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Abstract

The aim of this thesis is to apply the Grünwald–Blaschke kinematic mapping to

standard types of parallel general planar three-legged platforms in order to obtain

the univariate polynomials which provide the solution of the forward kinematic

problem. We rely on the method of Gröbner basis to reach these univariate polyno-

mials. The Gröbner basis is determined from the constraint equations of the three

legs of the platforms. The degrees of these polynomials are examined geometri-

cally based on Bezout’s Theorem. The principle conclusion is that the univariate

polynomials for the symmetric platforms under circular constraints are of degree

six, which describe the maximum number of real solutions. The univariate polyno-

mials for the symmetric platforms under linear constraints are of degree two, that

describe the maximum number of real solutions.
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Chapter 1

Introduction

Kinematic analysis of parallel robot platforms concerns both the forward kinematic

problem that determines the platform poses from the positions of the actuated joints

and the inverse kinematic problem which reverses these. The latter problem tends

to be simpler for parallel robots. Recently, the kinematic mapping has been applied

to solve the forward kinematic problem. The origin of this mapping goes back to

Study whose mapping transforms the set of Euclidean displacements of space into

points in a quadric in seven-dimensional projective space, called the Study quadric

[4].

In 1911, Grünwald–Blaschke mapping was established independently by Grünwald

and soon after by Blaschke [1]. Their writing was in German and although it

was complete, it was difficult to read [10]. The Grünwald–Blaschke mapping is

confined to kinematics in the plane where the set of Euclidean displacements maps

to points in 3-dimensional projective space. This mapping is a special case of

Study’s mapping for spatial displacements [8]. The set of Euclidean displacements

is considered as a point-geometry in the sense of Felix Klein’s Erlangen program.

His idea was: “Given any group of linear transformations in space which includes

the principal (....) group as a sub-group, then the invariant theory of this group

gives a definite kind of geometry, and every possible geometry can be obtained in

1



CHAPTER 1. INTRODUCTION 2

this way” [8]. Hence, the Euclidean displacements are acknowledged as the basis

for Euclidean geometry.

In 1979, the Grünwald–Blaschke mapping was reintroduced by Bottema and

Roth [1]. It motivated researchers to examine manipulators kinematically via such

a mapping. Ravani and Roth [15] in 1983 approximated the motion of a planar

manipulator using the kinematic mapping. Husty [18] in 1994 used this approach

of Bottema and Roth to find univariate polynomials of the forward kinematic

problem for planar and spherical manipulators. Hayes and Chen attempted to find

the solution for the forward kinematic problem for all planar manipulators in 1999

and 2001 [2, 9].

The Kinematic mapping is algebraic since it involves polynomials. Then, methods

of algebraic geometry such as Gröbner bases provide an accessible method to ex-

tract the univariate polynomials for the forward kinematic problem [14]. Moreover,

Bezout’s Theorem is an unequivocal way to enumerate the solutions of the forward

kinematic problem.

In this research, we focus on describing in detail the solution of the forward

kinematic problem for symmetric fully-parallel planar three-legged platforms. Each

of the three legs constrains the motion of the platform. This type of constrained

motion is determined by the types of joints in the legs. Since we are here interested

in a planar platform, the joints are restricted to be of revolute and prismatic types.

Then the constraint motion can be shown to be either linear or circular. The solution

of the forward kinematic problem is based on the Grünwald–Blaschke mapping.

Hence, to introduce an explanation of this mapping is one of the goals of this thesis.

Then, after we have applied the Grünwald–Blaschke mapping to a platform, the

constraints imposed by the three legs are transformed into constraint surfaces in

the image space. The set of Euclidean displacements SE(2) is the domain of this

mapping. It is a three-dimensional Lie group for which the mapping provides an

algebraic description.
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Gröbner bases are our method to solve the forward kinematic problem. The

Gröbner basis is obtained from the set of the three constraint surfaces, each defined

by an algebraic equation, namely the images of the constrained displacements via

the kinematic mapping.

The general planar parallel three-legged platforms are of 10 classes [2]. They

are divided into symmetric and asymmetric platforms. The symmetric parallel

platforms are of three classes and they are the specific objects of our work. One of

these is regarded as a circular constraint while the other two are the inversion of

each other and they are corresponded to a linear constraint. The solution for the

forward kinematic problem in this thesis is attempted for these symmetric classes.

For a platform with circular constraint, the univariate polynomial is of order six

whereas the univariate polynomial for a platform with linear constraint is of order

two. This agrees with what has been found by Merlet [13]. In terms of algebraic

geometry, we employ Bezout’s Theorem to clarify how this solution relates to the

geometry [9].

The structure of this thesis is as follows. In Chapter 2, we present the set of Eu-

clidean displacements SE(n) and in particular SE(2). We also explain the map that

describe the Euclidean displacements through two frames of coordinate systems.

Chapter 3 gives details of Grünwald–Blaschke mapping. A brief introduction to

the method of Gröbner bases is in Chapter 4. We include an algorithm for con-

structing it and also state Bezout’s Theorem. In Chapter 5 we introduce the general

planar three-legged platforms. The Grünwald–Blaschke mapping and algebraic

geometry tools are utilized to solve the forward kinematic problems, specifically

by implementing them on the symmetric parallel planar manipulators. Then, we

determine the circular constraint equation and the linear constraint equation for

such manipulators. These equations are the point equations for the constraint

surfaces in the image space. The forward kinematic problem is then solved for

the three symmetric platforms and we conclude by a discussion of the solution via

Bezout’s Theorem.



Chapter 2

The Special Euclidean Group SE(2)

This chapter represents an introduction to the group SE(n), in particular SE(2),

where SE(n) is the set of Euclidean displacements of n-dimensional Euclidean

space. The group SE(n) is a sub-group of the group of transformations whose

members are isometries. To begin with, fundamental concepts from linear algebra

are reviewed as follows:

Definition 2.0.1 Let V1 and V2 be real vector spaces. A map

T : V1 −→V2

is called a linear transformation if it satisfies the following properties:

1. ∀ u,w ∈V1, T (u+w) = T (u)+T (w).

2. ∀ u ∈V1, a ∈ R, T (au) = aT (u).

Let the set of all m×n real matrices be denoted by M(m,n). The set M(m,n) with

two operations matrix addition and scalar multiplication is a vector space. A linear

transformation can be represented by a matrix form which can be seen by the

following theorem:

4
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Theorem 2.0.2 A linear transformation T : V1 −→ V2 can be represented by a

matrix A ∈M(m,n) where dimV1 = n and dimV2 = m as

T (e j) =
m

∑
i=1

ai j fi j = 1, . . . ,n

where the sets e1, . . . ,en, and f1, . . . , fm are bases for the vector spaces V1, V2

respectively and the ai j form an m×n matrix A.

2.1 The Orthogonal Group O(n)

In this section the concept of an orthogonal transformation will be discussed and

we will show how the orthogonal group can be decomposed into two classes which

make the orthogonal group O(n) a disconnected Lie group. The Lie group was

introduced by the mathematician Sophus Lie (1842−1899) and it is defined to be

a smooth manifold G which is also a group with the group operations:

· : G×G−→ G

−1 : G−→ G

being continuous differentiable mappings. (For more information on Lie groups

see [16]). First, recall that the inner product in Rn is defined as follows:

〈xxx,yyy〉= xxxT yyy = (x1y1 + x2y2 + . . .+ xnyn).

Definition 2.1.1 The orthogonal group O(n) is defined to be the set of linear

transformations of the vector space Rn that preserve the inner product and is

written:

O(n) = {A ∈M(n,n)|∀x,y ∈ Rn,〈Ax,Ay〉= 〈x,y〉}.

Since the elements of this group are represented by n×n matrices, then, we can

use the following theorem to show that O(n) is a group. From the point of view of

the group definition, In the n×n identity matrix, and matrix multiplication is the

group operation.
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Theorem 2.1.2 A ∈ O(n) if and only if AtA = In.

Proof. ⇒ Let A ∈ O(n), then A preserves the inner product by definition. Let the

set {e1, . . . ,en} be the standard basis for the vector space V. The vector ei has 1 in

the ith entry and zero elsewhere, so we have:

〈ei,e j〉= δi j =

{
1 if i = j
0 otherwise

As A preserves the inner product, this gives:

〈Aei,Ae j〉= 〈ei,e j〉= δi j =

{
1 if i = j
0 otherwise

Now Aei clearly expresses the ith column of A which is equivalent to the ith row of

At . Hence, for all i, j = 1, . . . ,n:

〈Aei,Ae j〉= (Aei)
t(Ae j) = et

iA
tAe j = (AtA)i j = Ii j

which implies AtA = I.

⇐ If AtA = I, then for any i jth element we have (AtA)i j = Ii j. Since et
ie j = Ii j for

the standard basis e1, . . . ,en, then (Aei)
t(Ae j) = et

ie j which shows that A preserves

the inner product and hence it is an orthogonal matrix. �

To show that O(n) is in fact a group we need to check that it satisfies the group

axioms: Let A, B ∈ O(n). Since the matrix multiplication is associative, we

only need to check that A−1 and AB ∈ O(n). As A ∈ O(n) implies AtA = I, then,

At = A−1. Now,

(A−1)tA−1 = (At)tAt = (AtA)t = It = I

Thus, A−1 ∈ O(n). Next, since A,B ∈ O(n), then AtA = I and BtB = I. Now,

(AB)t(AB) = (BtAt)(AB) = Bt(AtA)B = Bt(I)B = BtB = I.

Hence, O(n) is a group. An element A of O(n) satisfies AtA = I. Applying the

determinant to this equation and using the following properties of the determinant:
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(i) det(AB) = det(A)det(B)

(ii) det(A) = det(AT )

leads to a crucial result which is det(A)2 = 1, which implies det(A) =±1.

As a consequence, the orthogonal group O(n) consists of two disconnected classes,

those matrices that have det(A) = +1 and those that have det(A) = −1. They

are rotations about the origin in n-dimensions and reflections in a hyperplane

that passes through the origin, respectively. The rotation component involves the

identity element and thus it is a subgroup of O(n), denoted SO(n), and it is of

particular interest in robotics, so it is treated specifically in the following section.

2.2 The Special Orthogonal Group SO(n)

The special orthogonal group is the following subgroup of O(n):

SO(n) = {A ∈M(n,R)|A ∈ O(n),detA = 1}.

We begin our analysis by considering the components in two dimensions as they

concern planar motions and this is what we are interested in.

When n = 2, O(2) consists of matrices of the form[
cosφ −sinφ

sinφ cosφ

]
,

[
cosφ sinφ

sinφ −cosφ

]
, where φ ∈ R

The first type of matrix constitutes the subgroup formed by the anti-clockwise

rotations by φ about the origin whereas the second type constitutes the reflections

in lines making angle φ with the x-axis. Our interest is in the first type.

To clarify how these matrices are formed we can derive them:
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Consider A ∈ O(2) such that

A =

[
a b
c d

]
.

Since A ∈ O(2), then AtA = I which implies that a2 + c2 = 1, b2 + d2 = 1, and

ab + cd = 0. This gives |a| ≤ 1 and so a = cosφ for some φ ∈ R and then,

c2 = 1− cosφ 2 = sin2
φ ⇒ c =±sinφ . By using the trigonometric identities and

if necessary replacing φ by 2π−φ we can always have c =+sinφ . This is done

without loss of generality since cos2 φ + sin2
φ = 1. Moreover, ab+cd = 0 implies

bcosφ + d sinφ = 0. Now, in the case where detA = 1 we have ad − bc = 1.

Solving the last two equations simultaneously gives: d = cosφ and b = −sinφ

while in the case detA =−1 we have ad−bc =−1 which yields d =−cosφ and

b = sinφ . Then, we can choose λ 6= 0 such that b =−λ sinφ , d = λ cosφ where

λ = 1 in the case detA = 1. This gives the matrices form as presented above.

2.3 Isometries

The word isometry comes from the Greek isometros, meaning ‘equal measure’.

Definition 2.3.1 An isometry(or rigid transformation) T :Rn−→Rn of n-dimensional

space Rn is a transformation that preserves the Euclidean metric (distance). That

is, for all u, v ∈ Rn,

||T (u)−T (v)||= ||u− v||.

Isometries can be obtained in several ways:

(i) Translation by adding a constant vector say d to the corresponding vectors:

Td : u−→ u+d

(ii) Rotation by multiplying the vectors by an orthogonal matrix A:

RA : u−→ Au, detA = 1
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(iii) Reflection by multiplying the vectors by orthogonal matrix A that has its

form:

FA : u−→ Au, detA =−1

These are examples of isometries on the plane and in fact in any dimension.

Furthermore, the composition of two isometries is also an isometry. This follows

from the definition, that is if T and H are isometries, then

||(T ◦H)(u)− ((T ◦H)(v)||
= ||T (H(u))−T (H(v))||
= ||H(u)−H(v)|| as T is an isometry

= ||u− v|| as H is an isometry.

(2.1)

In order to perform a combination of a translation and a rotation suppose u is any

vector in the plane. Then, multiply it by an orthogonal matrix A, say. We get

u′ = Au

Next, we add a constant vector d ∈ Rn to the resulting vector . We have

u′′ = u′+d = Au+d

This equation shows the transformations that can be written as pairs (A,d). The

following proposition will show these pairs are the only isometries.

Proposition 2.3.2 Any isometry T of Rn is the composition of a translation with

an orthogonal transformation [5].

Proof. Let T denote an isometry in Rn. We assume T (0) = u. By looking at the

composition of T−u with T , this composition will leave 0 fixed. Let H denote this

composition and we claim any isometry H that leaves 0 fixed is orthogonal. To

prove this we need to show H respects the following:
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(i) norms: since H is an isometry, then,

||u||= ||u−0||= ||H(u)−H(0)||
= ||H(u)|| for some u ∈ Rn.

(ii) inner product: for any u, v ∈ Rn

||H(u)−H(v)||2 = ||u− v||2 as H is an isometry

LHS = 〈H(u)−H(v),H(u)−H(v)〉 by definition of norm

= 〈H(u),H(v)〉−2〈H(u),H(v)〉+ 〈H(v),H(v)〉

(as inner product is bilinear and symmetric)

= ||H(u)||2−2〈H(u),H(v)〉+ ||H(v)||2

= ||u||2−2〈H(u),H(v)〉+ ||v||2

Similarly,

RHS = ||u||2−2〈u,v〉+ ||v||2

Hence,

〈H(u),H(v)〉= 〈u,v〉.

(iii) H is linear: To prove this, the two conditions for linearity H(λu) = λH(u)

and H(u+ v) = H(u)+H(v) must hold where u, v ∈ Rn and λ ∈ R. To

verify this:

||H(λu)−λH(u)||2 = 〈H(λu)−λH(u),H(λu)−λH(u)〉
= 〈H(λu),H(λu)〉−2〈H(λu),λH(u)〉+ 〈λH(u),λH(u)〉
= ||H(λu)||2−2〈H(λu),λH(u)〉+ ||λH(u)||2

= ||H(λu)||2−2λ 〈H(λu),H(u)〉+λ
2||H(u)||2

= ||λu||2−2λ 〈λu,u〉+λ
2||u||2 by (ii)

= λ
2||u||2−2λ

2〈u,u〉+λ
2||u||2 = 0
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This is done by using the bilinearity of inner product. Therefore, H(λu) =

λH(u). To verify the other condition of linearity:

||H(u+ v)−H(u)−H(v)||2

= 〈H(u+ v)−H(u)−H(v),H(u+ v)−H(u)−H(v)〉
= 〈H(u+ v),H(u+ v)〉−〈H(u+ v),H(u)〉−〈H(u+ v),H(v)〉
−〈H(u),H(u+ v)〉+ 〈H(u),H(v)〉+ 〈H(u),H(v)〉
−〈H(v),H(u+ v)〉+ 〈H(u),H(v)〉+ 〈H(v),H(v)〉

As H is an isometry, by (ii) that this equals:

||u+ v||2−2〈u+ v,u〉−2〈u+ v,v〉+ ||u||2 +2〈u,v〉+ ||v||2

= ||u+ v||2−2(〈v,u〉+ 〈v,u〉)−2(〈u,v〉+ 〈v,v〉)
+ ||a||2 +2〈u,v〉+ ||v||2

= ||u+ v||2−2||a||2−2〈v,u〉−2〈v,u〉−2||v||2

+ ||u||2 +2〈u,v〉+ ||v||2

= ||u+ v||2−||u||2−||v||2−2〈v,u〉
= ||u+ v||2− (||u||2 + ||v||2 +2〈v,u〉)
= ||u+ v||2−||u+ v||2 since ||u+ v||2 = ||u||2 + ||v||2 +2〈v,u〉
= 0

thus, H(u+ v) = H(u)+H(v).

The two conditions of linearity are satisfied because u = 0⇔ ||u||= 0 Hence, this

completes the proof that H is orthogonal. �

2.4 The Euclidean Group E(n)

The Euclidean group E(n) is defined to be the group of all isometries of the

Euclidean space Rn. This includes translations, rotations and reflections. An
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isometry T is a bijective map. That is, it is injective since if u,v ∈ Rn and assume

T (u) = T (v), then

T (u)−T (v) = 0⇒ ||T (u)−T (v)||
= ||0||= 0

⇒ ||u− v||= 0 as T is an isometry

⇒ u− v = 0

⇒ u = v

and it is surjective (a proof of this can be found using proposition 2.3.2, for

example). This asserts an inverse T−1 of an isometry T exists. It is also an

isometry. For given u,v ∈ Rn, as T is surjective, then there exist w,q such that

T (w) = u and T (q) = v. Then,

||T−1(u)−T−1(v)||= ||T−1(T (w))−T−1(T (q))||
= ||w−q||= ||T (w)−T (q)|| as T is an isometry

= ||u− v||.

This shows the closure in E(n) under inverse is satisfied. In addition, since the

translation by the vector 0 in E(n) leaves each element in its place, then, E(n) has

an identity element denoted by T0 where the composition of any isometry T with

T0 gives the isometry T again. That is:

T ◦T0 = T0 ◦T = T.

Furthermore, we have just stated above by Eq(2.1) that E(n) is closed under

composition and the composition operation always satisfies the associativity. All

these properties proves E(n) is a group. To understand the structure of this group,

we recall the following definition:

Definition 2.4.1 Given two groups G and K, their direct product is defined to

be the Cartesian product set G × K of pairs (g,k) with group operation for all

(gi,ki) ∈ G×K, i = 1,2,

(g1,k1) · (g2,k2) = (g1k1,g2k2).
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If G is a group and V a vector space on which G acts, then the semi-direct product

GnV is the group combining the operation on G, addition on V and the group

action, as follows. For all (gi,vi) ∈ GnV , i = 1,2

(g1,v1) · (g2,v2) = (g1g2,g1v2 + v1).

The Euclidean group is a semi-direct product with G = O(n) and V = Rn. To

verify the operation of the Euclidean group E(n): If we look at the sequence of

two successive transformations of E(n) on a single vector u ∈ Rn:

(A1,d1)(u) = A1u+d1 and then

(A2,d2)(A1u+d1)

= A2A1u+A2d1 +d2

Hence, the product of two of these transformations is:

(A2,d2)(A1,d1) = (A2A1,A2d1 +d2)

where A1,A2 ∈ O(n), d1,d2 ∈ Rn. Group elements of the form (In,d) are transla-

tions in Rn. In other words, each vector in the plane or space is translated by the

vector d. Elements of the form (A,0) are rotations about the origin or reflections in

a hyperplane through the origin. In fact every element except the translation is a

rotation about some point. This group of isometries can be represented in a block

matrix form as follows:

E(n) = {
[

A d
0 1

]
∈ GL(n+1,R)|d ∈ Rn,A ∈ O(n)}

where GL(n+ 1,R) is the general linear lie group of degree n over R and its

elements are matrices with non zero determinant and O(n) is the group of or-

thogonal matrices. This operation can be expressed by (n+ 1)× (n+ 1) matrix

multiplication as: [
A2 d2
0 1

][
A1 d1
0 1

]
=

[
A2A1 A2d1 +d2

0 1

]
.
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This is called the homogenous represenation of E(n).

We already know that the group O(n) has two disjoint classes. Orthogonal matrices

with determinant 1 correspond to rotations about the origin in Rn. They form the

group SO(n). Orthogonal matrices with determinant −1 correspond to reflections.

In robotics, there is no interest in the transformations that reverse the orientation

of a basis of vectors, so our concerns are confined to the subgroup of proper

rigid body transformations, namely, the special Euclidean group of isometries

SE(n) = SO(n)nRn [16] which is in set form written:

SE(n) = {(A,d) : A ∈ SO(n),d ∈ Rn}.

In particular we are interested in the case n = 2 since our application is to pla-

nar robots. The elements of the group SE(2) consist of a 2× 2 rotation matrix

represented by an angle φ , and a translation vector in the plane R2. Therefore,

SE(2) is a 3-dimensional Lie group. In other words, SE(2) is represented by a

3-dimensional space. Moreover, SE(2) is called the group of proper rigid body

motions in the plane which can be generated by a mechanism with three degrees of

freedom, where the degree of freedom of a manipulator is defined as the number of

its independent movements and it is shortened to DOF.

In the homogenous representation, the elements of SE(2) geometrically act on the

plane z = 1 in R3. They have the matrix form

H =

cosφ −sinφ a
sinφ cosφ b

0 0 1

 , where A=

[
cosφ −sinφ

sinφ cosφ

]
∈ SO(2),d =

[
a
b

]
∈R2.

which can be expressed in terms of linear matrix representation:

H ·

x
y
1

=

A
[

x
y

]
+d

1

 .
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Figure 2.1: The fixed frame Σ and the moving frame E

2.5 Euclidean Group as Rigid Body Transformations

Consider a rigid body in Rn(n = 2 or 3). Then, there are two frames of coordinate

systems to acknowledge for a moving rigid body: moving coordinate frame and

fixed, or base, coordinate frame. In kinematics, the moving frame is the space

attached to the body itself and a fixed coordinate system is the physical space of

a mechanism itself namely, the space where it is located [10]. If E denotes the

moving coordinate system and Σ denotes the fixed coordinate system, then they

are linked by the map

γ : X −→ Ax+d

where γ : Rn −→ Rn; see Fig. 2.1. This is the Euclidean displacement mapping

that describes a displacement of the moving coordinate system E relative to the

fixed system Σ, and it is standard for representing a n-dimensional displacement

where A is a proper orthogonal rotation matrix, d is a translation vector and X ,

x are coordinates for a point in Σ and E respectively. The coordinate X is thus

a coordinate of x by such a transformation. Therefore, an element of E(n) is

described by such a map since E(n) is the set of Euclidean displacements.



Chapter 3

Planar Kinematic Mapping

Essentially, kinematics is the study of Euclidean displacement or any motion of

a body in a space. In this chapter the idea of mapping the set of proper planar

isometries onto the points of 3-dimensional projective space P3(R) is presented.

This was derived independently in 1911 by Grünwald and soon after by Blaschke

[1]. Hence, in order to introduce the Grünwald–Blaschke mapping, we recall the

motion for a rigid body in a plane as mentioned in chapter 2. Three independent

parameters are demanded to describe this motion since its displacements can occur

by translating the rigid body in two directions x-axis and y-axis or by rotating it in

one direction about a point in the plane. Thus, the number of degrees of freedom

DOF for a rigid body in a plane is three. As a preliminary we start with some

of the fundamental concepts of the 3-dimensional projective space P3(R) and its

homogenous coordinates. We follow the description of projective space in Cox et

al [3], Galarza et al [5] and Chen [2].

3.1 Homogenous Coordinates

This section will introduce the notion of projective space and its homogenous

coordinates that are useful for the kinematic mapping. The intersection of two lines

16
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in the plane R2 occurs in one point but this does not include parallel lines which

do not meet in R2. In the projective plane these parallel lines will meet at points at

infinity which are determined by the direction of these lines. This gives a guide to

defining the projective space Pn(R) as follows.

In Rn+1, the relation ∼ on two nonzero points (x1,x2,x3, . . . ,xn,xn+1),

(y1,y2,y3, . . . ,yn,yn+1) is defined by:

(x1,x2,x3, . . . ,xn,xn+1)∼ (y1,y2,y3, . . . ,yn,yn+1) if and only if

(x1,x2,x3, . . . ,xn,xn+1) = λ (y1,y2,y3, . . . ,yn,yn+1)

where λ is a nonzero real number. It is easy to show that the relation ∼ is reflexive,

symmetric and transitive. Therefore, ∼ is an equivalence relation on Rn+1−{0}
and we say the two nonzero points (x1,x2,x3, . . . ,xn,xn+1), (y1,y2,y3, . . . ,yn,yn+1)

are equivalent. The equivalence class of (x1,x2,x3, . . . ,xn,xn+1) is therefore the set

[(x1,x2,x3, . . . ,xn,xn+1)] = {λ (x1,x2,x3, . . . ,xn,xn+1)|λ ∈ R,λ 6= 0}.

Definition 3.1.1 The n-dimensional projective space over the field R, denoted

Pn(R), is the set of equivalence classes of ∼ on Rn+1−{0} and we write:

Pn(R) = (Rn+1−{0})/∼

The coordinates (x1,x2,x3, . . . ,xn+1) ∈ Rn+1 of a point p ∈ Pn(R) are its homoge-

nous coordinates and are written as ratios (x1 : x2 : x3 : . . . : xn+1) to distinguish

them from the coordinates of a point in Rn+1. The homogenous coordinates of

a point in Pn(R) are thus not unique, since any non-zero multiple represents the

same point p.

Geometrically, the points of Pn(R) correspond to lines through the origin in Rn+1

(excluding 0). To help our thinking of this notion let us for instance consider

P2(R). Every point in the plane x3 = 1 will meet a unique line through the origin
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in R3. Thus, these lines represent a point in P2(R) with homogenous coordinates

(x : y : 1).

There is a relationship between the cartesian coordinates (x,y) in this plane and its

homogenous coordinates (x1 : x2 : x3), given by:

x =
x1

x3
,y =

x2

x3
.

In the case x3 = 0, the point (x1 : x2 : 0) corresponds to a point at infinity. Such

points form a projective line by treating (x1 : x2) as homogenous coordinates for

P1(R). In 3-dimensional projective space, a similar correspondence applies with a

relationship between cartesian coordinates (x,y,z) and homogenous coordinates

(x1 : x2 : x3 : x4) given by:

x =
x1

x4
,y =

x2

x4
,z =

x3

x4

where the case x4 = 0 represents a point on a plane at infinity.

3.1.1 Duality

One of the fundamental principles in mathematics is duality. It plays a role in many

areas, such as geometry. Fundamentally, the equation of a line in R2 is:

L1x+L2y+L3 = 0, L1 or L2 6= 0

where (x,y) are the cartesian coordinates for any point on this line and L1,L2 and

L3 are arbitrary constants that determine the slope and the intersections with the

coordinate axes. Rewriting this equation in terms of the homogenous coordinates

(x1 : x2 : x3) of (x,y) we have:

x1

x3
L1 +

x2

x3
L2 +L3 = 0 ⇔

x1L1 + x2L2 + x3L3 = 0 (3.1)
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Eq.(3.1) is the homogenous line equation defining a line in P2(R). Treating the

parameters (L1,L2,L3) and the homogenous coordinates as vectors in R3, the dot

product of (L1,L2,L3) and any point on the line vanishes:

(L1,L2,L3) · (x1,x2,x3) = 0. (3.2)

Clearly, this line can be specified by any non-zero multiple of (L1,L2,L3). Then,

(L1 : L2 : L3) can be regarded as homogenous coordinates for the projective line,

corresponding geometrically to a plane through the origin in R3. Then, any point

(x1 : x2 : x3) that fulfills Eq. (3.2) is incident with the line (L1 : L2 : L3) and any line

(L1 : L2 : L3) that fulfills Eq. (3.2) is incident with the point (x1 : x2 : x3). Hence,

points and lines are dual objects in P2(R). Similarly, an equation for a plane in

3-dimensional space R3 is given by

L1x+L2y+L3z+L4 = 0

where (x,y,z) are the cartesian coordinates for a point in R3 on this line. The

corresponding projective equation is given by:

L1x1 +L2x2 +L3x3 +L4x4 = 0

where (x1 : x2 : x3 : x4) are homogenous coordinate of a point in P3(R). Using the

dot product in R4 the projective line equation is written:

(L1,L2,L3,L4) · (x1,x2,x3,x4) = 0 (3.3)

and the equivalence class of (L1,L2,L3,L4) now determines a plane, hence they

provide homogenous coordinates of this plane. Then, any point that satisfies Eq.

(3.3) is incident with the plane (L1 : L2 : L3 : L4) and any plane (L1 : L2 : L3 : L4)

that satisfies Eq. (3.3) is incident with the point (x1 : x2 : x3 : x4). Therefore, points

and planes are dual objects in projective 3-space [5].

In addition, another well known way that Eq.(3.1) can be rewritten is by using

the determinant. Then, assume (y1 : y2 : y3) and (z1 : z2 : z3) are the homogenous
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coordinates of two points on a line. The line equation is then given by:

det

x1 x2 x3
y1 y2 y3
z1 z2 z3

= 0 (3.4)

where (x1 : x2 : x3) is any point on the line. Using the Grassmann expansion [12]

we have:

det
[

y2 y3
z2 z3

]
x1 +det

[
y3 y1
z3 z1

]
x2 +det

[
y1 y2
z1 z2

]
x3 = 0. (3.5)

The line coordinates are therefore given by:

(L1 : L2 : L3) =

(
det
[

y2 y3
z2 z3

]
: det

[
y3 y1
z3 z1

]
: det

[
y1 y2
z1 z2

])
. (3.6)

Similarly, since points and lines in the plane are dual elements, then two distinct

lines determine exactly one point. If (B1 : B2 : B3) and (C1 : C2 : C3) are distinct

lines in P2(R), then we have:

det

L1 L2 L3
B1 B2 B3
C1 C2 C3

= 0 (3.7)

where (L1 : L2 : L3) is any line through the intersection point. Using Grassmann

expansion we get:

det
[

B2 B3
C2 C3

]
L1 +det

[
B1 B3
C1 C3

]
L2 +det

[
B1 B2
C1 C2

]
L3 = 0. (3.8)

Hence, the point coordinates are given by:

(x1 : x2 : x3) =

(
det
[

B2 B3
C2 C3

]
: det

[
B1 B3
C1 C3

]
: det

[
B1 B2
C1 C2

])
. (3.9)

3.2 The Grünwald–Blaschke Mapping

The Grünwald–Blaschke Mapping is a planar kinematic mapping and can be

considered as a special case of Study’s Mapping which maps the set SE(3) into
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P7(R) [11]. The Grünwald–Blaschke Mapping maps the set SE(2) onto points in

a 3-dimensional projective image space P3(R). The general planar displacement

for a moving frame E with respect to a fixed frame Σ, as shown in Chapter 2, is

given by:

X = Ax+d

where in R3,

A =

[
cosφ −sinφ

sinφ cosφ

]
∈ SO(2), d =

[
a
b

]
∈ R2.

The rotation matrix A can be rewritten in another nice form by using Cayley’s

formula as follows [1]:

A = (I−B)−1(I +B)

where B is any skew matrix. To demonstrate that such an A is orthogonal, we have:

(I−B)A = (I +B).

Note that (I +B)(I−B) = (I−B)(I +B) = I−B2, so that the matrices commute.

By taking the transpose of both sides of (I−B)A = (I +B):

AT (I−B)T = (I +B)T

⇔ AT (IT −BT ) = IT +BT by properties of transpose

⇔ AT (I +B) = I−B since BT =−B

⇔ AT = (I−B)(I +B)−1 assuming I +B is invertible i.e. det(I +B) 6= 0.

Now we have,

AAT = (I−B)−1(I +B)(I−B)(I +B)−1

= (I−B)−1(I−B)(I +B)(I +B)−1

= I.
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Then, the orthogonality condition AAT = I is fulfilled and A ∈ O(n) by Theorem

2.1.2. Now we show A ∈ SO(n) by checking its determinant as follows:

A = (I−B)−1(I +B)

⇒ detA = det(I−B)−1 det(I +B)

Now, det(I +B) = det(I−BT ) = det(I−B)T = det(I−B) then,

detA =
det(I +B)
det(I−B)

=
det(I−B)
det(I−B)

= 1

thus, A ∈ SO(n). In particular when n = 2, A ∈ SO(2). The skew matrix B is

expressed as

B =

[
0 −α

α 0

]
.

If we let α = tan φ

2 , −π < φ < π , then an orthogonal matrix A can be written

explicitly in terms of the tangent of half the rotation angle:

A = (I−B)−1(I +B)

=

([
1 0
0 1

]
−
[

0 −α

α 0

])−1[1 −α

α 1

]
=

[
1 α

−α 1

]−1[1 −α

α 1

]
=

1
1+α2

[
1 −α

α 1

][
1 −α

α 1

]
=

1
1+α2

[
1−α2 −2α

2α 1−α2

]
= ∆

−1
[

1−α2 −2α

2α 1−α2

]
where ∆ = 1+α2 = 1+ tan2 φ

2 and it tells us how the parameter α interpreted

geometrically [1]. We exclude φ = π for the time being to avoid points at infinity.

Now if we let α =
u
v

with v 6= 0 (as we so far exclude φ = π), then

A =
1

1+ u2

v2

[
1− u2

v2 −2u
v

2u
v 1− u2

v2

]



CHAPTER 3. PLANAR KINEMATIC MAPPING 23

=
1

v2+u2

v2

[
v2−u2

v2
−2u

v
2u
v

v2−u2

v2

]
=

1
v2 +u2

[
v2−u2 −2uv

2uv v2−u2

]
= N−1

[
v2−u2 −2uv

2uv v2−u2

]
where N = v2+u2 [15]. Therefore, a planar Euclidean isometry in terms of the three

characteristic parameters (a,b,φ) can be converted to homogenous coordinates,

and the exclusion case disappears. The linear homogenous transformation is then:X
Y
Z

=

v2−u2

N
−2uv

N a
2uv
N

v2−u2

N b
0 0 1


x

y
z


Multiplying by N we getX

Y
Z

=

v2−u2 −2uv a(v2 +u2)
2uv v2−u2 b(v2 +u2)
0 0 v2 +u2

x
y
z

 , (3.10)

since, for a homogenous coordinates (NX : NY : NZ) = (X : Y : Z). The matrix

form of the transformationv2−u2 −2uv a(v2 +u2)
2uv v2−u2 b(v2 +u2)
0 0 v2 +u2


indeed represents an element of SE(2) and the ratios (x : y : z) represent the

homogeneous coordinates of a point in E and (X : Y : Z) are those of the same

point in Σ. Then the moving coordinate frame E transforms from its zero position

by three parameters (a,b,φ) in Σ where the point (a,b) is the origin of E that is

measured in Σ. The rotation angle between the frames is φ (0≤ φ ≤ 2π) which

is measured from the X-axis to the x-axis, and a rotation occurs around a fixed

point in a plane. Then, a position of E relative to Σ is determined by the three

parameters. This tells E is a three-dimensional space. This gives rise to the

existence of the Grünwald–Blaschke mapping for which P3(R) is its image space,

with homogenous coordinates (X1 : X2 : X3 : X4). Note that since α = tan φ

2 =
sin φ

2

cos φ

2

,

we may write u = sin φ

2 , v = cos φ

2 above.
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Definition 3.2.1 The Grünwald–Blaschke mapping SE(2) −→ P3(R) is given

by (
X1 : X2 : X3 : X4

)
=
(
(au−bv) : (av+bu) : 2u : 2v

)
, (3.11)

further, writing u = sin φ

2 , v = cos φ

2 ,(
X1 : X2 : X3 : X4

)
=

(
1
2
(asin

φ

2
−bcos

φ

2
) :

1
2
(acos

φ

2
+bsin

φ

2
) : sin

φ

2
: cos

φ

2

)
.

(3.12)

Consequently, the inverse of the Grünwald–Blaschke Mapping provides an alge-

braic description of the planar motion group SE(2). Rewriting Eq.(3.10) in terms

of the image space coordinates (Xi), i = 1, . . . ,4 [7]:

From Grünwald–Blaschke Mapping Eq.(3.11):

X1 = au−bv

X2 = av+bu

X3 = 2u

X4 = 2v,

then, solving these equations simultaneously we obtain the inverse:

b =
2(X3X2−X1X4)

X2
4 +X2

3

a =
2(X3X1 +X4X2)

X2
3 +X2

4

tan
φ

2
=

X3

X4
.

(3.13)

Substituting these values in Eq.(3.13) into Eq.(3.10) and then multiplying it by 4,

since the transformation is homogenous, we obtain:X
Y
Z

=

X2
4 −X2

3 −2X3X4 2(X1X3 +X2X4)
2X3X4 X2

4 −X2
3 2(X2X3−X1X4)

0 0 X2
3 +X2

4

x
y
z

 . (3.14)
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The Grünwald–Blaschke Mapping is an injective map but not surjective, because a

point in the image space with the coordinate (X1,X2,0,0) does not have a pre-image

identified by the displacement parameters (a,b,φ). This is because the parameters

a, b will tend to infinity if X3 = X4 = 0 and leave φ undefined, hence producing a

non real displacement of E which does not concern us here. Therefore, a condition

must be satisfied on the image space coordinates, namely X3 and X4 are not both

zero in order to obtain images of real displacements.

3.2.1 The inverse of the homogenous displacement

The matrix associated with the homogenous transformation represents an element

of SE(2) as mentioned which leads to the existence of its inverse since SE(2) is a

group. Hence, the homogenous transformation may be rewrittenx
y
z

=

X2
4 −X2

3 2X3X4 2(X1X3−X2X4)
−2X3X4 X2

4 −X2
3 2(X2X3 +X1X4)

0 0 X2
3 +X2

4

X
Y
Z

 . (3.15)

Then, from Eq.(3.14) the coordinates of a point (x : y : z) in the moving frame has

coordinates (X : Y : Z) in the fixed frame:

X = (X2
4 −X2

3 )x− (2X3X4)y+2(X1X3 +X2X4)z,

Y = (2X3X4)x+(X2
4 −X2

3 )y+2(X2X3−X1X4)z,

Z = (X2
3 +X2

4 )z

(3.16)

whereas the coordinates of a point (X : Y : Z) in the moving frame from Eq.(3.15)

has coordinates (x : y : z) in the fixed frame which are given by:

x = (X2
4 −X2

3 )X +(2X3X4)Y +2(X1X3−X2X4)Z,

y =−(2X3X4)X +(X2
4 −X2

3 )Y +2(X2X3 +X1X4)Z,

z = (X2
3 +X2

4 )Z

(3.17)

Eq.(3.16) and Eq.(3.17) are algebraic inverse and they are required for the kinematic

inversion that is introduced in Chapter 5 [8].



Chapter 4

Gröbner Bases

The purpose of this chapter is to introduce an algebraic tool of Gröbner bases and

an important result, Bezout’s Theorem. These are valuable in many problems in

algebraic geometry and non linear computational geometry, in particular for our

main problem. Polynomials provide a relation between algebra and geometry. The

set of polynomials in n variables with coefficients in a field k is denoted k[x1, . . . ,xn].

It is a ring under polynomial addition and multiplication but it fails to be a field

because in general a polynomial has no multiplicative inverse in k[x1, . . . ,xn].

Polynomials give rise on the one hand to geometric structure called affine varieties,

and on the other hand algebraic structure called ideals. A brief discussion will cover

both of these structures. This will lead us to our useful tool Gröbner bases which are

produced by an algorithm that transforms a given polynomial set in a problem into

Gröbner basis form. Ordering the terms in a polynomial in a standard way is the key

to obtain the Gröbner basis form. These terms are called monomials which have the

form xα = xα1
1 · x

α2
2 . . .xαn

n where α = (α1, . . . ,αn) ∈ Zn
≥0 and Z≥0 = {0,1,2, . . .}

the set of natural numbers. The total degree of this monomial is |α| = ∑
n
i=1 αi.

Then, a polynomial f (x1, . . . ,xn) with coefficients in k is a finite linear combination

of monomials and it is written:

f = ∑
α∈Zn

≥0

cαxα , cα ∈ k.

26
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4.1 Affine Varieties and Ideals

We follow [3] to define an affine variety V and an ideal I:

Definition 4.1.1 Let k be a field and f1, . . . , fs be polynomials in k[x1, . . . ,xn]. Then,

an affine variety V defined by f1, . . . , fs is

V ( f1, . . . , fs) = {(a1, . . . ,an) ∈ kn : fi(a1, . . . ,an) = 0 ∀ 1≤ i≤ s}

where kn = {(a1, . . . ,an) : a1, . . . ,an ∈ k} is the n-dimensional affine space.

Definition 4.1.2 An ideal I ⊂ k[x1, . . . ,xn] satisfies the following:

(1) 0 ∈ I

(2) If f ,g ∈ I, then f +g ∈ I

(3) If f ∈ I and h ∈ k[x1, . . . ,xn], then h f ∈ I.

We denote the ideal generated by polynomials f1, . . . , fs ∈ k[x1, . . . ,xn] by 〈 f1, . . . , fs〉
and it is defined:

Definition 4.1.3 The ideal generated by f1, . . . , fs ∈ k[x1, . . . ,xn] is the set of all

elements of the form

〈 f1, . . . , fs〉=
{

s

∑
i=1

hi fi : h1, . . . ,hs ∈ k[x1, . . . ,xn]

}
.

In the case I = 〈 f1, . . . , fs〉 we say I is finitely generated and { fi, i = 1, . . . ,s} is a

basis for I. There are may be many different bases for an ideal I. This leads us to

the Hilbert Basis Theorem and a Gröbner basis that will be presented later in this

chapter. Before introducing them we need to first define monomial ordering.
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4.2 Monomial Ordering

The only way that monomials in a single variable can be sensibly ordered is by

their degrees. In the multivariable case, the situation is more complicated and the

definition of monomial ordering gives the acceptable features to consider to order

these monomials.

Definition 4.2.1 A relation > on the set of monomials {xα : α ∈ Zn
≥0}, or equiva-

lently on Zn itself is called a monomial ordering on k[x1, . . . ,xn] if it obeys:

(1) > is a total ordering.

(2) For any γ ∈ Zn, if xα > xβ , then xαxγ > xβ xγ .

(3) > is well ordering. This means that there is a least element under > for

every non-empty set of monomials in k[x1, . . . ,xn].

Some examples of monomial orderings with the necessary properties are:

(1) Lexicographic Order: Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn) ∈ Zn. If

the left-most non-zero component in the vector difference α−β is αi−βi

for some i ∈ {1, . . . ,n}, then,

α >lex β or (xα >lex xβ ) if and only if αi−βi > 0

for instance, under the assumption of x1 > x2 > x3 in k[x1,x2,x3]: x5
1x2x4

3 >lex

x2
1x8

2 >lex x1x4
2 >lex x1x2x3

3.

(2) Graded Lexicographic Order: This takes account of the total degree of

the monomials. Let α,β ∈ Zn. If either

|α|> |β | or |α|= |β | and α >lex β
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then, we say

xα >glex xβ

for instance, in k[x1,x2,x3]: x5
1x2x6

3 >grlex x3
1x6

2 >grlex x2
1x4

2 >grlex x2
1x2x3

3.

(3) Graded Reverse Lexicographic Order Let α,β ∈ Zn. Take the right-most

non-zero component in the vector difference α −β say αi−βi where i ∈
{1, . . . ,n}. Then, α >grevlex β or xα >grevlex xβ if either

|α|> |β | or |α|= |β | and

αi−βi < 0. For instance, x2
1x8

2 >grevlex x5
1x2x4

3 >grevlex x1x4
2 >grevlex x1x2x3

3.

This is again under the assumption x1 > x2 > x3 in k[x1,x2,x3].

The following proof shows that the grevlex order is a monomial order according to

Definition 4.2.1:

(1) Graded Reverse Lexicographic Order >grevlex is a total ordering follows

directly from the definition and the fact that the usual numerical order on

Z≥0 is a total ordering, since if α 6= β , then either |α| > |β | or |α| < |β |,
or if |α| = |β |, then for some i, αi 6= βi and for the greatest such i, either

αi > βi or αi < βi.

(2) If α >grevlex β , then |α|> |β | or |α|= |β | and the right-most nonzero entry

in α−β , say αk−βk, is negative. But xαxγ = xα+γ and xβ xγ = xβ+γ , then

we need to show |α + γ| > |β + γ| or |α + γ| = |β + γ| and the right-most

nonzero entry in (α + γ)− (β + γ) is negative. Since |α + γ| = |α|+ |γ|
that is shown by the proof: If α = (α1, . . . ,αn) ∈ Zn, γ = (γ1, . . . ,γn) ∈ Zn,

then |α| = ∑
n
i=1 αi, |γ| = ∑

n
i=1 γi. This implies |α + γ| = ∑

n
i=1(αi + γi) =

∑
n
i αi +∑

n
i γi = |α|+ |γ|, then |α + γ| = |α|+ |γ|. When |α| > |β |, then,

|α + γ| > |β + γ| or when |α| = |β | and the right-most non zero entry in

α−β is negative, then, |α + γ|= |β + γ|, and in (α + γ)− (β + γ) = α−β ,

the right-most nonzero entry is again αk−βk < 0.
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(3) Suppose that >grevlex were not a well-ordering, then there would be an

infinite strictly decending sequence of elements of Zn
≥0

α(1)>grevlex α(2)>grevlex α(3)>grevlex . . . ,

we will show that this leads to a contradiction. Consider the last entries of

the vectors α(i) ∈ Zn
≥0. By definition of grevlex order, these last entries

form a non increasing sequence of negative integers. Since Z is well ordered,

the last entries of the α(i) must stabilize eventually. That is, there exists a k

such that all the last components of the α(i) with i≥ k are equal. Beginning

at α(k), the the last subsequent entries come into play in determining the

grevlex order. The subsequent of the last entries of α(k),α(k+1), . . . form

a non increasing sequence. By the same reasoning, these subsequent entries

stabilize eventually. Counting in the same way, we see that for some l, the

α(l),α(l+1), . . . all are equal. This contradicts the fact that α(l)> α(l+1).

These monomial orders are available to use in most computer algebra systems

such as Maple. Once such an order is decided, we apply it to the terms of a given

polynomial f = ∑α cαxα . Then, the multideg of f with respect to the chosen order

is the max(α ∈ Zn
≥0 : cα 6= 0) which is denoted multideg( f ). The leading term

is denoted LT ( f ) and it includes the multideg( f ) together with the coefficient.

The leading term without the coefficient is called the leading monomial, denoted

LM( f ). Clearly, the LT ( f ) for a particular monomial order is unique.

The ideal of leading terms 〈LT (I)〉 for a given ideal I ⊂ k[k1, . . . ,kn] is the ideal

generated by the set LT (I) = {LT ( f ) : f ∈ I}, namely its set of leading terms.

When an ideal I is finitely generated, that is I = 〈 f1, . . . , fs〉, this does not always

give 〈LT (I)〉 = 〈LT ( f1), . . . ,LT ( fs)〉, for example: if I = 〈 f1, f2〉, where f1 =

x3−2xy and f2 = x2y−2y2+x, and use the grlex ordering on monomials in k[x,y].

Then,

x · (x2y−2y2 + x)− y · (x3−2xy) = x2
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which means that x2 ∈ I. Thus, LT (x2) = x2 ∈ 〈LT (I)〉. But x2 is not divisible by

LT ( f1) = x3 or LT ( f2) = x2y, then x2 /∈ 〈LT ( f1),LT ( f2)〉, which shows

〈LT (I)〉 6⊂ 〈LT ( f1), . . . ,LT ( fs)〉,

although it may occur and the basis of I then becomes a standard basis with special

properties. Such bases are called Gröbner bases and they are introduced in the

following section.

4.3 Gröbner bases and their Properties

Definition 4.3.1 [3] With chosen monomial order, a Gröbner basis for an ideal

I ⊂ k[x1, . . . ,kn] is a finite subset G = {g1, . . . ,gs} ⊂ I such that

〈LT (g1), . . . ,LT (gs)〉= 〈LT (I)〉.

Equivalently, the leading terms of any element of I is divisible by one of the

LT (gi). Gröbner bases have nice properties, one of which is a solution for the

ideal membership problem which examines the membership of a polynomial f in a

given ideal I. An algorithm for solving this is obtained by calculating a remainder

modulo G by the multivariate division algorithm. This remainder is denoted f G

and it is unique when G is a Gröbner basis. Sometimes f G is called a normal form

for f with respect to G. If f G
= 0 the solution for the ideal membership is solved

positively. One additional property is that a Gröbner basis is also a basis.

Theorem 4.3.2 (Hilbert Basis Theorem) Every ideal I ⊂ k[x1, . . . ,xn] has a finite

generating set. That is I = 〈g1, . . . ,gs〉 for some g1, . . . ,gs ∈ I.

The proof of this theorem [3] shows that the basis {g1, . . . ,gs} for I has the special

property 〈LT (I)〉 = 〈LT (g1), . . . ,LT (gs)〉 and hence every ideal has a Gröbner

basis.
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The technique we use Gröbner bases for is algebraic variable elimination [14].

A monomial order on k[x1, . . . ,xn] is called an elimination order if for each

i = 1, . . . ,n− 1 any monomial involving x1, . . . ,xi is greater than any monomial

involving only xi+1, . . . ,xn. The lexicographic order is of this type with (x1 >

x2 > .. . > xn). In any Gröbner basis for an ideal I ⊂ k[x1, . . . ,xn], the elements

containing only xi+1, . . . ,xn are also a Gröbner basis for the ideal of polynomials in

I with that property. When a Gröbner basis is found with an elimination order, we

hope it includes a univariate polynomial in the variable xn only. This can be solved

in principle (perhaps numerically). If each consecutive equation has at least one

new variable, then for each of these solutions there are values of the other variables

which are determined by the other equations. These solutions of the Gröbner basis

are the same as for the original system since all polynomial sets that generate the

same ideal have the same set of zeroes by Definition 4.1.3.

4.4 Buchberger’s Algorithm

It is possible to construct a Gröbner basis for an ideal I from a basis not in the

Gröbner basis form, by an algorithm called Buchberger’s algorithm [3]. The

structure of this algorithm is based on the following theorem which is sometimes

called “Buchberger’s S-pair criterion”. To introduce this theorem, we define the

following special combinations which such an algorithm is based on.

Definition 4.4.1 Let gi,g j ∈ k[x1, . . . ,xn] be non-zero polynomials. The S-polynomial

of gi and g j is given by the combination

S(gi,g j) =
xγ

LT (gi)
·gi−

xγ

LT (g j)
·g j

where γ = max(αi,βi) for 1≤ i≤ n, α = multideg(gi), β = multideg(g j) and xγ

is the least common multiple of LM(gi) and LM(g j).
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Theorem 4.4.2 The set G = {g1, . . . ,gs} for an ideal I is called a Gröbner basis

if and only if for all pairs i 6= j, S(gi,g j)
G
= 0 where i≤ j−1.

Now, we introduce Buchberger’s Algorithm. Let I = 〈 f1, . . . , fs〉 be a polynomial

ideal and fix a monomial order. A finite number of steps are involved in this

algorithm. They are:

(Input) G′ = { f1, . . . , fs} is the given initial finite subset of k[x1, . . . ,xn].

(Processing) We select fi, f j ∈ G′ with i ≤ j− 1 and find S( fi, f j) for all 1 ≤ i ≤ j ≤
s. Then, calculate the remainder of S( fi, f j) modulo G′ and take it to be

S( fi, f j)
G′

= h′. Let H be the set of all non-zero h′. If H = /0, then the

algorithm stops. Alternatively, G = G′∪H and repeat the step.

(Output) The union of initial set G′ and the set of nonzero normal forms H which

form a Gröbner basis.

Theorem 4.4.3 Let I = 〈 f1, · · · , fs〉 6= {0} be a polynomial ideal. Then a Gröbner

basis for I is constructed in a finite number of steps.

The set of Gröbner bases G may contain a generator p such that LT (p) /∈ 〈LT (G−
{p})〉. In that case a Gröbner basis is minimal.

Now we introduce our second task in this chapter, Bezout’s theorem:

4.5 Bezout’s Theorem

Bezout’s theorem focuses on relating the number of points of intersection of two

curves in P2(C) to the degrees of their reduced defining equations [3].



CHAPTER 4. GRÖBNER BASES 34

Proposition 4.5.1 The irreducible factors of a nonzero homogenous polynomial

f ∈ C[x,y,z] are also homogenous, and we write:

f = f a1
1 . . . f as

s ,

where fis are irreducible factors with fi is not a constant multiple of f j for i 6= j,

and then

V ( f ) =V ( f1)∪ . . .∪V ( fs)

is the minimal decomposition of V ( f ) into irreducible components in P2(C) [3].

In addition,

I(V ( f )) = 〈 f1, . . . , fs〉.

This proposition shows that every curve C ⊂ P2(C) has a best defining equation. If

we assume C−V ( f ) = 0 which implies that I(C) = 〈 f1, . . . , fs〉, then, f1 . . . fs = 0

is the reduced defining equation for the variety C ⊂ P2(C).

Definition 4.5.2 Let f and g ∈ k[x] are polynomials of positive degrees

f = amxm +am−1xm−1 + . . .+a0 = 0, am 6= 0

g = bnxn +bn−1xn−1 + . . .+b0 = 0, bn 6= 0.

The resultant of f and g with respect to x is defined as the (m+ n)× (m+ n)

determinant

Res( f ,g,x) = det



am am−1 . . . a0 0 0 . . . 0
0 am am−1 . . . a0 0 . . . 0

0 0 . . . . . . . . .
...

... 0
0 0 . . . 0 am am−1 . . . a0
bn bn−1 . . . b0 0 0 . . . 0
0 bn bn−1 . . . b0 0 . . . 0

0 0 . . . . . . . . .
...

... 0
0 0 . . . 0 bn bn−1 . . . b0


.



CHAPTER 4. GRÖBNER BASES 35

Lemma 4.5.3 [3] Suppose f ,g ∈ C[x,y,z] are homogenous polynomials of total

degree m,n respectively. If f (0,0,1) and g(0,0,1) are nonzero, then the resultant

Res( f ,g,z) is homogenous in x and y of total degree mn.

Definition 4.5.4 Let C and D be curves in P2(C) without common factors and their

reduced defining equations are f = 0 and g = 0 respectively. Choose coordinates

for P2(C) such that

(0,0,1) /∈C∪D∪
⋃

p 6=q in C∩D

Lpq

where Lpq is the projective line connecting points p and q in P2(C) with p 6= q.

Then, given p = (u : v : w) ∈ C ∩D, the intersection multiplicity Ip(C,D) is

defined to be the exponent of vx−uy in the factorization of Res( f ,g,z) [3].

The above ideas are central in Bezout’s Theorem (see [3] for the proof) as follows:

Theorem 4.5.5 (Bezout’s Theorem). Let C and D be curves in P2(C) without

common factors, and let the degrees of their reduced defining equations be m and

n. Then,

∑
p∈C∩D

Ip(C,D) = mn.

Furthermore, Bezout’s Theorem generalizes to the projective space Pn(C) [17].

This means that the number of solutions of a system of n homogenous equations

in n+1 unknowns is either infinite or equal to the product of the degrees, namely

their solutions are counted with their multiplicities.



Chapter 5

Constraint Equations

This chapter presents the application of the Grünwald–Blaschke mapping and the

method of Gröbner basis to find the univariate polynomials for the fully parallel

symmetric GP3LP in the forward kinematic problem. In order to define a GP3LP,

we first introduce some of the necessary terminology, as follows [9, 10]:

(1) A collection of mechanical parts without any relative motion between indi-

vidual parts is called a link.

(2) Any two links can be connected together by a mechanical constraints that

allow relative motion. This relative constraint motion is described by a

number of free parameters. Such mechanical constraints are called joints and

such a number of free parameters is called the degree of freedom of the joint.

There are in general two kinds of joint: lower pairs which are classified into

six types and higher pairs. They distinguish by the type of contact. Lower

pairs are determined by contact between surfaces whereas higher pairs may

allow line or point contact. As planar motion is our concern, only two types

of the lower pairs are planar: revolute joint which is denoted by (R) and

prismatic joint which is denoted by (P). Each of them has one degree of

freedom: rotation about a fixed point in the plane and translation in a fixed

direction respectively.

36
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(3) A set of links connected by joints is called kinematic chain. A kinematic

chain can be represented by a graph, where a graph consists of two finite

sets: a set of vertices and a set of edges and edges correspond to pairs of

vertices. Then, a kinematic chain consists of two finite sets: a set of links

represent the vertices of the graph and a set of joints represent the edges.

There are two types of kinematic chain: simple kinematic chain and complex

kinematic chain. If each link is joined to at most two other links, then the

chain is simple and it can be open or closed. If a simple chain contains a

cycle, namely, every link in the chain joined to two other links, then it is

closed. Alternately, a simple chain is open if it does not have a cycle, that is

the first link and the last link in the chain are joined to just one link. However,

a chain is said to be complex if at least one of its links is joined to three

or more links. A complex chain can be decomposed into simple kinematic

chains called sub-chains.

(4) A mechanism is the fundamental object in computational kinematics [11]. It

is defined as a kinematic chain where one of the links is fixed to the fixed

frame coordinate system and certain joints are identified as actuated. That

is, motion of these joints is directly controlled. If the relative motion of the

links occurs in one plane or parallel planes, then the mechanism is called a

planar mechanism.

(5) We described the DOF in Chapter 1. Here we give the formula that gives

the total DOF (mobility) for a manipulator which is given by Chebychev–

Grübler–Kutzbach’s formula [4]:

µ = n(l−1)−
k

∑
i=1

(n−δi) =
k

∑
i=1

δi−n(k− l +1)

in which µ is the mobility, or relative degrees of freedom of the platform,

n is the number of degrees of freedom of an independent kinematic chain

(n = 3 for planar, n = 6 for spatial), k is the number of joints, l the number

of links and δi the DOF of the ith joint. This formula may give the wrong
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mobility in some special cases for example, when special design parameters

in a manipulator act irregularly, see [4].

(6) If a mechanism consists of an open kinematic chain, then it is serial mecha-

nism, namely the joints are built in a series, while a mechanism contains a

closed kinematic chain is called parallel mechanism.

5.1 GP3LP

A general planar 3-legged platform (GP3LP) is constituted of a platform in a

triangular shape moving in 2-dimension connected to a fixed frame of coordinate

system via three simple open kinematic chains; see Fig. 5.1. Each of the three

kinematic chains are formed by three independent one DOF joints confined to be

either a prismatic (P) or a revolute (R) joint. One of them is actuated and the other

two joints are free to move. These features of the joints have an effect in controlling

and constraint of the motion of the moving platform which occurs with respect to

the independent open kinematic chains. Therefore, each independent kinematic

chain has 3 DOF. The three kinematic chains are considered as the three legs of the

platform. In addition, the GP3LP is a complex chain since the platform connects to

three links and each leg is a simple sub-chain. As a consequence, each of the three

kinematic chain is denoted by a set of three letters indicating the sequence of the

joints beginning from the fixed frame which leads to the following eight possible

combination of R- and P- pairs [13]:

RRR,RPR,RRP,RPP,PRR,PPR,PRP,PPP.

The purpose of these leg architectures is to allow full translation and the rotation

of the platform for each leg, that is to obtain three DOF. Applying the Chebychev–

Grübler–Kutzbach’s formula to the platform in Fig. 5.1, we have n = 3, l = 8
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Figure 5.1: A platform with three RPR legs [8]

(including the base), δi = 1 for all i = 1, . . . ,9, k = 9, so

µ = 3(8−1)−
9

∑
i=1

(3−1)

= 21−18

= 3.

Note, there is one of the 8 combination that must be removed which is PPP since

it can not give rise to any rotation, only to translations. Therefore, seven possible

kinematic chains are possible and these are illustrated in Fig. 5.2.
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Figure 5.2: The seven possible leg topologies [8].

5.1.1 The Passive Sub-Chain

In order to achieve three DOF it is only necessary to have control of 3 joints.

In practice, one joint in each leg is activated, that is connected to some drive

mechanism. The other joints are described as passive. The actuated joint is

distinguished by underlining it, for instance, RPR. Hence, there are twenty-one leg

architectures taking into account the active joint, as we have three choices of joint

in seven possible legs. The uncontrolled motion of the leg occurs by means of the

so called passive sub-chain. The formation of the passive sub-chain is caused by

locking the active joint and it is effectively removed from the chain while the other

two passive joints remain in the chain. As we investigate the passive sub-chains

that result from the twenty-one kinematic chains, we get at most four classes. They

are either RR, PR, RP or PP. The PP sub-chain is omitted as a platform with more
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RR-Type PR-Type RP-Type
RRR RPR RRP
RRR PRR RRP
RRR PPR RPR
PRR PPR PRP
RPR PPR RPP
RRP PRP RPP

Table 5.1: The 18 possible leg architectures.

than one such leg is not able to be assembled or controlled once the actuated joint

variables are identified [9]. This exception yields a reduction in the number of the

possible legs architectures from 21 to 18. They are listed in Table 5.1.

The previous description asserts there are variants of GP3LP with three DOF that

can be enumerated if we consider that each of the three legs has 18 possible choices

since there is a set of 18 possible kinematic chains to choose from.

5.2 Kinematic Constraints

This section presents the main theme of the constrained motion in the plane and the

corresponding surfaces in the image space via the Grünwald–Blaschke mapping.

These surfaces are called ‘constraint surfaces’ due to the constraint motion caused

by locking the actuated joint. Initially, we determine the type of constraints for

different passive sub-chains. Since a motion is a continuous set of displacements,

and as a displacement transforms to a point, then a constrained motion will map

to a continuous set of points in the image space [8]. Secondly, our goal is to find

the equation that defines a point on a constraint surface. Thirdly, we will describe

briefly the ten classes of GP3LP. Finally, we will apply the point equation to find

the univariate polynomials by Gröbner basis for the symmetric GP3LP which

explain the solution for the forward kinematic problem and we will examine the

maximum number of real solutions for these polynomials.
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5.2.1 The Lower-Pair Constraints

Kinematic constraints in our case are called lower-pair constraints since they are

determined by lower-pair joints. A specific leg of a GP3LP involves a particular

type of the passive sub-chains: RR-type, PR-type and RP-type.

RR-Type

This passive sub-chain includes two free joints both of which are revolute (R). One

of them is attached to the active joint and is fixed in the reference frame Σ, while

the other one represents a point on the moving frame E and is constrained to move

on a circle of fixed radius and fixed centre in Σ. This constraint motion is called

circular constraint.

PR-Type

Two ordered different types of joints are involved in this passive sub-chain starting

from the ground (the fixed frame). The R-joint represents a point of E that is bound

to move on a line determined by the P-joint on the fixed frame Σ. This constrained

motion is called linear constraint.

RP-Type

This passive sub-chain is the kinematic inversion of the former one [8]. This means

that a line in the moving frame E moves on a point in the fixed frame Σ. This can

easily be seen by the duality principle. Since the motion caused by a prismatic joint

is a translation, then the leg is translated with different leg lengths that intersect in

a point in Σ. This is also called linear constraint.
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5.2.2 The Constraint Surface Equations

The constraint surface is associated with the constraint motion of a leg in GP3LP

where the aforementioned passive sub-chain types cause such motion. An implicit

equation of the constraint surface is introduced in this section. A line might be

considered as a circle with infinite radius. The general form of a circle equation is

given by

(X−Xc)
2 +(Y −Yc)

2 = r2

where (Xc,Yc) is the centre of a circle with the radius r. It can be rewritten

X2−2XXc +X2
c +Y 2−2YYc +Y 2

c = r2.

Passing to homogenous coordinates by putting X =
X
Z

, Y =
Y
Z

we get:

(X2 +Y 2)+(−2XXc−2YYc)Z +(X2
c +Y 2

c − r2)Z2 = 0 (5.1)

which is essentially expressed as:

k0(X2 +Y 2)+2k1XZ +2k2Y Z + k3Z2 = 0, (5.2)

[k0,k1,k2,k3] are called circle coefficients [8], where

k1 =−Xc

k2 =−Yc

k3 = X2
c +Y 2

c − r2

(5.3)

and k0 is an arbitrary homogenous constant [8], that is employed in order to

distinguish the circular constraint from the linear constraint. Hence, the form of the

most general constraint is given by Eq.(5.2). Then, when k0 = 1 the constraint is

circular and when k0 = 0 the constraint is linear. By using the linear homogenous

transformation of a planar displacement described in terms of the image space

points that is defined by Grünwald–Blaschke Mapping Eq.(3.14) in chapter 3 (that

gives the coordinates (X ,Y,Z) of points in the fixed frame Σ in terms of the points
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(x,y,z) in the moving frame E). Then, the image space constraint surface equation

obtains when the expressions for (X : Y : Z) from Eq.(3.14) are substituted into

Eq.(5.2) [7]:(
k0z2(X2

1 +X2
2 )+

1
4
[k0(x2 + y2)+ k3z2−2z(k1x+ k2y)]X2

3

+
1
4
[k0(x2 + y2)+ k3z2 +2z(k1x+ k2y)]X2

4 +(k1z2− k0xz)X1X3

− (k2z2 + k0yz)X1X4 +(k2z2− k0yz)X2X3 +(k0xz+ k1z2)X2X4

+(k2xz− k1yz)X3X4

)(
1
4
(X2

3 +X2
4

)
= 0.

(5.4)

This equation is the equation for a point on a constraint surface that is obtained in

terms of the image space coordinates Xi(i = 1, . . . ,4). It can be simplified as the

second factor is necessarily non-zero. Accordingly, we may without danger divide

the expression by the non-zero factor to yield a quadric in Xi, with coefficients in

terms of the circle coefficients ki and the homogenous coordinate (x : y : z) for a

point in E (the attachment point of a leg to the platform). As a result, this quadric

equation defines points on the constraint surface in the 3-D projective image space.

Moreover, some simplifications can be applied to this equation by making some

assumptions regarding the platform associated with it. These assumptions are as

follows [8]:

(1) Set all the attachment points in E to be on the affine plane z = 1.

(2) It is reasonable to normalize the image space coordinates (X1,X2,X3,X4) by

setting X4 = 1, after removing the image points associated with the platform

orientation φ = π . Thus, the image coordinates in Eq.(3.12) become:

X1 =
1
2
(tan(

φ

2
))−b)

X2 =
1
2
(a+b(tan

φ

2
))

X3 = tan(
φ

2
)

X4 = 1.
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Consequently, the constraint surface equation can be reduced to the simplified

form:

k0(X2
1 +X2

2 )+
1
4
[k0(x2 + y2)+ k3−2(k1x+ k2y)]X2

3 +
1
4

[k0(x2 + y2)+ k3 +2(k1x+ k2y)]+(k1− k0x)X1X3− (k2 + k0y)X1

+(k2− k0y)X2X3 +(k0x+ k1)X2 +(k2x− k1y)X3 = 0.

(5.5)

Circular Constraint

The motion of a platform’s leg is constrained to move on a circle (its centre and

radius are fixed) when it is caused by a passive sub-chain of RR-Type so that the

platform can rotate with respect to this leg when the other two legs are disconnected.

The constraint surface equation is therefore obtained by setting k0 = 1 in Eq.(5.5)

and we get:

(X2
1 +X2

2 )+
1
4
[(x2 + y2)+ k3−2(k1x+ k2y)]X2

3 +
1
4

[(x2 + y2)+ k3 +2(k1x+ k2y)]+(k1− x)X1X3− (k2 + y)X1

+(k2− y)X2X3 +(x+ k1)X2 +(k2x− k1y)X3 = 0.

(5.6)

The following algebra will show that cross-section X3 = constant are in fact circles.

First, substitute the relation between the circle coefficients ki in Eq.(5.3) for k3 into

Eq.(5.6). Then, we have:

(X2
1 +X2

2 )+
1
4
[(x2 + y2)+ k2

1 + k2
2− r2−2(k1x+ k2y)]X2

3 +
1
4

[(x2 + y2)+ k2
1 + k2

2− r2 +2(k1x+ k2y)]+(k1− x)X1X3− (k2 + y)X1

+(k2− y)X2X3 +(x+ k1)X2 +(k2x− k1y)X3 = 0.

Next, we collect the terms X1 and X2 on the left and X3 terms on the right. Then,

complete the squares in X1 and X2. We acquire:

(X1−
1
2
[{x− k1}X3 + k2 + y])2 +(X2−

1
2
[{y− k2}X3− k1− x])2 =

r2

4
(1+X2

3 ).
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Figure 5.3: Hyperboloid of one sheet

Clearly, this represents a circle equation with the centre coordinates

(
1
2
[{x− k1}X3 + k2 + y] :

1
2
[{y− k2}X3− k1− x] : X3)

and radius 1
2r
√

1+X2
3 [7]. This shows that cross-section X3 = constant are circles.

Then, the circle’s radius vary as X3 is varied which lead to a family of circles whose

centers are collinear. Hence, this constraint variety is the family of these circles

where the smallest circle occurs when X3 = 0. Once the value of X3 increases with

regardless of its sign, we get larger circles and then the quadric variety extends to

infinity in two directions. Hence, a quadric fulfills such properties is a hyperboloid

of one sheet; see Fig. 5.3.

Linear Constraint

In the circumstance of linear constraint there are two factors that emerge when the

value of k0 in Eq.(5.2) vanishes. Then we have,

Z(2k1X +2k2Y + k3Z) = 0.
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Figure 5.4: The fixed frame Σ and the moving frame E for any set of legs from
Table 5.1.

Both of the factors in this equation are linear. The first factor Z = 0 describes

the line at infinity which enables us to omit this factor as it does not correspond

to a real displacement. The second factor can be understood from the duality

principle described in chapter 3, that is the point (X : Y : Z) determines the line

(2k1 : 2k2 : k3). The line coordinates are denoted in Eq.(3.6) by (L1 : L2 : L3) as

shown in chapter 3, then we have:

(2k1 : 2k2 : k3) = (L1 : L2 : L3).

which can be rewritten to give:

(k1 : k2 : k3) = (
1
2

L1 :
1
2

L2 : L3).

This reveals that the coefficients ki are equivalent to line coordinates. To determine

the line coefficients we use Eq.(3.4) that specifies a line equation. Following the
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illustration in [8], and an RPR leg is used for such illustration. The line coordinates

for these legs are determined by two points in the fixed frame Σ, namely by the

base R-pair input and the corresponding fixed point, Fi(Xi : Yi : Zi), i ∈ {A,B,C};
see Fig. 5.4, where the base R-pair input coordinates verify the direction of the line

by the angle of the actuated joint with respect to the fixed frame Σ, φΣ. Since the

direction of the line is a point at infinity in the projective plane, that is z = 0, then

the line equation in Σ for the given leg is:

det

 X Y Z
XA YA ZA

cosφΣ sinφΣ 0

= 0

which, after expansion, gives:

−ZA sinφΣX +ZA cosφΣY +(XA sinφΣ−YA cosφΣ)Z = 0

Then, we can deduce from this equation the values of the line coefficients ki after

applying (k1 : k2 : k3) = (1
2L1 : 1

2L2 : L3), we obtain:

(k1 : k2 : k3) = (−ZA

2
sinφΣ :

ZA

2
cosφΣ : (XA sinφΣ−YA cosφΣ)). (5.7)

The constraint surface equation equipped with the linear constraint for the PR-Type

leg emerges when we set k0 = 0 and the values of the ki given above in Eq.(5.7)

in the general equation for the constraint surface Eq.(5.5). Since the kinematic

inversion of PR-Type leg is RP-Type, then the coefficients ki of the latter can be

found in a similar way of PR-Type leg, though, in this case the kinematic constraint

is described as a line in E moves on a point in Σ. Then, the coordinates of the

moving line are determined by two points in E, one of these points represents the

homogenous coordinates (xA : yA : zA) of the revolute centre that is fixed relative to

E while the homogenous coordinates of the other point represent the direction of

such line by the input angle of the actuated joint with respect to the moving frame

E, φE . Then, the line equation is defined as:

det

 x y z
xA yA zA

cosφE sinφE 0

= 0,
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moreover, in this case the coefficients ki are determined by:

(k1 : k2 : k3) = (−zA

2
sinφE :

zA

2
cosφE : xA sinφE − yA cosφE). (5.8)

Since the homogenous linear transformation Eq.(3.14) has an inverse Eq.(3.15),

then, either (X : Y : Z) or (x : y : z) from Eq.(3.16) or Eq.(3.17) are substituted into

Eq.(5.2) the general equation of the constraint. The point equation for the most

general constraint surfaces of either leg PR-Type or RP-Type is then:

1
4
[k3−2(k1x+ k2y)]X2

3 + k1X1X3 + k2X2X3

∓ k2X1± k1X2∓ (k1y− k2x)X3 +
1
4
(k3 +2(k1x+ k2y)) = 0

(5.9)

where the alternate signs emerge due to the kinematic inversion that requires such

algebraic inverse. In the case of PR-Type leg we substitute the values of the ki from

equation (5.7) into Eq.(5.9) and the upper sign employ to obtain the point equation.

Alternately, we substitute the values of the ki from equation (5.8) into Eq.(5.9),

then (X : Y : Z) are substituted for (x : y : z) and employ the lower sign to perform

the point equation for a leg of RP-Type. The constraint surface described by the

linear constraint is seen to be an hyperbolic paraboloid as explained in [7], that is

“Eq.(5.9) is also intersected with planes where X3 is a constant. As X3 is varied a

family of mutually skew lines is obtained that are all parallel to a plane, but not

to each other. The quadric is therefore a regulus of an hyperbolic paraboloid”;

see Fig. 5.5. We conclude that the hyperboloids of one sheet and the hyperbolic

paraboloids are the only surfaces corresponding to the kinematic constraints that

arise from applying the kinematic mapping to a single leg of GP3LP.

5.2.3 The Formulation of GP3LP

The GP3LP is considered to be either symmetric when it is formulated by three

legs of the same type or asymmetric alternatively. According to the three types

for a passive sub-chain in a leg in GP3LP, there are 10 classes of GP3LP formed
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Figure 5.5: Hyperbolic Paraboloid

by both symmetric and asymmetric platforms [2]. If we use the labels established

in [2], that is, we label the type RR- by C as it corresponds to a circular constraint,

the type PR- by L since a point moves on a line and the type RP- by T since a

movement occurs on a point, then, the 10 classes of GP3LP are listed in Table 5.2.

5.3 The Forward Kinematic Problems

Gosselin [13], was the first to analyse the forward kinematic problem of the

mechanism 3-RRR, completely ( which from the forward kinematics point of view

is equivalent to the 3-RPR platform ). He obtained a univariate polynomial of

degree 6 which solves this problem, by determining all the possible poses for the

moving platform. The method Gosselin used was by considering the intersection

between a coupler curve of the four bar mechanism with a circle where the coupler

curve has degree 6. As the number of real intersection points between the coupler

curve of degree 6 and a circle is at most 6, then, his univariate polynomial is
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class of GP3LP first leg type second leg type third leg type
CCC C C C
LLL L L L
TTT T T T
CCL C C L
CCT C C T
LLT L L T
LLC L L C
TTC T T C
TTL T T L
CLT C L T

Table 5.2: The 10 classes of GP3LP

optimum [13]. However, we solve the direct kinematics by using the method of

Gröbner bases to find the univariate polynomials. This method will be applied to

the symmetric platforms of the 10 formulation listed in Table 5.2. To begin with

we consider the Grünwald–Blaschke Mapping that gives for each of the three legs

in GP3LP a constraint surface in the projective image space. Thus, the solution

for the forward kinematics in our case will be specified by the intersection points

of these three surfaces in the image space. The intersection points represent the

possible postures for the moving platform E relative to the fixed frame Σ.

5.3.1 C-C-C Class Legs

A GP3LP of this class has three circular legs equations each of which is of the form

Eq.(5.6). Each point with fixed coordinates in the moving frame will move on a

fixed circle with a fixed centre and radius in the fixed frame. We determine first

the centers of these circles. By choice of Σ, see Fig. 5.1, the first circle is centered

at the origin in Σ, the second circle is centered on the X-axis and the third one is

centered on a general point with non-zero value in Σ whereas the attachment point

coordinates in the moving frame E for each leg are the origin in E for the first leg,

for the second leg it is located on the x-axis and a general point with non-zero
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The leg Circle center Attachment point Leg length
leg 1 (0,0,1) (0,0,1) r1
leg 2 (X2m,0,1) (x2,0,1) r2
leg 3 (X3m,Y3m,1) (x3,y3,1) r3

Table 5.3: Point coordinates

value for the third one. These are listed in Table 5.3. Substitute these values in the

circular equation (5.6) for each leg and as in [18], we get three hyperboloids of

one sheet in the use of kinematic mapping. They are as follows:

X2
1 +X2

2 +a6X2
3 +a7 = 0 (5.10)

X2
1 +X2

2 +b1X1X3 +b4X2 +b6X2
3 +b7 = 0 (5.11)

X2
1 +X2

2 + c1X1X3 + c2X2X3 + c3X1 + c4X2 + c5X3 + c6X2
3 + c7 = 0 (5.12)

where:

a6 =−
r2

1
4

a7 =−
r2

1
4

b1 =−X2m− x2

b4 = x2−X2m

b6 =
1
4
(x2

2 +X2
2m− r2

2 +2X2mx2)

b7 =
1
4
(x2

2 +X2
2m− r2

2−2X2mx2)

c1 =−X3m− x3

c2 =−Y3m− y3

c3 =−Y3m + y3

c4 = x3−X3m

c5 =−Y3mx3 +X3my3

c6 =
1
4
[x2

3 + y2
3 +X2

3m +Y 2
3m− r2

3−2(−X3mx3−Y3my3)]

c7 =
1
4
[x2

3 + y2
3 +X2

3m +Y 2
3m− r2

3 +2(−X3mx3−Y3my3)].
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The three hyperboloids’ equations are reduced by subtracting Eq.(5.10) from

Eq.(5.11) and Eq.(5.12) to eliminate X2
1 +X2

2 giving:

X2
1 +X2

2 +a6X2
3 +a7 = 0 (5.13)

b1X1X3 +b4X2 + e6X2
3 + e7 = 0 (5.14)

c1X1X3 + c2X2X3 + c3X1 + c4X2 + c5X3 + e8X2
3 + e9 = 0. (5.15)

Then eliminate X2
3 from Eq.(5.15) by subtracting Eq.(5.14) and Eq.(5.15) from

each other to produce:

X2
1 +X2

2 +a6X2
3 +a7 = 0

b1X1X3 +b4X2 + e6X2
3 + e7 = 0

f1X1X3 + f2X2X3 + f3X1 + f5X3 + f7 = 0

(5.16)

wherein:

e6 = b6−a6

e7 = b7−a7

e8 = c6−a6

e9 = c7−a7

f1 = c1e6−b1e8

f2 = c2e6

f3 = c3e6

f4 = c4e6−b4e8

f5 = c5e6

f7 = e6e9− e7e8.

At this stage, a Gröbner basis is implemented for Eq.(5.16) by using the elimination

order i.e lex order to eliminate variables to give the univariate polynomial for the

forward kinematic problem with sixth order in the variable X3. This determines

the postures of the platform in this case. Doing the calculation by the method of

Gröbner bases in Maple we obtain the univariate polynomial:

A6X6
3 +A5X5

3 +A4X4
3 +A3X3

3 +A2X2
3 +A1X3 +A0 (5.17)
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wherein:

A6 = e2
6( f 2

1 + f 2
2 )+a6b2

1 f 2
2

A5 = 2(a6b1 f2(b1 f4−b4 f1)−b1e6 f1 f5 + e2
6( f1 f3 + f2 f4))

A4 = a6(b2
1 f 2

4 +b2
4 f 2

1 )+b2
1(a7 f 2

2 + f 2
5 )+ e2

6( f 2
3 + f 2

4 )

−2a6b1b4( f1 f4 + f2 f3)+ e6[b1( f1 f7 + f3 f5)+b4 f2 f5− e7( f 2
1 + f 2

2 )]

A3 = 2b4[a6 f3(b4 f1−b1 f4)− e6( f2 f7 + f4 f5)]−b1[ f1(e7 f5 +a7b4 f2)

+ e6 f3 f7−b1( f5 f7 +a7 f4 f2)]+2e6e7( f1 f3 + f2 f4)

A2 = b2
4(a7 f 2

1 + f 2
5 +a6 f 2

3 )+b2
1( f 2

7 +a7 f 2
4 )+ e2

7( f 2
1 + f 2

2 )

+2e6e7( f 2
3 + f 2

4 )−b4[a7b1( f1 f4 + f2 f3)+(e6 f4 f7 + e7 f2 f5)]

−b1e7( f1 f7 + f3 f5)

A1 = 2e2
7( f1 f3 + f2 f4)−b1 f3(e7 f7 +a7b4 f4)+b4[b4( f5 f7

+a7 f1 f3)− e7( f2 f7 + f4 f5)]

A0 = (e7 f4−b4 f7)
2 + f 2

3 (e
2
7 +a7b2

4).

Accordingly, there are six values for the variable X3 evaluated by solving Eq.(5.17)

numerically. Then once these values are available we obtain unique values of X1

and X2 by back substitution for each of the six values of X3 [18]. The coefficients

Ai(i = 0, . . . ,6) are dependent on the leg lengths which are represented by the radii

ri(i = 1,2,3). This may allow us to examine how the number of real solutions may

vary in terms of the leg lengths. This will be done by numerical examples.

Example 5.3.1 Solving Eq.(5.17) numerically by choosing numerical values for

the point coordinates in Table 5.3 and putting the coefficients in terms of the

leg lengths ri(i = 1,2,3) and choose them to be r1 = 2,r2 = 3,r3 = 1. Then, the

numerical values for the circle’s centers and the attachment points are listed in

Table 5.4.
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The leg Circle center Attachment point Leg length
leg 1 (0,0,1) (0,0,1) r1 = 2
leg 2 (2,0,1) (1,0,1) r2 = 3
leg 3 (1,

√
3,1) (1

2 ,
√

3
2 ,1) r3 = 1

Table 5.4: numerical values for point coordinates

The six distinct roots of X3 are then obtained and they are:

(X3)1 =−0.552

(X3)2 =−0.356

(X3)3 =−0.103−0.983i

(X3)4 =−0.103+0.983i

(X3)5 = 0.482

(X3)6 = 6.405.

Now we determine the values of X1 and X2 by back substitution. This is done by

substitute the four real values of X3 into the last two equations of the system (5.16).

Then when X3 = (X3)1:

X1 = 0.868,X2 = 0.742.

Similarly, we determine the value of X1 and X2 for the other values of X3. When

X3 = (X3)2:

X1 = 1.036,X2 = 0.233.

When X3 = (X3)5, the value of X1 and X2 are:

X1 =−0.939,X2 = 0.590.

When X3 = (X3)6, we get:

X1 = 1.758,X2 = 6.239.

Now we have four real sets of variables X1,X2,X3 that are specified from specific

inputs which allow us to determine the characteristic parameters (a,b,φ) the pre-

images of each set by substituting in Eq.(3.13). They are listed in Table 5.5. So,
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Solution of X3 a b φ (deg.)
(X3)1 0.403 -1.958 -57.79
(X3)2 -0.241 -1.986 -39.19
(X3)5 0.223 1.985 51.47
(X3)6 0.833 1.818 162.3

Table 5.5: The four real platform solutions

there are four real postures of the platform for the given leg lengths and its assembly

modes which are illustrated in Fig. 5.6. If we vary the leg lengths in example 5.3.1

and choose r1 =
1
2

, r2 =
3
2

, r3 =
1
4

, the univariate polynomial in X3 has only two

real roots. They are (X3)1 =−5.506,(X3)2 =−4.068. If we vary them again and

choose r1 = 0, r2 = 0, r3 = 0, the univariate polynomial in X3 has no real solutions.

According to [6], varying the leg lengths shows that the number of real solutions

for C-C-C class legs can be 4, 2 or 0. However, it has not been possible to find a

set of leg lengths giving 6 real solutions for this particular example, although, the

maximum number of real solutions for the C-C-C class leg is six as shown in [6]

by Gosselin’s example.

5.3.2 L-L-L Class Legs

This planar manipulator has three legs of PR-Type denoted L. To calculate its

univariate polynomial we first determine the constraint surface equations for each

leg, given by equations (5.7), (5.9), applying the upper sign.

Example 5.3.2 These equations are obtained by substituting the base points and

the inputs joint from Table(5.6) where the joint inputs are angles and they are

selected for convenience.
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Figure 5.6: The four postures for RPR platform

The constraint equations for the three legs are:

− 1
4

√
3X1X3 +

1
4

X2X3−
1
4

X1−
1
4

√
3X2 = 0 (5.18)

√
2X2

3 −
1
4

√
2X1X3 +

1
4

√
2X2X3−

1
4

√
2X1−

1
4

√
2X2 +

1
2

√
2X3 +

1
2

√
2 = 0

(5.19)

2X2
3 −

1
2

X2X3 +
1
2

X1−
1
2

X3 +1 = 0 (5.20)

Using Gröbner bases, the univariate polynomial in X3 is:

44X2
3 +(3

√
3+7)X3 +22 = 0 (5.21)

So the univariate polynomial is of degree 2, unlike the first type. The roots of

this polynomial are (X3)1 =− 3
88

√
3− 7

88− 1
88 i
√

3796−42
√

3, (X3)2 =− 3
88

√
3−
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Leg Input angles (XA : YA : ZA) (x : y : z) (k1 : k2 : k3)

leg 1 π

3 (0:0:1) (0:0:1) (-
√

3
2 : 1

4 :0)
leg 2 π

4 (6:0:1) (2:0:1) (−
√

2
4 :

√
2

4 : 3
√

2)
leg 3 π (3:6:1) (1:2:1) (−1

2 :0:3)

Table 5.6: Point coordinates

7
88 +

1
88 i
√

3796−42
√

3. This means that the platform of these particular design

parameters stay in its zero position since the roots of X3 are complex. The following

investigation shows that the degree of the univariate polynomial describe the

maximum number of real solutions. This investigation follows as in [9].

The calculation of the univariate polynomial in a mechanism of class C-C-C

accords with what has been found by Gosselin [6], Merlet [13] and Husty [10],

among others, that there are at most six real solutions for the forward kinematic

problem. Viewing this problem in algebraic geometry, three quadric surfaces in

the image space intersect typically in eight solutions by Bezout’s Theorem. Then

there are two missing points of intersections in the solution set of the univariate

polynomial. We ask naturally where are they? The constraint surface equation

for a leg of RR-Type is seen to be hyperboloid of one sheet, and it has special

structure since it is formed by a family of circles. The circles are the cross-section

X3 = constant. The planes X3 = constant intersect all the hyperboloids in circles

where the complex points lie on all circles. We generate three hyberboloids by the

first factor of Eq.(5.4) and intersect them with the plane X4 = 0 to demonstrate this.

We set in this factor X4 = 0, z = 1 and k0 = 1. Then, we obtain the following three

hyperboloids H1, H2 and H3 after we set k1 = k2 = x = y = 0 in H1, K2 = Y = 0

in H2, and k1,k2,x, and y in H3 are corresponded to non-zero values. The three

hyperboloids are:

H1 : X2
1 +X2

2 +
1
4

k3X2
3 = 0,

H2 : X2
1 +X2

2 +
1
4
(x2+k3−2k1)X2

3 +(k1−x)X1X3−k2X1X4+k2X2X3+(x+k1)X2X4 = 0,
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H3 : X2
1 +X2

2 +
1
4
[x2+y2+k3−2(k1x+k2y)]X2

3 +(k1−x)X1X3+(k2−y)X2X3 = 0.

The imaginary conjugate points J1(1 : i : 0 : 0) and J2(1 :−i : 0 : 0) are the inter-

section points of the three constraint hyperboloids for the three legs and the plane

X4 = 0. Note that J1 and J2 do not have pre-images as they do not correspond

to a real displacements. By Bezout’s Theorem, the three constraint hyperboloids

intersect in eight points. The two complex points J1 and J2 are considered as

two of the intersection points and they are common to every circular hyperboloid.

The line of intersection between the planes X3 = 0 and X4 = 0 passes through

these imaginary conjugate points J1(1 : i : 0 : 0) and J2(1 : −i : 0 : 0) where the

hyperboloids intersect. Thus, J1 and J2 are the missing points, and hence there are

at most six real solutions or assembly models for any given set of leg lengths.

However, when the constraint surface equation is a hyperbolic paraboloid, corre-

sponding to the legs of PR-Type or RP-Type, the constraint is linear, not circular.

So, we want to determine in how many points these surfaces can intersect with the

plane X4 = 0. Substituting X4 = 0 in the first factor of Eq.(5.4) and then x = y = 0

in the first leg equation, x = b1,y = 0 in the second leg equation and x = c1,y = c2

in the third leg equation, we obtain:

HP1 :
1
4

k3X2
3 +(k1)X1X3 +(k2)X2X3 = 0

HP2 :
1
4
[k3−2k1b1]X2

3 +(k1)X1X3 +(k2)X2X3 = 0

HP3 :
1
4
[k3−2(k1c1 + k2c2)]X2

3 +(k1)X1X3 +(k2)X2X3 = 0.

Clearly, this set of equations is always satisfied by the image point coordinate:

(X1 : X2 : X3 : X4) = (X1 : X2 : 0 : 0).

This means that the line of intersection of the planes X3 = 0,X4 = 0 are contained in

such a set. By Bezout’s Theorem, two constraint hyperbolic paraboloids intersect

in a curve of fourth degree. The common intersection points of every line in each
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Leg The joint inputs (xA : yA : zA) (X : Y : Z) (k1 : k2 : k3)

leg 1 π

2 (0:0:1) (0:0:1) (−1
2 : 0 : 0)

leg 2 π (3:0:1) (2:0:1) (0 :−1
2 : 0)

leg 3 π

3 (1:3:1) (1:2:1) (−
√

3
4 : 1

4 :
√

3−3
2 )

Table 5.7: Point coordinates

regulus of both surfaces form a twisted cubic. Then, the intersection curve of

both surfaces decomposes into two curves one of which is the line of intersection

of the planes X3 = X4 = 0 and the other is the twisted cubic. The twisted cubic

must intersect the line X3 = X4 = 0 in two points since this line is contained in the

set of constraint hyperbolic paraboloids. As we have three constraint equations,

there are three twisted cubic curves which intersect with the line X3 = X4 = 0. The

intersection points of the three surfaces are determined by the points of intersection

of the three twisted cubics with the line. Then the three surfaces intersect in six

points that lie on the line X3 = X4 = 0. Hence, these points do not correspond to

real displacements and then the poses they represent are not physically valid. There

are two additional points according to Bezout’s Theorem. Therefore, for a leg of

RP-Type or PR-Type there are at most two real solutions and this is consistent with

the solution for the forward kinematic problem for these types of legs which give a

univariate polynomial of degree two.

5.3.3 T-T-T Class Legs

A planar manipulator with three legs of RP-Type (where T- is assigned to this type

of leg as shown) has at most two assembly modes in the image space since it is the

inversion of PR-Type. This will be validated by the following example by deriving

its univariate polynomial. The constraint surface equation for each leg is given

by Eq.(5.8) and Eq.(5.9), where the lower sign applies. Again we select the joint

inputs for convenience.
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Solution of X3 a b φ (deg.)
(X3)1 0.723 -0.961 -143.03
(X3)2 0.364 0.753 -24.6

Table 5.8: The two real platform solutions

Example 5.3.3 By using the platform’s geometry and joint inputs in Table 5.7.

The constraint equations for the three legs are:

− 1
2

X1X3 +
1
2

X2 = 0 (5.22)

− 1
2

X2X3−
1
2

X1 +X3 = 0 (5.23)

2
√

3−5
8

X2
3 −
√

3
4

X1X3 +
1
4

X2X3 +
1
4

X1 +

√
3

4
X2−

2
√

3+1
4

X3−
1
8
= 0 (5.24)

Using the Gröbner bases method; the univariate polynomial in X3 is:

13X2
3 +(16

√
3+14)X3 +2

√
3+5 = 0, (5.25)

which has degree two. The roots of this polynomial are (X3)1 =−2.991, (X3)2 =

−0.2177. In this case both of the solutions are real. Now we determine the values

of X1 and X2 by back substitution. Then, when X3 = (X3)1:

X1 =−0.601,X2 = 1.799.

When X3 = (X3)2:

X1 =−0.416,X2 = 0.1.

The two assembly poses are now determined by the parameters (a,b,φ) by substi-

tute the two real sets of variables X1,X2,X3 in Eq.(3.13). They are listed in Table

5.8.
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5.4 Conclusion

Using kinematic mapping to solve the difficult problem in kinematics, the forward

kinematic problem, is valuable. We attempted to solve this problem for the sym-

metric platforms, namely the univariate polynomials by the method of Gröbner

bases. The univariate polynomials for platforms involving circular constraint are

of degree six while for platforms involving linear constraint are of degree two. The

degrees of these univariate polynomials describe the maximum number of real

solutions. The solutions are explained in terms of algebraic geometry, by using

Bezout’s Theorem. The calculations of univariate polynomials could be extended

for example by considering varying joint inputs and design parameters.



Appendix A

The derivation of the univariate polynomial for a leg of RR-Type by Maple:
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(2)(2)

(3)(3)

(1)(1)
with Groebner ;
Basis, FGLM, HilbertDimension, HilbertPolynomial, HilbertSeries, Homogenize, InitialForm,
InterReduce, IsBasis, IsProper, IsZeroDimensional, LeadingCoefficient, LeadingMonomial,
LeadingTerm, MatrixOrder, MaximalIndependentSet, MonomialOrder, MultiplicationMatrix,
MultivariateCyclicVector, NormalForm, NormalSet, RationalUnivariateRepresentation,
Reduce, RememberBasis, SPolynomial, Solve, SuggestVariableOrder, Support, TestOrder,
ToricIdealBasis, TrailingTerm, UnivariatePolynomial, Walk, WeightedDegree

Fd X 1 2 CX 2 2 C a 6 $X 3 2 C a 7 , b 1 $X 1 $X 3 C b 4 $X 2 C e 6 $X 3 2 C e 7 ,
f 1 $X 1 $X 3 C f 2 $X 2 $X 3 C f 3 $X 1 C f 5 $X 3 C f 7

X1
2 CX2

2 C a6 X3
2 C a7, b1 X1 X3 C b4 X2 C e6 X3

2 C e7, f1 X1 X3 C f2 X2 X3 C f3 X1 C f5 X3

C f7
Gd Basis F, plex X 1 , X 2 , X 3
b4

2 f7
2 C e7

2 f3
2 C a7 b4

2 f3
2 C K2 b1 e6 f3 f7 K 2 b1 e7 f1 f5 C 2 b1

2 f5 f7 C 4 e6 e7 f1 f3

K 2 b4 e6 f2 f7 C 2 a6 b4
2 f1 f3 K 2 a7 b1 b4 f1 f2  X3

3 C K2 b4 e7 f2 f7 K 2 b1 e7 f3 f7 C 2 

e7
2 f1 f3 C 2 a7 b4

2 f1 f3 C 2 b4
2 f5 f7  X3 C K2 b1 e7 f1 f7 K 2 b1 e7 f3 f5 C e7

2 f1
2 C b1

2 f7
2 C b4

2 

f5
2 C a7 b4

2 f1
2 K 2 b4 e7 f2 f5 K 2 a7 b1 b4 f2 f3 C a6 b4

2 f3
2 C 2 e6 e7 f3

2 C e7
2 f2

2  X3
2 C b1

2 f5
2

K 2 b1 e6 f3 f5 K 2 a6 b1 b4 f2 f3 K 2 b4 e6 f2 f5 K 2 b1 e6 f1 f7 C 2 e6 e7 f1
2 C a7 b1

2 f2
2

C 2 e6 e7 f2
2 C e6

2 f3
2 C a6 b4

2 f1
2  X3

4 C K2 b1 e6 f1 f5 C 2 e6
2 f1 f3 K 2 a6 b1 b4 f1 f2  X3

5

C f2
2 a6 b1

2 C e6
2 f2

2 C e6
2 f1

2  X3
6, 2 b1

4 b4 e6 f1
2 f2 f3 f5 f7 K 2 b1

3 b4 e6 e7 f1
3 f2 f3 f5 K 2 

b1
3 b4 e6 e7 f1 f2

3 f3 f5 K a6 b1
4 b4

2 f1
2 f2

2 f3 f7 K a6 b1
3 b4

3 f1
3 f2 f3 f5 K a6 b1

3 b4
3 f1 f2

3 f3 f5 K 2 b1
2 

b4
2 e6

2 f1 f2
2 f3

2 f5 C 4 b1
2 b4 e6

2 e7 f1
3 f2 f3

2 C 2 b1
2 b4 e6

2 e7 f1 f2
3 f3

2 K b1 b4
3 e6

2 f1
3 f2 f3 f5 K b1 b4

3 

e6
2 f1 f2

3 f3 f5 C 3 b1 b4
2 e6

2 e7 f1
3 f2

2 f3 C b1 b4
2 e6

2 e7 f1 f2
4 f3 C 2 b1

4 b4 e6 f1 f2 f3
2 f5

2 C 4 b1
4 b4 e6 

f2
3 f3 f5 f7 K 4 b1

4 e6 e7 f1
2 f2

2 f3 f7 C 2 b1
3 b4

2 e6 f1
2 f2

2 f5 f7 C b1
3 b4

2 e6 f1 f2
2 f3 f5

2 K 5 b1
3 b4 e6

2 

f1
2 f2 f3

2 f7 K b1
3 b4 e6

2 f1 f2 f3
3 f5 K 2 b1

3 b4 e6 e7 f1
2 f2

3 f7 K 5 b1
2 b4

2 e6
2 f1

2 f2
2 f3 f7 K a6 b1

3 

b4
2 e6 f1 f2

2 f3
3 C a6 b1

3 b4
2 e7 f1

3 f2
2 f3 C a6 b1

3 b4
2 e7 f1 f2

4 f3 C 2 a6 b1
2 b4

3 e6 f1
3 f2 f3

2 C a6 b1 

b4
4 e6 f1

3 f2
2 f3 K a7 b1

5 b4 f1 f2
3 f3 f5 C 2 a7 b1

4 b4 e6 f1 f2
3 f3

2 C a7 b1
3 b4

2 e6 f1
3 f2

2 f3 C a7 b1
3 

b4
2 e6 f1 f2

4 f3 C a6 b1
5 b4 f2

3 f3
2 f7 C a6 b1

4 b4
2 f2

4 f3 f7 C 2 b1
3 e6 e7

2 f1
3 f2

2 f3 C 2 b1
3 e6 e7

2 f1 f2
4 f3

K 2 b1
2 b4

2 e6
2 f1

4 f3 f7 K b1
2 b4

2 e6
2 f2

4 f3 f7 K b1 b4
3 e6

2 f1
4 f2 f7 K b1 b4

3 e6
2 f1

2 f2
3 f7 C 2 b1 b4

2 e6
2 e7 

f1
5 f3 C a6 b1 b4

4 e6 f1
5 f3 C a7 b1

5 e7 f1 f2
4 f3 K b1

5 b4 f1 f2 f3 f5
3 C 2 b1

5 e6 f1 f2
2 f3 f7

2 C 2 b1
5 e6 

f2
2 f3

2 f5 f7 C b1
5 e7 f1 f2

2 f3 f5
2 C 2 b1

4 b4 e6 f1 f2
3 f7

2 K 2 b1
4 e6 e7 f2

4 f3 f7 C b1
3 b4

2 e6 f1
3 f3 f5

2 C 2 



(3)(3)

b1
3 b4

2 e6 f2
4 f5 f7 K 2 b1

3 b4 e6
2 f2

3 f3
2 f7 K 2 b1

3 b4 e6 e7 f2
5 f7 K b1

3 e6
2 e7 f1 f2

2 f3
3 K a7 b1

6 f2
4 f3 f7

K a7 b1
5 b4 f2

5 f7 K b1
6 f2

2 f3 f5
2 f7 K b1

5 b4 f2
3 f5

2 f7 K b1
4 e6

2 f2
2 f3

3 f7  X3
3 C 2 b1

4 b4 e7 

f1
2 f2 f3 f5 f7 K 5 b1

3 b4 e6 e7 f1
2 f2 f3

2 f7 C 2 b1
2 b4

3 e6 f1
2 f2 f3 f5 f7 K 4 b1

2 b4
2 e6 e7 f1

2 f2
2 f3 f7

K a7 b1
4 b4

2 f1
2 f2

2 f3 f7 K a7 b1
3 b4

3 f1
3 f2 f3 f5 C 2 b1

4 b4 e7 f2
3 f3 f5 f7 K b1

3 b4
2 e6 f1

2 f3
2 f5 f7 C 3 

b1
3 b4

2 e6 f1 f2
2 f3 f7

2 K 2 b1
3 b4

2 e6 f2
2 f3

2 f5 f7 C 2 b1
3 b4

2 e7 f1
2 f2

2 f5 f7 K b1
3 b4 e7

2 f1
3 f2 f3 f5 K

b1
3 b4 e7

2 f1 f2
3 f3 f5 K 2 b1

2 b4
2 e6 e7 f1

4 f3 f7 C 2 b1
2 b4 e6 e7

2 f1
3 f2 f3

2 C b1 b4
4 e6 f1

2 f2
2 f5 f7 C b1 

b4
3 e6

2 f1
2 f2 f3

2 f7 K b1 b4
3 e6 e7 f1

4 f2 f7 K b1 b4
3 e6 e7 f1

2 f2
3 f7 C b1 b4

2 e6 e7
2 f1

3 f2
2 f3 K a7 b1

3 

b4
3 f1 f2

3 f3 f5 K a7 b1
3 b4

2 e6 f1 f2
2 f3

3 C a7 b1
3 b4

2 e7 f1
3 f2

2 f3 C a7 b1
3 b4

2 e7 f1 f2
4 f3 C 2 a7 b1

2 b4
3 e6 

f1
3 f2 f3

2 C a7 b1 b4
4 e6 f1

3 f2
2 f3 K b1

5 b4 f1 f2 f3 f5 f7
2 C 3 b1

4 b4 e6 f1 f2 f3
2 f7

2 K 2 b1
4 b4 e6 f2 

f3
3 f5 f7 C a7 b1

5 b4 f2
3 f3

2 f7 C a7 b1
4 b4

2 f2
4 f3 f7 C a7 b1 b4

4 e6 f1
5 f3 C b1

5 b4 f2 f3
2 f5

2 f7 C 3 

b1
5 e7 f1 f2

2 f3 f7
2 K 2 b1

4 b4
2 f1 f2

2 f5 f7
2 C 2 b1

4 b4 e7 f1 f2
3 f7

2 K 3 b1
4 e7

2 f1
2 f2

2 f3 f7 K b1
3 b4

3 f1
2 f2 

f5
2 f7 C b1

3 b4
2 e6 f1

3 f3 f7
2 C 2 b1

3 b4
2 e7 f2

4 f5 f7 C b1
3 b4 e6

2 f2 f3
4 f7 K b1

3 b4 e7
2 f1

2 f2
3 f7 K b1

3 e6 

e7
2 f1 f2

2 f3
3 C b1

2 b4
3 e6 f1

3 f2 f7
2 C b1

2 b4
3 e6 f1 f2

3 f7
2 C 2 b1

2 b4
2 e6

2 f2
2 f3

3 f7 C b1 b4
4 e6 f1

4 f5 f7 C b1 

b4
3 e6

2 f2
3 f3

2 f7 C b1 b4
2 e6 e7

2 f1
5 f3 K b1

4 e7
2 f2

4 f3 f7 K b1
3 b4

3 f2
3 f5

2 f7 K b1
3 b4 e7

2 f2
5 f7 C b1

3 e7
3 f1

3 

f2
2 f3 C b1

3 e7
3 f1 f2

4 f3 K b1
6 f2

2 f3 f7
3 K b1

5 b4 f2
3 f7

3  X3 C 6 b1
4 b4 e6 f1 f2 f3

2 f5 f7 C 6 b1
3 

b4
2 e6 f1 f2

2 f3 f5 f7 K 6 b1
3 b4 e6 e7 f1

2 f2 f3
2 f5 K 4 b1

3 b4 e6 e7 f1 f2
3 f3 f7 C 2 b1

2 b4
2 e6 e7 f1

2 

f2
2 f3 f5 K a6 b1

4 b4
2 f1 f2

2 f3
2 f7 K a6 b1

3 b4
3 f1

2 f2 f3
2 f5 C a6 b1

3 b4
2 e7 f1

2 f2
2 f3

2 C 3 a6 b1
2 b4

3 e6 f1
2 f2 

f3
3 C a6 b1 b4

4 e6 f1
2 f2

2 f3
2 K 2 b1

2 b4 e6 e7
2 f1

2 f2
3 f3 K 6 b1 b4

3 e6
2 f1

3 f2 f3 f7 C 5 b1 b4
3 e6

2 f1
2 f2 f3

2 f5

K 4 b1 b4
3 e6

2 f1 f2
3 f3 f7 K 3 b1 b4

2 e6
2 e7 f1

2 f2
2 f3

2 K 2 b1
2 b4

2 e6 e7 f1
3 f2

2 f7 K 2 b1
2 b4

2 e6 e7 f1 f2
4 f7

C 4 b1
2 b4

2 e6 e7 f2
4 f3 f5 C 5 b1

2 b4 e6
2 e7 f1

2 f2 f3
3 C 2 a7 b1

5 b4 f1 f2
3 f3 f7 C 2 a7 b1

4 b4
2 f1

2 f2
2 f3 f5

K 2 a7 b1
4 b4 e7 f1

2 f2
3 f3 K 5 a7 b1

3 b4
2 e6 f1

2 f2
2 f3

2 K 2 a7 b1
2 b4

3 e6 f1
4 f2 f3 K 2 a7 b1

2 b4
3 e6 f1

2 

f2
3 f3 K 2 b1

5 b4 f1 f2 f3 f5
2 f7 C 4 b1

5 e7 f1 f2
2 f3 f5 f7 C 2 b1

4 b4 e7 f1
2 f2 f3 f5

2 C 2 b1
4 b4 e7 f1 

f2
3 f5 f7 K 4 b1

4 e6 e7 f1 f2
2 f3

2 f7 C 2 b1
3 b4

2 e6 f1
3 f3 f5 f7 K 4 b1

3 b4 e6
2 f1 f2 f3

3 f7 C 6 b1
3 b4 e6 e7 

f2
3 f3

2 f5 C 2 b1
2 b4

3 e6 f1
3 f2 f5 f7 K 2 b1

2 b4
3 e6 f1

2 f2 f3 f5
2 C 2 b1

2 b4
3 e6 f1 f2

3 f5 f7 K 8 b1
2 b4

2 e6
2 f1 

f2
2 f3

2 f7 K 2 b1
2 b4

2 e6 e7 f1
4 f3 f5 K a6 b1

4 b4
2 f2

2 f3
3 f5 C a6 b1

4 b4 e7 f2
3 f3

3 K a6 b1
3 b4

3 f2
3 f3

2 f5

C a6 b1
3 b4

2 e6 f2
2 f3

4 C a6 b1
3 b4

2 e7 f2
4 f3

2 C a6 b1
2 b4

3 e6 f2
3 f3

3 C a6 b1 b4
4 e6 f1

4 f3
2 C a7 b1

5 b4 f2
3 

f3
2 f5 C a7 b1

4 b4
2 f1 f2

4 f7 C a7 b1
4 b4

2 f2
4 f3 f5 K a7 b1

4 b4 e6 f2
3 f3

3 K a7 b1
4 b4 e7 f2

5 f3 K a7 b1
3 



(3)(3)

b4
2 e6 f2

4 f3
2 K b1

4 b4
2 f1 f2

2 f5
2 f7 C 2 b1

3 e6 e7
2 f1

2 f2
2 f3

2 K 2 b1
2 b4

3 e6 f2
3 f3 f5

2 K b1
2 b4

2 e6
2 f1

3 f3
2 f7 C

b1
2 b4

2 e6
2 f1

2 f3
3 f5 C 6 b1

2 b4
2 e6

2 f2
2 f3

3 f5 K 4 b1
2 b4 e6

2 e7 f2
3 f3

3 K 2 b1
2 b4 e6 e7

2 f2
5 f3 C 3 b1 b4

3 e6
2 

f2
3 f3

2 f5 C 2 b1 b4
2 e6

2 e7 f1
4 f3

2 K 3 b1 b4
2 e6

2 e7 f2
4 f3

2 C b4
4 e6

2 f1
2 f2

2 f3 f5 K b4
3 e6

2 e7 f1
4 f2 f3 K b4

3 

e6
2 e7 f1

2 f2
3 f3 C 4 b1

4 b4 e6 f2
3 f3 f7

2 K 3 b1
4 b4 e6 f2 f3

3 f5
2 K b1

4 b4 e7 f2
3 f3 f5

2 C 2 b1
4 e6 e7 f2

2 f3
3 f5

K 2 b1
4 e7

2 f1
2 f2

2 f3 f5 C 2 b1
3 b4

2 e6 f1
2 f2

2 f7
2 K b1

3 b4
2 e6 f1

2 f3
2 f5

2 K 5 b1
3 b4

2 e6 f2
2 f3

2 f5
2 C 3 b1

3 b4 

e6
2 f2 f3

4 f5 K b1
2 b4 e6

3 f2 f3
5 K 2 b1 b4

2 e6
3 f2

2 f3
4 C b4

4 e6
2 f1

4 f3 f5 K b4
4 e6

2 f1
3 f2

2 f7 K b4
3 e6

3 f1
2 f2 f3

3

K a7 b1
5 e7 f2

4 f3
2 K 2 b1

6 f2
2 f3 f5 f7

2 K 2 b1
5 b4 f2

3 f5 f7
2 C b1

5 b4 f2 f3
2 f5

3 C 2 b1
5 e6 f2

2 f3
2 f7

2 K

b1
5 e7 f2

2 f3
2 f5

2 C b1
4 b4

2 f2
2 f3 f5

3 C 2 b1
3 b4

2 e6 f2
4 f7

2 K b1
3 e6

2 e7 f2
2 f3

4 K 2 b1
3 e6 e7

2 f2
4 f3

2 K b4
3 e6

3 

f2
3 f3

3 K b4
4 e6

2 f1
5 f7  X3

2 C 2 b1
4 b4 e7 f2

2 f3
3 f5 C 2 b1

3 b4
2 e6 f2 f3

4 f5 C 4 b1
3 b4

2 e7 f2
3 f3

2 f5 K 2 

b1
3 b4 e6 e7 f2

2 f3
4 C b1

2 b4
4 f1

3 f2 f5 f7 K b1
2 b4

4 f1
2 f2 f3 f5

2 C b1
2 b4

4 f1 f2
3 f5 f7 K b1

2 b4
3 e6 f1

3 f3
2 f7 C

b1
2 b4

3 e6 f1
2 f3

3 f5 C 4 b1
2 b4

3 e6 f2
2 f3

3 f5 K b1
2 b4

3 e7 f1
3 f2

2 f7 K b1
2 b4

3 e7 f1 f2
4 f7 C 2 b1

2 b4
3 e7 

f2
4 f3 f5 K 4 b1

2 b4
2 e6 e7 f2

3 f3
3 K b1

2 b4
2 e7

2 f1
2 f2

3 f3 C 2 b1 b4
4 e6 f2

3 f3
2 f5 K 2 b1 b4

3 e6 e7 f2
4 f3

2 C

b4
5 e6 f1

2 f2
2 f3 f5 K b4

4 e6 e7 f1
4 f2 f3 K b4

4 e6 e7 f1
2 f2

3 f3 C b1
4 b4

2 f1 f2 f3
2 f5 f7 K b1

4 b4 e7 f1 f2
2 f3

2 f7

C 2 b1
3 b4

3 f1 f2
2 f3 f5 f7 K 3 b1

3 b4
2 e6 f1 f2 f3

3 f7 K 2 b1
3 b4

2 e7 f1 f2
3 f3 f7 K 6 b1

2 b4
3 e6 f1 f2

2 f3
2 f7

C 2 b1
2 b4

3 e7 f1
2 f2

2 f3 f5 K b1
2 b4

2 e6 e7 f1
2 f2 f3

3 K 5 b1 b4
4 e6 f1

3 f2 f3 f7 C 4 b1 b4
4 e6 f1

2 f2 f3
2 f5

K 3 b1 b4
4 e6 f1 f2

3 f3 f7 K 4 b1 b4
3 e6 e7 f1

2 f2
2 f3

2 C b1
5 b4 f2

2 f3
2 f7

2 C 2 b1
4 b4

2 f2
3 f3 f7

2 K b1
4 b4

2 f2 

f3
3 f5

2 C b1
3 b4

3 f1
2 f2

2 f7
2 K 2 b1

3 b4
3 f2

2 f3
2 f5

2 K 2 b1
3 b4 e7

2 f2
4 f3

2 K b1
2 b4

4 f2
3 f3 f5

2 K b1
2 b4

2 e6
2 f2 f3

5

K b1
2 b4

2 e7
2 f2

5 f3 K 2 b1 b4
3 e6

2 f2
2 f3

4 C b4
5 e6 f1

4 f3 f5 K b4
5 e6 f1

3 f2
2 f7 K b4

4 e6
2 f1

2 f2 f3
3 K b1

4 e7
2 

f2
3 f3

3 C b1
3 b4

3 f2
4 f7

2 K b4
5 e6 f1

5 f7 K b4
4 e6

2 f2
3 f3

3  X2 C 2 a6 b1
5 b4 f1 f2

3 f3 f7 C 2 a6 b1
4 b4

2 f1
2 

f2
2 f3 f5 K 2 a6 b1

4 b4 e7 f1
2 f2

3 f3 K 5 a6 b1
3 b4

2 e6 f1
2 f2

2 f3
2 K 2 a6 b1

2 b4
3 e6 f1

4 f2 f3 K 2 a6 b1
2 

b4
3 e6 f1

2 f2
3 f3 C 2 b1

5 e6 f1 f2
2 f3 f5 f7 C 2 b1

4 b4 e6 f1
2 f2 f3 f5

2 C 2 b1
4 b4 e6 f1 f2

3 f5 f7 K 2 

b1
4 e6 e7 f1

2 f2
2 f3 f5 K 5 b1

3 b4 e6
2 f1

2 f2 f3
2 f5 K 2 b1

3 b4 e6
2 f1 f2

3 f3 f7 K b1
2 b4

2 e6
2 f1

2 f2
2 f3 f5 K

b1
2 b4 e6

2 e7 f1
2 f2

3 f3 C b1
3 e6

2 e7 f1
2 f2

2 f3
2 K 2 b1

2 b4
2 e6

2 f1
4 f3 f5 K b1

2 b4
2 e6

2 f1
3 f2

2 f7 K b1
2 b4

2 e6
2 f1 

f2
4 f7 C b1

2 b4
2 e6

2 f2
4 f3 f5 C 3 b1

2 b4 e6
3 f1

2 f2 f3
3 K b1

2 b4 e6
2 e7 f2

5 f3 C a6 b1
5 b4 f2

3 f3
2 f5 C a6 b1

4 

b4
2 f1 f2

4 f7 C a6 b1
4 b4

2 f2
4 f3 f5 K a6 b1

4 b4 e6 f2
3 f3

3 K a6 b1
4 b4 e7 f2

5 f3 K a6 b1
3 b4

2 e6 f2
4 f3

2 K 2 

b1
4 e6

2 f1 f2
2 f3

2 f7 C b1
3 b4 e6

2 f2
3 f3

2 f5 K a6 b1
5 e7 f2

4 f3
2 K b1

3 e6
2 e7 f2

4 f3
2 K b1

2 b4 e6
3 f2

3 f3
3 C b1 b4

2 

e6
3 f1

4 f3
2 K b1 b4

2 e6
3 f2

4 f3
2  X3

4 C Kb1
3 b4 e6

2 f2
5 f7 C b1 b4

2 e6
3 f1

5 f3 C a6 b1
5 e7 f1 f2

4 f3 K b1
4 e6

2 



(3)(3)

f1
2 f2

2 f3 f7 C b1
3 e6

2 e7 f1 f2
4 f3 C 2 b1

2 b4 e6
3 f1

3 f2 f3
2 K b1

3 b4 e6
2 f1

2 f2
3 f7 C b1

3 e6
2 e7 f1

3 f2
2 f3 K a6 

b1
6 f2

4 f3 f7 K a6 b1
5 b4 f2

5 f7 C 2 b1
2 b4 e6

3 f1 f2
3 f3

2 C 2 b1 b4
2 e6

3 f1
3 f2

2 f3 C 2 a6 b1
4 b4 e6 f1 f2

3 f3
2

C a6 b1
3 b4

2 e6 f1
3 f2

2 f3 K b1
4 e6

2 f2
4 f3 f7 K a6 b1

5 b4 f1 f2
3 f3 f5 K b1

3 b4 e6
2 f1 f2

3 f3 f5 C b1 b4
2 e6

3 f1 

f2
4 f3 C a6 b1

3 b4
2 e6 f1 f2

4 f3 K b1
3 b4 e6

2 f1
3 f2 f3 f5  X3

5 K a7 b1
4 b4

2 f1 f2
2 f3

2 f7 K a7 b1
3 b4

3 f1
2 f2 

f3
2 f5 C a7 b1

3 b4
2 e7 f1

2 f2
2 f3

2 C 3 a7 b1
2 b4

3 e6 f1
2 f2 f3

3 C a7 b1 b4
4 e6 f1

2 f2
2 f3

2 C 2 b1
2 b4

2 e7
2 f1

2 

f2
2 f3 f5 C 2 b1

2 b4 e6 e7
2 f1

2 f2 f3
3 C 2 b1 b4

3 e6 e7 f2
3 f3

2 f5 K 3 b1 b4
2 e6 e7

2 f1
2 f2

2 f3
2 C b4

4 e6 e7 f1
2 

f2
2 f3 f5 C 2 b1

3 b4 e6 e7 f2 f3
4 f5 K b1

3 b4 e7
2 f1

2 f2 f3
2 f5 K 2 b1

3 b4 e7
2 f1 f2

3 f3 f7 C 3 b1
2 b4

3 e6 

f1
2 f2 f3 f7

2 C b1
2 b4

3 e7 f1
3 f2 f5 f7 K b1

2 b4
3 e7 f1

2 f2 f3 f5
2 C b1

2 b4
3 e7 f1 f2

3 f5 f7 K b1
2 b4

2 e6 e7 f1
3 

f3
2 f7 C b1

2 b4
2 e6 e7 f1

2 f3
3 f5 C 4 b1

2 b4
2 e6 e7 f2

2 f3
3 f5 K 3 b1 b4

3 e6 e7 f1 f2
3 f3 f7 C b1

4 b4 e7 f1 f2 

f3
2 f5 f7 C 2 b1

3 b4
2 e7 f1 f2

2 f3 f5 f7 K 3 b1
3 b4 e6 e7 f1 f2 f3

3 f7 K 6 b1
2 b4

2 e6 e7 f1 f2
2 f3

2 f7 K 5 b1 

b4
3 e6 e7 f1

3 f2 f3 f7 C 4 b1 b4
3 e6 e7 f1

2 f2 f3
2 f5 K a7 b1

4 b4
2 f2

2 f3
3 f5 C a7 b1

4 b4 e7 f2
3 f3

3 K a7 b1
3 

b4
3 f2

3 f3
2 f5 C a7 b1

3 b4
2 e6 f2

2 f3
4 C a7 b1

3 b4
2 e7 f2

4 f3
2 C a7 b1

2 b4
3 e6 f2

3 f3
3 C a7 b1 b4

4 e6 f1
4 f3

2 C 3 

b1
3 b4 e7

2 f2
3 f3

2 f5 C b1
2 b4

3 e6 f2
3 f3 f7

2 K b1
2 b4

3 e7 f2
3 f3 f5

2 K b1
2 b4

2 e7
2 f1

3 f2
2 f7 K b1

2 b4
2 e7

2 f1 f2
4 f7

C 2 b1
2 b4

2 e7
2 f2

4 f3 f5 K b1
2 b4 e6

2 e7 f2 f3
5 K 3 b1

2 b4 e6 e7
2 f2

3 f3
3 K b1

2 b4 e7
3 f1

2 f2
3 f3 C b1 b4

4 e6 

f1
2 f2

2 f7
2 K 2 b1 b4

2 e6
2 e7 f2

2 f3
4 C b1 b4

2 e6 e7
2 f1

4 f3
2 K 2 b1 b4

2 e6 e7
2 f2

4 f3
2 C b4

4 e6 e7 f1
4 f3 f5 K

b4
4 e6 e7 f1

3 f2
2 f7 K b4

3 e6
2 e7 f1

2 f2 f3
3 K b4

3 e6 e7
2 f1

4 f2 f3 K b4
3 e6 e7

2 f1
2 f2

3 f3 K b1
4 b4

2 f2
2 f3 f5 f7

2

C 3 b1
4 b4 e7 f2

3 f3 f7
2 K b1

4 b4 e7 f2 f3
3 f5

2 K 2 b1
4 e7

2 f1 f2
2 f3

2 f7 K b1
3 b4

3 f1
2 f2 f5 f7

2 C b1
3 b4

2 e6 f2
2 

f3
2 f7

2 C 2 b1
3 b4

2 e7 f1
2 f2

2 f7
2 K 2 b1

3 b4
2 e7 f2

2 f3
2 f5

2 C b1
5 e7 f2

2 f3
2 f7

2 K b1
4 b4

2 f1 f2
2 f7

3 C b1
4 e7

2 f2
2 

f3
3 f5 K b1

3 b4
3 f2

3 f5 f7
2 C 2 b1

3 b4
2 e7 f2

4 f7
2 K b1

3 e6 e7
2 f2

2 f3
4 C b1

3 e7
3 f1

2 f2
2 f3

2 K b1
2 b4 e7

3 f2
5 f3

C b1 b4
4 e6 f1

4 f7
2 K b4

4 e6 e7 f1
5 f7 K b4

3 e6
2 e7 f2

3 f3
3 K b1

3 e7
3 f2

4 f3
2, 2 b1

4 b4 e6 f1 f2
2 f3 f5 f7 K 2 

b1
3 b4 e6 e7 f1

2 f2
2 f3 f5 C a6 b1

2 b4
3 e7 f1

4 f2
2 C a6 b1

2 b4
3 e7 f1

2 f2
4 K b1

5 b4 f1 f2
2 f5

2 f7 C 2 b1
4 b4 e6 

f1
2 f2

2 f7
2 C 3 b1

4 b4 e6 f2
2 f3

2 f5
2 C b1

4 b4 e7 f1
2 f2

2 f5
2 K 2 b1

4 e6 e7 f2
3 f3

2 f5 C 5 b1
3 b4

2 e6 f2
3 f3 f5

2

K 3 b1
3 b4 e6

2 f2
2 f3

3 f5 C 2 b1
3 e6 e7

2 f1
2 f2

3 f3 C 3 b1
2 b4

3 e6 f1
2 f2

2 f5
2 K 6 b1

2 b4
2 e6

2 f2
3 f3

2 f5 K 4 b1
2 

b4
2 e6 e7 f2

5 f5 C 4 b1
2 b4 e6

2 e7 f2
4 f3

2 C 2 b1
2 b4 e6 e7

2 f1
4 f2

2 C 4 b1
2 b4 e6 e7

2 f1
2 f2

4 K b1 b4
3 e6

2 f1
3 

f2
2 f7 C b1 b4

3 e6
2 f1 f2

4 f7 K 3 b1 b4
3 e6

2 f2
4 f3 f5 C 3 b1 b4

2 e6
2 e7 f2

5 f3 C a6 b1
4 b4

2 f2
3 f3

2 f5 K a6 

b1
4 b4 e7 f2

4 f3
2 K a6 b1

3 b4
3 f1

3 f2
2 f7 K a6 b1

3 b4
3 f1 f2

4 f7 C a6 b1
3 b4

3 f2
4 f3 f5 K a6 b1

3 b4
2 e6 f2

3 f3
3

K a6 b1
3 b4

2 e7 f2
5 f3 K a6 b1

2 b4
4 f1

4 f2 f5 K a6 b1
2 b4

4 f1
2 f2

3 f5 K a6 b1
2 b4

3 e6 f2
4 f3

2 K a6 b1
3 b4

3 f1
2 



(3)(3)

f2
2 f3 f5 C a6 b1

3 b4
2 e7 f1

2 f2
3 f3 C 3 a6 b1 b4

4 e6 f1
4 f2 f3 C a6 b1 b4

4 e6 f1
2 f2

3 f3 K 2 b1
4 e6 e7 f1 

f2
3 f3 f7 C 2 b1

3 b4
2 e6 f1

3 f2 f5 f7 C 3 b1
3 b4

2 e6 f1
2 f2 f3 f5

2 C 2 b1
3 b4

2 e6 f1 f2
3 f5 f7 K b1

3 b4 e6
2 f1 f2

2 

f3
2 f7 K 4 b1

3 b4 e6 e7 f1
3 f2

2 f7 K 4 b1
3 b4 e6 e7 f1 f2

4 f7 K 6 b1
3 b4 e6 e7 f2

4 f3 f5 K 6 b1
2 b4

2 e6
2 

f1
3 f2 f3 f7 K 2 b1

2 b4
2 e6

2 f1
2 f2 f3

2 f5 K 2 b1
2 b4

2 e6 e7 f1
4 f2 f5 K 6 b1

2 b4
2 e6 e7 f1

2 f2
3 f5 C 2 b1

2 b4 

e6
2 e7 f1

2 f2
2 f3

2 K 7 b1 b4
3 e6

2 f1
2 f2

2 f3 f5 C 6 b1 b4
2 e6

2 e7 f1
4 f2 f3 C 9 b1 b4

2 e6
2 e7 f1

2 f2
3 f3 C 3 a7 b1

3 

b4
2 e6 f1

2 f2
3 f3 K a7 b1

5 b4 f1 f2
4 f7 K a7 b1

5 b4 f2
4 f3 f5 K a7 b1

4 b4
2 f1

2 f2
3 f5 C a7 b1

4 b4 e6 f2
4 f3

2

C a7 b1
4 b4 e7 f1

2 f2
4 C a7 b1

3 b4
2 e6 f2

5 f3 C a7 b1
2 b4

3 e6 f1
4 f2

2 C a7 b1
2 b4

3 e6 f1
2 f2

4 C a7 b1
5 e7 

f2
5 f3 K a7 b1

4 b4
2 f2

5 f5 C a7 b1
4 b4 e7 f2

6 K 2 b4
4 e6

2 f1
4 f2 f5 K 2 b4

4 e6
2 f1

2 f2
3 f5 C b4

3 e6
3 f1

2 f2
2 f3

2

C 4 b4
3 e6

2 e7 f1
4 f2

2 C 2 b4
3 e6

2 e7 f1
2 f2

4 C a6 b4
5 e6 f1

4 f2
2 K b1

5 b4 f2
2 f3 f5

3 C b1
5 e7 f2

3 f3 f5
2 K b1

4 

b4
2 f1

2 f2 f5
3 C b1

4 b4 e7 f2
4 f5

2 C b1
3 e6

2 e7 f2
3 f3

3 C 2 b1
3 e6 e7

2 f2
5 f3 C b1

2 b4
3 e6 f1

4 f5
2 C 2 b1

2 b4
3 e6 

f2
4 f5

2 C b1
2 b4 e6

3 f2
2 f3

4 C 2 b1
2 b4 e6 e7

2 f2
6 K 2 b1 b4

3 e6
2 f1

5 f7 C 2 b1 b4
2 e6

3 f2
3 f3

3 C a6 b4
5 e6 f1

6

K b1
4 b4

2 f2
3 f5

3 C b4
3 e6

3 f2
4 f3

2 C 2 b4
3 e6

2 e7 f1
6  X3

3 C K5 b1
3 b4

2 e6 f1 f2 f3
2 f5 f7 K b1

3 b4 e6 e7 f1 

f2
2 f3

2 f7 K 4 b1
2 b4

3 e6 f1 f2
2 f3 f5 f7 K 6 b1

2 b4
2 e6 e7 f1

3 f2 f3 f7 K 2 b1
2 b4

2 e6 e7 f1
2 f2 f3

2 f5 K 8 b1 

b4
3 e6 e7 f1

2 f2
2 f3 f5 C 3 b1

4 b4 e7 f2
2 f3

2 f5
2 K 2 b1

4 e7
2 f1 f2

3 f3 f7 K b1
3 b4

2 e6 f2
3 f3 f7

2 C 2 b1
3 b4

2 e6 f2 

f3
3 f5

2 C 6 b1
3 b4

2 e7 f2
3 f3 f5

2 C b1
5 b4 f2

2 f3 f5 f7
2 K b1

4 b4
2 f1

2 f2 f5 f7
2 C 3 b1

4 b4 e7 f1
2 f2

2 f7
2 K 3 

b1
3 b4 e7

2 f1
3 f2

2 f7 K 3 b1
3 b4 e7

2 f1 f2
4 f7 K 5 b1

3 b4 e7
2 f2

4 f3 f5 C b1
2 b4

3 e6 f1
2 f3

2 f5
2 C 4 b1

2 b4
3 e6 f2

2 

f3
2 f5

2 C 3 b1
2 b4

3 e7 f1
2 f2

2 f5
2 K b1

2 b4
2 e6

2 f2 f3
4 f5 K b1

2 b4
2 e7

2 f1
4 f2 f5 K 4 b1

2 b4
2 e7

2 f1
2 f2

3 f5 C b1
2 b4 

e6
2 e7 f2

2 f3
4 C 3 b1

2 b4 e6 e7
2 f2

4 f3
2 C 2 b1 b4

4 e6 f2
3 f3 f5

2 K 2 b1 b4
3 e6

2 f2
2 f3

3 f5 K 2 b1 b4
3 e6 e7 

f1
5 f7 C 2 b1 b4

2 e6
2 e7 f2

3 f3
3 C 2 b1 b4

2 e6 e7
2 f2

5 f3 C b4
4 e6

2 f1
3 f2 f3 f7 K b4

4 e6
2 f1

2 f2 f3
2 f5 C b4

4 

e6
2 f1 f2

3 f3 f7 K 2 b4
4 e6 e7 f1

4 f2 f5 K 2 b4
4 e6 e7 f1

2 f2
3 f5 C b4

3 e6
2 e7 f1

2 f2
2 f3

2 C a7 b1 b4
4 e6 f1

2 f2
3 f3

K a7 b1
3 b4

3 f1
2 f2

2 f3 f5 C a7 b1
3 b4

2 e7 f1
2 f2

3 f3 C 3 a7 b1 b4
4 e6 f1

4 f2 f3 K a7 b1
2 b4

3 e6 f2
4 f3

2 C a7 

b1
2 b4

3 e7 f1
4 f2

2 C a7 b1
2 b4

3 e7 f1
2 f2

4 C 2 b1
4 b4

2 f1 f2 f3 f5
2 f7 C 3 b1

3 b4
2 e6 f1

2 f2 f3 f7
2 C 2 b1

3 b4
2 e7 

f1
3 f2 f5 f7 C 2 b1

3 b4
2 e7 f1 f2

3 f5 f7 K 4 b1
3 b4 e6 e7 f2

2 f3
3 f5 K b1

3 b4 e7
2 f1

2 f2
2 f3 f5 K 2 b1

2 b4
3 e6 

f1
3 f3 f5 f7 C b1

2 b4
2 e6

2 f1 f2 f3
3 f7 K 8 b1

2 b4
2 e6 e7 f2

3 f3
2 f5 C b1

2 b4 e6 e7
2 f1

2 f2
2 f3

2 K b1 b4
4 e6 

f1
3 f2 f5 f7 C 4 b1 b4

4 e6 f1
2 f2 f3 f5

2 K b1 b4
4 e6 f1 f2

3 f5 f7 C 2 b1 b4
3 e6

2 f1 f2
2 f3

2 f7 K b1 b4
3 e6 e7 f1

3 

f2
2 f7 C b1 b4

3 e6 e7 f1 f2
4 f7 K 4 b1 b4

3 e6 e7 f2
4 f3 f5 C 3 b1 b4

2 e6 e7
2 f1

4 f2 f3 C 5 b1 b4
2 e6 e7

2 f1
2 

f2
3 f3 C a7 b1

4 b4
2 f2

3 f3
2 f5 K a7 b1

4 b4 e7 f2
4 f3

2 K a7 b1
3 b4

3 f1
3 f2

2 f7 K a7 b1
3 b4

3 f1 f2
4 f7 C a7 b1

3 b4
3 



(3)(3)

f2
4 f3 f5 K a7 b1

3 b4
2 e6 f2

3 f3
3 K a7 b1

3 b4
2 e7 f2

5 f3 K a7 b1
2 b4

4 f1
4 f2 f5 K a7 b1

2 b4
4 f1

2 f2
3 f5 C a7 

b4
5 e6 f1

4 f2
2 K b1

5 b4 f1 f2
2 f7

3 C b1
5 e7 f2

3 f3 f7
2 C b1

4 b4
2 f2

3 f5 f7
2 K b1

4 b4
2 f2 f3

2 f5
3 C b1

4 b4 e7 f2
4 f7

2

K 2 b1
4 e7

2 f2
3 f3

2 f5 K 2 b1
3 b4

3 f2
2 f3 f5

3 C b1
3 e6 e7

2 f2
3 f3

3 C b1
3 e7

3 f1
2 f2

3 f3 K b1
2 b4

4 f1
2 f2 f5

3 C b1
2 

b4
3 e6 f1

4 f7
2 K b1

2 b4
3 e6 f2

4 f7
2 C 3 b1

2 b4
3 e7 f2

4 f5
2 K 3 b1

2 b4
2 e7

2 f2
5 f5 C b1

2 b4 e7
3 f1

4 f2
2 C 2 b1

2 b4 

e7
3 f1

2 f2
4 C b4

5 e6 f1
2 f2

2 f5
2 K b4

4 e6
2 f2

3 f3
2 f5 C b4

3 e6
2 e7 f2

4 f3
2 C 2 b4

3 e6 e7
2 f1

4 f2
2 C b4

3 e6 e7
2 f1

2 f2
4

C a7 b4
5 e6 f1

6 C b1
3 e7

3 f2
5 f3 K b1

2 b4
4 f2

3 f5
3 C b1

2 b4 e7
3 f2

6 C b4
5 e6 f1

4 f5
2 C b4

3 e6 e7
2 f1

6  X3

C 6 b1
3 b4

2 e6 f1
2 f2 f3 f5 f7 K 2 b1

3 b4 e6 e7 f1
2 f2

2 f3 f7 K 6 b1
3 b4 e6 e7 f1 f2

2 f3
2 f5 K 8 b1

2 

b4
2 e6 e7 f1

3 f2 f3 f5 K 4 b1
2 b4

2 e6 e7 f1 f2
3 f3 f5 K b1

3 b4 e6
2 f2

2 f3
3 f7 K 2 b1

3 b4 e7
2 f1

3 f2
2 f5 K 2 b1

3 b4 

e7
2 f1 f2

4 f5 C 4 b1
3 e6 e7

2 f1 f2
3 f3

2 C 2 b1
2 b4

3 e6 f1
4 f5 f7 K b1

2 b4
3 e6 f1

3 f3 f5
2 K 2 b1

2 b4
2 e6

2 f2
3 f3

2 f7

K b1 b4
3 e6

2 f2
4 f3 f7 K 2 b1 b4

3 e6 e7 f1
5 f5 C b4

4 e6
2 f1

3 f2 f3 f5 C b4
4 e6

2 f1 f2
3 f3 f5 C b4

3 e6
2 e7 f1

3 

f2
2 f3 K b4

3 e6
2 e7 f1 f2

4 f3 K a6 b1
4 b4

2 f2
3 f3

2 f7 K a6 b1
3 b4

3 f2
4 f3 f7 C a6 b4

5 e6 f1
3 f2

2 f3 K 2 b1
5 b4 f1 

f2
2 f5 f7

2 K b1
5 b4 f2

2 f3 f5
2 f7 C 2 b1

5 e7 f2
3 f3 f5 f7 K 2 b1

4 b4
2 f1

2 f2 f5
2 f7 C b1

4 b4
2 f1 f2 f3 f5

3 C 2 

b1
4 b4 e7 f2

4 f5 f7 K 2 b1
4 e6 e7 f2

3 f3
2 f7 K 2 b1

4 e7
2 f1 f2

3 f3 f5 C 2 b1
3 b4

2 e7 f1
3 f2 f5

2 C 2 b1
3 b4

2 e7 f1 

f2
3 f5

2 K a6 b1
3 b4

3 f1
2 f2

2 f3 f7 K 2 a6 b1
3 b4

3 f1 f2
2 f3

2 f5 C 2 a6 b1
3 b4

2 e7 f1 f2
3 f3

2 K a6 b1
2 b4

4 

f1
3 f2 f3 f5 C 3 a7 b1

4 b4
2 f1 f2

3 f3 f5 K 3 a7 b1
4 b4 e7 f1 f2

4 f3 K 4 a7 b1
3 b4

2 e6 f1 f2
3 f3

2 K 7 a7 b1
2 

b4
3 e6 f1

3 f2
2 f3 K 3 a7 b1

2 b4
3 e6 f1 f2

4 f3 C 2 b1
2 b4 e6 e7

2 f1 f2
4 f3 K 3 b1 b4

3 e6
2 f1

2 f2
2 f3 f7 C 2 b1 b4

3 

e6
2 f1 f2

2 f3
2 f5 K 2 b1 b4

3 e6 e7 f1
3 f2

2 f5 C 8 b1 b4
2 e6

2 e7 f1
3 f2 f3

2 C 2 b1 b4
2 e6

2 e7 f1 f2
3 f3

2 K a6 b1
2 

b4
4 f1 f2

3 f3 f5 C 3 a6 b1
2 b4

3 e6 f1 f2
2 f3

3 C a6 b1
2 b4

3 e7 f1
3 f2

2 f3 C a6 b1
2 b4

3 e7 f1 f2
4 f3 C 4 a6 b1 

b4
4 e6 f1

3 f2 f3
2 C 2 a6 b1 b4

4 e6 f1 f2
3 f3

2 C 2 b1
4 b4 e6 f2

2 f3
2 f5 f7 C 4 b1

4 b4 e7 f1
2 f2

2 f5 f7 C

b1
4 b4 e7 f1 f2

2 f3 f5
2 K 2 b1

3 b4
2 e6 f1 f2 f3

2 f5
2 C 2 b1

3 b4
2 e6 f2

3 f3 f5 f7 K 2 b1
3 b4 e6 e7 f2

4 f3 f7 C 2 

b1
2 b4

3 e6 f1
2 f2

2 f5 f7 K b1
2 b4

3 e6 f1 f2
2 f3 f5

2 K b1
2 b4

2 e6
2 f1

2 f2 f3
2 f7 C b1

2 b4
2 e6

2 f1 f2 f3
3 f5 C 5 b1

2 b4 

e6
2 e7 f1 f2

2 f3
3 C 2 b1

2 b4 e6 e7
2 f1

3 f2
2 f3 C a7 b1

5 b4 f2
4 f3 f7 C 2 a7 b1

4 b4
2 f1

2 f2
3 f7 C 2 a7 b1

3 b4
3 f1

3 

f2
2 f5 C 2 a7 b1

3 b4
3 f1 f2

4 f5 K 2 a7 b1
3 b4

2 e7 f1
3 f2

3 K 2 a7 b1
3 b4

2 e7 f1 f2
5 K 2 a7 b1 b4

4 e6 f1
5 f2

K 2 a7 b1 b4
4 e6 f1

3 f2
3 C a7 b1

4 b4
2 f2

5 f7 C a6 b4
5 e6 f1

5 f3 K b1
4 b4

2 f2
3 f5

2 f7 K b4
4 e6

2 f1
4 f2 f7 K b4

4 

e6
2 f1

2 f2
3 f7 C 2 b4

3 e6
2 e7 f1

5 f3  X3
2 C 2 b1

4 b4 e7 f2
2 f3

3 f5 C 2 b1
3 b4

2 e6 f2 f3
4 f5 C 4 b1

3 b4
2 e7 f2

3 

f3
2 f5 K 2 b1

3 b4 e6 e7 f2
2 f3

4 C b1
2 b4

4 f1
3 f2 f5 f7 K b1

2 b4
4 f1

2 f2 f3 f5
2 C b1

2 b4
4 f1 f2

3 f5 f7 K b1
2 b4

3 e6 

f1
3 f3

2 f7 C b1
2 b4

3 e6 f1
2 f3

3 f5 C 4 b1
2 b4

3 e6 f2
2 f3

3 f5 K b1
2 b4

3 e7 f1
3 f2

2 f7 K b1
2 b4

3 e7 f1 f2
4 f7 C 2 b1

2 



(3)(3)

b4
3 e7 f2

4 f3 f5 K 4 b1
2 b4

2 e6 e7 f2
3 f3

3 K b1
2 b4

2 e7
2 f1

2 f2
3 f3 C 2 b1 b4

4 e6 f2
3 f3

2 f5 K 2 b1 b4
3 e6 e7 f2

4 

f3
2 C b4

5 e6 f1
2 f2

2 f3 f5 K b4
4 e6 e7 f1

4 f2 f3 K b4
4 e6 e7 f1

2 f2
3 f3 C b1

4 b4
2 f1 f2 f3

2 f5 f7 K b1
4 b4 e7 f1 

f2
2 f3

2 f7 C 2 b1
3 b4

3 f1 f2
2 f3 f5 f7 K 3 b1

3 b4
2 e6 f1 f2 f3

3 f7 K 2 b1
3 b4

2 e7 f1 f2
3 f3 f7 K 6 b1

2 b4
3 e6 f1 f2

2 

f3
2 f7 C 2 b1

2 b4
3 e7 f1

2 f2
2 f3 f5 K b1

2 b4
2 e6 e7 f1

2 f2 f3
3 K 5 b1 b4

4 e6 f1
3 f2 f3 f7 C 4 b1 b4

4 e6 f1
2 f2 

f3
2 f5 K 3 b1 b4

4 e6 f1 f2
3 f3 f7 K 4 b1 b4

3 e6 e7 f1
2 f2

2 f3
2 C b1

5 b4 f2
2 f3

2 f7
2 C 2 b1

4 b4
2 f2

3 f3 f7
2 K b1

4 

b4
2 f2 f3

3 f5
2 C b1

3 b4
3 f1

2 f2
2 f7

2 K 2 b1
3 b4

3 f2
2 f3

2 f5
2 K 2 b1

3 b4 e7
2 f2

4 f3
2 K b1

2 b4
4 f2

3 f3 f5
2 K b1

2 b4
2 

e6
2 f2 f3

5 K b1
2 b4

2 e7
2 f2

5 f3 K 2 b1 b4
3 e6

2 f2
2 f3

4 C b4
5 e6 f1

4 f3 f5 K b4
5 e6 f1

3 f2
2 f7 K b4

4 e6
2 f1

2 f2 f3
3 K

b1
4 e7

2 f2
3 f3

3 C b1
3 b4

3 f2
4 f7

2 K b4
5 e6 f1

5 f7 K b4
4 e6

2 f2
3 f3

3  X1 C K2 a6 b1 b4
4 e6 f1

5 f2 K 2 a6 b1 

b4
4 e6 f1

3 f2
3 C 2 b1

3 b4
2 e6 f1

3 f2 f5
2 C 2 b1

3 b4
2 e6 f1 f2

3 f5
2 C b1

3 b4 e6
2 f2

4 f3 f7 C 2 b1
3 e6

2 e7 f1 f2
3 f3

2

C b1
2 b4

2 e6
2 f1

2 f2
3 f7 C 2 b1

2 b4 e6
3 f1 f2

2 f3
3 K 2 b1 b4

3 e6
2 f1

3 f2
2 f5 C 4 b1 b4

2 e6
3 f1

3 f2 f3
2 C 3 a6 b1

4 

b4
2 f1 f2

3 f3 f5 K 3 a6 b1
4 b4 e7 f1 f2

4 f3 K 4 a6 b1
3 b4

2 e6 f1 f2
3 f3

2 K 7 a6 b1
2 b4

3 e6 f1
3 f2

2 f3 K 3 a6 b1
2 

b4
3 e6 f1 f2

4 f3 C 2 b1
4 b4 e6 f1

2 f2
2 f5 f7 C 2 b1

4 b4 e6 f1 f2
2 f3 f5

2 K 2 b1
4 e6 e7 f1 f2

3 f3 f5 K b1
3 b4 e6

2 

f1
2 f2

2 f3 f7 K 4 b1
3 b4 e6

2 f1 f2
2 f3

2 f5 K 2 b1
3 b4 e6 e7 f1

3 f2
2 f5 K 2 b1

3 b4 e6 e7 f1 f2
4 f5 K 7 b1

2 b4
2 e6

2 

f1
3 f2 f3 f5 K 3 b1

2 b4
2 e6

2 f1 f2
3 f3 f5 C b1

2 b4 e6
2 e7 f1

3 f2
2 f3 C b1

2 b4 e6
2 e7 f1 f2

4 f3 C a6 b1
5 b4 f2

4 f3 f7

C 2 a6 b1
4 b4

2 f1
2 f2

3 f7 C 2 a6 b1
3 b4

3 f1
3 f2

2 f5 C 2 a6 b1
3 b4

3 f1 f2
4 f5 K 2 a6 b1

3 b4
2 e7 f1

3 f2
3 K 2 a6 

b1
3 b4

2 e7 f1 f2
5 C a6 b1

4 b4
2 f2

5 f7 C b1
2 b4

2 e6
2 f2

5 f7 K 2 b1 b4
3 e6

2 f1
5 f5 K b4

3 e6
3 f1 f2

4 f3 C b4
3 e6

3 

f1
5 f3  X3

4 C 3 a6 b1
3 b4

2 e6 f1
2 f2

3 f3 K b1
3 b4 e6

2 f1
2 f2

2 f3 f5 K a6 b1
5 b4 f1 f2

4 f7 K a6 b1
5 b4 f2

4 f3 f5

K a6 b1
4 b4

2 f1
2 f2

3 f5 C a6 b1
4 b4 e6 f2

4 f3
2 C a6 b1

4 b4 e7 f1
2 f2

4 C a6 b1
3 b4

2 e6 f2
5 f3 C a6 b1

2 b4
3 e6 

f1
4 f2

2 C a6 b1
2 b4

3 e6 f1
2 f2

4 K b1
3 b4 e6

2 f1
3 f2

2 f7 K b1
3 b4 e6

2 f1 f2
4 f7 K b1

3 b4 e6
2 f2

4 f3 f5 C b1
3 e6

2 e7 

f1
2 f2

3 f3 K b1
2 b4

2 e6
2 f1

4 f2 f5 K 2 b1
2 b4

2 e6
2 f1

2 f2
3 f5 C b1

2 b4 e6
3 f1

2 f2
2 f3

2 C b1
2 b4 e6

2 e7 f1
4 f2

2 C 2 

b1
2 b4 e6

2 e7 f1
2 f2

4 C 3 b1 b4
2 e6

3 f1
4 f2 f3 C 4 b1 b4

2 e6
3 f1

2 f2
3 f3 K b1

2 b4
2 e6

2 f2
5 f5 C b1

2 b4 e6
3 f2

4 f3
2 C

b1
2 b4 e6

2 e7 f2
6 C b1 b4

2 e6
3 f2

5 f3 C a6 b1
5 e7 f2

5 f3 K a6 b1
4 b4

2 f2
5 f5 C a6 b1

4 b4 e7 f2
6 C b1

3 e6
2 e7 

f2
5 f3 C 2 b4

3 e6
3 f1

4 f2
2 C b4

3 e6
3 f1

2 f2
4 C b4

3 e6
3 f1

6  X3
5 K b1

2 b4
2 e6 e7 f1

2 f2 f3
2 f7 C 4 b1 b4

4 e6 

f1
2 f2 f3 f5 f7 K 4 b1 b4

3 e6 e7 f1
2 f2

2 f3 f7 K b1
2 b4

3 e6 f1
3 f3 f7

2 C 2 b1
2 b4

3 e7 f2
4 f5 f7 K b1

2 b4
2 e6

2 f2 

f3
4 f7 K b1

2 b4
2 e7

2 f1
2 f2

3 f7 C b1
2 b4 e7

3 f1
3 f2

2 f3 C b1
2 b4 e7

3 f1 f2
4 f3 K b1 b4

4 e6 f1
3 f2 f7

2 K b1 

b4
4 e6 f1 f2

3 f7
2 K 2 b1 b4

3 e6
2 f2

2 f3
3 f7 C b4

5 e6 f1
2 f2

2 f5 f7 K b4
4 e6

2 f1
2 f2 f3

2 f7 K b4
4 e6 e7 f1

4 f2 f7 K

b4
4 e6 e7 f1

2 f2
3 f7 C b4

3 e6 e7
2 f1

3 f2
2 f3 K b1

4 b4
2 f2 f3

2 f5
2 f7 K 2 b1

3 b4
3 f2

2 f3 f5
2 f7 K 3 b1

3 b4 e7
2 f2

4 f3 f7



(3)(3)

K b1
2 b4

4 f1
2 f2 f5

2 f7 C 3 b1
2 b4 e6 e7

2 f1 f2
2 f3

3 C 2 b1 b4
4 e6 f2

3 f3 f5 f7 K 2 b1 b4
3 e6 e7 f2

4 f3 f7

C 4 b1 b4
2 e6 e7

2 f1
3 f2 f3

2 C 2 b1 b4
2 e6 e7

2 f1 f2
3 f3

2 C b1
4 b4

2 f1 f2 f3 f5 f7
2 K b1

4 b4 e7 f1 f2
2 f3 f7

2

C 2 b1
4 b4 e7 f2

2 f3
2 f5 f7 K 3 b1

3 b4
2 e6 f1 f2 f3

2 f7
2 C 2 b1

3 b4
2 e6 f2 f3

3 f5 f7 C 4 b1
3 b4

2 e7 f2
3 f3 f5 f7

K 2 b1
3 b4 e6 e7 f2

2 f3
3 f7 K b1

3 b4 e7
2 f1

2 f2
2 f3 f7 K 2 b1

3 b4 e7
2 f1 f2

2 f3
2 f5 C b1

2 b4
3 e6 f1

2 f3
2 f5 f7

K 3 b1
2 b4

3 e6 f1 f2
2 f3 f7

2 C 4 b1
2 b4

3 e6 f2
2 f3

2 f5 f7 C 2 b1
2 b4

3 e7 f1
2 f2

2 f5 f7 K 4 b1
2 b4

2 e6 e7 f2
3 f3

2 f7

K b1
2 b4

2 e7
2 f1

3 f2 f3 f5 K b1
2 b4

2 e7
2 f1 f2

3 f3 f5 K a7 b1
4 b4

2 f2
3 f3

2 f7 K a7 b1
3 b4

3 f2
4 f3 f7 C a7 b4

5 e6 

f1
3 f2

2 f3 C a7 b1
2 b4

3 e7 f1 f2
4 f3 C 4 a7 b1 b4

4 e6 f1
3 f2 f3

2 C 2 a7 b1 b4
4 e6 f1 f2

3 f3
2 K a7 b1

3 b4
3 f1

2 

f2
2 f3 f7 K 2 a7 b1

3 b4
3 f1 f2

2 f3
2 f5 C 2 a7 b1

3 b4
2 e7 f1 f2

3 f3
2 K a7 b1

2 b4
4 f1

3 f2 f3 f5 K a7 b1
2 b4

4 f1 

f2
3 f3 f5 C 3 a7 b1

2 b4
3 e6 f1 f2

2 f3
3 C a7 b1

2 b4
3 e7 f1

3 f2
2 f3 C a7 b4

5 e6 f1
5 f3 C b1

5 b4 f2
2 f3 f7

3 K 2 b1
4 

e7
2 f2

3 f3
2 f7 C 2 b1

3 e7
3 f1 f2

3 f3
2 K b1

2 b4
4 f2

3 f5
2 f7 K b1

2 b4
2 e7

2 f2
5 f7 C b4

5 e6 f1
4 f5 f7 K b4

4 e6
2 f2

3 f3
2 f7

C b4
3 e6 e7

2 f1
5 f3 C b1

4 b4
2 f2

3 f7
3



Appendix B

An example of L-L-L class platform. Deriving univariate polynomial with design

parameters as in Example 5.3.2 by Maple.

72



(1)(1)

(4)(4)

(2)(2)

(3)(3)

with Groebner ;
Basis, FGLM, HilbertDimension, HilbertPolynomial, HilbertSeries, Homogenize, InitialForm,
InterReduce, IsBasis, IsProper, IsZeroDimensional, LeadingCoefficient, LeadingMonomial,
LeadingTerm, MatrixOrder, MaximalIndependentSet, MonomialOrder, MultiplicationMatrix,
MultivariateCyclicVector, NormalForm, NormalSet, RationalUnivariateRepresentation,
Reduce, RememberBasis, SPolynomial, Solve, SuggestVariableOrder, Support, TestOrder,
ToricIdealBasis, TrailingTerm, UnivariatePolynomial, Walk, WeightedDegree

Fd K
3

4
$X 1 $X 3 C

1
4

 X 2 $X 3 K
1
4
$X 1 K

3
4

$X 2 , 2 $X 3 2K
2

4
$X 1 $X 3

C
2

4
$X 2 $X 3 K

2
4

$X 1 K
2

4
$X 2 C

2
2

$X 3 C
2

2
, 2$X 3 2K

1
2
$X 2

$X 3 C
1
2
$X 1 K

1
2
$X 3 C 1

K
1
4

 3  X1 X3 C
1
4

 X2 X3 K
1
4

 X1 K
1
4

 3  X2, 2  X3
2 K

1
4

 2  X1 X3 C
1
4

 2  X2 X3

K
1
4

 2  X1 K
1
4

 2  X2 C
1
2

 2  X3 C
1
2

 2 , 2 X3
2 K

1
2

 X2 X3 C
1
2

 X1 K
1
2

 X3

C 1

Gd Basis F, plex X 1 , X 2 , X 3

22C 44 X3
2 C 3 3 C 7  X3, K27 3 K 147C 42 3 K 66  X3 C 91 X2, K21 3 C 33

C K54 3 K 294  X3 C 91 X1

solve 22C 44 X3
2 C 3 3 C 7  X3, X 3

K
3
88

 3 K
7
88

K
1
88

$I 3796K 42 3 , K
3
88

 3 K
7

88
C

1
88

$I 3796K 42 3



Appendix C

An example of T-T-T class platform. Deriving univariate polynomial with design

parameters as in Example 5.3.3 by Maple.
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(4)(4)

(3)(3)

(2)(2)

with Groebner ;
Basis, FGLM, HilbertDimension, HilbertPolynomial, HilbertSeries, Homogenize, InitialForm,
InterReduce, IsBasis, IsProper, IsZeroDimensional, LeadingCoefficient, LeadingMonomial,
LeadingTerm, MatrixOrder, MaximalIndependentSet, MonomialOrder, MultiplicationMatrix,
MultivariateCyclicVector, NormalForm, NormalSet, RationalUnivariateRepresentation,
Reduce, RememberBasis, SPolynomial, Solve, SuggestVariableOrder, Support, TestOrder,
ToricIdealBasis, TrailingTerm, UnivariatePolynomial, Walk, WeightedDegree

Fd
K1
2

$X 1 $X 3 C
1
2
$X 2 ,K

1
2
$X 1 K

1
2
$X 2 $X 3  CX 3 ,

2$ 3 K 5
8

$X 3 2K
3

4

$X 1 $X 3 C
1
4
$X 2 $ X 3 C

1
4
$X 1 C

3
4

$X 2 K
2$ 3 C 1

4
$X 3 K

1
8

K
1
2

 X1 X3 C
1
2

 X2, K
1
2

 X1 K
1
2

 X2 X3 CX3,
1
8

 2 3 K 5  X3
2 K

1
4

 3  X1 X3

C
1
4

 X2 X3 C
1
4

 X1 C
1
4

 3  X2 K
1
4

 2 3 C 1  X3 K
1
8

Gd Basis F, plex X 1 , X 2 , X 3

2 3 C 5C 16 3 C 14  X3 C 13 X3
2, K 3 C 4C 26 3 K 13  X3 C 52 X2, 8 3 C 7

C 13 3 K 26  X3 C 52 X1

solve 2 3 C 5C 13 X3
2 C 16 3 C 14  X3, X 3

K
8
13

 3 K
7
13

K
1
13

 176C 86 3 , K
8
13

 3 K
7

13
C

1
13

 176C 86 3
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