
Collaborative
Software Visualization in
Co-located Environments

by

Craig Anslow

A thesis
submitted to the Victoria University of Wellington
in fulfilment of the requirements for the degree of

Doctor of Philosophy
in Software Engineering.

Victoria University of Wellington
2013

Abstract
Most software visualization systems and tools are designed from a single-

user perspective and are bound to the desktop and IDEs. These design decisions
do not allow users to analyse software collaboratively or to easily interact and
navigate visualizations within a co-located environment at the same time. This
thesis presents an exploratory study of collaborative software visualization using
multi-touch tables in a co-located environment. The thesis contributes a richer
understanding of how pairs of developers make use of shared visualizations on
large multi-touch tables to gain insight into the design of software systems.

We designed a collaborative software visualization application, called Source-
Vis, that contained a suite of 13 visualization techniques adapted for multi-touch
interaction. We built two large multi-touch tables (28 and 48 inches) following
existing hardware designs, to explore and evaluate SourceVis. We then conducted
both qualitative and quantitative user studies, culminating in a study of 44 profes-
sional software developers working in pairs.

We found that pairs preferred joint group work, used a variety of coupling
styles, and made many transitions between coupling and arrangement styles. For
collaborative group work we recommend designing for joint group work over
parallel individual work, supporting a flexible variety of coupling styles, and
supporting fluid transitions between coupling and arrangement styles.

We found that the preferred style for joint group work was closely coupled and
arranged side by side. We found some global functionally was not easily accessible.
We found some of the user interactions and visual interface elements were not
designed consistently. For the design of collaborative software visualizations
we recommend designing visualizations for closely coupled arrangements with
rotation features, providing functionality in the appropriate locality, and providing
consistent user interactions and visual interface design.

We found sometimes visualization windows overlapped each other and text
was hard to read in windows. We found when pairs were performing joint group
work the size of the table was appropriate but not for parallel individual. We found
that because the table could not differentiate between different simultaneous users
that some pair interactions were limited. For the design of multi-touch tables we
recommend providing a high resolution workspace, providing appropriate table
space, and differentiating between simultaneous user interactions.

Acknowledgments

Thanks to my supervisors Professor James Noble and Dr. Stuart Marshall, without
either of them I could not see how I could have finished this mammoth task.
Especially when times were very tough. Your persistence and encouragement
were immensely appreciated. Thanks to Professor Robert Biddle for providing
sound advice from further afield, it was much appreciated. Thanks to Associate
Professor Ewan Tempero for providing advice throughout the thesis. Special
thanks to Roman Klapaukh for proof reading the entire thesis and offering useful
technical suggestions.

Thanks to all the professional software developers and computer science stu-
dents for participating in my user studies. Without them I simply could not have
made the research findings and completed this thesis.

Special thanks to Petra Isenberg whose work this thesis builds upon. I am
grateful to Petra for the time she spent discussing with me about her thesis and
words of advice she provided.

Thanks to my examiners for examining the thesis and providing valuable
feedback: T.C. Nicholas Graham, Stuart Charters, and Taehyun Rhee.

Thanks to the wonderful people in the Elvis - Software Design Research Group,
fellow students, and colleagues who have made graduate school an enjoyable
experience: Alex Potanin, David Pearce, Ian Welch, Radu Muschevici, Rashina
Hoda, Siva Dorairaj, Pippin Barr, Rilla Khaled, Angela Martin, Keith Cassell, Adam
Clarke, Nicholas Cameron, Stephen Nelson, Vipul Delwadia, Roman Klapaukh,
Paley Li, Jan Larres, Frank Schmager, Hugh Davenport, Jennifer Ferreira, Matthew
Duignan, Michael Waterman, Stephen Nelson, Kyle Chard, Siva Dorairaj, Diane
Strode, Michael Homer, Tim Jones, Kourosh Nesthatian, Achim Gadke, Ben Palmer,
Urvesh Bhowan, Rohitash Chandra, Van Lam Le, Hui Ma, Pavle Mogin, Thomas
Kuehne, Marco Servetto, Peter Andreae.

Thanks to the following other students whom I helped with their project but I
also gained valuable insight which helped me with my project: Jeremy Shipman,
Esther Ng, Joshua Lindsay, Nick Vause, Hien Tran, Haowei Ruan, Yi-Jing Chung,
Daniel Cope, Matthew Crisp, Marco Costantini, and Fahmi Abdulhamid.

i

ii

Thanks to the programming, technical, and administration teams within the
School of Engineering and Computer Science who have always been very generous
and helpful: Roger Cliffe, Mark Davies, Royce Brown, Duncan McEwan, Ray
Brownrigg, Kevin Buckley, Monique Damitio, Christo Muller, Tim Exley, Jason
Edwards, Sean Anderson, Sue Hall, Amanda Holdaway, Prema Ram, Kelsey
Firmin, and Ginny Whatarau. Thanks to staff from ITS: Laureen Jones, Sue Creese,
Raymond Hutchinson, Fletcher Hanscomb, Michael Hikuroa, and Johny Flutey.

Thanks to the help of various people throughout the local computer science
community in New Zealand who have helped in different aspects: Jens Dietrich,
John Hosking, John Grundy, Jevon Wright, Graham Jenson, Rachel Blagojevic,
Beryl Plimmer, Paul Schmeider, Carl Schultz, Alyona Medelyen, Andreas Loew,
Paul Hunkin, Jason Alexander, Neville Churcher, Warwick Irwin, Tim Bell, Ian
Witten, Craig Schock, and Robert Amor.

Along the journey I have met some interesting people who have helped me
with my research at different stages: Shane Markstrum, Emerson Murphy-Hill,
Keith Andrews, Peter Eades, Don Brutzman, James Hill, Donna Malayeri, Ciera
Jaspan, Yoav Zibin, Wes Kendall, Fernanda Viegas, John Stasko, Chris Weaver,
Jason Dykes, Jeff Heer, Michele Lanza, Stephan Diehl, Carsten Georg, Fabian Beck,
Alex Telea, Tobias Isenberg, Neal Glew, Matthias Hauswirth, Josh Bloch, Dirk
Riehle, Raimund Dachselt, Matthias Frisch, Adrian Kuhn, Richard Wettel, Kevin
Andressend, Gordon MacDonald, John Newton, Ignas Kukenys, Alain Forget,
Sonia Chiasson, Stevenson Gossage, Jeff Wilson, Miguel Nacenta, Nicolai Mar-
quardt, Marian Doerk, Uta Hinrichs, Christopher Collins, Melanie Tory, Jennifer
Baldwin, Philippe Kruchten, Michael Wybrow, Luc Vlaming, Andrew Clayphan,
Christopher Ackad, Dominikus Baur, Victor Pascual, Michael Sedlmair, Andreas
Butz, Peter Kinnaird, Mary-Beth Rosson, Steve Tanimoto, Susan Wiedenbeck,
Judith Good, Martin Erwig, Sriram Subramanian, Hrvoje Benko, Patrick Baudisch,
Kevin Groke, and Heidi Esplin.

Thanks to all the people in the NUI Community Group who have helped me:
Jordan Hochenbaum, Owen Vallis, Memo Akten, Nolan Ramseyer, Jim Lyst, Seth
Sandler, Chris Rasmussen (Fraunhofer and MT4j), and Bill Evans.

This work is supported by the New Zealand Foundation for Research Science
and Technology (now called the Ministry of Business, Innovation, and Employ-
ment) for the Software Process and Product Improvement (SPPI) project, a Telstra
Clear Post-Graduate Scholarship, and a Victoria University of Wellington PhD
Submission Scholarship.

Finally, thanks to my family and friends for supporting me throughout this
degree: Mum, Dad, Kate, Cherie, Brigitte, Brett, Rob, Raelene, Amber-Rose, Ruby-
Anne, Ralphie, Toby, Frank, and James.

Publications

Materials, ideas, tables, and figures in this thesis have appeared previously in the
publications below.

Peer Reviewed Conference Papers

• Craig Anslow, Stuart Marshall, James Noble, Robert Biddle. SourceVis: Collaborative
Software Visualization for Co-located Environments. In Proceedings of the IEEE Working
Conference on Software Visualization (VISSOFT), Eindhoven, Netherlands, 2013.

• Keith Cassell, Craig Anslow, Lindsay Groves, Peter Andreae. Visualizing the Refactoring of
Classes via Clustering. In Proceedings of the Australasian Computer Science Conference (ACSC),
Perth, Australia, 2011.

• Craig Anslow, James Noble, Stuart Marshall, Ewan Tempero, and Robert Biddle. User
Evaluation of Polymetric Views Using a Large Visualization Wall. In Proceedings of the ACM
Symposium on Software Visualization (SoftVis), Salt Lake City, UT, USA, 2010.

• Haowei Ruan, Craig Anslow, Stuart Marshall, and James Noble. Exploring the Inventor’s
Paradox: Applying Jigsaw to Software Visualization. In Proceedings of the ACM Symposium
on Software Visualization (SoftVis), Salt Lake City, UT, USA, 2010.

• Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe, Hayden
Melton, and James Noble. Qualitas Corpus: A Curated Collection of Java Code for Empirical
Studies. In Proceedings of the Asia Pacific Software Engineering Conference (APSEC), Sydney,
Australia, 2010.

Peer Reviewed Workshop Papers
• Craig Anslow, Stuart Marshall, James Noble, Robert Biddle. Exploring Collaborative

Software Visualization with Multi-touch Tables. In Proceedings of the Workshop on Collaboration
meets Interactive Surfaces: Walls, Tables, Tablets, and Phones at the at the ACM International
Conference on Interactive Tabletops and Surfaces (ITS), St Andrews, Scotland, 2013.

• Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. Interactive Multi-touch
Surfaces for Software Visualization. In Proceedings of the Workshop on Data Exploration for
Interactive Surfaces (DEXIS) at the ACM International Conference on Interactive Tabletops and
Surfaces (ITS), Kobe, Japan, 2011.

• Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. Co-located Collabora-
tive Software Visualization. In Proceedings of the Workshop on Human Aspects of Software
Engineering (HAoSE2010) at SPLASH, Reno/Tahoe, Nevada, USA, 2010.

iii

iv

Peer Reviewed Posters
• Craig Anslow, Stuart Marshall, James Noble, and Robert Biddle. SourceVis: A Tool for

Multi-touch Software Visualization. In Proceedings of the International Conference on Interactive
Tabletops and Surfaces (ITS), Kobe, Japan, 2011.

• Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. Visualizing the Word
Structure of Java Class Names. In Companion to the ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPLSA), Nashville,
Tennessee, USA, 2008.

• Craig Anslow, James Noble, Stuart Marshall, and Robert Biddle. Web Software Visualiza-
tion Using Extensible 3D (X3D) Graphics. In Proceedings of the ACM Symposium on Software
Visualization (SoftVis), Herrsching am Ammersee, Germany, 2008.

• Bennett Thompson, David Pearce, Gary Haggard, and Craig Anslow. Visualizing the
Computation Tree of the Tutte Polynomial. In Proceedings of the ACM Symposium on Software
Visualization (SoftVis), Herrsching am Ammersee, Germany, 2008.

Doctoral Symposiums
• Craig Anslow. Multi-touch Table User Interfaces for Co-located Collaborative Software

Visualization. In Proceedings of the Doctoral Symposium at the ACM International Conference on
Interactive Tabletops and Surfaces (ITS), Saarbrucken, Germany, 2010.

• Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. Towards Visual Soft-
ware Analytics. In Proceedings of the Australasian Computing Doctoral Consortium (ACDC),
Wellington, New Zealand, 2009.

• Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. Towards End-User Web
Software Visualization. In Proceedings of the Graduate Consortium at the IEEE Symposium
on Visual Languages and Human Centric Computing (VLHCC), Herrsching am Ammersee,
Germany, 2008.

Other
• Hien Tran, Craig Anslow, Stuart Marshall, Alex Potanin, Mairead De Roiste. Lessons Learnt

from Collaboratively Creating Maps on a Touch Table. In Proceedings of the ACM New Zealand
Conference on Computer-Human Interaction (CHINZ), Hamilton, New Zealand, 2011. (short
paper)

• Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. Visualizing the Size of
the Java Standard API. In Proceedings of the New Zealand Computer Science Research Student
Conference (NZCSRSC), Wellington, New Zealand, 2010.

• Craig Anslow, James Noble, Stuart Marshall, and Ewan Tempero. Web Software Visual-
ization Via Google’s Visualization API. In Proceedings of the New Zealand Computer Science
Research Student Conference (NZCSRSC), Auckland, New Zealand, 2009. (short paper)

Contents

I Introduction and Background 1

1 Introduction 2
1.1 Research Context . 4

1.2 Research Scope . 5

1.3 Research Goals . 6

1.4 Research Approach . 7

1.5 Research Contributions . 7

1.6 Key Findings . 9

1.6.1 Collaborative Group Work 9

1.6.2 Designing Collaborative Software Visualizations 9

1.6.3 Designing Multi-touch Tables 10

1.7 Thesis Structure . 11

2 Background 12
2.1 Information Visualization . 13

2.1.1 Collaborative Information Visualization 15

2.1.2 Evaluation of Information Visualization 17

2.2 Software Visualization . 18

2.2.1 Structure Visualization . 19

2.2.2 Behaviour Visualization . 22

2.2.3 Evolution Visualization . 24

2.2.4 Collaborative Software Development and Visualization . . . 26

2.2.5 Evaluation of Software Visualization 27

2.3 Multi-Touch Technologies . 28

2.3.1 Multi-Touch Commercial Systems 28

2.3.2 Multi-touch Research Projects 29

2.3.3 Evaluation of Multi-touch Technologies 31

2.3.4 Multi-touch Hardware Approaches 32

2.4 Optical Based Multi-touch Tables . 34

2.4.1 Surface Lighting Techniques 34

v

CONTENTS vi

2.4.2 Infrared Light Sources . 37

2.4.3 Cameras . 39

2.4.4 Display Sources . 40

2.4.5 Multi-Touch Detection Software 40

2.4.6 Multi-Touch Application Software 44

2.5 Summary . 45

II Hardware and Software Infrastructure 46

3 Large Interactive Multi-touch Tables 47

3.1 Multi-Touch Prototypes . 48

3.1.1 MT Mini . 48

3.1.2 MT Biggie . 48

3.2 Black Multi-touch Table . 51

3.2.1 Physical Table Frame . 51

3.2.2 Surface Lighting Technique 51

3.2.3 Infrared Lighting Source . 51

3.2.4 Camera and Lens . 53

3.2.5 Display Source . 53

3.2.6 Computer Hardware . 54

3.3 Blue Multi-touch Table . 54

3.3.1 Physical Table Frame . 54

3.3.2 Surface Lighting Technique 54

3.3.3 Infrared Lighting Source . 56

3.3.4 Camera and Lens . 56

3.3.5 Display Source . 56

3.3.6 Computer Hardware . 56

3.4 Discussion . 57

3.4.1 Display Size . 57

3.4.2 Display Resolution . 57

3.4.3 Display Configuration . 57

3.4.4 Input Type . 58

3.4.5 Portability . 58

3.4.6 Performance . 59

3.4.7 Cost . 59

3.5 Summary . 60

CONTENTS vii

4 SourceVis: A Collaborative Software Visualization Application 61
4.1 Overview . 62

4.1.1 Design . 64

4.1.2 Visualizations . 64

4.1.3 Interaction . 65

4.1.4 Architecture . 68

4.1.5 Implementation . 70

4.2 Exploration Visualizations . 72

4.2.1 System Explorer . 72

4.2.2 Metrics Explorer . 73

4.2.3 Vocabulary . 74

4.2.4 Toxicity Chart . 75

4.3 Structure Visualizations . 76

4.3.1 System Hotspots View . 76

4.3.2 System Dependency View . 77

4.3.3 Class Dependency View . 78

4.3.4 Class Blueprint View . 79

4.4 Evolution Visualizations . 80

4.4.1 System Evolution View . 80

4.4.2 System Package Evolution View 80

4.4.3 Package Evolution View . 81

4.4.4 System Class Evolution View 82

4.4.5 Class Evolution View . 82

4.5 Discussion . 83

4.6 Summary . 84

III User Studies 85

5 Preliminary User Studies 86
5.1 Preliminary User Study 1 - Early Feedback 87

5.1.1 Participants . 87

5.1.2 Procedure . 88

5.1.3 User Tasks . 89

5.1.4 Findings . 89

5.1.5 Discussion . 94

5.2 Preliminary User Study 2 - Effectiveness and Coupling Style 96

5.2.1 Participants . 96

5.2.2 Procedure . 98

CONTENTS viii

5.2.3 User Tasks . 98
5.2.4 Qualitative Findings . 99
5.2.5 Quantitative Findings . 107

5.3 Preliminary User Study 3 - Group vs. Individual Work 113
5.3.1 Participants . 113
5.3.2 Procedure . 114
5.3.3 User Tasks . 114
5.3.4 Findings . 115

5.4 Limitations . 116
5.5 Summary . 117

6 Professional User Study 118
6.1 User Study Design . 119

6.1.1 Study Condition Combinations 119
6.1.2 Collaborative Coupling Style 120
6.1.3 Physical Arrangement Style 120
6.1.4 Participant Qualitative Feedback 122
6.1.5 Research Questions . 122

6.2 Participants . 123
6.2.1 Recruitment . 123
6.2.2 Demographics . 123
6.2.3 Human Ethics Approval . 128

6.3 Procedure . 128
6.3.1 Pre-Study . 129
6.3.2 User Study Setup . 131
6.3.3 User Tasks . 132
6.3.4 Post Study . 134
6.3.5 Data Collection, Coding, and Analysis 135

IV Research Findings 137

7 Professional User Study — Qualitative Findings 138
7.1 Strengths . 139

7.1.1 Multi-touch Table . 139
7.1.2 Visualizations . 142
7.1.3 Interaction . 145
7.1.4 Data . 146
7.1.5 User Interface . 154

7.2 Weaknesses . 156

CONTENTS ix

7.2.1 Multi-touch Table . 156
7.2.2 Visualizations . 159
7.2.3 Interaction . 163
7.2.4 Data . 172
7.2.5 User Interface . 173

7.3 Improvements . 176
7.3.1 Multi-touch Table . 177
7.3.2 Visualizations . 178
7.3.3 Interaction . 181
7.3.4 Data . 184
7.3.5 User Interface . 187

7.4 Team Collaboration . 195
7.4.1 Multi-touch Interaction . 195
7.4.2 Team Work . 196
7.4.3 Communication . 197
7.4.4 Different Roles . 198
7.4.5 Coordination . 198
7.4.6 Awareness . 199

7.5 Summary . 200
7.5.1 Multi-touch Table . 200
7.5.2 Strengths . 200
7.5.3 Weaknesses . 201
7.5.4 Improvements . 202
7.5.5 Team Collaboration . 203

8 Professional User Study — Quantitative Findings 205
8.1 Study Condition Combination . 206
8.2 Collaborative Coupling Categories 206

8.2.1 Frequency of Coupling Categories 207
8.2.2 Time Spent in Coupling Categories 208
8.2.3 Temporal Sequence of Coupling Categories 208

8.3 Collaborative Coupling Styles . 210
8.3.1 Frequency of Coupling Styles 210
8.3.2 Time Spent in Coupling Styles 213
8.3.3 Temporal Sequence of Coupling Styles 216
8.3.4 Frequency vs. Time Spent in Coupling Styles 218

8.4 Physical Arrangement Style . 219
8.4.1 Frequency of Arrangement Styles 219
8.4.2 Time Spent in Arrangement Styles 222

CONTENTS x

8.4.3 Temporal Sequence of Arrangement Styles 225
8.4.4 Frequency vs. Time Spent in Arrangement Styles 227
8.4.5 Collaborative Coupling and Physical Arrangement Styles . 228

8.5 Perceived Effectiveness of Techniques 229
8.6 Summary . 231

V Conclusions 233

9 Conclusions 234
9.1 Research Contributions . 235

9.1.1 Designing Collaborative Software Visualizations 235
9.1.2 SourceVis: Software Visualization Application 235
9.1.3 Evaluation of Collaborative Software Visualization 236

9.2 Key Findings . 237
9.2.1 Collaborative Group Work 237
9.2.2 Designing Collaborative Software Visualizations 239
9.2.3 Designing Multi-touch Tables 241

9.3 Limitations . 243
9.3.1 Participants . 243
9.3.2 Procedure . 243
9.3.3 Apparatus . 244

9.4 Future Work . 245
9.4.1 New Software Visualizations 245
9.4.2 Apply Visual Information Analysis Framework 246
9.4.3 Evaluation of Collaborative Software Visualization 246

9.5 Summary . 247

VI Appendices 248

A Human Ethics Approval 249

B User Study Information and Consent Forms 257

C User Study Recruitment Email 261

D User Study Questionnaires 263

E Preliminary User Study 1 Questions 273

F Preliminary User Study 2 Questions 274

CONTENTS xi

G Professional User Study Participant Demographics 276

H Professional User Study Questions 282
H.1 Group Questions . 282
H.2 Individual A Questions . 284
H.3 Individual B Questions . 287

I Quantitative Findings - Additional Tables 290

Part I

Introduction and Background

1

Chapter 1

Introduction

“People who are really serious about software should make their own hard-
ware.”

Alan Kay. 1982

Software systems are becoming increasingly complex to design and support.
Software maintenance is reported to be about 70% of the total cost of a software
product [52, 307]. Understanding what causes these costs is an ongoing research
problem in software engineering. Developers face the task of understanding soft-
ware when they want to maintain, reuse, reverse engineer, or re-engineer a piece of
software. Visualizing the source code and run-time of software can give a greater
insight into the structure, behaviour, and evolution of software, to aid developers
in software understanding [77]. This thesis addresses exploring collaborative software
visualization on multi-touch tables for co-located software development teams.

Software maintenance is often a social activity and involves developers work-
ing within co-located environments (same room and time). Developers quite
often work in pairs within a larger team. These pairs carry out tasks including:
programming, code reviews, refactoring, and visualization of work flow. Some
of these activities use digital (e.g. code) and physical (e.g. post-it notes) artifacts.
Most software development tools and applications that support these activities
often involve analysis and visualization features.

Most development tools and applications are designed from a single-user
perspective such as Integrated Development Environments (IDEs) (e.g. Eclipse,
Microsoft Visual Studio). These tools make it hard for developers to analyse and
interact with software artifacts collaboratively using the same tool. For example,
in pair programming there is only one keyboard and mouse for input which is
controlled by the driver [22, 363]. When the observer wants to interact they have
to either swap positions or obtain the keyboard and mouse from the driver.

2

3

Most software analysis applications contain a small range of visualization
techniques. If applications supported multiple visualizations this would allow
developers to visualize aspects of systems from different perspectives and reduce
the overhead of installing multiple applications. For example, in code reviews
developers often have to use multiple applications to explore different aspects of
software including test coverage, class dependencies, and class diagrams.

Most computer applications are viewed on displays that are oriented vertically.
The displays are usually only designed to support vertical orientation as opposed
to horizontal. Developers quite often have dual vertical displays with a large
number of pixels. When working in co-located teams it is hard to interact and
collaborate with information across multiple digital and physical devices. For
example, in visualizing work flows many development teams use physical de-
vices like white boards and physical artifacts like post-it notes. Visualizing work
flow is commonly referred to in the Agile software development community as
“information radiators” [67], “visible big charts” [147], and “KanBan boards” [123].
As post-it notes are physical, manipulating and transferring this information into
a digital context can be cumbersome.

Most computer user interfaces are designed for single-users and traditionally
have keyboard and mouse input. The advent of new technologies like touch
sensing and digital pens has enabled computers to have multimodal input for
devices including smart phones, tablets, and touch screens. These devices are
targeted towards single-users and are too small for a multi-user co-located envi-
ronment. Large multi-user and multi-input devices that are potentially suitable for
co-located collaborative software development teams include interactive surfaces
like horizontal or vertical touch displays or multi-touch tables and high resolution
visualization display walls.

Existing software visualization research has primarily focused on Graphical
User Interfaces (GUI) and Virtual Reality [77]. To date there has been limited
research on how tools support collaborative software maintenance [170, 214], and
even less has explored how visualizations can support collaborative software
maintenance. Storey et al. propose that collaborative software visualization can
improve team software maintenance [316]. Little research has been conducted on
how collaborative devices such as multi-touch tables and visualization walls help
support development teams with software development and analysis tasks.

This thesis addresses exploring collaborative software visualization on multi-
touch tables for co-located software development teams. We built our own large
multi-touch tables and developed a collaborative software visualization applica-
tion to run on the tables. We conducted user studies with professional software
developers using our multi-touch table and software visualization application.

1.1. RESEARCH CONTEXT 4

1.1 Research Context

We adopt a general definition for information visualization from Card et al. [56].

“Information visualization is the use of computer-supported, inter-
active, visual representations of abstract data to amplify cognition”
[56].

Software visualization is a field that is derived from information visualization
and is defined as follows.

“The use of the craft of typography, graphic design, animation, and
cinematography with modern human computer interaction and com-
puter graphics technology to facilitate both the human understanding
and effective use of computer software” [312].

“Software visualization is the application of information visualization
in software engineering and can show the structure of software, run-
time behaviour, and representation of source code” [77].

None of these above definitions take into consideration collaboration or multi-
ple users. Isenberg et al. [137, 139] defines collaborative information visualization
based upon the general definition for information visualization [56].

“Collaborative visualization is the shared use of computer-supported,
(interactive) visual representations of data by more than one person
with the common goal of contribution to joint information processing
activities” [137, 139].

We build upon these definitions for software visualization and collaborative
information visualization and use the term collaborative software visualization
to define our research context in the following way:

“Collaborative software visualization is the shared use of computer-
supported interactive visual representations of data to understand
the structure, behaviour, and evolution of software by more than one
person with the common goal of contribution to joint information
processing activities.”

1.2. RESEARCH SCOPE 5

1.2 Research Scope

The research topic of this thesis lies at the intersection of three main computer
science research fields as illustrated in Figure 1.1: Software Engineering (SoftEng),
Information Visualization (InfoVis), and Computer Support Cooperative Work
(CSCW). The research scope of this thesis is a subset of collaborative software
visualization aspects:

Software Engineering (SoftEng):

• Software maintenance with the goal to analyze and understand existing
software systems focusing on the structure and evolution.

• Identification of possible refactoring opportunities in a software system.

• We deem other software maintenance tasks such as debugging, adding
new features to a code base, and performing actual refactorings out of
scope of this thesis.

Information Visualization (InfoVis):

• Representing different aspects of the software systems focusing on
software metrics for structure and evolution [96].

• Presenting multiple visualizations of the software systems (e.g. using
diagrams, charts, Polymetric Views [185]).

• Viewing the aspects of the software systems from different view points
and orientations.

• Interacting and exploring the aspects of the software systems in the
visualizations.

Computer Supported Cooperative Work (CSCW):

• Co-located environments, where several software developers work for
the same organisation and in the same team.

• Developers who work together, where collaborative software under-
standing and programming occurs at the same time.

• Developers who share a single workspace for meetings and discussion
such as a white board, interactive table, or wall display.

• Developers working in small groups typically 2-3 individuals.

1.3. RESEARCH GOALS 6

Figure 1.1: The research topic of this thesis lies at the intersection of Software
Engineering, InfoVis, and CSCW. Diagram adapted from [137, 316].

1.3 Research Goals

Our research goal is to investigate how pairs from a co-located software develop-
ment team might use a collaborative software visualization application on a large
multi-touch table to understand existing software systems. We examine how pairs
work at the same time either as a group or as individuals in parallel. In particular
we wanted to address the following research questions:

Q1 What are the strengths of the visualizations and the multi-touch table?

Q2 What are the weaknesses of the visualizations and the multi-touch table?

Q3 What improvements could be made for the visualizations and the multi-
touch table?

Q4 Does the multi-touch table help with team collaboration, and if so how?

Q5 Did the pairs favour working as a group or as individuals in parallel?

Q6 Which coupling categories did the participants use when interacting?

Q7 Which coupling style strategies did the participants use?

Q8 Which physical arrangement styles did the participants use with the table?

Q9 Which visualization techniques did the participants perceive to be the most
effective?

1.4. RESEARCH APPROACH 7

1.4 Research Approach

Our research approach has been to first look at the background literature within
our research scope. Based on the literature we used an existing set of design
considerations for collaborative information visualization [137, 138] and applied
them for designing co-located collaborative software visualizations.

Following an iterative design process we built two multi-touch tables to val-
idate the design considerations for a physical collaborative environment. We
designed a collaborative software visualization application for multi-touch tables
to validate the design considerations for collaborative information visualization.

To evaluate our software visualization application we followed a qualitative
grounded evaluation of information visualization process during the develop-
ment lifecycle [144]. This process used mixed methods and is suited for giving an
overview of a situation and to examine how and why users behave in certain envi-
ronments [71]. Other researchers have adopted a similar approach to understand
how groups of participants collaboratively use a multi-touch table in a co-located
environment [137, 141, 291].

Our evaluation process involved conducting preliminary user studies with
computer science students working in pairs during different stages of the develop-
ment life-cycle of the application. We then conducted a much larger study with
professional software developers. The aim of the user studies was to determine
how groups and individuals use our multi-touch table and software visualization
application and to assess the perceived effectiveness of the visualizations.

We used the following techniques as part of the evaluation process: obser-
vational studies, video recordings, interviews, and questionnaires. We asked
participants to think aloud during our studies so that we could capture their
thoughts about their actions, perceptions, and expectations regarding the appli-
cation’s interface and functionality [224]. Getting participants to talk about their
actions and thoughts enabled us to gain insight into how each user views the
computer system, identify their misconceptions, and determine which parts of the
interface cause problems.

1.5 Research Contributions

The thesis contributes a richer understanding of how pairs of software develop-
ers make use of shared software visualizations on large interactive multi-touch
tables to gain insight into how existing software systems are structured and how
they have evolved over different versions. Specifically this thesis makes three
contributions.

1.5. RESEARCH CONTRIBUTIONS 8

Designing Collaborative Software Visualizations. We built two multi-touch
tables (28 and 48 inches) (§3). We conducted preliminary user studies with
18 computer science students (§5) using the 48 inch multi-touch table and
prototypes of our software visualization application. The user studies led to
a protocol which we used for the professional user study.

SourceVis: Software Visualization Application. We designed a collaborative
software visualization application, called SourceVis, for use on large multi-
touch tables (§4). SourceVis allows multiple users to interact simultaneously
or separately with the table either as a group or as individuals.

Evaluation of Collaborative Software Visualization. To evaluate the large
multi-touch table and SourceVis we conducted a user study (§6) with 44
software developers working in pairs performing software understanding
tasks. We wanted to find out if participants preferred to work as a group or as
individuals. We observed what collaborative coupling categories, coupling
styles, and physical arrangement styles participants used and how much
time was spent in these styles. We asked participants to provide feedback
on what the strengths, weaknesses, and improvements of SourceVis and
the multi-touch table were. We asked participants how the multi-touch ta-
ble helped with team collaboration and what visualization techniques they
perceived to be the most effective. We obtained both qualitative (§7) and
quantitive findings (§8).

1.6. KEY FINDINGS 9

1.6 Key Findings

Our research revealed key findings for collaborative group work, designing col-
laborative software visualizations, and designing multi-touch tables.

1.6.1 Collaborative Group Work

Design for joint group work over parallel individual work. We found that all
pairs preferred joint group work over parallel individual work and chose to
do Section 3 of the user tasks as a group.

Support a flexible variety of coupling styles. We found that pairs used a variety
of coupling styles during both joint group work and parallel individual
work, but used more coupling styles when they were closely coupled. We
found that pairs spent more time in closely coupled styles.

Support fluid transitions between coupling and arrangement styles. We found
that when pairs were closely coupled they were more closely arranged, and
when they were loosely coupled they were loosely arranged. We found that
pairs regularly transitioned between many closely coupled styles and closely
arranged styles, but transitioned less between loosely coupled and loosely
arranged styles.

1.6.2 Designing Collaborative Software Visualizations

Design visualizations for closely coupled arrangements with rotation features.
We found that visualizations were primarily viewed from the long side of
the table where both participants were closely arranged next to each other.
When visualizations needed to be viewed from different view points (such
as in parallel individual work) participants used lightweight features for
rotating visualization windows to face different directions.

Provide functionality in the appropriate locality. We found that when pairs
were displaying a visualization at full screen and wanted to launch a new
overview visualization they they had to navigate to the start up screen rather
than having a menu on hand. Pairs, however, could launch new detailed
visualizations through the pie menu on elements in a visualization. When
a visualization was at full screen and a participant were on one side of the
table and wanted to select an option from a menu on the other side of the
table they had to ask their colleague to perform the action.

1.6. KEY FINDINGS 10

Provide consistent user interactions and visual interface design. We found
that the navigation gestures behaved differently across the 13 visualization
techniques in SourceVis. Some participants found manipulating visualiza-
tion windows difficult. We found at times some menus were displayed at
different zoom levels and occasionally displayed half off the screen. We
found participants having difficulty entering text using the virtual keyboard.
We found that some participants occasionally lost context of what visualiza-
tion they were currently looking at and could not always remember what
the visual encodings meant.

1.6.3 Designing Multi-touch Tables

Provide high resolution workspace. We found that visualization windows often
overlapped each other which caused interference. We found that text was
readable when visualizations were at full screen, but reading text when
displayed in visualization windows was difficult as the visualization was
reduced in size. Providing a high resolution workspace would reduce win-
dows overlapping and make text easier to read.

Provide appropriate table space. We found that when pairs were performing
joint group work the size of the table was appropriate. We found that when
pairs were performing parallel individual work the size of the table was not
appropriate as the table forced them to primarily be physically arranged at
opposite ends of the table and visualization windows had to be reduced in
size. Depending on the task and number of users interacting there should be
appropriate table space.

Differentiate between simultaneous user interactions. We found that when
participants performed simultaneous navigation gestures on the canvas of
a visualization or manipulated the same element within a visualization the
system was confused as to what action to perform. The system should
differentiate between simultaneous user interactions.

1.7. THESIS STRUCTURE 11

1.7 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2: Background. We present background literature to our research includ-
ing information visualization, software visualization, collaborative software
visualization, and multi-touch technologies.

Chapter 3: Large Interactive Multi-touch Tables. We present our large interac-
tive portable multi-touch tables for co-located collaborative environments.
We describe our experience at designing and building our initial early proto-
types to our proof of concept working prototypes.

Chapter 4: SourceVis: A Collaborative Software Visualization Application.
We present our collaborative multi-touch software visualization application,
SourceVis. We describe the design, implementation, interaction features, and
illustrate the individual visualizations.

Chapter 5: Preliminary User Studies. We present three preliminary user studies
of computer science students using SourceVis at different stages of the devel-
opment life-cycle. We present qualitative and quantitive findings from the
studies. The studies led us to develop a protocol which we used for a study
with professional software developers.

Chapter 6: Professional User Study. We present our user study of professional
software developers using our multi-touch table and SourceVis. We describe
the design, participants, procedure and limitations of our user study.

Chapter 7: Professional User Study — Qualitative Findings. We present the
qualitative findings from the user study with professional software develop-
ers.

Chapter 8: Professional User Study — Quantitative Findings. We present the
quantitative findings from the user study with professional software devel-
opers.

Chapter 9: Conclusions. We conclude by presenting the contributions of this the-
sis. We then present the key findings from this thesis. We discuss limitations
of our research. Finally, we suggest directions in which our research could
be extended in future.

Chapter 2

Background

Contents
2.1 Information Visualization . 13

2.1.1 Collaborative Information Visualization 15

2.1.2 Evaluation of Information Visualization 17

2.2 Software Visualization . 18

2.2.1 Structure Visualization . 19

2.2.2 Behaviour Visualization . 22

2.2.3 Evolution Visualization . 24

2.2.4 Collaborative Software Development and Visualization . . 26

2.2.5 Evaluation of Software Visualization 27

2.3 Multi-Touch Technologies . 28

2.3.1 Multi-Touch Commercial Systems 28

2.3.2 Multi-touch Research Projects 29

2.3.3 Evaluation of Multi-touch Technologies 31

2.3.4 Multi-touch Hardware Approaches 32

2.4 Optical Based Multi-touch Tables 34

2.4.1 Surface Lighting Techniques 34

2.4.2 Infrared Light Sources . 37

2.4.3 Cameras . 39

2.4.4 Display Sources . 40

2.4.5 Multi-Touch Detection Software 40

2.4.6 Multi-Touch Application Software 44

2.5 Summary . 45

12

2.1. INFORMATION VISUALIZATION 13

In this chapter we present the background literature. We begin with an
overview of information visualization (§2.1). We describe the different areas
of software visualization (§2.2). We describe multi-touch hardware technologies
(§2.3). We describe optical based multi-touch tables (§2.4).

2.1 Information Visualization

Card et. al [56] define information visualization as:

“Information visualization is the use of computer-supported, interac-
tive, visual representations of abstract data to amplify cognition.”

After producing a visual representation, the following issues must be ad-
dressed: exploration, navigation, and interpolation of the data [57]. Several
overviews on information visualization exist [25, 56, 62, 119, 309, 352].

The theory of the visual display of quantitative information [337] consists of
principles that generate design options and that guide choices among the design
options. Tufte [337] describes graphical excellence of quantitative information, as
the well designed presentation of interesting data – a matter of substance, of statis-
tics, and of design. Graphical excellence consists of complex ideas communicated
with clarity, precision, and efficiency. This results in a visualization displaying the
greatest number of ideas, in the shortest time and in the smallest space possible.

An early example of graphical excellence is the original London Underground
map designed by Harry Beck in 1933 (see Figure 2.1(a)). Most people will use the
map as a visualization tool for planning a journey from one station to another.
People may memorise their route by colour or the direction of the lines involved,
which is known as a cognitive map [309]. Beck based the map on electrical circuit
diagrams which does not reflect the geography of the city above.

Ben Shneiderman [301] created a visual design guideline called the visual
information seeking mantra which says show an overview of the data first, then
zoom and filter, and finally show details-on-demand. He then proposed a task
by data type taxonomy which has seven data types (1-, 2-, 3-dimensional data,
temporal and multi-dimensional data, and tree and network data) and seven
tasks which a user can perform (overview, zoom, filter, details-on-demand, relate,
history, and extract). This visual information seeking mantra is one of the very few
methodical guidelines for designing information visualizations and it is the most
widely cited [70]. There are other user task heuristics but they are not as useful for
evaluating usability, focus on low level tasks, or are domain specific [5, 6, 189, 340,
379, 380].

2.1. INFORMATION VISUALIZATION 14

(a) Harry Beck’s 1933 original London Underground map, reproduced by kind permission of London’s
Transport Museum c©Transport for London [105].

(b) Many Eyes, Barrack Obama’s inaugural speech [343].

Figure 2.1: Information Visualization Examples.

2.1. INFORMATION VISUALIZATION 15

2.1.1 Collaborative Information Visualization

Collaborative information visualization can occur in many scenarios. Using a
space and time matrix, collaborative information visualization can be broadly
categorized according to where the visualizations occur in space (distributed vs.
co-located) and time (synchronous vs. asynchronous) [80, 137] (see Table 2.1).
Collaborative visualization may occur on different levels of engagement with
the visualizations including how users: view the information, interact or explore
within a visualization, and share discoveries about the visualizations [139].

Table 2.1: Time and space matrix [80] and adapted to collaborative information
visualization [137].

Same Place Different Place
(Co-Located) (Distributed)

Same Time Face-to Face Conversation Video conference
(Synchronous) Meeting room
Different Time Sticky Email, web based,
(Asynchronous) Shift work revision control systems

For distributed collaborative information visualization tools the Web is a com-
mon platform for sharing visualizations. Toolkits such as D3 [44] make deploying
visualizations over the web an easy process. Many Eyes [73, 342, 343] is a web
site provided by IBM research that has collaborative visualization services, see
Figure 2.1(b). The web site allows users to upload ASCII data sets, visualize them,
comment on each other’s visualizations, and then discuss their discoveries with
other people. Other similar information visualization web tools include Swivel1,
Data3602, and DataPlace3.

Isenberg [137, 138] suggest aspects to consider for designing co-located collab-
orative information visualization. For the collaborative environment the size of
the display should be an appropriate for the number of users. The display config-
uration should accommodate groups’ work practices, task, and goals. The type of
input will impact the possible interactions. The resolution size needs to be consid-
ered for both the input and display. The collaborative information visualizations
should support different communication strategies such as awareness cues when
data changes across different views. The visualizations should support coordinat-
ing between different roles with features for sharing and rotating data views. For

1http://www.swivel.com
2http://www.data360.org
3http://www.dataplace.org

2.1. INFORMATION VISUALIZATION 16

designing collaborative information visualizations multiple representation types
should be supported to allow integrated reasoning and sensemaking. Data should
be presented to allow for group access, copies of the same data, accommodation
of input methods, and compensations for the display resolution. Data should be
interpreted from multiple viewpoints and orientations. The visualizations should
support simultaneous actions by users for interacting and data manipulation.

For co-located collaborative information visualization multi-touch tables have
been explored. Cambiera [140, 141] is a system for information foraging activi-
ties on a multi-touch tabletop display (see Figure 2.2(a)). Group members can
individually search for documents, browse through search results, and read doc-
uments. Cambiera includes a number of features (collaborative brushing and
linking) that highlight where collaborators have found or read similar documents.
Lark [330] is a system that facilitates the coordination of interactions with in-
formation visualizations on multi-touch tabletop displays using an information
visualization pipeline (see Figure 2.2(b)). Hugin [164] is a graphical framework for
mixed-presence synchronous collaborative visualization over multi-touch tabletop
displays. Branch-Merge-Explore [209] propose a new collaboration protocol for
explicitly supporting varying degrees of coupling styles in co-located collaborative
visualization. They use a multi-touch tabletop display for a public view of the
data and tablets for private views.

For co-located collaborative information visualization multi-display environ-
ments have been explored. Yost et al. [374] conducted an evaluation to explore the
effect of using large visualization walls for information visualization. Their results
showed that performance on most tasks was more efficient and sometimes more
accurate because of the additional data that could be displayed, despite the physi-
cal navigation. Andrews et al. [7] conducted a study which demonstrated how
large displays support sensemaking. Ball et al. [14] identified that physical naviga-
tion helped improve user performance with large displays. Bi et al. [32] discuss
how interior bezels affect user behaviours, and suggest guidelines for effectively
using tiled-monitor large displays and designing user interfaces suited to them.
Other researchers have investigated large displays for daily desktop computing
tasks [33] such as navigation tasks [319] and window and task management [280].

2.1. INFORMATION VISUALIZATION 17

(a) Cambiera [140, 141].

(b) Lark [330].

Figure 2.2: Co-located Collaborative Information Visualization with Tabletop
Displays Examples.

2.1.2 Evaluation of Information Visualization

Researchers have largely focused on evaluating information visualizations using
quantitative approaches which focus on performance evaluations. This style of ap-
proach makes use of evaluation metrics such as task time completion and number

2.2. SOFTWARE VISUALIZATION 18

of errors made. These evaluations of information visualization commonly occur
in controlled lab environments. These methods appear insufficient to quantify the
quality of an information visualization system since users are far removed from
their actual workplaces [144].

A workshop4 aims to explore novel information visualization evaluation meth-
ods beyond time and errors, and to structure the knowledge on evaluation in
information visualization around a schema, where researchers can easily identify
unsolved problems and research gaps.

Plaisant [248] argues there is a need to try and ensure that the evaluations
are grounded in the context in which they strive to assist users. Isenberg et
al. [144] propose a grounded evaluation of information visualization as a pro-
cess. They advocate for increased attention to the field of qualitative inquiry early
in the information visualization development life-cycle, as it tries to achieve a
richer understanding by using a more holistic approach considering the interplay
between factors that influence visualizations, their development, and their use.
There are several papers that propose for more qualitative evaluations and com-
plementary qualitative and quantitative approaches for evaluating information
visualizations [93, 208, 332].

2.2 Software Visualization

Diehl [77] defines software visualization as:

“Software visualization is the application of information visualization
in software engineering and can show the structure of software, run-
time behaviour, and representation of source code.”

The goal of software visualization is to help users comprehend software sys-
tems and to improve the productivity of the software development process [77].
Software visualization is essentially situated at the intersection of information
visualization, software engineering, human computer interaction, graphics, and
cognitive psychology [201]. Several overviews on software visualization ex-
ist [76, 77, 312, 378].

We give an overview of some of the tools that have been used to investigate
the three aspects of software including structure, behaviour, and evolution. We
then present systems that have explored collaborative software development and
visualization, and some approaches to evaluation of software visualization.

4BEyond time and errors: novel evaLuation methods for Information Visualization -
http://www.beliv.org

2.2. SOFTWARE VISUALIZATION 19

2.2.1 Structure Visualization

Structure refers to the static parts and relations of software. In this section we
present source code and static structure, software metrics, 3D, and UML.

Source Code and Static Structure

Many systems have looked at visualizing the source code and the static structure of
software. SolidFX [322, 324] is an IDE for reverse engineering of C/C++ programs
and provides many advanced visualization techniques to explore attributes of a
code base such as call graphs, metrics, and UML diagrams. J3Browser [1, 2, 3]
explores Java class relations and their other tool VisMOOS [102, 103] is an Eclipse
plug-in. Hierarchical Net [15, 16] visualizes the structure of large software systems
as software landscapes. VizzAnalyzer [195] is a framework designed for reverse
engineering. VizzAnalyzer has a built-in tool Vizz3D [233], which can be used
for visualizing class and package interaction, program evolution, and program
quality. NosePrints [235, 236] visualizes code smells. Enhance [297] provides
information about exception handling constructs and exceptions’ flow from the
quantitative, the flow, and the contextual perspectives. Telea et al. [323] provide
an open toolkit for visualizing telecommunications software for the purposes
of reverse engineering. Clack [358] visualizes the structure of network routers.
Barrio [78] visualizes class dependencies using clustering techniques.

Software Metrics

A software metric measures some property of a piece of software such as the
number of lines of code [96]. Applying software metrics can help determine the
quality of software [187]. Chidamber and Kemerer [64] provide the most widely
cited suite of metrics. These include WMC (Weighted Methods per Class), DIT
(Depth of Inheritance Tree), NOC (Number of Children), CBO (Coupling Between
Objects), RFC (Response for a Class), and LCOM (Lack of Cohesion in Methods).

Code Crawler [184, 186] is a language independent reverse engineering tool
which combines metrics and software visualization techniques and was the first
tool to use Polymetric Views [185], see Figure 2.3(a). CodeCity [360] a tool that
stems from Code Crawler and Polymetric Views uses a 3D city metaphor to
display additional kinds of metric information (see Figure 2.3(b)). A further
study [361] extended CodeCity to focus on disharmony maps to look at the quality
of the system design by focusing on design flaws. The Mondrian toolkit [213]
aims to bring the Polymetric Views closer to the code by extending existing
programming languages to use embedded scripts in their programs to create

2.2. SOFTWARE VISUALIZATION 20

(a) Code Crawler - Metrics Visualization [187].

(b) Code City - Metrics Visualization [360].

Figure 2.3: Software Structure Visualization Examples.

the visualizations as opposed to using another tool to generate the visualizations.
Bergel et al. [27] extended the Mondrian toolkit by displaying dynamic information
about CPU consumption in Class Blueprints. Softwarenaut [196, 197] also uses
Polymetric Views but focuses on the dependencies between modules. Lagrein

2.2. SOFTWARE VISUALIZATION 21

is a tool that supports a number of Polymetric Views and augments them with
software requirements and change history information [148, 149, 150].

Churcher et al. [66, 162] visualize object-oriented metrics with a focus on
inheritance structures with cone trees, inheritance structures with metrics, hier-
archies with tree maps [151, 300], web sites [120], class cohesion [65], and class
clusters [136]. Various other systems and research groups have also looked at
visualizing object-oriented metrics including CrocCosmos [192, 193], MetaViz [277,
278, 279], and CocoViz [37, 38, 39, 40].

3D Software Visualization

Teyseyre and Campo [326] provide an overview of 3D software visualization.
Koike et al. [171, 172, 173, 175] described the significance of visualizing software
information in three dimensional space and the problems of 2D visualization. This
work also introduced the concept of a 3D class library browser to show method
inheritance. The class hierarchy was represented as a tree in the X-Y plane and
methods of each class were shown in the Z axis with the same X-Y coordinates.

Other early research has been done in 3D for visualizing Lisp programs [194],
different features of a program [255, 256, 257], the layout and structuring of object
oriented software in three dimensions as directed graphs (GraphVisualizer3D [97,
353, 354] and NestedVision3D [234]), SELF programs [82, 83, 122], call graphs [375],
design patterns [55], and software architectures [95].

Some researchers have even explored different 3D visualization metaphors
for source code comprehension. These metaphors include 3D cities (Software
World [167, 168, 169], Component City [61], 3D City [232], Verso [181, 182], and
CodeCity [360]), a 3D solar system metaphor [111], 3D self organizing maps [47],
3D file maps (sv3D [201, 202, 203]), and 3D computer game engines (Quake3 [178]).

UML Diagrams

Many systems have looked to reverse engineer systems in order to generate
UML diagrams of large software systems [77]. Recent systems have taken a
similar approach but given that software is more complex these days the software
visualization research has been aimed at improving the understanding of UML
diagrams by augmenting the UML diagrams with new features including areas
of interest [53], textures [54], automatic layout of UML use case diagrams [91],
semantic zooming [99], and digital pens and paper to create UML diagrams which
can then be transferred to tabletop displays [72]. Sharif and Maletic [298] have
also studied the effect of layout on the comprehension of UML class diagrams.

2.2. SOFTWARE VISUALIZATION 22

Visualizations of various UML diagrams such as class, object, sequence, and
collaboration diagrams have been explored in 3D [75, 86, 107, 108, 210, 211, 253,
376]. Rather than representing strict UML diagrams in 3D, some research has been
conducted that represents UML diagrams as 3D geon diagrams [58, 133, 134, 135].
The geon diagrams are made from 3D primitives such as cones, spheres, cylinders,
and boxes. Another related area is visualizing CRC cards in 3D [285].

2.2.2 Behaviour Visualization

Behaviour refers to the execution of the program with real and abstract data.
Behaviour data is collected at run time by instrumenting the code, debugger
interfaces, byte code injection or extending virtual machines. In this section we
cover algorithm animation and execution trace visualizations.

Algorithm Animation and Program Visualization

Algorithm animation and program visualization are useful for education and
research into the design and analysis of algorithms and programs [312]. Sorting Out
Sorting [11, 12] was the first teaching film on algorithm animation and described
nine sorting algorithms.

There are various algorithm animation and program visualization systems
that have been produced and some early examples include: Balsa [48, 51] (the
first real-time interactive algorithm animation system), Zeus [49] (follow up to
Balsa), Tango [311, 310], Polka [313] (a follow up system to Tango), Pavane [282],
Tarraingı́m [225, 226, 227] (a tool for visualizing Self programs).

Some more recent examples include Blumenkrants et al. [36] which look at
narrative algorithm visualizations, Alspaugh et al. [4] explain algorithms using
scenario visualizations, SIV [118] visualizes inter-dependencies between scenarios,
Lumière [28] for visualizing scheduling based algorithms, visualization of the
computation tree of the Tutte Polynomial algorithm [328], and HDPV [318] for
visualizing C/C++ and Java programs to understand recursion and the effect of
programming errors such as buffer overflow. Python Tutor [114] visualizes the
execution of Python programs online.

Stasko and Wehrli [314] identified the need for 3D in program visualization.
They list the basic requirements for 3D computation visualization, define three
categories for characterising visualizations, and discuss their system for support-
ing 3D animation development by programmers. Other systems have explored
the use of 3D graphics for program visualization. Some of these systems include
Pavane [69, 282], Polka3D [314], Zeus3D [50], 3D-AAPE [110], JCAT [220, 221],
and Alice [74].

2.2. SOFTWARE VISUALIZATION 23

Execution Trace Visualization

Jinsight [239, 240, 241, 242, 244, 245, 296], which stems from a wide range of work
from IBM, is a tool for visualizing and analysing the execution of Java programs
and is useful for performance analysis, memory leak diagnosis, debugging, or
any task in which a user needs to better understand what a Java program is really
doing. Figure 2.4(a) shows a brief overview of some of the visualizations produced
by Jinsight. Follow up systems have looked at visualizing the execution patterns
of web services [243] and streaming applications [238].

BLOOM [258, 259, 260, 261, 270, 271, 272] is a framework for understanding
software through visualization (see Figure 2.4(b)). BLOOM provides facilities for
static and dynamic data collection and offers a wide range of data analysis. The
system includes a visual query language for specifying what information should
be visualized. All these are used in conjunction with a back end that supports a
variety of 2D and 3D visualization strategies. Other systems include JIVE [262, 263]
for visualizing Java programs in action and JOVE [273] which provides slightly
more detailed information about where execution is occurring. A follow up system
focuses on more specific user abstractions [264]. Another system [303] focuses on
virtual machine code (IBM’s Jikes RVM) and how to optimise it as opposed to
user code. DYPER [265, 266, 267] does controlled performance analysis of Java
systems and can obtain a variety of performance metrics including CPU usage,
IO, sockets, heap utilization, memory allocations, phase analysis, and reaction
analysis. DYMEM [268, 269] provides a visualization of object ownership from
the memory of a running process.

Some researchers have explored using 3D for visualizing execution traces.
TraceCrawler [112, 113] and CCJUN [373] explore visualizing feature traces in 3D
of object instantiations and method sends to find which classes and objects are
most active during the execution of a feature, what are the patterns of activity that
are common in feature behaviour and which are specific to one feature. Bohnet et
al. [42, 43, 344] also do dynamic analysis to look for features in C/C++ programs.
Koike et al. [171, 172, 173, 175] has looked at visualizing large trace files in 3D of
computer processes from a number of computers running in parallel and com-
municating with each other. Storer et al. [315] have developed a tool for teaching
object-oriented programming concepts to introductory level computer science
courses. The tool provides Java3D visualizations of the execution of Java programs
including representation of classes, objects, references, and method execution.
The Rube [130, 166] framework uses VRML to produce finite state machines of
programs. We previously created VARE-3D [8, 9] to create visualizations from
execution traces using X3D and deployed over the web.

2.2. SOFTWARE VISUALIZATION 24

(a) Jinsight - Debugging Visualization [239]. (b) BLOOM, Spiral views of the stack (sampled
during execution) [259].

Figure 2.4: Software Behaviour Visualization Examples.

2.2.3 Evolution Visualization

Evolution refers to the process of developing software and focuses on the changes
of the program code over time to improve the software and eliminate bugs. In this
section we cover visualizing software archives.

SeeSoft [92] and SeeSys [13] visualize various textual features of evolving
large and complex software systems using the space filling technique which tries
to convey as much information as possible with as few pixels as possible. The
features include software metrics, number and scope of modifications, number and
types of bugs, and dynamic program slices (see Figure 2.5(a)). The tools support
a number of different views including line, pixel, file summary, and hierarchical
representations.

Code Swarm [229] organically visualizes the commit history of open source
projects using animations programmed in Processing [104, 254] and displayed
as videos. Figure 2.5(b) shows a snapshot in time of visualizing the Eclipse IDE
project. The developers and files of a project are represented as moving elements.
Files are coloured differently for source code and documentation. Non-active files
or developers eventually fade away. A bar chart at the bottom left is a reminder of
the history of events. Another similar more recent system is Gource [59] which
uses a forced directed graph layout.

Other tools also visualize software archives. Voinea et at. [345, 346, 347, 348]

2.2. SOFTWARE VISUALIZATION 25

(a) SeeSoft visualizing [92].

(b) Code Swarm visualizing the revision history of Eclipse [229].

Figure 2.5: Software Evolution Visualization Examples.

2.2. SOFTWARE VISUALIZATION 26

describe a suite of tools CVSGrab and CVSscan for mining software artifacts
which display various artifacts using some advanced visualization techniques.
CCVisu [29, 30, 31] use a method for computing clustering layouts of software
systems for which the change history is available. WhiteCoats [212] visualizes
the evolution of software from CVS repositories. VRCS [174] visualizes software
revision histories using the Z axis as a time axis to represent the different revisions
of each file. Panas [231] visualizes the evolution of the signatures of software
binaries to find malicious code. Theron et al. [327] visualize the evolution of
baselines and revisions of artifacts from software repositories. Verso [183] uses
different views and animation to show structural and control version metrics of
evolving software. Other evolutionary work has included the evolution of UML
diagrams such as class diagrams [154, 155, 339] and model transformations [349].

2.2.4 Collaborative Software Development and Visualization

Ko et al. [170] explored how tools support collaborative software understanding for
co-located software development teams but did not focus on software visualization
per se. Of particular interest to us are software visualization tools and applications
that support co-located collaboration.

Storey et al. [316] propose that collaborative software visualization can improve
team software maintenance. They reviewed a number of existing software visual-
ization tools and found that most of them rarely support any form of collaborative
authoring and sharing of views. They recommend that designers of software
visualization tools for software maintenance consider the social and collaborative
aspects when building tools to help improve collaboration and usability, and
adopt Computer Supported Cooperative Work (CSCW) [368] methodologies for
evaluating collaborative visualizations.

Some prototypes have explored using different interactive devices to support
collaborative software development. FastDash [35] is an ambient visualization
system displayed on a projector for providing awareness about developer activities
in software teams. IMPROMPTU [34] is a framework for sharing artifacts in a
multi-display environment and a study was conducted with software development
teams. CodeSpace [46] uses shared touch screens, mobile touch devices, and Kinect
sensors to share information during developer meetings. CodePad [237] uses
peripheral interactive devices ranging from portable tablets to tables to support
developers in maintaining their concentration. CoffeeTable [117] is a visual system
that uses digital pens and Wii Remotes for interaction to assist with software
development processes such as what developers are working on, a summary of
the architecture, and work flow activities. CREWW [45] is an interactive CRC card

2.2. SOFTWARE VISUALIZATION 27

system that uses Wii Remotes for collaborative requirements engineering.

Some prototypes have explored using multi-touch tables to support collab-
orative software development. MasePlanner [215], DAP [216], and Agile Plan-
ner [106, 350, 351] have explored planning software projects using horizontal touch
tables for Agile software teams. SmellTagger [218] uses a small multi-touch table
for code reviews to identify code smells in software with lightweight visualizations
and software metrics. Mueller et al. [219] use a small multi-touch table to explore
software modelling with CRC cards. Boccuzzo and Gall adapted their 3D software
exploration tool, CocoViz [40], to multi-touch tables [41]. Soro et al. [308] compared
observations of user behaviour in pair programming performed at a traditional
desktop computer versus a multi-touch table. MT-CollabUML [17, 18, 19, 20] is a
UML tool for multi-touch tables and a user study was conducted between the tool
on a multi-touch table and desktop computer.

These multi-touch table prototypes are focused on exploration, modeling, and
architecture of systems and use small tables. Any evaluation of these tables was
done with non professional software developers. Our research focuses on bringing
software visualization techniques such as visualizing the structure and internals
of software systems to large multi-touch tables. We also exclusively evaluate our
software visualization designs with professional software developers.

2.2.5 Evaluation of Software Visualization

There is no perfect method for evaluating software visualizations [121] nor any
benchmarks [198] to determine how effective a software visualization is. There
are various information visualization and software visualization design guide-
lines [223, 301], taxonomies [161, 230, 250, 249, 251, 281], and frameworks [8, 9,
84, 85, 199, 317] that can be used to evaluate algorithm animations, software
visualizations, and software visualization tools.

In a survey [176, 177] based on questionnaires completed by 111 researchers
from software maintenance, re-engineering and reverse engineering, 40% found
software visualization absolutely necessary for their work and another 42% found
it important but not critical. 7% think that software visualization is at least relevant
and 6% that they can do without it but it is nice to have. Only 1% believe software
visualization is not an issue at all. Finally, 4% did not answer the question. From
the same survey relatively few people consider software visualization their pri-
mary research (11%) or at least a substantial part of their research (18%). Many
people are doing software visualization research every now and then (20%), how-
ever most people are primarily using or integrating existing software visualization
tools developed by others (33%).

2.3. MULTI-TOUCH TECHNOLOGIES 28

Some recent studies [184, 286, 293, 294, 295] classified desirable features and
lessons learned from a number of software visualization tools for software main-
tenance. Several features were strongly desired by all users: IDE integration,
scalability, multiple views, and query support. 3D and animation were less desir-
able.

2.3 Multi-Touch Technologies

Multi-touch is an interactive technique that allows single or multiple users to
control graphical displays with more than one finger or mouse pointer on vari-
ous kinds of surfaces and devices. Multi-touch technology has been around for
approximately 25 years. Bill Buxton created an overview of multi-touch systems5.
In this section we describe some example multi-touch systems, research projects,
evaluation of multi-touch technologies, and multi-touch hardware approaches.

2.3.1 Multi-Touch Commercial Systems

Exposure of multi-touch technology to consumers occurred in 2007 with the release
of the Apple iPhone6 followed by the iPad7 in 2010. Google released Android8 in
2007 a touch mobile phone operating system. Microsoft released the Windows 7
in 2009 and Windows 8 in 2012 which both support multi-touch interaction. HP
and Dell both have laptops and desktops that support multi-touch interaction.
A number of companies have released multi-touch tables which are aimed at
supporting multiple users. Mitsubishi produced one of the earliest commercial
multi-touch tables the DiamondTouch table9 [79] (42 inches) in 2001 and is now
sold by CircleTwelve. Microsoft produced the Surface multi-touch table (30 inches)
in 2007 and now produce the Samsung SUR40 with Microsoft Pixel Sense10 (40
inches) since 2011. Microsoft subsequently acquired Perceptive Pixel11 which
produce a multi-touch wall (81 inches x 48 inches) and multi-touch workstations
(48 inches x 27 inches) [116]. Smart Technologies12 produce touch screen products
oriented towards the education market and produce a multi-touch table (42 inches).

5http://www.billbuxton.com/multitouchOverview.html
6http://www.apple.com/iphone/
7http://www.apple.com/ipad/
8http://www.android.com
9http://www.circletwelve.com/

10http://www.microsoft.com/en-us/pixelsense/default.aspx
11http://www.perceptivepixel.com/
12http://www.smarttech.com/

2.3. MULTI-TOUCH TECHNOLOGIES 29

Ideum13 produce a large mult-touch table (50 inches). Evoluce14 produce multi-
touch tables ranging in size (40–70 inches). Flat Frog15 produce a small multi-touch
table (32 inches). Some companies produce touch overlays which are mounted to
different sized TV screens including NextWindow16 and PQ Labs17.

2.3.2 Multi-touch Research Projects

Jeff Han [115] (see Figure 2.6(a)) helped invigorate research into multi-touch user
interfaces with his low cost multi-touch table, presented at the TED Conference18.
Han’s multi-touch user interface design philosophy is based on the following
principles: that no instructions are required for touch interfaces, no manual, and
almost no traditional desktop interface. Some other early research systems include:
VideoPlace [179], DigitalDesk [356, 357], HoloWall [207, 275], TouchLight [364],
Visual Touchpad [200], and PlayAnywhere [365].

A number of research projects have begun to explore what role multi-touch
table environments can play in different domains. These domains include brows-
ing photos [204], collaborative play [163], simulating origami [60], computer
games [247], and musical interfaces with robots [126, 127].

Integrating and adapting existing technology with multi-touch tables and
applications is another area that research groups are exploring. These technologies
include integrating digital pens for UML diagram sketching [98], integrating
mobile devices with tabletop displays [90, 367], integrating Access Grid technology
with multi-touch tables [63, 131], and adapting X3D for multi-touch [156].

Some of the multi-touch research has looked at providing different kinds of
input other than just fingers. These include integrating speech and gestures with
geospatial systems on multi-user tabletops [336], adapting multi-finger gestures to
emulate mice in a multi-touch environment [205], configuring a multi-touch wall
to support both hand and foot input [288], and new ways to enter text [165].

Another input technique for multi-touch systems is physical tangible objects.
The Reactable19 [152, 153, 159, 160] (see Figure 2.6(b)) is one of the first multi-touch
musical instruments. The Reactable allows many users to play electronic music
collaboratively by manipulating tangible objects to control different elements
like synthesizers, effects, sample loops or control elements in order to create a

13http://www.ideum.com
14http://www.evoluce.com
15http://www.flatfrog.com/
16http://www.nextwindow.com
17http://www.multitouch.com
18http://www.ted.com/talks/jeff han demos his breakthrough touchscreen.html
19http://www.reactable.com

2.3. MULTI-TOUCH TECHNOLOGIES 30

(a) Jeff Han, FTIR approach [115].

(b) Reactable [159, 152].

Figure 2.6: Recent pioneering multi-touch table examples.

2.3. MULTI-TOUCH TECHNOLOGIES 31

composition. Lumino [21] is another system that created 3D physical tangible
objects made out of glass fibre bundles which are used as building blocks for
applications such as checkers. Other tangible object projects include GeoTUI [68],
metaDESK [145], PhotoHelix [124], and SLAP Widgets [355].

Some approaches have tried to differentiate between multiple users touching a
multi-touch table simultaneously. These approaches include detecting hand track-
ing [81], shadows of the arms of users [377], shoes of users [276], fingerprints [129],
skin sensing [274], and assigning users to specific physical seats [79].

2.3.3 Evaluation of Multi-touch Technologies

Researchers have begun observing how people use multi-touch applications in
different settings, analysing what gestures people use to control multi-touch user
interfaces, and measuring the performance of the multi-touch system itself.

Peltonen et al. [246] analysed detailed observations of people using a large
multi-touch display as part of the CityWall project20. They found that strangers
acted mostly separately, but courteously, in parallel, and interacted with each other
mostly after a conflict. Other research has explored collaborative coupling [320],
public and private workspaces [306], casual to focused usage scenarios [284], reach
in table tops [331], and personal, group and storage territories [289, 290, 292, 291].

Researchers at Microsoft [369] established a taxonomy of multi-touch surface
gestures based on analysing 1080 user defined gestures. The gestures covered a
wide range of user tasks including selecting, grouping, and manipulating objects.
A number of other researchers have also explored analysing user gestures [94, 228,
329, 371, 372] and user gestures with virtual physical objects [125, 366].

Laurence Muller [217] conducted a series of user studies into the performance
of multi-touch table surfaces compared with desktop computer mice. These
studies ranged from pointing, object manipulation, collaborative sorting, and
collaborative and selecting tasks. He concluded that while multi-touch is capable
of performing some tasks faster than a mouse, multi-touch should not be consid-
ered a replacement. When tasks require precision, the multi-touch device shows
longer task completion times with higher error rates. When the number of users
were increased the test results showed that the multi-touch table had significant
improvements than a single mouse.

20http://citywall.org/

2.3. MULTI-TOUCH TECHNOLOGIES 32

2.3.4 Multi-touch Hardware Approaches

There are a number of multi-touch hardware approaches that can be used to build
a multi-touch surface. These include resistance based, capacitive based, surface
wave based, and optical based. Further details can be found elsewhere [287, 321].

Resistance Based Multi-touch

Resistance based touch surfaces have a number of layers. There are two important
thin metallic layers that are separated by an insulated air gap and are electrically
conductive [287]. When a finger or object touches the outer touch surface the two
layers are pressed together which establishes the precise location of the touch
input [287]. DualTouch [206] is a resistance based example.

Surface Acoustic Wave Based Multi-touch

Surface Acoustic Wave (SAW) based uses ultrasonic waves that pass over the
touch surface. Two transducers (one receiving and one sending) are placed along
the X and Y axes of the surface and are directed by reflectors. The position of a
touch event can be calculated by processing the electronic signals and observing
the changes.

Capacitive Based Multi-touch

Capacitive based touch surfaces were originally designed for single touch. Ca-
pacitive based touch surfaces have high clairty, durability, and reliability but are
expensive to produce. The touch surface consists of an insulator such as glass and
coated with a transparent conductor such as an indium tin oxide [287]. Capacitive
based systems are well suited for robust environments such as public information
kiosks, point of sale controls, and smart phones. Some example systems include
DiamondTouch [79], SmartSkin [274], and work by Wayne Westerman [359] that
led to the Apple iPhone.

Capacitive based touch surfaces can either be surface or projected based. In
surface capacitive based only one side of the insulator is coated which contains
electrodes that sets up a uniform electric field across the conductive later [287].
Once a finger touches the uncoated surface a capacitor is dynamically created and
the sensor controller can then determine the location of the touch from the change
in the capacitive as measured from the corners of the surface [287].

In projected capacitive based a very thin grid of microphone wires is installed
between two protective glass layers. When the surface is touched by a finger
capacitance is formed between the finger and the grid layer. The touch point can

2.3. MULTI-TOUCH TECHNOLOGIES 33

then be calculated based on the measured electrical properties of the grid layer.
The disadvantages of capacitive based surfaces are they have limited resolution,
are prone to false signals from capacitive coupling, and need to be calibrated when
manufactured.

Optical Based Multi-touch

Optical based multi-touch tables require the following hardware components:
some kind of surface projection material, surface lighting technique, infrared (IR)
light source, cameras, and a display source (e.g. data projector).

Figure 2.7 illustrates the basic arrangement of the components required for
an optical based multi-touch surface. When a user touches the surface material
the camera detects a change (e.g. blob) in the illuminated infrared surface and
relays that information back to the tracking software. There are various options
for the kind of surface material used and surface lighting technique (§2.4.1). The
infrared light source is used to illuminate the surface and dependent on the
surface lighting technique (§2.4.2). The optical based cameras are used for finger
and object detection and only detect IR light (§2.4.3). The display source can be a

Figure 2.7: Optical based multi-touch table - basic arrangement of components.

2.4. OPTICAL BASED MULTI-TOUCH TABLES 34

data projector or LCD display (§2.4.4). There are some different kinds of software
used for finger and object detection, and software for client applications (§2.4.5).

Resistance, surface wave, and capacitive based multi-touch hardware require
industrial quality fabrication facilities and are out of scope for this thesis. Optical
based multi-touch tables are cheaper to build than the other solutions, require less
specialised equipment, require less electronics knowledge to build, and one can
build a much larger surface.

2.4 Optical Based Multi-touch Tables

We give an overview of the the necessary hardware required to build an optical
based multi-touch table, further details can be found elsewhere [287, 321] and
from forums on the Natural User Interface (NUI) Community Group21.

2.4.1 Surface Lighting Techniques

There are a number of lighting techniques for building an optical based multi-
touch surface. Figure 2.8 illustrates some of these techniques. Table 2.2 compares
the different surface lighting techniques for multi-touch tables. Depending on the
requirements for a multi-touch environment, different surface lighting techniques
each have their advantages and disadvantages. The surface lighting technique
used impacts the infrared lighting source required to illuminate the surface (§2.4.2).
Some of these surface lighting techniques include Frustrated Total Internal Reflec-
tion (FTIR), Diffused Illumination (DI), Diffused Surface Illumination (DSI), Laser
Light Plane Illumination (LLP), and LCD Monitors.

Frustrated Total Internal Reflection (FTIR)

Frustrated Total Internal Reflection (FTIR)22 is a technique created by Han [115]
(see Figure 2.8(a)). The FTIR technique uses Total Internal Reflection which is a
condition present in certain materials when light enters one material from another
material with a higher refractive index, at an angle of incidence greater than a
specific angle. The specific angle at which this occurs depends on the refractive
indexes of both materials, and is known as the critical angle. When this happens,
no refraction occurs in the material, and the light beam is totally reflected. The
FTIR technique floods the inside of a piece of acrylic with IR light by trapping the
light rays within the acrylic. When a user comes into contact with the surface, the

21http://nuigroup.com
22http://wiki.nuigroup.com/FTIR

2.4. OPTICAL BASED MULTI-TOUCH TABLES 35

(a) Frustrated Total Internal Reflection (FTIR) (b) Rear Diffused Illumination (DI)

(c) Surface Diffused Illumination (DSI) (d) Laser Light Plane (LLP)

Figure 2.8: Multi-touch surface lighting techniques [321].

light rays are said to be frustrated, since they can pass through into the contact
material (e.g. skin), and the reflection is no longer total at that point. The light
is then sent downwards to a camera which picks up these blobs and sends the
information to the tracking software.

The clear acrylic needs to be about 8-10mm and it is important to ensure the
sides of the acrylic are polished to improve the spread of the illumination. A baffle
is required to hide the light leaking from the sides of the light emitting diodes
(LEDs) and can be built out of any material. The more sides trapping the light will
help improve the lighting conditions. A compliant layer is required to increase the
brightness of the touch points. There is lots of experimentation ongoing within the
NUI Community Group as what is the perfect compliant layer using many types
of materials including rubber, silicon, and fabrics. A diffused layer is required
to stop the projector from beaming further into the ceiling and for the camera to
only see the touches, all other objects behind the surface will not be seen. There
are many types of projection screens and diffusers that can be used for the touch
surfaces. Depending on the requirements some diffusers are better than others.

2.4. OPTICAL BASED MULTI-TOUCH TABLES 36

Diffused Illumination (DI)

Diffused Illumination (DI)23 has two variants, front and rear which use the same
basic principles (see Figure 2.8(b)). The only difference between front and rear DI
is where the IR lights are shone at the screen. For Rear DI IR light is shone at the
screen from below the touch surface. A diffuser is placed on top or on the bottom
of the touch surface. When an object touches the surface it reflects more light than
the diffuser or objects in the background; the extra light is sensed by a camera.
This method can also detect hover and objects placed on the surface.

Diffused Surface Illumination (DSI)

Diffused Surface Illumination (DSI)24 uses a special acrylic to distribute the IR
evenly across the surface (see Figure 2.8(c)). DSI basically uses the standard FTIR
setup with an LED Frame (no compliant silicone surface is needed) and a special
piece of acrylic. This acrylic uses small particles that are inside the material, acting
like thousands of small mirrors. When IR light is shone into the edges of the acrylic
the light gets redirected and spread through the surface. The effect is similar to DI,
but with even illumination, no IR hot-spots, and has the same setup process as
FTIR.

Laser Light Plane Illumination (LLP)

Laser Light Plane Illumination (LLP)25 has an infrared light from a laser(s) shone
just above the surface (see Figure 2.8(d)). The laser plane of light is about 1mm
thick and is positioned right above the surface, when a finger tip just touches the
laser plane the finger will register as an IR blob.

LED Laser Light Plane Illumination (LED-LLP)

LED-LLP is similar to LLP but uses LEDs to shine light over the surface. The LEDs
are setup in a bezel frame similar to that of FTIR, but above the acrylic. The LEDs
create a much thicker plane than that of LLP. When a user or object touches this
plane of light it is reflected to the camera as a bright blob.

LCD Monitors

Alternative optical based techniques use LCD monitors to create multi-touch sur-
faces. The advantages of LCD monitors over the earlier discussed projector based

23http://wiki.nuigroup.com/Diffused Illumination
24http://wiki.nuigroup.com/Diffused Surface Illumination
25http://wiki.nuigroup.com/Laser Light Plane Illumination (LLP)

2.4. OPTICAL BASED MULTI-TOUCH TABLES 37

techniques is that they provide a higher display resolution for a much lower cost.
LCD monitors make it easier to embed within tabletop structures and therefore
one does not have to worry about throw distance nor key-stoning to get a perfect
displayed image. There are two common techniques for using LCD monitors with
optical sensing, Bezel-IR for LCD and Matrix of IR Transceivers [287].

The Bezel-IR for LCD technique uses IR LEDS around the bezel of the LCD to
shine IR light across the top of the surface of the screen. When a finger touches the
surface light reflects off the finger and continues through the monitor whereupon
it is captured by an IR sensitive camera. This technique can also be accomplished
using IR laser LEDs. The advantages of this technique is that it is cheaper to
purchase a LCD monitor than a projector, no compliant surface is required, and is
scalable to 32 inch screens. The disadvantages of Bezel-IR is that no tangible track-
ing of objects is possible, more filtering required to eliminate false touches, and
modifying the LCD is difficult. Echtler et al. [87] use an inverted FTIR approach
with acrylic glass in front of the LCD display and place a camera in front of the
screen.

The Matrix for IR Transceivers technique creates a matrix of IR transceivers
behind the LCD screen. The transceivers contain an IR emitter and detector. The
emitter pulses IR light at a frequency which the sensor can detect. Once a finger
touches the LCD screen the finger reflects back the light which is detected by
the sensor. It is possible to cover the entire LCD screen with the transceivers.
The amount, size, and distance between the sensors determines the accuracy and
resolution of this technique. The advantages of this technique is that it allows
thin form factors which are similar to that of LCD screens and that tangible object
tracking is possible. The disadvantages is that this technique requires specialist
electronics skills and that it is not scalable beyond 32 inches due to the increase in
cost and latency. An example system includes ThinSight [128, 146].

2.4.2 Infrared Light Sources

For the IR light source FTIR, DSI, and LED-LP require IR LEDs, while DI needs
an IR illuminator which may have IR LEDs inside. LLP uses IR lasers. LEDs can
be bought as single LEDs, LED ribbons, or within IR illuminators. Single LEDs
are cheap but require being electrically wired and soldered together. The most
common through-holed IR LEDs used within the NUI Community Group are
Osram SFH4250 (SMD) and Osram SFH485 (5mm). LED ribbons come in the form
of already soldered single LEDs and come with an adhesive side which can be
stuck to the acrylic to form a continuous ribbon. IR emitters and illuminators come
in grouped LEDs such as IR security lights or IR LED bars. The wavelengths of the

2.4. OPTICAL BASED MULTI-TOUCH TABLES 38

Table 2.2: Comparison of Multi-touch Surface Lighting Techniques [321].

Technique Positive Negative
FTIR - Enclosed box not required - Need to build LED frame

- Blobs have strong contrast - Requires compliant surface
- Allows for varying blob pressure - Can’t recognise objects or
- With a compliant surface can be used fiducial makers
with something as small as a pen tip - Can’t use a glass surface

Rear DI - No need for compliant surface - Difficult to get even illumination
- Need diffuser/projection surface - Blobs have lower contrast
- Can use any transparent material - Greater chance of false blobs
(e.g. glass or acrylic) - Enclosed box is required
- No LED frame required
- No soldering of IR LEDs
- Prepackaged IR spotlights are fine
- Can track objects, fingers,
fiducial markers, hovering

Front DI - No need for compliant surface - Can’t track objects and fiducial markers
- Need diffuser/projection surface - Difficult to get even illumnination
- Can use any transparent material - Greater chance of false blobs
(e.g. glass or acrylic) - Not as reliable as relies heavily
- No LED frame required on ambient lighting environment
- No soldering of IR LEDs
- Prepackaged IR spotlights are fine
- Can track fingers and hovering
- Enclosed box not required

DSI - No compliant surface required - Endlighten acrylic costs more than
- Can easily switch between DSI regular acrylic
and FTIR - Blobs have lower contrast than FTIR
- Can detect objects, hovering, and and LLP
fiducials - Possible size restrictions due to acrylic
- Is pressure sensitive softness
- No IR hot-spots
- Even finger/object illumination
throughout the surface

LLP - No compliant surface required - Can’t track objects or fiducial markers
- Can use any transparent material - Not pressure sensitive
(e.g. glass or acrylic) - Can cause occlusion if only using
- No LED frame required 1/2 lasers where light hitting one finger
- Enclosed box not required blocks another finger from receiving light

LED-LP - No compliant surface - Hovering might be detected
- Can use any transparent material - Can’t track objects or fiducial markers
(e.g. glass or acrylic) - LED frame (soldering) required)
- No LED frame required - Only narrow-beam LEDs can be used,
- Enclosed box not required no ribbons

2.4. OPTICAL BASED MULTI-TOUCH TABLES 39

IR LEDs suitable for most cameras are in the range between 780–940 nanometers
with 850nm being the most common.

For DI and FTIR it is important to achieve even IR illumination on the surface
to allow the camera to detect all areas of the surface effectively. This can be
accomplished by using wide angle LEDs and bouncing IR light of the insides of
the table. If IR LEDs are pointed directly at the surface this can cause IR hotspots
in certain areas which prevent the camera from detecting any fingers or objects.

2.4.3 Cameras

In an optical based multi-touch environment a camera is needed to detect fingers
and tangible objects touching the surface. The camera needs to be modified to see
only the IR spectrum so that it will only see fingers or tangible objects and not
images from the projector. Basic web cameras can work for multi-touch but since
they block out IR light they must first be modified to detect only infrared light.
This can be done by removing their IR block filter and adding an IR bandpass filter.
Basic web cameras usually have the IR block filter as a small component that can
be removed but more expensive cameras have the filter attached to the lens. The
purpose of the IR bandpass filter is to allow only light from a specific wavelength
to pass through such as 850nm. Since bandpass filters are usually quite expensive
an alternative is to use overexposed developed film negatives.

The greater the resolution of the camera the more pixels can be used to detect
fingers or tangible objects. To maintain the precision of finger and object detection
and tracking low resolution cameras such as 320 x 240 pixels are suitable for small
surfaces but larger surfaces require a resolution of 640x480 or greater. To handle
basic detection and manipulating objects cameras with a minimum frame rate of 30
FPS is recommended, but to get better performance for tracking of fast movements
such as gestures and dragging objects rapidly 60 FPS is recommended [287, 321].

It is important for the lens of the camera to be able to see the whole table
surface in order to detect fingers and tangible objects. Depending on the distance
of the camera from the touch surface a lens with the appropriate focal length must
be selected. Some cameras can use mounts to interchange between different lenses.
If a lens has a low focal length this may affect the image distortion and hence make
the calibration of the tracking software more complex.

Cameras with FireWire connections are more expensive than USB web cameras.
FireWire cameras have a number of benefits over USB web cameras. They provide
the least overhead for transferring the image to the computer, have a higher frame
rate, can capture larger image sizes, and have less overhead for the driver due to
less compression.

2.4. OPTICAL BASED MULTI-TOUCH TABLES 40

2.4.4 Display Sources

The data projector is used to display the visual output from the client software
running on the computer. Two types of projection techniques include Liquid
Crystal Displays (LCD)26 and Digital Light Processing (DLP)27. LCD are made of
up of a grid of dots that go on and off as needed and is the same technology as
used in computer display screens. This technique is very sharp and has a very
strong colour. DLP works by the use of thousands of tiny mirrors moving back
and forth and then colour is created by a spinning colour wheel. DLP projectors
have very good contrast ratio and are small in physical size.

The brightness of projectors are measured in ANSI lumens28 and most pro-
jectors range between 1000-3000 lumens. The larger the number of lumens the
brighter the image will be. In some cases a bright image can produce hot-spots so
a not so bright projector maybe required.

The throw distance of the projector affects how far the projector needs to be
from the projection surface. If a multi-touch table is to be created in a tightly
confined space then a mirror can be used to bounce the image onto the projection
surface. An alternative is to use a more expensive and less available short throw
projector which can produce a much larger image at a closer distance. Using a
short-throw projector makes the design of the table simpler and alleviates any
complications with bouncing images off mirrors and ghosting issues.

The resolution and aspect ratio of the projector affects the shape of the projec-
tion surface. It is important to use the projector at the native resolution as this
achieves the best display results. Common resolutions of projectors used in multi-
touch projects described within the NUI Group Community include 1024x768 (4:3
aspect ratio) and 1280x800 (8:5 aspect ratio).

2.4.5 Multi-Touch Detection Software

We now discuss the software architecture for multi-touch software applications
and describe some multi-touch vision detection software.

Multi-touch Detection Software Architecture

Figure 2.9 shows the software architecture for a multi-touch environment. The
protocol used for detecting touch events (either human or by tangible objects)
and transferring them to a client application is TUIO (Tangible User Interface

26http://en.wikipedia.org/wiki/LCD projector
27http://en.wikipedia.org/wiki/Digital Light Processing
28http://en.wikipedia.org/wiki/Lumen (unit)

2.4. OPTICAL BASED MULTI-TOUCH TABLES 41

Figure 2.9: TUIO Architecture [158].

Objects)29 [26, 157, 158]. The tracker and client applications can be located on
the same machine if required. The TUIO protocol defines common properties of
controller objects on the table surface and finger gestures performed by the user.

The TUIO protocol is based on OpenSound Control (OSC)30 which is a protocol
for the communication between controllers and sound synthesizers. OSC was
primarily designed as a replacement for MIDI in order to overcome the bandwidth
and speed limitations of this standard protocol for digital musical instruments.
The transport method most commonly implemented is UDP and TUIO uses port
3333 for delivery of binary OSC data. Flash does not support UDP so an alternative
TUIO/LC (shared memory) method has been implemented within a dedicated
Flash/AS3 library. There also exists an additional TUIO/TCP transport method.

Echtler and Klinker [89] present a more comprehensive multi-touch software
architecture with an implementation called Tangible Interactive Surfaces for Col-
laboration between Humans (TISCH)31 [88]. Figure 2.10 shows the four layers
of the architecture, where all data between layers is transported using UDP. The
hardware abstraction layer takes raw data from the input of hands, fingers, and
tangible objects and generates data packets containing these input positions. The
transformation layer then converts the data into screen coordinates and outputs
transformed data packets. The interpretation layer reads the input positions and
converts them to gesture events. Finally, the widget layer registers for gesture
events and generates the visual output to the user.

29http://www.tuio.org
30http://opensoundcontrol.org
31http://tisch.sourceforge.net/

2.4. OPTICAL BASED MULTI-TOUCH TABLES 42

Figure 2.10: Echtler and Klinker [89] multi-touch software architecture.

Vision Detection Software

There exist some blob detection and finger/object tracking software that can be
used for a multi-touch user interface. Some of the more popular multi-touch
software include Community Core Vision (CCV)32 (formerly known as tbeta), reac-
TIVision33 [26, 157], Touchlib34. Others include Touch35, BBTouch36, Bespoke Multi-
touch Framework37, LightTracker [109], EquisFTIR [304, 370], and MPX [132].

32http://ccv.nuigroup.com/
33http://reactivision.sourceforge.net/
34http://nuigroup.com/touchlib/
35http://gkaindl.com/software/touche
36http://benbritten.com/software/bbtouch-quick-start/
37http://www.bespokesoftware.org/multi-touch/

2.4. OPTICAL BASED MULTI-TOUCH TABLES 43

Figure 2.11: CCV multi-touch detection and tracking software.

CCV is an open source cross-platform solution for computer vision and ma-
chine sensing. CCV takes a video input stream (e.g. from web cameras) and
outputs tracking data (e.g. coordinates and blob size) and events (e.g. finger down,
moved, and released). The events and tracking data can then be used to build
multi-touch applications. Various web cameras and video devices are supported.
CCV can accept connections from TUIO and OSC applications. CCV supports the
following multi-touch surface lighting techniques: FTIR, DI, DSI, and LLP.

Figure 2.11 shows a screen-shot of CCV with the source image of the raw
video from a camera on the left and the tracked image on the right after image
filtering. ID numbers are present for each tracked blob. There are a number of
filters and settings that can be adjusted which have an effect on the quality of the
blob detection. The filters are required to be set differently according to the surface
lighting technique being used and the physical lighting environment. CCV has a
calibration process which calibrates the software with the camera and projector.
The calibration process aligns touch points on the screen in a grid formation and
then a user manually touches each individual calibration point. The reason for
calibration is to gain accurate detection of touch events with respect to the image
being displayed by the projector.

2.4. OPTICAL BASED MULTI-TOUCH TABLES 44

reacTIVision [26, 157] is an open source cross-platform computer vision frame-
work for the fast and robust tracking of fiducial markers attached onto physical
objects. It also supports multi-touch finger tracking but this was added later. reac-
TIVision has been developed as part of the reacTable project [152, 153, 159, 160]
(see Figure 2.6(b)). The software comes with a set of fiducial symbols which are
a set of patterns that the camera sees and the software responds to actions upon
seeing the symbol on a fiducial marker. The symbol labels can be attached to any
object users want to track.

Touchlib is a library for creating multi-touch user interfaces and was one
of the first libraries. Touchlib was originally designed for Windows but there
have since been ports to MacOSX and Ubuntu. Touchlib has limited support for
fiducial marker identification and tracking. Touchlib supports the TUIO and OSC
protocols. Touchlib works with most types of web-cams and video capture devices.
Touchlib does not provide a developer with any graphical or front end capabilities,
it simply passes the touch events to a client application.

2.4.6 Multi-Touch Application Software

Several general purpose and domain specific programming languages support the
TUIO protocol for writing multi-touch client applications. These programming
languages include Action Script 3, C, C++, C#, Flash, Java, ObjectiveC, Processing,
Python, and Smalltalk. More information can be found elsewhere [287, 321].

There are number of open source toolkits for building multi-touch applications:
Multi-touch for Java (MT4j)38 [188], TUIO Zones39 a Processing library, Kivy40

a Python library, OpenFrameworks41 a C++ library, Cinder42 a C++ library, and
Libavg43 a C++ library. There are some commercial toolkits for building multi-
touch applications. Diamond Spin44 is a toolkit for the Diamond Touch table [299].
The Microsoft Surface SDK45 is a toolkit for the Microsoft Pixel Sense table. Ges-
tureWorks46 is a C++ and Flash toolkit for the Ideum table. There are various
commercial multi-touch software applications such as Omnitapps47 for content
management in presentation displays and Emulator48 a DJ application.

38http://www.mt4j.org
39http://jlyst.com/tz
40http://kivy.org/
41http://www.openframeworks.cc/
42http://libcinder.org/
43http://www.libavg.de
44http://diamondspin.free.fr
45http://www.microsoft.com/en-us/pixelsense/softwareplatform.aspx
46http://gestureworks.com
47http://www.multitouch-software.com
48http://www.smithsonmartin.com

2.5. SUMMARY 45

There is some software for simulating multi-touch user interfaces on desktops
which can be used for development purposes. They essentially simulate mouse
click events as touch events. These simulators include: SimTouch49 which uses the
Adobe Air run-time and provides a transparent background that touch events can
be simulated on, TUIO Simulator50 which is designed for simulating reacTIVision
applications, QMTSim51 which is built using the Qt toolkit, and BSQ Simulator52

for converting TUIO messages to Windows 7 touch messages.

2.5 Summary

In this chapter we have presented background material to this thesis. We gave
an overview of information visualization, collaborative information visualization,
and evaluation of information visualization. We described software visualization
systems and techniques based on three areas: structure, behaviour, and evolution.
We presented collaborative development and software visualization and evalu-
ation of software visualization systems. We presented multi-touch technologies
including systems, research projects, evaluation of multi-touch technologies, and
approaches to building multi-touch hardware. We gave an overview of building
optical based multi-touch tables, multi-touch detection software, and multi-touch
application software.

In the next chapter (§3) we describe our experience of building large interactive
portable multi-touch tables from scratch for co-located collaborative software
visualization.

49http://code.google.com/p/simtouch
50http://reactivision.sourceforge.net/#files
51http://code.google.com/p/qmtsim
52https://code.google.com/p/bsqsimulator

Part II

Hardware and Software
Infrastructure

46

Chapter 3

Large Interactive Multi-touch Tables

Contents
3.1 Multi-Touch Prototypes . 48

3.1.1 MT Mini . 48

3.1.2 MT Biggie . 48

3.2 Black Multi-touch Table . 51

3.2.1 Physical Table Frame . 51

3.2.2 Surface Lighting Technique 51

3.2.3 Infrared Lighting Source . 51

3.2.4 Camera and Lens . 53

3.2.5 Display Source . 53

3.2.6 Computer Hardware . 54

3.3 Blue Multi-touch Table . 54

3.3.1 Physical Table Frame . 54

3.3.2 Surface Lighting Technique 54

3.3.3 Infrared Lighting Source . 56

3.3.4 Camera and Lens . 56

3.3.5 Display Source . 56

3.3.6 Computer Hardware . 56

3.4 Discussion . 57

3.4.1 Display Size . 57

3.4.2 Display Resolution . 57

3.4.3 Display Configuration . 57

3.4.4 Input Type . 58

47

3.1. MULTI-TOUCH PROTOTYPES 48

3.4.5 Portability . 58

3.4.6 Performance . 59

3.4.7 Cost . 59

3.5 Summary . 60

In this chapter we describe our experience of building large interactive portable
multi-touch tables from scratch for co-located collaborative software visualization.
We illustrate from our initial early prototypes to our working prototypes. We
first experimented with various techniques to understand the technologies behind
touch screens (§3.1). We then built a medium sized (28 inches) multi-touch table
prototype (§3.2). Finally, we built a much larger sized (48 inches) multi-touch table
(§3.3).

3.1 Multi-Touch Prototypes

In order to construct a multi-touch table we first needed to understand the technol-
ogy behind touch screens. We experimented with two multi-touch designs based
on work by Seth Sandler1.

3.1.1 MT Mini

The first prototype was a multi-touch pad called MT Mini2. Figure 3.1 shows our
prototype which consists of an empty cardboard box, acrylic glass surface with
drafting paper stuck to the top, an unmodified web camera, and CCV (§2.4.5)
running on a laptop. There was no displayed image nor any infrared illumination.

The MT Mini gave us an idea of what a large multi-touch screen was like. The
MT mini was essentially a large track pad as opposed to a multi-touch table, so
users could not manipulate images on the surface. The MT Mini was hard to
configure for different physical lighting environments. It was hard for users to
manipulate objects on a separate display screen when the object being manipulated
was not visible on the physical touch surface.

3.1.2 MT Biggie

The second prototype was a medium sized multi-touch table called MT Biggie3.
Figure 3.2 shows the parts used in our MT Biggie. We used a computer desk with

1http://sethsandler.com
2http://sethsandler.com/multitouch/mtmini/
3http://sethsandler.com/multitouch/mtbiggie/

3.1. MULTI-TOUCH PROTOTYPES 49

(a) MT-Mini Touch Pad. (b) MT-Mini Web Camera.

Figure 3.1: MT-Mini Touch Pad prototype.

a frosted glass top (originally purchased from a local furniture company) which
was approximately 1200mm wide and 800mm high. The frosting proved to be
too opaque for the IR lights we used to shine through. The issue with glass and
touch is that we wanted the solution to be robust, and eliminate the possibility of
smashing the glass surface. We tried using safety glass with drafting film, tracing
paper, transparent projection paper, and different thicknesses of paper. These
approaches seemed to work better than our frosted glass table as they were not as
opaque to IR light. The drafting film worked best. Finally, we tried clear acrylic
glass with the different kinds of film and paper and this made our prototype
safer. The downside to all of these solutions though was that the diffused material
was not diffuse enough and that either the glass or acrylic glass would suffer IR
hot-spots, where fingers were not tracked on the surface.

We used a basic web camera with a band pass filter lens to detect IR images.
The camera supported up to 30FPS, but this was too slow for tracking fingers. We
needed at least 60FPS to effectively track fast finger movements. We built two
electronic circuit bread boards each with eight IR LEDs and powered by a bench
top power supply. These IR lights ended up not dispersing the light evenly over
the surface as they were too directional. We also tried an IR heat lamp, but this
was too bright and made the room much warmer.

3.1. MULTI-TOUCH PROTOTYPES 50

(a) Glass table. (b) Safety glass.

(c) Tracing paper. (d) Clear acrylic glass.

(e) Basic web camera. (f) IR band pass filter lens.

(g) IR LED lights on bread board. (h) IR heat lamp.

Figure 3.2: MT Biggie - parts.

3.2. BLACK MULTI-TOUCH TABLE 51

3.2 Black Multi-touch Table

Based on our earlier experience we built the Black Multi-touch Table as a proof of
concept prototype, which has a display screen size of 28 inches (see Figure 3.3).
Figure 3.3(a) shows the demo photo browser application implemented in Flash
that comes packaged with CCV. The image shows two users collaborating on the
table to browse through a range of photos. One user has zoomed in on an image
while the other user is rotating another image.

3.2.1 Physical Table Frame

Upon deciding not to use the glass computer desk from the MTBiggie for the table
frame we had the option of either making a frame or adjusting an existing table.
Since we wanted to create a proof of concept quickly we decided to adjust an
existing table (see Figure 3.3(b)). We acquired a portable steel trolley table that
had wheels from our university’s central IT services department to act as the table
frame. We modified the table by removing the shelves and the top surface. We
then ground away the steel pieces that held these wooden shelves in place as they
were an obstruction. We extended the table by adding in a separate compartment
at the back that housed the computer, data projector, power plugs, and wires (see
Figure 3.3(c)). The size of the table after the extensions was 760mm wide, 980mm
high, and 850mm deep. We painted the table black so that it was of uniform colour
and blended with other office furniture.

3.2.2 Surface Lighting Technique

For surface lighting we followed a Rear DI approach (§2.4.1) as we wanted a
complete enclosed box that was portable. For the surface diffuser material we used
a special piece of acrylic, called Plexiglas RP 99561 which is designed especially
for rear projection displays. The 99561 material is 3mm thick. We added five
millimetres of clear acrylic glass on top of the 99561 material to give it support,
so that the table does not flex when a user puts their hands in the middle of the
surface (Figure 3.3(d)).

3.2.3 Infrared Lighting Source

For the IR lights we initially used two IR security spotlights purchased from a
local electronics company. They provided enough IR light at 850 nanometers. We
added a power source and had to slightly modify the lights by hiding the daytime
detection sensor with tape. Rear-DI requires an enclosure for the IR light. We

3.2. BLACK MULTI-TOUCH TABLE 52

(a) Demo test of photo browser application.

(b) Front of table. (c) Back of table.

(d) Surface of table with CCV. (e) Inside of table.

Figure 3.3: The Black Multi-touch Table.

3.2. BLACK MULTI-TOUCH TABLE 53

initially used some old black cloth material which was wrapped around the sides
of the table and later added in wooden sides where one side acted as a sliding door
to access the internals. To provide an even spread of light we subsequently used
four IR LED bars each with 12 LEDs at 850nm instead of the IR security spotlights
and placed the bars around the inside of the table (Figure 3.3(e)). The IR LED bars
emitted light at a 110 degree viewing angle as opposed to the spotlights which
were more directional and had a much smaller viewing angle. We also painted the
inside of the table white to help disperse the IR light.

3.2.4 Camera and Lens

For the camera we purchased a modified Sony Play Station 3 (PS3) camera with a
m12 lens mount, 3.6mm lens, and a 850nm band pass filter which is compatible
with the IR lights. We also purchased a range of lens to enable positioning the
camera at different distances from the surface. We used a case to house the camera
to point vertically as opposed to the OEM horizontal case. In order for our camera
to work with CCV we required customized device drivers for which we used Code
Laboratories CL Eye Driver4.

3.2.5 Display Source

For the display source we used a Sony VPL-PX11 XGA data projector at 1024x768
(4:3) resolution which we acquired from our department. The display surface was
420mm by 570mm which is approximately 28 inches. The projector was mounted
vertically and slightly angled to beam an image down onto a mirror which then
reflects the image back up onto the surface material located above (Figure 3.3(e)).
We only had to use minor vertical key-stoning to get a perfect rectangular image
on the surface, but that required many hours of adjusting different parts of our
frame. We also digitally flipped the image horizontally and vertically so that the
user can see the displayed image the correct way up when facing the table front
on. The projector was held in place by a steel frame mount bracket with machine
screws from behind, and elastic stretch cords from the front.

Given the size of the table, the amount of heat generated by the projector
and lights we had to provide enough ventilation so that the projector and other
electronic components did not overheat. We created holes at the top of the sides
and added louvers for the heat to rise and escape. We added silver ventilation
ducting to the projector and vented the heat out the bottom of the table. We also
added a fan which brought colder air from outside the table to inside.

4http://codelaboratories.com/products/eye/driver/

3.3. BLUE MULTI-TOUCH TABLE 54

3.2.6 Computer Hardware

We initially used a MacBook Pro with OSX (10.5.8), 2.4GHz Intel Core Duo, 4GB
RAM, and GeForce 8600M GT with 256MB RAM running CCV 1.2 to drive the
multi-touch applications. We subsequently upgraded to a faster machine so that
we could use later versions of CCV (i.e. 1.3-1.5). This was a Dell Optiplex 990 with
Windows 7 Enterprise 64 bit, Intel Core i5-2500 3.3 GHz, 4GB Ram, and integrated
graphics on the Intel motherboard. We connected desktop speakers to provide
audio support and a wireless network adapter for Wifi connectivity.

3.3 Blue Multi-touch Table

The resolution of the Black Multi-touch Table was unfortunately too low to do
anything other than entertainment based applications. Even though the Black
Table was medium size it was still a bit small for multiple users to do collaborative
work. Hence we decided to build the Blue Multi-touch Table which was much
larger and had a display screen size of 48 inches (see Figure 3.4). Figure 3.4(a)
shows two users interacting with the MSA Fluids example from MT4j which shows
different coloured particles being displayed when a user touches the surface [188].

3.3.1 Physical Table Frame

We designed a steel table frame which we outsourced to our workshop department
to build. The table was 1200mm wide, 920 mm height, and 780mm deep (see Figure
3.4(b)). The table had four wheels and a base made of ply wood which was 10mm
thick. The front side of the table was fixed with two sliding doors on the sides.
The sides of the table were made of 5mm glossy shiny hardwood. The back of the
table was an adjustable black cloth material that was attached to the top, tucked
underneath the bottom, to provide sufficient ventilation.

3.3.2 Surface Lighting Technique

For the surface lighting we again followed a Rear DI approach (§2.4.1). The surface
diffuser material used was rear projection acrylic called Plexiglas RP 7D006 and
was 5mm thick (see Figure 3.4(c)). This material had a greater viewing angle
compared with the 99561 material. We had to import a large sheet of the material
from the manufacturers in Germany and cut it to the size of the table. We put a
piece of clear acrylic (3mm) on top, but the touch sensing was more effective with
only the 7D006. The down side to using just the 5mm 7D006 was that the middle
of the surface flexed with hard hand pressure in the middle.

3.3. BLUE MULTI-TOUCH TABLE 55

(a) MSA Fluids application [188].

(b) Front of table. (c) Surface of table with maps.

(d) Inside of table. (e) Projector on sliding draw.

Figure 3.4: Blue Multi-Touch Table.

3.3. BLUE MULTI-TOUCH TABLE 56

3.3.3 Infrared Lighting Source

We used were four IR LED bars each with 12 LEDs at 850nm. The bars were placed
evenly inside the middle of the table. One 25 module IR LED set (each module
had three LEDs) was also used and placed around the perimeter of the inside of
the table. The four IR bars and module set emitted light at a 110 degree viewing
angle which gave us the best spread of IR light (see Figure 3.4(d)).

3.3.4 Camera and Lens

The camera was a modified PS3 camera with a CS lens mount, 850nm band pass
filter, and housed inside a case (see Figure 3.4(d)). The lens was a Theia 1.67mm
which was adjustable, and had a wide angle 113 degree field of view. Hence we
could place the camera relatively close to the surface and still view a large surface
size. There was no distortion so the camera could detect effective blobs even in
the corners of the display which can sometimes be problematic. We again used
Code Laboratories CL Eye Driver for our camera to work with CCV.

3.3.5 Display Source

The mirror on the Black Table caused ghosting effects on the displayed image so
we eliminated the mirror in the Blue Table and used a short throw data projector
that pointed directly at the surface. We used a Sanyo PLC-WXL46 at 1280x800
(16:10) resolution. At the time of purchase there were only eight projectors that
were short throw and at that resolution available according to Projector Central5.
At the time of submission of this thesis there were 83 projectors that were short
throw and 1280x800 resolution. The display surface is 1077mm x 673mm which is
approximately 48 inches. The projector was mounted to a sliding draw and a steel
post frame and slid out for when in use (see Figure 3.4(e)). The projector can also
be slid inside the table for transportation so that it can fit through doors.

3.3.6 Computer Hardware

We used a Dell Optiplex 760 with Windows 7 Enterprise 64 bit, Intel Core 2 Duo
3.0 GHz, 8GB Ram, and ATI Radeon HD 3400 graphics card. We needed a separate
graphics card and at least 8GB of ram to successfully run both CCV and the
multi-touch applications. We connected some desktop speakers to provide audio
support and a wireless network adapter for Wifi connectivity when the table did
not have access to ethernet connectivity.

5http://www.projectorcentral.com

3.4. DISCUSSION 57

3.4 Discussion

We now discuss the most important aspects of the tables considered against the
design considerations for collaborative information visualization in co-located
environments [137]. These aspects include: the size of the display, display reso-
lution, how the display can be configured, and different types of input. We also
discuss other aspects such as portability, how the tables performed in the physical
environment, and the cost to make the tables.

3.4.1 Display Size

The Black Table is of medium size (28 inches) and is not effective for sharing
information on the display amongst users when orientated horizontally. The Blue
Table is large (48 inches) which makes it easier to share information amongst users
as there is a much larger display space, and more physical space around the table.
As our applications are focused on the work place, a vertical orientation of the
surface would enable more information to be shared at a distance. Making the
horizontal display much larger will increase the height of the table but also make
objects harder to reach and manipulate [331].

3.4.2 Display Resolution

The Black Table is low resolution at 1024x768 and the Blue Table medium resolution
at 1280x800. Both of these resolutions are significantly smaller than what users
currently get from their laptop and desktop screens. The resolution on both tables
impacted precise and accurate manipulation of data for work based applications.
It would be preferable to design tables that had higher resolution (e.g. full high
definition 1920x1080) and be of large size. This would lead to building tables that
could utilize large TV display screens.

3.4.3 Display Configuration

Each of the multi-touch tables only had one shared display surface that users could
interact with. A separate display screen was actually connected to the computer or
the projector as output and was located on another physical table next to the touch
tables. When the display screen was connected to the computer the screen was
used to help configure the table and for providing additional display information.
When the display screen was connected to the projector the screen just mirrored
what was already being displayed by the projector.

3.4. DISCUSSION 58

3.4.4 Input Type

Teams are increasingly using different kinds of input for group work. Our pro-
totypes only support touch, keyboard, and mouse input. We are also interested
in tracking objects other than fingers such as fiducial markers. Rear DI is the
only optical based technique that supports detecting fiducial markers. Ideally we
would like to add support for digital pens as this is likely to increase precision and
accuracy for work place tasks. Others have explored commercial digital pens and
touch displays [100].

Both tables support multiple users interacting at once since we used the CCV
software. The Black Table is of medium size and best supports multiple users for
entertainment based applications. When the Black Table is used for work based
applications it is better suited for a single user due to the display screen size. The
Blue Table is large and easily allows multiple users to interact. The projector side of
the table is not intended to be used as most of our applications are designed with
a lot of text and orientating data continuously can be become quite burdensome.
Hence only three sides of the table are primarily available for use.

Our tables do not distinguish between users interacting with the table. That
is when multiple people touch the table at the same time the detection software
can not detect who is touching what location. If we could distinguish between
users that would provide a better user experience and allow us to track different
users in the software. Others have tried distinguishing between users by detecting
shadows of a user’s arms based on their physical position [377].

Users interact with our tables by standing up. We did not provide any furniture
for users to sit on when interacting with our tables. This was due to the tables
being boxes and there was no space for users to position their legs underneath the
tables. Using stools next to the tables would have been problematic as the position
of the users would be far away from the table and interaction would be awkward.

3.4.5 Portability

Both tables can easily be moved to different locations within a building as they are
on wheels. They were both designed to fit through doorways that are less than
800mm wide. The Black Table does not require calibration of CCV after relocation.
The Blue Table, however, requires re-calibration of CCV after relocation as the
projector has to be slid inside for transportation and then slid out for display, even
though it is slid out to the same position each time. Both tables have also been
transported to other locations within our city and required shuttle van transporta-
tion. Neither table is suitable for overseas travel. Others researchers have explored
creating more portable and collapsible solutions for overseas travel [126].

3.4. DISCUSSION 59

3.4.6 Performance

An issue with Rear DI setups is the tables being exposed to natural light and
fluorescent lights which makes it harder for detecting and tracking fingers with
CCV. Because our tables were enclosed and the type of IR lights we used, the
tables could be operated in rooms that had fluorescent lights, and directly below
fluorescent lights as well. When working in rooms that have fluorescent lights or
large amounts of natural light we needed to reconfigure CCV by increasing the
amplify setting to effectively detect fingers and objects. Both tables worked more
effectively in dimly lighted rooms.

3.4.7 Cost

Large multi-touch tables are expensive to mass manufacture and purchase due
to the high quality fabrication facilities required. At the time this project started
the cost of commercial multi-touch tables was greater than $30,000 New Zealand
Dollars (NZD). Due to this large expense we sought to build our own low cost
large portable multi-touch tables. The total cost of parts for the Black Multi-touch
Table was $1,674 NZD and the Blue Multi-touch Table $6,193.50 NZD. Building
the Blue Table required significantly more effort than the Black Table. These costs
did not include the many hours to design and assemble the parts.

Table 3.1 outlines the break down of costs for the different parts used in the
hardware for both the multi-touch tables in NZD. All parts were purchased from
Peau Productions6, local hardware, electronic and projector stores, and Dell. The
specialist multi-touch materials (cameras, filters, cases, lens, IR LED light emitter
bars and set) were purchased from Peau Productions. Some parts were designed
and made from scratch. The parts that were purchased from other countries have
had their values converted into NZD. For the Black Multi-touch table most of the
parts were acquired from our department or local companies. The cost of the Blue
Table could have been reduced if we had built the table frame ourselves as there
was significant time spent implementing our design.

6http://www.peauproductions.com

3.5. SUMMARY 60

Table 3.1: Parts used in the Black and Blue Multi-touch Tables.

Part Black Table Blue Table
Table Frame Free $1,050.00
Surface Material Free $800.00
IR Lights $250.00 $510.00
Camera, Filter, and Case $188.00 $188.00
Lens $88.00 $354.00
Projector Free $1,700.00
Projector Frame Mount Free $431.50
Computer $838.00 $1,100.00
Other Materials $310.00 $60.00

Total Cost (NZD): $1,674 $6,193.50

3.5 Summary

In this chapter we presented our large portable multi-touch tables for co-located
collaborative work. We described our experience from building early prototypes to
our two multi-touch table prototypes (28 and 48 inches). Based on our experience
we recommend future multi-touch tables to focus on higher resolution displays (i.e.
greater than 1280x800), portability, allowing for vertical or horizontal orientation
of the display, and providing seating so users do not become fatigued during
prolonged use.

In the next chapter (§4) we present our software visualization application that
we developed for use on the Blue Multi-touch Table.

Chapter 4

SourceVis: A Collaborative Software
Visualization Application

Contents
4.1 Overview . 62

4.1.1 Design . 64

4.1.2 Visualizations . 64

4.1.3 Interaction . 65

4.1.4 Architecture . 68

4.1.5 Implementation . 70

4.2 Exploration Visualizations . 72

4.2.1 System Explorer . 72

4.2.2 Metrics Explorer . 73

4.2.3 Vocabulary . 74

4.2.4 Toxicity Chart . 75

4.3 Structure Visualizations . 76

4.3.1 System Hotspots View . 76

4.3.2 System Dependency View 77

4.3.3 Class Dependency View . 78

4.3.4 Class Blueprint View . 79

4.4 Evolution Visualizations . 80

4.4.1 System Evolution View . 80

4.4.2 System Package Evolution View 80

4.4.3 Package Evolution View . 81

61

4.1. OVERVIEW 62

4.4.4 System Class Evolution View 82

4.4.5 Class Evolution View . 82

4.5 Discussion . 83

4.6 Summary . 84

In this chapter we present our contribution SourceVis – which is a multi-user
interactive collaborative software visualization application for use on large multi-
touch tables within co-located environments. SourceVis is an application for
exploring, and visualizing two key areas of software systems: the structure and
evolution. In this chapter we give an overview where we describe the design,
implementation, and interaction features of SourceVis. We then present the suite
of 13 visualization techniques that SourceVis supports which cover three areas of
software visualization: exploration, structure, and evolution.

4.1 Overview

Many researchers have found that developers often ask questions about how
software has changed such as “when, how; by whom; and why was this code
changed or inserted?” [101, 170, 333, 334, 302]. SourceVis aims to help support
answering some of these questions using visualization techniques.

SourceVis builds upon previous research and solely focuses on software visual-
ization whereas previous research did not focus on software visualization with
large multi-touch tables (§2.1.1 and §2.2.4). We focus on visualizing the structure
and internals of software systems while previous research focused on exploration,
modeling, and architecture of systems on smaller touch tables.

SourceVis is an interactive collaborative application for exploring, and visualiz-
ing the structure and evolution of software systems. SourceVis supports multiple
visualization techniques. The visualizations can help identify what parts of a
system are large and likely need to be refactored, dependencies between entities,
and how the structure of systems have evolved. The aim of SourceVis is to help
developers working in co-located teams to explore a software system. SourceVis is
designed for multiple users to interact simultaneously or separately.

SourceVis has been designed to be used on our Blue Multi-touch Table (§3.3)
and built upon MT4j [188]. Visualizations can be displayed at full screen, within
scalable windows, and at any orientation on the table. Multiple visualizations
can be displayed at once. Figure 4.1(a) shows two users interacting with a full
screen visualization. Figure 4.1(b) shows two users working on two different
visualizations in separate windows at the same time.

4.1. OVERVIEW 63

(a) Two users working together with a visualization which is displayed at full screen.

(b) Different visualizations displayed in separate windows.

Figure 4.1: SourceVis - multi-user collaborative software visualization.

4.1. OVERVIEW 64

4.1.1 Design

To address the design considerations for collaborative information visualization
in co-located environments [137, 138] we present the design goals of SourceVis.

Representation. When visualizing software it is important to be able to repre-
sent different aspects of the underlying source code. We designed SourceVis to
represent the software structure and how the structure has changed over time by
using software metrics, dependency, and inheritance information.

Presentation. When exploring a software system it is important to have a
large range of visualizations to present different views of a system. We designed
SourceVis to support multiple techniques for visualizing the structure and evo-
lution of software systems. We selected a sample of existing techniques from the
information visualization and software visualization literature based on our prior
experience and empirical user studies [56, 77]. For the visualizations to support
multi-touch and multi-user interaction we had to adapt the techniques in a num-
ber of ways such as input from finger and hand touch gestures. We designed
SourceVis in a modular fashion to allow new visualizations and extensions to be
added in the future.

View. When developers are working collaboratively with an application it is
important for them to be able to view the visualizations clearly irrespective of
where they are physically located. We designed SourceVis to display visualizations
on large shared interactive horizontal surfaces that are portable walk-up user
interfaces and within a co-located environment. Visualizations can be displayed
at full screen, within scalable windows, and at any orientation on the horizontal
plane. Multiple visualizations can also be displayed at once. SourceVis has been
designed for use on our horizontal Blue Multi-touch Table (§3.3).

User Interaction. When developers are working together it is important for
both to be able to interact easily with an application at the same time. SourceVis
has been designed for multiple users to interact at the same time using multi-touch
within a co-located environment.

4.1.2 Visualizations

The visualization techniques selected have been adapted from existing techniques
in the information and software visualization literature [56, 77], and from our
previous visualization wall user study. In our previous visualization study which
evaluated one of the more common visualization techniques Polymetric Views
and found that the System Hotspots View was very effective at identifying large
classes [10]. The visualization techniques in SourceVis have been modified sub-
stantially to support multi-touch and multi-user interaction.

4.1. OVERVIEW 65

SourceVis contains thirteen visualizations grouped into three categories. These
categories are: Exploration, Structure, and Evolution. The visualizations allow
users to explore a system (Exploration), see the structure of a system (Structure),
and see how the structure of a system has evolved over time (Evolution).

The exploration category contains visualizations that show a list of entities,
metrics about systems, packages, and classes, and vocabulary employed in en-
tities. The lists are common to looking at documentation such as JavaDoc but
enable touch scrolling. Popular wordle [341] like techniques have been adopted to
highlight large entities. Charts have been used as they are common in spreadsheet
applications and are well known information visualization techniques [337, 338].

The structure category adapts Polymetric Views [185] (software metrics based)
to multi-touch including the System Hotspots View and Class Blueprint. Poly-
metric Views are a common technique within software visualization and many
other tools implement these techniques hence why we decided to adapt them to
multi-touch (§2.2.1). The structure category also contains graph based visualiza-
tions as node link diagrams to show dependencies between class entities which is
a common technique for showing relationships among items [56].

The evolution category shows how a system has evolved over time focusing on
structural changes such as the size of different versions of a system, packages, and
classes using Polymetric View encodings and charts. Again we use the common
technique of Polymetric View encoding to represent the different entities in a
system. We describe each of the individual visualizations from the three categories
in more detail later (§4.2, §4.3, §4.4).

4.1.3 Interaction

Users first load a system before any visualizations can be displayed. They load a
system by selecting a system name from the load menu at the bottom of the startup
screen (see Figure 4.2). Only one system can be loaded at a time. Visualizations
can then be launched by tapping a visualization icon. Tapping and holding on
a visualization icon brings up a help message that describes the purpose of the
visualization and what will be shown when launched as seen on the right hand
side of Figure 4.2 which shows a red bordered box with text for the Toxicity Chart.
The visualizations in the startup screen are overview visualizations and users
can then select individual entity visualizations from these overviews to get more
specific details about different entities as denoted with an asterisk in Figure 4.3.

Individual visualizations are displayed in rotatable and scalable windows.
Having individual visualizations in separate windows allows for multiple vi-
sualizations to be displayed on the tabletop at once either next to each other,

4.1. OVERVIEW 66

Figure 4.2: SourceVis startup screen.

overlapping one another, or within side another visualization window. When a
visualization is first started it is displayed in a separate window. On the border of
the window there are options located on the right hand side to close or maximize
the visualization. Once a visualization is displayed at full screen there is an option
in the bottom right of the display as seen in Figure 4.5 that allows closing (denoted
as a cross) or making a visualization smaller (denoted as windows overlapping).

Users can interact with elements in visualizations by tapping for select, drag-
ging elements with one finger, and rotating and resizing elements with two fingers
(of either the same hand or different hands). Tapping and holding an element
displays properties about that element in help message boxes, or for element
entities, displays options in a pie menu. Multiple entity elements can be grouped
by drawing a shape around them using a lasso gesture. These grouped elements
can then be moved the around the visualization. Zooming uses a pinch gesture
with one or two hands, and panning by scrolling with two fingers in any direction
on the canvas of the visualization.

As SourceVis is designed for a horizontal display it is important for users to
be able to move around the tabletop and orient the information to where they are
physically standing. On the start screen users can orient the categories and the
visualization scene icons and text to each of the four directions of the tabletop.

4.1. OVERVIEW 67

The current direction is represented by the solid green bar on the border of the
category. Figure 4.2 shows the categories pointing to the bottom of the display.
Tapping one of the cyan coloured borders orients the categories in that border
direction. Since visualizations are displayed in separate scalable windows this
allows users to manipulate windows to orient visualizations to the location of
where they or their colleague are physically standing.

For a multi-user scenario a visualization could be displayed at full screen
where one user is focused on the overview of a system while another is focused
on a certain aspect of the same visualization (see Figure 4.1(a)). For another
scenario users could be viewing two separate visualizations at the same time. One
visualization could be at full screen while the other a smaller visualization inside
or on top of the larger one. Alternatively two separate visualizations could be
displayed at opposite ends of the table for the different users (see Figure 4.1(b)).

There are a number of menus available for each visualization including: system
version, pie, and options menus. The system version menu displays the name of
the current version being displayed in the top left of the visualization. Tapping on
the current version makes a scrollable list of all versions for that system. When a
new version is selected the data for that system is then loaded and the visualization
updated. This only affects the current visualization being displayed. System
evolution type visualizations do not have the system version menu as these
visualizations contain all versions of a system.

The pie menu is displayed when a user performs a tap and hold gesture on
an individual entity such as a package or a class (see Figure 4.5). The pie menu
has options for displaying metrics properties about an entity (e.g. name, version,
type, and specific metrics, i.e. the light yellow shaded box in Figure 4.5), or
options for displaying a new individual visualization type for that entity (e.g.
Class Blueprint, Class Dependency, Class Evolution). Only one instance of each
individual visualization type from the pie menu can be displayed at once.

The options menu displays information about entities such as metrics and is
predominantly located the left hand side of the visualizations. There are features
for manipulating the element entities in the visualizations such as sorting (e.g.
alphabetical, and ascending or descending by metrics), filtering (e.g. by class
type or slider to show entities greater than a threshold), and searching (e.g. via
displaying keyboard). To allow for more screen real estate for the visualizations
the options menu and sub menus can be hidden by tapping on the menu labels.
For the options menu (coloured black with white text, e.g. Options, Package
Options, Class Details) when tapped are collapsed into a single plus sign, while
the sub menus (coloured light yellow with black text, e.g. Class Options, Class
Metrics) hide the contents in that sub menu.

4.1. OVERVIEW 68

4.1.4 Architecture

Figure 4.3 illustrates the architecture of SourceVis. In order to build visualizations
from the underlying software structure we created a meta-model to represent
entities from the Java programming language. We created a JavaMetricsEntity
Interface which other classes can implement. The methods the interface contains
include setting and getting properties about a Java entity such as the name of the
entity, type, and which software version the entity belongs to.

We have concrete classes for: JavaMetricsSystem, JavaMetricsPackage, Java-
MetricsClass, JavaMetricsMethod, JavaMetricsField. Each of these classes extends
the MT4j MTTextArea class so that actual text can be displayed or the entity can
be represented as a rectangle with no text. The MTTextArea class extends the
MTRectangle class. We also have some specialized classes for some of the visual-
izations as they required a slightly different class such as JavaMetricsWord and
JavaMetricsDependency.

There are visual aspects for the entities including whether properties are being
displayed for a certain entity and domain specific visualization features like the
weight of an edge, what layer an entity belongs to, and what colour an entity is.
When comparing different entities we created a comparator class (JavaMetricsEn-
tityComparator) that compares two classes based on their entity name.

To launch SourceVis the SourceVisShell class is executed which inherits from
the MTApplication and is the main applet from the MT4j application. Upon
launching the SourceVisCategoriesScene is displayed. This is the startup screen
for SourceVis (see Figure 4.2).

The SourceVisCategoriesScene contains all the loaded software systems as
VisSystems. A VisSystem contains the name of the system, a list of all the versions,
the current version, and associated data metrics files.

The SourceVisCategoriesScene has three kinds of visualization Categories: ex-
ploration, structure, and evolution. Each Category has many VisScenes which
are images to represent a visualization and other properties. A VisScene con-
tains one SourceVisScene (Abstract Class) which represents a visualization in the
application.

The SourceVisScene inherits from the MT4j AbstractScene and is the actual
scene that is drawn on the canvas in the MTApplication. The SourceVisScene
can be any one of the different concrete software visualizations in the application.
Some visualizations inherit from the ChartScene which integrates the JFreeChart
library and supports bar, line, and area charts. The SourceVisScene has menus for
displaying different system versions, and options for manipulating the data in the
visualizations.

4.1. OVERVIEW 69

Figure 4.3: SourceVis Architecture. The SourceVis application section represents
the classes to make the application start. The MT4j section represents the classes
we build upon to create SourceVis. The Data section represents the metrics data
files. The Menus section represents the graphical menus in SourceVis. The Java
Meta-Model section represents the classes to model the entities from the Java
programming language. The Visualizations section represents the visualizations
in SourceVis. An * denotes individual entity visualizations.

4.1. OVERVIEW 70

4.1.5 Implementation

We wanted to develop SourceVis with a purpose-designed tabletop toolkit that was
cross-platform, well supported, contained substantial documentation, and allowed
for extensions. For this reason we developed on top of the open source MT4j toolkit
and integrated other third party Java libraries for specific visualizations [188]. As
opposed to developing upon a multiple device toolkit such as jQMultiTouch [222].

To create visualizations from the source code we had to either generate the
data and display the visualizations at run-time, or pre-process the code to generate
data files and then display the visualizations. We chose the later option as it would
allow us to separate the data creation step from the display of the visualizations,
make the visualization display / update faster, and allow for other developers to
integrate with our application in the future.

To generate data for our visualizations we required a static analysis tool that
was either a plugin to Eclipse or a stand alone tool, well documented, had libraries
to customize, and was well supported. Upon exploration of tools by trial and error,
and also from our previous experience we selected a commercial stand alone tool
called “Understand” by Scitools1, for which we obtained an educational licence.

Figure 4.4 illustrates the visualization pipeline of SourceVis. The source code
of the systems to be visualized are first loaded into Understand. The systems
were then analysed from which metrics reports can then be exported. In order
to collect appropriate data for the visualizations in SourceVis we developed a
number of Perl scripts that were executed within Understand to obtain custom
metrics, dependency, and inheritance data. Once the scripts have been executed
the data files are imported into the SourceVis application. The data files are then
used within the visualizations which are displayed on the multi-touch table.

Figure 4.4: SourceVis - visualization pipeline.

1http://www.scitools.com/

4.1. OVERVIEW 71

To demonstrate SourceVis we required some readily available software systems.
We are interested in understanding Java software systems so we used a sample
of open source systems from the Qualitas Corpus (Version 20101126) [325]. The
Qualitas Corpus is a curated collection of software systems intended to be used
for empirical studies of code artifacts. We selected systems ranging in size from
small to very large determined by us based on the number of lines of code and
number of classes (see Table 4.1). We also selected some systems that contained
more than 10 versions to demonstrate the evolution features of SourceVis.

We now present each of the separate visualizations from the different categories:
Exploration (§4.2), Structure (§4.3), and Evolution (§4.4).

Table 4.1: Software systems visualized by SourceVis from the Qualitas Corpus
(Version 20101126) [325]. The systems are ordered by size based on number of
lines of code and number of classes. The data for lines of code, and number of
classes is for the latest version of the system.

System Lines of code Number of Classes Versions Size
Azureus 453433 7249 51 V Large

Weka 224356 2099 49 V Large
ArgoUML 194859 2905 10 Large
FindBugs 109096 1744 2 Large
JHotDraw 75958 1070 6 Medium

GanttProject 47051 1058 2 Medium
JUnit 6164 209 21 Small

SquirrelSQL 6944 2211 2 Small

4.2. EXPLORATION VISUALIZATIONS 72

4.2 Exploration Visualizations

The exploration visualizations are designed for a user to be able to browse a system
to get an overview of the most important aspects of a system. From an exploration
visualization users can quickly navigate to an entity within a system and display
an individual visualization.

4.2.1 System Explorer

The System Explorer (see Figure 4.5) is a visualization that shows all the packages
and classes from a system. The left hand side shows packages and the right hand
side classes in scrollable lists. Each package and class entity is selectable. The
scrollable lists support inertia scrolling, also known as the rubber band effect.
Initially all classes in the system are displayed. When a package is tapped only
the classes from that package are displayed and the package name is highlighted
green. All classes can be displayed by tapping on the classes heading label.

In the Figure the junit.framework package and junit.framework.TestSuite
class have been selected. The metrics properties for the TestSuite class are being
displayed along with a pie menu to display a new visualization type for the class.
There are options in the bottom right for closing or minimizing the visualization.

Figure 4.5: System Explorer. With options in the bottom right for closing or
minimizing the visualization.

4.2. EXPLORATION VISUALIZATIONS 73

4.2.2 Metrics Explorer

The Metrics Explorer (see Figure 4.6) shows metrics about the different entities
in a system such as packages and classes. The metrics for a package are the total
number of classes, number of variables (NIV), number of methods (WMC), and
number of lines of code (LOC); and NIV, WMC, LOC for a class [96]. All the
packages in a system are initially displayed alphabetically. Tapping a package
displays the metrics about the package in the metrics pane of the package details
options menu and the name of the package is highlighted green. Subsequently
the list of classes from a package is displayed in the classes pane. Tapping a class
displays the metrics about a class in the metrics pane of the class details options
menu and is highlighted green.

In the Figure a user has sorted the packages in descending order using the
NIV, WMC, and LOC metrics and selected the junit.framework package. The
package shows that there are 14 classes of which 10 classes are concrete, three
interfaces, and one abstract class. The classes have also been sorted in descending
order using the same metrics and the junit.framework.TestSuite class has
been selected.

Figure 4.6: Metrics Explorer.

4.2. EXPLORATION VISUALIZATIONS 74

4.2.3 Vocabulary

The Vocabulary visualization (see Figure 4.7) uses a word cloud / wordle [341]
representation to provide an overview of the vocabulary used in the names of
entities (i.e. packages, classes, methods). The purpose of this visualization is to
help understand the coding standards employed in the entities of a system. The
visualization can also show what packages and classes are large and likely need
to be refactored. The packages and classes use metrics (e.g. NIV, WMC, LOC) to
determine the font size for the name of the entity. The visualization integrates the
OpenCloud2 Java library.

In the Figure the size of classes is being displayed and the org.junit.Assert
class has been selected. A number of metrics properties for classes are also being
displayed. Some classes have been filtered out leaving a total of 20 classes on
display.

Figure 4.7: Vocabulary.

2http://opencloud.mcavallo.org/

4.2. EXPLORATION VISUALIZATIONS 75

4.2.4 Toxicity Chart

The Toxicity Chart adapted from Erik Doernenburg3 (see Figure 4.8) shows which
classes are toxic in a system. Each bar in the chart represents one class and the
height of the bar shows the toxicity score for that class. The score is based on
several metrics. The higher the score the more toxic the class is. In our adaptation
we use the following metrics: file length, coupling, lack of cohesion, depth of
inheritance tree, method length, cyclomatic complexity, and method nesting [96].
The individual metrics of the score are colour coded and displayed in the legend.
The visualization shows at a glance not only how toxic a system is but also how
the problems are distributed. Classes that score zero points are not included in the
visualization. The data in the visualization can be filtered by selecting all or some
of the metrics and using a slider to show classes greater than the toxicity score
threshold slider. Individual elements in the chart cannot be selected. The chart
can be resized using a scale gesture.

Figure 4.8: Toxicity Chart.

3http://erik.doernenburg.com/2008/11/how-toxic-is-your-code/

4.3. STRUCTURE VISUALIZATIONS 76

4.3 Structure Visualizations

The structure visualizations are designed for a user to explore how a software
system is structured and to see how classes are dependent on each other, by
examining the individual entities within a system.

4.3.1 System Hotspots View

Figure 4.9: Systems Hotspots View.

The System Hotspots View (see Figure 4.9) (adapted from Lanza et al.) aims to
highlight large packages and classes in a system [185]. In our adaptation packages
are displayed down the Y axis in the packages pane, and classes from each package
along the X axis in the classes pane. The metrics used for a package include the
total metrics for classes, fields, methods and lines of code. The package properties
display has options for visually sorting the classes in the package alphabetically,
ascending, or descending by individual metrics or groups of metrics. Each class is
represented as a rectangle using the Polymetric View encoding where the width in-
dicates the NIV and height the WMC. The colour shading of a class represents the
number of LOC. The darker the class, the more lines of code the class contains. Dif-
ferent border colours represent the type of class (i.e. black border = concrete class,
red = interface, blue = abstract class, purple = annotation, and orange = enum type).
Classes can be moved around the visualization to be compared with other classes

4.3. STRUCTURE VISUALIZATIONS 77

and can be grouped together using the lasso gesture to move more than one class at
a time. In the figure the packages and classes have been sorted in descending order
using all the metrics (e.g. NIV, WMC, LOC) and the junit.framework pack-
age and org.junit.runners.BlockJUnit4ClassRunner class have been
selected. Other class properties are displayed too.

4.3.2 System Dependency View

The System Dependency View (see Figures 4.1(a) and 4.10) shows all the classes in
the system displayed in a circle with bezier curved edges to represent what other
classes they depend on. Tapping a class entity displays the class name, metric val-
ues, and highlights the dependencies between the selected class and the dependent
classes. A slider option allows filtering class dependencies according to the slider
weight value. Classes can also be filtered according to class type. Classes that
have no dependencies and or no references can be displayed which are potentially
redundant classes in a system. As this visualization is displayed on a table the
entire visualization can be rotated by doing a rotation gesture in the middle of the
circle. In the Figure org.junit.internal.runners.JUnit4ClassRunner
class is selected which has eight dependencies.

Figure 4.10: System Dependency View.

4.3. STRUCTURE VISUALIZATIONS 78

4.3.3 Class Dependency View

The Class Dependency View (see Figure 4.11) shows what classes a class de-
pends on. The main class is coloured in yellow with blue edges to dependent
classes. Dependent classes are coloured according to class type. Edges are dis-
played to show the dependencies between the main class in the middle of the
visualization and dependent classes on the outer circle. Edges are weighted
according to the number of times each class is dependent on the main class
(e.g. object creation, method calls, imports). The stronger the dependency the
thicker the edge weight. Weight labels are displayed on the edges and can be
hidden. The main class and dependent classes can be moved around the vi-
sualization while preserving the edge dependencies. Dependent classes can
be filtered by adjusting the slider weight threshold. In the Figure the class
org.jhotdraw.draw.DefaultDrawingView has 17 dependent classes. Two
of the dependent classes have a high dependency on the main class (78 and
68), are interfaces, and are displaying class properties. These interfaces are
org.jhotdraw.draw.Figure and org.jhotdraw.draw.handle.Handle.

Figure 4.11: Class Dependency View.

4.3. STRUCTURE VISUALIZATIONS 79

4.3.4 Class Blueprint View

The Class Blueprint (see Figure 4.12) (adapted from Lanza et al.) shows the refer-
ences between methods and attributes within a class [185]. The visualization has
five layers from left to right. The first four layers relate to the methods and the
final layer to the attributes. The initialization layer displays initialization methods
(e.g. constructors), interface layer: public methods, implementation layer: private
methods, and accessor layer: accessor and mutator methods (e.g. get()). The
attribute layer displays all the attributes of a class. The methods and attributes
have a different fill colour depending on which layer they belong to. Likewise the
edges for the dependencies and references. The weight of an edge can be adjusted
by the slider to highlight edge colouring. Methods that call themselves have circle
edges at the end of the method name. In this visualization it is useful to be able
to select multiple methods or attributes at once which highlights the edge ref-
erences. The Figure shows the org.jhotdraw.draw.DefaultDrawingView
class which has 80 methods and 30 fields. There is one initialization method, 42
public methods, four private methods, 21 accessor methods, 12 mutator methods.
Only two of the fields are actually called. The public method repaintHandles()
has been selected which has references with one private method and two accessor
methods.

Figure 4.12: Class Blueprint View.

4.4. EVOLUTION VISUALIZATIONS 80

4.4 Evolution Visualizations

The evolution visualizations are designed for a user to see how a software system
has evolved over time focusing on structural changes.

4.4.1 System Evolution View

The System Evolution View (see Figure 4.13) shows how a system has evolved over
different versions using the ChartScene. The metrics used are the total number
of packages, classes, methods, fields, and lines of code. The chart can be updated
by selecting different metrics. Either all versions or only major versions can be
displayed. Major versions are defined as versions ending in zero in the number.
In the Figure JUnit 4.0 and 4.1 are the largest versions, then the next version
4.2 dramatically drops in size most likely due to major refactoring. On closer
inspection we found that version 4.0 and 4.1 included the test case packages where
other versions did not.

Figure 4.13: System Evolution View.

4.4.2 System Package Evolution View

The System Package Evolution View (see Figure 4.14) shows all the packages in a
system as a Polymetric View encoding where width represents the total number

4.4. EVOLUTION VISUALIZATIONS 81

of methods (WMC), height: the total number of fields (NIV), and shading: the
total number of lines of code (LOC). Each package is grouped inside each version
of the system. Packages can be sorted across the whole visualization or within
each version. Performing a tap and hold gesture on a package displays the pie
menu. Selecting the versions option from the pie menu highlights all the versions
a package appears in. A package is highlighted in yellow for each version it is in
and linked between versions with green edges. Note, if a package has changed
name SourceVis does not control for this aspect. Packages can be searched for
using the keyboard which filters out the packages not matching the search criteria.
All versions or just major versions of the system can be shown. In the Figure the
junit.framework package is selected and is highlighted to show that it appears
in 21 versions of the JUnit system.

Figure 4.14: System Package Evolution View and Package Evolution View.

4.4.3 Package Evolution View

The Package Evolution View shows the evolution of one package over time. The
visualization can be displayed in a separate window as in the case of Figure 4.14.
The Package Evolution View can be displayed as a Polymetric View encoding or as
a chart. All versions or just major versions can be displayed. This visualization can
be launched from other visualizations that display packages (e.g. System Explorer,
Metrics Explorer, Vocabulary, and System Hotspots View).

4.4. EVOLUTION VISUALIZATIONS 82

4.4.4 System Class Evolution View

The System Class Evolution View (see Figure 4.15) is similar to the System Package
Evolution view but shows classes. The same kind of options can be applied
for searching and sorting. Classes can also be filtered according to type (i.e.
concrete class, abstract class, interface, annotation, enum type). In the Figure the
junit.awtui.TestRunner class is selected and is highlighted to show that it
appears appears in seven (3.4, 3.5, 3.6, 3.7, 3.8, 3.8.1, and 3.8.2) out of 21 versions.
This class is the second largest class in each of the versions it appears in.

Figure 4.15: System Class Evolution View.

4.4.5 Class Evolution View

A Class Evolution View also exists similar to the individual Package Evolution
View but displays classes. The Class Evolution View can be launched from other
visualizations that display classes (e.g. System Explorer, Metrics Explorer, Vocabu-
lary, System Hotspots View, System Dependency, and Class Dependency).

4.5. DISCUSSION 83

4.5 Discussion

Design. Developing upon MT4j required a significant amount of effort to build
something substantial. Every object in in SourceVis that was displayed had to be
rendered as a MT4j geometric shape, which meant all classes had to extend one
of the existing built in shapes. There existed very few user interface controls and
menus which we needed, hence it was time consuming to build our own widgets.
The visualizations relied heavily on text so we tried to make the text as easy to read
as possible, and allowed text objects to be scaled, rotated, and oriented in different
positions. SourceVis currently only supports mouse, finger, and hand input but
we would like to support others forms including: fiducial markers, digital pens,
and tablets. Integrating SourceVis with Eclipse as a plugin and incorporating a
static analysis tool would provide a more comprehensive application. The design
of future interactive collaborative applications is heading towards supporting
multiple kinds of devices [222]. SourceVis currently only supports multi-touch
tables hence repurposing SourceVis to support more devices would be useful.

Extensibility. Extending SourceVis to support other visualization techniques is
possible. As we have a representation of language constructs any visualization that
utilizes these Java entities can make use of these classes. The generic options menu
can easily be added to new visualizations, likewise the gestures and custom pie
menu. If visualizations require charts they can use the ChartScene class. We have
integrated two open source Java libraries (JFreeChart and OpenCloud), therefore
integrating other libraries should also be possible.

Display. The table has a large display but the resolution is rather low at 1280x800
pixels. This makes it hard to visualize small details of information and requires
zooming to see the details. Ideally we would like the table to have a much
higher resolution (e.g. full high definition 1920x1080 pixels) when compared with
contemporary desktops as this will allow greater precision for work place tasks.
Using LCD screens instead of projectors would create a much higher resolution.
Anything that is put onto the table generates a blob which affects the application
be it fingers, paper, or some other physical object. Putting objects such as paper on
the table minimizes the available display space for viewing and interacting.

Performance. SourceVis required a large amount of data to be rendered and the
hardware we used did not perform fast enough for some visualizations. This was
the case for the Toxicity Chart when modifying the slider. The System Dependency
visualization could not render very large software systems at all. SourceVis
worked very well for small to medium sized systems on all of the visualizations.
We recommend using higher hardware specifications compared with specifications
described earlier (§3.3) to enable a better user experience.

4.6. SUMMARY 84

4.6 Summary

In this chapter we presented SourceVis, an interactive collaborative software
visualization application designed for co-located software development teams
for use on large multi-touch tables. We described the design, visualizations,
interaction, architecture, and implementation features of SourceVis. We have
illustrated how SourceVis meets our design goals by representing different aspects
of software including metrics and dependency information, presenting multiple
software visualization and information visualization techniques to visualize the
structure and evolution of software, displaying the visualizations of SourceVis on
large interactive multi-touch tables, and supporting multi-user interaction and
multi-touch input. SourceVis has been demonstrated with small to very large open
source Java systems from the Qualitas Corpus (Version 20101126) [325].

The next chapters present our qualitative user studies of SourceVis with com-
puter science students (§5), and professional software developers (§6).

Part III

User Studies

85

Chapter 5

Preliminary User Studies

Contents
5.1 Preliminary User Study 1 - Early Feedback 87

5.1.1 Participants . 87

5.1.2 Procedure . 88

5.1.3 User Tasks . 89

5.1.4 Findings . 89

5.1.5 Discussion . 94

5.2 Preliminary User Study 2 - Effectiveness and Coupling Style . . 96

5.2.1 Participants . 96

5.2.2 Procedure . 98

5.2.3 User Tasks . 98

5.2.4 Qualitative Findings . 99

5.2.5 Quantitative Findings . 107

5.3 Preliminary User Study 3 - Group vs. Individual Work 113

5.3.1 Participants . 113

5.3.2 Procedure . 114

5.3.3 User Tasks . 114

5.3.4 Findings . 115

5.4 Limitations . 116

5.5 Summary . 117

86

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 87

In this chapter we present three preliminary user studies we conducted with
our multi-touch table (§3.3) and different versions of SourceVis (§4). The purpose
of these user studies was to develop a protocol which we could use for a study
with professional software developers (§6). The aim of the studies in this chapter
was to collect qualitative data about how effective our software visualization tech-
niques are, what coupling styles participants used, and participant’s preference for
individual vs. group work. We conducted three user studies to validate our design
decisions following an iterative cycle using a grounded evaluation process [144].
Our approach included observational studies conducted as part of the design
process, in situ interviews, and video recordings. The studies were conducted
during different iterations of the implementation of SourceVis. Participants in our
preliminary user studies were computer science students from within the School
of Engineering and Computer Science at Victoria University of Wellington.

5.1 Preliminary User Study 1 - Early Feedback

The first user study was conducted near the beginning of the project with an
early prototype of SourceVis and the Blue Multi-touch Table (§3.3). The study
involved early versions of some of the visualization techniques from SourceVis.
The visualizations included two versions of the Vocabulary visualization (Word
Cloud and Wordle), Metrics Explorer, Class Blueprint, Systems Hotspots View,
and a JavaDoc Web Browser (see Figure 5.1).

5.1.1 Participants

Table 5.1 lists the demographics of participants in our first user study who were a
convenience sample of graduate computer science students. The column headings
are abbreviated as follows: Participant ID (PID), gender (G), age range (Age),
degree acquired (Deg), Java expertise (Exp), software visualization experience
(SoftVis), regular use of smart mobile phones and touch tablets (M), regular use
of touch screens and touch tables (T), and number of months the participant has
known their colleague (Coll).

There were eight male and two female participants in this user study. The age
of participants was in the range 20-34. All participants had a bachelors degree in
computer science and three had a masters degree. Of the participants; one was
currently an honours student (4th year undergraduate), three masters students,
and six PhD students. All had experience in programming using the Java API.
The average expertise of using the Java API on a self ranking between 1 (novice)
and 10 (expert) was 6.3. Four participants had used some software visualization

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 88

Table 5.1: Preliminary User Study 1 - Participant Demographics. Participant ID
(PID), gender (G), age range (Age), degree acquired (Deg), Java expertise (Exp),
software visualization experience (SoftVis), regular use of smart mobile phones
and touch tablets (M), regular use of touch screens and touch tables (T), and
number of months the participant has known their colleague (Coll).

PID G Age Deg Exp SoftVis M T Coll
1 M 20-24 BSc 7 Y Y Y 18
2 F 25-29 BSc 7 Y Y Y 18
3 M 30-34 BSc 4 Y Y Y 6
4 M 25-29 MSc 6 N Y Y 6
5 M 20-24 BSc 7 N Y N 0
6 M 20-24 BSc 7 N Y Y 0
7 M 25-29 BSc 6 N Y N 12
8 M 25-29 MSc 4 N N N 12
9 F 25-29 BSc 7 N Y Y 2
10 M 25-29 MSc 8 Y Y Y 2

tools before but not on a frequent basis. One participant could not recall the actual
software visualization tool they had used before. Nine of the participants had
used or owned smart phones with touch interfaces or touch tablets. Seven of
the participants had used touch screens or touch tables before. The participants
conducted the user study in pairs. The pairs comprised of participant 1 and 2 (i.e.
PID 1 and PID 2) as one pair, 3 and 4 as the second pair and so on. All but one
pair chose their fellow participant before the user study. One group of participants
had known each other for 18 months while the other pairs knew each other for 12
months, 6 months, and 2 months. One pair did not know each other previously.

5.1.2 Procedure

The procedure for the user study is documented in Table 5.2. Participants were
welcomed and given an information sheet, consent form, and a pre-study question-
naire to complete. The questionnaire asked participants about their demographics
and background experience. Following the pre-study questionnaire, pairs were
given a warm up exercise by experimenting with example applications from
MT4j for 10 minutes. The study involved the participants completing user tasks
which involved answering 14 questions similar to the types of questions software
developers ask within industry [101, 170, 333, 334, 302]. The questions asked
participants to identify, count, and find information using early versions of some
of the visualization techniques such as Word Cloud, Wordle (based on the Wor-
dle layout [341]), Metrics Explorer, Class Blueprint, Systems Hotspots View, and

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 89

Table 5.2: Preliminary User Study 1 - Procedure.

Step Time (max allocation minutes)
1. Introduction 5
2. Pre-study questionnaire 5
3. Example Applications 10
4. User Tasks 30
5. Post-study questionnaire 10

Total Time: 60

JavaDoc Web Browser (see Figure 5.1). These early visualizations did not have any
options menu, system version menu, pie menus, or linking between visualizations.
The rest of the techniques described earlier (§4) were not implemented at this time.
The Java API version 1.6 and JHotDraw system were used in the visualization
as they represented a programming language and a system with which we had
experience building visualizations [10, 283]. Each pair of participants completed
all the tasks using the same subset of visualizations. The participants recorded
their answers to the questions on a sheet provided attached to a clip board. We
asked participants to think aloud so we could understand why they were doing
an action. We recorded the time it took participants to complete the user tasks in-
cluding thinking aloud. Participants completed a post-study questionnaire which
asked for their opinion on the effectiveness, strengths, and weaknesses of the
interaction capabilities and the visualizations.

5.1.3 User Tasks

Appendix E lists the 14 questions participants were asked during the user study
about the visualizations in SourceVis. Each question is listed with answers in
parentheses following the question. The questions involved six visualizations
Word Cloud, Wordle, Metrics Explorer, Class Blueprint, System Hotspots View,
and JavaDoc Web Browser. Some of these visualizations became visualizations in
SourceVis (§4).

5.1.4 Findings

We report the findings from the user tasks and the participants feedback on the
effectiveness, strengths and weaknesses of the visualization techniques.

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 90

(a) Word Cloud. (b) Wordle.

(c) Metrics Explorer. (d) System Hotspots View.

(e) Class Blueprint. (f) Java Doc Web Browser.

Figure 5.1: Preliminary User Study 1 - early software visualization prototypes.

Time and Errors

The first pair took 20 minutes to complete the user tasks, second pair 28 minutes,
third pair 22 minutes, fourth pair 24 minutes, and fifth pair 21 minutes, for an
average of 23 minutes. Pairs one, two, and five answered all the questions correctly,
for a total of 36 (100%). Pair three received 34 (94%), and pair four 33 (92%). For

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 91

the Word Cloud, Wordle, Metrics Explorer, and Javadoc Web Browser all pairs an-
swered all of these questions correctly. In the Class Blueprint questions pair three
got the number of accessor methods wrong, they stated 13 rather than 1 method
which is setHasUnsavedChanges. Pair four got the question using the Class
Blueprint that asks which method refers to the “file” and “prefs” attribute wrong.
Instead they counted the number of methods that refer to each of these attributes.
In the System Hotspots View questions pair four did not get the right amount for
the number of methods java.awt.Component contains, nor for java.awt.Window.
Pair three incorrectly gave the number of fields java.awt.Component contains
instead of number of methods.

Perceived Effectiveness of the Visualization Techniques

Figure 5.2 shows the perceived effectiveness of the individual techniques each
participant stated in the post-survey. The Word Cloud ranks as the most effec-
tive technique followed closely by the Metrics Explorer, Javadoc Web Browser,
and Wordle. The two domain specific software visualization techniques System
Hotspot Views and Class Blueprint rank the same and a bit below these afore
mentioned techniques. The Class Blueprint visualization has the largest range of
values. Displaying multiple visualizations at once ranks the least effective as most
participants were not aware that they displayed multiple visualizations, hence
they ranked this aspect low.

Visualization Techniques

Word Cloud Visualization. All participants found the Word Cloud the most effective
visualization. The word font size made it easy to understand and a white back-
ground made it clearer to read the words. Some found that the word length and
letter size made it slightly confusing as there were some really long class names.
Some stated that it was hard to compare words if they were not next to each other
as the absolute size is not easy to determine. One participant wanted more colours
in this visualization. One participant selected words using the lasso gesture and
commented that separating clustered words can be difficult at times.

Wordle Visualization. All participants found the Wordle visualization easy to
understand, like the Word Cloud. Adding colours to the different words helped
to distinguish between them. Again like the Word Cloud the absolute size of a
word is not easy to see and it is not clear what metric was being used. Words were
allowed to overlap which helped when comparing the size of two words. Some
complained that there was too much overlapping. A slider was added to this

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 92

Figure 5.2: Preliminary User Study 1 - perceived effectiveness of techniques by
individuals. Boxplot shows a box and whiskers plot for each visualization. The
plot shows the range of values with upper and lower quartiles represented as the
top and bottom line of the box. The whiskers above and below the box represent
the highest and lowest values in the range. The line in the middle of the box
represents the median value in the range. The blue dot represents the average
value in the range.

visualization to filter out smaller words but the slider confused some participants
who claimed it was not intuitive.

Metrics Explorer. This visualization provided an excellent overview and gave
participants a clear summary of the metrics about a system. The white background
made it clearer to read the names of packages and classes, and colour to highlight
the entities made it obvious which classes were selected. One participant would
have liked to have seen inheritance information about classes. A couple of partici-
pants were not sure what to expect when they tapped on the name of an entity
such as where information was going to be displayed in the visualization. Some
systems contained many packages and classes which required lots of scrolling to
find an entity.

Class Blueprint. Participants liked how this visualization showed what methods
and attributes were connected to each other. All participants commented that
the highlighting of edges made answering questions more effective than not
highlighting. They also liked how multiple users could highlight more than one
edge at a time. The slider that adjusted the weight of the edges was a welcomed

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 93

addition, but some participants were not aware of it. Since edges crossed each
other and crosses method names this made it confusing for some participants to
be able to read the names of methods. One participant suggested that if different
methods were selected then only display the intersection if one exists.

System Hotspots View. This visualization made it easy for participants to com-
pare the different entities in a system as packages were laid out alphabetically,
with classes grouped in packages, and the ability to move entities around the
visualization. Once the participants remembered the information cues (metrics
and colour encoding) it was easy to identify certain aspects of a system such as
the types of classes and large classes. The properties windows made it easy to
determine precise information about a package or a class. The sorting options
provided a quick way to answer some of the identify and count questions. If a
system was large, participants found that it was hard to get an overview of all the
information because when the visualization started it did not show all the data at
once. This meant lots of scrolling to find what they were looking for. Some classes
in the visualization were small and required zooming in to identify their colour.

Javadoc Web Browser. The web browser provided an interface that participants
were familiar with. They liked the Javadoc since they could see detailed infor-
mation and the web browser was familiar to navigate. Even though the Javadoc
was a familiar interface participants found it hard to find things quickly as there
was no summary or overview information like in the other visualizations. Some
participants did not realize that you could scroll the page with two finger panning
and instead used the traditional scroll bars on the side of the browser. Half of the
participants scrolled through the small left hand panes of the Javadoc to find the
information they were looking for. One participant found the scrolling with two
finger panning confusing because the page moves in the opposite direction to the
gesture. This action mimics the behaviour of the Apple iPad web browser.

Multiple Visualizations. Allowing people to interact with several visualizations
at the same time can help with productivity. Most of the participants did not
actively display multiple visualization (i.e. showing more than one visualization
at the same time to answer the questions). They really only displayed multiple
visualizations when they were in the Metrics Explorer or System Hotspots View
since these visualizations provided a way to drill down into the Class Blueprint.
Some of the participants who did use the multiple visualizations commented that
having different ways of looking at a system is definitely useful.

Collaborative Visualization. When asked if completing the user tasks would be
easier as a single user or as a group of users, seven of the participants selected
group of users. They stated that groups are better because you can each look at
different parts of the system at once and discuss the solution with your colleague.

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 94

5.1.5 Discussion

We now discuss how the visualization techniques could be improved based on
participant’s feedback and our observations.

Word Cloud Visualization. The actual words could be resized using scale gestures
which was a mistake we made in the implementation and occasionally some of
the participants changed the size. It did not affect the participants’ answers to
questions and can be rectified in the code by making the word not have a scale
gesture. Being able to select multiple words using the lasso gesture and then move
the selected words around is useful. Only one participant used this gesture and
found it hard to unselect words from the group. We would like to explore options
for unselecting grouped items. This could be achieved by having a close button
for the lasso shaped blue polygon which is used to indicate grouped items. When
tapping on the close button, the items that are grouped are no longer grouped. In
order to increase the colour in this visualization we could add a colour palette
so that users can tap on the palette to change the colour of the words to their
preference.

Wordle Visualization. Like the Word Cloud Visualization the words in the Wordle
Visualization could change size using scale gestures. To help the participants who
were confused with the slider control we could add labels to give more context
such as “more words” or “fewer words.” In terms of layout we could have a
button that re-calculates the layout of the words similar to the original Wordle
technique [341]. To avoid overlapping words we could apply physics so that
words that are dragged around the screen make other words move out the way
when there is a collision of words. Subsequently the Word Cloud and Wordle
visualization were integrated into the Vocabulary Visualization (§4.2.3), words
could not be scaled, a set number of words could be displayed, and there was an
options menu.

Metrics Explorer. This was a new visualization technique we created from
scratch. Participants liked this technique since it was simple, clear, and allowed
them to drill down to details. This technique ranked second highest in terms
of effectiveness. We could add method and field information about a class to
this visualization and likely be displayed on the right hand side of the class
information. To help with scrolling of package and class names we would add
each list into a scrollable pane as opposed to doing a two finger gesture to scroll to
the entity they were looking for. We would also like to add keyboard functionality
so that users can search for entities in the system. Subsequently the scrolling panes,
keyboard search, system version menu, and options menus (and hiding menus)
were integrated into the Metrics Explorer Visualization (§4.2.2).

5.1. PRELIMINARY USER STUDY 1 - EARLY FEEDBACK 95

Class Blueprint. Edge crossing caused an issue for understanding this visualiza-
tion which is why we added a slider to adjust the edge weights. Some participants
were not aware of the slider. We would like to explore other graph layout algo-
rithms to see if minimizing edge crossings has any affect on understanding this
visualization. Like in the Metrics Explorer, adding keyboard search functionality
may help to improve the ability to locate information especially for large classes.
Being able to move layers around the screen, hide layers, and hide method and
attribute labels might help with understanding too. Subsequently additional help
information was added to use this visualization such as explaining the different
layers, how to use the visualization, and an encoding layer (§4.3.4).

System Hotspots View. To help with navigation some form of scroll bar could
be added. To maintain context within the visualization, a radar view similar to
strategy game maps could be provided. The radar view will help users keep
track of what part they are currently viewing and provide options for moving a
lens in the radar view to go to more interesting parts of the visualization. The
package and class properties features are enabled with a double tap gesture on the
class or package label. All participants struggled with the double tap, especially
when classes were small, partly due to the accuracy and responsiveness of the
system. One solution would be to increase the threshold of time between taps. An
alternative is to use a tap and hold gesture similar for displaying a Class Blueprint.
Subsequently an options menu including metrics, search and sort features were
added, packages and classes were put in pane windows, and metrics properties
had close options in the corner of the box to make them disappear (§4.3.1).

Javadoc Web Browser. Most users were excited to be able to use a large multi-
touch web browser. Since it was a familiar interface they expected it to work
similarly to a desktop web browser and some participants failed to take advantage
of the touch affordances of this interface, such as two finger panning to scroll
up and down the page. Some participants were confused by hyperlinks, and
tried double tapping when only a single tap was required. Subsequently this
visualization was perceived too similar to a the existing JavaDoc web browser,
hence it was not evaluated in our professional user study (§6).

Multiple Visualizations. The user study was not directly aimed at multiple
visualizations. Participants were allowed to display multiple visualizations at
once but most chose not to, or did not realize that they could do so until after
the study. We were expecting to see issues relating to occlusion of visualizations
(when one visualization appears in front of another) especially when pairs were
working individually. The way we ordered the questions may have had an affect
on which visualizations participants chose to display. We would like to explore
how we could reorient visualizations more effectively based on the position of a

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE96

user interacting with a table, as this may help with usability.

Collaborative Visualization. At the start of the user study we stated explicitly
that participants could work individually or together to answer the questions. All
participants chose to work together. Before the study began during the warm
up exercise most participants changed their position when interacting with the
table. During the study only a couple of the pairs actually changed positions.
All participants stood at the front of the table since that was the way most of the
text was oriented. Pair 3 (the participants who did not know each other before
the study) communicated the least while completing the tasks. Likewise, pair 4
share an office at university but do not know each other that well, also did not
communicate much during the study. Both participants from pair 4 stated that
they would have preferred to complete the user tasks individually.

5.2 Preliminary User Study 2 - Effectiveness and Cou-

pling Style

Once SourceVis was more mature and we had completed all the visualizations
(§4), we conducted another user study. In the second study we wanted to see
if how SourceVis had met our design consideration and test the usability of the
visualizations before we conducted a study with professional software developers.
Besides just focusing on the effectiveness of the techniques, as in the previous
study, we also wanted to know how pairs of developers would interact with the
visualizations by observing their group coupling style [320].

5.2.1 Participants

Table 5.3 lists the demographics of participants in our second user study. As before
these were a convenience sample of graduate computer science students. None of
these participants participated in the previous study. The column headings are
abbreviated as follows: Participant ID (PID), gender (G), age range, height, degree
acquired (Deg), software development expertise (Exp), software visualization
experience (SoftVis), smart mobile phones and touch tablets (M), touch screens
and touch tables (T), number of months the participant has known their colleague
(Coll), how often they program with others at the same time (Collab), and how
often they conduct code reviews with other developers (Review).

There were six participants in this user study. All were male and between
18–34 years of age. Five of the participants were between 177–183cm tall except
for one participant who was a lot shorter at 162cm. All participants had a degree

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE97

Table 5.3: Preliminary User Study 2 - Participant Demographics. Participant ID
(PID), gender, age range, height, degree acquired (Deg), software development
expertise (Exp), software visualization experience (SoftVis), smart mobile phones
and touch tablets (M), touch screens and touch tables (T), number of months the
participant has known their colleague (Coll), how often they program with others
at the same time (Collab), and how often they conduct code reviews with other
developers (Review)

PID G Age Height Deg Exp SoftVis M T Colleague Collab Review
11 M 18-24 183cm Hons <2 N Y Y 4 Daily Hourly/Daily
12 M 18-24 162cm Hons <2 N Y Y 4 Daily Daily
13 M 25-34 177cm Hons 3-5 N Y N 10 Never Never
14 M 18-24 183cm Diploma 3-5 N Y N 10 Monthly Weekly
15 M 25-34 180cm MSc 3-5 N N N 2 Never Before Merging
16 M 35-44 180cm PhD 3-5 N N N 2 Weekly Weekly

in computer science: one a diploma, three with an honours degree, one masters
degree, and one a PhD. The first four participants were currently studying towards
a post-graduate degree, while the last pair were working as a research assistant
and a research fellow. All had professional development experience, mostly
gained through summer internships. None of the participants had used software
visualization tools before, but three participants had used some tools that give
outlines and overviews of software systems. Four of the participants had touch
mobile phones, while one of these also had an iPad. Two of the participants
had regularly used touch screens for work purposes before. The participants
conducted the user study in pairs. The pairs comprised of participant 11 and 12 as
one pair, 13 and 14 as the second pair, and 15 and 16 as the third pair. All the pairs
chose their fellow participant before the user study. The first pair had known each
other for four years, second pair 10 years, and third pair two years.

When working on previous development projects four of the participants
regularly programmed with other developers daily, weekly, or monthly. All
participants except one claimed that they did regular code reviews by developers
either daily or weekly. The participants used a range of tools for code reviews
including: source control revision tools, unit tests, project management tools,
bug tracking tools, and IDEs. The other two participants who did not program
regularly with others mainly worked on solo projects, hence didn’t do code reviews
with others or only did a review when merging with distributed revision tools.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE98

Table 5.4: Preliminary User Study 2 - Procedure.

Step Time (max allocation minutes)

1. Introduction 5

2. Pre-study questionnaire 5

3. Example Applications 10

4. SourceVis Demo and Training 10

5. User Tasks 20

6. Post-study questionnaire 10

Total Time: 60

5.2.2 Procedure

The procedure for the user study is documented in Table 5.4. Participants were
welcomed and given an information sheet, consent form, and a pre-study ques-
tionnaire to complete. The questionnaire asked participants about their demo-
graphics and background experience. Following the pre-study questionnaire,
participants were given a warm up exercise by experimenting with the example
applications from MT4j for 10 minutes. Participants were then given a demonstra-
tion of SourceVis with a sample system by the session instructor. The participants
were also given time to explore SourceVis using the training data. The study
involved the participants completing user tasks which involved answering 16
questions similar to the types of questions software developers ask within indus-
try [101, 170, 333, 334, 302]. The questions asked participants to identify, count,
and find information using 11 of the visualization techniques. The systems used
in the study were JUnit (including 21 versions) and JHotDraw (6 versions). Each
pair of participants completed all the tasks using the same set of visualizations.
The participants recorded their answers to the questions on a sheet provided. We
recorded the time it took participants to complete the user tasks. With each partic-
ipant’s consent we video recorded their actions and asked them to think aloud.
Participants completed a post-study questionnaire which asked for their opinion
on the effectiveness, strengths, and weaknesses of the interaction capabilities and
the visualizations.

5.2.3 User Tasks

Appendix F lists the 16 questions participants were asked during the user study
about the visualizations in SourceVis. The questions involved 11 of the visual-
izations from SourceVis: System Explorer, Metrics Explorer, Vocabulary, Toxicity

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE99

Chart, System Hotspots View, Class Blueprint, Individual Class Evolution, System
Dependency, Class Dependency, System Evolution, and System Class Evolution.
The visualizations that were not used were System Package Evolution and In-
dividual Package Evolution. Since the two package visualizations were similar
enough in design to the System Class Evolution and Individual Class Evolution
visualizations, doing more questions on these extra Package visualizations would
not have been useful.

5.2.4 Qualitative Findings

We report the findings from the participants’ feedback on the strengths and weak-
nesses of SourceVis, the visualization techniques, and the multi-touch table. We
also report how the multi-touch table helped with team collaboration.

Strengths

SourceVis allowed multiple users to interact at the same time which encouraged
users to collaborate, learn from each other, and work as a team.

“Working with someone cooperatively helped me to better understand
how to manipulate the information (which settings to toggle for in-
stance). I was constantly communicating with my partner and we
were always assisting each other. We were able to easily take turns
manipulating the interface.” Participant ID (PID) 12.

“Large screen, people have to work together.” PID 16.

SourceVis supported multiple visualizations and displaying multiple visual-
izations at once. Users can launch new visualizations from the start screen or
using a pie menu from a currently displayed visualization to show more detailed
information about an entity (e.g. Class Blueprint, Class Evolution).

“It is easy to follow a particular class around the different visualizations,
and are often linked directly via the tap and hold pie menu.” PID 11.

SourceVis was designed so that many elements in the visualizations could be
manipulated, in a visually consistent manner. The manipulation features were
sorting, filtering, searching, and moving elements.

“I liked how I could manipulate everything. I appreciated being able
to zoom and rotate individual items away from my partner so I could
get a better look.” PID 12.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE100

The visualizations provided an overview of a system and the ability to drill
down to get more details on demand about specific entities including packages
and classes.

“There were lots of information on one screen which allowed me to
quickly understand the data on a high-level before manipulating the
components to get individual details.” PID 12.

“Having an overview of information fairly readily available and in
easily-to-understand visual forms is really helpful and quite useful.”
PID 13.

The visualizations allowed users to easily discover information about software
metrics and trends about the software than using existing software development
tools.

“The visualizations did a great job of showing me metrics, trends, and
dependencies more easily than I have experienced with existing IDEs
and version control tools.” PID 12.

“The visualization made several metrics easily discoverable that are
hard to get at otherwise, especially concerning evolution and depen-
dencies.” PID15.

The visualizations were designed to help identify entities that are outliers, such
as large and small classes.

“Being able to quickly see problem classes is a great feature.” PID 13.

The visualizations were designed to help show relationships between entities.

“The visualizations helped when trying to look at the relationship
between different methods, classes, and packages. They also helped
to give a relative view of each object and to previous versions of an
object.” PID 14.

Participants liked the large size of the table as it easily allowed them to see and
share lots of information about the visualizations at the same time.

“The size makes it very easy for people to be looking at different things
at the same time.” PID 11.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE101

Weaknesses

Given the participants were novice users of SourceVis, some were confused as
to what visualization they were currently looking at, and got lost through the
linking of some of the visualizations especially if they opened many visualizations.
Adding breadcrumb navigation and labels would help users to remember the
context of the visualizations. Some participants got lost in terms of navigating
within a visualization.

“Some visualizations were too big to use well, such as the System
Dependency view and the lists for the hotspot view.” PID 11.

“I found that there were too many visualizations which made it difficult
to remember which one does what. I sometimes forgot which visual-
ization I was looking at or where I came from. Some visualizations
look similar and I like to enlarge the screens which masked the screens
behind the current one. Add breadcrumbs to help with navigating to
an earlier window.” PID 12.

“Create an overview of which charts are currently displayed.” PID 16.

All of the visualizations supported two finger / hand zooming and panning
gestures on the background canvas for navigation. Occasionally when multiple
users tried to zoom at the same time the application was confused. Navigating in
the visualizations using zooming and panning gestures was really only effective
when one user was in control. Some entities could be moved within a visualization
and participants would have liked the ability to restore the initial location of the
entity. Some of the visualizations could be launched in a few different ways and
some participants did not like the way to navigate to these visualizations.

“The various visualization components could also use a preset location
which they can be returned to if they are lost (Through resizing or
being moved off screen).” PID 11.

“Some screens seem to load differently depending on how you accessed
them. In one instance, when I attempted to access information via what
felt like a natural route, the screen didn’t load. I had to backtrack and
do it a different way.” PID 13.

“With multiple users there were issues with two people zooming by
accident.” PID 14.

All of the visualizations were designed in a consistent manner so that users can
move elements (e.g. drag) and perform navigation interaction gestures (e.g. two

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE102

finger zoom in and out, and pan for navigation). Many of the participants were
confused as to what could and could not be interacted with in a visualization. Oc-
casionally some elements were movable, and touching text elements had different
effects on the visualization which was not what participants expected. Touch-
ing some text elements also behaved differently on some of the visualizations.
Sometimes when participants were touching the same element in a visualization
simultaneously occasionally the element would suddenly move or change size
unexpectedly. Creating a consistent look and feel, and giving participants more
time with SourceVis, would allow them to become more familiar with the user
interface style.

“Not always clear what is usable (such as the filter headers are collapsi-
ble). Icons on the header which can be interacted with would aid the
users.” PID 11.

“Sometimes we both touched the same object at the same time, which
lead to surprising changes in size and position of the object.” PID 12.

“Some interface issues got in the way of accessing information - clicking
on Evolution in one screen didn’t do the same thing as clicking on it in
another.” PID 13.

“It was not always obvious what part of the interface could be touched
and what it would do, and there were some inconsistencies as to how
to close specific popups. Active elements should be made more discov-
erable, and a bit more consistency would be helpful (for example a tap
always does this, tap-and-hold that, double tap something else).” PID
15.

”The tools do not feature any highlighting where an interaction is
possible.” PID 16.

We positioned the main menus primarily on the left hand side of visualizations.
This made it difficult for participants to interact with them if they were standing
on the other side of the table. If a participant wanted to display a new visualization
from the start screen and one visualization was being displayed at full screen it
required closing or minimizing the currently displayed visualization. Creating
display on demand features for the options menu and creating new visualizations
(ones from the start screen) to open anywhere would give more flexibility for
SourceVis.

”It was a bit cumbersome if you wanted to for example click on some-
thing but the buttons were on the other side, then you had to ask your
team mate to do it.” PID 15.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE103

Some of the questions involved finding out specific information such as count-
ing the number of relationships an entity has with respect to other entities. Our
visualizations required participants to count these relationships rather than pro-
viding summary information.

“When we attempted to view specifics of a certain relationship such
as counting the number of dependencies or checking which version
contained the most classes.” PID 14.

Some participants found it difficult to remember the visual encoding repre-
sentation. Such as the what the dimensions of the classes are in the Polymetric
Encoding, and the colour coding for classes.

“I didn’t understand some headings initially such as WMC and LOC.
More description or more fuller headings would have been nicer.” PID
12.

The pie menus caused some issues when displayed, especially if the canvas
was zoomed in or out at the extreme ends. Either the pie menu was too small or
too big and off screen. Most of the time the pie menu worked as expected and
participants could read the sub menus.

“Pie menu needs to be independent of zoom, as it becomes a little
clunky and hard to read when half of it disappears off the bottom of
the screen.” PID 13.

The search feature was available in the Metrics Explorer, System Hotspots View,
System Package Evolution, and System Class Evolution visualizations. When a
search query was issued the entities that matched the query were displayed while
other entities were hidden. Any subsequent search would search only entities that
were currently visible and not the hidden entities. To make a subsequent search
across all the original entities (i.e. currently visible and hidden entities) a user
would have to first tap the reset option, which would then redraw the visualization
in the original state. Another way to implement this would have been to highlight
the entities found and make other entities less saturated in colour.

“The search option should reset the list at the beginning of a new
search.” PID 11.

As the visualizations in SourceVis relied heavily on text, we tried to make sure
that text was easy to read and when scaled also readable. Nonetheless occasionally
some text was hard to read. Some participants suggested using a fish eye lens in
the System Dependency Visualization in order to make reading class names easier.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE104

“Maybe use a fish eye view approach for the System Dependency view,
diminish/hide elements which aren’t related when reading the name
of a class.” PID 11.

“Some text appeared too small to read so I had to enlarge the text or
view manually.” PID 12.

The touch table used a RearDI setup and CCV which makes it hard to get
precise touch points and not detecting touch points slightly above the table. On
our tables participants hovering their hands slightly above the table caused touches
to be detected which had some unexpected behaviour with the visualizations such
as object manipulation.

“The touch precision wasn’t the best, but it was still accurate enough
to grab small objects.” PID 12.

The resolution of the table was 1280x800 pixels and most of the visualizations
relied heavily on text. The low resolution occasionally made some text hard to
read especially when the current view was zoomed out a long way. Ideally we
would like the table to have a much higher resolution, similar to contemporary
desktop computers as this would allow greater precision for exploring finer detail
in visualizations.

“This particular table does suffer from low resolution, making reading
small text hard.” PID 11.

“The resolution could be higher again, as one is able to read/recognize
10 pt text without problems, if rendered well.” PID 16.

Some visualizations had issues with displaying lots of information, which
meant users had to wait for the system to complete rendering the visualization.
This was particularly the case for the Toxicity Chart when many classes were
displayed and some were filtered out by the slider. The chart in the visualization
had to be redrawn each time the slider was manipulated. The System Dependency
visualization did not display at all for very large systems with many dependency
relationships.

“Slight performance issues apparent with the interaction stalling, not
apparent if touch screen not picking up the action or if program is just
thinking.” PID 11.

“Slow in response it needs time to get used to the system.” PID 16.

In the previous study (§5.1) we allowed participants to use a clipboard to
write down their answers. In this study we decided to remove the clipboard as

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE105

it interfered with participants’ touch interactions. Instead we asked participants
to enter the answers to the questions in an online form on a separate computer.
We had large A3 sheets of the questions attached on the wall behind the table so
that participants did not have to walk to the computer to refer to the questions
while interacting. We also provided the questions on A4 sheets. We encouraged
the participants to hold the pieces of paper or put them down on the table next to
the multi-touch table. Quite often we observed that participants put the paper on
the multi-touch table. This reduced the available display space for viewing and
interacting. CCV detected paper on the table as a touch point which had an affect
on the visualizations. We experimented having a separate window on the screen
which contained the questions, but we felt that this would affect participants
switching between visualizations and that the questions window would take up
too much screen real estate.

“It would be nice to have the questions on the table as well instead of
pieces of paper.” PID 16.

Team Collaboration

We asked participants how the multi-touch table helped with team collaboration.
There were many aspects that were positive for team collaboration. These were:
team work, multi-touch interaction, communication, and coordination between
participants.

Participants liked the size of the table as it allowed them to work as a team to
see lots of data at the same time, share visualizations, and learn from each other.

“The table allowed for multiple users to work on the same thing at
once and collaborate without having to try and explain as much.” PID
14.

“It was easy to show things to others.” PID 15.

The multi-touch interaction and the large table removed the barriers from a
single person being in control of the user interface such as in Pair Programming
where there is only one keyboard and mouse for input which is controlled by the
driver [22, 363]. This allowed for all team members to contribute to the task at
hand.

“Having a large screen that removes the need for a singular keyboard
and mouse allows all team members to contribute to the task at hand.
It felt quite good.” PID 13.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE106

The table encouraged participants to communicate with each other as they
were working as a group.

“I was constantly communicating with my partner and we were always
assisting each other.” PID 12.

Because of the inaccuracy at times of the detection of touch points some partic-
ipants were cautious when they touched the table while their colleague was also
touching the table. This led one pair of participants to coordinate taking turns
when interacting with the table. When others needed to coordinate manipulating
the interface for example some participants asked their colleague to select a control
on the side of the table they were at as they could not reach the controls. Other
researchers have considered reach when making tabletop interfaces [331].

“I would have liked to manipulate the interface at the same time as my
partner, but didn’t due to accuracy issues with the table. It was easy,
however, to take turns manipulating the interface.” PID 12.

“Can not not reach all the buttons.” PID 16.

Summary of Qualitative Findings

Table 5.5 summarises the qualitative findings for the strengths, weaknesses, and
how the multi-touch table helps team collaboration. The results from our profes-
sional user study (§6) builds upon these qualitative findings (§7).

Table 5.5: Preliminary User Study 2 - Summary of Qualitative Findings.

Strengths Weaknesses Team Collaboration
Multi-user Interaction Visualization Context Team Work
Multiple Visualizations Navigation Multi-touch Interaction
Data Manipulation UI Consistency Communication
Overviews and Details on Demand Finding Specific Information Coordination
Software Metrics and Data Tends Remembering Visual Encoding
Data Outliers Pie Menu
Data Relationships Search
Table Size Reading Text

Touch Precision and Accuracy
Screen Resolution
Hardware Performance
Tangible Objects

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE107

5.2.5 Quantitative Findings

We report the quantitative findings from the user tasks, perceived effectiveness
of the visualization techniques, frequency of the group coupling styles, and how
participants could potentially use multi-touch tables like this in the work place.

Time and Errors

We expected the participants in the user study to complete the user tasks some-
where between 20-30 minutes. The first pair took 22 minutes to complete the user
tasks, second pair 24 minutes, and third pair 29 minutes, for an average of 25
minutes. All the pairs answered all of the questions correctly.

Perceived Effectiveness of Visualization Techniques

Figure 5.3: Preliminary User Study 2 - Perceived effectiveness of techniques by
individuals. Does not include the System Package Evolution and Individual
Package Evolution visualizations as they were not used in this study.

Figure 5.3 shows the perceived effectiveness of the individual techniques each
participant stated in the post-survey, with a range of 0 being least effective and

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE108

10 being most effective. Note there is no rating for the System Package Evolution
and Individual Package Evolution visualizations as participants did not use these
visualizations when answering the questions. Most of the visualizations rank
somewhere between 7 and just over 8 for the average. The overall perceived
effectiveness of the visualizations is 7.8 for the average.

The Exploration visualizations rank the highest between 7.5 and just over 8
for the average. The chart based visualizations ranked between 7.3 and 8 for the
average, with the Toxicity Chart being the most effective of these chart visualiza-
tions. The System Hotspots View and Individual Class Evolution visualizations
both use Polymetric encodings and rank quite similar approximately 7.5 for the
average. The least effective visualizations are the Class Dependency and System
Dependency visualizations which both ranked between 5 and 6 for the average.
The Class Blueprint View has the largest spread of values. We now examine each
of the visualization techniques in more detail.

Visualization Techniques

System Explorer. This visualization made it easy to move between different pack-
ages and classes in a system, and to see different versions of a system. It was a
good starting point when looking at a particular class to find out more information.
When this visualization loaded on systems with many classes it was a bit slow as
it listed all the classes. For systems that had more than 1000 classes the class list
became very large and the performance of scrolling the list became slower. Most
participants ranked this visualization between 7-9, except for one participant who
ranked it as a 6 hence the average was 7.6.

“Easy to move between different packages/classes. Good starting
point when looking at a particular class.” PID 11.

Metrics Explorer. This visualization provided lots of information about packages
and classes. The visualization took up all the screen real estate when displayed
at full screen. Participants liked how this visualization augmented the system
explorer with extra metrics information including an options menu, and the ability
to filter entities in a list. This visualization ranked as the most effective technique
at 8.2.

“Lots of information available with good filtering options.” PID 11.

Vocabulary. This visualization was based on the common word cloud visual-
ization. There were some issues for large words which participants wanted to
down scale in size. The only way to scale the words is to do a zoom out gesture

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE109

which adjusts the camera. We designed it this way to prevent word changing size
and losing their context against other words as experienced in our earlier user
study (§5.1). Given the common word cloud representation, participants found
this visualization easy to use and adding in filtering options increased the utility
of the visualization. This visualization ranked quite high at 8.

“Simple to use and filter.” PID 11.

Toxicity Chart. This visualization was a chart and built upon the metrics explorer
by providing a view that showed outlier classes that violated certain thresholds
for different metrics. The visualization required participants to understand what
the metrics meant to be able to make sense of the chart. Since the values were
cumulative it was rather straight forward to get a good understanding of which
classes were toxic and required refactoring. Participants liked how the chart
changed due to the filtering by metrics. This visualization also ranked quite high
at 8.

“Good scaling of graph to screen making it easier to use, good filtering
options.” PID 11.

System Hotspots View. This visualization was the first visualization in which
participants were exposed to the Polymetric encoding. This encoding made it
possible to see the size of a class. This visualization was slightly more complicated
for participants compared to the earlier visualizations they experienced as the
Polymetric encoding was unfamiliar to them. Nonetheless, it was still ranked
quite high at 7.6 almost the same as the less sophisticated System Explorer.

“Easy to see class size visually.” PID 11.

System Dependency View. This visualization displayed lots of information. For
large systems the visualization did not scale as there were too many relationships
that needed to be displayed. This also meant that entity labels were hard to read
without zooming right in to see more detailed information. It was hard for some
participants to determine how many dependencies an entity had. Some partici-
pants were confused when tapping an entity as it highlighted a relationship and
then tapping turned it off. There were some inconsistencies with the information
that was displayed depending on what was selected or tapped in this visualization.
These were primarily programming errors which we could fix. This visualization
ranked the least at 5.3.

“The system dependency view looks nice, but I had to manually count
occurrences of dependencies to get my information. Some tools to
make the dependency view easier would be nice (for instance count
the number of highlighted links and display that to me).” PID 11.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE110

Class Dependency View. This visualization was less complicated than the System
Dependency and instead showed a local view of the dependencies a class has
instead of being displayed in a global view. We added thickness of an edge to
represent the strength of a dependency and edge labels to provided extra informa-
tion. Classes could also be moved around and filtered out. This visualization did
not seem to rank as highly as we anticipated. Perhaps it was due to participants
thinking that it should be more complicated. Navigating from one class to another
required launching a new window which may have caused some confusion. This
visualization was second to worst, ranked at just over 6.

“Nice way to see more information about a class visually, same good
filtering options.” PID 11.

Class Blueprint. Participants like the information we added to this visualization
such as an encoding legend, layer information, metrics information, and the ability
to see other versions of the class. This visualization improved its ranking to 8.

System Evolution. This visualization was a chart similar to the Toxicity Chart
with less complicated data. It ranked lower than the Toxicity Chart. The rendering
performance of this chart was faster than the Toxicity Chart as it mainly had less
data to display. This visualization ranked the same as the System Explorer, and
System Hotspots View at 7.6.

System Class Evolution. This visualization also used Polymetric encodings for
the classes. It was similar to the System Hotspots View but showed all classes from
all versions. Participants liked how they could trace a class through the different
versions, but when a class was small in size it was hard to see in the different
versions. The visualization can display very large systems but takes longer to
render them which decreased usability. The visualization ranked slightly lower
than the System Hotspots View at 7.3.

“Some colours in the class evolution visualization were too similar to
allow me to follow a trend. I had to enable highlighting to assist me
here.” PID 12.

Individual Class Evolution. This visualization was simple and used two different
displays either a chart or Polymetric encodings. Users could switch between the
different displays. The visualization displayed an individual class over differ-
ent versions. This visualization was ranked at 7.5 similar to the System Class
Evolution.

Startup Screen. The startup screen ranked similar to the Metrics Explorer
visualization as being the most effective technique at 8.2 on average. Participants
found this screen useful as there were large icons for each visualization that were

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE111

grouped into categories and laid out in a uniform way. It was obvious for each
participant to tap the icons to launch a visualization. The load menu stood out
and it was clear for participants on how to load a system to be visualized. The
help information when tapping and holding on an icon provided some useful
documentation about the visualizations for the participants.

Group Coupling Style

We video recorded participants interacting with the table and observed what
coupling style they used for the tasks. We used a subset of codes from the group
collaborative coupling style for tabletop displays [137, 320]. Descriptions of the
group coupling styles we used are listed in Table 5.6. We manually analysed the
video recordings and coded what group coupling style the participants performed.
Each video took up to four hours to examine. We only used a subset of the closely
coupled styles as at all times participants were working as groups at the same
time on the table.

Figure 5.4 shows the different coupling styles we observed participants per-
forming. The frequency is measured by how many times we observed a pair
using a style. We observed the pairs using very similar group coupling styles
during the study. Most of the time pairs were either discussing the task and
not interacting with the table (DISC), or one participant actively interacting with
SourceVis while the other participant was viewing (VE). Sometimes participants
would both interact with the table at the same time in the same location (SPSA).
Less frequently participants would interact with the table at the same time in
different areas (SPDA).

Table 5.6: Subset of Group Coupling Styles [137, 320].

Code Description
DISC Discussion: Conversation about the tool, task status, or work strategies.
VE Viewing Engaged: One participant actively works with the table;

the other is actively viewing, possibly commenting but not touching.
SPSA Same Problem, Same Area: Both participants work

on the same problem and the same area of the table.
SPDA Same Problem Different Area: Both participants work

on the same problem and different areas of the table.

5.2. PRELIMINARY USER STUDY 2 - EFFECTIVENESS AND COUPLING STYLE112

Figure 5.4: Preliminary User Study 2 - Observed Group Coupling Style.

Due to time constraints we only analysed the frequency of the coupling styles
performed by the participants. We would like to analyse how much time pairs
spent in the different coupling styles, and the temporal sequence of coupling styles.
In this study we only looked at closely coupled styles. We look like to explore both
closely and loosely coupled styles. The next chapter presents our user study with
professional software developers that explores both closely and loosely coupled
styles, time spent in the coupling styles, and the temporal sequence of styles (§6).

Work in Practice

Our final question in the post-survey was to ask how participants could potentially
use technology like multi-touch tables in the work place. Figure 5.5 shows the
frequency of activities participants thought a multi-touch table could potentially
be used for collaborative software development in a co-located environment.
The chart shows that participants favour the activities for designing software
with architecture and modelling tasks, followed by planning team development
tasks. Analysis and code reviews was also favourable. Implementing and testing
software were the least favourite activities. None of the participants suggested
using a multi-touch table for face to face or video conference meetings.

5.3. PRELIMINARY USER STUDY 3 - GROUP VS. INDIVIDUAL WORK 113

Figure 5.5: Preliminary User Study 2 - Multi-touch table work in practice.

5.3 Preliminary User Study 3 - Group vs. Individual

Work

Finally, we conducted another study to see how participants would interact with
SourceVis using different combinations of the user tasks as the study condition.
The combinations were working as a group on the same task at the same time or
as individuals working on different tasks at the same time. Being able to work as
individuals on multi-touch tables at the same time is one of the claimed benefits of
a multi-user multi-touch table setup [291]. We wanted to see what combinations
participants favoured.

5.3.1 Participants

Table 5.7 lists the demographics of participants in our third user study. As before
these were a convenience sample of graduate computer science students. None of
these participants participated in the previous studies. The column headings are
abbreviated as follows: Participant ID (PID), gender (G), age range, height, degree
acquired (Deg), software development expertise (Exp), software visualization
experience (SoftVis), smart mobile phones and touch tablets (M), touch screens

5.3. PRELIMINARY USER STUDY 3 - GROUP VS. INDIVIDUAL WORK 114

and touch tables (T), number of months the participant has known their colleague
(Coll), how often they program with others at the same time (Collab), and how
often they conduct code reviews with other developers (Review).

There were only two participants in this user study who formed one pair.
Both participants were male and between 18–24 years old, were tall (between
183–185cm), working towards a bachelors degree in computer science, had some
professional development experience gained through summer internships, and
neither had used software visualizations tools before. Both participants have touch
mobile phones but no touch tablets. They were friends, currently working on
an undergraduate group project together, known each other for one year, don’t
program with others, and review their code daily.

Table 5.7: Preliminary User Study 3 - Participant Demographics. Participant ID
(PID), gender (G), age range, height, degree acquired (Deg), software development
expertise (Exp), software visualization experience (SoftVis), smart mobile phones
and touch tablets (M), touch screens and touch tables (T), number of months the
participant has known their colleague (Coll), how often they program with others
at the same time (Collab), and how often they conduct code reviews with other
developers (Review).

PID G Age Height Deg Exp SoftVis M T Coll Collab Review
17 M 18-24 185cm BSc <2 N Y N 1 Never Daily
18 M 18-24 183cm BSc <2 N Y N 1 Never Daily

5.3.2 Procedure

The procedure for the user study is documented in Table 5.8. The procedure was
the same as the previous study, except for the user tasks (Step 5 in the procedure).
We wanted to explore participants answering the questions as groups and as
individuals. Pairs got to experience working in both conditions. We allowed
more time to complete these tasks as there were more questions and an individual
component added to the procedure which we expected to take longer.

5.3.3 User Tasks

The tasks involved answering questions either as a group or as individuals. When
answering the questions as individuals participants were instructed to use the
table at the same time. Appendix H lists the questions participants were asked
during the user study (these questions were subsequently used in the professional
user study (§6)).

5.3. PRELIMINARY USER STUDY 3 - GROUP VS. INDIVIDUAL WORK 115

Table 5.8: Preliminary User Study 3 - Procedure. Step 5 involved answering
questions as a group or as individuals.

Step Time (minutes)

1. Introduction 5

2. Pre-study questionnaire 5

3. Example Applications 10

4. SourceVis Demo and Training 10

5. User Tasks (three sections as Groups or Individuals) 25

6. Post-study questionnaire 5

Total Time: 60

Table 5.9: Preliminary User Study 3 - Study condition combinations.

Section GIG GII IGG IGI

1 Group 1-5 Group 1-5 Individual 1-5 Individual 1-5

2 Individual 6-10 Individual 6-10 Group 6-10 Group 6-10

3 Group 6-10 Individual 11-15 Group 11-15 Individual 6-10

The first section of five questions participants answered either as a group or as
individuals. The second section of five questions the participants did the opposite.
For example if the participants did group first, they then answered the second five
questions as individuals. The third section of five questions the participants got a
choice to either do the questions as a group or as individuals. Table 5.9 outlines the
possible combinations of the questions the participants answered. For example
GIG means the participants answered the questions as follows: first set of five
questions as a group, second set of five questions as individuals, and third set of
five questions as a group.

5.3.4 Findings

We report the findings from the study condition combinations and the user tasks.
Due to the small number of participants in this study and time constraints we
did not ask the participants about the perceived effectiveness, strengths and
weaknesses of the visualization techniques, how the table helps with collaboration,
and how participants could potentially use a table like this in the work place.

5.4. LIMITATIONS 116

Study Condition Combinations

The participants in this study started off doing the first five set of questions as a
group and second set of questions as individuals. Upon completing the third set
of five questions both participants selected to do group combination. This led to
the combination of GIG as listed in Table 5.9. Future studies would like to explore
what user task combinations pairs prefer. We would like to know if there is a
difference in user performance if they start with either the group or individual
condition first. We would like to know what group coupling style was performed
in the different study conditions. These specific issues are addressed in more detail
in our professional user study (§6).

Time and Errors

We expected the participants in the user study to complete the user tasks some-
where between 25-30 minutes based on the previous studies. The pair took 27
minutes to complete the user tasks and answered all of the questions correctly.

5.4 Limitations

There were some limitations to our preliminary user studies which we now outline.
They were used to improve the process for our professional user study (§6).

Participants. We conducted our user study with a small number of participants
who were a convenience sample of computer science students and not a repre-
sentative sample of the target users of SourceVis. We were more interested in
obtaining feedback from participants on what worked effectively, what didn’t,
and what other features participants were interested in.

Previous Use. None of the participants had used either the Blue Multi-touch
Table or SourceVis previously. In the first study the warm up exercise was some
example applications from MT4j and not SourceVis, so participants had limited
exposure to SourceVis before they got to use it in the actual study. We decided
not to use any previous participants across these studies as we did not want them
to have any misconceptions on SourceVis or be able to have any advantage over
other participants.

User Tasks. We did not vary the order of the questions (except the third study)
for the different pairs of participants which may have introduced a learning bias
for the visualization techniques. To reduce any learning bias we would vary the
order of questions like in the third study.

Apparatus. The first user study was the first time we had conducted a study

5.5. SUMMARY 117

with our Blue Multi-touch Table. Our table was custom built, so it had not been
exposed to rigorous user testing or industrial performance benchmarks. For the
subsequent two studies we configured the table settings to perform better.

Measurement. As this was a qualitative user study we were less concerned with
how long it took participants to answer the questions, instead we wanted to have
a general understanding of how long it would take to conduct the study so we
could better prepare for our professional user study. Time measurements were
taken using a manual stop watch. As we asked participants to think aloud to
provide us feedback, we included that time when measuring how long it took
them to complete the questions. Some pairs may have taken more or less time to
complete the questions depending on how much time was spent thinking aloud.

Recording. In the second and third study we video recorded the participants
but we only showed their hands interacting on the table. When conducting our
video analysis we could not see the facial expressions of participants which made
it harder to determine the group coupling style. We would have liked a multi-
camera setup, with one camera recording the participants’ hands and another
camera recording the group interaction from a wider angle.

5.5 Summary

In this chapter we presented three qualitative preliminary user studies of par-
ticipants interacting with SourceVis. We had a total number of 18 participants
across the studies. The participants were a convenience sample of computer sci-
ence students from our department. The first study explored the effectiveness
of our visualization techniques at an early stage of development. The second
study explored the effectiveness of the techniques near the end of implementa-
tion, and users’ coupling style when interacting with SourceVis. Finally, the third
study explored if participants preferred working as a group or as individuals with
SourceVis.

In the next chapter (§6) we present a study we conducted with professional
software developers using SourceVis, based on the protocols developed in this
chapter.

Chapter 6

Professional User Study

Contents
6.1 User Study Design . 119

6.1.1 Study Condition Combinations 119

6.1.2 Collaborative Coupling Style 120

6.1.3 Physical Arrangement Style 120

6.1.4 Participant Qualitative Feedback 122

6.1.5 Research Questions . 122

6.2 Participants . 123

6.2.1 Recruitment . 123

6.2.2 Demographics . 123

6.2.3 Human Ethics Approval . 128

6.3 Procedure . 128

6.3.1 Pre-Study . 129

6.3.2 User Study Setup . 131

6.3.3 User Tasks . 132

6.3.4 Post Study . 134

6.3.5 Data Collection, Coding, and Analysis 135

118

6.1. USER STUDY DESIGN 119

In this chapter we present the design of a user study conducted to evaluate our
hardware and software designs. This is based on the protocol developed from our
previous user studies (§5), and uses our multi-touch table (§3) and SourceVis (§4).
In this chapter we describe the design of the user study, demographics about the
participants, the procedure for the study, and limitations. The following chapters
present the qualitative (§7) and quantitative (§8) findings from this study.

6.1 User Study Design

Based on the protocol developed from our preliminary user studies (§5) we wanted
to explore participants working on the multi-touch table completing user tasks
as a group and as individuals at the same time, what condition type combination
pairs selected, what coupling styles were used, what arrangement styles were
used, and how effective our multi-touch visualization techniques are, and what
the strengths and weaknesses were. To address these design issues we chose a
within-subjects test [224].

6.1.1 Study Condition Combinations

As part of this user study we wanted to explore participants working on the
multi-touch table completing the user tasks in two condition types: as a group
or as individuals. We wanted to find out what condition type was most effective
and what condition participants preferred. All participants got the opportunity
to explore both conditions. For our study we used a within-subjects design [224]
with one factor, condition type:

Group: pairs working jointly together on the same task at the same time.

Individual: pairs working separately in parallel on different tasks at the same
time.

Pairs completed three sections of the user tasks (§6.3.3) in one of the two differ-
ent condition types (e.g. Group or Individual). To vary the order of condition type
in which pairs completed the sections, we had two groups: odd numbered pairs
and even numbered pairs. Odd numbered pairs completed Section 1 in the Group
condition, and Section 2 in the Individual condition. Even numbered pairs com-
pleted Section 1 in the Individual condition, and Section 2 in the Group condition.
For Section 3 each pair had a choice of Group or Individual condition. Table 6.1
lists the study condition type combinations. The four possible combinations were
Group Individual Group (GIG), Group Individual Individual (GII), Individual
Group Group (IGG), and Individual Group Individual (IGI).

6.1. USER STUDY DESIGN 120

Table 6.1: Study Condition Type - Combinations.

Section GIG (odd pair) GII (odd pair) IGG (even pair) IGI (even pair)
1 Group Group Individual Individual
2 Individual Individual Group Group
3 (choice) Group Individual Group Individual

6.1.2 Collaborative Coupling Style

When participants interacted with SourceVis and the table we wanted to observe
what collaborative coupling styles they utilized. The coupling styles are listed
in Table 6.2 are based on Tang et. al [320, 137]. The coupling styles are divided
into two categories: closely coupled (C) and loosely coupled (L). Closely coupled
groups work together while loosely coupled groups work separately.

The coupling styles include discussion (DISC) amongst participants. Viewing
engaged (VE) where one participant is actively working on the table and the other
observing. Viewing disengaged (VD) where one participant is actively working on
the table and the other is disengaged and may not even be close to the table. Both
participants working on the same problem at the same time and the same area of
the table (SPSA). Both participants working on the same problem but different
areas of the table (SPDA). We subdivided the different problem (DP) code by
adding in two new sub categories. Participants working on different problems and
the same area of the table (DPSA) and participants working on different problems
and different areas of the table (DPDA) (highlighted in Table 6.2).

6.1.3 Physical Arrangement Style

As part of our user study we were interested in observing where participants
stood in relation to the collaborative coupling style and in the different study
conditions. Only three sides of our table were available for use as one side of our
table had equipment set up for video recording purposes. Figure 6.1 shows five of
the physical arrangement styles similar to Tang et al. [320] that we were interested
in. The five position arrangements around the table based on relative positions are:
(A) Together, (B) Kitty Corner, (C) Side by Side, (D) End Side, and (E) Opposite
Ends. Tang et al. [320] had two other positions as their table was accessible from
all sides. These other positions were Straight Across and Angle Across where
participants were on opposite sides but using both the wide sides of the table. We
also came up with another position, (F) Apart, for when one or both participants
were standing away from the table.

6.1. USER STUDY DESIGN 121

Table 6.2: Collaborative Coupling Styles [320], with our modifications highlighted.

Category Code Description
C DISC Discussion: Conversation about the tool, task status,

or work strategies.
C VE Viewing Engaged: One participant actively works with

the table; the other is actively viewing, possibly
commenting but not touching.

L VD Viewing Disengaged: One participant actively works with
the table; the other is passively viewing or disengaged.

C SPSA Same Problem, Same Area: Both participants work
on the same problem and the same area of the table.

C SPDA Same Problem Different Area: Both participants work
on the same problem and different areas of the table.

L DPSA Different Problem Same Area: Both participants work
on different problems and same area of the table.

L DPDA Different Problem Different Area: Both participants work
on different problems and different areas of the table.

Figure 6.1: Physical Arrangement Styles around the table [320], with our modifica-
tion style – Apart.

6.1. USER STUDY DESIGN 122

6.1.4 Participant Qualitative Feedback

As part of the study we wanted to find out what visualizations participants per-
ceived to be the most effective. What the strengths, weaknesses and improvements
are for SourceVis and the multi-touch table. We also wanted to know if participants
had access to a multi-touch table for work purposes what software development
activities they would use it for.

6.1.5 Research Questions

Based on the previous sections we wanted to address following research questions.
The following chapters address the qualitative (§7) and quantitative (§8) findings
to these research questions in more detail.

Q1 What are the strengths of the visualizations and the multi-touch table (§7.1)?

Q2 What are the weaknesses of the visualizations and the multi-touch table
(§7.2)?

Q3 What improvements could be made for the visualizations and the multi-
touch table (§7.3)?

Q4 Does the multi-touch table help with team collaboration, and if so how (§7.4)?

Q5 Which study condition (e.g. Group or Individual) did the pairs favour for
the Section 3 of the user tasks (§8.1)?

Q6 Which coupling categories did the participants use (§8.2)?

Q7 Which coupling styles did the participants use (§8.3)?

Q8 Which physical arrangement styles did the participants use? (§8.4)?

Q9 Which visualization techniques did the participants perceive to be the most
effective (§8.5)?

6.2. PARTICIPANTS 123

6.2 Participants

We now describe our recruitment process, the demographics of the participants
such as characteristics, education, experience and skills, team details, program-
ming and code review experience, touch devices, software visualization tools
experience, and human ethics approval.

6.2.1 Recruitment

Conducting research about the human side of software engineering necessitates
the participation of real software developers in studies, but getting high levels of
participation is a challenge for software engineering researchers. Smith et al. sug-
gest a number of ways to improve developer participation rates in surveys [305].

We exclusively recruited participants from local software development com-
panies as they were our target users. Table 6.3 shows the list of participants in
our professional user study. There were 44 participants who were grouped into
22 pairs. The participants came from 18 different companies. Two large software
development companies provided six participants each which made three pairs
from these companies.

We were strict on the criteria for who we recruited for the user study. Our
criterion was that each pair of participants had worked for the same software
development organisation and within the same team. Some pairs were currently
working apart but had previously worked together for a number of years. The
participants were recruited from local mailing lists, alumni of our University, per-
sonal contacts we had at local software development companies from Wellington,
and emails addressed to the CEO or HR contact of an organisation. We obtained
the email addresses of CEO and HR contacts through our University’s Careers
Service. We sent email messages to seven technical user group mailing lists, 50
companies, and 112 personal contacts. The email we sent to contacts at companies
we did not know personally is located in Appendix C. A modified version of the
email was sent to personal contacts. We offered participants a small gift (movie
voucher) as a token of appreciation of their effort.

6.2.2 Demographics

We asked participants to complete a pre-study questionnaire where we obtained
demographic information about each participant. Table 6.3 and the Figures in
Appendix G chart some of the demographics data which we now elaborate upon.

6.2. PARTICIPANTS 124

Table 6.3: Participants in the Professional User Study. Pair ID, Participant ID,
Gender (male, female, other), Age (years), Height (cm), Development Experience
(years), Known Colleague (years), Access to Mobile Touch Phone (yes/no), Access
to Touch Tablet (yes/no), Location of Development Team (co-located, distributed),
Combination of Condition Type (group, individual). Grey shaded rows = GIG
combination, and unshaded = IGG combination.

Pair PID Gender Age Height Experience Colleague Mobile Tablet Location Combination
1 M 25-34 183 5-10 1 Y N C GIG

1
2 M 25-34 175 3-5 1 Y N C GIG
3 M 25-34 172 5-10 2 Y N C IGG

2
4 M 25-34 170 10-20 2 Y N C IGG
5 M 25-34 183 3-5 8 Y N D GIG

3
6 M 25-34 185 5-10 8 Y N D GIG
7 M 25-34 183 3-5 5 N N C IGG

4
8 M 25-34 175 5-10 5 N N C IGG
9 M 25-34 180 3-5 1 Y N C GIG

5
10 F 45+ 158 10-20 1 Y Y C GIG
11 M 25-34 175 3-5 3 Y N C IGG

6
12 M 25-34 187 3-5 3 Y N C IGG
13 M 45+ 187 20+ 1 N N C GIG

7
14 M 35-44 195 10-20 1 N N C GIG
15 M 35-44 187 10-20 6 Y Y D IGG

8
16 M 35-44 183 5-10 6 Y N D IGG
17 M 35-44 180 5-10 6 N N C GIG

9
18 M 35-44 185 < 2 6 N N C GIG
19 M 25-34 183 5-10 1 Y N C IGG

10
20 M 35-44 183 20+ 1 Y Y C IGG
21 M 18-24 185 < 2 4 Y N C GIG

11
22 M 18-24 177 < 2 4 Y N C GIG
23 M 35-44 172 10-20 1 Y N C IGG

12
24 M 35-44 185 3-5 1 Y N C IGG
25 M 45+ 170 20+ 15 Y Y D GIG

13
26 M 45+ 180 10-20 15 Y N D GIG
27 M 25-34 187 < 2 5 Y N C IGG

14
28 O 25-34 183 10-20 5 N N C IGG
29 M 25-34 177 5-10 1 Y Y C GIG

15
30 M 18-24 183 3-5 1 Y N C GIG
31 F 18-24 172 < 2 2 Y Y C IGG

16
32 M 25-34 177 5-10 2 Y N C IGG
33 M 35-44 172 10-20 2 Y Y D GIG

17
34 M 35-44 177 10-20 2 Y Y D GIG
35 M 35-44 183 10-20 1 Y N C IGG

18
36 M 25-34 183 3-5 1 Y N C IGG
37 M 45+ 177 20+ 8 Y Y C GIG

19
38 M 25-34 187 5-10 8 Y Y C GIG
39 M 18-24 177 3-5 3 Y Y D IGG

20
40 M 18-25 180 3-5 3 Y N D IGG
41 M 35-44 177 10-20 3 N N C GIG

21
42 M 35-44 180 10-20 3 Y N C GIG
43 M 25-34 175 5-10 1 Y N C IGG

22
44 M 35-44 177 10-20 1 N N C IGG

6.2. PARTICIPANTS 125

Characteristics

The “Pair” column of Table 6.3 are unique IDs for the pairs. The “PID” column
of Table 6.3 are unique IDs for each participant. 41 of the participants were male,
2 were female, and 1 transgender. Figure G.1(a) shows the wide range of ages of
the participants. 43% of the participants were in the range 25–34, 32% in the range
35-44 range, 14% in the range 18–24, and 11% over 45+.

Figure G.1(b) shows the height ranges. The average height was 180cm. 52% of
participants are of medium height (e.g. 177–183cm, 5ft 8in–6ft), 25% are short (e.g.
150–176cm, 5ft–5ft 7in), and 23% are tall (e.g. 184cm+, 6ft 1in+). Our multi-touch
table was designed to be at a height of a standard kitchen bench with his 820mm
in height. As 75% of participants were medium to tall height we expected them to
have no problem reaching elements on the table.

Education

Figure G.2(a) shows the highest qualification level the participants have obtained.
32% of participants have only a bachelors degree, 30% an honours degree, 29%
either masters or PhD degree, and 7% a diploma or lower. In total 93% of partici-
pants had a tertiary qualification.

Figure G.2(b) shows what the subjects of these qualifications. 63% of the
participants had qualifications in computer science, 7% software engineering, 21%
either computer engineering, electrical engineering, maths, or physics, and 9%
business with an IT focus, arts or applied computing. 91% of the participants had
a science or engineering qualification.

Experience and Skills

The “Experience” column of Table 6.3 records the participants’ professional soft-
ware development experience. The classification were as follows: less than 2 years
a graduate developer, 3-5 years a junior developer, 6-10 years an intermediate
developer, 11-20 years a senior developer, and 20+ years an expert developer.
Figure G.3(a) shows a wide range of software development experience due to our
recruitment strategy. 30% were classified as senior, 25% junior, 23% intermedi-
ate, 14% graduate, and 9% expert. 62% of participants had 6 or more years and
86% had more than 2 years of software development experience. Therefore the
participants we recruited were appropriate target users for our study.

Figure G.3(b) shows the job descriptions of participants. 48% classify their
job as being a developer, 18% software engineer, 9% programmer, 7% architect,
5% consultant, web developer, and analyst programmer. The remaining 4% were

6.2. PARTICIPANTS 126

either business analysts or technical support analysts. 96% of participants were
working at the code or design level of building and maintaining software systems.
Therefore the participants we recruited were appropriate target users for our study.

Figure G.3(c) shows the programming languages that participants are currently
developing in. Some of the participants are using multiple programming lan-
guages. 24% are currently using JavaScript, 12% Java and C/C++, 11% Python,
10% PHP, and less than 10% for other languages. Of the use of these program-
ming languages Figure G.3(d) shows that of these programming languages, 58%
are dynamically typed (non object-oriented) and 42% are statically typed (object-
oriented). The example systems used in SourceVis are all Java based systems
which is a statically typed language, however, the majority of the participants
are currently using dynamically typed languages and may not be aware or have
forgotten statically typed language features. We did not ask participants to rank
their expertise on these programming languages and what languages they had
used previously. Therefore it was hard to determine the expertise of participants
using non object-oriented versus object-oriented programming languages.

Team Details

The “Colleague” column of Table 6.3 records how long each participant had
known their fellow participant. As many of our developers had worked with their
colleague on different projects, it was hard to determine exactly the number of
months or years they had worked with each other. We asked them to give a best
effort answer. Figure G.4(a) shows how long colleagues had known their fellow
participant. 41% of participants had known each other for between 2–5 years, 36%
one year or less, 18% between 6–10 years, and 5% greater than 10 years. 64% of
participants had known each other for more than a year.

The “Location” column of Table 6.3 records where the pairs are currently
developing software in their team, either co-located or distributed. Co-located was
defined as within the same team in the same location. Distributed was defined
as within the same team or project but in a different location, building, city, or
country. Participants 5 and 6 had worked on open source projects together in the
past. Of the distributed pairs, participants 15 and 16 were currently working on
the same team but with different projects for different customers, but they had
worked quite closely on the same project in the past. This was also the case for
participants 25 and 26 who had worked with each other on many different projects
and had known each other for 15 years. Participants 33 and 34 worked in different
cities within New Zealand. Participants 39 and 40 worked in different countries,
New Zealand and Australia. Figure G.4(b) shows the break down of co-located

6.2. PARTICIPANTS 127

versus distributed, of which 77% were co-located and 23% distributed.
Figure G.4(c) shows when participants have their team meetings. Participants

were only allowed to select one of the possible entries. 50% of participants meet
daily, 30% meet weekly, 7% meet hourly, and 2% meet when needed. We did not
ask how long the meetings were, or what took place in the meetings.

Team Programming and Code Review Experience

Figure G.5(a) shows how often participants reported that they work together to
program software or design an aspect of the system. 11% work together daily, 41%
weekly, 16% monthly, 7% rarely, and 25% never at all. Just over 50% of participants
work with another team mate to program software or design an aspect during the
course of a week.

Figure G.5(b) shows how often participants reported that they conduct code
reviews with other developers or perform code reviews of other developers code.
Code reviews were conducted 5% hourly, 23% daily, 43% weekly, 7% monthly,
9% on demand (no time frame was mentioned), and 14% never. 66% of code is
reviewed by developers during a week, while 14% never review code.

Figure G.5(c) shows how often participants reported that management review
code. 75% of participant’s management never review code. 5% of participant’s
management review code daily and 14% weekly.

Touch Devices

The “Mobile” column of Table 6.3 records participants’ access to mobile smart
phones that have a touch interface, whether it be for personal or work purposes.
Figure G.6(a) shows what mobile smart phones participants have access to. 25%
have a Samsung phone, 15% an Apple iPhone or HTC, 10% Sony 10%, less than
10% use other brands, and 19% have no mobile smart phone at all. Approximately
80% have access to a mobile smart phone.

The “Tablet” column of Table 6.3 records participants’ access to touch tablets.
Figure G.6(b) shows what tablets participants use, whether it be for personal or
work purposes. 69% have no tablet and 31% have a tablet. 15% of participants
have access to an Apple iPad and 16% have other tablet models including: Acer,
Amazon, Asus, Microsoft, and Samsung. More than two thirds of participants
reported they do not use touch based tablets for personal or work purposes. Hence
using a large multi-touch table is a novel computing experience for the participants.
We also asked participants if they use touch screen interfaces at work but did not
specify for what task. 6% of participants use touch screen interfaces for work
purposes.

6.3. PROCEDURE 128

Software Visualization Tools Experience

Figure G.7 shows the software visualizations tools participants have experienced.
30% have not used any tools before, 23% use some form of UML tools; 20% use
whiteboards, pens & paper, or Visio for sketching diagrams; 11% use development
tools like version control viewers for navigation; 8% use features within IDEs; 7%
listed specific software visualization tools such as CodeCity [360], Gource [59], and
Structure 1011; and 2% have used information visualization toolkits like D3 [44]
and GraphViz2. Less than 10% use specifically designed visualization tools and
toolkits.

Study Condition Combination

The “Combination” column of Table 6.3 shows what combination each participant
and pair performed. We had 22 pairs and an even split of 11 pairs each for only
two combinations of the condition type, GIG for odd numbered pairs (light grey
shaded rows in Table 6.3) and IGG for even numbered pairs (white rows in Table
6.3). Neither GII or IGI combinations were selected by the participants.

6.2.3 Human Ethics Approval

As this user study involved human participants we required human ethics ap-
proval before we could conduct the study. We obtained Human Ethics approval
from the Victoria University of Wellington Human Ethics Committee for testing
software visualization prototypes with users for the duration of the PhD research.
Appendix A lists our application and approval documents. The study was per-
formed onsite in a controlled room at Victoria University of Wellington.

6.3 Procedure

The procedure for the user study is documented in Table 6.4. Participants were
welcomed and introduced. We offered them a glass of water, had a brief discussion
about their background to make sure they were suitable for the study based on
our criterion (§6.2.1), and gave a short explanation of the study. Participants were
allowed up to 120 minutes to complete the entire study. If participants reached the
allocated time we asked them to move to the next activity. We now describe the
pre-study activities, user study setup, user tasks, post-study activities, and data
collection, coding and analysis.

1http://www.structure101.com/
2http://www.graphviz.org

6.3. PROCEDURE 129

Table 6.4: Procedure of the Professional User Study and maximum allocation time.

Activity Time (max allocation, minutes)
1. Introduction 5
2. Pre-survey Questionnaire 5
3. Example Applications 15
4. Training Data 15
5. User Tasks 60
6. Post-survey Questionnaire 10
7. Post-interview 10
Total 120

6.3.1 Pre-Study

Participants in the user study were given an information sheet that provided a
brief introduction of the project, how their participation will aid in our research,
and what was involved in the study. Participants signed a consent form which
asked their permission for us to observe and video record their interactions during
the study (see Appendix B). Participants could express their right to receive access
to future publications relating to the research, and were given a month within
which they could withdraw their data from the study.

Before the commencement of the study each participant completed a pre-survey
questionnaire (see Appendix D). The pre-survey questionnaire gathered the data
reported in Section 6.2.1. We allowed up to 10 minutes for the introduction and
pre-survey questionnaire.

Once the pre-study was completed, the participants were given an explanation
of the multi-touch table, and how the touch technology worked. To get an under-
standing, appreciation, and some practice on the multi-touch table participants
were given some warm up exercises by exploring sample multi-touch applica-
tions for up to 15 minutes (see Figure 6.2). The participants were then given a
demonstration of SourceVis by the session instructor to understand the basics of
the application. To become familiar with SourceVis participants were given an
additional 15 minutes to explore visualizing some example software systems (dif-
ferent to the ones used in the user tasks) on their own. The example systems were
of different sizes ranging from very large to small including: Weka, ArgoUML,
GanttProject, and SquirrelSQL (see Table 4.1).

6.3. PROCEDURE 130

(a) Paint. (b) Maps.

(c) Puzzle. (d) Touch Tails.

(e) Water Ripples. (f) MSA Fluids.

(g) Air Hockey. (h) Multiple Applications: Puzzle and
Air Hockey.

Figure 6.2: MT4j Example Applications [188].

6.3. PROCEDURE 131

6.3.2 User Study Setup

We now describe the room of the user study as displayed in Figure 6.3. Figure
6.3(a) shows the the multi-touch table used for the study. There were three sides of
the table that could be used, denoted as (A) bottom side, (B) left end side, and (C)
right end side. The side closest to the wall could not be used as that encased the
projector and other cables from the table. There was ample room for participants
to walk around and use the other three sides of the table.

Figure 6.3(b) shows two other tables behind the multi-touch table that had
two laptops for participants to complete the pre and post-survey questionnaires
and for information and question sheets. This is similar to an an arrangement we
would envisage for a real team where a multi-touch table is in close proximity.

(a) Multi-touch table setup: (A) bottom side, (B)
left end side, and (C) right end side.

(b) Laptops setup on secondary tables.

(c) Video camera and microphone setup.

Figure 6.3: Professional user study room setup.

6.3. PROCEDURE 132

We asked participants to use a think aloud protocol [224] during the study,
which encourages users to talk about their actions, perceptions, and expectations
regarding the application’s interface and functionality. Getting the users to talk
about their actions and thoughts should enable us to gain insight into how each
user views the computer system, identify their misconceptions and determine
which parts of the interface cause the most problems for them.

We video recorded the actions of the participants from two angles during the
user study. Figure 6.3(c) shows the two cameras and a microphone denoted as
(A) and (B). Camera (A) was mounted above the table and pointed in a down-
wards angle to record the hands of the participants interacting on the screen. The
microphone also hung from this camera mount. Camera (B) recorded how the
participants worked around the multi-touch table and was angled horizontally
face on. The output of the two video streams included a large capture of camera
(A) and then a smaller picture of camera (B). We also attached large copies of the
questions on paper on the wall beneath camera (A).

6.3.3 User Tasks

The user tasks in the study involved the participants answering questions in the
different study conditions either as a group or as individuals in parallel using
different visualizations from SourceVis. This part of the study we expected to take
up to 60 minutes. Appendix H lists the Group (§H.1) and Individual (§H.2 and
§H.3) questions participants answered. To simulate a real world example (but in a
controlled lab study) the questions are similar to some of the types of questions
software developers ask within industry such as “when, how; by whom; and why
was this code changed or inserted?” [101, 170, 333, 334, 302].

Pairs answered questions in three sections where each section was five (Group
condition) or ten questions (Individual condition) depending on the condition
they were in. We alternated the condition each pair began in (either Group or
Individual), as denoted in Table 6.3. Table 6.5 builds upon the previous table (Table
6.1) and lists the specific questions for each section.

For Section 1 pairs either started in the Group or the Individual condition. If
the pairs were in the Group condition they worked together to answer questions
labelled 1–5. If the pairs were in the Individual condition then one participant
answered Individual A questions labelled 1–5 and the other participant answered
Individual B questions labelled 1–5 at the same time.

For Second 2 a pair that started in the Group condition then answered the
Individual A and B questions 6–10 at the same time. A pair that started in the
Individual condition then answered the Group questions labelled 6–10.

6.3. PROCEDURE 133

For Section 3 pairs got a choice as to what condition they wanted to do, either
Group or Individual. If they chose the Group condition then they answered
questions 6-10 if they had previously done Group (section 1) and then Individual
(section 2) (i.e. GIG) or questions 11–15 if they had previously done Individual
(section 1) and then Group (section 2) (i.e. IGG). If they chose Individual condition
then they answered questions 11–15 if they had previously done Group (section 1)
and then Individual (section 2) (i.e. GII) or questions 6–10 if they had previously
done Individual (section 1) and then Group (section 2) (i.e. IGI).

Table 6.6 shows the visualizations in SourceVis required to answer each ques-
tion as we wanted pairs to use a selection of visualization techniques and in
different order to remove any learning bias. In Section 1 participants used visu-
alizations from the Exploration Category (§4.2). In Sections 2 and 3 participants
used visualizations from the Structure (§4.3) and Evolution (§4.4) categories. For
Section 3 all participants chose the Group condition.

As denoted in Table 6.3 the only two combinations the pairs performed were
GIG (odd pairs and light grey shaded rows) and IGG (even pairs and white rows).
In Table 6.6 the visualizations and questions used for the GIG combination are
shaded dark grey. For GIG pairs in Section 1 Group answered questions 1-5,
Section 2 Individual (A and B) 6–10, and Section 3i Group 6–10. The visualizations
and questions used for the IGG combination are shaded light grey. For IGG
participants in Section 1 answered questions Individual (A and B) 1–5, Section 2
Group 6–10, and Section 3ii Group 11–15. The Individual (A and B) questions for 3i
and 3ii are not highlighted as they were not used as neither the combinations of GII
nor IGI eventuated. Note the questions in Section 2 and Section 3i are the same. For
example if an odd pair had completed the Individual condition in Section 2 they
then had the choice of selecting Group (6–10) from Section 3i or Individual (11–15)
from Section 3ii. In summary, all pairs completed 20 questions (10 group and 10
individual – five per participant) and using different visualizations depending on
what combination they were in.

Table 6.5: Study Condition - Combinations and Questions. Pairs only performed
the GIG and IGG combinations.

Section GIG (odd pair) GII (odd pair) IGG (even pair) IGI (even pair)
1 Group, q 1–5 Group, q 1–5 Individual, q 1–5 Individual, q 1–5
2 Individual, q 6–10 Individual, q 6–10 Group, q 6–10 Group, q 6–10
3 (choice) Group, q 6–10 Individual, q 11–15 Group, q 11–15 Individual, q 6–10

6.3. PROCEDURE 134

Table 6.6: User Tasks - Visualizations. GIG combination questions and visualiza-
tions are shaded dark grey and IGG shaded light grey. Questions and visualiza-
tions in white (e.g. questions in 3i and 3ii) were not used.

Section Question Group Individual A Individual B

1

1 System Explorer System Explorer Metrics Explorer
2 Metrics Explorer Vocabulary Metrics Explorer
3 Metrics Explorer Vocabulary Toxicity Chart
4 Vocabulary Metrics Explorer Toxicity Chart
5 Toxicity Chart Toxicity Chart Vocabulary

2

6 System Hotspots View System Hotspots View System Dependency
7 Class Blueprint Class Blueprint Class Dependency
8 Class Dependency System Dependency System Evolution
9 System Evolution System Evolution System Package Evolution
10 System Class Evolution System Package Evolution System Class Evolution

3i

6 System Hotspots View System Hotspots View System Dependency
7 Class Blueprint Class Blueprint Class Dependency
8 Class Dependency System Dependency System Evolution
9 System Evolution System Evolution System Package Evolution
10 System Class Evolution System Package Evolution System Class Evolution

3ii

11 System Dependency System Dependency System Hotspots View
12 Class Dependency Class Dependency Class Blueprint
13 Class Evolution System Evolution System Dependency
14 System Package Evolution System Package Evolution System Evolution
15 System Package Evolution System Class Evolution System Package Evolution

6.3.4 Post Study

On completion of the user study, each participant completed a separate post-
survey questionnaire on one of the computers behind the multi-touch table (see
Appendix D). We asked the participants’ perceptions are on the effectiveness of the
visualization techniques, the strengths and weaknesses of each of the techniques,
what could be improved for the techniques and multi-touch table, and how the
multi-touch table helped with team collaboration. We left SourceVis running so
that participants could remind themselves and re-examine the visualizations in
order to complete the questionnaire.

Once participants completed the questionnaire we conducted an open ended
interview with some questions relating to how the participants interacted during
the user tasks. It was also an opportunity for participants to provide any other
feedback we had not collected during the study. We continued video recording
right until the end of the interview. We allowed up to 20 minutes to complete this
part of the study, which was the final activity in the study.

6.3. PROCEDURE 135

6.3.5 Data Collection, Coding, and Analysis

We performed no instrumentation in the SourceVis code of the participant’s touch
points, as that would have slowed the performance of the hardware. We also had
no way to differentiate between the different users touching the surface as CCV
could only tell us a touch id and location. We made notes of behaviours, coupling
styles, and arrangements of participants during the study.

We collected video for all 22 pairs. Upon completion of each user study we
generated a final video output which merged the two video streams, and saved
them to the file system. Each video was approximately 2GB in size.

We analysed each of the 22 videos and coded the actions we observed the
participants performing during the user study. The codes we used were from the
study condition types (§6.1.1), collaborative coupling styles (§6.1.2), and physical
arrangement styles (§6.1.3).

We examined three software tools to perform the analysis: NVivo3, ANVIL4,
and ELAN5. We chose ELAN as it worked on our MacBook Pro and had an open
source licence. Figure 6.4 shows the ELAN tool in action. The window shows
the video output from camera (A), with the large image being the video angled
down to capture the hands of the participants interacting. The smaller inset image
shows camera (B) which was used to capture the pairs’ coupling and arrangement
styles. The right hand part shows the individual codes represented as a tier, where
one tier matches one set of codes (e.g. coupling style). The separate codes are the
questions each participant or pair was completing, collaborative coupling style,
and physical arrangement. The bottom part shows the different codes represented
as swimming lanes, one lane for each tier. Each video took up to eight hours to
code as it required very precise analysis for each action. Each video had up to 250
codes totaling over 5000 codes across all 22 videos.

The data from survey questionnaires was collected into spreadsheets. We
generated charts and analysis from these spreadsheets for the qualitative findings.
The output files of codes from the ELAN tool were inputted into Excel to generate
charts and R[252] to perform tests for the quantitative findings.

The next chapters present our qualitative findings (§7) and quantitative findings
(§8) from this user study.

3http://www.qsrinternational.com/products nvivo.aspx
4http://www.anvil-software.org/
5http://tla.mpi.nl/tools/tla-tools/elan/

6.3. PROCEDURE 136

Figure 6.4: ELAN Video Analysis Tool. Top left window image is the video output.
Top right individual tiers for the coupling style, questions, and arrangement codes.
Bottom codes in tiers displayed in swimming lanes.

Part IV

Research Findings

137

Chapter 7

Professional User Study —
Qualitative Findings

Contents
7.1 Strengths . 139

7.1.1 Multi-touch Table . 139

7.1.2 Visualizations . 142

7.1.3 Interaction . 145

7.1.4 Data . 146

7.1.5 User Interface . 154

7.2 Weaknesses . 156

7.2.1 Multi-touch Table . 156

7.2.2 Visualizations . 159

7.2.3 Interaction . 163

7.2.4 Data . 172

7.2.5 User Interface . 173

7.3 Improvements . 176

7.3.1 Multi-touch Table . 177

7.3.2 Visualizations . 178

7.3.3 Interaction . 181

7.3.4 Data . 184

7.3.5 User Interface . 187

7.4 Team Collaboration . 195

7.4.1 Multi-touch Interaction . 195

138

7.1. STRENGTHS 139

7.4.2 Team Work . 196

7.4.3 Communication . 197

7.4.4 Different Roles . 198

7.4.5 Coordination . 198

7.4.6 Awareness . 199

7.5 Summary . 200

7.5.1 Multi-touch Table . 200

7.5.2 Strengths . 200

7.5.3 Weaknesses . 201

7.5.4 Improvements . 202

7.5.5 Team Collaboration . 203

In this chapter we present the qualitative findings of the professional user study
which was described earlier (§6). The findings are based on participants’ feedback
in the post-study questionnaire (§6.3.4), video recordings of the participants, spo-
ken aloud thoughts by the participants, and observations and notes made by us
during the study. The questionnaire asked participants to inform us about the
strengths, weaknesses, and improvements of SourceVis and the multi-touch table,
and how the multi-touch table helped with team collaboration.

7.1 Strengths

In this section we discuss the strengths of SourceVis and the multi-touch table as
identified by participants and through our observations (§6.1.5 Q1).

7.1.1 Multi-touch Table

Group Work

We wanted to find out if participants favoured group or individual work. Partici-
pants experienced working in both conditions. All participants preferred to work
as a group.

“Ability to work with team members collaboratively made a nice
change from working independently.” PID 6.

“The table seems to be much more effective and easier working to-
gether.” PID 9.

7.1. STRENGTHS 140

“It was so much easier working in a team. We both bounced ideas off
each other. Both remembered different parts of the interface. We could
also both select different parts.” PID 10.

“It was easy to work as a group.” PID 13.

Some participants also liked that the multi-touch table allowed them to work
as individuals at the same time.

“The table being so big meant that you could have like you’re own
personal zone to do things with, so when something needed to happen
on my side of the screen I did it, and when something needed to happen
on his side of the screen he did it. Which I think worked quite well.”
PID 31.

“The table allowed users to work independently in a small space. Multi-
touch allowed for me to perform tasks while the other participant was
working on a separate task. It also allowed us to work on different
aspects of the same task at other times.” PID 39.

Participants claimed that they were faster at completing the user tasks when
working as a group compared with individuals. Some participants suggested
using two machines for the individual condition.

“Collaboration on the table makes finding solutions more efficient in a
group.” PID 3.

“I found tasks were completed a lot faster when only one task was going
on. This was due to the small text, window resizes and repositions,
and the windows obscuring the initial screen where new applications
can be loaded.” PID 22.

“When working on separate questions / problems I think that two
separate PCs would have been easier.” PID 24.

“Team collaboration meant questions could be solved quicker.” PID 27.

Multi-touch

An important aspect of SourceVis was the multi-touch interaction which allowed
participants to manipulate objects with their fingers. For example participants
could touch an object and then drag it to move it around on the table. Most
participants had never used a touch screen of this size before so the novelty factor
was high, and contributed to a generally positive user experience.

7.1. STRENGTHS 141

“Being able to move items helped.” PID 5.

“Overall I really like the idea of manipulating visualizations by touch,
with multiple people. It’s useful to manipulate objects by touch” PID
17.

“You could move stuff on the table with your hand – that was cool, as
my colleague said.” PID 42.

“The multi-touch capabilities when working with a team mate wasn’t
painful.” PID 43.

Participants felt the touch interaction allowed them to find answers to the
questions within a few touches.

“The ability to visualize the size of a given class, the relationships it
maintains, its history all through a few touches is a lot of insights with
little effort involved.” PID 39.

“The interactivity of the visualizations meant I could quickly play
around and test out new visualizations. This was much faster than
using existing visualization frameworks where they had to be defined
using text files/drop down boxes/etc.” PID 27.

Multiple Users

Participants liked that the multi-touch table allowed multiple users to stand
around the table, use different sides, work together, and learn from each other.
We observed many participants showing each other how to select options, close
visualization windows at full screen, and display new visualizations through the
pie menu.

“Had a way of using different sides of the table and we just knew
where to click and what it would do.” PID 1.

“The table helps because it is large enough to have several people round
it.” PID 8.

“The size of the table is great for working with others.” PID 26.

“Good for sharing with groups, interactiveness is quite engaging.” PID
30.

Table Size

Participants liked that the size of the table allowed them to interact, collaborate
with each other, and make full use of the screen real estate.

7.1. STRENGTHS 142

“Was good to be able to have a large full screen system, and one person
read and point.” PID 1.

“Good to have a large interactive display that both people can touch
and use at the same time as opposed to smaller devices that only one
user can interact with at one time.” PID 21.

“Mostly good as a big table that we could both interact with.” PID 24.

“The large table makes it easier for multiple users to interact in things
like code reviews and investigating class architectural structure.” PID
32.

“The large table made it quite easy to collaborate over shared input.”
PID 42.

Participants liked that the size of the table allowed multiple users to share
viewing large amounts of data and to utilize the same workspace.

“The device let us view large amounts of information well. Even when
we were using different visualizations the device worked well.” PID
16.

“Because it’s a big screen it’s easy to look at data and reason about it
with more than one person which is very useful.” PID 17.

“The large screen provides a shared view of the system, which can be
collaboratively interacted with.” PID 18.

“The table was big enough for two people to share the workspace
nicely.” PID 30.

“The table was great to be able to share the space and have multiple
windows open at once.” PID 40.

7.1.2 Visualizations

Multiple Visualizations

SourceVis supports 13 types of visualizations. Participants liked that there were
many types of visualizations, and that multiple visualizations could be opened
simultaneously to look at different parts of a system at the same time.

“Being able to open several visualizations at once was helpful.” PID 21.

The visualizations supported different aspects of software systems and are
grouped according to different categories such as exploration, structure, and

7.1. STRENGTHS 143

evolution. Participants liked how the visualizations covered a range of software
development aspects.

“The visualizations are grouped into useful categories and cover most
of the common software development issues (e.g. coverage, dependen-
cies).” PID 43.

(a) System Class Evolution Visualization and highlighted class versions.

(b) Toxicity Chart Visualization.

Figure 7.1: Evolution and Chart Visualizations.

7.1. STRENGTHS 144

Evolution Visualizations

The Evolution Visualizations showed trends and patterns about how software
entities had evolved over many versions. The participants really liked how they
could see a global view of the data (e.g. System Package Evolution and System
Class Evolution) and then individual visualizations focusing on just packages
or classes (e.g. Package Evolution and Class Evolution). Participants found
highlighting a package or class in the either the System Package Evolution or
System Class Evolution visualizations by using the version option in the pie menu
helped put an entity into perspective against other entities. Figure 7.1(a) shows
the System Class Evolution Visualization with one class being highlighted over
seven versions.

“Ability to view information across versions.” PID 6.

“Showing hidden structures (e.g. class evolution between versions).”
PID 23.

“I thought the Evolution Views were the most interesting in visualizing
useful changes such as tracking classes and packages through versions.
It gives an interesting way to view the history of a project.” PID 38.

Chart Visualizations

Using charts to display information as in spreadsheet applications is a common
approach to aid understanding data. Some participants liked how the Toxicity
Chart, System Evolution, Package Evolution, and Class Evolution visualizations
used charts to display information. Figure 7.1(b) shows a Toxicity Chart with
different metrics and the toxicity score adjusted.

“The evolution ones, for instance, which generated charts, were nice.”
PID 4.

“Definite strengths are in seeing the Toxicity Chart, which I would
definitely use day to day as a regular QA check – hopefully automated
with the view sent directly to the developers.” PID 26.

“The ones with charts, were easy to see which entities were the biggest
or smallest.” PID 31.

7.1. STRENGTHS 145

7.1.3 Interaction

Navigation

Navigation across all visualizations was done through two finger gestures for
zooming, panning, and rotating (see Figure 7.2). All participants found the zoom
features helpful. Zooming allowed participants to see more detailed information
about an entity and reduce the amount of information visible at once. Figure 7.2(a)
shows a participant performing a zoom gesture to find details about a component
in the System Dependency Visualization. Figure 7.2(b) shows a participant per-
forming a pan gesture to navigate within the System Package Evolution for a large
system.

“Reasonably easy to navigate once the interface is understood. Clearer
than a wall of text and statistics.” PID 2.

“The ability to zoom in on details was also handy.” PID 4.

“Zooming in on the particular class/package/version and then select
the the thing you needed. Much easier than trying to use grep/wc -l.”
PID 10.

“Ability to zoom in helps to mitigate the masses of information which
can be thrown at you from time to time.” PID 32.

The windows which displayed visualizations could be rotated in any direction.
The System Dependency Visualization allowed users to rotate the circle in any
direction with fingers or hand gestures so that text labels could be read from any
side (see Figures 7.2(c) and 7.2(d)).

“Being able to zoom into large diagrams, or rotate them (in the case of
the dependency wheel diagram).” PID 8.

Visualization Switching

Participants often needed to switch between visualizations to answer the questions
in the study. Participants liked how they could switch to another visualization by
launching a new visualization from the startup screen or through the pie menu
(see Figure 7.3).

“Having a pie menu with links to dependency/evolution visualizations
for a selected object.” PID 8.

“I really like the pie chart graphic menu for drilling down.” PID 26.

“The ability to open visualizations on the data you are viewing (e.g.
opening the dependency visualization for a class).” PID 28.

7.1. STRENGTHS 146

(a) Zooming gesture with two fingers. (b) Panning gesture with two fingers.

(c) Rotating gesture with hand at full screen. (d) Rotating gesture with hand in separate win-
dow.

Figure 7.2: Navigation Gestures.

The pie menu was not fixed to any part of the display. Participants could
display the pie menu after tapping and holding on a package or class entity, or on
a chart. Many participants found the pie menu easy to use.

“Easy switching between views by the popup menu to bring up more
detail.” PID 13.

“The pop up pie menu was very effective and intuitive.” PID 24.

7.1.4 Data

Data Overview

Each visualization begins by displaying an overview of the data. Participants
liked how they could get a quick understanding of a system. The visualizations
helped them to highlight points in a system that were worth exploring further.

“Good selection of system overviews.” PID 5.

“I could quickly tell by the pictures how a class depended on some-
thing.” PID 7.

7.1. STRENGTHS 147

(a) New System Explorer visualization being launched from the startup screen.

(b) New Class Blueprint visualization being launched from the pie menu.

Figure 7.3: Visualization Switching.

“Being able to have large scalable visualizations is quite a relaxed way
to understand a lot of information quickly.” PID 12.

“Easy to read, quick assessment. Highlights areas that need a closer
look.” PID 15.

“Useful for getting a global view and then focussing on specific aspects.”
PID 18.

“See things at a glance once you get used to the software.” PID 20.

“It was an incredible overview and a quick way to get down to the
ground on a project.” PID 29.

Some participants found that the overviews visualizations of information
about a software system may be easier to grasp than having to trawl through
many source code files to find what one is looking for.

“Can get an overview of the code and where the weaknesses are in a
system much quicker than looking at the code directly.” PID 35.

7.1. STRENGTHS 148

“The visualizations display huge code bases, that can not practicably be
viewed without a great deal of time and effort in existing tools.” PID
44.

Details on Demand

Participants liked that the visualizations could provide details about entities on
demand. For example the Metrics Explorer shows all the packages from a system
and a user can select a package to view all the classes contained within the package.
Entity properties such as metric details about individual classes and package can
be displayed (see Figure 7.4(a)).

“Being able to drill down into the details of everything viewed in a
sensible fashion meant that with minimal instruction the user can work
out what to do to show the information wanted.” PID 11.

“The ability to drill down to other levels of detail.” PID 13.

“You can pick specific objects within a larger visualizations, and learn
various details. Most answers were discoverable in this way.” PID 18.

“Good to be able to drill down to the relevant level of detail.” PID 24.

“Drilling down through packages to classes worked well.” PID 25.

“The fact that almost everything was touchable and gave some context
options for drilling in further, which is what you want when you’re
trying to identify specific things to refactor.” PID 32.

“The ability to deep-dive into selected items proved helpful when in-
vestigating particular packages and classes.” PID 39.

All of the visualizations allowed participants to show “Details on Demand.”
New visualizations could be displayed from existing visualizations that gave
specific information about entities (see Figure 7.4(b)).

“Many of the visualizations allowed you to open up additional contex-
tual layers based on selected classes.” PID 27.

Data Manipulation

Participants liked the data manipulation features for highlighting entities, sorting
entities, filtering by class type, filtering by number of displayed entities using
a slider, and searching for entities via a keyboard. Being able to move entities
around on the screen, in particular packages and class entities, was also welcome.

7.1. STRENGTHS 149

(a) Displaying class properties from the System Hotspots View.

(b) Displaying a Class Blueprint from the System Hotspots View.

Figure 7.4: Details on Demand.

Highlighting in the Evolution Visualizations allowed users to easily trace
packages and classes across different versions. Figure 7.5(a) shows the System
Class Evolution Visualization where classes have been sorted and the largest class
is highlighted and shows what other versions the class is located in.

“Easy to find and highlight the information that was being sought.”
PID 21.

“Highlighting and filtering were the most help when answering.” PID
22.

There were options for sorting entities alphabetically, and in ascending or
descending order (by different metrics) which participants liked. Figure 7.5(b)
shows the System Package Evolution Visualization where packages have been
sorted in descending order. The packages on the left of the image are the largest
packages and one package has been selected.

“I liked the sorting.” PID 13.

“Sorting and filtering.” PID 23.

7.1. STRENGTHS 150

(a) Highlighting versions of classes in System
Class Evolution Visualization.

(b) Sorting packages in descending order in Sys-
tem Package Evolution Visualization).

(c) Filtering classes by the slider in Vocabulary
Visualization).

(d) Filtering classes by class type in Metrics Ex-
plorer Visualization.

Figure 7.5: Data Manipulation features, highlighting, sorting, and filtering.

“Showing the sizes of things visually, and sorting them relative to one
another.” PID 33.

Participants particularly liked the filtering options as it allowed them to see
only the entities they were most interested in. Figure 7.5(c) shows the Vocabulary
Visualization where small classes have been filtered out by the slider. Figure 7.5(d)
shows the Metrics Explorer where interfaces (red) and abstract (blue) classes have
been filtered out, leaving only concrete classes on display.

“You can remove details from the imagery using filters. Useful when
questions are about specific kinds of things (e.g. concrete classes v.
interfaces) and for de-cluttering the image to make it more understand-
able.” PID 18.

“Liked the ability to filter to narrow down the results.” PID 24

“Filters and sliders were good for drilling down.” PID 25.

7.1. STRENGTHS 151

“I liked the vocabulary one the best - it was the easiest to see quickly
which were the classes I was looking for and filter out others.” PID 31.

The searching options allowed users to find entities based on name. Entities
that did not match a search query were hidden.

“The visualizations where you can search were good.” PID 31.

Participants liked to manipulate data by being able select entities by touch and
then drag them around the canvas of the visualizations.

“Being able to adapt the layout of items in a visualization to my needs.”
PID 6.

“The drag and move options are quite handy.” PID 30.

“Moving and clustering of stuff.” PID 41.

Many of the objects in a visualization could change size with gestures for
scaling, including visualization windows. Resizing objects helped show more in-
formation within the visualization. For example, in the chart based visualizations,
the charts could be scaled with a zoom gesture which would update the size of the
chart (see Figure 7.1(b)). Increasing the size of the chart can also make the labels
and legend more readable.

“Resizable imagery.” PID 18.

The data manipulation features and metrics data were useful for participants
to be able to answer the questions.

“The summaries of the current displayed information (e.g. count,
current filter levels) made answering some of the questions much
easier, no focus was taken away from the task to keep track of other
information (e.g. a count), the info needed was displayed once the
correct filters were set.” PID 11.

“The visualizations were very helpful in answering the questions and
I can see how they could be built into regular quality meetings (re-
views/inspections). I have had little experience of using such metrics
in real developments as I think developers tend to work on hunches
(for good or bad).” PID 26

7.1. STRENGTHS 152

Data Switching

Participants liked how the visualizations could show different versions of a system
and they could change the data directly within the visualization. To switch be-
tween one version and another we created a system version menu for the system
and exploration visualizations. The Evolution Visualizations showed either all or
only the major versions of a system. Selecting a system version name in the menu
updates the data in the visualization (see Figure 7.6).

“Helpful links between different systems and the context switch to
view different data. This made it easy to navigate to the object you
were looking for, then link to another explorer system to get the infor-
mation/metrics needed.” PID 1.

(a) Vocabulary Visualization.

(b) System Dependency Visualization.

Figure 7.6: Data switching to a different version using the system version drop
down menu in dark blue.

7.1. STRENGTHS 153

Data Outliers and Trends

Participants found that the visualizations provided a good way to identify outliers
such as large or small entities, problematic entities that could have potential design
issues, entities that have no dependencies and no references, and entities that offer
refactoring opportunities. This was particularly the case for visualizations that
employed Polymetric View encodings such as the System Hotspots View, System
Package Evolution, Package Evolution, System Class Evolution, Class Evolution,
and Class Blueprint.

“Instead of just numbers on the screen, the visualizations assist in
identifying outliers and patterns more easily.” PID 3.

“Showed oddities such as interfaces and large classes stood out.” PID
23.

“Getting an overview of large code bases, highlighting outliers and
instances with potential OO design issues.” PID 34.

“Quick access to key stats which help identify god classes and dead
classes.” PID 36.

“Good to find weak points in the software.” PID 43.

Participants found that the Vocabulary, Toxicity Chart, Structure, and Evolution
Visualizations allowed them to identify information that is generally not easily
obtainable in current IDEs.

“Ability to see information such as hotspots that aren’t traditionally
available in development environments.” PID 6.

“Visual approach suggests things to look at that otherwise might go
unnoticed in IDEs. Called out some interesting features of the code
base.” PID 37.

Participants found the Evolution Visualizations were good at showing data
trends over time such as systems that have increased or decreased in size over
time.

“I thought the Evolution Visualizations were best at showing overall
trends.” PID 4.

“Visualization is generally useful to find points of high complexity. The
Evolution Visualization helps recognizing trends of code deteriorating,
before it causes headache.” PID 14.

“Being able to track the life-cycle of a given class/package in the Evolu-
tion Visualizations is really powerful.” PID 39.

7.1. STRENGTHS 154

7.1.5 User Interface

Intuitive and Engaging User Interface

Most participants found SourceVis intuitive and easy to learn.

“The interface was very quick to pick up.” PID 10.

“Fairly intuitive use after minimal training.” PID 21.

Participants found the interface clean, simple to use, and information was
easily accessible.

“Information is easy to access, there are no deep levels of dialogues or
windows (relatively shallow)”. PID 19.

“Interface is simple, not cluttered.” PID 39.

“Good use of graphics, it is easy to read information when it’s in a
graphic format.” PID 43.

The user interface was novel for participants and we hoped that it would be
engaging for users to explore a system. Participants found the concept of exploring
a software system using a multi-touch interface with multiple users engaging.

“Engaging interface (i.e. move things round with hands and explore
with minimal guidance) may be harder to use for precise expert tasks
such as investigating source code.” PID 8.

“Awesome interactive discussion. Love the idea. Great way to explore
a system.” PID 15.

“There’s something very good about the physical interaction that helps
with invigorating meetings (we really like to use post it notes and
whiteboard markers for planning).” PID 24.

“Multi-touch table allowed for multiple simultaneous exploration and
encouraged the users to have some fun with their individual explo-
rations and interactions.” PID 27.

“Two people exploring the data in different ways simultaneously and
conversing about it is great. Having multiple windows that you can
pull to the side makes this easier.” PID 36.

Visual Encoding Representation

We used a few different representations for encoding data including: lists, graphs,
charts, and Polymetric Views [185]. Many participants liked the Polymetric View

7.1. STRENGTHS 155

encoding for displaying packages and classes to get a perspective of how big or
small an entity was.

“I could quickly tell by the pictures how big something was.” PID 7.

“Size based graphical representation.” PID 13.

“Good visual representation of code structure.” PID 16.

“Being able to see graphical links between classes or packages, and
see a physical difference between items of differing size or complexity
was really powerful. Being able to see at a glance how big or complex
something was rather than having to look at the numbers made it much
easier to find an answer.” PID 40.

Participants liked how we used graph like views for the dependency and Class
Blueprint visualizations.

“Graphical/area views were good. Lines connecting components be-
tween windows were good.” PID 5.

“Various graphs and metrics are definitely helpful.” PID 7.

“Graphs are still very useful. I would have assumed that they were too
dated in comparison to the other styles of visualizations.” PID 12.

UI Consistency

Many aspects of the visualizations were designed in a consistent manner including
representation of elements (e.g. menus and encodings), manipulation of elements
(e.g. drag, tap, and hold), and navigation interaction gestures (e.g. two finger
zoom in and out, and pan). We observed that participants quickly understood the
interface style after a short while.

“Good application metaphors to achieve a consistent understanding
across all applications (e.g. size and length of boxes). PID 19.

“Interface was nice and consistent once I started to get the hang of it.”
PID 24.

“Common look and feel. Once we got the hang of it, the questions were
quicker to answer.” PID 25.

“Long press selections and selection clicks are consistent and helped
quickly understand the system.” PID 36.

7.2. WEAKNESSES 156

7.2 Weaknesses

In this section we discuss the weaknesses of SourceVis and the multi-touch table
as identified by participants and through our observations (§6.1.5 Q2).

7.2.1 Multi-touch Table

Individual Work

We observed that most participants struggled with the individual condition. This
was primarily due to issues with the graphics not being easily readable in separate
windows and the screen resolution being too low hence limiting the number of
items that could be displayed at once. Some of the pairs completed the individual
tasks sequentially as opposed to completing them at the same time. We observed
pairs 3,17,19 and 20 completing the individual condition as a group.

“Working as an individual didn’t really offer any huge advantages.”
PID 9.

“It was tricky for two people to work independently, especially with
the full-screen button! Perhaps have a half screen button.” PID 13.

“When multiple people were working on the same table on different
tasks, screen real-estate became dear, making some the application
harder to use.” PID 21.

“Not so effective for individuals answering different questions!” PID
37.

“Initially I thought it would be possible to achieve a lot of work with two
primary windows open (i.e. completing separate tasks concurrently).
Although it was possible to have two separate visualizations open at
once, the text scaling meant that the controls were small and blurry
and so it was harder to complete tasks than when we were sharing
the screen together. This meant that instead of completing our tasks in
order, we needed to work out which visualizations we both needed,
open them in full screen, and complete our tasks together, rather than
work completely independently. This wasn’t a problem in this task,
but if we had two completely independent tasks to perform it would
have been a problem.” PID 40.

7.2. WEAKNESSES 157

Touch Experience

The touch experience was generally quite acceptable for most participants, how-
ever, there were issues with the responsiveness of elements and objects behaving
differently in the visualizations which decreased the usability of the interface.

“Usability issues with responsiveness and smoothness of the graphics.”
PID 17.

“UI elements were sometime unresponsive. This was the most frustrat-
ing thing for me.” PID 18.

“Touch table was sometimes hard to operate.” PID 25.

“Often the visualization was hindered by the usability of the touch
experience.” PID 28.

The navigation gestures can work slightly different depending on which fingers
participants were using, how much of a finger was touching the surface. Some
participants felt the gestures were inconsistent across the visualizations.

“Inconsistent touch experience, sometimes one finger to move, some-
times two, sometimes two fingers dragged out a selection box.” PID
5.

Occasionally when participants decreased a window in size by manipulating
the borders, the window would disappear momentarily until the they then in-
creased the size of the window. If they released the touch points the window
would sometimes completely disappear. When two people were navigating on
the canvas such as zooming, or panning the application would get confused as to
what gesture action to perform.

“Too many fingers at once on the screen can cause the application to
behave weird with the windows.” PID 3.

Touch Precision and Accuracy

As described earlier (§3) we built our own multi-touch table using open source
techniques. We calibrated the table prior to each user study. As the table used
a RearDI setup, natural lighting and the size of the finger touching the surface
sometimes affected the precision and accuracy of the touch points.

“Fine touch control seems to be a bit of a problem.” PID 20.

“Accuracy of the touch points. Sometimes I had to press more than
three times for the same point to be recognized.” PID 43.

7.2. WEAKNESSES 158

As many of our participants had experience with mobile phone and tablet
touch screens that use capacitive technology (§6.2.2), they were accustomed to
better touch precision and accuracy.

“Some of the touch events were a little too easily triggered, although
that might just be because I am used to capacitive touch screens that
are far less sensitive.” PID 39.

Screen Resolution

Participants found the resolution of the display screen at 1280x800 pixels was too
small. This size is smaller than most contemporary computer desktop displays.
We would have preferred to use a greater resolution but we were limited in the
capabilities of the projector chosen for this project.

“Resolution of most images would be best on a bigger screen.” PID 19.

“For some visualizations the screen is still too small and too low resolu-
tion.” PID 33.

“Resolution not great.” PID 35.

This low resolution made it hard for some participants to read text that was
being displayed.

“Pixel density was way too low to read text at anything less than full
screen.” PID 5.

“Too much data coupled with low resolution meant that the text was
unreadable in most cases.” PID 6.

The low resolution size also affected the usability for some tasks when interact-
ing with visualizations.

“Even with higher pixel density some of the items were too small to
reasonably select.” PID 5

“Resolution and power of the device probably hindered some usability.”
PID 7.

Hardware Performance

Given SourceVis was a prototype application and the multi-touch table was custom
made, we expected there to be system performance issues for both the software and
hardware. Quite often the participants experienced the Toxicity Chart visualization
crashing as the visualization re-rendered the data every time there was a slider

7.2. WEAKNESSES 159

modification. Occasionally many touches by participants on the table at once
caused issues which threw some run-time exceptions for the MT4j TUIO Java
client and SourceVis crashed.

“A little bit crashy.” PID 9.

The system was sometimes slow when CCV had to track many fingers of the
participants at the same time, and there was lots of data that required rendering in
the visualizations.

“Performance was problematic, lots of waiting for some visualizations.”
PID 5.

“When more than one person was using the table, sometimes was slow
to respond.” PID 43.

Prolonged Use

We anticipated that participants would use a touch table of this nature for up to 90
minutes as part of the study (including pre study exploration and user tasks) and
not for long periods of time in a work place environment. Participants interacted
with the table by standing up. We did not provide seating for the participants
to use when interacting with the table. Subsequently some participants felt un-
comfortable having to stand and lean over the table to use it. Quite often we
saw participants leaning on the table with two hands during the user study (see
Figures 7.7(a) and 7.7(b)), or leaning on the table with one hand while interacting
with the other hand (see Figures 7.7(c) and 7.7(d)).

“After 90 minutes of use, my fingers are starting to feel a little bit of
tap-numbness, and my back is a little sore from craning over the table.”
PID 4.

“Found it a bit uncomfortable leaning over the table for a long period
without something to lean on.” PID 24.

7.2.2 Visualizations

Visualization Context

Some participants felt the number of visualizations was quite overwhelming. For
example some participants forgot what visualization they were viewing, as some
of the visualizations were very similar (e.g. System Explorer / Metrics Explorer,
and Package Evolution / Class Evolution). We did not add any labels to the

7.2. WEAKNESSES 160

(a) Participant leaning on table and looking at
the questions on the wall.

(b) Participant leaning on table and looking at
a visualization.

(c) Participant leaning on table while interact-
ing with a visualization.

(d) Both participants leaning on table while one
is interacting with a visualization.

Figure 7.7: Participants leaning on the table during the user study.

windows nor to the visualizations once they were displayed at full screen. Adding
labels for each visualization would have put a visualization into context.

“Windows titles were not displayed so you didn’t know which window
you were using.” PID 7.

“Lack of titles on windows.” PID 8.

“Found it a bit confusing working out what level we were at (packages
/ classes) without referring back to the title of the window.” PID 24.

With visualizations that utilized large amounts of screen space participants
were confused as to where they were in a visualization and found it difficult to
keep track of what they had seen previously.

“Getting lost in the complexity of the tool and the vocabulary visual-
ization (but experience would help).” PID 13

“I sometimes got confused about where we were in the screens.” PID
16.

“Very complex, hard to keep track of functionality.” PID 23.

7.2. WEAKNESSES 161

System Dependency Visualization

We observed that most participants struggled with the System Dependency Visual-
ization because of the amount of information on display and lack of some features
(see Figure 7.8(a)). It was one visualization that did not scale well for very large
systems. For large systems it was hard to read the text of class names and there
were no search features.

“System dependency visualization was too hard to read to be usable.”
PID 23.

“In the case of the dependency visualization, with a large dataset it
wasn’t possible to see the actual labels of the packages or classes unless
you zoomed in to only see a fraction of the data.” PID 40.

The direction of the dependencies among classes was difficult to understand
and could only be determined when selecting a class. There were no arrows point-
ing the direction of the dependency. Figure 7.8(b) shows a participant selecting a
class and the subsequent dependency edges are highlighted in green.

“Dependencies direction wasn’t obvious when filtered down, had to
click the class to know what direction it was going.” PID 22.

“The class and system dependancy visualizations contained lots of lines
which were confusing and hard to tell quite what was going on.” PID
31.

When entities were filtered out by class type their dependencies were not
filtered out and the outer circle did not shrink in size (see Figure 7.8(c)). Both
of these issues contributed to participants having usability problems with this
visualization.

“Not enough filtering for example the system dependancy does not
get much simpler to see as you filter down using the scale because the
names remain in the wheel, making it no easier to read.” PID 12.

One participant questioned the layout as it why it was circular. Part of the
reason for the visualization being circular is to promote reading the names of
classes from different sides of the table by rotating the circle in the middle with
gestures (see Figures 7.2(c) and 7.2(d)).

“I still found the dependency visualization difficult to understand.
Why was it circular?” PID 18.

7.2. WEAKNESSES 162

(a) Dependency overload.

(b) Highlighting dependency edges.

(c) Filtering dependencies by class type.

Figure 7.8: System Dependency Visualization.

7.2. WEAKNESSES 163

7.2.3 Interaction

Navigation

Many participants found that the navigation interaction gestures (panning and
zooming) were not as effective or consistent as what they expected. We observed
the participants struggling to perform navigation gestures on the canvas of visual-
izations at the same time when in the group condition.

“Hard to zoom effectively, controls jumped around too much.” PID 5.

“Interaction in terms of zooming and moving components was incon-
sistent across visualizations.” PID 6.

“Scale when zooming was sometimes an issue.” PID 40.

Lots of manual zooming was required in visualizations for large systems in
particular the more space intensive such as the Package and Class Evolution
Visualizations.

“Often the visualizations require a lot of manual resizing.” PID 33.

Some participants would have liked to have seen traditional desktop scroll
bars for navigation integrated with the visualizations.

“ No traditional scroll features in the visualizations.” PID 5.

Zoom Level

When participants zoomed in or out on the canvas and opened items such as a pie
menu, keyboard, or properties about an entity, there were problems with the size
of these items which affected their usability. Figure 7.9(a) shows a pie menu from
the class dependency visualization where the participant has zoomed out quite
considerably and the pie menu is too large and appears half off the screen.

“A bit of difficulty zooming things correctly – sometimes the full area
would be zoomed out and menus would hence be tiny.” PID 8.

“The way the zoom feature wasn’t consistent and is a bit confusing. To
enlarge the text on the left required making the entire screen bigger,
but the graphs could be enlarged within the window.” PID 30.

“Dynamic scaling as you go deeper into packages/classes did mean
that some of the keyboards and charts opened were quite small and
had to zoomed, which could be fiddly sometimes.” PID 39.

“The pop-up pie chart menu was dependent on the size of the item in
question, so selecting a very large display that was zoomed out to see

7.2. WEAKNESSES 164

the whole image meant that the pie control that spawned was too small
to see the labels.” PID 40.

This zoom issue was quite problematic when participants were working in
the individual condition as there was less screen real estate for each participant
to display windows and visualizations. Figure 7.9(b) shows a small keyboard
being displayed in a window and a participant needing to increase the size of the
keyboard in order to use it properly.

“Zoom levels were an issue, mainly when doing individual.” PID 29.

(a) A pie menu being much larger than the visualization and displayed half off the screen.

(b) A keyboard needs to be increased in size within a window.

Figure 7.9: Zoom level problems with menus and keyboard displaying inconsis-
tently in size.

7.2. WEAKNESSES 165

Manipulating Windows

We observed many participants having difficultly manipulating visualization
windows. Increasing the size of the window required dragging two borders of the
window at the same time (see Figure 7.10(a)). Moving a window around the screen
can be performed by dragging the border of a window with one finger. In the
individual condition we observed some participants dragging windows around
the screen by using two fingers on different borders. For example they would
stand at the bottom of the table open a visualization from the start screen and then
walk with the window while dragging it to the side of the table they wanted to
stand on (see Figures 7.10(b) and 7.10(c)). This appeared very cumbersome, and
these participants were not aware you could drag with just one finger.

“Mostly HCI related. Poor screen metaphors and stereotypes for man-
aging windows and moving things around.” PID 19.

We observed problems for participants in the individual condition when win-
dows overlapped each other. If two visualizations were displayed and then one
visualization was switched to full screen this prevented the other visualization
from being viewed.

“Inability to select that two windows were being used and so they
should be immediately given half the screen real estate each to prevent
overlapping.” PID 6.

“There was some overlapping of windows which slowed us down.”
PID 16.

“The windows weren’t adapting to the amount of screen space.” PID
29.

When new visualizations were started they were displayed in the middle of
the screen obscuring any visualizations already on display. Figure 7.11(a) shows
one visualization being displayed by one participant standing on the right end
side of the table and then another visualization is started by the other partici-
pant obscuring the view of the existing visualization. We observed participants
moving windows which obscured another participants visualization window.
Figure 7.11(b) shows one participant rotating a window which overlaps another
participant’s window.

“New windows would pop up in the horizontal middle, obscuring
anything that another group member was working on, plus I could
completely obscure other people’s windows.” PID 30.

7.2. WEAKNESSES 166

(a) Increasing the size of a window by dragging the borders.

(b) Moving a window to the side of the table by dragging two borders.

(c) Successfully moving a window to the side of the table.

Figure 7.10: Manipulating windows on the screen.

7.2. WEAKNESSES 167

(a) A new visualization window displayed upon existing window.

(b) Rotating a window over another window.

Figure 7.11: Visualization windows obscuring each other.

We observed participants continuing working while visualization windows
partially overlapped each other (see Figure 7.12(a)). Participants found managing
windows within windows difficult, especially if the first window was not dis-
played at full screen. Figure 7.12(b) show two participants displaying windows
within windows, which has decreased the amount of screen real estate as there
are now four window borders being displayed. Some participants also found it
challenging to move between windows.

“Sub-windowing was somewhat confusing.” PID 13.

“Need to make it easier to move between windows.” PID 19.

7.2. WEAKNESSES 168

(a) Windows overlapping but participants continually working.

(b) Two participants managing windows within windows.

Figure 7.12: Participants working within visualization windows.

All participants had difficulty closing a visualization at full screen when using
the close option at the bottom right of the screen (see Figure 7.13(a)). The difficulty
was due to participants having to put a larger amount of their fingers on the
corners of the table in order for CCV to detect their fingers. It was straight forward
to close a visualization window and a property dialog box by using the close
buttons in the top right of the borders (see Figures 7.13(b) and 7.13(c)).

“Close window button is hidden.” PID 7.

“The bottom right-hand button for closing.” PID 30.

“Closing visualizations at full screen was a pain.” PID 42.

7.2. WEAKNESSES 169

(a) A participant having difficultly closing a visualization once displayed at full screen.

(b) A participant closing a visualization window with the close button located on the top right.

(c) A participant closing a package properties dialog box with the close button located on the top
right.

Figure 7.13: Participants closing visualization windows and entity properties
dialog boxes.

7.2. WEAKNESSES 170

Entering Text and Data

The participants did not like entering text using the virtual keyboard. Entering text
was easiest when the visualization was at full screen as the keys on the keyboard
were bigger, making them easier to select (see Figure 7.14(a)). On the other hand
when entering text inside a window the text was hard to read and the keyboard
was constrained due to the size of the window (see Figure 7.14(b)).

“On-screen keyboards are not nice to use.” PID 2.

The layout of the keys on the keyboard used a QWERTY style. Given it was a
virtual keyboard it would be possible to modify the layout of the keyboard with
other layouts.

“I normally type with the Dvorak keyboard layout, and the on-screen
keyboard was Qwerty. I’m pretty used to that in all avenues of life,
though.” PID 4.

We tried to limit the number of ways to enter data into SourceVis, hence we
used sliders and filters. Occasionally participants had usability issues with a few of
these widgets. For example, we observed some participants on one question (§H.3
Q3) trying numerous times to modify the value of the slider to be a precise number
in the Toxicity Chart. Part of the issue is that each time the slider was adjusted
the chart would update and redraw itself, causing frustration for the participant.
Some participants would have liked to be able to enter precise numbers with text
input.

“It was sometimes difficult to enter input as precisely as I would have
liked. For instance, some controls were a slider, when I would have
preferred to enter a precise number.” PID 4.

User Interference

Although the multi-touch table allowed multiple users to interact at the same time
this did not prevent user interference especially during the group condition. Occa-
sionally we observed a participant take a visualization from another user, reach
across another user, or dominate when interacting with the table and annoying
the other user.

“Easy to interfere with each other.” PID 2.

“Multiple users interfere with each other. Trying to do multiple things
at once they just interfered with each other. Worked ok as long as users
were working as a team to do one thing.” PID 20.

7.2. WEAKNESSES 171

(a) Entering text at full screen.

(b) Entering text inside a window.

Figure 7.14: Entering text using the virtual keyboard.

7.2. WEAKNESSES 172

“If both users were trying to do something, sometimes someone’s inter-
actions would get in the way of the others.” PID 27.

We observed participants working as individuals and having separate win-
dows open, which sometimes led to windows overlapping each other, and caused
user interference and frustration (see Figure 7.11(a)).

“If the tool is used with two people on different tasks, they often
interfere with each other as the screen can’t define separate workspaces
that won’t overlap when maximizing a window.” PID 14.

“People’s windows would occasionally overlap each other.” PID 30.

Sometimes when participants were working at the same time on different
visualizations, one participant would want to display their visualization at full
screen which meant the second participant had to stop working and wait for the
first participant to complete their task.

“Expanding the visualization to see better resulted in getting in the
other team members way.” PID 35.

When working as individuals, when participant had a window opened, it was
hard for the other to launch a new visualization if the visualization icon on the
start screen was beneath the opened window.

“When working individually it can be hard to launch a visualization
from the start screen when it is obscured by a window which is being
used by someone else.” PID 12.

7.2.4 Data

Information Overload

The visualizations provided lots of information for the participants. Sometimes
there was too much information which could be overwhelming, cause confusion,
clutter the screen, and make it hard to understand.

“Overwhelming number of metrics for me, but that is likely because I
am not too familiar with the metrics.” PID 7.

“Dealing with large number of items (e.g. dependencies circle with a
huge number of items).” PID 13.

“Some screens were complex to understand. Lots of information. Just
need to play with it get a better feel.” PID 15.

“Clutter, it is to easy to be presented with too much information to
process.” PID 28.

7.2. WEAKNESSES 173

Some participants felt that there was too much information that was displayed
initially. This was especially the case for the System Hotspots View, System De-
pendency, System Class Evolution, and System Package Evolution Visualizations.

“Too much initial information can cause confusion.” PID 3.

“The default views for some of the visualizations can be a bit over-
whelming if for instance looking at a large package / class.” PID 32.

Finding Information

Many of the visualizations required filtering to display the answer for the ques-
tions. Some questions required counting information or visually searching for
colour coded items. Some participants did not like finding information by count-
ing or visually searching and would have liked to have seen the answer displayed
on the screen instead.

“Sometimes the interface had me simply scanning for bolded or color-
coded items, when I would have preferred to be able to filter or sort to
spot the items I was interested in.” PID 4.

“Found myself counting on my fingers for numbers not calculated by
the system.” PID 20.

“Sometimes it seemed we had to count boxes rather than being pre-
sented a number. Might have been my inexperience.” PID 23.

7.2.5 User Interface

Novice Users

This was the first time participants had used SourceVis before and only had
a limited time. We expected there to be a learning curve for participants to
understand how to use SourceVis.

“Some of the links were not very obvious from only using the system
briefly. I think after more use some of that would disappear as common
tasks come out of the woodwork.” PID 1.

“The learning curve of the visualization is at odds with the ease of use
of a touchscreen” PID 2.

“Still some refinement needed to make the system more intuitive.” PID
21.

“Without more familiarity I would struggle to know which tool to use
for some of the questions.” PID 37.

7.2. WEAKNESSES 174

Selecting an entity in most of the visualizations displayed some information
about the entity in a menu, which some participants were not always aware of.

“When selecting the classes on the right (e.g. system class evolution) I
didn’t release that the menus on the left were changing. I realized it
then forgot again.” PID 10.

This was a new touch UI for all participants and many had experience with
other touch UI devices (§6.2.2). Given participants’ touch UI experience they had
some pre-conceptions on how the multi-touch user interface should work with
respect to gesture navigation, menus, and selecting objects.

“Popup menus behave differently to traditional touch screen devices
where you click and hold to open the menu.” PID 6.

Remembering Visual Encoding Representation

Some participants found it hard to remember what the encodings meant. In
particular the Polymetric View encodings and types of classes (e.g. red border
= interface). Some participants would have liked to seen more legends in the
visualizations to help them remember the encoding representation.

“Widths and heights or even the type of a box – is it a class or a package?
Lack of an obvious legend for meaning of colours.” PID 8.

“Found the width (methods?) vs height (fields?) confusing.” PID 24.

“Many of the visualizations did not have a legend.” PID 27.

Menus and Search

There were problems with a few of the menus on some visualizations. For example,
the options menu had features that were off screen and could only be displayed if
other options were collapsed. Some menus could accidentally be moved making
the options in the menu unusable if moved off screen. These are programming
errors which can be easily rectified.

“The System Hotspots View menu on the left hand side runs off the
edge of the visualization, even if the options missing are not useful, I
don’t know that until I’ve read and discounted them.” PID 11.

“In some instances the visualizations put menus offscreen, making the
visualizations difficult to use.” PID 27.

7.2. WEAKNESSES 175

Most of the visualizations supported search, unfortunately we did not have
enough time to include a search feature on all visualizations but it is something
we would like to do in the future. For example we observed on one question (§H.1
Q12) all participants spending a large amount of time trying to find a class in the
System Dependency Visualization using navigation gestures.

“Search was not always available.” PID 7.

“Not all visualizations had search interfaces or the ability to search,
which made it hard to find a class sometimes (for instance on the
System Dependency visualization).” PID 4.

Some participants found that the search feature was not obvious how to start.
It required selecting the search box region to open up the keyboard to enter text.

“Some controls were not obvious at first such as searching required
selecting certain attributes, but there was not a search button (instanta-
neous results instead).” PID 7.

Reading Text

There were a number of issues with being able to read text on a screen. If text
was displayed in windows, it was hard to read small text. Figure 7.15(a) shows
a participant struggling to read text about entities with no dependencies and no
references within a System Dependency Visualization inside a window. Figure
7.15(b) shows a participant doing a zoom gesture to read a class name in the Class
Dependency Visualization also inside a window.

“Most strings were too hard to read if a visualization not at full-screen.”
PID 23.

“Some of the text was rendered too small by default.” PID 27.

When a visualization was displayed at full screen most of the text was best
read from the bottom side of the table (see Figure 6.3(a)). This sometimes made it
difficult for participants when they were standing on the side ends of the table.

“All the text is oriented to be read from one side which may make it
trickier when there many people gather round all sides.” PID 8.

7.3. IMPROVEMENTS 176

(a) Struggling to read small text within the System Dependency Visualization.

(b) Struggling to read small text within the Class Dependency Visualization.

Figure 7.15: Reading text inside windows.

7.3 Improvements

In this section we discuss the suggested improvements of SourceVis and the multi-
touch table as identified by participants, and through our observations (§6.1.5
Q3).

7.3. IMPROVEMENTS 177

7.3.1 Multi-touch Table

Touch Experience

To make a better touch experience some participants suggested profiling the user
touches to keep track of who is touching the table. We do not profile any touch
points through instrumentation as it would have slowed the application down.

“Profile the individual user touches.” PID 3.

To increase the amount of people using the table and the size of the display
some participants suggested spreading the application over multiple tables.

“Maybe spread the application over multiple tables.” PID 35.

Touch Precision and Accuracy

As most of the participants were familiar with mobile phone and tablet touch
interfaces which are mainly capacitive designed they expected a similar accuracy
with the touch table. Unfortunately the touch precision of our multi-touch table
was not as accurate as these capacitive designed interfaces. We would like to
explore SourceVis being displayed on a large commercial multi-touch capacitive
surface to see if we can get better touch precision and accuracy.

“I’d like more precise inputs.” PID 4.

“More consistent touch interactions.” PID 5.

“Could be more precise in touch detection.” PID 41.

Screen Resolution

Most participants found that the low resolution impeded their progress and
usability with SourceVis. Participants suggested increasing the resolution size,
which would allow more information to be displayed, and allow for more windows
to be displayed with less overlapping of information.

“Nicer to operate at a higher screen resolution.” PID 19.

“Application really only work nicely when we worked on the same
screen, mostly due to resolution.” PID 23.

“Too low resolution.” PID 41.

“Higher resolution would enable more simultaneous visualizations on
screen.” PID 42.

7.3. IMPROVEMENTS 178

Hardware Performance

Many participants found that the hardware performed slowly. In order to get
faster hardware performance for the touch interaction and visualization rendering
it would be worthwhile increasing the hardware specifications. The computer
we used in the multi-touch table ran both the touch detection and SourceVis.
Separating the touch detection from the client application on separate machines
may improve performance.

“Stability and performance, was quite slow at times, especially dur-
ing the individual section where control of the device sometimes did
unexpected things.” PID 1.

“Only problem was the performance of the hardware was too slow.”
PID 19.

“Sometimes it seemed a bit laggy.” PID 29.

Participants wanted a faster frame rate from the camera to increase the UI
responsiveness. The frame rate for capturing touch points was 60 FPS and the
resolution input was 640x480 input. We could use a camera with greater resolution
input and ability to capture faster FPS, which may yield better UI responsiveness.

“Improve FPS and UI responsiveness.” PID 3.

“The table would need to be more responsive and stable.” PID 12.

“A more responsive system would be a huge benefit, and slightly
smoother graphics would be good too I think.” PID 17.

7.3.2 Visualizations

Visualization Context

A number of participants forgot which visualization they were viewing as many of
the visualizations were similar in design. Adding titles, legends, and breadcrumb
navigation to the visualizations could help participants to remember what visual-
ization they were currently viewing. If a visualization had been opened previously
on a version of a system then adding some kind of marker or annotation may help
aware that they had previously seen that visualization and data before.

“Add titles and a legend. A bit more structure might help, such as
an obvious and consistent hierarchical key showing which part was
being explored and to what level such as adding in breadcrumbs (e.g.
codebase→ version→ package→ class).” PID 8.

7.3. IMPROVEMENTS 179

System Dependency Visualization

Participants struggled with the System Dependency Visualization, especially navi-
gating and searching for a class. This visualization also did not render very large
systems at all. The dependencies did not show edges direction of the dependency.
Adding arrows at one of the edges when selecting a dependency might make the
clarification of the direction of dependency clearer.

“Dependencies could show direction of dependencies, and circular
dependencies.” PID 25.

“Maybe put arrows on the ones with all the lines. That may make it
clearer which is depending on which, because I found that confusing.”
PID 31.

Toxicity Chart

The Toxicity Chart allowed metrics to be turned on or off to update the chart. The
threshold values associated for each metric were fixed and participants would
have liked to be able to change these values within the visualization.

“Ability to change thresholds on toxic chart.” PID 25.

One of the individual questions in the user tasks (§H.3 Q4) required participants
to look up different versions of a class to find out how many classes for that version
were greater than a specific toxicity score value. All participants answered this
question by using the System Version Menu except for one participant we observed
who opened up a visualization for each version of the system and then inspected
each visualization, discounting versions opened that did not meet the toxicity
score value (see Figure 7.16). One improvement would be to iterate through
the different versions rather than having to load a different version or multiple
visualizations.

Additional Visualizations

We did not provide any visualizations that displayed source code or the algorithms
that were employed. We purposely did not show any source code, as we were
focused on providing high level architectural visualizations as opposed to low
level artifacts. Displaying source code is something we would like to explore in
the future. Many participants were interested in seeing code displayed within
another visualization window, or being able to see code directly after seeing some
form of representation of a class or a method. Perhaps a tap and hold gesture to
display the source code might be a viable option.

7.3. IMPROVEMENTS 180

Figure 7.16: A participant opens multiple Toxicity Charts to answer a question.

“In real life getting to see the code would be useful.” PID 13.

“It would be good to view code directly.” PID 15.

“The ability to zoom into the code or elements could be useful.” PID 34.

“It would be nice to see the source if it can be displayed.” PID 38.

“The visualizations don’t help toward understanding how the code
works, like how the cogs and flywheels of a machine spin. Or when the
system is live which parts of the code is in use. I would like to be able
to delve straight into the code, to visually inspect an item.” PID 44.

Some participants would have liked to have seen inheritance information
displayed, however, due to time constraints we did not implement these kind of
visualizations. If we were to implement inheritance visualizations we would use a
tree view or a modification of the System Complexity View which is part of the
Polymetric Views [185].

“A tree structure for usages of entities and showing an inheritance
chart would be cool.” PID 38.

7.3. IMPROVEMENTS 181

During the post-study interview many participants suggested visualizing code
contributions by developers from version control systems [59, 229]. We would like
to explore this visualization technique in the future.

“Ability to filter and group metrics by developer would be useful -
could be used for identifying training needs.” PID 25.

“Focus on metrics as exploration tool, but more useful is usages and
changeset navigation.” PID 41.

Different Visualization Layouts and Linking

Some participants would like to have seen more graph representations of data in
the visualizations. Only the System Dependency and Class Dependency visualiza-
tions support graph views.

“More graph views that are persistent.” PID 41.

Many participants found the circular layout in the System Class Dependency
visualization not so good for large systems. We would like to experiment with
different layouts for this visualization, such as tree views and tree maps.

“A tree view for dependencies would be great.” PID 36.

The pie menu linked overview visualizations and more detailed visualizations
(see Figure 7.3(b)). Some participants would have liked more linking between
overview visualizations.

“More integration between visualizations. For example when in System
Hotspots view, hold down on a hot spot and have an option to show a
quick toxicity visualization for that item.” PID 12.

7.3.3 Interaction

Navigation

Participants had problems when they both tried to perform navigation gestures on
the canvas of visualizations at once. The navigation gestures could be improved by
controlling who can zoom or a pan at any one time. Some participants suggested
a full Zoomable User Interface (ZUI) [23, 24] might help to explore entities better.

“Some sort of Zoomable User interface like Eagle Mode1 might help to
zoom into packages, classes, methods.” PID 24.

1http://eaglemode.sourceforge.net/

7.3. IMPROVEMENTS 182

Zoom Level

When some visualizations were started the camera view was at the same zoom
level regardless of the size of the data. While other visualizations automatically
adapted the camera view like the Dependency visualizations to a zoom level
where all the data was visible but maybe unreadable (see Figure 7.15(a)). If the
camera view was not adapted with respect to the size of the data it required the
users to zoom to a level where they could view all the data. If the camera view
was adapted then some text may have not been readable hence users would have
to zoom to show the details they were interested in. Having navigation features
that allow the user to adjust the zoom level without performing sometimes time
consuming zoom gestures would offer more flexibility for users to control the
zoom level. For example using a plus and minus sign, and a slider to indicate
zoom level is common on many desktop map applications such as Google Maps
may be an alternative.

“In situations where there is lots of data, choosing a more pragmatic
visualization zoom level as a default. This means that the visualization
would be more responsive immediately, reducing user frustration.”
PID 6.

“The tools I used today need some improvements in screen organisation:
some elements appeared on screen in sizes not comfortable to use - too
large or so tiny you couldn’t control it. Some graph elements were
grouped on screen in a way that you could not see all of them within
the viewport, like a large line of squares, instead of line wrapping.”
PID 14.

Manipulating Windows

When working in the group condition we observed that once a visualization was
initially displayed in a window most participants would instantly tap the full
screen button on the border of a window to make the visualization go full screen
(see Figure 7.17). The reason for doing so is that participants could gain the best
view of the data. When opening a visualization it would be better if there was
an option to display the visualization straight away at full screen rather than an
intermediary step, or at least have another gesture such as tap and hold and select
what size to display the visualization at.

“Having to constantly maximize visualizations took time.” PID 6.

“Always wanted to maximize windows when working as a team, would
be nice if this happened automatically.” PID 24.

7.3. IMPROVEMENTS 183

Figure 7.17: A participant immediately goes to display a new visualization at full
screen by selecting the full screen button on the border of the window.

When a visualization was being displayed in a window the way to adjust
the size of the window is to use two finger gestures on the border to increase
or decrease the size of the window. Some participants found it hard to resize
and position windows. We observed some participants moving windows with
two hands instead of one finger drag on the window borders which was very
cumbersome (see Figure 7.10). Adding more options to resize and move a window
would give more flexibility to manipulate windows.

“Maybe a more precise ability to position windows would be useful.”
PID 4.

“Resizing windows is difficult at times.” PID 15.

“Management of views.” PID 41.

When working as individuals, participants suggested it would be useful to
have options to snap the windows to certain areas of the screen such as taking
up half the screen and oriented to specific sides of the table. Alternatively the
windows could be prevented from overlapping one another by providing collision
detection techniques so that when one window is about to overlap another it
would stop and bounce off each other. Nonetheless we need better support for the
layout of multiple windows on the table at once. Other researchers have explored
personal workspaces on tabletops [291].

7.3. IMPROVEMENTS 184

“Snapping windows to particular sizes (e.g. half screen).” PID 5.

“Multi-visualization needs to be addressed so common situations like
two visualizations being used is handed out-of-box (opening, dragging
and zooming should be done for you).” PID 6.

“Have a window to snap to side of screen so that the optimum amount
of screen can be used when two people are working on it.” PID 21.

“There were some issues when using the table to do two different tasks,
such as windows expanding, or overlaying each others, perhaps a
working region could help reduce this.” PID 44.

Participants found performing the windows close gesture when visualizations
were at full screen problematic due to the inaccuracy of the touch detection in
the corners of the table (see Figure 7.13(a)). Having an alternative close option or
gesture could improve the usability.

“Found I wanted to drag and release when closing windows.” PID 24.

7.3.4 Data

Data Manipulation

Participants liked the options to manipulate data through sliders, filters, sorting,
and grouping. Some participants would have liked more data manipulation
options, but they did not give very specific details.

“More filtering.” PID 12.

“More useful filters and group functionality tools.” PID 28.

For example in the System Evolution Visualization one of the group questions
(§H.1 Q9) asked pairs to find out how many lines of code one version had increased
over another (see Figure 7.18). We observed most participants answering this
question by deselecting all metrics except lines of code, which displayed the
versions and one series of data. As there was a large difference between the two
data values, participants tried to read the axis labels on the left hand side of the
chart and then discussed with their colleague about what the answer was. The
chart was hard to read as the axis labels were on the far left of the visualization
and the values on the far right, which caused some confusion. We observed
participants thinking aloud and all struggled to calculate an accurate number
on the fly. Some participants used a bar chart (see Figure 7.18(a)) while others
used an area chart (see Figure 7.18(b)). At the time, many participants suggested
that SourceVis should support comparing multiple data directly in the chart and
showing the differences visually.

7.3. IMPROVEMENTS 185

(a) Bar chart.

(b) Area chart.

Figure 7.18: Comparing data using the System Evolution Visualization to find out
which version has the most lines of code.

Metrics Data

We provided metrics information for systems, packages, and classes. Some vi-
sualizations like the Vocabulary Visualization showed how many entities were

7.3. IMPROVEMENTS 186

displayed, however, participants would have liked more summary information.

“The Metrics Explorer Visualization needs more summary info (e.g.
count of what is currently displayed/selected). It was the only place I
had to manually count items on the visualization to answer a question.”
PID 11.

The metrics data predominantly showed size and summary information about
entities and were good for finding outliers and data trends. Some participants
would have liked detailed information to be able to answer more statistical ques-
tions.

“Max and average statistics for classes would be useful. Worked well
for the questions we were asked. Other types of questions like finding
average method length, or all methods over say 50 lines of code might
be harder to answer.” PID 25.

The visualizations were primarily based on software metrics. Some participants
suggested that the metrics were not that useful and did not show anything about
design decisions. In the future we would like to explore visualizations that show
design decision information on top of metrics such as disharmony maps [187, 361].

“Metric visualization tools don’t know about design decisions and
would alarm on things that have been designed that way intentionally.
As an example a circular reference is seen as a bad thing in design,
but when coding a relational data model in Java you can hardly avoid
them.” PID 14.

“I’m not sure the selected metrics are always that useful. LOC is a sign
of code smell I guess.” PID 38.

Saving and Note Taking

SourceVis does not support annotating data within a visualization, making notes
on a separate window, tagging important elements within a visualization, or sav-
ing any information. Some participants would have liked to be able to save the
current view. All of these kind of features would help with the user experience
and improve the utility of SourceVis especially if developers were to use the appli-
cation in a work place environment. These features would certainly help sharing
information with other members of the team at a later date once information was
discovered.

“Add manual notes. Allow manual tagging of important classes.” PID
20.

7.3. IMPROVEMENTS 187

Integration With Other Tools

We developed SourceVis as a standalone application and used systems from the
Qualitas Corpus (Version 20101126) [325]. Many of the participants suggested
integrating SourceVis with IDEs, version control systems (e.g. SVN, GitHub,
Google Code), and other software development tools.

“Produce plugins for popular systems like Hudson or Jenkins. Connect
to a live code base.” PID 19.

“Linking into a single live system image.” PID 42.

Some participants suggested performing automatic refactoring of the software
within the visualizations. If SourceVis was integrated with IDEs then being able to
perform drag and drop refactorings is an avenue to explore [190].

“What is the highest priority question developers should ask of their
code, and how do you actually decide which code to fix/review? Could
this be done in the application by automatic refactoring?” PID 26.

Some participants use modelling tools for software development and mainte-
nance. Some participants suggested integrating UML diagrams and tools with
SourceVis might be useful.

“I can also see how these visualizations could be blended with an IDE
and UML (e.g. drawing tool).” PID 26.

Some participants would have liked to be able to share their discoveries using
collaborative social computing systems and to generate reports. Others have
explored social media artifacts in collaborative software development [335].

“No collaboration with social networking systems or other applications
like Google Talk or Microsoft Communicator. Provide the ability to
connect data with other collaboration software like Google+, Twitter.
What if I wanted to email some stats to someone?” PID 19.

7.3.5 User Interface

Interface Learning and Help Information

Some participants would have liked to have more time to explore SourceVis. Given
the study was controlled in a lab setting with finite time, this limited the amount
of time participants could spend learning about the interface.

7.3. IMPROVEMENTS 188

“I really see the usefulness but would need more time” PID 35.

“Some features were somewhat hidden or not obvious to me in the brief
session.” PID 37.

Participants would have liked more help in certain places to learn the interface
faster. We provided some help documentation about the visualizations and how
to use the visualizations in certain places. A tap and hold gesture on icons in
the startup screen displayed additional information about a visualization. Figure
7.19(a) shows help information in a dialog box about the Toxicity Chart Visualiza-
tion displayed from the startup screen. A tap and hold gesture on metrics labels
and layers in the visualizations displayed additional information about a metric
or layer. Figure 7.19(b) shows help information in a dialog box about the accessor
layer in the Class Blueprint Visualization.

“More contextual help without popping up dialogs (e.g. information
on touch that disappears when the touch is released, possibly on the
background so it doesn’t interfere with touch actions, for example
something similar to IDE autocomplete suggestions.” PID 5.

“The improvement I can think of at the moment is making it more
obvious when I clicked the classes that the metrics on the left changed.
Once you have played with with this for an hour - you know this
anyway. Working with two people didn’t even notice this because both
looking at different bits of screen so things changing seemed to be more
noticeable.” PID 10.

“I think there could be more information in more places.” PID 16.

“Some way of calling out features to the user, making suggestions
perhaps. I would probably be a lot more effective just with a bit more
familiarity. Kind of like learning an IDE.” PID 37.

As this is a new interface for participants they suggested more visual feedback
when touching objects on the screen. We provided some visual feedback for when
a user touches the surface, an object, or button. When performing the tap gesture
on the surface a blue circle trace is displayed beneath the user’s finger (see Figure
7.20(a)). When performing a tap and hold gesture on an entity the blue circle trace
gradually becomes red while holding. Once the circle is completely red the gesture
is ended and the action is then executed for the gesture (see Figure 7.20(b)).

“Everything you touch gives some information.” PID 16.

“More visible feedback when buttons are pressed” PID 27.

7.3. IMPROVEMENTS 189

(a) Toxicity Chart Visualization help information displayed from the Startup Screen.

(b) Class Blueprint help information about the accessor layer.

Figure 7.19: Help Information.

(a) Tap gesture, displays blue circle. (b) Tap and hold gesture, displays red circle.

Figure 7.20: Visual feedback on touch gestures.

7.3. IMPROVEMENTS 190

(a) Notification Statement about loading a new System Dependency Visualization.

(b) Error Statement about trying to load a data file in the Class Blueprint Visualization.

Figure 7.21: Visual Notification and Error Statements.

Participants would have liked more visual notification and error statements of
incorrect touches and data for user actions. We provided notifications for loading
a new visualization, error statements for displaying a new visualization from the
startup screen without loading a system first, error statements for displaying a
visualization that does not have an associated data file, and error statements when
doing an ascending or descending search without selecting a metric. Figure 7.21(a)
shows a popup “Loading” box indicating that a new visualization is starting.
Figure 7.21(b) shows an error message when a participant has tried to load a Class
Blueprint Visualization on a class that does not have an associated data file.

“When you do something wrong you get an obvious indication of how
to correct it (or what to do to make it work).” PID 7.

7.3. IMPROVEMENTS 191

Remembering Visual Encoding Representation

We adopted Polymetric View [185] encodings to represent packages and classes.
As participants were switching between visualizations that contain packages and
classes, both using this encoding scheme, they got confused as to what kind of
entity they were looking at. The encoding could be augmented with additional
markers or icons to signify the difference between these entities.

“Possibly colour coding or icons to differentiate entities.” PID 24.

“Packages could have icons next to them, quickly allowing the user to
identify the difference between classes.” PID 27.

“Although the visualization is specific to one type, they look exactly the
same. Some colouring or iconography might help.” PID 36.

Menus and Search

The menus showed a lot of information and some participants found the grouping
of elements were not well defined. There may have been a better way to style the
different components within the menus and to use different grouping options.

“Slightly clearer labels on the left menu, with more obviously defined
breaks between sections of sorting/filtering options.” PID 39.

The left hand side menus were in a fixed position. Some participants would
have liked for these menus to be more flexible when navigating in a visualization.
Some suggested having the menus follow them around the visualization or be
able to display them on demand.

“Some parts of the interface (menus) could reflow when zooming.”
PID 9.

The pie menu and keyboard are displayed at the current zoom level of the
camera rather than relative to the window (see Figures 7.3(b) and 7.9(a)). This
caused some issues for participants as the pie menu and keyboard appeared off
screen or too small. To improve the usability it would make sense for them to be
consistently the same each time they were displayed.

“The keyboard and pie control menu could spawn at an initial size
relative to the window, rather than relative to the item being clicked
on making it easier to perform actions at any size would reduce the
amount of steps required to complete a task.” PID 40.

7.3. IMPROVEMENTS 192

Some participants were not sure exactly what would be displayed when they
selected one of the visualizations from the pie menu and suggested using icons
instead of text to represent the visualization type.

“Found it a bit difficult to decide which options to choose from the pie
menu - maybe an iconic representation of which screen I would go to
for each option would help.” PID 24.

Some participants struggled to find the search box feature to search for entities.
For the search box in the Metrics Explorer Visualization we used a search label
‘Search for:’, a box with an example (‘e.g. TestCase’), and a magnifying glass icon
which looks similar to the Google search box icon. While for the System Hotspots
View, System Package Evolution, and System Class Evolution visualizations had
no search label but included a ‘Reset’ button underneath the search box. Figure
7.22 shows the search box in the Metrics Explorer where a participant has issued a
search for class names that include the word ’test’.

“Improve search boxes so it is clear where to search.” PID 7.

The search button on the keyboard was a separate key labelled ‘Search’ as
opposed to pressing the ‘Enter’ key to execute the search query (see Figure 7.22).
This caused participants some confusion as they would use the ‘Enter’ key to
perform the search with unexpected results. It would be possible to modify the
keyboard to make a search work on the ‘Enter’ key.

“The enter key on the keyboard should run a text search, rather than
insert a newline character.” PID 27.

Reading Text

For all participants reading text when displayed in small windows was difficult
(see Figure 7.15). Some participants suggested using a magnifying glass lens to
help with reading. There may have been an option in MT4j to fix this but we were
not aware of any at the time. Reading text when a window was at full screen was
not a problem.

“Size of the text, perhaps use a localized magnifying glass.” PID 13.

“I know its an MT4j issue, but it is hard to read text when the windows
are too small. This makes the collaboration mode very hard because
even with a window at half size, the font is too blurry.” PID 22.

7.3. IMPROVEMENTS 193

Figure 7.22: Search Box and Search Button on keyboard on the Metrics Explorer
Visualization.

UI Consistency

Many participants would have liked a more polished user interface but few offered
any specific details for improvement. Given SourceVis is a prototype we would
like to work with a UI designer in the future to improve the style and consistency.

“UI adjustments.” PID 2.

“More polished UI.” PID 3.

“Minor UI improvements could be seen all over the place.” PID 42.

Participants would have liked greater consistency of UI elements and inter-
action gestures across all the visualizations. For example some objects could be
dragged around the screen while on another visualization they could not be. There
was some inconsistency with what could be touched and what could be dragged.

“Consistent interaction with controls such as zooming and moving
would also go a long way to reducing frustration.” PID 6.

“Need to make it easier to move objects on the screens for example
when I select something place that in the middle of screen and resize

7.3. IMPROVEMENTS 194

to emphasis the components it relates to instead of making us search
them out.” PID 19.

“Make it obvious which parts of the interface are selectable. The UI was
flat that it was not always clear which parts were selectable.” PID 23.

“Consistency across all interfaces for interaction (e.g. click/drag, click-
/click).” PID 27.

Some participants felt there was too much text in the UI. For some of the
widgets participants would have preferred icons instead of text to denote actions.
For the sorting options we could have used “A–Z” instead of “Alphabetical”,
likewise something similar for ascending and descending.

“Use standard form components where possible (e.g. buttons/sliders
rather than text labels).” PID 27.

“Some of the UI controls for filtering / controlling visualizations feel a
bit text-heavy for a visual tool.” PID 32.

Startup Screen

If a visualization was displayed at full screen participants found it annoying
to navigate back to the startup screen to create a new overview visualization.
Having a gesture or menu which would allow displaying new main overview
visualizations from an existing visualization would be helpful. Alternatively,
providing a gesture to navigate back to the start screen would increase the usability.

“The startup screen could be a menu brought up by a gesture or some-
thing - having to go back to it felt more difficult than on my more usual
interfaces.” PID 9.

“There could be a way to quickly navigate to start screen.” PID 27.

Some participants were not aware that the visualization icons within the cate-
gories in the startup screen could be rotated. Figure 7.23 shows one participant
who has rotated two of the three categories (Exploration and Structure) on the
start screen to point to his direction, denoted by the green borders of the categories
pointing to the participant at the top of the Figure, while the other category points
to the bottom of the table. Some participants suggested making the icons more
flexible so that they can move around the startup screen.

“Move icons around in the startup screen or at least move them to the
other side.” PID 21.

7.4. TEAM COLLABORATION 195

Some participants who were aware of the visualization rotating icons on the
startup screen suggested that there should should be options on the borders of
windows that contain visualizations to rotate windows in a similar fashion.

“Direction change buttons similar to the start screen would be useful
on opened windows for collaboration.” PID 22.

Figure 7.23: Rotating visualization icons on the startup screen.

7.4 Team Collaboration

In this section we discuss how the multi-touch table helped with team collabora-
tion (§6.1.5 Q4).

7.4.1 Multi-touch Interaction

The table supported multi-touch interaction which allowed more than one partici-
pant to interact at once and they could do this on the same visualization or have
their own separate windows. We observed that having multi-touch interaction
meant that pairs did not have to rely on their partner to control the interface,
instead one participant could interact when they wanted to.

“Having the table respond to input from multiple people at once – can
potentially have sub-windows open in separate parts with different
controllers.” PID 8.

7.4. TEAM COLLABORATION 196

“One of the benefits found is that people working together can share
the interaction in a session. This is easier than when having a review
session as a team and one person pilots and others have to command
him to click things they can see on a projection wall. With this tool this
saves time.” PID 14.

Even though both participants could interact with the multi-touch table at the
same time some participants felt that the multi-touch interaction detection support
hindered their touch experience especially when there was a visualization at full
screen. The multi-touch detection was less of a problem when participants were
working on different visualizations in separate windows in parallel.

“The fact that two people couldn’t touch the screen at the same time
was a major difficulty. Especially since the table is so large, and sup-
ports multiple windows, you forget about this limitation and want to
work simultaneously on multiple windows as if they were separate
iPads.” PID 4.

While other participants found the touch interaction was not a problem which
allowed them to work together, and promoted shared and casual interactions.

“The table worked great with many touches and two of us being able
to work on our problems easily.” PID 7.

“Promoted shared interaction and negotiation. PID 41.

“The environment of a table felt very comfortable and natural to start
casual interactions.” PID 44.

If the touch experience was better then some participants felt that it could be
better than existing practices (i.e. desktop computer with mouse, keyboard, and
monitor). We would like to conduct a between subjects study to see if there is any
difference between these two interface styles.

“I really didn’t see anything inherent to the touchscreen that made
it better for team collaboration with these particular widgets, than
a normal monitor and interface. But, I can see how, especially if it
supported simultaneous input by multiple users better, it could be
useful.” PID 4.

7.4.2 Team Work

Participants found that the multi-touch table encouraged them to work together
and collaborate with each other.

7.4. TEAM COLLABORATION 197

“The table helped a lot with team collaboration.” PID 6.

“ As a team building exercise, a discussion could be had over particular
parts of the system. PID 28.

“It’s great for collaboration to answer the same questions.” PID 37.

“Easy to collaborate with a team mate.” PID 43.

The multi-touch table allowed participants to work together closely (e.g. group
condition) and loosely (e.g. individual condition). For example they could both
be working on the interface but looking at different aspects of a system and then
come together, share their discoveries, and share ideas with each other.

“Having the personal space to be able to do something on the display,
talk to my teammate, and show things to them without being crowded
was excellent. This is not the case when showing something on a
standard workstation monitor.” PID 11.

“Showing other people something is very easy. I imagine that this can
also be very fast to use when it’s more advanced (more options and
filters) and the user has had enough time to become fully familiar with
it.” PID 12.

“Everyone seeing the same data was useful.” PID 28.

“The ability to have people to bounce ideas off a colleague was very
useful.” PID 34.

7.4.3 Communication

Participants felt that the multi-touch table encouraged them to communicate with
each other.

“Encourages discussion and participation.” PID 3.

“Helped stimulate discussion.” PID 5.

“Encouraged discussion and interaction.” PID 23.

“Improved the relationship between the developers as we were both
communicating with each together.” PID 27.

“The table encourages communication.” PID 38.

“The table was a focus for conversation. It was a common space for
conversation about the software.” PID 41.

7.4. TEAM COLLABORATION 198

When using the table, we asked participants to think aloud. We observed
that they would communicate with their colleague to inform them what they
were doing with the interface. If the participants were more proficient with the
interface it would be interesting to see if there would be the same amount of
communication.

“Allows users to explain properly to each other, what they are attempt-
ing to achieve.” PID 2.

7.4.4 Different Roles

We observed that the multi-touch table afforded different roles for the participants.
Participants could easily switch between the roles and do different roles at the
same time.

“Having a multi-touch table meant that there was no waiting for the
teammate to finish doing something.” PID 40.

“The two of us could operate different parts of the interface, taking up
different roles.” PID 44

With most of our visualizations (except the Package and Class Evolution) the
options menus were located on the left hand side. Quite often during group work,
this led to the person standing on the left hand side of the table controlling the
interface and menus, while the person on the right hand side usually held the
question sheet and performed the close, maximize, and minimize options as those
controls were generally on that side of the visualizations.

“Having the menus all on the left allows the user on the left to lead the
operation of the software.” PID 2.

7.4.5 Coordination

Given that the multi-touch table supported multiple users interacting at the same
time, we observed that one participant mainly controlled the interface at any given
time during the group condition.

“Really only one person can be using the visualizations at a time.” PID
6.

“We found a way of working quite quickly where one person would do
the driving.” PID 16.

“I think one driver would be a good idea.” PID 38.

7.4. TEAM COLLABORATION 199

We observed even though there was one participant controlling the interface
most of the time, participants regularly coordinated with their fellow colleague to
take turns controlling. The large table size and multi-touch interaction made it a
seamless process for participants to swap roles from controlling to observing.

“There were a few interesting etiquette issues to get used to - who’s
driving?” PID 24.

“The table has a big screen that we could both interact with. It meant
that when you wanted something to happen you could just do it with-
out feeling like you were taking over - which is what working on a
single user interface is like.” PID 31.

“Even though it is multi-touch, we often took turns to use the table.”
PID 33.

“Felt a bit odd swapping who drives what, but that’s just practice.” PID
42.

Participants liked that they did not have to swap physical positions in order to
control the the interface.

“Working together at a moments notice with no need to move to an-
other machine or move to a whiteboard.” PID 39.

7.4.6 Awareness

Participants felt the multi-touch table made them more aware of what the other
was doing while interacting and navigating within the visualizations, as they were
both using the same interface and were within close proximity of each other.

“Good for seeing what other team member was thinking about when
they were interacting and talking.” PID 5.

“Because it’s a touch interface you can more easily see what the other
person is doing with the interface - it’s easier to track an arm than a
mouse pointer.” PID 17.

“Each person can see how the other is navigating.” PID 18.

7.5. SUMMARY 200

7.5 Summary

In this chapter we presented the qualitative findings from the user study involving
professional software developers (§6). Table 7.1 summarizes the key findings
based on participants’ feedback in the post-study questionnaire (§6.3.4), video
recordings of the participants, spoken aloud thoughts by the participants, and
observations and notes made by us during the study. The next chapter presents
the quantitative results from the professional user study (§8).

7.5.1 Multi-touch Table

Participants preferred working as a group with the multi-touch table as it seemed
to be easier and more effective compared with working as individuals. Participants
liked that the table supported multi-touch, multiple users, and the size allowed
multi-user interaction and viewing large amounts of data (§6.1.5 Q1). Participants
found doing individual work at the same time on the the table difficult. The table
suffered from an inconsistent touch experience, precision and accuracy problems
with the touch detection, a low screen resolution, and hardware performance
issues. Some participants felt uncomfortable after standing for awhile using the
table and that prolonged use could be a problem without something to lean or sit
on (§6.1.5 Q2). Some participants suggested using a commercial multi-touch table
which may offer a better touch experience, better touch precision and accuracy,
larger screen resolution, and faster hardware performance (§6.1.5 Q3).

7.5.2 Strengths

There were a number of strengths of SourceVis (§6.1.5 Q1).

• Visualizations: Participants liked how SourceVis supported multiple visualiza-
tions simultaneously. The evolution and chart visualizations were popular.

• Interaction: Participants liked the navigation touch gestures for zooming and
panning, and the ability to switch between visualizations through windows
and the pop up pie menu.

• Data: Participants liked being able to display overviews of systems, provide
details on demand, manipulate data in multiple ways, change the system
version in a visualization, identify outliers, and discover trends.

• User Interface: Participants found the user interface to be intuitive, consistent,
and the visual encoding representation (e.g. class type and Polymetric View
encoding) helped with identifying interesting aspects in the visualizations.

7.5. SUMMARY 201

7.5.3 Weaknesses

There were some weaknesses of SourceVis (§6.1.5 Q2).

• Visualizations: Participants sometimes forgot what visualization technique
they were looking at. With visualizations that utilized large amounts of
screen space participants were confused as to where they were in a visual-
ization and found it difficult to keep track of what they had seen previously.
The System Dependency Visualization was very hard to use and participants
struggled with this technique.

• Interaction: The navigation (panning and zooming in a visualization) became
problematic when two people were both performing one of these navigation
gestures at once. There were some inconsistencies of items such as the pie
menu and keyboard being displayed at different sizes depending on what
the current zoom level was. Manipulating windows to face a direction using
two handed gestures was cumbersome and closing full screen windows
was problematic due to the touch inaccuracies in the corner of the table.
Entering text through the virtual keyboard was difficult for participants.
Some participants would have liked to been able to enter numbers through
a keyboard rather than use widgets like sliders to manipulate the data.
Occasionally users would interfere with each other when interacting, such as
taking visualizations off each other. Participants reaching over one another
was problematic during the individual condition.

• Data: Some participants felt there was too much information being presented
at once. Participants did not like having to find information by visually
searching (e.g. counting or looking for coloured entities) and would have
preferred SourceVis give a precise answer for some of the questions.

• User Interface: This was the first time participants had used SourceVis and a
large multi-touch table but they quickly learnt how to use the interface. Some
participants occasionally forgot what the visual encoding representation
meant for the size of entities that used the Polymetric View encodings and
what colours were represented by which class type. Some menus were
initially displayed offscreen and could accidentally be moved. The search
options were not included on all visualizations and not obvious how to start.
Text was hard to read if it was displayed in a window and best read when a
visualization was displayed at full screen.

7.5. SUMMARY 202

7.5.4 Improvements

Participants suggested a number of ways to improve SourceVis (§6.1.5 Q3).

• Visualizations: Add titles, legends, and breadcrumb navigation to help par-
ticipants remember the different visualization types. Improve the System
Dependency Visualization by having directed edges and a search feature.
Improve the Toxicity Chart by including different metrics, ability to adjust
threshold values, ability to selecting individual data points, and increase the
rendering speed. New visualizations such as displaying source code, inher-
itance information, and code contributions by developers were suggested.
Add new visualization layouts like treemaps and graphs, and link between
and synchronize visualizations.

• Interaction: Provide control over who can zoom and pan in a visualization
at once which would cause less frustration. Add features to control the
zoom level rather than relying solely on zoom and pan gestures. When
visualizations start, have options to display immediately at full screen or in
a set sized window. Provide better options for manipulating windows and
closing visualizations at full screen.

• Data: Provide additional filters and other widgets to manipulate data. Add
more options for summarizing and displaying statistical data about metrics.
Integrate other software design aspects on top of the metrics which could
make understanding the problems with a system clearer. Add features to
save the current view, make notes, and generate reports to inform team
members about their discoveries. Integrate SourceVis with IDEs, version
control systems, and other tools to provide a more complete application.

• User Interface: Add more help documentation, tooltips, and visual feedback.
To help users remember the visual encoding representation (e.g. class type
and Polymetric View encoding) add legends to the visualizations. Make
the options menu more flexible so it can be displayed from anywhere. Pie
menus and the keyboard need to be displayed relative to the window and
not the camera view port. The search features need improving by resetting
the data set each time for a new search query, a clearer location for the search
box, and the keyboard adjusted so “enter” starts a search. Text needs to be
displayed more clearly to improve reading, especially when text is displayed
inside a window. Improve the UI by being more consistent with the style,
icons, and interaction capabilities. The visualizations from the startup screen
should be able to be started from anywhere in SourceVis.

7.5. SUMMARY 203

7.5.5 Team Collaboration

We asked participants how the multi-touch table helped with team collaboration
(§6.1.5 Q4). The multi-touch allowed multiple users to interact at once rather than
relying on a single user to control the interface. The table encouraged participants
to work together, helped improve relationships, made sharing information easy,
allowed users to work closely or loosely, and communicate with each other. The ta-
ble allowed participants to perform different roles when interacting. We observed
that most of the time one person was controlling the interface. It was a seamless
process for participants to coordinate swapping roles. Working together as a
group made participants more aware of what each other was doing as opposed to
working separately as individuals.

The next chapter (§8) presents the quantitative findings from the professional
user study.

7.5. SUMMARY 204
Table

7.1:Sum
m

ary
ofqualitative

find
ings

based
on

participants’feed
back

in
the

post-stud
y

questionnaire,vid
eo

record
ings

ofthe
participants,spoken

aloud
thoughts

by
the

participants,and
observations

and
notes

m
ade

by
us

during
the

study.
Strengths

W
eaknesses

Suggested
Im

provem
ents

Team
C

ollaboration

M
ulti-touch

Table

G
roup

W
ork

IndividualW
ork

Touch
Experience

M
ulti-touch

Interaction
M

ulti-touch
Touch

Experience
Touch

Precision
and

A
ccuracy

Team
W

ork
M

ultiple
U

sers
Touch

Precision
and

A
ccuracy

Screen
R

esolution
C

om
m

unication
Table

Size
Screen

R
esolution

H
ardw

are
Perform

ance
D

ifferentR
oles

H
ardw

are
Perform

ance
C

oordination
Prolonged

U
se

A
w

areness

V
isualizations

M
ultiple

V
isualizations

V
isualization

C
ontext

V
isualization

C
ontext

Evolution
V

isualizations
System

D
ependency

V
isualization

System
D

ependency
V

isualization
C

hartV
isualizations

Toxicity
C

hart
A

dditionalV
isualizations

D
ifferentLayouts

and
Linking

Interaction

N
avigation

N
avigation

N
avigation

V
isualization

Sw
itching

Z
oom

Level
Z

oom
Level

M
anipulating

W
indow

s
M

anipulating
W

indow
s

Entering
Textand

D
ata

U
ser

Interference

D
ata

D
ata

O
verview

Inform
ation

O
verload

D
ata

M
anipulation

D
etails

on
D

em
and

Finding
Inform

ation
M

etrics
D

ata
D

ata
M

anipulation
Saving

and
N

ote
Taking

D
ata

Sw
itching

Integration
w

ith
O

ther
Tools

D
ata

O
utliers

and
Trends

U
ser

Interface

Intuitive
U

ser
Interface

N
ovice

U
sers

Interface
Learning

and
H

elp
V

isualEncoding
R

epresentation
R

em
em

bering
V

isualEncoding
R

em
em

bering
V

isualEncoding
U

IC
onsistency

M
enus

and
Search

M
enus

and
Search

R
eading

Text
R

eading
Text

U
IC

onsistency
Startup

Screen

Chapter 8

Professional User Study —
Quantitative Findings

Contents
8.1 Study Condition Combination . 206

8.2 Collaborative Coupling Categories 206

8.2.1 Frequency of Coupling Categories 207

8.2.2 Time Spent in Coupling Categories 208

8.2.3 Temporal Sequence of Coupling Categories 208

8.3 Collaborative Coupling Styles . 210

8.3.1 Frequency of Coupling Styles 210

8.3.2 Time Spent in Coupling Styles 213

8.3.3 Temporal Sequence of Coupling Styles 216

8.3.4 Frequency vs. Time Spent in Coupling Styles 218

8.4 Physical Arrangement Style . 219

8.4.1 Frequency of Arrangement Styles 219

8.4.2 Time Spent in Arrangement Styles 222

8.4.3 Temporal Sequence of Arrangement Styles 225

8.4.4 Frequency vs. Time Spent in Arrangement Styles 227

8.4.5 Collaborative Coupling and Physical Arrangement Styles 228

8.5 Perceived Effectiveness of Techniques 229

8.6 Summary . 231

205

8.1. STUDY CONDITION COMBINATION 206

In this chapter we present the quantitative findings of the professional user study
(§6). We show which study condition combination the participants selected. We
show which kind of collaborative coupling categories and styles the participants
used. We show which physical arrangement participants favoured when using
the multi-touch table. We show the perceived effectiveness of the visualization
techniques by the participants.

8.1 Study Condition Combination

Q5 - Which study condition (e.g. Group or Individual) did the pairs favour for Section 3
of the user tasks? (§6.1.1)

For Section 1 of the user tasks all pairs were assigned either the “Group” or
“Individual” condition. For Section 2 they worked in the opposite condition from
Section 1. Odd numbered pairs started in Group and even numbered pairs started
in Individual. For Section 3 each pair had a choice of condition. All of the 22 pairs
chose the “Group” condition. The pairs were evenly split (11 pairs each) between
the combinations GIG or IGG. As in Table 6.3, pairs in the GIG combination are
shaded grey while those in IGG are not shaded. Individual was not selected for
Section 3 hence neither IGI nor GII combinations eventuated. Participants felt that
it was easier and faster to work in a group compared to working as individuals
in parallel, hence all pairs selected “Group” for Section 3 of the user tasks. This
decision may have been caused by the limitations of the hardware with respect to
multi-touch detection and many participants commented in the post-interview
that they thought they were partaking in a collaborative group study hence why
they selected group.

8.2 Collaborative Coupling Categories

Q6 - Which coupling categories did the participants use? (§6.1.2)

We wanted to know which collaborative coupling categories the participants
used, how much time was spent in each category, and what sequence the partic-
ipants performed the different categories. The coupling categories were closely
coupled and loosely coupled and are groupings of the coupling styles described
earlier (see Table 6.1). The closely coupled category comprises the coupling styles:
Discussion (DISC), Same Problem Same Area (SPSA), Same Problem Different
Area (SPDA), and Viewing Engaged (VE). The loosely coupled category comprises
the styles: Viewing Disengaged (VD), Different Problem Same Area (DPSA), and
Different Problem Different Area (DPDA).

8.2. COLLABORATIVE COUPLING CATEGORIES 207

8.2.1 Frequency of Coupling Categories

Figure 8.1(a) shows a boxplot of the frequencies of the coupling categories. 78%
of the interaction was closely coupled while 22% were loosely coupled. There
were more close collaboration coupling styles (and more variation of styles) used
than loose collaboration styles. This would be expected since the pairs conducted
more sections in the Group condition than the Individual condition. These find-
ings imply that pairs frequently switched between coupling styles when closely
coupled. When pairs were loosely coupled (predominantly when they were in the
Individual condition) they tended not to switch to another coupling style.

Figure 8.1(b) shows an histogram of the frequencies of the coupling categories.
The X axis shows the bin range of frequencies and Y axis frequency count. The
closely coupled category occurs more frequently in the 31+ range. The loosely
coupled category occurs more frequently in the less than 30 range. This finding
shows that there were more changes in closely than loosely coupled styles. We
used R [252], and ran the Wilcoxon rank sum test at 95% confidence to compare
if there were any statistical significant differences between the frequency of the
coupling categories. We found there were a significant difference between the
frequency of the categories (W = 4342, p = 1.506×10−07).

(a) Boxplot of Frequency of Closely and Loosely
Coupled Collaboration.

(b) Histogram of Frequency of Closely and
Loosely Coupled Collaboration.

Figure 8.1: Observed Frequency of Closely and Loosely Coupled Categories.

8.2. COLLABORATIVE COUPLING CATEGORIES 208

8.2.2 Time Spent in Coupling Categories

Figure 8.2(a) shows a boxplot of the amount of time spent in the coupling cate-
gories. 57% of time was spent closely coupled and 43% spent loosely coupled. This
finding indicates that pairs primarily worked and spent more time closely coupled
together. The pairs did two group sections from the condition type combinations
(e.g. GIG and IGG). The boxplot shows that there is a similar variance and range
in the values, however, pairs did spend more time closely coupled.

Figure 8.2(b) shows an histogram of the amount of time spent in the coupling
categories. Closely coupled categories spent the longest time in each of the ranges
compared with loosely coupled. For two ranges (2–4 and 10–12 minutes) loosely
coupled spent the same amount of time. In combination with Figure 8.1(b) this
finding shows that pairs regularly switched between closely coupled styles, and
when in a loosely coupled style pairs spent more time in that style and switched
less frequently. We ran the Wilcoxon rank sum test at 95% confidence to compare
if there were any statistical significant differences between the time spent in the
coupling categories. We found no significant differences between the categories
(W = 3201, p = 0.2789).

(a) Boxplot of Time Spent in Closely and
Loosely Coupled Collaboration.

(b) Histogram of Time Spent in Closely and
Loosely Coupled Collaboration.

Figure 8.2: Observed Time Spent in Closely and Loosely Coupled Categories.

8.2.3 Temporal Sequence of Coupling Categories

Following Isenberg [137], Figure 8.3 shows the temporal sequence of coupling
categories by pairs including how much time was spent in each category. GIG
pairs (odd numbered and shaded grey rows) are located on the bottom half, and
IGG pairs (even numbered and white rows) located on the top half. Loosely
coupled is encoded blue and closely coupled yellow. Help was for when the

8.2. COLLABORATIVE COUPLING CATEGORIES 209

session instructor had to restart SourceVis as it crashed or clarify an aspect about
the user tasks or interface. No Interaction (NI) was for when participants switched
between the different conditions as part of the user tasks.

Figure 8.3: Temporal Sequence of Coupling Categories. GIG pairs (odd numbered,
shaded grey rows) located bottom half and IGG pairs (even numbered, white
rows) top half. Closely Coupled = blue. Loosely Coupled = yellow. Help = black.
No Interaction (NI) = green.

8.3. COLLABORATIVE COUPLING STYLES 210

Figure 8.3 shows that when pairs were in the Individual condition they were
predominantly loosely coupled. When pairs when in the Group condition they
were predominantly closely coupled, and occasionally switched to loosely coupled
but only for very brief periods. In the Figure IGG pairs have a large amount of blue
at the start followed by two sections of yellow. For GIG pairs they have one section
of yellow, followed by a blue section, and then another yellow section. GIG pair 3
and IGG pair 20 show about half closely coupled and half loosely coupled in the
Individual section. GIG pairs 17 and 19 show working almost exclusively closely
coupled in the Individual section. Participants from pairs 19 and 20 commented
earlier about having issues working as individuals (§ 7.2.1).

8.3 Collaborative Coupling Styles

Q7 - Which coupling styles did the participants use? (§6.1.2)
We wanted to know which collaborative coupling styles the participants used,

how much time was spent in each coupling style, and what sequence the partici-
pants performed the different coupling styles. The collaborative coupling styles
were described earlier (see Table 6.1).

8.3.1 Frequency of Coupling Styles

Table 8.1 shows the raw data for the observed frequency of each coupling style
each pair used. In total using the ELAN tool (§6.3.5) we coded 3053 coupling
styles. Yellow cells in the table indicate the largest value in a row. Red cells
indicate outlier values. Closely Coupled was the most frequently used category
(2381 occurrences) compared to loosely coupled (672). The most frequently used
coupling style was VE (1101) followed by DISC (877), VD (438), SPDA (253), DPDA
(216), and SPSA (150). The least used coupling style was DPSA (18). The average
number of coupling styles used by each pair was 139. Pair 2 (235) used the largest
number of coupling styles followed by Pair 3 (169). For 19 of the pairs VE was
the most frequently used style. While DISC was the most frequently used style
instead of VE, for pairs 7, 9, and 17 who were all from the GIG condition. SPSA
was rarely used but Pairs 2 and 3 used this style more than other pairs. SPSA was
for when both participants were touching the same area. We observed participants
using SPSA when learning from each other. Table I.1 in Appendix I shows a
more detailed table of the coupling styles separated by the Group and Individual
conditions.

8.3. COLLABORATIVE COUPLING STYLES 211

Table 8.1: Frequency of Coupling Style by each pair. GIG = grey shaded rows and
IGG = white rows. Largest row value = yellow. Outlier values = red.

PairID DISC SPSA SPDA VE VD DPSA DPDA SUM
1 32 2 7 43 16 0 10 110
2 53 19 29 83 28 4 19 235
3 34 29 8 61 22 3 12 169
4 38 12 21 52 16 1 15 155
5 49 10 12 59 20 1 9 160
6 32 8 19 54 23 2 12 150
7 33 12 7 28 30 3 20 133
8 51 3 18 73 17 1 6 169
9 39 3 6 36 20 0 9 113
10 43 5 13 44 18 0 10 133
11 51 4 11 52 22 0 10 150
12 38 5 9 54 19 2 10 137
13 29 5 10 42 23 0 10 119
14 22 6 3 36 17 0 11 95
15 31 1 2 38 24 1 14 111
16 40 5 11 42 18 0 6 122
17 62 1 11 58 8 0 2 142
18 34 3 14 43 17 0 8 119
19 37 2 6 46 22 0 2 115
20 36 2 10 55 27 0 4 134
21 52 7 9 58 8 0 8 142
22 41 6 17 44 23 0 9 140

SUM: 877 150 253 1101 438 18 216 3053
Category: Closely: 2381 Loosely: 672

8.3. COLLABORATIVE COUPLING STYLES 212

Figure 8.4(a) shows the observed frequency of coupling styles for all pairs and
participants. The most frequently used style was VE at 36%, DISC 29%, VD 14%,
SPDA 8%, DPDA 7%, SPSA 5%, and DPSA 1%. VE had the most variance in
values followed by DISC. VE, DISC, and VD were the only styles that had either
one participant or no participants interacting with the table. Therefore 50% (VE
and VD) of the frequency styles one participant was interacting with the table and
up to 79% (VE, DISC, VD) either one participant interacted or no participants at
all. When participants were working on the same question and interacting at the
same time they were mainly in different areas (SPDA) and only occasionally in
the same area (SPSA). When participants were working on different questions and
interacting at once they were mainly in different areas (DPDA). Participants rarely
worked on different questions in the same area (DPSA).

We ran pairwise Wilcoxon rank sum tests at 95% confidence to compare if
there were any statistical significant differences between the frequency of coupling
styles using a Bonferroni correction to the p-value. Table I.5 in Appendix I shows
the results from these tests. We found statistical differences between all styles
except for the following styles: DISC and VE (W = 116, p = 0.067116), SPSA and
SPDA (W = 113.5, p = 0.054684), SPSA and DPDA (W = 131.5, p = 0.200886), and
SPDA and DPDA (W = 273.5, p = 9.7671). This shows that these coupling styles
were frequently used about as much as each other.

Figure 8.4(b) shows the observed frequency of the coupling styles by condition
type combination (GIG = blue and IGG = red). GIG pairs used 1464 coupling
styles and IGG pairs 1589 styles. GIG pairs used VE 36% and IGG 37%. IGG had a
greater maximum value for VE while GIG a smaller minimum value. GIG pairs
used DISC 31% while IGG 27%. GIG had a larger range for DISC while IGG was
more tightly compacted and had a lower minimum value. GIG pairs used VD
15% and IGG 14%. GIG had a larger range for VD. Both GIG and IGG pairs used
DPDA 7%. GIG had a larger variance in values for DPDA. GIG used SPDA 6%
and IGG 10%. Both GIG and IGG pairs used SPSA 5%. Both GIG and IGG pairs
used DPSA less than 1%.

We ran the Wilcoxon rank sum test at 95% confidence to compare if there were
any statistical significant differences between the condition type combinations (e.g.
GIG vs. IGG) for each of the frequency coupling styles. We found no significant
differences between any of the styles, except SPDA. There was a significant differ-
ence between GIG and IGG for SPDA (W=20 and p=0.008475). This shows that
IGG pairs were more often working on the same question and different areas of a
visualization in the Group condition than GIG pairs.

8.3. COLLABORATIVE COUPLING STYLES 213

(a) Frequency of Coupling Styles.

(b) Frequency of Coupling Style by Condition Type Combination (e.g. GIG = blue, IGG = red)

Figure 8.4: Observed Frequency of Collaborative Coupling Styles.

8.3.2 Time Spent in Coupling Styles

Table 8.2 shows the raw data for the observed amount of time spent in the coupling
styles by each pair used. Yellow cells in the table indicate the largest value in a
row. Red cells indicate outlier values. In total there were approximately 13 hours
or 46078 seconds spent in the coupling styles. The longest time was spent in VE
(14796 just over 4 hours), DPDA (13075 seconds, just over 3.5 hours), DISC (7678
just over two hours), and VD (6512 just under two hours). The average amount

8.3. COLLABORATIVE COUPLING STYLES 214

Table 8.2: Time spent (seconds) in Coupling Style by each pair. GIG = grey shaded
rows and IGG = white rows. Largest row value = yellow. Outlier values = red.

PairID DISC SPSA SPDA VE VD DPSA DPDA SUM
1 291 16 99 814 219 0 759 2198
2 355 50 303 848 361 14 618 2549
3 240 115 47 727 148 13 334 1624
4 423 72 422 909 312 3 942 3083
5 424 52 89 723 268 3 879 2438
6 314 65 434 845 344 8 573 2583
7 254 95 98 230 408 27 1381 2493
8 441 18 111 977 260 9 234 2050
9 343 14 109 357 243 0 935 2001

10 415 28 96 451 360 0 687 2037
11 453 22 93 418 313 0 834 2133
12 362 27 90 495 228 4 498 1704
13 283 15 110 659 403 0 844 2314
14 206 32 25 749 314 0 334 1660
15 211 3 16 478 351 8 713 1780
16 420 36 164 508 243 0 494 1865
17 615 7 118 1075 68 0 211 2094
18 347 11 275 500 380 0 772 2285
19 333 12 81 1318 325 0 114 2183
20 287 9 88 716 374 0 91 1565
21 314 44 59 488 90 0 404 1399
22 347 33 225 511 500 0 424 2040

SUM: 7678 776 3152 14796 6512 89 13075 46078
Category: Closely: 26402 Loosely: 19676

of time spent across all the coupling styles was 2049 seconds, approximately 34
minutes. Pair 4 spent the longest time in the coupling styles (3083), then Pair 6
(2583), and Pair 2 (2549). For 12 pairs VE was where pairs spent the longest time
and for 10 pairs it was VE. Pairs 19 and 20 spent the shortest time in DPDA. Pairs
4 and 5 spent the longest time in SPDA. Pair 3 spent the most time in SPSA. Table
I.2 in Appendix I shows a more detailed table of the coupling styles separated by
the Group and Individual conditions.

8.3. COLLABORATIVE COUPLING STYLES 215

Figure 8.5(a) shows the observed amount of time spent in the coupling styles
for all pairs and participants. The longest time was spent in VE at 32%, DPDA 28%,
DISC 17%, VD 14%, SPDA 7%, SPSA 2%, and DPSA less than 1%. Compared with
the frequency of DPDA (see Figure 8.4(a)) participants spent less time changing
between this code and others, and more time within DPDA which also had the
largest range in values. This is due to the participants working in the Individual
condition where there was less opportunity to switch to another coupling style.
When pairs were working together 32% (VE) of the time there was one person
interacting or 17% (DISC) discussing something about the question or the interface.
Only 8% of the time pairs were they both interacting on the table at the same time
(SPDA and SPDA). 14% of the time one participant was away from the table
writing down answers and the other was at the table (VD).

We ran pairwise Wilcoxon rank sum tests at 95% confidence to compare if there
were any statistical significant differences between the time spent in the coupling
styles using a Bonferroni correction to the p-value. Table I.6 in Appendix I shows
the results from these tests. We found statistical differences between all styles
except for the following styles: VE and DPDA (W = 281, p = 7.7658), DISC and VD
(W = 303, p = 3.297), and DISC and DPDA (W = 123, p = 0.097125). This shows
that pairs clearly spent more time in VE and DPDA than the other coupling styles.

Figure 8.5(b) shows the observed amount of time spent in the coupling styles
by condition type combination. Both GIG and IGG pairs each spent 32% of time in
VE. GIG pairs spent 33% in DPDA and IGG 24%. Both combinations spent 17%
in DISC. For VE and DPDA, GIG pairs had a much larger range of values. IGG
spent more time in VD at 16% and SPDA at 9%, compared with GIG at 12% and
4% respectively. Both combinations spent less than 2% in SPSA and DPSA.

We ran the Wilcoxon rank sum test at 95% confidence to compare if there
were any statistical significant differences between the different condition type
combinations for the time spent in the coupling styles. We found no significant
differences between any of the combinations, except SPDA. There was a significant
difference between GIG and IGG for SPDA (W=29 and p=0.03998). Again this is
a similar finding to the frequency coupling style of SPDA for the combinations
(§8.3.1). This shows that when IGG pairs were working on the same question they
spent more time in different areas of the visualizations than GIG pairs.

8.3. COLLABORATIVE COUPLING STYLES 216

(a) Time spent in Coupling Styles.

(b) Time spent in Coupling Style by Condition Type Combination (e.g. GIG = blue, IGG = red)

Figure 8.5: Observed Timing of Collaborative Coupling Styles.

8.3.3 Temporal Sequence of Coupling Styles

Following Isenberg [137], Figure 8.6 shows the temporal sequence of the coupling
styles by pairs including how much time was spent in each style. GIG pairs (odd
numbered and shaded grey rows) are located on the bottom half, and IGG pairs
(even numbered and white rows) located on the top half. Help was for when the
session instructor had to restart SourceVis as it crashed or clarify an aspect about
the user tasks or interface. No Interaction (NI) was for when participants switched
between the different conditions as part of the user tasks.

8.3. COLLABORATIVE COUPLING STYLES 217

Figure 8.6: Temporal Sequence of Coupling Styles.

The Figure shows a high concentration of loosely coupled styles (blue shading)
in the Individual sections and closely coupled styles (yellow to red shading) in
the Group sections. When participants were loosely coupled they were in DPDA
and remained in that style. When participants did switch styles from DPDA, they
predominantly switched to VD and then back to DPDA. When pairs were closely
coupled they were mainly in VE. The pairs quite often switched to other closely
coupled styles for short amounts of time including: DISC, SPDA, and SPSA. Some

8.3. COLLABORATIVE COUPLING STYLES 218

IGG pairs begin with closely coupled styles and then complete the section using
loosely coupled styles. IGG pairs (2,4,6,16, and 18) and GIG pairs (9 and 19) exhibit
segments of SPDA. In particular Pairs 6 and 9 spent time in SPDA when they were
in the Individual section and working on different questions but in fact they were
the same question (see questions A9 and B8 from Appendix H).

8.3.4 Frequency vs. Time Spent in Coupling Styles

Figure 8.7 summarises our earlier findings and shows comparing frequency versus
time spent in each of the coupling styles for all pairs. The finding shows a similar
pattern for all styles where they were more frequently used than the amount of
time spent in them, except DPDA. VE was most frequently used at 36% and time
spent 32%. DISC was used 29% and time spent 17%. VD was used 14% and time
spent 14%. DPDA was was used 7% and time spent 28%. When pairs were in
DPDA during the Individual condition they spent more time in the style and
switched less often to other styles.

Figure 8.7: Frequency vs. Time Spent in all Coupling Styles by pairs.

8.4. PHYSICAL ARRANGEMENT STYLE 219

8.4 Physical Arrangement Style

Q8 - Which physical arrangement styles did the participants use? (§6.1.3)

We wanted to know what physical arrangement styles participants favoured
the most (§6.1.3) and how much time was spent in the arrangement styles. Our
table had three sides that participants could use: (A) Bottom, (B) Left, and (C) Right
(see Figure 6.3(a)). The fourth side of the table was not accessible as we had camera
equipment setup preventing participants from using that side. Subsequently
participants could stand in the following positions around the table based on
relative positions: (A) Together, (B) Kitty Corner, (C) Side by Side, (D) End Side,
and (E) Opposite Ends, which is a subset from Tang et al. [320] (see Figure 6.1).

8.4.1 Frequency of Arrangement Styles

Table 8.3 shows the raw data for the observed frequency of the arrangement styles
by each pair. Yellow cells indicate the largest value in a row. Red cells indicate
outlier values. In total we coded 1527 arrangement styles. Arrangement styles that
supported loosely coupled collaboration styles (798) were slightly more frequently
used than styles that supported closely coupled (729). The average number of
arrangement styles used by pairs were 69. Pair 7 used the most arrangement styles
(102). Apart (434) was the most frequently used style, followed by Side by Side
(331) and Together (300). 15 pairs had Apart as their most frequently used style.
6 pairs had Together as their most used style and three pairs Side by Side. Pairs
1 and 21 had both Together and Side by Side as their most frequently used style.
Pair 3 had End Side (28) as the most frequently used style, and rarely used Side by
Side (4) and Together (1). Pair 10 also rarely used Together (1). Opposite Ends was
the more popular style for when participants were working individually. Pairs 8
and 17 did not use Opposite Ends at all, while some pairs used this style fewer
than five times. Kitty Corner was the least frequently used style and Pairs 8 and 9
did not use this style at all. Table I.3 in Appendix I shows a more detailed table of
the arrangement styles separated by the Group and Individual conditions.

Figure 8.8(a) shows the observed frequency of the arrangement styles for all
pairs. The most frequently used style was Apart at 28%, Side By Side 22%, Together
20%, End Side 12%, Opposite Ends 12%, and Kitty Corner 6%. Apart was by far the
most frequently used style due to participants leaving the table to write answers
down. Excluding the Apart style, Side by Side was the most frequently used style
from the styles described by Tang et al. [320]. The table was most accessible from
the bottom side which is where we coded Side by Side (labelled A in Figure 6.3(a)).
When visualizations were displayed in full screen, Side by Side was the optimal

8.4. PHYSICAL ARRANGEMENT STYLE 220

Table 8.3: Frequency of Arrangement Styles by each pair. GIG = grey shaded rows
and IGG = white rows. Largest row value = yellow. Outlier values = red.

Pair Together Kitty Side by Side End Side Opposite Apart SUM
Corner Ends

1 15 1 15 7 11 15 64
2 12 2 16 5 15 24 74
3 1 12 4 28 10 19 74
4 17 3 12 6 13 16 67
5 27 1 25 9 11 21 94
6 16 5 15 8 10 24 78
7 17 1 17 17 19 31 102
8 21 0 27 1 0 18 67
9 13 0 17 7 13 19 69

10 1 1 10 3 13 18 46
11 27 7 26 4 9 23 96
12 19 4 21 5 6 23 78
13 11 15 11 16 13 25 91
14 4 5 11 12 1 16 49
15 11 3 12 6 13 22 67
16 10 2 13 5 4 17 51
17 19 2 14 3 0 7 45
18 10 3 11 11 4 17 56
19 18 12 12 6 3 25 76
20 11 14 19 6 4 27 81
21 9 3 9 7 7 6 41
22 11 2 14 4 9 21 61

SUM 300 98 331 176 188 434 1527
Category: Closely: 729 Loosely: 798

position for multiple participants to view and interact with the visualizations. Side
by Side and Together show similar variance in values. Together was used for when
participants were in discussion. End Side and Opposite Ends were used about the
same amount, but End Side had a larger variance in values. Kitty Corner was the
least frequently used.

We ran pairwise Wilcoxon rank sum tests at 95% confidence to compare if there
were any statistical significant differences between the frequency of arrangement
styles using a Bonferroni correction to the p-value. Table I.7 in Appendix I shows
the results from these tests. We found statistical differences the following styles:
Together and Kitty Corner (W = 407, p = 0.00162), Together and End Side (W =
368.5, p = 0.04563), Kitty Corner and Side by Side (W = 42.5, p = 0.00004263), Kitty
Corner and Apart (W = 10, p = 7.90×10−07), Side by Side and End Side (W = 406, p

8.4. PHYSICAL ARRANGEMENT STYLE 221

(a) Frequency of Arrangement Styles.

(b) Frequency of Arrangement Styles by Condition Type Combination (e.g. GIG = blue, IGG = red)

Figure 8.8: Observed Frequency of Arrangement Styles.

= 0.0018105), Side by Side and Opposite Ends (W = 385.5, p = 0.011412), End Side
and Apart (W = 45.5, p = 0.000060765), Opposite Ends and Apart (W = 36.5, p =
0.000021645). These tests show that Apart, Side by Side, and Together were quite
similar. Opposite Ends, End Side, and Kitty Corner were similar as well.

Figure 8.8(b) shows the observed frequency of the arrangement styles by
condition type combination. GIG pairs used 819 arrangement styles and IGG
pairs 708 styles. The Figure shows a similar pattern for both combinations. For
both combinations Apart was the most used arrangement style 26% for GIG and

8.4. PHYSICAL ARRANGEMENT STYLE 222

31% for IGG. GIG had a larger variance in values for Apart. Side by Side was used
20% for GIG and 24% for IGG. Together was used 21% for GIG and 19% for IGG.
End Side was used 13% for GIG and 9% for IGG. Opposite Ends was used 13% for
GIG and 11% for IGG. Kitty Corner was used 7% for GIG and 6% for IGG.

We ran the Wilcoxon rank sum test at 95% confidence to compare if there
were any statistical significant differences between the different condition type
combinations (e.g. GIG and IGG) with the frequency of arrangement styles. We
found no significant differences between any of the combinations. Given the box
plot in Figure 8.8(b) we thought that there maybe a significant difference for Apart
and Kitty Corner but this was not the case (W = 64, p = 0.8435).

8.4.2 Time Spent in Arrangement Styles

Table 8.4 shows the raw data for the observed amount of time spent in the ar-
rangement styles by each pair. The longest time was spent in the Side by Side
arrangement style (17110 seconds, approximately 4 and three quarter hours), then
Opposite Ends (10230 seconds, just under 3 hours), Apart (6703 seconds, just
under 2 hours), Together (5664 seconds, just over 1 and half hours), End Side (8809
seconds, approximately 1.5 hours), and Kitty Corner (4276 seconds, approximately
45 minutes). More time was spent in arrangement styles that supported closely
coupled collaboration styles (25562 second) than styles that supported loosely
coupled (22502 seconds). Pairs spent on average 2185 second approximately 36
minutes in the arrangement styles. Pair 4 spent the longest time in the arrange-
ment styles (3214 seconds), followed by Pair 6 (2757 seconds), and both of these
pairs were in the IGG condition. 16 pairs spent the longest time in Side by Side.
Five pairs spent the longest time in Opposite Ends. Pairs 8 and 17 spent no time in
Opposite Ends, but were the two pairs that spent the most time in Side by Side.
Pair 14 spent a very short amount of time in Opposite Ends too. Pair 4 spent more
time in Opposite Ends compared with other pairs, but spent the longest time in
Side by Side. Pairs 8 and 9 spent no time in Kitty Corner. Pair 3 spent the longest
time in End Side and the shortest time in Together (5 seconds) and Side by Side (56
seconds). Table I.4 in Appendix I shows a more detailed table of the arrangement
styles separated by the Group and Individual conditions.

Figure 8.9(a) shows the observed amount of time spent in the arrangement
styles for all pairs. The longest time was spent in Side by Side 36%, Opposite
Ends 21%, Apart 14%, Together 12%, End Side 11%, and Kitty Corner 6%. Side by
Side was the style most of the time was spent in and had the largest variance in
values. Most pairs used more arrangement styles than they spent time in them
except for Side by Side and Opposite Ends. This was partly due to pairs spending

8.4. PHYSICAL ARRANGEMENT STYLE 223

Table 8.4: Time spent (seconds) in the Arrangement Styles by each pair. GIG =
grey shaded rows and IGG = white rows. Largest row value = yellow. Outlier
values = red.

Pair Together Kitty Side by Side End Side Opposite Apart SUM
Corner Ends

1 216 18 669 363 740 214 2220
2 317 32 1255 149 529 314 2596
3 5 359 56 808 336 133 1697
4 291 103 1292 174 1056 298 3214
5 450 7 869 183 761 277 2547
6 334 176 880 460 557 350 2757
7 309 17 438 412 1032 419 2627
8 364 0 1498 39 0 261 2162
9 303 0 469 63 996 241 2072

10 18 36 956 55 635 360 2060
11 360 87 593 86 847 327 2300
12 257 61 718 204 322 263 1826
13 350 489 280 255 687 400 2461
14 78 297 637 433 3 320 1768
15 233 31 443 326 424 325 1782
16 278 75 794 265 248 233 1893
17 398 26 1461 218 0 57 2160
18 211 23 925 690 200 379 2428
19 325 553 767 141 103 347 2236
20 217 289 539 82 68 371 1566
21 110 73 726 118 320 83 1430
22 240 37 844 45 366 731 2263

SUM 5664 2789 17110 5569 10230 6703 48064
Category: Closely: 25562 Loosely: 22502

long periods of time in Side by Side and Opposite Ends during the Group and
Individual conditions. Both of these styles show the largest variance in values.
Opposite Ends increased in percentage from its frequency use as it was the style
most used during the Individual Condition (Pairs 7,9, and 13), even though Pairs
8 and 17 spent zero time and Pair 14 did not much time in this style. Pairs were in
Apart for both conditions and only spent a small amount of time in this style at
any one time.

We ran pairwise Wilcoxon rank sum tests at 95% confidence to compare if
there were any statistical significant differences between the time spent in the
arrangement styles using a Bonferroni correction to the p-value. Table I.8 in
Appendix I shows the results from these tests. We found statistical differences

8.4. PHYSICAL ARRANGEMENT STYLE 224

(a) Time spent in Arrangement Styles.

(b) Time spent in Arrangement Styles by Condition Type Combination (e.g. GIG = blue, IGG = red)

Figure 8.9: Observed Time Spent in Arrangement Styles.

between six of the styles: Side by Side and Together (W = 33, p = 7.5735×10−07),
Side by Side and Kitty Corner (W = 23, p = 0.000004371), Side by Side and End
Side (W = 438, p = 0.000008508), Side by Side and Apart (W = 440, p = 0.000006024),
Kitty Corner and Opposite Ends (W = 102, p = 0.01581), and Kitty Corner and
Apart (W = 86, p = 0.0039315). These tests show that Side by Side was quite
different from all other styles and pairs spent more time in this style. Kitty Corner
was also quite different from Side by Side, Opposite Ends, and Apart, and the
shortest time was spent in this style.

8.4. PHYSICAL ARRANGEMENT STYLE 225

Figure 8.9(b) shows the observed amount of time spent in the arrangement
styles by condition type combination. The Figure shows a similar pattern for both
combinations. For both combinations Side by Side was the style pairs spent the
longest time in, GIG 29% and IGG 42%. GIG had a larger variance in values for
Side by Side. For Opposite Ends GIG spent 27% and IGG 16%. For End Side GIG
spent 13% and IGG 11%. For Apart GIG spent 12% and IGG 16%. For Together
GIG spent 13% and IGG 11%. For Kitty Corner GIG spent 7% and IGG 5%.

We ran the Wilcoxon rank sum test at 95% confidence interval to compare if
there were any statistical significant differences between the different condition
type combinations (e.g. GIG and IGG) with the amount of time spent in the
arrangement styles. We found no significant differences between any of the
combinations, except Side by Side. There was a significant difference between
GIG and IGG for Side by Side (W = 24, p = 0.01577). This shows that IGG pairs
significantly spent more time in Side by Side than GIG pairs.

8.4.3 Temporal Sequence of Arrangement Styles

Figure 8.10 shows the temporal sequence of arrangement styles by pairs including
how much time was spent in each arrangement style. GIG pairs (odd numbered)
are located at the bottom half of the Figure, and IGG pairs (even numbered)
located at top half of Figure. No Interaction (NI) was for when participants
switched between the different conditions as part of the user tasks.

When pairs were loosely coupled they were primarily in the Individual condi-
tion and working at Opposite Ends of the table. This is illustrated by GIG pairs
(1, 5, 7, 9, 11, 13, 15, and 21) that have Opposite Ends coded for their middle
section (Individual Condition) in their respective rows. This is similar for IGG
pairs (2, 4, 6, 10, 12, 16, and 22) that have Opposite Ends coded at the start of their
row. Some pairs (3, 6, 14, 15, 16, and 18) spent quite a bit of time in End Side
during the Individual condition too. Pair 6 used End Side late in the Individual
condition. The other pairs sporadically used End Side, which was quite often
when a participant launched a new visualization from the Startup Screen. Some
pairs either rarely spent any time (14, 19 and 20) or no time (8, 17) at Opposite
Ends which goes against the trend of the style used by all other pairs during the
Individual condition. Apart was used in all condition types and was mainly used
when one participant was writing down an answer and apart from their colleague.

When pairs were closely coupled they were primarily in the Group condition
and working Side by Side at the table. When pairs were in Side by Side they
mostly transitioned to the Together arrangement. Some pairs (4, 10, 17, and 21)
had large stretches of being in Side by Side without transitioning to another style.

8.4. PHYSICAL ARRANGEMENT STYLE 226

These pairs did discuss with each but instead of facing each other (e.g. Together),
continued to look at the table. Pairs used Together for short periods as this style
was mainly used to discuss an aspect of the visualization or clarify with their
colleague about a question. Some pairs (1, 7, and 9) used Together for short
periods during the Individual condition. Kitty Corner was used for short periods
primarily in the Group condition, where there were lots of transitions between
arrangement styles by some pairs (3, 6, 13, 14, 19 and 20). Other pairs occasionally
used Kitty Corner and two pairs (8 and 9) did not use this arrangement style at all.

Figure 8.10: Temporal Sequence of Arrangement Styles.

8.4. PHYSICAL ARRANGEMENT STYLE 227

8.4.4 Frequency vs. Time Spent in Arrangement Styles

Figure 8.11 shows comparing frequency versus time spent in each of the arrange-
ment styles by pairs. The Figure shows all styles were more frequently used than
the amount of time spent in them, except Side by Side and Opposite Ends. Side by
Side was frequently used at 22% and time spent 36%. Apart was used 28% and
time spent 14%. Together was used 20% and time spent 12%. Opposite Ends was
used 12% and time spent 21%. End Side was used 12% and time spent 11%. Kitty
Corner was used 6% and time spent 6%.

This shows that pairs slightly used more arrangement styles that support
loosely coupled collaboration at 52% (Apart, Opposite Ends, End Side), than
closely coupled collaboration at 48% (Side by Side, Together, Kitty Corner). More
time, however, was spent in the arrangement styles that support closely coupled
collaboration at 54% , than loosely coupled collaboration 46%.

Apart was an arrangement style that did not have both participants located
around the table at once and is not one of the original arrangement styles from
Tang et al. [320]. Excluding Apart, arrangement styles that support closely cou-
pled collaboration were 67% frequently used and 62% time spent in those styles.
Excluding Apart, arrangement styles that support loosely coupled collaboration
were 33% frequently used and 38% time spent in those styles.

Figure 8.11: Frequency vs. Time Spent in all Arrangement Styles by pairs.

8.4. PHYSICAL ARRANGEMENT STYLE 228

8.4.5 Collaborative Coupling and Physical Arrangement Styles

Table 8.5 shows the percentage of time working in each coupling style and ar-
rangement style. The most amount time was spent in VE (32.1%) and Side by Side
(39.3%), with the combination of time spent in both styles being 22.2%. DPDA
(25.8%) and Opposite Ends (19.4%) had a combination of 18.6%. VD (15.1%) and
Apart (15.1%) had a combination of 14.7%. When pairs were working Side by Side
and not in VE they were either in DISC (8.2%) or SPDA (6.4%). If pairs were in
DISC but not Side by Side they were Together (6.6%). When participants worked
on different questions and not standing at Opposite Ends they were in End Side
(6.0%). Note that SPSA and DPSA were the least used coupling styles, and Kitty
Corner was the least used arrangement style.

Figure 8.12 shows the percentage of time working in each coupling style by
arrangement style for all pairs. VE was the coupling style pairs spent the most
time in while in the Side by Side arrangement style. DPDA was the coupling style
paris spent the most time in while at Opposite Ends. DISC was the coupling style
pairs spent the most time in while Together. VD was the coupling style pairs spent
the most time in while Apart. DPDA was the coupling style pairs spent the most
time in while in End Side. VE was the coupling style pairs spent the most time in
while in Kitty Corner.

Table 8.5 and Figure 8.12 can be summarised as follows. When pairs worked
closely coupled they were more closely arranged. When pairs worked loosely
coupled they were more loosely arranged.

Table 8.5: Percentage of time working in each coupling and arrangement style for
all pairs. White: <1%, Light grey: 1–5%, Dark grey: >5%. Yellow cells indicate the
largest values. Red cells indicate outlier values.

Coupling:
Arrangement: DISC SPSA SPDA VE VD DPSA DPDA Total Category:
Together 6.6 0.0 0.0 3.6 0.1 0.0 0.0 10.4
Kitty Corner 0.9 0.2 0.4 3.4 0.0 0.0 0.1 5.2 Closely: 55%
Side by Side 8.2 1.4 6.4 22.2 0.1 0.0 1.0 39.3
End Side 0.7 0.2 1.1 2.5 0.1 0.1 6.0 10.6

Loosely: 45%Opposite Ends 0.2 0.0 0.1 0.3 0.2 0.0 18.6 19.4
Apart 0.3 0.0 0.0 0.1 14.7 0.0 0.1 15.1

Total 16.9 1.9 8.0 32.1 15.1 0.2 25.8 100.0%
Category: Closely: 58.8% Loosely: 41.2%

8.5. PERCEIVED EFFECTIVENESS OF TECHNIQUES 229

Figure 8.12: Percentage of Time Spent in Coupling and Arrangement Styles.

8.5 Perceived Effectiveness of Techniques

Q9 - Which visualization techniques did the participants perceive to be the most effective?
(§6.1.4)

Figure 8.13 shows a boxplot of the perceived effectiveness of the individual
visualization techniques each participant stated in the post-survey questionnaire
(§6.3). The range was 0 for least effective and 10 for most effective. Most of the
visualizations rank somewhere between 6.5 and 8.5 for the average. The overall
perceived effectiveness of the visualizations is 7.5 for the average. The Startup
Screen is 7.7 for the average.

The visualization perceived most effective was the System Class Evolution
View (8.4 average). Three other evolution visualizations (System Evolution, System
Package Evolution, and System Class Evolution, all above 8.0 for average) rank
slightly below the System Class Evolution. The other two evolution visualizations
(Individual Package and Individual Class) rank very similar (7.5–8.0 average) and
have a similar range of values. The chart based visualizations rank well (7.5–7.8
average), with the Toxicity Chart (7.8 average) being the most effective of these
chart visualizations. The visualizations that employ Polymetric View encodings
(the evolution visualizations, and Class Blueprint), rank well, except the System

8.5. PERCEIVED EFFECTIVENESS OF TECHNIQUES 230

Hotspots View. The Metrics Explorer (7.4 average), Class Dependency (7.4 average)
Vocabulary (7.1 average) all rank about the same.

The System Class Evolution View had the least spread of values. Neither the
System Hotspots View nor the overall effectiveness had values that ranked 10. The
Metrics Explorer, System Evolution, and Individual Class Evolution had a similar
spread of values. The System Dependency View has the largest spread of values.
The System Dependency View and Startup Screen had the lowest values (1 and 2).

The visualizations perceived least effective were the System Explorer (6.5
average), System Dependency View (6.8 average), and System Hotspots View (6.8
average). Participants struggled with the System Dependency View especially
when trying to find and read the name of a class (§7). The System Hotspots View
was large and some participants got lost in this visualization especially if they
were trying to find a specific class. The System Explorer was a simple visualization
and had two scrollable lists, but ranked the lowest of all the visualizations.

Figure 8.13: Professional User Study - perceived effectiveness of each visualization
technique by participants, including the Startup Screen and Overall Effectiveness.

8.6. SUMMARY 231

8.6 Summary

In this chapter we presented the quantitative findings from the user study involving
professional software developers (§6).

All participants had the opportunity to work in both condition types, Group
and Individual. All pairs selected the Group condition for Section 3 of the user
tasks. This resulted in there only being two combinations GIG and IGG. Each of
these combinations had 11 pairs. Neither GII or IGI combinations eventuated.

The most frequently used coupling category was closely coupled (78%) then
loosely coupled (22%). The longest time was spent closely coupled (57%) then
loosely coupled (43%). When participants were in the Group condition they were
closely coupled and when in the Individual condition loosely coupled.

The most frequently used coupling styles were VE (36%), DISC (29%), and
VD(14%). The longest time spent in the coupling styles were DPDA (32%), VE
(30%), and DISC (17%). When pairs were in the Individual condition they were
mainly in DPDA where they stayed a long time and only transitioned to VD.
When pairs were in the Group condition they were mainly in VE and then quickly
transitioned to other closely coupled styles such as DISC, SPDA, and seldom SPSA.
Pairs frequently used more coupling styles than spending time in each coupling
style. This was except DPDA which had a low frequency but more time was spent
in that style due to the Individual condition.

The most frequently used arrangement styles were Apart (28%), Side by Side
(22%), and Together (20%). The longest time spent in the arrangement styles were
Side by Side (36%), Opposite Ends (21%), and Apart (14%). When pairs were in
the Individual condition they were mainly in Opposite Ends or End Side as they
were the optimal locations for utilizing the screen real estate for multiple users
working on different tasks. When pairs were in the Group condition they were
predominantly Side by Side and quickly transitioned to Together and occasionally
Kitty Corner. Pairs frequently used more arrangement styles than spending time
in each arrangement style. This was except Side by Side and Opposite Ends which
were the dominant styles in the Group and Individual conditions.

When pairs were in VE they were arranged Side by Side (22.2% of total time).
When pairs were in DPDA they were arranged at Opposite Ends (18.6% of time).
If pairs were arranged Side by Side and not in VE they were in DISC (8.2% of time)
or SPDA (6.4% of time). If pairs were in DPDA but not at Opposite Ends they were
arranged End Side (6.0% of time). If pairs were Apart they were in VD (14.7% of
time). Our findings show that when pairs worked closely coupled they were more
closely arranged, and when they worked loosely coupled they were more loosely
arranged.

8.6. SUMMARY 232

The perceived effectiveness of the visualizations rank somewhere between 6.5
and 8.5 for the average (10 = most effective and 0 = least effective). The overall per-
ceived effectiveness of the visualizations is 7.5 for the average, and Startup Screen
7.7 for the average. The visualization perceived most effective was the System
Class Evolution View (8.4 average). Three visualizations rank on average above 8
(System Class Evolution, System Evolution and System Package Evolution). The
visualizations perceived least effective were the System Explorer (6.5 average),
System Dependency View (6.8 average), and System Hotspots View (6.8 average).

The next chapter presents the conclusions, research contributions, key findings,
limitations, and future work for this thesis (§9).

Part V

Conclusions

233

Chapter 9

Conclusions

Contents
9.1 Research Contributions . 235

9.1.1 Designing Collaborative Software Visualizations 235

9.1.2 SourceVis: Software Visualization Application 235

9.1.3 Evaluation of Collaborative Software Visualization 236

9.2 Key Findings . 237

9.2.1 Collaborative Group Work 237

9.2.2 Designing Collaborative Software Visualizations 239

9.2.3 Designing Multi-touch Tables 241

9.3 Limitations . 243

9.3.1 Participants . 243

9.3.2 Procedure . 243

9.3.3 Apparatus . 244

9.4 Future Work . 245

9.4.1 New Software Visualizations 245

9.4.2 Apply Visual Information Analysis Framework 246

9.4.3 Evaluation of Collaborative Software Visualization 246

9.5 Summary . 247

234

9.1. RESEARCH CONTRIBUTIONS 235

In this thesis we have explored the design of software visualization systems for
collaborative co-located software development teams on large multi-touch tables.
We built our own multi-touch tables, designed a collaborative software visual-
ization application, and conducted user studies. In this chapter we summarise
our research contributions, present key findings, discuss limitations, and look at
potential directions future work.

9.1 Research Contributions

The thesis contributes a richer understanding of how pairs of developers make
use of shared software visualizations on large interactive multi-touch tables to
gain insight into how existing software systems are structured and how they have
evolved over different versions.

9.1.1 Designing Collaborative Software Visualizations

We built two multi-touch tables following existing multi-touch table hardware
guidelines [287, 321]. The first table was medium sized (28 inches, 1024x768
resolution) but was not large enough for collaborative group work, hence we built
a much larger sized (48 inches, 1280x800 resolution) table (§3).

We developed multi-touch collaborative software visualization prototypes
following an iterative approach [144]. To improve the design of these prototypes
we conducted preliminary user studies during the development life-cycle with 18
students (§5). These user studies helped to inform the design of SourceVis and to
develop the user study protocol for our subsequent professional user study.

9.1.2 SourceVis: Software Visualization Application

We designed SourceVis which is a collaborative software visualization application
for use on large multi-touch tables within a co-located environment (§4). SourceVis
allows multiple users to interact simultaneously or separately with the table either
as joint group work or parallel individual work.

SourceVis is designed for visualizing two key areas of software systems: the
structure and evolution. We adapted 13 information and software visualization
techniques to multi-touch interaction [10, 77, 312]. These visualizations allow
developers to explore the contents of a system, to examine how a system has been
structured, and to see how the structure of a system has evolved over different
versions. Multiple visualizations can be displayed at once, displayed in rotatable

9.1. RESEARCH CONTRIBUTIONS 236

and scalable windows, oriented in different directions, and support navigation ges-
tures for zooming and panning. The visualizations provide a high level overview
of a system and have features for filtering, searching, and drilling down for details
about package and class entities. New visualization techniques can be added by
extending existing SourceVis classes.

We demonstrated SourceVis with some Java open source systems from the
Qualitas Corpus (Version 20101126) [325]. The systems ranged in size from small
(< 10K LOC) to very large (> 200K LOC), and some contain more than 10 versions
(see Table 4.1). New systems to be visualized can be added.

9.1.3 Evaluation of Collaborative Software Visualization

To evaluate our multi-touch table and collaborative software visualization designs
we conducted a user study with professional software developers (§6).

We recruited 44 participants as 22 pairs. Each pair work or worked in the same
team within same organisation. In all 18 organizations from Wellington, New
Zealand provided participants. We specifically recruited participants from the
same team as we wanted them to have experience working with each other in a
professional environment.

The participants in the study worked in pairs performing software understand-
ing tasks with SourceVis and the large multi-touch table. The tasks involved
participants answering questions about the software systems from the Qualitas
Corpus (Version 20101126) using SourceVis. The questions are similar to the
kinds of questions that developers ask within industry [101, 170, 333, 334, 302].
Participants answered the questions either working in a group or as individuals.

We wanted to find out if participants preferred to work as a group or as
individuals. We observed which collaborative coupling categories, coupling styles,
and physical arrangement styles participants used and how much time was spent
in these styles. We asked participants to provide feedback on the strengths and
weaknesses of SourceVis and the multi-touch table and to suggest improvements.
We asked participants how the multi-touch table helped with team collaboration
and what visualization techniques they perceived to be the most effective.

The user study took up to two hours to complete. We video recorded the user
study with multiple cameras and asked participants to think aloud so we could
capture their thoughts for post-study analysis. We obtained both qualitative (§7)
and quantitive findings (§8).

9.2. KEY FINDINGS 237

9.2 Key Findings

We present the key findings of this research thesis, and the implications for collab-
orative software visualization using multi-touch tables. Our research revealed key
findings for collaborative group work, designing collaborative software visualiza-
tions, and designing multi-touch tables. The findings are based on the qualitative
(§7) and quantitative findings (§8) from our user study (§6).

9.2.1 Collaborative Group Work

We wanted to find out if participants preferred group or individual work (§8.1),
what coupling categories they used (§8.2), what coupling styles they used (§8.3),
and what physical arrangement styles they used (§8.4).

Design for joint group work over parallel individual work

We found that pairs preferred to work in groups rather than individuals to complete
the user tasks (§8.1). Groups worked jointly together and individuals worked
separately in parallel. Pairs experienced working in groups and as individuals.
All participants preferred to work as a group as evidenced by all 22 pairs working
together as a group in Section 3 of the user tasks.

We required pairs to work as individuals for either Section 1 or Section 2 and
alternated the order of pairs in which they performed the Individual condition.
We found the order in which the pairs performed the Individual condition had no
impact on their decision to work as a group for Section 3. Participants claimed that
working as a group was easier and more effective. We observed pairs completing
questions in the Group condition faster than in the Individual condition.

Some participants appreciated that the multi-touch table allowed them to work
as individuals at the same time, but they preferred group work. We observed that
most participants struggled performing parallel individual work on the the table.
Some pairs even completed the Individual condition as a group.

The key finding is that collaborative software visualization systems should
primarily be designed to support joint group work. Individuals working separately
should be a secondary design consideration. This reinforces the findings from
Isenberg et al. [141, 142] as applied to collaborative software visualization.

Support a flexible variety of coupling styles.

We found that pairs used more closely coupled categories to complete the user
tasks (§8.2). We recorded almost 80% of categories used were closely coupled and

9.2. KEY FINDINGS 238

20% loosely coupled. We recorded almost 60% of time spent in closely coupled
categories and 40% loosely coupled. When pairs were in the Group condition they
were mostly closely coupled. When pairs were in the Individual condition they
were almost exclusively loosely coupled.

We found that pairs used more closely coupled styles (Viewing Engaged -
VE, Discussion - DISC, Same Problem Different Area - SPDA, Same Problem
Same Area - SPSA) than loosely coupled styles (Different Problem Different Area
- DPDA, Viewing Disengaged - VD, Different Problem Same Area - DPSA) to
complete the user tasks (§8.3). Pairs spent the most time in closely coupled styles
then loosely coupled styles. When pairs were in the Group condition they were
mainly viewing engaged (VE), with one participant controlling the interface, and
regularly discussed questions or aspects of the interface (DISC). Occasionally pairs
would separate the task and work in different areas on the table (SPDA). When
pairs were in the Individual condition they were mainly working on different
questions and different areas of the table (DPDA), and occasionally switched to
writing answers down (VD). Pairs seldom spent time touching the interface in the
same area while working on the same or different questions (SPSA, DPSA) except
for learning purposes.

The key finding is that collaborative software visualization systems should
support a flexible variety of coupling styles. This reinforces the findings from Tang
et al. [320] as applied to collaborative software visualization.

Support fluid transitions between coupling and arrangement styles

We found the most frequently used arrangement styles by pairs were standing Side
by Side, standing at Opposite Ends, and standing Apart (§8.4). The most time was
spent in the Side by Side and Opposite Ends arrangement styles. When pairs were
in the Group condition they were mainly Side by Side and regularly transitioned to
Together but rarely to Kitty Corner. When pairs were in the Individual condition
working on different questions they were mainly in Opposite Ends and sometimes
End Side as these styles were the optimal locations for utilizing the screen real
estate. Pairs frequently used more arrangement styles than spending time in each
arrangement style. This was except Side by Side and Opposite Ends which were
the dominant styles in the Group and Individual conditions respectively.

We compared coupling styles to arrangement styles. Our findings show that
when pairs worked closely coupled they were more closely arranged, and when
they worked loosely coupled they were more loosely arranged. When pairs were
closely coupled they were arranged Side by Side, frequently transitioned to other
closely coupled styles, and occasionally transitioned to one loosely coupled style

9.2. KEY FINDINGS 239

(VD). When pairs were loosely coupled working on different questions they were
arranged at Opposite Ends of the table and less frequently transitioned to other
loosely coupled styles.

The key finding is that collaborative software visualizations systems and multi-
touch tables should support fluid transitions between both coupling styles and
arrangement styles. This reinforces the findings from Tang et al. [320] and Isenberg
et al. [141, 142] as applied to collaborative software visualization.

9.2.2 Designing Collaborative Software Visualizations

We wanted to find out from participants their perceptions of the strengths (§7.1)
and weaknesses (§7.2) of the visualizations and to suggest improvements (§7.3).

Design visualizations for closely coupled arrangements with rotation features

The preferred coupling style was viewing engaged (VE) and arrangement style
Side by Side. This meant one participant was mainly controlling the interface most
of the time, the other participant viewing, and both participants standing next to
each other on the longer side of the table. When pairs were working on parallel
individual work, participants displayed visualizations in windows and manually
rotated them to face their direction. This meant participants had the freedom to
stand in different arrangements.

The key finding is collaborative software visualizations should primarily be
designed to be viewed from a Side by Side arrangement with features to rotate
the visualizations. When visualizations need to be viewed from different view
points such as in parallel individual work there should be lightweight options for
rotating visualization windows to face different directions. There should also be
automatic options to perform the rotation operations. This reinforces the findings
from Kruger et al. [180] as applied to collaborative software visualization.

Provide functionality in the appropriate locality.

When participants were displaying a visualization and wanted to launch a new
overview visualization they they had to navigate to the start up screen rather
than having a display on demand menu to launch a visualization. Participants,
however, could launch new detailed visualizations through the on demand pie
menu by tapping and holding elements in a visualization. When a visualization
was at full screen and a participant were on one side of the table and wanted to
select an option from a menu on the other side of the table they had to ask their
colleague to perform the action for them.

9.2. KEY FINDINGS 240

The key finding is collaborative software visualizations should provide func-
tionality in the appropriate locality. For example global functionality like menu
options should be available from anywhere in the visualizations and irrespective
of where users are physically located. Local functionality should only be avail-
able for a single user and close to where they are physically located such as in
personal visualization windows. This reinforces the findings from Scott et al. [291]
as applied to collaborative software visualization.

Provide consistent user interactions and visual interface design.

We found that the design of the user interactions and visual interface was not as
consistent as we expected.

Some participants found the navigation gestures for zooming and panning
performed differently across the suite of visualizations. Sometimes the naviga-
tion gestures did not perform consistently when more than one participant was
interacting simultaneously.

Multiple visualization windows could be displayed at once. Participants found
manipulating windows by dragging, resizing, or rotating them not that easy.
Occasionally resizing a window to very small made the window disappear.

The pie menu allowed participants to easily switch between visualizations for
packages and classes. When participants used the pie menus many participants
tried to select a menu item by dragging their finger to a pie segment to perform
gestural activation [191], but a separate touch was required.

At times some menus (pie menu and entity properties) were displayed at dif-
ferent zoom levels and occasionally displayed half off the screen. When elements
are displayed on demand they need to be displayed at an appropriate zoom level
that is consistent with other elements on display.

Many participants found entering text using the virtual keyboard difficult,
as the keys did not perform as expected, especially the enter key. Participants
suggested using a more familiar consistent physical keyboard to enter text.

This was the first time participants had used SourceVis before and there were
many visualizations. We observed that participants occasionally lost context of
which visualization they were currently looking at. Adding titles and breadcrumb
navigation to the visualizations would aid users in understanding the context of
the visualizations.

Some visualizations used charts to display information, which participants
perceived to be very effective. Many visualizations utilized Polymetric encodings
and colour coded classes by type. Some participants forgot what these visual
encodings represented. Adding information such as a legend to the user interface

9.2. KEY FINDINGS 241

and visualizations should help users to remember what the visual encodings
represent.

The key finding is collaborative software visualizations should provide con-
sistent user interaction and visual interface design across all visualizations. Pro-
viding consistent gestural interactions and visual interface design will potentially
increase the usability and improve the user experience of a collaborative software
visualization system.

9.2.3 Designing Multi-touch Tables

We wanted to find out how the multi-touch table helped with team collaboration
when participants completed the user tasks (§7.4).

Provide high resolution workspace.

We found that the resolution of the table impacted displaying multiple visual-
ization windows next to each other. When pairs were at Opposite Ends and
visualization windows were oriented to face each end, windows quite often over-
lapped each other. To prevent windows from overlapping, participants reduced
the size of the windows with scale gestures. When pairs were Side by Side visu-
alization windows were displayed over the top of each other which prevented
seeing the visualization below.

We found that text was readable when visualizations were displayed at full
screen. We found that reading text displayed in visualization windows was
difficult when windows were reduced in size.

The key finding is multi-touch tables should provide a high resolution workspace.
The resolution of our multi-touch table was limited by the output of the projec-
tor which was 1280x800 pixels. The resolution should be equal or greater than
contemporary desktop computers. Providing a high resolution workspace would
reduce windows overlapping and make text easier to read. This reinforces the
findings from Tang et al. [320] as applied to collaborative software visualization.

Provide appropriate table space.

We found that when pairs were performing joint group work the physical size
of the multi-touch table was appropriate. The table allowed participants to per-
form different roles when interacting. It was a seamless process for participants
to coordinate swapping roles. Working together as a group made participants
more aware of what each other was doing compared with working separately as
individuals, and encouraged participants to communicate with each other.

9.2. KEY FINDINGS 242

We found that when pairs were performing parallel individual work the size
and resolution of the table was not appropriate. This forced pairs to mainly
physically be arranged at opposite ends of the table.

The key finding is multi-touch tables should provide appropriate table space.
Depending on the task and number of users interacting there should be appropri-
ate table space for joint group work or parallel individual work. The physical size
should not prevent users from reaching all parts of the table from any side [331].
This reinforces the findings from Scott et al. [291].

Differentiate between simultaneous user interactions.

While the multi-touch features of the table allowed multiple users to interact
at once, we observed that most of the time one participant was controlling the
interface. When pairs were interacting simultaneously the system could not
differentiate between the touch points of the participants. When pairs performed
simultaneous navigation gestures on the canvas of a visualization or manipulated
the same element within a visualization the system was confused as to what action
to perform, so the navigation gestures and manipulation of elements did not
perform as the pairs expected. These issues were partly due to the multi-touch
table suffering from an inconsistent touch experience, and on occasions there were
problems with the precision and accuracy of detecting touch points.

The key finding is multi-touch tables should differentiate between simultane-
ous user interactions to detect different users interacting with the system. Differen-
tiating between user interactions will offer a better user experience for multi-user
multi-touch table applications. Many approaches have tried to differentiate be-
tween multiple users touching a multi-touch table simultaneously by shadows of
the arms of users [377], shoes of users [276], fingerprints [129], skin sensing [274],
and assigning users to specific physical seats [79].

9.3. LIMITATIONS 243

9.3 Limitations

We now discuss the limitations of our professional user study (§6) with respect to
the qualitative findings (§7) and quantitative findings (§8). These limitations relate
to the participants, procedure, and apparatus used in the study.

9.3.1 Participants

We recruited 44 participants who worked in 22 pairs. 41 of the participants were
male. We would have liked to have recruited more diverse participants. Our
participants ranged in age from 18-45+. 60% of our participants were intermediate
developers or higher and had more than 5 years of software development experi-
ence. We would have liked to have recruited exclusively intermediate developers
and higher as they would have more experience. Given how time consuming it
was to recruit the participants, and that the study was partly qualitative, we felt
we had enough participants. If we were to do a purely quantitative comparative
study with SourceVis and another software visualization tool we would hope to
recruit more participants.

Most participants were recruited from Wellington. We could have recruited
from more locations but that would have been more expensive. We could have
conducted the user study in another city but we felt that this would be too time
consuming and again more expensive to run.

This was the first time participants had used SourceVis and a large multi-touch
table before, hence they were all novice users. Most participants had limited
experience with software visualization tools, although some participants had
experience with the Gource [59] software evolution visualization tool as it was
used within their organisation.

9.3.2 Procedure

The user study had limited time in a fixed location. We gave participants only 15
minutes to explore SourceVis with training systems before conducting the user
study. One participant explicitly stated that the study was not enough time to learn
SourceVis in full, which is what we expected. The user study was in a lab, and not
in the participants’ familiar working environment. We asked participants to think
aloud which may have changed the way they performed. In the future we would
like to conduct field studies over a longer period of time to allow participants to
become more familiar with SourceVis and to observe how they perform.

The questions we asked in the study were reflective of the types of questions
developers ask about software within industry [101, 170, 333, 334, 302]. The ques-

9.3. LIMITATIONS 244

tions, however, may not necessarily have been the types of questions participants
would ask about their own software. The user tasks did not consider the following
maintenance tasks: debugging of code, adding in new features to a system, or
performing a refactoring as these tasks were not currently supported by SourceVis.
Instead the questions we asked were to do with analysis and identifying certain
aspects of a system such as large packages and classes. We envisaged that de-
velopers would then use other tools like IDEs to perform these aforementioned
tasks.

This was a study on understanding software systems participants’ may not
have been familiar with. We did not confirm if any of the participants were familiar
with or had made any contributions to the software systems used in the study.
Deploying SourceVis on software developed by participants’ and letting them use
SourceVis outside a lab study would help them to decide what to look for within
a system and determine which visualizations to utilize.

We forced pairs to work in certain conditions either as groups or as individuals.
If we had not forced the pairs to works as individuals it is likely they would have
completed the user study working as a group as that was the preferred option.
Forcing the pairs to work in certain conditions may have affected which coupling
and arrangement styles they used.

9.3.3 Apparatus

The multi-touch table suffered from inconsistent touch detection at times. Some
participants had problems with the touch detection while others didn’t. For
participants that did have problems with the touch detection this affected the way
they interacted with the table and lead a few pairs to take turns when interacting
with the table. Some participants felt the resolution of the table was too low
compared with contemporary desktop computer screens. We would like to explore
commercial multi-touch tables such as the Microsoft PixelSense1 table to see if
they would alleviate the touch detection, low resolution, and performance issues.

Due to the design of our multi-touch table, we only used three sides of the
table because the fourth side was used for the video and audio equipment. If we
were to run a similar study again we would like to use a table that allowed all four
sides to be utilized.

1http://www.microsoft.com/en-us/pixelsense/default.aspx

9.4. FUTURE WORK 245

9.4 Future Work

As part of the post-study questionnaire (§6.3) we asked participants for any further
feedback and followed up with a post-interview as the last activity in the study.
We would like to implement new software visualizations. We would like to apply
a framework for visual information analysis to see how the participants engaged
with the visualizations. We would like to conduct further user studies, to compare
SourceVis against existing software exploration tools and an ethnographic field
study of SourceVis being used by developers in their workplace environment.

9.4.1 New Software Visualizations

Our evolution visualizations focused on structural changes between different
versions of a system. Many of the participants were interested with tracking
how many contributions they had made on a software development project. We
would like to create visualizations of code contributions by developers on a project
based on commits to version control systems. We would envisage implementing
something similar to Gource [59] or Code Swarm [229] for multi-touch tables.

SourceVis was developed for multi-touch tables. Some participants suggested
that a vertical display may fit better with a work environment as software devel-
opment teams are familiar with whiteboards for visualizing work flow.

We conducted a user study of software visualization prototypes using a large
visualization wall but at the time there were issues with the hardware and running
software applications [10]. We would like to adapt SourceVis to our large visual-
ization wall since our visualization wall is now more mature and better supports
client applications.

We did not compare a horizontal tabletop to a vertical display wall. We would
like to conduct a quantitative study with SourceVis between the multi-touch table
and visualization wall to see how the physical orientation of the display affects
collaborative software visualization and if there are any advantages to using a
large visualization wall.

Working as individuals on certain development tasks such as programming is
critical for the success of a project. Given our study concerned parallel individual
work we would also like to explore personal displays as well as shared surfaces
within a multi-surface environment for software analysis tasks.

9.4. FUTURE WORK 246

9.4.2 Apply Visual Information Analysis Framework

We would like to perform further data analysis of how the pairs in our professional
user study engaged with our visualizations during their information analysis
process to answer the questions. We would like to apply the visual information
analysis framework from Isenberg et al [143]. The aim of this framework is to help
inform the design of collaborative information visualization applications. The
framework involves eight processes: Browse, Parse, Discuss Collaboration Style,
Establish Task Strategy, Clarify, Select, Operate, and Validate. We would like to
see if these processes are the same for collaborative software visualization and to
discover any new ones.

9.4.3 Evaluation of Collaborative Software Visualization

Wettel et al. [362] conducted a quantitative comparative user experiment with
their software visualization tool CodeCity which utilizes Polymetric View tech-
niques against two state of the art exploration tools (Eclipse and a spreadsheet
of metrics data). The experiment involved only single users. The results of the
study validated that CodeCity outperformed Eclipse and the metrics data in both
correctness and completion times. We would like to conduct a similar controlled
quantitative comparative user experiment between SourceVis, state of the art
software exploration tools (e.g. Eclipse and metrics data), and CodeCity to see if
pairs of developers using SourceVis outperform these tools.

Our professional user study was in a controlled lab (§6). In the future we
would like to conduct ethnographic field studies of SourceVis in a workplace
environment similar to the field study conducted with IMPROMPTU [34]. We
would like to deploy SourceVis and our multi-touch table to see how teams of
professional software developers would use them over a set period of time.

9.5. SUMMARY 247

9.5 Summary

Most software visualization systems and tools are designed from a single-user
perspective and are bound to the desktop, IDEs, and the web. These design
decisions do not allow users to collaboratively analyse software or easily interact
and navigate visualizations within a co-located environment at the same time.

This thesis has presented an exploratory study of collaborative software vi-
sualization using multi-touch tables in a co-located environment. The thesis
contributes a richer understanding of how pairs of developers make use of shared
visualizations on large interactive multi-touch tables to gain insight into how soft-
ware systems are structured and how they have evolved over different versions.

We designed a collaborative software visualization application, called Source-
Vis, that contained a suite of 13 visualization techniques adapted for multi-touch
interaction. We built two large multi-touch tables (28 and 48 inches) following
existing hardware designs, to explore and evaluate SourceVis. We then conducted
both qualitative and quantitative user studies, culminating in a study of 44 profes-
sional software developers working in pairs.

We found that pairs preferred joint group work, used a variety of coupling
styles, and made many transitions between coupling and arrangement styles. For
collaborative group work we recommend designing for joint group work over
parallel individual work, supporting a flexible variety of coupling styles, and
supporting fluid transitions between coupling and arrangement styles.

We found that the preferred style for joint group work was closely coupled
and arranged side by side. We found some global functionally was not easily
accessible. We found some of the user interactions and visual interface were not
designed consistently. For the design of collaborative software visualizations
we recommend designing visualizations for closely coupled arrangements with
rotation features, providing functionality in the appropriate locality, and providing
consistent user interactions and visual interface design.

We found sometimes visualization windows overlapped each other and text
was hard to read in windows. We found when pairs were performing joint group
work the size of the table was appropriate but not for parallel individual. We found
that because the table could not differentiate between different simultaneous users
that some pair interactions were limited. For the design of multi-touch tables we
recommend providing a high resolution workspace, providing appropriate table
space, and differentiating between simultaneous user interactions.

We plan to improve SourceVis by creating new visualizations, perform further
data analysis of how the pairs engaged with our visualizations, and conduct
quantitative comparative user experiments between SourceVis and Eclipse.

Part VI

Appendices

248

Appendix A

Human Ethics Approval

The following documents are our approved human ethics application for con-
ducting user studies on software visualization tools at Victoria University of
Wellington, New Zealand.

249

HUMAN ETHICS COMMITTEE

Application for Approval of Research Projects
Please write legibly or type if possible. Applications must be signed by supervisor (for student projects) and Head of

School

Note: The Human Ethics Committee attempts to have all applications approved within three weeks but a longer period may
be necessary if applications require substantial revision.

1 NATURE OF PROPOSED RESEARCH:

(a) Staff Research Student Research (tick one)

(b) If Student Research Degree PhD Thesis Course Code COMP690

(c) Project Title: Visual Software Analytics - User studies of software visualisation tools

2 INVESTIGATORS:

(a) Principal Investigator

 Name Craig Anslow

 e-mail address craig@ecs.vuw.ac.nz

 School/Dept/Group Engineering and Computer Science

(b) Other Researchers
 Name

Position

Professor James Noble Primary Supervisor

Dr. Stuart Marshall Supervisor

(c) Supervisor (in the case of student research projects)

Professor James Noble

3 DURATION OF RESEARCH

(a) Proposed starting date for data collection once this ethics form has been approved
 (Note: that NO part of the research requiring ethical approval may commence prior to approval being given)

(b) Proposed date of completion of project as a whole March 2011

4 PROPOSED SOURCE/S OF FUNDING AND OTHER ETHICAL

 CONSIDERATIONS

(a) Sources of funding for the project
 Please indicate any ethical issues or conflicts of interest that may arise because of sources of funding
 e.g. restrictions on publication of results

- Telstra Clear Postgraduate Scholarship
- This project is part of a larger multi-University research colloboration. This project is being
undertaken by Victoria University as part of the Software Process and Product Improvement (SPPI)
project led by the University of Auckland. There are no ethical issues or conflicts of interest arising
from this relationship. The SPPI project is funded by the Foundation for Research, Science and
Technology (FRST). For further information see, https://wiki.auckland.ac.nz/display/csisppi

(b) Is any professional code of ethics to be followed Y N

 If yes, name

(c) Is ethical approval required from any other body Y N

 If yes, name and indicate when/if approval will be given

5 DETAILS OF PROJECT

 Briefly Outline:

(a) The objectives of the project

The project objective is to understand how software developers use software visualisation tools in their
daily work when developing new software and maintaining existing software. This will inform future
research into developing better tools to support software visualisation.

b) Method of data collection

We will conduct user studies of developers using software visualisation tools and prototypes. The
software used with the tools and prototypes will come from free and open-source software (FOSS) that
is freely accessible over the Internet and software from companies that choose to participate in this
research. We will collect data from digital and audio recordings, user actions captured using log files,
and eye tracking recordings. We will also make observations ourselves when participants are using the
software visualisation tools.

(c) The benefits and scientific value of the project

Our user studies will expose how our subjects actually use the software visualisation tools, how software
languages have been used, what features of languages are used, and better inform programming
pedagogy, software language design, and software understanding.

(d) Characteristics of the participants

Participants will be rofessional or student software developers and other researchers.

We are not sure at this stage of exact numbers as we will be conducting several software visualization
usability studies in the course of building our own tools and testing with others.

Ideally we would hope to test our software tools with users from somewhere up to 50 developers
throughout the development stages of building our tool.

(e) Method of recruitment

Student software developers will be recruited via our school mailing lists. Software developers will be
recruited through our software visualisation research survey and New Zealand companies who have
agreed to participate in our joint Software Product and Process Improvement (SPPI) Project.

(f) Payments that are to be made/expenses to be reimbursed to participants

None

(g) Other assistance (e.g. meals, transport) that is to be given to participants

None

(h) Any special hazards and/or inconvenience (including deception) that participants will encounter

none

(i) State whether consent is for:

(i) the collection of data Y N

(ii) attribution of opinions or information Y N

(iii) release of data to others Y N

(iv) use for a conference report or a publication Y N

(v) use for some particular purpose (specify) Y N

- user testing of software visualisation tools.

- The data will be shared with my supervisors and other investigators
working on the SPPI project, including:

Dr. Ewan Tempero, Professor John Grundy, and Professor John Hosking (University of Auckland)
Dr. Jens Dietrich (Massey University)
Dr. Neville Churcher (University of Canterbury)

 Attach a copy of any questionnaire or interview schedule to the application

(j) How is informed consent to be obtained (see sections 4.1, 4.5(d) and 4.8(g) of the Human Ethics Policy)

 (i) the research is strictly anonymous, an information sheet is supplied and
informed consent is implied by voluntary participation in filling out a questionnaire for

example (include a copy of the information sheet) Y N

 (ii) the research is not anonymous but is confidential and informed consent
will be obtained through a signed consent form (include a copy of the consent form

and information sheet) Y N

 (iii) the research is neither anonymous or confidential and informed consent
will be obtained through a signed consent form (include a copy of the consent form

and information sheet) Y N
 (iv) informed consent will be obtained by some other method (please specify

and provide details) Y N

 With the exception of anonymous research as in (i), if it is proposed that written consent will

not be obtained, please explain why

(k) If the research will not be conducted on a strictly anonymous basis state how issues of

confidentiality of participants are to be ensured if this is intended. (See section 4..1(e) of the Human

Ethics Policy). (e.g. who will listen to tapes, see questionnaires or have access to data). Please
ensure that you distinguish clearly between anonymity and confidentiality. Indicate which of
these are applicable.

 (i) access to the research data will be restricted to the investigator

 Y N
 (ii) access to the research data will be restricted to the investigator and their

supervisor (student research) Y N

 (iii) all opinions and data will be reported in aggregated form in such a way

that individual persons or organisations are not identifiable Y N

 (iv) Other (please specify)

This project is part of a larger multi-University research being done by the investigators in colloboration
with Dr Ewan Tempero, Dr John Grundy, and Dr John Hosking of the University of Auckland, Dr Neville
Churcher of the University of Canterbury, and Dr Jens Dietrich of Massey University. We will ask for
consent that these five academics may also have access to the raw data.

(l) Procedure for the storage of, access to and disposal of data, both during and at the

conclusion of the research. (see section 4.12 of the Human Ethics Policy). Indicate which are
applicable:

 (i) all written material (questionnaires, interview notes, etc) will be kept in

a locked file and access is restricted to the investigator Y N

 (ii) all electronic information will be kept in a password-protected file and

access will be restricted to the investigator Y N

 (iii) all questionnaires, interview notes and similar materials will be
destroyed:

 (a) at the conclusion of the research Y N

 or (b) 3 years after the conclusion of the research Y N

 (iv) any audio or video recordings will be returned to participants and/or

electronically wiped Y N

 (v) other procedures (please specify):

 If data and material are not to be destroyed please indicate why and the procedures

envisaged for ongoing storage and security

(m) Feedback procedures (See section 7 of Appendix 1 of the Human Ethics Policy). You should indicate

whether feedback will be provided to participants and in what form. If feedback will not be
given, indicate the reasons why.

The research will be made available online and all participants will be given options to where they can
locate the published papers / technical reports.

(n) Reporting and publication of results. Please indicate which of the following are appropriate.
The proposed form of publications should be indicated on the information sheet and/or
consent form.

 (i) publication in academic or professional journals Y N

 (ii) dissemination at academic or professional conferences Y N

 (iii) deposit of the research paper or thesis in the University Library (student

research) Y N

 (iv) other (please specify)

The results of the user studies will contribute towards a PhD thesis.

Signature of investigators as listed on page 1 (including supervisors) and Head of School.

 NB: All investigators and the Head of School must sign before an application is

submitted for approval

 Date

Craig Anslow (PhD Student) Date

Professor James Noble and Dr. Stuart Marshall Date

 Head of School:

Professor John Hine Date

Phone 0-4-463 5676

Fax 0-4-463 5209

Email Allison.kirkman@vuw.ac.nz

TO Craig Anslow

COPY TO Dr Stuart Marshall, Professor James Noble, Supervisors

FROM Dr Allison Kirkman, Convener, Human Ethics Committee

DATE January 16, 2009

PAGES 1

SUBJECT Ethics Approval: No 16262, Visual Software Analytics - User
studies of software visualization tools

Thank you for your application for ethical approval, which has now been considered by
the Standing Committee of the Human Ethics Committee.

Your application has been approved from the above date and this approval continues
until 30 March 2011. If your data collection is not completed by this date you should
apply to the Human Ethics Committee for an extension to this approval.

 Best wishes with the research.

 Allison Kirkman
 Convener

Appendix B

User Study Information and Consent
Forms

The following documents are information and consent forms for participants to
read and consent to participate in our user studies.

257

School of Engineering and Computer Science

User Studies of Software Visualization Tools
Information Sheet

Introduction
This study contributes towards the overall completion of a PhD. The topic of the PhD is Multi-
touch Table User Interfaces for Collaborative Software Visualization. Craig Anslow from the
School of Engineering and Computer Science is conducting this study. The purpose of this
particular study is to better understand how developers use collaborative software visualization
techniques and tools when developing and analyzing software.

An enhanced understanding of the use of visualization techniques and tools will facilitate research
into building better software visualization tools and multi-touch user interfaces.

This study is part of larger multi-University research collaboration. This study is being undertaken
by Victoria University of Wellington as part of the Software Process and Product Improvement
(SPPI) project led by the University of Auckland. The Ministry of Science and Innovation (MSI)
now called The Ministry of Business, Innovation, and Employment (MBIE) fund the SPPI project.
For further information see, https://wiki.auckland.ac.nz/display/csisppi
The study will be conducted with the approval of the Victoria University of Wellington's Human
Ethics Committee.

Participation
This study will consist of you interacting with a software visualization tool. We will video and
audio record your activities and encourage you to “Think Aloud”. We will take photos of you during
our study to illustrate how users interact with our visualizations. We will conduct a questionnaire
and de-brief session at the end of the study regarding the use of the software visualization tool.
Your participation in the study will take about 90 minutes, though may take longer if agreed. Your
participation is completely voluntary.
In terms of protecting your anonymity, you will be assigned a unique ID so that your identity will
only be accessible to the research investigators. The unique identifiers will be used to aggregate
your submissions but will in no way be used to identify you personally or your company. No names
or other methods of identifying you in reports will be used. At no time will anyone be able to
identify any of the participants by using any of the reported material.

All data disclosed to researchers in this project is confidential. Only researchers on this project will
be analyzing the data. The researchers are neutral third parties and are not responsible for any
evaluation of your work. The data will be used to improve future tools to support software
visualization and multi-touch user interfaces. The data may also be presented in aggregate form in
academic papers and presentations. All data will be kept secure and protected at all times in
password-protected files on a secure server. The results of the study data will be kept for three
years. At the end of this time electronic data files will be deleted.
Please do not hesitate to ask any questions you may have about this study at any time.

Withdraw
If you choose, you can withdraw from the study up to one month after your participation in the
study. Please contact the principal investigator to withdraw.

Results
Aggregated results from the study will be published in academic journals, conferences, and
technical reports. Those participants who are keen to see the overall results may supply their email
address via the consent form.

The results of the user studies will also contribute towards a PhD thesis.

We would like to sincerely thank you for your participation in this user study.

Researchers
Principal Investigator
Craig Anslow
PhD Student
School of Engineering and Computer Science
Victoria University of Wellington
Email: craig@ecs.vuw.ac.nz

Investigator
Dr. Stuart Marshall
School of Engineering and Computer Science
Victoria University of Wellington
Phone: 463 6730
Email: stuart@ecs.vuw.ac.nz

Investigator
Professor James Noble
School of Engineering and Computer Science
Victoria University of Wellington
Phone: 463 6736
Email: kjx@ecs.vuw.ac.nz

Investigator
Professor Robert Biddle
Department of Computer Science
Carleton University Canada

Investigator Assistant
Roger Cliffe
School of Engineering and Computer Science
Victoria University of Wellington

School of Engineering and Computer Science

User Studies of Software Visualization Tools
Written Consent Form

I have been given and have understood an explanation of this research project and the
confidentiality conditions. I have had an opportunity to ask questions and have had them answered
to my satisfaction.

I agree to participate in a user study session and follow-up debrief session for the purpose of this
research and resulting publications. I consent to the collection, recording, and use of observations of
my behaviour, my perceptions, experiences, opinions, and information in this research.

I understand that I may withdraw from this study up to one month from today's date without
explanation and that in that case no data relating to my participation will appear in the final results.

(Please circle)

Do you agree to have this session digitally video-recorded? YES NO

Do you agree to have this session and debrief session audio-recorded? YES NO

Do you agree to have one or more photographs of you taken during this session? YES NO

Do you agree to the data of this user study being released to other investigators YES NO
working on this project?

Would you like to receive publications resulting from your involvement in this study? YES NO

If so, please provide and email address and/or telephone number at which you can be contacted to
arrange sending you a copy of the publications in question:

__

__

Please sign below to indicate your agreement to the all of the above.

Date:
Participant ID:

Participant Name:

Signature: __

Appendix C

User Study Recruitment Email

Subject: Request for Participants: Study on Tools for Co-Located Software Development Teams
using large iPad like devices

Dear Sir/Madam,

I got your contact details from VicCareers at Victoria University if Wellington.

I was wondering if any software developers at your company XYZ would be interested in partici-
pating in my exciting research project? It would be fantastic to get some participants from your
company!

Would anyone like to come and play with some big shiny interactive toys (e.g. large MS Surface /
Apple iPad tablet like devices)?

My name is Craig Anslow and I am doing a PhD at Victoria University in software engineering
within the School of Engineering and Computer Science. I am looking for some software develop-
ers (programming language agnostic), software architects, or experienced technical people with
software development experience to come and test out my PhD research software tool. If people
are interested or know someone who might be could you please let me know as that would be
much appreciated. Below is a blurb about what I am looking for.

———————–

Most software development is conducted within teams and are quite often in co-located environ-
ments. The tools used by these teams, however, are single-user focused (e.g. Eclipse). We are
researching ways to help improve software development teams collaborate and have developed
a multi-user, multi-touch tool for teams to help analyse their software. We want to observe how
teams could potentially use technology such as our tool for their own software development
projects. If you would like to participate in the user study please contact us.

Details:
We require pairs of participants (software developers - programming language agnostic, software
architects, or experienced technical people with software development experience) from the same

261

262

organisation who work in the same team and know each other to voluntarily participate in the
study. The study will take up to 90 minutes. A small reward will be given for participation in the
study.

When and Where:
Anytime participants are available, either during or after work hours or weekends, throughout
October-December 2012. The study will take place in the School of Engineering and Computer
Science at Victoria University of Wellington.

Contact Details:
Please contact Craig Anslow email craig@ecs.vuw.ac.nz or phone 04 463 9998 to arrange a time to
participate in the user study.

About:
This research is being conducted by Victoria University of Wellington with Human Ethics Approval
as part of the New Zealand Ministry of Science and Innovations Software Process and Product
Improvement project.

No software from your organisation will be used. Instead a baseline of example open source
software will be used in the study. We are looking at how participants use our tools and how they
collaborate together as a proof of concept, not on how skilled participants are with our tools. All
participants and organisation details will be anonymous in the reporting of the results.

The investigators on the project are Craig Anslow (PhD Student), Dr. Stuart Marshall, Professor
James Noble from the School of Engineering and Computer Science at Victoria University of
Wellington, New Zealand, and Professor Robert Biddle from the Department of Computer Science,
at Carleton University, Canada.

More info:
http://homepages.ecs.vuw.ac.nz/˜craig/Site/Study.html

Many thanks.

Kind regards,
Craig

Craig Anslow
PhD Thesis Student
School of Engineering and Computer Science
Victoria University of Wellington
New Zealand
http://homepages.ecs.vuw.ac.nz/ craig

Appendix D

User Study Questionnaires

The following are the pre-survey and post-survey questionnaires participants completed for our
user studies.

263

SourceVis Pre-Study
Please complete the following pre-study questionnaire.
* Required

Participant ID *

Gender *
Are you Male or Female?

 Male

 Female

Age *
How old are you?

 18-24

 25-34

 35-44

 45+

Height *
How tall are you?

 5ft 4in (162cm)

 5ft 5in (165cm)

 5ft 6in (167cm)

 5ft 7in (170cm)

 5ft 8in (172cm)

 5ft 9in (175cm)

 5ft 10in (177cm)

 5ft 11in (180cm)

 6ft (183cm)

 6ft 1in (185cm)

 6ft 2in (187cm)

 6ft 3in (190cm)

 6ft 4in (193cm)

 6ft 5 in (195cm)

 greater than 6ft 5 in

 Other:

SourceVis Pre-Study https://docs.google.com/spreadsheet/viewform?formkey=dEc...

1 of 5 7/11/12 12:41 PM

Highest Level of Education *
What is your highest level of Education?

 High School

 Bachelors

 Honours

 Masters

 PhD

 Other:

Subject of your degree *
If you have a degree what subject was it in? e.g. computer science, engineering, physics

Occupation *
What is your current occupation and/or job title? e.g. student, programmer, developer

Development Experience *
How long have you been developing software professionally?

 Less than 2 years

 3-5 years

 5-10 years

 10-20 years

 20+ years

Programming Language Experience *
What programming languages do you develop in?

 PHP

 Perl

 Python

 Ruby

 Java

 C/C++

 C# / VB / .Net

 Scala

 Objective C

 JavaScript

 Other:

SourceVis Pre-Study https://docs.google.com/spreadsheet/viewform?formkey=dEc...

2 of 5 7/11/12 12:41 PM

Team Collaboration - Personel *
How many years have you known your fellow colleague? If less than year type number of months

Team Collaboration - Location *
Is your team located co-located or distributed? Co-located is in the same building, distributed is
people on your team working from different buildings and or different cities

 Co-located

 Distributed

Team Collaboration - Programming *
How often do you program with others on your software development team at the same time? e.g.
Pair Programming

 Never

 Daily

 Weekly

 Monthly

 Other:

Team Collaboration - Meetings *
How often do you meet with others on your software development team at the same time? e.g. in the
same room or video conferencing

 Never

 Hourly

 Daily

 Weekly

 Monthly

 Other:

Code Review Experience - By Developers *
How often do you review your code with other developers on your software development team?

 Never

 Hourly

 Daily

 Weekly

 Monthly

 Other:

SourceVis Pre-Study https://docs.google.com/spreadsheet/viewform?formkey=dEc...

3 of 5 7/11/12 12:41 PM

Code Review Experience - By Management *
How often do you review your code with project managers or management within your company?

 Never

 Hourly

 Daily

 Weekly

 Monthly

 Other:

Code Review Experience - Tools *
What software tools / tools do you use for reviewing and analysing your code? e.g. meeting room with
projector or large display screen, IDEs, bug tracking tools, code review tools, version control software
tools

Software Visualization Tools Experience *
Have you used any software visualizations techniques or tools before? If so please list.

Mobile Phone - Touch *
What kind of mobile phone do you own / use that is **Touch** enabled?

 Apple iPhone

 Samsung

 Nokia

 RIM Blackberry

 Huawei

 Sony

 HTC

 None

 Other:

SourceVis Pre-Study https://docs.google.com/spreadsheet/viewform?formkey=dEc...

4 of 5 7/11/12 12:41 PM

Touch Screens - Work *
Do you use touch screens for your daily work tasks? other than mobile phones but including tablets

 Yes

 No

Touch Screens - Personal *
Do you use touch screens for personal or home use? other than mobile phones but including tablets

 Yes

 No

Tablet - Touch *
What kind of tablet do you own / use?

 Apple iPad

 Samsung Galaxy

 Asus Nexus 7

 Microsoft Surface

 RIM Playbook

 Amazon Kindle

 Sony

 None

 Other:

Touch Screens - Experience
What kind of touch screens do you use on a regular basis (work or personal) other than mobile
phones or tablets? Please list the names of the touch screens if known.

Submit

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

SourceVis Pre-Study https://docs.google.com/spreadsheet/viewform?formkey=dEc...

5 of 5 7/11/12 12:41 PM

SourceVis Post-Study
Please complete the post-study questionnaire.
* Required

Participant ID *

Effectiveness *
Overall how effective do you find these software visualizations for answering the questions in the user
study? (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

Startup Screen *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

1. System Explorer *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

2. Metrics Explorer *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

3. Toxicity Chart *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

4. Vocabulary *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

SourceVis Post-Study https://docs.google.com/spreadsheet/viewform?formkey=dG...

1 of 4 7/11/12 12:42 PM

Poor Effective

5. System Hotspots View *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

6. System Dependency *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

7. Class Dependency *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

8. Class Blueprint *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

9. System Evolution *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

10. System Package Evolution *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

11. System Class Evolution *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

SourceVis Post-Study https://docs.google.com/spreadsheet/viewform?formkey=dG...

2 of 4 7/11/12 12:42 PM

Poor Effective

12. Individual Package Evolution *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

13. Individual Class Evolution *
Rate Effectiveness (1 - poor, 10 effective)

1 2 3 4 5 6 7 8 9 10

Poor Effective

Strengths *
What were the strengths of these software visualizations? e.g. how did they help you answer the
questions?

Weaknesses *
What were the weaknesses of these software visualizations?

Improvements *
What could be improved for these software visualizations?

SourceVis Post-Study https://docs.google.com/spreadsheet/viewform?formkey=dG...

3 of 4 7/11/12 12:42 PM

Multi-touch Table - Team Collaboration *
How did the Multi-touch Table device help with team collaboration? What were the strengths and
weaknesses?

Multi-touch Table - Work in Practice *
If you had access to a large multi-touch table for your work how would you envisage your team using
a device of this nature? (select all that apply)

 planning - team development tasks

 meetings - face-face / video conferencing

 design - architecture / modelling

 implementation - programming / pair programming

 analysis - code review

 testing - debugging

 not at all

 Other:

Any other feedback?

Submit

Powered by Google Docs

Report Abuse - Terms of Service - Additional Terms

SourceVis Post-Study https://docs.google.com/spreadsheet/viewform?formkey=dG...

4 of 4 7/11/12 12:42 PM

Appendix E

Preliminary User Study 1 Questions

Imagine a scenario where you are working on a co-located software development team to maintain
some existing software in Java. You have been asked to improve the software so that it is more
easily maintainable by identifying places in which the code could be refactored (e.g. identifying
large classes).

Please answer the following questions using SourceVis on the multi-touch table.
Word Cloud Visualization (in terms of font size)

- What are the 2 largest words in the packages word cloud? (java.awt, java.util)

- What are the 5 largest words in the classes word cloud? (conurrent, regex, pattern, (anon 1),
image)

Wordle Visualization (in terms of font size)

- What is the largest word? (AttributeList)

- Name the three classes that start with the letter “B”. (BindingType, Binding, Bounds)

Metrics Explorer

- How many classes does java.awt.font contain? (29)

- How many fields does java.awt.image.ColorModel contain? (13)

Class Blueprint

- How many accessor methods are called? (1, setHasUnsavedChanges)

- Which method refers to both the “file” and “prefs” attribute? (setFile)

System Hotspots View

- What is the biggest class? (java.awt.Component)

- How many methods does this class contain? (323)

- How many methods does java.awt.Window contain? (135)

- How many classes in java.util contain more than 1000 lines of code? (8)

Javadoc Web Browser

- How many classes does org.jhotdraw.samples.javadraw contain? (9)

- The package org.jhotdraw.samples.pert.PertFigure contains a class called PertFigure which
has a method called read(). What kind of exception does read() throw?
(java.io.IOException)

273

Appendix F

Preliminary User Study 2 Questions

Imagine a scenario where you are working on a co-located software development team to maintain
some existing software in Java. You have been asked to improve the software so that it is more
easily maintainable by identifying places in which the code could be refactored (e.g. identifying
large classes, classes with many dependencies).

Please answer the following questions using the SourceVis application on the multi-touch
table. First load the JHotDraw system by selecting the load menu option. Then answer the
following questions about the JHotDraw System using the visualizations noted in the question.
Some questions will involve using a different system, notably JUnit.

1. System Explorer Visualization
In JHotDraw version 7.5.1, select package org.jhotdraw.geom, how many classes are there
in package org.jhotdraw.geom?

2. Metrics Explorer Visualization
What is the largest Package in JHotDraw version 6.0.1 (total metrics)

3. Metrics Explorer Visualization
How many interfaces does the largest package in JHotDraw version 6.0.1 contain?

4. Metrics Explorer Visualization
From that package what is the largest class in JHotDraw version 6.0.1? (total metrics)

5. Toxicity Chart Visualization
In JHotDraw version 7.5.1 how many classes have a toxicity score greater than 5.0 for the
metric value “File Length”?

6. Vocabulary Visualization
In JHotDraw version 7.5.1 what are the four largest words used in “Class Names”?

7. Vocabulary Visualization
In JHotDraw version 7.5.1 what are the two largest “Classes”?

8. Systems Hotspots View
In JHotDraw version 7.5.1 what is the largest “Package”? (total metrics)

9. Systems Hotspots View
In JHotDraw version 7.5.1 in the largest Package (same package as previous question), what
is the largest “Class”? (total metrics)

274

275

10. Class Blueprint Visualization
In JHotDraw version 7.5.1 in the largest Package and then largest Class (same class as
previous question), how many acccessor methods are called by the public method “re-
paintHandles”?

11. Class Blueprint Visualization
In JHotDraw version 7.5.1 in the largest Package and then largest Class (same class as
previous question), how many interfaces does this class depend on?

12. Individual Class Evolution Visualization
In JHotDraw version 7.5.1 in the largest Package and then largest Class (same class as
previous question), how many versions does this class appear in?

13. System Dependency Visualization
Load JUnit system. In JUnit 4.8.2 how many classes have no dependencies?

14. System Evolution Visualization
In JUnit what major version contains the most amount of classes?

15. System Class Evolution Visualization
In JUnit how many versions contain class junit.swingui.TestRunner?

16. System Class Evolution Visualization
In JUnit how many versions contain “annotation classes”?

Appendix G

Professional User Study Participant
Demographics

This appendix presents the demographics of the participants from the Professional User Study
(§6) including participant demographics, participant’s education, participant experience and skills,
participant’s devices, and participant’s team details.

(a) Age.

(b) Height.

Figure G.1: Participant Characteristics.

276

277

(a) Qualification.

(b) Subject.

Figure G.2: Participant Education.

278

(a) Software development experience.

(b) Job Description.

(c) Programming Languages. (d) Typed Programming
Languages.

Figure G.3: Participant Experience and Skills.

279

(a) Number of years known colleague.

(b) Location.

(c) Meetings.

Figure G.4: Team Details.

280

(a) Collaborative Programming.

(b) Code Review by Developers.

(c) Code Review by Management.

Figure G.5: Team Programming and Code Review Experience.

281

(a) Mobile Smart Phone.

(b) Tablet.

Figure G.6: Participant Devices.

Figure G.7: Tools for Software Visualization.

Appendix H

Professional User Study Questions

H.1 Group Questions
Imagine a scenario where you are working on a co-located software development team to maintain
some existing Java software system. You have been asked to improve the software so that it is more
easily maintainable by identifying places in which the code could be refactored (e.g. identifying
large classes, classes with many dependencies).

Please answer the following questions using the SourceVis application on the multi-touch table.
First load the JHotDraw system by selecting the load menu option. Then answer the following
questions about the JHotDraw System using the visualizations noted in the question.

1. System Explorer Visualization

• Load JHotDraw System

• Open the System Explorer Visualization

• Select JHotDraw Version 7.5.1

• Select package org.jhotdraw.geom

How many classes are there in this package?

2. Metrics Explorer Visualization

• Open the Metrics Explorer Visualization

• Select JHotDraw version 6.0.1

• Select All Metrics

What is the largest package?

3. Metrics Explorer Visualization

• Using the same Metrics Explorer Visualization

• Using JHotDraw Version 6.0.1

How many interfaces does the largest package from the previous question contain?

4. Vocabulary Visualization

• Select JHotDraw Version 7.5.1

282

H.1. GROUP QUESTIONS 283

What are the two largest Classes?

5. Toxicity Chart Visualization

• Open Toxicity Chart Visualization

• Select JHotDraw Version 7.5.1

How many classes have a toxicity score greater than 5.0 for the metric value File Length?

6. Systems Hotspots View

• Load JHotDraw System

• Select JHotDraw Version 7.5.1

• Select All Metrics for packages

What is the largest package (by all metrics)?

7. Class Blueprint Visualization

• From the same Systems Hotspots Visualization

• Using JHotDraw Version 7.5.1

• In the largest package

• Select the largest class (by all metrics)

• Open Class Blueprint Visualization

How many accessor methods are called by the public method repaintHandles()?

8. Class Dependency

• From the same Systems Hotspots Visualization

• Using JHotDraw Version 7.5.1

• In the largest package

• Select the largest class (by all metrics)

• Open Class Dependency Visualization

Which class does the largest class depend upon the most?

9. System Evolution Visualization

• Open the System Evolution Visualization

• Using JHotDraw

Approximately how many lines of code has JHotDraw increased by between version 6.0.1
and version 7.5.1?

10. System Class Evolution Visualization

• Open the System Class Evolution Visualization

• Using JHotDraw

How many versions does the largest class (by all metrics) in version 5.2.0 appear in?

11. System Dependency Visualization

H.2. INDIVIDUAL A QUESTIONS 284

• Load JHotDraw

• Open System Dependency Visualization

• Load JHotDraw Version 5.2.0

How many interfaces have no dependencies?

12. Class Dependency Visualization

• From the same Systems Dependency Visualization

• Using JHotDraw Version 5.2.0

• Open Class Dependency Visualization for class
CH.ifa.draw.application.DrawApplication

How many interfaces does the class CH.ifa.draw.application.DrawApplication depend on?

13. Individual Class Evolution Visualization

• From the same Systems Dependency Visualization

• OR Class Dependency Visualization

• Open Class Evolution Visualization

Which version of the class CH.ifa.draw.application.DrawApplication is the largest (by all
metrics)?

14. System Package Evolution Visualization

• Open System Package Evolution Visualization

What version has the most amount of packages?

15. Individual Package Evolution Visualization

• From same System Package Evolution Visualization

• Open Package Evolution for package CH.ifa.draw.standard

How many versions contain the package named CH.ifa.draw.standard?

H.2 Individual A Questions
Imagine a scenario where you are working on a co-located software development team to maintain
some existing Java software system. You have been asked to improve the software so that it is more
easily maintainable by identifying places in which the code could be refactored (e.g. identifying
large classes, classes with many dependencies).

Please answer the following questions using SourceVis application on the multi-touch table.
First load the JUnit system by selecting the load menu option. Then answer the following questions
about the JUnit System using the visualizations noted in the question.

1. System Explorer Visualization

• Load Junit System

• Open the System Explorer Visualization

H.2. INDIVIDUAL A QUESTIONS 285

• Select JUnit Version 4.8.2

• Select package junit.framework

How many classes are there in this package?

2. Vocabulary Visualization

• Open the Vocabulary Visualization

• Select Junit Version 4.8.2

What are the five most frequently used words in classnames?

3. Vocabulary Visualization

• Open the Vocabulary Visualization

• Select Junit Version 4.8.2

• Select Size of Packages

What are the two largest Packages?

4. Metrics Explorer Visualization

• Open the Metrics Explorer Visualization

• Select Junit version 4.8.2

• Select All Metrics

In the largest package, how many concrete classes are there?

5. Toxicity Chart Visualization

• Open Toxicity Chart Visualization

• Select Junit Version 4.8.2

Which class has a large file length?

6. Systems Hotspots View

• Load Junit System

• Open Systems Hotspots View

• Select JUnit Version 4.8.2

How many packages have the word ”runner” in the package name?

7. Class Blueprint Visualization

• From the same Systems Hotspots Visualization

• Using Junit Version 4.8.2

• In the org.junit.runners package

• Select the class BlockJUnit4ClassRunner

• Open Class Blueprint Visualization

How many different accessor methods are called?

H.2. INDIVIDUAL A QUESTIONS 286

8. System Dependency Visualization

• Open the System Dependency Visualization

• Select JUnit Version 4.8.2

• Use the slider

What two classes have the highest dependency weight?

9. System Evolution Visualization

• Open the System Evolution Visualization

What major version of JUnit contains the most amount of classes?

10. System Package Evolution Visualization

• Open the System Package Evolution Visualization

How many versions does junit.framework appear in?

11. System Dependency Visualization

• Load Junit System

• Open System Dependency Visualization

• Select JUnit Version 4.8.2

How many concrete classes have no dependencies?

12. Class Dependency Visualization

• From the same System Dependency Visualization

• Select JUnit Version 4.8.2

• Open the Class Dependency Visualization for
org.junit.runners.BlockJUnit4ClassRunner

What many abstract classes does this class depend on?

13. System Evolution Visualization

• Open the System Evolution Visualization

What major version of JUnit contains the most amount of classes?

14. System Package Evolution Visualization

• Open the System Package Evolution Visualization

After what version does junit.ui stop appearing in?

15. System Class Evolution Visualization

• Open the System Class Evolution Visualization

How many versions in JUnit contain annotation classes?

H.3. INDIVIDUAL B QUESTIONS 287

H.3 Individual B Questions
Imagine a scenario where you are working on a co-located software development team to maintain
some existing Java software system. You have been asked to improve the software so that it is more
easily maintainable by identifying places in which the code could be refactored (e.g. identifying
large classes, classes with many dependencies).

Please answer the following questions using the SourceVis application on the multi-touch
table. First load the JUnit system by selecting the load menu option. Then answer the following
questions about the JUnit System using the visualizations noted in the question.

1. Metrics Explorer Visualization

• Load Junit System

• Open the Metrics Explorer Visualization

• Select Junit version 4.8.2

• Select All Metrics

What is the largest package?

2. Metrics Explorer Visualization

• Open the Metrics Explorer Visualization

• Select Junit version 4.8.2

• Use Keyboard search and then sort

How many packages have the word ”runner” in the package name?

3. Toxicity Chart Visualization

• Open Toxicity Chart Visualization

• Select Junit Version 4.8.2

How many classes have a toxicity score greater than 2.0?

4. Toxicity Chart Visualization

• Open Toxicity Chart Visualization

Since version 4.0 (including) of Junit how many versions have number of classes greater
than 60 with a toxicity score of 1.0?

5. Vocabulary Visualization

• Open the Vocabulary Visualization

• Select Junit Version 4.8.2

What are the three largest classes?

6. System Dependency Visualization

• Load Junit System

• Open System Dependency Visualization

• Select JUnit Version 4.8.2

H.3. INDIVIDUAL B QUESTIONS 288

• Select no dependencies

How many concrete classes have no dependencies?

7. Class Dependency Visualization

• From the same System Dependency Visualization

• Select JUnit Version 4.8.2

• Open the Class Dependency Visualization for
org.junit.runners.BlockJUnit4ClassRunner

How many abstract classes does this class depend on?

8. System Evolution Visualization

• Open the System Evolution Visualization

What major version of JUnit contains the most amount of classes?

9. System Package Evolution Visualization

• Open the System Package Evolution Visualization

After what version does junit.ui stop appearing in?

10. System Class Evolution Visualization

• Open the System Class Evolution Visualization

How many versions in JUnit contain annotation classes?

11. Systems Hotspots View

• Load Junit System

• Open Systems Hotspots View

• Select JUnit Version 4.8.2

How many packages have the word ”runner” in the package name?

12. Class Blueprint Visualization

• From the same Systems Hotspots Visualization

• Using Junit Version 4.8.2

• In the org.junit.runners package

• Select the class BlockJUnit4ClassRunner

• Open Class Blueprint Visualization

How many different accessor methods are called?

13. System Dependency Visualization

• Open the System Dependency Visualization

• Select JUnit Version 4.8.2

What two classes have the highest dependency weight?

H.3. INDIVIDUAL B QUESTIONS 289

14. System Evolution Visualization

• Open the System Evolution Visualization

What major version of JUnit contains the most amount of classes?

15. System Package Evolution Visualization

• Open the System Package Evolution Visualization

How many versions does junit.framework appear in?

Appendix I

Quantitative Findings - Additional
Tables

This Appendix shows additional tables for Coupling Styles, Arrangement Styles, and Wilcoxon
Rank Sum Tests that were performed for Chapter 8:

• Frequency of Coupling Styles (Table I.1).

• Amount of Time spent in Coupling Styles (Table I.2).

• Frequency of Arrangement Styles (Table I.3).

• Amount of Time Spent in Arrangement Styles (Table I.4).

• Wilcoxon Rank Sum Test for Frequency of Coupling Styles (Table I.5).

• Wilcoxon Rank Sum Test for Time Spent in Coupling Styles (Table I.6).

• Wilcoxon Rank Sum Test for Frequency of Arrangement Styles (Table I.7).

• Wilcoxon Rank Sum Test for Time Spent in Arrangement Styles (Table I.8).

290

291

Ta
bl

e
I.1

:F
re

qu
en

cy
of

C
ou

pl
in

g
St

yl
es

by
ea

ch
pa

ir
.E

ac
h

ro
w

is
se

pa
ra

te
d

in
to

G
ro

up
(G

),
In

d
iv

id
ua

l(
I)

,a
nd

To
ta

la
m

ou
nt

of
ti

m
e

(T
ot

)f
or

ea
ch

st
yl

e.
G

IG
=

gr
ey

sh
ad

ed
ro

w
s

an
d

IG
G

=
w

hi
te

ro
w

s.

St
yl

e:
D

IS
C

SP
SA

SP
D

A
V

E
V

D
D

PS
A

D
PD

A
Pa

ir
G

I
To

t
G

I
To

t
G

I
To

t
G

I
To

t
G

I
To

t
G

I
To

t
G

I
To

t
SU

M
1

30
2

32
2

0
2

6
1

7
33

10
43

6
10

16
0

0
0

0
10

10
11

0
2

52
1

53
19

0
19

29
0

29
78

5
83

11
17

28
0

4
4

0
19

19
23

5
3

23
11

34
22

7
29

7
1

8
39

22
61

10
12

22
0

3
3

0
12

12
16

9
4

36
2

38
12

0
12

21
0

21
50

2
52

3
13

16
0

1
1

0
15

15
15

5
5

38
11

49
5

5
10

6
6

12
38

21
59

10
10

20
0

1
1

0
9

9
16

0
6

30
2

32
6

2
8

16
3

19
48

6
54

11
12

23
0

2
2

1
11

12
15

0
7

31
2

33
12

0
12

7
0

7
27

1
28

16
14

30
0

3
3

0
20

20
13

3
8

39
12

51
2

1
3

15
3

18
56

17
73

6
11

17
0

1
1

0
6

6
16

9
9

38
1

39
3

0
3

5
1

6
34

2
36

12
8

20
0

0
0

0
9

9
11

3
10

43
0

43
5

0
5

13
0

13
43

1
44

7
11

18
0

0
0

0
10

10
13

3
11

44
7

51
4

0
4

11
0

11
47

5
52

10
12

22
0

0
0

0
10

10
15

0
12

36
2

38
5

0
5

9
0

9
50

4
54

10
9

19
0

2
2

0
10

10
13

7
13

28
1

29
4

1
5

6
4

10
36

6
42

11
12

23
0

0
0

0
10

10
11

9
14

20
2

22
6

0
6

3
0

3
34

2
36

9
8

17
0

0
0

1
10

11
95

15
30

1
31

1
0

1
2

0
2

37
1

38
10

14
24

0
1

1
0

14
14

11
1

16
40

0
40

5
0

5
11

0
11

41
1

42
11

7
18

0
0

0
0

6
6

12
2

17
38

24
62

1
0

1
6

5
11

32
26

58
7

1
8

0
0

0
0

2
2

14
2

18
33

1
34

3
0

3
14

0
14

43
0

43
10

7
17

0
0

0
0

8
8

11
9

19
21

16
37

1
1

2
4

2
6

24
22

46
10

12
22

0
0

0
0

2
2

11
5

20
24

12
36

2
0

2
9

1
10

36
19

55
14

13
27

0
0

0
0

4
4

13
4

21
37

15
52

1
6

7
6

3
9

37
21

58
2

6
8

0
0

0
0

8
8

14
2

22
35

6
41

6
0

6
17

0
17

43
1

44
10

13
23

0
0

0
0

9
9

14
0

SU
M

74
6

13
1

87
7

12
7

23
15

0
22

3
30

25
3

90
6

19
5

11
01

20
6

23
2

43
8

0
18

18
2

21
4

21
6

30
53

C
at

eg
or

y:
C

lo
se

ly
:2

38
1

Lo
os

el
y:

67
2

292
Table

I.2:Tim
e

Spentin
C

oupling
Styles

by
each

pair.E
ach

row
is

separated
into

G
roup

(G
),Ind

ivid
ual(I)and

Totalam
ountoftim

e
(Tot)for

each
style.G

IG
=

grey
shaded

row
s

and
IG

G
=

w
hite

row
s.

Style:
D

ISC
SPSA

SPD
A

V
E

V
D

D
PSA

D
PD

A
Pair

G
I

Tot
G

I
Tot

G
I

Tot
G

I
Tot

G
I

Tot
G

I
Tot

G
I

Tot
SU

M
1

223
68

291
16

0
16

68
31

99
366

448
814

56
163

219
0

0
0

0
759

759
2199

2
348

7
355

50
0

50
303

0
303

771
77

848
109

252
361

0
14

14
0

618
618

2549
3

151
89

240
72

43
115

40
8

47
395

332
727

79
69

148
0

13
13

0
334

334
1625

4
402

21
423

72
0

72
422

0
422

876
33

909
50

262
312

0
3

3
0

942
942

3082
5

331
93

424
25

27
52

47
42

89
400

324
723

109
160

268
0

3
3

0
879

879
2438

6
304

10
314

56
10

65
160

275
434

731
114

845
204

140
344

0
8

8
10

562
573

2583
7

235
19

254
95

0
95

98
0

98
228

2
230

199
208

408
0

27
27

0
1381

1381
2493

8
269

173
441

12
6

18
85

27
111

751
226

977
55

205
260

0
9

9
0

234
234

2050
9

333
11

343
14

0
14

55
54

109
289

68
357

101
142

243
0

0
0

0
935

935
2001

10
415

0
415

28
0

28
96

0
96

408
43

451
62

298
360

0
0

0
0

687
687

2037
11

351
102

453
22

0
22

93
0

93
335

83
418

91
222

313
0

0
0

0
834

834
2132

12
342

20
362

27
0

27
90

0
90

464
31

495
88

140
228

0
4

4
0

498
498

1705
13

244
39

283
11

4
15

68
42

110
512

147
659

137
266

403
0

0
0

0
844

844
2313

14
183

23
206

32
0

32
25

0
25

717
32

749
89

224
314

0
0

0
3

332
334

1660
15

203
8

211
3

0
3

16
0

16
471

7
478

100
251

351
0

8
8

0
713

713
1781

16
420

0
420

36
0

36
164

0
164

422
86

508
134

109
243

0
0

0
0

494
494

1865
17

319
295

615
7

0
7

60
58

118
457

618
1075

57
11

68
0

0
0

0
211

211
2093

18
337

10
347

11
0

11
275

0
275

500
0

500
116

263
380

0
0

0
0

772
772

2284
19

146
187

333
6

6
12

72
8

81
311

1007
1318

123
203

325
0

0
0

0
114

114
2183

20
182

105
287

9
0

9
71

17
88

495
221

716
170

204
374

0
0

0
0

91
91

1565
21

238
76

314
2

41
44

44
14

59
312

177
488

25
64

90
0

0
0

0
404

404
1398

22
250

97
347

33
0

33
225

0
225

456
55

511
142

357
500

0
0

0
0

424
424

2040
SU

M
6225

1452
7677

640
137

777
2576

575
3152

10665
4131

14796
2296

4214
6510

0
88

88
13

13063
13075

46076
C

ategory:
C

losely:26402
Loosely:19674

293

Ta
bl

e
I.3

:F
re

qu
en

cy
of

A
rr

an
ge

m
en

tS
ty

le
s

by
ea

ch
pa

ir
.E

ac
h

ro
w

is
se

pa
ra

te
d

in
to

G
ro

up
(G

),
In

d
iv

id
ua

l(
I)

an
d

To
ta

la
m

ou
nt

of
ti

m
e

(T
ot

)f
or

ea
ch

st
yl

e.
G

IG
=

gr
ey

sh
ad

ed
ro

w
s

an
d

IG
G

=
w

hi
te

ro
w

s.

St
yl

e:
To

ge
th

er
K

it
ty

C
or

ne
r

Si
de

by
Si

de
En

d
Si

de
O

pp
os

it
e

En
ds

A
pa

rt
Pa

ir
G

I
To

t
G

I
To

t
G

I
To

t
G

I
To

t
G

I
To

t
G

I
To

t
SU

M
1

13
2

15
1

0
1

12
3

15
0

7
7

0
11

11
5

10
15

64
2

12
0

12
2

0
2

14
2

16
0

5
5

0
15

15
11

13
24

74
3

0
1

1
7

5
12

0
4

4
9

19
28

0
10

10
9

10
19

74
4

16
1

17
3

0
3

10
2

12
2

4
6

0
13

13
4

12
16

67
5

23
4

27
0

1
1

19
6

25
0

9
9

0
11

11
11

10
21

94
6

15
1

16
3

2
5

15
0

15
0

8
8

0
10

10
11

13
24

78
7

16
1

17
1

0
1

16
1

17
1

16
17

0
19

19
17

14
31

10
2

8
16

5
21

0
0

0
12

15
27

0
1

1
0

0
0

5
13

18
67

9
11

2
13

0
0

0
14

3
17

2
5

7
1

12
13

11
8

19
69

10
1

0
1

1
0

1
9

1
10

0
3

3
0

13
13

7
11

18
46

11
23

4
27

5
2

7
22

4
26

1
3

4
0

9
9

12
11

23
96

12
17

2
19

3
1

4
17

4
21

0
5

5
0

6
6

11
12

23
78

13
10

1
11

11
4

15
8

3
11

5
11

16
0

13
13

11
14

25
91

14
4

0
4

4
1

5
9

2
11

1
11

12
0

1
1

7
9

16
49

15
11

0
11

1
2

3
12

0
12

1
5

6
0

13
13

10
12

22
67

16
10

0
10

1
1

2
12

1
13

0
5

5
0

4
4

11
6

17
51

17
14

5
19

0
2

2
11

3
14

1
2

3
0

0
0

7
0

7
45

18
10

0
10

3
0

3
11

0
11

3
8

11
0

4
4

10
7

17
56

19
5

13
18

7
5

12
5

7
12

1
5

6
0

3
3

11
14

25
76

20
7

4
11

8
6

14
11

8
19

4
2

6
0

4
4

14
13

27
81

21
6

3
9

1
2

3
7

2
9

1
6

7
0

7
7

2
4

6
41

22
10

1
11

1
1

2
11

3
14

2
2

4
0

9
9

9
12

21
61

SU
M

25
0

50
30

0
63

35
98

25
7

74
33

1
34

14
2

17
6

1
18

7
18

8
20

6
22

8
43

4
15

27
C

at
eg

or
y:

C
lo

se
ly

:7
29

Lo
os

el
y:

79
8

294

Table
I.4:Tim

e
Spentin

A
rrangem

entStyles
by

each
pair.E

ach
row

is
separated

into
G

roup
(G

),Ind
ivid

ual(I)and
Totalam

ountof
tim

e
(Tot)for

each
style.G

IG
=

grey
shaded

row
s

and
IG

G
=

w
hite

row
s.

Style:
Together

K
itty

C
orner

Side
by

Side
End

Side
O

pposite
Ends

A
part

Pair
G

I
Tot

G
I

Tot
G

I
Tot

G
I

Tot
G

I
Tot

G
I

Tot
SU

M
1

166
50

216
18

0
18

516
153

b
669

0
363

363
0

740
740

51
163

214
2220

2
317

0
317

32
0

32
1168

87
1255

0
149

149
0

529
529

109
204

314
2594

3
0

5
5

264
95

359
0

56
56

465
344

808
0

336
336

73
61

133
1697

4
277

14
291

103
0

103
1280

12
1292

124
51

174
0

1056
1056

55
243

298
3215

5
362

88
450

0
7

7
509

361
869

0
183

183
0

761
761

117
159

277
2548

6
319

15
334

156
20

176
880

0
880

0
460

460
0

557
557

203
147

350
2757

7
266

42
309

17
0

17
417

21
438

8
404

412
0

1032
1032

211
208

419
2626

8
189

176
364

0
0

0
965

533
1498

0
39

39
0

0
0

51
211

261
2163

9
248

54
303

0
0

0
416

52
469

18
45

63
12

984
996

99
142

241
2071

10
18

0
18

36
0

36
916

40
956

0
55

55
0

635
635

62
298

360
2060

11
265

95
360

73
14

87
507

86
593

8
78

86
0

847
847

107
220

327
2300

12
241

16
257

55
7

61
666

52
718

0
204

204
0

322
322

104
159

263
1826

13
310

39
350

392
97

489
204

77
280

75
179

255
0

687
687

137
263

400
2461

14
78

0
78

268
29

297
620

16
637

30
404

433
0

3
3

74
247

320
1769

15
233

0
233

12
19

31
443

0
443

6
320

326
0

424
424

100
225

325
1782

16
278

0
278

13
63

75
781

14
794

0
265

265
0

248
248

134
100

233
1894

17
285

113
398

0
26

26
566

896
1461

23
195

218
0

0
0

57
0

57
2160

18
211

0
211

23
0

23
925

0
925

38
652

690
0

200
200

116
263

379
2428

19
109

216
325

221
331

553
193

574
767

5
136

141
0

103
103

131
216

347
2235

20
131

86
217

185
104

289
375

165
539

68
14

82
0

68
68

170
201

371
1567

21
74

37
110

5
68

73
514

212
726

9
109

118
0

320
320

23
60

83
1429

22
230

11
240

12
25

37
743

100
844

20
25

45
0

366
366

130
601

731
2262

SU
M

4605
1057

5662
1884

904
2788

13603
3507

17110
897

4673
5569

12
10218

10230
2314

4392
6705

48064
C

ategory:
C

losely:25560
Loosely:22504

295

Ta
bl

e
I.5

:F
re

qu
en

cy
of

C
ou

pl
in

g
St

yl
es

-W
ilc

ox
on

R
an

k
Su

m
Te

st
s

at
95

%
co

nfi
de

nc
e

us
in

g
a

Bo
nf

er
ro

ni
co

rr
ec

tio
n

to
th

e
p-

va
lu

e.
Th

e
gr

ey
ce

lls
re

pr
es

en
tt

he
in

te
rs

ec
ti

on
of

st
yl

es
th

at
ha

ve
si

gn
ifi

ca
nt

di
ff

er
en

ce
s

be
tw

ee
n

ea
ch

ot
he

r.

C
ou

pl
in

g:
va

lu
e

D
IS

C
SP

SA
SP

D
A

V
E

V
D

D
PS

A
D

PD
A

D
IS

C
W

48
2.

5
48

2.
5

11
6

47
4.

5
47

4.
5

48
4

p
3.

59
94
×

10
−

0
7

3.
59

94
×

10
−

0
7

0.
06

71
16

0.
00

00
01

05
39

9
1.

91
79

3×
10
−

0
7

2.
91

27
×

10
−

0
7

SP
SA

W
11

3.
5

1
37

.5
45

1.
5

13
1.

5
p

0.
05

46
84

3.
35

58
×

10
−

0
7

0.
00

00
34

10
4

0.
00

00
12

95
7

0.
20

08
86

SP
D

A
W

1
77

47
8

27
3.

5
p

3.
40

62
e-

7
0.

00
23

20
5

4.
36

38
×

10
−

0
7

9.
76

71
V

E
W

48
2.

5
48

4
48

4
p

3.
60

78
×

10
−

0
7

1.
91

07
9×

10
−

0
7

2.
90

22
×

10
−

0
7

V
D

W
48

4
43

5.
5

p
1.

88
97

9×
10
−

0
7

0.
00

01
18

58
7

D
PS

A
W

8.
5

p
5.

98
29
×

10
−

0
7

D
PD

A
W p

296

Table
I.6:Tim

e
Spentin

C
oupling

Styles
-W

ilcoxon
R

ank
Sum

Tests
at95%

confid
ence

using
a

B
onferronicorrection

to
the

p-value.
T

he
grey

cells
representthe

intersection
ofstyles

thathave
significantdifferences

betw
een

each
other.

C
oupling:

value
D

ISC
SPSA

SPD
A

V
E

V
D

D
PSA

D
PD

A
D

ISC
W

484
435

42
303

484
123

p
1.99605×

10
−

1
1

0.0000196728
0.0000059199

3.297
1.95594×

10
−

0
7

0.097125
SPSA

W
53

0
5

456
3

p
0.00003738

1.99605×
10
−

1
1

3.7926×
10
−

1
0

0.0000080556
1.39734×

10
−

1
0

SPD
A

W
8

88
482

37
p

1.33749×
10
−

9
0.0036582

2.5872×
10
−

7
0.0000023394

V
E

W
455

484
281

p
4.5654×

10
−

0
7

1.95594×
10
−

0
7

7.7658
V

D
W

484
99

p
1.95594×

10
−

0
7

0.0115143
D

PSA
W

0
p

1.95594×
10
−

0
7

D
PD

A
Wp

297

Ta
bl

e
I.7

:F
re

qu
en

cy
of

A
rr

an
ge

m
en

tS
ty

le
s

-W
ilc

ox
on

R
an

k
Su

m
Te

st
s

at
95

%
co

nfi
de

nc
e

us
in

g
a

Bo
nf

er
ro

ni
co

rr
ec

tio
n

to
th

e
p-

va
lu

e.
T

he
gr

ey
ce

lls
re

pr
es

en
tt

he
in

te
rs

ec
ti

on
of

st
yl

es
th

at
ha

ve
si

gn
ifi

ca
nt

di
ff

er
en

ce
s

be
tw

ee
n

ea
ch

ot
he

r.

A
rr

an
ge

m
en

t:
va

lu
e

To
ge

th
er

K
it

ty
C

or
ne

r
Si

de
by

Si
de

En
d

Si
de

O
pp

os
it

e
En

ds
A

pa
rt

To
ge

th
er

W
40

7
21

5
36

8.
5

34
6.

5
11

7.
5

p
0.

00
16

2
7.

98
75

0.
04

56
3

0.
21

40
5

0.
05

31
9

K
it

ty
C

or
ne

r
W

42
.5

11
9.

5
13

6.
5

10
p

0.
00

00
42

63
0.

06
05

55
0.

20
08

5
7.

90
×

10
−

7

Si
de

by
Si

de
W

40
6

38
5.

5
12

4.
5

p
0.

00
18

10
5

0.
01

14
12

0.
08

92
65

En
d

Si
de

W
20

9
45

.5
p

6.
66

15
0.

00
00

60
76

5
O

pp
os

it
e

En
ds

W
36

.5
p

0.
00

00
21

64
5

A
pa

rt
W p

298

Table
I.8:Tim

e
Spentin

A
rrangem

entStyles
-W

ilcoxon
R

ank
Sum

Tests
at95%

confidence
using

a
Bonferronicorrection

to
the

p-value.
T

he
grey

cells
representthe

intersection
ofstyles

thathave
significantdifferences

betw
een

each
other.

A
rrangem

ent:
value

Together
K

itty
C

orner
Side

by
Side

End
Side

O
pposite

Ends
A

part
Together

W
367

33
277

158
193

p
0.052095

7.5735×
10
−

7
6.3285

0.74985
3.867

K
itty

C
orner

W
23

119
102

86
p

0.000004371
0.06051

0.01581
0.0039315

Side
by

Side
W

438
353

440
p

0.000008508
0.14238

0.0000060245
End

Side
W

159
174

p
0.792

1.7055
O

pposite
Ends

W
303

p
2.334

A
part

Wp

Glossary

Apart participants were standing apart, physical arrangement style.

CCV Community Core Vision, detection software.

Closely Coupled Category coupling styles that are closely coupled (DISC, VE,
SPDA, SPSA).

DISC participants were in discussion, coupling style.

DPDA participants were working on different problems and different areas of
the table, coupling style.

DPSA participants were working on different problems and same area of the
table, coupling style.

End Side participants were arranged by end side, arrangement style.

Kitty Corner participants were arranged by kitty corner, arrangement style.

Loosely Coupled Category coupling styles that are loosely coupled (VD, DPDA,
DPSA).

MT4j Multi-touch For Java [188], toolkit used for implementing SourceVis.

Opposite Ends participants were arranged at opposite ends of the table, arrange-
ment style.

Side by Side participants were arranged side by side, arrangement style.

SPDA participants were working on the same problem different area, coupling
style.

SPSA participants were working on the same problem same area, coupling style.

Together participants were arranged together, arrangement style.

VE one participant was interacting while the other was viewing engaged, cou-
pling style.

299

Bibliography

[1] K. Alfert and F. Engelen. Three-dimensional visualization of Java class relations. In Proceed-
ings of the World Conference on Integrated Design & Process Technology (IDPT), 2000.

[2] K. Alfert and F. Engelen. Experiences in 3-Dimensional visualization of Java class relations.
Journal of Design & Process Science, 5(3):91–106, 2001.

[3] K. Alfert and A. Fronk. Manipulation of three-dimensional visualization of Java class
relations. In Proceedings of the World Conference on Integrated Design & Process Technology
(IDPT), 2002.

[4] T. Alspaugh, B. Tomlinson, and E. Baumer. Using social agents to visualize software scenarios.
In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 87–94. ACM
Press, 2006.

[5] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic activity in information
visualization. In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS),
pages 111–117. IEEE Press, 2005.

[6] R. Amar and J. Stasko. A knowledge task-based framework for design and evaluation of
information visualizations. In Proceedings of the IEEE Symposium on Information Visualization
(INFOVIS), pages 143–150. IEEE Press, 2004.

[7] C. Andrews, A. Endert, and C. North. Space to think: large high-resolution displays
for sensemaking. In Proceedings of the ACM International Conference on Human Factors in
Computing Systems (CHI), pages 55–64. ACM Press, 2010.

[8] C. Anslow. Evaluating Extensible 3D (X3D) graphics for use in software visualisation.
Master’s thesis, Victoria University of Wellington, 2008.

[9] C. Anslow, J. Noble, S. Marshall, and R. Biddle. Web software visualization using extensible
3D (X3D) graphics. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 213–214. ACM Press, 2008.

[10] C. Anslow, J. Noble, S. Marshall, E. Tempero, and R. Biddle. User evaluation of polymetric
views using a large visualization wall. In Proceedings of the ACM Symposium on Software
Visualization (SOFTVIS), pages 25–34. ACM Press, 2010.

[11] R. Baecker. Sorting out sorting. 30 minute colour sound videotape, 1981. Presented at ACM
SIGGRAPH ’81 and excerpted and reprinted in ACM SIGGRAPH Video Review 7, 1983.

[12] R. Baecker. Software Visualization, chapter Sorting Out Sorting: A Case Study of Software
Visualisation for Teaching Computer Science, pages 369–381. MIT Press, 1998.

[13] M. Baker and S. Eick. Visualizing software systems. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 59–67. IEEE Press, 1994.

300

BIBLIOGRAPHY 301

[14] R. Ball, C. North, and D. Bowman. Move to improve: promoting physical navigation
to increase user performance with large displays. In Proceedings of the ACM International
Conference on Human Factors in Computing Systems (CHI), pages 191–200. ACM Press, 2007.

[15] M. Balzer and O. Deussen. Hierarchy based 3D visualization of large software structures. In
Proceedings of the IEEE Conference on Visualization (VIS), page 598.4. IEEE Press, 2004.

[16] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Software landscapes: Visualizing
the structure of large software systems. In In Proceedings of the Symposium on Visualization
(VisSym), pages 261–266. Eurographics Association, 2004.

[17] M. Basheri, N. Baghaei, L. Burd, and M. Munro. Collaborative learning skills in multi-
touch tables for uml software design. International Journal of Advanced Computer Science and
Applications, 4(3):60–66, 2013.

[18] M. Basheri and L. Burd. Exploring the significance of multi-touch tables in enhancing
collaborative software design using UML. In Proceedings of the Frontiers in Education Conference
(FIE), pages 1–5. IEEE Press, 2012.

[19] M. Basheri, L. Burd, and N. Baghaei. MT-CollabUML: Collaborative software design using
multi-touch tables. In Proceedings of the International Congress on Engineering Education
(ICEED), 2012.

[20] M. Basheri, L. Burd, and N. Baghaei. A multi-touch interface for enhancing collaborative
UML diagramming. In Proceedings of the Australian Computer-Human Interaction Conference
(OzCHI), pages 30–33. ACM Press, 2012.

[21] P. Baudisch, T. Becker, and F. Rudeck. Lumino: tangible blocks for tabletop computers based
on glass fiber bundles. In Proceedings of the ACM International Conference on Human Factors in
Computing Systems (CHI), pages 1165–1174. ACM Press, 2010.

[22] K. Beck. Extreme Programming Explained: Embrace Change. Addison Wesley, 1999.

[23] B. Bederson, J. Grosjean, and J. Meyer. Toolkit design for interactive structured graphics.
IEEE Transactions on Software Engineering, 30(8):535–546, 2004.

[24] B. Bederson and J. Hollan. Pad++: a zooming graphical interface for exploring alternate in-
terface physics. In Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST). ACM Press, 1994.

[25] B. Bederson and B. Shneiderman, editors. The Craft of Information Visualization: Readings and
Reflections. Morgan Kaufmann, 2003.

[26] R. Bencina, M. Kaltenbrunner, and S. Jorda. Improved topological fiducial tracking in the
reactivision system. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), page 99. IEEE Press, 2005.

[27] A. Bergel, R. Robbes, and W. Binder. Visualizing dynamic metrics with profiling blueprints.
In Proceedings of TOOLS Europe, pages 291–309. Springer Verlag, 2010.

[28] T. Bernardin, B. Budge, and B. Hamann. Stacked-widget visualization of scheduling-based
algorithms. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages
165–174. ACM Press, 2008.

[29] D. Beyer. Co-change visualization. In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM), pages 89–92. IEEE Press, 2005.

BIBLIOGRAPHY 302

[30] D. Beyer. Co-change visualization applied to postgresql and argouml: (msr challenge report).
In Proceedings of the International Workshop on Mining Software Repositories (MSR), pages
165–166. ACM Press, 2006.

[31] D. Beyer and A. Noack. Clustering software artifacts based on frequent common changes.
In Proceedings of the IEEE International Workshop on Program Comprehension (IWPC), pages
259–268. IEEE Press, 2005.

[32] X. Bi, S.-H. Bae, and R. Balakrishnan. Effects of interior bezels of tiled-monitor large displays
on visual search, tunnel steering, and target selection. In Proceedings of the ACM International
Conference on Human Factors in Computing Systems (CHI), pages 65–74. ACM Press, 2010.

[33] X. Bi and R. Balakrishnan. Comparing usage of a large high-resolution display to single or
dual desktop displays for daily work. In Proceedings of the ACM International Conference on
Human Factors in Computing Systems (CHI), pages 1005–1014. ACM Press, 2009.

[34] J. Biehl, W. Baker, B. Bailey, D. Tan, K. Inkpen, and M. Czerwinski. Impromptu: a new
interaction framework for supporting collaboration in multiple display environments and its
field evaluation for co-located software development. In Proceedings of the ACM International
Conference on Human Factors in Computing Systems (CHI), pages 939–948. ACM Press, 2008.

[35] J. Biehl, M. Czerwinski, G. Smith, G., and Robertson. Fastdash: a visual dashboard for
fostering awareness in software teams. In Proceedings of the ACM International Conference on
Human Factors in Computing Systems (CHI), pages 1313–1322. ACM Press, 2007.

[36] M. Blumenkrants, H. Starovisky, and A. Shamir. Narrative algorithm visualization. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 17–26. ACM
Press, 2006.

[37] S. Boccuzzo and H. Gall. Cocoviz: Supported cognitive software visualization. In Proceedings
of the Working Conference on Reverse Engineering (WCRE), pages 273–274. IEEE Press, 2007.

[38] S. Boccuzzo and H. Gall. Cocoviz: Towards cognitive software visualization. In Proceedings
of the International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT),
pages 72–79. IEEE Press, 2007.

[39] S. Boccuzzo and H. Gall. Software visualization with audio supported cognitive glyphs. In
Proceedings of the IEEE International Conference on Software Maintenance (ICSM), pages 366–375.
IEEE Press, 2008.

[40] S. Boccuzzo and H. Gall. Cocoviz with ambient audio software exploration. In Proceedings of
the International Conference on Software Engineering (ICSE), pages 571–574. IEEE Press, 2009.

[41] S. Boccuzzo and H. Gall. Multi-touch collaboration for software exploration. In Proceedings
of the IEEE International Conference on Program Comprehension (ICPC). IEEE Press, 2010.

[42] J. Bohnet and J. Döllner. Visual exploration of function call graphs for feature location in
complex software systems. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 95–104. ACM Press, 2006.

[43] J. Bohnet, M. Koeleman, and J. Döllner. Visualizing massively pruned execution traces to
facilitate trace exploration. In Proceedings of the International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), pages 57–64. IEEE Press, 2009.

[44] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2301–2309, Dec. 2011.

BIBLIOGRAPHY 303

[45] F. Bott, S. Diehl, and R. Lutz. CREWW: collaborative requirements engineering with Wii-
remotes (NIER track). In Proceedings of the International Conference on Software Engineering
(ICSE), pages 852–855. ACM Press, 2011.

[46] A. Bragdon, R. DeLine, K. Hinckley, and M. Morris. Code space: touch + air gesture hybrid
interactions for supporting developer meetings. In Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces (ITS), pages 212–221. ACM Press, 2011.

[47] J. Brittle and C. Boldyreff. Self-organizing maps applied in visualizing large software
collections. In Proceedings of the International Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT), pages 104–109. IEEE Press, 2003.

[48] M. Brown. Algorithm Animation. PhD thesis, Brown University, 1987. MIT Press.

[49] M. Brown. Zeus: A system for algorithm animation and multi-view editing. In Proceedings of
the IEEE Workshop on Visual Languages (VL), pages 4–9. IEEE Press, 1991.

[50] M. Brown and M. Najork. Algorithm animation using 3D interactive graphics. In Proceedings
of the ACM Symposium on User Interface Software and Technology (UIST), pages 93–100. ACM
Press, 1993.

[51] M. Brown and R. Sedgewick. A system for algorithm animation. In Proceedings of the ACM
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), pages 177–186. ACM
Press, 1984.

[52] B. Bruegge and A. Dutoit. Object-Oriented Software Engineering: Using UML, Patterns and Java.
Prentice Hall, 2003.

[53] H. Byelas and A. Telea. Visualization of areas of interest in software architecture diagrams.
In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 105–114.
ACM Press, 2006.

[54] H. Byelas and A. Telea. Texture-based visualization of metrics on software architectures. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 205–206. ACM
Press, 2008.

[55] M. Callaghan and H. Hirschmuller. 3D visualisation of design patterns and Java programs
in computer science education. In Proceedings of the ACM Conference on Integrating Technology
into Computer Science Education (ITiCSE), pages 37–40. ACM Press, 1998.

[56] S. Card, J. Mackinlay, and B. Shneiderman. Readings in information visualization: using vision
to think. Morgan Kaufmann, 1999.

[57] S. Carpendale, D. Cowperthwaite, and D. Fracchia. Extending distortion viewing from 2D
to 3D. IEEE Computer Graphics Applications, 17(4):42–51, 1997.

[58] K. Casey and C. Exton. A Java 3D implementation of a geon based visualisation tool for
UML. In Proceedings of the International Conference on Principles and Practice of Programming in
Java (PPPJ), pages 63–65. Computer Science Press, Inc., 2003.

[59] A. Caudwell. Gource: visualizing software version control history. In Companion to the ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
SPLASH, pages 73–74. ACM Press, 2010.

[60] S. H.-H. Chang, L. Stuart, B. Plimmer, and B. Wuensche. Origami simulator: a multi-touch
experience. In Proceedings of the ACM International Conference Extended Abstracts on Human
Factors in Computing Systems (CHI), pages 3889–3894. ACM Press, 2009.

BIBLIOGRAPHY 304

[61] S. Charters, C. Knight, N. Thomas, and M. Munro. Visualisation for informed decision mak-
ing; from code to components. In Proceedings of the ACM Conference on Software Engineering
and Knowledge Engineering (SEKE), pages 765–772. ACM Press, 2002.

[62] C. Chen. Information Visualization: Beyond The Horizon. Springer Verlag, 2006.

[63] F. Chen, P. Eades, J. Epps, S. Lichman, B. Close, P. Hutterer, M. Takatsuka, B. Thomas, and
M. Wu. Vicat: Visualisation and interaction on a collaborative access table. In Proceedings of the
IEEE International Workshop on Horizontal Interactive Human Computer Systems (TABLETOP),
pages 59–62. IEEE Press, 2006.

[64] S. Chidamber and C. Kemerer. Towards a metrics suite for object oriented design. In Proceed-
ings of ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 197–211. ACM Press, 1991.

[65] N. Churcher, W. Irwin, and R. Kriz. Visualising class cohesion with virtual worlds. In
Proceedings of the Asia-Pacific Symposium on Information Visualisation (APVIS), pages 89–97.
Australian Computer Society, Inc, 2003.

[66] N. Churcher, L. Keown, and W. Irwin. Virtual worlds for software visualisation. In Proceed-
ings of the Workshop on Software Visualisation Workshop (SoftVis), pages 9–16, 1999.

[67] A. Cockburn. Agile Software Development. Addison Wesley, 2001.

[68] N. Couture, G. Rivière, and P. Reuter. Geotui: a tangible user interface for geoscience. In
Proceedings of the International Conference on Tangible and Embedded Interaction (TEI), pages
89–96. ACM Press, 2008.

[69] K. Cox and G.-C. Roman. Abstraction in algorithm animation. In Proceedings of the IEEE
Workshop on Visual Languages (VL), pages 18–24. IEEE Press, 1992.

[70] B. Craft and P. Cairns. Beyond guidelines: What can we learn from the visual information
seeking mantra? In Proceedings of the IEEE International Conference on Information Visualization
(IV), pages 110–118. IEEE Press, 2005.

[71] J. Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE
Publications, 2008.

[72] R. Dachselt, M. Frisch, and E. Decker. Enhancing uml sketch tools with digital pens and
paper. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages
203–204. ACM Press, 2008.

[73] C. Danis, F. Viegas, M. Wattenberg, and J. Kriss. Your place or mine?: visualization as a
community component. In Proceedings of the ACM International Conference on Human Factors
in Computing Systems (CHI), pages 275–284. ACM Press, 2008.

[74] W. Dann, S. Cooper, and R. Pausch. Using visualization to teach novices recursion. ACM
SIGCSE Bulletin, 33(3):109–112, 2001.

[75] T. Davis, K. Pestka, and A. Kaplan. Kscope: A modularized tool for 3D visualization of
object-oriented programs. In Proceedings of the International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), pages 98–103. IEEE Press, 2003.

[76] S. Diehl. Revised Lectures on Software Visualization, International Seminar. Springer-Verlag,
2002.

BIBLIOGRAPHY 305

[77] S. Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolution of Software.
Springer Verlag, 2007.

[78] J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow. Cluster analysis of
Java dependency graphs. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 91–94. ACM Press, 2008.

[79] P. Dietz and D. Leigh. Diamondtouch: a multi-user touch technology. In Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST), pages 219–226. ACM Press,
2001.

[80] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-Compuer Interaction. Prentice Hall, 2003.

[81] K. Dohse, T. Dohse, J. Still, and D. Parkhurst. Enhancing multi-user interaction with multi-
touch tabletop displays using hand tracking. In Proceedings of the International Conference on
Advances in Computer-Human Interaction (ACHI), pages 297–302. IEEE Press, 2008.

[82] N. Drew and R. Hendley. Visualisation of complex systems. Technical report, University of
Birmingham, 1995.

[83] N. Drew and R. Hendley. Visualising complex interacting systems. In Proceedings of the ACM
International Conference on Human Factors in Computing Systems (CHI), pages 204–205. ACM
Press, 1995.

[84] M. Duignan. Evaluating scalable vector graphics for software visualisation. Master’s thesis,
Victoria University of Wellington, 2003.

[85] M. Duignan, R. Biddle, and E. Tempero. Evaluating scalable vector graphics for use in
software visualisation. In Proceedings of the Australasian Symposium on Information Visualisation
(INVIS), pages 127–136. Australian Computer Society, Inc, 2003.

[86] T. Dwyer. Three dimensional UML using force directed layout. In Proceedings of the Aus-
tralasian Symposium on Information Visualisation (INVIS), pages 77–85. Australian Computer
Society, Inc, 2001.

[87] F. Echtler, A. Dippon, M. Tönnis, and G. Klinker. Inverted FTIR: Easy multitouch sensing
for flatscreens. In Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces (ITS), pages 29–32. ACM Press, 2009.

[88] F. Echtler, M. Huber, and G. Klinker. Shadow tracking on multi-touch tables. In Proceedings
of the Working Conference on Advanced Visual Interfaces (AVI), pages 388–391. ACM Press, 2008.

[89] F. Echtler and G. Klinker. A multitouch software architecture. In Proceedings of the Nordic
conference on Human-computer interaction (NordiCHI), pages 463–466. ACM Press, 2008.

[90] F. Echtler, S. Nestler, A. Dippon, and G. Klinker. Supporting casual interactions between
board games on public tabletop displays and mobile devices. Personal Ubiquitous Comput.,
13(8):609–617, 2009.

[91] H. Eichelberger. Automatic layout of UML use case diagrams. In Proceedings of the ACM
Symposium on Software Visualization (SOFTVIS), pages 105–114. ACM Press, 2008.

[92] S. Eick, J. Steffen, and E. Sumner. Seesoft-a tool for visualizing line oriented software
statistics. IEEE Transactions on Software Engineering, 18(11):957–968, 1992.

BIBLIOGRAPHY 306

[93] G. Ellis and A. Dix. An explorative analysis of user evaluation studies in information
visualisation. In Proceedings of the AVI Workshop on BEyond time and errors: novel evaLuation
methods for Information Visualization (BELIV), pages 1–7. ACM Press, 2006.

[94] J. Epps, S. Lichman, and M. Wu. A study of hand shape use in tabletop gesture interaction.
In Proceedings of the ACM International Conference Extended Abstracts on Human Factors in
Computing Systems (CHI), pages 748–753. ACM Press, 2006.

[95] L. Feijs and R. D. Jong. 3D visualization of software architectures. Communications of the
ACM, 41(12):73–78, 1998.

[96] N. Fenton and S. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS Publishing,
1998.

[97] G. Franck, M. Sardesai, and C. Ware. Layout and structuring object oriented software in three
dimensions. In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), pages 22–31. IBM Press, 1995.

[98] M. Frisch and R. Dachselt. Towards a framework for supporting software modeling activities
through novel interaction and visualization techniques. In ICSE Doctoral Symposium. IEEE
Press, 2009.

[99] M. Frisch, R. Dachselt, and T. Brückmann. Towards seamless semantic zooming techniques
for UML diagrams. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 207–208. ACM Press, 2008.

[100] M. Frisch, S. Schmidt, J. Heydekorn, M. Nacenta, R. Dachselt, and S. Carpendale. Editing and
exploring node-link diagrams on pen- and multi-touch-operated tabletops. In Proceedings
of the ACM International Conference on Interactive Tabletops and Surfaces (ITS), pages 304–304.
ACM Press, 2010.

[101] T. Fritz and G. Murphy. Using information fragments to answer the questions developers
ask. In Proceedings of the International Conference on Software Engineering (ICSE), pages 175–184.
ACM Press, 2010.

[102] A. Fronk. Evaluating 3D-visualisation of code structures in the context of reverse engineering.
In Proceedings of the Workshop on Empirical Studies in Reverse Engineering (WESRE). IEEE Press,
2006.

[103] A. Fronk, A. Bruckhoff, and M. Kern. 3D visualisation of code structures in Java software
systems. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages
145–146. ACM Press, 2006.

[104] B. Fry. Visualizing Data. O’Reilly, 2008.

[105] K. Garland. Mr. Beck’s Underground Map. Capital Transport Publishing, 1994.

[106] Y. Ghanam, X. Wang, and F. Maurer. Utilizing digital tabletops in collocated agile planning
meetings. In Proceedings of the International Conference on Agile, pages 51–62. IEEE Press, 2008.

[107] J. Gil and S. Kent. Three dimensional software modelling. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 105–114. IEEE Press, 1998.

[108] M. Gogolla, O. Radfelder, and M. Richters. Towards three-dimensional animation of UML
diagrams. In Proceedings of the International Conference on Unified Modeling Language (UML),
pages 489–502. Springer Verlag, 1999.

BIBLIOGRAPHY 307

[109] A. Gokcezade, J. Leitner, and M. Haller. Lighttracker: An open-source multitouch toolkit.
Computers in Entertainment (CIE), 8(3):19:1–19:16, Dec. 2010.

[110] D. Goldman, R. Eckert, and M. Cohen. Three-dimensional computation visualization for
computer graphics rendering algorithms. In Proceedings of the ACM Symposium on Computer
Science Education (SIGCSE), pages 358–362. ACM Press, 1996.

[111] H. Graham, H. Y. Yang, and R. Berrigan. A solar system metaphor for 3D visualisation of
object oriented software metrics. In Proceedings of the Australasian Symposium on Information
Visualisation (INVIS), pages 53–59. Australian Computer Society, Inc., 2004.

[112] O. Greevy, M. Lanza, and C. Wysseier. Visualizing feature interaction in 3-D. In Proceedings
of the International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT),
pages 114–119. IEEE Press, 2005.

[113] O. Greevy, M. Lanza, and C. Wysseier. Visualizing live software systems in 3D. In Proceedings
of the ACM Symposium on Software Visualization (SOFTVIS), pages 47–56. ACM Press, 2006.

[114] P. Guo. Online python tutor: embeddable web-based program visualization for cs education.
In Proceedings of the ACM Symposium on Computer Science Education (SIGCSE), pages 579–584.
ACM Press, 2013.

[115] J. Han. Low-cost multi-touch sensing through frustrated total internal reflection. In Proceed-
ings of the ACM Symposium on User Interface Software and Technology (UIST), pages 115–118.
ACM Press, 2005.

[116] J. Han. Multi-touch interaction wall. In ACM SIGGRAPH Emerging technologies, page 25.
ACM Press, 2006.

[117] J. Hardy, C. Bull, G. Kotonya, and J. Whittle. Digitally annexing desk space for software
development (NIER track). In Proceedings of the International Conference on Software Engineering
(ICSE), pages 812–815. ACM Press, 2011.

[118] D. Harel and I. Segall. Visualizing inter-dependencies between scenarios. In Proceedings of
the ACM Symposium on Software Visualization (SOFTVIS), pages 145–153. ACM Press, 2008.

[119] R. Harris. Information graphics a comprehensive illustrated reference: visual tools for analyzing,
managing, and communicating. Oxford University Press, 1999.

[120] D. Hartley, N. Churcher, and G. Albertson. Virtual worlds for web site visualisation. In
Proceedings of the Asia-Pacific Software Engineering Conference (APSEC), pages 448–455. IEEE
Press, 2000.

[121] A. Hatch, M. Smith, C. Taylor, and M. Munro. No silver bullet for software visualisation
evaluation. In Proceedings of The International Conference on Imaging Science, Systems, and
Technology (CISST), 2001.

[122] R. Hendley, N. Drew, A. Wood, and R. Beale. Case study: Narcissus: visualising information.
In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS), pages 90–96.
IEEE Press, 1995.

[123] J. Highsmith. Agile Project Management: Creating Innovative Products. Addison Wesley, 2009.

[124] O. Hilliges, D. Baur, and A. Butz. Photohelix: Browsing, sorting and sharing digital photo
collections. In Proceedings of the IEEE International Workshop on Horizontal Interactive Human
Computer Systems (TABLETOP), pages 87–94. IEEE Press, 2007.

BIBLIOGRAPHY 308

[125] O. Hilliges, A. Butz, S. Izadi, and A. Wilson. Tabletops - Horizontal Interactive Displays, chapter
Interaction on the tabletop: bringing the physical to the digital. Springer Verlag, 2010.

[126] J. Hochenbaum and O. Vallis. Bricktable: A musical tangible multi-touch interface. In
Proceedings of Berlin Open Conference, 2009.

[127] J. Hochenbaum, O. Vallis, D. Diakopoulos, M. Akten, and A. Kapur. Musical applications
for multi-touch surfaces. In Workshop on Media Arts, Science, and Technology, 2009.

[128] S. Hodges, S. Izadi, A. Butler, A. Rrustemi, and B. Buxton. Thinsight: versatile multi-touch
sensing for thin form-factor displays. In Proceedings of the ACM Symposium on User Interface
Software and Technology (UIST), pages 259–268. ACM Press, 2007.

[129] C. Holz and P. Baudisch. Fiberio: A touchscreen that senses fingerprints. In Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST), pages 41–50. ACM Press,
2013.

[130] J. Hopkins and P. Fishwick. The rube framework for personalized 3-D software visualization.
In Revised Lectures on Software Visualization, International Seminar, pages 368–380. Springer
Verlag, 2002.

[131] P. Hutterer, B. Close, and B. Thomas. Supporting mixed presence groupware in tabletop
applications. In Proceedings of the IEEE International Workshop on Horizontal Interactive Human
Computer Systems (TABLETOP), pages 63–70. IEEE Press, 2006.

[132] P. Hutterer and B. Thomas. Groupware support in the windowing system. In Proceedings
of the Australasian Conference on User Interfaces (AUIC), pages 39–46. Australian Computer
Society, Inc, 2007.

[133] P. Irani, M. Tingley, and C. Ware. Using perceptual syntax to enhance semantic content in
diagrams. IEEE Computer Graphics Applications, 21(5):76–85, 2001.

[134] P. Irani and C. Ware. Diagrams based on structural object perception. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI), pages 61–67. ACM Press, 2000.

[135] P. Irani and C. Ware. Diagramming information structures using 3D perceptual primitives.
ACM Transactions on Computer-Human Interaction (TOCHI), 10(1):1–19, 2003.

[136] W. Irwin and N. Churcher. Object oriented metrics: Precision tools and configurable visuali-
sations. In Proceedings of the International Symposium on Software Metrics (METRICS), pages
112–123. IEEE Press, 2003.

[137] P. Isenberg. Collaborative Information Visualization in Co-located Environments. PhD thesis,
University of Calgary, 2009.

[138] P. Isenberg and S. Carpendale. Interactive tree comparison for co-located collaborative infor-
mation visualization. IEEE Transactions on Visualization and Computer Graphics, 13(6):1232–
1239, Nov. 2007.

[139] P. Isenberg, N. Elmqvist, J. Scholtz, D. Cernea, K.-L. Ma, and H. Hagen. Collaborative
visualization: definition, challenges, and research agenda. Information Visualization, 10(4):310–
326, Oct. 2011.

[140] P. Isenberg and D. Fisher. Collaborative brushing and linking for co-located visual analytics
of document collections. In Proceedings of the EuroGraphics/IEEE Symposium on Visualisation
(EuroVis), pages 1031–1038. IEEE Press, 2009.

BIBLIOGRAPHY 309

[141] P. Isenberg, D. Fisher, M. Morris, K. Inkpen, and M. Czerwinski. An exploratory study of
co-located collaborative visual analytics around a tabletop display. In Proceedings of the IEEE
Symposium on Visual Analytics Science and Technology (VAST). IEEE Press, 2010.

[142] P. Isenberg, D. Fisher, S. Paul, M. Morris, K. Inkpen, and M. Czerwinski. Co-located
collaborative visual analytics around a tabletop display. IEEE Transactions on Visualization
and Computer Graphics, 18(5):689–702, May 2012.

[143] P. Isenberg, A. Tang, and S. Carpendale. An exploratory study of visual information analysis.
In Proceedings of the ACM International Conference on Human Factors in Computing Systems
(CHI), pages 1217–1226. ACM Press, 2008.

[144] P. Isenberg, T. Zuk, C. Collins, and S. Carpendale. Grounded evaluation of information
visualizations. In Proceedings of the AVI Workshop on BEyond time and errors: novel evaLuation
methods for Information Visualization (BELIV). ACM Press, 2008.

[145] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces between people, bits and
atoms. In Proceedings of the ACM International Conference on Human Factors in Computing
Systems (CHI), pages 234–241. ACM Press, 1997.

[146] S. Izadi, S. Hodges, A. Butler, D. West, A. Rrustemi, M. Molloy, and B. Buxton. Thinsight: a
thin form-factor interactive surface technology. Communications of the ACM, 52(12):90–98,
2009.

[147] R. Jeffries, A. Anderson, and C. Hendrickson. Extreme Programming Installed. Addison
Wesley, 2000.

[148] A. Jermakovics, R. Moser, A. Sillitti, and G. Succi. Visualizing software evolution with
Lagrein. In Companion to the ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 749–750. ACM Press, 2008.

[149] A. Jermakovics, M. Scotto, A. Sillitti, and G. Succi. Lagrein: Visualizing user requirements
and development effort. In Proceedings of the IEEE International Conference on Program Compre-
hension (ICPC), pages 293–296. IEEE Press, 2007.

[150] A. Jermakovics, M. Scotto, and G. Succi. Lagrein: tracking the software development process.
In Companion to the ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 882–883. ACM Press, 2007.

[151] B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the visualization
of hierarchical information structures. In Proceedings of the IEEE Conference on Visualization
(VIS), pages 284–291. IEEE Press, 1991.

[152] S. Jordà, G. Geiger, M. Alonso, and M. Kaltenbrunner. The reactable: exploring the synergy
between live music performance and tabletop tangible interfaces. In Proceedings of the
International Conference on Tangible and Embedded Interaction (TEI), pages 139–146. ACM Press,
2007.

[153] S. Jorda, M. Kaltenbrunner, G. Geiger, and R. Bencina. The reactable*. In Proceedings of the
International Computer Music Conference (ICMC), 2005.

[154] S. Jucknath-John and D. Graf. Icon graphs: visualizing the evolution of large class models.
In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 167–168.
ACM Press, 2006.

BIBLIOGRAPHY 310

[155] S. Jucknath-John, D. Graf, and G. Taentzer. Evolutionary layout: preserving the mental map
during the development of class models. In Proceedings of the ACM Symposium on Software
Visualization (SOFTVIS), pages 165–166. ACM Press, 2006.

[156] Y. Jung, J. Keil, J. Behr, S. Webel, M. Zöllner, T. Engelke, H. Wuest, and M. Becker. Adapting
X3D for multi-touch environments. In Proceedings of the ACM International Conference on 3D
Web Technology (Web3D), pages 27–30. ACM Press, 2008.

[157] M. Kaltenbrunner and R. Bencina. reactivision: a computer-vision framework for table-based
tangible interaction. In Proceedings of the International Conference on Tangible and Embedded
Interaction (TEI), pages 69–74. ACM Press, 2007.

[158] M. Kaltenbrunner, T. Bovermann, R. Bencina, and E. Costanza. Tuio - a protocol for table
based tangible user interfaces. In Proceedings of the International Workshop on Gesture in
Human-Computer Interaction and Simulation, 2005.

[159] M. Kaltenbrunner, G. Geiger, and S. Jorda. Dynamic patches for live musical performance.
In Proceedings of the International Conference on New Interfaces for Musical Expression (NIME),
pages 19–22, 2004.

[160] M. Kaltenbrunner, S. Jorda, G. Geiger, and M. Alonso. The reactable*: A collaborative
musical instrument. In Proceedings of the IEEE International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, pages 406–411. IEEE Press, 2006.

[161] V. Karavirta, A. Korhonen, and L. Malmi. Taxonomy of algorithm animation languages. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 77–85. ACM
Press, 2006.

[162] L. Keown. Virtual 3D worlds for enhanced software visualization. Master’s thesis, University
of Canterbury, 2000.

[163] R. Khaled, P. Barr, H. Johnston, and R. Biddle. Let’s clean up this mess: exploring multi-touch
collaborative play. In Proceedings of the ACM International Conference Extended Abstracts on
Human Factors in Computing Systems (CHI), pages 4441–4446. ACM Press, 2009.

[164] K. Kim, W. Javed, C. Williams, N. Elmqvist, and P. Irani. Hugin: a framework for awareness
and coordination in mixed-presence collaborative information visualization. In Proceedings of
the ACM International Conference on Interactive Tabletops and Surfaces (ITS). ACM Press, 2010.

[165] S. Kim, J. Son, G. Lee, H. Kim, and W. Lee. Tapboard: making a touch screen keyboard more
touchable. In Proceedings of the ACM International Conference on Human Factors in Computing
Systems (CHI), pages 553–562. ACM Press, 2013.

[166] T. Kim and P. A. Fishwick. A 3D XML-based customized framework for dynamic models. In
Proceedings of the ACM International Conference on 3D Web Technology (Web3D), pages 103–109.
ACM Press, 2002.

[167] C. Knight and M. Munro. Comprehension with[in] virtual environment visualisations. In
Proceedings of the IEEE International Workshop on Program Comprehension (IWPC), pages 4–11.
IEEE Press, 1999.

[168] C. Knight and M. Munro. Virtual but visible software. In Proceedings of the IEEE International
Conference on Information Visualization (IV), pages 198–205. IEEE Press, 2000.

BIBLIOGRAPHY 311

[169] C. Knight and M. Munro. Visualising Java uncertainty. In Java/Jini Technologies, in the
Multimedia Networks and Management Program of The Convergence of Information Technologies
and Communication (ITCOM), volume 4521. SPIE, 2001.

[170] A. Ko, R. DeLine, and G. Venolia. Information needs in collocated software development
teams. In Proceedings of the International Conference on Software Engineering (ICSE), pages
344–353. IEEE Press, 2007.

[171] H. Koike. An application of three-dimensional visualization to object-oriented programming.
In Proceedings of the Working Conference on Advanced Visual Interfaces (AVI), pages 180–192.
World Scientific, 1992.

[172] H. Koike. Three-dimensional software visualization: A framework and its applications. In
Proceedings of the International Conference of the Computer Graphics Society on Visual Computing,
pages 151–170. Springer Verlag, 1992.

[173] H. Koike. The role of another spatial dimension in software visualization. ACM Transactions
on Information Systems (TOIS), 11(3):266–286, 1993.

[174] H. Koike and H.-C. Chu. Vrcs: Integrating version control and module management using
interactive three-dimensional graphics. In Proceedings of the IEEE Symposium on Visual
Languages (VL), pages 170–175, 1997.

[175] H. Koike and H.-C. Chu. How does 3-D visualization work in software engineering?: empir-
ical study of a 3-D version/module visualization system. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 516–519. IEEE Press, 1998.

[176] R. Koschke. Software visualization for reverse engineering. In Revised Lectures on Software
Visualization, International Seminar, pages 138–150. Springer Verlag, 2002.

[177] R. Koschke. Software visualization in software maintenance, reverse engineering, and
re-engineering: a research survey. Journal of Software Maintenance, 15(2):87–109, 2003.

[178] B. Kot, B. Wuensche, J. Grundy, and J. Hosking. Information visualisation utilising 3D
computer game engines - case study: A source code comprehension tool. In Proceedings of
the ACM New Zealand Conference on Computer-Human Interaction (CHINZ), pages 53–60. ACM
Press, 2005.

[179] M. W. Krueger, T. Gionfriddo, and K. Hinrichsen. Videoplace—an artificial reality. SIGCHI
Bull., 16(4):35–40, 1985.

[180] R. Kruger, S. Carpendale, S. Scott, and S. Greenberg. How people use orientation on
tables: comprehension, coordination and communication. In Proceedings of the International
Conference on Supporting Group Work (GROUP), pages 369–378. ACM Press, 2003.

[181] G. Langelier, H. Sahraoui, and P. Poulin. Visualization-based analysis of quality for large-
scale software systems. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 214–223. ACM Press, 2005.

[182] G. Langelier, H. Sahraoui, and P. Poulin. Animation coherence in representing software
evolution. In Proceedings of the ECOOP Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE), pages 41–50, 2006.

[183] G. Langelier, H. Sahraoui, and P. Poulin. Exploring the evolution of software quality with
animated visualization. In Proceedings of the IEEE Symposium on Visual Languages - Human
Centric Computing (VLHCC), pages 13–20. IEEE Press, 2008.

BIBLIOGRAPHY 312

[184] M. Lanza. Codecrawler - lessons learned in building a software visualization tool. In
Proceedings of the European Conference on Software Maintenance and Reengineering (CSMR),
pages 409–418. IEEE Press, 2003.

[185] M. Lanza and S. Ducasse. Polymetric views-a lightweight visual approach to reverse
engineering. IEEE Transactions on Software Engineering, 29(9):782–795, 2003.

[186] M. Lanza and S. Ducasse. Tools for Software Maintenance and Reengineering, chapter Code-
Crawler - An Extensible and Language Independent 2D and 3D Software Visualization Tool,
pages 74–94. RCOST Software Technology Series, 2005.

[187] M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice. Springer Verlag, 2006.

[188] U. Laufs, C. Ruff, and J. Zibuschka. MT4j a cross-platform multi-touch development
framework. In Proceedings of the Workshop on Engineering Patterns for Multi-Touch Interfaces at
Symposium Engineering Interactive Computing Systems (EICS). ACM Press, 2010.

[189] B. Lee, C. Plaisant, C. Parr, J.-D. Fekete, and N. Henry. Task taxonomy for graph visualization.
In Proceedings of the AVI Workshop on BEyond time and errors: novel evaLuation methods for
Information Visualization (BELIV), pages 1–5. ACM Press, 2006.

[190] Y. Y. Lee, N. Chen, and R. Johnson. Drag-and-drop refactoring: intuitive and efficient
program transformation. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 23–32. IEEE Press, 2013.

[191] G. J. Lepinski, T. Grossman, and G. Fitzmaurice. The design and evaluation of multitouch
marking menus. In Proceedings of the ACM International Conference on Human Factors in
Computing Systems (CHI), pages 2233–2242. ACM Press, 2010.

[192] C. Lewerentz and A. Noack. Graph Drawing Software, chapter CrocoCosmos - 3D Visualiza-
tion of Large Object-Oriented Programs, pages 279–297. Springer Verlag, 2003.

[193] C. Lewerentz and F. Simon. Metrics-based 3D visualization of large object-oriented programs.
In Proceedings of the International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT), pages 70–77. IEEE Press, 2002.

[194] H. Lieberman. A three-dimensional representation for program execution. In Proceedings of
the IEEE Workshop on Visual Languages (VL), pages 111–116. IEEE Press, 1989.

[195] W. Lowe, M. Ericsson, J. Lundberg, T. Panas, and N. Pettersson. Vizzanalyzer - a soft-
ware comprehension framework. In Proceedings of the International Conference on Software
Engineering Research and Practice (SERPS), pages 127–136. CSREA Press, 2003.

[196] M. Lungu and M. Lanza. Softwarenaut: cutting edge visualization. In Proceedings of the ACM
Symposium on Software Visualization (SOFTVIS), pages 179–180. ACM Press, 2006.

[197] M. Lungu and M. Lanza. Softwarenaut: Exploring hierarchical system decompositions. In
Proceedings of the Conference on Software Maintenance and Reengineering (CSMR), pages 351–354.
IEEE Press, 2006.

[198] J. Maletic and A. Marcus. CFB: a call for benchmarks - for software visualization. In
Proceedings of the International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), pages 113–116. IEEE Press, 2003.

[199] J. Maletic, A. Marcus, and M. Collard. A task oriented view of software visualization. In
Proceedings of the International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), pages 32–40. IEEE Press, 2002.

BIBLIOGRAPHY 313

[200] S. Malik and J. Laszlo. Visual touchpad: a two-handed gestural input device. In Proceedings
of the International Conference on Multimodal Interfaces (ICMI), pages 289–296. ACM Press,
2004.

[201] A. Marcus, D. Comorski, and A. Sergeyev. Supporting the evolution of a software visual-
ization tool through usability studies. In Proceedings of the IEEE International Workshop on
Program Comprehension (IWPC), pages 307–316. IEEE Press, 2005.

[202] A. Marcus, L. Feng, and J. Maletic. 3D representations for software visualization. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 27–36. ACM
Press, 2003.

[203] A. Marcus, L. Feng, and J. Maletic. Comprehension of software analysis data using 3D
visualization. In Proceedings of the IEEE International Workshop on Program Comprehension
(IWPC), pages 105–114. IEEE Press, 2003.

[204] D. Markusson. Interface development of a multi-touch photo browser. Master’s thesis,
Umea University, 2008.

[205] J. Matejka, T. Grossman, J. Lo, and G. Fitzmaurice. The design and evaluation of multi-finger
mouse emulation techniques. In Proceedings of the ACM International Conference on Human
Factors in Computing Systems (CHI), pages 1073–1082. ACM Press, 2009.

[206] N. Matsushita, Y. Ayatsuka, and J. Rekimoto. Dual touch: a two-handed interface for pen-
based pdas. In Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST), pages 211–212. ACM Press, 2000.

[207] N. Matsushita and J. Rekimoto. Holowall: designing a finger, hand, body, and object
sensitive wall. In Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST), pages 209–210. ACM Press, 1997.

[208] R. Mazza and A. Berre. Focus group methodology for evaluating information visualiza-
tion techniques and tools. In Proceedings of the IEEE International Conference on Information
Visualization (IV), pages 74–80. IEEE Press, 2007.

[209] W. McGrath, B. Bowman, D. McCallum, J. D. Hincapié-Ramos, N. Elmqvist, and P. Irani.
Branch-explore-merge: facilitating real-time revision control in collaborative visual explo-
ration. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces
(ITS), pages 235–244. ACM Press, 2012.

[210] P. McIntosh. X3D-UML: User-Centred Design, Implementation and Evaluation of 3D UML Using
X3D. PhD thesis, Royal Melbourne Institute of Technology (RMIT), 2010.

[211] P. McIntosh, M. Hamilton, and R. van Schyndel. X3D-UML: enabling advanced UML
visualisation through X3D. In Proceedings of the ACM International Conference on 3D Web
Technology (Web3D), pages 135–142. ACM Press, 2005.

[212] C. Mesnage and M. Lanza. White coats: Web-visualization of evolving software in 3D. In
Proceedings of the International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), pages 40–45. IEEE Press, 2005.

[213] M. Meyer, T. Girba, and M. Lungu. Mondrian: An agile information visualization toolkit. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 135–144. ACM
Press, 2006.

BIBLIOGRAPHY 314

[214] I. Mistrk, J. Grundy, A. van der Hoek, and J. Whitehead, editors. Collaborative Software
Engineering. Springer Verlag, 2010.

[215] R. Morgan and F. Maurer. Maseplanner: A card-based distributed planning tool for agile
teams. In Proceedings of the International Conference on Global Software Engineering (ICGSE),
pages 132–138. IEEE Press, 2006.

[216] R. Morgan, J. Walny, H. Kolenda, E. Ginez, and F. Maurer. Using horizontal displays for
distributed and collocated agile planning. In Proceedings of the International Conference on
Agile Processes in Software Engineering and Extreme Programming (XP), pages 38–45. Springer
Verlag, 2007.

[217] L. Muller. Multi-touch displays: design, application and performance evaluation. Master’s
thesis, University of Amsterdam, 2008.

[218] S. Muller, M. Wursch, T. Fritz, and H. Gall. An approach for collaborative code reviews
using multi-touch technology. In Proeedings of the Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), pages 93 –99, 2012.

[219] S. Muller, M. Wursch, P. Schoni, G. Ghezzi, E. Giger, and H. Gall. Tangible software modeling
with multi-touch technology. In Proeedings of the Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), pages 100 –104, 2012.

[220] M. Najork. Web-based algorithm animation. In Proceedings of the Conference on Design
Automation (DAC), pages 506–511. ACM Press, 2001.

[221] M. Najork and M. Brown. Three-dimensional web-based algorithm animations. Technical
Report SRC-RR-170, Compaq Systems Research Centre, 2001.

[222] M. Nebeling and M. Norrie. jQMultiTouch: lightweight toolkit and development framework
for multi-touch/multi-device web interfaces. In Proceedings of the ACM Symposium on
Engineering Interactive Computing Systems (EICS). ACM Press, 2012.

[223] K. Nesbitt. Using guidelines to assist in the visualisation design process. In Proceedings of
the Asia-Pacific Symposium on Information Visualisation (APVIS), pages 115–123. Australian
Computer Society, Inc, 2005.

[224] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.

[225] J. Noble. Abstract Program Visualisation. PhD thesis, Victoria University of Wellington, 1996.

[226] J. Noble and L. Groves. Tarraingı́m - a program animation environment. In Proceedings of the
New Zealand Computer Science Conference, 1991.

[227] J. Noble, L. Groves, and R. Biddle. Object oriented program visualisation in tarraingı́m.
Australian Computing Journal, 27(4), 1995.

[228] C. North, T. Dwyer, B. Lee, D. Fisher, P. Isenberg, G. Robertson, and K. Inkpen. Under-
standing multi-touch manipulation for surface computing. In Proceedings of the IFIP TC
International Conference on Human-Computer Interaction (INTERACT), pages 236–249. Springer
Verlag, 2009.

[229] M. Ogawa and K.-L. Ma. code swarm: A design study in organic software visualization. In
Proceedings of the IEEE Symposium on Information Visualization (INFOVIS). ACM Press, 2009.

[230] M. Oudshoorn, H. Widjaja, and S. Ellershaw. Aspects and taxonomy of program visualisation.
In Software Visualisation, pages 3–26. World Scientific, 1996.

BIBLIOGRAPHY 315

[231] T. Panas. Signature visualization of software binaries. In Proceedings of the ACM Symposium
on Software Visualization (SOFTVIS), pages 185–188. ACM Press, 2008.

[232] T. Panas, R. Berrigan, and J. Grundy. A 3D metaphor for software production visualization.
In Proceedings of the IEEE Symposium on Information Visualization (INFOVIS), pages 314–319.
IEEE Press, 2003.

[233] T. Panas, R. Lincke, and W. Lowe. Online-configuration of software visualizations with
Vizz3D. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages
173–182. ACM Press, 2005.

[234] G. Parker, G. Franck, and C. Ware. Visualization of large nested graphs in 3D: navigation
and interaction. Journal of Visual Languages and Computing, 9(3):299–317, 1998.

[235] C. Parnin and C. Görg. Lightweight visualizations for inspecting code smells. In Proceedings
of the ACM Symposium on Software Visualization (SOFTVIS), pages 171–172. ACM Press, 2006.

[236] C. Parnin, C. Görg, and O. Nnadi. A catalogue of lightweight visualizations to support code
smell inspection. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 77–86. ACM Press, 2008.

[237] C. Parnin, C. Görg, and S. Rugaber. Codepad: interactive spaces for maintaining concen-
tration in programming environments. In Proceedings of the ACM Symposium on Software
Visualization (SOFTVIS). ACM Press, 2010.

[238] W. D. Pauw, H. Andrade, and L. Amini. Streamsight: a visualization tool for large-scale
streaming applications. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 125–134. ACM Press, 2008.

[239] W. D. Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visualizing the behavior of object-
oriented systems. In Proceedings of ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 326–337. ACM Press, 1993.

[240] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang. Visualizing the
execution of Java programs. In Revised Lectures on Software Visualization, International Seminar,
pages 151–162. Springer Verlag, 2002.

[241] W. D. Pauw, D. Kimelman, and J. Vlissides. Modeling object-oriented program execution.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), pages
163–182. Springer Verlag, 1994.

[242] W. D. Pauw, D. Kimelman, and J. Vlissides. Software Visualization, chapter Visualizing
Object-Oriented Software Execution, pages 329–346. MIT Press, 1998.

[243] W. D. Pauw, S. Krasikov, and J. Morar. Execution patterns for visualizing web services. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 37–45. ACM
Press, 2006.

[244] W. D. Pauw, N. Mitchell, M. Robillard, G. Sevitsky, and H. Srinivasan. Drive-by analysis of
running programs. In Proceedings of the ICSE Workshop on Software Visualization, pages 27–32,
2001.

[245] W. D. Pauw and G. Sevitski. Visualizing reference patterns for solving memory leaks in Java.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), pages
116–134. Springer Verlag, 1999.

BIBLIOGRAPHY 316

[246] P. Peltonen, E. Kurvinen, A. Salovaara, G. Jacucci, T. Ilmonen, J. Evans, A. Oulasvirta, and
P. Saarikko. It’s mine, don’t touch!: interactions at a large multi-touch display in a city centre.
In Proceedings of the ACM International Conference on Human Factors in Computing Systems
(CHI), pages 1285–1294. ACM Press, 2008.

[247] T. Perl and S. Kögl. Adaptation and evaluation of numpty physics for multi-touch multi-
player interaction. Bachelors Thesis, Technical University of Vienna, 2009.

[248] C. Plaisant. The challenge of information visualization evaluation. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI), pages 109–116. ACM Press, 2004.

[249] B. Price, R. Baecker, and I. Small. A principled taxonomy of software visualization. Journal of
Visual Languages and Computing, 4(2):211–266, 1993.

[250] B. Price, R. Baecker, and I. Small. Software Visualization, chapter An Introduction to Software
Visualization, pages 3–27. MIT Press, 1998.

[251] B. Price, I. Small, and R. Baecker. A taxonomy of software visualisation. In Proceedings of the
International Conference on System Sciences, pages 597–606, 1992.

[252] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2013.

[253] O. Radfelder and M. Gogolla. On better understanding UML diagrams through interactive
three-dimensional visualization and animation. In Proceedings of the Working Conference on
Advanced Visual Interfaces (AVI), pages 292–295. ACM Press, 2000.

[254] C. Reas and B. Fry. Processing: A Programming Handbook for Visual Designers and Artists. MIT
Press, 2007.

[255] S. Reiss. A framework for abstract 3D visualization. In Proceedings of the IEEE Symposium on
Visual Languages (VL), pages 108–115. IEEE Press, 1993.

[256] S. Reiss. 3-D visualization of program information. In Proceedings of Graph Drawing, pages
12–24. Springer Verlag, 1994.

[257] S. Reiss. An engine for the 3D visualization of program information. Journal of Visual
Languages and Computing, 6(3):299–323, 1995.

[258] S. Reiss. Bee/Hive: A software visualization back end. In Proceedings of the ICSE Workshop
on Software Visualization, pages 44–48. IEEE Press, 2001.

[259] S. Reiss. An overview of BLOOM. In Proceedings of the ACM Workshop on Program Analysis
for Software Tools and Engineering (PASTE), pages 2–5. ACM Press, 2001.

[260] S. Reiss. A visual query language for software visualization. In Proceedings of the IEEE
Symposium on Human Centric Computing Languages and Environments (HCC), pages 80–82.
IEEE Press, 2002.

[261] S. Reiss. Event-based performance analysis. In Proceedings of the IEEE International Workshop
on Program Comprehension (IWPC), pages 74–83. IEEE Press, 2003.

[262] S. Reiss. Jive: visualizing Java in action demonstration description. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 820–821. IEEE Press, 2003.

[263] S. Reiss. Visualizing Java in action. In Proceedings of the ACM Symposium on Software
Visualization (SOFTVIS), pages 57–65. ACM Press, 2003.

BIBLIOGRAPHY 317

[264] S. Reiss. Visualizing program execution using user abstractions. In Proceedings of the ACM
Symposium on Software Visualization (SOFTVIS), pages 125–134. ACM Press, 2006.

[265] S. Reiss. Controlled dynamic performance analysis. In Proceedings of the International Workshop
on Software and Performance (WOSP), pages 43–54. ACM Press, 2008.

[266] S. Reiss. Dynamic detection of event handlers. In Proceedings of the ICSE Workshop on Dynamic
Analysis (WODA), pages 1–7. ACM Press, 2008.

[267] S. Reiss. Dyvise: Performance analysis of production systems. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE). IEEE Press, 2009.

[268] S. Reiss. Visualizing the Java heap. In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM). IEEE Press, 2009.

[269] S. Reiss. Visualizing the Java heap to detect memory problems. In Proceedings of the Interna-
tional Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). IEEE Press,
2009.

[270] S. Reiss and M. Renieris. Generating Java trace data. In Proceedings of the ACM Conference on
Java Grande, pages 71–77. ACM Press, 2000.

[271] S. Reiss and M. Renieris. Languages for dynamic instrumentation. In Proceedings of the ICSE
Workshop on Dynamic Analysis (WODA), pages 41–45, 2003.

[272] S. Reiss and M. Renieris. Software Visualization: From Theory to Practice, chapter The Bloom
Software Visualization System, pages 311–357. Kluwer Academic Publishers, 2003.

[273] S. Reiss and M. Renieris. Jove: Java as it happens. In Proceedings of the ACM Symposium on
Software Visualization (SOFTVIS), pages 115–124. ACM Press, 2005.

[274] J. Rekimoto. Smartskin: an infrastructure for freehand manipulation on interactive surfaces.
In Proceedings of the ACM International Conference on Human Factors in Computing Systems
(CHI), pages 113–120. ACM Press, 2002.

[275] J. Rekimoto and N. Matsushita. Perceptual surfaces: Towards a human and object sensitive
interactive display. In Proceedings of Workshop on Perceptural User Interfaces (PUI), 1997.

[276] S. Richter, C. Holz, and P. Baudisch. Bootstrapper: Recognizing tabletop users by their shoes.
In Proceedings of the ACM International Conference on Human Factors in Computing Systems
(CHI), pages 1249–1252. ACM Press, 2012.

[277] J. Rilling and S. Mudur. On the use of metaballs to visually map source code structures and
analysis results onto 3D space. In Proceedings of the Working Conference on Reverse Engineering
(WCRE), pages 299–308. IEEE Press, 2002.

[278] J. Rilling and S. Mudur. 3D visualization techniques to support slicing-based program
comprehension. Computers & Graphics, 29(3):311–329, 2005.

[279] J. Rilling, J. Wang, and S. Mudur. Metaviz - issues in software visualizing beyond 3D. In
Proceedings of the International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), pages 92–97. IEEE Press, 2003.

[280] G. Robertson, M. Czerwinski, P. Baudisch, B. Meyers, D. Robbins, G. Smith, and D. Tan. The
large-display user experience. IEEE Computer Graphics Applications, 25(4):44–51, 2005.

[281] G.-C. Roman and K. Cox. A taxonomy of program visualization systems. IEEE Computer,
26(12):11–24, 1993.

BIBLIOGRAPHY 318

[282] G.-C. Roman, K. Cox, D. Wilcox, and J. Plun. Pavane: A system for declarative visualization
of concurrent computations. Journal of Visual Languages and Computing, 3(2):161–193, 1992.

[283] H. Ruan, C. Anslow, S. Marshall, and J. Noble. Exploring the inventor’s paradox: applying
Jigsaw to software visualization. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 83–92. ACM Press, 2010.

[284] K. Ryall, C. Forlines, C. Shen, M. R. Morris, and K. Everitt. Experiences with and observations
of direct-touch tabletops. In Proceedings of the IEEE International Workshop on Horizontal
Interactive Human Computer Systems (TABLETOP), pages 89–96. IEEE Press, 2006.

[285] A. Savidis, P. Papadakos, and G. Zargianakis. Rapid visual design with semantics encoding
through 3D CRC cards. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 193–196. ACM Press, 2008.

[286] T. Schäfer and M. Mezini. Towards more flexibility in software visualization tools. In
Proceedings of the International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), pages 1–6. IEEE Press, 2005.

[287] J. Schöning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges, J. Hook, M. Lchtefeld, N. Motamedi,
L. Muller, P. Olivier, T. Roth, and U. von Zadow. Multi-touch surfaces: A technical guide.
Technical Report TUM-I0833, University of Munster, 2008.

[288] J. Schöning, F. Daiber, A. Krüger, and M. Rohs. Using hands and feet to navigate and
manipulate spatial data. In Proceedings of the ACM International Conference Extended Abstracts
on Human Factors in Computing Systems (CHI), pages 4663–4668. ACM Press, 2009.

[289] S. Scott. Territoriality in Collaborative Tabletop Workspaces. PhD thesis, University of Calgary,
2005.

[290] S. Scott, S. Carpendale, and S. Habelski. Storage bins: Mobile storage for collaborative
tabletop displays. IEEE Computer Graphics Applications, 25(4):58–65, 2005.

[291] S. Scott, S. Carpendale, and K. Inkpen. Territoriality in collaborative tabletop workspaces.
In Proceedings of the ACM Conference on Computer Supported Cooperative work (CSCW), pages
294–303. ACM Press, 2004.

[292] S. Scott, K. Grant, and R. Mandryk. System guidelines for co-located, collaborative work on
a tabletop display. In Proceedings of the European Conference on Computer Supported Cooperative
Work (ECSCW), pages 159–178. Kluwer Academic Publishers, 2003.

[293] M. Sensalire, P. Ogao, and A. Telea. Visualizing object-oriented software: Towards a point
of reference for developing tools for industry. In Proceedings of the International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT), pages 26–29. IEEE Press, 2007.

[294] M. Sensalire, P. Ogao, and A. Telea. Classifying desirable features of software visualiza-
tion tools for corrective maintenance. In Proceedings of the ACM Symposium on Software
Visualization (SOFTVIS), pages 87–90. ACM Press, 2008.

[295] M. Sensalire, P. Ogao, and A. Telea. Evaluation of software visualization tools: Lessons
learned. In Proceedings of the International Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT), pages 19–26. IEEE Press, 2009.

[296] G. Sevitsky, W. D. Pauw, and R. Konuru. An information exploration tool for performance
analysis of Java programs. In Proceedings of the IEEE International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS), pages 85–101, March 2001.

BIBLIOGRAPHY 319

[297] H. Shah, C. Görg, and M. J. Harrold. Visualization of exception handling constructs to sup-
port program understanding. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 19–28. ACM Press, 2008.

[298] B. Sharif and J. Maletic. The effect of layout on the comprehension of UML class diagrams:
A controlled experiment. In Proceedings of the International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), pages 11–18. IEEE Press, 2009.

[299] C. Shen, F. Vernier, C. Forlines, and M. Morris. Diamondspin: An extensible toolkit for
around-the-table interaction. In Proceedings of the ACM International Conference on Human
Factors in Computing Systems (CHI), pages 167–174. ACM Press, 2004.

[300] B. Shneiderman. Tree visualization with tree-maps: 2-D space-filling approach. ACM
Transactions on Graphics (TOG), 11(1):92–99, 1992.

[301] B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualiza-
tions. In Proceedings of the IEEE Symposium on Visual Languages (VL), pages 336–343. IEEE
Press, 1996.

[302] J. Sillito, G. Murphy, and K. D. Volder. Questions programmers ask during software evolution
tasks. In Proceedings of the ACM International Conference on Foundations of Software Engineering
(FSE), pages 23–34. ACM Press, 2006.

[303] J. Singer and C. Kirkham. Visualized adaptive runtime subsystems. In Proceedings of the
ACM Symposium on Software Visualization (SOFTVIS), pages 195–196. ACM Press, 2006.

[304] D. Smith, N. Graham, D. Holman, and J. Borchers. Low-cost malleable surfaces with multi-
touch pressure sensitivity. In Proceedings of the IEEE International Workshop on Horizontal
Interactive Human Computer Systems (TABLETOP), pages 205–208. IEEE Press, 2007.

[305] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann. Improving developer
participation rates in surveys. In Proceedings of the Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE), pages 89–92, 2013.

[306] R. Smith and W. Piekarski. Public and private workspaces on tabletop displays. In Proceedings
of the Australasian Conference on User Interfaces (AUIC), pages 51–54. Australian Computer
Society, Inc, 2008.

[307] I. Sommerville. Software Engineering. Addison Wesley, 9 edition, 2010.

[308] A. Soro, S. Iacolina, R. Scateni, and S. Uras. Evaluation of user gestures in multi-touch
interaction: a case study in pair-programming. In Proceedings of the International Conference
on Multimodal Interfaces (ICMI), pages 161–168. ACM Press, 2011.

[309] R. Spence. Information Visualization: Design For Interaction. Addison Wesley, 2007.

[310] J. Stasko. Tango: A Framework and System for Algorithm Animation. PhD thesis, Brown
University, May 1989.

[311] J. Stasko. Tango: A framework and system for algorithm animation. IEEE Computer, 23(9):27–
39, 1990.

[312] J. Stasko, M. Brown, and B. Price. Software Visualization. MIT Press, 1997.

[313] J. Stasko and E. Kraemer. A methodology for building application-specific visualizations of
parallel programs. Journal of Parallel and Distributed Computing, 18(2):258–264, 1993.

BIBLIOGRAPHY 320

[314] J. Stasko and J. Wehrli. Three-dimensional computation visualization. In Proceedings of the
IEEE Symposium on Visual Languages (VL), pages 100–107. IEEE Press, 1993.

[315] T. Storer and I. Duncan. 3D animation of Java program execution for teaching object oriented
concepts. In Proceedings of the International Conference on Visualisation, Imaging and Image
Processing (VIIP), pages 76–81. ACTA Press, 2007.

[316] M.-A. Storey, C. Bennett, I. Bull, and D. German. Remixing visualization to support collabo-
ration in software maintenance. In Proceedings of the Frontiers of Software Maintenance (FoSM),
pages 139–148. IEEE Press, 2008.

[317] M.-A. Storey, D. Cubranic, and D. German. On the use of visualization to support awareness
of human activities in software development: a survey and a framework. In Proceedings of
the ACM Symposium on Software Visualization (SOFTVIS), pages 193–202. ACM Press, 2005.

[318] J. Sundararaman and G. Back. HDPV: interactive, faithful, in-vivo runtime state visualization
for C/C++ and Java. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 47–56. ACM Press, 2008.

[319] D. Tan, D. Gergle, P. Scupelli, and R. Pausch. Physically large displays improve path
integration in 3D virtual navigation tasks. In Proceedings of the ACM International Conference
on Human Factors in Computing Systems (CHI), pages 439–446. ACM Press, 2004.

[320] A. Tang, M. Tory, B. Po, P. Neumann, and S. Carpendale. Collaborative coupling over
tabletop displays. In Proceedings of the ACM International Conference on Human Factors in
Computing Systems (CHI), pages 1181–1190. ACM Press, 2006.

[321] A. Teiche, A. Rai, C. Yanc, C. Moore, D. Solms, G. Cetin, J. Riggio, N. Ramseyer, P. D’Intino,
L. Muller, R. Khoshabeh, R. Bedi, M. T. Bintahir, T. Hansen, T. Roth, and S. Sandler. Multi-
touch technologies. http://nuigroup.com/, 2009.

[322] A. Telea, H. Hoogendorp, O. Ersoy, and D. Reniers. Extraction and visualization of call
dependencies for large C/C++ code bases: A comparative study. In Proceedings of the
International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT),
pages 81–88. IEEE Press, 2009.

[323] A. Telea, A. Maccari, and C. Riva. An open toolkit for prototyping reverse engineering
visualizations. In Proceedings of the Symposium on Data Visualisation (VISSYM), pages 241–249.
Eurographics Association, 2002.

[324] A. Telea and L. Voinea. An interactive reverse engineering environment for large-scale C++
code. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 67–76.
ACM Press, 2008.

[325] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble. Qualitas
corpus: A curated collection of Java code for empirical studies. In Proceedings of the Asia
Pacific Software Engineering Conference (APSEC), pages 336–345, 2010.

[326] A. Teyseyre and M. Campo. An overview of 3D software visualization. IEEE Transactions on
Visualization and Computer Graphics, 15(1):87–105, 2009.

[327] R. Theron, A. Gonzalez, and F. Garcia. Supporting the understanding of the evolution of
software items. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 189–192. ACM Press, 2008.

BIBLIOGRAPHY 321

[328] B. Thompson, D. Pearce, C. Anslow, and G. Haggard. Visualizing the computation tree of the
tutte polynomial. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 211–212. ACM Press, 2008.

[329] M. Thörnlund. Gesture analyzing for multi-touch screen interfaces. Bachelor’s Thesis Luleå
University of Technology, 2007.

[330] M. Tobiasz, P. Isenberg, and S. Carpendale. Lark: Coordinating co-located collaboration
with information visualization. IEEE Transactions on Visualization and Computer Graphics,
15(6):10651072, 2009.

[331] A. Toney and B. Thomas. Considering reach in tangible and table top design. In Proceed-
ings of the IEEE International Workshop on Horizontal Interactive Human Computer Systems
(TABLETOP), pages 57–58. IEEE Press, 2006.

[332] M. Tory and T. Moller. Evaluating visualizations: Do expert reviews work? IEEE Computer,
25(5):8–11, 2005.

[333] T. L. Toza, D. Garlan, J. Herbsleb, and B. Myers. Program comprehension as fact finding. In
Proceedings of the ACM International Conference on Foundations of Software Engineering (FSE),
pages 361–370. ACM Press, 2007.

[334] T. L. Toza and B. Myers. Hard to answer questions about code. In Proceedings of the Workshop
on Evaluation and Usability of Programming Languages and Tools (PLATEAU) at SPLASH. ACM
Press, 2010.

[335] C. Treude. The Role of Social Media Artifacts in Collaborative Software Development. PhD thesis,
University of Victoria, 2012.

[336] E. Tse, C. Shen, S. Greenberg, and C. Forlines. Enabling interaction with single user applica-
tions through speech and gestures on a multi-user tabletop. In Proceedings of the Working
Conference on Advanced Visual Interfaces (AVI), pages 336–343. ACM Press, 2006.

[337] E. R. Tufte. The visual display of quantitative information. Cheshire: Graphics Press, 1983.

[338] E. R. Tufte. Envisioning Information. Cheshire: Graphics Press, 1990.

[339] J. W. v. Gudenberg, A. Niederle, M. Ebner, and H. Eichelberger. Evolutionary layout of UML
class diagrams. In Proceedings of the ACM Symposium on Software Visualization (SOFTVIS),
pages 163–164. ACM Press, 2006.

[340] E. Valiati, M. Pimenta, and C. Freitas. A taxonomy of tasks for guiding the evaluation of
multidimensional visualizations. In Proceedings of the AVI Workshop on BEyond time and errors:
novel evaLuation methods for Information Visualization (BELIV), pages 1–6. ACM Press, 2006.

[341] F. Viegas, M. Wattenberg, and J. Feinberg. Participatory visualization with wordle. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1137–1144, Nov. 2009.

[342] F. Viegas, M. Wattenberg, M. McKeon, F. van Ham, and J. Kriss. Harry potter and the
meat-filled freezer: A case study of spontaneous usage of visualization tools. In HICSS
’08: Proceedings of the Proceedings of the 41st Annual Hawaii International Conference on System
Sciences, page 159. IEEE Press, 2008.

[343] F. Viegas, M. Wattenberg, F. van Ham, J. Kriss, and M. McKeon. ManyEyes: a site for
visualization at internet scale. IEEE Transactions on Visualization and Computer Graphics,
13(6):1121–1128, 2007.

BIBLIOGRAPHY 322

[344] S. Voigt, J. Bohnet, and J. Döllner. Enhancing structural views of software systems by
dynamic information. In Proceedings of the International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), pages 47–50. IEEE Press, 2009.

[345] L. Voinea and A. Telea. Cvsgrab: Mining the histiry of large software projects. In Proceedings
of the EuroGraphics/IEEE Symposium on Visualisation (EuroVis), pages 187–194. IEEE Press,
2006.

[346] L. Voinea and A. Telea. How do changes in buggy mozilla files propogate. In Proceedings of
the ACM Symposium on Software Visualization (SOFTVIS), pages 147–148. ACM Press, 2006.

[347] L. Voinea and A. Telea. Multiscale and multivariate visualizations of software evolution. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 115–124. ACM
Press, 2006.

[348] L. Voinea, A. Telea, and J. van Wijk. Cvsscan: Visualization of code evolution. In Proceedings
of the ACM Symposium on Software Visualization (SOFTVIS), pages 47–56. ACM Press, 2005.

[349] J. von Pilgrim and K. Duske. Gef3D: a framework for two-, two-and-a-half-, and three-
dimensional graphical editors. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 95–104. ACM Press, 2008.

[350] X. Wang, Y. Ghanam, and F. Maurer. From desktop to tabletop: Migrating the user interface
of agileplanner. In Proceedings of the Conference on Human-Centered Software Engineering
(HCSE) and International Workshop on Task Models and Diagrams, pages 263–270. Springer
Verlag, 2008.

[351] X. Wang and F. Maurer. Tabletop agileplanner: A tabletop-based project planning tool
for agile software development teams. In Proceedings of the IEEE International Workshop on
Horizontal Interactive Human Computer Systems (TABLETOP). IEEE Press, 2008.

[352] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann, 2004.

[353] C. Ware, G. Franck, M. Parkhi, and T. Dudley. Layout for visualizing large software structures
in 3D. In Proceedings of the International Conference on Visual Information Systems (VISUAL),
pages 215–223. Springer Verlag, 1997.

[354] C. Ware, D. Hui, and G. Franck. Visualizing object oriented software in three dimensions.
In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON), pages 612–620. IBM Press, 1993.

[355] M. Weiss, R. Jennings, R. Khoshabeh, J. Borchers, J. Wagner, Y. Jansen, and J. D. Hollan. Slap
widgets: bridging the gap between virtual and physical controls on tabletops. In Proceedings
of the ACM International Conference Extended Abstracts on Human Factors in Computing Systems
(CHI), pages 3229–3234. ACM Press, 2009.

[356] P. Wellner. The digitaldesk calculator: tangible manipulation on a desk top display. In
Proceedings of the ACM Symposium on User Interface Software and Technology (UIST), pages
27–33. ACM Press, 1991.

[357] P. Wellner. Interacting with paper on the digitaldesk. Communications of the ACM, 36(7):87–96,
1993.

[358] D. Wendlandt, M. Casado, P. Tarjan, and N. McKeown. The clack graphicsl router: Visu-
alizing network structure. In Proceedings of the ACM Symposium on Software Visualization
(SOFTVIS), pages 7–15. ACM Press, 2006.

BIBLIOGRAPHY 323

[359] W. Westerman. Hand Tracking, Finger Identification and Chrodic Manipulation on a Multi-touch
Surface. PhD thesis, University of Delaware, 1999.

[360] R. Wettel and M. Lanza. Visualizing software systems as cities. In Proceedings of the Interna-
tional Workshop on Visualizing Software for Understanding and Analysis (VISSOFT), pages 92–99.
IEEE Press, 2007.

[361] R. Wettel and M. Lanza. Visually localizing design problems with disharmony maps. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 155–164. ACM
Press, 2008.

[362] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A controlled experiment. In
Proceedings of the International Conference on Software Engineering (ICSE), pages 551–560. ACM
Press, 2011.

[363] L. Williams and R. Kessler. Pair Programming Illuminated. Addison Wesley, 2002.

[364] A. Wilson. Touchlight: an imaging touch screen and display for gesture-based interaction. In
Proceedings of the International Conference on Multimodal Interfaces (ICMI), pages 69–76. ACM
Press, 2004.

[365] A. Wilson. Playanywhere: a compact interactive tabletop projection-vision system. In
Proceedings of the ACM Symposium on User Interface Software and Technology (UIST), pages
83–92. ACM Press, 2005.

[366] A. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and D. Kirk. Bringing physics to the
surface. In Proceedings of the ACM Symposium on User Interface Software and Technology (UIST),
pages 67–76. ACM Press, 2008.

[367] A. Wilson and R. Sarin. Bluetable: connecting wireless mobile devices on interactive surfaces
using vision-based handshaking. In Proceedings of Graphics Interface, pages 119–125. ACM
Press, 2007.

[368] P. Wilson. Computer supported cooperative work: an introduction. Springer Science and Business,
1991.

[369] J. Wobbrock, M. Morris, and A. Wilson. User-defined gestures for surface computing. In
Proceedings of the ACM International Conference on Human Factors in Computing Systems (CHI),
pages 1083–1092. ACM Press, 2009.

[370] C. Wolfe, D. Smith, and N. Graham. A low-cost infrastructure for tabletop games. In
Proceedings of the Conference on Future Play, pages 145–151. ACM Press, 2008.

[371] M. Wu and R. Balakrishnan. Multi-finger and whole hand gestural interaction techniques for
multi-user tabletop displays. In Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST), pages 193–202. ACM Press, 2003.

[372] M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan. Gesture registration, relaxation,
and reuse for multi-point direct-touch surfaces. In Proceedings of the IEEE International
Workshop on Horizontal Interactive Human Computer Systems (TABLETOP), pages 185–192.
IEEE Press, 2006.

[373] C. Wysseier. Interactive 3D visualization of feature-traces. Master’s thesis, University of
Berne, 2005.

BIBLIOGRAPHY 324

[374] B. Yost, Y. Haciahmetoglu, and C. North. Beyond visual acuity: the perceptual scalability
of information visualizations for large displays. In Proceedings of the ACM International
Conference on Human Factors in Computing Systems (CHI), pages 101–110. ACM Press, 2007.

[375] P. Young and M. Munro. A new view of call graphs for visualising code structures. Technical
Report 03/97, University of Durham, 1997.

[376] D. Zeckzer, R. Kalcklösch, L. Schröder, H. Hagen, and T. Klein. Analyzing the reliability of
communication between software entities using a 3D visualization of clustered graphs. In
Proceedings of the ACM Symposium on Software Visualization (SOFTVIS), pages 37–46. ACM
Press, 2008.

[377] H. Zhang, X.-D. Yang, B. Ens, H.-N. Liang, P. Boulanger, and P. Irani. See me, see you: a
lightweight method for discriminating user touches on tabletop displays. In Proceedings of the
ACM International Conference on Human Factors in Computing Systems (CHI), pages 2327–2336.
ACM Press, 2012.

[378] K. Zhang. Software Visualization: From Theory to Practice. Kluwer Academic Publishers, 2003.

[379] T. Zuk and S. Carpendale. Theoretical analysis of uncertainty visualizations. In Proceedings of
the Visualization and Data Analysis Conference at Electronic Imaging, volume 6060, page 606007.
SPIE, 2006.

[380] T. Zuk, L. Schlesier, P. Neumann, M. S. Hancock, and S. Carpendale. Heuristics for informa-
tion visualization evaluation. In Proceedings of the AVI Workshop on BEyond time and errors:
novel evaLuation methods for Information Visualization (BELIV), pages 1–6, 2006.

