant activity  Hydroxycinnamic acids
2
 

ORAC 

technique
3
 

DPPH 

technique
4
 

Total 

phenolic 

content
5
 

 Caftaric 

acid 

Chlorogenic 

acid 

Chicoric 

acid 

Total 

Age (A) 2 74* 128* 80*  47* 31* 55* 56* 

Ecotype (E) 1 22* 4
ns

 30*  17* 19* 15* 23* 

Stressor (S) 3 0
ns

 3* 4*  0
ns

 18* 1
ns

 1
ns

 

A*E 2 4* 9* 4*  0
ns

 12* 0
ns

 0
ns

 

A*S 6 6* 4* 5*  0
ns

 8* 1
ns

 1
ns

 

E*S 3 2
ns

 2
ns

 1
ns

  0
ns

 3* 1
ns

 1
ns

 

A*E*S 6 1
ns

 0
ns

 1
ns

  1
ns

 2* 0
ns

 0
ns

 

Error 168 559
b
  20

b
 0.1

b
  1

b
 1

b
 3

b
 7

b
 

a
 The factors were age (three levels), ecotype (two) and stressor (four) with eight plants for each 

combination of factors.  

b
 Mean error squared 

1
Degrees of freedom 

2
Concentration (mg g

-1
) 

3
Oxygen radical absorbance capacity expressed as µmol Trolox equivalent g

-1
 

4
2,2-diphenyl-1-picrylhydrazyl radical scavenging activity expressed as 1/EC50 (g L

-1
)

-1
  

5
mg tannic acid equivalent g

-1
 

* P < 0.05; 
ns

 P > 0.05 

 

 

 

 

 

 

 



175 

 

B.2 Effects of age, ecotype and stressor on ascorbate concentration 

 

Table B.2 ANOVA results (F values) for effects of age, ecotype and stressor on ascorbate 

concentration of Sonchus oleraceus L. leaf methanolic extracts
a 

 

Sources of variation df
1
 F values

2
   

  

Age (A) 2 126*  

Ecotype (E) 1 19*  

Stressor (S) 3 1
 ns

  

A*E 2 8*  

A*S 6 7*  

E*S 3 2
 ns

  

A*E*S 6 1
ns

  

Error 168  0.05
b
  

 

a
 The factors were age (three levels), ecotype (two) and stressor (four) with eight plants for each 

combination of factors.  

b
 Mean error squared 

1
Degrees of freedom 

2
Ascorbate concentration (mg g

-1
) 

* P < 0.05; 
ns

 P > 0.05 
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APPENDIX C 

C.1 Optimum concentrations of NAA and BAP for callus initiation and growth 

 

Callus induction and dry biomass were measured using various concentrations of NAA 

(1, 2, 4) and BAP (0, 1, 2). Results (Figure B.1) indicated the best hormone combination 

as NAA 1.0 mg L
-1

(5.4 mM) and BAP 1.0 mg L
-1

(4.4 mM). 

 

 

 

Figure C.1 Different hormone concentrations on callus initiation and callus dry biomass of Sonchus 

oleraceus L. after 21 days of culture. Means ± SE (n = 8). *Selected hormone concentration.  
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C.2 Optimum concentrations of NAA and BAP for growth of suspension cultures 

 

The dry biomass of calli was measured in suspension cultures maintained on variable 

concentrations of NAA (0.5, 1.0, 2.0) and BAP (0.5, 1.0). Results indicated best hormone 

combination as NAA 2 mg L
-1

(10.7 mM) and BAP 1 mg L
-1

(4.4mM) based on biomass 

accumulation (Figure B.2).  

 

 

 

Figure C.2 Different hormone concentrations on dry biomass of Sonchus oleraceus L. suspension 

cultures after 21 days of culture. Means ± SE (n = 10). Bars with different letters indicate significant 

differences of treatments (P< 0.05).  
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