
Modern Concurrency
Techniques: an Exploration

by

Daniel Atkins

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Master of Science
in Computer Science.

Victoria University of Wellington
2013

Abstract

In this thesis, we investigate some of the options programmers have when
writing a concurrent program. We explore the use of manually created
threads, thread-pools, actors, and Software Transactional Memory. We
use these techniques to implement case studies of various kinds: a video
game, a physical simulation, an image-processing application, and a con-
current data structure. Through-out these case studies, we notice a com-
mon thread: concurrency, applied correctly, can improve the performance
of a program—but the correct application may not be readily apparent.
Concurrency is an important tool in the toolbox of the modern program-
mer, especially with the rise of multi-core architectures and the increasing
prevalence of distributed systems. And like any tool, it is important to
understand how and when to use it.

ii

Acknowledgments

I would like to acknowledge my supervisors, Alex and Lindsay, for their
support and patience through this last year.

I would also like to thank Michael Blockley for letting me bounce ideas
off him, and keeping me on task when I needed it.

Many thanks to Elizabeth Waugh, Mel Duncan, and Russ Kale for proof
reading and sanity checking.

Special mention to the denizens of #cave, without whom my nights at
uni would have been much less entertaining.

Special thanks to Dr. Janice Polito, for her assistance with various AI-
related subroutines.

iii

iv

Contents

1 Introduction 1
1.1 Concurrency Issues . 3

1.2 Concurrency Techniques . 6

1.2.1 Threads and Thread Pools 6

1.2.2 The Actor Model . 6

1.2.3 Software Transactional Memory 7

1.3 Case Studies . 7

1.4 Thesis Outline . 8

2 Background 9
2.1 Threads . 9

2.1.1 Multi-threading in Java 10

2.1.2 Thread Pools . 13

2.2 Actors . 18

2.3 Software Transactional Memory 20

2.4 Experimental Technique . 22

3 Case Study: Asteroids 25
3.1 Description . 25

3.2 Design . 27

3.3 Implementation . 30

3.3.1 Manual Threads . 30

3.3.2 Work-Sharing and Work-Stealing Queues 34

v

vi CONTENTS

3.3.3 Software Transactional Memory 35
3.3.4 Actors . 35

3.4 Results . 36
3.5 Discussion . 40

3.5.1 Manual Threading vs Thread Pools 44
3.5.2 STM vs Synchronized 46
3.5.3 Evaluation . 46

4 Case Study: Gas Simulation 49
4.1 Description . 49
4.2 Making it Concurrent . 53

4.2.1 Manual Threading . 53
4.2.2 Work-Sharing and Work-Stealing Queues 54
4.2.3 Actors . 54

4.3 Results . 56
4.4 Discussion . 60

4.4.1 Evaluation . 62

5 Case Study: Image Processing Server 63
5.1 Description . 63
5.2 Making it Concurrent . 66

5.2.1 Implementation . 66
5.3 Results . 67

5.3.1 Refactoring . 69
5.4 Discussion . 70

5.4.1 I/O-Heavy Operations 71
5.4.2 CPU-Heavy and Memory-Heavy Operations 72
5.4.3 CPU-Heavy and Memory-Light Operations 72
5.4.4 Evaluation . 73

6 Case Study: Concurrent HashMaps 75
6.1 Description . 75

CONTENTS vii

6.2 Making it Concurrent . 76
6.2.1 Synchronized HashMap 76
6.2.2 Atomic HashMap . 77
6.2.3 Actor HashMap . 77
6.2.4 ReaderWriter HashMap 78
6.2.5 Java’s ConcurrentHashMap 78

6.3 Results . 79
6.4 Discussion . 83

6.4.1 Evaluation . 84

7 Conclusion 87
7.1 The Actor Model . 88
7.2 Thread Pools . 88
7.3 Software Transactional Memory 89
7.4 Future Work . 90

viii CONTENTS

Chapter 1

Introduction

Concurrency is an important part of computing today—Moore’s Law, as
far as processing power is concerned, is a thing of the past [25]. Thus,
in order to continue increasing processing power, the focus has shifted
away from faster clock speeds, and towards an increase in the physical
number of CPU cores within each processor. Additional cores mean that
more programs can be executed in parallel, and that programs written
with concurrency in mind can take advantage of having multiple cores to
improve performance [21, 20].

Concurrency techniques were initially aimed at sharing limited system
resources. This was especially important during the era of computers that
could only process one program at a time—if a program required user in-
put, or had to wait on file operations (which both have notoriously high
latency [23]), the entire system was basically doing nothing. Early concur-
rency, in the form of multiprogramming, allowed the computer to switch to
a different program while the current one was blocked, due to waiting on
an event.

As computers became more able to multi-task new forms of concur-
rency were introduced. Instead of being a means of executing multiple
programs at once, concurrent concepts began to be applied within pro-
grams, not just between programs. Even though the program might be ex-

1

2 CHAPTER 1. INTRODUCTION

ecuting on a single CPU, the introduction of multiple threads of execution
inside a program allowed programs to be more efficient and responsive;
while one part of the program was occupied with file input/output (I/O),
another could be controlling the user interface. This idea of a program
being made up of multiple threads of execution became particularly im-
portant as the number of CPU cores inside a computer grew above one, as
this allowed a program to actually perform simultaineous actions. This had
a serious impact on programs. Consider a simple program that sorts an
array, with no blocking I/O calls. With one CPU, it doesn’t matter how
many threads you use in your program: it is not going to run any faster, as
those threads are all interleaving on the same processor. In fact, due to the
overheads associated with threading, the program may in fact run slower.
On a machine with multiple cores, however, the threads can actually exe-
cute concurrently, which means that the array is going to be sorted in less
time.

How much less time? The answer is not a simple one. Two threads
running on two cores, tasked with sorting an array, should hypothetically
be able to sort the array in half the time of a single thread on a single core.
The fact that this is generally not the case begins to hint at some of the in-
teresting problems faced by concurrent programming. This thesis aims to
explore some of the more common problems faced by programmers when
writing concurrent apllications, as well as introducing and exploring a few
different means of implementing concurrent systems. We approach con-
currency from both a design and implementation viewpoint, with a fo-
cus on the options available for actually introducing concurrency into a
program—and the pitfalls and benefits of each. We also look at how dif-
ferent kinds of applications might require different forms of concurrency.
To this end, we implement four different case studies which each focus on
a unique area of concurrency, and explore the issues that a programmer
might face during the design and implementation of such a program.

1.1. CONCURRENCY ISSUES 3

1.1 Concurrency Issues

• Not all code can be made concurrent—some programs are, by neces-
sity, sequential. Having a sequential section of code in a program
limits the performance gains that can be obtained by making the rest
concurrent [6].

• Not all segments of code can be safely executed concurrently [7].
Critical sections of code, such as the updating of global variables,
or writing to databases/files, can only be executed by one thread at
a time.

• Concurrency is conceptually difficult, and requires a different ap-
proach than sequential programming [26].

The first is the simplest case; a program (or part of a program) that just
cannot be written in a concurrent fashion. Sometimes, code just must be
sequential. A good example of this is a sequential stream-cipher; every
encryption or decryption operation requires the result of the previous op-
eration in order to proceed. In situations where this lack of concurrency
only applies to some of the program, the performance gained by making
the rest of it concurrent is limited by how much of the code needs to be
sequential, with the total speed-up given by Amdahl’s Law [6]:

S(N) =
1

(1− P) P
N

Where N is the number of processors, and P is the proportion of par-

allel code within the program.

However, even if all of the code for a specific task, such as decrypting
a stream filter, cannot take advantage of concurrency to improve perfor-
mance, we may be able to gain some measure of performance benefit by
using concurrency to perform multiple instances of the task at the same
time. A program like this is explored in Chapter 5, where we explore the

4 CHAPTER 1. INTRODUCTION

option of using concurrency to apply a set of image processing functions
to multiple images at once.

N = 5

N = N + 1

N = N + 1

N = 5 + 1

N = 5 + 1

N ← 6

N ← 6

N = 6

N = 5

N = N + 1

N = N + 1

N = 5 + 1

N = 6 + 1

N ← 6

N ← 7

N = 7

Figure 1.1: Different interleavings of instructions

The second point is an inescapable fact of concurrency: sometimes, you
simply can’t do two things at once (safely, at any rate). The simplest case of
this is updating a global variable in a shared-memory environment. Say
there are two process, p1 and p2, and they share an integer variable n
between them. As shown in Figure 1.1, both processes are attempting to
increment the value of n by 1. Logically, this should end up incrementing
the value of n by 2, but as we can see, this is not always the case. The
incorrect result occurs because one process reads the value of N before
the other updates it, resulting in both processes seeing N as 5. There are
many ways to solve this problem, but the most common solution is to
use a lock to ensure that only one process has access to the variable at a

1.1. CONCURRENCY ISSUES 5

time, enforcing behaviour similar to the sequence on the right in Figure
1.1. Chapters 3 and 4 go into more detail about the use of locks.

The final point is perhaps an entirely subjective matter of opinion, but
it bears mentioning as it is a very widely held opinion. Sequential programs
are conceptually easy in terms of program flow: they proceed in order,
following instructions line-after-line; and given the same set of initial con-
ditions, a sequential program will always follow the same path through
the code. The same cannot be said for concurrent applications.

Probably the greatest cost of concurrency is that concurrency
really is hard: The programming model, meaning the model in
the programmers head that he needs to reason reliably about
his program, is much harder than it is for sequential control
flow [25].

Although threads seem to be a small step from sequential com-
putation, in fact, they represent a huge step. They discard the
most essential and appealing properties of sequential computa-
tion: understandability, predictability, and determinism. Threads,
as a model of computation, are wildly nondeterministic, and
the job of the programmer becomes one of pruning that nonde-
terminism [17].

If a programmer misses a potential race condition in their code (ie: a sit-
uation where the output depends entirely on which randomly determined
interleaving of operations is used), it may not be immediately apparent—
the program might run perfectly fine the first few thousand times it’s exe-
cuted, but then due to some strange cosmic alignment (and the randomess
of the scheduler), it crashes spectacularly the next time it’s run. Naturally,
when you then try to debug the program to figure out what happened,
it runs perfectly fine. Bugs related to concurrency can be extraordinarily
hard to reproduce.

6 CHAPTER 1. INTRODUCTION

1.2 Concurrency Techniques

Next we will introduce the concurrency techniques being explored in this
thesis, as well as providing a little historical context for them—technical
details are left to the next chapter. Each of the case studies implemented
in this thesis are implemented using each of these methods. In order to
provide a base-line for analysis, all of the case studies also have a totally
sequential implementation of the code. This allows us to readily deter-
mine if there is any performance benefit from the concurrent versions of
the code by comparing it to a baseline performance obtained from the se-
quential version of the code.

1.2.1 Threads and Thread Pools

A thread is a portion of executing code that is contained inside a process.
Threads, unlike processes, share a common address-space in memory, al-
lowing inter-thread communication to be performed in a shared-memory
space, instead of relying on message-passing, like inter-process communi-
cation.

A thread pool is a set of threads that process a sequence of incoming
jobs (usually submitted to a queue).

1.2.2 The Actor Model

In the Actor Model, actors form the base unit of concurrency within the
system. An actor can be essentially any part of the system: a CPU, a mem-
ory device, a program, part of a program, etc. For the purposes of this
thesis, we will be only considering the role of actors within a concurrent
program, where they behave much like threads but with some very key
differences:

• Actors do not share state or memory.

1.3. CASE STUDIES 7

• Actors communicate via message passing.

• Actors only activate when processing a message.

1.2.3 Software Transactional Memory

Software Transaction Memory (STM), unlike the techniques outlined above,
isn’t a method of creating concurrency in-and-of itself. STM is rather an
alternate means of ensuring atomicity when executing critical sections. It
is used to replace traditional locks to improve performance when many
threads are attempting to acquire and release locks.

1.3 Case Studies

To inspect the differences between the models present above, we have
written four case studies. Each case study has been implemented five dif-
ferent ways, corresponding to the models above. Evaluation of each case
study is based on performance with respect to the non-concurrent version
of the code, and several subjective measures: ease-of-use, library support,
ease-of-understanding.

The first case study we investigate is an implementation of the well-
known game Asteroids. Through this case study, we intend to investigate
the effects of concurrency on updating the game state, and using it to per-
form collision detection.

The second case study is a physical simulation of gas diffusion. Through
this case study, we intend to investigate the effects of concurrency on large
computations, as well as examine how the division of tasks amongst units
of execution affects performance.

The third case study is an image processing program that applies vari-
ous filters to input images and then outputs them to the file system. Through
this case study, we intend to examine the use of concurrency to perform

8 CHAPTER 1. INTRODUCTION

multiple, totally independant, operations. We will also investigate the per-
formance effects of having concurrent computations be I/O bound, CPU
bound, and memory bound.

The fourth, and final, case study is a HashMap that has been extended
to allow concurrent reads and writes. Through this case study, we intend
to examine the effectiveness of various mechanisms for controlling access
to shared data, as well as how these mechanisms perform for different
ratios of read operations and write operations.

1.4 Thesis Outline

Chapter 2 presents more detail about the concurrency techniques that will
be investigated in this thesis.

Chapter 3 through to Chapter 6 look at the four individual case studies
outlined above. Each chapter is self-contained, presenting results and a
discussion about each case study alongside the general description and
technical details.

Chapter 7 concludes the thesis with a discussion that encompasses all
the case studies.

Chapter 2

Background

This chapter looks at the concurrency techniques used in this thesis in a
more technical manner, and provides examples of the techniques in action.
It addresses the key similarities and differences between the techniques,
and hypothesises as to how well they will perform at different sorts of
tasks.

2.1 Threads

Threads are the building-blocks of concurrency within a program. They
are similar to processes, but much more lightweight. Threads, unlike pro-
cesses, share much of the state of the program between themselves: with
the exception of CPU register values and execution stack, all of the state is
available to any thread at any time. This has several key advantages over
using separate processes to make a program concurrent, namely:

• No need for message passing to notify the other threads about state
changes—all changes are immediately visible

• Faster context switching due to shared state not needing to be altered

• Threads are lighter than processes, so more of them may be spawned

9

10 CHAPTER 2. BACKGROUND

2.1.1 Multi-threading in Java

1 i n t [] array = . . . ; / / Some a r r a y o f i n t e g e r s
2 Worker worker1 = new Worker (0 , 1 0 , array) ;

3 Worker worker2 = new Worker (1 0 , 2 0 , array) ;

4 Thread t1 = new Thread (w1) ;

5 Thread t2 = new Thread (w2) ;

6 t1 . s t a r t () ;

7 t2 . s t a r t () ;

8 / / Wait f o r t h e t h r e a d s t o f i n i s h b e f o r e c o n t i n u i n g
9 t r y {

10 t1 . j o i n () ;

11 t2 . j o i n () ;

12 } catch (InterruptedExcept ion e){
13 / / E x c e p t i o n h a n d l i n g c o d e
14 }

Figure 2.1: An example of creating two worker threads in Java

The most common and simple way of obtaining a new thread in a pro-
gram is to fork a new thread. The method of doing this varies from lan-
guage to language, and from library to library. Figure 2.1 shows a snippet
of Java code that creates two threads and beings executing them. Creating
a thread in Java is a straight-forward affair that involves creating a new
instance of the Thread class, which takes an instance of Runnable as an
argument (Note: the Worker class implements the Runnable interface, as
shown in Figure 2.2). Alternatively, the Worker class could extend Thread,
and provide an implementation of the required run() method, as shown
in Figure 2.3. Such an approach would change the Thread creation in Fig-
ure 2.1 to look more like Figure 2.4.

Once the thread has been instantiated, it is started by calling the start()
method upon it, whereupon the JVM spins off a new thread to execute

2.1. THREADS 11

1 public c l a s s Worker implements Runnable {
2 private i n t s t a r t ;

3 private i n t end ;

4 private i n t [] array ;

5

6 public Worker (i n t s , i n t e , i n t [] a){
7 s t a r t = s ;

8 end = e ;

9 array = a ;

10 }
11

12 / / To s a t i s f y t h e Runnable i n t e r f a c e
13 public void run () {
14 for (i n t i = s t a r t ; i<end ; i ++)

15 doSomeOperation (array [i]) ;

16 }
17 }

Figure 2.2: An example a Worker that implements runnable

12 CHAPTER 2. BACKGROUND

1 public c l a s s Worker extends Thread {
2 private i n t s t a r t ;

3 private i n t end ;

4 private i n t [] array ;

5

6 public Worker (i n t s , i n t e , i n t [] a){
7 super () ;

8 s t a r t = s ;

9 end = e ;

10 array = a ;

11 }
12

13 / / We need t o p r o v i d e t h i s method
14 @Override

15 public void run () {
16 for (i n t i = s t a r t ; i<end ; i ++)

17 doSomeOperation (array [i]) ;

18 }
19 }

Figure 2.3: An example of a Worker that extends Thread

1 Thread t1 = new Worker (0 , 1 0 , array) ;

2 Thread t2 = new Worker (1 0 , 2 0 , array) ;

Figure 2.4: Instantiation of a Worker Thread

2.1. THREADS 13

the code within the object’s run() method. Note that calling the run()
method instead of the start method does not execute the method in a sep-
arate thread.

To force the current thread to wait for another thread to finish before
continuing, the join() method should be called on the other thread, as
demonstrated on lines 10-11 of Figure 2.1. Notice that in Java joining a
thread requires exception handling in the event that the joined thread is
interrupted (via the interrupt() method call).

2.1.2 Thread Pools

A thread pool is a set of existing threads that are already resident in mem-
ory, and ready to start executing code whenever they are required to. Un-
like the threads described above, the threads in a thread pool don’t have a
specific function coded into their run() methods; instead, they take jobs
from a queue of available jobs and execute the code contained within the
job. Thus, multiple jobs can be submitted to the pool, and when a thread
is free, it will take the first available job. In Java, a job is typically required
to implement some for of interface so that each job has a common method
that can be used to execute it. Java has built-in support for thread pools us-
ing the ExecutorService class. Two implementations of a Java thread
pool are described below, but there are several others available, including:

FixedThreadPool Maintains a pool with a fixed number of threads. Used
for the Work-Sharing pool described below.

CachedThreadPool Maintains a variable-sized pool that creates new threads
when required, but re-uses old threads if they are available. Removes
un-used threads from the pool after a certain time limit.

SingleThreadExecutor Not really a “pool” at all; uses a single worker
thread to complete jobs in the queue.

14 CHAPTER 2. BACKGROUND

Work-Sharing

Thread#1 Thread#2

Thread#3 Thread#4

Figure 2.5: Four threads in a Work-Sharing Pool

A work-sharing pool, like the one shown in Figure 2.5, is a thread-pool
that maintains a global queue of jobs. When a thread in the pool is ready
to accept a job, it removes the first available job in the queue and begins to
process it. In order to ensure that all threads see a consistant state of the
queue, any operations on the queue must be thread-safe: that is, the queue
must guarantee that race-conditions will not occur, and that all changes

2.1. THREADS 15

to the queue are immediately visible to all threads in the pool upon an
operation completing. This synchronization of threads in the pool in done
by the pool itself.

1 i n t [] array = . . . ; / / Some a r r a y o f i n t e g e r s
2 ExecutorServ ice pool = Executors . newFixedThreadPool (4) ;

3 Worker w1 = new Worker (0 , 1 0 , array) ;

4 Worker w2 = new Worker (1 0 , 2 0 , array) ;

5 Future f1 = pool . submit (w1) ;

6 Future f2 = pool . submit (w2) ;

7

8 t r y {
9 f1 . get () ;

10 f2 . get () ;

11 } catch (Cance l la t ionExcept ion | ExecutionException

12 | InterruptedExcept ion e){
13 / / E x c e p t i o n h a n d l i n g c o d e
14 }

Figure 2.6: An example of using a Work-Sharing thread pool in Java

In Java, a Work-Sharing queue may be contructed and used as shown
in Figure 2.6—notice the similarities to Figure 2.1. However, instead of
creating new threads, we instead submit() the Worker (the same worker,
in fact—the jobs must implement the Runnable interface) to the pool.
Submitting the job returns a Future, an object that is used to keep track
of the job’s status, i.e. if it has complete, and if so, what its result is. Like
manually creating and running a thread, we can force the current thread to
wait for the job to finish executing before continuing; this is accomplished
via the get() method of the Future as shown on lines 9-10 of Figure 2.6.
Notice that get(), like join() requires exception handling in the event
that the job is cancelled, throws an exception itself, or the thread executing
it is interrupted.

16 CHAPTER 2. BACKGROUND

An important note: a job that implements the Runnable interface can-
not return a value, as run() is declared as returning void. If a return
value is required, jobs should instead implement the Callable<T> inter-
face, with the appropriate return type as the type parameter. For the case
studies used in this thesis, return values were not required.

Work-Stealing

TailHead

Thread#1

TailHead

Thread#3

TailHead

Thread#2

TailHead

Thread#4

STEAL

Figure 2.7: Four threads in a Work-Stealing Pool

In a work-stealing pool like the one shown in Figure 2.7, there is no
global job queue like a work-sharing pool. Instead, each thread maintains
its own queue of jobs. Such a queue is typically double-ended, with a ref-
erence to the head and tail of the queue being maintained by the thread
[10]. A thread processes jobs from the head of the queue until its per-
sonal job queue is empty, at which point it proceeds to steal jobs from the
tail of another thread’s queue. The implementation of the work-stealing
pool used in this thesis is contained in the JSR166Y package, authored by

2.1. THREADS 17

Doug Lea [4], and is based on prior research [8, 18]. The lack of a global
queue means that the worker threads don’t need to synchronize as heav-
ily as they would in a work-sharing queue. Figure 2.8 demonstrates an
example of using the ForkJoinThreadPool contain in JSR166Y, in Java.
Notice that the only difference to the work- sharing code (Figure 2.6 is the
constructor used on line 2—one of the advantages provided by the use of
the ExecutorService interface means that both pools have exactly the
same methods, even if the underlying implementation is different.

Important Note: the version of Java used in this thesis is Java 6. The
contents of JSR-166 (specifically ForkJoinPool) are available as part of
the standard Java library as of Java 7.

1 i n t [] array = . . . ; / / Some a r r a y o f i n t e g e r s
2 ExecutorServ ice pool = new ForkJoinPool (4) ;

3 Worker w1 = new Worker (0 , 1 0 , array) ;

4 Worker w2 = new Worker (1 0 , 2 0 , array) ;

5 Future f1 = pool . submit (w1) ;

6 Future f2 = pool . submit (w2) ;

7

8 t r y {
9 f1 . get () ;

10 f2 . get () ;

11 } catch (Cance l la t ionExcept ion | ExecutionException

12 | InterruptedExcept ion e){
13 / / E x c e p t i o n h a n d l i n g c o d e
14 }

Figure 2.8: An example of using a Work-Stealing thread pool in Java

18 CHAPTER 2. BACKGROUND

2.2 Actors

The Actor Model proposes that every part of a system can be modelled
as an Actor [14, 9, 15], an entity that performs operations in response to
messages being sent to it. Actors are internally sequential, though many
such actors may be executing in parallel. As such, an actor in a system
can only process one message at a time; the rest get stored in the actor’s
mailbox, which typically takes the form of a queue. In terms of concurrent
software, Actors operate on a paradigm that is more similar to processes
than threads (though they are much lighter-weight than both), and as such
do not share state.

As an example of this difference, imagine a program that uses actors to
sort an array using merge-sort. If you were using threads, the array might
be stored in a location that is accessable to all threads, and they would read
and write to that same location. With actors, however, there are no such
locations available to multiple actors—each actor can only read/write to
its own internal state. Any communication with any other actor in the sys-
tem must be done via message passing. So to split an array into chunks
to be processed by an actor, we must send each actor a message contain-
ing a copy of their section of the array. Once they have sorted it, they will
send a copy of the sorted chunk to a different type of actor who will re-
combine them into a fully sorted array, and then send that onwards to its
destination.

Because of this lack of shared state, messages need to be complete copies
of the original data. Take this snippet of Java code for example:

1 Pr int ingActor pa = new Pr int ingActor () ;

2 S t r i n g t e x t = ‘ ‘ Hello World ’ ’ ;

3 pa . t e l l (t e x t) ;

Figure 2.9: Psuedocode Actor Example

2.2. ACTORS 19

The code in Figure 2.9 is semantically incorrect, as we are sending
a reference to text to the PrintingActor. If the PrintingActor stores this
incoming text somehow, we now have a reference that points inside an
actor’s state. While this is certainly permitted by the Java programming
language, it goes against the intended semantics of the Actor System. A
more correct version of the code would send a clone of the string. This
requires a substantial paradigm shift for those programmers who have
learned little but Object-Oriented Programming—the ability to just reach
in and alter an objects state is something a OOP-programmer might take
for granted. Likewise, a global state which can be altered by any thread
at any time is a luxury the usual OOP paradigm allows programmers as
a given. To suddenly find that global state is something that needs to be
manually passed around as a message in your system is perhaps a little
disconcerting to those unfamiliar with functional programming.

As an example of this, imagine a simple 2D game in which you pilot
a ship through an asteroid field. Figure 2.10 gives an example of what
actors might be involved in the system, and the messages they might send
between each other. An update message from the Game Controller would
contain the elapsed time since the last update, which the objects in the
game (the ship and the asteroids) would then use to update their positions
according to how they were moving. Once they have done that, they need
to send their new location (and a copy of their collision box/sprite) to the
Collision Dectector and the Renderer, which process that information. If a
collision is detected, the collision detector needs to be able to inform the
game object that it has collided with something. In a paradigm that allows
for shared memory, this scenario looks and behaves very differently: the
game controller maintains a global list of game objects, which the renderer
and collision detector have direct access to. One of the benefits of the actor
model over the shared-memory model is that because the data isn’t shared,
there are no concurrent access issues that need to be addressed. However
this results in duplication of information; at the very least, there are three

20 CHAPTER 2. BACKGROUND

Collision Detector

Render

Game Controller

ShipAsteroid#1 Asteroid#2

Update

U
pd

at
e Update

Update

D
o

C
ol

lis
io

ns

Update
Update

R
ender

D
es

tro
yU

pdate

Update

U
pd

at
e

I a
m

 d
ea

d

Figure 2.10: A game using Actors

different copies of a game objects location—one inside the game object
actor, and another for the renderer and collision detector. Because of this
memory overhead, and the overhead of passing and storing messages in
the system, the Actor Model seems like it may be better suited to tasks that
require less information to be passed between each actor in the system.

We will be using Akka [1] to provide the implementation of the actor
system for our case studies.

2.3 Software Transactional Memory

A discussion of concurrency is not complete without an examination of
the means of controlling access to shared memory. The actor model does

2.3. SOFTWARE TRANSACTIONAL MEMORY 21

away with this issue by eliminating the concept of shared memory en-
tirely; however, threads (and by extension thread pools) are firmly en-
trenched the shared-memory model. In Java, the traditional approach to
ensuring that shared data is only modified by one thread at a time is to use
the synchronized keyword (as shown in Figure 2.11); this behaves as a
lock—only the thread that has acquired the lock may execute the code en-
capsulated by synchronized. However, locks can be a little cumbersome
to use, and can often impede the performance of a program; for example,
if every method on a data-structure is declared synchronized, only one
thread may use it at a time, no matter what operation is being performed.
If the program makes extensive use of this data-structure, then this is re-
ally no different than only having one thread in the first place.

Software Transactional Memory (STM) provides an alternative mech-
anism for controlling concurrent access to memory. STM encapsulates
accesses in transactions and performs (or commits) these transations in a
non-interfering atomic way. It typically provides a lock-free solution to
the problem of concurrent modifcations to memory, and ensuring atomic-
ity [22]. Importantly, unlike using synchronized it makes a distinction
between transactions that are just reading values, and transactions that
actually modify the state.

We are using DEUCE to provide an implementation of STM on the
Java Virtual Machine [3]. DEUCE uses “an original locking design that
detects conficts at the level of individual fields without a signifcant increase
in the memory footprint or GC overhead” [11]. It does this by intercepting
classes before they are executed, and instruments them to provide STM
support where indicated by the programmer. DEUCE was remarkably
simple to use, requiring only the addition of the @Atomic annotation to
any method that must be executed as a transaction, as shown in Figure
2.12.

22 CHAPTER 2. BACKGROUND

1 private i n t x ;

2

3 public synchronized void increment () {
4 x ++;

5 }

Figure 2.11: Synchronized Example

1 private i n t x ;

2

3 @Atomic

4 public void increment () {
5 x ++;

6 }

Figure 2.12: STM Example

2.4 Experimental Technique

All of the case-studies in this thesis were executed on identical hardware
(the Dell Optiplex 990), as per the specifications in Table 2.1. To allow
the Java Virtual Machine (JVM) to warm up, the first 5 results from every
experimental run were discarded, and the remaining 95 used to calcuate
the mean execution time for the program.

2.4. EXPERIMENTAL TECHNIQUE 23

CPU Intel(R) i5-2400 CPU @ 3.10GHz (Four Cores)
RAM 4GB
OS Arch-Linux (3.7.5-1-ARCH x86 64)
Java Version 1.6.0 37, 64-bit
Actors Library Akka-2.0.1
STM Library Deuce-1.3.0
Work-Stealing Library JSR-166Y

Table 2.1: Hardware and Software Specifications

24 CHAPTER 2. BACKGROUND

Chapter 3

Case Study: Asteroids

The first case study is the well-known game of Asteroids, one of the most
popular arcade games of all time [27]. The program used in this case-study
was implemented from scratch in Java, and does not use any third-party
libraries above those mentioned in Section 2.4. The focus of this case study
is determining how well each of the concurrency techniques scale as more
objects are added in to the system.

3.1 Description

In this version of Asteroids, the player controls a spaceship that flies around
the screen, shooting down incoming asteroids. A screen-shot of a game in
progress, showing the different size-classes of asteroid, the player’s ship,
and some bullets, can be seen in Figure 3.1. Large asteroids, when de-
stroyed by bullets, split into two medium-sized asteroids. Medium as-
teroids behave similarly when destroyed, producing two small asteroids.
Small asteroids do not split when destroyed. Bullets have a limited life-
span, and cannot collide with each other or the player’s ship. Asteroids
cannot collide with other asteroids, but can collide with, and destroy, the
player’s ship. There are only three different types of game entity in our
implementation of Asteroids: the player’s ship, asteroids, and bullets.

25

26 CHAPTER 3. CASE STUDY: ASTEROIDS

Figure 3.1: A game of Asteroids

The player’s ship is controlled via keyboard input, and moves about
on the screen. It can rotate, accelerate, decelerate, and shoot. The game
maybe be launched without a user-interface, in which case an automated
player takes the helm—this is to emulate user input during automated
testing. If the players ship comes into contact with an asteroid, it is destroyed—
this interaction is not present when running the game without a UI.

Asteroids have a constant velocity, and begin play moving in a random

3.2. DESIGN 27

direction, rotating with a random angular velocity as they move. All aster-
oids begin the game as the largest size. If an asteroid splits, the two new
asteroids fly apart in random—but opposite—directions. All asteroids of
the same size class have the same shape. Asteroids cannot collide with
each other.

Bullets are emitted by the player, and can interact only with asteroids.
A bullet colliding with an asteroid causes both entities to be destroyed—
this may cause the asteroid to split, as outlined above.

The screen geometry wraps around at the edges, so an entity leaving
the top of the screen will re-enter from the bottom, and vice-versa. The
same is true for the left and right edges.

Like many games, our implementation of Asteroids is structured in a
game loop which has multiple phases. At its simplest, a game loop con-
sists of two phases—the Update Phase, which updates the state of game
entities (movement, etc), and the Rendering Phase, which renders the cur-
rent game state to the display. The update phase can be further broken
down into sub-phases: for this implementation of Asteroids, it can be con-
sidered to be comprised of a movement sub-phase, and a collision-detection
sub-phase. Figure 3.2 demonstrates this splitting of tasks.

3.2 Design

There are several ways to make this game loop concurrent. One approach
is to have the update phase and rendering phase run in parallel with each
other. This would hypothetically allow a single iteration of the game loop
to take as long as the duration of the longest phase; instead of the duration
of both phases together. However, for a game as simple as asteroids, this
approach is unnecessary as the program can calculate updates to the game
state far more quickly than the the 30 updates per second that are required
to maintain a rendering speed of 30 frames per second. The rendering it-
self is capped at 30 frames per second regardless of how quickly the update

28 CHAPTER 3. CASE STUDY: ASTEROIDS

Update Phase

Movement
● Calculate new positions

● move objects

Collision Detection
● Check for collisions

● Update colliding objects

Rendering Phase

● Render each object to
the draw buffer

● Swap the buffers

Figure 3.2: Phases in the game loop

phases take to calculate, as the actual rendering of a frame takes signifi-
cantly longer than the calculations required to produce it. Another reason
not to render in parallel with the update phase is the simple fact that the
update phase might only be half-complete when the renderer executes,
leaving the display in an inconsitant state. Another approach is to paral-
lelize within phases. Within the rendering phase, trying to render objects
in parallel can cause some issues; ordering, as an example, is a rather large
one. If certain objects are required to be on top of, or behind, certain other
objects, then there is a strict order in which they must be rendered. Sup-
port for concurrent rendering is also a problem: some libraries just don’t
allow concurrent access to the draw buffer. There are yet more issues if
you’re using a library like OpenGL, which is a state machine and thus re-
quires parallel operations to essentially be atomic—and thus essentially
sequential.

Within the update phase, however, this limitation does not apply. A
close examination of the update phase shows that it does two things:

• Updates the position of game entities based on the time since the last
update.

3.2. DESIGN 29

• Performs collision detection between game entities, and updates their
state if required.

There are two main ways to check for collisions between objects. The
first involves applying small movement updates to each object, and then
checking to see if any objects overlap. The second is to compute the tra-
jectory of each object (or each point in the object) and check if any trajec-
tories intersect. For this implementation of Asteroids, the former is used.
While the second approach is possible, the rotational velocity of each as-
teroid makes trajectory calculation much more complex, as it involves the
rotation of a polygon as it translates through space. For the sake of sim-
plicity, the incremental approach was chosen. The function that checks
for overlap first checks to make sure the two game objects can actually
collide (bullets with asteroids, asteroids with the player), and then does a
basic bounding-box check to see if a collision could be possible. If the two
bounding boxes overlap, it checks each line in each polygon involved in
the collision to see if they cross any of the lines in the other polygon. If any
line crosses, it detects a collision. Due to the choice of collision detection
algorithm, collision detection is dependant on the movement update—it
must occur after movement has been calculated. This means that the up-
date sub-phases cannot be executed in parallel. We need to go deeper, and
look inside the sub-phases.

The movement update calculation is performed in the exact same way
on every game entity, and only depends on the amount of time that has
passed since the last update. Since there is no dependency between game
entities, and there is very clear way to break the problem down into mul-
tiple units (i.e. individual game objects) this is an example of an “embar-
rassingly parallel problem” [13]. This has the benefit that updating of the
positions of each game object can be done with no need for any communi-
cation between entities.

The same cannot be said of the collision detection sub-phase, as the al-
gorithm inherently requires knowledge of the locations of multiple game

30 CHAPTER 3. CASE STUDY: ASTEROIDS

entities. The same approach can be taken, but care needs to be taken to
avoid different processes attempting to update the same objects simul-
taineously, as this could lead to an inconsistant game state. A solution
to this is to require any thread that wishes to apply updates to a game
entity—for example, if a bullet hits an asteroid—to obtain a lock on that
game entity, which is released when the update is finished. A thread that
wishes to read that entity’s state must also acquire the same lock, thus en-
suring that state is consistent between all threads. In the case of asteroids,
not doing this might result in an asteroid being struck by multiple bul-
lets (thus spawning more smaller asteroids than it should), or one bullet
hitting multiple asteroids.

3.3 Implementation

This section discusses the implementation of each technique, and any dif-
ficulties faced by trying to apply the technique to the problem at hand.

3.3.1 Manual Threads

Implementing threading within a program manually, as discussed in Chap-
ter 2, consists of constructing worker threads to perform a specific task. As
we have already identified the sections of code that are to be parallelized
(as above), implementation of these worker threads was easily inferred
from the design process—at least to begin with.

As outlined above, the movement sub-phase of the update phase needs
to finish in its entirety before collision detection can be done. This would
seem to imply that these two sub-phases need to be made concurrent in-
dependently, using join() to ensure that all the previous threads have
finished before the next set are created, as outlined in Figure 3.3. A Move-
mentThread runs through its allocation of gameobjects and performs the
movement update. Likewise, a ColliderThread performs collision detec-

3.3. IMPLEMENTATION 31

1 while (t rue) :

2 deltaTime = s t a r t − now ;

3 s t a r t = now ;

4

5 f o r i in NumThreads :

6 c r e a t e new MovementThread

7 s t a r t thread

8 j o i n on a l l MovementThreads

9 f o r i in NumThreads :

10 c r e a t e new Coll iderThread

11 s t a r t thread

12 j o i n on a l l Col l iderThreads

13 render

14

15 MovementThread :

16 f o r each o b j e c t in a l l o c a t i o n :

17 o b j e c t . move(deltaTime)

18

19 Coll iderThread :

20 f o r each o b j e c t in a l l o c a t i o n :

21 f o r each otherObjec t in g loba l l i s t :

22 o b j e c t . c o l l i d e (o therObjec t)

Figure 3.3: Running the Game Loop (Pseudocode)

32 CHAPTER 3. CASE STUDY: ASTEROIDS

tion between its allocated objects and the other game objects in the game.
In all cases, each thread is given an allocation of the game objects in the
global object list, equal to NumObjects

NumThreads
.

1 while (t rue) :

2 deltaTime = s t a r t − now ;

3 s t a r t = now ;

4

5 f o r i in NumThreads :

6 c r e a t e new UpdaterThread

7 s t a r t thread

8 j o i n on a l l UpdaterThreads

9 render

10

11 UpdaterThread :

12 f o r each o b j e c t in a l l o c a t i o n :

13 o b j e c t . move(deltaTime)

14 wait on b a r r i e r

15 f o r each o b j e c t in a l l o c a t i o n :

16 f o r each otherObjec t in g loba l l i s t :

17 o b j e c t . c o l l i d e (o therObjec t)

Figure 3.4: Running the Game Loop with a Barrier(Pseudocode)

However, Java presents another option: Barriers. Barriers are objects
that are used to control access to sections of code, like locks (discussed in
Chapter 2). Unlike locks, they are used to ensure that all threads enter
the section of code they protect at the same time. They do this by block-
ing any thread that attempts to access the barrier until a specified num-
ber of threads have tried to access it—at which point it unblocks all the
threads, and they all enter the contained section at the same time. The re-
sulting pseudo-code for the game loop is given by Figure 3.4. The Move-
mentThread and ColliderThread have now been combined into one Up-

3.3. IMPLEMENTATION 33

daterThread.
So which approach is better for this situation?

0 200 400 600 800 1000 1200

Iterations

0

50

100

150

200

250

300

E
x
e
cu

ti
o
n
 T

im
e
 (

m
s)

Double-Join
Barrier

Figure 3.5: Execution times for the Double-Join and Barrier approaches

Figure 3.5 demonstrates the execution times for both approaches when
updating 100 game-objects over varying numbers of iterations. As shown,
the overheads caused by creating threads twice in one iteration of the loop
are not insubstantial. To avoid this extra overhead, the barrier option was
chosen, and the created threads are forced to wait on it at the end of the
update phase. This ensures that the sub-phases are synchronized correctly
across multiple threads, while avoiding the overhead of creating entirely
new threads.

As the movement update phase operates on each object individually,
and doesn’t need to read or write to any sort of shared state outside of

34 CHAPTER 3. CASE STUDY: ASTEROIDS

that object, changes to the game objects’ state do not need to be protected
by any form of synchronisation. For collision detection however, some
kind of protection is required; otherwise it becomes entirely possible to
collide with an object that has—in another thread—just been marked as
destroyed. In game terms, this means a single bullet can penetrate mul-
tiple asteroids instead of just one, or when multiple bullets hit a single
asteroid, it gets “destroyed” once for each bullet (thus spawning far more
than two smaller asteroids), instead of just once. This was accomplished
by using Java’s built-in synchronized keyword, which acts as a lock on
the entire game object. Deadlock was avoided by ensuring that all threads
acquire and release objects in the same order.

3.3.2 Work-Sharing and Work-Stealing Queues

As seen above, creating a new thread (or two) every iteration can be expen-
sive. Fortunately, Java offers a solution in the form of the ExecutorService
class. Jobs (objects that implement Runnable) are submitted to the Execu-
torService (in this case, a ThreadPoolExecutor). The thread-pool con-
tains a fixed number of threads, and these threads work through the jobs
in the queue. Figure 3.6 shows how the game loop would be structured
under this scenario.

For this program, there were two kinds of jobs that were submitted to
the queue: MovementUpdate jobs, and a CollisionDetection jobs. These
jobs are analogous to the MovementThreads and CollisionThreads from
the previous solution. After all the MovementUpdate jobs are submitted
to the queue, their Futures are used to ensure they have completed before
the CollisionDetection jobs are submitted to the queue. A key point of
difference with the previous implementation is that the jobs submitted to
the queues deal with one object at a time, not a range of objects. As per the
previous technique, concurrent modification of game objects was an issue,
and was dealt with in the same way.

3.3. IMPLEMENTATION 35

1 while (t rue) :

2 deltaTime = s t a r t − now ;

3 s t a r t = now ;

4

5 f o r each o b j e c t in gameObjects :

6 submit new MovementJob (o b j e c t , deltaTime)

7 wait on a l l f u t u r e s

8 f o r each o b j e c t in gameObjects :

9 submit new C o l l i s i o n J o b (o b j e c t , deltaTime)

10 wait on a l l f u t u r e s

11 render

Figure 3.6: Running the Game Loop with a Thread Pool (Pseudocode)

3.3.3 Software Transactional Memory

This implementation of Asteroids is essentially the same as the Work-
Sharing Queue, except that STM is used to manage concurrent data access,
instead of Java’s synchronized keyword. This means that any update
to the state of a game object, or read access to that state, is wrapped in a
transaction and handled by the STM engine.

3.3.4 Actors

There are 6 different types of Actor in this implementation of Asteroids;
one for each of the three entity types, one to handle rendering, one to
handle collision detection, and one to keep the game running. They are
descibed below:

AsteroidActor This Actor type maintains a single Asteroid game object.
All of the game object actors recieve update messages from the
Game Controller, at which point they execute movement updates
and send their new positions and copies of their polygons to the Ren-

36 CHAPTER 3. CASE STUDY: ASTEROIDS

derer and the Collision Detector.

BulletActor This Actor type contains a single bullet game object.

ShipActor This Actor type contains a single Ship game object. It receives
messages from the input controller to direct the ship’s actions.

RendererActor This Actor maintains an internal list of Polygon objects
that are sent to it by the game object actors. Whenever it is sent a
Render message by the Game Controller, it renders the list to the
screen.

CollisionActor This Actor maintains a mapping of the addresses of the
current game object actors and their in-game polygons and positions.
When it receives a collide message from the Game Controller, it
uses its local copies of the game object’s polygons to perform colli-
sion detection. If it detects a collision, it informs the involved game
object actors that they have collided with another object, and that
they should take the appropriate actions.

GameControllerActor This Actor is responsible for maintaining the main
game loop. It is sent a single Run message at the start of execution,
and then takes control of the program. It dispatches Update mes-
sages to the game object actors to inform them to perform movement
updates. When all of the game object actors have responded with
UpdateComplete messages, it dispatches Render and Collide

messages to the RendererActor and the CollisionActor telling them
to perform their respective duties. When collision detection is com-
plete, it issues a Run message to itself to start the game loop again.

3.4 Results

Three sets of experiments were performed using the implementations out-
lined above. The first run was with 100 asteroids over numbers of itera-

3.4. RESULTS 37

2000 4000 6000 8000 10000

Number of Iterations

0

10000

20000

30000

40000

50000
E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Base
Manual Threads
Work-Sharing
STM
Work-Stealing
Actors

Figure 3.7: Execution times for 100 Asteroids

tions that varied from 1000-10000 in increments of 1000. The second was
over the same variation of iterations, but with 1000 asteroids. The final ex-
periment was with a varying number of asteroids (100-1000 in increments
of 100) over a fixed number of iterations (10,000). In all cases, the number
of threads manually created, in thread-pools, and available to the Actor
subsytem was 4.

From the results presented in Figures 3.7 and 3.8, we can see that the

38 CHAPTER 3. CASE STUDY: ASTEROIDS

2000 4000 6000 8000 10000

Number of Iterations

0

100000

200000

300000

400000

500000

600000
E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Base
Manual Threads
Work-Sharing
STM
Work-Stealing
Actors

Figure 3.8: Execution times for 1000 Asteroids

Actors approach is by far the worst performing approach. Possible reasons
for this will be explored in the next section. We re-present the results for
the other approaches in Figures 3.9 and 3.10.

Interestingly, Figure 3.9 indicates that for a small number of asteroids
(100), there is very little difference between manual threading and having
no concurrency at all. However, for more asteroids (1000), it is clear that
we gain some performance benefit by using manual threading over the

3.4. RESULTS 39

2000 4000 6000 8000 10000

Number of Iterations

0

500

1000

1500

2000

2500
E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Base
Manual Threads
Work-Sharing
STM
Work-Stealing

Figure 3.9: Execution times for 100 Asteroids, without Actors

non-concurrent case. To investigate this further, the experiment was re-
run with a fixed number of iterations (10,000) and a varying number of
asteroids. Figure 3.11 demonstrates these results.

Of the two thread-pool approaches, work-stealing outperforms work-
sharing in all cases, and for small numbers of asteroids is the fastest overall
performer. For larger numbers of asteroids, we see that STM takes its place
as the fastest option.

40 CHAPTER 3. CASE STUDY: ASTEROIDS

2000 4000 6000 8000 10000

Number of Iterations

0

5000

10000

15000

20000
E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Base
Manual Threads
Work-Sharing
STM
Work-Stealing

Figure 3.10: Execution times for 1000 Asteroids, without Actors

3.5 Discussion

From the results shown in the previous section, it is clear that Actors are
not a suitable solution for providing concurrency in this problem. On the
surface, actors appear to lend themselves well to making a game such as
Asteroids concurrent: each game object is an individual entity that does
not share state with any other game object—much like actors themselves.
However, a game is not made of just its entities; the renderer and the col-

3.5. DISCUSSION 41

200 400 600 800 1000

Number of Asteroids

0

5000

10000

15000

20000
E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Base
Manual Threads
Work-Sharing
STM
Work-Stealing

Figure 3.11: Varying numbers of asteroids over 10,000 iterations

lision detector are vital parts of the program. Here, we begin to see how
the actor model might break down when applied to a game. The ren-
derer needs to know about the position and shape of each game object in
order to draw it. Similarly, the collision detector needs to know the lo-
cation and outline of each object in order to collide them properly. In a
shared-memory model, this is straight-forward: the renderer and the col-
lision detector both have access to the list of game objects, and can directly
obtain the information they require. In the Actor model, this must be ac-

42 CHAPTER 3. CASE STUDY: ASTEROIDS

complished by the collision dectector and the renderer sending a message
to the game objects requesting the information, and the game objects must
then reply and send the information back. This must happen every tick
for the collision detector, and every displayed frame (30 per second) for
the renderer. Just how much overhead does this incur?

0 2000 4000 6000 8000 10000 12000

Iterations

0

10000

20000

30000

40000

50000

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Original Actors
Revised Actors

(a) Execution times for 100 Asteroids

0 2000 4000 6000 8000 10000 12000

Iterations

0

100000

200000

300000

400000

500000

600000

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Original Actors
Revised Actors

(b) Execution times for 1000 Asteroids

Figure 3.12: Revised Actors charted against original actors, for 100 and
1000 asteroids

I re-wrote the Actor version of the case study to use a hybrid Actor/Shared-
Memory approach. Individual game entities were still actors, communi-
cated with the game controller and each other via the message-passing
system. The renderer and collision dectector, however, operated in a se-
quential shared-memory environment where they could address each game
entity directly. It should be noted that this is a violation of the Actor
Model, but due to the fact this is written in Java such restrictions cannot
actually be enforced without fundamental alterations to the JVM. The pre-
vious experiment was run with the new code, and produced Figures 3.12
and 3.13.

For 100 asteroids (Figure 3.12(a)), we see very little initial difference

3.5. DISCUSSION 43

0 200 400 600 800 1000 1200

Number of Asteroids

0

100000

200000

300000

400000

500000

600000

700000
E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Original Actors
Revised Actors

Figure 3.13: Revised Actors charted against original Actors for varying
numbers of asteroids

between the two approaches as the number of iterations increases. When
the number of asteroids is increased to 1000 (Figure 3.12(b)), however, we
begin to see a very stark difference between the two versions of the code.
Both increase roughly linearly over the number of iterations, but the re-
vised code has a much shallower gradient. As before, we then fixed the
number of iterations to 10,000 and varied the number of asteroids; this re-
sulted in Figure 3.13. As the figure shows, the revised version of the actor
code is significantly more scalable than the original version. Clearly the
overheads incurred by game objects sending update messages every tick
to the collision detector is not insubstantial. However, we also note that

44 CHAPTER 3. CASE STUDY: ASTEROIDS

despite the improved performance, the revised actor code is still outpe-
formed by the entirely sequential code. Actors, it seems, are not a good
solution to this problem.

With actors no longer a viable choice for this program, what can we say
about the other approaches?

3.5.1 Manual Threading vs Thread Pools

In all cases, the Work-Stealing thread-pool out-performs both Manual Thread-
ing and the Work-Sharing thread-pools. It doesn’t have the same thread-
creation overhead as Manual Threading, and because of its ability to re-
distribute jobs amongst the threads in the pool, it doesn’t run into the a
problem that Work-Sharing can have of one thread taking too long to fin-
ish its jobs while the other threads sit idle with nothing to do. Interestingly,
we can see in Figure 3.11 that the performance of Manual Threading actu-
ally begins to exceed that of the Work-Sharing approach as the number of
asteroids increases. To see why this is, we need to look at the mechanism
that underpins how work is allocated in both approaches.

Job
1

2 3 4 5 6 7 8

Thread 1 Thread 2 Thread 3 Thread 4

Figure 3.14: Job allocation in a work-sharing queue

3.5. DISCUSSION 45

Job
1

2 3 4 5 6 7 8

Thread 1 Thread 2 Thread 3 Thread 4

Figure 3.15: Job allocation under manual threading

For the Work-Sharing approach, jobs are taken off the queue by the
threads in the pool as needed. If these jobs were to all take the same
amount of time no matter which thread takes them, we would end up
with a job allocation much like that shown in Figure 3.14, meaning that
each thread acquires every fourth job in the job queue. For manual thread-
ing however, this allocation is entirely different. While there are still the
same number of threads, the allocation is done by assigning continuous
blocks of the jobs to each thread, as shown in Figure 3.15. So how does the
difference in allocation then affect the performance?

First, we need to look at how objects are added into the game, be it
from an asteroid splitting, or a bullet being fired. In this implementation,
the game objects are stored in a list, and new objects are added to the end
of that list. Bullets, both being created often and having a short life-span,
are typically located towards the end of that list. In the allocation method
used by Manual Threading, this means that for large numbers of objects in
the list, the majority of the bullets are being handled by a single thread.
Collision detection, which only occurs between Bullets and Asteroids in
these experiments, is thus being processed by one thread—avoiding any

46 CHAPTER 3. CASE STUDY: ASTEROIDS

contention issues over locks when updating the state of an object.

3.5.2 STM vs Synchronized

This case study shows that for large numbers of game objects, STM of-
fers a performance increase over the use of the synchronized keyword.
This is hardly surprising: for large numbers of objects, the likelihood of
locking conflicts is higher when performing collision detection, and STM
is designed to be more efficient than using locks when contention is high.
However, we can also see from Figure 3.9, for small numbers of objects—
where the chance of contention is lower—the overhead of performing ev-
ery collision as a transaction is higher than the overhead of using locks to
protect the collisions. While STM is clearly not the best choice for small
numbers of game objects, as the graph in figure 3.11 demonstrates, it is
the most scalable approach, having the smallest performance decreases by
adding more objects. This scalability is one of the hallmarks of STM.

3.5.3 Evaluation

At first glance, the actor model seemed like it would suit this case study in
terms of modelling the interaction between game objects. Certainly from
a design stand-point, it makes sense to consider each game entity as an
actor in the system. And it does, in a way—but there are problems when it
comes to collision detection and rendering. The lack of shared state means
that these operations quickly become cumbersome, and require far more
overhead than in a shared-memory system. Sending a game object to the
renderer, for example, requires making a clone of the polygon that makes
up the object on screen, and sending that entire object—not just a reference
to it. Coming from a mostly OOP background, this idea that you’re not
allowed to share state between actors was a totally different approach to
what I was used to.

3.5. DISCUSSION 47

In terms of ease of implementation, the thread-pool approaches (Work-
Sharing and Work-Stealing) were definitely in the lead. The pools them-
selves are easy to use, and using the simplest case of “one game object per
job” made writing the Jobs fairly straightforward too. This extended well
for the Manual Threading implementation, where the Jobs were simply
adjusted to take a range of objects instead of just one. There were, as men-
tioned above, some concerns about whether to create threads twice per
iteration, or to use a CyclicBarrier to synchronize the update phases that
stopped Manual Threading being as easy to implement as the thread-pool
versions.

48 CHAPTER 3. CASE STUDY: ASTEROIDS

Chapter 4

Case Study: Gas Simulation

The second case study is a simulation of molecular gas diffusion in two
dimensions, using physical laws of diffusion. The focus of this case study
is investigating how job and task distribution affects the performance of a
concurrent program.

4.1 Description

AtmosSim is my implementation of a cell-based physical simulator for gas
systems. Each cell is either floor, walls, or a vacuum. Floor cells contain
some number of moles of various gases—which determines their partial
pressures–and diffuse their contents to surrounding cells as indicated by
pressure differences. All gasses flow from high partial pressure to low par-
tial pressure. Wall cells are impermeable and contain no gases. Vacuum
cells are considered to always be at 0 pressure, and remove any gases en-
tering them from the simulation (consider a hull-breach in a space-ship).
Floor cells may also contain injectors and filters. Injectors inject a small
amount of a given gas into the cell every update tick, while filters perform
the reverse. Humidity is also tracked; any cell that contains gaseous wa-
ter has a non-zero humidity. If the cell reaches saturation, water begins to
condense in that cell.

49

50 CHAPTER 4. CASE STUDY: GAS SIMULATION

Figure 4.1: A gas simulation, showing carbon dioxide (red) diffusing
through a Nitrogen-Oxygen mix (green).

Gas molecules diffuse between cells according to Fick’s first law of dif-
fusion (one-dimension) [12, 16]:

J = −D∂φ
∂x

where:
J is the diffusion flux, in mol

m2·s

D is the diffusivity of the gas, in m2

s

4.1. DESCRIPTION 51

φ is the concentration, in mol
m3

x is the distance, in m

For higher dimensions (AtmosSim uses 2), the equation becomes:

J = −D∇φ

Where∇ is the gradient operator.
This can be simplified by assuming that all interactions use the instan-

taneous difference between adjacent cells, the results of interactions are
constant for a fixed time interval, and at the end of this time interval, the
calculations are performed again. Thus, the equation becomes the follow-
ing psuedo-code:

for each cell:

for each neighbouring cell:

for each gas in that cell:

diff = amount_in_neighbour - amount_in_this

if diff < 0:

J = -(gas.diffusivity) * diff

amount_transferred = J * delta_time

amount_transferred = flowOut(amount_transferred)

neighbour.flowIn(amount_transferred)

Note that gas is only transferred if the central cell contains more of that
gas than the neighbouring cell that is being inspected. This stops the al-
gorithm from transferring the gas again when it reaches that neighbouring
cell in the outer-loop; as the contents of each cell are not actually updated
until after the changes to every cell have been calculated, the neighbouring
cell will still have less gas than the central cell.

Why delay the updates to the contents of each cell? In each iteration
of the simulation, the equation above must be applied to each cell simulta-
neously. This means that each cell must see its neighbours exactly as they

52 CHAPTER 4. CASE STUDY: GAS SIMULATION

Updating Cell Gas Flow

Figure 4.2: Updating cells. Top: immediate updating. Bottom: delayed
updating.

were at the start of the iteration. If this condition isn’t met, some rather
non-physical results can occur. Figure 4.2 displays one possible scenario
resulting from the violation of this condition—note how the gas flow is
calculated incorrectly in the top row, which does not delay cell updates
until every cell has been calculated. Note that this isn’t an issue created
by using concurrency! Even a sequential program will behave in a physi-
cally inconsistent way if the condition is violated—however, unlike a con-
current version of the algorithm, it will misbehave in a predictable and
repeatable way, as calculations will always proceed in the same order.

4.2. MAKING IT CONCURRENT 53

4.2 Making it Concurrent

This program is a prime candidate for concurrent computation. There is
a clear base unit of computation, and provided the current state is kept
constant during the computation, there seems to be little in the way of is-
sues related to having shared memory—we only need to control access to
the flowIn and flowOut methods; all other updates to the state of a cell
are performed by the cell itself (strictly speaking, only access to flowIn

needs to be controlled, as flowOut is only ever called by the cell that owns
it). In the non-STM versions of this code, access is controlled by use the
built-in Java synchronized keyword; for the STM-based implementa-
tion, the annotation @Atomic is used to indicate to the STM engine that
these methods are to be executed atomically.

But, naturally, it’s not quite that simple. While the individual cell
seems to be the perfect unit of concurrency in this program, the overheads
required by spawning a thread to deal with each cell individually simply
cannot be overlooked. So this case study begins to examine a more subtle
problem—granularity of job division. The answer is not so simple, as the
division of tasks in a concurrent program are highly dependent on the na-
ture of the tasks. Therefore this case study is handled a little bit differently
to the others. While the usual structure of testing each implementation
against each other will be maintained, within each implementation, the
division of jobs is varied as well. These results are presented below.

4.2.1 Manual Threading

For this concurrent approach, a number of threads (ranging fromNUM PROCESSORS

to NUM CELLS) are created at the beginning of each update step and
tasked with performing the update computation on some subset of the
cells, determined by dividing the entities amongst the threads so that each
thread has an equal share of the total cells. Cells are allocated in blocks,
starting from the first cell in the grid and counting along rows until the

54 CHAPTER 4. CASE STUDY: GAS SIMULATION

quota for each thread has been met.

For the experiments in this chapter, the number of processors was 4.

4.2.2 Work-Sharing and Work-Stealing Queues

For these concurrent approaches, the queues accept one type of job; a Cell
Update Job. This job updates one or more cells as detailed above.

The division of job sizes ranges from one cell per job, to 1
NUM PROCESSORS

×
100% of the cells per job, following the same allocation method of cells as
above. Also as above, the experiments used 4 processors.

4.2.3 Actors

Unlike the above approaches, the Actor-based implementation of this case-
study requires a little more thought, as Actors cannot share state. This presents
an issue as the grid of cells cannot be shared between all active Actors,
making the computation mechanism a little bit more complex. Two differ-
ent ways of solving this problem were explored.

One Actor per Cell

The most obvious solution is to have each cell represented by one actor,
which then contains all of the state required for that cell. This also elim-
inates any access-control issues, as actors are, within themselves, entirely
sequential. Care still needs to be taken that cells aren’t updated before the
current computation cycle is complete, but again, actors provide a very
good mechanism for controlling this in the form of messages.

Because of the lack of a shared state, an additional step must be per-
formed in the calculation: actors must query their neighbours to obtain
the values of the surrounding cells. Not only does this require cells to
maintain additional state about who their neighbours are, it adds addi-
tional processing time to the simulation. Unlike the shared-state models

4.2. MAKING IT CONCURRENT 55

above, a cell cannot simply just access its neighbours directly—messages
must be sent, recieved, acted on, and the results sent back to the original
sender. Having one actor per cell means that each cell is both sending
eight messages and responding to eight requests (obviously edge and cor-
ner cells have less to send and respond to). Once the calcuations have been
performed, there is another round of message-sending to inform cells of
updates to their contents based on the computation. Again, this requires a
message to be sent, acted on, and then replied to—flowing gas out of a cell
returns a result, which is used to flow gas in to the receiving cell. Clearly
this approach will generate far more overhead than necessary: A single
(non-edge, non-corner) cell, in a single iteration, will need to send 16 mes-
sages, and will receive and act on 16 further messages. For the grid used
in Figure 4.1, this amounts to 80,000 messages per iteration, and the num-
ber of iterations is typically very high (several hundred, if not thousand,
per second). Even if the system can process these messages quickly, that
seems like quite a high number of messages to be passing around every
iteration.

Each Actor Allocated a Block of Cells

One solution is to have each actor be allocated more than one cell—which
immediately raises the question: how do you split the grid up? The approach
used for the shared-state models (dividing the grid by index ranges) splits
the grid up along rows—this is not an optimal split for this case. Consider
Figure 4.3; in the worst case, an actor is responsible for a row somewhere in
the middle of the grid. To update any of its cells, it requires the information
from the surrounding cells—seven of which belong to actors other than
itself. While it can (and does) receive all of the cells from an adjacent actor
in one message, this looks a lot like the previous setup.

Instead, what if the grid is subdivided into blocks, as per Figure 4.4?
While each actor is still required to query the other actors regarding cells
along the edge of a block, the actor requires much less information in order

56 CHAPTER 4. CASE STUDY: GAS SIMULATION

Updating Cell Messages

Figure 4.3: Update messages required to update a cell in a badly allocated
grid

to update the cells it is responsible for, and could even start performing
the calcuations for the non-edge cells while it waits for a response from
its neighbours, though this requires constant monitoring of the message-
queue and was not implemented.

4.3 Results

Figure 4.5 shows the running times of the simulation over an increas-
ing number of iterations, averaged over 100 runs at each iteration value.
These results were obtained using four threads (on a four-core machine)
in all cases except the unthreaded version. Actors#1 refers to the “One
Cell per Actor” implementation, while Actors#2 refers to the block-based
approach.

As shown in the graph, the Work-Sharing Queue and Work-Sharing
with STM are the fastest performing implementations at any number of
iterations; they are also the most scalable in terms of iterations performed,

4.3. RESULTS 57

Updating Cell Messages

Figure 4.4: Update messages required to update cells, with an improved
allocation of cells to actors

as shown by their slower increase in time taken as the number of iterations
increases. The first of the actors implementation, as somewhat expected,
is the slowest and least scalable in terms of number of iterations. Notably,
the second actor implementation is outperformed by the unthreaded version.
Clearly the overheads of using actors to solve this problem greatly out-
weigh the performance benefits of using concurrency.

But these results don’t take into account the size of the jobs being pro-
cessed, simply the number of iterations over which the simulation is run.
How does the performance of the program change with respect to the size
of the jobs performed by each thread/actor?

The first thing to note is that adding more jobs to the Manual Thread-
ing implementation also increases the number of threads being used. As
shown in Figure 4.6, splitting the jobs by creating more threads is emi-
nently unscalable, as it begins to dominate the graph. The Actor imple-

58 CHAPTER 4. CASE STUDY: GAS SIMULATION

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

0

2000

4000

6000

8000

10000

12000

Ti
m

e
 (

m
s)

Base
Manual Threads
Work-Sharing
STM
Actors#1
Actors#2
Work-Stealing

Figure 4.5: Results from trials with increasing numbers of iterations

mentation suffers a similar fate, as additional jobs mean exponentially
more messages being sent between actors, to the point where it actually
became impossible to run the simulation with more than 1024 actors. The
reason behind this is unclear, but the program would not run to comple-
tion with higher numbers of actors in the system.

Figure 4.7 show the other two approaches in zoomed-in detail. As one
might expect, the Work-Stealing queue is faster when there are more jobs

4.3. RESULTS 59

0 500 1000 1500 2000 2500

Total Number of Jobs

0

5000

10000

15000

20000

25000

30000
A
v
e
ra

g
e
 E

xe
cu

ti
o
n
 T

im
e
 (

m
s)

Manual Threads
Work-Sharing
Work-Stealing
Actors

Figure 4.6: Results from trials with differing job sizes, for all approaches

available to actually be stolen. Note the sharp drops in both approaches
at certain points—these correspond to the number of jobs being a factor of
the total number of cells, meaning that the splits of cells between jobs is
perfectly equal.

60 CHAPTER 4. CASE STUDY: GAS SIMULATION

0 500 1000 1500 2000 2500

Total Number of Jobs

0

100

200

300

400

500

600

700

A
v
e
ra

g
e
 E

xe
cu

ti
o
n
 T

im
e
 (

m
s)

Work-Sharing
Work-Stealing

Figure 4.7: Results from trials with differing job sizes for the thread-pool
approaches

4.4 Discussion

Much like the previous case study presented in Chapter 3, the actor-based
implementation(s) of this case study peform rather badly compared to the
other implementations. While this might be expected of the first actor
implemention (with one actor per cell) due to the high volume of messages
that need to be sent between actors, it is not so clear that this should be

4.4. DISCUSSION 61

the case for the second implementation. However, we note that execution
time scales quite poorly as the number of jobs increases—once again, the
overhead of running the entire actor system seems to cause the program
to perform worse than the unthreaded implementation of the case study.

When limited to one job per thread, as per the first set of results, we see
that Work-Sharing and Work-Sharing+STM are the best performing imple-
mentations. Manual Threading, with the overheads caused by spawning
threads every iteration, falls between the unthreaded implemention and
the thread-pool implementations. As there are only four threads working
at once, contention for locks is relatively low, especially considering there
are very few cells that need to be accessed by more than one thread: thus
it stands to reason that STM offers no improvement over the work-sharing
queue.

The Work-Stealing queue falls between Manual Threading and Work-
Sharing. As there is only one job per thread in this first set of experiments,
there isn’t any opportunity for worker threads to steal jobs from another
thread. This gives us a baseline for the overhead that the work-stealing
queue generates when it is running in a very similar way to the work-
sharing queue.

The results for execution over different jobs sizes (Figures 4.6 and 4.7)
are somewhat more interesting. As expected, Manual Threading scales
poorly as the number of jobs increases, due to the increased overhead of
spawning more and more threads. Likewise, Actors scale poorly due to
the increased number of messages that are required to process an update.
We can see that the overhead of using the Work-Stealing queue means
that it is out-performed by the Work-Sharing queue at low numbers of
jobs. As the number of jobs increases we see that it soon overtakes the
Work-Sharing queue as the best performing implementation, as jobs are
now actually available to be “stolen” by the worker threads. Of note, we
can see very obvious and sharp increases in performance at several differ-
ent quantities of jobs submitted to the queue—these values are perfectly

62 CHAPTER 4. CASE STUDY: GAS SIMULATION

divisible by four, the number of threads running on the system. This is an
important result, as it tells us that an exactly equal division of work is bet-
ter than an inequal division of work when it comes to making a program
concurrent.

4.4.1 Evaluation

Again, the design of the system appears to suit the Actor model quite well;
isolated cells that only care about maintaining their own internal state,
happy to simply ask their neighbouring cells for data when required. Un-
fortunately, that is required quite often, as we discovered with the Aster-
oids case study, having to pass a large number of messages between actors
all the time is not the most beneficial for performance.

In terms of implementation, the Actor model was much easier to apply
for the one-cell case. Extending it to allow for the multiple-cell case was
a bit trickier, requiring very careful thought about the best way to send
cell data between actors. However, due to this, the problem of job division
was most apparent when designing the Actor implementation of the case
study. In order to maximise the content of a message (thus reducing the
number of messages), it made sense to try and minimise the number of
neighbours a block of cells had to query. Unlike the shared-state version,
it was clear that just dividing the grid up by counting along rows was not
a good solution for this.

That said, the Manual Threading and thread-pool variants of the code
were, yet again, the least complicated to implement. Care still had to be
taken, of course, that shared data structures were updated safely, but the
fact that shared data structures were permissible made the entire process
a lot easier to reason about. Splitting up the grid for jobs wasn’t nearly
as complex an issue, as accessing the neighbouring cells is as simple as
accessing the cells a thread is responsible for updating.

Chapter 5

Case Study: Image Processing
Server

This case study is a simple image processing program that takes a folder
of images and performs a series of processing operations upon them. The
focus of this case study is how the different concurrency approaches deal
with blocking on I/O.

5.1 Description

Image processing is a large part of many computer science fields, from
Computer Vision, to Artificial Intelligence [24, 19]. The program devel-
oped in this case study is an example of the sort of program one might
write while working in such a field. It takes, as input, an entire folder of
images. It then applies a series of operations to those images—this case
study has two different sets of operations:

Mostly File I/O This sequence of operations is relatively simple and very
fast to calculate. It begins by scaling the image down by 50% using a
quick operation that simply takes the average value of each 2x2 block
of pixels, and uses that to create one pixel in the target image. This

63

64 CHAPTER 5. CASE STUDY: IMAGE PROCESSING SERVER

Figure 5.1: A test image (upper left), and three output images of different
convolution filters (clockwise: sharpen, emboss, edge-detection)

is then followed by two convolution operations that perform image
sharpening, and edge detection.

Mostly Computation This seqeuence of operations is almost the same as
the first one, but instead of scaling the image down, it scales it up
to double the size, using a non-trival cubic B-Spline interpolation
algorithm [2], given below.

5.1. DESCRIPTION 65

F ′(u,w) =
2∑

m=−1

2∑
n=−1

F (i+m, j + n)R(m− dx)R(dy − n)

R(x) =
1

6

[
P (x+ 2)3 − 4P (x+ 1)3 + 6P (x)3 − 4P (x− 1)3

]

P (x) =

x when x > 0

0 when x ≤ 0

Where:
F (i, j) is the value of the pixel at (i,j) in the original image
F ′(u,w) is the transformed pixel at (u,w) in the transformed image
u and i are related via u = bi · width′

width
c

w and j are related via w = bj · width′

width
c

dx is the non-integer remainder of u− i
dy is the non-integer remainder of w − j
R(x) is the cubic scaling function

Since the image is being doubled in size, every pixel in the original
image becomes four pixels in the target image. So the pixel (0, 0) in the
source image would be interpolated to (0, 0), (0, 1), (1, 0), and (1, 1) in the
destination image. Notice that this means that there is only a 1-to-1 map-
ping from each pixel in the source image to one in every four pixel in the
destination image. This can be readily shown by the relationship between
source and destination pixels given above. Specifically, we can only di-
rectly transfer the value of (0, 0) from source to destination. The pixels lo-
cated at (0, 1) and (1, 0) in the source can be similarly directly transferred
to (0, 2) and (2, 0) in the destination (2 = b1 · 2c). So what about the pix-
els at (0, 1), (1, 0), and (1, 1) in the destination? The relationship for pixel
locations would seem imply that (0, 1) in the destination needs to be taken
from (0, 0.5) in the source—halfway into a pixel. This is where the dx and
dy terms of the above equation come into play: for a scaling factor of 2, the

66 CHAPTER 5. CASE STUDY: IMAGE PROCESSING SERVER

value of dx is 0 when the value of u maps to an integer value of i, and 0.5
when it does not. dy is calculated similar fashion, using w and j.

Thus, the equation to calculate the pixel at (0, 1) in the destination im-
age would be:

F ′(0, 1) =
2∑

m=−1

2∑
n=−1

F (0 +m, 1 + n)R(m− 0)R(0.5− n)

5.2 Making it Concurrent

The purpose of this case study is to investigate the advatanges to execut-
ing multiple tasks in parallel. To this end, the concurrency in this case
study was introduced at a higher level of the program than in previous
case studies. Instead of using concurrency to calculate the image filters
over multiple pixels within an image simultaineously, concurrency was
used to apply the sequence of image filters to multiple images at once.

5.2.1 Implementation

For the non-concurrent implementation, the program iterates over every
image file in a given input folder and applies a set of image-processing
filters to the images. The resulting image is then saved into a specified
output folder.

The Manual Threading implementation creates a new thread to handle
every new image. This was a deliberate design choice, as the case-study
is supposed to represent a server of sorts, and creating a new thread to
handle every incoming request is a popular method of writing low-traffic
servers.

The thread-pool implementations (Work-Sharing and Work-Stealing)
treat every individual image as a seperate job, and submit them to the
pool.

5.3. RESULTS 67

The Actor-based implementation uses an ImageProcessingActor to pro-
cess images, with one actor being created for each image. The images are
then given to the actors via message-passing, and the system waits for
each actor to signal that they have completed their task.

STM was not used in this case study as the lack of any communication
or shared information between jobs means that any form of concurrent
access control (ie: STM or synchronized) was not required.

5.3 Results

Each implementation was executed 100 times on an input folder consist-
ing of 37 512x512 pixel images. The total execution time and the total I/O
times for each run were recorded. For the first experiment, the image pro-
cessing operations used on the images were:

• Scale the image down by half

• Apply a 3x3 Sharpen convolution filter

• Apply a 3x3 Edge Detection

The execution time of these filters is very short, allowing the majority
of the total execution time of the program to be caused by waiting for File
I/O.

For the second experiment, the image processing operations were:

• Scale the image up to twice its original size

• Apply a 3x3 Sharpen convolution filter

• Apply a 3x3 Edge Detection

The first operation is a lot more computationally intensive than scaling
an image down, allowing I/O to form a very small part of the execution
times for this experiment.

68 CHAPTER 5. CASE STUDY: IMAGE PROCESSING SERVER

Finally, the second experiment was repeated with a more memory-
efficient version of the code after it became clear that excessive memory
usage was causing one of the concurrency techniques to perform quite
poorly.

Model I/O Time (ms) Total Time (ms)
Non-Concurrent 17039.10 20966.46
Manual Threads 125960.69 5242.06
Work-Sharing 17807.96 5570.01
Work-Stealing 16836.54 5460.01
Actors 49164.73 5501.97

Table 5.1: Execution times for the first experiment

Model I/O Time (ms) Total Time (ms)
Non-Concurrent 111299.16 1924368.09
Manual Threads 716871.38 3796964.24
Work-Sharing 112142.64 487058.66
Work-Stealing 113333.18 549864.47
Actors 334499.67 527122.49

Table 5.2: Execution times for the second experiment

The first set of experiments dealt with a set of CPU-light operations—
Table 5.1 gives ≈82% of the execution time being spent on I/O for the
non-concurrent version of the program (I/O time

Total Time). Note that I/O times for
the other versions of the program are totals across all threads, and not an
indication of real-time (as evidenced by the totals being much larger than
the actual total execution times). From the table, it is evident that paral-
lelising I/O operations has a marked performance increase for a program.
The largest gain was using the manual threading approach to create a new
thread to process each image; but how does this hold up when the bulk of
the operation is CPU-bound?

5.3. RESULTS 69

Model I/O Time (ms) Total Time (ms)
Non-Concurrent 115693.15 2029835.56
Manual Threads 726131.80 501719.88
Work-Sharing 97068.08 530300.40
Work-Stealing 97032.52 531253.46
Actors 281239.26 567913.54

Table 5.3: Execution times for the repeated second experiment, with mem-
ory optimisations

The second set of experiments investigated this by using the up-scaling
algorithm described earlier. Table 5.2 demonstrates that I/O forms ≈6%
of the execution time for this set of operations (again, calculated using
I/O time

Total Time for the non-concurrent case). Note how badly the manual thread-
ing approach works in this case, while the other concurrency approaches
maintain a similar performance boost over the unthreaded version. These
results raise an interesting question: why does the manual threading ap-
proach work slower than the non-concurrent version?

The problem was the implementation of the upscaling algorithm: it
was far too memory-intensive. More than 50% of the heap space was
being used by java.awt.Color objects and multi-dimensional double
arrays—to ensure as much accuracy as possible when interpolating the
pixels of the target image. Refactoring the code (as discussed below) to
eliminate the need for using any of these objects gives the results present
in Table 5.3. Note that the other concurrent approaches remain at similar
execution times, but the manual threading approach is greatly improved.

5.3.1 Refactoring

The original implementation of the scaling algorithm uses a double ar-
ray to store the RGB values for a pixel that is returned from the function
F (u,w). Refactoring the code to be more memory efficient started by re-

70 CHAPTER 5. CASE STUDY: IMAGE PROCESSING SERVER

placing these arrays with a single integer. Accuracy is lost in this process,
but the end result of the original process is a 32-bit representation of the
pixel, so the accuracy gained by using doubles to represent a pixel’s in-
dividual RGB values is not required. In this way, the representation of a
pixel in memory went from an array of 3 64-bit values to a single 32-bit
value. Pixel values are packed into the integer like so: 0xRRGGBBAA,
where each RGBA value is a byte long, allowing for a range from 0-255.
This mirrors the internal representation of the pixels in the class that stored
the images, which further allowed the use of Color objects to be excised
from the scaling code. Previously, these objects had been used to create the
32-bit integer representation of the pixel from the array of doubles. With
the 32-bit representation already in hand, these objects became superflu-
ous.

When refactoring was complete, the scaling algorithm did not use any
non-primitive data types except for the images themselves.

5.4 Discussion

This case study demonstrates one of the approaches to concurrency that
can offer the greatest increases in performance, and the greatest ease of
implemention: parallel tasks with no absolutely no interaction. A lack
of interaction between tasks means that code doesn’t need to be “thread-
safe”—there is no shared data to control access to. Each thread or actor is
simply executing the exact same task with different input. A lack of com-
muncation between tasks means that each task can simply be started and
left to run; they require no synchronization, control, or any of the addi-
tional overhead that has been required in the previous case studies. How-
ever, that is not to say that this approach to concurrency is not without
its own pitfalls. We begin the discussion by looking at the three different
forms of task presented in this case study.

5.4. DISCUSSION 71

5.4.1 I/O-Heavy Operations

It is clear from the results presented above that the addition of concur-
rency to a program that involves a great deal of parallel file operations
provided benefits. We have shown that adding concurrency over four-
cores results in an almost four-fold reduction in execution time for this
case study, with the best results coming from the manual threading im-
plementation. Actors, for perhaps the first time in this thesis, also appear
to be providing a significant performance boost. File I/O remains one of
the slowest parts of many programs (other than networking, perhaps), as
the majority of computers still use machanical hard-drives to store data.
While non-blocking I/O (ie: asynchronous) was not investigated in this
case-study, we can see that even blocking (synchronous) I/O calls can be
made faster by executing them in parallel. For each implementation, the
total amount of time spent on I/O was also recorded—note that this is not
a measure of “real” time, so much as “effective CPU time”, as the total
I/ O times are distributed across multiple threads of execution operating
in parallel. For manual threading, this number seems rather high: recall
that in the manual threading implementation, one thread was spawned
for each image in the input folder. This means that the manual threading
implementation had far more threads executing at once than the others; 4
for each of the thread-pool implementations, and 16 (each core thread of
the actor subsystem has 4 worker threads) for the actor implementation
(which also has a significantly higher I/O time than the other implemen-
tations). This high total I/O time is caused by all of the threads effectively
initiating their file I/O calls simultaineously, and then being swapped out
for threads that have become unblocked (ie: finished their I/O). In the
thread-pool implementations, every thread becomes blocked as soon as
four jobs are being processed, leading to shorter over-all I/O times, but a
slightly slower overall performance.

72 CHAPTER 5. CASE STUDY: IMAGE PROCESSING SERVER

5.4.2 CPU-Heavy and Memory-Heavy Operations

Table 5.2 gives a startling set of results given the results of the previous
experiment. We immediately notice that manual threading is performing
very badly, giving a total execution time that is approaching double that of
the unthreaded version. However, the other multi-threaded operations
give a very similar performance to last time, again showing an almost
four-fold reduction in execution time. The only real difference between the
manual threading implementation and the other multi-threaded imple-
mentations is that the manual threading version spawns more threads—
could the cause of this terrible performance be simply due to having more
threads running at once?

Using the JVisualVM tool (which is included as part of the Java De-
velopment Kit) to visualise the program in execution, we noticed that
the manual threading implementation was using far more memory than
the other implementations, mostly bound up in java.awt.Color objects
and double[][][] objects. The culprit was the scaling algorithm used
to scale the images to a larger resolution. In order to scale the image with
as much accuraccy as possible, the algorithm was storing pixel data as a
multi-dimensional array of doubles, and using the Color objects to con-
struct new pixels of the appropriate value.

5.4.3 CPU-Heavy and Memory-Light Operations

Having isolated the cause of the slow-down in the manual threading im-
plementation, the scaling algorithm was re-written to be calculated en-
tirely using primitive integers and bit-shift operators. The resulting exe-
cution times, shown in Table 5.3, are mostly unchanged by any significant
amount—except for the manual threading implementation, which we now
note as being the fastest once more. A huge change in performance for
very little in terms of code changes.

5.4. DISCUSSION 73

5.4.4 Evaluation

This case study highlights a key issue that crops up when writing con-
current code: memory usage. Care must be taken when executing large
numbers of task in parallel that the machine (VM or physical) can handle
the extra memory requirements. If a single method is written poorly and
uses far more memory than it should, then running that method 40 times
concurrently is going to cause a lot of stress on memory—especially when
those objects are located on the thread’s local stack, or if the tasks are so
large that switching requires virtual memory to be paged to and from your
hard-drive. Under these situations, any performance advantage you gain
from writing concurrent code is likely to be totally lost in the extra time
required for memory management.

In terms of implementation, parallel tasks that require no communi-
cation are among the easiest to understand and implement forms of con-
currency. We’re not looking to do anything more complicated than take
advatange of having multiple cores by executing multiple copies of the
same task, albeit with different input. In these terms, all of the various
approaches were fairly easy to implement. Actors make a lot of sense for
this kind of implementation as, unlike the previous case studies, this one
doesn’t require any nasty shared state that really seems to get in the way
of making Actors work well. The messages are fairly minimal too, only
requring two messages total, compared to the larger numbers required for
the other case studies.

74 CHAPTER 5. CASE STUDY: IMAGE PROCESSING SERVER

Chapter 6

Case Study: Concurrent
HashMaps

This case study takes a deeper look at something that underpins the first
two case studies: concurrent access to data structures. The structure we
have chosen to look at in this case study is the Hash Map. To investi-
gate the effects of different approaches to controlling concurrent access to
a data structure, we have implemented different wrapper classes for Java’s
built-in HashMap.

6.1 Description

Concurrent use of a data structure is a vital element of concurrent pro-
gramming. This case study aims to investigate some different means of
controlling concurrent access to a shared data structure in a safe man-
ner. We will be investigating the effects of different ratios of operations
(read/write) on a shared data structure, and how the different implemen-
tations perform in response to this. We will also be investigating how
this changes under different forms of read operation, from just using the
fast get and contains operations, to the more time-intensive operations
such as values and keyset.

75

76 CHAPTER 6. CASE STUDY: CONCURRENT HASHMAPS

To this end, we have implemented different approaches to making a
HashMap concurrent.

6.2 Making it Concurrent

Unlike the previous case studies, this section will not focus on individual
concurrency techniques, but rather on the different ways in which access
to the HashMap was implemented.

Many of the implementations below are based on a well-known solu-
tion to controlling concurrent access to a shared data-structure: the Readers-
Writers Problem [7]. In the Readers-Writers problem, threads/actors are
divided into two groups:

Readers Any thread/actor that needs to perform an operation that cannot
be performed while a Writer is operating on the data-structure, but
can be done concurrently with other Readers

Writers Any thread/actor that needs to perform an operation that cannot
be performed concurrently with any other operation.

One of the easiest ways to solve this problem is to only allow one
thread/actor to perform their operation at a time; this is presented be-
low as the Synchronized HashMap, and the Atomic HashMap. Another
approach is to have a structure that keeps track of any currently wait-
ing Readers and Writer, and lets them perform their operations in accor-
dance with the requirements above. These solutions are presented below
as Actor HashMap, ReaderWriter HashMap, and Java’s built-in Concur-
rentHashMap.

6.2.1 Synchronized HashMap

The Sychronized HashMap is the most basic and naı̈ve approach to mak-
ing a data structure concurrent. It uses the synchronized keyword to

6.2. MAKING IT CONCURRENT 77

control access to each of its methods, thus ensuring that multiple threads
cannot change the HashMap at the same time. Unfortunately, it also en-
sures that multiple threads cannot read from the HashMap at the same
time either. By requiring mutual exclusion on every method, this imple-
mentation of a concurrent HashMap suddenly doesn’t seem very concur-
rent—so why bother even including it? Recall that one of the purposes
of this thesis is to highlight the pitfalls and traps of writing concurrent
programs, and there is none so great as the keyword synchronized.

The Synchronized HashMap is used with the manually threaded im-
plementations, as well as the Thread-Pool based techniques: Work-Sharing,
and Work-Stealing.

6.2.2 Atomic HashMap

Much like the Synchronized HashMap, this implementation of HashMap
protects every method call—this time with Deuce’s @Atomic annotation.
This is similar to the way Synchronized HashMap was implemented, but
uses STM to provided mutal exclusion, not synchronized. The STM
engine, based on the results of previous case studies, seems more efficient
than just putting locks on everything, so we expect the Atomic HashMap
to have better performance than the Sychronized HashMap.

6.2.3 Actor HashMap

We have violated Actor Semantics slightly in this implementation of a
HashMap, as we allow multiple actors to access the same data-structure.
Due to the internally sequential nature of actors, implementing this the
sementically correct way—i.e. with one actor containing the HashMap,
which it updates in response to messages—would result in an essentially
non-concurrent Map. Instead, each actor may request access to a shared
HashMap. To control access to the HashMap, we have implemeted a
HashMapControllerActor, to which all Actors wishing to gain access must

78 CHAPTER 6. CASE STUDY: CONCURRENT HASHMAPS

send a message requesting access. In addition to this, the message must
also include the type of access the Actor is requesting: read or write. The
controller automatically allows the first actor to request access into the
HashMap by returning a PermissionGranted message to the requesting
Actor, along with a reference to the shared map. The controller allows any
number of actors that have requested read-permission to use the HashMap
simultaineously—unless there is an actor waiting to write to the HashMap.
If there is, the controller will place any futher read requests in a pending
pool and allow the writer into the hashmap when the current readers pool
is empty. When the writer is done, the controller checks for any more writ-
ers and allows them in one at a time before approving the entire pool of
pending readers.

The Actor HashMap is used only with the Actor implementation of the
code.

6.2.4 ReaderWriter HashMap

Much like the Actor HashMap, the ReaderWriter HashMap implements a
solution to the Readers-Writers problem, using Java’s built-in ReaderWriterLock
in place of the synchronized keyword. This allows multiple readers to
access the HashMap concurrently, and ensures that only one writer is up-
dating the HashMap at a time.

The ReaderWriter HashMap is used with the manually threaded imple-
mentations, as well as the Thread-Pool based techniques: Work-Sharing,
and Work-Stealing.

6.2.5 Java’s ConcurrentHashMap

The final concurrent HashMap used in this case-study is Java’s own im-
plementation, the aptly named ConcurrentHashMap.

The ConcurrentHashMap is used with the manually threaded imple-
mentations, as well as the Thread-Pool based techniques: Work-Sharing,

6.3. RESULTS 79

and Work-Stealing.

6.3 Results

Two experiments were run using the implementations of HashMap out-
lined above. Each consisted of 500,000 randomly generated method-calls
on the HashMap, with the ratio of read operations to write operations
varying from 100:0 to 0:100. The first experiment consisted of only get

and put operations, the cost of which for a HashMap is O(1). The sec-
ond experiment allowed method calls to be drawn from the entire pool of
available method calls (except clear), which are as follows [5]:

containsKey Returns true if this map contains a mapping for the specified
key.

containsValue Returns true if this map maps one or more keys to the
specified value.

entrySet Returns a Set view of the mappings contained in this map.

get Returns the value to which the specified key is mapped, or null if this
map contains no mapping for the key.

isEmpty Returns true if this map contains no key-value mappings.

keySet Returns a Set view of the keys contained in this map.

put Associates the specified value with the specified key in this map.

putAll Copies all of the mappings from the specified map to this map.

remove Removes the mapping for a key from this map if it is present.

size Returns the number of key-value mappings in this map.

values Returns a Collection view of the values contained in this map.

80 CHAPTER 6. CASE STUDY: CONCURRENT HASHMAPS

Only a subset of these operations are O(1), namely get, put, size,
containsKey, containsValue, and isEmpty, and even these opera-
tions are only O(1) if the HashMap is sufficiently sparse. The other opera-
tions are at least O(n) over the number of items within the Map.

For each run of the experiment, each map is initially randomly popu-
lated with 50,000 Integer keys and values.

Figure 6.1 shows the execution times for varying ratios of read oper-
ations to write operations, with very short read operations (500,000 read
operations processed in 560.51 ms for the Non-Concurrent implementa-
tion ≈ 1.1 × 10−3 ms per operation). We can immediately see that we
do not gain any performance benefit from applying concurrency in this
situation—in fact, it approximately doubles the execution time of the pro-
gram. The operations being performed on the HashMap, beingO(1), don’t
seem to be taking up enough time to actually make concurrency a viable
option for this case study. The overhead introduced by requiring access
control clearly outweighs any benefit the concurrency might be adding,
especially in the actor-based implementation.

So what’s the point of making a data structure like a HashMap concur-
rent in the first place? From the results in Figure 6.1, it looks to be a terrible
idea! But does this still hold if the operations we perform are a little more
complex?

Figure 6.2 shows the execution times for varying ratios of read opera-
tions to write operations for long read operations (500,000 read operations
in 18245 ms for the non-concurrent case gives an average length of 0.036
ms per operation; approximately 33 times slower than the short reads
shown above). Notice again how the Synchronized HashMap shows very
similar results to the unthreaded case. These implementations demon-
strate a linear increase in execution time as the number of read operations
increases, which is not unsurprising. In these implementations, all opera-
tions are being performed on the HashMap sequentially (as synchronized
is enforcing mutual exclusion on all methods), so as the number of read

6.3. RESULTS 81

0% 20% 40% 60% 80% 100%

Read Operation Percentage

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

E
xe

cu
ti

o
n
 T

im
e
 (

m
s)

Unthreaded STM Actors
Manual Threads (Sync) Work-Stealing (Sync) Work-Sharing (Sync)
Manual Threads (RW) Work-Stealing (RW) Work-Sharing (RW)
Manual Threads (C) Work-Stealing (C) Work-Sharing (C)

Figure 6.1: Execution times for short read operations

operations increases, the total execution time, as evidenced by the graph,
will increase accordingly.

82 CHAPTER 6. CASE STUDY: CONCURRENT HASHMAPS

0% 20% 40% 60% 80% 100%

Read Operation Percentage

0.00

5000.00

10000.00

15000.00

20000.00

E
xe

cu
ti

o
n
 T

Im
e
 (

m
s)

Unthreaded STM Actors
Manual Threads (Sync) Work-Stealing (Sync) Work-Sharing (Sync)
Manual Threads (RW) Work-Stealing (RW) Work-Sharing (RW)
Manual Threads (Con) Work-Stealing (Con) Work-Sharing (Con)

Figure 6.2: Execution times for long read operations

For the Readers-Writers-based Maps, we see a more interesting result.
For longer read operations, the penalty for waiting for write operations to
complete before allowing readers access is clearly evident from the shape

6.4. DISCUSSION 83

of the curve, with the worst case occuring when the ratio is 80:20. At
higher read percentages, the chances of multiple reads overlapping with-
out a write interrupting them is much higher, and leads to improved per-
formance. When every operation is a read, the performance is significantly
improved over the non-concurrent case, as expected.

STM is the clear winner in this scenario; while it still exhibits a linear
increase with respect to the number of read operations, the gradient is far
less than any of the other linear results. It maintains a faster execution
speed than any of the other approaches, except at the 100% read ratio,
where it ties with the non-Actor Readers-Writers Maps.

6.4 Discussion

In this case study, we looked at the effect on performance of making a
HashMap thread-safe via a number of different means. What we found
was somewhat surprising: for very fast operations like get and put, the
overhead of managing concurrent access to the HashMap significantly in-
creases the amount of time it takes to execute those operations. In ret-
rospect, this should not have been surprising at all: in a decently imple-
mented HashMap, the get and put operations are O(1)—they execute in
constant-time. What remains surprising is that this still occurs even when
every operation is a read operation, as for the STM, ReadersWritersLock,
and ConcurrentHashMap implementations multiple readers are permit-
ted at once. Lock acqusition in Java therefore seems to be quite expensive,
even if the thread is not forced to wait.

But get and put are far from the only operations available on a HashMap
in Java. Once we add the remaining operations to the pool of available op-
erations, we begin to see a marked difference in performance for each of
the implementations. STM begins to really shine under these conditions,
becoming the fastest performing implementation. The fact that all of the
approaches increase in execution times with increasing reads (at least, ini-

84 CHAPTER 6. CASE STUDY: CONCURRENT HASHMAPS

tially) might seem odd, but is due to the fact that the majority of the read
operations being performed take far longer to complete than the write op-
erations; 300 times longer for the non-concurrent case, which can perform
500,000 write operations in 60.78 ms, but takes 18245 ms to perform that
many read operations. Of note, the approaches that maintain mutual ex-
clusion on all operations demonstrate a very linear increase in execution
time as read operations become more prevelant. This is especially notica-
ble in the Synchronized implementations of the HashMap, as they describe
the same curve as the non-concurrent implementation—this should not be
surprising, as the use of synchronized in all of the operations essentially
means that it executes sequentially. STM is also affected by this, as it too
maintains mutual exclusion across all operations on the map, but is clearly
far more light-weight than using the synchronized keyword.

The remaining three implementations—Actors, ReadersWriters, and
Java’s built-in ConcurrentHashMap—create far more interesting curves.
Like the other implementations, the initial performance increase is linear
wrt to the increasing proportion of read operations, but soon begins to
diverge. We notice that when these implementations are executing only
read operations, their performance is vastly superior to the unthreaded
case, performing the same number of operations in approximately a third
of the time. Each possess a maxima, where the ratio of reads to writes
seems to be such that it causes the worst performance. This appears to
happen at a ratio of 80:20 for most cases, implying that at this ratio the
write operations maximally interfere with the read operations.

6.4.1 Evaluation

Java’s built-in ConcurrentHashMap was the easiest version of the code to
implement, as using a ConcurrentHashMap requires no additional code to
using a regular HashMap beyond changing the constructor. Implement-
ing a solution to the Readers-Writers problems using Actors was clear and

6.4. DISCUSSION 85

understandable, despite the gross violation of the intended actor seman-
tics by allowing a shared data-structure. It is aided by the fact that com-
munication between actors is performed via message-passing, and that
actors can only process one message at a time—in this way, we can guar-
antee that the “lock” Actor is only processing one request for entrance at a
time. Because Java is a relatively permissive language, we were able to vio-
late the intended semantics of the Actor Model and construct a concurrent
HashMap that has better performance that a purely lock-based implemen-
tation, though it is still out-performed by the ReadersWritersHashMap on
which it is based.

Implementing different versions of a HashMap in Java is made quite
simple by the OO nature of the language. SynchronizedHashMap and
ReadersWritersHashMap were simply classes that implemented Java’s Map
interface, and internally mapped method-calls onto a regular HashMap.
The only alterations were how the methods were accessed. For Synchro-
nizedHashMap, all of the methods were given the synchronized key-
word, requiring all threads to obtain a single global lock on the objects,
ensuring mutual exclusion on every method in the class. For the Reader-
sWritersHashMap, the synchronized keyword was replaced with method-
specific calls to a ReaderWriterLock that either attempted to obtain the
Read Lock or the Write Lock, depending on the nature of the method call.
This made the code easy to understand, and straight-forward to imple-
ment: two things that go a very long way when writing a concurrent pro-
gram.

86 CHAPTER 6. CASE STUDY: CONCURRENT HASHMAPS

Chapter 7

Conclusion

In this thesis, we have investigated some of the options programmers have
when writing a concurrent program. We used these options to implement
case studies of various kinds: a video game (Chapter 3), a physical sim-
ulation (Chapter 4), an image-processing application (Chapter 5), and a
concurrent data structure (Chapter 6). Through-out these case studies, we
notice a common thread: concurrency, applied correctly, can improve the
performance of a program—but the correct application may not be readily
apparent. Concurrency is an important tool in the toolbox of the mod-
ern programmer, especially with the rise of multi-core architectures and
the increasing prevalence of distributed systems. And like any tool, it is
important to understand how and when to use it.

To this end, we also explored some of the pitfalls that might befall
programmers when writing concurrent code, and performed a subjective
analysis of the approaches we used to write the case studies. We judged
implemenation efficiency and understandability, as well as the more con-
ceptual problems that might arise from trying to code in a concurrent fash-
ion. We explored the utility of certain concurrency models in different sit-
uations, and how easily they were adapted to fit a different scenario.

87

88 CHAPTER 7. CONCLUSION

7.1 The Actor Model

To a programmer trained in OOP, the Actor Model initially presents a con-
ceptual difficulty. The lack of shared state between actors leads to quite a
different design-space than the traditional OOP model. Instead of method
calls, one has to think about literal messages being passed around—messages
that need to contain all of the state required to perform the function being
invoked. This is similar enough to the functional paradigm that any pro-
grammer familar with functional programming will be able to adjust more
readily to the Actor Model. Having used actors to solve a variety of con-
currency issues, I have to admit that the model has presented itself as a
reasonable solution in many situations. Asteroids, at least on the surface,
appears to lend itself well to being implemented with the Actor Model.
The truth, however, is that the Actor Model is not a model of concur-
rency that meshes well with Java as a language. Java is too rooted in OOP
paradigms to allow a “proper” implemenation of actors without signifi-
cantly overhauling the JVM to use actors instead of threads as its internal
concurrency model. This is echoed by the results presented in this the-
sis: the only time actors performed as well as any of the other approaches
was when there was almost no message-passing or shared state of any
kind. This leaves us with a not particularly unexpected conclusion: actors
are best when performing isolated tasks that require very little in term of
shared information. They are a perfect model to use for server-side client
handling, for example.

7.2 Thread Pools

It should really come as no surpise that code that used thread-pools gener-
ally out-performed code that manually created and started threads when-
ever it required them. Threads, while still far more light-weight than an
entire process, are not inexpensive. Populating a pool with threads at the

7.3. SOFTWARE TRANSACTIONAL MEMORY 89

outset saves a lot of overhead. The only case-study in which this was not
readily apparent was that of the image-processing server. The overheads
incurred by creating large numbers of threads at once were clearly miti-
gated by the gains in having those large numbers of threads to perform
file I/O—unless, of course, the code is badly written or uses a lot of mem-
ory, in which case having large numbers of threads is not a good idea.

Work-Stealing, in general, proved to be the more efficient implemen-
tation of a thread-pool. The only time this was not the case was in the
AtmosSim case study—when there was only one job per thread in the
pool. This is clearly not an optimal case for the Work-Stealing thread-
pool, which performs much better when there are actually jobs to steal in
the first place.

7.3 Software Transactional Memory

STM proved that in many cases—but not all—it is a much more efficient
and scalable approach to managing concurrent access to shared state than
the other approaches used in this thesis. Asteroids, AtmosSim, and the
Concurrent HashMap show that STM is generally more efficient than us-
ing synchronized. The only time that this was not the case was when
contention was quite low in the first place, thus the overheads of STM
cause it to be slightly less efficient than synchronized. The Concurrent
HashMap case study also showed that it out-performs more finely-crafted
methods of controlling concurrent access; specifically Java’s built-in Con-
currentHashMap and the use of a ReaderWritersLock to allow concurrent
reads but not writes—though at the point where every operation was a
read, the performance of all three was roughly equal.

90 CHAPTER 7. CONCLUSION

7.4 Future Work

The landscape of concurrency is a very large and constantly changing one.
This thesis has presented but a small sliver of the depths of concurrent
programming. Java is but one language amongst many, and every lan-
guage handles concurrency in different ways. For example, Erlang is built
with the Actor Model as its default model of concurrency. C, and by ex-
tenstion C++, have numerous threading and concurrency libraries avail-
able for them. The work done in this thesis could easily be extended to
compare concurrency in different languages. Even sticking to just Java,
there are other Actor and STM libraries available than the ones used in
this thesis—though comparing similar concurrency models is something
that is already a topic of extant research [15].

One thing that was not explored in this thesis is the effects of vary-
ing the number of available processors. We present results for the non-
concurrent (ie: single core) case, as well as multiple concurrent implemen-
tations that execute on four-cores. Extending the case studies to utilize
larger numbers of cores would be an interesting avenue of investigation,
though would require additional hardware.

Another avenue of research may be to explore the conceptual difficulty
of concurrency. Why is it hard? What sorts of internal mental models of
concurrency do successful programmers use in order to avoid the diffi-
culty of concurrent programming—and how can we use them to make
statements about concurrency? In the end, we’re left with the question:
what can we do to make concurrency easy? The answer, I fear, will be as
complex as the history of programming languages themselves.

Bibliography

[1] Akka Website.
http://akka.io accessed: 20 Feb 2013.

[2] Bicubic Interpolation for Image Scaling.
http://http://paulbourke.net/texture_colour/

imageprocess/ accessed: 20 Feb 2013.

[3] Deuce STM Website.
http://www.deucestm.org/ accessed: 20 Feb 2013.

[4] JSR-166y Website.
http://gee.cs.oswego.edu/dl/concurrency-interest/

index.html accessed: 20 Feb 2013.

[5] Map Interface JavaDoc.
http://docs.oracle.com/javase/6/docs/api/java/

util/Map.html accessed: 20 Feb 2013.

[6] AMDAHL, G. M. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the April 18-
20, 1967, spring joint computer conference (New York, NY, USA, 1967),
AFIPS ’67 (Spring), ACM, pp. 483–485.

[7] BEN-ARI, M. Principles of concurrent and distributed programming.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

91

http://akka.io
http://http://paulbourke.net/texture_colour/imageprocess/
http://http://paulbourke.net/texture_colour/imageprocess/
http://www.deucestm.org/
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html

92 BIBLIOGRAPHY

[8] CHASE, D., AND LEV, Y. Dynamic circular work-stealing deque. In
Proceedings of the seventeenth annual ACM symposium on Parallelism in
algorithms and architectures (New York, NY, USA, 2005), SPAA ’05,
ACM, pp. 21–28.

[9] CLINGER, W. D. Foundations of actor semantics. Tech. rep., Cam-
bridge, MA, USA, 1981.

[10] DINAN, J., LARKINS, D. B., SADAYAPPAN, P., KRISHNAMOORTHY,
S., AND NIEPLOCHA, J. Scalable work stealing. In Proceedings of
the Conference on High Performance Computing Networking, Storage and
Analysis (New York, NY, USA, 2009), SC ’09, ACM, pp. 53:1–53:11.

[11] FELBER, P., KORLAND, G., AND SHAVIT, N. Deuce: Noninvasive
concurrency with a Java STM. In Electronic Proceedings of the work-
shop on Programmability Issues for Multi-Core Computers (MULTIPROG)
(2010), p. 10 pages.

[12] FICK, A. Ueber diffusion. Annalen der Physik 170, 1 (1855), 59–86.

[13] FOSTER, I. Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1995.

[14] HEWITT, C., BISHOP, P., AND STEIGER, R. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd interna-
tional joint conference on Artificial intelligence (San Francisco, CA, USA,
1973), IJCAI’73, Morgan Kaufmann Publishers Inc., pp. 235–245.

[15] KARMANI, R. K., SHALI, A., AND AGHA, G. Actor frameworks for
the JVM platform: a comparative analysis. In Proceedings of the 7th
International Conference on Principles and Practice of Programming in Java
(New York, NY, USA, 2009), PPPJ ’09, ACM, pp. 11–20.

[16] KITTEL, C., AND KROEMER, H. Thermal Physics (2nd Edition), second
edition ed. W. H. Freeman, Jan. 1980.

BIBLIOGRAPHY 93

[17] LEE, E. A. The problem with threads. Tech. Rep. UCB/EECS-2006-1,
EECS Department, University of California, Berkeley, Jan 2006. The
published version of this paper is in IEEE Computer 39(5):33-42, May
2006.

[18] MICHAEL, M. M., VECHEV, M. T., AND SARASWAT, V. A. Idempo-
tent work stealing. SIGPLAN Not. 44, 4 (Feb. 2009), 45–54.

[19] MORRIS, T. Computer vision and image processing. Palgrave Macmillan,
Sept. 2003.

[20] MURTHY, P. Parallel computing with x10. In Proceedings of the 1st
international workshop on Multicore software engineering (New York, NY,
USA, 2008), IWMSE ’08, ACM, pp. 5–6.

[21] SARASWAT, V. A., SARKAR, V., AND VON PRAUN, C. X10: concur-
rent programming for modern architectures. In Proceedings of the 12th
ACM SIGPLAN symposium on Principles and practice of parallel program-
ming (New York, NY, USA, 2007), PPoPP ’07, ACM, pp. 271–271.

[22] SHAVIT, N., AND TOUITOU, D. Software transactional memory. In
Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing (New York, NY, USA, 1995), PODC ’95, ACM,
pp. 204–213.

[23] SILBERSCHATZ, A., GALVIN, P. B., AND GAGNE, G. Operating system
concepts (7. ed.). Wiley, 2005.

[24] SONKA, M., HLAVAC, V., AND BOYLE, R. Image Processing, Analysis,
and Machine Vision. Thomson-Engineering, 2007.

[25] SUTTER, H. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal 30, 3 (2005).

[26] SUTTER, H., AND LARUS, J. Software and the concurrency revolu-
tion. Queue 3, 7 (Sept. 2005), 54–62.

94 BIBLIOGRAPHY

[27] WOLF, M. J. The video game explosion : a history from PONG to Playsta-
tion and beyond. Greenwood Press, Westport, Conn, 2008.

	Introduction
	Concurrency Issues
	Concurrency Techniques
	Threads and Thread Pools
	The Actor Model
	Software Transactional Memory

	Case Studies
	Thesis Outline

	Background
	Threads
	Multi-threading in Java
	Thread Pools

	Actors
	Software Transactional Memory
	Experimental Technique

	Case Study: Asteroids
	Description
	Design
	Implementation
	Manual Threads
	Work-Sharing and Work-Stealing Queues
	Software Transactional Memory
	Actors

	Results
	Discussion
	Manual Threading vs Thread Pools
	STM vs Synchronized
	Evaluation

	Case Study: Gas Simulation
	Description
	Making it Concurrent
	Manual Threading
	Work-Sharing and Work-Stealing Queues
	Actors

	Results
	Discussion
	Evaluation

	Case Study: Image Processing Server
	Description
	Making it Concurrent
	Implementation

	Results
	Refactoring

	Discussion
	I/O-Heavy Operations
	CPU-Heavy and Memory-Heavy Operations
	CPU-Heavy and Memory-Light Operations
	Evaluation

	Case Study: Concurrent HashMaps
	Description
	Making it Concurrent
	Synchronized HashMap
	Atomic HashMap
	Actor HashMap
	ReaderWriter HashMap
	Java's ConcurrentHashMap

	Results
	Discussion
	Evaluation

	Conclusion
	The Actor Model
	Thread Pools
	Software Transactional Memory
	Future Work

