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Abstract 

Monitoring marine ecosystems is essential for the conservation and management of marine 

biodiversity as it is central to the development of sustainable management practices and for 

assessing the effectiveness of the increasing number of marine reserves (MR) globally. 

Monitoring data are often collected in MRs to assess the state of natural marine systems in 

the absence of anthropogenic disturbance or to assess recovery of previously impacted 

species. In recent years, MR designation has attempted to move away from ad hoc 

approaches to MR establishment and towards using existing species distribution and 

abundance data to define protected areas. Given the logistics and cost of collecting biological 

data in the marine environment, effective methods are required to successfully demonstrate 

changes associated with MRs and to identify the spatial distribution of organisms and habitats 

for the planning of further MRs. The aim of this thesis was to identify effective protocols for 

the monitoring of fish and invertebrate species inside MRs in New Zealand, and to develop 

and apply methodologies to identify spatial distribution patterns relevant to marine spatial 

planning.  

Using baseline data of fish and invertebrate species abundances for the Taputeranga MR I 

performed prospective power analyses to identify the most cost-effective monitoring 

approach for subsequent monitoring. Based on before-after-control-impact (BACI) tests the 

power to conclude statistically that abundances were higher at MR sites was low for even 

large simulated changes in abundance (two-fold or four-fold increases) for most species. Due 

to differences in baseline abundance and spatio-temporal variance terms, power varied 

considerably among species, highlighting the difficulty of monitoring all species to the same 

degree, whilst also remaining cost-effective. Furthermore, the results highlight the need for 

temporally replicated survey designs as “one-off” surveys had much lower power than those 

that were temporally replicated.  

Longer term monitoring effectiveness was analysed using three long-term datasets from MRs 

in the South Island of New Zealand. I analysed the power of alternate underwater visual 

census (UVC) monitoring configurations to conclude statistically that there were 

increasing/decreasing trends in abundance, as well as the precision and accuracy of trend 

estimates. Overall even the highest replication designs considered had low power (< 80%) to 

conclude there was a non-zero trend even when simulated data represented trends equivalent 

to the population doubling or halving over ten years. The most cost-effective monitoring 
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design varied among species and MRs, further highlighting that monitoring choices need to 

be location- and species-specific. A general finding, however, was that increasing the number 

of sites was almost always more beneficial than increasing the number of transects per site. 

Based on these results, I recommend that monitoring design planning focuses more 

specifically on assessments of precision and accuracy of estimated parameters, with less 

focus on power, as this places greater emphasis on interpreting monitoring data in terms of 

potential biological significance rather than testing for statistical significance. 

Monitoring can never achieve complete coverage of large areas therefore methods for 

extrapolating or predicting species or habitats to un-surveyed locations are necessary for 

evaluating large-scale spatial distributions. To address this I used modelling techniques to 

identify the spatial variation in species and habitats along the Wellington south coast, with a 

particular focus on elucidating the potential and realised effects of wave exposure. A wave 

simulation model (SWAN) was used to identify the spatial variation in wave exposure 

relevant to intertidal and subtidal communities. In particular the spatial variation in wave 

forces was compared to the distribution of two subtidal macroalgal species, Macrocystis 

pyrifera and Ecklonia radiata, taking into consideration the biomechanical thresholds of 

damage for these plants. Despite considerable wave forces during winter storms, healthy E. 

radiata is unlikely to be damaged, whilst larger (>15 m stipe length) M. pyrifera plants are 

likely to be damaged in certain locations dependent on local sheltering effects. Furthermore, 

the distribution of M. pyrifera from aerial imagery coincided with areas that were predicted to 

have lower wave forces, suggesting that the distribution of M. pyrifera may be related to 

wave exposure.  

I subsequently constructed species distribution models revealing the relationship between 

intertidal species distributions and environmental factors, as a predictive baseline of the 

current distributions of species. The abundances of Chamaesipho barnacle species were 

found to be best described by wave exposure, with increased cover correlated with increasing 

wave exposure, while contrasting patterns were observed for C. brunnea and C. columna with 

respect to distance from the harbour entrance, suggesting differential larval supply or 

differential responses to changing water column characteristics. Macroalgal assemblage 

composition was explained predominantly by wave exposure, with a rich macroalgal 

assemblage at the less exposed locations, and more exposed locations exhibiting a 

community consisting of coralline algal species and the large brown alga Durvillaea 
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antarctica. The predictive models were then used to predict species distributions for a section 

of coastline demonstrating how this form of modelling can be used to maximise the potential 

of monitoring data.  

Finally, a literature keyword search along with methodological developments and results 

from previous chapters are used in the final chapter to develop a framework for the collection 

of data from the planning phase all the way through to long-term monitoring of MRs.  
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1.1 – Marine ecosystem monitoring 

In light of the increasing number of Marine Protected Areas globally and the 

importance of developing sustainable marine exploitation practices and the 

protection/conservation of biodiversity, it is essential to monitor marine ecosystems. 

Ecological and environmental monitoring can be broadly defined as the systematic 

acquisition of biotic or abiotic data at various locations and/or times (Kremen et al. 1994). 

The reasons for collecting monitoring data usually fall into one of two main categories. The 

first is to record changes in the abundance of a species or the biodiversity of a region (Maher 

et al. 1994; Nichols & Williams 2006) either because of environmental impacts (Green 1993) 

or because of recent changes to the level of protection, or ongoing protection, afforded to the 

region (Edgar & Barrett 1997; 1999; Pande & Gardner 2012). The second is to determine 

spatial variation in species abundances or biodiversity for conservation planning and 

management (Ward et al. 1999; Airamé et al. 2003; Pande & Gardner 2009) or to help 

establish further protected areas, for example in a network (Rice & Houston 2011; Di Franco 

et al. 2012). In the case of Marine Reserves and MPAs (the term Marine Reserve, shortened 

to MR, will be used to indicate areas where extractive use of any kind is prohibited and 

Marine Protected Area, MPA, will be used as an umbrella term, indicating areas of restricted 

harvest, mixed harvest and/or full no-take areas) (National Center for Ecological Analysis 

and Synthesis 2001; Agardy et al. 2003) monitoring data are often collected to assess the 

state of natural marine systems in the absence of anthropogenic disturbance or to assess 

recovery of impacted species (Allison et al. 1998; Kelly et al. 2000; Pande et al. 2008; Diaz 

Guisado et al. 2012). Increasingly marine reserve designation has also attempted to move 

away from ad hoc approaches to marine reserve designation (Stewart et al. 2003; Lundquist 

& Granek 2005) towards utilising prior monitoring data of species distributions and 

abundances for defining protected areas (Ward et al. 1999; Airamé et al. 2003; Roberts et al. 

2003; Stewart & Possingham 2005; Leslie 2005) and therefore baseline data are vital for 

determining the best way to distribute protected areas.  

1.2 – Monitoring to quantify change 

Monitoring to demonstrate changes in abundance or other ecological parameters 

(biodiversity, species richness, and mean size) is vital in demonstrating the effectiveness of 

protected areas and subsequently for advocating for further protected areas. Continual MR 

monitoring should therefore have pre-specified goals, whether it is to record the changes in 
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abundance of a previously impacted species (such as blue cod and rock lobsters in New 

Zealand) (Kelly et al. 2000; Pande et al. 2008), or to record the ecosystem-wide impacts that 

may result from the recovery of one or more impacted species (Edgar & Barrett 1999; Shears 

& Babcock 2003). Therefore monitoring programmes should be capable of demonstrating 

these effects as well as having sufficient statistical power to inform decision making and 

further management actions (Field et al. 2004; Pullin et al. 2004). Many monitoring schemes, 

however, are poorly designed for achieving these goals (Peterman 1990; Maxwell & Jennings 

2005). When not designed carefully, sampling may be inappropriate to assess the extent of 

change, lacking sufficient spatial and temporal replication to truly assess the state of the 

system and how it is changing (Ward & Jacoby 1992; Possingham et al. 2001). Furthermore, 

if the monitoring scheme has low statistical power, incorrect conclusions about an ecosystem 

or population state might be reached, which can lead to inappropriate and possibly harmful 

management recommendations (Hayes 1987).  

Type II statistical errors occur when an effect, whether it is a long-term trend or 

difference between regions or areas, exists but upon analysing the data no significant effect is 

detected, either due to variability in the system and/or low statistical power of the sampling 

design (Gerrodette 1987). Type II errors are potentially costly in ecosystem monitoring as 

they may lead to the conclusion that a population is stable, when in reality it may not be, or 

that a potentially harmful effect, such as pollution, is having no effect on the study 

population. Very few monitoring schemes account for the potential cost of making a Type II 

error (Nichols & Williams 2006). However, this should be a significant consideration when 

designing any monitoring programme, otherwise there is potential for wasted time, money, 

and possibly most importantly the continuation of a detrimental effect to a population, due to 

low power to detect such an effect (Mapstone 1995; Reed & Blaustein 1997).    

1.2.1 – Power analysis 

Power analysis is a statistical technique that permits quantification of the power of a 

survey or monitoring design. By increasing the statistical power the probability of making a 

Type II error is reduced and so ideally a monitoring or survey design should be established to 

have high statistical power. The statistical power of a survey design depends on the 

magnitude of the effect being investigated, the system‟s variability, the sample size and the 

stringency of the test, i.e. the Type I error rate, α (Toft & Shea 1983). Power analysis can be 

used in several different ways. It can be used in a prospective way to judge the statistical 
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power of sample designs with different levels of sampling effort, for a range of plausible 

effect sizes (Maxwell & Jennings 2005; Sims et al. 2006). In these cases the variability is 

often estimated from pilot scheme data, or from studies with data from a similar species or 

system. It can also be used in a retrospective way to judge retroactively the power of surveys 

to detect effects of biological significance, given the observed variance (Reed & Blaustein 

1997; Thomas 1997). Power analysis has also been used in other applications, such as in 

analysing the probability of species extinction (Reed 1996), in assessments of a precautionary 

approach to conservation (Peterman & M‟Gonigle 1992) and fisheries management 

(Peterman 1990). 

Performing a power analysis during the planning stages of ecological monitoring can 

be invaluable as it can lead to more effective monitoring designs (Taylor & Gerrodette 1993; 

Steidl et al. 1997). Prospective power analysis involves estimating the statistical power of a 

sampling design to detect a given effect size or for a range of effect sizes (Morrison 2007). 

Comparing the prospective power of different monitoring designs, one can identify an 

optimum or most suitable monitoring design to achieve the specified goal of monitoring 

(Hoenig & Heisey 2001). In most cases it is applied in order to define an adequate sample 

size that would be capable of detecting an effect that is deemed biologically significant for a 

given level of statistical power. In other cases it has been used to define the amount of spatial 

replication at different spatial scales (Sims et al. 2006) as well as the timescale over which 

sampling should be performed in order to detect an effect with a given level of power 

(Urquhart & Kincaid 1999).  

1.2.2 – Applying power analysis in ecological and conservation studies 

The power of tests to identify statistically significant changes in abundance is 

primarily affected by the degree of variation exhibited by the data to the extent that 

monitoring is often confounded by natural variation on a variety of spatial and temporal 

scales (Larsen et al. 2001). Thus, determining the optimal number of sites (in the case of 

MPAs, this includes the number of sites within and outside of the MPA), replication within 

sites, and replication through time should be a vital part of the planning stages of any 

monitoring scheme (Larsen et al. 2001; Sims et al. 2006). In order to achieve maximum 

power, monitoring schemes should be designed so that the overall variance is minimised by 

minimising, or controlling for, the largest components of variation. For a multi-site long-term 

survey, variability among sites, within sites and among survey intervals all contribute to the 
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overall variance (Sims et al. 2006). The size of each contributing factor depends on the 

system and species being studied, but the importance of each factor can be controlled by the 

amount of replication performed at that spatial or temporal scale. Consequently optimal 

survey designs will vary from species to species and place to place (Hartnoll & Hawkins 

1980). Identifying an optimal sampling design should also take into account the relative time 

and effort required to perform each configuration of the sampling design. It is often the case 

that increasing the replication within sites, either by increasing the number of quadrats, 

transects or counts is less costly and less time consuming than increasing the number of sites. 

However, increasing the number of sites may yield the greater increase in statistical power 

because between-site variance can often be the largest source of variability. In a study of 

Common Guillemots, Sims et al. (2006) found that the largest component of variation was 

the between-plot variance, with smaller contributions from between sampling occasion 

variation. To maximise statistical power, for a minimum of additional cost, it was concluded 

that increasing the number of plots would provide a greater decrease in overall variance than 

an increase in temporal replication by re-sampling the same plots on separate occasions 

within each season. By increasing the number of plots the survey design would have had 90% 

power to detect a 1.5% annual decline over a period of 12 years, 2 years less than the original 

sampling design and 1 year less than by increasing the amount of temporal replication.  

Outside MRs, and from a management perspective, the goal of monitoring is often to 

identify whether or not a change in some environmental or physical variable is having an 

effect on a species and if so, management or preventative actions can be applied (Thompson 

et al. 2000; Nichols & Williams 2006). The drawbacks of such an approach are that 

depending on the length and the power of the monitoring programme, it may take a long 

period of time to detect any effect, and furthermore, it will take time to initiate a management 

scheme to control the source of the problem. Maxwell & Jennings (2005) state that with 

regards to rare and vulnerable species, conservation prioritisation and management actions 

should not wholly depend on the statistical significance of population changes, as these 

surveys will often have low power to detect any change. This highlights the importance of 

performing a power analysis on the data to determine whether the conclusion of no effect was 

due to low statistical power. This has led to suggestions that a precautionary approach may be 

more appropriate in these situations (Lauck et al. 1998; Thompson et al. 2000; Cole & 

McBride 2004). This is especially applicable to rare species or for small isolated populations 

where the power to detect a decline in the population is limited. Taylor & Gerrodette (1993) 
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noted that the ability to detect a change in a population and thus the power of any monitoring 

scheme will rely somewhat on the abundance of the species. In particular they highlight the 

problem that the ability to detect declines in abundance becomes increasingly small for rare 

or low abundance species, as they will be present in only a small fraction of surveys. 

Maxwell & Jennings (2005) found that the power for detecting declines for vulnerable fish 

species was significantly lower than for more abundant species. Furthermore, they argue that 

the species that should be monitored, i.e. those that are naturally rare, uncommon or that have 

undergone historical depletion, are those for which the survey is least effective. As such, it 

would be unfeasible and possibly detrimental to the population to prove a decline was 

occurring before the implementation of a management plan (Peterman & M‟Gonigle 1992; 

Taylor & Gerrodette 1993).  

Thompson et al. (2000) took this argument one step further and applied power 

analysis and population viability analysis to the monitoring of a small isolated population of 

Bottlenose Dolphins (Tursiops truncatus). These authors compared a traditional approach to 

monitoring, where proof of effect is required before management action can be taken, to a 

precautionary approach, where the management action is applied at the earliest possible time, 

regardless of the state of the population. They proposed several hypothetical rates of decline 

for the population and then calculated the number of years of annual monitoring it would take 

to detect a decline of this magnitude with 95% power. Based on the population size after this 

length of time they performed a population viability analysis enumerating the percent chance 

of extinction over a hundred-year period. It was found that a traditional approach to 

monitoring and management would significantly increase the probability of extinction when 

compared to a precautionary approach, due to the extended period of time needed to identify 

the decline. They also suggested that the combination of power analysis and population 

viability analysis be used to estimate the degree to which a precautionary approach can be 

taken. For example, this could be used to determine the proportion of an area that should 

receive protection, which would be useful when defining MRs as a tool in fisheries 

management (Lauck et al. 1998). 

The vast majority of work involving power analysis has focussed on detecting 

changes for a single species (Nichols & Williams, 2006), with little to no work involving 

power analysis for detecting community wide changes. In addition, monitoring often focuses 

on rare enigmatic species (Peterman 1990; Taylor & Gerrodette 1993; Maxwell & Jennings 
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2005), or those that are commercially valuable (Peterman 1989) and very little attention is 

paid to the full spectrum of species that are present. An alternative approach, as employed by 

Nielsen et al. (2009) and Manley et al. (2004, 2005), uses power analysis to optimise large-

scale biodiversity monitoring schemes based on species‟ prevalence across a landscape-scale 

setting. The monitoring scheme described in Nielsen et al. (2009) was designed with the aim 

that an annual decline in prevalence of 3%, across all the surveyed sites, would be detected 

with 90% power for all species of songbird, vascular plants and bryophytes over a sampling 

period of 20 years. The power of monitoring designs with different numbers of sites and 

frequencies of surveys was tested to ascertain the achievable power for the array of recorded 

species. It was possible to reach these goals for 27%-65% of all species, for an achievable 

level of sampling effort. The rest of the species, however, would require unrealistically large 

sample sizes, or monitoring over a longer period of time. These authors highlight the problem 

that differences in species abundance and detectability make it difficult to accommodate all 

species adequately and inevitably the ability to detect declines for some species was not 

possible. In another approach, Nicholson & Jennings (2004) applied power analyses to fish 

assemblage metrics, combining length, mass and trophic level information from numerous 

fish species, in order to determine the power for detecting a change in fish assemblages. They 

concluded that in the short term (less than ten years of monitoring), power for detecting 

changes in these metrics is low, and so the use of such metrics should not be advocated for 

setting short-term management goals.  

1.2.3 – Biological significance and type I and type II errors 

An important component of performing power analysis is the identification of what 

effect size should be considered biologically significant. In most cases a biologically 

significant effect is set as the minimum effect size that can be permitted, without being 

considered harmful to the population. This is often based on scientists‟ best judgment of the 

situation (Toft & Shea 1983; Nielsen et al. 2009). Furthermore, an important distinction to 

make when performing power analysis is that of the difference between biological 

significance and statistical significance (Yoccoz 1991; Cole & McBride 2004). A small effect 

may be deemed statistically significant given a large enough sample size, but may not have 

any real biological importance (Fairweather 1991). Conversely, a large biologically 

significant effect may be deemed not statistically significant due to high variance or small 

sample size (Hayes & Steidl 1997). These problems highlight the need to perform power 
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analyses to identify whether a non-significant conclusion is due to no effect or just the result 

of low power.  

This raises a further issue regarding Type I and Type II error rates. In nearly all cases 

the Type I error rate α is set at 0.05. This may be widely applicable in the fields of 

experimental biology, but can be potentially harmful when applied to conservation 

monitoring (Taylor & Gerrodette 1993; Steidl et al. 1997), or the detection of environmental 

impacts (Peterman & M‟Gonigle 1992; Mapstone 1995; Cole & McBride 2004). Many 

authors have suggested using a less stringent α in order to reduce the probability of making a 

Type II error (Toft & Shea 1983; Steidl et al. 1997), but ideally the respective Type I and 

Type II error rates should be based on the potential costs of making each error (Peterman & 

M‟Gonigle 1992; Mapstone 1995; Steidl et al. 1997). Table 1.1 illustrates four possible 

outcomes of a monitoring programme, with the aim that if a detrimental effect is detected a 

management plan to control the effect will be applied.  

Table 1.1. Possible outcomes and potential costs of Type I and Type II errors. The 

probabilities of each are given in brackets. 

 True Effect 

Measured effect Population is Stable Population is Declining 

No significant effect (p>α) Conclusion is correct, no 

further action (1-α) 

Type II error (β), no further 

action, with potential cost of 

D due to the decline of this 

population 

Significant decline (p<α) Type I error (α), 

management action is 

incorrectly applied, with cost 

M. 

Conclusion is correct (1-β), 

management action is 

applied with cost M. 

 

If the perceived cost of making a Type II error (D) is much larger than the cost of 

incorrectly applying the management or preventative action (M), a less stringent α would be 

advisable in order to increase the power for detecting such an effect. Mapstone (1995) 

suggested setting the ratio of Type I to Type II error probabilities based on their perceived 

costs in an environmental impact study. Based on this ratio the actual error rates are set such 
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that the monitoring programme would be capable of detecting an effect that is deemed to be 

the minimum permissible effect, at significance level α with power 1-β. However, identifying 

what effect constitutes the minimum permissible effect, and also the related costs of Type I 

and Type II errors can be an overwhelming task due to the number of factors and 

considerations that need to be taken into account.  

1.2.4 – Retrospective power analyses 

Thus far discussion of power analysis has been limited to the planning aspect of 

monitoring schemes, or so called prospective power analyses. Retrospective power analyses 

can also be useful, but they have come under a considerable amount of criticism, mainly due 

to misuse, or misunderstanding of what can be gained from performing additional power 

analyses (Hoenig & Heisey 2001). The major criticism has been that of performing 

retrospective power analyses based on the measured effect size, when they were unable to 

conclude that there was a significant effect. This analysis yields no new information because 

it is already known that for this effect size the power of the experimental or survey design 

must be low (less than 50%) as it failed to give a significant result (Hayes & Steidl 1997; 

Thomas 1997). When applied correctly however, retrospective power analyses can be 

particularly useful. Reed & Blaustein (1995) and Hayes & Steidl (1997) applied retrospective 

power analyses to multiple long-term datasets of amphibian abundance where no statistically 

significant effect was found. The former incorrectly calculated the power for the effect sizes 

determined in the studies themselves and showed that power was universally low. The latter 

study showed that for the datasets concerned, power was low for detecting all reasonable 

rates of decline, and that power is only sufficient (80%) when the effect is either extremely 

large, or the survey is carried out for a much longer period of time. Thus they concluded that 

the results presented in the amphibian surveys they examined were not proof of population 

stability, but should rather be considered inconclusive and inadequate to determine the true 

rate of change. Many ecological studies would benefit from this type of analysis, as failure to 

reject the null hypothesis is too often associated with no effect, without any consideration of 

how effective the experimental or monitoring design was.  

1.2.5 – Criticism of point-null hypothesis testing in ecological studies 

Thus far this review has mainly considered power analyses as a means of judging 

monitoring design effectiveness. Power analysis is an extension of the zero point null-

hypothesis significance testing framework, and as such is also subject to the considerable 
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criticism that has been levelled at this testing framework (see Gerrodette 2011). The major 

criticism is that statistical significance and biological significance are unrelated concepts and 

while a study may be able to demonstrate statistical significance, this does not imply 

biological significance (small effect size, with low variability) and similarly biologically 

significant effects may be overlooked in the quest for statistical significance (large effect, but 

demonstrating this may be confounded by variable data) (Gerrodette 2011). In addition, many 

have argued that the rejection of a null hypothesis of no-effect is meaningless because it was 

never a valid hypothesis (outside of experimental studies where the null hypothesis may be an 

entirely valid proposition given adequate controls) as even the smallest deviation away from 

equivalence would negate the hypothesis (Anderson et al. 2000; Gerrodette 2011).  

Despite these criticisms power analysis is still a useful tool for evaluating monitoring 

programme effectiveness (Seavy & Reynolds 2007). There have, however, been several 

recommendations for expanding the utility of monitoring design assessments and statistical 

reporting in general. The vast majority of these recommendations include the reporting of 

estimated effect sizes and their confidence intervals as a measure of precision (McBride et al. 

1993; Anderson et al. 2000; Nakagawa & Cuthill 2007; Gerrodette 2011). This incorporates a 

measure of the biological significance of the effect being reported (its magnitude and 

direction) and the range of values the effect is likely to have (how certain are the results). 

Expanding this into the arena of monitoring programme design highlights that there are two 

aspects of monitoring programme design that are often emphasised - the accuracy and 

precision of resulting estimates of ecological parameters (e.g. abundance, change in 

abundance) (Tyre et al. 2003). Statistical bias is concerned with how much the estimate 

differs from the true population value, which may result from sampling too few sites, or sites 

that are not representative of the population as a whole (Olsen et al. 1999; Vos et al. 2000) 

with several studies focussing on bias reduction by altering monitoring programme design 

(Tyre et al. 2003; Wintle et al. 2004). Precision is associated with the range of the estimated 

parameter and is a measure of the uncertainty of statistical estimates. Both aspects are 

important to ecological reporting but it is worth noting that whilst a monitoring design may 

be precise in the determination of ecological parameters, this does not guarantee that the 

estimated parameters are accurate, and so consideration of both bias and precision are 

important in monitoring programme assessments (Wintle et al. 2004; Nakagawa & Cuthill 

2007; Seavy & Reynolds 2007).  
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1.3 – Monitoring to quantify spatial and temporal variability  

Identifying the spatial and temporal variability that exists in an area prior to protection 

is an important consideration both for setting baselines of abundance (Edgar et al. 2004; 

Pande & Gardner 2009) and for defining where best to place protected areas with regard to 

the spatial distribution of biodiversity (Roberts et al. 2003; Stewart & Possingham 2005; 

Leslie 2005). However, due to the expense of performing replicated ecological monitoring 

over wide enough areas and because of ad hoc establishment decisions (e.g., marine reserve 

boundaries may change as a result of negotiations between different stakeholders) (Pande & 

Gardner 2009), baseline surveys are often not carried out. In addition, for exploratory surveys 

for MR planning there may be a lack of incentive to provide funds to perform this kind of 

work, perhaps due to the perception that surveillance data is not immediately useful or urgent 

as MR planning may take years (Pande and Gardner 2009) and may never come to fruition 

(Wood et al. 2008). Thus, alternative methods of assessing spatial variability in abundance 

and/or species distributions (e.g. species distribution models) (Elith & Leathwick 2009) are 

likely to aid both in determining baselines of spatial and temporal variation as well as MR 

planning and designation. 

1.3.1 – The importance of spatially and temporally replicated baseline data 

The collection of baseline data is vital in order to make strong assertions about the 

effects of protection (Ward & Jacoby 1992; Edgar et al. 2004; Pande & Gardner 2009). 

Without prior knowledge of the spatial variation exhibited both within and among designated 

reserve and control sites, observed differences may be attributable to pre-existing spatial 

variation, which is likely to confound control-impact studies (Edgar et al. 2004; Pande & 

Gardner 2012). The few examples of baseline data collected prior to reserve establishment 

have illustrated the utility of performing baseline surveys. Edgar et al. (2004) performed 

extensive surveys of marine areas designated for conservation, tourism only, fishing only and 

multi-purpose areas in the Galapagos Marine Reserve prior to the enforcement of these 

boundaries. Their findings were indicative of considerable bias in the placement of these 

designated areas, with areas open to fishing containing the highest abundance of sea 

cucumbers (the most valuable fishing resource in the region), compared to conservation units 

which had sea cucumber densities three times lower. In addition, the magnitude of spatial 

variation was comparable with the size of previously demonstrated protected area effects, and 

thus the effects of reserve designation could easily be masked through selective site 

placement. Therefore, without baseline data from these sites it would be difficult to confirm 
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(through a control-impact analysis) that the conservation units were effective, but with 

baseline data the effects of fishing exclusion can be more readily demonstrated. Pande & 

Gardner (2009) collected a spatially and temporally replicated baseline dataset for the 

Taputeranga Marine Reserve in Wellington, New Zealand. The resulting surveys revealed a 

gradient among sites in fish abundance and macroalgal composition moving from East to 

West, with reserve sites in the centre. In addition, several surveyed species exhibited 

significant temporal variation among years and seasons. Acknowledging that this spatial and 

temporal variation exists gives not only a baseline against which to compare future survey 

data, but also gives a measure of the variation through time that would be naturally expected 

and thus provides a background for separating MR effects from natural variation (Ward & 

Jacoby 1992).  

1.3.2 – Adapting monitoring data beyond “Site” 

Baseline data are vital for informed management and conservation actions, including 

the effective designation of MPAs (Roberts et al. 2003; Lundquist & Granek 2005; Leslie 

2005), mapping of invasive species distributions (Delaney et al. 2008), and also for 

increasing the efficiency and effectiveness of future monitoring by identifying specific 

habitat units that exist in an area (dit Durell et al. 2005). Many, if not all monitoring 

programmes focus sampling effort within specific locations, either due to specificity of the 

habitats within these sites, but more often due to logistical and time limitations. However, 

with a location-specific approach (i.e. monitoring within sites) changes that occur elsewhere 

are likely to be missed, or at least baseline data for these locations will not exist making it 

difficult to assess the degree of localised changes. One approach would be to increase the 

number of sites to achieve greater coverage. However, this is often not feasible due to 

escalating costs. In the terrestrial realm much has been achieved by using predictive models 

relating species‟ distributions to the environment (Guisan & Zimmerman 2000; Rodriguez et 

al. 2007; Elith & Leathwick 2009; McMahon et al. 2011). Establishing predictive baselines 

of species‟ distributions can be useful from a monitoring and management perspective 

because it allows inferences (with a given level of certainty) to be made about what species 

(or species groups) should have been in a given location that may have been previously 

unsampled. This widens the scope of the monitoring programme beyond the realm of the sites 

sampled and can increase the applicability of monitoring data in making inferences about 

whole marine areas. The numbers of predictive species‟ distribution models applied in marine 

studies are however, considerably less than in terrestrial applications, but of the models 
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developed the vast majority have been for the purpose of aiding marine conservation 

planning (Robinson et al. 2011). Leathwick et al. (2006) used a predictive modelling 

approach to identify the variation in demersal fish species richness in the oceans around New 

Zealand. In a later paper, Leathwick et al. (2008a) built upon this knowledge and mapped the 

predicted distributions of 96 fish species, and used this information to evaluate alternative 

offshore marine reserve configurations, and highlighted the utility of adapting quantitative 

data beyond patchy trawl data to provide recommendations over a much wider area. 

Furthermore, Maxwell et al. (2009) used a predictive modelling approach to define the spatial 

distribution of three fish species in response to environmental factors in order to define 

management and protection areas. Predictive modelling can therefore increase the usefulness 

of collected baseline data, in collaboration with relevant environmental factors, by providing 

information regarding the surrounding areas that were un-surveyed.  

1.4 – Marine reserve monitoring in New Zealand 

The primary purpose of MRs in New Zealand is for scientific study and as such there 

have been many studies documenting changes within MRs and the recovery of species. 

However, much of the monitoring is focussed on commercially valuable species such as 

snapper (Pagrus auratus) (Willis et al. 2003a; Denny et al. 2004), blue cod (Parapercis 

colias) (Davidson 2001; Stewart & MacDiarmid 2003; Davidson et al. 2001; 2007; 2009), 

rock lobster (Jasus edwardsii) (Kelly et al. 2000; Davidson & Abel 2003; Haggitt & Kelly 

2004; Haggitt & Mead 2007), paua (abalone species, Haliotis iris and Haliotis australis) and 

kina (sea urchin species: Evechinus chloroticus) (Davidson & Abel 2003; Davidson et al. 

2001; 2007; 2009). The motivation to monitor these species is understandable in that these 

species experience the largest fishing pressures, both commercially and recreationally, and 

thus are most in need of monitoring. In the case of MR monitoring these species are most 

likely to have the strongest and most rapid response to reserve status (Battershill et al. 1993; 

Shears 2007; Pande & Gardner 2012) and so are most likely to provide a good indication that 

marine reserves „work‟ (i.e. achieves the conservation goals explicit in their design and 

establishment), and as such much of the Department of Conservation‟s monitoring 

programmes are focussed on these few species.  

Marine reserve monitoring in New Zealand has been criticised for being too short-

term to truly assess the changes that are occurring within them (Cole 2003). The Cape 

Rodney to Okakari Point Marine Reserve (Leigh) was the first to be established in NZ and 
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considerable research and monitoring has been performed there, including the documenting 

of increases in abundance of rock lobster and several fish species in the early years after 

reserve establishment (Cole et al. 1990), and the quantification of long-term changes to 

subtidal habitats in the reserve (Shears & Babcock 2003). In addition, the Department of 

Conservation has a few extended monitoring programmes, in particular at the Long Island-

Kokomohua Marine Reserve (Davidson et al. 2009) and the Tonga Island Marine Reserve 

(Davidson et al. 2007) where monitoring of reef fish, rock lobster, paua and kina has been 

ongoing for 15 years or more, and also at the Te Whanganui-A-Hei Marine Reserve, where 

reef fish populations have been monitored for more than ten years (Taylor et al. 2006). The 

vast majority of other work carried out by DOC in marine reserves involves smaller, one-off 

surveys assessing mainly the status of rock lobster populations inside and outside several 

marine reserves (Haggitt & Kelly 2004, Haggitt & Mead 2007), and of common reef fish 

(Shears & Usmar 2006). Such one-off focussed surveys are informative to a point, but are 

lacking in that they are unable to assess how abundances or communities are changing. 

Furthermore, with one-off surveys such as these it is impossible to separate the MR effect 

from spatial variability in abundances, highlighting the need for baseline data or extended 

datasets in which trends in abundance can be identified. Cole (2003) recommends that marine 

reserves be monitored over a period of decades to truly assess any changes occurring and to 

determine that populations have become stable. In some cases changes in MRs may not 

become apparent for 20 years or more after reserve establishment (Shears & Babcock 2003). 

For example, changes in macroalgal abundance at the Leigh were still being observed up to 

25 years after reserve establishment due to the slow recovery of carnivorous species 

controlling grazers (Shears & Babcock 2003). When interactions such as these occur, the 

expected time scale of monitoring is recommended to be twice the length of the longest lived 

species involved (Connell & Sousa 1983; Cole 2003) in order to truly assess that the reserve 

site has returned to a stable state. However, the cost of performing such a long-term 

monitoring programme is often prohibitive, and with the number of MRs in New Zealand, it 

would be not feasible to establish a long-term monitoring programme for each due to 

spiralling costs.  

Another area that has thus far been largely ignored in MR monitoring in New Zealand 

is the intertidal zone. Marine reserves may have a possibly detrimental effect on the mid to 

upper intertidal and of rock pool communities due to increased trampling as a result of 

increased visitor numbers (Brown & Taylor 1999). For example, the effects of trampling 
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have been shown to affect animals inhabiting coralline algal turf at the Cape Rodney to 

Okakari Point Marine Reserve (Brown & Taylor 1999), and have been shown to 

detrimentally affect algal assemblages of rocky intertidal platforms (Schiel & Taylor 1999). 

This may have wide ranging impacts, such as a reduction in biodiversity, and a noticeable 

reduction in larger branching species of algae and an increase in ephemeral species (Pinn & 

Rodgers 2005). Brown & Taylor (1999) argue that because of the possible damage caused by 

human visitation that in some cases marine reserves should be entirely closed off to the 

public to fully protect the flora and fauna present. However, without any form of intertidal 

monitoring it is difficult to assess the effects of reserve designation on intertidal assemblages, 

and so intertidal monitoring should be incorporated into MR monitoring plans.  

1.5 – Aims and thesis structure 

The first aim of this thesis is to analyse various marine monitoring methods, current 

monitoring programmes and baseline surveys to assess the statistical power associated with 

the specific method or monitoring approach. For each methodology, an assessment of their 

effectiveness will be carried out, and recommendations will be given for improvements that 

will increase their statistical power.  

Chapter 2 focuses on a traditional power analysis approach applied to a multiple 

species (reef fish and invertebrate species) baseline data set collected within the Taputeranga 

Marine Reserve, Wellington. This extensive baseline dataset is one of the few datasets that 

includes information regarding species abundances prior to marine reserve establishment. 

This dataset is used to identify the optimal approach for subsequent marine reserve 

monitoring, both in terms of statistical power and also including an analysis of the monetary 

costs of the alternative monitoring approaches. The aim of this chapter is to present the 

statistical power attributable to each methodology for each species and consequently provide 

recommendations for establishing a multispecies monitoring programme that has high 

statistical power for detecting changes that may occur as a result of reserve status. Chapter 3 

builds on this, incorporating measures of precision and accuracy, as well as power, in order to 

identify the best monitoring approach. Monitoring designs should provide both accurate and 

precise measures of the changes in abundance through time of the monitored species. A large 

part of this chapter assesses whether a focus on power analyses alone can identify an accurate 

and precise monitoring programme. The aim of this chapter was therefore to analyse the 

accuracy, precision and power of alternative monitoring approaches to identify the best 
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monitoring approach for monitoring reef fish within New Zealand. This was achieved by 

analysing data collected from three marine reserves in New Zealand, and comparing and 

contrasting the efficacy of the different monitoring approaches across species, but also among 

reserves. This also allowed for a comparison among the different metrics that are used to 

define what constitutes an effective monitoring programme (power, precision and accuracy), 

and which aspects of a monitoring design are emphasized by each of these measures. 

The second aim of my thesis is to highlight uses of monitoring data beyond 

identifying changes through time, and incorporating the development of species distribution 

models into a baseline monitoring framework. In Chapter 4 I develop a wave model 

(Simulating WAves Nearshore – SWAN) for Wellington‟s South Coast to predict the wave 

forces experienced by subtidal and intertidal organisms at various locations. The variation in 

wave exposure across the south coast is used to predict potential disturbance rates for two 

species of canopy forming, and therefore habitat modifying, macroalgae, Ecklonia radiata 

and Macrocystis pyrifera. This information is also used in Chapter 5 where I utilise these 

predictions of wave exposure and relate them to biological data collected from the intertidal 

zone over a two year time period to identify predictive species distribution models relating 

species presence/absence and abundance to a range of physical forces, including wave action. 

The primary aim of this chapter was to develop a predictive model baseline for the current 

distribution of intertidal species across Wellington‟s south coast. In Chapter 6 I draw together 

all of my findings from the four previous chapters and include a survey of the marine 

monitoring literature in order to develop a framework for MR baseline data collection, 

establishment using spatial and temporal data complemented by species distribution model 

predictions, and subsequent monitoring protocols. 

Overall the aim of this thesis is to provide an assessment of commonly employed 

methodologies for monitoring marine species, and to provide an assessment of specific 

analysis methods for analysing and utilising these data to develop predictive baselines that 

expand the utility of monitoring data. The outcomes are to provide a series of 

recommendations and proposals for future monitoring and data analysis, specific to New 

Zealand, but that may be applied globally.                   
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Chapter 2 - Evaluating marine reserve monitoring 

programs using baseline data: A case study from 

the Taputeranga Marine Reserve, New Zealand  
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2.1 – Introduction 

The increasing international trend to create marine reserves (MRs - usually defined as 

full no-take areas) and marine protected areas (MPAs - usually defined as an area providing 

partial but not full protection from anthropogenic disturbance) has focused the attention of 

marine scientists and government agencies on the need to develop cost-effective and 

powerful monitoring strategies to quantify the benefits of such protection (e.g. Lubchenco et 

al. 2003; Gerber et al. 2005; Grorud-Colvert et al. 2010; Gaines et al. 2010; Roberts et al. 

2010; Ban et al. 2011). Monitoring is the systematic acquisition of biotic or abiotic data, 

which are used to inform management, to aid further monitoring decisions, or to help 

establish further protected areas, for example in a network (Rice & Houston 2011; Di Franco 

et al. 2012). In the case of MRs or MPAs such data may be used to assess the state of natural 

marine systems in the absence of anthropogenic disturbance or to assess recovery of impacted 

species (Allison et al. 1998). MR monitoring often focuses on the abundance of fish or 

invertebrate species, and involves an assessment of MR “effects”. These range from direct 

effects, such as an observed increase in the size and/or abundance of previously targeted or 

harvested species (Russ et al. 2005; Pande et al. 2008; Diaz Guisado et al. 2012) or changes 

in community level metrics, such as species richness and diversity (Micheli et al. 2004; 

Molloy et al. 2010). The design and application of monitoring programs in and around MRs 

is therefore now recognised as being important in terms of informing managers, scientists and 

the public about the real and perceived costs and benefits of establishing and maintaining 

various types of MPAs (Cole 2003; White et al. 2011; Pande & Gardner 2012).   

Since such quantifications began, most studies have reported that MR sites have an 

increased abundance and/or size of targeted species compared to non-reserve sites (Pande et 

al. 2008; Lester et al. 2009; Watson et al. 2009; Diaz Guisado et al. 2012). However, the 

effects may be extremely variable from one reserve to another (Lester et al. 2009). The 

variability of the responses is not surprising given the considerable differences in habitat type 

and distribution, environmental condition, enforcement and prior level of anthropogenic 

impact at different MR sites (Mosqueira et al. 2000; Kelly et al. 2000; Micheli et al. 2004). 

To control for this, monitoring requires significant amounts of planning and effort to obtain 

reliable estimates of abundance. MR monitoring, however, has been subject to considerable 

criticism because the data quality is highly variable (Edgar & Barrett 1999; Willis et al. 

2003b), with studies being criticised for inadequate spatial and temporal replication (Molloy 

et al. 2010; Kelly et al. 2000; Field et al. 2007) and lack of adequate controls (Jones et al. 
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1993; Russ 2002; Denny et al. 2004). The main criticism, however, is that MR studies are 

largely comprised of one-off comparisons of reserve sites versus non-reserve sites (Russ 

2002; Willis et al. 2003b; Denny et al. 2004). As such, the effect observed between reserve 

and non-reserve areas cannot wholly be attributed to a MR “effect” because such studies fail 

to account for differences that may have existed prior to reserve establishment (Côté et al. 

2001; Claudet et al. 2006). This criticism pertains to the lack of adequate baseline data both 

within and outside MR sites (Mosqueira et al. 2000; Micheli et al. 2004; Claudet et al. 2006, 

but see Russ & Alcala 1996; Edgar & Barrett 1999; Parsons et al. 2004). Without baseline 

data, identifying the rate of response to protection (Denny et al. 2004) and distinguishing 

between the effects of natural variation among sites and over time from the effects due to 

reserve protection are impossible (Claudet et al. 2006; Pande & Gardner 2012).  

The concept of a Before-After-Control-Impact (BACI) statistical testing regime (now 

modified to include multiple site or region comparisons, and known as “beyond BACI”) 

(Underwood 1992; 1994; Benedetti-Cecchi 2001) has been used extensively in environmental 

monitoring situations because it is capable of distinguishing between natural variability and 

the effect of a certain treatment (Underwood 1994; Benedetti-Cecchi 2001; Skilleter et al. 

2006; Di Carlo et al. 2011). This is the most appropriate form of test for determining MR 

effects because it is capable of identifying effects independent of general temporal changes 

and pre-existing spatial differences between sites (Allison et al. 1998; Fraschetti et al. 2002; 

Benedetti-Cecchi et al. 2003; Claudet et al. 2006). However, due to the paucity of studies that 

perform monitoring prior to reserve establishment there are few published examples of its use 

in a MR context (however, see Lison de Loma et al. 2008).  

The aim of this study was to evaluate the performance of a range of sampling designs 

for monitoring a newly established marine reserve for which baseline data had been collected. 

The Taputeranga Marine Reserve (TMR) was officially gazetted in 2008 and is situated on 

the south-coast of the North Island of New Zealand (Figure 2.1). TMR is located in the highly 

dynamic Cook Strait, which separates the North and South islands of New Zealand (Pande & 

Gardner 2009). The surrounding area supports a commercial rock lobster (Jasus edwardsii) 

fishery and is subject to high recreational fishing pressure. Densities of targeted species, 

mainly blue cod (Parapercis colias), blue moki (Latridopsis ciliaris) collected by line 

fishing, butterfish (Odax pullus) collected by spearfishing, rock lobster, abalone (paua - 

Haliotis iris, Haliotis australis) and to a lesser degree sea urchin (kina - Evechinus 
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chloroticus) collected by recreational divers, are likely to change at reserve sites as a result of 

the cessation of fishing activity (Pande et al. 2008; Pande & Gardner 2009; Diaz Guisado et 

al. 2012). The baseline abundances of fish and invertebrate species were collected from 

multiple sites within and outside the future TMR (Figure 2.1), thereby providing valuable 

information as to the pre-existing natural variation along this coastline. Furthermore, this 

baseline sampling was replicated over several years, giving an indication of the variation over 

temporal, as well as spatial scales, relevant to the design of future sampling protocols (Pande 

& Gardner 2009). 

 

Figure 2.1. Location of the Taputeranga marine reserve and the study sites located within and 

outside of the marine reserve. Site codes are BR-Barrett Reef, BB-Breaker Bay, PH-Palmer 

Head, RR-Red Rocks and SH-Sinclair Head for control (non-reserve) sites (●) and PB-

Princess Bay, TS-The Sirens and YP-Yungh Pen for reserve sites (●). 

This multi-site, multi-year baseline data-set is used to evaluate a series of monitoring 

programs to test their ability to identify biological change and also measure their cost-

effectiveness for survey work. Specifically, the statistical power for detecting changes in the 

abundances of several fish and invertebrate species was obtained in order to identify a 

monitoring design that is capable of detecting biologically significant changes in abundance. 

The statistical power of several monitoring designs incorporating different amounts of spatial 

and temporal replication were evaluated and the costs and the benefits of each design are 

discussed in order to identify an optimum monitoring design for the different species 

considered. In a wider context, the general process outlined here of evaluating monitoring 

program design with regard to decisions pertaining to sampling effort provides a guide for 
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establishing future monitoring protocols and highlights the importance of acquiring baseline 

data. 

2.2 – Methods  

2.2.1 – Data collection 

Data were collected using standardised methodologies between 1998 and 2010 at 8 

sites (Table 2.1, Figure 2.1), as described by Pande and Gardner (2009). Briefly, sites were 

located in coastal reef areas with no defined shelf or slope. Data were collected from a 

standardised depth range (8-15 m) to avoid confounding effects of depth. Fish counts were 

obtained by underwater visual census (UVC) performed along 25 m belt transects. Transect 

tapes were tied off in an initial start position and one diver would swim in a random direction 

from the start point and the other diver, after indicating the start of the transect at 5 m, would 

follow behind with the transect line, so as not to scare the fish away before the diver counting 

the fish could record them. All fish encountered within a 2.5 m distance either side of the 

transect tape were counted and identified to species level (125 m
2
 surveyed per transect x 9 

replicates per site). Invertebrate abundances were also estimated using UVC. A 25 m transect 

line was laid down haphazardly in the defined area and each diver would swim along the 

transect whilst intensively searching a one metre strip on their side of the tape counting all 

abalone, urchins and rock lobsters encountered (50 m
2
 per transect x 6 replicates per site). 

The analysis was restricted to data collected during the Austral summer season (December-

March) for all of the species listed in Table 2.1.  

2.2.2 – Preliminary analyses and summary statistics 

The data-set was composed of individual counts which are likely to follow an 

overdispersed poisson distribution (White & Bennetts 1996; Dennis et al. 2010), with varying 

degrees of overdispersion among species. In addition, the data exhibited temporal variability 

among survey years, as well as variability within and between-sites. Due to the non-gaussian 

nature of the error distributions and the number of variance components, a Monte-Carlo 

simulation approach was adopted to assess statistical power. This involves generating data 

that has the same characteristics (i.e., spatial and temporal variability) as the observed data, 

but where some inherent difference between treatments/time periods is included (Sims et al. 

2006). The analyses are focussed specifically on determining the power for detecting changes 

in abundance of three targeted fish species, blue cod (Parapercis colias), blue moki 

(Latridopsis ciliaris) and butterfish (Odax pullus), and three non-targeted fish species, 
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banded wrasse (Notolabrus fucicola), scarlet wrasse (Pseudolabrus miles) and spotty 

(Notolabrus celidotus). Similarly four targeted invertebrate species were included for 

analysis, rock lobster (Jasus edwardsii), blackfoot paua (Haliotis iris), yellowfoot paua 

(Haliotis australis) and kina (Evechinus chloroticus).  

To aid with comparing these results with data of other species in other systems, a 

range of simple summary statistics were calculated from the observed data. Observed 

abundances were summarised by calculating the average abundance (ind/125m
2
 for fish, and 

ind/50 m
2 

for invertebrates)
 
across all sites, as well as identifying the site-specific maximum 

and minimum densities across all surveys. To give a representation of the variability 

exhibited by the data, the maximum and minimum survey specific mean densities (averaged 

across the nine or six replicate counts at each site and each survey period for fish and 

invertebrates, respectively) were calculated, as well as the variance of mean densities across 

all surveys. Finally, to represent the variability among replicate transects (i.e. among the nine, 

or six, replicate counts), the ratio of the variance among replicate counts to the mean density 

was calculated for each survey (ratio‟s equal to one indicate poisson distributed counts 

whereas greater than one indicates overdispersion and clumping of counts). The 

variance:mean ratios averaged across all surveys, as well as the maximum and minimum 

ratios are presented. These statistics were calculated separately for reserve and non-reserve 

designated sites.   
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Table 2.1. Species and datasets included in the analysis along with the time period data was 

collected and the number of replicate transects per site. 

Species Common Name Dataset Time Period Sample Size per Survey 

Fish     

Notolabrus fucicola Banded wrasse 
Pande & Gardner 2009 1998-2000 

9 transects (25m by 5m) 

Eddy 2011 2008-2010 

Parapercis colias Blue Cod 
Pande & Gardner 2009 1998-2000 

Eddy 2011 2008-2010 

Latridopsis ciliaris Blue Moki 
Pande & Gardner 2009 1998-2000 

Eddy 2011 2008-2010 

Odax pullus Butterfish 
Pande & Gardner 2009 1998-2000 

Eddy 2011 2008-2010 

Pseudolabrus miles Scarlet Wrasse 
Pande & Gardner 2009 1998-2000 

Eddy 2011 2008-2010 

Notolabrus celidotus Spotty 
Pande & Gardner 2009 1998-2000 

Eddy 2011 2008-2010 

Invertebrates     

Evechinus chloroticus Kina 
Pande & Gardner 2009 1998-2000 6 Transects (25m by 2m) 

Byfield 2012 2008 4 Transects (25m by 2m) 

Jasus edwardsii Rock Lobster 
Pande & Gardner 2009 1998-2000 6 Transects (25m by 2m) 

Byfield 2012 2008 4 Transects (25m by 2m) 

Haliotis iris Blackfoot Paua 

Pande & Gardner 2009 1998-2000 
6 Transects (25m by 2m) 

Russell 2004 2003 

Byfield 2012 2008 4 Transects (25m by 2m) 

Haliotis australis Yellowfoot Paua 

Pande & Gardner 2009 1998-2000 
6 Transects (25m by 2m) 

Russell 2004 2003 

Byfield 2012 2008 4 Transects (25m by 2m) 

2.2.3 – Decomposition of variance 

Four variance components were identified as important contributors to the overall 

variance, (i) within-site, (ii) between-site and (iii) between-survey temporal effects that were 

the same across sites (synchronous temporal variation), and (iv) different between sites 

(interaction temporal variation) (Larsen et al. 2001). Quasipoisson generalized linear mixed 

effects models (GLMER with log link in R package lme4) (Bates & Maechler 2010) were 

applied to the data for each species to quantify the magnitude of each of these variance 

components. In this assessment a fixed factor describing the differences between the different 

datasets (e.g. between datasets from Pande & Gardner 2009 and Eddy 2011 for fish) was 

included so that variation due to different teams of people collecting the data were not 

misinterpreted as random variation through time. The magnitude of the synchronous and 

interaction temporal variability terms were quantified by including random effects of “Year” 

and “Site:Year”, respectively, into the mixed effects model. The standard deviations σY and 

σYS of these random effects were taken to be representative of the magnitude of variation 
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attributable to synchronous and interaction temporal variability, respectively. Because 

between-site differences are likely to be maintained in future surveys, and all future surveys 

are likely to be carried out at the original sites, “Site” was incorporated as a fixed factor and 

the site averages from the data were used as the starting point for simulating future counts 

from these sites. Within-site variance was modelled based on a negative binomial distribution 

to generate counts with similar dispersion as the observed data (the negative binomial 

distribution is often used to model overdispersed counts) (White & Bennetts 1996; Link & 

Sauer 1998; Dennis et al. 2010). The negative binomial model has two parameters, the mean 

μ and a dispersion parameter ν, and has variance according to equation 2.1  

      
  

 
 

 eqn. 2.1 

As ν tends towards high values the negative binomial distribution tends toward a poisson 

distribution with variance equivalent to the mean. However, as ν tends to zero the generated 

counts become overdispersed compared to a poisson distribution, exhibiting a high degree of 

clumping (White & Bennetts 1996). Negative binomial distributions were fitted to replicate 

counts obtained at each site on each survey date (year) and the dispersion parameter was 

recorded for each model fit. These were averaged and the resulting parameter was used to 

model the dispersion in the simulated data. This was applied to the data separately for each 

species.    

2.2.4 – Data simulation 

The simulation process was split into two parts. The mean values for each site i in 

each year t, denoted by μi,t, were constructed according to equation 2.2  

                    

eqn. 2.2 

where    is the log-average abundance at site i, At is the random effect of year and Bi,t is the 

random effect of year specific to each site. Values for At and Bi,t were generated as normal 

random variables drawn from distributions with means equal to zero and standard deviations 

equal to σY and σYS, respectively. The average value is expressed as a logarithm because a 

logarithmic link function was used in the GLMER fit to the baseline data. Individual counts 
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Yk,i,t, with transect number denoted by subscript k were then generated from a negative 

binomial distribution with mean      and dispersion parameter ν for each site i and time t. 

                  

eqn. 2.3 

For control sites, ηi was taken to be constant, such that abundances were the same as in the 

baseline data. As such, any observed changes would be due to random variation in the 

number of individuals observed rather than due to any consistent changes over time. To 

simulate different MR effects, ηi was set to different values according to different 

hypothetical scenarios whereby the abundance is 2, 4, 6 or 8 times greater within reserve sites 

in the after period compared to the baseline data (Table 2.2). Such changes in abundance are 

consistent with actual recorded changes (e.g. Pande et al. 2008, Diaz Guisado et al. 2012). 

Three temporal monitoring design choices were considered. The first (hereafter referred to as 

design 1) consisted of generating data for a single surveyed year. This is representative of a 

one-off survey where data from a single surveyed year are compared to the baseline data. The 

second (design 2) consisted of generating data that corresponds to a sampling design that is 

replicated over two consecutive years. The third (design 3) consisted of generating data that 

correspond to a sampling design that is replicated over three consecutive years (Table 2.2). 

For each of these designs three levels of within-site replication were simulated, giving a total 

of nine competing monitoring designs (Table 2.2). 

Table 2.2. Effect sizes investigated and the level of replication in terms of replicate transects 

and number of consecutive years surveyed.  

Species Transects Years/Designs Proportional increase in abundance 

Fish 

6,9,12 1,2,3 2 

6,9,12 1,2,3 4 

6,9,12 1,2,3 6 

6,9,12 1,2,3 8 

Invertebrates 

4,6,8 1,2,3 2 

4,6,8 1,2,3 4 

4,6,8 1,2,3 6 

4,6,8 1,2,3 8 

2.2.5 – Testing procedure 

To test the combined simulated and baseline data for a significant MR effect a BACI 

testing procedure was performed. The simulated data set (1, 2 or 3 years depending on design 

– Table 2.2) was combined with the baseline data set so that a full before-after data scenario 
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was created. Two quasipoisson GLMER models were fitted to the combined dataset. The first 

model consisted of fixed factors for Treatment, Period and random factors for Site, Year and 

Site:Year to account for spatial and temporal variability. The second model was the same, but 

with the inclusion of the Treatment:Period term. The two models were then compared using a 

likelihood ratio test (aov in R) based on AIC and log-likelihood values to determine the best 

model fit to the data (Pinheiro & Bates 2000). A p-value of less than 0.05 from the likelihood 

ratio test was interpreted as an indication that the interaction term was a significant addition 

to the model and thus constituted a MR effect. The simulation procedure was run 1000 times, 

and the power to detect a reserve effect was interpreted as the proportion of these simulations 

where the second model was a statistically significant improvement on the first model. All 

simulations and tests were performed in R version 2.12 (R Development Core Team 2011).  

2.2.6 – Monitoring design costs 

The costs of the competing monitoring designs were calculated based on the time 

required to conduct the surveys. Based on field experience, it was assumed that three dives 

could be carried out each day, with each dive lasting 40 min for minimal replication 

(invertebrates – 4 transects, fish – 6 transects) and 60 min for medium replication 

(invertebrates – 6 transects, fish – 9 transects), carried out by two experienced scientific 

divers. In order to carry out the maximum replication (invertebrates – 8 transects, fish – 12 

transects) it was assumed that dives lasted 40 min and were carried out by 4 experienced 

scientific divers with the workload split evenly between the two pairs of divers. A surface 

interval of three hours between dives was assumed for safety purposes. Based on local 

experience, an hourly rate of $130 (NZD) for the scientific divers was assumed, and daily 

boat and skipper hire were estimated at $1500 (NZD). Although costs are not specific to any 

agency or operator they are indicative of the costs required for this kind of work. Based on 

these costs the power to detect a four-fold increase in abundance divided by the costs was 

calculated as an indication of the cost-effectiveness of the competing monitoring designs. 

2.3 – Results 

Summary statistics regarding species abundances within and outside of marine reserve 

sites and simulation parameters are given in Table 2.3 
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Table 2.3. Parameters estimated from the mixed effects models that were used to perform the 

simulations and summary statistics regarding abundance within and outside reserve 

designated sites, survey specific abundances, and variance estimates with respect to the 

variance among survey means, and the ratio of within survey variance to the within survey 

mean as a measure of the among transect variability. Densities are ind/125m
2
 for fish, and 

ind/50 m
2 

for invertebrates. 

    Density   
Within survey var:mean 

ratio 
Parameters 

Species Area Average 
Site Specific 
(min, max) 

Survey 
Specific 

(min, max) 

Var of 
survey 
means 

Average 
Survey 
specific  

(min, max) 
σY σYS ν 

Banded 
Wrasse 

R 0.38 (0.33, 0.44) (0.00, 0.89) 0.10 0.96 (0.69, 1.40) 
0.24 0.32 3.86 

C 0.85 (0.40, 1.63) (0.11, 4.11) 0.95 1.48 (0.50, 5.10) 

Blue Cod 
R 0.31 (0.19, 0.52) (0.00, 0.88) 0.10 1.35 (0.95, 3.20) 

0.00 0.42 0.31 
C 0.18 (0.00, 0.33) (0.00, 0.77) 0.08 1.37 (0.90, 3.20) 

Blue Moki 
R 0.17 (0.11, 0.22) (0.00, 0.55) 0.03 1.01 (0.88, 1.40) 

0.00 0.34 4.16 
C 0.27 (0.04, 0.67) (0.00, 0.89) 0.09 1.17 (0.57, 2.00) 

Butterfish 
R 0.36 (0.00, 0.85) (0.00, 2.11) 0.46 2.06 (0.50, 11.3) 

0.09 0.47 0.41 
C 0.24 (0.07, 0.48) (0.00, 1.33) 0.13 1.20 (0.75, 2.00) 

Scarlet 
Wrasse 

R 0.19 (0.11, 0.33) (0.00, 0.66) 0.05 1.07 (0.76, 2.00) 
0.00 0.39 0.78 

C 0.08 (0.00, 0.15) (0.00, 0.33) 0.01 1.04 (0.76, 2.00) 

Spotty 
R 0.85 (0.33, 1.41) (0.33, 2.22) 0.41 2.60 (0.76, 8.90) 

0.00 1.20 0.81 
C 2.37 (1.15, 5.30) (0.44, 12.00) 7.80 4.02 (0.54,14.00) 

Blackfoot 
Paua 

R 2.3 (1.71, 3.43) (0.00, 11.50) 8.92 2.89 (0.80, 8.00) 
0.30 1.20 1.01 

C 2.61 (0.79, 5.43) (0.00, 8.17) 7.74 2.74 (0.66, 8.55) 

Rock 
Lobster 

R 0.26 (0.14, 0.50) (0.00, 2.25) 0.40 1.24 (1.00, 2.00) 
0.27 0.43 1.75 

C 0.35 (0.09, 0.86) (0.00, 3.25) 0.63 2.17 (0.66, 13.00) 

Kina 
R 2.06 (1.30, 2.45) (0.00, 8.17) 5.70 4.80 (0.66, 32.00) 

0.08 0.96 0.86 
C 3.29 (0.50, 7.04) (0.00, 15.50) 18.70 3.52 (0.60, 19.5) 

Yellowfoot 
Paua 

R 1.93 (0.93, 3.11) (0.00, 11.00) 8.70 1.62 (0.53, 4.30) 
0.00 0.96 1.20 

C 1.11 (0.57, 1.90) (0.00, 4.17) 1.17 1.93 (0.66, 7.00) 

 

Differences in power among monitoring designs were considerable (Tables 2.4 and 2.5). For 

fish, design 2 had 15% (range 0-36%) greater power than design 1, and design 3 had 6% 

(range 0-19%) greater power (averaged over species and effect sizes) than design 2. In both 

cases there were differences between species, with considerable increases in power to detect 

change in abundance of three species – blue cod, blue moki and scarlet wrasse, but smaller 

increases in power to detect changes in abundance of spotty (Table 2.4). For invertebrates, 

design 2 had 20% (range 0-43%) greater power (averaged over species and effect sizes) than 
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design 1, and design 3 had 8% (0-16%) greater power than design 2, with the largest 

increases in power to detect change for rock lobsters and yellowfoot paua (Table 2.5). 

Changing the within-site replication had a much smaller effect on power than 

changing the replication over years (Tables 2.4 and 2.5). Designs with the highest replication 

had the highest power, but there were differences among species as to how power changed 

with design choice. When averaging differences in power across temporal designs and 

species, increasing the replication from six to nine transects for fish increased power by 4.4% 

(range 0-12%) for a four-fold increase in abundance, and by 3.1% (range 1-6%) for a six-fold 

increase. Further increasing the replication from six to twelve transects increased power by 

6.1% (range 1-13%) for a four-fold increase in abundance, and by 5.25% (range 1-10%) for a 

six-fold increase. This was consistent across species but was most notable for blue cod, blue 

moki and butterfish (Table 2.4). Averaging differences in power across temporal designs and 

invertebrate species indicated that increasing replication from six to eight transects increased 

power by 1.1% (range 0-5%) for a four-fold increase, and by 1.8% (range 0-7%) for a six-

fold increase in abundance. Decreasing replication from six to four transects decreased power 

by 4.8% (range 0-11%) for a four-fold increase in abundance and by 2.9% (range 0-9%) for a 

six-fold increase in abundance. These increases were most notable for rock lobster and kina 

(Table 2.5).  
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Table 2.4. Power to detect different proportional increases in abundance of fish species for 

the different monitoring design choices. The final two columns give a comparison of the 

difference in average power between different levels of spatial replication (differences 

averaged across temporal designs) and between different temporal designs (differences 

averaged across replication levels). 

Species 

Proportional 

increase in 

abundance 

Power (α=0.05) Power 

compared 

across 

replication 

Power 

compared 

across 

designs 

Design 1 Design 2 Design 3 

Transects Transects Transects 

6 9 12 6 9 12 6 9 12 6-9 9-12 1-2 2-3 

Banded 

Wrasse 

2 35 39 40 46 51 54 50 59 65 +6 +3 +12 +8 

4 88 93 94 99 99 100 100 100 100 +2 +1 +8 +1 

6 98 100 99 100 100 100 100 100 100 +1 0 +1 0 

8 100 100 100 100 100 100 100 100 100 0 0 0 0 

Blue Cod 

2 3 3 3 5 4 4 7 4 5 -1 0 +1 +1 

4 10 11 11 25 27 26 33 39 39 +3 0 +15 +11 

6 20 22 23 44 49 54 61 66 71 +4 +4 +27 +17 

8 24 33 36 60 70 72 80 86 90 +8 +3 +36 +18 

Blue 

Moki 

2 3 4 4 6 7 10 6 8 11 +1 +2 +4 +1 

4 17 18 24 42 49 55 61 68 73 +5 +6 +29 +19 

6 43 45 50 79 84 84 91 94 95 +3 +2 +36 +11 

8 62 65 67 94 96 97 99 100 100 +2 +1 +31 +4 

Butterfish 

2 12 11 13 13 14 16 17 18 14 0 0 +2 +2 

4 40 46 49 56 67 69 67 79 78 +10 +1 +19 +11 

6 62 67 71 84 87 91 93 97 97 +4 +3 +21 +8 

8 80 83 82 95 96 97 99 100 100 +2 0 +14 +4 

Scarlet 

wrasse 

2 10 10 8 16 18 16 21 20 21 0 -1 +7 +4 

4 40 39 40 68 73 75 84 88 90 +3 +2 +32 +15 

6 62 68 71 93 93 95 97 98 98 +2 +2 +27 +4 

8 75 81 82 98 98 99 100 100 100 +2 +1 +19 +2 

Spotty 

2 19 20 20 16 16 18 13 14 12 +1 0 -3 -4 

4 48 50 52 53 53 56 60 61 62 +1 +2 +4 +7 

6 64 68 68 75 78 80 84 85 87 +3 +1 +11 +8 

8 77 79 83 88 91 94 95 96 97 +2 +3 +11 +5 
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Table 2.5. Power to detect different proportional increases in abundance of invertebrate 

species for the different monitoring design choices. The final two columns give a comparison 

of the difference in average power between different levels of spatial replication (differences 

averaged across temporal designs) and between different temporal designs (differences 

averaged across replication levels). 

Species 

Proportional 

increase in 

abundance 

Power (α=0.05) Power 

compared 

across 

replication 

Power 

compared 

across 

designs 

Design 1 Design 2 Design 3 

Transects Transects Transects 

4 6 8 4 6 8 4 6 8 4-6 6-8 1-2 2-3 

Blackfoot 

paua 

2 8 8 7 9 7 6 9 6 7 -2 0 0 0 

4 22 22 23 32 32 33 37 41 42 +1 +1 +10 +8 

6 35 35 36 54 57 58 67 67 70 +1 +2 +21 +12 

8 45 46 51 71 73 76 82 87 86 +3 +2 +26 +12 

Yellowfoot 

paua 

2 16 14 17 26 25 27 32 32 35 -1 +3 +10 +7 

4 42 44 44 73 74 74 87 88 90 +1 +1 +30 +15 

6 61 64 66 91 92 92 97 98 98 +2 +1 +28 +6 

8 76 76 78 98 98 98 100 100 100 0 +1 +21 +2 

Kina 

2 5 8 7 7 8 9 6 10 8 +3 -1 +1 0 

4 23 27 28 32 43 45 46 55 53 +8 0 +14 +11 

6 39 42 46 61 69 69 76 85 85 +7 +1 +24 +16 

8 57 59 62 79 82 85 92 94 96 +2 +3 +23 +12 

Rock 

lobster 

2 7 8 7 21 23 30 33 39 51 +3 +6 +17 +16 

4 30 40 41 72 82 87 90 96 97 +9 +2 +43 +14 

6 59 65 72 95 96 99 99 99 100 +2 +4 +31 +3 

8 71 84 89 98 100 100 100 100 100 +5 +2 +18 +1 

2.3.1 - Costs and cost-effectiveness 

There was very little difference in cost between the minimum replication and the 

medium replication designs (Table 2.6) because only an additional hour each day (assuming 3 

dives per day) was required to complete the additional transects. However, maximum 

replication designs were considerably more costly because twice the number of experienced 

scientific divers will be required to carry out the work (Table 2.6). Designs 2 and 3 were two 

and three times more costly, respectively, than design 1 because consecutive annual surveys 

were required. Design 1 with minimal replication was most cost-effective for the monitoring 

of banded wrasse, scarlet wrasse, spotty, blackfoot paua and yellowfoot paua (Figures 2.2 and 

2.3), whereas design 1 with medium replication was most cost-effective for butterfish and 

kina. Design 2 with medium replication was most cost-effective for blue cod, blue moki and 

rock lobster (Figures 2.2 and 2.3).  
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Table 2.6. Costs (NZD) of the invertebrates/fish surveys in terms of the temporal design and 

the number of replicate transects per site. 

  
Design 

1 2 3 

Transects 

4/6 11325 22650 33975 

6/9 12018 24036 36054 

8/12 18150 36300 54450 

 

 

Figure 2.2. Surface plot illustrating the power to detect a four-fold increase in abundance 

divided by the cost for each of the monitoring design choices for (a) blue cod, (b) banded 

wrasse, (c) blue moki, (d) butterfish, (e) scarlet wrasse and (f) spotty. 
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Figure 2.3. Surface plot illustrating the power to detect a four-fold increase in abundance 

divided by the cost for each of the monitoring design choices for (a) blackfoot paua, (b) 

yellowfoot paua, (c) kina, (d) rock lobster. 

2.4 – Discussion 

This evaluation of different monitoring programs highlights a particular problem 

associated with assessing MR effects: many studies may be unable to demonstrate small but 

meaningful effects due to the low power of the sampling designs to detect such effects 

(Battershill et al. 1993; Kelly et al. 2000; Pande & Gardner 2012). Thus, smaller effects may 

be overlooked due to inadequate or inappropriate monitoring survey design and the 
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subsequent inability of statistical analysis to prove that a small but biologically significant 

change has occurred. Notably, many studies of MRs lack the requisite duration of data 

collection or the replication necessary to identify smaller effects that are nonetheless 

biologically significant. In particular, data collected by underwater visual census (UVC) 

methods have been criticised because of their low precision and high variability (Thresher & 

Gunn 1986; Edgar & Barrett 1999). However, this is not only a limitation of the data 

collected but also of the statistical measures that are commonly employed to test these data. 

The reliance on null hypothesis significance testing has been criticised in the literature with 

regard to the testing of an a priori trivial null hypothesis (specification of no difference 

between levels and time periods are almost never going to be true and so the rejection of the 

null hypothesis is trivial) (Anderson et al. 2000; Cole & McBride 2004; Gerrodette 2011). 

Many authors criticising null hypothesis significance testing suggest that there should be 

greater emphasis on the presentation of effect size and precision in the form of confidence 

intervals (Gerrodette 2011; Nakagawa & Cuthill 2007) or credible intervals in a Bayesian 

framework (Wade 2000). However, this does not imply that the approach adopted here is 

without merit, given that power is directly related to the precision of the effect size estimates 

(high power requires high precision) and is therefore still useful when designing a monitoring 

program (Nakagawa & Cuthill 2007; Seavy & Reynolds 2007). Null hypothesis testing still 

remains the dominant paradigm of statistical testing employed throughout the marine ecology 

literature and therefore a monitoring program design based on power is still the most easily 

recognisable and accessible means of comparing monitoring design choices.   

This study highlights the difficulties of identifying an adequate single design for a 

multi-species monitoring program. Power to detect biological change (in this case, 

abundance) varies considerably among species, with some designs being entirely adequate for 

one species (e.g. low replication is adequate to detect change in abundance of banded wrasse) 

but inappropriate for others (e.g. low replication is inadequate to detect change in abundance 

of blue cod). Overall, power was low to detect changes in abundance corresponding to a two-

fold increase in abundance for all species and for all sampling designs considered, but 

particularly so for design 1. Power to detect change in abundance of banded wrasse was 

considerably higher than for all other species simply because banded wrasse were abundant 

and observed consistently throughout the baseline surveys. During the baseline surveys, 

spotty and blackfoot paua were also particularly abundant, but in contrast to banded wrasse 

they displayed high levels of among-site and within-site variation due to 
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schooling/aggregating behaviour. This additional dispersion likely reduced our power to 

detect changes in their abundances. In contrast, during the baseline surveys blue cod, blue 

moki and rock lobster were observed at very low abundances with the data consisting mostly 

of zeros. Analysis of data of this kind has low power to detect change because seemingly 

large changes in relative abundance manifest as small changes in observed abundance. For 

example, if on one occasion one individual was observed over 9 transects and on a 

subsequent occasion two individuals were observed, i.e. a doubling in observed abundance, 

there is a high probability that this difference could have occurred by chance alone resulting 

in low power to detect these changes unless spatial and temporal replication is considerable 

(Table 2.4). The use of larger sampling units (i.e. wider or longer transects) in these cases 

would likely help to address these issues. However, there would also be a likely tradeoff with 

increasing transect size in terms of the replication achievable in a given time (i.e. longer 

transects are likely to take longer) and the accuracy of the resulting data (i.e. wider transects 

are more prone to error in judging whether fish were or were not on the transect). Longer 

transects are also more likely to cover multiple habitat types and/or depths depending on the 

transect orientation. This could potentially lead to greater heterogeneity in the resulting 

counts and may in fact reduce power if not adequately accounted for. In these instances, 

depths, habitat type and other potential explanatory variables could potentially be used as a 

covariate in any statistical analyses to explain some of the variation in fish counts (Shears et 

al. 2008a). This would counter the increased variation and may make it more likely to detect 

changes in abundance through time, particularly where larger sampling units are required to 

account for species that occur in low densities. This may be particularly important in the 

initial stages of an MPA where species may occur in low densities as a result of historical 

depletion.    

Although perhaps not explicitly stated in most cases, the design of many monitoring 

programs assumes a reasonably uniform environment across and within the monitored area. 

However, it must often be the case that environmental heterogeneity exists at various spatial 

scales across and within the monitored area, and that such heterogeneity must be taken into 

consideration. This extra level of complexity adds substantially to the difficulty and cost of 

designing a monitoring program that has power to detect change in abundance of focal taxa in 

an environment that is characterised by patchiness or a gradient. In the present study, the 

observed high among-site variability for many species is attributable in large part to the 

existence of a natural environmental gradient along the south coast (Pande & Gardner 2009). 
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Considerable differences exist in the abundances of fishes, invertebrates and macroalgae 

among the eight sites, with eastern sites (e.g., Barrett Reef and Breaker Bay) having greater 

abundance on average than western sites (e.g., Red Rocks and Sinclair Head), and the 

Taputeranga Marine Reserve (TMR) being located in between (Pande & Gardner 2009). As a 

consequence, the variability in the control “Treatment” level is large because it consists of 

two distinct groups (east and west, either side of TMR). This combination of overall low 

abundance, coupled with high variability in the abundance estimates, reduces the ability to 

detect changes in taxon abundance. Nonetheless, as outlined below, it is still possible to 

design and implement a monitoring program that can detect change in abundance of some, 

but not all, species along the natural environmental gradient.  

Design and replication issues can often be secondary to logistical and cost restraints 

(Molloy et al. 2010). In the present context for TMR, the design of the monitoring protocol 

for the baseline survey (Pande & Gardner 2009) was driven more by what could reasonably 

be achieved on a very limited budget and within a tight time frame, rather than by what was 

biologically desirable or statistically robust (Pande 2008). The costs of employing designs 2 

or 3 were two or three times greater than design 1, which may be prohibitive depending on 

the monitoring budget. Consequently design 2 was only cost-effective for blue cod, blue 

moki and rock lobster, whereas design 3 was the least cost-effective for all species examined 

because of its greater costs (Figures 2.2 and 2.3). Although design 1 was the most cost-

effective for most species and is comparable in design to surveys actually carried out in 

temperate MR studies (Jones et al. 1993; Kelly et al. 2000) the results presented herein reveal 

that the power to detect even large changes in abundance is low for most species (Tables 2.4 

and 2.5), highlighting the need for temporal replication to determine if there have been 

changes in abundances. However, increasing replication across years to the detriment of 

within-site replication is not recommended given that replication over both spatial and 

temporal scales is required to control for spatial and temporal variation (Underwood 1992; 

Underwood & Chapman 2003; Molloy et al. 2010). This evaluation of monitoring this marine 

reserve revealed that medium levels of replication (i.e. 6 transects for invertebrates and 9 for 

fish) were the most cost-effective for detecting changes in abundance of blue cod, blue moki, 

butterfish, rock lobster and kina. These species were all commercially or recreationally 

targeted along the entire south coast prior to marine reserve establishment and so were 

initially observed in low numbers requiring greater replication to get an accurate measure of 

their abundance. 
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A major challenge faced by managers and scientists alike is to design and implement 

a monitoring program that is cost-effective and will answer questions about the magnitude of 

change that is both detectable and biologically meaningful. Identifying the best overall 

monitoring program to employ requires the quantification of the adequacy and the costs of 

several competing choices (in this case the power to detect a change in abundance at reserve 

sites), but also the specification of definite goals/targets to be achieved by the monitoring 

design in question (Ringold et al. 1996; Vos et al. 2000). These goals and targets should 

incorporate specification of the size of effect that is deemed important, along with the ability 

to quantify or detect these changes. Most marine reserve monitoring in New Zealand is 

performed to quantify the change in abundance of commercially or recreationally harvested 

species once an area has been closed to fishing (Cole et al. 1990; Kelly et al. 2000; Willis et 

al. 2003a; Pande et al. 2008; Diaz Guisado et al. 2012; Pande & Gardner 2012). In particular, 

much research has focussed on changes in blue cod and rock lobster abundance (summarised 

by Pande et al. 2008; Diaz Guisado et al. 2012 and references therein). If future monitoring 

of the Taputeranga Marine Reserve is to focus solely on these two species then the most cost-

effective approach is design 2 with six invertebrate transects and nine fish transects. This 

choice would still be adequate for monitoring all six fish and four invertebrate species 

considered here (e.g., to assess the broader community response), rather than focussing solely 

on two particular species. Based on these findings and where costs are limiting monitoring 

using design 2 with 6 and 9 transects for invertebrates and fish, respectively, is the most cost-

effective protocol.  

The approach employed here to evaluate different monitoring programs is based on 

the existence of a spatially and temporally replicated baseline data set. Whilst the 

recommendations that are proposed are specific to the local situation, all of the focal taxa 

discussed here are widespread and present throughout New Zealand. Thus, in the absence of 

baseline data for one or more such species from other sites, it would be reasonable to take the 

recommendations from this study and use them as a starting point, for example in a pilot 

study in another area. Beyond this, it would be reasonable to use the monitoring designs and 

their indicative levels of power that are presented here, for different species in other countries 

where no baseline data exist. Thus, for species in other parts of the world that possess similar 

levels of abundance and also distributions (e.g., based on depth, habitat type, etc) 

recommendations might reasonably be made based on their NZ counterparts as a first step 

towards achieving a region-specific and species-specific monitoring program. Ultimately, this 
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study highlights the value of an extensive baseline data set, as well as highlighting the need 

for such fundamental survey work to be conducted in every region where long term 

monitoring is to be undertaken.  
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Chapter 3 - Optimizing monitoring for quantifying 

change in fish abundance: power, accuracy and 

precision of visual census methods  
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3.1 – Introduction 

Interest in marine monitoring has risen sharply over the last decade to address the 

need to understand changes in the marine environment in response to anthropogenic 

disturbance (Lubchenco et al. 2003; Edgar et al. 2004). Monitoring is usually used to 

describe long-term changes in the abundance of specific species, as well as to provide 

information regarding demographic parameters and ecosystem condition (Seavy & Reynolds 

2007). In particular, quantifying abundance trends of many plant and animal species has been 

vital to their successful conservation and management (Bart et al. 2004). In order for a 

monitoring program to be effective it should provide the best possible information regarding 

changes in abundance by presenting both accurate (small bias) and precise (smaller 

confidence intervals regarding trend parameters) estimates of trend parameters (Block et al. 

2001; Tyre et al. 2003). However, estimating change in abundance from survey data poses 

several logistical and statistical challenges (see Thomas 1996; Willis et al. 2003a; 

McDonald-Madden et al. 2010; Molloy et al. 2010). Because quantifying trends in ecological 

studies is so greatly influenced by temporal and spatial variability (Sims et al. 2006; Molloy 

et al. 2010) the design of a monitoring program requires considerable planning, field testing 

and statistical evaluation before implementation (Zielinski & Stauffer 1996). However, a 

priori, researchers often do not know the degree of variability that affects abundance 

measures (Underwood 1993; Gibbs et al. 1998; Willis et al. 2003a), which is important 

considering that decisions pertaining to how to distribute sampling effort will depend on the 

relative magnitudes of the different components of variation (Urquhart et al. 1998; Sims et al. 

2006). In many cases, resource limitations (e.g. time, monetary cost, availability of trained 

observers) mean that the chosen survey design may meet some of the requirements by 

emphasizing replication on specific spatial or temporal scales (e.g. high spatial replication 

will achieve a greater degree of coverage of the target population), but this may be to the 

detriment of the other monitoring requirements (resources used to achieve high spatial 

replication may mean that monitoring can only be carried out infrequently, thus giving a poor 

indication of changes through time) (Field et al. 2005). Given the general lack of resources 

dedicated to monitoring and the expense of performing large-scale surveys, particularly in 

marine habitats, there is a danger that sub-optimal monitoring may be performed (Nicholson 

& Fryer 2002; McDonald-Madden et al. 2010).  Identifying the best way to distribute effort, 

through space and time, within financial constraints, is a challenging task (Gibbs et al. 1998; 
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Cabral & Murta 2004; Elphick 2008; McDonald-Madden et al. 2010), but one that underpins 

sound management decisions.  

Underwater visual census (UVC) methodologies are used extensively in marine 

studies (Edgar & Barrett 1997; Paddack & Estes 2000; Willis et al. 2000; Denny and 

Babcock 2004; Edgar et al. 2004). These methods have been used for assessing the 

abundance of invertebrates, macroalgal assemblages, and reef fish (Cole et al. 1990; Edgar & 

Barrett 1997; Samoilys & Carlos 2000; Shears & Babcock 2003; Edgar et al. 2004; Stuart-

Smith et al. 2008; Pande & Gardner 2009; 2012). However, there have been few studies 

examining the effectiveness (in terms of accuracy and precision) of these studies for 

determining long-term trends in fish abundance, which is vital considering the reliance on 

these techniques globally for quantifying the status of fish populations (Buxton & Smale 

1989; Dufour et al. 1995; Edgar & Barrett 1997; Denny & Babcock 2004). Data collected by 

UVC techniques are often characterized by high variability and low precision due to the often 

overdispersed nature of the data (Brock 1982; Samoilys & Carlos 2000; Willis et al. 2003a; 

Pande & Gardner 2009), although little has been done to quantify, let alone attempt to 

minimize the bias and maximize precision of long-term trend estimates through monitoring 

design assessments (but see Molloy et al. 2010 for an assessment of sample size and 

detection of particular short-term trends).  

Monitoring design assessments often focus on the statistical power to detect trends 

(Gerrodette 1987; Nicholson et al. 1997; Sims et al. 2006; Elphick 2008; Molloy et al. 2010). 

Power analysis is the analysis of the probability of a given sampling design being able to 

provide a statistically significant result, at some significance level α, for an effect of a given 

size, based on the null hypothesis of no effect (Chapter 2; Thomas 1996). There has however 

been considerable criticism of the application of point null-hypothesis significance testing 

within non-experimental ecological approaches (Gerrodette 2011). The major criticism is that 

a statistically significant result may not be biologically significant and conversely a result that 

would be considered biologically significant may often not be statistically significant due to 

the variability of the response being measured (Gerrodette 2011).  Many researchers have 

called for a greater emphasis on effect size estimation plus the inclusion of confidence 

intervals as a measure of precision (McBride et al. 1993; Anderson et al. 2000; Nakagawa & 

Cuthill 2007; Gerrodette 2011) because this approach contains all the relevant information 

required to assess the biological significance of the results. In this context, the quote of 
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Nakagawa & Cuthill (2007, pg 595) that “… power analysis was right for the wrong reasons 

…” is particularly relevant because monitoring designs that have high power (assuming also 

that the effect size in question is set at a meaningful level) by definition also provide precise 

estimates of the parameters being tested and are therefore useful when designing a 

monitoring program. Power, accuracy and precision, however, are separate concepts and 

whilst a monitoring design may be precise in the determination of abundance trends, this does 

not guarantee that the estimated trends are accurate.  

In this chapter I describe an approach that may be used to design optimum monitoring 

programs to identify abundance trends of reef fish species as assessed by UVC. Using data 

from four temperate New Zealand reef fish species that vary in their abundance both 

temporally and spatially, the bias, precision and power of multiple monitoring design 

configurations that incorporate different numbers of sites, transects within sites and 

monitoring frequencies is defined. The monetary cost of each design is also quantified, in 

order to identify the most cost-effective approach as the one that gives the highest ratio of 

precision, accuracy and power in relation to cost. Finally, this chapter aims to provide a 

general methodology for the identification of a cost-effective monitoring design and illustrate 

how this varies among species and locations dependent on average abundance, along with 

spatial and temporal variability in abundance at spatial scales relevant to sampling (~10-100 

m
2
).  

3.2 – Methods 

3.2.1 – Description of data and summary statistics 

Datasets from three marine reserves (MR) were examined: Long Island-Kokomohua 

Marine Reserve (established 1993, hereafter LIMR), Tonga Island Marine Reserve 

(established 1993 hereafter TIMR) and Horoirangi Marine Reserve (established 2005, 

hereafter HMR) in the northern region of the South Island of New Zealand (Figure 3.1). 

Datasets consisted of the observed abundance of common reef fish collected using the same 

sampling protocol at each reserve and sampled by the same set of divers trained in the 

identification of New Zealand reef fish and underwater visual census strip transect methods. 

The data were collected from sites characterized by boulder or rocky reef substratum devoid 

of a macroalgal canopy (i.e. rocky barrens), in a depth range of 5-12 m below mean high 

water springs. At each site, pairs of divers recorded fish abundance by swimming along 30 m 

transects haphazardly placed at the same designated sites. At the start of each transect a lead 
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weight was dropped onto the substratum within the depth range. The line was reeled off the 

spool as the diver swam away from the weight, and starting at 5 m from the weight all reef 

fish, excluding triplefins (family - Tripterygiidae), within a diver estimated 2 m wide and 2 m 

high corridor either side of the transect were recorded. Transects were swum at a constant 

slow speed but fast enough that fish did not overtake the recorder. A total of twelve transects 

were performed at each site on each sampling occasion. The number of sites within MRs 

varied. Data for LIMR were collected from 5 sites monitored annually from 1993-2010. Data 

from TIMR were collected from 7 sites from 1999-2010. Data from HMR were collected 

over a shorter timescale because monitoring only began in 2006. Six sites were monitored 

over the full time period, 2006-2010, and two additional sites were monitored from 2007-

2010. All observations were performed in the same season (austral summer - February-May) 

to avoid issues arising from seasonal changes in observed abundance (Davidson 2001; 

Davidson et al. 2007; 2009).  

The analysis was limited to four species that were observed at all three MRs. Blue cod 

(Parapercis colias) were commonly observed because this species was the primary target of 

all three MR monitoring programs. They were particularly abundant at LIMR, but less so at 

TIMR and HMR. In addition to total blue cod abundance, the abundance of legal-sized 

(greater than 33 cm) individuals was also analysed. The abundance of legal-sized blue cod 

has previously been used as an indicator of a MR effect (Davidson 2001; Pande et al. 2008). 

It also may provide a better indication of a MR effect when compared to total abundance as it 

is less likely to be affected by variable recruitment, which may increase the interannual 

variability in total fish counts. Spotty (Notolabrus celidotus) were the most abundant species 

observed, consistent with them being the most abundant reef fish species in New Zealand 

coastal waters (except at the Poor Knights Islands and Three Kings Islands where they rarely 

occur; Choat & Ayling 1987; Francis 2001). However, due to schooling behaviour they were 

often observed in quite high numbers (schools larger than 50 individuals were regularly 

encountered) and displayed quite high variability between replicate transects. Blue moki 

(Latridopsis ciliaris) had the lowest abundance, with the majority of the data consisting of 

zero counts, or counts in the low figures with few counts greater than five. Tarakihi 

(Nemadactylus macropterus) were infrequently encountered, but as they show schooling 

behaviour they were recorded in very high abundance when encountered and so the counts 

for this species were highly variable within sites, between sites, and over time. In addition 
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blue cod, blue moki, and tarakihi outside of marine reserves are commercially and 

recreationally targeted whereas spotty are not. 

To aid with comparing these results with data of other species in other systems, a 

range of simple summary statistics were calculated from the observed data. Observed 

abundances are summarised by calculating the average density (ind/120m
2
)

 
across all sites, as 

well as identifying the site-specific maximum and minimum densities across all surveys. To 

give a representation of the variability exhibited by the data, the maximum and minimum 

survey specific mean densities (averaged across the twelve or so replicate transect counts at 

each site and each survey period) were calculated, as well as the variance of mean densities 

across all surveys. Finally, to give an idea of the variability among replicate transects (i.e. 

among the replicate counts obtained within each site, each year), the ratio of the variance 

among replicate counts to the mean density was calculated for each survey (ratio‟s greater 

than one indicate overdispersion and clumping of counts). The variance:mean ratios averaged 

across all surveys, as well as the maximum and minimum ratios are presented.  
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Figure 3.1. Locations of the three marine reserves in the northern part of the South Island of 

New Zealand used in this study.  

 

3.2.2 – Modelling the data 

Spatial and temporal variability in the datasets were modelled (after Sims et al. 2006) 

by employing a Monte-Carlo simulation methodology to assess statistical power and the 

average bias and precision of the trend estimates. Monte-Carlo approaches have been applied 

in complex power analysis studies (Zielinski & Stauffer 1996; Sims et al. 2006), to assess the 

bias and precision of terrestrial population monitoring (Wintle et al. 2004; Freilich et al. 

2005) and large-scale biodiversity monitoring programmes (Nielsen et al. 2009), but have 

rarely been applied in a marine monitoring context. 
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Four variance factors were identified as being important contributors to the overall 

variance of the fish counts. These were: (1) between-site; (2) within-site; and between-survey 

temporal variability that can be split into two separate components; (3) temporal variability 

that is the same across sites (synchronous variation); and (4) temporal variability that is 

unique to each site (interaction variation) (Larsen et al. 2001). Count data often violate the 

assumptions of normality and constant error variance and it is more likely that the variance is 

related to the mean (Willis et al. 2003a; O‟Hara & Kotze 2010). Mean count values were 

usually in the range 0-10 and exhibited a high degree of variability. The data was therefore 

modelled using a two-stage process. The average values, μij, for the counts observed at each 

site i on each date j were modelled using a log-linear additive model (Millar & Willis 1999) 

assuming exponential population growth, according to equation 3.1:  

                               

eqn. 3.1 

where    is the log-transformed average population size in year 0, y is the year (starting from 

year   = 0), β is the trend expressed as the proportional increase per year, Ai is the effect of 

site i independent of date (between-site variation), Bj is the effect of date j independent of site 

(models synchronous variation) and Cij is the effect of date j specific to each site i (models 

interaction variation). The second stage in the simulation process involves simulating the 

actual counts Yijk that are generated according to equation 3.2:  

                

eqn. 3.2 

where   is an integer based statistical distribution, such as a poisson or negative binomial 

distribution, with arguments μij describing the mean, and νij describing the dispersion or 

variance of the counts.  

3.2.3 – Variance parameter estimation 

The distribution of the observed count data was investigated in order to identify the 

distributional form of the function  . The poisson distribution specifically applies to counts 

of organisms and classically applies to field transect sampling (White & Bennetts 1996; 

Dennis et al. 2010; O‟Hara & Kotze 2010); it also assumes that the variance is equivalent to 

the mean. However, many ecological studies are characterized by heterogeneous sampling 
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conditions that can lead to overdispersion in the observations (Dennis et al. 2010). When 

overdispersion is present an appropriate model is the negative binomial model (White & 

Bennetts 1996; Link & Sauer 1998). The negative binomial model has two parameters; the 

mean μ and a dispersion parameter ν. The dispersion or size parameter in the negative 

binomial distribution parameterizes the degree of overdispersion in a dataset and acts to 

model the variance according to equation 3.3: 

      
  

 
 

 eqn. 3.3 

As ν tends towards high values the negative binomial tends toward a poisson distribution 

with variance equivalent to the mean. However, as ν tends to zero the generated counts 

become overdispersed compared to a poisson distribution, exhibiting a high degree of 

clumping (White & Bennetts 1996). As such, it is an ideal distribution for modelling fish 

counts that are likely to display varying degrees of overdispersion, for example, due to 

schooling behaviour.  

The data were tested to assess if counts were poisson-distributed or overdispersed. 

Data for each species in each MR were treated separately (12 species-reserve specific 

datasets) as described below. A generalized linear model was fitted to each dataset using the 

statistical package R (R Development Core Team 2011) with the interaction term site:date 

such that the average for each site on each date was modelled. The only remaining variation 

was therefore due to the variability of the counts within each site on each date. This analysis 

was performed assuming normal-, poisson- and negative-binomial-based errors. The 

negative-binomial model was the best fit to the data based on the Akaike Information 

Criterion (AIC – lower values indicate a better fit of the model to the data) and log-likelihood 

values (see Appendix 1, Table A1.1). As such the within-site variance was tested for 

overdispersion by obtaining the variance of the counts at each site on each date and 

comparing it to the variance that would be expected given a poisson distribution. If the 

variance was significantly different (p=0.05) from that expected given a poisson distribution 

(using a χ
2
 test, with dof.=ntransects-1, Wetherill & Brown 1991) then the data were considered 

to be overdispersed. Table A1.2 of Appendix 1 gives the frequency at which site:date 

combinations were considered to be overdispersed. Overdispersion was prominent (over 50% 

of all site:date sets of counts were overdispersed compared to a poisson distribution) for blue 
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cod at LIMR, spotty at LIMR and TIMR, tarakihi at TIMR, but infrequently for blue moki at 

any of the reserves.  

Based on the above findings the function   was modelled as a negative-binomial. 

Because the species display overdispersion to varying degrees, two values for the dispersion 

parameter were adopted to assess the effects of overdispersion on the assessment of trends in 

abundance. Firstly, ν=10,000 was set so that generated counts followed a poisson 

distribution, because for high values of ν the negative binomial is indistinguishable from the 

poisson distribution. A value of 10,000 was chosen such that  
  

 
  , which ensures that the 

variance is equivalent to the mean over an approximate range of μ = 0-100 (see eqn. 3.3). 

This gives a lower limit for the variability within each site. Secondly, ν=0.2 was set such that 

the counts were overdispersed, with respect to a poisson distribution, with variance 

considerably larger than the mean. The specific value of ν=0.2 was chosen as it conformed to 

the minimum value of ν observed when analyzing the replicate counts across all species. This 

therefore gives the most variable counts.  

To estimate the parameters in eqn. 3.1 a linear mixed effects model was fitted to each 

dataset (quasipoisson distribution with log-link using glmer in the lme4 package in R, Bates 

& Maechler 2010). Site, date and site:date were fitted as random effects corresponding to the 

between-site, synchronous and interaction temporal effects respectively. The standard 

deviations of the random effects were extracted from the model fit to account for the 

magnitude of these effects. To remove the possibility of a genuine trend being interpreted as 

interannual variability, the same model was fitted, but with a continuous fixed effect of date 

to account for trends in abundance over time. This and the null model were compared based 

on log-likelihood, and the variance components were extracted from the most likely model. 

Therefore Ai is the random effect of site with values generated from a normal distribution 

with mean zero and standard deviation σs, i.e. as ~N(0, σs), Bj is the synchronous random 

effect of date with values generated as ~N(0, σd) and Cij is the interaction annual variance 

with values generated as ~N(0, σsd), where σs, σd and σsd are the standard deviations derived 

from the mixed effects model for between-site, synchronous and interaction variance, 

respectively. Inherent to this simulation process the assumption is made that the estimates of 

variance will apply in future years and also for additional surveyed sites (Jennings & Dulvy 

2005).  
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3.2.4 – Simulation and testing procedure 

Data were simulated according to equations 3.1, 3.2 and 3.3 using the parameters 

estimated from the model fits for each species in each reserve. In order to test for a significant 

trend and to quantify the statistical power, two glmer models were fitted to the simulated data 

(quasipoisson-based errors to account for overdispersion, log-link function to account for 

exponential increase in population size). The two models were identical in having site, date 

and site:date included as random effects, but the second model had a fixed effect of date to 

model for a continuous trend in abundance. To quantify power, the two models were 

compared using a likelihood ratio test (aov in R) (Pinheiro & Bates 2000). This comparison 

tested if the interannual variation is better described by a continuous trend in abundance with 

random fluctuations among years or by random fluctuations among years alone, by testing to 

see how well the data support one model over the other (Hobbs & Hilborn 2006). The 

comparison produces a p-value to indicate if the model with a fixed-effect of date is a 

significant improvement over the model with random fluctuations alone. The significance 

level was set at α=0.05. The proportion of simulated datasets that gave p-values less than or 

equal to this was recorded as the statistical power for detecting a trend of that magnitude 

given the variability in the dataset. To quantify precision and bias the trend estimate was 

extracted from the second model along with the 95% confidence interval of the trend 

estimate. Estimates of precision were taken as the width of the 95% confidence interval and 

bias was recorded as the absolute magnitude of the difference between the trend estimate 

produced by the model and the true simulated trend over time. One thousand simulations 

were performed for each level of monitoring design, species, reserve, and trend combination 

and the power was estimated as the proportion of simulations where the model with a 

continuous effect of time was a significant improvement over the model with no continuous 

time effect. Each simulation and model fit to the simulated data resulted in an estimate of the 

trend through time. These were treated as alternate realisations of the data that could arise 

given the observed variability in the data and the monitoring design, and thus the trend 

estimate from the model fit for each simulation is an alternate realisation of a trend estimate 

that could be obtained given that monitoring design. Performing 1000 simulations results in 

1000 realisations of this trend estimate, and to quantify the performance of each monitoring 

design the median confidence interval width and median absolute bias from the 1000 

simulations were taken as an estimate of the precision and bias of each of the monitoring 

designs for each species. Medians rather than mean values were used as some simulations 
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resulted in large confidence interval widths, and/or biases that would skew the mean value. 

All simulations and testing were performed by a program written in R version 2.10.0 (R 

development core team 2011).  

3.2.5 – Simulated tests 

Three different approaches to altering the monitoring design were investigated. These 

consisted of changes to the within-site replication, the number of sites and the frequency of 

sampling. Monitoring designs with all combinations of 6, 8, 10, 12 and 16 transects at each 

site and 3, 4, 5, 6 and 8 sites being monitored within each MR were investigated. This level 

of spatial replication is representative of the monitoring that is currently carried out in New 

Zealand and covers a range of possible ways to distribute effort. Sampling frequencies of 

once per year, once every two years and once every three years were also investigated. 

Datasets representing all possible combinations of these monitoring design choices were 

simulated (75 combinations for each species) for a ten-year time period. This was performed 

for both low dispersion and overdispersed counts. A time period of ten years was used 

because it has been identified as the minimum required for assessing the status of populations 

and because studies in New Zealand have demonstrated change in this time frame (Zielinski 

& Stauffer 1996; Cole 2003; Pande et al. 2008; Pande & Gardner 2009; 2012; Diaz Guisado 

et al. 2011). Due to the number of scenarios investigated simulations were performed 

according to two trends through time. It has been suggested that a minimum biologically 

significant effect might be a doubling or a halving of a population‟s size given the inherent 

variability in natural marine systems (Edgar & Barrett 1997). Datasets were therefore 

simulated consistent with these changes over a period of ten years, corresponding to trends 

with annual increases/decreases of ±7.7% respectively.  

3.2.6 – Relative costs of competing monitoring designs 

The costs of the various monitoring designs were quantified based on the time 

requirements of the studies examined. Currently, 12 replicate transects 30 m long and 2 m 

wide are collected per dive. Additional transects require additional dives at each site. Costs 

are calculated based on the assumption that three dives could be carried out each day, with 

each dive lasting 30-60 minutes depending on the amount of replication, with a maximum of 

12 transects requiring a full one hour dive. In order to carry out 16 transects, two dives are 

required at each site and so would require double the manpower per dive or double the 

number of dives/days. A surface interval of three hours between dives was also assumed for 
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safety purposes. An hourly rate of $130 (NZD) for the scientific divers was assumed and 

daily boat and skipper hire were estimated at $1500 (NZD). Based on these estimates, plus 

the time required to carry out the different monitoring designs, the cost incurred for each 

monitoring design was calculated. For ease of discussion these designs were split into five 

classes depending on their cost (Table 3.1). The ratio of precision (the inverse of the average 

confidence interval width), accuracy (the inverse of the average absolute bias) and power for 

each species and for each monitoring design in relation to the calculated costs for that 

monitoring design were calculated. The most cost-effective design for each of the measures 

was defined as the one that has the highest ratio of power:costs, precision:costs, 

accuracy:costs, respectively and the most cost-effective monitoring approach to achieve 

specific targets of power (20%, 30%, 40%, at 5% significance) precision (95% CI widths of 

0.4, 0.3 and 0.2) and accuracy (bias of 0.05, 0.04, and 0.03) are also identified. Finally the 

required costs and how the costs change across a continuous range of levels of power, 

precision and accuracy are plotted. Although costs are not specific to any agency or operator 

they are indicative of the costs required for this kind of work. 
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Table 3.1. Number of monitored sites, transects and monitoring frequency for the different 

monitoring designs considered, along with their associated costs. All costs are in NZD. 

  Sites Transects Frequency Cost (×1000 NZD) 

Class A 

(15,000-

30,000) 

3 6-12 3,2 16,22 

3 16 3 27 

4 16 3 24-27 

5 6-10 3 28-30 

Class B 

(30,000-

40,000) 

3 16 2 34 

3 6 1 40 

4 6-12 2 31-33 

4 16 3 38 

5 12 3 31 

5 6-12 2 35-38 

6 6-12 3 32-35 

6 6 2 40 

Class C 

(40,000-

60,000) 

3 8-12 1 41-44 

4 16 2 48 

5 16 3,2 46,57 

6 8-12 2 41-44 

6 16 3 54 

8 6-12 3 44-48 

8 6-10 2 55-58 

Class D 

(60,000-

80,000) 

3 16 1 67 

4 6-12 1 61-66 

5 6-12 1 70-77 

6 16 2 67 

6 6 1 79 

8 12 2 60 

8 16 3 73 

Class E 

(80,000-

182,000) 

4 16 1 96 

5 16 1 115 

6 8-16 1 82-134 

8 16 2 91 

8 6-16 1 110-182 

 

3.3 – Results 

Summary statistics of species densities and variation among and within surveys are 

given in Table 3.2, along with the parameters obtained from the mixed effects model fit to the 

observed data. Data for legal-sized blue cod abundance at HMR were not analysed as 

abundances were too low (a total of only 23 individuals were observed throughout the entire 

monitoring) to meaningfully estimate variance parameters. 
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Table 3.2. Parameters estimated from the mixed effects models that were used to perform the 

simulations and summary statistics regarding abundance, survey- and site-specific 

abundances, and variance estimates with respect to the variance among survey means, and the 

ratio of within survey variance to the within survey mean as a measure of the among transect 

variability. Densities are ind/120m
2
. 

Species MR 

Density Var 

among 

survey 

means 

Within survey var:mean Parameters 

Average 
Site specific 

(min, max) 

Survey 

specific   

(min, max) 

Average 
Survey 

specific   

(min, max) 

μ0 σS σY σYS 

Blue cod 

LIMR 5.60 (5.40, 5.90) (0.67, 15.25) 5.43 2.92 (0.59, 14.55) 1.62 0.00 0.26 0.41 

TIMR 0.55 (0.22, 1.43) (0.00, 3.17) 0.36 1.60 (0.73, 12.56) -1.62 0.61 0.23 0.81 

HMR 0.17 (0.05, 0.38) (0.00, 0.83) 0.03 1.13 (0.73, 3.00) -2.63 0.52 0.00 0.69 

Blue cod 

(legal) 

LIMR 1.87 (1.74, 1.99) (0.08, 5.67) 1.15 1.90 (0.29, 10.47) -0.15 0 0.38 0.36 

TIMR 0.28 (0.15, 0.78) (0.00, 2.33) 0.13 1.40 (0.69, 5.13) -2.61 0.51 0.26 0.47 

Spotty 

LIMR 13.76 (7.00, 21.00) (0.00, 35.58) 65.19 8.46 (0.44, 56.52) 2.38 0.50 0.25 0.71 

TIMR 4.14 (2.14, 9.40) (0.00, 24.58) 17.00 3.53 (0.49, 25.09) 0.59 0.51 0.31 0.68 

HMR 4.37 (3.19, 5.23) (2.25, 7.75) 2.14 1.63 (0.41, 5.32) 1.63 0.11 0.00 0.29 

Blue moki 

LIMR 0.15 (0.01, 0.43) (0.00, 1.08) 0.06 1.28 (0.82, 11.00) -2.41 0.70 0.00 0.77 

TIMR 0.29 (0.20, 0.42) (0.00, 1.75) 0.09 1.56 (0.55, 10.20) -1.68 0.00 0.33 0.97 

HMR 0.07 (0.00, 0.23) (0.00, 0.92) 0.03 1.24 (0.82, 4.45) -3.00 0.00 0.00 0.72 

Tarakihi 

LIMR 0.09 (0.01, 0.28) (0.00, 4.17) 0.21 1.69 (0.09, 50.00) -2.85 0.12 0.00 0.77 

TIMR 1.00 (0.58, 1.78) (0.00, 8.51) 1.82 3.36 (0.55, 23.03) -0.91 0.18 1.06 1.09 

HMR 0.54 (0.10, 2.05) (0.00, 8.53) 1.91 3.27 (0.75, 43.63) -1.68 0.25 0.52 1.25 

 

For brevity the results for power focus on the level of dispersion most appropriate for 

each species in each reserve (blue cod; LIMR - overdispersed, TIMR, HMR - poisson 

distributed: legal-sized blue cod; poisson distributed, blue moki; poisson distributed: spotty; 

overdispersed: tarakihi; TIMR – overdispersed, LIMR, HMR – poisson distributed), but all 

results are available (Appendix 1, Tables A1.3-A1.38).  

3.3.1 – Distributing effort spatially 

With annual sampling, the power to detect a trend equivalent to the population 

doubling or halving in a ten-year period was variable among species, and overall it was low. 

Power was less than 80% for all levels of sampling effort examined (Figures 3.2 - 3.5). In 

addition, precision was also relatively low with on average 95% CI widths in the range of 

0.3-0.6 (~4-8 times the size of the effect) for the lowest replication and 0.15-0.4 (~2-5 times 

the size of the effect) for the highest replication (Figures 3.2 - 3.5). This coincides with 

relatively low accuracy with biases of the order of 0.04-0.11 (~0.6-1.4 times the size of the 

effect) for the lowest replication and 0.02-0.085 (~0.25-1 times the size of the effect) for the 

highest replication (Figures 3.2 - 3.5). 
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3.3.2 – Monitoring blue cod 

For blue cod, the power to detect these trends varied among reserves, but was largely 

consistent between LIMR and TIMR, with power varying between 15% at the lowest 

replication and 40-50% for the highest replication (Figure 3.2). This corresponded to similar 

levels of precision and bias between these marine reserves (Figure 3.2). However, monitoring 

of blue cod abundance at HMR resulted in lower power, lower precision and greater bias than 

at either LIMR or TIMR (Figure 3.2). The effects of increasing the number of sites had the 

largest effect on power, precision and bias at all three MRs, although the extent to which this 

applied varied among the reserves (Figure 3.2 and Table 3.3). Doubling the amount of spatial 

replication from three sites and six transects per site to three sites and twelve transects per site 

increased the power by a smaller factor than when doubling the number of sites (Table 3.3) at 

HMR and TIMR. A similar, but more pronounced pattern, was seen for precision and bias, 

where increasing the number of transects within sites had a much smaller effect than doubling 

the number of sites. However, at LIMR this pattern was not as pronounced, with similar 

effects being observed for increasing the replication through either the number of sites or 

replication within sites. A greater benefit was observed when increasing the number of 

transects per site when the trend was positive than when there was a decreasing trend in 

abundance (Table 3.3).  
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Figure 3.2. Contour plots illustrating power (α=0.05), median 95% CI width and median bias 

relative to the number of monitored sites and transects for blue cod at Long Island, Tonga 

Island and Horoirangi marine reserves. These results are for a decreasing trend in abundance. 
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Table 3.3. Power, median 95% CI width and median absolute bias for monitoring designs 

monitoring 3 sites with 6 transects per site along with monitoring designs that have double 

the spatial replication, one in terms of the number of sites (6 sites, 6 transects per site) and the 

other in terms of the number of replicate transects per site (3 sites, 12 transects per site). All 

results are for monitoring designs surveying on an annual basis.  

 

3 sites, 6 Transects 3 Sites, 12 Transects 6 Sites, 6 Transects 

Power 95% 

CI 

Width 

Bias Power 95% 

CI 

width 

Bias Power 95% 

CI 

Width 

Bias 

Negative Trend 
         

Blue 

Cod 

TIMR 14.6 0.34 0.050 20.8 0.30 0.047 26 0.25 0.036 

HMR 12.2 0.49 0.083 15 0.45 0.077 20.2 0.37 0.068 

LIMR 15.6 0.34 0.051 29.2 0.25 0.046 25.8 0.25 0.039 

Blue 

Cod 

(legal) 

TIMR 9.7 0.57 0.082 14.3 0.40 0.061 14.1 0.39 0.052 

LIMR 29.6 0.23 0.038 33.3 0.21 0.035 38.0 0.19 0.034 

Blue 

Moki 

TIMR 14.6 0.43 0.073 16.2 0.38 0.065 21.2 0.31 0.049 

HMR 7.6 0.62 0.080 11.4 0.45 0.064 8.6 0.44 0.059 

LIMR 10 0.50 0.068 13 0.40 0.052 18.2 0.35 0.051 

Spotty 

TIMR 15.6 0.39 0.059 19 0.31 0.050 24.2 0.29 0.047 

HMR 19.8 0.31 0.047 30.8 0.22 0.033 30.2 0.23 0.034 

LIMR 12.2 0.38 0.056 16.8 0.31 0.045 19.6 0.29 0.048 

Tarakihi 

TIMR 10.2 0.65 0.112 12.4 0.59 0.103 13.8 0.54 0.097 

HMR 10.8 0.62 0.095 11.2 0.52 0.085 13.6 0.45 0.083 

LIMR 8.6 0.62 0.096 9 0.52 0.080 13 0.45 0.075 

Positive Trend 
         

Blue 

Cod 

TIMR 23.6 0.30 0.043 22 0.28 0.045 32 0.22 0.034 

HMR 13 0.45 0.069 14.4 0.43 0.066 19.8 0.34 0.058 

LIMR 15.8 0.34 0.052 28.8 0.25 0.035 25.4 0.25 0.043 

Blue 

Cod 

(legal) 

TIMR 13.2 0.40 0.061 21.2 0.30 0.049 21.9 0.29 0.043 

LIMR 33.5 0.21 0.035 38.4 0.20 0.034 39.2 0.19 0.033 

Blue 

Moki 

TIMR 13.6 0.37 0.056 17.6 0.34 0.053 24.2 0.27 0.044 

HMR 9 0.45 0.066 15.6 0.34 0.049 19.8 0.32 0.044 

LIMR 13.4 0.38 0.060 18 0.32 0.050 23 0.27 0.042 

Spotty 
TIMR 15.4 0.39 0.063 17.6 0.31 0.048 19.2 0.28 0.046 

HMR 17.8 0.32 0.049 32.8 0.22 0.032 27.8 0.23 0.031 

LIMR 15 0.39 0.056 19.8 0.31 0.045 19.6 0.28 0.042 

Tarakihi 
TIMR 12.6 0.61 0.110 14.2 0.61 0.108 12.2 0.53 0.090 

HMR 9.2 0.57 0.088 11.6 0.49 0.082 13.2 0.42 0.077 

LIMR 11.2 0.56 0.096 9.8 0.50 0.078 18.4 0.41 0.079 

3.3.3 – Monitoring legal-sized blue cod 

There were noticeable differences in power to detect these trends between LIMR and 

TIMR, with power being considerably lower at TIMR. At TIMR power varied between 9% at 

the lowest replication and 33% at the highest replication, whereas at LIMR power varied 

between 29% and 43%, respectively (Figure 3.3). Similarly precision and accuracy were 
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similarly higher at LIMR than TIMR (Figure 3.3). However, power, precision and bias at 

LIMR were far less sensitive to changing replication (range of power: 29-43%, 95% CI 

width: 0.18-0.24 and absolute bias: 0.029-0.039) than at TIMR (range of power: 9-33%, 95% 

CI width: 0.22-0.58 and absolute bias: 0.034-0.082). Doubling the amount of replication 

increased power, precision and accuracy but there was no difference in the results between 

doubling the number of sites, versus doubling the amount of transects per site, with both 

monitoring designs (3 sites, 12 transects and 6 sites, 6 transects) achieving similar  results 

(Table 3.3). The one exception was for decreasing trends in abundance at LIMR, where a 

monitoring design with 6 sites, 6 transects per site achieved higher power than a monitoring 

design with 3 sites and 12 transects per site (Table 3.3).  

 

Figure 3.3. Contour plots illustrating power (α=0.05), median 95% CI width and median bias 

relative to the number of monitored sites and transects for legal-sized blue cod at Long Island 

and Tonga Island marine reserves. These results are for a decreasing trend in abundance. 

3.3.4 – Monitoring blue moki 

Power, precision and accuracy were similar across the three reserves (Figure 3.4), 

with slightly lower power, precision and accuracy at HMR at the lowest spatial replication. 

However, for the highest level of replication all surveys at the three reserves achieved similar 

levels of power, precision and accuracy. For all three MRs, power, precision and accuracy 

were more affected by increasing the number of sites than by increasing the number of 

transects within each site (Table 3.3). In addition, increasing the spatial replication through 
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increasing the number of sites, rather than replication within each site, resulted in a more 

pronounced increase in power when trends were positive than negative. This effect was not 

observed for precision or bias (Table 3.3). 

 

Figure 3.4. Contour plots illustrating power (α=0.05), median 95% CI width and median bias 

relative to the number of monitored sites and transects for blue moki at Long Island, Tonga 

Island and Horoirangi marine reserves. These results are for a decreasing trend in abundance. 

3.3.5 – Monitoring spotty 

Power, precision and accuracy were similar between LIMR and TIMR across the 

different levels of replication, but were markedly different at HMR, which had higher power, 

higher precision and lower bias, particularly at higher replications (Figure 3.5). In addition, 

doubling the replication within sites at HMR was more beneficial for power, precision and 

accuracy than increasing the number of sites, which is in contrast to the situation for TIMR 

and LIMR where it was more beneficial to increase the number of sites (Table 3.3).  
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Figure 3.5. Contour plots illustrating power (α=0.05), median 95% CI width and median bias 

relative to the number of monitored sites and transects for spotty at Long Island, Tonga Island 

and Horoirangi marine reserves. These results are for a decreasing trend in abundance. 

 

3.3.6 – Monitoring tarakihi 

For tarakihi, power was low for all levels of replication, which coincided with low 

precision and high bias. Increasing the number of sites had a greater effect on power, 

precision and accuracy than increasing the number of transects (Figure 3.6 and Table 3.3). 
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Figure 3.6. Contour plots illustrating power (α=0.05), median 95% CI width and median bias 

relative to the number of monitored sites and transects for tarakihi at Long Island, Tonga 

Island and Horoirangi marine reserves. These results are for a decreasing trend in abundance. 

3.3.7 – Monitoring design costs and cost-effectiveness 

The most cost-effective design varied among species and among reserves depending 

on the specific targets in terms of power, precision and bias (Table 3.4). The lowest targets 

were achievable in a cost-effective manner by monitoring designs with relatively low spatial 

or temporal replication for blue cod and spotty, with most designs being in classes A-C 

(Table 3.4). The exceptions were blue cod at HMR, and legal-sized blue cod at TIMR where 

much more monitoring is required to reach these goals (Table 3.4). In contrast, monitoring 

blue moki required a great deal more replication to achieve these targets and would require 

the maximum replication investigated to achieve the mid level targets. To achieve even the 

lowest targets in terms of power, precision and bias when monitoring tarakihi, much higher 
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levels of sampling effort are required, and the mid and higher level targets could not be 

achieved with the amount of replication investigated (Table 3.4). 

Of the most cost-effective designs, over 50% were designs with twelve replicate 

transects carried out per site (Table 3.4). Overall, six transects per site was the least cost-

effective monitoring option, featuring least often compared to all other number of transects 

per site (Table 3.4). In addition, the maximum number of transects was only cost-effective for 

the higher targets of power, precision and bias because these monitoring designs were the 

only ones investigated that were capable of reaching these targets (Table 3.4). Triennial 

monitoring frequencies were cost-effective only when setting low targets for power and bias 

and mid level targets where it was more cost-effective to monitor less frequently but with the 

highest levels of spatial replication (Table 3.4). In most cases, however, monitoring designs 

with lower spatial replication with annual monitoring were chosen over those that maximized 

spatial replication but monitored less frequently (Table 3.4). There was no clear optimum 

number of sites to be monitored when the results were compared across species and reserves, 

because this varied considerably with the target levels of power, precision and bias (Table 

3.4). However, in general, a lower number of sites were required to attain the targets of 

power, precision and bias for spotty than for blue moki, blue cod and tarakihi (Table 3.4).  

Across all species, reserves and targets the different measures tended to trend towards 

specific design choices. Based on precision, monitoring designs that focused effort on annual 

sampling but with lower number of sites were most cost-effective (modal number of sites = 3, 

median number of sites = 4 - Table 3.4), whereas assessments of bias and power tended to 

select for monitoring designs with more sites (modal number of sites = 8, median number of 

sites = 6), but monitoring less frequently (Table 3.4).  
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Table 3.4. Most cost-effective monitoring designs for achieving three levels of power, 

precision (in terms of 95% confidence interval width) and absolute bias for each species in 

each reserve for positive and negative trends. The values given are in the format “Sites, 

Transects, Frequency”, where a frequency of 1 indicates annual monitoring, 2 indicates 

biennial monitoring and 3 indicates triennial monitoring. / indicates no monitoring design 

investigated was capable of meeting the relevant target. 

Species Reserve Trend Power Precision Bias 

20 30 40 0.4 0.3 0.2 0.05 0.04 0.03 

Blue Cod 

Tonga 

Island 

+ 6,6,3 6,8,1 8,12,1 3,10,1 3,10,1 8,8,1 5,8,3 3,10,1 8,12,1 

- 6,10,3 6,12,1 / 3,8,1 4,10,1 8,10,1 6,12,3 5,8,1 8,10,1 

Long Island  + 3,10,3 8,12,3 8,10,1 3,12,1 3,12,1 6,12,1 4,12,3 3,12,1 8,10,1 

- 3,12,3 6,12,3 6,12,1 3,12,1 3,12,1 6,12,1 4,12,3 8,10,3 8,12,1 

Horoirangi + 8,8,3 / / 4,8,1 8,10,1 / 8,12,1 / / 

- 8,10,3 / / 4,12,1 8,16,1 / / / / 

Blue Cod 

(legal) 

Tonga 

Island 

+ 5,12,3 5,12,1 8,16,1 3,12,1 4,12,1 8,12,1 6,12,3 6,12,1 8,16,1 

- 8,16,3 8,16,1 / 4,12,1 6,12,1 / 8,16,3 8,12,1 / 

Long Island + 3,6,3 3,6,3 4,8,1 3,10,3 3,6,1 4,6,1 3,6,3 3,6,1 5,8,1 

- 3,12,3 3,12,3 4,10,1 3,12,2 3,6,1 5,8,1 3,10,3 3,6,1 8,12,1 

Blue 

Moki 

Tonga 

Island 

+ 6,8,3 6,8,1 / 3,10,1 5,8,1 / 4,8,1 8,6,1 / 

- 8,12,3 / / 3,10,1 5,12,1 / 5,10,1 8,10,1 / 

Long Island  + 8,10,3 8,12,1 8,12,1 3,12,1 4,12,1 8,16,1 6,12,3 8,16,3 8,10,1 

- 8,16,3 8,12,1 / 3,12,1 6,12,1 / 8,12,3 6,8,1 / 

Horoirangi + 8,12,3 8,12,1 / 3,12,1 5,12,1 8,16,1 6,12,3 8,16,3 8,16,1 

- 6,12,1 / / 4,12,1 8,12,1 / 8,16,3 6,16,1 / 

Spotty 

Tonga 

Island 

+ 5,10,3 8,10,1 / 3,12,1 4,12,1 / 3,12,1 5,8,1 / 

- 6,12,3 8,12,1 / 3,12,1 4,12,1 / 3,12,1 6,12,1 / 

Long Island  + 3,10,1 8,12,1 / 3,12,1 4,12,1 8,12,1 6,12,3 5,12,1 8,12,1 

- 4,16,3 8,12,1 / 3,12,1 4,12,1 8,16,1 6,12,3 5,16,1 8,16,1 

Horoirangi + 3,12,3 6,12,3 8,12,3 3,12,1 3,12,1 3,16,1 3,12,3 4,10,3 8,12,3 

- 3,12,3 6,12,3 8,12,3 3,12,1 3,12,1 4,12,1 3,12,3 4,12,3 6,12,3 

Tarakihi 

Tonga 

Island 

+ 3,16,3 / / / / / / / / 

- 6,8,3 / / / / / / / / 

Long Island  + 8,8,1 / / 6,10,1 / / / / / 

- 8,12,1 / / 6,10,1 / / / / / 

Horoirangi + 8,16,1 / / 5,12,1 / / / / / 

- 8,10,1 / / 6,12,1 / / / / / 

 

The overall costs for each of the species for different levels of power, precision and 

bias show similar patterns of initially flat or slowly increasing costs as power, precision and 

bias targets increase/decrease respectively, with a sharp rise in costs as these values approach 

the limits achievable with the monitoring designs examined (Figure 3.7). For similar costs, 

considerably higher power can be achieved for spotty and blue cod than for blue moki and 

tarakihi. This difference is most pronounced when examining the precision and bias, which 

are considerably higher/lower for blue cod and spotty than tarakihi, and marginally higher 



Chapter 3 
 

 
63 

 

than blue moki (Figure 3.7). Based on the data for blue cod from LIMR, similar levels of 

power, precision and accuracy can be achieved for similar costs between total blue cod 

abundance compared to the abundance of legal sized individuals (Figure 3.7). However, 

based on the data from TIMR, the power, precision and accuracy are lower, for similar costs 

of monitoring, when assessing for trends in abundance of legal-sized individuals compared to 

total abundance (Figure 3.7). The cost profile for legal-sized blue cod at TIMR is more 

similar to that of blue moki at TIMR and HMR than it is to total blue cod abundance at 

TIMR. 
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Figure 3.7. Plot giving the cost of the most cost-effective monitoring design for increasing 

power (α=0.05), precision (95% CI width) and absolute bias for each species at each marine 

reserve. Where the lines stop indicates the maximum/minimum value attained for the 

monitoring designs considered. This plot is for a decreasing trend in abundance. The letters at 

the side of each plot indicate the cost class for the range in costs as defined in Table 3.1. 
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3.4 – Discussion 

Designing a monitoring program that is both accurate and precise is a challenge 

common to ecologists, conservation managers and governmental agencies. The results 

presented here highlight the relatively low power, low precision and high potential bias of 

underwater visual census data for determining trends in reef fish abundance in temperate 

subtidal reefs in New Zealand. Although this study only includes four species, the results are 

likely to be indicative of the levels of power, precision and accuracy achievable using this 

methodology for most temperate reef fish species given the range in abundances and 

variabilities exhibited by the species examined. However given set targets, optimal 

monitoring designs can be achieved by identifying the most cost-effective monitoring design 

for achieving these goals.  

Previous analyses of monitoring design efficacy (mostly focused on power) have 

shown that many monitoring designs are limited by the low observed abundances of 

individuals (fish or otherwise) within many populations (Nicholson & Jennings 2004; 

Maxwell & Jennings 2005; Freilich et al. 2005; Blanchard et al. 2008). This is true for the 

fish species examined here whereby power, precision and accuracy were highest for the more 

abundant and consistently recorded species, blue cod (total abundance at LIMR and TIMR, 

and abundance of legal-sized blue cod at LIMR) and spotty. This is to be expected because 

the original surveys were aimed predominantly at recording the abundance of blue cod, and 

so surveys were performed in their preferred habitat. In addition, spotty is the most abundant 

reef fish species at most New Zealand coastal sites (Choat & Ayling 1987; Francis 2001), and 

so are always recorded in relatively high abundance in these areas. However, for naturally 

scarce species or heavily fished species whose populations are depleted, abundances are 

going to be considerably lower, resulting in less precise and accurate assessments of trends in 

abundance (Blanchard et al. 2008) particularly for decreasing trends (Freilich et al. 2005). 

Blue moki at all three marine reserves, blue cod at HMR and legal-sized blue cod at TIMR 

were observed in low abundance, resulting in low power, precision and accuracy of trend 

assessments, particularly for decreasing trends in abundance. Unless sampling is extensive 

(highly replicated in time and space) these changes would likely be attributed to chance rather 

than to an actual underlying change in population abundance. This is evident for blue moki 

and blue cod at HMR where optimum monitoring designs tended to require more spatial 

replication for declining trends in abundance than for increasing trends in abundance (Table 

3.4).  



Chapter 3 
 

 
66 

 

The relative effectiveness of monitoring total blue cod abundance versus the 

abundance of legal-sized individuals was different between LIMR and TIMR. At LIMR the 

results were similar between monitoring total abundance and legal-sized abundance, with less 

replication required to achieve set targets for legal sized abundance than total abundance 

(Table 3.4). Although lower in abundance and displaying similar levels of variability through 

time and between sites, the abundance of legal-sized individuals at the transect level tended 

to be less variable than total abundance, perhaps due to aggregations of juvenile blue cod or 

the influence of territoriality in larger individuals (Francis 2001) that may ensure less 

clumping of individuals. This may partially explain the slight gains in effectiveness when 

analysing the abundance of legal-sized blue cod compared to overall abundance. However, at 

TIMR power, precision and accuracy were all lower for legal-sized abundance compared to 

total abundance. The abundance of legal-sized blue cod at TIMR was much lower than at 

LIMR. This coupled with greater variability among sites is likely to be the main reason for 

the differences in effectiveness among these locations. This also highlights the necessity of 

not relying on individual metrics as relying on total abundance at LIMR wouldn‟t have 

yielded results as quickly as for legal sized abundance, and vice versa at TIMR. Biomass is 

frequently used in MPA assessments (Edgar & Barrett 1999; Shears & Babcock 2003; Edgar 

& Stuart-Smith 2009) as increases in average size and abundance combine to make a less 

variable, and more pronounced response measure than overall abundance that can be affected 

by many smaller individuals. The estimation of fish sizes would require additional diver 

training and may be prone to greater observation level error (i.e. differences in size estimation 

between divers). This however, can be addressed through validation of diver size estimates 

with targets of a known size as part of the diver training. Although with the data available I 

was unable to analyse the relative benefits of biomass data over abundance data, there would 

be a distinct advantage of collecting this additional information as it provide an additional, 

and potentially more sensitive, metric with which to demonstrate MR effects and would 

therefore be a valuable addition to any monitoring program. Monitoring, or analysing, 

alternative metrics, such as those based on size classes, biomass or additional species, 

maximises the chances that at least one will prove effective, or will be related to the actual 

response exhibited by the MR, and therefore increases the likelihood of demonstrating MR 

effects. Variability both among sites and within sites will affect the precision and accuracy of 

trend assessments. Although spotty were always observed in high abundance, the 

overdispersed nature of the counts was a limiting factor in the precision and accuracy of trend 
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assessments. Schools of more than 50 spotty‟s were regularly encountered, therefore there 

was considerable variation among transects (e.g., counts >50 versus counts ~2-10). 

Increasing the within-site replication by surveying a greater number of transects would 

control for the higher dispersion of counts, resulting in a more accurate assessment of the 

population abundance. This can be seen in the monitoring design choices, whereby 

monitoring designs with 12-16 transects at each site were predominantly the most cost-

effective designs for spotty. In comparison, optimal monitoring designs for blue cod and blue 

moki more commonly featured 8 and 10 transects. Also, monitoring spotty tended to require 

fewer sites than blue cod or blue moki  (in particular for measures of precision) as spotty 

tended to be present in similar abundances at all sites, and therefore required fewer sites to 

get an accurate and precise measure of their overall abundance than for blue cod or blue 

moki. Tarakihi abundance was the most variable of the fish species examined. They are 

predominantly found in soft bottom habitats, but are intermittently observed over rocky reefs 

(Francis 2001). In the study areas examined, tarakihi exhibited large-scale fluctuations in 

abundance among years, as well as exhibiting variability in the size classes of individuals 

present. For example, at TIMR and HMR, tarakihi populations were dominated by small 

individuals (10-16 cm length), whereas at LIMR this species was dominated by 20-35 cm fish. 

Furthermore, when present they were often observed in schools and so were observed in great 

abundance. Given this variability estimates of trends in abundance would be expected to be 

inaccurate and also imprecise. Even with considerable sampling effort, the precision, power 

and accuracy of the modelled survey designs are still low. Therefore investing money in the 

monitoring of tarakihi (at least in the areas/habitats examined) is not as cost-effective to 

achieve similar levels of accuracy and precision as blue cod, spotty and blue moki. The 

inclusion in this study of tarakihi data from sub-optimal habitat for this species is informative 

for two reasons. First, these real survey data provides a case study of a fish species occurring 

at genuinely low abundance (in this sense, the actual taxon is not important) and contrast that 

species with others that have higher abundances. Second, while most monitoring focuses on 

“optimal” habitats it is important to recognize that individuals may exist in areas of sub-

optimal habitat for much of their lives. Indeed, for temperate rocky reef fish species that are 

very heavily targeted, it may be that more individuals now exist outside their optimal habitat 

than exist inside it because of fishing pressure. Thus, the ability to survey individuals in sub-

optimal habitats may be as important and informative as surveys of the same taxon inside 

optimal habitats. In cases where there are multiple choices of species to focus on, assessments 
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of this kind can reveal which species are useful as indicator species. In particular, 

conservation managers may not wish to monitor species where trend estimates are likely to be 

imprecise or inaccurate and rather use resources to monitor species that are more likely to 

return accurate and precise measures of changes in abundance (Seavy & Reynolds 2007). 

This coupled with information regarding the ecological importance of the different species 

can be utilized to identify an effective and relevant monitoring program. 

Deciding on an optimal monitoring scheme is challenging considering the costs and 

the number of factors that are likely to affect the performance of a given monitoring design 

(Cabral & Murta 2004). The results presented here also highlight the fact that there can be no 

“one survey fits all” monitoring design because the choice of optimum monitoring design 

varies among species and also among marine reserves, depending on the abundance and the 

degree of variability exhibited by these species in these different areas (Field et al. 2005). 

However, a general finding was that performing 12 transects was optimal in over 50% of 

cases. These analyses reveal that reducing the number of replicates below 12 would save little 

time and cost given that one dive would still be required per site. Thus, reducing the number 

of transects below 12 would have a detrimental effect on the benefits, in terms of power, 

precision and accuracy without a similar reduction in costs. Performing more than 12 

transects would require two or more dives at each site and so would at least double the 

number of dives, approximately doubling the cost of performing the monitoring. As such, 16 

transects were only optimal for the highest targets because this was the only monitoring 

design capable of reaching these goals and so was the optimal design by default. In addition, 

in many cases increasing the number of transects did not greatly increase precision, power or 

accuracy. In nearly all cases increasing spatial replication by increasing the number of sites 

was more beneficial than increasing the replication within each site. The addition of extra 

sites will undoubtedly increase the cost of the project because adding additional sites means 

more dives and greater associated costs. As such, monitoring designs with more sites are 

penalized in terms of cost when trying to find the most cost-effective monitoring design.  

Incorporating additional sites may also be problematic in other ways because they need to 

have the same characteristics in terms of habitat, substratum, depth and distance offshore. 

There will also be an additional cost of site establishment, through additional dives to locate 

areas of suitable habitat (Field et al. 2005). This in itself may limit the number of candidate 

sites and highlights the problems faced by researchers in achieving the necessary balance 
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between quality science, and logistical and cost constraints (e.g., McDonald-Madden et al. 

2010; Molloy et al. 2010).  

Deciding on the optimum monitoring design also depends on the measure chosen to 

judge the monitoring design. In this study three measures for assessing monitoring design 

effectiveness have been presented that focus on different aspects of the monitoring design. 

There were subtle differences among the designs that were chosen as the most cost-effective, 

depending on which measure of monitoring design effectiveness was used. Although the 

targets set (low, mid and high) by themselves are not directly comparable across measures 

(power, precision and bias refer to different aspects of the estimated trend parameter, to 

which there is no common currency) some inferences can be made regarding which aspects 

of monitoring design are emphasized by each measure. The most cost-effective designs for 

precision were those that focused effort on higher monitoring frequencies with lower number 

of sites, whereas those judged on bias tended to emphasize higher numbers of sites to the 

detriment of monitoring frequency. Sampling more points over time will constrain the trend 

estimate, and as such, monitoring more frequently will greatly increase the precision of the 

trend estimate. This would be to the detriment of the number of sites monitored in order to 

remain cost-effective. On the other hand, monitoring fewer sites encompasses less of the 

overall population and therefore is likely to be biased more towards the values exhibited by 

those sites alone, rather than be representative of the whole population. Consequently 

focusing on more sites should reduce bias, but the trade-off is that monitoring frequency has 

to be lower in order for the monitoring design to remain cost-effective. Reducing the 

frequency of monitoring, however, considerably reduced precision of trend assessments. An 

additional problem when reducing the sampling frequency is that infrequent events such as 

pulses of recruitment, the first arrival and establishment of invasive species or a decrease in 

abundance due to poaching or disease, are more likely to be missed. Monitoring more 

frequently will give better estimates of the rates of these events and can possibly aid in the 

management of marine reserves, in the form of increased policing or increased scientific 

understanding of the ecosystem. Ideally, a monitoring design should deliver data that is both 

accurate and precise and so a careful balance between monitoring frequency and spatial 

coverage (number of sites) is required. By identifying multiple targets in terms of precision 

and bias a cost-effective monitoring program can be identified using the procedures outlined 

and employed here. 



Chapter 3 
 

 
70 

 

There are several aspects of the data collection and the subsequent statistical analyses 

that require further discussion regarding the influence they may have on the conclusions of 

this study. The data was collected from a limited number of sites (between 5 and 8) that were 

of a single uniform habitat type (bedrock/rubble) over a limited number of years (between 5 

and 17). One of the assumptions of the data simulation process is that any additional site, or 

year would conform to (i.e. fall within) the level of variation in abundance exhibited among 

the prior observed sites and/or years, as observed data was used to parameterise simulations. 

For the temporal variance component this assumption is unlikely to hold true, as extreme 

events occur infrequently and are thus unlikely to be evident in the observed datasets, 

particularly those that are of limited duration (i.e. HMR). As such the interannual variance 

component may be an underestimate of the true variation through time, which would lead to 

higher power and precision than would otherwise be expected. However, the assumption of 

completely random fluctuation in abundance among years is also unlikely to be true as 

deviations away from a monotonic trend, whether it be increasing, decreasing or flat, are 

likely to be temporally autocorrelated as a surplus or deficit of individuals (due to recruitment 

pulses and/or abnormally high mortality) are likely to be observable across multiple years. 

Accounting for this autocorrelation may reduce the magnitude of the temporal variance term, 

which would result in higher power and precision due to reduced variation. Incorporating 

autocorrelation within the simulation and testing process applied here would increase model 

complexity and the difficulty with which these models can be fit to the data, independent of 

human intervention (as is required when running thousands of simulations).  

The assumption that additional sites fall within the magnitude of variation observed at 

previous sites may hold true if the proportion of that habitat surveyed within previous sites 

was a large proportion of the area occupied by this habitat in the entire reserve. However, in 

most cases this is unlikely to be true due to the limited number of sites surveyed. Thus the 

variation among sites may be an underestimate of the actual variation exhibited at this spatial 

scale. This would likely result in higher power, precision and accuracy than would actually be 

expected, due to the underestimation of this variance component. The selection of sites within 

a specific habitat may also introduce a level of bias that is not accounted for within the 

simulation process, as the “true” trend (i.e. that which would be obtained if exhaustive or 

near-exhaustive surveys were performed) is unknown. This method of data collection likely 

leads to conclusions that are biased towards individuals in that habitat, rather than the entire 

population of the reserve. If the target species only occurs in that habitat, (as could be argued 
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in a loose sense for blue cod) then this bias is likely to be minimal, but could be much larger 

if the species occupies multiple habitats (such as spotty). Furthermore, this could be a 

particular problem if a reserve related change in fish behaviour, or habitat cover results in 

changes to habitat preference, which likely lead to false estimates of changes in abundance as 

individuals would move from one habitat to another. Random (transects distributed randomly 

within the reserve), or more appropriately stratified random sampling (transects distributed at 

random within habitats, with sample size according to the extent of the habitat) would 

account for this bias. Logistically, however, this may not be feasible as some locations may 

not be accessible due to boating and/or diving restrictions (i.e. strong currents) and would 

require considerably more short dives (likely that given this sampling scheme only one 

transect would be performed per dive) rather than longer dives at fewer locations to achieve a 

similar sample size. However, where sampling is carried out at sites of a specific habitat (as is 

the case for all of the datasets used here) then care must be taken when making assertions 

regarding the status of the reserve as a whole. 

In the past, power has been most often used as an indicator of monitoring design 

effectiveness (Gerrodette 1987; Bart et al. 2004; Sims et al. 2006; Maxwell & Jennings 2005; 

Freilich et al. 2005). Although the utility of power analyses in designing an effective 

monitoring design is undisputed (i.e. many of the requirements of a precise and accurate 

monitoring design are also requirements of a powerful one), analyses of power (at least from 

a monitoring perspective) should be superseded by analyses focused on maximizing accuracy 

and precision. The main arguments against power analysis are rooted in the routine use of 

point null hypothesis significance testing when assessing monitoring data, but several other 

reasons specifically related to analyses of power, compared to precision and bias, are also 

pertinent to the assessment of monitoring design efficacy. Analyses of trends in abundance 

from a null hypothesis significance testing perspective have the null hypothesis of no change 

in abundance. In a monitoring context this is almost never true because even the most minor 

of changes will result in a non-zero trend through time rendering the null hypothesis false. 

While many have objected to the testing of hypotheses that from the outset are known to be 

false (Anderson et al. 2000; Cole & McBride 2004; Gerrodette 2011), analyses of power still 

remain the most widely used determinant of monitoring effectiveness. Many have advocated 

for less reliance on hypothesis testing and more emphasis on the reporting of effects 

(Nakagawa & Cuthill 2007; Gerrodette 2011), and how precisely they are known (McBride et 

al. 1993; Anderson et al. 2000; Wade 2000). In this context prospective analyses of precision 
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and accuracy are more informative when assessing the relative confidence researchers can 

place in the resulting estimated trends in abundance than analyses of power alone. A further 

criticism of null hypothesis testing is the equating of statistical significance with practical or 

biological significance (McBride et al. 1993; Anderson et al. 2000). Most power analyses 

attempt to address this problem by defining their effect sizes (as also performed in this study) 

as those that are deemed biologically significant (Bart et al. 2004; Nakagawa & Cuthill 

2007). However, truly biologically significant changes in abundance are often unknown, 

particularly at the beginning of a monitoring program, and so there is a risk of monitoring 

programs being established based on false ideals. This also implies that the focus of the 

monitoring program is to show statistically that a non-zero change has occurred rather than 

accurately and precisely determining what and by how much it has changed. In addition, a 

monitoring design with high power does not necessarily imply that it is accurate (Bart et al. 

2004). For example, monitoring of a subpopulation that displays a pronounced trend has high 

power, but is heavily biased towards the subpopulation and is not representative of the whole 

population. As such, bias could potentially be high in monitoring programs based purely on 

power analyses, which may be misleading when judging the effectiveness of a monitoring 

program (Bart et al. 2004).  

Finally identifying targets with regard to precision and bias are the most appropriate 

ways to design a monitoring program because whereas power analysis focuses on the 

probability of rejecting an a priori false hypothesis, a focus on precision and accuracy shifts 

the focus towards gathering more data about the true state of the system. It also places greater 

emphasis on interpreting the data in terms of what it tells you about the magnitude of 

potentially biologically important changes in abundance, and how certain are we, as 

researchers, of these changes. This will aid in the identification of more focused and specific 

monitoring “questions”, ensuring that future monitoring is more relevant and the data 

collected is more capable of answering questions of ecological importance. 
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Chapter 4 – Spatial variability of wave energy on 

an exposed shore and its effect on subtidal 

macroalgal community structure  
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4.1 – Introduction 

Identifying the physical factors experienced by species has played a key role in the 

field of ecology, with particular focus on identifying species-specific thresholds and 

tolerances to these physical factors (Pörtner & Knust 2007; Kearney & Porter 2009). In 

addition to providing an understanding of the ecological constraints that apply to species in 

different areas, an understanding of these physical limits has allowed the development of 

species distribution models that, in conjunction with the development of Geographic 

Information Systems (GIS), can be used to predict the abundance and distribution of species 

across large spatial scales (Elith & Leathwick 2009). Species distribution modelling has been 

used in a wide variety of ecological applications ranging from predicting species‟ invasive 

ability (Peterson & Vieglais 2001), distribution pattern changes in response to climate change 

(Pearson & Dawson 2003; Araújo et al. 2005) and in land management and conservation 

practice (Wilson et al. 2005). However, constructing distribution models firstly requires an 

understanding of the spatial variation of the relevant physical factors for these species and the 

habitats they occupy. Although not as often published in the ecological literature (often 

included as part of a species distribution model study, Elith & Leathwick 2009), studies 

identifying the spatial variation in abiotic factors are vital to our understanding of the 

ecological significance of these factors. In particular marine areas have typically been less 

intensively studied than terrestrial areas, and apart from factors that can be inferred from 

satellite imagery (e.g. sea surface temperature) the factors that may be important are often 

hidden below the surface (e.g. bottom type, currents) requiring intensive and costly surveys 

(e.g. remote underwater vehicle deployment, drop cameras or multibeam backscatter surveys 

for bottom substrate composition) or model predictions of these factors (e.g. ocean circulation 

modelling for currents and dissolved oxygen content) (Robinson et al. 2011). Thus methods 

identifying the spatial variation in abiotic factors relevant to marine species distributions are 

an important component of marine ecological and biogeographic studies. 

In shallow and intertidal marine environments, wave related forces comprise some of 

the most important physical forces governing the abundance and distribution of species 

(England et al. 2008; Hill et al. 2010; Burrows 2012). The most prominent effect of wave 

forces is the biomechanical effects it imposes on individuals, with subsequent effects on the 

rate or the probability of damage, death and in the case of sessile and mobile organisms, 

dislodgement (Gaylord et al. 1994; Utter & Denny 1996; Denny & Gaylord 2002; 2010). 

Wave forces have been shown to induce an upper limit on the size of macroalgal species 
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(Gaylord et al. 1994; Blanchette 1997), as well as controlling the size and shape of hard coral 

colonies across a coral reef (Madin 2005; Madin & Connolly 2006), while wave-related 

indices, such as fetch, have been related to subtidal (Hill et al. 2010, Burrows 2012) and 

intertidal community composition (Thomas 1986; Burrows et al. 2008). However, the 

influence of wave energy extends beyond the mechanical consequences with some species of 

macroalgae benefitting from increased wave exposure (Leigh et al. 1987). Constant 

movement of algal fronds induced by waves can increase nutrient uptake efficiency of the 

algae through the constant removal of the nutrient depleted water layer on algal fronds (Leigh 

et al. 1987; Duggins et al. 2003) and can also increase photosynthetic efficiency by constant 

rearrangement of fronds with regard to light exposure (Leigh et al. 1987). In addition, wave 

induced flow can replenish local food availability, with subsequent effects on the feeding and 

growth of sessile organisms (McQuaid & Lindsay 2000; Sanford & Menge 2001). In the 

intertidal zone, waves and wave splash possibly have the greatest influence by creating 

additional areas where marine species can persist (the supralittoral zone). Through constant 

or more frequent splash and submersion as a result of wave action, desiccation and 

dehydration stress effects are reduced, allowing organisms to occupy higher positions on the 

shoreline with increasing wave exposure (Harley & Helmuth 2003). In addition to this, wave 

exposure in the intertidal zone can also alter community structure and dynamics (Jonsson et 

al. 2006), and facilitate greater food supply allowing for a larger filter feeding and predator 

biomass (McQuaid & Branch 1985, McQuaid & Lindsay 2000).  

Because of the important influences of wave action on marine species, knowledge of 

the wave forces experienced at different locations is vital in order to predict marine 

community structure and dynamics to new locations (Hill et al. 2010). While there is no 

replacement for measuring wave-exposure directly, either using dynamometers (Carrington 

Bell & Denny 1994), or direct wave height using electronic loggers such as wave rider buoys 

(Wright 1976), these methods are often expensive to maintain (electronic loggers), or 

logistically unsuitable (dynamometers need to be deployed in great numbers) for obtaining 

metrics of wave exposure over large enough areas to enable geographic scale predictions (1-

10‟s km). The vast majority of studies examining the effects of wave exposure over large 

spatial scales therefore often rely on cartographic measures of wave fetch (distances 

measured along radiating lines from the point of interest to the nearest obstacle that would 

block waves) (see Thomas 1986; Tolvanen & Suominen 2005; Burrows et al. 2008; Hill et al. 

2010; Leaper et al. 2012; Burrows 2012), which gives an indication of the distance over 
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which wind has blown to generate wind-waves and gives a relative measure of the „openness‟ 

of a section of shoreline (Burrows et al. 2008). While these metrics, in addition to extensions 

in the form of wind-weighted (Burrows et al. 2008) and bathymetry-weighted fetch (Hill et 

al. 2010), have been successfully applied, they are unlikely to capture the differences in wave 

exposure on relatively small spatial scales (10-100‟s of m). This is because interactions with 

submerged obstacles, refraction and depth induced wave breaking, are all likely to play 

increasingly important roles in governing the resultant wave energy at these spatial scales 

(Gorman et al. 2003; Cavaleri et al. 2007). Furthermore, identifying the effects of wave 

action on organisms requires that the resolution of the physical factors affecting them should 

match as closely as possible the spatial scales on which the organisms operate (even down to 

scales ~ cm, O'Donnell & Denny 2008), and thus higher resolution representations of wave 

forces are required to adequately describe many species‟ distributions.  

An alternative to these approaches consists of constructing models that allow 

simulations of waves and using these to predict wave exposure. The vast majority of wave 

modelling approaches involve numerical simulations of waves based on wave physics 

(Cavaleri et al. 2007). SWAN (acronym for Simulating WAves Nearshore) is a third 

generation numerical wave model that simulates waves and models how these waves interact 

with local wind patterns, currents and the seabed as they propagate into coastal shelf areas 

(Booij et al. 1999; Ris et al. 1999). It can be applied at any scale relevant to coastal 

applications, and includes terms that model wind-generation, depth-induced wave breaking, 

whitecapping (wave-breaking in deeper water when wave height becomes too large compared 

to the wavelength, Ris et al. 1999) and wave-wave interactions that can enhance or dissipate 

wave energy (Booij et al. 1999; Ris et al. 1999). SWAN models have previously been applied 

in coastal engineering scenarios of sediment transport and changes in beach morphology 

(Castelle et al. 2006; Warner et al. 2008), as well as coupled with models of water currents to 

predict storm surges during hurricanes (Xie et al. 2008; Sheng et al. 2010). Within an 

ecological context, England et al. (2008) developed a SWAN model for a Western Australian 

embayment and related the bottom orbital velocity generated by waves to marine subtidal 

macroalgal communities, while Huang et al. (2012) related seabed disturbance, generated 

from SWAN model predictions, to the abundance of eight infaunal species and overall 

community diversity for a subtidal sandy embayment in south-eastern Australia. However, 

these are among the few examples of SWAN models being applied in an ecological setting.  
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The aim of this study was to develop a SWAN wave model to predict wave forces for 

the Wellington south coast in New Zealand and to identify the variation in wave energy along 

this stretch of coastline to aid in explaining and predicting differences in intertidal and 

subtidal community composition among locations in this region. The Wellington south coast 

is a dynamic and highly wave exposed shoreline, experiencing southerly swell >80% of the 

time with an average significant wave height of 2.25 m (Carter & Lewis 1995). In addit ion, 

seasonal storms can give rise to extended periods where wave heights average 4 m and short 

periods of time where waves can be 5-8 m in height (Pickrill & Mitchell 1979; Carter & 

Lewis 1995). The coastal topography and bathymetry is also complex with a mixture of 

intertidal rocky platforms, sand and gravel beaches and submerged reefs rising from a matrix 

of sand, boulder and pebble gravels, which are constantly in motion due to wave forces and 

currents (Bowman et al. 1980; Carter 1992; Carter & Lewis 1995).  

The specific aims of this chapter are twofold. Firstly I aim to produce maps 

illustrating the wave energy experienced along a digital representation of Wellington‟s south 

coast that will be used to develop predictive models for an array of intertidal species (Chapter 

5). Secondly, using the same SWAN model I aim to produce maps of the variation in subtidal 

bottom orbital speed due to waves, and compare this to biomechanical limits for two species 

of subtidal canopy forming macroalgae that are present along Wellington‟s south coast; 

Macrocystis pyrifera and Ecklonia radiata. This final aim, which is the primary focus of this 

chapter, utilises biomechanical information for M. pyrifera (Utter & Denny 1996) and E. 

radiata (Thomsen et al. 2004). Ecklonia radiata is numerically abundant along much of the 

Wellington South Coast (Choat & Schiel 1982; Pande & Gardner 2009) whereas M. pyrifera 

has a much patchier distribution (Hay 1990). Both species form dense canopies and are 

therefore engineers of subtidal communities by controlling light penetration to the benthos 

and providing biogenic habitats for many species of fish and invertebrates (Kennelly 1989; 

Clark et al. 2004; England et al. 2008). Elucidating the wave forces in relation to their 

mechanical thresholds can therefore yield information regarding the probabilities and 

frequencies of disturbance within these habitats, as well as setting limits for species-specific 

distribution, size and abundance. This will lead to a better understanding of the factors 

structuring these communities and can be used to identify the mechanical and biological 

processes causing differences in community composition among locations. Knowledge of the 

mechanism and the spatial variation of these processes can be used for management of 

marine ecosystems, for example to identify areas that are particularly vulnerable to harvesting 
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of macroalgae (Schiel & Nelson 1990), and in systematic conservation planning to identify 

areas that encompass as large a range of habitat types as possible in the zoning of marine 

protected areas or marine reserves (Leslie 2005).  

4.2 – Methods 

The SWAN model requires several different inputs in order to run. The inputs 

required include grids representing the bathymetry and bottom roughness (a measure of how 

much friction/dissipation is experienced by breaking waves and waves traversing shallow 

areas) of the area of interest, as well as boundary wave conditions that are used to simulate 

waves entering the computational grid (oceanic swell) and local wind strength and direction. 

The methods will be split into sections describing; the acquisition of the separate input types 

required by the model, model boundary conditions, model implementation, model parameters 

and outputs, processing of model predictions to produce maps, and finally the application of 

model predictions with regards to the biomechanical limits of E. radiata and M. pyrifera. 

4.2.1 – Model inputs - defining the computational domains 

To match previous (Pande & Gardner 2009) and ongoing ecological studies (Chapter 

5) the area from Breaker Bay in the east (41°19.8‟S, 174° 50.4‟E) to Sinclair Head in the 

west (41° 21.48‟ S, 174° 42.36‟ E) was identified as the area where the majority of subtidal 

and intertidal fieldwork has been performed in the past, and therefore encompasses the area 

where model results are likely to be most useful with regard to matching wave forces to 

biological community composition (Figure 4.1). However, to obtain accurate predictions for 

this area, the wider computational domain had to be large enough to account for edge effects. 

Edge effects arise due to the fact that the state of a cell in the computational grid is 

determined by those surrounding it. The states of cells at the edge of the computational grid 

are therefore partially undefined, and these errors can propagate throughout the 

computational grid unless adequate boundary conditions are set. Boundary conditions would 

only be set for the southern boundary, and as such errors can propagate into the 

computational grid from the undefined east and west boundaries (the northern boundary is 

predominantly land, and therefore does not require boundary conditions). By definition these 

undefined boundaries allow wave energy to leave the computational area, but do not simulate 

waves entering, which in most cases is unrealistic (Zubier et al. 2003). The computational 

grid needs to be large enough so that the east and west boundaries are sufficiently distant 

from the smaller grid such that these errors do not propagate into the area where accurate 
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predictions of wave action are required (between Breaker Bay and Sinclair Head). The area 

adjacent to the boundary where wave information is likely to be affected by these edge 

effects is encompassed within a 45° sector either side of the predominant wave direction (in 

this case propagating from south to north along a bearing of 0°) with its apex at the south-east 

or south-west corners for the east and west boundaries, respectively (illustrated in Figure 4.1) 

(SWAN team 2006). Wave action in the eastern portion of this area is likely to be affected by 

the headland to the east of the harbour entrance (Figure 4.1), and as such this headland was 

also incorporated into the computational domain. For these reasons the computational domain 

was defined as a 27270 m (east-west) by 13050 m (north-south) grid with corners at 41° 

26.480‟ S, 174° 35.640‟ E (bottom-left), 41° 26.862‟ S, 174° 55.212‟ E (bottom-right), 41° 

19.434‟ S, 174° 35.900‟ E (top-left) and 41° 19.814‟ S, 174° 55.437‟ E (top-right). This 

ensured that the headland was incorporated into the computational domain and that boundary 

effects did not propagate into the area of interest. 

Figure 4.1. Map of Wellington‟s south coast, showing the sources of the bathymetry data 

used in defining the SWAN model. The red outline shows the inner grid where model results 

are reported, while the extent of the map is the same as the computational domain used. 

 

4.2.2 – Model inputs - bathymetry data 

Base bathymetry data were obtained from the National Institute of Water and 

Atmospheric Research (NIWA) in New Zealand. The bathymetry data were collected using 

multibeam soundings using NIWAs deepwater research vessel Tangaroa and was gridded at 
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2 m resolution. Due to the constraints of ship-based bathymetry acquisition there were 

considerable gaps in the data (Figure 4.1) due to the vessel‟s inability to access nearshore 

areas. To fill in these gaps two methods were utilised. For nearshore bathymetry (coastal 

areas 0-200 m offshore) aerial imagery was used to predict the bathymetry based on ocean 

colour, whereas for offshore areas, or surrounding areas where only a coarse representation of 

bathymetry are required (edges of the computational domain), an interpolated bathymetry 

layer derived from bathymetry charts was used. The full methods used to acquire, process and 

combine these sources of information are given as an appendix (Appendix 2A) along with 

other supporting material. The resultant bathymetry consisted of a 2 m by 2 m resolution 

gridded map for high resolution nearshore model runs, and a 30 m by 30 m resolution map 

for initial testing and coarse scale model runs (Figure 4.2). 
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4.2.3 – Model inputs - bottom roughness 

The bottom roughness was estimated according to the bottom substrate type present at 

each point in the computational domain. A multibeam backscatter map collected and 

produced by NIWA representing the strength of backscatter from the seabed was loaded and 

visualised in ArcMap (ESRI 2011). The extent of this map was the same as the NIWA 

bathymetry data (Figure 4.1). Three different types of backscatter were identified: (1) high 

intensity uniform backscatter was associated with a pebble gravel substrate type, (2) low 

intensity backscatter was associated with a sand/fine sediment substrate type and (3) areas of 

overall medium intensity backscatter with high variation in backscatter strength over small 

spatial scales were classified as submerged bedrock. Note that variation in backscatter 

strength is likely attributable to variation in aspect of the submerged bedrock, with surfaces 

perpendicular to the incoming sound-waves displaying the highest backscatter while inclined 

surfaces that reflect sound away from the direction of the receiver will display low intensity 

backscatter (Figure 4.3) (Carter 1992). All substrate types were identified by comparison with 

a shapefile provided by NIWA that had classifications of the different substrate types for 

Wellington‟s south coast from the harbour entrance to Owhiro Bay, which was extended 

using the map of backscatter strength. Because the backscatter map did not encompass the 

whole computational grid, some assumptions about the surrounding substrate types were 

made based on the figure presented in Carter & Lewis (1995 - Figure 2 of that paper), aerial 

photography (Google Earth imagery) and personal observations. A polygon shapefile was 

created in ArcMap containing outlines of each of these different substrate regions that was 

subsequently converted to a raster grid of the same proportions as the bathymetry layer 

(Figure 4.3).  

In the SWAN model specification, the bottom roughness is defined by a roughness 

scale length, which is approximately equivalent to the scale size of variations in the seabed 

experienced by the waves as they propagate across these areas. Although there is likely to be 

considerable variation in roughness scale lengths between areas, obtaining estimates of this at 

the scales required would be logistically infeasible (Cavaleri et al. 2007). As such, 

approximate roughness scale lengths were assigned uniformly to each substrate type based on 

images of the seabed contained within Carter (1992). Roughness scale lengths of 0.01 m were 

assigned to areas of sandy substrates (~ cm scale ripples of the seabed), 0.04 m to areas of 

pebble gravel (approximate size of the variations in the gravel seabed) (Carter 1992) and 0.08 

m was assigned to areas of submerged bedrock (based on measurements of the rugosity of 
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exposed intertidal rocks by laying out a 2 m transect and measuring the departure from a flat 

surface at 10 cm intervals, and images within Carter [1992] of submerged bedrock). These 

roughness scale lengths were assigned to the relevant substrate types in ArcMap and then 2 

by 2 m and 30 by 30 m gridded representation of these values was exported for the 

computational area.  

 

Figure 4.3. Map of the computational domain illustrating the extent and distribution of the 

different substrate types. Inset A is a cropped portion of the NIWA backscatter map 

illustrating the differences in reflectance between the three substrate types. 

4.2.4 – Model boundary conditions - wind and wave regimes 

Wellington‟s south coast experiences waves as a result of locally wind-generated 

waves, as well as large swell events as a result of storms in the Southern Ocean (Carter & 

Heath 1975; Carter & Lewis 1995). These waves are generated far outside the computational 

grid, but can be accounted for by specifying that wave conditions (significant wave height, 

period and direction) along one or more of the computational grid boundaries match those of 

observed wave parameters. Data from NOAA wavewatch III (Tolman 1997) hindcasts were 

obtained for the nearest virtual buoy location (41° 30‟ S, 174° 30‟ E) for the period February 

2005 to May 2011. This consisted of hindcast predictions of wave period, direction and 

significant wave height at three hourly intervals. Rose diagrams of wave height and direction 

(Figure 4.4) revealed that there was one predominant wave direction with waves coming from 

bearings of 165-195° accounting for ~ 50% of all records. However, waves originating along 

bearings of 105-165° accounted for ~15% of the wave records. Subsequently, wave records 
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were classified into two direction regimes, 165-195° and 115-145° accounting for a large 

proportion of the hindcast wave predictions (the northerly swell direction shown in Figure 4.4 

was found to be associated with periods of moderate to strong northerly winds, and as such 

would be associated with periods of no, or very little wave action close to shore, in the area of 

interest). These were subsequently split into categories of significant wave height; 0.5-1 m, 1-

1.5 m, 1.5-2 m, 2-3 m, 3-4 m and 4-5 m.  

Figure 4.4. Rose diagrams of wave and wind regimes experienced by the Wellington south 

coast. All directions are specified according to the nautical convention. Data obtained from 

NOAA wavewatch III. 

For each wave height/direction class (2 direction classes, 6 height classes, 12 classes 

overall) the time periods when these wave conditions prevailed were recorded and matched 

with the observed wind speed and direction, obtained from the NIWA national climate 

database (NIWA 2012) for the Wellington Airport station (41° 19.32‟ S, 174° 48.24‟ E). 

Wellington experiences two predominant wind directions, one centred due north, and one 

centred due south (Figure 4.4). The wave classes were therefore split to represent time 

periods when incoming waves co-occurred with northerly winds and a second class when 

waves co-occurred with southerly winds. The wind data closely matched the swell data, with 

lower significant wave heights associated with either northerly or light southerly winds, 

whereas large southerly swell events were associated with strong gale-force southerlies (see 

Figure 4.5 for an illustration of this). Wind speeds within each of the classes were split into 

six classes 0-2.5 m.s
-1

, 2.5-5 m.s
-1

, 5-7.5 m.s
-1

, 7.5-10 m.s
-1

, 10-15 m.s
-1

 and >15 m.s
-1

. This 

resulted in 144 separate classes of wave height/direction and wind speed/direction (2 wave 

direction × 6 height class‟s × 2 wind directions × 6 wind strengths). For reasons pertaining to 



Chapter 4 
 

 
85 

 

computational time restrictions not all classes could be simulated. Therefore classes that 

occurred less than 1% of the time (less than 185 records) were excluded, with the exception 

of the strongest southerly and south-easterly wind and swell classes as these would be 

necessary to identify maximum wave forces. In addition, south-easterly wave height classes 

were included for the most frequently occurring wind regime for that wave class. This 

resulted in 26 sets of model parameters (Table 4.1). The wind speed and direction, along with 

significant wave height, direction and period were averaged across all records within each 

group and these values were taken to be representative of that group. The resulting 

parameters were used to define the boundary conditions at the southern computational grid 

boundary in the SWAN model simulations, and the resulting wind parameters were defined 

uniformly across the entire computational grid. 
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Table 4.1. Description of the wind and wave regimes modelled 

Class 
# 

Wave 
class 

Range of values for each class Averaged parameters used as boundary conditions 

Frequency  Swell Wind Wind Waves 

Direction 
(° from N) 

Height 
(m) 

Direction 
(° from N) 

Speed 
(ms

-1
) 

Speed 
(ms

-1
) 

Direction 
(° from N) 

Height 
(m) 

Direction 
(° from N) 

Period 
(s) 

1 S2 165-195 0.5-1 325-40 0-2.5 1.55 18.22 0.78 181.40 11.01 261 

2 S2 165-195 0.5-1 325-40 2.5-5 3.79 11.12 0.78 182.65 10.60 349 

3 S2 165-195 0.5-1 325-40 5-7.5 6.32 6.01 0.78 182.71 11.08 468 

4 S2 165-195 0.5-1 325-40 7.5-10 8.69 -0.59 0.78 181.87 10.93 416 

5 S2 165-195 0.5-1 325-40 10-15 11.26 -3.97 0.79 182.00 11.05 195 

6 S2 165-195 0.5-1 145-215 2.5-5 3.80 184.25 0.76 182.19 10.19 300 

7 S2 165-195 0.5-1 145-215 5-7.5 6.17 173.65 0.77 180.61 8.13 299 

8 S3 165-195 1-1.5 325-40 0-2.5 1.70 19.30 1.21 181.01 10.74 235 

9 S3 165-195 1-1.5 325-40 2.5-5 3.75 11.10 1.19 181.66 10.94 333 

10 S3 165-195 1-1.5 325-40 5-7.5 6.23 7.22 1.20 182.04 11.14 417 

11 S3 165-195 1-1.5 325-40 7.5-10 8.67 1.21 1.21 181.76 11.13 337 

12 S3 165-195 1-1.5 325-40 10-15 11.33 -0.82 1.19 182.07 11.34 193 

13 S3 165-195 1-1.5 145-215 2.5-5 3.83 179.49 1.22 180.91 10.24 239 

14 S3 165-195 1-1.5 145-215 5-7.5 6.24 170.81 1.23 180.20 8.93 288 

15 S3 165-195 1-1.5 145-215 7.5-10 8.56 169.23 1.27 179.30 8.55 243 

16 S4 165-195 1.5-2 140-210 7.5-10 8.74 172.73 1.72 178.90 9.28 250 

17 S4 165-195 1.5-2 140-210 10-15 11.72 183.36 1.76 179.07 8.36 210 

18 S5 165-195 2-3 140-210 10-15 12.20 181.88 2.41 178.69 8.57 471 

19 S6 165-195 3-4 140-210 10-15 13.15 186.82 3.37 177.27 9.62 121 

20 S6 165-195 3-4 140-210 >15 16.66 194.60 3.40 180.04 9.11 75 

21 S7 165-195 4-5 175-215 >15 17.00 198.68 4.32 178.07 10.22 32 

22 SE2 115-145 0.5-1 150-230 5-7.5 6.00 184.01 0.80 131.42 8.50 75 

23 SE2 115-145 0.5-1 330-30 5-7.5 6.36 3.07 0.75 128.02 10.25 153 

24 SE2 115-145 0.5-1 330-30 7.5-10 8.64 0.55 0.77 129.25 10.83 126 

25 SE3 115-145 1-1.5 135-180 7.5-10 8.65 158.86 1.27 133.34 7.98 64 

26 SE5 115-145 2-3 130-210 10-15 11.85 176.08 2.46 129.88 9.21 31 
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Figure 4.5. Histograms of wind direction for time periods when significant wave heights 

were hindcast as (a) 0.5-1 m high and (b) 3-4 m high. Red lines indicate the range of wind 

directions considered being indicative of a southerly wind class, and blue lines indicate the 

range used for a northerly wind class. Data obtained from the NIWA national climate 

database (NIWA 2012) for the Wellington Airport station (41° 19.32‟ S, 174° 48.24‟ E). 

4.2.5 – Model implementation – nested grids 

Due to the size and resolution of the computational grid, model simulations were run 

on a nested hierarchical basis to reduce computational time without sacrificing resolution 

(Cavaleri et al. 2007). For each wave class an initial model simulation was performed for the 

entire computational grid using the 30 m by 30 m resolution bathymetry and bottom 

roughness data. Within this larger grid, 14 nearshore nested grids were simulated, with each 

nested grid measuring approximately 1400 m by 1400 m (Table 4.2). The bathymetry and 

bottom roughness data for these nested grids were cropped from the larger 2 m resolution 

grids. Subsequent wave model runs were then implemented for each nested grid with the 

corresponding wind speed and direction, but with wave boundary conditions set by the coarse 

resolution model predictions for the wave frequency spectra and directions along each of the 

nested grids four boundaries.  
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Table 4.2. Locations and extent of the nested grids. 

Nest No 

Coordinates Size (m) 

Bottom left Top Right 
N-S E-W Lat 

(° ‘ S) 
Long 
(° ‘ E) 

Lat 
(° ‘ S) 

Long 
(° ‘ E) 

1 41 22.1985 174 42.0390 41 21.4641 174 43.0706 1400 1400 

2 41 22.0407 174 43.0163 41 21.3032 174 44.0460 1400 1400 

3 41 21.5641 174 43.5720 41 20.8294 174 44.5994 1400 1400 

4 41 21.4307 174 44.5691 41 20.6908 174 45.6287 1400 1436 

5 41 21.3621 174 45.5924 41 20.6186 174 46.6235 1410 1400 

6 41 21.2733 174 46.3944 41 20.5381 174 47.4212 1400 1400 

7 41 21.4853 174 47.3018 41 20.7485 174 48.3286 1400 1400 

8 41 20.7308 174 47.3293 41 19.9941 174 48.3558 1400 1400 

9 41 20.9201 174 47.8048 41 20.1804 174 48.8276 1400 1400 

10 41 20.9163 174 47.7989 41 20.1810 174 48.8280 1400 1400 

11 41 21.2267 174 47.8343 41 20.4899 174 48.8628 1400 1400 

12 41 21.2804 174 48.6997 41 20.5449 174 49.7299 1400 1400 

13 41 21.0705 174 49.3216 41 20.3335 174 50.3459 1400 1400 

14 41 20.4590 174 49.4197 41 19.7190 174 50.4421 1400 1400 

 

4.2.6 – Model parameters and outputs 

The SWAN model and successive nested model runs were performed in generation 

three mode, enabling the simulation of wave energy loss through depth-induced wave 

breaking, whitecapping and bottom friction (Booij et al. 1999). Triad wave-wave interactions 

were also activated, which in shallow water transfer wave energy from lower frequencies to 

higher frequencies (shorter wavelengths), particularly as waves propagate across submerged 

bars or reefs (Beji & Battjes 1992; Ris et al. 1999). These effects are likely to be important as 

there are several areas in which there are extensive submerged reefs. The optional parameter 

for bottom friction was set to the formulation presented in Madsen et al. (1988). Significant 

wave height, energy, direction and bottom orbital velocity (root-mean-square of the maxima 

of the orbital velocity) were output for the nested grids as well as for the coarse model grid.  

4.2.7 – Processing model results – subtidal orbital velocity 

Subtidal orbital velocity predictions for each of the modelled wave classes were 

loaded into ArcMap. These values were mapped because drag as a consequence of wave-

induced water movement has been shown to be a major determinant of damage and mortality 

for macroalgal species (Gaylord et al. 1994; Denny 1995; Utter & Denny 1996; Thomsen et 

al. 2004). From the model results the maximum and minimum orbital velocity experienced at 

each location were obtained. In addition an average orbital velocity for each location was 
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calculated by taking an average of the orbital velocity predictions for each wave class, 

weighted by the proportion of time that each wave class was prevalent. These were used to 

produce maps of the magnitude of the maximum, minimum and average subtidal orbital 

velocities along Wellington‟s south coast.   

4.2.8 – Processing model results – coastline wave energy   

To obtain a digital representation of the shoreline each section of coastline was 

recreated in ArcMap by tracing around all emerged rock visible on aerial photographic 

images that were also loaded into ArcMap, creating a polyline shapefile representation of the 

shoreline. The greatest care was taken to capture all emerged rock, but there are likely to be 

areas (in particular, boulder fields) where there are sections that are not well represented. The 

line segments (lengths ~2 – 1000‟s of metres) were then converted to a 2 by 2 m gridded 

representation of the coastline, by converting the shoreline shapefile to a raster image format. 

Each cell thus represented a 2 m section of intertidal shoreline. To obtain a representation of 

the wave energy experienced by each of these coastal cells, the wave energy for the 

surrounding “wet” cells (i.e., those that are ocean rather than land) were averaged, and the 

average value assigned to the coastal cell. This was performed in ArcMap using the “raster 

calculator” function to average the wave energy values of all “wet” cells contained within a 

separate raster image map (one for each wave class) within radii of 5, 10, 15 and 20 m about 

each coastal cell. The wave energy was assessed using radii of 5, 10, 15 and 20 m because the 

bathymetry in the immediate vicinity of each coastal cell is unlikely to be as well defined as 

further offshore, as the bathymetry prediction failed to account for depths shallower than 2-3 

m (see Appendix 2A). As a result of this, predictions of wave energy adjacent to the coastline 

are likely to be prone to considerable errors, which may be mediated by taking averages at 

multiple scales to identify which, if any, is an adequate description of the wave energy 

experienced at each location. This procedure was performed for each wave class, and each 

averaging radius, to populate the “empty” (i.e., all cells initially have value = 0) coastline 

raster image with wave energy values for each coastal cell. From the wave class-specific 

shoreline raster image files the maximum and minimum wave energy values for each cell 

were calculated, as well as the weighted average of the class-specific energy values using the 

same weighting scheme as for the production of the subtidal orbital velocity maps. This was 

performed separately for each averaging radius, thus producing maps of maximum, minimum 

and average wave energy at 5, 10, 15 and 20 m scales.  
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4.2.9 – Quantifying the impact of wave forces on subtidal macroalgae 

To estimate how wave forces may impact subtidal macroalgal communities the wave-

induced forces were compared to biomechanical limits established for the two canopy 

forming (and thus habitat modifying) macroalgal species, E. radiata and M. pyrifera. 

Thomsen et al. (2004) showed that E. radiata in south-western Australia is damaged or even 

dislodged at orbital speeds of 2-5 m.s
-1

. In a biomechanical study, Utter & Denny (1996) 

determined the breaking strength of M. pyrifera stipes in California. Although morphological 

differences exist between M. pyrifera in New Zealand and California (Kain 1982; Nyman et 

al. 1993), their model is implemented here because no studies exist that have covered the 

biomechanical properties of M. pyrifera in New Zealand. As such, this is unlikely to be a 

definitive description of the response of M. pyrifera to wave forces acting along Wellington‟s 

south coast, but it does give a relative idea of how these forces may vary between locations 

and how this may potentially govern their abundance and distribution in this area. A brief 

description of the biomechanical model for M. pyrifera is given here, but for a complete 

description see Utter & Denny (1996).  

The two most important forces acting on macroalgae are acceleration and drag 

(Gaylord et al. 1994; Utter & Denny 1996). The acceleration force arises when the object 

changes speed and/or direction, whereas the drag force is caused by water flow dragging the 

object (usually the fronds) in the direction of the water flow creating tension in the stipe 

(Utter & Denny 1996). In the calculations used here the effects of drag force alone are 

considered, because these two forces are temporally out of phase (one follows a cosinusoidal 

pattern with time, whereas the other follows a sinusoidal pattern with time): the drag force is 

therefore maximal at times of zero accelerational force, and vice versa (Gaylord et al. 1994). 

In addition, the drag force is often the largest hydrodynamic force (Denny et al. 1998) and 

thus considering the maximum drag force in isolation gives an estimate of the maximum 

force applied. The empirically derived drag force, Fd, on a M. pyrifera stipe is given as: 

                
      

eqn. 4.1 

where    is the density of seawater (here taken to be 1025 kg.m
-3

), A is the maximal 

projected area of the frond, which can be related to frond length, l, using the equation 
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eqn. 4.2 

and    is the velocity of water relative to the fronds. Orbital velocity from wave motion is a 

function of water depth, and so the bottom orbital velocities are likely to be underestimates of 

the water velocities experienced by the bulk of the M. pyrifera fronds that are typically nearer 

the ocean‟s surface. The maximum horizontal water velocity, um as a function of height above 

the seabed, h, is given by:  

      
  

 

         

         
 

eqn. 4.3 

where T is the wave period, H is the wave height, d is the water depth and k is the 

wavenumber given by an approximation to be:   

  
   

   
      

    

   
  

 
 
 

 

eqn. 4.4 

where g is the acceleration due to gravity. Using these equations and setting h=0, the bottom 

orbital velocity, ub is given by (Wiberg & Sherwood, 2008): 

   
  

 

 

         
 

eqn. 4.5 

Therefore the bottom orbital velocities (resulting from the wave model) can be used to obtain 

water velocities at height h above the seabed according to:  

                  

eqn. 4.6 

where k is a function of depth and wave period.  
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The drag effects resulting from a strong southerly storm corresponding to modelled wave 

class 21 (significant wave height Hs = 4.32 m, wave period T = 10.22s, Table 1) were 

examined. Using the bathymetry data along with the wave period for this wave class the 

variation in k across the computational area can be obtained using equation 4.4. The wave 

forces on four lengths of M. pyrifera, 5, 10, 15 and 20 m in the depth interval 3-30 m were 

investigated. The assumption that under maximum drag force the frond makes a 45° angle 

with regard to horizontal was made to simplify calculations, and thus its height h above the 

seabed is given by  
  

   or alternatively the water depth, d,  if   
  

  exceeds d. 

Subsequently, k, h and the simulated bottom orbital velocities for this wave regime, ub, were 

combined using equation 4.6 to calculate the relative water velocity. This combined with A, 

obtained for each length class using equation 4.2, are employed to calculate the drag force 

using equation 4.1. The mechanical stress, σ, is the force per unit area: 

  
  

 
 

eqn. 4.7 

where a is the cross sectional area of the stipe assumed here to be a constant equal to 4.1×10
-5 

m
2
 (see Utter & Denny 1996). The empirically derived probability of a M. pyrifera stipe 

having a breaking stress less than σ is given by     : 

             
   

        
 
    

  

eqn. 4.8 

Finally using equations 4.7 and 4.8 the probability of breakage was calculated for the area of 

entire computational grid, based on the predicted orbital velocities for this wave regime and 

the four modelled length classes of M. pyrifera. These are then expressed as maps illustrating 

the variation in the probability of stipe breakage across Wellington‟s south coast. Finally, the 

distribution of large stands of M. pyrifera are included on these maps from an aerial image of 

the Wellington south coast (areas where M. pyrifera fronds were visible floating on the 

surface in Google Earth images obtained on 30/12/2010) to aid in the comparison of breakage 

probabilities with recent M. pyrifera distributions. Because this imagery represents a snapshot 

in time it could not be used to infer whether these patterns are stable or whether storm events 
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cause changes in M. pyrifera distribution that are consistent with SWAN model predictions. 

To provide a longer term comparison of M. pyrifera distributions in the Wellington region, 

the distribution obtained from this imagery is qualitatively compared to that given in Figure 4 

of Hay (1990). To quantitatively examine the relationship between the observed presence of 

M. pyrifera and the predicted probabilities of stipe failure, 10,000 points were randomly 

placed within the model area (using ArcMap) in areas of suitable substrate (excluding sandy 

areas). For each of these points the predicted probablities of stipe failure for 5, 10, 15 and 20 

m plants and the presence/absence of M. pyrifera was recorded. A binomial generalised linear 

model (logistic link function) was fitted to the resulting presence/absence data with 

probability of stipe failure as a continuous predictor. This was performed independently for 

each plant length investigated. To account for potential depth limitation or observation bias in 

the recording of M. pyrifera prevalence (i.e. an increase in false negative error rate as plants 

of a certain size do not reach the surface beyond a certain depth and so would not be 

registered as present), a second set of 10,000 points was randomly distributed at depths < 10 

m and the same analyses applied. 

4.3 – Results 

4.3.1 – Subtidal orbital velocity 

The minimum orbital velocity per cell (assessed across all modelled scenarios) ranged 

from 0 - 1.406 m.s
-1

, with 99.4% of the modelled area experiencing bottom orbital velocities 

less than 0.5 m.s
-1

 (Figure 4.6).  The remaining areas, experiencing speeds greater than 0.5 

m.s
-1

, consisted of shallow near-shore areas of almost emergent reef (Figure 4.6), such as 

along the submerged pinnacles located at the Sirens, to the west of Owhiro Bay, and the 

stretch of coastline between the Quarry and Sinclair Head. There is, however, a more 

sheltered area to the west of Sinclair Head, mostly due to the islands located just offshore of 

Sinclair Head (Figure 4.6). The stretch of coastline between Breaker Bay and Moa Point is 

predicted to experience much lower orbital velocities (0-0.3 m.s
-1

) than areas to the west of 

Lyall Bay, probably due to the headland to the east of Wellington Harbour entrance 

protecting this area against the south-easterly swell (Figure 4.6).  

The relative distribution of average orbital speeds (Figure 4.7) shows a similar pattern 

to that of the minimum orbital speeds, with the exception that the section from Breaker Bay 

to Moa Point experiences similar orbital speeds to the remaining coastline, because the 

influence of the southerly swell (to which this section is not sheltered) far outweighs the 
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influence of the south-easterly swell (to which this section is sheltered – Figure 4.6), both in 

magnitude of orbital speed and in frequency of occurrence (Table 4.1). The average orbital 

speeds range from 0 – 0.15 m.s
-1

 in the most sheltered of locations directly behind obstacles 

(e.g. Island Bay to the north of Taputeranga Island, Moa Point in the lee of the Moa Point 

peninsula, and north of the Palmer Head reef and Barrett Reef directly east of Palmer Head), 

to 0.8-1.69 m.s
-1

 around submerged obstacles (e.g., the pinnacles located at The Sirens rocks, 

around Moa Point peninsula, Red Rocks to Sinclair Head, and around emergent reefs such as 

at Palmer Head and Barrett Reef) and in the surf zone along several beaches and bays 

(Houghton Bay beach and several bays between the Quarry and Red Rocks) (Figure 4.7). 

Although the maximum average orbital speed across the entire area and the maximum of the 

minimum orbital speeds are similar (1.406 m.s
-1

 compared to 1.690 m.s
-1

, respectively), the 

average orbital speeds exceed 0.5 m.s
-1

 across 8% of the modelled areas, compared to just 

0.6% when considering the minimum orbital speeds (Figures 4.6 and 4.7).  

The maximum orbital speeds exceed 0.5 m.s
-1

, 1 m.s
-1

 and 1.5 m.s
-1

 across 84%, 18% 

and 1% of the modelled area, respectively, with the locations of the highest orbital speeds 

being the same as those highlighted for the average orbital speeds (Figure 4.8).  
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4.3.2 – Coastline wave energy 

Maximum and average wave energies show very similar distributions with wave 

energies highest on intertidal projections on fully open sections of coastline (Figure 4.10 – 

numerous locations projecting from the main shoreline; Figure 4.11 – the intertidal area 

between Island Bay and Owhiro Bay; Figure 4.13 – the tip of the Moa Point peninsula and 

Palmer Head reef), as well as around the south facing sides of offshore islands (Figure 4.9 – 

the islands SW of Sinclair Head; Figure 4.11 – the south side of Taputeranga Island), and 

lowest energies in leeward locations of major obstacles and for much of the extended 

shoreline. Minimum wave energies show a similar distribution, but display an overall 

increasing trend in wave energy moving from east to west.   
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Figure 4.9. Map of wave energy extrapolated to the extended coastline from Sinclair Head to 

Red Rocks. The minimum, maximum and average wave energies calculated for 10 and 20 m 

spatial averaging are shown. 
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Figure 4.10. Map of wave energy extrapolated to the extended coastline from the Quarry to 

the western entrance of Owhiro Bay. The minimum, maximum and average wave energies 

calculated for 10 and 20m spatial averaging are shown. 
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Figure 4.11. Map of wave energy extrapolated to the extended coastline from the eastern 

entrance of Owhiro Bay to the east side of Island Bay, including Taputeranga Island. The 

minimum, maximum and average wave energies calculated for 10 and 20 m spatial averaging 

are shown. 
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Figure 4.12. Map of wave energy extrapolated to the extended coastline from the eastern side 

of Island Bay to the western entrance of Lyall Bay, including Houghton Bay and Princess 

Bay. The minimum, maximum and average wave energies calculated for 10 and 20 m spatial 

averaging are shown. 



Chapter 4 
 

 
103 

 

Figure 4.13. Map of wave energy extrapolated to the extended coastline from Moa Point to 

the entrance of Breaker Bay, including Tarakena Bay and Palmer Head. The minimum, 

maximum and average wave energies calculated for 10 and 20 m spatial averaging are 

shown. 
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4.3.3 – Potential impacts on subtidal macroalgae – E. radiata 

For E. radiata the orbital velocity limit defined by Thomsen et al. (2004) of 2 m.s
-1

 

was exceeded at some locations for model simulations with swell greater than ~1.2 m for 

models with northerly wind regimes (wave classes 8-12) and for all models with significant 

wave heights greater than 1.7 m (wave classes 16-21, 26). However, the distribution of areas 

that are predicted to experience these speeds is limited to 0.05% of the modelled area (~9000 

m
2
, within a total area of ~1.5×10

7 
m

2
) at just a few small areas at the tips of Palmer Head 

reef, Moa Point peninsula, submerged reef north of Princess Bay, south of Taputeranga 

Island, the pinnacles at The Sirens, the reef southwest of the Quarry and at the Sinclair Head 

group of islands (the darkest blue colour in Figure 4.8 highlights these areas). For the most 

part these areas were situated at shallow depths (~2-3 m) but surrounded by deeper waters 

(~6-12 m), and coincided with areas that present the first obstacle to incoming oceanic swell. 

4.3.4 – Potential impacts on subtidal macroalgae – M. pyrifera 

The distribution of M. pyrifera, identified from aerial photography, closely matches 

the distribution identified by Hay (1990) for M. pyrifera around Wellington (Figure 4 of that 

paper), with large stands along the coastline in Breaker Bay, behind Palmer Head reef and 

along the coastline leading into and out of Lyall Bay (Figure 4.14). For 5 m plants the 

probability of stipe breakage was low across the entire modelled area (maximum of 6.8%, but 

99.8% of the modelled area had less than a 1% chance of breakage) and so the resultant maps 

are omitted. For plants measuring 10 m in length, the probability of stipe failure was less than 

1% in all areas where water depths are greater than 10 m (Figure 4.14). At depths less than 

this the majority of the area was also predicted to have breakage probabilities less than 1%, 

but there were areas with probabilities between 1 and 5% (for example to the east of Sinclair 

Head, Red Rocks, and at The Sirens, Figure 4.14), and isolated pockets with probabilities of 

5-20% in extremely exposed locations (the tip of the Moa Point peninsula and Palmer Head 

reef, Figure 4.14), with a maximum predicted stipe failure probability of 68% (south of 

Taputeranga Island, Figure 4.14). A similar distribution was observed for plants measuring 

15 m in length, however, the probabilities in all areas increased, with much of the area 

shallower than 10 m having probabilities of at least 1%, with many areas having probabilities 

of 2.5-10%, with higher probabilities in shallower areas (Figure 4.15). The exceptions to this 

are in sheltered bays, including Island Bay, the western shoreline leading into Lyall Bay, 

Tarakena Bay (behind the Moa Point peninsula and Palmer Head reef), and the section of 

nearshore waters between Palmer Head and Breaker Bay (Figure 4.15). However, in waters 
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deeper than 10 m, the probability of stipe failure remains low, with a few locations displaying 

probabilities of 1-5% (Figure 4.15). For plants measuring 20 m in length, a similar 

distribution as for 15m plants was found but probabilities were much higher with the majority 

of locations in water less than 10 m deep having a 5-20% chance of stipe failure, and the 

proportion of locations with higher probabilities is substantially larger than for 10 or 15 m 

plants (Figure 4.16). For all plant lengths, the probability of stipe failure was less than 1% in 

waters deeper than 20 m (Figures 4.14 - 4.16). 

At all locations where there were M. pyrifera plants visible on the surface, the 

probability of stipe failure was low, with the majority of identified locations having a less 

than 1% chance of stipe failure for all plant lengths investigated (Figures 4.14 - 4.16). The 

few exceptions included a small patch identified near Princess Bay where the probability of 

stipe failure peaked at 26% for 20 m plants, 10% for 15 m plants and 2% for 10 m plants, and 

another patch in Breaker Bay where probability of stipe failure peaked at 44% for 20 m 

plants, 19% for 15 m plants and 5% for 10 m plants (Figures 4.14 - 4.16). GLMs applied to 

the presence/absence data extracted from the model predictions displayed a negative 

correlation with the probability of stipe failure, indicating that M. pyrifera tended to be 

present only when the probablity of breaking was low (Table 4.3). This relationship was 

much more pronounced when examining this relationship in shallower water (compare fitted 

lines in Figure 4.17 compared to Figure 4.18). Furthermore, the mean probability of stipe 

failure when M. pyrifera is present was ~ 0.27-0.33 that of the mean probability of stipe 

failure when M. pyrifera is absent for points distributed across all depths, but is  ~ 0.12-0.14 

when points are distributed only between 0 and 10m deep (Table 4.3). The maximum 

probability of stipe failure was also considerably lower in locations with M. pyrifera 

compared to locations without (Table 4.3). However, there were a few instances of M. 

pyrifera presence in locations with higher probabilities of stipe failure (indicated by larger 

bars in Figures 4.17 and 4.18), but these represented the minority of the points (e.g. for the < 

10 m analyses only 5 points of 185 which landed on patches of M. pyrifera had probabilities 

of stipe failure for a 20 m plant that were greater than 5%). 
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Table 4.3. Summary statistics and results of logistic GLMs relating M. pyrifera 

presence/absence to predicted probability of stipe failure 

Depth Predictor 
Mean probability of 

stipe failure (%) 

Max probability of 

stipe failure (%) 
logistic GLM 

Present Absent Present Absent intercept (SE) slope (SE) 

All Prob 5m 0.004 0.012 0.075 1.561 -4.38 (0.13) -39.8 (15.0) 

All Prob 10m 0.066 0.199 1.38 20.52 -4.36 (0.13) -2.59 (0.93) 

All Prob 15m 0.3 1 5.76 62.5 -4.24 (0.13) -0.81 (0.24) 

All Prob 20m 0.82 2.97 15.3 93.6 -4.02 (0.14) -0.45 (0.11) 

< 10 m Prob 5m 0.004 0.029 0.15 1.86 -2.63 (0.09) -107.7 (12.3) 

< 10 m Prob 10m 0.06 0.49 2.14 20.15 -2.58 (0.09) -7.16 (0.81) 

< 10 m Prob 15m 0.29 2.21 8.84 61.76 -2.53 (0.09) -1.60 (0.18) 

< 10 m Prob 20m 0.78 5.81 22.83 93.23 -2.52 (0.09) -0.59 (0.06) 
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Figure 4.17. Mean prevalence plotted against predicted probability of stipe breakage for 

plants of size 5 m (A), 10 m (B), 15 m (C) and 20 m (D) using data gathered from all depths. 

Lines represent the fitted logistic regression line and its 95% confidence interval. Grey bars 

indicate the mean observed prevalence of M. pyrifera in intervals along the x-axis measuring 

0.002 (A), 0.02 (B), 0.1 (C) and 0.2 (D) respectively. Bars with a * below them indicate an 

interval for which only a single M. pyrifera presence was recorded, some of which are 

unusually large due to the lower overall number of points in that interval.   
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Figure 4.18. Mean prevalence plotted against predicted probability of stipe breakage for 

plants of size 5 m (A), 10 m (B), 15 m (C) and 20 m (D) using data gathered from locations 

with depths less than 10 m. Lines represent the fitted logistic regression line and its 95% 

confidence interval. Grey bars indicate the mean observed prevalence of M. pyrifera in 

intervals along the x-axis measuring 0.002 (A), 0.02 (B), 0.1 (C) and 0.2 (D) respectively. 

Bars with a * below them indicate an interval for which only a single M. pyrifera presence 

was recorded, some of which are unusually large due to the lower overall number of points in 

that interval.    

 

4.4 – Discussion  

This study highlights the role played by wave energy in structuring shallow subtidal 

ecological communities. Even though wave forces are considerable during storm events (the 

force imposed by water velocities of 2 m.s
-1

 is roughly equivalent to the force imposed by air 

velocities of ~ 210 km.h
-1

) (Denny & Gaylord 2002) they are unlikely to cause damage to 

healthy E. radiata plants, while only low mortality rates would be expected for M. pyrifera 

plants.  
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4.4.1 – Coastline wave energy 

The coastline wave energy output from the SWAN model illustrates patterns that are 

consistent with expectations of wave forces along Wellington‟s south coast, with the most 

prominent projections of intertidal rock coinciding with the highest wave energies, and 

locations leeward of islands or other obstacles being the most sheltered. In addition, 

submerged reefs provide some degree of shelter, examples of which include the coastline 

north of the reef projecting eastward from Taputeranga Island (in Island Bay), extending to 

the area of shelter beyond Island Bay itself that is sheltered by the blocking effect of 

Taputeranga Island. Other examples include Princess Bay (reef visible in Figure 4.8) and 

Tarakena Bay that are largely sheltered by the reef extending southward of Palmer Head. 

Submerged reefs are likely to decrease wave energy through two processes, energy 

dissipation through bottom friction and depth-induced breaking (Karambas & Koutitas 1992; 

Padilla-Hernández & Monbaliu 2001; Monismith 2007). Energy dissipation through bottom 

friction is a result of the interaction of the waves with the seabed, which becomes a dominant 

component of wave dynamics in shallow waters (Padilla-Hernández & Monbaliu 2001). This 

effect can significantly reduce wave energies in areas with high surface relief (coral reefs 

being an example of high bottom friction due to the complexity of growth forms – Monismith 

2007), as these areas have much higher resistance (friction) to wave propagation. Friction 

also causes the steepening of waves as they propagate into shallower waters, which 

eventually leads to wave breaking. Wave breaking usually occurs when the wave height 

exceeds 78% of the water‟s depth (Utter & Denny 1996). Waves measuring 3 m in height are 

likely to break in water depths of ~ 3.8 m, whereas 5 m waves will break at depths of ~ 6.4 m. 

Thus for 3 m waves in the study area, wave breaking can occur ~ 0-40 m offshore for rocky 

subtidal/intertidal areas, but up to 160 m in sandy bays, whereas 5 m waves may break ~ 30-

100 m offshore, and up to 250 m offshore, in rocky subtidal/intertidal areas and sandy bays, 

respectively (measurements obtained haphazardly from 0 to 3.8 m contour and 0 to 6.4 m 

contour for rocky areas, and Houghton Bay as an example of an exposed bay). As the wave 

rears up prior to breaking, the wave‟s energy is first converted into gravitational potential 

energy and once the wave breaks, energy is dissipated through sound, heat and the creation of 

turbulence and vortices and is further dissipated as the broken wave propagates (Karambas & 

Koutitas 1992). In areas where there is a reef present, waves are likely to break further from 

the shoreline and therefore much of the wave‟s energy is dissipated prior to it reaching the 

shore.  Although bathymetry-weighted fetch may be able to capture some of this variation by 
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down-weighting fetch measurements in areas with extensive submerged reefs (as in Hill et al. 

2010), these measures are unlikely to capture the full complexity of energy dissipation 

through breaking and bottom friction that is possible using a numerical wave model, such as 

SWAN. 

4.4.2 – Subtidal orbital velocity and consequences for macroalgae 

The Wellington south coast is characterised by macroalgal assemblages (Choat & 

Schiel 1982; Pande & Gardner 2009) that are particularly speciose (approximately one-third 

of New Zealand‟s algal species are found in the Cook Strait region), containing species 

representative of both North and South island macroalgal assemblages (Nelson 2008). Also 

this area has frequently been considered to be on the boundary of two biogeographic 

provinces (Shears et al. 2008) with species existing at the edge of their natural ranges, 

potentially making species more susceptible to environmental stresses (Sagarin et al. 2006). 

Therefore developing an understanding of the spatial variation in wave forces can be used to 

explain how waves may act to structure macroalgal assemblages through the creation of 

different disturbance regimes in different areas and at different depths (Goldberg & Kendrick 

2004; England et al. 2008). This, in combination with the mixing of species from different 

biogeographic areas, may act to promote the richness and diversity of macroalgae along the 

Wellington south coast by selecting for or against certain species in certain areas dependent 

on their biomechanical limits. 

Comparatively, the maximum speeds predicted by the SWAN model (2-3 m.s
-1

) were 

similar to maximum instantaneous wave speeds (1.5 – 2 m.s
-1

) measured in-situ for locations 

open to waves in the northwest USA (Eckman et al. 2003), and to maximum values (~3 m.s
-

1
) predicted by SWAN models for exposed locations in Western Australia (England et al. 

2008). Orbital speeds were also predicted to be greater in shallow water (< 10 m) than at 

depth (Figures 4.6 - 4.8). At depths less than 5 m along Wellington‟s south coast the 

macroalgae Carpophyllum maschalocarpum, Landsburgia quercifolia and Lessonia variegata 

are more abundant than E. radiata, which is most abundant at 7-15 m depth (Choat & Schiel 

1982; Schiel 1990). Although alternative explanations cannot be excluded (depth, light 

intensity, herbivory, competitive ability etc) for this macroalgal depth zonation (Schiel 1990), 

studies of the biomechanical thresholds of these species of macroalgae may shed light on how 

these species persist in such wave-swept environments. Species of Lessonia are present on 

exposed rocky shores in Australasia and South America (Martin & Zuccarello 2012) and 
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Lessonia nigrescens, which is found along the South-American Pacific coast, has adaptations 

regarding the structure of stipe tissue (closely packed cells, with thick cell walls that are 

aligned along the major stress axes of the tissue) that allow it to thrive in the most wave-

swept locations (Koehl 1999). It remains to be seen whether Lessonia variegata, which is 

endemic to New Zealand (Martin & Zuccarello 2012), has similar adaptations, but if so, these 

may provide a mechanism by which this species can persist at these wave-exposed locations. 

The results for E. radiata suggest that healthy plants are unlikely to be damaged in 

southerly storms (significant wave height > 4 m) because only at a few locations at depths of 

~ 2 - 3 m were bottom orbital speeds predicted to exceed 2 m.s
-1

, identified by Thomsen et al. 

(2004) as the lower threshold for stipe damage for E. radiata. However, wave forces are 

unlikely to act in isolation. Age, damage due to herbivory, and scouring and fracturing effects 

due to continual wave forces are all likely to have weakening effects on the mechanical 

properties of individual plants (Denny et al. 1989; Duggins et al. 2001; Thomsen et al. 2004; 

Mach et al. 2007). These effects acting in unison will increase the probability of damage or 

dislodgement at lower orbital speeds than would be predicted for a healthy, undamaged 

individual. In addition, Thomsen et al. (2004) noted that the vast majority of E. radiata tested 

for mechanical properties became dislodged at the reef rock level when the rock to which the 

E. radiata holdfast was attached became dislodged. The rock type along Wellington‟s south 

coast is sedimentary greywacke, consisting of layers of grey sandstone interspersed with 

harder layers of mudstone, or argillite (Kennedy & Beban 2005). The predominant feature of 

this rock type at this locality is its high fracture density (~ 5 to > 20 m
-2

) enabling the easy 

removal by hand of sizeable chunks of rock in some places (Kennedy & Beban 2005, and 

personal observations). Given the inherent weakness of the rock type and the predicted orbital 

speeds there could be a far greater capacity for dislodgement of E. radiata plants through 

failure of the substrate than by stipe or holdfast failure.  

The drag forces imposed on individual plants increases with size due to an increase in 

projected surface area (Gaylord et al. 1994). Therefore waves may impose an upper limit on 

the size of E. radiata plants by selectively pruning or removing individuals above a certain 

size particularly in the more exposed areas. This could potentially alter the density of the 

canopy, with subsequent effects on the degree of shading (Clark et al. 2004), which is likely 

to be important for understorey species‟ composition (Toohey et al. 2004) also allowing other 
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habitats to form (Kennely 1987; Toohey et al. 2007) with subsequent impacts on community 

dynamics.  

The results for M. pyrifera indicate that stipe failure is likely for larger plants in the 

event of southerly storms along much of the Wellington south coast. However, based on the 

probability of stipe failure, plants measuring 5-15 m in length should be able to persist in 

many regions, even in areas where water depth is less than 10 m and orbital speeds are 

considerably higher. Many of the regions where M. pyrifera was visible from aerial 

photography and those reported in Hay (1990) were in locations where the probability of 

dislodgement was low, and the fitted logistic regression relationships indicate a negative 

correlation between prevalence of M. pyrifera and wave exposure, suggesting that M. 

pyrifera distribution is limited by wave exposure along the south coast. Because of the 

comparative nature of this study, alternative explanations for these patterns, such as due to 

temperature, availability of suitable substrate and nutrients (Hay 1990) cannot be eliminated. 

Rocky reefs are however found across the entire south coast (see Figure 4.3 for an illustration 

of the extent of subtidal bedrock) at a range of depths, and therefore availability of suitable 

substrate is unlikely to explain these patterns. In addition, although the Wellington coastline 

and harbour are near to the northern limit for M. pyrifera (suggested to be at Castlepoint on 

the east coast of the north island and Kapiti Island on the west coast, such that Wellington is 

~ 60 km south of its northern limit, Brown et al. 1997) small-scale temperature differences 

are unlikely to be a factor influencing the spatial distribution of M. pyrifera on the open 

coastline, (as has been suggested by Hay 1990 for the spatial distribution of M. pyrifera in 

Wellington Harbour) because summer temperatures on the Wellington south coast are ~ 1.5-2 

°C cooler than harbour temperatures and are within the  temperature limits of M. pyrifera 

(Hay 1990). It has previously been reported that M. pyrifera may be unable to persist in 

locations that have nitrate concentrations lower than 1μmol.l
-1

 for sustained periods of time 

(Hay 1990). Consequently nitrate concentrations along the Wellington south coast, which are 

on average ~1-2 μmol.l
-1

, (Bradford et al. 1986; Hay 1990) may contribute to limiting M. 

pyrifera growth at certain times, but is unlikely to explain the observed spatial variation of M. 

pyrifera due to both the existence of an otherwise rich macroalgal community at many 

locations where M. pyrifera is absent and the well mixed nature of the water column (Hay 

1990). Spatial variability in grazing pressure by kina (Evechinus chloroticus) may also be 

responsible for these spatial patterns: however, it has been reported that kina abundances are 

higher at the eastern end of the area investigated (Pande & Gardner 2009), coincident with 
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the location of the majority of M. pyrifera stands and therefore grazing seems an unlikely 

explanation. Therefore it is likely that patterns of M. pyrifera distribution can be attributed to 

the spatial variation of wave forces in this area. In addition, during storms, high mortality 

rates have been recorded from kelp forests in southern California (Seymour et al. 1989). 

However, comparisons between the recorded mortality rate of storm-induced wave forces and 

those predicted by this biomechanical model revealed that the model vastly underestimated 

mortality rates (Utter & Denny 1996). Utter & Denny (1996) predict that for an El-Niño 

Southern Oscillation-induced storm the mortality rate of a Californian kelp forest would be 

0.1-26.2%, whereas the true mortality rates were 13-94%. Thus, the predicted probabilities 

presented here in my modelling may also be large underestimates of mortality rates under the 

modelled conditions. The combinatorial effects of age, damage by herbivory and continuous 

wave forces (creating fractures and causing sub-lethal damage) are all likely to increase the 

probability of stipe failure, but the single largest contributor to mortality has been attributed 

to stipe entanglement (Seymour et al. 1989). This has the effect of doubling or even tripling 

the drag forces on a single stipe, leading to a much higher probability of stipe failure and 

even causing the dislodgement of kelp holdfasts from the substrate (Seymour et al. 1989; 

Utter & Denny 1996). Another significant factor is likely to be plants that are caught in 

breaking waves. The water speeds when waves break are an order of magnitude higher than 

the bottom orbital speeds produced by the SWAN model (~ 25 m.s
-1

, Denny & Gaylord 

2002).  If M. pyrifera plants were to be caught in breaking waves then the wave-induced 

forces would be much higher than calculated, with subsequent effects on the probability of 

stipe failure (Utter & Denny 1996). Given these limitations and the likely differences in 

morphology between the plants used to develop the biomechanical model and those found 

along Wellington‟s south coast (see Kain 1982 and Nyman et al. 1993 for discussion of 

morphological differences between New Zealand and Californian M. pyrifera), the 

predictions of stipe failure should be interpreted as giving a conservative, rather than absolute 

measure of the differences in disturbance probability among locations.  

 

4.4.3 – Model limitations 

Much of Wellington‟s south coast shoreline is predicted to be very sheltered. This is 

likely a limitation of the model as well as the complexity of the shoreline. The exact 

topography of emergent substrate (intertidal platforms, boulders etc) is unknown for nearly 

the entire coastline. Because of this wave propagation over emergent obstacles was not 
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modelled, and each obstacle was essentially considered a void whereby wave energy could 

propagate around, but not through or over. As a result the predicted relative wave energies for 

much of the shoreline behind these obstacles is likely to be lower than in reality, as waves 

overtopping obstacles are likely to contribute to the overall wave energy at each location, 

particularly when storm and high tide conditions coincide. In addition, differences in water 

level due to the tides were not modelled. This was mostly due to time constraints as each 

model run takes between one and three hours to complete for each coarse scale model run, 

and similar times for each nested grid. In addition, the exact timing of the surveys measuring 

bathymetry was unknown, and so there is some uncertainty over whether the bathymetry 

represents high, mid or low tide depth measurements. Wave forces at the shoreline are likely 

to be highest at high tide mainly due to the water being ~ 1.3 m (Wellington tidal range) 

deeper than at low tide. This will cause waves to break closer to the shoreline, with less 

energy dissipation and therefore the wave energies reported by the model may change 

significantly with water level. However, the relative distributions of wave energies are likely 

to be similar, but may be exaggerated more in the areas of high exposure compared to low 

exposure due to these effects. There are likely to be locations where tidal height has a much 

greater influence on wave exposure, such as those that are obstructed at low tide but 

relatively unobstructed at high tide (relatively because the obstacle remains but is submerged, 

thus presenting less of an obstacle to waves). At these locations the model is unlikely to 

provide adequate measures of wave exposure. However, these are unavoidable drawbacks of 

the model as it would be logistically infeasible to obtain the topography of obstacles for such 

a large area so that wave interactions could be modelled adequately. Future studies could 

model wave energies assuming simple profiles for emergent substrate (e.g. table-like in 

profile, related to projected width, or randomly generated within certain bounds) and assess 

how these compare among themselves and to the scenario modelled here to assess the relative 

error introduced by excluding the effects of waves overtopping obstacles and tidally driven 

differences in water level.  

A further limitation of the model is that the defined digital shoreline is unlikely to 

capture the true shoreline in all of its detail. The shoreline itself is also variable as it changes 

with the tide. Therefore, unlike in terrestrial ecology and biogeography where the landscape 

is consistent (at least over ~ tidal timescales) and tools such as satellite altimetry (Hilton et al. 

2003) and other remote sensing applications allow for the mapping of landscapes in great 

detail, mapping of shorelines is limited by the available aerial photography. Areas not well 
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represented are likely to be boulder fields where the size of shore segments (size of boulders) 

is less than the image resolution, preventing the adequate representation of these areas. This 

includes much of the shoreline from the Quarry to Sinclair Head which consists of a series of 

boulder fields with intermittent sandy bays. However, for these applications the level of detail 

achieved is at least as good as, if not better than, many other representations of digital 

shorelines.  

The bathymetry data used to develop the wave model consisted of a combination of 

ship-based multibeam measures of water depth, water depth estimated from processing aerial 

photography and matching imagery to the relevant multibeam depth information, and in some 

locations using depth contours from nautical charts to estimate bathymetry (see Appendix 

2A). The nautical charts were only used to provide information regarding the surrounding 

bathymetry for coarse scale model runs and mostly in water depths greater than 20-30 m 

where errors in bathymetry are unlikely to have considerable effects on wave predictions. 

However, there may be considerable errors in the nearshore bathymetry due to the use of 

aerial imagery. Multispectral aerial imagery has been used to predict ocean depths (< 15-20 

m) in other studies (Stumpf et al. 2003), but due to the costs of obtaining imagery (~ 1000 

NZD), and the uncertainty over whether it could be applied in this setting (most, if not all, 

applications are in the tropics and due to the fact that Wellington‟s south coast experiences 

swell much of the time, many of the areas of interest may be obscured by white caps and 

wave-driven froth) this technique was not used here. The potential error introduced using the 

method developed here was ~ ± 2-3 m (see Appendix 2A), and thus there may be 

considerable errors in the final bathymetry. In particular for water depths less than 2-3 m the 

method performs poorly, due to the relative paucity of points in the multibeam dataset with 

depths less than 3 m. Systems such as Lidar (Irish et al. 2000) provide accurate measures of 

nearshore shallow bathymetry, but given the costs these methods are also likely to be beyond 

many researchers.  

In addition, the formulations of physical processes used here represent one possible 

set among many of the alternative parameterisations available within SWAN (Booij et al. 

1999; Ris et al. 1999). Examination of alternative parameterisations of bottom friction and 

wind-wave interactions revealed that mis-identifying the correct formulation could introduce 

errors up to 5-10% of the mean orbital velocity and wave energy (see Appendix 2C for a 

more rigorous treatment of this), but would most likely influence the magnitude of the 
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predicted values rather than the relative distribution. This is an area, which given validation 

data, could be explored in more detail, but is unlikely to affect the overall conclusions of this 

study (Appendix 2C).  

Despite the limitations of the methods adopted here, the data collation approach 

employed here provides an adequate representation of the bathymetry and only further 

reductions in the cost of alternative methods (Lidar, multispectral or hyperspectral imagery) 

will yield more accurate representations.  

4.4.4 – Conclusion 

This study details the development of a high resolution model of wave forces to aid in 

the description of subtidal (this chapter) and intertidal (Chapter 5) species communities along 

an approximately 11 km stretch of coastline which experiences persistently high wave 

exposure. This represents one of the few examples (but see England et al. 2008; Huang et al. 

2012 for others) where wave modelling has been used in an ecological context. Although the 

data requirements of wave modelling are likely to be beyond many ecologists, in terms of the 

joint availability of accurate bathymetry, weather and wave information (as suggested by 

Burrows et al. 2008), when this information is available, the development of SWAN models 

can provide information that would otherwise be missing from studies of intertidal and 

subtidal species and communities. Despite model limitations these results will likely be 

useful in determining the drivers of community dynamics, both temporally with regard to 

episodic storms/disturbance regimes and also spatially in describing differences in both 

subtidal and intertidal species composition among locations.   
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Chapter 5 – A novel wave-modelling approach for 

predicting fine spatial scale differences in intertidal 

community composition: application to a wave-

exposed temperate shore 
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5.1 – Introduction 

In light of the predicted ecological changes associated with climate change (Walther 

et al. 2002; Hampe & Petit 2005; Harley et al. 2006; Hawkins et al. 2008), ocean 

acidification (Findlay et al. 2010; Kroeker et al. 2010), an increased number of invasive 

species (Dukes & Mooney 1999; Gurevitch & Padilla 2004; Didham et al. 2005), as well as 

effects associated with pollution and degradation of the environment (Piola & Johnston 

2007), it is important to establish baselines of species‟ distributions and abundances 

(Hardman-Mountford et al. 2005). It is usually unknown where and how future perturbations 

may occur and because of the absence of widespread sampling effort it is unlikely there will 

be baseline data for these impacted areas. The collection of spatially explicit biological data 

is often restricted by monetary costs (Nicholls 1989) and the expertise required to perform 

this work at the scales required to achieve even relatively small spatial coverage. Given the 

costs of monitoring there is a pressing need to make greater use of the data that are collected, 

either by uncovering scientific relationships pertaining to the monitored species within a 

hypothesis testing framework (Nichols & Williams 2006), or uncovering quantitative 

relationships between species abundances and the environment (Rodríguez et al. 2007). The 

latter can be utilised to expand the applicability of monitoring data over much larger areas 

through the development of species distribution models. 

Species distribution models have been utilised extensively to achieve broad spatial 

coverage describing the abundance and distributions of species in marine, freshwater and 

terrestrial domains (reviewed by Elith & Leathwick 2009). In simple terms a species 

distribution model is any model that uses observations of species abundance or presence-

absence at specific locations and relates this to environmental data collected at these locations 

through a correlative or predictive model framework (Guisan & Thuiller 2005; Kearney & 

Porter 2009). These species-environment relationships can take the form of continuous 

relationships that may be linear (Guisan et al. 2002), non-linear (Guisan et al. 2006; Elith & 

Leathwick 2009) or can be based on specific thresholds that are empirically derived based on 

field data (De‟ath & Fabricius 2000) or relate to species life history traits (Kearney & Porter 

2009). Over large areas it is inexpensive to obtain environmental data, relative to the cost of 

collecting biological data, (Nicholls 1989) using weather stations, climatic projections, 

measures obtained from geographic information system (GIS) representations of landscapes, 

and aerial photography. Such environmental data, along with the empirically derived species-

environment relationships, can be used to determine species distributions across entire 
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landscapes, achieving much greater spatial coverage than the surveyed sites. These predictive 

models have been successfully utilised in conservation and management practice (Wilson et 

al. 2005) as well as forecasting the future distribution of species based on current 

environmental thresholds (Araujo et al. 2005; Guisan & Thuiller 2005).  

Although the use of species distribution models of marine species or species 

assemblages has increased over the last decade (Elith & Leathwick 2009), both in temperate 

(Leathwick et al. 2006; 2008a) and tropical areas (De‟ath 2007; Pittman et al. 2009), the 

number of marine species distribution models is still far less than in terrestrial ecology 

(Robinson et al. 2011). Specifically, there is an almost complete absence of predictive 

distribution models describing rocky intertidal species (although see Zacharias et al. 1999), 

despite the extensive study of the physical and biological factors affecting intertidal species 

(Menge & Branch 2001). The production of zonation charts for specific areas of coastline 

under different qualitative descriptions of environmental conditions have been widely utilised 

since Stephenson and Stephenson (1949; 1972) first described general rocky intertidal 

zonation patterns. These can be thought of as an early qualitative approach to predictive 

modelling of intertidal species distributions, but there have been fewer attempts to define 

quantitative boundaries (beyond tidal height) or relationships that can be used to describe the 

distribution of intertidal species in relation to environmental factors. One of the most widely 

studied factors affecting intertidal species is wave action with studies including its effects on 

zonation patterns (Lewis 1961; Harley & Helmuth 2003), intertidal productivity (Leigh et al. 

1987), algal morphology and mechanical strength (Gaylord et al. 1994; Kitzes & Denny 

2005) and its ability to promote or mediate biological interactions, structuring entire 

communities (Menge 1976; Jonsson et al. 2006). However, using this knowledge to predict 

the distribution of intertidal species has largely been hampered by the inability to predict 

wave forces over large spatial scales, whilst maintaining fine spatial resolution in predicted 

wave forces. Although metrics of wave exposure, such as fetch, have been utilised 

extensively as a proxy for wave exposure over large spatial scales (Thomas 1986; Burrows et 

al. 2008) they are unable to distinguish between wave exposure regimes on a finer scale 

(~10‟s-100‟s of meters). Furthermore, they do not account for effects such as refraction and 

depth-induced wave breaking that can amplify or reduce wave forces as they propagate 

towards the shore (Hill et al. 2010). Without incorporating these factors predictive models are 

unlikely to provide accurate predictions of intertidal community structure. 
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Amongst physical factors the intertidal zone is also strongly controlled by exposure to 

large changes in temperature, salinity and UV radiation levels with regard to changing 

exposure to the air and the sun throughout the tidal cycle (Denny et al. 2006; Miller et al. 

2009; Russell & Phillips 2009). For example, intertidal limpet body temperatures can, in the 

space of a few hours, go from ~10°C to ~ 40°C (Denny & Harley 2006). The topography of 

intertidal surfaces is therefore likely to play a key role in determining what species are 

present given varying physiological responses to temperature, salinity and radiation stress 

(Mercurio et al. 1985; McGuinness & Underwood 1986; Underwood 2004; Martins et al. 

2010). In particular, the aspect and inclination of intertidal surfaces are likely to create 

specific microhabitats, particularly with regard to the light intensity incident upon them and 

the degree of water pooling on these surfaces. These factors are also likely to interact with 

wave exposure because wave-induced splash and/or surge will act to cool and rehydrate 

individuals, thus reducing the degree of heat, salinity and desiccation stress individuals 

experience on these surfaces (Miller et al. 2009) and are therefore likely to influence 

intertidal community composition.  

The south coast of Wellington in New Zealand (Figure 5.1) is a particularly wave 

exposed section of coastline, frequently experiencing waves ~2 m in height, with yearly 

storms causing waves 5-8 m in height, and the largest storms causing waves ~15 m in height 

occurring once or twice a century (Carter & Lewis 1995). This section of coast, along with 

much of the shoreline of Cook Strait separating New Zealand‟s North and South Islands 

(Figure 5.1), lacks the typical zonation patterns exhibited by most temperate rocky shores 

(Morton & Miller 1968; Gardner 2000). The mid intertidal band of mussels is virtually absent 

along Cook Strait shores, and the upper intertidal is also only sparsely occupied by barnacles, 

with bare rock being particularly prominent (Gardner 2000; Helson & Gardner 2004; Phillips 

& Hutchinson 2008; Demello & Phillips 2011). Pande & Gardner (2009) have also suggested 

that a natural environmental gradient exists along the Wellington south coast from the 

harbour entrance in the east to the entrance of the Cook Strait in the west (Figure 5.1), with 

subtidal species abundance being greater in the east compared to the west. In addition, water 

column characteristics (particulate organic matter, percent organic matter, Chl-a) also vary 

along this shoreline in a manner consistent with their being a gradient with higher 

concentrations at eastern sites compared to western sites (Helson & Gardner 2007). Although 

many studies have examined various aspects of the intertidal community along the 

Wellington south coast, most have focussed on the almost complete absence of mussels and 
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comparative studies with the harbour (Gardner 2000; Helson & Gardner 2004; 2007; Helson 

et al. 2007; Phillips & Hutchinson 2008; Demello & Phillips 2011), rather than examine the 

factors that determine the abundance and distribution of multiple species within this region.     

 

Figure 5.1. Maps showing New Zealand (A) with insets showing the study location with 

respect to the Cook Strait separating the North and South Islands (B) and the locations of 

individual study sites within this region (C). Abbreviations of site names are BB – Breaker 

Bay, PH – Palmer Head, MP – Moa Point, HB – Houghton Bay, IB – Island Bay, OB – 

Owhiro Bay, QU – Quarry, RR – Red Rocks, SH – Sinclair Head.  

The aim of this study is to develop predictive models for the distribution and 

abundance of the dominant intertidal rocky shore species present along Wellington‟s south 

coast. Combining biotic survey monitoring data with abiotic factors of the survey locations, 

the relationships between species and the physical factors governing their distribution, within 

this region, will be determined. Given that this area is unusual compared to other temperate 

rocky shores (almost complete lack of mussels, high availability of bare rock), this will 
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further our understanding of the possible mechanisms operating to structure intertidal 

communities in this area and also may be able to identify or eliminate potential reasons why 

this stretch of coastline is dissimilar to those found elsewhere in temperate regions. This 

information is not only useful in identifying and describing the ecology of these species in 

this area but can also be used to make predictions about the intertidal community composition 

in un-surveyed locations. This is further aided by the development of a SWAN wave model 

for this region (Chapter 4), which provides predictions regarding wave energy for the entire 

coastline at relatively high spatial resolution so that the species distribution model predictions 

can be applied across much of the shoreline. SWAN wave models have been applied in 

coastal engineering scenarios of sediment transport (Warner et al. 2008), as well as for 

predicting damage due to storm surges during hurricanes (Sheng et al. 2010), but have rarely 

been applied in a marine ecological context (however see England et al. 2008; Huang et al. 

2012). The wave model results in combination with the data driven predictive models provide 

the opportunity to develop a predictive representation of intertidal communities for this 

stretch of coastline. Developing predictive baselines can expand the utility of baseline data, 

which is usually limited in its spatial coverage, by providing a means for future researchers to 

identify, with a certain level of confidence, the species or abundances that were present at 

certain locations, even if the location was previously un-surveyed. Knowledge of the spatial 

variation of these communities can also be used in systematic conservation planning with 

regard to the placement of marine protected areas (Leathwick et al. 2008a) to identify areas 

that encapsulate the greatest range and/or coverage of different community types.  

5.2 – Methods 

5.2.1 – Study area 

Wellington‟s south coast is a highly dynamic wave exposed shoreline (Carter & 

Lewis 1995) and because of a 140° phase difference in the timing of the tides between the 

east and the west coast of New Zealand, also experiences considerable tidal flow 

predominantly from the north-west to the south-east through Cook Strait (Bowman et al. 

1980). Consequently Wellington‟s south coast experiences a much reduced tidal range (~1.5 

m at springs, Morton & Miller 1968) than either the east or the west coast of the North or 

South Islands. The vertical zonation patterns of intertidal organisms are therefore strongly 

compressed (Morton & Miller 1968). The coastline itself is predominantly eroded greywacke, 

which is a sedimentary rock consisting of a mix of medium- to coarse-grained sandstone with 

layers of fine-grained argillite, or mudstone (Kennedy & Beban 2005). The coastline is 
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topographically complex consisting of a mix of bedrock outcroppings, boulder fields, 

subtidal-intertidal pinnacles and sandy beaches (Morton & Miller 1968). The study area 

encompassed the entire coastline from Breaker Bay in the east (41° 20.556‟ S, 174° 49.379‟ 

E) to Sinclair Head in the west (41° 21.690‟ S, 174° 42.859‟ E) (Figure 5.1). 

5.2.2 – Intertidal sampling 

Permanent monitoring plots were established at each of nine sites along the shore 

(Figure 5.1). Of the nine sites, five were established on sections of gently sloping shoreline of 

various aspects and wave exposures with the sites themselves largely consisting of broken up 

bedrock formations and large boulders with a mix of bedrock and small to medium sized 

cobble between major formations (Breaker Bay [41° 20.556‟ S, 174° 49.379‟ E], Moa Point 

[41° 20.706 S, 174° 48.534‟ E], the Quarry [41° 21.243‟ S, 174° 43.734‟ E], Red Rocks [41° 

21.468‟ S, 174° 43.578‟ E], Sinclair Head [41° 21.690‟ S, 174° 42.858‟ E]). A further three 

sites were established on more topographically complex sections of shoreline with the sites 

consisting of a main continuous intertidal platform on the shoreward side and a multitude of 

intertidal platforms further offshore rising at their highest ~2-3 m above low tide and 

immediately surrounded by water ~ 3-5 m deep on the seaward side, and in some cases on all 

surrounding sides (Houghton Bay [41° 20.712‟ S, 174° 46.842‟ E], Island Bay [41° 20.94‟ S, 

174° 45.810‟ E], Owhiro Bay [41° 20.976‟ S, 174° 44.970‟ E]). One such site (Owhiro Bay) 

was established entirely on one of these disconnected intertidal platforms. The final site was 

established at a location consisting predominantly of many abrupt, sharply rising projections 

of bedrock dotted throughout the site surrounded by a shallow-graded and shallow-depth 

(surveyed locations surrounded by water < 2 m deep at high tide) pebble-gravel beach 

(Palmer Head, [41° 20.694‟ S, 174° 49.224‟ E]). 

5.2.3 – Collection of biological data 

At each of the nine sites 5 permanent 50 × 50 cm quadrats were established at each of 

three tidal levels. At each site the tidal range was split into three approximately equal sized 

bands. The high intertidal extended from the height of the highest barnacle to the upper mid 

shore, mid intertidal was centred on the midpoint between the highest barnacle and the chart 

datum, and the low intertidal band extended from upper low shore to the chart datum. These 

bands coincided with the predominant intertidal zonation patterns found on this coastline, 

with the high intertidal being sparsely occupied by barnacles (Chamaesipho spp.), mid 

intertidal consisting mostly of bare rock, several species of limpet (Cellana spp. and 
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Siphonaria spp.) and towards its lower limit a band of encrusting algal species (coralline 

algae, various brown crusts and the cushion-forming green alga Codium convolutum), and the 

low intertidal consisting of a patchwork of turfing red and brown macroalgal species amongst 

small and larger canopy forming brown algae. 

Each quadrat was placed on exposed bedrock or large boulders, avoiding areas with 

large cracks or undulations in the surface, and areas with tide pools but was haphazardly 

placed within these constraints. Each quadrat was marked by two bolts drilled and set into the 

rock using expanding masonry plugs at the top corners of the quadrat. The extent of the 

monitoring plot was determined by laying a 50 × 50 cm stainless steel quadrat, gridded into a 

hundred sub grids 5 × 5 cm, over the designated area and lining up the corners with the two 

corner bolts. Photographs were taken of each quadrat once per season (every 12 weeks) for 

two years from August 2009 to August 2011. To improve the accuracy of each digital image, 

4 photographs were taken of each quadrat, with each image capturing one quarter of the area 

sampled (images were ~ 4MB taken using an 11 MP camera). All efforts were taken to 

ensure that photographs were taken parallel to the surface to avoid introducing error due to 

differences in perspective. Percent cover of sessile and algal species was recorded using 

Coral Point Count with Excel extensions (CPCe, Kohler & Gill 2006) by employing 400 

points per quadrat. In the high and mid intertidal zones there was little to no overlying algal 

canopy and so this method was mostly not confounded by layers of alternate organisms. 

However, in the low intertidal there were often many layers and where possible the species 

underlying the topmost layer were also recorded, but this was not possible in all cases. 

Mobile invertebrate abundance was recorded by counting all visible individuals within the 

confines of the quadrat. Due to the high abundance of Austrolittorina spp. (on most occasions 

Austrolittorina antipodum and Austrolittorina cincta could be distinguished, however 

successfully identifying small individuals in cracks was not always possible, therefore these 

species were grouped and henceforth are referred to as Austrolittorina spp.) in high intertidal 

quadrats, their abundance was estimated by counting the number of individuals in each of ten 

randomly chosen 5 × 5 cm sub-squares of the quadrat and extrapolating their abundance by 

multiplying their summed abundance by ten. Mobile invertebrate abundance was recorded in 

the low intertidal quadrats, but because the algal canopy likely obscured most counts, these 

were not considered for further analysis due to the likely inaccuracy in recorded abundances. 

In addition, the presence-absence of all algal species within the quadrat was recorded to 

account for species that may have been missed using the % cover estimation method or not 
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adequately recorded using the point-intercept recording method. This method of sampling the 

intertidal community allowed for optimal use of time in the field to collect a large amount of 

long-term data. Identification to species level was not always possible from photographs, or 

in the field. In these cases individuals were grouped to genus level or into morphological 

groupings where appropriate. Due to weather constraints some plots could not be sampled in 

some seasons, however, the majority of plots were sampled in the subsequent survey. The 

exception was for plots at the Quarry site, which was established during the second survey 

(spring 2009) and only successfully returned to twice after this (summer 2010, winter 2010). 

Despite this, data from this site, and other plots that were less frequently monitored, are 

included as the method of analysis does not focus on any particular season or survey, but 

pools data from all surveys to make predictions about year round community structure: such 

data may be informative in accurately predicting this.   

5.2.4 – Identifying characteristic species 

A multivariate analysis was used to identify the species that were characteristic of the 

differences exhibited amongst quadrats. The biological dataset was split into three categories; 

sessile invertebrates, mobile invertebrates and macroalgae due to the difference in data types 

(e.g., % cover for sessile invertebrates and macroalgae and counts for mobile invertebrates). 

The BIOENV procedure in PRIMER-E v.6 (Clarke & Gorley 2006) was used to identify a 

reduced set of species that were representative of the whole community. BIOENV performs a 

search through all possible combinations of species sets and assesses the degree of correlation 

between the full dataset and datasets with a reduced number of species by calculating the 

Spearman rank correlation coefficient (ρ) between the resemblance matrix of the full dataset 

and the reduced dataset. This gives a measure of the agreement between the full and reduced 

datasets and allows the identification of the species that are most indicative of overall 

differences in community structure amongst quadrats. The BIOENV analysis was applied to 

the following datasets; high intertidal mobile invertebrates, sessile invertebrates and 

macroalgae, mid intertidal mobile invertebrates, sessile invertebrates and macroalgae and low 

intertidal macroalgae to identify the species that were most characteristic of the entire 

community. This was performed separately for each season, as some species may be a 

particularly important component of the community in some seasons, but may be less 

important (seasonal) or entirely absent (ephemeral) in others. This ensures that the predictive 

models are performed on species that are present year round, but also includes species that 
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are seasonal and thus may only be present at certain times, and the model results therefore 

identify their spatial distribution at these times  

For each BIOENV analysis the smallest group of species that achieved a correlation 

coefficient of ρ≥0.95 was selected for further analysis. All BIOENV analyses used Bray 

Curtis similarity resemblance matrices based on transformed data, using a log transform for 

mobile invertebrates to reduce the importance of particularly abundant species 

(Austrolittorinids ~ 1000‟s) and a square root transform for sessile invertebrates and 

macroalgal percent cover to reduce the importance of quantitatively dominant species (Clarke 

& Gorley 2006). In addition, the prevalence of each species for each survey was calculated to 

check that all commonly occurring species were also considered for further analysis.  

5.2.5 – Predictor variables  

Predictor variables were quantified based on in situ field measurements and a SWAN 

wave model developed to model and predict wave action experienced at each location (see 

Chapter 4). The methods used to measure/derive these values are shown in Table 5.1.  
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Table 5.1. Predictor variables used in the regression and classification analyses. 

Factor Code Description/Method 
Continuous/

Discrete 

Inclination Inc 

Measured as the slope defined by placing a 0.5 m rule from the top to 

the bottom of the plot and measuring the angle to the closest 5° using 
an anglemeter 

Continuous 

Aspect Asp 

Measured as the angle (to the closest 5°) between the horizontal plane 

component of the surface normal vector and magnetic north. These 

were then transformed according to the following equation  

  
        

 
 

where A is the transformed aspect and   is the measured aspect. This 

transformation was applied such that North facing aspects (e.g.,  =0 

and  =360) have A=0, whilst South facing aspects   =180) have A=1. 

East and West are treated equally with A=0.5.  

All flat surfaces (Inclination = 0), were assigned an aspect of 0. 

Continuous 

Substrate 

Type 
Subs 

Substrate type as one of greywacke bedrock (HG), greywacke boulder 

(HGB), sandstone-dominated greywacke (SG). 
Discrete 

Average 

Wave 

Energy 

Wave ave 

As the influence of wave action may extend across distances to a 

certain extent (i.e., splash), for each wave class (see Chapter 4 for 

descriptions of the separate wave classes) the magnitude of wave 

energy is averaged across cells (2 m by 2 m) within radii of 5, 10, 15 

and 20 m about each digitised coastal location. The average, maximum 

and minimum wave energy were determined as the weighted average 

(weighted by proportion of time this wave class prevails), maximum 

and minimum values across all wave classes experienced at each 

location. This was performed separately for each spatial scale 

averaging, leading to 4 possible factors for each of Wave ave, Wave 
min, and Wave max. 

Continuous 

Maximum 

Wave 

Energy 

Wave max Continuous 

Minimum 

Wave 

Energy 

Wave min Continuous 

Distance 

from 

harbour 

Dist 
Distance from 41° 20’ S, 174° 51’ E measured in ArcMap, as a proxy 

for changes in water column composition. 
Continuous 

 

A predictive modelling approach was adopted to determine the factors and 

relationships governing the abundance and distribution of each species. As the wave exposure 

values for different spatial scales represent alternative representations of the same data, each 

spatial scale was tested separately by running identical modelling procedures for each spatial 

scale and comparing the resulting models based on predictive performance. Furthermore, 

within each spatial scale Wave min and Wave max were highly correlated with Wave ave 

(ρ=0.78-0.95), but not as highly correlated with each other (ρ=0.62-0.72). Thus for each 

spatial scale, two alternative models were fitted, one with all factors excluding Wave ave 

(modelling Wave min and Wave max) and the other with all factors except Wave min and 

Wave max (modelling Wave ave). Thus a total of 8 possible predictor sets were examined 

(four spatial scales 5, 10, 15 and 20 m, and two expressions of wave action; overall average, 
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or maximum and minimum values) and the resulting models were compared based on 

predictive performance to identify the best set of predictors. 

In recent years there has been considerable progress with predictive modelling aided 

by the advance in machine learning methods such as classification and regression trees 

(CART) (De‟ath & Fabricius 2000), and its extensions in classification analyses in the form 

of random forests (RF) (Prasad et al. 2006; Cutler et al. 2007) and in regression analyses in 

the form of boosted regression trees (BRT) (Leathwick et al. 2006; Leathwick et al. 2008b; 

Elith et al. 2008). Analyses using RF were performed to model macroalgal distributions, 

whilst BRT was used to model sessile-invertebrate % cover and mobile-invertebrate 

abundances. 

5.2.6 – Tree based analysis methods  

Tree-based analysis methods are rooted in the simple concept of decision trees. A 

decision tree consists of a sequence of binary partitions in the range of single or multiple 

predictor variables based on the identification of regions in predictor space that have the most 

homogenous response (Figure 5.2) (De‟ath & Fabricius 2000; Hastie et al. 2001; Elith et al. 

2008). When multiple explanatory variables are present each successive split can be 

implemented in the range of any of the explanatory variables, but being subject to splits 

higher in the tree (Elith et al. 2008). As a result, interactions between factors are modelled 

automatically and in a way that is simple to interpret. As the tree „grows‟ each split is based 

on a diminishing proportion of the whole dataset and so there is a risk of over-fitting (i.e., 

explaining noise rather than signal). Over-fitting due to overly large tree size can decrease the 

model‟s predictive capability as it increases the number of nuisance or non-informative 

descriptors. To counteract this, v-fold cross validation can be used (where v is the number of 

folds) to “prune” the decision trees (De‟ath & Fabricius 2000). This process involves splitting 

the whole dataset into v subsets (v is usually 10) and then building trees of all sizes based on 

data within v-1 of the v subsets. Each tree is then used to make predictions on the response 

values in the remaining subset and the deviance (i.e., sum of squared differences for a 

Gaussian distributed response, Ridgeway 2007) between predicted and observed values is 

calculated. A tree size that minimises the predicted deviance offers the highest predictive 

capability whilst minimising over-fitting (De‟ath & Fabricius 2000; Elith et al. 2008).       
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5.2.7 – Boosted regression tree analysis of invertebrate abundance/% cover 

Boosted regression trees build on the decision tree framework but add several 

components to improve predictive capabilities (Elith et al. 2008). Boosting is a method that 

increases model accuracy by building and subsequently averaging many simple models in an 

iterative stagewise process (Figure 5.2). An initial decision tree is built that best reduces some 

loss function, such as deviance, that is usually a measure of predictive capability. The next 

tree is built on the residuals from the initial tree using the same loss criterion to identify the 

tree that best decreases the predictive deviance. The fitted values are then re-estimated due to 

the addition of the second tree and the residuals calculated. This process of building and 

adding trees continues in a stagewise fashion, until the final BRT model is a combination of 

all trees (usually ~ 1000‟s) with each tree‟s contribution weighted by a factor known as the 

learning rate. BRT models involve a level of stochasticity in that each tree is built using a 

random subset of the data determined by a “bag fraction” which is the proportion of the data 

that is randomly selected to fit each new tree (Figure 5.2). This introduces some variation to 

the fitting and resulting predictions between model runs, but provides benefits in the form of 

reduced over-fitting and improvements in model accuracy (Elith et al. 2008).  
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Figure 5.2. Illustrations of the processes involved in decision tree analyses for regression 

(upper panels) and classification (lower panels). 

The whole procedure requires the estimation of four modelling parameters to achieve 

optimal predictive performance; tree complexity, learning rate, number of trees, and bag 

fraction. Tree complexity (tc) is equal to the number of nodes in each tree, with one referring 

to a tree consisting of a single binary split. Higher tree complexities can be used to model 

higher order interactions between parameters (tc = 2, fits a maximum of two-parameter 

interactions) and thus can be used to model multiple factor interactions. The learning rate (lr) 

controls the contribution of each tree to the overall model. A low lr is often most appropriate, 

particularly when introducing stochasticity into the modelling process (through bag 

fractions), to avoid overly large variation in predicted values between repeat modelling runs 

(Elith et al. 2008). This arises because each tree is estimated based on a fraction of the data 
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(bf), and as such there is variation from run to run over which trees are fitted and in what 

order the variation in the data is explained. However, by introducing a lower learning rate 

each tree‟s contribution is reduced, leading to influential trees having less weight in the final 

model and greater consistency between model runs. However this also leads to a greater 

number of trees (nt) being required to achieve the lowest predictive deviance. The parameters 

nt, lr and tc are thus all connected, with higher tc usually requiring lower lr and higher nt to 

achieve minimum predictive deviance. As with simple decision trees, over-fitting can be a 

problem, but in this case arises when too many trees are added. In a similar fashion to 

pruning decision trees, for a given lr, tc and bf, the optimum nt can be determined by v-fold 

cross validation of the models predictive performance. The routine implemented by Elith et 

al. (2008) (gbm.step) involves adding trees until the predictive deviance (calculated for the 

out of bag data using v-fold cross validation) is minimised, identifying the optimum nt for 

model development. A final BRT model using the whole dataset is then constructed with the 

optimum parameters (illustrated in Figure 5.2).  

For each predictor set every combination of lr (0.01, 0.0075, 0.005, 0.0025, 0.001), tc 

(1, 2, 3, 4) and bf (0.65, 0.7, 0.75) was investigated, with nt estimated by 10-fold cross 

validation with respect to predictive deviance for each unique parameter set using the 

gbm.step routine developed by Elith et al. (2008), based on the previous gbm routines written 

by Ridgeway (2007, 2010). The response to the predictor Distance was set to be monotonic, 

and both monotonically increasing and decreasing relationships were investigated. This was 

so that distance modelled a change in water column characteristics between water exiting 

Wellington Harbour and water originating in the north-west of Cook Strait. Due to the 

variability in the modelling process (introduced through the stochastic element of the 

modelling procedure), each parameter set was repeated 20 times (Leathwick et al. 2006), and 

the estimates of minimum predictive deviance, and its standard error were recorded across all 

20 repeats. The parameter and predictor set with the lowest predictive deviance and its 

standard error (averaged across 20 repeats) was chosen and results are reported for these 

parameter sets. For the final model, the relative importance of each predictor (a measure of 

how often a predictor is chosen for splitting) is reported as well as cross-validated residual 

deviance (1 SE) and the cross-validated proportion of the total deviance explained D
2
. Partial 

dependency plots for the four most important factors (determined by relative importance) 

were plotted using the gbm.plot routine developed by Elith et al. (2008) for species where 
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BRT models achieve a D
2
 ≥ 0.2. These partial dependency plots illustrate the response across 

the predictor range, integrating across the response of all other predictor values. 

Mobile and sessile invertebrate abundances/percent cover estimates for species 

identified using the BIOENV routine were averaged across surveys for each quadrat. The 

mobile invertebrate abundance data were modelled based on a poisson distribution because it 

was count based (Dennis et al. 2010; O‟Hara & Kotze 2010), whereas the percent cover data 

were transformed according to a logistic transform (Warton & Hui 2011) and modelled with 

gaussian distributed errors. As the logistic transform is not defined for proportions equal to 

zero, percent cover values for species with zero percent cover in some quadrats were 

transformed according to a modified logistic transformation with an added correction in the 

numerator and the denominator;  

     
   

     
  

eqn. 5.1 

where p is the percentage cover, s is the logistic transformed value and ε is the minimum non-

zero percent cover recorded (Maxwell & Jennings 2005; Warton & Hui 2011). All analyses 

were performed in R version 2.12.2 (R Development Core Team 2011). 

5.2.8 – Random forests analysis of macroalgal presence-absence data 

Classification analysis using RF is another technique within the machine learning, 

decision tree family (Breiman 2001) and has increased accuracy and higher successful 

classification rates than ordinary classification trees (Cutler et al. 2007). This is achieved by 

constructing many classification trees, each built on a bootstrap random sample (with 

replacement) of the whole data set (Figure 5.2). For each tree the predictor variables for the 

out-of-bag (OOB) data (data not selected in the bootstrap sample, usually ~ 1/3 of the whole 

dataset) are then passed down the classification tree to obtain a prediction for that observation 

(Figure 5.2). To improve classification accuracy the results of many classifiers can be 

combined provided the classifiers have low pairwise correlations (Breiman 2001; Cutler et al. 

2007). To reduce correlations between subsequent trees, at each node in the tree‟s 

construction only a random subset of predictors is available for partitioning, and the best split 

is chosen from amongst these predictors (Figure 5.2). This ensures there is diversity in the 

construction of the trees, thereby reducing correlation amongst trees and increasing 
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classification accuracy (Prasad et al. 2006). Approximately one third of the observations are 

left out in the construction of each tree, and therefore predictions for each observation are 

made in approximately one third of all trees. The predictions for each observation across all 

trees are tallied up, and the class receiving the most votes is chosen as the predicted value for 

that observation. These are independent predictions, as OOB data is not used in tree 

construction and thus the model‟s predictive capacity can be calculated as the total OOB 

misclassification rate, sensitivity (% presences correctly classified) and specificity (% of 

absences correctly specified) (Cutler et al. 2007). Predictor importance is calculated based on 

loss in predictive performance. The values of the specific predictor in question are permuted 

amongst the OOB data. If the predictor has little or no influence over the response class then 

permuting the values for this predictor should have no influence on overall misclassification 

rate. However, if the predictor is important then there will be an increase in the 

misclassification rate as predictors are uncoupled from their true classes. The modified 

misclassification rate is estimated by passing the permuted predictor variables down each tree 

in the forest. The difference between the original and the modified misclassification rates, 

divided by the standard error, gives a measure of the individual variable‟s importance (Cutler 

et al. 2007). 

The macroalgal species chosen by the BIOENV analysis were split into two groups, 

one consisting of species that, although they may display seasonality in abundance, are 

present year round, and another group of species that is entirely ephemeral and absent in 

some seasons. Ephemeral species were those that were typically only observed during the 

spring and summer months (ephemeral reds such as Helminthocladia sp., and ephemeral 

browns such as Colpomenia sinuosa, Leathesia difformis), but, Porphyra spp., Ulva spp. and 

Undaria pinatifida were also considered in this class as they display strong seasonality. To 

analyse macroalgal distributions the percentage cover data were reclassified as a binary 

measure of presence-absence within each quadrat. Within each quadrat, species, other than 

those considered here to be ephemeral, were classified as present if they were present in two 

or more of the eight surveys (two surveys were used rather than one such that presence would 

only be recorded for each quadrat if this species was able to persist at that location). As this 

may be misrepresentative of the ephemeral species (that may be absent in seven of the eight 

surveys, but completely dominant in the remaining survey) they were classified as present if 

their maximum percent cover (across surveys) exceeded 1% in any of the eight surveys.  
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RF classification analyses were performed on the macroalgal presence-absence 

classes using the randomForest package in R (Liaw & Wiener 2002). Distance was omitted 

from these models because, unlike the BRT routine that allows some control over factor 

responses (monotonic increasing/decreasing), the random forest routine has no such control 

over predictor response. Consequently it is likely that the Distance factor would model site-

specific differences that may be associated with other variables (e.g., wave exposure) to the 

detriment of wider applicability of the model. The remaining predictors of the eight predictor 

sets were then modelled by implementing the randomForest function with the number of trees 

set at 10,000 and the number of predictors available at each node set to the square root of the 

total number of predictors available (Cutler et al. 2007). This was performed for each 

predictor set and the predictor set with the lowest OOB error rate was chosen. Predictors that 

had a negative impact on predictive performance were excluded from models and the model 

rerun with the remaining predictors. The OOB error rate, sensitivity and specificity of the 

model with the lowest OOB error rate are presented, as well as estimates of variable 

importance. A further parameter, Cohen‟s-κ was calculated according to the equation 

  
                            

                        
 

eqn. 5.2 

where n is the number of observations, a is the number of presences correctly predicted, b is 

the number of absences incorrectly predicted as presences, c is the number of presences 

incorrectly predicted as absences, and d is the number of absences correctly predicted. 

Cohen‟s-κ gives a measure of the agreement between the model predictions and the recorded 

data after accounting for agreements that could have arisen by chance (Manel et al. 2001) and 

ranges between 0, indicating agreement is entirely by chance, and 1, indicating absolute 

agreement between predictions and observations. It is therefore a more robust measure than 

the total OOB error rate, which can be affected by high/low prevalence values (Manel et al. 

2001). Finally, partial dependency plots for the four most influential factors are plotted for 

models with κ-values greater than 0.5 (remaining partial dependency plots are included in 

Appendix 3).  

5.2.9 – Example predictive maps 

As an illustration of how the model results can be applied to the surrounding 

coastline, maps are presented of the predicted abundance/percent cover and presence-absence 
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of algal species for the area around Island Bay (in a rectangle ~ 1.5 km E-W and ~1.2 km N-

S, from bottom-left: 41° 21.24‟ S, 174° 45.72‟ E, to top-right: 41° 20.61‟ S, 174° 46.77‟ E). 

The coastline values of wave energy (Wave min, Wave max etc) (see Chapter 4 for maps of 

wave energy) as well as aspect (calculated as the aspect for each line segment in ArcMap) 

and distance were exported from ArcMap (where they were stored in a .shp file) for each 

coastal point (2 by 2 m grid cells) in this area. Because inclination and substrate type could 

not be determined for each location the model predictions are presented assuming an 

inclination of 45° and HG substrate type. The individual data for wave energy, aspect and 

distance obtained from ArcMap were then combined with inclination and substrate type to 

create a dataset of predictor values. The predict functions in gbm (for BRT models) and 

randomForests was then used to make predictions for the abundance/percent cover and 

presence-absence of algal species, respectively, for each location based on the values in the 

prediction dataset. This was only performed for species where models achieved either a D
2
 

greater than 0.2 or Cohen‟s-κ greater than 0.5 for BRT and randomForest models 

respectively. The model predictions were loaded and visualised in ArcMap to produce the 

final maps.  

5.3 – Results 

5.3.1 – BIOENV analyses of characteristic species 

The majority of individuals were classified to species or genus level. Exceptions 

include Siphonaria sp. (pulmonate limpet) and Patelloida corticata (true limpet) that are 

easily confused, and only distinguished by examining their underside, which could not be 

performed in the field because of the risk of mortality when removing them. These are 

grouped into the species group entitled Siphonaria. Similarly Helminthocladia sp. and 

Catenellopsis oligarthra were pooled into Ephemeral-reds as they co-occurred regularly both 

in space and through time; Colpomenia spp. and Leathesia difformis were grouped into a 

group entitled Colpomenia due to difficulties distinguishing between these species. The 

species chosen by the BIOENV analysis as being most indicative of the overall community 

varied amongst surveys (Table 5.2). The majority of species that were included in the most 

parsimonious group of species (smallest number of species to achieve a correlation 

coefficient of 0.95) was mostly consistent amongst surveys (Table 5.2). Of the high intertidal 

species, 11 of the 12 species identified as indicative of the wider community were selected in 

seven or eight of the eight survey specific datasets. In the mid intertidal, 11 of the 19 species 

were chosen in 7-8 of the surveys, two species were chosen in the majority of cases (Codium 
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convolutum and Hildenbrandia spp.), whilst two macroalgal species were identified on two-

three occasions due to seasonal effects (Porphyra sp. and Ephemeral reds), as were two 

mobile-invertebrate species (Notoacmea sp. and Sypharochiton pelliserpentis) and the 

remaining two mobile invertebrate species were chosen as indicative of the wider community 

in one survey (Table 5.2). In the low intertidal zone, seven core species were identified (in all 

seasons) and a further eight species were identified by the BIOENV routine in one or more of 

the surveys (Table 5.2). Based on these findings all species that were identified as 

characteristic of the wider community on more than two occasions (including across tidal 

heights) were incorporated into the predictive analyses. In addition, Halopteris sp., 

Caulacanthus ustulatus, Xiphophora gladiata and Cystophora spp. were incorporated due to 

their high prevalence (greater than 20%) and Undaria pinnatifida was incorporated as it is an 

invasive species and assessing its current distributional characteristics may be important for 

future monitoring. Therefore the groups modelled consisted of five mobile invertebrate 

species from the high intertidal zone (correlation coefficient, ρ, for this group of species with 

the rest of the community; ρave = 0.96, ρmin = 0.96, ρmax = 0.97 across surveys), eight mid 

intertidal mobile invertebrate species (ρave = 0.98, ρmin = 0.93, ρmax = 0.99), two sessile 

invertebrate species at high and mid intertidal heights (high: ρave = 0.99, ρmin = 0.98, ρmax = 

0.99, mid: ρave = 0.98, ρmin = 0.96, ρmax = 0.98), and four high zone (ρave = 0.97, ρmin = 0.96, 

ρmax = 0.99), seven mid zone (ρave = 0.98, ρmin = 0.98, ρmax = 0.99) and sixteen low zone (ρave = 

0.98, ρmin = 0.96, ρmax = 0.99) macroalgal species groups, of which Porphyra sp., ephemeral-

reds, Ulva sp., Undaria pinnatifida and Colpomenia were considered to be ephemeral 

species.  
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Table 5.2. BIOENV analysis results identifying species most responsible for differences in 

community structure amongst sampling units. Species prevalence amongst sampling units is 

also given. 

Species/Species group name Description 

Tidal Height 

Constituent species 

High Mid Low 
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Mobile Invertebrates 
  
  
  
  
  
  
  
  

Notoacmea Limpet 7 0.82 2 0.47 
  

Notoacmea sp. 

Cellana denticulata Limpet 8 0.77 8 0.97 
   

Cellana ornata Limpet 8 0.82 8 0.93 
   

Siphonaria Limpet 8 0.78 7 0.97 
  

Siphonaria australis, Patelloida corticata 

Austrolittorina  Sea snail 8 0.96 8 0.45 
  

A. australis, A. cincta 

Sypharochiton pelliserpentis Chiton 1 0.20 3 0.49 
   

Cellana radians Limpet 
  

8 0.83 
   

Riselopsis varia Sea snail 
  

7 0.54 
   

Diloma aethiops Sea snail 
  

1 0.14 
   

Onchidella nigricans Sea slug 
  

1 0.15 
   

Sessile Invertebrates 

Chamaesipho brunnea Barnacle 8 0.94 8 0.7 
   

Chamaesipho columna Barnacle 8 0.59 8 0.66 
   

Macroalgae 

Porphyra Foliose red 8 0.60 2 0.22 
  

Porphyra spp. 

Gelidium pusillum Turfing red 8 0.47 
     

Apophlaea sinclairii Encrusting red 7 0.26 
     

Hapalospongidion saxigenum Encrusting brown 
  

8 0.31 
   

Ephemeral Reds Turfing red 
  

3 0.3 
  

Helminthocladia sp., Catenellopsis oligarthra 

Crustose coralline algae (CCA) Encrusting coralline 8 0.33 8 0.94 8 0.99 Non-geniculate corallines 

Hildenbrandia spp. Encrusting red 
  

5 0.49 1 0.5 H. kerguelensis, Hildenbrandia sp. 

Diplura sp. Encrusting brown 
  

8 0.41 8 0.47 Diplura sp. 

Codium convolutum Cushion forming green 
  

5 0.2 5 0.24 
 

Coralline turf Turfing coralline 
    

8 0.81 Geniculate corallines 

Champia novae-zelandiae Turfing red 
    

8 0.47 
 

Caulacanthus ustulatus Turfing red 
    

2 0.25 
 

Ulva sp. Foliose green 
    

3 0.35 U. lactuca, Ulva sp. 

Ralfsia expansa Encrusting brown 
    

2 0.10 
 

Zonaria sp. Turfing/Small brown 
    

8 0.72 Z. turneriana, Zonaria sp. 

Halopteris sp. Turfing/Small brown 
     

0.32 H. funicularis, H. virgata 

Xiphophora gladiata Small brown 
    

2 0.28 
 

Glossophora kunthii Small brown 
    

1 0.14 
 

Cystophora spp. Large brown 
     

0.22 C. retroflexa, C. scalaris, C. torulosa 

Undaria pinnatifida Large brown 
     

0.09 
 

Carpophyllum maschalocarpum Large brown 
    

8 0.73 
 

Durvillaea antarctica Large brown 
    

8 0.25 
 

Colpomenia Ephemeral brown         6 0.52 C. sinuosa, C. durvillaei, Leathesia difformis 

5.3.2 – Results of boosted regression tree analyses 

Models of species‟ abundances within the high intertidal quadrats performed better 

than in the mid intertidal with an average D
2
 of 0.3 (range 0.04-0.62) for high intertidal 

quadrats compared to 0.19 (range 0.07-0.5) for mid intertidal quadrats (Table 5.3).  
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Table 5.3. Boosted regression tree model results for sessile and mobile invertebrates giving 

statistics related to model performance, predictor importance, and the modelling parameters 

for the model with the lowest cross-validated residual deviance. In each case the optimal 

number of trees was determined by 10-fold cross validation. Model performance statistics 

represent the mean value across 20 repeat runs with the same model parameters, whilst the 

reported number of trees (nt) is the median number identified across these 20 repeats. (+/-) 

refers to the Distance predictor with + indicating a monotonically increasing function and - 

indicating a monotonically decreasing function. 
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Sessile Invertebrates 

Chamaesipho 
brunnea 

H 4.2 
1.6 

(0.3) 
0.62 9 9 13 27 

  
42 
(+) 

0.0075 0.75 1 3025 
15 
m 

M 3.5 
3.1 

(0.4) 
0.12 3 3 42 42 

  

10 

(+) 
0.001 0.75 4 1675 

10 

m 

Chamaesipho 

columna 

H 7.1 
3.8 

(0.7) 
0.46 16 8 6 

 
12 12 

46 
(-) 

0.0025 0.65 3 7875 
20 
m 

M 3.9 
2.8 

(0.5) 
0.27 1 7 1 19 

  
72 
(-) 

0.001 0.75 1 2600 
20 
m 

Mobile Invertebrates 

Notoacmea 

sp. 

H 6.0 
4.0 

(0.8) 
0.34 12 11 1 58 

  

18 

(+) 
0.001 0.7 4 3275 

20 

m 

M 5.3 
4.7 

(1.1) 
0.12 9 4 19 55 

  
13 
(-) 

0.0025 0.7 3 1275 
10 
m 

Cellana 
denticulata 

H 5.7 
5.5 

(1.6) 
0.04 14 16 10 49 

  

11 

(+) 
0.0075 0.75 4 1350 

5   

m 

M 4.1 
2.9 

(0.6) 
0.30 21 5 2 

 
38 10 

24 

(+) 
0.0025 0.65 4 3275 

10 

m 

Cellana ornata 

H 10 
9.5 

(1.2) 
0.05 21 11 10 46 

  

12 

(+) 
0.005 0.75 2 2000 

5   

m 

M 10.9 
9.7 

(1.4) 
0.12 23 15 9 33 

  
20 
(-) 

0.0075 0.75 3 1700 
5   
m 

Austrolittorina 

H 494 
287 
(55) 

0.42 19 16 1 
 

38 14 
12 
(-) 

0.0075 0.7 4 3650 
15 
m 

M 45.3 
42.3 

(16.5) 
0.07 13 12 11 45 

  
19 
(-) 

0.0075 0.65 4 1250 
10 
m 

Siphonaria 

H 4.9 
3.9 

(0.6) 
0.20 22 15 3 

 
35 8 

17 
(+) 

0.01 0.65 2 1250 
15 
m 

M 10.3 
5.2 

(1.1) 
0.50 42 9 23 

 
4 14 

8 

(-) 
0.005 0.75 1 2400 

5   

m   

Sypharochiton 
pelliserpentis 

M 2.3 
1.9 

(0.5) 
0.16 2 17 31 

 
20 7 

23 
(-) 

0.001 0.7 1 1550 
20 
m 

Cellana 

radians 
M 2.8 

2.3 

(0.4) 
0.20 10 14 19 26 

  

31 

(-) 
0.0025 0.65 3 2025 

10 

m 

Risellopsis 
varia 

M 2.9 
2.8 

(0.8) 
0.06 18 20 5 30 

  
27 
(-) 

0.0075 0.7 4 950 
10 
m 

 

The two Chamaesipho (barnacle) species had relatively high D
2
 values for the high 

shore quadrats, but lower D
2
 values at mid tidal heights. These two species had contrasting 

responses with regard to Distance (Figure 5.3), but both showed a positive response with 
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regard to wave exposure (Figure 5.3). In addition, C. columna showed a preference for flat to 

slightly inclined surfaces (<40°) (Figure 5.3).  

Figure 5.3. Partial dependency plots of BRT models for sessile invertebrate species. Black 

lines illustrate the fitted function of the marginal effect of each predictor on the logistic 

transformed % cover, whilst dotted red lines indicate a smoothed fit to the fitted function. 

Values in parentheses next to x axis labels indicate predictor relative importance. 

The abundances of mobile invertebrates were in general less well predicted by these 

models than the abundance of sessile invertebrates (Table 5.3). Wave forces were the best 

predictors for species occupying the high tidal zone, with all displaying increases in 

abundance with increasing wave exposure (Figure 5.4). Siphonaria, however, showed a 

decrease in abundance for the highest wave exposures and was most abundant at moderate 

wave exposures (Figure 5.4). Models for the larger limpets, C. denticulata and C. ornata, at 

high tidal heights had very low D
2
 values indicating poor predictive performance (Table 5.3).  
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At mid intertidal heights, C. denticulata was more abundant in more exposed 

locations, tending to prefer flat to moderately inclined surfaces, with increasing abundance 

moving away from the harbour mouth (Figure 5.4). This is in contrast to C. radians, which 

displayed opposite patterns in abundance in response to distance and wave exposure (Figure 

5.4). Siphonaria at mid intertidal heights did not display the same preference for medium to 

high wave exposure as individuals at high tidal heights, but were more abundant on flat to 

moderately inclined surfaces, and at locations with SG substrate type (Figure 5.4). Models for 

the remaining species had low predictive power (D
2
 ≤ 0.16). However, Notoacmea sp. 

abundance displayed similar responses to wave action and inclination as at high tidal heights 

(Appendix 3, Figure A3.1).  
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Figure 5.4. Partial dependency plots of BRT models for mobile invertebrate species where 

models achieved a D
2
≥0.2. Black lines illustrate the fitted function of the marginal effect of 

each predictor on the log transformed abundance, whilst dotted red lines indicate a smoothed 

fit to the fitted function. Values in parentheses next to x-axis labels indicate predictor relative 

importance. 
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5.3.3 – Results of random forests analyses 

Models for CCA at mid and low tidal heights were not performed as it was present in 

all but one surveyed location at mid tidal heights and in all low surveyed locations. The 

classification analyses achieved a high classification accuracy, with all 25 models achieving 

OOB error rates less than 40%, and nearly half of all models (12) achieving error rates less 

than 20% (Table 5.4). Mean OOB error rates were 19.9% (median: 21.7%) and sensitivity 

(proportion of presences correctly predicted) and specificity (proportion of absences correctly 

predicted) were similarly high, with a mean rate of 74.2% (median: 76.2%) and 73.1% 

(median: 82.8%). Cohen‟s-κ corresponded closely to OOB error rates, with low OOB error 

rates corresponding to high κ values for all but two groups, Porphyra spp. – high and C. 

maschalocarpum (Table 5.4). These had low OOB error rates, but also low κ values. There 

was considerable variation in model performance amongst tidal heights with models for 

species at high and mid tidal heights performing poorly compared with models for low 

intertidal species (Table 5.4). 

At high tidal heights only one species achieved a relatively low OOB error rate 

(Porphyra spp., OOB error 11.1%), however, examination of Cohen‟s-κ revealed that 

agreement between predictions and observations was due entirely to chance (κ=0) with all 

absences misclassified as presences (Table 5.4). Models for the remaining species had κ-

values of 0.34-0.42 indicating some agreement between observations and predictions, more 

than would be expected by chance. Models for Gelidium pusillum predicted that it was more 

likely to be found in wave-exposed locations, on moderately inclined surfaces that were 

east/west to southerly facing whereas Apophlaea sinclairii was more likely to be found on 

flat surfaces at medium to high wave exposures, displaying a preference for the sandstone 

dominated (SG) substrate type (Appendix 3, Figure A3.3). Models describing CCA predicted 

a preference for the SG substrate type, with some indication that it was more likely to be 

found at higher wave exposures on flat to moderately inclined surfaces (Appendix 3, Figure 

A3.3). 
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Table 5.4. Model results for algal presence-absence, including OOB error (% observations 

misclassified), sensitivity (% presences correctly classified), specificity (% absences correctly 

classified), and Cohen‟s-κ (proportion of agreements corrected for chance agreement) for the 

model with the lowest OOB error. Values in parentheses indicate the fraction of 

presences/absences correctly classified for sensitivity/specificity respectively. Predictor 

importance is the average % increase in OOB error when that factor is omitted. 

Species Height 

O
O

B
 e

rr
o
r 

(%
) 

S
e
n
s
it
iv

it
y
 (

%
) 

S
p
e
c
if
ic

it
y
 (

%
) 

C
o
h
e
n
’s

-κ
 Predictor Importance 

Wave 
Scale 
Size 

In
c
lin

a
ti
o
n

 

A
s
p
e
c
t 

S
u
b
s
tr

a
te

 

W
a
v
e
 m

in
 

W
a
v
e
 

m
a
x
 

W
a
v
e
 a

v
e

 

Porphyra sp. 

H 11.1 
100.0 

(40/40) 
0.0 

(0/5) 
0.00 3.5 -0.8 5.4 7.8 9.5 

 
15 m 

M 35.6 
66.7 

(14/21) 
62.5 

(15/24) 
0.29 1.7 -0.9 9.3 

  
6.4 20 m 

Gelidium pusillum H 26.7 
83.9 

(26/31) 
50.0 

(7/14) 
0.35 3.5 6.2 1.0 

  
11.1 20 m 

Apophlaea 
sinclairii 

H 28.9 
50.0 

(8/16) 
82.8 

(24/29) 
0.34 6.8 5.5 7.7 2.2 12.7 

 
15 m 

Hapalospongidion 
saxigenum 

M 22.2 
62.5 

(10/16) 
86.2 

(25/29) 
0.50 0.8 2.4 1.3 9.0 13.5 

 
20 m 

Ephemeral Reds M 28.9 
55.5 

(10/18) 

81.5 

(22/27) 
0.38 

  
13.8 5.9 9.6 

 
20 m 

CCA H 28.9 
76.2 

(16/21) 
66.6 

(16/24) 
0.42 5.1 -2.8 15.1 6.2 6.2 

 
20 m 

Hildenbrandia sp. 

M 28.9 
84.4 

(27/32) 

38.5 

(5/13) 
0.25 2.4 -2.4 0.9 7.2 5.0 

 
20 m 

L 26.1 
90.3 

(28/31) 
40.0 

(6/15) 
0.34 

 
3.1 3.4 10.9 

  
20 m 

Diplura sp. 

M 31.1 
68.2 

(15/22) 

69.6 

(16/23) 
0.38 2.5 2.8 14.4 5.8 -0.6 

 
10 m 

L 10.9 
90.9 

(20/22) 
87.5 

(21/24) 
0.78 4.6 4.4 13.6 19.7 10.1 

 
20 m 

Codium 
convolutum 

M 26.7 
46.2 

(6/13) 

84.4 

(27/32) 
0.32 1.4 10.8 7.1 

  
11.0 10 m 

L 10.9 
63.7 

(7/11) 
97.1 

(34/35) 
0.67 15.3 5.6 9.6 8.8 1.8 

 
10 m 

Coralline Turf L 2.2 
100 

(43/43) 
66.7 
(2/3) 

0.79 6.3 4.7 -0.1 
  

2.7 10 m 

Champia novae-
zelandiae 

L 17.4 
79.2 

(19/24) 
86.4 

(19/22) 
0.65 -0.5 6.3 15.6 13.4 9.6 

 
20 m 

Caulacanthus 
ustulatus 

L 15.2 
60.0 

(9/15) 
96.8 

(30/31) 
0.62 -0.1 1.2 0.5 

  
19.7 20 m 

Ulva sp. L 21.7 
68.4 

(13/19) 
85.2 

(23/27) 
0.54 7.0 8.4 1.6 17.4 0.8 

 
15 m 

Zonaria sp. L 2.2 
100 

(40/40) 
83.3 
(5/6) 

0.90 1.8 10.5 2.2 16.4 4.7 
 

20 m 

Halopteris sp. L 30.4 
61.1 

(11/18) 

75 

(21/28) 
0.36 10.0 0.2 0.7 5.1 -1.7 

 
10 m 

Xiphophora 
gladiata 

L 28.3 
33.3 

(5/15) 
90.3 

(28/31) 
0.27 6.7 5.0 7.5 6.1 9.6 

 
15 m 

Cystophora spp. L 13.0 
76.5 

(13/17) 

93.1 

(27/29) 
0.71 

 
4.2 11.0 19.7 13.0 

 
20 m 

Undaria 
pinnatifida 

L 13.0 
78.5 

(11/14) 
90.6 

(29/32) 
0.69 9.2 

 
18.3 16.7 

  
15 m 

Carpophyllum 

maschalocarpum 
L 17.4 

92.1 

(35/38) 

37.5 

(3/8) 
0.33 

 
0.6 4.3 14.1 5.9 

 
20 m 

Colpomenia L 13.0 
93.1 

(27/29) 
76.5 

(13/17) 
0.71 1.8 1.2 5.1 18.8 8.9 

 
10 m 

Durvillaea 

antarctica 
L 8.7 

75.0 

(12/16) 

100.0 

(30/30) 
0.80 -1.5 -0.7 -0.3 18.7 17.5 

 
20 m 
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Models for macroalgal groups at mid tidal heights had mean OOB error rates of 

28.9% (median: 28.9%), with similarly low κ-values (0.25-0.5). The model for H. saxigenum, 

however, had a κ-value of 0.5 (Table 5.4), with the model predicting that this species was 

present predominantly at the most exposed locations (Figure 5.5), with maximum and 

minimum wave exposure indices having the highest predictor importance (Table 5.4). The 

response displayed by Porphyra sp. at mid tidal heights was again unclear but showed an 

increased likelihood of occurrence on HG substrates at moderate inclinations and high wave 

exposures (Appendix 3, Figure A3.4). Ephemeral red algae were more likely to be found on 

the SG substrate type at mid to high wave exposures (Appendix 3, Figure A3.4). Of the 

encrusting algal types Hildenbrandia sp. was more likely to be found at high wave exposures, 

but not at the most exposed locations (decline at highest wave exposures revealed by Wave 

max) and on inclined surfaces, whereas Diplura sp. was most likely to be found on the SG 

substrate type in sheltered, south-facing locations with moderate to wall like inclinations 

(Appendix 3, Figure A3.4). C. convolutum displayed a preference for south-facing, wave-

sheltered locations (Appendix 3, Figure A3.4). 

Models for species at low tidal heights achieved low OOB error rates, averaging 

15.36% (median 13.0%), with high sensitivity (mean: 77.47%, median: 78.5%) and 

specificity (mean: 80.4%, median: 86.4%) as well as similarly high κ-values (mean: 0.61, 

range 0.27 – 0.9). For the encrusting species, models indicate that Diplura sp. and C. 

convolutum predominantly occupy wave-sheltered locations, favouring the SG substrate type, 

with C. convolutum also showing a strong preference for more inclined surfaces (Figure 5.5). 

Models for Hildenbrandia sp. indicate a preference for  non-North facing boulder substrates 

but showed contrasting responses with regard to wave exposure, tending to be present at low 

to mid wave exposures, when compared to mid tidal height models (Appendix 3, Figure 

A3.5). The predictor response for coralline turf indicates a preference for flat to moderately 

inclined surfaces of any aspect except those facing due south (Figure 5.5).  
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Figure 5.5. Partial dependency plots for encrusting algal species presence-absence based on 

relationships obtained from random forests analyses. Plotted functions illustrate the logistic 

transformed probability of each species being present as a function of each predictor for the 

top four predictors ranked by predictor importance. Values in parentheses next to x axis 

labels indicate predictor importance. 

Models of the understorey/turfing algal species reveal that Zonaria sp. was present at 

all locations except those that face due-south and experience very high wave action (Figure 

5.6), with Halopteris sp. displaying similar responses with regard to wave action and aspect, 

but tending to be found predominantly on flat to moderately inclined surfaces (< 30°) 

(Appendix 3, Figure A3.5). Models for C. novae-zelandiae indicated a preference for the SG 

substrate type but displayed a similar response to wave exposure as Zonaria sp. (Figure 5.6). 

Models for C. ustulatus predict that it is most likely to be found in wave-exposed locations, 

with other factors having little effect (Figure 5.6). The ephemeral species, Ulva sp. and 

Colpomenia were revealed to occur predominantly in wave-sheltered locations, displaying a 
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preference for the SG substrate type (Figure 5.6). Both were also predicted to be more likely 

to occur on flat surfaces, with Ulva sp. less likely to occur on south-facing surfaces (Figure 

5.6). 

 

Figure 5.6. Partial dependency plots for understorey/turfing and ephemeral algal species 

presence-absence based on relationships obtained from random forests analyses. Plotted 

functions illustrate the logistic transformed probability of each species being present as a 

function of each predictor for the top four predictors ranked by predictor importance. Values 

in parentheses next to x-axis labels indicate predictor importance. 
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The remaining macroalgal groups consisted of large brown algal species. Models for 

C. maschalocarpum had a low κ-value (0.33), indicating the majority of agreements were due 

to chance with most absences misclassified (Table 5.4). As a result partial dependency plots 

were difficult to interpret (Figure 5.7).  Models for X. gladiata failed to accurately predict 

when this species would be present in the majority of cases (sensitivity 33.3%), but partial 

dependency plots indicate presences were most likely in mid wave-exposure locations on flat 

to moderately inclined surfaces (Appendix 3, Figure A3.5). Models for the remaining large 

brown algal species had κ-values in the range 0.69-0.8 indicating good agreement between 

model predictions and observations. Of the remaining species models predicted that D. 

antarctica was present only in the most wave-exposed locations, whereas Cystophora spp. 

and U. pinnatifida are predicted to occur only in wave-sheltered locations, favouring boulder 

and sandstone dominated substrates, respectively (Figure 5.7). 
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Figure 5.7. Partial dependency plots for canopy forming algal species presence-absence 

based on relationships obtained from random forests analyses. Plotted functions illustrate the 

logistic transformed probability of each species being present as a function of each predictor 

for the top four predictors ranked by predictor importance. Values in parentheses next to x 

axis labels indicate predictor importance. 

5.3.4 – Predictive maps 

The abundance/percent cover for C. brunnea and Notoacmea sp. are similar in having 

the greatest abundance at the most exposed locations on the forefront of intertidal platforms, 

whereas Austrolittorina spp. showed a similar distribution, but had greatest abundance in mid 

exposure locations away from the front of intertidal platforms, and lowest abundance in the 

most sheltered locations behind obstacles (Figure 5.8). Siphonaria abundance was predicted 

to be greatest at moderate exposure locations and least in very sheltered and exposed 

locations (Figure 5.8). C. columna abundance decreased from east to west (Figure 5.8). 
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Figure 5.8. Maps illustrating the abundance and % cover for species in the high intertidal 

zone. Black lines in all figure panels indicate unsuitable habitat in the form of sand and/or 

gravel sections of coastline. 

C. denticulata was predicted to be most abundant in exposed locations at the forefront 

of intertidal platforms and increased in abundance from east-west (Figure 5.9). This is in 

contrast to C. radians, which displays the opposite patterns of abundance (Figure 5.9). The 

encrusting alga H. saxigenum was predicted to be predominantly found at open wave-

exposed locations at the tips of intertidal platforms (Figure 5.9). 



Chapter 5 
 

 
154 

 

Figure 5.9. Maps illustrating the abundance of mobile invertebrate species and the presence-

absence of the encrusting algae Hapalospongidion saxigenum in the mid intertidal zone. 

Black lines in all figure panels indicate unsuitable habitat in the form of sand and/or gravel 

sections of coastline. 

The low intertidal algal species‟ distributions illustrate a shift in community from a 

diverse algal assemblage in sheltered locations to an assemblage consisting of only a few 

species at the most exposed locations (Figure 5.10). At the most sheltered locations all 

species except D. antarctica and C. ustulatus were predicted to be present. At mid exposure 

locations Cystophora spp., Ulva sp. and Diplura sp. become absent and at the most exposed 

locations at the tips of intertidal projections and intertidal islands a community consisting of 

coralline turf, Zonaria sp., C. maschalocarpum, C. ustulatus and D. antarctica, with no 

ephemeral species, was predicted (Figure 5.10).  
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5.4 – Discussion 

Exhaustive biological surveys are logistically not feasible, and given the already high 

costs of performing field surveys there is a great incentive to increase the capacity of what 

monitoring data can reveal regarding ecological patterns (Nicholls 1989; Manel et al. 1999). 

As demonstrated here, predictive species distribution models can increase the spatial 

applicability of limited field surveys to achieve more widespread coverage. The increased use 

of machine learning routines (Robinson et al. 2011), such as BRT and RF, that are designed 

specifically for prediction (Elith & Leathwick 2009) have aided in the development of 

models to increase predictive capabilities, subsequently increasing the confidence that can be 

placed in the results of distribution modelling. Although not as frequently applied in marine 

ecological studies compared to terrestrial studies (Robinson et al. 2011), this study 

demonstrates that, in conjunction with wave model predictions, adequate predictive models 

can be developed for intertidal species on relatively fine spatial scales.  

Explanation (how, why) and prediction (where, when) are two separate concepts, and 

whilst explanation may be sufficient for prediction, prediction based on the identification of 

correlative relationships (rather than causative relationships such as is the case for process-

based species distribution modelling) (Morin & Thuiller 2009) is not always sufficient for 

explanation of the ecological process causing these patterns. Despite this many of the 

predictive relationships identified in this study are consistent with the ecology of these 

species.  

5.4.1 – Abiotic associations  

Of the two barnacle species examined both showed increased abundance with 

increasing wave exposure (Figure 5.3), which is consistent with earlier research for barnacles 

in general (e.g., Ballantine 1961; McQuaid & Branch 1985; Menge 2000a) and particularly 

for Chamaesipho brunnea, which is often a characteristic feature of exposed locations in New 

Zealand (Morton & Miller 1968; Raffaelli 1979). This may arise from the more frequent 

delivery of food through wave-induced flow (McQuaid & Lindsay 2000), and because 

barnacles in more wave-exposed locations are submerged more frequently than those in 

wave-sheltered locations, increasing the capacity for feeding (Menge 2000a). This may be 

particularly important in this area as it has been suggested that low particulate food 

concentration in the water column may be the reason why mussels are almost absent along 

the Wellington South Coast (Helson et al. 2007; Gardner 2008). Thus food availability may 
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be a limiting resource for mussels and barnacles that both rely on suspended particulate food 

matter. However, little black mussel (Limnoperna pulex) abundance was highest at the more 

wave exposed locations, but more importantly their abundance was greatest at locations with 

the highest C. brunnea % cover (see Appendix 3B). This suggests that L. pulex are capable of 

surviving under similar conditions as C. brunnea (however, a positive association between 

these species can also not be discounted). Furthermore, Gardner (2008) noted that the larger 

Perna canalicula died sooner when placed in Cook Strait water than the smaller Mytilus 

galloprovincialis and Aulacomya maoriana suggesting that the low particulate food 

concentration in Cook Strait water was insufficient to maintain larger individuals. Therefore 

food limitation may act to restrict the larger bodied mussels from colonising the south coast 

but smaller bodied individuals, such as L. pulex (and also C. brunnea), may be able to survive 

at lower food concentrations. If these food requirements also apply to barnacles then the 

combined effects of increased feeding times (due to more frequent submersion) and increased 

replenishment of local food availability (through increased water flow with wave action, 

McQuaid & Lindsay 2000) may explain the higher % cover of barnacles and L. pulex in 

wave-exposed locations. Other factors may also be important, such as increased barnacle 

recruitment and a reduction in mortality rates from desiccation/heat stress (due to splash and 

surge) and predation (due to predator dislodgement and a reduction in predator foraging 

times) at the more exposed locations (Menge 1983, 2000b). Interspecific competition is 

unlikely to be a determinant, however, because there were few, if any, other species present 

in the high intertidal zone, with the majority of space being bare rock.  

Distance from the harbour was a strong predictor of abundance in both Chamaesipho 

species, with C. brunnea predicted to increase in abundance, whilst C. columna abundance 

was predicted to decrease (Figure 5.3). C. columna is the dominant species in Wellington 

Harbour occupying >50% of the available substrate in the high intertidal zone (Demello & 

Phillips 2011). Demello & Phillips (2011) also found that settlement of Chamaesipho 

individuals of both species on the south coast was considerably lower than in the harbour and 

displayed contrasting patterns, with the majority of settlers in the harbour consisting of 

individuals of C. columna, whereas settlers on the south coast were C. brunnea suggesting 

differential larval supply between the two areas. Similarly, Helson & Gardner (2004) found 

that planktonic larval densities of mussels were an order of magnitude higher in Wellington 

Harbour compared to the Wellington South Coast. Philips & Hutchinson (2008) also 

demonstrated that, whilst the magnitude of mussel recruitment is similar between the two 
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regions (in a grazer exclusion experiment), the recruits were of different species between the 

two areas, with the blue mussel M. galloprovincialis recruiting to the harbour, whilst recruits 

to the south coast consisted of the little-black mussel L. pulex, suggestive of differential larval 

supply/recruitment between the two regions. Thus, the gradient in C. columna abundance 

may be the result of limited larval supply along the Wellington south coast, with sites closer 

to the harbour entrance receiving a greater or more consistent supply of C. columna larvae. 

With regards to C. brunnea the Wellington Harbour is unlikely to be a source of larvae given 

the low abundance and settlement of C. brunnea in the harbour (Demello & Phillips 2011). 

Given the predominant flow direction (NW to SE, Heath 1971) and potential sources of C. 

brunnea larvae, the gradient in C. brunnea abundance may also derive from larval dynamics, 

with C. brunnea larvae arriving on the South Coast from sources further into the Cook Strait. 

Larval transport acting in isolation would be unlikely to fully explain these relationships, 

however, because species would be able to successively colonise areas in a stepping-stone 

way through time. Previous studies, however, have also demonstrated a gradient in water 

column composition with decreasing suspended particulate matter and dissolved nutrients as 

distance from the harbour increases (Gardner 2000; Helson et al. 2007; Helson & Gardner 

2007). If food is limiting then individuals in this area may have lower reproductive output, 

which in combination with low larval supply may limit their dispersal along this coast as has 

been suggested for a discontinuity in intertidal community structure along the Chilean coast 

(Navarrete et al. 2005). Therefore food limitation (as suggested by Helson et al. 2007 for 

mussels on Wellingtons south coast) in combination with larval supply differences may 

explain the patterns seen for C. columna and C. brunnea.  

Notoacmea sp. and Austrolittorina spp. were also predicted to have higher abundances 

at higher wave exposures (Figure 5.4). Notoacmea sp. are predominantly found in the 

unoccupied space within beds of C. brunnea and so the increase in abundance with wave 

exposure is likely linked with increasing amounts of suitable habitat created by C. brunnea 

abundance at higher wave exposures. This may also apply to Austrolittorina spp. as littorinid 

snails have been shown to be associated with barnacle cover (Underwood & McFadyen 1983; 

Chapman 1994), due to the complex surface topographies created by living barnacles and the 

empty shells of recently deceased barnacles providing small-scale refuge from wave-shock 

(Underwood & McFadyen 1983; O‟Donnell & Denny 2008). Wave exposure is also likely to 

reduce desiccation and heat stress (Harley & Helmuth 2003) and may also promote the 

biomass of biofilms (diatoms, microalgae), which has been shown to be higher in more wave-



Chapter 5 
 

 
159 

 

exposed locations (Thompson et al. 2005), subsequently providing higher food availability 

for intertidal grazers. Austrolittorina spp. also exhibited a decrease in abundance at the 

highest wave energies (response to Wave max, Figure 5.4), which may be due to the 

increased probability of dislodgement of individuals at these locations (Trussell 1997). In 

addition, both Notoacmea sp. and Austrolittorina spp. were more abundant on flat surfaces 

compared to inclined surfaces (Figure 5.4), which may result from the reduction in wave 

forces experienced on horizontal versus vertical surfaces (Chapman 1995; Helmuth & Denny 

2003) amongst other factors including increased energy expenditure staying attached to 

vertical compared to horizontal surfaces (Donovan & Taylor 2008).  

At mid tidal heights opposing relationships were observed for C. denticulata 

compared to C. radians with regard to both wave exposure and distance from the harbour 

(Figure 5.4). Limpets of the genus Cellana in Australia experienced increased mortality when 

densities were experimentally manipulated above observed densities, indicating that Cellana 

densities may be self-regulating due to food limitation (Creese & Underwood 1982). 

Although speculative, there could be a trade off in abundance between these two species with 

C. denticulata more adapted to withstand higher wave forces and therefore becoming 

competitively dominant in more exposed locations. In addition, these two species may have 

become more specialised towards certain environmental niches in this area in order to reduce 

inter-specific competition. Manipulative studies would, however, be required to ascertain the 

true relationship, if any, between these species. Limpets in the Siphonaria group were 

predicted to be most abundant in the mid intertidal zone on relatively flat surfaces consisting 

of the sandstone dominated substrate type, a trait that they share with C. radians (Figure 5.4). 

This substrate has a coarser surface texture (akin to sandpaper), is far easier to incise marks 

and depressions on its surface and parts are more easily pried (even by hand, Kennedy & 

Beban 2005) away from larger formations than for the other substrate types. Surface texture 

has been shown to be an important cue for larval settlement (McGuinness & Underwood 

1986; Tourneux & Bourget 1988; Menge et al. 2010) and also is likely to influence biofilm 

formation, with consequences for food availability and settlement (Crisp & Ryland 1960). 

The provision of microhabitats between the two substrate types (SG, HG) is also likely to 

differ (McGuinness & Underwood 1986). This may be particularly important for Siphonaria 

(mostly individuals of Siphonaria australis, although differentiation between S. australis and 

Patelloida cortica could not always be achieved) as this species has homing tendencies, and 

is therefore reliant upon the availability of suitable microhabitats for home scars.  
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 The remaining species identified as characteristic of mobile invertebrate communities 

were modelled inadequately, achieving low predictive deviance (D
2
 ≤ 0.2). Availability of 

suitable microhabitats (cracks, crevices, ledges and overhangs) is likely to be an important 

predictor for these species as for other mobile invertebrates in the high intertidal 

(McGuinness & Underwood 1986; Gray & Hodgson 1998; Underwood 2004). Microhabitats 

provide both respite against desiccation stress (Gray & Hodgson 1998; Jones & Boulding 

1999; Martins et al. 2010), predation (Mercurio et al. 1985; Marsh 1986) and wave forces 

(O‟Donnell & Denny 2008) and thus are likely to be an important predictor of abundance. In 

particular, Cellana ornata are known to return to a home scar (Boyden & Zeldis 1979), whilst 

S. pelliserpentis were always observed clustered into cracks or grooves in the rock. In 

addition C. denticulata at high tidal heights are likely to be more susceptible to desiccation 

stress than at mid-tidal heights, and so individuals would only be present if suitable 

microhabitats were available in the high zone (Martins et al. 2010). Although large cracks 

and crevices were specifically avoided during sampling, there was considerable variation 

within the sampled plots of smaller features (cracks, overhangs, depressions, grooves) both 

with regard to the scale size of individual features (may select for individuals above or below 

a certain size) (Underwood 2004) as well as diversity of features (may allow a progression of 

shelter as individuals develop). Consequently, densities of these species, on the small-scales 

sampled, are likely to be influenced by the availability of suitable microhabitats and not 

quantifying this as a factor may explain the relative failure of the models for these species. In 

addition, the effective area of plots with higher surface complexity is larger than plots with 

lower surface complexity. Therefore this will have introduced considerable variability in 

abundances due to the variable effective area surveyed between plots with different surface 

complexities. This is likely to have also masked any relationships that may exist between the 

factors considered herein and mobile invertebrate abundance.   

Models for macroalgal species in the high and mid intertidal performed poorly 

compared to the low intertidal macroalgal species (Table 5.4). Model results for the high 

intertidal alga Porphyra sp. failed to accurately predict any absences (specificity = 0%) with 

all agreement between predictions and observations due to chance rather than model 

performance (κ=0). The model failure in this case, and also for C. maschalocarpum, may 

largely derive from the high prevalence of these species, with only five and eight quadrats 

recording an absence for Porphyra sp. and C. maschalocarpum, respectively. In scenarios 

such as this there is little information within the data to inform the modelling process 
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regarding the conditions under which each species is absent, leading to inadequate predictive 

models (Manel et al. 2001). This also highlights the need to consider multiple metrics of 

model predictive ability, because based on OOB misclassification rates models for both of 

these species performed well, but performed poorly when considering specificity and 

Cohen‟s-κ (Manel et al. 1999; 2001). However, these results also indicate that Porphyra sp. 

and C. maschalocarpum, as well as CCA (observed in nearly all mid and low intertidal 

quadrats) are widespread species/groups, occurring in almost all conditions where sampling 

was performed.  

High intertidal macroalgal species are likely to be predominantly limited by 

desiccation stress (Connell 1972; Lubchenco 1980). Whilst predictive accuracy was low for 

Gelidium pusillum, model predictions were consistent with this species preferring locations 

that remain well hydrated (predicted increased likelihood of presence with wave exposure, 

and on moderately inclined surfaces compared to walls that have greater drainage) in 

locations that are not fully exposed to the sun (predicted increased likelihood on E/W to S 

facing aspects, decreased likelihood on flat surfaces) (Gómez et al. 2004).  The model results 

for CCA displayed a similar response to inclination and wave exposure, and along with 

observations that CCA in the high intertidal zone was limited to cracks/grooves in the rock 

where water is likely to pool indicate this group is also likely limited by 

desiccation/dehydration stress (see also Padilla 1984).  

Similarly models for the mid intertidal algal species, mostly encrusting species, failed 

to attain high predictive accuracy. The exceptions was H. saxigenum, which was predicted to 

have a strong preference for the most exposed locations, as well as favouring HG and HGB 

substrates, which matches the description given in Adams (1994) of a species favouring hard, 

smooth substrates. The mid intertidal zone along Wellington‟s south coast is dominated by 

bare rock with an average availability across seasons of 68%, (seasonally between 64% and 

74%), with bare rock, CCA and barnacles accounting for 89% (varied seasonally between 

85% and 91%). Phillips & Hutchinson (2008) demonstrated that excluding limpets, which are 

numerically the dominant group in the mid intertidal, had a strong influence over all algal 

groups (filamentous, foliose, encrusting and microalgae) suggesting strong control of mid 

intertidal algal species by limpet grazing and that biological rather than physical factors may 

be the major determinant of macroalgal distributions in the mid intertidal (Underwood & 

Jernakoff 1981, 1984).  
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The predictive models revealed that low shore macroalgal communities are largely 

governed by wave exposure, with wave-related predictors (wave max, wave min, wave ave) 

having the greatest influence for 10 of the 15 species. There is a large body of literature 

describing the influences of wave forces on intertidal macroalgae (Gaylord et al. 1994; 

Blanchette 1997; Denny & Gaylord 2002; Pratt & Johnson 2002; Kitzes & Denny 2005) and 

many more demonstrating how these translate to differences in algal distribution (Bustamante 

& Branch 1996; England et al. 2008; Hill et al. 2010). The majority of algal species showed a 

decrease in the probability of presence with increasing wave action with only C. ustulatus 

and D. antarctica exhibiting an increase in probability (although there was some indication 

that X. gladiata is most likely to be found at intermediate wave exposures). Damage and 

dislodgement of species that are less well adapted to continually high wave energies is likely 

to explain some of this variation. However, acting alone this is unlikely to explain the 

absence of most species as these forces would preferentially select for smaller individuals of 

the same species (Gaylord et al. 1994; Denny & Gaylord 2002) and many species display 

morphological differences in wave sheltered compared to wave exposed locations that allow 

them to persist under both conditions (Gaylord et al. 1994; Blanchette 1997; Koehl 1999). D. 

antarctica, was however limited to the most wave-exposed locations, and has several 

adaptations allowing it to persist at these locations (Stevens et al. 2002). These adaptations 

include large holdfasts, stipes that join the holdfast at a flexible joint allowing for a high 

degree of movement, and elastic fronds that dissipate wave forces through extension rather 

than transmission of the drag forces to the holdfast (Koehl 1982; 1999; Stevens et al. 2002). 

However, during storms D. antarctica are broken (at the juncture of the stipe and the 

holdfast) or dislodged, frequently due to failure of the substrate to which they are attached 

(Stevens et al. 2002). Any free space that becomes available is likely to be available to any of 

the species considered in this study and so there must be other factors limiting the distribution 

of the species found only in wave-sheltered locations. Scouring or whiplash effects (Dayton 

1975) are likely to limit most of these species from occupying this free space. D. antarctica 

fronds can reach lengths of 12 m and individual plants can have wet weights exceeding 70 kg 

(Stevens et al. 2002). D. antarctica fronds are therefore likely to cause considerable damage 

to individuals in the surrounding area from whiplash effects in heavy surf conditions (Dayton 

1975; Santelices et al. 1980; Kim & DeWreede 1996; Schiel 2004) which occur regularly 

along Wellington‟s south coast (see Chapter 4). In particular, Taylor & Schiel (2005) note 

that in southern New Zealand there are few other species able to co-exist with D. antarctica 
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except for coralline and turfing red algae and it is able to exclude all other species of brown 

algae, which is consistent with model results. In addition, D. antarctica may be able to 

maintain its dominance at the most wave-exposed locations through the process of self-

replacement (Taylor & Schiel 2005) that maintains sufficiently high densities to limit 

(through scouring) other species from colonising any free space.   

Apart from wave forces, shade (relating to inclination and aspect) and substrate were 

important predictors in explaining macroalgal species distributions. In particular C. 

convolutum, displayed a preference for locations that do not experience full light intensity for 

extended periods (predicted primarily on inclined surfaces with E/W aspects), which is 

consistent with observations that distributions of Codium species are inversely related to the 

probability of desiccation stress (Trowbridge 1998). Of the substrate types available, most 

macroalgal species groups showed a preference for the SG (sandstone-dominated greywacke) 

substrate type. This substrate was present at two sites, Houghton Bay and Palmer Head, 

which differ with regard to wave exposure (Houghton Bay – exposed, Palmer Head – 

sheltered), distance from harbour and topography (Houghton Bay – a series of intertidal 

platforms rising sharply from water ~ 3-4 m deep, Palmer Head – rocky projections 

interspersed amongst a shallow pebble-gravel beach). Other than sharing similar substrate, 

these sites are both in close proximity to sandy bays, and so some of the substrate effect may 

derive from this rather than a direct effect of the substrate type itself, with further sampling 

required to confirm this relationship beyond the two sites included here. However, other 

studies (both experimental and observational) have demonstrated that substrate type can have 

a strong effect on community structure (McGuinness & Underwood 1986; Cattaneo‐Vietti et 

al. 2002), which may result from the chemical composition of the different rock types, as 

well as surface texture as mentioned previously. However, this aspect of intertidal ecology 

remains poorly investigated and further experimental investigation is required to reveal the 

mechanisms by which it influences species community composition.      

5.4.2 – Model limitations 

Apart from species- or group-specific limitations already raised there are several, 

more general, limitations of this study. The aim of this study was to capture patterns of 

spatial, rather than temporal variation, with multiple survey data used to confirm that the 

observed spatial variation was consistent through time. Furthermore, an absence recorded in 

one survey may be a true absence (species cannot persist under the conditions at that 
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location), or may be a result of temporal variation, which may be random (non-process 

driven) or seasonal (particularly for ephemeral species that are present only during one or two 

seasons). The modelling results therefore illustrate where and under which conditions a 

species is capable of surviving, across all seasons, and therefore do not indicate that 

individuals of a certain species will always be there at any particular time. Although this 

represents a step up from using one-off survey data, which may be confounded by false 

absences, it falls short of a full spatio-temporal analysis that is capable of making predictions 

of spatial distributions for any particular season. Also, no measure of macroalgal abundance 

or biomass was used, partly because this varies seasonally, and therefore an average over 

time would likely misrepresent the patterns of spatial variability (e.g., a species in two 

locations could have the same time-averaged abundance, whilst at location 1 it could be due 

to large seasonal fluctuations in abundance, whereas at location 2 it could be relatively 

constant). This will be the focus of future work utilising the full dataset of macroalgal 

abundances.  

Models were based on a relatively small sample size (in comparison to other species 

distribution models), and the area covered is unlikely to have captured all possible 

combinations of factors and species present within this area. In addition, as mentioned 

previously for C. maschalocarpum and Porphyra sp., some species are likely to be over-

represented relative to their actual prevalence due to potential bias introduced as a result of 

the survey methodology. Surveys were intentionally restricted to ocean-facing rather than 

land-facing locations and also moderately open locations within each of these areas. Thus the 

most sheltered locations are unlikely to be adequately described and application of model 

predictions to these locations should be performed with caution. Further sampling would 

likely increase model accuracy and generality of model results, as well as providing an 

independent test of the models predictive capacity. Approaches similar to those employed 

here could provide useful information for marine spatial planning and management provided 

several important alterations to the data collection and modelling procedure. Firstly the data 

was collected from locations nested within nine separate locations. A vital improvement to 

this would be to sample from random locations along the shoreline, rather than from pre-

defined “sites”, using a stratified random approach, with strata corresponding to a-priori 

zones with regard to exposure, distance etc. Within a “site” conditions are likely to be similar, 

and as such the species composition is likely to vary less between two locations within a site, 

versus two random locations. As a result, the number of characteristic species will be less 
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than with a random sampling strategy and the extent of conditions a species can occupy may 

not be as fully captured using this sampling regime versus a random sampling procedure. 

This introduces potential error into the analysis and therefore reduces the applicability of any 

subsequent modelling attempts.  If further studies wish to adopt a similar approach as 

developed here, a stratified random sampling strategy would be recommended so that the full 

extent of conditions are captured, with uniform sample coverage across the range of predictor 

variables. This does require some prior knowledge of the major determinants of a systems 

state to identify adequate strata, but this could be identified using a literature search of similar 

systems and/or pilot studies of the study area. Secondly, as mentioned in Chapter 4 for the 

wave model, validation or independent test data should be collected so as to examine the true 

predictive capacity of the modelling procedure. This would give a truer indication of how 

robust the resultant maps are, which is of particular importance to spatial planning 

assessments. Finally, short of incorporating this data as a layer of information in a formal 

spatial planning application (i.e. MARXAN, Ball et al. 2009), a synthesis of the general 

features of the model results, such as species richness, diversity indices and presence of key 

or commercially important species, at a spatial scale applicable to management (i.e. on the 

scale of hundreds of metres or more) would greatly increase its usefulness to managers or 

decision-makers. The maps and resultant model plots provide this information, but at a scale 

and level of detail not amenable or immediately accessible to managers. This final stage 

would require stakeholder input into the goals of management to identify in what way the 

data can best be synthesised and would be a suitable subsequent analysis to apply to this data. 

These changes would ensure greater model coverage and accuracy, and also ensure that the 

results were easier to interpret and apply in a managerial sense.  

5.4.3 – Conclusion 

Despite these limitations the coupling of wave model predictions, physical topography 

and observations of intertidal species composition provide the basis for the development of 

multiple species-distribution models that can be used to make predictions on a relatively fine 

spatial scale. Whilst this section of shoreline has been studied in great detail with regard to 

the almost complete lack of mussels in the mid-intertidal zone (Gardner 2000; Helson & 

Gardner 2004, 2007; Helson et al. 2007; Gardner 2008; Demello & Phillips 2011), this study 

provides a quantitative description of the biological communities, and the physical factors 

that characterise this stretch of coastline. This will provide useful information with regard to 

future monitoring (where to establish monitoring sites based on predicted 
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similarity/dissimilarity in community composition) and as a predictive baseline for this 

section of coastline that can be used to determine the impacts of future changes to the marine 

environment in this area. This study also serves as an example of marine species distribution 

modelling and spatial mapping, which should be a vital first stage in the identification of 

optimal areas for marine conservation (Leslie 2005) and ecosystem management (Douvere 

2008). 
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Chapter 6 – Looking ahead: Current themes and 

recent advances in marine protected area 

monitoring and application of findings in a 
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6.1 – Structure  

In this thesis I have addressed questions related to monitoring programme design 

(Chapter 2 & Chapter 3) and methods for spatial and species distribution mapping (Chapter 4 

& Chapter 5). The aim of this final chapter is to draw together these findings in the wider 

context of data collection relevant to the establishment and ongoing monitoring of marine 

protected areas (MPAs), and to relate the results and methods presented in Chapters 2 – 5 to 

ongoing and future fields of research.  

Using the Web of Knowledge academic search engine a keyword search was 

performed to identify recent and ongoing fields of research, and to provide a holistic view of 

monitoring across marine species and biogeographic zones. The aim of this was to identify 

areas that are currently receiving much attention, whilst also highlighting areas that have been 

overlooked or require further research with regard to MPA effects and effectiveness. In 

particular I aim to identify factors that should be surveyed, and techniques to adequately 

survey them at all stages from initial surveys performed prior to MPA establishment through 

to assessing the long-term effects of MPAs. Areas of particular interest were studies that: 

 Presented MPA effects over short and long timeframes as well as direct and 

indirect effects of protection to give an idea of the magnitude of these effects on 

these timescales.  

 Give further consideration to larger spatial scale effects such as those associated 

with MPA networks, or meta-analyses of multiple MPAs.  

 Describe new methodologies and how they can be applied to improve monitoring 

effectiveness.  

 Identify additional avenues of research relevant to MPA effects, such as areas 

relevant to the planning stage of MPA placement and monitoring of changes other 

than those traditionally associated with MPA effects (i.e. beyond abundance, 

biomass and mean size of targeted species).   

Finally, the overarching goal of this chapter is to combine all of this information, as well as 

results and methods from Chapters 2 – 5, into a framework to be used as a guideline for 

surveillance and monitoring of MPAs to further our understanding of MPA effects and to 

enhance management success in achieving stated or implicit goals in MPA designation.  
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This chapter is separated into four main sections. I will firstly describe the methods 

used to perform the keyword search and give an overview of the resulting articles. I will then 

present a framework incorporating multiple considerations relevant to MPA monitoring 

including the themes identified from the keyword search, along with methods, ideas and 

results presented in Chapters 2 – 5. I will then describe the separate components of this 

framework, making particular reference to current research findings, methods and ideas 

identified from the keyword search. Finally, I will describe how these components fit 

together within this framework as a series of guidelines and considerations for MPA 

establishment, monitoring and surveillance.  

6.2 – Description of Web of Knowledge keyword search  

To identify recent advances and themes associated with biological monitoring of 

MRs/MPAs, a review of the literature from the last five years was performed. The search was 

limited to the last five years to firstly limit the number of articles returned by the search terms 

and also so that recent advances and current themes were addressed. Using the Web of 

Knowledge online database, a keyword search using the search terms “marine”, 

“conservation” and “monitoring” was performed. Due to the large number of articles 

matching these search terms, multiple filters were applied to limit the number of resultant 

articles (Table 6.1).  
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Table 6.1. Search terms and filters applied in the Web of Knowledge literature search. 

Values in parentheses indicate the number of articles returned for that journal. 

Filter area Search Terms 

Topic Marine AND Conservation AND Monitoring  

Document 
type 

Article      

Language English      

Years 2008 2009 2010 2011 2012  

Database Web of Science      

Research 
domain 

Science 
Technology 

     

Research 
areas 

Environmental 
Sciences 
Ecology 

Biodiversity 
Conservation 

Marine 
Freshwater 
Biology 

Fisheries Zoology  

Journals Mar. Ecol. Prog. 
Ser. (52) 

J. Appli. Ecol. 
(10) 

Ecol. Appli. (22) Coral Reefs (9) J. Wild. Dis. (6) Aquaculture (1) 

Mar. Poll. Bull. 
(74) 

J.  Exp. Mar. 
Biol. Ecol. (13) 

Env. Cons. (9) J. Fish Biol. (8) Mar. Pol. (6) Ecol. Soc. (4) 

Biol. Cons. (37) Env. Man. (15) Mar. Freshwat. 
Res. (13) 

Afr. J. Mar. 
Sci. (6) 

Aq. Ecos. Heal. 
Manage. (4) 

N. Amer. J. 
Fish. Manage. 
(5) 

ICES J. Mar. Sci. 
(29) 

Fish. Res. (21) Anim. Cons. (8) Aq. Liv. Res. 
(9) 

Env. Biol. Fish. 
(6) 

Chel. Cons. Biol. 
(3) 

PLoS ONE (32) Rev. Biol. Trop. 
(17) 

Coastal 
Manage. (7) 

Ambio (9) J. Shell. Res. 
(10) 

Hydrobiologia 
(6) 

Oryx (13) Aq. Cons. Mar. 
Freshwat. Ecos. 
(29) 

Biod. Cons. (7) Mar. Env. Res. 
(4) 

Proc. Natl. 
Acad. Sci. 
U.S.A. (7) 

NZ. J. Mar. 
Freshwat. Res. 
(2) 

Estuar. Coast. 
Shelf Sci. (17) 

J. Coast. Res. 
(20) 

Env. Monit. 
Ass. (12) 

Fish. Manage. 
Ecol. (6) 

Mar. Biol. (8) Cons. Lett. (3) 

J. Mar. Biol. 
Ass. UK (16) 

Cons. Biol. (11) Can. J. Fish. Aq. 
Sci. (11) 

J. Env. 
Manage. (5) 

Mar. Mam. 
Sci. (7) 

Wild. Res. (3) 

 

The abstracts of the articles meeting these requirements were reviewed and 

information regarding authorship (so that articles could be found later), publication date, 

focal species, group, or research area, and journal title were recorded (Table 6.2). In addition, 

several criteria based on a priori research questions and recurring themes were defined and 

each article was classified based on the content of the abstracts with regard to each of these 

criteria (Table 6.2).  
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Table 6.2. Fields recorded and the type of information recorded from each abstract of the 

articles returned using the search criteria given in Table 6.1.  

Field Requirements 

First author First-author's last name 

Year Publication year 

Focal species 
group or research 
area 

This could either be a general name of a species group, (e.g. Fish - coastal, Fish - pelagic, Fish - 
sharks, Marine mammal - dolphins, Marine reptile - turtle) or if the study was performed across 
multiple groups it was listed as Ecosystem (e.g. fish, kelp, invertebrate abundances). Habitat was 
used if the study was specifically identifying both biotic and/or abiotic habitat distributions. 
Alternatively MPA design, Framework and Social were used to identify studies concerned with MPA 
design, monitoring/management frameworks, and social studies respectively. 

Journal One of the journal names listed in Table 6.1 

Relevant Binary (Y/N) - if the article met any of the following criteria; monitoring of any of the following 
species or species group traits - abundances, spatio-temporal distribution, ecological processes, 
movement patterns; developed and/or tested - monitoring methodologies, indicators, indices, 
monitoring frameworks; monitored anthropogenic aspects including - opinion, anthropogenic 
impacts, community involvement. If N, the following fields were not recorded.  

Monitoring 
results 

Binary (Y/N) - was the study predominantly the presentation of the results of a monitoring 
program? 

Methods Binary (Y/N) - was the study focussed on developing and testing new monitoring methods, indices, 
indicators, remote sensing and other technological applications? 

Power, precision, 
accuracy 

Binary (Y/N) - were analyses of power, precision and/or accuracy described in the abstract 
regarding methodologies or techniques? 

MR/MPA specific Binary (Y/N) - was the study carried out in an MR, prior to MR designation, or meta-analytically 
across MRs? 

MR/MPA 
mentioned  

Binary (Y/N) - did the abstract specifically mention that the research had implications for MR 
design, effectiveness or placement?  

Baseline Binary (Y/N) - was the research carried out for baseline establishment, reconstruction, comparison 
to post-impact areas, or specifically states lack of baseline information in the abstract? 

Spatial Binary (Y/N) - did the research concern assessments of spatial distribution, movement patterns, 
habitat usage, or spatial distribution modelling? 

Temporal Binary (Y/N) - did the research aim to quantify or model interannual or seasonal temporal 
variability? 

Management  Binary (Y/N) - was the research specifically for management including development of management 
frameworks? 

Invasive Binary (Y/N) - was the research aimed at monitoring the abundance and/or impact of invasive 
species? 

Pollution Binary (Y/N) - was the research aimed at monitoring the impact of pollution on biological 
communities? 

Fishery Binary (Y/N) - was the research related to fisheries? 

Climate Binary (Y/N) - was the research related to climate-change? 

Description Broad descriptive phrases assigned to each paper that could be one or more of; monitoring results – 
state, monitoring results – process, monitoring results – spatial mapping, monitoring results – 
movement/behavioural, monitoring results – baseline establishment, monitoring results – 
temporal,  monitoring results – social, monitoring methods – framework, monitoring methods – 
indices, monitoring methods – indicators, monitoring methods – techniques, monitoring methods 
– statistical, monitoring programme establishment, call for monitoring, management or marine 
reserve establishment.   

Summary Brief descriptive summary of the information given in the abstract for later inspection 

Importance Rank (1-5) – subjective scoring system based on how innovative, relevant or unique the abstract 
seemed so that papers to be read in full could be prioritised later (5 – high, 1 – low) 
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6.3 – Overview of keyword search results 

The keyword search detailed in Table 6.1 returned 632 journal articles and after 

reviewing all the abstracts, 425 were considered relevant to this discussion. Non-relevant 

articles were mostly related to fisheries stock assessments (41), experimental ecology, 

physiology or biology (40), water quality monitoring (36), monitoring of chemical pollutants 

(28), and terrestrial studies (22), with the remainder consisting of a mix of review articles, 

and other miscellaneous subjects that were not related to the monitoring of marine 

ecosystems. Most articles reported the results of monitoring programmes, whilst over 20% of 

the articles described research carried out in MPAs and nearly 40% identified that their 

research had MPA specific applications (Figure 6.1). Methodological considerations were 

explored in over 30% of relevant articles, but those that mentioned analyses of power 

specifically within the abstract were limited to only a small proportion of studies. Just under 

20% of the relevant articles were reporting the establishment of baseline abundances (not 

specific to MPAs), spatial distributions or temporal variation (not specific to marine reserve 

or marine protected area studies), and made use of baseline data in a before-after, or full 

before-after-control-impact assessment (Figure 6.1). Of the thematic areas identified in Table 

6.2, fisheries management was the most prominent area identified by the keyword search 

where monitoring would be applicable. Pollution and climate change were the focus of 11% 

and 5% of studies, respectively, while invasive species studies were not well represented in 

this sample of articles (6 articles in the 425 relevant articles – Figure 6.1).  
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Figure 6.1. The percentage of relevant articles according to the criteria described in Table 

6.2. 

Further splitting these articles into more specific research areas indicated that most 

monitoring studies were focussed on state-level variables (e.g. abundance, biomass, and 

mean-size), rather than process variables (e.g. recruitment, grazing, predation and mortality) 

(Figure 6.2). Studies assessing species movement patterns were also prominent, with 39 

articles assessing movement patterns across nearly all species groups identified in the 

keyword search (Figure 6.2). Methodological papers consisted of comparisons among 

techniques, the development and evaluation of indices, testing of species-specific indicators 

of ecosystem state and statistical methodologies to complement field studies (Figure 6.2). 

Finally, 27 articles discussed monitoring and/or management frameworks, and marine reserve 

establishment, presentation of baseline information and calls for greater monitoring were 

discussed in 11, 8 and 19 articles, respectively, while monitoring associated with socio-

economic considerations constituted 19 of the relevant articles (Figure 6.2). 

 



Chapter 6 
 

 
174 

 

 

Figure 6.2. The number of relevant articles in specific areas of monitoring programme 

results, methods, frameworks and the establishment of marine reserves and monitoring 

programmes, along with the number of articles specifically calling for long-term monitoring 

of species and/or ecosystems. 

The relevant articles covered many marine species groups including a wide range of 

fishes, marine mammals and benthic invertebrates, but the vast majority of studies researched 

Teleost fish species and species groups (Figure 6.3). Most studies focussed on ecosystem-

wide monitoring were performed in tropical or coral reef environments, followed by 

temperate marine ecosystems (Figure 6.3). Forty-four of the relevant articles focussed neither 

on specific species nor ecosystems, but involved spatial assessments of habitat distributions 

(6 articles) and marine reserve/marine protected area spatial planning (8 articles), while the 

remaining articles were a mix of management, policy and sociological studies (Figure 6.3). 
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Figure 6.3. The number of relevant articles classified by research area, specifically regarding 

species groups, ecosystem type, and management/spatial planning studies.  

Of the relevant articles, a further 107 articles were evaluated in more detail (ranked 4-

5, based on the importance scoring, see Table 6.2) by accessing the full text and noting the 

aims, results and conclusions of these articles that may have been overlooked based on the 

abstract. Although this methodology is subjective, I believe it gave a good overview of the 

recent literature and current areas of research, as well as an idea of future trajectories in 

research fields across multiple taxonomic groups.  

6.4 – Overview of monitoring framework 

Based on the results and methods of the articles from the keyword search, and  results 

and conclusions of Chapters 2-5, I constructed a framework as a guide for the monitoring of 

MPAs from prior to their inception through to assessing long-term changes in targeted 

species abundances, and wholesale shifts in ecosystem structure and functioning (Figure 6.4). 
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Figure 6.4. A general monitoring framework detailing the various stages of data collection 

and evaluation of MPA effects and monitoring effectiveness. Underlined and bold numerical 

values in brackets indicate where methods results and ideas developed in Chapters 2 – 5 are 

incorporated into this framework, whereas standard numeric values indicate the section 

number of this chapter where more detailed information can be found for each particular 

component of the diagram, respectively (previous page). 

I will now discuss each of the components in detail, making particular reference to 

articles identified in the literature search, before proceeding to explain the framework in 

terms of how these components fit together as a cohesive guide for the establishment, and 

ongoing monitoring of MPAs. The following sections are roughly defined by the horizontal 

bands depicted in Figure 6.4, which are:  

(1) Spatial planning and distribution assessments 

(2) MPA baseline, short and long-term monitoring (includes state and process level 

monitoring) 

(3) Monitoring methodologies.  

6.5 – Spatial planning and distribution studies 

The science of MPA planning has advanced in recent years in an attempt to move 

away from ad hoc approaches (that may result in sub-optimal placement, Stewart et al. 2003), 

to instead rely on quantitative spatial assessments of species abundances, life-history and 

ecology to identify optimal placement of MPAs, either singularly or as part of a larger 

network (Leathwick et al. 2008a). These initial assessments can then be negotiated with 

stakeholders to decide on the placement of these areas that the majority of stakeholders agree 

upon, or can be used by a minister or area manager to make decisions based on lowest likely 

impact. Alternatively this information can be directly incorporated into zonation planning 

(Leslie 2005; Leathwick et al. 2008a) using software such as Marxan (Ball et al. 2009; Smith 

et al. 2009). The following sections provide a brief overview of methods and results 

presented in the literature for mapping or inferring the distribution of species, habitats, 

fishing and threats to ecosystems, and the various considerations highlighted within the 

literature associated with each of these. 

6.5.1 – Habitat mapping and testing biological surrogacy 

Habitat mapping was identified by several articles represented in the keyword search 

as being a necessary tool for conservation and marine spatial planning initiatives (Mumby et 

al. 2008; Fonseca et al. 2010). Several articles reported the habitat spatial variation patterns 
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on coral reefs (Fonseca et al. 2010; Cassata & Collins 2010; Scopélitis et al. 2010) and in 

temperate subtidal areas (Monk et al. 2008; Claudet et al. 2011). Habitat mapping usually 

involved a combination of methodologies including; remote sensing and satellite imagery 

(Fonseca et al. 2010; Cassata & Collins 2010; Scopélitis et al. 2010), aerial imagery (Cassata 

& Collins 2010), multibeam (Claudet et al. 2011), drop-cameras (Pelletier et al. 2012) and 

field-based ground-truthing using video transects (Cassata & Collins 2010), volunteer diver 

networks (Monk et al. 2008), local ecological knowledge (Scopélitis et al. 2010), and diver 

surveys (Claudet et al. 2011). Knowledge of the spatial distribution of different habitats is 

essential for effective conservation planning and spatial management, particularly where 

habitat-species associations are well understood so that habitat distribution can be used as a 

proxy for species distributions. Despite the need to protect habitats in their own right, habitat 

maps are often used in management and conservation planning as proxies or surrogates of 

species richness and diversity, without the direct knowledge of how the different habitats 

extant in a region contribute to the overall regional or local diversity. Two studies identified 

in the keyword search assessed the capability of habitats as surrogates for the spatial 

distribution of species richness and biodiversity, the protection or promotion of which is often 

the goal of establishing a MPA or MPA network. Mumby et al. (2008) tested the degree to 

which the distribution of 11 Caribbean coastal habitats provide useful planning information 

for fish and benthic species richness, functional roles of fish species and ecosystem processes 

to inform the selection of a MPA network. They found that the distributions of functional 

classes of fish were a good surrogate for overall fish species richness, as well as benthic 

species richness, while estimates of benthic species richness and ecosystem services and 

processes were ineffective as surrogates for overall species richness. Interestingly, Sutcliffe et 

al. (2012) performed a similar analysis assessing the effectiveness of biological surrogates, 

and found that no species group was a viable surrogate for any other in describing patterns of 

diversity on the Great Barrier Reef, and several taxonomic groups would need to be assessed 

to achieve greater representation of the underlying patterns in diversity. This suggests that 

although biological surrogacy can be used as a cost-effective tool for assessing distributional 

patterns of biodiversity (Mumby et al. 2008), it is not without its limitations and requires 

formal testing and incorporation of multiple metrics to identify potential pitfalls in its 

application. 
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6.5.2 – Distribution modelling 

Species distribution modelling can be considered as a generalised extension of 

species-habitat associations (see 6.5.1 above), and includes the identification of relationships 

between physical factors and species abundances (see also Chapter 5). Species distribution 

modelling, while utilised extensively in terrestrial ecological research, is currently 

underutilised in marine research (Robinson et al. 2011). The keyword search, however, 

identified several studies that utilised a distribution modelling approach to predict the 

distribution of species and habitats. Those based on correlative approaches included Valle et 

al. (2011) that utilised ecological niche factor analysis (ENFA), coupled with LiDAR 

assessments of bathymetry to predict the distribution of seagrass beds, and to identify what 

areas would be best suited for restoration and protection, while Shephard et al. (2012) used 

linear models to model the distribution of elasmobranch species richness and biomass in the 

Celtic Sea. Other studies incorporated behaviour and trophic interactions to identify species 

distributions rather than basing distribution assessments on correlations with physical factors 

alone. Sveegaard et al. (2012) identified the distribution of mackerel and harbour porpoise, in 

relation to herring distributions that form a large part of their respective diets. Furthermore, 

Grecian et al. (2012) predicted the at-sea usage distributions of seabirds based on colony 

location, colony size (which is known to be a determinant of maximum foraging distance), 

foraging strategy and at-sea availability of food resources.  

Pelagic ecosystems and predicting the at-sea distributions of species and species 

richness has historically been under studied due to the difficulty and cost of identifying 

pelagic species distributions (Louzao et al. 2011) that may also vary through time (Grantham 

et al. 2011). Therefore species distribution models are ideally suited to identifying pelagic 

protected areas. Leathwick et al. (2008a) identified pelagic fish species distributions in the 

waters surrounding New Zealand using a boosted regression tree approach relating individual 

species distributions to environmental and oceanographic predictors. Using this information 

and information regarding the economic value of these fisheries, they were able to identify a 

spatial zoning plan for pelagic marine protected areas that would meet several different 

conservation requirements while minimising the economic loss to fisheries. Furthermore, 

Louzao et al. (2011) used wandering albatross movement patterns to identify the time spent 

within certain grid-cells performing different activities (searching for food, feeding and 

overall time spent) and then related these to both static (bathymetry, distance to colony) and 

dynamic (e.g. sea-surface temperature, sea-level anomaly among others) parameters to 
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produce predictive models of spatial usage patterns to identify pelagic protected areas for this 

species. These all provide examples of how distribution modelling can be used to generate 

quantitative assessments of the spatial distribution of species that are otherwise difficult to 

ascertain, and are therefore an effective way to develop protected area plans and to 

implement effective conservation strategies. 

6.5.3 – Fishing effort distribution and threat mapping  

In addition to identifying MPA placement based on species distributions it is also 

essential to consider the level of anthropogenic impacts experienced across the network of 

possible locations. Many studies were focussed on quantifying the incidental effects of 

fisheries, such as bycatch (Gardner et al. 2008; Abbott & Haynie 2012; Amandè et al. 2012), 

and damage incurred to the seabed (Hall-Spencer et al. 2009; Reiss et al. 2009) to identify 

MPA areas. Incorporating separate assessments of the spatial distribution of fishing effort and 

species distributions was also used extensively to identify areas of overlap between fishing 

effort and species distributions, including species of marine mammals (Kelkar et al. 2010; 

Cronin et al. 2012), seabirds (Trebilco et al. 2008), turtles (Gaos et al. 2012), and sessile 

benthic species (Hall-Spencer et al. 2009). Identifying areas of overlap can be utilised in the 

design of MPAs, and in setting management processes, to both reduce bycatch and minimise 

damage to fragile ecosystems. This was taken one step further in a study performed by Selkoe 

et al. (2009) to prioritise areas for conservation by identifying the distribution and magnitude 

of 14 anthropogenic threats including invasive species, bottom and lobster-trap fishing, ship-

based pollution, ship strike risks, marine debris, research related damage, and climate change 

effects of increased UV radiation, frequency of temperature anomalies and ocean acidity. 

Combining the distribution of these threats with habitat maps and expert guidance they 

produced maps of cumulative risk, which they suggested should be incorporated into any 

future assessments related to management, surveillance, permitting decisions and climate 

change monitoring. Similar assessments could, however, be applied in defining a network of 

MPAs, and with each MPA defined for specific purposes based on the nature and extent of 

the threats identified for these areas. In a complementary study Thompson & Dolman (2010) 

simulated the effects of different stressors on coral reefs, identifying that while coral reefs are 

able to recover from damage caused by cyclones and crown of thorns starfish outbreaks, the 

advent of mass bleaching leads to rapid and irreversible declines in hard coral cover and 

significant changes in community composition. Combining the methods presented in Selkoe 

et al. (2009) along with those in Thompson & Dolman (2010) has huge potential for 
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identifying conservation priorities and areas of concern in light of future climate change and 

continued anthropogenic degradation of the marine environment. While these studies were 

focussed on coral reef ecosystems, similar methods identifying the spatial distribution of 

anthropogenic threats along with assessments of the biological impact/recovery dynamics 

following these events threats could equally be applied in temperate, and polar marine 

settings to identify conservation priorities.    

6.5.4 – Species movement studies 

While distribution mapping and modelling are useful for identifying the placement of 

MPAs, for mobile species assessments of movement patterns become increasingly important. 

Due to reducing costs, miniaturisation and accessibility of acoustic tagging and receiver 

technology and satellite transmitters, there has been a surge in the number of tagging and 

movement studies in the last decade (Yeiser et al. 2008). From the keyword search 39 of the 

425 studies were studies of species movement patterns, featuring studies of marine mammals 

(4), turtles (7), temperate bony-fish (9), tropical bony-fish (5), temperate sharks or rays (5) 

and tropical or reef sharks (4). From a conservation perspective these are essential for 

identifying whether a protected area of a given size or location is adequate for protecting a 

given species and also for identifying overlap between fishery areas and pelagic species 

distributions (discussed in section 6.5.3). Most of the fish- and shark-based studies were 

aimed at assessing the effectiveness of MPAs for these species by identifying home-range 

sizes (Afonso et al. 2008, 2009; Green & Starr 2011). However, the studies identified several 

factors that need to be considered when interpreting movement data for this purpose. Several 

studies identified consistent movement-pattern types in the fish they tagged that were related 

to social status of individuals (Afonso et al. 2008), variation between inshore and offshore 

populations (Afonso et al. 2009) or natural behavioural differences among individuals (Green 

& Starr 2011). There is also likely to be variation among life stages (e.g. ontogenetic shifts in 

habitat use - Murchie et al. 2010; Green & Starr 2011), and also among years (e.g. natural 

temporal variability - Schofield et al. 2010) requiring intensive tagging of multiple life-stages 

at different times to identify areas that sufficiently protect individuals throughout different 

life-history stages. Movement studies are also useful for identifying MPA placement because 

they can identify areas that are particularly important to different life stages, such as nursery 

areas (Yeiser et al. 2008) and spawning aggregation sites (Afonso et al. 2008), and can also 

identify natural barriers to movement. For example, Meyer et al. (2010) identified that 

several species of reef fish would not move across open sand areas, and tended to only move 
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along sections of continuous reef. The incorporation of these natural barriers into an MPA 

would provide a barrier against individuals straying into open fished areas. Incorporating 

these areas into a MPA network, possibly as small-scale MPAs, may enable the conservation 

of species that, due to their mobility, are not amenable to other forms of marine protection 

(e.g. Hamilton et al. 2011). 

6.6 – MPA monitoring: baseline, short and long term monitoring 

Monitoring of MPAs ideally should consist of several stages. The acquisition of 

spatially and temporally replicated baseline data is essential to identify the initial state of 

MPAs and to identify possible confounding factors that may affect the evaluation of MPA 

effectiveness, but historically baseline assessments have rarely been performed. Despite this, 

many studies have demonstrated rapid responses to reserve protection, and monitoring in the 

short term is a valuable way to demonstrate that marine reserves are effective. However, due 

to the relative youth of the majority of MPAs, there are few studies that are able to quantify 

the long-term effects of MPAs. In this section I will discuss ideas and findings from studies 

presenting results from one or more of these stages, as well as further considerations for MPA 

monitoring and assessments in the light of confounding factors, and also adaptations that are 

required as the field of MPA science moves from individual areas to networks of MPAs. 

6.6.1 – MPA baselines 

It has been widely acknowledged that pre-reserve baseline information is invaluable 

for assessing the effects of MPAs (Edgar et al. 2004), with many studies criticising early 

MPA assessments for their lack of baseline information (Willis et al. 2003b). From the 

keyword search eight studies used a before-after-control-impact (BACI) survey design, while 

six studies utilised before-after data and a further six studies described baseline surveys of 

marine reserves. This is in comparison to the meta-analysis performed by Stewart et al. 

(2009) using data prior to 2006 that only included one BACI study, suggesting that baseline 

data collection is becoming more prominent and is being used in more MPA assessments. 

Many articles identified in the keyword search, demonstrated the importance of baseline data, 

either directly or indirectly, by identifying factors that may otherwise have confounded the 

assessment of marine reserve effectiveness. These included differential responses due to pre-

existing seascape level habitat variation (Claudet et al. 2011), the existence of natural 

environmental gradients across MPA and control sites (Pande & Gardner 2009), 

biogeographic variation (Hamilton et al. 2010), socio-political bias in reserve area selection 
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toward lower quality locations (Francini-Filho & de Moura 2008a; Edgar et al. 2009), pre-

existing spatial distribution of target species (Karnauskas et al. 2011) and pre-existing 

gradients in biomass and/or body size when testing for spillover effects (Francini-Filho & de 

Moura 2008b). In the absence of baseline data there is a far greater potential for 

misinterpretation (e.g. when reserve and control sites span a gradient in abundance or where 

reserves are established to include a location that is a priori known to be particularly 

biodiverse, Pande & Gardner 2009, 2012) and failure to identify effects (e.g. when MPA sites 

are in lower quality locations than nearby control sites, Edgar et al. 2009). The collection of 

baseline data in MPA assessments is therefore a key part of establishing a powerful and 

accurate MPA monitoring programme, particularly where habitat variation and differential 

responses are likely to otherwise confound marine reserve assessments. 

6.6.2 – Short- and long-term monitoring 

The duration of MPA monitoring was mentioned in several studies highlighted by the 

keyword search. Results of several short-term studies (less than 10 years) varied in their 

ability to demonstrate changes due to MPA designation, with some unable to demonstrate 

effects on targeted species abundances (e.g. no demonstrable changes after 3 years - Edgar & 

Barrett 2012), while others demonstrated rapid responses to protection. For example, in a 

review across multiple reserves, distributed globally, Babcock et al. (2010) identified that 

direct effects were detected on average after five years of protection. Furthermore, Stewart et 

al. (2009) performed a global meta-analysis of temperate marine reserves and found that the 

median period from establishment to the detection of effects was 9.5 years. New Zealand 

specific meta-analyses have also demonstrated that species specific effects are evident within 

the first ten years (Pande et al. 2008; Diaz Guisado et al. 2012). Based on these findings, 

monitoring for the purpose of demonstrating the ability of marine reserves to increase 

abundance or biomass of targeted species should only proceed in the short term (~10 years) 

to achieve these targets. Demonstrating changes in the early years is often required to 

demonstrate to stakeholders that MPAs are effective. Therefore in the short term it would 

seem appropriate to establish monitoring at a high frequency (i.e. annual or biennial 

monitoring) to demonstrate these effects as soon as they become apparent. However, even 

within species, responses vary considerably among reserves, as demonstrated by Freeman et 

al. (2012) who found that rock lobster abundance in some NZ MRs immediately increased 

after establishment, but in others 12 years had elapsed before any changes could be detected. 

Due to the variability in responses among reserves this initial period may be as long as 15-20 
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years before direct effects become apparent. Indirect effects (i.e. changes to non-target 

species due to increases in predator biomass), however, are likely to take longer to manifest 

themselves, with Babcock et al. (2010) estimating that on average indirect effects were 

detected after 13 years, which was 36% longer than the direct effects observed within the 

same reserves. In addition, multiple studies carried out on temperate Australian reefs have 

demonstrated that effects associated with marine reserve protection are ongoing (Edgar & 

Stuart-Smith 2009; Edgar et al. 2009; Barrett et al. 2009), and require a much longer 

commitment to MPA monitoring than is currently employed in many MPAs. Furthermore, 

Edgar & Barrett (2012) argue that the short timescale often reported in meta-analyses of 

MPA effects (e.g. 9.5 years in Stewart et al. 2009) may be optimistic, given that publication 

bias in reporting marine reserve results selects for those studies which show significant 

effects. Large predatory species are also likely to take decades to recover given that many are 

long-lived, late maturing, and have been subjected to historical depletion and intense fishing 

pressure (Roberts et al. 2001). Therefore it may require anywhere between 10 and 40 years to 

establish the effects of marine reserves in restructuring trophic interactions (Edgar et al. 

2009; Kellner et al. 2010; Edgar & Barrett 2012). Consequently, in addition to the short-term 

high frequency monitoring required to detect initial direct effects, longer-term monitoring, 

taking a more holistic approach (i.e. monitoring species beyond those considered 

commercially viable), is required to identify changes in abundance for species that may be 

affected indirectly by exclusion of fishing (Barrett et al. 2009; Pande & Gardner 2009, 2012) 

and for those that have undergone historical depletion. Long-term monitoring is also required 

to assess how multiple processes interact in nature to structure these communities in the 

absence of anthropogenic pressure (Hereu et al. 2012). The cost of long-term monitoring, 

however, is likely to be considerable unless the frequency of monitoring is low. However, if 

whole ecosystem changes are stable, then the frequency of monitoring can be reduced 

without impairing the ability of the monitoring to detect these changes, particularly if they are 

associated with wholesale shifts in habitat and community type (Shears & Babcock 2003). 

Even in these cases, however, stability is unlikely to last over sustained periods, with 

Babcock et al. (2010) identifying that on average the duration of stable periods were ~ six 

years for direct effects and ~ nine years for indirect effects, and further suggest that 

monitoring in the long-term should take place with less than five years between sampling 

periods to capture sudden shifts away from its previous state. Trained volunteer diver 

networks, as utilised across southern Australian reserves (Edgar et al. 2009) and in Italy for 
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biodiversity monitoring (Goffredo et al. 2010), are a promising development that may help to 

reduce costs significantly, enabling greater spatial and temporal replication enabling 

monitoring in the long-term to be performed (however see Section 6.7.3 for the advantages 

and benefits of volunteer and community monitoring schemes). 

Several studies have identified that changes are ongoing, even after decades of 

protection (Shears & Babcock 2003; Edgar et al. 2009) indicating that long-term monitoring 

is required to address the ongoing effects of removing extractive processes, and whether 

MPAs can restore areas to a pristine or more natural state. However, making judgments 

regarding what represents a natural state is a challenging task given the shifting baseline 

syndrome (Pinnegar & Engelhard 2008) and the lack of pristine ecosystems with which to 

make valid comparisons (although see Vroom et al. 2010). Several studies in the keyword 

search were concerned with reconstructing historical baselines, which may have particular 

utility with regards to identifying what should be considered an un-impacted state. Taylor et 

al. (2011) reconstructed baselines for the Poor Knights Islands Marine Reserve in New 

Zealand based on divers‟ perceptions spanning the 60 years prior to MR establishment and 

related these to concurrent scientific surveys. Not only does this give an indication of the 

extent of degradation prior to establishment, but it provides a decadal-scale indication of how 

shifting baselines are likely to influence judgments of what constitutes a natural state 

(Pinnegar & Engelhard 2008), which due to historical overfishing may require a much 

broader time frame for examining the impacts of fishing on marine ecosystems (e.g. 

Fortibuoni et al. 2010). Where possible, historical reconstructions can be used to measure the 

long-term response of marine ecosystems in the absence of extractive practices (e.g. Taylor et 

al. 2011). In addition, they can also be useful in identifying under what circumstances‟ 

fishing is responsible for irreversible shifts in ecosystem composition as MPAs may achieve 

a stable state different from that of historical reconstructions due to hysteresis and irreversible 

shifts in ecosystem function (Hughes et al. 2005). Identifying these effects should be an 

additional long-term aim of MPAs and in particular of no-take areas where anthropogenic 

effects can be completely isolated.   

6.6.3 – Monitoring beyond abundance, biomass and size 

The keyword search also highlighted many articles associated with identifying and 

quantifying differences in factors beyond those usually investigated in MPA studies, i.e. 

abundance, biomass and/or size. Process level variables such as recruitment, larval supply 
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and settlement (Aburto-Oropeza et al. 2010; Aiken & Navarrete 2011; Freeman et al. 2012; 

Hereu et al. 2012), predation and grazing (Hereu et al. 2012, Ling & Johnson 2012) were the 

subjects of several studies. In particular, monitoring of larval supply and recruitment within 

MPAs could explain differences in MPA response. Freeman et al. (2012) identified large 

disparities in the timing and magnitude of changes in rock lobster abundance inside New 

Zealand MPAs, which the authors attributed to differential settlement and/or recruitment 

pulses. Specifically monitoring larval supply and recruitment dynamics could be utilised to 

manage expectations of individual marine reserves (i.e. a low rate of recovery may be 

expected for locations that receive low larval supply) and to identify time-lags in the response 

of certain MPAs, that may be associated with irregular pulses of recruitment (Freeman et al. 

2012). In addition, marine reserves as fisheries management tools are partially established for 

the purpose of seeding the surrounding areas, and for this reason, and to validate MPA 

networks supporting viable metapopulations, Aiken & Navarette (2011) suggested that 

monitoring of MPAs should extend to monitoring the abundance and recruitment of fisheries 

target species up to distances of the long-distance dispersal potential of these species. 

However, this will also require consideration of the likelihood of detecting any changes, 

which may be feasible for species with short pelagic larval durations (PLD) such as abalone 

that have a PLD of ~ 3-15 days (Leighton 1974; Stephens et al. 2006), but unlikely for 

species with longer dispersal capabilities such as rock lobsters (Jasus edwardsii) that have a 

PLD of 12-24 months (Booth 1994). Modelling dispersal dynamics from MPAs could also be 

used to identify monitoring sites where increasing recruitment is likely to be detected based 

on local hydrodynamics and population sources within MPAs (e.g. Stephens et al. 2006). 

Recruitment dynamics can also interact with trophic interactions that are likely to be different 

inside MPAs. Hereu et al. (2012) identified that the consequences of recruitment pulses of 

urchins were damped inside MRs because of predation by lobsters, which were larger and 

more abundant inside MRs, and because of density-dependent recruitment, with urchin 

recruitment higher in areas with greater urchin abundance. Furthermore, Ling & Johnson 

(2012) found that urchin survival was partially mediated inside MPAs by availability of 

suitable shelter. Thus, monitoring of recruitment and its interplay with trophic dynamics, as 

well as additional factors such as habitat, can be used to inform expectations of MPA 

responses for different species. Monitoring of process level variables, however, requires a 

different approach to that of monitoring ecosystem state. Green et al. (2011) described the 

establishment and initial results of a monitoring framework specifically designed to monitor 
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coral reef state and process variables, involving a mix of fixed monitoring stations (process-

level), and random sampling (state-level) at a variety of spatial scales. Similar approaches 

could be adopted in MPA studies, but would need to be optimised for the monitoring of 

vagile as well as sessile species, perhaps through the use of SMURFs (Standard Monitoring 

Units for the Recruitment of Fishes - Ammann 2004; White & Caselle 2008) for monitoring 

larval fish supply and sampling standardised plots for mobile invertebrate recruits (López et 

al. 1998).  

Aside from the monitoring of processes inside MPAs, other factors identified in the 

keyword search were associated with monitoring of disease prevalence (Freeman & 

MacDiarmid 2009; Wootton et al. 2012) and behavioural changes (Parsons et al. 2010) inside 

MPAs. Disease monitoring is particularly important where the primary goal of an MPA is as 

a fishery closure, where it is expected to contribute to the surrounding area via adult 

spillover. Wootton et al. (2012) found that prevalence of diseases of the European lobster 

inside a no-take-zone in the UK was higher than outside, possibly due to higher population 

densities. However, Freeman & MacDiarmid (2009) found that bacterial infections in NZ 

rock lobsters were less prevalent inside MRs, most probably due to reduced handling by 

fishermen. Despite the differences in response, monitoring of individual health is important, 

particularly when fisheries benefits are expected from marine closures (Wootton et al. 2012). 

Finally, behavioural changes should also be monitored inside MRs, partially associated with 

changing attitudes towards divers, affecting survey bias (Willis et al. 2000) and also because 

of direct changes to behavioural patterns as a result of reserve status (Parsons et al. 2010). 

Parsons et al. (2010) performed a tagging study on the New Zealand snapper Pagrus auratus 

and identified two behavioural strategies, one with a small home range, and another that had 

a bimodal home range, spanning a much larger area. Of the tagged fish, all individuals tagged 

inside the MR displayed small home-range behaviour, while this behaviour was only 

displayed by half of the fish tagged outside the reserve, suggesting that the marine reserve has 

selected for individuals that do not frequently go outside of the reserve boundaries. This has 

worrying implications as selectivity for less mobile behaviour is an unwanted consequence of 

MR status and may impair the value of MRs as fishery tools with regards to adult spillover, 

but may be beneficial with regards to larval export as the more sessile reserve population is 

more comprehensively protected. Monitoring movement patterns in other reserves would 

clarify whether this is a widespread effect and over what timescale these effects become 

apparent. 
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6.6.4 – Fishing effort outside MPAs and compliance 

Monitoring of fishing effort and compliance were identified in several studies 

regarding MPAs. In several cases poaching events were observed during regular monitoring, 

and these events were linked to dramatic decreases in abundance of targeted species (Linares 

et al. 2012; Francini-Filho & de Moura 2008a). Identifying these events is not only important 

for locating specific areas where policing effort should be increased, but can also be directly 

incorporated into MPA assessments in explaining the lack of demonstrable ecological effects 

(e.g. Fujitani et al. 2012). Monitoring to identify the spatial distribution of factors related to 

successful conservation, such as fishing effort (Stelzenmüller et al. 2008) and threats to 

ecosystem health (Selkoe et al. 2009) were also represented in the keyword search. 

Stelzenmüller et al. (2008) used a distribution modelling approach for assessing the spatial 

distribution of fishing effort with regard to distances from ports and MPAs as well as depth 

and other physical factors and found that fishing effort was concentrated around five no-take 

zones in the Mediterranean. While the authors identified that the increased fishing effort 

could be due to increased catch around no-take zone boundaries, it could also be attributed to 

fishermen‟s expectations of increased adult fish export from the reserves and so is not a direct 

indication of biomass export. Nevertheless this has important consequences for the 

assessment of spillover effects through the detection of gradients in biomass or size across 

marine reserve boundaries (Francini-Filho & de Moura 2008b), as these border zones may 

become depleted of fish, so confounding the detection of spillover effects (Stelzenmüller et 

al. 2008). Changes in fishing effort at the boundaries of MPAs are also likely to have direct 

consequences for species that frequently cross them. For example, Babcock et al. (2010) 

argued that initial changes in lobster abundance within the Cape Rodney-Okakari Point 

Marine Reserve in northern New Zealand led to an increase in fishing effort along the 

seaward MR boundary. This coincided with declines in lobster abundance within the MR, as 

it is also known that these lobsters perform onshore-offshore movements making them prone 

to legal fishing beyond the MR boundaries. In addition, monitoring the changes in 

fishermen‟s behaviour can provide information about the unintended consequences of MPA 

designation. Abbott & Haynie (2012) monitored the changes in the spatial distribution, gear 

type and fishing effort after a fisheries area closure in the Bering Sea. The changes in fishing 

behaviour led to increases in bycatch of halibut, highlighting the need to anticipate 

behavioural adaptations by fishermen, or to introduce management measures that are robust 

to such changes. Although identifying the areas where the negative consequences of MR 
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designation occur (i.e. displacement of fishing effort, shifts to alternate species) is a 

challenging task (marine reserve boundaries are set, but changing fishing effort requires 

monitoring of fishing fleet behaviour to identify impacted sites), this should be part of MR 

assessments to identify whether MRs have an overall positive effect when taking into account 

all changes attributable to MR designation. 

6.6.5 – MPA networks 

While the vast majority of studies reported the results of monitoring individual MPAs, 

several studies identified the effectiveness of MPA networks, and continental scale analyses 

of multiple reserves, which will become more important as MPAs move away from single 

isolated areas into larger networks of interconnected areas (Edgar & Stuart-Smith 2009; 

Hamilton et al. 2010; Edgar & Barrett 2012). These studies identified several adaptations to 

monitoring programmes that need to be adopted in order to identify and understand changes 

that are occurring in these areas. For large networks biogeography is likely to play an 

important role in governing the individual responses displayed across a MPA network 

(Hamilton et al. 2010). Hamilton et al. (2010) performed a network-wide analysis of the 

Channel Islands marine reserve network, which spans a biogeographic boundary between its 

eastern and western group of marine reserves. By considering biogeographic variation and 

grouping MPA sites according to fish community structure resultant analyses were more 

sensitive to MPA effects. Furthermore, Edgar & Stuart-Smith (2009) performed a continental 

analysis of Australian MRs and documented that differences in a number of important factors 

are likely to influence the outcome of MR protection, including: 

 Biogeography 

 Local environmental conditions, e.g. currents, exposure 

 Distances of monitored sites from MR boundaries 

 Time since establishment 

 Differences in species and community composition 

 Pre-existing fishing effort 

 Level of compliance 

 Level of resource extraction of surrounding areas 

 Size and shape of MR 

 Larval supply and source-sink dynamics 

 Accessibility of MR for adult immigration and emigration 
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While many of these effects are relatively constant for a single reserve (and therefore 

do not introduce much variability into responses), they are likely to vary considerably across 

MPA networks, to the point where overall effects may be masked simply by the level of 

variability in responses introduced by these effects. While Hamilton et al. (2010) successfully 

incorporated biogeographic variation into their monitoring and analysis strategy, it remains a 

challenge for researchers to quantify and incorporate the above effects into MR monitoring 

programmes, so that individual responses can be explained and attributed to one of the above 

effects, within a larger network setting. 

6.7 – Monitoring methodologies 

Methodologies vary in their effectiveness among species, and also among locations 

(see Chapters 2 and 3). In this section I will discuss studies that present both new 

technological advances in monitoring techniques, but also considerations of metrics and 

indices of ecosystem state, considerations for replication and frequency of monitoring, the 

testing and utilisation of volunteer networks and participatory monitoring, and finally 

monitoring and management frameworks.  

6.7.1 – Indices and metrics 

There were 25 articles identified using the keyword search that were either performing 

research defining adequate indices or metrics, or utilising indices to assess ecosystem state, or 

health. Indices are most often defined for systems where a holistic approach to defining 

ecosystem health (i.e. considering all aspects of the community) is required. Identifying 

adequate metrics however requires a formal test of alternative metrics and identification of a 

minimum set of metrics required to represent the specific targets of MPAs (e.g. using factor 

analysis as in Greenstreet et al. 2012). Metrics must also have adequate baselines or 

benchmark figures, based on non-impacted or pristine ecosystems (e.g. Vroom et al. 2010 

and discussion in section 6.6.2). However for many areas, adequate control locations are 

unlikely to exist, due to heterogeneity in environmental conditions and the pervasive and long 

term nature of human impacts. Villnäs & Norkko (2011) addressed this issue to identify 

reference conditions and a simple metric of benthic status based on average regional 

diversity. Furthermore, based on a long-term dataset they were able to identify reference 

conditions for different areas, and also levels of acceptable deviation away from these 

reference states that are indicative of environmental degradation. Incorporating these 

measures along with an appropriate management decision framework (statistical process 
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control, based on manufacturing quality control frameworks have recently also been applied 

in an ecological context, Mesnil & Petitgas 2009) has particular utility within management 

contexts.  

6.7.2 – Monitoring techniques 

Multiple technological advancements were described in the literature for monitoring 

different aspects of subtidal communities. Although some of these simply presented new 

technologies, for example rotating high-definition drop cameras (Pelletier et al. 2012), and 

use of multibeam data to identify grouper “holes” as a proxy for spawning abundance (Wall 

et al. 2011), the majority were comparisons of methods, particularly regarding; differences in 

the species they were capable of monitoring (e.g. between baited and unbaited remote 

underwater video, Bernard & Götz 2012), ability to measure fish sizes (e.g. Laser calibrated 

underwater video versus diver estimation, Heppell et al. 2012) and precision of alternate 

methodologies or protocols in determining species densities (e.g. among stationary counts, 

belt transects and diver tow video surveys, McCauley et al. 2012). However, many studies, 

rather than rely on single methodologies, concluded that a suite of monitoring techniques and 

methods were often required, as each method had its own strengths and weaknesses (Seytre 

& Francour 2008; Bernard & Gotz 2012). In particular, many studies focussed on the 

importance of habitat in governing fish assemblage composition and abundances (Claudet et 

al. 2011), as well as monitoring to assess entire ecosystem change (see section 6.6.2). 

Achieving this would require a much broader suite of monitoring protocols including UVC, 

hydroacoustics, multibeam data, RUVs, and drop cameras (Cassata & Collins 2010; Murphy 

& Jenkins 2010; Pelletier et al. 2011; 2012).  

Identifying the amount of replication that is required is made even more important if 

resources are spread across multiple monitoring techniques. Several studies from the keyword 

search were identified as performing analyses of statistical power to optimise survey design 

(Jackson et al. 2008; Sims et al. 2008; Molloy et al. 2010; Teilmann et al. 2010). While the 

specific applications varied, these studies highlighted the importance of considering when is 

the best time to sample populations (Jackson et al. 2008; Sims et al. 2008) that may be 

particularly important for species that undergo large-scale movements (e.g. rock lobster 

inshore/offshore, Kelly 2001) and also the importance of repeated surveys within each year 

(Teilmann et al. 2010). Repeated surveys (i.e. surveys performed on separate days within 

each year and/or season) are useful in that they allow year to year variation, associated with 



Chapter 6 
 

 
192 

 

recruitment, growth and mortality, to be separated from day to day variation that is more 

likely to be associated with sea state, atmospheric conditions or presence of predator/prey on 

the survey date (Thompson & Mapstone 2002; McClanahan et al. 2007). Performing repeated 

surveys and assessing whether they are necessary for individual species groups as part of a 

pilot study should be a necessary component of monitoring programme design. Monitoring 

frequency across years is also a valid consideration (e.g. Smith et al. 2008 identified that 

annual monitoring is sufficient to detect persistent signs of stress in a coral reef ecosystem, 

but would not be sufficient to resolve patterns of transient stress) for MPAs as monitoring 

may be able to give initial indications of otherwise undetected poaching, disease and spread 

of invasive species that may require swift management actions, and monitoring at higher 

frequencies is more likely to detect these changes early, such that management actions are 

more successful.  

6.7.3 – Volunteer monitoring networks and participatory monitoring  

Volunteer monitoring is an attractive prospect and although the initial establishment 

and organisation is time-intensive it is a relatively cost-effective means for collecting data, 

particularly across continental spatial scales (Edgar & Stuart-Smith 2009; Goffredo et al. 

2010). To ensure quality and reliability of data volunteer collected data need to be validated 

against data collected by scientific divers (e.g. Edgar & Stuart-Smith 2009). However, 

recreational divers who are dedicated and have undergone some training are able to collect 

data with similar accuracy and precision as that of scientific divers (Reef Life surveys, see 

Edgar & Stuart-Smith 2009), and although this limits the numbers of participants (only the 

most dedicated divers were selected to partake in monitoring for Reef life surveys) it provides 

some guarantees regarding data quality. Recreational diver surveys and questionnaires have 

also been used in biodiversity assessments (e.g. Goffredo et al. 2010). The major drawback of 

this means of data collection is few recreational divers are willing to dive at poor quality 

sites, and consequently biodiversity assessments are likely to be biased towards more 

attractive or high quality locations. However, Goffredo et al. (2010) also noted that in 

addition to the benefits of broad scale data collection, involvement of divers in scientific 

studies increases diver awareness, and may consequently contribute to increasing compliance 

within MPAs. This is also one of the main arguments for participatory or community driven 

monitoring, as it is a means for involving the people who are most influential in the 

governance of MPAs directly into assessments of their effectiveness (Léopold et al. 2009). 

Strategies providing some means of training, and utilising techniques that the local 
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community know and trust (Seytre & Francour 2008), can provide the data required for 

scientific investigation while enforcing belief in protection measures and marine closures 

(Léopold et al. 2009; Fox et al. 2012). Particularly where monitoring and the whole process 

of implementing management strategies are handled through local communities, simplified 

analyses and clearly established management steps are required to enable adequate 

monitoring and marine management. For example, Rouphael et al. (2011) in collaboration 

with park managers identified that a monitoring and management plan consisting of data 

collection followed by confidence interval estimation and comparison to pre-defined 

thresholds provided an adequate means to identify potential damage to hard-corals due to 

snorkelers within a MPA. Furthermore, additional review and evaluation stages, involving the 

collection of additional information once a potential, but not definite, effect was noted, and 

consultation with scientific advisors, were incorporated such that at any stage there were clear 

processes and protocols once an effect was potentially noticed. Simple methods, such as 

those presented in Rouphael et al. (2011), which are grounded in solid scientific assessments, 

provide powerful means to achieve adequate management and also provide a means for local 

communities, who often lack scientific training, to become more involved in the management 

of marine ecosystems, with subsequent impacts on compliance and the state of coastal marine 

environments (Fox et al. 2011). 

6.8 – Description of monitoring framework 

The framework itself is split into four time periods, two phases prior to MPA 

establishment, and two phases after. The main target for data collection in the planning phase 

is to provide suitable information regarding the distribution of species and habitats across 

broad spatial scales to inform decisions pertaining to the placement and size of an MPA, or 

series of MPAs. During the planning phase initial broad-scale assessments of the spatial 

distribution of habitats, species and threats is carried out. Distribution modelling using 

methods such as those presented in Chapters 4 and 5 can be utilised in this phase to make 

assessments of species/habitat distributions that can be incorporated into zonation 

assessments for MPA placements, while mapping of habitats, threats and fishing effort 

provide additional information with regard to the degree of anthropogenic pressure across the 

entire seascape. During this phase discussions regarding the key aims and goals of MPA 

protection (i.e. whether it is to protect or promote diversity, individual species abundances, 

fisheries management), should take place and at this point the monitoring protocol for 

measuring these responses, both in the short and the long-term, should be discussed along 
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with prospective analyses (i.e. precision and/or accuracy of measured variables for different 

monitoring methods, and amounts of replication) to identify suitable monitoring protocols for 

baseline assessments. Although at this stage the amount of data available to perform 

prospective analyses to identify suitable levels of replication and coverage is likely to be 

small (quite possibly zero), examples of retrospective and prospective analyses of monitoring 

effectiveness, such as those presented in Chapters 2 and 3, could be used to identify an initial 

monitoring protocol for species that have similar abundances (based on initial pilot studies 

performed during the planning phase) and display similar behaviour to the species for which 

the prospective analyses are to be performed. In addition, distribution modelling information 

(such as in Chapter 4 and 5) may be used to identify areas that are likely to have similar 

communities prior to MPA establishment (useful for identifying similar sites inside and 

outside the MPA that could be used to establish a paired BACI design - Osenberg et al. 

1994), and also to identify potential sites that have different species and/or communities so 

that monitoring coverage incorporates all of the communities within the wider area to give a 

complete view of MPA effects among community types. Based on these prospective 

analyses, an initial monitoring protocol can be established for the collection of baseline 

information.  

The aim of monitoring in the baseline phase is to establish information regarding the 

initial abundance, biomass and size of individuals along with variables that are likely to 

influence the rate and magnitude of responses at individual MPA sites, such as prior fishing 

effort, habitat (at various spatial scales i.e. Claudet et al. 2011) and also if possible the level 

of larval supply/recruitment at MPA sites. Further considerations include entire ecosystem 

assessments (i.e. information regarding non-target species that may be affected indirectly, 

rather than just target species) as well as identifying trophic interactions, because these are 

likely to change as a result of direct and indirect effects. Ideally, baseline information should 

be gathered over a period of years, so that levels of natural variation in monitored attributes 

can be assessed such that initial MPA effects can be distinguished from natural variability. It 

should be noted that the collection of comprehensive baseline information should be 

prioritised to enable adequate examination of MPA effects in the future. MPA effects can 

include simple single species responses (Davidson 1991) or can manifest as a shift in the 

entire community (Shears & Babcock 2003) affecting multiple species. The collection of 

comprehensive baseline information across species and habitats will provide the necessary 

data to provide a strong analysis of the full extent of MPA effects, irrespective of how they 
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manifest within a specific ecosystem. At this stage, due to the additional information 

available from baseline monitoring, a more comprehensive assessment of future monitoring 

protocols can be made, such as presented in Chapter 2, to identify subsequent monitoring in 

the short and long-term.  

Monitoring after the establishment of an MPA is here split into two distinct phases. 

Due to the evidence suggesting that MPA effects can be rapid (section 6.6.2) relatively high-

frequency monitoring should be performed at this time to identify direct responses, which 

may be critical in demonstrating that the MPA is “working” to various stakeholders and to 

advocate for further MPAs. In addition, data that can be used to supplement state-level 

monitoring should be collected, such as identifying the shifts in fishing behaviour (e.g. 

increased fishing effort along MPA boundaries may influence responses exhibited at nearby 

MPA sites - Stelzenmüller et al. 2008; Babcock et al. 2010), poaching and monitoring of 

process variables, to explain the rate of change (or lack thereof due to lack of recruitment, 

Freeman et al. 2012) within the MPA, or even to make projections about responses in the 

coming years (e.g. Aburto-Oropeza et al. 2010). Furthermore, to truly assess the effect of 

establishing an MPA the shifts in fishing behaviour outside the MPA need to be addressed, 

even to the extent of identifying sites where fishing effort has increased as a result of MPA 

protection, so that these can be monitored and subsequently incorporated into assessments of 

MPA effects (e.g. Abbott & Haynie 2012). Behavioural changes introducing bias in 

monitoring protocol (e.g. Willis et al. 2000; Davidson 2001) and changes in abundance due 

to MPA designation should be identified at this stage to assess whether methodologies remain 

effective and need to be updated if they no longer meet monitoring requirements (for example 

analyses such as those presented in Chapter 3 to identify changes in replication). The 

frequency and duration of monitoring in the early MPA phase is likely to be governed 

primarily by logistical and cost constraints. However, given that direct effects are often 

evident within the first decade following MPA designation (Stewart et al. 2009; Babcock et 

al. 2010), 10 years of monitoring on an annual or biennial basis would seem like a suitable 

target that can be adjusted based on the likelihood of changes occurring in this period 

informed by levels of prior anthropogenic pressure and species life-history and further by 

initial responses in the early years of monitoring.  

The primary aim of monitoring in the final stage is to maintain monitoring of target 

species for the purpose of assessing ongoing progress with regard to historical baselines (e.g. 
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Taylor et al. 2011) or pristine locations (e.g. Vroom et al. 2010). Indirect effects are also 

likely to become evident over longer time periods, and direct effects may stabilise, continue 

in the same direction, or may reverse due to changes in trophic structure/habitat as a result of 

trophic cascades (Babcock et al. 2010). Thus, in this stage, periodic ecosystem assessments 

should be incorporated into monitoring plans to identify how the structure and functioning of 

the ecosystem differs from its baseline state as a means to identify the extent and nature of 

changes to ecosystems as a result of anthropogenic influences. In addition, fisheries 

expectations of MPAs, such as spillover of adults and larval export, are more likely to be 

evident in latter stages because of accumulation of more and larger individuals inside MPAs. 

Thus, monitoring of these effects by identifying gradients in biomass across MPA boundaries 

(Francini-Filho & de Moura 2008b) or tagging studies (Parsons et al. 2010) for spillover, and 

testing for changes in larval supply at external sites (Aiken & Navarrete 2011) are more 

likely to identify these changes at this latter stage than in earlier stages. This stage is likely to 

be ongoing for many decades after MPA designation, and requires a commitment to long-

term monitoring and evaluation of effects, as well as rigorous scientific study of the 

connections among the various factors influencing MPA effectiveness. As suggested by 

Babcock et al. (2010) monitoring frequency should also be maintained with less than five 

years between monitoring occasions such that chance events, such as recruitment pulses 

and/or die-off of certain species due to disease, are captured. In addition relatively frequent 

monitoring is also essential for identifying otherwise unobserved poaching events (Linares et 

al. 2012) and the effects of fishing MPA boundaries (Babcock et al. 2010) both of which are 

likely to increase as MPAs age. 

The monitoring framework presented here should be treated not as an exhaustive list 

of necessary data collection, but should rather be treated as a guideline for stakeholders to 

consult with specific research questions in mind. Depending on these research questions, 

specific aspects of the framework are likely to be a priority, whilst others are likely to be 

unrelated to these research questions. The framework should also not be viewed as a one-way 

or linear series of steps, as assessments of the MPA and the MPA monitoring should be used 

to reassess past decisions, and be used update the state of the MPA (e.g. shifting from 

restricted fishing to full no-take, or an expansion or reduction of the MPA size) depending on 

the evidence to support the ongoing changes in light of the stakeholders aims and goals. This 

ensures that both the MPA, and the monitoring thereof remains relevant to stakeholders. 
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6.9 – Conclusion 

In this final chapter I have drawn together current research findings and 

methodological considerations, as well as results and methods from Chapters 2 – 5, to 

construct a guideline framework for collection of data relevant to MPAs. Chapters 2 and 3 

highlight the importance of performing prospective and retrospective analyses of monitoring 

performance to identify suitable monitoring procedures, while Chapters 4 and 5 provide 

novel methods for examining the spatial distribution of marine species and the biogenic 

habitats they occupy. This final point is an important consideration when designing MPAs 

and can be further incorporated into monitoring programme design to ensure that monitoring 

is representative of all habitats and species within the MPA. This chapter not only draws 

these findings into a consistent framework, but presents new information sourced across 

biogeographic and taxonomic groups, to provide a suitable basis for the monitoring of MPAs. 

In addition this framework incorporates components that may enable the explanation of the 

many differences among MPA responses (as highlighted by Stewart et al. 2009) in light of 

conditions, such as prior fishing pressure and larval supply, that are likely to effect the 

responses they exhibit, further advancing the state of MPA science.  
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Appendix 1 – Supporting material and additional 

results for Chapter 3  

 

Table A1.1. AIC and Log-likelihood values of model fits to the species-reserve specific 

datasets with site*date as a factor. Headings refer to the assumed error distribution.  *Best 

models based on AIC and log-likelihood.  

Reserve Species 

AIC Log-Likelihood 

Normal Poisson 
Negative 
Binomial 

Normal Poisson 
Negative 
Binomial 

Tonga Island 

Latridopsis ciliaris 4039.4 1917.9 1770.1* -1878.7 -818.9 -744.0* 

Notolabrus celidotus 9642.6 8709.2 7563.3* -4680.3 -4214.6 -3640.7* 

Nemadactylus macropterus 9400.2 6123.8 3930.4* -4559.1 -2921.9 -1824.2* 

Parapercis colias 4677.9 2607.4 2470.9* -2198.0 -1163.7 -1094.5* 

Long Island 

Latridopsis ciliaris 2915.0 1387.2 1323.7* -1300.5 -537.6 -504.9* 

Notolabrus celidotus 15619.0 23373.0 13384.0* -7652.5 -11530.4 -6534.9* 

Nemadactylus macropterus 6124.8 1052.9 783.3* -2905.4 -370.4 -234.7* 

Parapercis colias 10080.0 9477.6 8681.9* -4882.8 -4582.8 -4183.9* 

Horoirangi 

Latridopsis ciliaris 1455.6 545.9 486.1* -650.8 -196.9 -166.1* 

Notolabrus celidotus 4824.6 4564.9 4375.7* -2335.3 -2206.5 -2110.9* 

Nemadactylus macropterus 5294.0 2653.9 1375.8* -2570.0 -1250.9 -610.9* 

Parapercis colias 1265.6 813.5 808.6* -555.8 -330.8 -327.3* 

 

Table A1.2. The proportion of within site counts that were considered to be overdispersed 

compared to a poisson distribution, by comparing the within site variance to that expected if 

the counts were poisson random variables using a chi-squared test (dof.=ntransects -1). 

Species Reserve 
Frequency of 

overdispersal (per 
region) 

Frequency of 
overdispersal (per 

species) 

Latridopsis ciliaris 

Long Island 0.24 
 

0.25 
 

Tonga Island 0.25 

Horoirangi 0.24 

Notolabrus celidotus 

Long Island 0.83 

0.61 Tonga Island 0.50 

Horoirangi 0.37 

 
Nemadactylus macropterus 

 

Long Island 0.24 

0.41 Tonga Island 0.50 

Horoirangi 0.35 

Parapercis colias 

Long Island 0.55 

0.38 Tonga Island 0.27 

Horoirangi 0.10 
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Table A1.3. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Long Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 48.2 0.16 0.027 53.4 0.16 0.029 15.6 0.34 0.051 15.8 0.34 0.052 

3 8 1 52 0.16 0.028 53 0.16 0.029 21.2 0.30 0.048 20.2 0.30 0.045 

3 10 1 49.2 0.16 0.024 54.4 0.16 0.027 23.2 0.28 0.043 24.4 0.27 0.043 

3 12 1 49.4 0.16 0.029 56.8 0.16 0.025 29.2 0.25 0.046 28.8 0.25 0.035 

3 16 1 54.6 0.15 0.026 54.8 0.16 0.026 32 0.23 0.039 28 0.23 0.035 

4 6 1 55.6 0.15 0.025 54.6 0.15 0.025 19.4 0.30 0.047 19.6 0.30 0.051 

4 8 1 57.6 0.15 0.026 58.4 0.15 0.024 24.4 0.26 0.040 22.6 0.26 0.040 

4 10 1 54.4 0.15 0.025 57.2 0.15 0.026 28.6 0.24 0.039 26 0.24 0.038 

4 12 1 60.2 0.15 0.025 61 0.15 0.026 29.2 0.22 0.036 33.2 0.22 0.036 

4 16 1 55.8 0.15 0.025 58.4 0.15 0.025 37.2 0.20 0.035 38.2 0.20 0.035 

5 6 1 59 0.14 0.027 60.4 0.14 0.022 22.4 0.27 0.041 24 0.27 0.042 

5 8 1 57.2 0.14 0.024 63.6 0.14 0.022 27.4 0.24 0.039 29 0.24 0.037 

5 10 1 62.4 0.14 0.025 59.2 0.14 0.023 30.6 0.22 0.036 35.6 0.22 0.035 

5 12 1 61.4 0.14 0.024 61 0.14 0.024 35.8 0.20 0.031 35.4 0.20 0.036 

5 16 1 60.8 0.14 0.020 61 0.14 0.024 42.2 0.19 0.031 41.2 0.19 0.030 

6 6 1 60.4 0.14 0.023 59.4 0.14 0.025 25.8 0.25 0.039 25.4 0.25 0.043 

6 8 1 62.6 0.14 0.024 61.8 0.14 0.024 27.8 0.22 0.035 31 0.22 0.039 

6 10 1 60.6 0.14 0.024 62.4 0.13 0.025 35.8 0.20 0.035 37 0.20 0.036 

6 12 1 65.2 0.13 0.023 60.8 0.14 0.022 41.6 0.19 0.032 39.2 0.19 0.032 

6 16 1 61.2 0.14 0.024 65 0.14 0.024 43.6 0.17 0.029 46.6 0.17 0.031 

8 6 1 64 0.13 0.022 64.2 0.13 0.021 33 0.22 0.035 30.2 0.22 0.032 

8 8 1 67.8 0.13 0.021 64.6 0.13 0.022 39 0.19 0.031 36.8 0.20 0.031 

8 10 1 64.2 0.13 0.025 67.2 0.13 0.021 43.2 0.18 0.031 44.2 0.18 0.028 

8 12 1 65 0.13 0.024 66.2 0.13 0.023 46 0.17 0.029 42.4 0.17 0.030 

8 16 1 65 0.13 0.024 66 0.13 0.023 49.4 0.16 0.025 50.2 0.16 0.027 
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Table A1.4. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 37.8 0.29 0.042 30.4 0.28 0.040 14 0.63 0.077 10.8 0.64 0.076 

3 8 2 34.2 0.28 0.037 35.6 0.27 0.036 15 0.55 0.070 15 0.56 0.062 

3 10 2 32.8 0.27 0.042 31.4 0.27 0.038 16.2 0.50 0.064 13.2 0.50 0.056 

3 12 2 36.8 0.28 0.036 35 0.28 0.037 17.4 0.47 0.055 20.4 0.45 0.059 

3 16 2 31.8 0.28 0.035 36.8 0.27 0.037 19.2 0.43 0.054 19.6 0.42 0.053 

4 6 2 37.4 0.26 0.037 36.4 0.26 0.037 14 0.55 0.063 15.6 0.57 0.072 

4 8 2 39.6 0.25 0.038 37.2 0.25 0.034 19.4 0.48 0.062 16.4 0.49 0.062 

4 10 2 36.4 0.26 0.036 39.4 0.25 0.036 18.4 0.44 0.055 18.4 0.43 0.056 

4 12 2 35.4 0.25 0.034 39.4 0.24 0.036 23.6 0.41 0.055 21.2 0.41 0.055 

4 16 2 39 0.25 0.034 42.8 0.24 0.038 23.4 0.38 0.052 23.8 0.38 0.047 

5 6 2 41.4 0.24 0.032 40.2 0.23 0.038 14.2 0.50 0.060 14.8 0.52 0.062 

5 8 2 42.2 0.23 0.036 39 0.23 0.032 18.8 0.45 0.055 16.6 0.44 0.056 

5 10 2 39 0.23 0.034 39.8 0.23 0.034 19.2 0.41 0.049 17.4 0.41 0.050 

5 12 2 40.2 0.23 0.032 43.8 0.23 0.034 21.2 0.38 0.047 20.6 0.38 0.047 

5 16 2 46 0.23 0.038 39.2 0.24 0.034 27.4 0.34 0.048 25.6 0.34 0.043 

6 6 2 39.4 0.23 0.036 46.2 0.22 0.036 17 0.47 0.057 18 0.47 0.059 

6 8 2 43.2 0.22 0.031 40.6 0.23 0.032 19 0.41 0.053 20 0.41 0.050 

6 10 2 40 0.23 0.035 43 0.22 0.030 25 0.37 0.052 22.2 0.37 0.048 

6 12 2 42.8 0.22 0.030 45.8 0.21 0.035 24 0.34 0.047 22.6 0.35 0.042 

6 16 2 41.4 0.22 0.034 45 0.23 0.034 26.8 0.31 0.045 28.2 0.32 0.040 

8 6 2 48.2 0.21 0.031 48.4 0.20 0.030 21.8 0.40 0.048 18.8 0.41 0.051 

8 8 2 44 0.21 0.032 50 0.21 0.033 23.2 0.36 0.049 23.8 0.36 0.049 

8 10 2 51.4 0.20 0.031 46.8 0.20 0.032 22.4 0.34 0.042 23.8 0.33 0.042 

8 12 2 45 0.21 0.032 42.6 0.20 0.033 28.6 0.31 0.043 26.2 0.31 0.040 

8 16 2 45.6 0.21 0.031 49.4 0.21 0.032 32.4 0.28 0.037 30.4 0.28 0.036 
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Table A1.5. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 41.4 0.34 0.040 39.8 0.33 0.036 14.2 0.78 0.076 16.4 0.75 0.073 

3 8 3 35.6 0.33 0.033 38.4 0.32 0.038 17.2 0.66 0.064 15.2 0.66 0.062 

3 10 3 37 0.33 0.038 39 0.32 0.037 19.2 0.61 0.058 21.4 0.60 0.063 

3 12 3 40.4 0.32 0.034 39 0.33 0.034 20.2 0.55 0.056 20 0.57 0.057 

3 16 3 41.8 0.33 0.035 41.6 0.32 0.033 22.2 0.50 0.048 26 0.50 0.050 

4 6 3 40.4 0.31 0.035 44.8 0.29 0.032 14.8 0.68 0.063 15.8 0.68 0.062 

4 8 3 44.2 0.31 0.033 41.2 0.29 0.035 17 0.61 0.055 21.4 0.60 0.059 

4 10 3 44.4 0.30 0.031 45.2 0.29 0.033 19.8 0.55 0.049 20.6 0.55 0.059 

4 12 3 41.8 0.30 0.031 43.2 0.29 0.030 23 0.51 0.047 19.2 0.50 0.043 

4 16 3 47.6 0.29 0.032 41.4 0.29 0.034 23.6 0.47 0.045 27.6 0.45 0.046 

5 6 3 44.4 0.29 0.034 43.6 0.28 0.030 19.6 0.62 0.057 16.6 0.64 0.058 

5 8 3 44.8 0.28 0.033 53 0.27 0.030 20 0.55 0.052 19.6 0.55 0.051 

5 10 3 50.8 0.27 0.033 47.4 0.27 0.031 25.6 0.49 0.053 23.8 0.50 0.045 

5 12 3 49.2 0.27 0.031 47.6 0.27 0.031 23.8 0.46 0.052 25.4 0.46 0.047 

5 16 3 49.2 0.28 0.029 46.2 0.27 0.033 26 0.42 0.040 29.2 0.42 0.043 

6 6 3 45.8 0.27 0.032 48 0.25 0.031 20.2 0.58 0.052 20.6 0.58 0.055 

6 8 3 48.2 0.27 0.031 48 0.26 0.029 22.2 0.51 0.049 24.8 0.51 0.048 

6 10 3 46.6 0.27 0.031 49.8 0.25 0.029 28 0.46 0.043 29.8 0.46 0.045 

6 12 3 47.6 0.26 0.032 50.2 0.26 0.031 33 0.42 0.046 28 0.43 0.043 

6 16 3 52.2 0.26 0.030 51.6 0.25 0.030 33.8 0.38 0.040 31.8 0.39 0.040 

8 6 3 48.8 0.25 0.032 47.2 0.24 0.029 19.6 0.51 0.047 22.6 0.52 0.052 

8 8 3 52.6 0.24 0.031 54.4 0.23 0.026 26.8 0.46 0.045 25 0.44 0.039 

8 10 3 52.2 0.24 0.030 51 0.24 0.033 28 0.41 0.036 27.4 0.41 0.044 

8 12 3 52 0.23 0.029 54.2 0.22 0.029 33.6 0.38 0.037 33.6 0.38 0.040 

8 16 3 52.8 0.24 0.030 53.6 0.24 0.032 36.8 0.35 0.041 37.2 0.34 0.038 

 

 

 

 

 

 



Appendix 1 
 

 
239 

 

Table A1.6. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 14.6 0.34 0.050 23.6 0.30 0.043 13.6 0.47 0.071 11.2 0.43 0.062 

3 8 1 20.6 0.32 0.051 20 0.29 0.043 11.6 0.42 0.062 13 0.39 0.055 

3 10 1 19.4 0.31 0.045 20.6 0.28 0.040 13.2 0.40 0.057 13.8 0.37 0.052 

3 12 1 20.8 0.30 0.047 22 0.28 0.045 17 0.37 0.060 14 0.35 0.054 

3 16 1 22.4 0.29 0.046 23.4 0.28 0.039 18.4 0.34 0.053 14.6 0.32 0.043 

4 6 1 18.4 0.30 0.051 24.2 0.27 0.042 14.6 0.41 0.066 15.4 0.38 0.059 

4 8 1 22.4 0.28 0.043 23.8 0.26 0.040 12.2 0.37 0.055 17.2 0.35 0.057 

4 10 1 26.4 0.27 0.043 24.6 0.25 0.040 16 0.34 0.052 18.2 0.32 0.045 

4 12 1 24.8 0.27 0.045 29.6 0.25 0.039 17.4 0.32 0.047 19.2 0.30 0.043 

4 16 1 25.8 0.26 0.042 29.2 0.24 0.037 22.2 0.30 0.048 24.6 0.28 0.046 

5 6 1 25.6 0.27 0.041 27 0.24 0.037 15 0.37 0.058 16.6 0.34 0.051 

5 8 1 23.2 0.26 0.036 31 0.23 0.038 18.8 0.32 0.049 19.2 0.31 0.044 

5 10 1 29.2 0.25 0.038 28.6 0.23 0.038 19.2 0.31 0.051 20 0.29 0.046 

5 12 1 29.2 0.24 0.039 30.8 0.22 0.033 20.2 0.29 0.043 22.6 0.27 0.045 

5 16 1 30.6 0.23 0.034 32.6 0.22 0.034 24.6 0.27 0.043 23.4 0.26 0.042 

6 6 1 26 0.25 0.036 32 0.22 0.034 17 0.34 0.051 18.6 0.31 0.048 

6 8 1 26.6 0.24 0.037 36 0.21 0.033 21.8 0.30 0.050 16.2 0.29 0.039 

6 10 1 29.8 0.23 0.036 31.2 0.21 0.033 22.4 0.28 0.044 21.6 0.27 0.041 

6 12 1 35 0.22 0.036 32.8 0.21 0.032 24.4 0.27 0.040 24.2 0.25 0.041 

6 16 1 36.4 0.21 0.034 35 0.20 0.032 27.8 0.25 0.040 27.2 0.24 0.036 

8 6 1 32 0.22 0.033 36.2 0.20 0.031 19.4 0.29 0.044 22.4 0.27 0.039 

8 8 1 37.4 0.21 0.031 38.4 0.19 0.029 23.4 0.26 0.043 28 0.25 0.037 

8 10 1 38.6 0.20 0.029 40.1 0.18 0.028 28 0.25 0.039 27.8 0.23 0.035 

8 12 1 39 0.20 0.031 41.8 0.18 0.027 29.2 0.24 0.038 33.8 0.22 0.038 

8 16 1 37.2 0.19 0.029 44.8 0.18 0.028 30.6 0.22 0.032 36 0.21 0.035 
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Table A1.7. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 10.8 0.63 0.076 13.2 0.57 0.073 11 0.86 0.100 12 0.83 0.094 

3 8 2 13 0.58 0.067 12.8 0.54 0.067 11.2 0.77 0.092 9.2 0.75 0.092 

3 10 2 12.4 0.57 0.064 16 0.53 0.063 10.2 0.71 0.090 11 0.66 0.077 

3 12 2 13.2 0.56 0.064 10.4 0.52 0.061 13.2 0.69 0.083 10.2 0.65 0.074 

3 16 2 11.4 0.54 0.062 15.8 0.51 0.062 12 0.65 0.075 10.4 0.62 0.071 

4 6 2 12.2 0.56 0.071 13 0.52 0.055 8.2 0.78 0.088 13.4 0.72 0.092 

4 8 2 13.6 0.54 0.066 16 0.49 0.060 9.8 0.68 0.081 11 0.65 0.081 

4 10 2 14 0.51 0.056 15.8 0.48 0.058 11 0.63 0.071 11.8 0.62 0.067 

4 12 2 18.2 0.50 0.065 15.2 0.47 0.058 11 0.62 0.067 16.4 0.57 0.069 

4 16 2 13.2 0.48 0.058 15.4 0.44 0.055 10.6 0.57 0.058 12.6 0.54 0.067 

5 6 2 18.2 0.51 0.062 19 0.46 0.059 11 0.70 0.084 13 0.65 0.082 

5 8 2 13.4 0.48 0.049 17.6 0.45 0.049 11.6 0.62 0.068 12.2 0.59 0.062 

5 10 2 18.6 0.47 0.054 18.6 0.42 0.051 13.4 0.57 0.069 13 0.56 0.068 

5 12 2 15.6 0.45 0.051 18.4 0.42 0.049 15.8 0.56 0.065 14.8 0.53 0.059 

5 16 2 16.6 0.44 0.053 17 0.42 0.046 13.6 0.51 0.063 13.8 0.48 0.053 

6 6 2 14 0.47 0.057 20.6 0.43 0.052 11.6 0.63 0.073 11.8 0.59 0.068 

6 8 2 17.4 0.45 0.056 16 0.41 0.049 13 0.57 0.068 12.6 0.55 0.061 

6 10 2 17 0.43 0.053 21.8 0.39 0.044 16 0.55 0.063 16 0.50 0.058 

6 12 2 17.4 0.42 0.045 22 0.38 0.046 14.6 0.50 0.062 13.8 0.49 0.059 

6 16 2 20.6 0.41 0.047 23 0.39 0.048 16.6 0.48 0.057 16.2 0.45 0.054 

8 6 2 18.6 0.42 0.048 24.6 0.37 0.044 11.8 0.57 0.067 14 0.52 0.062 

8 8 2 18.2 0.39 0.047 23.8 0.36 0.039 13.2 0.51 0.061 14.8 0.48 0.055 

8 10 2 21.2 0.38 0.044 20.8 0.35 0.039 17.4 0.47 0.060 15.6 0.45 0.047 

8 12 2 26.6 0.37 0.045 21 0.35 0.044 16.6 0.45 0.055 19.6 0.43 0.050 

8 16 2 20.8 0.35 0.039 19.8 0.34 0.037 19 0.42 0.050 18 0.39 0.048 
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Table A1.8. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 12.4 0.79 0.069 14.8 0.69 0.066 14.2 1.08 0.111 13.8 0.96 0.089 

3 8 3 13.2 0.74 0.064 15.8 0.66 0.058 12.2 0.99 0.090 12 0.90 0.087 

3 10 3 11.2 0.70 0.061 15 0.65 0.060 10.4 0.89 0.087 13 0.84 0.076 

3 12 3 15.4 0.68 0.065 15 0.64 0.056 14.4 0.83 0.079 13.6 0.81 0.080 

3 16 3 16 0.67 0.057 19.2 0.62 0.065 10.8 0.79 0.072 13 0.75 0.069 

4 6 3 13.8 0.70 0.065 15.8 0.63 0.057 12.2 0.97 0.079 14.2 0.86 0.082 

4 8 3 13.8 0.68 0.058 18.6 0.60 0.054 12.6 0.87 0.080 13 0.82 0.074 

4 10 3 19 0.63 0.058 18.2 0.58 0.059 12.4 0.80 0.070 14.4 0.73 0.067 

4 12 3 18.2 0.63 0.059 20.4 0.57 0.053 16.2 0.77 0.068 13 0.72 0.060 

4 16 3 15.8 0.60 0.059 18.4 0.57 0.051 12.4 0.70 0.064 16.4 0.65 0.055 

5 6 3 13.2 0.65 0.055 19 0.57 0.049 10.6 0.89 0.078 11.4 0.80 0.068 

5 8 3 17.2 0.62 0.052 18.4 0.55 0.047 12.6 0.79 0.067 11.4 0.74 0.058 

5 10 3 16.4 0.59 0.052 22.4 0.53 0.052 14.2 0.73 0.064 16 0.69 0.064 

5 12 3 18.6 0.57 0.051 19.2 0.53 0.045 14.4 0.69 0.067 14.4 0.63 0.056 

5 16 3 20 0.54 0.050 20.4 0.52 0.048 18.6 0.63 0.057 17.4 0.63 0.054 

6 6 3 18.6 0.58 0.052 25 0.51 0.050 11.6 0.79 0.069 14 0.76 0.070 

6 8 3 20 0.56 0.048 22.2 0.50 0.044 16.8 0.73 0.065 12.2 0.69 0.055 

6 10 3 23.6 0.54 0.052 20.8 0.50 0.044 15.6 0.67 0.059 16.8 0.62 0.058 

6 12 3 20 0.52 0.042 22.4 0.48 0.040 17.4 0.63 0.057 17.2 0.61 0.053 

6 16 3 24.8 0.50 0.045 23.4 0.47 0.046 21.2 0.59 0.053 17.8 0.57 0.049 

8 6 3 18.8 0.52 0.045 25.4 0.47 0.040 13.8 0.71 0.060 14.8 0.66 0.055 

8 8 3 21.6 0.49 0.044 24 0.44 0.039 16.8 0.63 0.058 19 0.58 0.056 

8 10 3 23 0.48 0.040 25.6 0.43 0.039 18.6 0.60 0.055 22.2 0.56 0.051 

8 12 3 26.4 0.45 0.043 29.6 0.42 0.038 18.8 0.56 0.051 19.2 0.54 0.048 

8 16 3 27.6 0.45 0.040 29.6 0.42 0.037 18.4 0.53 0.045 26 0.50 0.049 

 

 

 

 

 

 



Appendix 1 
 

 
242 

 

Table A1.9. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 12.2 0.49 0.083 13 0.45 0.069 12 0.61 0.100 11.2 0.55 0.087 

3 8 1 14.4 0.47 0.081 14.2 0.44 0.072 11.4 0.57 0.077 11.2 0.51 0.087 

3 10 1 12 0.47 0.074 14.2 0.43 0.073 11 0.53 0.087 11.6 0.48 0.077 

3 12 1 15 0.45 0.077 14.4 0.43 0.066 10.2 0.51 0.084 15.4 0.48 0.084 

3 16 1 13.2 0.44 0.070 12.8 0.42 0.068 12.6 0.47 0.077 12.6 0.46 0.072 

4 6 1 13.2 0.44 0.072 13.6 0.41 0.068 12 0.55 0.091 12.2 0.48 0.083 

4 8 1 16 0.42 0.070 17.4 0.38 0.066 14 0.50 0.088 13.2 0.45 0.071 

4 10 1 14.4 0.41 0.069 14.4 0.38 0.062 15.6 0.46 0.067 15.8 0.44 0.073 

4 12 1 16.8 0.40 0.068 18 0.38 0.068 11.8 0.44 0.066 12.4 0.42 0.071 

4 16 1 16 0.40 0.069 14.4 0.38 0.058 14.8 0.42 0.073 15.6 0.40 0.074 

5 6 1 17.2 0.40 0.066 14.2 0.36 0.058 15.4 0.49 0.069 14.8 0.44 0.072 

5 8 1 17.2 0.38 0.064 18 0.35 0.060 13.2 0.44 0.065 14.4 0.41 0.069 

5 10 1 15.2 0.37 0.062 16.6 0.35 0.060 16.2 0.42 0.070 14.6 0.39 0.060 

5 12 1 17.8 0.36 0.061 16 0.34 0.053 15.2 0.40 0.070 14.4 0.39 0.065 

5 16 1 17.6 0.36 0.060 17.4 0.34 0.053 13.6 0.38 0.060 17.6 0.37 0.063 

6 6 1 20.2 0.37 0.068 19.8 0.34 0.058 12 0.45 0.068 14.4 0.41 0.065 

6 8 1 16.4 0.36 0.058 15.6 0.33 0.053 16.4 0.41 0.070 18 0.38 0.068 

6 10 1 18.8 0.34 0.058 17.2 0.32 0.058 14.6 0.40 0.066 18.6 0.36 0.062 

6 12 1 15.2 0.34 0.060 19.2 0.33 0.058 15.8 0.38 0.060 15.8 0.35 0.060 

6 16 1 16.6 0.33 0.057 19.4 0.32 0.058 17.4 0.35 0.059 20.6 0.34 0.055 

8 6 1 19.2 0.33 0.060 21.4 0.31 0.054 18.4 0.39 0.068 18.2 0.36 0.064 

8 8 1 19.6 0.31 0.052 22.8 0.30 0.053 19.6 0.36 0.066 17 0.34 0.061 

8 10 1 22.2 0.31 0.055 23.6 0.30 0.052 19.4 0.34 0.059 18.6 0.33 0.053 

8 12 1 20.6 0.31 0.054 18.8 0.30 0.046 18.4 0.33 0.061 16.6 0.31 0.056 

8 16 1 23 0.30 0.055 23.4 0.29 0.050 17.4 0.33 0.057 23.2 0.30 0.054 

 

 

 

 

 

 



Appendix 1 
 

 
243 

 

Table A1.10. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 8.4 0.92 0.116 13 0.82 0.107 11 1.09 0.143 8.6 1.03 0.137 

3 8 2 13 0.89 0.114 12.2 0.82 0.119 9.6 1.08 0.139 8.2 0.95 0.114 

3 10 2 12.8 0.83 0.113 13.4 0.79 0.102 11.6 0.93 0.122 11.6 0.91 0.120 

3 12 2 13 0.83 0.103 10.6 0.79 0.102 10.6 0.91 0.121 9.2 0.90 0.111 

3 16 2 13 0.81 0.101 15.6 0.76 0.097 10.6 0.86 0.114 12.8 0.85 0.108 

4 6 2 13.2 0.82 0.092 13.6 0.75 0.097 13.2 1.04 0.120 11 0.91 0.120 

4 8 2 14.6 0.78 0.109 12.2 0.71 0.095 9.4 0.92 0.112 12.8 0.85 0.112 

4 10 2 15.8 0.74 0.099 12.6 0.71 0.093 13.8 0.86 0.113 12 0.83 0.105 

4 12 2 13.8 0.74 0.094 14 0.70 0.097 12.6 0.81 0.092 10.8 0.80 0.101 

4 16 2 11.6 0.73 0.087 13.6 0.69 0.087 14 0.76 0.088 12.8 0.74 0.104 

5 6 2 13.4 0.78 0.101 14.6 0.69 0.083 9.8 0.93 0.108 13.8 0.86 0.104 

5 8 2 13.6 0.72 0.093 13.6 0.66 0.089 10.6 0.85 0.108 12.4 0.78 0.092 

5 10 2 13.2 0.69 0.091 14 0.66 0.082 12 0.79 0.106 13.2 0.73 0.095 

5 12 2 14.2 0.68 0.086 16.2 0.62 0.093 10.2 0.75 0.098 12 0.72 0.086 

5 16 2 12.4 0.64 0.081 14.6 0.62 0.084 13.6 0.71 0.099 13.8 0.69 0.087 

6 6 2 11.4 0.70 0.085 13.2 0.63 0.083 15.2 0.83 0.111 12 0.77 0.104 

6 8 2 14.6 0.67 0.091 15.2 0.60 0.077 11.6 0.76 0.093 14.6 0.71 0.102 

6 10 2 14.8 0.65 0.086 14.4 0.61 0.087 16.8 0.72 0.095 11 0.68 0.083 

6 12 2 12.8 0.62 0.084 14.2 0.59 0.080 14.2 0.69 0.093 14.2 0.67 0.086 

6 16 2 14.2 0.61 0.077 12.4 0.60 0.079 13.2 0.66 0.090 16.4 0.61 0.084 

8 6 2 17.6 0.60 0.076 18.8 0.55 0.075 12.4 0.74 0.091 12.6 0.68 0.096 

8 8 2 15.2 0.58 0.073 15.2 0.54 0.074 12.6 0.67 0.091 14.2 0.63 0.082 

8 10 2 17 0.57 0.080 18.4 0.53 0.072 16 0.63 0.088 15.8 0.60 0.086 

8 12 2 18.4 0.54 0.083 16.6 0.52 0.077 14.6 0.61 0.083 13.6 0.59 0.084 

8 16 2 16.4 0.54 0.074 17 0.52 0.074 17.4 0.58 0.078 17 0.56 0.072 
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Table A1.11. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue cod using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 13.8 1.18 0.108 14.2 1.05 0.106 11.4 1.35 0.135 13.6 1.26 0.123 

3 8 3 10.6 1.07 0.104 12.8 0.97 0.089 11.4 1.23 0.119 11.8 1.20 0.118 

3 10 3 13 1.05 0.097 15 0.95 0.097 14.2 1.15 0.113 16.2 1.09 0.109 

3 12 3 14 0.97 0.099 12.2 0.95 0.093 13 1.15 0.113 14 1.07 0.113 

3 16 3 14.6 0.98 0.101 13 0.92 0.093 14 1.08 0.102 14.4 1.01 0.106 

4 6 3 11.4 1.00 0.098 13.8 0.91 0.091 12.2 1.29 0.113 11 1.14 0.116 

4 8 3 12.4 0.96 0.101 14 0.86 0.096 13.4 1.15 0.112 9.6 1.04 0.095 

4 10 3 15 0.91 0.094 13.8 0.85 0.082 13.4 1.05 0.103 14 0.99 0.109 

4 12 3 16 0.91 0.094 14.4 0.84 0.085 11.8 1.02 0.099 12.2 0.97 0.097 

4 16 3 16.8 0.88 0.096 15 0.81 0.079 13.4 0.96 0.099 14.4 0.90 0.106 

5 6 3 13 0.93 0.091 19 0.85 0.084 13.4 1.18 0.117 13.6 1.03 0.101 

5 8 3 15.6 0.89 0.097 17.4 0.83 0.087 11.8 1.07 0.093 13.2 0.93 0.093 

5 10 3 13.6 0.86 0.082 18 0.79 0.086 13.2 0.98 0.097 17 0.92 0.093 

5 12 3 15.4 0.83 0.082 16 0.78 0.079 13.4 0.93 0.091 14.6 0.88 0.085 

5 16 3 17 0.81 0.077 18.2 0.77 0.085 12.8 0.88 0.087 15.2 0.83 0.077 

6 6 3 15 0.87 0.093 17.8 0.77 0.079 12.2 1.07 0.104 13.6 0.97 0.099 

6 8 3 16.8 0.82 0.091 16.4 0.74 0.073 16.2 0.96 0.100 13.8 0.87 0.092 

6 10 3 18 0.80 0.087 17.8 0.74 0.080 16 0.90 0.092 18.4 0.83 0.084 

6 12 3 17.6 0.78 0.079 14.8 0.73 0.074 15.2 0.88 0.089 15 0.82 0.080 

6 16 3 16 0.75 0.075 17.8 0.70 0.078 15.6 0.81 0.090 16.6 0.77 0.078 

8 6 3 16.4 0.75 0.076 21.2 0.67 0.075 12.4 0.92 0.083 13.6 0.83 0.083 

8 8 3 19.2 0.71 0.076 22.4 0.66 0.074 16.2 0.86 0.082 15.6 0.78 0.081 

8 10 3 21 0.68 0.076 18.8 0.65 0.068 17.4 0.78 0.080 19.2 0.74 0.082 

8 12 3 17.4 0.68 0.075 20.8 0.65 0.067 20 0.77 0.087 18.8 0.71 0.074 

8 16 3 19.2 0.67 0.069 20 0.62 0.072 20.2 0.71 0.074 21.6 0.67 0.077 
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Table A1.12. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Long Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 10 0.50 0.068 13.4 0.38 0.060 7.6 0.61 0.088 10.6 0.52 0.080 

3 8 1 11.6 0.45 0.064 16.4 0.35 0.057 8.8 0.53 0.085 13.6 0.45 0.074 

3 10 1 11.6 0.41 0.061 17 0.33 0.052 12.2 0.49 0.075 15 0.40 0.065 

3 12 1 13 0.40 0.052 18 0.32 0.050 10.8 0.45 0.067 12.2 0.38 0.060 

3 16 1 15.8 0.35 0.054 20.2 0.30 0.045 13.4 0.40 0.060 14 0.36 0.053 

4 6 1 13.4 0.44 0.065 16.6 0.34 0.047 11.6 0.55 0.077 15.2 0.45 0.069 

4 8 1 12 0.38 0.056 16.4 0.31 0.045 12.2 0.47 0.072 12 0.40 0.055 

4 10 1 14.4 0.36 0.051 20 0.28 0.043 10.4 0.43 0.058 16.8 0.36 0.054 

4 12 1 18.2 0.34 0.055 22.6 0.28 0.044 12.2 0.40 0.061 18.6 0.33 0.050 

4 16 1 18.4 0.31 0.045 22.6 0.27 0.039 15 0.35 0.053 19.4 0.31 0.049 

5 6 1 14.2 0.39 0.056 17.6 0.30 0.043 10.4 0.49 0.071 11.6 0.40 0.058 

5 8 1 14.2 0.35 0.047 21.8 0.28 0.040 12.8 0.42 0.056 16 0.35 0.052 

5 10 1 18.6 0.32 0.047 26.2 0.26 0.037 17.2 0.38 0.057 16.2 0.32 0.047 

5 12 1 18.4 0.30 0.043 27.8 0.25 0.038 17.2 0.35 0.053 18.8 0.30 0.045 

5 16 1 23 0.28 0.042 27 0.24 0.032 18 0.33 0.052 20.8 0.28 0.044 

6 6 1 18.2 0.35 0.051 23 0.27 0.042 13.8 0.44 0.063 13.4 0.37 0.052 

6 8 1 17.4 0.32 0.039 25.2 0.26 0.038 11.6 0.38 0.056 19 0.33 0.050 

6 10 1 18.2 0.29 0.039 27.2 0.24 0.034 18.6 0.35 0.056 20 0.30 0.043 

6 12 1 23.2 0.27 0.038 29.8 0.23 0.031 18 0.32 0.046 20 0.28 0.039 

6 16 1 27.4 0.25 0.037 33.6 0.22 0.031 20.2 0.28 0.041 23.8 0.26 0.040 

8 6 1 19.4 0.30 0.042 28.6 0.24 0.030 14.4 0.38 0.053 16.2 0.32 0.043 

8 8 1 25.6 0.27 0.043 33.8 0.22 0.033 15.6 0.34 0.047 23.2 0.28 0.044 

8 10 1 27.8 0.25 0.038 36.2 0.21 0.029 20 0.31 0.048 24.8 0.26 0.035 

8 12 1 32.8 0.24 0.037 40.2 0.20 0.030 20.6 0.28 0.040 30.2 0.24 0.035 

8 16 1 31 0.22 0.031 38.6 0.19 0.026 23.8 0.25 0.036 33.2 0.22 0.031 
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Table A1.13. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 8.2 0.99 0.108 10.2 0.75 0.086 6.4 1.23 0.126 8.4 1.01 0.116 

3 8 2 7 0.88 0.106 10.8 0.68 0.077 10 1.02 0.122 9.4 0.87 0.097 

3 10 2 9.4 0.81 0.087 11.2 0.64 0.075 10.6 0.92 0.108 10.2 0.79 0.091 

3 12 2 11.6 0.75 0.077 10.6 0.62 0.071 10.6 0.87 0.104 7.2 0.74 0.093 

3 16 2 9.4 0.69 0.070 11.4 0.57 0.065 12.2 0.76 0.094 9.8 0.67 0.077 

4 6 2 9 0.84 0.091 9 0.68 0.073 6.6 1.03 0.113 9.2 0.91 0.102 

4 8 2 11 0.71 0.085 9.4 0.60 0.061 9.2 0.87 0.106 9.4 0.76 0.085 

4 10 2 11 0.69 0.076 12 0.58 0.064 10 0.80 0.090 8 0.72 0.080 

4 12 2 11 0.65 0.072 10.6 0.53 0.060 9.4 0.76 0.084 10.6 0.65 0.074 

4 16 2 11.8 0.59 0.064 14 0.51 0.059 9.2 0.68 0.079 12.6 0.59 0.066 

5 6 2 9.8 0.75 0.076 9.4 0.60 0.063 8 0.93 0.088 8.2 0.79 0.087 

5 8 2 9 0.66 0.070 11.4 0.53 0.062 8.8 0.82 0.088 9.2 0.70 0.077 

5 10 2 12.4 0.63 0.071 13.2 0.52 0.055 10.6 0.72 0.083 13.6 0.63 0.075 

5 12 2 12.4 0.57 0.063 12.8 0.48 0.050 10.6 0.66 0.077 11.4 0.59 0.065 

5 16 2 11.4 0.54 0.060 16.4 0.46 0.052 12 0.60 0.066 13.6 0.54 0.058 

6 6 2 10.8 0.67 0.078 11.4 0.55 0.062 9.2 0.86 0.092 9.2 0.71 0.076 

6 8 2 11 0.61 0.071 11 0.51 0.054 8.8 0.75 0.078 10.2 0.62 0.063 

6 10 2 14 0.55 0.060 14.8 0.48 0.050 10 0.66 0.075 12 0.58 0.070 

6 12 2 11.6 0.53 0.057 15 0.45 0.048 8.8 0.62 0.066 13.4 0.55 0.064 

6 16 2 13.6 0.49 0.050 17.8 0.42 0.045 14.2 0.56 0.066 14.4 0.50 0.060 

8 6 2 9.8 0.60 0.059 15.6 0.48 0.051 10.4 0.73 0.079 10.6 0.62 0.071 

8 8 2 13 0.53 0.055 18.6 0.43 0.050 13 0.64 0.067 10.8 0.57 0.062 

8 10 2 15.6 0.49 0.054 15.6 0.41 0.046 13.2 0.59 0.071 13.2 0.50 0.054 

8 12 2 16.4 0.46 0.043 21.2 0.39 0.043 10.8 0.54 0.062 13.6 0.47 0.057 

8 16 2 16 0.42 0.047 19.2 0.37 0.038 16.4 0.49 0.051 15.4 0.44 0.048 
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Table A1.14. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 10 1.32 0.103 10 0.97 0.080 9.8 1.57 0.128 8.6 1.24 0.109 

3 8 3 11.6 1.15 0.093 10.2 0.85 0.070 10 1.35 0.107 7.6 1.08 0.091 

3 10 3 10.6 1.01 0.086 14.8 0.80 0.068 13 1.19 0.103 11.6 0.98 0.091 

3 12 3 13.2 0.96 0.078 11.4 0.75 0.068 10.6 1.14 0.089 12.6 0.91 0.082 

3 16 3 12.8 0.83 0.077 13.8 0.70 0.055 10.6 0.97 0.087 12 0.85 0.073 

4 6 3 10.2 1.13 0.091 12.8 0.82 0.070 9.6 1.38 0.122 9.6 1.04 0.086 

4 8 3 10.8 0.94 0.085 12.2 0.76 0.065 7.8 1.20 0.097 9.2 0.94 0.083 

4 10 3 10.8 0.87 0.076 15.4 0.70 0.062 8.4 1.05 0.077 11.4 0.84 0.068 

4 12 3 8.8 0.81 0.068 14.6 0.65 0.057 12.8 0.94 0.071 10.6 0.83 0.069 

4 16 3 10.8 0.77 0.061 12.4 0.62 0.056 9.4 0.86 0.069 14.6 0.72 0.064 

5 6 3 11.4 0.97 0.077 14.2 0.74 0.064 7.6 1.21 0.089 9.4 0.99 0.086 

5 8 3 8 0.86 0.069 15 0.67 0.059 8.8 1.05 0.082 12.8 0.84 0.071 

5 10 3 14.4 0.81 0.064 17.2 0.62 0.055 10 0.94 0.080 14.4 0.81 0.067 

5 12 3 13 0.72 0.060 18 0.60 0.052 12 0.87 0.067 13.2 0.73 0.067 

5 16 3 12.8 0.69 0.056 17.8 0.57 0.047 13.2 0.76 0.067 13.8 0.68 0.060 

6 6 3 12 0.90 0.075 16.4 0.68 0.058 8 1.15 0.086 10.2 0.90 0.068 

6 8 3 13.8 0.78 0.063 16 0.62 0.058 11.4 0.96 0.082 11.4 0.78 0.057 

6 10 3 8.2 0.73 0.056 15.2 0.58 0.051 12.6 0.86 0.071 12 0.70 0.066 

6 12 3 14.8 0.68 0.060 14.4 0.58 0.043 11.8 0.77 0.068 14.2 0.68 0.058 

6 16 3 16 0.62 0.052 20.8 0.53 0.044 15.8 0.71 0.055 17.2 0.62 0.053 

8 6 3 11.6 0.76 0.063 18.8 0.59 0.045 10.6 0.97 0.074 10.8 0.79 0.061 

8 8 3 13.4 0.66 0.058 21 0.55 0.043 10.8 0.81 0.062 16.8 0.70 0.059 

8 10 3 17 0.64 0.051 21.8 0.52 0.045 13 0.75 0.060 15 0.63 0.052 

8 12 3 14.6 0.58 0.045 22.2 0.50 0.041 10.6 0.68 0.051 17.8 0.60 0.055 

8 16 3 22 0.54 0.046 24 0.46 0.036 13.8 0.63 0.049 16.4 0.53 0.044 
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Table A1.15. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 14.6 0.43 0.073 13.6 0.37 0.056 10.2 0.55 0.083 12 0.49 0.073 

3 8 1 15.8 0.41 0.066 16.6 0.37 0.056 11.2 0.49 0.079 11 0.44 0.071 

3 10 1 14.2 0.39 0.058 17.2 0.35 0.056 11.4 0.46 0.071 13.2 0.42 0.067 

3 12 1 16.2 0.38 0.065 17.6 0.34 0.053 11 0.44 0.070 15 0.40 0.066 

3 16 1 14.4 0.36 0.057 19.8 0.33 0.058 11 0.41 0.062 16.2 0.38 0.064 

4 6 1 15.2 0.38 0.059 17 0.32 0.053 10 0.48 0.075 12.2 0.44 0.068 

4 8 1 16.4 0.35 0.061 17.2 0.32 0.048 14 0.42 0.067 14.4 0.39 0.066 

4 10 1 17.8 0.35 0.053 19.2 0.31 0.050 12.4 0.40 0.067 13.8 0.37 0.061 

4 12 1 19 0.33 0.060 20.6 0.31 0.048 16.2 0.38 0.060 15 0.35 0.058 

4 16 1 19.6 0.32 0.059 19.8 0.30 0.052 18 0.35 0.056 17.8 0.33 0.052 

5 6 1 21.8 0.34 0.062 21.8 0.30 0.047 13.2 0.43 0.063 14.2 0.38 0.062 

5 8 1 20.6 0.32 0.054 21.2 0.28 0.050 15.8 0.39 0.057 14.8 0.35 0.054 

5 10 1 20.2 0.31 0.045 22.4 0.28 0.045 14 0.36 0.055 16.6 0.34 0.055 

5 12 1 19 0.30 0.051 24.4 0.27 0.041 16 0.34 0.052 21.2 0.32 0.053 

5 16 1 20.6 0.28 0.047 26 0.27 0.043 20 0.33 0.051 21 0.30 0.051 

6 6 1 21.2 0.31 0.049 24.2 0.27 0.044 14.8 0.39 0.060 18.4 0.35 0.055 

6 8 1 22 0.29 0.049 30.8 0.27 0.046 18.6 0.35 0.059 18 0.32 0.055 

6 10 1 22.2 0.28 0.046 24.6 0.26 0.045 16.8 0.33 0.049 21.4 0.31 0.050 

6 12 1 23.4 0.28 0.045 26.2 0.25 0.043 20.2 0.31 0.054 22 0.29 0.046 

6 16 1 23 0.27 0.043 27.4 0.25 0.042 20 0.29 0.050 22 0.28 0.048 

8 6 1 22.8 0.28 0.044 24.8 0.24 0.040 20.6 0.34 0.057 19.4 0.31 0.048 

8 8 1 28 0.26 0.041 32.2 0.23 0.041 20.4 0.31 0.051 20.8 0.28 0.044 

8 10 1 26.2 0.25 0.038 28.4 0.23 0.039 23.6 0.29 0.048 26.2 0.27 0.044 

8 12 1 27 0.24 0.040 29.8 0.23 0.040 28.2 0.28 0.046 26.4 0.26 0.043 

8 16 1 29 0.24 0.039 30.8 0.22 0.040 27.8 0.26 0.044 26.8 0.25 0.042 
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Table A1.16. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 12.8 0.81 0.103 13.2 0.71 0.088 9.6 1.08 0.126 11.4 0.93 0.116 

3 8 2 12 0.77 0.091 13.6 0.66 0.087 10.2 0.92 0.114 12.4 0.81 0.099 

3 10 2 12.6 0.70 0.085 12.2 0.66 0.075 11 0.85 0.108 8.8 0.77 0.092 

3 12 2 13.4 0.67 0.083 16 0.63 0.073 10.2 0.79 0.094 9.2 0.75 0.087 

3 16 2 13 0.66 0.073 15.2 0.62 0.076 12.6 0.73 0.095 11.6 0.71 0.094 

4 6 2 10.8 0.73 0.086 13 0.63 0.077 9.4 0.90 0.104 12.8 0.82 0.098 

4 8 2 16.6 0.65 0.092 13.4 0.59 0.071 12.4 0.82 0.100 12.2 0.74 0.099 

4 10 2 13.4 0.64 0.078 14 0.58 0.068 11.8 0.74 0.093 12.6 0.68 0.090 

4 12 2 16.6 0.61 0.085 16.2 0.56 0.074 10.8 0.70 0.084 12.8 0.67 0.084 

4 16 2 14.6 0.60 0.079 15.2 0.55 0.080 12.8 0.66 0.076 11.8 0.62 0.084 

5 6 2 12 0.65 0.078 15.6 0.56 0.071 12.4 0.82 0.100 12.2 0.73 0.096 

5 8 2 13.6 0.61 0.075 12.2 0.54 0.061 11.8 0.74 0.085 11.8 0.67 0.084 

5 10 2 13.6 0.57 0.066 13 0.54 0.063 12.6 0.70 0.089 13.2 0.63 0.073 

5 12 2 14.6 0.57 0.070 15.2 0.51 0.061 14 0.66 0.086 15.2 0.60 0.074 

5 16 2 16.2 0.54 0.072 15.6 0.50 0.062 16.4 0.61 0.078 15.6 0.57 0.073 

6 6 2 14.6 0.58 0.080 19 0.51 0.071 13.2 0.75 0.091 10 0.69 0.086 

6 8 2 17 0.54 0.074 16.4 0.50 0.065 11.4 0.67 0.083 13.4 0.63 0.074 

6 10 2 17.6 0.52 0.069 19.4 0.49 0.058 12.8 0.63 0.076 15.6 0.58 0.070 

6 12 2 18.4 0.52 0.064 19.2 0.49 0.061 15.2 0.59 0.076 14 0.56 0.069 

6 16 2 18.6 0.50 0.064 16.6 0.46 0.057 14 0.55 0.073 13.8 0.52 0.065 

8 6 2 17.4 0.53 0.068 21.6 0.46 0.060 12.8 0.65 0.076 15.4 0.60 0.076 

8 8 2 16.6 0.49 0.063 20.4 0.44 0.060 15.8 0.60 0.071 19.6 0.54 0.076 

8 10 2 18.4 0.46 0.061 20.2 0.43 0.062 16.2 0.56 0.068 13.8 0.51 0.058 

8 12 2 16.8 0.46 0.058 19 0.41 0.057 15 0.52 0.064 17 0.49 0.061 

8 16 2 20.4 0.43 0.058 19.6 0.41 0.056 18.8 0.48 0.067 17.2 0.46 0.059 
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Table A1.17. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 12.4 0.98 0.085 12.8 0.86 0.085 12.8 1.31 0.131 10.8 1.09 0.098 

3 8 3 11.2 0.93 0.086 17.4 0.80 0.082 13.4 1.09 0.117 12.8 0.98 0.097 

3 10 3 13.4 0.89 0.091 12.8 0.81 0.075 8.4 1.03 0.098 13 0.94 0.087 

3 12 3 13.6 0.85 0.086 16 0.77 0.080 15.2 0.96 0.098 14.4 0.89 0.090 

3 16 3 15.6 0.81 0.084 14.4 0.73 0.068 15.2 0.93 0.087 13 0.84 0.087 

4 6 3 16 0.87 0.085 16.8 0.78 0.070 10.2 1.16 0.097 14.8 1.00 0.103 

4 8 3 15.4 0.82 0.079 13.8 0.73 0.068 13.4 1.02 0.095 11.8 0.91 0.089 

4 10 3 13.8 0.79 0.076 18.2 0.70 0.062 15.4 0.94 0.093 15.2 0.84 0.085 

4 12 3 15.6 0.77 0.072 16.6 0.70 0.060 11 0.87 0.081 12.6 0.79 0.079 

4 16 3 18.2 0.72 0.070 16.2 0.68 0.061 14.6 0.81 0.079 16.4 0.78 0.070 

5 6 3 13.4 0.82 0.074 18.4 0.70 0.067 10 1.03 0.101 12.2 0.94 0.088 

5 8 3 14.6 0.75 0.065 19.2 0.64 0.064 13.4 0.91 0.085 15.4 0.82 0.077 

5 10 3 16 0.72 0.074 19.2 0.65 0.064 13.4 0.86 0.081 16.6 0.78 0.077 

5 12 3 16.2 0.69 0.065 19.4 0.63 0.059 16.2 0.82 0.079 14.8 0.73 0.062 

5 16 3 19.6 0.66 0.068 19.4 0.61 0.061 17.6 0.76 0.073 13.4 0.70 0.060 

6 6 3 14.2 0.73 0.070 16.2 0.64 0.064 10.6 0.93 0.085 15.2 0.84 0.079 

6 8 3 19.6 0.69 0.066 22 0.62 0.065 14.2 0.85 0.078 14.8 0.78 0.068 

6 10 3 17.6 0.67 0.062 17.6 0.60 0.057 14.6 0.80 0.076 15.8 0.71 0.069 

6 12 3 16.4 0.64 0.065 19.6 0.58 0.056 21.6 0.74 0.076 14.2 0.70 0.057 

6 16 3 20 0.62 0.060 18 0.56 0.055 18 0.70 0.072 16.2 0.64 0.066 

8 6 3 18.6 0.66 0.059 23.6 0.56 0.057 12 0.83 0.070 16.2 0.74 0.070 

8 8 3 19.8 0.61 0.059 21.6 0.54 0.053 13.6 0.74 0.064 18.6 0.67 0.062 

8 10 3 20 0.60 0.055 25 0.53 0.056 16.2 0.70 0.062 18.2 0.63 0.063 

8 12 3 23.2 0.58 0.054 23.2 0.52 0.050 16.6 0.65 0.064 16.4 0.62 0.055 

8 16 3 24.6 0.54 0.056 23.6 0.51 0.053 20.2 0.60 0.064 19.8 0.59 0.056 
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Table A1.18. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 7.6 0.62 0.080 9 0.45 0.066 5.6 0.72 0.098 7.6 0.56 0.073 

3 8 1 7.4 0.55 0.070 13.4 0.40 0.062 6.8 0.62 0.089 11 0.48 0.073 

3 10 1 10.2 0.48 0.072 15.6 0.36 0.058 8 0.56 0.079 11.4 0.43 0.063 

3 12 1 11.4 0.45 0.064 15.6 0.34 0.049 11.6 0.51 0.071 10.4 0.41 0.058 

3 16 1 14 0.40 0.062 17.2 0.31 0.048 14.4 0.45 0.065 18.2 0.36 0.056 

4 6 1 9 0.55 0.075 11.2 0.39 0.049 7.6 0.63 0.088 12.2 0.50 0.071 

4 8 1 10.2 0.46 0.061 18 0.34 0.049 6.8 0.54 0.080 11.6 0.42 0.066 

4 10 1 12.2 0.43 0.058 20.2 0.32 0.048 11.6 0.48 0.064 15.8 0.38 0.060 

4 12 1 15 0.40 0.054 22.6 0.30 0.049 11.4 0.45 0.067 16.8 0.35 0.053 

4 16 1 16.4 0.35 0.050 20 0.28 0.044 16.6 0.39 0.055 19.6 0.32 0.050 

5 6 1 8.2 0.48 0.068 18.6 0.35 0.056 7.6 0.58 0.067 12 0.45 0.067 

5 8 1 14 0.42 0.057 20.2 0.31 0.044 9 0.50 0.072 15.4 0.38 0.057 

5 10 1 15.8 0.37 0.052 26 0.29 0.043 16.2 0.43 0.064 16.2 0.34 0.048 

5 12 1 15.4 0.35 0.049 26.2 0.27 0.042 15.8 0.39 0.061 19.6 0.31 0.046 

5 16 1 17.2 0.31 0.043 26.4 0.25 0.037 18 0.35 0.051 22.4 0.28 0.040 

6 6 1 8.6 0.44 0.059 19.8 0.32 0.044 8.4 0.52 0.067 11.8 0.40 0.060 

6 8 1 14.4 0.38 0.052 23.8 0.29 0.043 9.6 0.46 0.057 18.8 0.35 0.050 

6 10 1 17 0.34 0.049 25.4 0.26 0.039 14.8 0.40 0.053 16.8 0.31 0.048 

6 12 1 20 0.32 0.046 29 0.25 0.035 16.4 0.37 0.049 19.2 0.30 0.042 

6 16 1 22.8 0.28 0.040 31 0.22 0.032 17.8 0.32 0.043 25 0.26 0.039 

8 6 1 13 0.38 0.051 20.6 0.28 0.036 8.8 0.47 0.059 18.6 0.35 0.055 

8 8 1 18.4 0.33 0.043 27.6 0.25 0.036 13.8 0.38 0.053 19.2 0.30 0.042 

8 10 1 21 0.30 0.041 33.8 0.23 0.031 15.6 0.34 0.049 21.4 0.27 0.036 

8 12 1 21.6 0.28 0.042 35.8 0.21 0.033 19 0.31 0.047 25.2 0.25 0.038 

8 16 1 26.4 0.25 0.034 41.2 0.20 0.027 27 0.28 0.041 36.4 0.23 0.034 
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Table A1.19. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 6.8 1.21 0.123 6.4 0.88 0.094 5.6 1.54 0.158 9.8 1.09 0.130 

3 8 2 8.4 1.05 0.111 8.6 0.79 0.086 6.8 1.23 0.119 9.6 0.96 0.112 

3 10 2 9 0.94 0.102 10.2 0.71 0.081 9.6 1.04 0.122 8.6 0.85 0.092 

3 12 2 8.2 0.85 0.098 12.4 0.67 0.078 9 0.96 0.114 8.6 0.80 0.089 

3 16 2 9.8 0.77 0.077 10.4 0.59 0.065 10.2 0.83 0.096 11.8 0.69 0.092 

4 6 2 8.4 1.07 0.119 9.6 0.78 0.078 5.6 1.29 0.130 8.4 0.96 0.105 

4 8 2 7.2 0.92 0.098 10.4 0.69 0.076 8.2 1.06 0.120 7.6 0.81 0.088 

4 10 2 9 0.81 0.089 12.4 0.63 0.071 7.8 0.90 0.098 10 0.73 0.079 

4 12 2 12.4 0.75 0.085 13.6 0.60 0.066 9.6 0.84 0.094 11 0.69 0.078 

4 16 2 9.6 0.68 0.076 13.6 0.52 0.061 9.6 0.73 0.079 14.4 0.61 0.071 

5 6 2 8.6 0.93 0.095 12 0.70 0.076 5.2 1.11 0.110 8.6 0.85 0.090 

5 8 2 7.6 0.80 0.085 10.8 0.61 0.059 6.2 0.94 0.097 11.4 0.75 0.082 

5 10 2 12.6 0.73 0.080 13.6 0.56 0.059 7.8 0.86 0.097 10.2 0.66 0.067 

5 12 2 9.8 0.66 0.073 13.8 0.53 0.057 10 0.76 0.082 12.6 0.61 0.070 

5 16 2 12.4 0.59 0.065 16.8 0.48 0.056 14.4 0.65 0.076 12.8 0.54 0.061 

6 6 2 5.4 0.85 0.077 11.4 0.64 0.062 6.4 1.02 0.104 10 0.79 0.082 

6 8 2 9.2 0.74 0.078 11 0.56 0.058 8.4 0.85 0.078 11.6 0.67 0.077 

6 10 2 10.4 0.65 0.075 16.4 0.51 0.057 9.4 0.74 0.079 10.4 0.62 0.068 

6 12 2 11.6 0.59 0.065 13.6 0.48 0.051 6.8 0.70 0.075 12.6 0.56 0.075 

6 16 2 11.4 0.55 0.058 19.6 0.43 0.046 12.4 0.60 0.064 16.4 0.50 0.054 

8 6 2 8.4 0.72 0.077 14 0.55 0.056 6.6 0.88 0.083 10.4 0.68 0.072 

8 8 2 13.4 0.65 0.071 16.4 0.49 0.056 10.2 0.74 0.071 11 0.59 0.061 

8 10 2 15.4 0.58 0.059 19.2 0.44 0.049 10.8 0.65 0.068 13.2 0.55 0.060 

8 12 2 12.4 0.52 0.052 20.6 0.42 0.051 13 0.60 0.060 16.8 0.49 0.051 

8 16 2 17.2 0.47 0.048 19.6 0.38 0.043 16 0.53 0.058 18.6 0.44 0.047 
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Table A1.20. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of blue moki using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 

R
es

er
ve

 

Sp
ec

ie
s 

Sampling 
Design 

Poisson dispersed Overdispersed 

Trend - Negative Trend - Positive Trend - Negative Trend - Positive 

Si
te

s 

Tr
an

se
ct

s 

Fr
eq

u
e

n
cy

 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

H
M

R
 

B
lu

e 
M

o
ki

 

3 6 3 8.4 1.68 0.109 8.8 1.17 0.099 7.2 1.86 0.127 10.4 1.38 0.120 

3 8 3 7.8 1.41 0.117 9.2 0.98 0.077 8.4 1.59 0.122 10.6 1.13 0.099 

3 10 3 10.8 1.20 0.104 11.6 0.90 0.077 9.6 1.42 0.117 9.4 1.04 0.094 

3 12 3 9.6 1.14 0.091 11.8 0.81 0.072 10.6 1.24 0.099 12.2 0.99 0.083 

3 16 3 8.8 1.00 0.077 13.6 0.74 0.068 14.8 1.06 0.091 12.4 0.85 0.078 

4 6 3 9 1.43 0.097 9.6 0.95 0.078 8.2 1.62 0.140 7.6 1.15 0.092 

4 8 3 8.6 1.19 0.098 11.6 0.83 0.073 8 1.33 0.117 10.8 1.01 0.087 

4 10 3 9.4 1.04 0.089 12.2 0.77 0.063 10.6 1.22 0.092 9.8 0.90 0.077 

4 12 3 12.4 0.95 0.084 13.4 0.72 0.060 10 1.07 0.085 13 0.84 0.069 

4 16 3 13.2 0.84 0.070 15.6 0.66 0.055 11.2 0.92 0.077 16.8 0.74 0.068 

5 6 3 8.6 1.23 0.096 11.8 0.86 0.077 5.4 1.44 0.117 11.6 1.08 0.085 

5 8 3 12.6 1.08 0.092 15.2 0.76 0.063 10.6 1.29 0.101 10.4 0.93 0.076 

5 10 3 9.2 0.93 0.073 15.8 0.68 0.057 7 1.10 0.077 13.4 0.83 0.078 

5 12 3 12.8 0.89 0.063 16.6 0.66 0.054 11 0.94 0.077 14.2 0.76 0.063 

5 16 3 17.2 0.77 0.065 17.4 0.60 0.053 9.2 0.83 0.067 15.4 0.69 0.059 

6 6 3 8.6 1.11 0.092 11 0.78 0.059 7.8 1.31 0.093 12.4 0.96 0.083 

6 8 3 9.8 0.96 0.075 14.4 0.70 0.063 11.6 1.06 0.075 12.2 0.83 0.070 

6 10 3 9.8 0.86 0.064 18.6 0.64 0.054 12 0.98 0.081 12.6 0.76 0.061 

6 12 3 12.2 0.77 0.058 19.6 0.60 0.047 12.6 0.87 0.069 13.8 0.68 0.057 

6 16 3 14.8 0.69 0.053 22.4 0.55 0.043 14 0.76 0.063 14 0.62 0.051 

8 6 3 11.4 0.97 0.074 12.8 0.70 0.051 8.8 1.15 0.077 10.2 0.84 0.068 

8 8 3 10.2 0.83 0.062 16.4 0.59 0.048 10.4 0.95 0.067 13 0.74 0.057 

8 10 3 13 0.74 0.054 20.4 0.55 0.044 12.4 0.86 0.063 14.6 0.67 0.059 

8 12 3 13.6 0.69 0.050 22.8 0.51 0.041 13.4 0.77 0.064 16.2 0.61 0.049 

8 16 3 17 0.61 0.049 26.6 0.47 0.039 15 0.68 0.053 22.4 0.56 0.045 
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Table A1.21. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Long Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 30.6 0.23 0.037 27.6 0.23 0.035 12.2 0.38 0.056 15 0.39 0.056 

3 8 1 27.6 0.22 0.035 32.8 0.23 0.039 16.6 0.35 0.055 15.6 0.35 0.053 

3 10 1 31.8 0.23 0.038 28.6 0.23 0.036 17.8 0.33 0.050 21 0.32 0.053 

3 12 1 28.4 0.23 0.038 34.2 0.23 0.039 16.8 0.31 0.045 19.8 0.31 0.045 

3 16 1 32.4 0.23 0.038 30.4 0.22 0.036 21.6 0.28 0.041 22.8 0.29 0.043 

4 6 1 39.6 0.21 0.031 34.4 0.20 0.034 18.8 0.33 0.054 13.2 0.34 0.049 

4 8 1 38.4 0.20 0.029 38.8 0.20 0.032 17.8 0.31 0.047 20.2 0.30 0.044 

4 10 1 35.8 0.20 0.033 37 0.20 0.034 22.4 0.28 0.044 24 0.28 0.048 

4 12 1 38 0.20 0.033 36.4 0.20 0.031 23 0.27 0.041 25.4 0.27 0.044 

4 16 1 33.2 0.20 0.031 37 0.20 0.031 24.8 0.25 0.041 22.6 0.25 0.036 

5 6 1 43.4 0.19 0.030 38.6 0.19 0.032 18.4 0.31 0.050 15.8 0.31 0.042 

5 8 1 40.8 0.19 0.032 39.2 0.19 0.027 20 0.27 0.041 20.8 0.27 0.044 

5 10 1 39.4 0.19 0.032 38.6 0.18 0.030 24 0.26 0.042 24.4 0.26 0.041 

5 12 1 40.6 0.18 0.034 37.2 0.18 0.029 30.2 0.24 0.037 27.4 0.25 0.036 

5 16 1 40.2 0.19 0.027 38.6 0.19 0.030 29.8 0.23 0.035 27.6 0.23 0.033 

6 6 1 44.6 0.17 0.031 48 0.18 0.029 19.6 0.29 0.048 19.6 0.28 0.042 

6 8 1 41.8 0.17 0.028 44.4 0.17 0.029 25.2 0.25 0.040 24.4 0.26 0.040 

6 10 1 46.4 0.17 0.026 42.4 0.17 0.028 28.8 0.24 0.036 29 0.24 0.038 

6 12 1 45.4 0.17 0.028 44 0.18 0.029 29.4 0.22 0.035 29.6 0.23 0.033 

6 16 1 45 0.17 0.026 41.8 0.17 0.027 32.2 0.21 0.033 33.2 0.21 0.037 

8 6 1 49.6 0.16 0.027 50.6 0.16 0.026 24.8 0.25 0.037 26.2 0.25 0.039 

8 8 1 47.6 0.16 0.026 50.6 0.16 0.028 28.6 0.22 0.035 29.6 0.22 0.035 

8 10 1 48.4 0.16 0.026 55.8 0.16 0.025 35.2 0.21 0.035 35.6 0.21 0.037 

8 12 1 49.2 0.16 0.025 51.4 0.16 0.026 37.8 0.20 0.032 38 0.20 0.029 

8 16 1 49.8 0.16 0.026 48.6 0.16 0.027 36 0.19 0.029 39 0.18 0.030 
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Table A1.22. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 17.2 0.42 0.052 18.6 0.42 0.050 13 0.71 0.091 12 0.72 0.091 

3 8 2 19.2 0.42 0.048 18.8 0.40 0.050 10.4 0.64 0.075 13.4 0.65 0.076 

3 10 2 22.4 0.43 0.053 19.2 0.42 0.052 8.8 0.61 0.066 13.8 0.59 0.074 

3 12 2 19.2 0.42 0.056 22.2 0.41 0.052 10.6 0.58 0.065 15 0.56 0.068 

3 16 2 22.4 0.43 0.055 21.2 0.41 0.056 15 0.52 0.065 14 0.53 0.063 

4 6 2 23.2 0.38 0.049 23.2 0.37 0.048 12.2 0.64 0.077 11.2 0.64 0.072 

4 8 2 22 0.38 0.046 22.6 0.38 0.046 15.8 0.57 0.067 11.6 0.58 0.060 

4 10 2 21.8 0.38 0.049 18.2 0.39 0.047 14.4 0.53 0.065 14.2 0.53 0.063 

4 12 2 22 0.37 0.045 22.6 0.37 0.048 16 0.51 0.066 12.2 0.51 0.060 

4 16 2 22.2 0.37 0.045 23.6 0.37 0.049 17.2 0.47 0.057 14.2 0.47 0.056 

5 6 2 25.6 0.35 0.045 23.6 0.34 0.045 13.6 0.58 0.067 7.4 0.58 0.059 

5 8 2 22.6 0.34 0.041 25 0.34 0.042 13.6 0.52 0.063 15 0.52 0.063 

5 10 2 23.8 0.34 0.044 26.2 0.34 0.044 13.8 0.49 0.058 15.2 0.49 0.051 

5 12 2 25.8 0.34 0.044 23.4 0.34 0.042 16.8 0.47 0.054 16 0.46 0.054 

5 16 2 23 0.35 0.043 24.6 0.34 0.041 17.6 0.43 0.051 15.6 0.43 0.053 

6 6 2 26 0.33 0.043 31 0.32 0.042 13 0.53 0.062 13.8 0.54 0.061 

6 8 2 28.2 0.32 0.040 25.8 0.32 0.042 13.8 0.49 0.059 15.4 0.48 0.057 

6 10 2 29.6 0.32 0.043 26.6 0.32 0.039 19.6 0.44 0.055 19.4 0.45 0.057 

6 12 2 27.8 0.32 0.040 25 0.32 0.042 17.4 0.42 0.049 18.2 0.43 0.055 

6 16 2 26.6 0.32 0.045 30.2 0.31 0.042 21.8 0.40 0.046 21.6 0.39 0.052 

8 6 2 28.8 0.28 0.038 29.8 0.28 0.041 14.4 0.47 0.057 17.4 0.47 0.054 

8 8 2 28.8 0.28 0.037 30.6 0.28 0.038 18.2 0.43 0.055 18 0.42 0.050 

8 10 2 33 0.28 0.040 31.2 0.28 0.037 20.2 0.39 0.048 21 0.39 0.049 

8 12 2 35.4 0.28 0.034 30.2 0.28 0.040 22.4 0.38 0.043 20.2 0.37 0.045 

8 16 2 30.4 0.28 0.038 30 0.28 0.038 22 0.35 0.042 22.2 0.35 0.045 
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Table A1.23. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 20.6 0.51 0.044 22.2 0.52 0.050 14.4 0.87 0.078 10.2 0.91 0.081 

3 8 3 21.8 0.51 0.051 22.8 0.51 0.049 13.4 0.79 0.069 11.6 0.77 0.068 

3 10 3 20.6 0.51 0.046 19.2 0.51 0.046 13.8 0.73 0.071 15 0.75 0.068 

3 12 3 22.6 0.50 0.047 23 0.51 0.052 16.2 0.69 0.063 18.2 0.68 0.065 

3 16 3 21 0.51 0.046 25 0.51 0.049 18.6 0.65 0.060 18.2 0.62 0.053 

4 6 3 22.8 0.45 0.044 28.4 0.46 0.044 12.2 0.78 0.068 14.2 0.78 0.069 

4 8 3 28 0.46 0.041 21.8 0.46 0.041 14.2 0.70 0.059 13 0.71 0.060 

4 10 3 25.4 0.46 0.047 26.8 0.46 0.045 14.2 0.65 0.055 15.6 0.65 0.059 

4 12 3 20.4 0.47 0.042 23.2 0.46 0.045 16.4 0.63 0.057 16.4 0.62 0.056 

4 16 3 25.6 0.46 0.048 27.8 0.46 0.045 23.2 0.56 0.056 16.6 0.59 0.053 

5 6 3 27 0.43 0.040 27.2 0.42 0.041 14.4 0.73 0.064 15.2 0.73 0.064 

5 8 3 26.6 0.42 0.043 25.8 0.43 0.037 16.4 0.65 0.055 15.4 0.65 0.053 

5 10 3 29 0.42 0.039 29.2 0.42 0.040 18.2 0.61 0.056 17.8 0.60 0.057 

5 12 3 28.2 0.42 0.040 30.2 0.42 0.039 18.6 0.57 0.052 16.6 0.56 0.054 

5 16 3 30 0.42 0.043 26.4 0.41 0.039 19.2 0.54 0.048 18.6 0.53 0.047 

6 6 3 29 0.40 0.041 27 0.39 0.040 16 0.67 0.060 14.8 0.67 0.061 

6 8 3 33 0.40 0.042 28.4 0.41 0.036 18.4 0.59 0.054 19 0.59 0.054 

6 10 3 31.2 0.39 0.035 31.2 0.39 0.040 18.4 0.56 0.052 18.6 0.55 0.049 

6 12 3 30 0.40 0.040 33.2 0.38 0.038 19.2 0.53 0.049 17.6 0.52 0.043 

6 16 3 30 0.39 0.038 30.6 0.39 0.038 23.2 0.48 0.046 24.4 0.50 0.049 

8 6 3 33.4 0.35 0.036 33.6 0.35 0.037 18.2 0.59 0.055 18.4 0.58 0.049 

8 8 3 34.2 0.35 0.035 33 0.35 0.033 17 0.53 0.041 19.4 0.53 0.048 

8 10 3 34.4 0.35 0.037 34.8 0.34 0.034 20.2 0.49 0.047 23 0.49 0.048 

8 12 3 36.2 0.35 0.040 34 0.34 0.034 23.2 0.47 0.042 22 0.47 0.044 

8 16 3 34.8 0.35 0.037 36.4 0.34 0.037 25 0.44 0.040 31 0.44 0.043 
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Table A1.24. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 27.6 0.25 0.038 28.2 0.24 0.037 15.6 0.39 0.059 15.4 0.39 0.063 

3 8 1 27.2 0.24 0.037 27.6 0.24 0.038 14.4 0.35 0.057 15.4 0.34 0.051 

3 10 1 30 0.24 0.042 26.6 0.23 0.038 16.6 0.33 0.050 19.2 0.32 0.054 

3 12 1 29.4 0.24 0.038 29.8 0.23 0.039 19 0.31 0.050 17.6 0.31 0.048 

3 16 1 32 0.23 0.041 31.2 0.23 0.039 19.4 0.30 0.040 22.4 0.29 0.047 

4 6 1 29.8 0.22 0.037 34.6 0.22 0.034 16.2 0.34 0.054 18 0.34 0.051 

4 8 1 32.4 0.22 0.034 33.8 0.21 0.036 20.8 0.31 0.050 20.6 0.31 0.048 

4 10 1 28.6 0.22 0.035 31.8 0.22 0.036 21.2 0.29 0.047 20.2 0.29 0.043 

4 12 1 36.6 0.22 0.035 32.6 0.22 0.034 20.8 0.27 0.043 25.6 0.27 0.044 

4 16 1 33.2 0.21 0.038 34.2 0.21 0.036 26.8 0.26 0.048 25.2 0.26 0.044 

5 6 1 33 0.21 0.032 38.8 0.20 0.032 16.4 0.31 0.051 21.4 0.31 0.050 

5 8 1 35.6 0.20 0.031 34.8 0.20 0.037 22 0.28 0.043 17.8 0.28 0.039 

5 10 1 35.6 0.21 0.032 35 0.20 0.035 22.8 0.27 0.044 23 0.26 0.040 

5 12 1 37.4 0.20 0.031 36.2 0.20 0.033 26.2 0.25 0.043 27.8 0.25 0.037 

5 16 1 32.4 0.20 0.032 35.8 0.20 0.031 26.6 0.24 0.040 28.2 0.23 0.043 

6 6 1 37.6 0.19 0.033 37.2 0.19 0.031 24.2 0.29 0.047 19.2 0.28 0.046 

6 8 1 33.8 0.20 0.030 43.2 0.19 0.033 24.2 0.26 0.042 23.2 0.26 0.040 

6 10 1 39.8 0.19 0.031 39.8 0.19 0.033 23.8 0.25 0.038 28.6 0.24 0.040 

6 12 1 39.8 0.19 0.030 35.8 0.19 0.032 26.4 0.24 0.034 25 0.23 0.036 

6 16 1 39.2 0.19 0.031 39.4 0.19 0.032 31.6 0.22 0.037 30.6 0.22 0.034 

8 6 1 40.8 0.19 0.032 38.6 0.18 0.032 25.2 0.25 0.041 26 0.25 0.040 

8 8 1 41.6 0.19 0.031 41.8 0.18 0.029 28.2 0.23 0.039 32.2 0.23 0.038 

8 10 1 40.2 0.18 0.028 44.6 0.18 0.029 30.8 0.22 0.035 33.4 0.22 0.036 

8 12 1 41.2 0.18 0.032 45.4 0.18 0.028 32.8 0.21 0.033 31.6 0.21 0.034 

8 16 1 40.2 0.18 0.030 43 0.18 0.026 36.6 0.20 0.036 30.4 0.20 0.037 
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Table A1.25. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 18.8 0.45 0.056 19.6 0.43 0.058 11.8 0.72 0.092 14.4 0.70 0.086 

3 8 2 18.4 0.44 0.056 18.8 0.43 0.057 14.2 0.64 0.080 10.8 0.64 0.072 

3 10 2 16.6 0.44 0.053 18.6 0.42 0.052 15 0.61 0.074 13.4 0.60 0.070 

3 12 2 18 0.43 0.056 21.8 0.42 0.057 12 0.58 0.069 12.8 0.58 0.073 

3 16 2 19.8 0.42 0.055 18.4 0.43 0.050 12.2 0.53 0.064 15.8 0.53 0.064 

4 6 2 17.4 0.40 0.052 20.4 0.39 0.050 11 0.64 0.076 11.6 0.64 0.078 

4 8 2 22.4 0.40 0.052 21 0.38 0.049 12.6 0.57 0.073 15.2 0.58 0.077 

4 10 2 21.2 0.39 0.053 22.2 0.38 0.048 15.6 0.56 0.070 15.6 0.53 0.074 

4 12 2 22.8 0.38 0.053 16 0.39 0.049 13.4 0.52 0.059 15.2 0.52 0.063 

4 16 2 21.4 0.38 0.046 23 0.37 0.052 17 0.48 0.059 17.2 0.48 0.061 

5 6 2 22.2 0.37 0.047 23.4 0.35 0.046 10 0.58 0.067 12.8 0.58 0.073 

5 8 2 24 0.37 0.052 24 0.35 0.047 14.8 0.52 0.071 15.4 0.53 0.063 

5 10 2 26.6 0.36 0.054 25.4 0.35 0.044 16.8 0.49 0.059 11 0.49 0.054 

5 12 2 24.6 0.35 0.046 24.8 0.36 0.046 13.6 0.48 0.060 16.6 0.47 0.064 

5 16 2 20.4 0.36 0.049 24.6 0.35 0.045 17.8 0.44 0.052 17.4 0.43 0.059 

6 6 2 23.8 0.34 0.048 26.6 0.34 0.046 14.4 0.55 0.063 11.2 0.54 0.061 

6 8 2 22.8 0.34 0.042 23.8 0.32 0.043 16 0.49 0.063 18.4 0.49 0.062 

6 10 2 23 0.33 0.044 29.2 0.32 0.048 19.6 0.46 0.062 17.8 0.45 0.058 

6 12 2 27.4 0.33 0.044 24.4 0.33 0.044 18.4 0.44 0.058 15.8 0.43 0.053 

6 16 2 25.8 0.32 0.047 26 0.33 0.046 17.4 0.42 0.052 19.4 0.41 0.050 

8 6 2 27.6 0.30 0.041 25.8 0.31 0.045 17.4 0.47 0.057 17.8 0.48 0.062 

8 8 2 27.6 0.31 0.042 27.6 0.31 0.044 19.8 0.44 0.055 19.2 0.42 0.056 

8 10 2 27.8 0.30 0.045 28.2 0.30 0.040 21.8 0.40 0.055 22.4 0.40 0.049 

8 12 2 27.8 0.30 0.041 29.6 0.30 0.044 21.4 0.38 0.050 19.6 0.39 0.054 

8 16 2 25.2 0.31 0.045 29.2 0.29 0.043 21.6 0.36 0.047 26.4 0.36 0.048 
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Table A1.26. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 21.6 0.53 0.053 23.4 0.53 0.051 10.8 0.88 0.077 11.4 0.89 0.081 

3 8 3 19.6 0.53 0.055 22.8 0.53 0.054 13.4 0.80 0.076 13.8 0.79 0.071 

3 10 3 18.6 0.53 0.049 19.2 0.51 0.046 15.8 0.75 0.068 16.8 0.74 0.071 

3 12 3 25 0.52 0.054 22.8 0.51 0.049 16.8 0.69 0.061 18.4 0.69 0.069 

3 16 3 20.8 0.52 0.050 21.6 0.53 0.051 16.8 0.65 0.066 15.4 0.64 0.063 

4 6 3 27.4 0.49 0.049 24.6 0.48 0.046 12 0.80 0.069 14.6 0.79 0.075 

4 8 3 24.4 0.49 0.046 24.4 0.46 0.045 13.2 0.71 0.065 13.8 0.72 0.068 

4 10 3 24 0.48 0.047 23.2 0.47 0.045 13.6 0.69 0.058 15.4 0.67 0.060 

4 12 3 22.2 0.47 0.050 21.2 0.49 0.052 16.6 0.63 0.061 15.4 0.62 0.060 

4 16 3 22.4 0.48 0.046 24.8 0.45 0.049 24 0.58 0.066 23.4 0.59 0.059 

5 6 3 25 0.45 0.049 25.2 0.44 0.042 15.8 0.73 0.066 14.6 0.72 0.063 

5 8 3 25.2 0.44 0.050 28.8 0.43 0.048 16 0.66 0.058 16.2 0.66 0.057 

5 10 3 25.6 0.44 0.046 28.2 0.43 0.044 17.8 0.61 0.054 21.4 0.60 0.057 

5 12 3 28.4 0.43 0.046 29.6 0.43 0.047 20.8 0.58 0.059 20.8 0.57 0.056 

5 16 3 26.4 0.44 0.044 29.8 0.43 0.048 18.2 0.54 0.052 20 0.54 0.058 

6 6 3 29 0.41 0.048 29.6 0.41 0.045 14.8 0.68 0.062 17.2 0.66 0.063 

6 8 3 34.8 0.40 0.045 28.8 0.40 0.044 17.4 0.61 0.054 18.4 0.59 0.060 

6 10 3 26.8 0.41 0.045 28.6 0.40 0.039 18.4 0.56 0.061 23.2 0.56 0.057 

6 12 3 30.4 0.40 0.039 30.4 0.39 0.046 24 0.54 0.057 20.6 0.52 0.051 

6 16 3 29.6 0.40 0.046 29.8 0.41 0.045 21 0.51 0.050 23.2 0.49 0.051 

8 6 3 30.6 0.37 0.041 32.4 0.37 0.039 17.8 0.59 0.058 18.6 0.59 0.053 

8 8 3 32.6 0.37 0.042 35.2 0.35 0.040 21.4 0.53 0.053 23 0.53 0.049 

8 10 3 34.2 0.36 0.039 33.8 0.37 0.040 21 0.51 0.047 24.8 0.49 0.049 

8 12 3 31.6 0.36 0.042 34 0.35 0.038 19.6 0.47 0.049 23.2 0.47 0.048 

8 16 3 29.6 0.36 0.036 30.8 0.36 0.039 27.4 0.45 0.042 25 0.44 0.043 
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Table A1.27. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 85.6 0.10 0.017 92.6 0.10 0.014 19.8 0.31 0.047 17.8 0.32 0.049 

3 8 1 89.8 0.10 0.016 94.2 0.09 0.013 20.4 0.27 0.043 23 0.27 0.039 

3 10 1 93 0.10 0.015 96.2 0.09 0.014 25.6 0.24 0.034 27 0.25 0.034 

3 12 1 94.6 0.10 0.013 95.2 0.09 0.014 30.8 0.22 0.033 32.8 0.22 0.032 

3 16 1 94 0.09 0.013 96.6 0.09 0.012 36.2 0.20 0.030 41 0.19 0.028 

4 6 1 95.2 0.09 0.014 97.6 0.08 0.013 22 0.27 0.042 21 0.28 0.041 

4 8 1 97.6 0.09 0.013 98.6 0.08 0.012 28.8 0.24 0.034 26.8 0.24 0.035 

4 10 1 98 0.09 0.013 97.8 0.08 0.012 36.2 0.21 0.033 33.4 0.22 0.030 

4 12 1 98 0.08 0.012 98.8 0.08 0.012 39 0.19 0.029 38 0.20 0.027 

4 16 1 98 0.08 0.011 98.8 0.08 0.011 52.8 0.17 0.025 48.8 0.17 0.026 

5 6 1 98.6 0.08 0.013 99.8 0.07 0.012 26.4 0.25 0.037 24.4 0.25 0.036 

5 8 1 98.6 0.08 0.012 100 0.07 0.011 36.4 0.22 0.034 32.4 0.21 0.030 

5 10 1 98.4 0.08 0.011 99.8 0.07 0.011 37.8 0.19 0.027 41.4 0.19 0.026 

5 12 1 99.4 0.08 0.011 100 0.07 0.010 48.4 0.17 0.026 44 0.17 0.028 

5 16 1 100 0.07 0.011 99.8 0.07 0.010 53.8 0.15 0.022 59.4 0.15 0.024 

6 6 1 98.8 0.08 0.011 99.8 0.07 0.009 30.2 0.23 0.034 27.8 0.23 0.031 

6 8 1 99.6 0.07 0.011 100 0.07 0.010 38.4 0.19 0.030 39.4 0.20 0.027 

6 10 1 99.8 0.07 0.010 100 0.07 0.009 45 0.18 0.025 48.6 0.17 0.026 

6 12 1 100 0.07 0.010 99.8 0.06 0.009 55.8 0.16 0.024 54.6 0.16 0.022 

6 16 1 99.8 0.07 0.009 100 0.07 0.009 64.4 0.14 0.021 67.2 0.14 0.021 

8 6 1 100 0.07 0.009 100 0.06 0.009 37.4 0.20 0.031 40.4 0.20 0.028 

8 8 1 100 0.06 0.009 100 0.06 0.008 47.8 0.17 0.027 47 0.17 0.026 

8 10 1 100 0.06 0.009 100 0.06 0.009 60.4 0.15 0.022 59.4 0.15 0.024 

8 12 1 99.8 0.06 0.009 100 0.06 0.009 67.6 0.14 0.018 68.8 0.14 0.020 

8 16 1 100 0.06 0.008 100 0.06 0.008 78 0.12 0.018 79 0.12 0.017 
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Table A1.28. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 61.6 0.19 0.023 64.2 0.18 0.019 12.6 0.58 0.068 11 0.59 0.064 

3 8 2 62.8 0.19 0.022 69.2 0.17 0.022 17.2 0.50 0.061 15.4 0.49 0.059 

3 10 2 65 0.19 0.020 73.4 0.17 0.018 16.8 0.45 0.055 20.4 0.44 0.051 

3 12 2 65 0.18 0.021 70.6 0.17 0.019 18.2 0.42 0.046 17.8 0.43 0.044 

3 16 2 71 0.17 0.020 72 0.16 0.020 25.2 0.36 0.045 24 0.35 0.038 

4 6 2 68.6 0.17 0.020 78.4 0.16 0.019 12.6 0.52 0.057 13.6 0.52 0.058 

4 8 2 73.2 0.16 0.018 79.6 0.15 0.018 22 0.44 0.057 18.2 0.45 0.048 

4 10 2 73 0.16 0.018 79.2 0.15 0.017 20.8 0.40 0.046 21 0.41 0.044 

4 12 2 78.4 0.16 0.019 81.4 0.15 0.018 22 0.37 0.040 23.2 0.36 0.042 

4 16 2 81.6 0.15 0.017 84 0.15 0.017 26 0.32 0.036 26.2 0.32 0.036 

5 6 2 80.4 0.16 0.016 85.2 0.14 0.016 14.2 0.48 0.053 13.4 0.47 0.050 

5 8 2 84.4 0.15 0.018 87 0.14 0.017 18.8 0.40 0.045 19.4 0.41 0.043 

5 10 2 86 0.15 0.014 89 0.14 0.015 26.8 0.36 0.043 25 0.36 0.041 

5 12 2 83.4 0.14 0.016 89.6 0.14 0.014 26 0.34 0.036 30.6 0.33 0.044 

5 16 2 89.6 0.14 0.015 87.4 0.13 0.015 31.2 0.29 0.032 32.6 0.29 0.033 

6 6 2 86.2 0.15 0.015 92 0.13 0.014 13.4 0.43 0.046 17.2 0.43 0.046 

6 8 2 87.8 0.14 0.015 90.2 0.13 0.014 20.6 0.38 0.039 22 0.37 0.043 

6 10 2 89.8 0.13 0.015 93.6 0.12 0.013 25.2 0.34 0.037 26.8 0.33 0.037 

6 12 2 91.2 0.13 0.012 94.2 0.12 0.014 32.6 0.31 0.035 27.8 0.31 0.034 

6 16 2 90.8 0.13 0.014 93.6 0.12 0.014 39 0.27 0.028 40.4 0.26 0.029 

8 6 2 93.2 0.13 0.014 96.4 0.12 0.014 20 0.38 0.043 19.8 0.38 0.041 

8 8 2 96.6 0.12 0.013 97.6 0.11 0.012 28.4 0.33 0.039 22.8 0.33 0.033 

8 10 2 95.4 0.12 0.013 97.4 0.11 0.012 31.8 0.29 0.035 36.4 0.29 0.032 

8 12 2 96.6 0.11 0.012 97.6 0.11 0.012 38.2 0.27 0.031 40.6 0.27 0.028 

8 16 2 96.8 0.11 0.014 97 0.11 0.012 44.8 0.23 0.025 46.6 0.23 0.026 
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Table A1.29. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of spotty using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 

R
es

er
ve

 

Sp
ec

ie
s 

Sampling 
Design 

Poisson dispersed Overdispersed 

Trend - Negative Trend - Positive Trend - Negative Trend - Positive 

Si
te

s 

Tr
an

se
ct

s 

Fr
eq

u
e

n
cy

 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

P
o

w
er

 

C
I w

id
th

 

B
ia

s 

H
M

R
 

Sp
o

tt
y 

3 6 3 62.8 0.24 0.020 70.4 0.22 0.022 14 0.74 0.059 14.2 0.72 0.063 

3 8 3 67.8 0.22 0.021 74.6 0.21 0.018 15.6 0.60 0.057 15.4 0.63 0.055 

3 10 3 70.2 0.22 0.020 70.4 0.21 0.019 22.2 0.54 0.053 20.6 0.53 0.046 

3 12 3 67.6 0.22 0.019 77.2 0.20 0.020 24 0.52 0.049 22 0.51 0.043 

3 16 3 74.6 0.21 0.018 76.8 0.21 0.017 26.2 0.44 0.042 27.8 0.44 0.041 

4 6 3 73.4 0.21 0.019 80.8 0.19 0.017 18.2 0.65 0.057 16 0.65 0.056 

4 8 3 75.8 0.20 0.019 82.6 0.19 0.016 16.2 0.56 0.048 20 0.55 0.050 

4 10 3 81.4 0.20 0.017 82.4 0.19 0.016 29.2 0.49 0.044 19.8 0.50 0.038 

4 12 3 83.6 0.20 0.017 88.4 0.18 0.015 25 0.47 0.039 25.8 0.46 0.038 

4 16 3 81.6 0.19 0.016 88.6 0.18 0.014 28.6 0.40 0.033 33.8 0.39 0.037 

5 6 3 81.2 0.20 0.017 88.6 0.18 0.015 14.4 0.61 0.047 18.2 0.58 0.048 

5 8 3 85.8 0.19 0.016 87.8 0.18 0.014 21 0.51 0.041 19.2 0.51 0.041 

5 10 3 88.4 0.18 0.015 90.2 0.17 0.015 27.4 0.45 0.038 25.6 0.45 0.037 

5 12 3 90 0.18 0.014 90.8 0.17 0.013 25.8 0.41 0.034 24.4 0.42 0.034 

5 16 3 89.6 0.17 0.014 93.6 0.16 0.013 36.2 0.36 0.032 38 0.35 0.032 

6 6 3 88 0.18 0.015 93.6 0.16 0.014 18.8 0.54 0.046 18.2 0.55 0.048 

6 8 3 92.2 0.17 0.014 94.8 0.16 0.013 23.4 0.47 0.040 22.6 0.47 0.037 

6 10 3 93 0.17 0.013 94.4 0.16 0.013 29.2 0.42 0.034 29.8 0.41 0.035 

6 12 3 93.4 0.16 0.014 95.4 0.16 0.013 31.4 0.38 0.030 32.2 0.38 0.032 

6 16 3 93.4 0.16 0.014 95 0.15 0.012 40.6 0.33 0.030 43.8 0.33 0.027 

8 6 3 94 0.16 0.012 96.8 0.15 0.012 20.2 0.48 0.041 25.6 0.48 0.040 

8 8 3 97 0.15 0.012 97.8 0.14 0.012 30.2 0.41 0.034 30.4 0.42 0.034 

8 10 3 96.8 0.15 0.012 98.4 0.14 0.011 35 0.37 0.033 34.4 0.37 0.030 

8 12 3 97.2 0.15 0.011 98.6 0.14 0.010 40.8 0.33 0.027 41 0.33 0.025 

8 16 3 97.6 0.14 0.013 98.8 0.13 0.011 49.2 0.29 0.024 53.6 0.29 0.023 
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Table A1.30. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Long Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 11.6 0.51 0.078 10 0.47 0.070 8.6 0.62 0.096 11.2 0.56 0.096 

3 8 1 13.2 0.50 0.077 12.8 0.45 0.074 11.6 0.56 0.108 13.2 0.54 0.081 

3 10 1 12.2 0.48 0.074 12.8 0.44 0.074 12.8 0.54 0.085 13.8 0.50 0.078 

3 12 1 12.4 0.46 0.077 11 0.45 0.069 9 0.52 0.080 9.8 0.50 0.078 

3 16 1 16 0.45 0.078 14.6 0.43 0.074 11.4 0.49 0.075 12 0.47 0.077 

4 6 1 12.6 0.46 0.073 15.4 0.41 0.069 12.2 0.55 0.088 12.6 0.51 0.090 

4 8 1 15 0.44 0.069 15.4 0.40 0.070 15.4 0.51 0.091 13 0.47 0.072 

4 10 1 17.6 0.41 0.074 16 0.40 0.065 11.8 0.49 0.071 14.6 0.45 0.080 

4 12 1 13 0.41 0.068 16 0.40 0.064 13.8 0.45 0.078 12 0.44 0.077 

4 16 1 15.2 0.40 0.065 17.4 0.39 0.066 14.6 0.43 0.072 13.8 0.41 0.062 

5 6 1 13.4 0.41 0.068 18.2 0.37 0.065 14.2 0.50 0.085 13.6 0.46 0.076 

5 8 1 14.6 0.39 0.063 21.6 0.36 0.067 15.4 0.46 0.079 14 0.43 0.071 

5 10 1 19.4 0.39 0.067 15 0.36 0.060 14.2 0.43 0.068 14.6 0.41 0.066 

5 12 1 16.8 0.38 0.058 15 0.36 0.064 13 0.41 0.066 15 0.40 0.063 

5 16 1 19.6 0.37 0.067 20 0.36 0.060 18.2 0.40 0.068 14.2 0.38 0.059 

6 6 1 17.2 0.38 0.066 18.6 0.36 0.064 13 0.45 0.075 18.4 0.41 0.079 

6 8 1 18.6 0.37 0.067 17.2 0.34 0.062 18.4 0.42 0.072 18 0.39 0.071 

6 10 1 18.4 0.36 0.068 18.8 0.34 0.061 16.2 0.39 0.069 15.6 0.38 0.064 

6 12 1 13.6 0.35 0.059 21.2 0.34 0.058 15.8 0.39 0.068 18.4 0.37 0.066 

6 16 1 17.8 0.35 0.062 20.4 0.33 0.057 18.4 0.37 0.070 18.8 0.36 0.065 

8 6 1 18.4 0.34 0.056 22.4 0.32 0.058 16 0.40 0.064 21.2 0.36 0.066 

8 8 1 19.6 0.33 0.054 19.8 0.31 0.056 15.4 0.37 0.062 22.4 0.35 0.063 

8 10 1 21 0.32 0.056 21.2 0.31 0.059 16.6 0.35 0.059 19.2 0.34 0.061 

8 12 1 21.2 0.31 0.059 21 0.32 0.056 24.4 0.34 0.066 20.4 0.33 0.058 

8 16 1 19 0.31 0.057 21 0.31 0.052 18.8 0.33 0.057 20.8 0.33 0.060 
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Table A1.31. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 10.6 0.96 0.116 13.2 0.89 0.116 11.6 1.16 0.149 10.2 1.06 0.126 

3 8 2 13.8 0.90 0.113 12 0.81 0.106 9.4 1.04 0.125 8.8 1.01 0.127 

3 10 2 14.2 0.88 0.109 14.2 0.81 0.102 11.6 0.99 0.122 11.6 0.92 0.119 

3 12 2 10.6 0.86 0.118 12 0.80 0.103 10.2 0.93 0.118 11.8 0.91 0.117 

3 16 2 14 0.82 0.108 12.8 0.80 0.105 11.2 0.88 0.112 13 0.85 0.109 

4 6 2 14.6 0.83 0.116 12.6 0.76 0.108 8 1.03 0.113 12.4 0.93 0.124 

4 8 2 12.4 0.80 0.107 12.6 0.76 0.100 12.8 0.93 0.111 11 0.85 0.107 

4 10 2 11.6 0.79 0.099 11 0.73 0.097 11.4 0.89 0.102 10 0.86 0.105 

4 12 2 13.6 0.77 0.099 12.2 0.72 0.089 12.2 0.84 0.106 10.2 0.82 0.107 

4 16 2 14 0.75 0.099 15 0.72 0.100 13.4 0.80 0.103 10.8 0.76 0.098 

5 6 2 15.2 0.77 0.096 14.8 0.70 0.095 11.8 0.92 0.113 13.2 0.84 0.117 

5 8 2 15.4 0.74 0.094 13.8 0.69 0.090 12.8 0.87 0.104 11.2 0.80 0.109 

5 10 2 12.2 0.72 0.090 14.4 0.66 0.091 11.2 0.80 0.093 10.6 0.76 0.098 

5 12 2 14.6 0.69 0.089 13.4 0.65 0.086 10 0.78 0.093 15.2 0.72 0.099 

5 16 2 14.8 0.66 0.091 14.6 0.67 0.085 9.4 0.75 0.095 10.4 0.70 0.086 

6 6 2 13.8 0.71 0.096 13.8 0.66 0.083 10.4 0.87 0.100 9.8 0.77 0.093 

6 8 2 13.8 0.67 0.089 12.2 0.61 0.080 16.2 0.78 0.107 11.4 0.74 0.098 

6 10 2 13.8 0.65 0.091 14.8 0.62 0.084 11.4 0.74 0.097 12 0.71 0.097 

6 12 2 15 0.65 0.073 15 0.60 0.083 13.8 0.71 0.093 13 0.70 0.087 

6 16 2 14.2 0.63 0.084 20 0.61 0.092 13.4 0.68 0.084 17.8 0.65 0.095 

8 6 2 17 0.62 0.091 17 0.58 0.083 13.6 0.75 0.099 16.4 0.70 0.086 

8 8 2 16.4 0.60 0.082 17.6 0.56 0.080 16.6 0.69 0.100 15 0.64 0.087 

8 10 2 14.8 0.58 0.081 18.4 0.54 0.077 13 0.64 0.085 16.8 0.62 0.090 

8 12 2 14.2 0.59 0.076 15.8 0.53 0.085 15.6 0.63 0.087 17.2 0.59 0.090 

8 16 2 14.6 0.56 0.079 16.4 0.53 0.070 16.6 0.59 0.081 16.4 0.57 0.078 
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Table A1.32. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Long Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 14.6 1.18 0.120 12.2 1.03 0.107 12.6 1.49 0.139 13.4 1.24 0.130 

3 8 3 13.6 1.10 0.120 14.8 1.02 0.097 9.4 1.27 0.126 11.2 1.20 0.119 

3 10 3 15.2 1.07 0.112 15.6 0.98 0.095 12.2 1.24 0.113 15.2 1.13 0.116 

3 12 3 13.4 1.06 0.098 13.4 0.98 0.093 12.6 1.17 0.110 11.8 1.09 0.113 

3 16 3 14.8 1.01 0.104 14.8 0.95 0.102 14.8 1.10 0.104 13.6 1.06 0.111 

4 6 3 15.4 1.00 0.105 13.8 0.92 0.103 11.2 1.26 0.115 13.8 1.15 0.108 

4 8 3 12.4 0.99 0.095 13.8 0.93 0.091 12.6 1.15 0.119 14 1.07 0.097 

4 10 3 13.8 0.92 0.087 13.2 0.90 0.096 15.2 1.07 0.113 14.8 1.03 0.104 

4 12 3 11.6 0.92 0.092 13.6 0.87 0.085 13.6 1.04 0.107 12.8 0.96 0.094 

4 16 3 14.6 0.90 0.093 12.4 0.87 0.085 12.8 1.01 0.098 13.2 0.96 0.094 

5 6 3 15.2 0.96 0.091 12.4 0.86 0.081 13.6 1.13 0.103 10.8 1.05 0.094 

5 8 3 13.4 0.90 0.086 14.2 0.83 0.093 10.8 1.06 0.097 13.2 0.99 0.101 

5 10 3 13.6 0.88 0.086 18.6 0.82 0.079 13 1.00 0.092 12.6 0.94 0.094 

5 12 3 14.6 0.87 0.092 15.2 0.81 0.086 15.8 0.95 0.090 15.6 0.89 0.084 

5 16 3 15.4 0.83 0.087 15 0.82 0.086 15 0.93 0.093 13.8 0.85 0.085 

6 6 3 15.8 0.88 0.091 15.2 0.79 0.079 11.6 1.10 0.101 15.6 0.93 0.097 

6 8 3 16.8 0.83 0.089 18.8 0.77 0.083 14.2 0.96 0.106 13 0.90 0.087 

6 10 3 13.8 0.81 0.077 19.2 0.73 0.079 15.4 0.92 0.093 12.2 0.84 0.083 

6 12 3 17.2 0.80 0.085 18 0.74 0.084 16.6 0.88 0.080 18 0.83 0.090 

6 16 3 18.6 0.77 0.083 16.2 0.73 0.079 14.4 0.85 0.085 15.2 0.80 0.081 

8 6 3 19 0.77 0.086 22.2 0.70 0.079 11 0.94 0.085 16.2 0.86 0.092 

8 8 3 18.8 0.74 0.084 16.4 0.70 0.075 13.6 0.88 0.078 16.8 0.83 0.083 

8 10 3 17.2 0.73 0.072 21.8 0.66 0.080 17.8 0.82 0.082 15.6 0.76 0.080 

8 12 3 16.6 0.71 0.072 20.6 0.66 0.072 17 0.78 0.084 17 0.74 0.075 

8 16 3 18.8 0.69 0.072 17.4 0.65 0.072 18.4 0.74 0.078 19.2 0.71 0.078 
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Table A1.33. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 10.4 0.58 0.099 12 0.57 0.092 10.2 0.65 0.112 12.6 0.61 0.110 

3 8 1 12.2 0.58 0.098 13.2 0.54 0.094 12 0.62 0.102 10.4 0.60 0.102 

3 10 1 13.4 0.57 0.093 15.2 0.56 0.095 15.6 0.61 0.104 11.2 0.59 0.107 

3 12 1 13.2 0.55 0.101 12.8 0.56 0.091 12.4 0.59 0.103 14.2 0.61 0.108 

3 16 1 13 0.54 0.096 11 0.55 0.095 12.4 0.58 0.090 11.8 0.56 0.093 

4 6 1 13.4 0.54 0.100 13.8 0.55 0.098 13.4 0.59 0.104 10.8 0.59 0.097 

4 8 1 13.6 0.54 0.093 13.8 0.53 0.088 11.6 0.59 0.105 10 0.57 0.092 

4 10 1 9.2 0.54 0.088 16 0.53 0.095 12.6 0.56 0.096 15 0.54 0.095 

4 12 1 12.4 0.55 0.098 12.8 0.54 0.087 15.2 0.55 0.097 15.8 0.55 0.100 

4 16 1 10.6 0.55 0.091 11.6 0.53 0.097 12.8 0.56 0.094 14.8 0.55 0.092 

5 6 1 13 0.52 0.089 14.2 0.53 0.085 13.6 0.57 0.100 17 0.53 0.098 

5 8 1 14.6 0.52 0.090 13.8 0.53 0.091 13.8 0.54 0.087 11 0.55 0.088 

5 10 1 11.4 0.53 0.085 12 0.51 0.091 12.4 0.53 0.089 9.2 0.55 0.088 

5 12 1 15.8 0.51 0.095 15.2 0.51 0.079 16.8 0.54 0.100 13.4 0.53 0.090 

5 16 1 12.2 0.52 0.093 13.2 0.50 0.082 10.8 0.53 0.091 13.8 0.53 0.084 

6 6 1 13.4 0.52 0.087 13.8 0.50 0.091 13.8 0.54 0.097 12.2 0.53 0.090 

6 8 1 13.6 0.51 0.087 13.8 0.52 0.091 15.2 0.53 0.089 14.2 0.53 0.091 

6 10 1 15.8 0.51 0.080 12.8 0.51 0.084 11.8 0.54 0.095 13 0.54 0.088 

6 12 1 12.8 0.52 0.083 14.6 0.51 0.089 12 0.52 0.089 15.4 0.53 0.095 

6 16 1 10.4 0.53 0.086 11.4 0.51 0.086 16.6 0.53 0.091 13 0.52 0.092 

8 6 1 14.8 0.50 0.088 14.2 0.50 0.093 12.4 0.52 0.096 12.2 0.52 0.091 

8 8 1 15 0.49 0.091 12.4 0.50 0.082 12 0.52 0.091 15.4 0.51 0.087 

8 10 1 13.8 0.50 0.093 11.8 0.50 0.082 15.4 0.50 0.097 14.4 0.52 0.089 

8 12 1 13.8 0.50 0.083 15.6 0.49 0.085 15.4 0.51 0.092 11.6 0.51 0.090 

8 16 1 13 0.48 0.080 15.2 0.49 0.085 12.2 0.51 0.085 15 0.52 0.095 

 

 

 

 

 

 



Appendix 1 
 

 
267 

 

Table A1.34. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 15.6 0.97 0.137 15.4 0.94 0.155 10.8 1.18 0.159 14.6 1.04 0.147 

3 8 2 12.8 0.96 0.129 14.6 0.92 0.136 14 1.06 0.154 13.8 1.05 0.151 

3 10 2 15.8 0.93 0.147 15 0.91 0.134 14.6 1.04 0.144 12.6 1.01 0.147 

3 12 2 16 0.94 0.156 15.2 0.89 0.134 13.6 0.99 0.140 14.8 1.01 0.143 

3 16 2 17.4 0.91 0.138 15.6 0.89 0.141 14.4 0.96 0.147 16.2 0.95 0.149 

4 6 2 16.4 0.91 0.132 15.2 0.89 0.134 14 1.05 0.139 13.4 0.99 0.156 

4 8 2 16.6 0.87 0.145 15.4 0.86 0.135 13 1.03 0.130 16 0.94 0.141 

4 10 2 17.2 0.89 0.143 15.4 0.85 0.128 15 0.93 0.144 14.4 0.92 0.142 

4 12 2 17.6 0.88 0.143 14.4 0.86 0.133 16.2 0.93 0.146 18.8 0.91 0.136 

4 16 2 18.6 0.85 0.134 16.6 0.85 0.119 15.2 0.92 0.150 14.4 0.87 0.127 

5 6 2 16.2 0.88 0.143 16.6 0.83 0.135 16.4 0.95 0.150 14 0.92 0.137 

5 8 2 18 0.83 0.132 17.2 0.82 0.125 16 0.94 0.158 14.6 0.90 0.133 

5 10 2 15.6 0.86 0.127 16.2 0.85 0.127 17.8 0.88 0.135 17.4 0.86 0.138 

5 12 2 14.6 0.89 0.130 16.4 0.84 0.140 16.4 0.90 0.141 16.8 0.87 0.136 

5 16 2 17.2 0.82 0.134 18.8 0.81 0.125 18.8 0.86 0.137 17.2 0.85 0.125 

6 6 2 16.6 0.84 0.139 19.4 0.82 0.132 16.8 0.93 0.133 14.8 0.88 0.125 

6 8 2 16.6 0.84 0.126 18.8 0.84 0.132 15 0.87 0.137 17.6 0.89 0.136 

6 10 2 17.8 0.83 0.129 20.6 0.78 0.134 17.2 0.85 0.126 17 0.85 0.134 

6 12 2 19.8 0.84 0.127 18.4 0.81 0.124 17.6 0.88 0.131 18 0.82 0.130 

6 16 2 18 0.82 0.137 15 0.83 0.122 15.4 0.86 0.122 14.8 0.84 0.123 

8 6 2 20.2 0.80 0.134 15.4 0.75 0.120 16.8 0.86 0.130 14.8 0.84 0.136 

8 8 2 20.2 0.79 0.120 16.8 0.81 0.124 15.6 0.80 0.128 16.8 0.83 0.129 

8 10 2 17.6 0.81 0.129 15.2 0.80 0.112 19.4 0.80 0.135 19.6 0.80 0.123 

8 12 2 20.4 0.81 0.130 17.4 0.78 0.123 18.4 0.81 0.122 18.6 0.83 0.125 

8 16 2 21 0.81 0.129 18.6 0.77 0.128 16.2 0.82 0.123 20.8 0.76 0.133 
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Table A1.35. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Tonga Island Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 18.2 1.13 0.147 14 1.14 0.125 15.8 1.35 0.144 16 1.27 0.142 

3 8 3 20 1.13 0.150 18.2 1.08 0.141 15.8 1.29 0.141 14.2 1.27 0.140 

3 10 3 18.8 1.09 0.131 18.4 1.12 0.133 17.4 1.22 0.150 17.6 1.25 0.147 

3 12 3 16.6 1.10 0.130 18.6 1.01 0.127 17 1.19 0.139 14.6 1.15 0.133 

3 16 3 18.8 1.06 0.126 21.2 1.02 0.138 16.2 1.18 0.131 20.8 1.09 0.127 

4 6 3 17.2 1.02 0.111 23.8 1.01 0.127 18.2 1.24 0.140 16.8 1.17 0.132 

4 8 3 19 1.02 0.138 17.4 1.04 0.117 15.2 1.15 0.144 19.2 1.10 0.137 

4 10 3 18.8 1.05 0.130 22 0.93 0.136 18.4 1.12 0.141 17 1.06 0.135 

4 12 3 20 0.98 0.123 20.6 0.95 0.126 19.4 1.08 0.134 19.8 1.03 0.135 

4 16 3 19.6 1.01 0.125 19 1.00 0.120 21.6 1.03 0.137 21.8 1.04 0.145 

5 6 3 17.8 0.96 0.127 21.2 0.95 0.115 17.6 1.17 0.136 18.8 1.08 0.129 

5 8 3 18.8 0.93 0.111 22.2 0.96 0.118 18.6 1.04 0.128 20 1.01 0.127 

5 10 3 21.6 0.97 0.124 18.2 0.97 0.120 19.6 1.04 0.134 17 0.98 0.124 

5 12 3 19.4 0.98 0.121 21.2 0.91 0.121 18.8 1.02 0.125 19 1.01 0.125 

5 16 3 20.4 0.96 0.117 21 0.89 0.116 17.6 1.00 0.117 19 0.91 0.112 

6 6 3 18.2 0.96 0.127 21.2 0.96 0.114 17.8 1.05 0.127 18.6 1.05 0.129 

6 8 3 20 0.89 0.121 25.6 0.88 0.130 21.2 1.02 0.122 20.2 0.99 0.134 

6 10 3 20.8 0.90 0.121 18.6 0.93 0.116 20.4 0.97 0.126 18.4 0.97 0.140 

6 12 3 22.4 0.91 0.114 20.2 0.92 0.118 19.2 1.00 0.121 23.2 0.95 0.131 

6 16 3 23.4 0.91 0.123 18.2 0.91 0.104 20 0.92 0.113 20.8 0.92 0.131 

8 6 3 25.4 0.89 0.126 23.2 0.87 0.119 18 0.97 0.132 22.6 0.95 0.124 

8 8 3 22.2 0.88 0.114 22.4 0.88 0.113 21.4 0.94 0.114 20.8 0.91 0.121 

8 10 3 21.2 0.84 0.116 21.8 0.83 0.112 19.4 0.91 0.111 23 0.93 0.114 

8 12 3 24.2 0.86 0.119 20.4 0.86 0.108 23.2 0.90 0.126 21.2 0.85 0.119 

8 16 3 21.6 0.84 0.123 23.4 0.83 0.113 20.8 0.90 0.124 22.2 0.86 0.114 
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Table A1.36. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for an annual monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 1 10.2 0.51 0.074 9 0.47 0.071 10.8 0.62 0.095 9.2 0.57 0.088 

3 8 1 13.2 0.49 0.078 12.8 0.46 0.073 10.6 0.58 0.083 11.8 0.53 0.084 

3 10 1 12 0.48 0.077 13 0.44 0.070 12.2 0.53 0.085 11.6 0.50 0.080 

3 12 1 13.2 0.46 0.077 12 0.45 0.072 11.2 0.52 0.085 11.6 0.49 0.082 

3 16 1 11.2 0.45 0.068 13 0.43 0.069 10.2 0.49 0.083 11.8 0.47 0.077 

4 6 1 16.8 0.45 0.076 16.8 0.42 0.073 11.2 0.53 0.087 12 0.50 0.079 

4 8 1 16.8 0.43 0.071 14.6 0.41 0.065 12.6 0.50 0.080 11.6 0.47 0.074 

4 10 1 14.6 0.42 0.071 15.8 0.40 0.066 12 0.47 0.082 12.6 0.46 0.066 

4 12 1 14.2 0.41 0.067 15.8 0.40 0.060 13 0.46 0.079 14.2 0.44 0.075 

4 16 1 15.2 0.41 0.071 14.6 0.39 0.062 13 0.44 0.075 15.4 0.42 0.067 

5 6 1 14.4 0.41 0.069 18.4 0.38 0.065 11.4 0.49 0.079 13 0.46 0.071 

5 8 1 16.4 0.40 0.070 15.2 0.36 0.058 12.2 0.46 0.065 16.2 0.43 0.063 

5 10 1 15.2 0.38 0.063 19.6 0.36 0.064 13.8 0.43 0.069 14.4 0.41 0.066 

5 12 1 18 0.38 0.057 18.8 0.36 0.063 14.6 0.41 0.070 15.4 0.39 0.058 

5 16 1 15.6 0.37 0.063 17.2 0.36 0.060 16.6 0.39 0.066 15 0.38 0.063 

6 6 1 15.2 0.38 0.061 19 0.36 0.062 13.6 0.45 0.083 13.2 0.42 0.077 

6 8 1 15.6 0.37 0.063 20.8 0.35 0.062 16.6 0.43 0.074 17.2 0.39 0.065 

6 10 1 19.8 0.36 0.065 21.4 0.34 0.061 13.6 0.39 0.058 16 0.37 0.061 

6 12 1 19.6 0.35 0.061 20.4 0.34 0.062 17.2 0.38 0.065 18.2 0.38 0.066 

6 16 1 16.2 0.34 0.062 17.6 0.33 0.055 16 0.37 0.065 17.2 0.36 0.056 

8 6 1 18.6 0.34 0.058 19 0.31 0.053 15 0.40 0.065 19.8 0.37 0.064 

8 8 1 19.8 0.32 0.054 21.8 0.32 0.057 18.2 0.36 0.062 19.8 0.34 0.057 

8 10 1 18.4 0.32 0.055 24.2 0.31 0.055 20.6 0.35 0.062 19.6 0.33 0.060 

8 12 1 18.8 0.32 0.057 23.8 0.30 0.052 19 0.33 0.059 18 0.33 0.061 

8 16 1 20 0.31 0.053 22.2 0.30 0.057 19.6 0.32 0.054 23.6 0.32 0.055 
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Table A1.37. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a biennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 2 12 0.93 0.128 11.8 0.85 0.101 8.8 1.14 0.146 11 1.05 0.146 

3 8 2 11 0.92 0.118 11.2 0.83 0.114 11 1.04 0.138 10 1.01 0.131 

3 10 2 13.4 0.87 0.118 11.6 0.80 0.109 8.6 1.01 0.125 10.6 0.94 0.121 

3 12 2 13.4 0.85 0.110 10.6 0.83 0.101 11 0.94 0.112 13.8 0.87 0.112 

3 16 2 10 0.80 0.098 11 0.78 0.101 12.6 0.89 0.114 11.2 0.87 0.113 

4 6 2 10 0.84 0.108 15 0.78 0.102 7.8 1.02 0.121 8.8 0.96 0.121 

4 8 2 11.2 0.80 0.101 13 0.74 0.089 9.6 0.92 0.129 11 0.89 0.116 

4 10 2 14.6 0.78 0.104 13 0.73 0.102 11 0.89 0.113 9.8 0.83 0.110 

4 12 2 11 0.75 0.093 12.6 0.73 0.103 13.6 0.84 0.114 11.6 0.82 0.104 

4 16 2 13.8 0.72 0.086 13 0.71 0.087 10.4 0.82 0.103 15.4 0.77 0.107 

5 6 2 13.6 0.74 0.100 12.6 0.72 0.098 10.6 0.92 0.117 12.4 0.89 0.113 

5 8 2 12.8 0.73 0.093 12.4 0.69 0.088 13 0.86 0.114 10.8 0.80 0.095 

5 10 2 11.6 0.72 0.094 12.8 0.68 0.084 12.4 0.81 0.102 13.2 0.77 0.099 

5 12 2 13 0.68 0.099 15 0.65 0.088 12.4 0.76 0.101 11.4 0.74 0.089 

5 16 2 12.2 0.68 0.088 17 0.64 0.082 11.4 0.72 0.100 12.6 0.68 0.094 

6 6 2 15.6 0.71 0.099 13.8 0.66 0.091 11 0.87 0.103 11.4 0.76 0.098 

6 8 2 18.4 0.68 0.097 13.8 0.62 0.076 14 0.78 0.103 15 0.73 0.100 

6 10 2 13.2 0.66 0.080 15 0.62 0.081 11.4 0.75 0.089 14.6 0.71 0.086 

6 12 2 12.8 0.64 0.080 12.6 0.61 0.088 17.6 0.71 0.098 15 0.67 0.088 

6 16 2 16.8 0.63 0.093 14.6 0.61 0.081 15 0.67 0.091 13.8 0.65 0.085 

8 6 2 17.4 0.63 0.083 17.6 0.58 0.082 12.4 0.78 0.096 14.2 0.69 0.093 

8 8 2 15.6 0.59 0.081 17.8 0.55 0.083 13.6 0.69 0.097 14.4 0.64 0.091 

8 10 2 13.4 0.58 0.082 17.8 0.54 0.079 16 0.65 0.086 16.4 0.61 0.090 

8 12 2 15 0.56 0.075 14.6 0.55 0.076 16.8 0.62 0.078 16 0.60 0.078 

8 16 2 19.4 0.55 0.082 20.4 0.53 0.078 17.6 0.60 0.093 16.2 0.57 0.080 
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Table A1.38. Power (α=0.05), median 95% confidence interval width and median absolute 

bias for all combinations of monitoring choices for monitoring of tarakihi using parameters 

estimated from the Horoirangi Marine Reserve dataset. This is for a triennial monitoring 

frequency for negative and positive trends corresponding to a doubling/halving of abundance 

for both dispersion parameters. 
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3 6 3 13.6 1.17 0.114 11.6 1.06 0.104 8.8 1.44 0.132 11.2 1.32 0.131 

3 8 3 13.4 1.13 0.109 12.4 0.99 0.095 14.2 1.27 0.148 13.2 1.19 0.114 

3 10 3 13 1.08 0.112 13 0.97 0.105 10.6 1.22 0.119 12.6 1.16 0.104 

3 12 3 13 1.05 0.104 14.6 1.00 0.102 11.8 1.17 0.112 16.6 1.11 0.108 

3 16 3 14.4 1.01 0.091 14.4 0.95 0.099 15.8 1.12 0.115 14.6 1.05 0.108 

4 6 3 12.2 1.07 0.100 12 0.96 0.092 12.8 1.23 0.122 11.2 1.17 0.105 

4 8 3 12.6 1.01 0.100 15.2 0.93 0.087 11.8 1.14 0.108 13.4 1.05 0.099 

4 10 3 12.8 0.97 0.101 15 0.92 0.095 16.4 1.10 0.103 12.6 1.05 0.116 

4 12 3 11 0.97 0.095 14 0.90 0.084 14.6 1.05 0.100 13.8 0.97 0.092 

4 16 3 15 0.88 0.093 14.6 0.86 0.082 12.6 0.98 0.104 16.4 0.93 0.092 

5 6 3 14.2 0.95 0.095 12 0.85 0.088 11.8 1.13 0.103 11.8 1.07 0.101 

5 8 3 11.8 0.91 0.084 16 0.85 0.086 10.8 1.05 0.104 10.8 0.99 0.093 

5 10 3 13.8 0.91 0.093 20 0.82 0.098 10.4 0.96 0.098 13.2 0.89 0.091 

5 12 3 14.6 0.85 0.083 17.4 0.80 0.091 12.8 0.96 0.097 15.2 0.88 0.090 

5 16 3 14.8 0.83 0.078 16.6 0.80 0.073 14.4 0.92 0.088 14.8 0.88 0.089 

6 6 3 15.2 0.89 0.089 15 0.80 0.077 15.2 1.07 0.112 13.4 0.97 0.098 

6 8 3 17.2 0.82 0.084 16 0.77 0.075 12 0.96 0.096 11.4 0.90 0.085 

6 10 3 16.4 0.84 0.092 17.4 0.76 0.087 14.4 0.92 0.092 15 0.88 0.085 

6 12 3 17.8 0.78 0.082 17.4 0.75 0.076 12.6 0.88 0.085 15.8 0.85 0.086 

6 16 3 16.8 0.79 0.085 15 0.73 0.081 16.4 0.85 0.086 15.8 0.77 0.083 

8 6 3 17.2 0.77 0.080 17.8 0.70 0.075 14 0.93 0.091 15.8 0.86 0.089 

8 8 3 16.8 0.76 0.077 16.8 0.69 0.072 14.2 0.88 0.080 18.8 0.80 0.083 

8 10 3 22.4 0.72 0.079 18.4 0.67 0.080 17.2 0.81 0.084 16 0.76 0.079 

8 12 3 17.4 0.71 0.071 19.4 0.66 0.074 15.4 0.82 0.085 18.2 0.73 0.074 

8 16 3 16.6 0.70 0.070 18.2 0.67 0.068 18.6 0.74 0.074 18 0.70 0.076 
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Appendix 2A – Bathymetry data for SWAN wave 

model development  

2A.1 – Acquisition of bathymetry data 

Base bathymetry data were obtained from the National Institute of Water and 

Atmospheric Research (NIWA) in New Zealand. The bathymetry data were collected using 

multibeam soundings using NIWA‟s deepwater research vessel Tangaroa and was gridded at 

2 m resolution. Due to the constraints of ship-based bathymetry acquisition (inability to 

access nearshore areas) there were considerable gaps in the data (Chapter 4, Figure 4.1) that 

needed to be filled in before the SWAN model could be run. In order to fill in these gaps two 

methods were utilised. For very nearshore bathymetry (coastal areas 0-200 m offshore) aerial 

imagery was used to predict the bathymetry based on ocean colour (process illustrated in 

Figure A2.1), whereas for offshore areas, or surrounding areas where only a coarse 

representation of bathymetry are required (edges of the computational domain), an 

interpolated bathymetry layer derived from bathymetry charts was used.  

2A.2 – Nearshore bathymetry estimation - image acquisition 

The nearshore bathymetry was estimated based on a multi-stage process involving 

several different pieces of software. The bathymetry map provided by NIWA was first loaded 

into ArcMap10 (ESRI 2011), fully georeferenced (projection WGS 1984 UTM-60S) and 

visualised as a raster image. Subsequently, colour images of the coast and surrounding ocean 

were obtained from Google Earth. The imagery obtained on 30/12/2010 was used throughout 

all analyses as there was minimal swell visible on this day, and there was consistent coverage 

across the entire coastline ensuring that predicting inshore bathymetry was consistent across 

the entire coastline. Approximately 400 m by 400 m areas were visualised in Google Earth 

and control points (points with known coordinates for later georeferencing) added at each of 

the four corners using a small red marker. These images were then exported (Figure A2.1- 

panel a). Each image was then loaded into imageJ (Abramoff et al. 2004), cropped to the 

extent of the four control point corners and then split into the three RGB colour channels, 

which were expressed as greyscale images representing the colour depth in each of these 

channels. The brightness and contrast of the blue channel was subsequently adjusted such that 

the minimum and maximum colour depths were adjusted to 53 and 86, respectively (Figure 

A2.1 – panel b). These limits were defined to maximise the colour range of the nearshore 
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ocean colour in order to obtain the largest differences in colour between areas of different 

depths. The image was despeckled and outliers removed using image processing in imageJ to 

remove as much surface glare as possible. A Gaussian blur was applied with a radius of 4 

pixels (each pixel represented ~ 0.3 by 0.3 m square) to remove much of the noise in the 

image in order to maximise the signal to noise ratio, but without blurring so much of the 

image that the signal was lost (Figure A2.1 – panel c). This was performed for an array of 

images covering the entire coastline from Breaker Bay to Sinclair Head, excluding sandy bay 

areas. Missing bathymetry for sandy bay area‟s was interpolated based on information 

regarding the general slope of the bathymetry leading up to the edge of the bathymetry layer 

and the position of the shoreline. These images were then loaded into the same geodatabase 

as the NIWA bathymetry layer and georeferenced according to the locations of the control 

points defined in Google Earth. These images were then interpolated onto a 2 m by 2 m 

resolution grid to match the NIWA bathymetry grid. Overlaying the images onto the NIWA 

bathymetry revealed that submerged obstacles represented in the NIWA bathymetry file were 

visible in the ocean colour images and that the extent and positioning of the representations 

closely matched (Figure A2.1 panels c and d).  

 

Figure A2.1. Illustration of the steps used to apply aerial photography to estimate nearshore 

bathymetry 
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2A.3 – Nearshore bathymetry estimation - colour depth relationship 

To identify the relationship between image colour and depth sections of overlapping 

bathymetry (NIWA) and images were cropped and exported from ArcMap as ascii text files 

(Figure A2.1 – panel d). These training data were then loaded into R v14 (R development 

core team 2011) and the corresponding depth values were plotted against the corresponding 

image colour (Figure A2.1 – panel d and Figure A2.2) (all image-depth correspondence 

functions are included in Appendix 2B, Figures B2.1-B2.7). The relationships were non-

linear, and so a loess smoothing function (function loess in R) was applied to the data to 

estimate the smooth relationship between image colour and depth (Figure A2.2). As this 

relationship may vary between locations along the south coast, this was applied at several 

locations, allowing the estimation of several different functions that could be applied to each 

section of coastline separately. These functions, although not exact, provide a means to 

predict water depths in the range 15 to 2 m, with an accuracy of ±2 m (Figure A2.2). 

However, the relationship became less clear and less precise for depths greater than 15 m and 

due to the few NIWA bathymetry data points that had depths less than 2 m, the identified 

relationships were unable to predict to depths less than 2 m.  

 

Figure A2.2. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery in (a) several locations located between Island Bay (41° 

20.9267‟ S, 174° 46.1638‟ E) and the western side of Owhiro Bay (41° 20.984‟ S, 174° 

44.8776‟ E) and (b) Princess Bay (41° 20.9113‟ S, 174° 47.5031‟ E). The blue line illustrates 

the loess fit to the data, while the red dotted line in (a) indicates the cut-off implemented as 

above this colour is no longer a good indicator of depth. 
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2A.4 – Nearshore bathymetry estimation - bathymetry prediction 

Each interpolated 2 m by 2 m resolution raster layer derived from the Google Earth 

images were exported as ascii text files from ArcMap. The colour values were then loaded 

into R and depths corresponding to these colour values were predicted according to the 

relationship defined by the loess function applied to the training data. This depth information 

was then exported from R and reloaded into ArcMap as a series of raster layers, which were 

subsequently combined into a continuous nearshore bathymetry layer.  

2A.5 – Offshore and surrounding bathymetry estimation 

To obtain a representation of the bathymetry offshore and in surrounding areas, as 

well as for nearshore areas where depth was greater than 15 m, electronic versions of the 

Land Information New Zealand (LINZ) bathymetry charts NZ 463 (showing the greater 

Wellington region, and Cook Strait) and NZ 4633 (showing Wellington Harbour entrance and 

bathymetry to Island Bay) were downloaded from the LINZ website as tif files. These files 

illustrate the bathymetry using a combination of depth contour lines and point depth 

soundings. These images were loaded into ArcMap and georeferenced accordingly. A 

polyline shape file (file consisting of lines/polygons to which specific information can be 

attribute to different lines) was then created and the bathymetry contours represented in the 

LINZ bathymetry charts were traced with each line being attributed a depth, generating an 

electronic low resolution contour map of the bathymetry. This layer was created so that it 

encompassed the entire computational domain. A 2 m by 2 m resolution grid was then created 

in ArcMap using the topo to Raster function. This function interpolates a topographically 

correct representation of the information provided in a contour map, and thus enabled the 

generation of a low resolution representation of the surrounding bathymetry and the 

bathymetry for areas further offshore than given in the NIWA bathymetry data.  

2A.6 – Combining bathymetry layers 

The three bathymetry layers, based on NIWA‟s bathymetry data, the image derived 

bathymetry data and the low resolution chart derived data were combined into a single layer 

in ArcMap. They were combined such that information in the NIWA bathymetry chart took 

precedence over the image derived data, with the remaining gaps filled in with the chart 

derived data. To ensure that the bathymetry data did not have any discontinuities at the 

boundaries of these layers, the resulting bathymetry map was converted to a contour map, 

which was then examined and adjusted by deleting or moving contour lines (no adjustments 
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were made in the areas given by the NIWA bathymetry maps) so that discontinuities were 

removed from the map. Furthermore, contour lines for the shoreline (depth = 0 m) and areas 

where depth information was obscured by Durvillaea antarctica fronds visible in the aerial 

imagery (set to a depth of -0.5 m as these areas are submerged at high tide, but exposed at 

low tide) was added to this contour layer. The final contour map was then interpolated using 

the topo to Raster function in ArcMap to obtain the final bathymetry map in raster format 

(Chapter 4, Figure 4.2). The final image was then exported as a 2 m by 2 m resolution 

gridded map, and as a 30 m by 30 m resolution map for initial testing and coarse scale model 

runs. 
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Appendix 2B - Colour-depth correspondence 

plots 

 

Here the ocean-colour to depth data for numerous locations along the Wellington 

South Coast are presented (in addition to Appendix 2A, Figure A2.3). 

 

Figure B2.1. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery between Island Bay and Owhiro Bay. The blue line illustrates 

the loess fit to the data, while the red dotted line indicates the cut-off implemented as above 

this colour is no longer a good indicator of depth. 
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Figure B2.2. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery between Houghton Bay and Island Bay. The blue line 

illustrates the loess fit to the data. 

 

Figure B2.3. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery from the reef south of Princess Bay. The blue line illustrates 

the loess fit to the data. 
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Figure B2.4. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery from the reef East of Princess Bay at the entrance to Lyall 

Bay. The blue line illustrates the loess fit to the data. 

 

Figure B2.5. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery from the reef at the tip of the Moa Point peninsula. The blue 

line illustrates the loess fit to the data. 
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Figure B2.6. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery from the West side of the reef south of Palmer Head. The blue 

line illustrates the loess fit to the data, while the red dotted line indicates the cut-off 

implemented as above this colour is no longer a good indicator of depth. 

 

Figure B2.7. Plots of depth as a function of image colour for data obtained from overlapping 

bathymetry and aerial imagery from the East side of the reef south of Palmer Head. The blue 

line illustrates the loess fit to the data. 
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Appendix 2C – SWAN wave model sensitivity 

analyses  

2C.1 – Potential alternative formulations of physical processes 

Within the SWAN model there are several options available regarding the formulation 

of physical processes. The formulation of bottom friction processes governs how energy is 

dissipated as the waves interact with the seabed and eventually how they break once they 

reach shallow water. The formulation of wind-wave interactions is also important as it 

governs how wave energy is created through transference of wind energy to wave energy, 

and also as wind-based dissipation of wave energy (white-capping). Additional formulations 

of processes such as triad wave-wave interactions can also be investigated (Booij et al. 1999; 

Ris et al. 1999). In the scenario investigated in Chapters 4 and 5 much of the wave energy 

derives from incoming swell in addition to strong local wind speeds which can modify the 

wave energy through wind-wave interactions. Variations in the formulation of these physical 

processes are therefore likely to influence model predictions (Booij et al. 1999; Ris et al. 

1999).  

The sensitivity of SWAN model predictions were evaluated by trialling two different 

formulations of bottom friction and wind-wave interactions. For bottom friction, the 

formulation identified by Madsen (1988), which includes variable bottom friction strength as 

defined through a seabed roughness scale length (see Chapter 4), was trialled against the 

JONSWAP formulation of bottom friction, which assumes a constant bottom-friction 

coefficient. For wind-wave interactions (wind growth and whitecapping), the formulation 

according to WAM cycle 3 was trialled against the formulation of these processes given by 

WAM cycle 4 (i.e. Ris et al. 1999), which is the formulation utilised in all analyses in 

Chapter 4. Relevant differences between WAM cycle 3 and 4 include: 

 The calculation of wind friction velocity, which is used to calculate the energy 

imparted to waves. Cycle 3 calculates the friction velocity as a constant proportion of 

the wind speed 10 m above the water surface (Komen et al. 1984; SWAN Team 

2006a), whereas Cycle 4 calculates friction velocity by considering atmospheric 

boundary layer effects and the roughness length of the sea (Janssen 1991, SWAN 

Team 2006a). As the roughness scale length is spatially variable (depends on local 

wave height and wavelength) this effectively acts to create a spatially variable wind 
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field. The functional forms of the equations describing how energy is imparted to 

waves also differ between cycle 3 and cycle 4. 

 Alternative parameters for the equations governing whitecapping and wave 

steepening. Cycle 3 utilises the parameters given in Komen et al. (1984), whereas 

cycle 4 utilises the parameters given by Janssen (1991) (SWAN Team 2006a).  

2C.2 – Sensitivity Analyses  

2C.2.1 - SWAN Model 

Each of the parameter sets were trialled under two wind-wave regimes and for three 

locations (Table C2.1). Grid locations were chosen to represent a range of bathymetry and 

bottom types in order to try and identify the maximum possible discrepancy among 

formulations. Nested location #4 is predominantly open to incoming swell, but consists of a 

range of substrate types and complex bathymetry (Figure C2.1). Nested location #5 covers 

Island Bay and the surrounding rocky coastline, which consists of a mix of bottom types 

(sand in the bay, versus gravel and bedrock on the surrounding open coastline) and 

bathymetry (flat sandy areas that contrast with complex bathymetry around the sirens rocks to 

the west of island bay) as well as containing a large obstacle in the form of the Taputeranga 

Island (Figure C2.2). Finally nested location #12 has extensive areas of submerged and 

emergent reef to the south of Palmer Head (Figure C2.3), and thus will be a good test of how 

much of a difference the wave breaking formulation has on model results. The two parameter 

sets for wind and waves were chosen to represent the most frequent swell (class 18), and also 

the most extreme events, which are used throughout Chapter 4 to examine the influence of 

wave forces on macroalgal species (class 21). For each of the formulations and wind-wave 

boundary conditions the same routine as detailed in Chapter 4 was performed whereby a 30 

m resolution model was run, providing input values for each of the three nested locations to 

minimise the influence of edge effects (see Chapter 4). Based on these inputs a 2 m resolution 

model for each of the test locations was then performed and the subtidal orbital velocity and 

wave energy was extracted from the model outputs.    
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Table C2.1. Location of trial grids as well as sea conditions that were examined. 

Location of trials 

Nest No 

Coordinates Size (m) 

Bottom left Top Right 

N-S E-W 
Lat Long Lat Long 

(° ‘ S) (° ‘ E) (° ‘ S) (° ‘ E) 

4 41 21.4307 174 44.5691 41 20.6908 174 45.6287 1400 1436 

5 41 21.3621 174 45.5924 41 20.6186 174 46.6235 1410 1400 

12 41 21.2804 174 48.6997 41 20.5449 174 49.7299 1400 1400 

Conditions 

Class # 

Averaged parameters used as boundary conditions 

Frequency  Wind Waves 

Speed Direction Height Direction Period 

(ms
-1

) (° from N) (m) (° from N) (s) 

18 12.2 181.88 2.41 178.69 8.57 471 

21 17 198.68 4.32 178.07 10.22 32 

 

 

Figure C2.1. Bathymetry of test location nest #4. 
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Figure C2.2. Bathymetry of test location nest #5. 

 

Figure C2.3. Bathymetry of test location nest #12. 
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2C.2.2 – Comparisons and statistics 

For each of the test locations the model results for subtidal orbital velocity and wave 

energy were compared between alternative parameterisations of bottom friction (evaluated 

with the WAM cycle 4 formulation of wind-wave interactions) and wind-wave interactions 

(evaluated with the Madsen formulation of bottom friction). For each set the following was 

carried out: 

1. The difference            between the two predicted values v1i and v2i for the 

formulations being examined was evaluated on a cell by cell basis (hence the 

subscript i which denotes cell id). A relative measure,     
  

   
 , was also 

calculated as the difference between the two predicted values divided by the mean 

predicted value for that cell,    . For each set the range of Δ and Δ° which 

encapsulates 95% and 99% of the cell by cell differences was obtained, and density 

profiles (continuous histograms) of Δ and Δ° were plotted.   

2. Root mean squared error (RMSE) was calculated as  

      
   

  
 

 
 

o where n is the number of cells. 

3. To standardise this so that the RMSE can be expressed as a percentage of the mean, 

the coefficient of variation of the RMSE (CV(RMSE)) was calculated as  

           
    

               
 

o where        and        are the mean predicted values for orbital velocity or wave 

energy for each of the alternate formulations in that comparison. 

4. To examine whether differences were more extreme in shallow, intermediate or deep 

water, each of the above was evaluated for (1) all water depths, (2) 20-10 m, (3) 10-5 

m and (4) < 5 m. 

5. For the most extreme wave class the breaking probability of Macrocystis pyrifera 

was calculated for each location according to the equations detailed in Chapter 4. The 

probabilities were then binned into classes corresponding to stipe breakage 

probabilities of 0 - 0.1%, 0.1 - 0.25%, 0.25 – 0.5%, 0.5 – 1%, 1 – 2.5%, 2.5 – 5%, 5 – 

10%, 10 – 20%, 20 – 50%, 50 – 75% and 75 – 100% and the percent area of each 
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location falling into each class was compared across formulations. The agreement 

between the different formulations was also examined by quantifying the proportion 

of cells where the predictions were in agreement (i.e. the same probability bin), and 

when they didn‟t agree (i.e. predictions were in different probability bins). This was 

performed for each probability bin.    

 

2C.3 Results and discussion 

2C.3.1 - Bottom friction – orbital velocity 

Comparing model results revealed that the models which utilised the JONSWAP 

representation of bottom friction produced slightly higher orbital velocities than the 

equivalent model using the Madsen formulation of bottom friction (figures C2.4 – C2.9). 

However both formulations produce model results that are very similar to each other in terms 

of the absolute values predicted and the distribution of these data with relatively low % 

differences between formulations (Table C2.2). Model comparison statistics confirm this as 

the CV(RMSE) values were less than 0.05, which is equivalent to an RMSE corresponding to 

~ 5 % of the overall mean value, and the median % difference between models was less than 

4% of the mean predicted value for all depth ranges, wave classes and locations examined 

(Table C2.2). Comparison statistics also reveal that the largest discrepancies among models is 

found in shallow water (0-5m) where the median % difference between models was ~ 2-4 %, 

compared to ~1-2 % for locations at depths of 5 - 10m and 0.2 – 1 % for locations at depths 

of 10 – 20 m (Table C2.2). Qualitatively this is in agreement with the general principle that 

bottom friction influences waves predominantly in shallow water, and so differences in the 

formulation of these processes are likely to be less important in deep water.  However, even 

in the 0-5 m depth range, 95% of the cells had differences that were less than 13.7% of the 

mean value across formulations (Table C2.2), indicating that despite these differences the 

models produce very similar model predictions overall. There were also very few differences 

among locations with nested location #5 having marginally higher differences between model 

formulations than either #4 or #12 (Table C2.2). However, at most the differences exhibited 

in nested location #5 were only higher by 2.3 % compared to either #4 or #12 (Table C2.2). 

Differences between wave classes were also fairly minimal, except for the differences found 

in nested location #12 in shallow water (< 5 m) where the median % difference was 2% 

higher for wave class 18 than wave class 21 (Table C2.2). 
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Table C2.2. Statistics for orbital velocity predictions of model runs with the Madsen 

formulation, versus the JONSWAP formulation of bottom friction processes. All metrics are 

calculated based on:                          . 

Class 
Nest 

# 

Depth 

range 

(m) 

RMSE  

(ms-1) 
CV 

Δ (×10-3 ms-1) Δ° (%) 

median 95% 99% median 95% 99% 

18 4 

All 0.010 0.021 2.5 (0.4, 27.8) (0.3, 38.8) 0.60 (0.2, 4.4) (0.1, 7.6) 

20-10 0.003 0.008 2.0 (0.5, 8.1) (0.5, 12.1) 0.54 (0.2, 1.5) (0.2, 2.1) 

10-5 0.012 0.017 9.1 (2.5, 25) (2, 27.9) 1.37 (0.4, 3) (0.3, 3.3) 

< 5 0.022 0.030 19.7 (0.6, 41.8) (0, 55.2) 2.62 (0.2, 8.6) (0, 14.7) 

21 4 

All 0.013 0.016 8.4 (1.9, 30.1) (0.6, 40.8) 0.88 (0.4, 3.7) (0.1, 6.7) 

20-10 0.009 0.011 7.6 (2.9, 19.1) (2.7, 23.7) 0.93 (0.4, 1.9) (0.4, 2.2) 

10-5 0.017 0.015 14.5 (8.6, 28.4) (7.2, 32.4) 1.45 (0.8, 2.4) (0.7, 2.7) 

< 5 0.024 0.026 21.1 (0.3, 43.9) (0, 57.2) 2.28 (0, 8) (0, 14.2) 

18 5 

All 0.013 0.030 4.5 (0.5, 34.2) (0.4, 49.4) 0.95 (0.2, 7.9) (0.2, 15.7) 

20-10 0.004 0.009 2.7 (1.2, 8) (0.9, 9.7) 0.72 (0.4, 1.5) (0.3, 2) 

10-5 0.012 0.021 10.4 (5.5, 19) (4, 20.9) 2.06 (1, 4.6) (0.8, 5.6) 

< 5 0.024 0.041 21.0 (0.7, 47.8) (0, 63.8) 3.79 (1.4, 13.7) (0, 35.1) 

21 5 

All 0.017 0.022 11.8 (2.4, 36.1) (0.2, 51.5) 1.39 (0.5, 6.8) (0, 13.9) 

20-10 0.011 0.013 8.8 (4.8, 18.4) (4.3, 20.2) 1.12 (0.7, 1.8) (0.7, 2.7) 

10-5 0.020 0.022 19.4 (9.3, 26.8) (7.5, 29.6) 1.99 (1.4, 4.1) (1.2, 4.8) 

< 5 0.027 0.035 25.0 (0.3, 49.5) (0, 66.3) 3.62 (0.1, 12) (0, 31.2) 

18 12 

All 0.011 0.028 2.0 (0.1, 31.1) (0, 38.3) 0.63 (0, 6.1) (0, 8) 

20-10 0.002 0.008 1.9 (0.5, 5.6) (0.3, 8.2) 0.17 (0.2, 2.6) (0.1, 4.1) 

10-5 0.009 0.018 7.8 (2.9, 17.3) (2.4, 22.3) 1.52 (0.6, 6.1) (0.6, 6.8) 

< 5 0.023 0.036 21.4 (4.1, 38.7) (0, 47.3) 3.32 (1.3, 8.1) (0, 13.9) 

21 12 

All 0.013 0.019 1.6 (1.6, 30.6) (1.2, 37.4) 1.13 (0.3, 4.4) (0.2, 6.2) 

20-10 0.008 0.012 6.8 (3.3, 12.6) (2.7, 14.4) 0.55 (0.5, 2) (0.5, 2.5) 

10-5 0.016 0.018 15.8 (7.9, 24.3) (6.4, 26.3) 1.08 (1.1, 3.4) (0.9, 4.4) 

< 5 0.024 0.028 23.6 (3.5, 37.7) (0, 47.7) 1.36 (1.1, 6.3) (0, 13.1) 
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Figure C2.4. Density profiles of the differences in predicted orbital speeds for wave class 18 

in nested grid #4 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in orbital speeds (A) and as a % 

of the mean orbital speed (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.5. Density profiles of the differences in predicted orbital speeds for wave class 21 

in nested grid #4 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in orbital speeds (A) and as a % 

of the mean orbital speed (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.6. Density profiles of the differences in predicted orbital speeds for wave class 18 

in nested grid #5 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in orbital speeds (A) and as a % 

of the mean orbital speed (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.7. Density profiles of the differences in predicted orbital speeds for wave class 21 

in nested grid #5 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in orbital speeds (A) and as a % 

of the mean orbital speed (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.8. Density profiles of the differences in predicted orbital speeds for wave class 18 

in nested grid #12 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in orbital speeds (A) and as a % 

of the mean orbital speed (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.9. Density profiles of the differences in predicted orbital speeds for wave class 21 

in nested grid #12 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in orbital speeds (A) and as a % 

of the mean orbital speed (B). Differences are calculated as:                          . 

 

A 

B 
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2C.3.2 - Bottom friction – wave energy 

Similarly to the results for bottom friction, models which utilised the JONSWAP 

representation of bottom friction produced slightly higher wave energies than the equivalent 

model using the Madsen formulation of bottom friction (figures C2.10 – C2.15), but again 

these results are indicative of a change in the magnitude of values (i.e. each value is 

proportionally larger in one formulation over another) predicted rather than a wholesale 

change in the spatial distribution of wave energy. Model comparison statistics reveal that the 

differences in wave energy are proportionally larger than the differences in orbital velocity 

for the same model runs (Table C2.3). For example, whereas the CV(RMSE) for orbital 

velocity were all less than 0.05, the CV(RMSE) for wave energy varies between 0.01-0.02 for 

locations at depths of 10 - 20 m, 0.03 – 0.04 for locations at 5 – 10 m and 0.054 – 0.07 for 

locations at depths of 0 – 5 m (Table C2.3). This coincides with an increase in the median % 

difference (Δ°) by a factor of ~ 2 across all model runs, with much of this discrepancy arising 

from the 0 – 5 m depth range (Table C2.3). Examining the density profiles reveals that the 

absolute differences (Δ) in shallow water are similar to, if not smaller than, the differences in 

deeper water, but because of the lower mean wave energy in shallow water these differences 

when expressed as a percentage are much higher (Figures C2.10-C2.15). However, even in 

the 0-5 m depth range, the CV(RMSE) corresponds to a RMSE of ~ 7% of the overall mean 

predicted value, and 95% of the cells had differences that were less than 25% of the mean 

(Table C2.3) value across formulations. Similar patterns were also observed in relation to the 

differences among locations, with nested location #5 having higher differences between 

model formulations than both #4 or #12 (Table C2.3), and there were no noticeable 

differences between the wave classes examined (Table C2.3).   
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Table C2.3. Statistics for wave energy predictions of model runs with the Madsen 

formulation, versus the JONSWAP formulation of bottom friction processes. All metrics are 

calculated based on:                          . 

Class Nest 
Depth 

range 

(m) 

RMSE 

(Wm-1) 
CV 

Δ (×10-2 Wm-1) Δ° (%) 

median 95% 99% median 95% 99% 

18 4 

All 0.034 0.017 1.7 (0.3, 9.4) (0, 11.8) 0.97 (0.2, 8.2) (0.2, 14.4) 

20-10 0.027 0.011 1.9 (0.6, 5.7) (0.5, 9.1) 0.84 (0.2, 2.6) (0.2, 3.7) 

10-5 0.056 0.029 4.4 (1.2, 11.7) (0.7, 13) 2.46 (0.7, 5.6) (0.6, 6.2) 

< 5 0.034 0.060 1.8 (0, 7.8) (-0.1, 9.9) 4.95 (0.7, 16.5) (-1.7, 29.3) 

21 4 

All 0.122 0.019 9.3 (0.4, 24.8) (0, 30.5) 1.59 (0.6, 7) (0.5, 13) 

20-10 0.150 0.019 12.3 (6.2, 26.9) (5.9, 32.2) 1.62 (0.7, 3.5) (0.7, 4) 

10-5 0.139 0.028 11.2 (2.3, 26.6) (1.3, 31.4) 2.73 (1.4, 4.5) (1.4, 5.2) 

< 5 0.050 0.054 2.5 (0, 12.5) (-0.3, 16) 4.40 (0, 15) (-3.1, 26.1) 

18 5 

All 0.031 0.018 1.9 (0.1, 7) (0, 8.2) 1.55 (0.3, 14.8) (0.2, 28.4) 

20-10 0.031 0.013 2.6 (1.2, 6) (1, 6.9) 1.12 (0.5, 2.7) (0.4, 3.4) 

10-5 0.046 0.036 4.2 (0.6, 8.2) (0.4, 9.2) 3.75 (1.8, 7.5) (1.4, 9.5) 

< 5 0.028 0.070 1.3 (0, 6.5) (-0.1, 7.5) 6.63 (2.4, 25.2) (-0.7, 67.5) 

21 5 

All 0.127 0.023 9.9 (0.1, 25) (0, 28.9) 2.53 (0.8, 12.7) (0, 25.3) 

20-10 0.173 0.021 15.9 (9.6, 27.6) (8.5, 31) 1.98 (1.3, 3.4) (1.1, 5) 

10-5 0.139 0.040 11.7 (1.1, 24.7) (0.7, 28.1) 3.79 (2.6, 7.6) (2.3, 8) 

< 5 0.048 0.065 2.5 (0, 12.2) (-0.2, 16.4) 6.61 (0.2, 22.6) (-1.4, 62.6) 

18 12 

All 0.020 0.013 1.4 (0, 4.7) (-0.1, 6) 0.95 (0, 11.6) (0, 17) 

20-10 0.017 0.010 1.5 (0.4, 2.9) (0.2, 3.4) 0.90 (0.2, 2.7) (0.1, 6.3) 

10-5 0.030 0.029 2.2 (0.4, 6) (-0.2, 7.1) 2.60 (1, 12.2) (-0.8, 16.2) 

< 5 0.026 0.061 2.0 (0, 5.3) (0, 6.4) 5.88 (2, 16.8) (0, 26.6) 

21 12 

All 0.096 0.019 8.5 (0.6, 16.2) (0, 18.2) 1.97 (0.5, 8.5) (0.4, 13) 

20-10 0.117 0.020 11.7 (3, 16.6) (2, 18.4) 1.93 (0.9, 3.4) (0.8, 3.8) 

10-5 0.102 0.035 9.4 (1.4, 17.7) (0.1, 19.8) 3.32 (1.8, 5.5) (0.2, 9.5) 

< 5 0.043 0.054 2.5 (0, 10.3) (-0.1, 13.7) 4.73 (2.5, 13.2) (-1.6, 24.1) 
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Figure C2.10. Density profiles of the differences in predicted wave energy for wave class 18 

in nested grid #4 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in wave energy (A) and as a % 

of the mean wave energy (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.11. Density profiles of the differences in predicted wave energy for wave class 21 

in nested grid #4 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in wave energy (A) and as a % 

of the mean wave energy (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.12. Density profiles of the differences in predicted wave energy for wave class 18 

in nested grid #5 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in wave energy (A) and as a % 

of the mean wave energy (B). Differences are calculated as:                          . 

A 

B 



Appendix 2 
 

 
300 

 

 

 

Figure C2.13. Density profiles of the differences in predicted wave energy for wave class 21 

in nested grid #5 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in wave energy (A) and as a % 

of the mean wave energy (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.14. Density profiles of the differences in predicted wave energy for wave class 18 

in nested grid #12 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in wave energy (A) and as a % 

of the mean wave energy (B). Differences are calculated as:                          . 

A 

B 
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Figure C2.15. Density profiles of the differences in predicted wave energy for wave class 21 

in nested grid #12 for model runs with the JONSWAP versus the Madsen formulation of 

bottom friction. Results are expressed as absolute difference in wave energy (A) and as a % 

of the mean wave energy (B). Differences are calculated as:                          . 

 

A 
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2C.3.3 – Wind growth and whitecapping – orbital velocity 

Differences between model results using the WAM cycle-4 and the WAM cycle-3 

formulations of wind growth and whitecapping tended to differ between parameter sets, 

locations and depths (Table C2.4). For the less extreme wave conditions (class 18) the 

predictions produced by WAM cycle 4 models tended to be marginally lower than models 

using WAM cycle 3, with a median % difference between models of -0.2 to -1% depending 

on location and depth range (Table C2.4). For this wave class, cells in the 10 – 20 m depth 

range tended to have a more negative difference between results from WAM cycle 4 and 

cycle 3, indicating that differences between formulations were larger in deeper water than in 

the shallower depth. However, for this wave class overall, the difference between 

formulations was marginal with 95% and 99% of the cells having differences in the ranges of 

-1.5% to 3% and -2.5% to 4.4% (Figures C2.16 - C2.21), respectively, and low CV of 

between 0.003 and 0.009, indicating a RMSE that is less than 1% of the overall mean orbital 

velocity (Table C2.4).  

For the more extreme wave class investigated, predictions produced by models using 

WAM cycle 4 tended to be higher than predictions from models using WAM cycle 3 in 

deeper water (10-20 m median % difference: 1 to 1.63%), but  lower or approximately equal 

in shallow water (0-5 m median % difference: -0.27 to 0.06%). The range of Δ° however, was 

higher in shallow water (95% range for 0-5 m depth class: 3.5 to 5.7% depending on location) 

than in deep water (95% range for 20-10 m depth class: 1 to 2.1 %). This along with the 

median % differences indicates that in deeper water the discrepancy between formulations 

acts to introduce a consistent bias in the predictions (i.e. differences between cells are 

consistent but non-zero), whereas in shallow water these discrepancies are mostly noise (i.e. 

greater differences among cells, but overall centred on zero- also illustrated in Figures C2.16 

- C2.21). These differences would be expected given that in deeper water the physical factors 

affecting waves are predominantly due to wind forcing, and so a larger discrepancy might be 

expected between alternative formulations. However, once these waves reach shallow water 

they begin to interact with the seabed and bottom friction and wave breaking processes are 

likely to be more important.  

There were also noticeable differences among locations with differences between 

formulations that were higher in nested location # 12 than # 5 (median Δ° was between 0.1 - 

0.7% higher and the 95% range of was 0.5 - 1.4% wider in #12 than in #5 evaluated across 



Appendix 2 
 

 
304 

 

depth classes for wave class 21), which were subsequently higher than # 4 (median Δ° was 

between 0.1 – 1.1% higher and the 95% range of was 0.4 – 0.8% wider in #5 than in #4 

evaluated across depth classes). However, overall the difference between formulations was 

marginal with 95% and 99% of the cells having differences in the ranges of -1.8% to 4.6% 

and -4.8% to 5.9% (Figures C2.13 - C2.18), respectively, and CV of between 0.007 and 

0.018, indicating a RMSE that is less than 2% of the overall mean orbital velocity (Table 

C2.4).  

Table C2.4. Statistics for orbital velocity predictions of model runs with the WAM 4, versus 

the WAM3 formulations of wind growth and whitecapping processes. All metrics are 

calculated based on:                     . 

Class 
Nest 

# 

Depth 

range 

(m) 

RMSE  

(ms-1) 
CV 

Δ (×10-3 ms-1) Δ° (%) 

median 95% 99% median 95% 99% 

18 4 

All 0.003 0.006 -2.5 (-6.4, 3.1) (-9.3, 6.5) -0.71 (-1, 0.6) (-1, 1.5) 

20-10m 0.003 0.007 -2.9 (-3.4, -1.2) (-3.6, -0.1) -0.74 (-0.9, -0.2) (-1, 0) 

10-5m 0.002 0.003 -1.6 (-5, 3.3) (-6.6, 5.9) -0.21 (-0.6, 0.6) (-0.8, 1.4) 

< 5m 0.005 0.007 -1.6 (-9.9, 7.5) (-12.2, 16.4) -0.28 (-1.1, 1.7) (-1.8, 3.8) 

21 4 

All 0.007 0.009 3.8 (-9.7, 14.9) (-13, 19) 0.56 (-0.9, 1.6) (-1.3, 2.3) 

20-10m 0.009 0.011 8.3 (3.8, 15.1) (-1.9, 16.8) 1.02 (0.5, 1.6) (-0.2, 1.8) 

10-5m 0.008 0.007 -0.1 (-10.6, 16.9) (-12.4, 21.5) -0.01 (-0.9, 1.7) (-1, 2.6) 

< 5m 0.007 0.008 -1.9 (-13.5, 15) (-16.8, 25.9) -0.27 (-1.4, 2.1) (-2.9, 4) 

18 5 

All 0.003 0.007 -2.4 (-7.1, 4.8) (-10.7, 8.2) -0.67 (-1, 1.3) (-1.3, 1.8) 

20-10m 0.003 0.007 -2.8 (-3.7, -0.8) (-4.2, 0.3) -0.76 (-0.9, -0.2) (-1, 0.1) 

10-5m 0.002 0.004 -0.1 (-3.7, 3.5) (-6.2, 5.4) -0.02 (-0.5, 1.1) (-0.8, 1.6) 

< 5m 0.005 0.008 -0.3 (-10.4, 7.8) (-13.9, 11.4) -0.09 (-1.2, 1.7) (-2.5, 2.2) 

21 5 

All 0.008 0.011 5.2 (-9.2, 17.9) (-13.6, 21.7) 0.77 (-0.9, 2.3) (-2, 2.7) 

20-10m 0.010 0.013 8.7 (3.5, 18.5) (0.2, 21) 1.07 (0.5, 2.1) (0, 2.3) 

10-5m 0.010 0.011 8.1 (-6.5, 20.4) (-9.7, 25.8) 1.08 (-0.5, 2.5) (-0.7, 3) 

< 5m 0.008 0.010 -0.2 (-13.2, 16.5) (-17, 20.9) -0.06 (-1.8, 2.5) (-1.9, 2.8) 

18 12 

All 0.003 0.009 -2.9 (-4.9, 6.1) (-6.7, 12.9) -0.96 (-1.1, 1.7) (-1.1, 3) 

20-10m 0.003 0.009 -3.2 (-3.8, 0.3) (-4, 1.2) -1.04 (-1.1, 0.1) (-1.1, 0.6) 

10-5m 0.003 0.005 -1.2 (-5.2, 4.7) (-7.3, 7.1) -0.23 (-0.8, 1.7) (-0.9, 2.3) 

< 5m 0.005 0.008 -1.3 (-6.6, 13.1) (-9.6, 17.2) -0.25 (-0.8, 3.1) (-2.1, 4.4) 

21 12 

All 0.011 0.016 8.7 (-5.1, 23.1) (-8.2, 32.8) 1.46 (-0.6, 3.7) (-1.1, 4.8) 

20-10m 0.010 0.017 10.1 (4.7, 16.7) (4.1, 20.5) 1.63 (0.7, 2.8) (0.6, 3.7) 

10-5m 0.016 0.018 14 (0.7, 28.8) (-5.7, 34.6) 1.77 (0.1, 4.4) (-0.5, 5.3) 

< 5m 0.011 0.013 0.4 (-8.3, 31.6) (-11.7, 39.5) 0.06 (-1.1, 4.6) (-4.8, 5.9) 
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Figure C2.16. Density profiles of the differences in predicted orbital velocity for wave class 

18 in nested grid #4 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in orbital 

speed (A) and as a % of the mean orbital speed (B). Differences are calculated as:    
                 . 

 

 

A 

B 



Appendix 2 
 

 
306 

 

 

 

Figure C2.17. Density profiles of the differences in predicted orbital velocity for wave class 

21 in nested grid #4 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in orbital 

speed (A) and as a % of the mean orbital speed (B). Differences are calculated as:    
                 . 

A 

B 
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Figure C2.18. Density profiles of the differences in predicted orbital velocity for wave class 

18 in nested grid #5 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in orbital 

speed (A) and as a % of the mean orbital speed (B). Differences are calculated as:    
                 . 

A 

B 
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Figure C2.19. Density profiles of the differences in predicted orbital velocity for wave class 

21 in nested grid #5 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in orbital 

speed (A) and as a % of the mean orbital speed (B). Differences are calculated as:    
                 . 
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B 
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Figure C2.20. Density profiles of the differences in predicted orbital velocity for wave class 

18 in nested grid #12 for model runs with the WAM 3 versus the WAM 4 formulation of 

wind growth and whitecapping processes. Results are expressed as absolute difference in 

orbital speed (A) and as a % of the mean orbital speed (B). Differences are calculated as: 

                    . 
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B 
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Figure C2.21. Density profiles of the differences in predicted orbital velocity for wave class 

21 in nested grid #12 for model runs with the WAM 3 versus the WAM 4 formulation of 

wind growth and whitecapping processes. Results are expressed as absolute difference in 

orbital speed (A) and as a % of the mean orbital speed (B). Differences are calculated as: 

                    . 
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B 



Appendix 2 
 

 
311 

 

2C.3.4 – Wind growth and whitecapping – wave energy 

Differences in wave energy between the WAM cycle-4 and the WAM cycle-3 

formulations of wind growth and whitecapping were larger overall than those exhibited for 

orbital velocity and also displayed patterns among parameter sets, locations and depths that 

were different from those produced for orbital velocity (Table C2.5). For the less extreme 

wave conditions (class 18) the predictions produced by models using WAM cycle 4 tended to 

be marginally higher than models using WAM cycle 3, with a median % difference between 

models of -0.09 to 1.83% depending on location and depth range (Table C2.5). For this wave 

class, cells in the 10 – 20 m and 10 – 5 m depth ranges tended to have median Δ°  values that 

were ~ 0.5 to 1.5% higher than cells in the shallowest depth range (Table C2.5), indicating 

that differences between formulations were larger in deeper water than in the shallower 

depth. However, for this wave class overall, the difference between formulations was 

marginal with 95% and 99% of the cells having differences in the ranges of -2.4% to 9.5% 

and -8.7% to 12.9% (Figures C2.19 - C2.24), respectively, and CV between 0.007 and 0.017, 

indicating a RMSE that is less than 2% of the overall mean orbital velocity (Table C2.5).  

Predictions for the more extreme wave class produced by models using WAM cycle 4 

tended to be higher than predictions from models using WAM cycle 3 in deeper water (10-20 

m median Δ°: 4.4 to 5.5%), but lower or approximately equal in shallow water (0-5 m median 

Δ°: -0.25 to 0.24%). The range of Δ° however, was higher in shallow water (95% range for 0-

5 m depth class: 7.9 to 13% depending on location) than in deep water (95% range for 20-10 

m depth class: 2.9 to 6.3 %). This closely matches the patterns found when examining Δ° for 

orbital velocity with the discrepancy between formulations acting to introduce a consistent 

bias in the predictions (i.e. differences between cells are consistent but non-zero) in deeper 

water, whereas in shallow water these discrepancies are mostly noise (i.e. greater differences 

among cells, but overall centred on zero - also illustrated in Figures C2.22 - C2.27).  

There were also noticeable differences among locations with differences between 

formulations that were higher in nested location # 12 than # 5 (median Δ° was between 0.2 – 

1.2% higher and the 95% range of was 2 – 5.2% wider in #12 than in #5 evaluated across 

depth classes for wave class 21), which were subsequently higher than # 4 (median Δ° was 

between 0.3 – 2.6% higher and the 95% range of was 0.9 – 1.7% wider in #5 than in #4 

evaluated across depth classes). The overall difference between formulations for this wave 

class was within -3.2% to 13.2% (95% range) and -8.6% to 21% (99% range) with a 
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CV(RMSE) between 0.018 and 0.061 indicating a RMSE that is at most 6.1% of the overall 

mean wave energy (Table C2.5).  

Table C2.5. Statistics for wave energy predictions of model runs with the WAM 4, versus the 

WAM3 formulations of wind growth and whitecapping processes. All metrics are calculated 

based on:                     .  

Class Nest 
Depth 

range 

(m) 

RMSE 

(Wm-1) 
CV 

Δ (×10-2 Wm-1) Δ° (%) 

median 95% 99% median 95% 99% 

18 4 

All 0.021 0.011 2 (-0.8, 3.6) (-1.7, 4.2) 0.90 (-1.1, 2.8) (-1.8, 4.5) 

20-10m 0.025 0.011 2.4 (1.4, 3.7) (0.7, 4.3) 1.00 (0.5, 2) (0.3, 2.6) 

10-5m 0.022 0.012 2 (-0.6, 4) (-1.5, 4.5) 0.96 (-0.3, 3.2) (-0.8, 5.1) 

< 5m 0.008 0.014 0 (-1.8, 1.7) (-2.4, 2.6) -0.09 (-2.1, 4.2) (-3.4, 9.7) 

21 4 

All 0.288 0.045 34.6 (-4.4, 41.8) (-6.3, 44.3) 4.09 (-1.4, 5.5) (-2.6, 6.4) 

20-10m 0.352 0.045 35.4 (19.9, 42.8) (1.4, 44.8) 4.41 (2.9, 5.8) (0.4, 6.4) 

10-5m 0.111 0.023 2.6 (-6.1, 27.6) (-7.1, 31.1) 0.81 (-1.3, 5.1) (-1.9, 6.6) 

< 5m 0.017 0.018 0 (-3.7, 3.6) (-5.4, 6.7) -0.25 (-2.9, 4.9) (-5.4, 8.9) 

18 5 

All 0.022 0.013 2 (-0.7, 3.9) (-1.6, 4.6) 1.04 (-1.3, 4.7) (-2.5, 6.6) 

20-10m 0.028 0.012 2.7 (1.3, 4.1) (0.6, 4.7) 1.17 (0.5, 2.3) (0.2, 3.2) 

10-5m 0.021 0.017 1.6 (0.1, 4.2) (-0.9, 5) 1.83 (0.1, 5.5) (-0.6, 6.8) 

< 5m 0.007 0.017 0.1 (-1.4, 1.5) (-2.2, 2.4) 0.37 (-2.4, 5.8) (-4.3, 8.3) 

21 5 

All 0.295 0.055 35.1 (-1.6, 49.2) (-3.5, 51.2) 4.34 (-1.6, 6.9) (-3.5, 7.6) 

20-10m 0.383 0.049 38 (13.8, 50.4) (5.9, 52.4) 4.81 (2.8, 7.2) (1.4, 7.6) 

10-5m 0.125 0.037 6.3 (-1.7, 31.3) (-4.3, 35.3) 3.37 (-0.5, 6.9) (-1.1, 8) 

< 5m 0.017 0.024 0 (-2.9, 3.9) (-4.7, 7) 0.08 (-3.2, 6.4) (-6.7, 7.8) 

18 12 

All 0.012 0.008 0.7 (-0.6, 2.9) (-1.2, 3.4) 0.39 (-1.1, 6.9) (-1.9, 10.3) 

20-10m 0.013 0.007 0.8 (0, 3) (-0.2, 3.4) 0.39 (0, 6.4) (-0.1, 8.3) 

10-5m 0.014 0.013 0.7 (-1.1, 3.1) (-2, 3.8) 0.77 (-0.8, 9.5) (-2.2, 12.9) 

< 5m 0.007 0.016 0 (-1.1, 1.8) (-1.7, 2.4) -0.09 (-1.8, 8.9) (-8.7, 12.8) 

21 12 

All 0.300 0.061 32.7 (-0.7, 44.2) (-1.3, 48.3) 5.40 (-1.4, 10.1) (-2.9, 13.7) 

20-10m 0.324 0.056 33.6 (10.3, 43.7) (7, 48) 5.48 (3.9, 10.2) (3.2, 12.7) 

10-5m 0.140 0.050 10.1 (0.9, 30.8) (-2.2, 37.9) 4.56 (0.5, 13.2) (-0.9, 16.8) 

< 5m 0.027 0.034 0.1 (-1.3, 8.3) (-1.8, 12.1) 0.24 (-3, 10.2) (-6.8, 21) 
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Figure C2.22. Density profiles of the differences in predicted wave energy for wave class 18 

in nested grid #4 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in wave 

energy (A) and as a % of the mean wave energy (B). Differences are calculated as:    
                 . 

A 

B 
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Figure C2.23. Density profiles of the differences in predicted wave energy for wave class 21 

in nested grid #4 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in wave 

energy (A) and as a % of the mean wave energy (B). Differences are calculated as:    
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B 
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Figure C2.24. Density profiles of the differences in predicted wave energy for wave class 18 

in nested grid #5 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in wave 

energy (A) and as a % of the mean wave energy (B). Differences are calculated as:    
                 . 

A 

B 
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Figure C2.25. Density profiles of the differences in predicted wave energy for wave class 21 

in nested grid #5 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in wave 

energy (A) and as a % of the mean wave energy (B). Differences are calculated as:    
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B 
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Figure C2.26. Density profiles of the differences in predicted wave energy for wave class 18 

in nested grid #12 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in wave 

energy (A) and as a % of the mean wave energy (B). Differences are calculated as:    
                 . 

A 

B 
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Figure C2.27. Density profiles of the differences in predicted wave energy for wave class 21 

in nested grid #12 for model runs with the WAM 3 versus the WAM 4 formulation of wind 

growth and whitecapping processes. Results are expressed as absolute difference in wave 

energy (A) and as a % of the mean wave energy (B). Differences are calculated as:    
                 . 

A 

B 
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2C.3.5 – Sensitivity of Macrocystis pyrifera stipe breaking predictions 

The percent-area with stipe breaking probability in each of the eleven probability bins 

were similar across formulations of the two physical processes examined (Table C2.6). As a 

reflection of the proportionally lower orbital velocities predicted by the Madsen versus the 

JONSWAP formulation, there was a larger area with very low breaking probabilities 

(difference between formulations in terms of the %-area with breaking probabilities < 0.1% 

was 0.8 - 2.2% across locations) and marginally smaller area with higher breaking 

probabilities (difference between formulations in terms of the %-area with breaking 

probabilities 5 – 10% was -0.15 to -0.646 %) when comparing areas across formulations 

(Table C2.6). A similar pattern is also apparent when comparing the results between WAM 3 

and WAM 4 results, whereby the marginally larger orbital velocities produced by WAM 4 

lead to slightly greater areas with higher breaking probabilities, and smaller areas with low 

breaking probabilities (Table C2.6). This pattern was consistent across locations, but the 

largest difference in the low probability bands was observed in nested location #12, whereas 

#4 had larger differences in the higher probability bands, likely associated with the overall 

lower and higher overall breaking probabilities for each of these locations, respectively 

(Table C2.6). Overall the difference in percent-area for each probability band is marginal 

with most differences in the low probability bands (<1%) being ~ 0 - 2% and 0 – 0.6% in the 

higher probability bands (Table C2.6).   

The differences in percent-area in each band between alternative formulations were 

predominantly due to grid-cells being classified in either the band one above or one below the 

probability band in question (Figures C2.28-C2.30). Misclassifications were typically less 

than 15% in the < 0.1% to 2.5 – 5% probability bands, but could be up to 25% in the 5 – 10% 

to 50 – 75% bands when comparing bottom-friction formulations. Predictions produced by 

the Madsen formulation, when not assigned to the same band as the JONSWAP formulation, 

were typically assigned to the probability class one lower compared to the JONSWAP 

formulation across all probability bands (Figures C2.28 to C2.30). In contrast, WAM 3 

predictions, when not assigned to the same band as WAM 4, were typically assigned to a 

higher probability band for bands 0.1 - 0.25% to 1 - 2.5%, but a lower band for bands 2.5% - 

5% to 50 – 75% in nested location #4 and #5 (Figures C2.28 to C2.30), but always assigned 

to a higher band in #12 (Figure C2.30). Overall however, the proportion of mismatch was far 

lower for alternative formulations of wind-generation/whitecapping (< 10% across all bands) 
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than formulations of bottom friction (up to 25%), likely due to the larger discrepancies 

produced by alternative formulations of bottom friction in orbital velocity predictions.  

Even the discrepancies produced by alternative formulations of bottom friction are 

unlikely to change the conclusions drawn in Chapter 4 as the discrepancies are relatively 

minor. In the worst case scenario, the change in the area where the probability of breakage is 

greater than 5% is less than 1% of the overall area investigated (nested location #4 – see 

Table C2.6), and constitutes a marginal expansion of the areas previously highlighted in 

Chapter 4 rather than a wholesale change in distribution of potentially destructive wave 

forces.  
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Table C2.6. Results of applying the Macrocystis bio-mechanical model to the predicted 

orbital velocities for each location and formulation of bottom friction (JONSWAP and 

Madsen) and wind-generation/whitecapping (WAM cycle 3 and WAM cycle 4). Values 

indicate the %-area of each location where predictions were within each of 11 bands of stipe 

breakage probability. Differences between formulations were also calculated as %Madsen-

%JONSWAP for bottom friction formulations and %WAM4-%WAM3 for wind-generation and 

whitecapping formulations. 

  

Probability of Breakage (%) 

<.1 .1-.25 .25-.5 .5-1 1-2.5 2.5-5 5-10 10-20 20-50 50-75 75-100 

Nest 4 

Friction: 

JONSWAP 

38.530 12.977 8.713 8.232 12.448 14.687 3.536 0.729 0.148 0.001 0.000 

Friction: 

Madsen 
39.394 13.090 8.721 8.333 12.652 14.225 2.890 0.582 0.112 0.001 0.000 

Difference 0.864 0.113 0.008 0.101 0.204 -0.462 -0.646 -0.147 -0.036 0.000 0.000 

Wind:   

WAM 3 

39.394 13.090 8.721 8.333 12.652 14.225 2.890 0.582 0.112 0.001 0.000 

Wind:   

WAM 4 
40.009 13.160 8.628 8.199 12.494 13.962 2.840 0.592 0.115 0.001 0.000 

Difference 0.615 0.070 -0.092 -0.134 -0.159 -0.263 -0.050 0.010 0.003 0.000 0.000 

Nest 5 

Friction: 

JONSWAP 
50.457 13.228 7.448 7.321 9.452 6.639 3.738 1.312 0.345 0.036 0.023 

Friction: 

Madsen 
52.009 12.804 7.377 7.393 9.413 6.292 3.294 1.081 0.283 0.034 0.020 

Difference 1.552 -0.425 -0.071 0.072 -0.039 -0.347 -0.444 -0.231 -0.062 -0.003 -0.003 

Wind:   

WAM 3 

52.009 12.804 7.377 7.393 9.413 6.292 3.294 1.081 0.283 0.034 0.020 

Wind:   

WAM 4 
52.854 12.587 7.303 7.349 9.216 6.079 3.190 1.089 0.280 0.034 0.020 

Difference 0.845 -0.217 -0.074 -0.045 -0.197 -0.213 -0.104 0.008 -0.003 0.000 -0.001 

Nest 12 

Friction: 

JONSWAP 

68.615 11.249 5.240 4.799 5.494 2.593 1.325 0.510 0.160 0.014 0.001 

Friction: 

Madsen 
70.862 9.914 5.225 4.650 5.235 2.344 1.175 0.450 0.130 0.012 0.001 

Difference 2.247 -1.335 -0.015 -0.149 -0.259 -0.249 -0.150 -0.060 -0.030 -0.002 0.000 

Wind:   

WAM 3 
70.862 9.914 5.225 4.650 5.235 2.344 1.175 0.450 0.130 0.012 0.001 

Wind:   

WAM 4 
72.880 8.372 5.169 4.594 5.054 2.258 1.115 0.423 0.121 0.012 0.001 

Difference 2.018 -1.542 -0.056 -0.056 -0.181 -0.086 -0.059 -0.027 -0.009 0.000 0.000 
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Figure C2.28. Similarity matrices for location #4. Values indicate the % match/mismatch of 

model predictions for each stipe breakage probability band across formulations of bottom 

friction (upper) and wind-generation/whitecapping processes (lower). Percentages are 

calculated as              
  
    , where      is the number of cells with predicted 

probabilities in probability band i in formulation 1 (corresponding to Madsen and WAM 3 

respectively) and band j in formulation 2 (JONSWAP and WAM 4 respectively) and are 

therefore standardised to the sum-total of each column.  
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Figure C2.29. Similarity matrices for location #5. Values indicate the % match/mismatch of 

model predictions for each stipe breakage probability band across formulations of bottom 

friction (upper) and wind-generation/whitecapping processes (lower). Percentages are 

calculated as              
  
    , where      is the number of cells with predicted 

probabilities in probability band i in formulation 1 (corresponding to Madsen and WAM 3 

respectively) and band j in formulation 2 (JONSWAP and WAM 4 respectively) and are 

therefore standardised to the sum-total of each column.  
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Figure C2.30. Similarity matrices for location #12. Values indicate the % match/mismatch of 

model predictions for each stipe breakage probability band across formulations of bottom 

friction (upper) and wind-generation/whitecapping processes (lower). Percentages are 

calculated as              
  
    , where      is the number of cells with predicted 

probabilities in probability band i in formulation 1 (corresponding to Madsen and WAM 3 

respectively) and band j in formulation 2 (JONSWAP and WAM 4 respectively) and are 

therefore standardised to the sum-total of each column.  
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Appendix 3A – Additional partial dependency 

plots from Chapter 5   

 

 

Figure A3.1. Partial dependency plots of BRT models for mobile invertebrate species where 

models achieved a D
2
<0.2. Black lines illustrate the fitted function of the marginal effect of 

each predictor on the log transformed abundance, while dotted red lines indicate a smoothed 

fit to the fitted function. Values in parentheses next to x axis labels indicate predictor relative 

importance. 
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Figure A3.2. Partial dependency plots of BRT models for mobile invertebrate species where 

models achieved a D
2
<0.2. Black lines illustrate the fitted function of the marginal effect of 

each predictor on the log transformed abundance, while dotted red lines indicate a smoothed 

fit to the fitted function. Values in parentheses next to x axis labels indicate predictor relative 

importance. 

 

 

 

 



Appendix 3 
 

 
327 

 

 

Figure A3.3. Partial dependency plots for high intertidal algal species presence/absence 

based on relationships obtained from random forests analyses for species models with κ-

values < 0.5. Plotted functions illustrate the logistic transformed probability of each species 

being present as a function of each predictor for the top four predictors ranked by predictor 

importance. Values in parentheses next to x axis labels indicate predictor importance. 
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Figure A3.4. Partial dependency plots for mid intertidal algal species presence/absence based 

on relationships obtained from random forests analyses for species models with κ-values < 

0.5. Plotted functions illustrate the logistic transformed probability of each species being 

present as a function of each predictor for the top four predictors ranked by predictor 

importance. Values in parentheses next to x axis labels indicate predictor importance. 
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Figure A3.5. Partial dependency plots for low intertidal algal species presence/absence based 

on relationships obtained from random forests analyses for species models with κ-values < 

0.5. Plotted functions illustrate the logistic transformed probability of each species being 

present as a function of each predictor for the top four predictors ranked by predictor 

importance. Values in parentheses next to x axis labels indicate predictor importance. 
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Appendix 3B – Additional data relevant to 

Mussels on the south coast   

3B.1 – Description of data 

Although the larger mussels Mytilus galloprovincialis and Perna canalicula were 

only observed singularly in south coast quadrats on a few occasions (Table B3.1) the smaller 

Limnoperna pulex was observed in 58% of high intertidal quadrats and 22% of mid intertidal 

quadrats. The majority of M. galloprovincialis and P. canalicula individuals were observed at 

Palmer Head and some individuals persisted for several seasons. 

Table B3.1. Sighting location, quadrat details and date for observations of Mytilus 

galloprovincialis and Perna canalicula. Site abbreviations are BB – Breaker Bay, PH – 

Palmer Head and IB – Island Bay. * indicates same individual observed over multiple 

seasons. 

Mytilus galloprovincialis Perna canalicula 

Site – Height - ID Survey Site – Height - ID Surveys 

BB – M – 1 11/09 PH – L – 1 07/10 

PH – H – 2 02/11*, 05/11*   

PH – H – 3 04/10*, 07/10*   

PH – H – 4 07/10   

PH – M – 1 05/11   

PH – M – 3 11/09*, 02/10*   

PH – L – 2 11/10   

 

3B.2 – Analysis of relationship between L. pulex and C. brunnea 

The relationship between L. pulex % cover and C. brunnea % cover was investigated 

as initial observations suggested their abundances were correlated. Firstly the relationship 

between the presence/absence of L. pulex and C. brunnea % cover was investigated. Fitting a 

generalised linear model to L. pulex presence absence (binomial glm with logistic link 

function) in R v12.1 (R Development Core Team 2011) revealed a significant positive 

correlation (R
2
 = 0.078, z2,45 = 2.458, p = 0.014), with L. pulex more likely to be present at 

higher % cover of C. brunnea (Figure B3.1). 
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Figure B3.1. Presence/absence of L. pulex plotted against % cover of C. brunnea, along with 

the fitted GLM. The black line is the fitted relationship whilst the dotted red lines indicate the 

upper and lower 95% confidence interval of the fitted function. 

Subsequently the relationship between L. pulex abundance and C. brunnea abundance 

was investigated. Limnoperna pulex % cover was ln(X+1) transformed to achieve normality 

and a generalised linear model (gaussian distributed errors with log link function) was fitted 

in R v12.2 (R Development Core Team 2011). A significant positive correlation (R
2
 = 0.50, 

z2,45 = 6.27, p = 1×10
-7

) was found between L. pulex abundance and C. brunnea (Figure 

B3.2). 
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Figure B3.2. Log (X+1) transformed L. pulex % cover plotted against % cover of C. 

brunnea, along with the fitted GLM. The black line is the fitted relationship whilst the dotted 

red lines indicate the upper and lower 95% confidence interval of the fitted function. 

This evidence suggests that the conditions necessary for C. brunnea are similar to 

those for L. pulex. However, whether L. pulex can survive under conditions that cause C. 

brunnea abundance to be low cannot be assessed from this information alone because it is 

possible that L. pulex choose to settle preferentially at locations with C. brunnea. Rather 

these relationships illustrate that L. pulex are capable of surviving under the same conditions 

as C. brunnea and are suggestive of increased capacity for L. pulex survival and growth under 

similar conditions that promote greater C. brunnea abundance. 

 

 

 

 

 


