
A Multi-Touch Explorer
Environment for Eclipse

by

Daniel Cope

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Masters of Engineering
in Software Engineering.

Victoria University of Wellington
2013

Abstract

The Multi-Touch Explorer Environment (MTEE) is a tool to aid develop-
ers during the production of multi-touch enabled applications. The MTEE
tool integrates into the Eclipse IDE and can be used to record and play-
back user interactions with the program, compare sessions of recorded
user interactions and investigate the evolution of the program behaviour.
The tool presented in this thesis focuses on the Eclipse IDE and Multi-
Touch for Java framework, as they are tools used by both Students and
Professional developers. It is demonstrated that the Multi-Touch Explorer
Environment can be integrated seamlessly into the Eclipse IDE. It is also
demonstrated that the MTEE tool can be used to profile the user’s program
with little impact on the performance of both the system or the program
itself.

ii

Acknowledgments

Firstly I would like to thank Dr. Stuart Marshall, for supervising the com-
pletion of my Masters study. He taught me many times in my undergrad-
uate years and supervised the study of my Honours project. I thank him
for all of his guidance and support throughout that time.

I thank my fellow peers and the members of the HCI group, for pro-
viding feedback and support during my project. I wish them the best with
all of their studies.

I would like to thank my proof readers; Fahmi Abdulhamid, Mata
Freshwater, Chris Green and Yohan Ng, for providing much needed feed-
back on the clarity of my work.

Finally, I thank my parents, David and Anne; my sister, Hannah; my
girlfriend, Sam; and all of my friends for encouraging me during my Mas-
ters study and all throughout my time at Victoria University.

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Motivation . 3

1.3 Thesis Structure . 3

2 Background & Requirements Analysis 5

2.1 Related Works . 6

2.1.1 User Interaction Recording 6

2.1.2 User Interface Visualisations 8

2.1.3 Software Evolution . 9

2.1.4 Visualisations within a Development Environment . 10

2.2 Target Users Profiles . 11

2.2.1 Student Profile . 11

2.2.2 Professional Profile . 16

2.3 Target User Personas . 18

2.3.1 Primary Persona - Student 18

2.3.2 Secondary Persona - Professional 21

2.3.3 Negative Persona - Power User 22

2.3.4 Negative Persona - Beginner Programmer 23

2.4 Project Requirements . 24

2.4.1 Functional Requirements 24

2.4.2 Non-functional Requirements 25

iii

iv CONTENTS

3 Design 27
3.1 Tools and Language Choice 27

3.1.1 Java Language . 28
3.1.2 Tools . 29

3.2 Project Features . 33
3.2.1 Eclipse Plugin . 33
3.2.2 Multi-Touch Explorer Analysis Tool 41
3.2.3 User Functionality . 41
3.2.4 System Functionality 46

3.3 Design Trade-Offs . 48
3.3.1 Plugin Environment Setup 49
3.3.2 MTEA Tool Interface 49
3.3.3 Component Code View 51
3.3.4 Component Information View 52
3.3.5 Performance Overview 52

3.4 Alternative Designs . 54
3.4.1 Alternative Tools and Languages 54
3.4.2 Alternative Java Multi-Touch Frameworks 57

3.5 Design Requirements Analysis 58

4 Implementation 59
4.1 Language and Tools Critique 59

4.1.1 Java Language . 59
4.1.2 Eclipse Platform . 60
4.1.3 Multi-Touch 4 Java . 62

4.2 Implementation of Design . 63
4.2.1 Eclipse Plugin . 64
4.2.2 Multi-Touch Explorer Analysis Tool 69

4.3 Implementation Requirements Analysis 77

5 Evaluation 79
5.1 Performance Metrics . 80

CONTENTS v

5.1.1 Test Programs . 80
5.1.2 Test System . 83
5.1.3 Testing Method . 84
5.1.4 Limitations . 87
5.1.5 Results . 88
5.1.6 Discussion . 97

5.2 Cognitive Walkthrough . 99
5.2.1 Task Analysis . 100
5.2.2 Walkthrough Results 104

6 Summary 115
6.1 Performance Metrics . 115
6.2 Cognitive Walkthrough . 118

6.2.1 Proposed Changes . 119
6.3 Future of the Project . 120

6.3.1 Improvements . 121
6.4 Contributions . 121

A XML Data Schema 135

B MTEE Plugin Manifest 139

vi CONTENTS

List of Figures

2.1 The Ripples system visualisations 9
2.2 The Shrimp tool in the Eclipse IDE 11

3.1 MTE Workspace Layout . 35
3.2 Eclipse Perspective Selection 38
3.3 Eclipse MTE View Layout . 41
3.4 Component Isolation Mode 43
3.5 Performance Playback . 46
3.6 Design decisions vs requirements 58

4.1 Addition of a new perspective 64
4.2 The MTE Componenent View 66
4.3 Launching a program from Eclipse 70
4.4 MTE Tool Software Design Diagram 71
4.5 Implementation decisions vs requirements 77

5.1 Slider demo interface . 81
5.2 Multi-Touch demo interface 82
5.3 3D Multi-Touch gestures demo 83
5.4 Disk write performance comparison 92
5.5 Folder size performance comparison 93
5.6 CPU usage performance comparison 95
5.7 RAM usage performance comparison 96
5.8 Average runtime performance comparison 97

vii

viii LIST OF FIGURES

6.1 MTE Workspace Layout w/ changes 123

Chapter 1

Introduction

The Multi-Touch Explorer Environment (MTEE) is a tool to aid develop-
ers during the production of multi-touch enabled programs. The tool in-
tegrates into the Eclipse IDE to provide developers with a recording and
replay feature that allows the developer to record a user’s touch inter-
action during testing of their program and play it back. The thesis fo-
cuses on the production and assessment of prototype applications using
the Multi-Touch for Java framework. This functionality gives the develop-
ers the ability to compare the gestures and interactions during prototyping
as the UI evolves. A snapshot system allows developers to compare ses-
sions from earlier versions of their program, long after the behaviour of
the program has changed. MTEE collects data about the developers pro-
gram such as; the structure of components in the display, the gestures each
component will respond too, and information about gestures that were
performed on a component during a recording. This data is displayed
directly in the Eclipse IDE.

The intention of this project is to show that extra tools can be produced
to aid a developer when prototyping multi-touch applications. The MTEE
tool presented in this thesis chose to focus on the Eclipse IDE and Multi-
Touch for Java, as they are tools used by both students and professionals.
The broader initial goal was to develop these tools as a use case for how

1

2 CHAPTER 1. INTRODUCTION

multi-touch development can be improved with other frameworks and
development environments.

This thesis demonstrates that the Multi-Touch Explorer Environment
can be integrated seamlessly into the Eclipse IDE. It demonstrates that the
MTE tool can be used to profile the user’s program with little impact on
the performance of both the system or the program itself. The results of
the evaluation imply that the project is a success, and that similar tools
could be created to interface with different integrated development envi-
ronments and multi-touch frameworks.

1.1 Contributions

The completion of the Multi-Touch Explorer Environment (MTEE) resulted
in three contributions:

• The design of a tool to record and replay user interactions with a
multi-touch program. This included the analysis and development
of two primary personas related to the target users.

• A proof-of-concept prototype for the MTEE. The prototype integrates
the MTEE into the Eclipse IDE and focused on projects using the
Multi-Touch for Java framework. The MTEE prototype consists of
two parts, the plugin for the Eclipse IDE and the Multi-Touch Ex-
plorer Analysis (MTEA) tool.

• An evaluation of the Multi-Touch Explorer Environment. This in-
cluded a set of performance metrics and test suite to allow continual
testing of the non-function requirements. It also included a Cogni-
tive Walkthrough [22] using expert users, resulting in a list of changes
and improvements that can be made to the project going forward.

1.2. MOTIVATION 3

1.2 Motivation

Multi-Touch is a relatively new area of mainstream software and hard-
ware development. While touch capable devices have existed in research
laboratories since the 1980’s [68], the first consumer level products did not
start appearing until the late 2000’s with the Apple iPhone [12] and the Mi-
crosoft Surface were unveiled [57]. This sudden availability of consumer
level hardware quickly made multi-touch an attractive area of software
development.

For the completion of my Honours project I used the Java program-
ming language and the Multi-Touch for Java (MT4J) framework, to pro-
duce a system for navigating 3D environments using 2D touch interfaces
[23]. I created a series of prototype gestures which could be used to move
the user around a 3D virtual scene. Due to the added complexity a multi-
touch interface introduced, I found it difficult to compare the behaviour of
the different sets of gestures, particularly when looking at ways that the
user would actually use them. I also had difficultly distinguishing which
components related to which gestures.

This led to the idea of creating a dedicated environment for recording
and comparing data from multi-touch programs. Such a tool could be ap-
plied to any multi-touch development environment, allowing developers
to make informed decisions based on data from their application. This
would improve the speed at which developers could create and test pro-
totypes of new programs.

1.3 Thesis Structure

This thesis is presented in six chapters; an introduction to the project, the
Background and Requirements Analysis, the project design, the project
implementation, the project evaluation, and a summary of the project.

The introduction clarifies what the project is and what this thesis as

4 CHAPTER 1. INTRODUCTION

contributed. The introduction also discusses the motivation for the project.
The background and requirements analysis presents the related works,

user profiles, and personas related to the target users. The personas have
defined goals and scenarios which are used to draw up both the functional
and non-functional requirements of the project.

The design chapter outlines the designs for both the Eclipse plugin and
the external tool, called the Multi-Touch Explorer Analysis (MTEA) tool.
These make up the core of the prototype design for the MTEE.

The implementation chapter discusses the tools used for the project
and how the project was implemented using these tools. This covers the
system design of both the Eclipse IDE plugin and the MTEA tool.

The project is evaluated using performance tests and an expert evalu-
ation of the interface. This indicates how the project has met the require-
ments of the project and how well the interface would perform in front
of real users. The summary contains the changes and improvements that
will be made to the project going forward, along with recapping the con-
tributions this project has made.

Chapter 2

Background & Requirements
Analysis

In this chapter we examine the related works that formed a basis for the
project, as while as analyse the project requirements; both functional and
non-functional.The functional requirements are informed by the develop-
ment of a number of personas; a primary, secondary and two negative
personas [22]. By researching and defining the background for the per-
sonas we were able to accurately measure the user’s goals and produce a
number of scenarios on how they would use the tool. The non-functional
requirements were then developed to meet the system needs of these per-
sonas.

We discuss the project’s related works, covering other tools and sys-
tems that shared functionality in common. We then discuss the target
user’s profiles in section 2.2. These were used to develop a strong back-
ground for each user, which the personas are then be developed from.
These finalised personas are presented in section 2.3. Section 2.4 sum-
maries both the functional and non-functional requirements of the system.

5

6 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

2.1 Related Works

The tool presented in this thesis used a number of different techniques
for the analysis and display of data. While there have been no projects
to bring this collection of techniques together to explore multi-touch ap-
plications, other projects have dealt with collecting and presenting data
in a similar manner. By examining projects which share these features
we could become better informed of the problems and conclusions these
projects encountered.

Parts of the functionality of the tool presented in this thesis focuses
on providing information to better help new users understand a multi-
touch interface and the associate multi-touch framework. Training and
educational qualities, such as those, had been considered for this project,
however as this topic covers a broad area we deemed it inappropriate to
pursue. To properly implement the functionality required to support com-
plete new users into the existing features would have required a large time
commitment, which was not suited to the tight time frame associated with
completing a Master’s thesis. For these reasons using the project as an
educational or training tool was deemed out of scope.

2.1.1 User Interaction Recording

One of the key features of this project was the ability to record the users in-
teraction with the program. These tools generally fall into two categories,
screen recorders and test automation tools.

Fraps [15] is a commercial piece of software for the Windows platform.
It provides both a benchmarking tool, and a screen imaging and recording
tool. The benchmarking tool measures frame rate data about the program
and has the ability to save this data to disk. The screen capture tool allows
both image and video recordings of the running program. The screen cap-
tures are saved to disk as a video file and can be replayed in any standard
video player. CamStudio [20] is a similar piece of software, but also in-

2.1. RELATED WORKS 7

cludes a tool to edit the recorded video to add captions, custom cursors
or picture-in-picture overlays. CamStudio is focused on allowing users to
create professional training and support videos.

Xnee is an open-source test automation suite for the X11 windowing
system. Xnee allows a user to record and playback a series of input events,
including mouse and keyboard interactions. Xnee is designed to not just
record interaction on a user interface but can also automate input for com-
mand line applications [67]. The Xnee test suite was also used to perform
the automated testing during the performance evaluation of this thesis.
AutoHotKey is a Windows-only alternative to Xnee. AutoHotKey focuses
on the automation of mouse and keyboard macros, including the ability
to create a script which can perform a series of interactions. The scripting
tool also allows the generation of a script based on recorded user input
[52]. AutoHotKey does not focus on test automation but has been used
successfully to that effect [71].

Both of these categories generally include external tools that record the
entire interaction with the system and not just the program itself. While
this is often appropriate for test automation and training, it only provides
a coarse level of information about the input performed. By integrating
the input recording directly into the application itself, it is possible to gain
a much finer view of the user’s interaction. Sebatian et al. put forth an
example where they captured the user input for a web application as a
series of server requests. This allowed them to generate a large number
of test cases which mimicked real user interactions [30]. Had they only
recorded the mouse and keyboard input input the application it would
have made it much more difficult to generalise the data. This is because
they would have limited information about the applications state when
the actions were performed.

The tool presented in this thesis aimed to provide an input recording
system similar to that done by Sebatian et al, including the ability to replay
the user’s input back into the system. While Sebatian developed for a

8 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

web application, they also focused on recording the requests made by the
program rather than the location and position of the input. The MTEE
project did both, recording the input of the touch point and the requested
gesture on a particular component.

2.1.2 User Interface Visualisations

This project required visualisations to help emphasise the components that
were being manipulated during the playback of a recording. The goal was
to make it clear which components where being used, and where the in-
teraction was coming from. This was made more complex by using multi-
touch as multiple input could be interacting with same component.

Software simulation tools such as CamStudio, mentioned above, and
Adobe Captivate [7] have a number of features to help with the visualisa-
tion of software interaction. These can include; highlighting or changing
the cursor to be more visible, text comments and captions to provide ex-
planation, and adding highlighted boxes to indicate buttons or points of
interaction. In the context of a training simulation, these techniques help
indicate to the user where they need to interact, as well as helping to em-
phasise a single task within the entire application.

Other projects focus on modifying software to make it easier to use
and clearer as to what kind of interactions are occurring. Ripples [78] is a
system which enables visualisations around each contact point on a touch
display. The system is engineered to be overlaid on top of existing ap-
plications, without requiring that the application be modified in any way.
The visualisations included; indication of whether a control had been se-
lect by a touch point, a cursor trail when a touch point was dragged, a
shrinking circle to indicate the exact position that was touched, and teth-
ers to indicate which touch points are attached to which controls. Figure
2.1 demonstrates two of these effects.

2.1. RELATED WORKS 9

Figure 2.1: Two examples of the visualisation techniques used by the Rip-
ples system.

2.1.3 Software Evolution

This project was not focused on maintaining editable versions of the users
code, rather just a working snapshot of their program at a point in time.
The program structure and other data associated with each snapshot could
be used to compare the program as it evolved over time.

Version control systems such as Subversion [11] or Git [35] use a num-
ber of techniques for labelling and controlling versions of software as they
are developed. One feature is called tagging which gives the developer
the ability to label a particular version of their software. This makes it
easier return to that version at a later date. This is often done for stable
release versions as it gives the developer a way to check and compare the
behaviour of that version against other released versions.

A number of other systems and projects interface with software ver-
sion data to provide information and visualisations of the software’s evo-
lution. Systems such as Evolution Track Table [48], The Evolution Matrix
[45] [46] and Evolution Storyboards [16] all provide different kinds of vi-
sualisations of this data. None of these tools allow an easy comparison of
behaviour between different versions of the software.

10 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

2.1.4 Visualisations within a Development Environment

A number of tools provide integration of visualisations to existing IDEs.
These can add more information in the form of tables and visualisations
or change the entire layout of the display. The common goal is to better
the developer’s experience when using the tool so they can make easier
decisions.

Code Canvas [25] alters the layout of Microsoft’s Visual Studio to dis-
play all code on a single zoom-able window. Code fragments are instead
displayed in forms which can be be moved around the canvas and organ-
ised into groups. This allows the user to use spatial recognition to better
organise and recall pieces of code. Visualisations can be added in layers
either over or under the code layer. Multiple layers can be shown at the
same time to better combine and display different sets of data.

Code Bubbles [18] allows the users to places snippets of code into bub-
bles, similar to Code Canvas. These bubbles would not necessary contain
the entire class, but snippets such as functions relating to the current task.
Code Bubbles also allows the user to link and tag pieces of code together
to provide more context as to how the code is used or to indicate the work
flow of the application. A collections of these bubbles, tags and links can
be saved into a working set to be recalled later.

Lintern et al [51] speaks of the benefits of integrating with an existing
IDE, as they transform their SHriMP visualisations tool into a plugin for
the Eclipse IDE. By integrating into Eclipse their project was able to gain
easily access to the user’s project and repository. This allowed them to
focus on the visualisations rather then how they would collect the infor-
mation about a user’s project. Figure 2.2 shows that the SHriMP tool looks
once it had been integrated into the Eclipse IDE. They conclude that when
integrating a tool into an IDE it is important to decided what level of in-
tegration will be required, citing a piece of work by Amsden [8]. The five
levels of integration are; none, invocation of external applications, data
sharing, API interaction and dynamic user interface integration.

2.2. TARGET USERS PROFILES 11

Figure 2.2: The outcome of integrating the Shrimp tool into the Eclipse
IDE

2.2 Target Users Profiles

User profiles provide background information about the target users of
the project. Information such as; what kind of qualifications a user would
have and what their courses would have taught them are very useful for
determining the skill set of the user. We can also explore the age, gender
and ethnicity of the user and use this to gauge general interest popular
with those groups and professions. This information is then used to pro-
duce a persona, a sample user against that we validate our design deci-
sions. Personas are discussed more in the following section.

2.2.1 Student Profile

The student profile provided the basic background for a current university
student. We look at what courses they were taking and what technology

12 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

the courses taught them about. This formed the basis for our primary
persona in section 2.3. The student user was the person who must have
the required skills to understand and use the tool and was expected to be
able to benefit most from the project. The majority of this experience and
background was pulled from students at Victoria University as it was the
most readily available.

Background The Student User was an example of person who would
have experience with computers, but not necessarily with developing for
multi-touch input. The students were assumed to have finished up to
three years of Computer Science or Software Engineering at a university.
As an example, a student from Victoria University may have completed
a Bachelor of Science in Computer Science, or a Bachelor of Engineering
in Software Engineering. Completing these courses up to the third year of
university will have given them a strong background in programming and
software development. The focus was to look at how their background can
extend their skills to developing with multi-touch interfaces.

Hardware Experience Smart phones and tablets were popular devices
among the student population. Studies show that smart phone usage
among college students have been on the rise in the last few years and
has reached as much as 62% among some student groups [24]. This same
study shows that tablet ownership has increased to 15%, with many stu-
dents owning them along with a smartphone. Other studies have shown
that students are evenly split between using Android and iOS devices [17].

While every student might not own a smartphone or other touch screen
device, it was highly likely that would have come into contact with one.
Because of this we assumed that the majority of students would have
an understanding of the differences between touch screen applications
and desktop applications. The main difference between them was the in-
creased number of ways to interact with the touch interface when gestures

2.2. TARGET USERS PROFILES 13

are avaliable. This also provided some common knowledge as to how
multi-touch applications work.

Larger multi-touch devices, such as Microsoft Surface, or home built
touch tables, were often not suitable for a whole class of students to work
with at once. Teaching development for smaller devices is more common.
There were number of courses at different universities offering program-
ming courses which taught Android or iOS development [76] [53] [63].
These courses typically exposed students to learning how to design multi-
touch and mobile sized interfaces, and also provided them with some ex-
perience about how the multi-touch systems work in each of their respec-
tive environments.

Software Experience Students from Victoria University had a very strong
background in Java; as it was used to teach the basics of object-orientated
program design in their first year. Other Universities used languages such
as Python, C/C++ or C# in entry-level courses for the same reasons. If
we assume that Universities favour languages that are popular in the soft-
ware industry, we can see that these languages are all in the top ten most
used world wide [73] [44].

At Victoria, students begin by using an introductory teaching environ-
ment for Java called BlueJ. BlueJ is designed specifically to teach object-
orientation with Java and is popular amount universities [43]. After their
first year, students, were encouraged to use the Eclipse IDE for their pro-
gramming instead. Eclipse is a fully-featured integrated development en-
vironment (IDE) that can be extended with plugins. Courses also encour-
aged the use of plugins which include the JUnit Testing plugin, to unit
test code; and the Subclipse plugin, to integrate the Subversion version
control system into Eclipse. Students who had courses with Android de-
velopment, such as those mentioned above, will likely be familiar with
the Android Development Toolkit (ADT) plugin for Eclipse. These plu-
gins taught students different ways to interact with a project beyond the

14 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

standard debug and editor screens.

Education By the end of their third year, a Victoria University student
will have finished either a Computer Science degree, or have completed
the core part of their Software Engineering Degree. In both cases the stu-
dents will be facing their honours year when they continue their study.

The first year of these courses would teach the students Object-Orientated
programming; in the case of Victoria University, a strong understanding of
Java. The assignments for first year courses consisted of a program with a
core algorithm or functionality missing which focused on what was taught
in the week prior. While at the first year level, the incomplete part was ab-
stracted from the rest of the program, but still exposes students to work
within other peoples code. This helps them develop skills to review code
and gain an understanding for how it works.

The second year continues in the style of the first, however students
were also introduced to group work and work within IDEs such as Eclipse.
The second year also put more emphasis on using tools such as Subver-
sion, JUnit, and their respective Eclipse plugins. The assignments were in
the same fashion as the first year however the programs were more com-
plex. The example programs and problems they were faced with for each
assignment started to involve computer graphics. This required students
to draw and position objects on the screen. The second year also allowed
students to start specialisation, some courses offering Android or iOS de-
velopment experience.

The third year was when students were considered to be competent
programmers, in both code and using various tool kits. The student’s
courses start to specialise, such as user interface design and designing in-
terfaces for multi-touch. The assignments become larger and more com-
plex, where the students are expected to start from the ground up. Stu-
dents are taught different programming languages, often just to teach other
concepts rather than a particular language. They are given the freedom

2.2. TARGET USERS PROFILES 15

to use the language and tools of their choice. The User Interface courses
are of particular note, as they start to teach the students how to link the
behaviour of visible components to how their behaviour is defined on-
screen.

Motivation Students that finish their third year of study had the option
to do another year to gain honours, and was a requirement for the Bache-
lors of Engineering. The honours year contained a full year project, which
could be on any topic related to computing. Multi-touch development is
a particularly modern topic that had started to see more widespread use.
This makes it an exciting and attractive area to complete a project in. An
engineering honours project will not focus completely on how a system is
implemented, rather what the system does. This motivates the students to
use any tools available to them that would help them develop their project
to its full potential.

Activities It was intended that students use this project to learn about
multi-touch and better evaluate components and gesture behaviours. Ac-
tivities include:

• Learn the difference in interaction between a normal mouse and key-
board interface, and a multi-touch interface.

• Understand how a user interface is structured.

• Understand how gesture behaviour is related to each component in
the interface.

• Visualise which gestures are related to which components.

• Visualise data from interactions with the interface.

16 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

2.2.2 Professional Profile

The professional profile builds on from the student profile. In context of
this project, the professional was someone who was already proficient in
development for multi-touch input beyond the scope of what the project
taught but would still find use in some of the features.

Background The professional user would have already moved into in-
dustry and worked with multi-touch devices. They may not necessarily
have a university degree, but would have receive a certificate or diploma
in computer programming. The multi-touch development industry had
been around for a number of years, first becoming popular with the re-
lease of the Apple App Store in March 2008 [13], followed closely by the
Google’s Android Market in August of the same year [70]. As develop-
ment for these devices was popular from the beginning, a professional de-
veloper working in this area could be assumed to have gained a number
of years of experience working with either of these platforms.

Hardware Experience Much like the student profile, a professional would
have a lot of experience using touch screen devices in their daily lives. Fur-
thermore this experience would have given them a basic understanding
of the differences between touch and mouse-based interfaces, such as the
more numerous gestural ways to interact with a touch screen. As the pro-
fessional user works in the multi-touch industry, it was expected that they
would have been exposed to a variety of multi-touch platforms such as
Windows Phone, Windows 8, Android, iOS, or other offerings from Black-
berry and Nokia. Their experience could extend to larger sized products
such as Microsoft Surface or custom multi-touch kits.

Software Experience Any particular company is likely to have a stan-
dard Language they use for all their projects. When developing for mobile,

2.2. TARGET USERS PROFILES 17

this would mean using ObjectiveC for iOS or Java for Android. Compa-
nies tend to use tools that are well supported by the languages. This in-
cludes Visual Studio when developing a in a Microsoft Language, XCode
when using ObjectiveC or Eclipse when developing with Java. A profes-
sional user would have better access to new and different technologies
and is more likely to have experience developing for touch-centeric plat-
forms such as iOS, Android or Windows 8; This could include open-source
multi-touch frameworks such as MT4J and Kivy or commercial products
like the Windows Surface APK.

Education While we do not assume a professional developer would have
a degree, it is likely they would have some kind of qualification, such as
a diploma or certificate in computing. We assume instead that if profes-
sional user has received a formal education it would look much like that
of the student use. The added years of industry would strengthen this
knowledge by providing more experience working with others and work-
ing with commercial programs. A professional user in the multi-touch in-
dustry would have more experience working with multi-touch interfaces
and understand the differences and complexities top developing gestural
behaviour.

Motivation A professional user would be asked to develop a prototype
application or gesture behaviours. Users would be motivated to seek any
tool which would help them tweak and develop these applications. They
would also value tools which allowed them to quickly prototype and demon-
strate different behaviour of user interfaces.

Activities A professional user could benefit from the project for use in
activities such as:

• Profile a set of gestures, so they can be visualised.

18 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

• Record gesture movements so they can be replayed and compared
with different types of behaviours.

• Compare different versions of an application to see differences in
behaviour.

2.3 Target User Personas

A persona is a design tool used to emulate what a certain group of users
would want and expect from an object being designed. They are fictional
characters, based on research of real end-users. Personas are used to char-
acterise the goals a group of users might have for the product, and for
developing scenarios in which they would use the product. These scenar-
ios consider who a user is and why they would use the tool in that way,
based on the users background and experience. The user profiles from
the previous section are used as background data to draw up two per-
sonas, a primary and secondary. These two personas represents the two
user groups the project is targeted at. Two negative personas have also be
drawn up to help define the limits of the project.

2.3.1 Primary Persona - Student

Name: Tom
Age: 20 years old
Location: Wellington, New Zealand

Tom is originally from Nelson; now living in Wellington and attending
Victoria University full time. He is currently in his fourth year of a Bach-
elor of Engineering, and majors in Software Engineering. Tom has always
enjoyed playing around with computers and likes to work with the latest
technologies. He has an iPhone and an iPad and is familiar with multi-
touch interfaces but has never tried to develop any applications himself.

2.3. TARGET USER PERSONAS 19

Much of his free time is spent playing video games.
Tom has started his honours year, which requires him to complete a

full year honours project and six other courses over the two semesters.
He has decided that he would like to do a project on visualisations, using
multi-touch to interact with them. His previous three years of study have
given him a strong background in Java and Python, and he is a competent
program with good project management skills. Tom has spent time work-
ing in groups, which helped improve his coding standards and experience
working with other peoples code. The summer internship he has been in-
volved with through a local company has helped to further these skills,
and expose him to different development styles.

As Tom is focused on managing his time for his final year, he is look-
ing for ways to quickly adapt to multi-touch application design. He does
not want to be impeded while learning a new language or multi-touch
framework, allowing more time to focus on the visualisation side of his
project. Such optimisation would ideally allow him to quickly prototype
his application and compare different behaviours for each gesture.

Persona Goals

Goal 1 Tom wants to be able to complete an honours year project, while
able to manage the rest of his classes. Any tools he use cannot have
a steep learning curve or be time consuming to use.

Goal 2 Tom wants to be able to interact with the internals and behaviour
of his system without interference from any tools.

Goal 3 Tom wants any tools he uses to collect more more information than
he would collect without.

Goal 4 Tom wants to be confident his program will continue to function
without needing the tool.

Goal 5 Tom wants to maintain control of how his program is developing.

20 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

Context Scenarios

Scenario 1 Having completed a simple prototype of his user interface,
Tom can import the profiling tool into his eclipse project. The
tool is automatically setup and prompts Tom to switch the plu-
gin view.

Scenario 2 Tom switches to the plugin view, the tool goes through a first
run process to build the component tree for his project. Tom
can then browse through the tree and see how components are
nested and which gestures they are listening for.

Scenario 3 Tom right-clicks a component and clicks ’Preview’; bringing
up a window containing a running version of his component,
and all of the components children. As Tom interacts with the
components, all of the gestures he is performing are logged.

Scenario 4 When Tom closes the window the logged gestures are saved
to disk and displayed in a different panel in Eclipse. Tom can
now select the saved performance and click ’Replay’ to have
his gestures with the program replayed on screen for him.

Scenario 5 Tom can also right-click a component and click ’View’ to be
taken to where that component is created. He repeat this ac-
tion with a gesture for a component, and can be taken to where
the gesture is initialised.

Scenario 6 When Tom selects a performance from the performance panel,
the main panel in Eclipse will be filled with a wire-frame of the
components, and display the pathing lines the gestures fol-
lowed. This gives Tom an overview of how the component
was used and where the behaviour could be changed.

2.3. TARGET USER PERSONAS 21

2.3.2 Secondary Persona - Professional

Name: Harold
Age: 23 years old
Location: Wellington, New Zealand

Harold is a 23 year old software developer who works in Wellington.
He is a former Victoria University student, that graduated with a Bachelor
of Science, majored in Computer Science. He has been working in industry
for 2 years, since he graduated at age 21.

Harold is part of the research and development team for a company
that specialises in multi-touch applications for both iPhone and Android
devices. He previously worked in one of the core development teams but
was recently given the opportunity to change departments, he decided he
would like the change of pace. He has been assigned to work on prototype
developed for sets of common behaviours and gestures they can use across
the companies applications.

Harold is looking for an easier way to prototype applications. While
he has experience with iPhone and Android development frameworks, he
also has the time to learn a new framework if necessary. Any tools he uses
will need to be able to catalogue and record the interactions he makes with
his prototypes so that he can analyse the data, and investigate the ease of
use for each set of behaviours.

Persona Goals

Goal 1 Harold needs to be able to compare the performance of different
types of gestures.

Goal 2 Harold needs to be able to show off the different sets of behaviour.

Goal 3 Harold needs to be feel confident using the tool, as he works in a
professional environment.

22 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

Context Scenarios

Scenario 1 Once completed a prototype behaviour set in an Eclipse project,
Harold can import the profiling tool into his project. The tool
is automatically setup and prompts Tom to switch the plugin
view.

Scenario 2 Harold can choose one of his components and select ’Preview’
to play around with that component. His actions are recorded
by the profiling tool.

Scenario 3 Harold is then able to select the recording of the preview he
just created and select ’Information’ to view statistics about
how he performed each gesture.

Scenario 4 Harold’s boss wants to see the different sets of behaviour Harold
has created prototypes for. Harold selects his performance and
clicks ’Replay’. This launches the earlier version of his pro-
gram, allowing Harold to demonstrate the previous version of
his gesture behaviour.

Scenario 5 Harold selects multiple performances, which overlays and colour-
codes the wire frame and gesture movements so the gesture
performances can be directly compared.

2.3.3 Negative Persona - Power User

Name: John
Age: 27 years old
Location: Auckland, New Zealand

John has been working Auckland for 6 years, for a software company
that specialises in touch table technology. John loves his iPhone and iPad,

2.3. TARGET USER PERSONAS 23

and frequently develops applications for it. He publishes these applica-
tions on the Apple store for free, so that others can get benefit from them.

John is experienced in development with many different multi-touch
open source frameworks such as Kivy and MT4J, as well as commercial
platforms such as Android and iOS. He is part of a large development
team, that works on large scale applications for a touch input tables. The
application uses MT4J to provide the multi-touch interface and has been
in development for 4 years. John creates new features for the application,
and knows all the ins and outs of both Java and MT4J.

John is interested in performance tests and reports on the features of
the applications. As there are many features to be retested after each up-
date, he prefers for much of this to be automated.

2.3.4 Negative Persona - Beginner Programmer

Name: Mary
Age: 18 years old
Location: Wellington, New Zealand

Mary has just moved to Wellington and has started a Bachelors of En-
gineering, and majors in Software Engineering at Victoria University. She
has little experience with any programming languages; she has recently
learned the basics of HTML and some Javascript in college. Mary is inter-
ested in using novel technologies such as multi-touch screens and tables
and is eager to start development for them. She intends to use this op-
portunity to build a foundation of knowledge; Mary hopes to find a tool
that helps her add and edit code for her projects as well as furthering her
education.

24 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

2.4 Project Requirements

By distilling down the persona goals and scenarios we were able to draw
up the formal requirements for the project. While the features of the project
were still measured against each personas goals, it was important to con-
sider the overlapping requirements. This resulted in the development of
the functional and non-functional requirements listed below.

2.4.1 Functional Requirements

These requirements were developed based on the personas, goals and sce-
narios already put forward by this chapter. The purpose was to summarise
the requirements so they could be more easily measured in each section.
The square brackets at the end of each requirement indicate which part of
the analysis they have been drawn from.

Requirement 1 The tool must not require extensive training to use and the
user should be able to pick up and use the tool with little
documentation. Usage of the tool can rely on expected
experience for the target framework or for any external
tools used. [Tom, Goal 1; Mary]

Requirement 2 The setup of the tool should be automated where possi-
ble, any actions required by the user should not require
knowledge of the tools architecture. [Tom, Scenario 1 &
2; Harold, Scenario 1]

Requirement 3 The tool should not prevent the user from accessing and
using their original project. The user must retain the abil-
ity to edit and run their own program even when the
tool is installed in their application. [Tom, Goal 2, 4 &
5; Harold, Goal 3]

2.4. PROJECT REQUIREMENTS 25

Requirement 4 The tool must have the ability to preview individual com-
ponents to better focus the users attention. [Tom, Goal 3,
Scenario 3; Harold, Scenario 2]

Requirement 5 The tool must gather and display information about a user’s
program. The information can either be static or dynam-
ically generated. The information must be easy to under-
stand by the developer. [Tom, Goal 3, Scenario 4 & 6;
Harold, Goal 1]

Requirement 6 The tool must have the ability to use recorded informa-
tion about the program to create a replay of programs be-
haviour. [Tom, Scenario 5; Harold, Goal 3, Scenario 4]

Requirement 7 The tool must have the ability to compare the information
between different recordings. [Harold, Scenario 5]

2.4.2 Non-functional Requirements

Non-functional requirements are those that can be used to judge the per-
formance of the project, rather than how the program will behave with
respect to the user’s functional requirements. This section outlines the
non-functional requirements below.

Requirement 1 The performance of the user’s application cannot be hin-
dered by the tool produced by this project. There should
be no noticeable difference for the user running the pro-
gram with and without the tool.

Requirement 2 The tool should scale to large applications with more com-
plex program structures without suffering from notice-
able performance slow-downs.

Requirement 3 The tool needs to ensure that data both imported and ex-
ported is validated and will avoid or detect corruption.

26 CHAPTER 2. BACKGROUND & REQUIREMENTS ANALYSIS

Requirement 4 The tool must ensure that the data that it stores does not
use an unreasonable amount of disk space, relative to the
user’s program.

Requirement 5 The tool needs to import and export data and respond to
user input in a reasonable manner, such that the user will
not be waiting for information to be loaded or processed.

Chapter 3

Design

This chapter discusses the tools required to use the project in section 3.1,
the features of the project in section 3.2, design trade-offs in section 3.3,
and alternatives designs that were considered in section 3.4. The covered
background and personas are used as a foundation for the project design
and how it aims to meet the user’s goals and requirements.

3.1 Tools and Language Choice

The Multi-Touch Explorer Environment (MTEE) was designed to aid in
the development of multi-touch applications. The intention was for the
project to become an additional tool in the user’s development environ-
ment. This required any product to work along side the user’s existing
tools. A number of languages and tool-kits were considered, however
due to the user personas and background analysis, in Chapter 2, it be-
came clear that the Java programming language was the best choice. Both
personas, Tom and Harold had experience with Java before, and Tom cur-
rently uses it at University. This decision naturally lead to choosing the
Eclipse platform as a base for the project. Finally a multi-touch framework
was selected; out of the few available for java, MT4J was chosen due to its
maturity and due to familiarity on the projects behalf. The alternatives

27

28 CHAPTER 3. DESIGN

that we considered for this project are discussed in section 3.4.

The sections that follow consider these choices in more detail; provide
background on each of the choices and further justify their selection. It
should be clarified that while the user will be developing programs that
are multi-touch capable, neither the tools used to create these programs,
nor the proposed MTEE will require the use of multi-touch to operate.

3.1.1 Java Language

The Java programming language is a general-purpose, concurrent, class-
based, object-oriented, programming language, specifically designed to
have as few implementation dependencies as possible. The Java language
runs on top of a virtualization environment called the Java Virtual Ma-
chine (JVM). This allows the same code to be written for one platform and
executed in the same manner on other platforms; provided there exists a
JVM implementation for that platform. This makes the language highly
portable, as only the JVM has to be ported to new platforms, instead of
every individual program. The Java language is related to the C and C++
languages, as they share similar styles and syntax. The focus for Java is
to provide high level functions which are useful for commercial develop-
ment and avoid more ’experimental’ features which can cause unavoid-
able bugs [6]. Java is free to use and currently maintained by Oracle. Both
the development kit and the runtime environment for the latest version,
Java 7u13, along with previous versions can be downloaded from Oracle’s
website [62].

Due to both its portability and design, Java is a popular language for
teaching object-orientated paradigms at universities and other institutes.
Its freedom and support for all major platforms allows users to download
and install the language on their personal machines. The language is easy
to get started with and can help teach the basics of program design. Vic-
toria University uses the language in the majority of its first and second

3.1. TOOLS AND LANGUAGE CHOICE 29

year courses. Java is a language Tom and Harold are familiar with, as
both have graduated from Victoria University. Java’s similarity to other
popular languages, such C++ and C#, means that even experienced pro-
grammers who may have never used Java are able to pick-up and learn
the language quickly.

Java is often criticised for being slower to execute code, as it uses Just-
In-Time compiling rather than compiling code ahead of time. These com-
plaints are mostly unfounded with benchmarks showing that the latest
version of Java is faster than most modern languages [1] [69] [4]. Choos-
ing a high performance language is important to meeting the performance
goals of the non-functional requirements, particularly requirements 1 and
2. For this project believed that Java would be able to meet these require-
ments.

3.1.2 Tools

Along with the Java programming language, the Multi-Touch Explorer En-
vironment (MTEE) required that the user had two external tools. These
were the Eclipse Integrated Developer Environment (IDE) and the Multi-
Touch for Java (MT4J) framework. The Eclipse IDE was used as a basis for
development with MT4J, and the MTEE integrates into Eclipse through
its plugin platform. It should be noted that when ’Eclipse’ is referenced,
it is the development tool and not the Eclipse Foundation that is being
discussed, unless otherwise noted.

Eclipse IDE Eclipse is a widely distributed and used development tool
from the Eclipse Foundation. Started by IBM, the open-source Eclipse
project has been in development for over 10 years, which has resulted
in stable and mature software. It provides a complete development en-
vironment, for writing, running and debugging code. While it is often
associated purely with Java usage, it has an extensive and mature plugin

30 CHAPTER 3. DESIGN

Application Programming Interface (API) and is built on the Eclipse Foun-
dation’s Remote Applications Platform (RAP). This has allowed the de-
velopment environment to be expanded across a large group of languages
and envelop other development tools; such as unit testing and version
control systems [27]. As Eclipse itself is built using the Java programming
language, it makes it an ideal companion for Java developers as anywhere
their program will run then Eclipse will too.

The maturity and feature set of the software made it an attractive op-
tion for universities and other institutions as software to teach their stu-
dents with. The open-sourced nature of Eclipse meant universities could
save on license fees and provide it to their students to use on their personal
machines. Victoria University encourages its students to use the software
from their second level programming courses. It was also provided on
all machines in the Engineering and Computer Science laboratories. This
meant Tom, a final year student at Victoria, would have a in depth under-
standing of how the Eclipse platform worked and was one of the reason
for choosing Eclipse.

The after mentioned features make Eclipse an ideal platform for com-
mercial developers. Even developers working with languages other than
Java can still use Eclipse as a number of different versions exist for dif-
ferent target users [29]. Free plugins for Eclipse can provide support for
other common languages such as Python [5] or C# [49]. Furthermore, the
Eclipse Foundation provides instructions on how to add support for cus-
tom languages, allowing for companies to develop editors for in-house
languages. [14]

Harold, the professional developer, is familiar with the official An-
droid Development Kit (ADK). The ADK provides a version of Eclipse
with the Android Developer Tools (ADT) plugin already pre-installed [36].
This would make Harold familiar with using Eclipse and how plugins can
change the layout and add additional tools to the Eclipse workspace.

The choice of development environment informs us of two thing; what

3.1. TOOLS AND LANGUAGE CHOICE 31

features and information could be provided up-front to the user, and how
much control over the setup and use of the project the user would be re-
quired to do. This decision resulted in splitting the project into two distinct
segments, the Eclipse plugin and the core library. These are discussed in
detail in 3.2.1.

Multi-Touch for Java Multi-Touch for Java (MT4J) is a Java framework
to develop fully multi-touch applications in the Java programming lan-
guage. Much like the Java programming language MT4J is cross platform
and supports a large range of input devices, however as it uses external
system libraries it is not guaranteed to work on all platforms. MT4J uses
the Processing library to provide visuals and graphics to its program, this
supports both 2D and 3D. It comes with a range of pre-programmed stan-
dard gestures, such as scaling, rotating and dragging. This makes it ideal
for quickly developing multi-touch applications and meshes well with the
goals of this project [60] [47].

The MT4J developers encourage the use of the framework with Eclipse
by the provision the source code for MT4J including working Eclipse projects
[59]. Two projects are provided, MT4J-Core and MT4J-Desktop. MT4J-
Core only provides the basic functionality of the framework and is in-
tended to be used as a base for large scale programs. MT4J-Desktop ex-
pands on the core project that provides more functionality, as well as ex-
amples on how to use them [58]. These cover both basic and advanced
usage of the MT4J framework. The user can import these projects into an
Eclipse workspace and play around with the examples that are provided.

An MT4J program consists of one or more scenes. A scene consists of
groups of nested components, each component can be registered to accept
any number of gestures with both standard and custom behaviour. In a
scene the components are inherently ordered by what is called the Z-order.
This determines the order components are drawn to the screen and thus
which component will receive the touch input for a given point. MT4J

32 CHAPTER 3. DESIGN

fully supports multi-touch, allowing any number of touch points to be
feed into an MT4J program at once.

Neither Harold nor Tom were familiar with the MT4J framework. Harold
had development experience with multi-touch because he had developed
for both Android and iOS; however their prior knowledge is a moot point
as neither of them had any experience in development with the alternative
Java multi-touch frameworks discussed in section 3.4.2. This means that
the choice of framework was better decided by considering how quickly
a user could learn it, and the ability to integrate with the framework for
collecting data. Learning the framework was perhaps the biggest cost of
using the MTEE with Eclipse. we had to ensure that the Functional Re-
quirement 1 was not violated by the choice of framework, along with the
tool be mature and stable enough that it could meet Harold’s Goal 3. As
Tom intended to learn a multi-touch framework for his honours year he
was more likely to put the time in, regardless of which framework was
chosen.

MT4J was partly chosen because it shared a design goal with the MTEE
project, the rapid development of prototypes and applications. This al-
lowed both projects to complement each other; as MT4J provided a fast
way to setup a basic program with a multi-touch interface, and MTEE
provided a tool to monitor and profile the behaviour of gestures and in-
teraction with that interface. MT4J was also fully written in Java and inte-
grated well with the Eclipse platform. It could be imported into a project
as a single file or its project can be included as a dependency. This was
both useful for debugging as the source can be referenced, and for devel-
opment as the built-in examples provided numerous starting points for a
project. Finally, I had an existing experience of development with MT4J.
This was beneficial when interacting with the internals of an MT4J project,
such as accessing and profiling the input and gesture events.

3.2. PROJECT FEATURES 33

3.2 Project Features

The development of the MTEE project consisted of two parts, the Eclipse
plugin and the Multi-Touch Explorer Analysis (MTEA) tool. The Eclipse
plugin provided access to the MTEA tool by automating the importation
and launch of tool within a user project. The plugin also displayed the
information that was gathered by the MTEA tool from the user’s program.
The MTEA tool itself was the core part of the project; It provided the means
to extract the information from the user’s program and the ability to replay
that information back.

This section investigates the final design features of the project; dis-
cusses why they are important and how the came to be selected. Section
3.2.1 discusses the features of the Eclipse plugin, what they do and why
the are need. Section 3.2.2 then examines the MTEA tool.

It should be noted that the MTEE (the Multi-Touch Explorer Environ-
ment) refers to the project as a whole, where as MTEA (Multi-Touch Ex-
plorer Analysis) refers to the tool which collects and processes the infor-
mation.

3.2.1 Eclipse Plugin

The development of an appropriate project using the MT4J framework
and the installation of the MTEE plugin were considered out of scope, as
changing these features was entirely out of the control of the project. We
assumed that the user had the plugin installed and that they had an active
MT4J project in their workspace.

This allowed us to focus on setting up the Eclipse workspace for the
MTEE; this included importing the MTEA tool and enabling either the
MTEE perspective or associated views.

The layout of the views within Eclipse was important for how the user
would first see the tool. Both standard Eclipse views and the two new
views needed to be laid out in such a manner that they could all be easily

34 CHAPTER 3. DESIGN

accessed. Figure 3.1 shows the layout that was planned. The size and posi-
tion of each of the views was designed to mimic the size of existing views,
this was planned to not alter a similar layout to what the user would have
been used too and relates to meeting Functional Requirement 1.

MTEE Import Wizard A number of steps had to be planned in order to
import and setup the MTEE within an MT4J project. These were handled
automatically by a wizard and had been designed to cover everything that
is required to run the MTEA tool. Each of these steps are outlined in order
below:

1. Creation of the MTEE package within the user project. This was
placed in the project source folder and name ’mtexplorer’. The pack-
age provided a location to save the start file for the MTEA tool. By
creating a separate package it made it easy to remove or ignore the
tool so that it would not get in the way of the rest of the users project.

2. Creation of a base folder to store snapshots and recorded data. This
was created in the root of the users project and named ’mte’. Like the
package folder, this provided a way to hide the data from the user
and keep it away from their existing setup.

3. The MTEA library was imported and added to the projects build
path. Only a link to the library was imported so it would be updated
if the plugin is also updated.

4. The start file for the MTEA tool was created. This was based on the
start file for the user’s program, ensuring any modifications by the
user were carried into the MTEA tool. This also meant the user could
run their original start file at any time, without the MTEA tool being
active.

3.2. PROJECT FEATURES 35

Fi
gu

re
3.

1:
Th

e
Ec

lip
se

w
or

ks
pa

ce
la

yo
ut

.

36 CHAPTER 3. DESIGN

5. The XML schema file for saved data was copied in from the MTEE
plugin to the base folder. The schema was used to validate the input
and output of the of the XML data from the MTEA tool. The schema
was built to the XML specifications [19].

6. A build file was created for the project. This was used to create a JAR
file of the current version of the users project. The ANT build file is
also saved in the base folder.

7. The build file is executed to create the snapshot of the user’s project.
This file was named ’latest.jar’ and saved in the base folder. It was
used by the recording function to save a snapshot of the program at
the time of the recording.

8. The new start file for the MTEA tool was run to generate the initial
explorer XML file. This was saved into the base ’mte’ folder. The file
was used to populate the MTE Component View described below.
A special argument was used during this run so that the program
would exit as soon as the explorer file has been created and exported.

The wizard was designed to handle as much of the setup as automati-
cally as possible. The only input required from the user was to select the
correct start file for their MT4J project. The wizard served to lower the
barrier of entry to using both the MTEE and MTEA tool and hide unim-
portant details of the tools design the user shouldn’t be concerned about.
These were aimed to directly meet Functional Requirements 1 and 2.

Having a separate folder and package to store the data within a users
project provided only three points that need to be deleted to remove MTEE
from a project. These are the MTE source package, the base ’mte’ folder
and the imported library. Removing these would return a project back to
its original state. This would satisfy Tom’s goal 4 and also aid Tom’s goal
2 by keeping the data away from the rest of the project. Both Tom and
start their process with existing projects in Eclipse. As both favour speed

3.2. PROJECT FEATURES 37

of development, neither want to have to start a whole new project to gain
use of the tool. By allowing them to import the tool straight into their
existing projects it saves them both time and hassle.

Multi-Touch Explorer Perspective Eclipse uses a system called perspec-
tives to allow the user to easily switch between different tools and change
the usage of the workspace. An example is the standard Java perspec-
tive, which contains the project explorer, class outline and the Java edi-
tor views. If the user were to switch to the Debugging perspective, these
views would change to include a JVM task manager, a list of breakpoints
and other debugging controls. The user is free to switch between these
perspectives or any others at any time.

The MTEE project provided its own perspective. This was based on the
existing Java editor perspective, adding two new views, the MTE Compo-
nent View and the MTE Performance View. These views were populated
by files created by the MTEA tool so would have been blank when the
user first switched to the MTEE perspective. This was especially true if
they have not yet run the MTEA tool import wizard. It added an option to
the existing ’New’ context menu called ’MTE Project’. This option started
the library import process as described above.

As perspectives are a core part of the work flow of Eclipse, it was felt
that both Tom and Harold would have little trouble adding and using the
new perspective. By effectively placing the two new views into the orig-
inal Java perspective, it would have little impact of either of their work
flows. Indeed, a user also had the option to import the views separately
and place them in to their current setup as they wished. The perspective
can also be accessed from the ’Other’ context menu, in the browse window
it is listed under ’Other’ then ’MTExplorer’. Figure 3.2 shows the standard
method of accessing different perspectives.

By integrating the tool into Eclipse and making use of common plat-
form functions such as perspectives, we are able to validate Functional

38 CHAPTER 3. DESIGN

Figure 3.2: This figure displays the perspective selection dialog box in
Eclipse, the Multi-Touch Explorer perspective is selected.

Requirement 3. This is because the Eclipse IDE is familiar to both Tom and
Harold, and it would allow them to continue to work on there project with
out having to run an external tools.

Much like perspectives, views are a core part of the work flow when
using Eclipse. The two provided views were designed to display two dif-
ferent sets of information and controls. The views worked like any other
piece of the Eclipse workspace, and required little to no setup. The infor-
mation they display was drawn from data files in the base folder. These
are the MTE Component and MTE Performance views.

Component View The component view showed a tree structure of all of
the components in each scene. The tree structure consisted of nodes that
could be expanded out. It allowed the user to drill down into the structure

3.2. PROJECT FEATURES 39

of the scenes they had created and get a sense of how each component
was nested inside each other. Each component listed its component ID
and name, if it was given one, otherwise a default was used. The gestures
(such as Drag, Scale or Rotate) that each component were registered to
receive could be seen when a component was expanded.

By selecting a component the user was able to access a context menu
which gave them the option to launch that component in an isolated mode
within their program. This mode was called the ’Preview’ mode, as it
allowed you preview different components and scenes. This would high-
light only that component and disable the rest. If they user instead selected
a scene node and then selected the isolate option, they would have been
able to launch the entire scene. In both cases the MTEA tool was running
in the background with its full functionality available. This functionality
was described in section 3.2.2.

Both Tom and Harold benefited from being able to explore and expand
a scene tree of the current scene they were working on. It was a good point
of reference when thinking about their programs structure, and making
sure their program was laid out how they expected. This helped to meet
Tom’s Goal 3 by providing him with more information that he would have
otherwise. It also provided access to the functionality required to meet
Functional Requirement 4. As Tom was a not familiar with the develop-
ment of MT4J project, the component view was able to help him uncover
some of the inner workings of each component. The view was also very
simple to use, so user do not have to spend much time interacting with it.

This view provided the starting point for the MTEA tool by allowing
the user to starting making recordings. The recorded information would
then be displayed in the performance view.

Performance View The Performance View was similar to the Compo-
nent View, in that it used the same tree structure and a context menu for
control. The Performance View listed all of the recorded performances

40 CHAPTER 3. DESIGN

for a project. The performances were named and ordered by a date time
stamp. Figure 3.3 shows the layout and positioning of the new MTEE
views in Eclipse.

As each performance only worked for a particular version of the orig-
inal project, the performance could be expanded to display a component
tree of the program structure at the time of that performance. This was
used to drill down and explore the structure, as with the Component View.
This included the same information as the other view, but also provides in-
formation for the gestures that were performed on each component during
the previously recorded session. Gesture data included information such
as how far a component was scaled or rotated.

The context menu provided for this view had three options, preview,
replay and delete. Delete was self-explanatory, allowing the user to delete
an existing performance. The preview option was similar to the Com-
ponent View action, however rather than displaying scenes or isolating
components from the current program, it instead displayed them from a
snapshot of the program taken when the performance was first recorded.
The snapshot could then be used by the replay action. The replay action
played back the recorded events into the snapshot of the program, provid-
ing a playback of the input events as they were originally performed by
the user.

Like with the Component View, both Tom and Harold benefited from
being able to explore a scene tree of prior versions of their program. This
allowed them to compare and contrast the evolution of their program
structure over time. Both the data given about the recorded gestures of
each component, and the actually ability to playback a prior interaction
with the program helped to satisfy Functional Requirement 5 and 6. It
also gave Harold the ability to satisfy Functional Requirement 7 by either
replaying or previewing two different performances to compare there sets
of behaviour.

3.2. PROJECT FEATURES 41

Figure 3.3: This figure shows the layout of the MTE views for the MTE
perspective. The MT Components view is on the right with the MTE Per-
formances view on the right.

3.2.2 Multi-Touch Explorer Analysis Tool

The Multi-Touch Explorer Analysis (MTEA) tool provided the main func-
tionality for the project. It was responsible for exporting of the data for
both the component and performance views, and for operating the com-
mands that could be executed from these views. As the Multi-Touch Ex-
plorer Environment (MTEE) includes both the Eclipse plugin and the MTEA
tool, it necessitated a means of communication between the two elements.
This required that the MTEA tool included two sets of functionality, the
user functionality and the system functionality. These are discussed in
sections 3.2.3 and 3.2.4 below.

3.2.3 User Functionality

The user functionality consisted of all the front-facing features that directly
addressed the user’s goals and requirements. In the case of the MTEA tool
this included, Component and Scene Isolation, Performance Isolation, Per-
formance Recording and Performance Playback. All of these features are
accessed through the views provided with the MTEE Eclipse plugin, how-
ever they were executed by the MTEA tool running on top of the user’s
program.

42 CHAPTER 3. DESIGN

Component and Scene Isolation The isolation or ’Preview’ mode al-
lowed the user to record the input data they made as they used the tool.
This data was then saved as a performance and displayed in the Perfor-
mance View. This mode was accessed by selecting the ’Preview’ option
from the context menu from either the Component or Performance View,
however performance data could only be exported when running from
the Component View. The isolation mode could be run on both a com-
ponent or scene from the Component View window. The distinction be-
tween component and scene changed the way the display was setup by
the MTEA tool.

If a scene was selected, then the entire scene was shown unaltered.
This was useful for skipping to a particular scene in a project, rather than
navigating to it in the application. The input data would still be recorded
and could be exported; saving both input data and gesture data for all
components that were manipulated.

If instead a component was selected from the Component View then
the MTEA library set up the recording function, then did three things. It
first disabled all of the input processes for every component expect the
isolated one. Secondly it faded out all of the disabled components, they
instead appear transparent. Finally, it coloured the isolated component
with a transparent overlay. This served to highlight where on the screen
the active component was. If a component with child components was
selected, then the children will also remain active, however only the parent
component will have a colour overlay. Figure 3.4 showed an example of
this behaviour, where the isolated component was highlighted red.

The isolation and recording features solved a number of problems. The
recording function helps to satisfy Functional Requirement 5; by recording
Harold or Tom’s input for a certain action, they can then use the Perfor-
mance Playback or Performance Isolation features to review the behaviour
of a gesture and compare it to other recordings he has made of previous
gesture behaviour. These features are discussed below.

3.2. PROJECT FEATURES 43

Figure 3.4: This figure shows an example of an isolated component. The
component itself is highlight while the disabled components are faded out.

The isolation feature could be used to help look at the focused be-
haviour of a particular component and its children. By disabling all but
the isolated component, the user it free to interact with just that compo-
nent. This helps to remove noise from a recording or sort out why a certain
behaviour might be occurring for a component. This partly satisfies Tom’s
goal 3, by providing him an avenue to better debug and test the compo-
nents he is building. This also helps him resolve issue around problems
such as correct z-ordering, as discussed under MT4J in section 3.1.2.

Performance Isolation The component and scene isolation could also be
executed from the Performance View. The same distinction between se-
lecting a component and a scene from the view for isolation applied. As
the Performance View also contained performance and gesture data, the
isolation command would search up or down the tree to find the closest

44 CHAPTER 3. DESIGN

component or scene in the tree view. While the command was executed
in the same manner, it did not run the application from the latest version
but instead used the snapshot file which was create at the same time as
the performance. This meant the component or scene being isolated may
have differed from how the user’s current version performed. This was
the intended behaviour, allowing the user to record different behaviour
for components, and return to then at a later date. When running from the
Performance View the user was not be able to save new recordings.

As with the component isolation, performance isolation provides a
quick way to review a particular scene or component. By using snapshots
of the program over time it allows people like Harold, to experiment and
demo a number of different behaviours. This helps to validate Functional
Requirement 7.

Performance Recording When an application was run from the Compo-
nent View, the scene would be setup to record both the input events and
the gesture data sent to each individual component. The recording began
as soon as the program was started and would continue until the program
was closed. The intention was that the user would start the application,
perform the desired actions they wanted, then export the data and close
the program. The data would only exported when the user selected the
save option and would otherwise be discarded. Once a performance has
been exported, it would show up under the Performance View.

The input data was used by the Performance Playback feature to replay
the series of actions the user performed. The gesture data was provided
as feedback information for the user. When a gesture is recorded it was
feed through a filter which determined what type of gesture it was and
pulled interesting or relevant data from this to export when the recording
was saved.

3.2. PROJECT FEATURES 45

Performance Playback The Performance Playback feature could only be
run from the Performance View, as it required the data from an existing
performance. As with the Performance Isolation feature, the performance
playback used snapshots of the program from the time when the perfor-
mance was recorded. This ensured that when the input data was feed back
into the program it would play out and behave exactly as was originally
recorded.

The Performance Playback modified the display of the program to bet-
ter emphasis what was happening. All components started out at half
transparency, then when a component received input it returned to full
transparency. A component would also receive a coloured overlay so it
could be distinguished from other components that were being used. This
was designed to clearly show which components had been used in the re-
play. Colouring each component a unique colour served to help the users
distinguish components from each other.

A cursor trail was also drawn to the screen. This displayed a drawing
of a coloured dot at each touch point, showing the path the cursor took.
When interacting with a component the dot would be coloured the same as
the highlighted component it was interacting with. This provided context
to the cursor trail so that the user was able to track the path of components
across the screen. Figure 3.5 shows the effect this had on the program
display.

The playback data was imported into the MTEA tool when it was first
run, but playback would not begin until the user selected it to. As only the
input data is feed back into the program the position of the components
are not known at any particular time. This limited the tool to only playing
from the beginning of the performance and not part way through. This
also meant the playback can not be played backwards or from an arbitrary
point. To restart the playback the user would have to close the program
and relaunch it.

Once the playback was complete the user was free to interact with the

46 CHAPTER 3. DESIGN

component as they wished. They would gain the benefit of highlighting
components as they interact with them, and be able to make new cursor
trails which matched the colours of the component. These overlay mea-
sures provided a number of benefits in seeing how components received
input and handled gestures. The contributes to Functional Requirement 5
by changing the way the information is displayed to the user.

Figure 3.5: This figure shows an example of a performance playback with
the MTEA tool. The cursor trails relate to the component which is high-
lighted the same colour.

3.2.4 System Functionality

Due to the nature of the design, extra system features were required to
allow the project to work together. These to not directly address the user’s
goals, however they were necessary for the success of the project. The
system functionality includes; operating the MTEA tool through the use

3.2. PROJECT FEATURES 47

of runtime arguments, generating and exporting a reliable set of data on
component data and input records, and importing previously exported
data for use with the performance playback. This section discusses the
design of these systems and which internal problems they solve.

Runtime Arguments As with any program that runs through Eclipse, it
needs to be run as an external application. This meant Eclipse could not
communicate with the MTEA tool directly. This presented a problem as
we needed a way for the commands the user selected in the Eclipse plugin
to be reflected when running the MTEA tool. Experimental attempts were
made to use the Eclipse debugging engine to gain access to the program,
but this proved to be tricky and over-complicated. The eventual solution
was to setup a number of command line flags to provide basic interaction
with a program running the MTE tool. These could be altered before run-
time by the Eclipse plugin, and then feed in by Eclipse when it ran the
application.

These runtime flags are defined as follows:

-s [Scene Name] This is the name of the scene that should be loaded. This
should be specified with the isolate command so that the component
is found in the correct scene. If this flag is not set then the currently
active scene is used. The current scene is determined by the users
program.

-i [Component ID] This command tells the program which component to
isolate.

-p [Performance Name] The performance name is the time stamp given
to a performance when it is recorded. The purpose of this flag is to
specify which performance should be loaded for playback.

-X Runs the program and then exits. The purpose of this flag is to run the
component tree export part of the MTEA tool, export the informa-
tion, then close the file. This is useful for automatically running an

48 CHAPTER 3. DESIGN

updating the component tree. This flag causes all of the other flags
to be ignored.

The design and setup of the command-line flags allowed the MTEA
tool to be run with out human interaction to get it started. This helped
meet Functional Requirement 2, as running the tool in the correct mode
would require knowledge of the projects architecture.

Exporting and Importing Data Much like the communication gap be-
tween Eclipse and the MTEA tool, there was also a gap in reverse. Passing
information out of the MTEA tool, so that it can be consumed by Eclipse,
required a robust method of storing and validating the data. To solve this
the XML data format was used, with a schema file for data validation. The
schema allowed strict XML data types to be defined that must contain cer-
tain attributes and could only contain data of certain types and in certain
orders. This allowed the tool to respect the order of the component tree,
while adding extra data such as component gesture listeners. The schema
was then used both when exporting data and also when importing data
for the performance playback. By using the schema we ensured our data
was properly validated and would detect corruption as was required by
Non-Functional Requirement 3.

The exported data files can then be consumed by Eclipse and displayed
as the Component and Performance views.

3.3 Design Trade-Offs

While the design had been initially planned to include Java, Eclipse and
MT4J, when the time came to actually implement these features a number
of trade-offs had to be made. This was to leverage what was possible in a
reasonable amount of time against the proposed features. While the core
feature set was been maintained, changes had to made to better meet the

3.3. DESIGN TRADE-OFFS 49

functional and non-functional requirements. This section discusses these
changes.

3.3.1 Plugin Environment Setup

The setup of the MTEA tool in Eclipse had originally planned to be fully
automated, only requiring the user to activate it. The idea was that the
user would install the plugin, and then be asked which MT4J project they
would like to import the tool into. Once the import process was completed
they would be prompted to switch to the MTEE perspective and could be-
gin using the tool. When implementing this feature it was found that a
developer has little control over what happens while a plugin is being in-
stalled. This required the user to install the plugin and then activate the
MTEE perspective. This was further hindered by the fact that option to
import the MTEA tool could only accessed from within the MTEE per-
spective. While these changes are unavoidable, it was felt that they could
be overcome by the users, as they both have strong backgrounds in using
Eclipse.

3.3.2 MTEA Tool Interface

When deciding how much control the user would have over the tool, two
decisions needed to be made; should a performance be exported each time
the user runs the tool in ’Preview’ mode and should the performance begin
and end automatically in ’Replay’ mode. By leaving this decision to the
user, an interface between them and the tool had to be created. There were
3 options, overlaying an visual interface on the users existing program,
having a separate window with all of the options for the tool, or providing
a basic interface through the keyboard.

Having a separate window of controls would give complete control
over how the controls were displayed and where they were positioned. It
would also provide real-time data to the user. While this was an attrac-

50 CHAPTER 3. DESIGN

tive option it would cause considerable conflict with the user’s program,
and require that they remove focus from the program window to inter-
act with the tool. In the case of full screen programs, this would obscure
the tool window and require the user to switch back and forth between
the two windows. This would have caused problems with programs in
different operating system environments that handle full screen windows
differently.

By overlaying controls directly onto the screen itself it would have
avoided the problem with window focus and full screen displays. It would
also give some control over where the controls were positioned and what
data could be displayed. The main problem was that without knowing
the layout of the user’s program, it would be likely some part of it would
be obscured by the overlay. It was very undesirable, especially for a tool
collecting data on how users interact with that program.

The third option was to provide a keyboard interface, allowing the
users to interact with the tool via key combinations. This would not inter-
fere with the users display, but could cause minor functionality problems
if the user also uses the same key combination in their program. The key-
board does not provide the user with any feedback that something had
occurred when a key was pressed.

It was felt that using keyboard shortcuts was the best choice. As the
users of the tool were developers of multi-touch interfaces, they would
have avoided keyboard usage in their own programs. If the problem had
arisen, using suitably abstract key combinations could help to avoid areas
where they clash.

The feedback issue was resolved in two ways. First, by using the
Eclipse console. All programs run through Eclipse could output data to
the standard system output and it would be displayed in the Eclipse con-
sole view. This provided a means to give some feedback via console out-
put, we felt that as the users were using the MTEA tool through Eclipse
and were familiar with the Eclipse environment that this would be suit-

3.3. DESIGN TRADE-OFFS 51

able. Secondly, as actions such as replaying a performance are played
through the users program this provides suitable feedback that an action
had occurred.

3.3.3 Component Code View

During the analysis and feature design phase it was intended for there
to be a way to link the components seen in the MTE Component view to
where they were created in the code. This would have allowed the user
to more easily examine how a component was created and how the be-
haviour of gestures were coded. Two solutions were investigated, how-
ever they all had unsatisfactory problems.

The first solution was to attempt to hook into the Eclipse debugger.
This would provide the benefit of on the fly code changes and dynamic
access to the running code. Unfortunately this proved easier said than
done, while the tool could be run in debug mode there was no method to
change the behaviour or manipulate the debugger from within the tool.
Short of creating a debugger from scratch it was decided this would not
be a viable option.

The second solution was to provide static locations of the components
by searching the code for component names. This had two major prob-
lems; the biggest being that you cannot rely on developers to actually
name each component, making it impossible to distinguish when search-
ing. The other problem is with the way MT4J programs can be structured.
Often the location in the code where a component was created would be
in a different section to where it had gestures assigned. It could even be
created dynamically at runtime.

These problems meant that any solution would be time consuming to
create and only provide disjoint and confusing information to the user. For
these reasons the feature was scrapped.

52 CHAPTER 3. DESIGN

3.3.4 Component Information View

An original feature in early design was to provide a separate view for in-
formation relating to the currently selected component in the component
view. It was found that due to the unnamed component problem, and the
amount of data that could be scrapped from a component dynamically,
that there was not enough information to justify an entire view. This data
included the component ID, the component name and the gestures that
the component was listening for. The component view itself inherently
provided information about the nesting of the components within each
other. Information about recorded gesture data could then be displayed in
the scene tree for each performance in the MTE Performance view.

3.3.5 Performance Overview

When deciding how to display the performance data back to the user we
considered three options; rendering a mock up of the users interface with
performance data in an Eclipse view, recording a video of the users perfor-
mance with an overlay of the performance data and integrating the per-
formance data and replay directly into the users program.

The first option was to create a view in Eclipse where the selected
performance could mock-up the users interface and display the perfor-
mance data over the top. This would have allowed us great control over
what information was displayed, and even allow data from multiple per-
formances to be displayed at the same time. While this would work for
simple interfaces, large or dynamic interfaces make the problem far more
complex. This would require generating the performance interface as the
user plays with their program, along with more intensive data recording,
adding overhead to the tool.

The first solution, evolved into the second solution where we consid-
ered recording the user’s performance with a video. This would have al-
lowed us to play the video back to show their performance. This could

3.3. DESIGN TRADE-OFFS 53

then be coupled with performance data to provide cursor trails and other
useful information. It would also make it easier to add time controls to the
replay, such time skipping and rewinding. One issue with using a video is
it is static information, the user was not able to interact with the program
in the state that the recording shows. This could have made it harder to
demonstrate behaviour in the system.

As the idea of the performance replay is to show a snapshot of a pro-
grams behaviour, a third solution was devised. This involved feeding the
event data back into a running instance of the user’s program. This cre-
ated fake input which would perform the actions the user user originally
recorded, but on a live version of their program. A snapshot system was
used to ensure the performance were always played back from the cor-
rect version of the users program. The MTEA tool could then be used to
provide extra visualisations on top of the replay, such as cursor trails and
component highlighting. This solution wasn’t as robust as the others, as it
was found to only display the performance data reliably for 2D interfaces.

For the development of the prototype we decided to use the third solu-
tion, as it provided the most functionality for the smallest cost. The MTEA
tool was already integrated into the user’s program and being used to
record and manipulate the display. This allowed easy access to reading in
recorded data and playing it back as faked user input.

While this solution meant the playback for input data would work for
any MT4J program, having the data overlay only work for 2D interfaces
was deem acceptable. This was decided after looking at the user personas
and investigating what kinds of programs they would be looking to cre-
ate and test. It was felt that both Tom and Harold would understand the
limitations of the tool, but still find it fell within the bounds of what they
were trying to achieve.

It should be noted that in particular the second and third solutions are
not mutually exclusive. It would be feasible for the project going forward
to also include the video recording function, as combining these two solu-

54 CHAPTER 3. DESIGN

tions could help to alleviate some of the short falls with each.

3.4 Alternative Designs

In this section we discuss the alternative languages that the Multi-Touch
Explorer Environment (MTEE) could have been designed for. We also look
at what tools were considered to go with these languages and why they
were not chosen.

3.4.1 Alternative Tools and Languages

While Java is a popular and modern language, it is not the only one. It
was important to consider other languages before making a decision. We
found that both Python and C# were very compelling contenders. C++
was also considered due to its popularity, but lack of proper multi-touch
framework meant this was not a real option.

Kivy w/ Python Like Java, Python is widely used and free to down-
load. It is supported on Windows, Linux/Unix, Mac OS X and on the Java
and .NET virtual machines. Python is maintained by the Python Software
Foundation which funds and manages events in the Python community.
Unlike Java, Python is a dynamically type language which can act as both
a fully object-orientated language or as a simple scripting language. This
flexibility made Python a very attractive language and accounted for its
popularity today. It was also favoured as a teaching language because of
its clear easy to understand syntax [65] [42].

While Python would have been a good choice it was important to con-
sider how it would have worked for multi-touch development. Thank-
fully Python has the Kivy (formerly PyMT) project, a Python library for
the rapid development of applications that make use of innovative user
interfaces, such as multi-touch [2] [38]. Kivy is a mature framework that

3.4. ALTERNATIVE DESIGNS 55

is still well maintained. Like MT4J it is an open-source project and every-
thing is provided for free. This fitted well with the Python language and
made Kivy an attractive option for developing multi-touch.

Using Kivy and Python together would make a great combination and
would have been an valid choice for this project. As mentioned earlier
Eclipse can also support the Python language, which could provide a front
end for the MTEA tool the same as with Java and MT4J. As it was the in-
tention that the MTEE prototype only supported one language, this project
chose Java and MT4J on the basis of the personas experience with it. Stay-
ing with the Java programming language would also allow both the MTEA
tool and the Eclipse plugin to be written in Java.

Surface SDK w/ C# The C# language is developed by Microsoft and
fully supports their .NET frameworks. C# is intended to be a simple,
modern, general-purpose, object-oriented programming language and is
recognised by ECMA as an international standard [39]. It is co-developed
by a number of major organisations such as Hewlett-Packard, Intel and
Microsoft. The language is designed to be usable by developers famil-
iar with C and C++, however it is not supported on all platforms as the
.NET framework is only available on Windows. An open-source version
is available on Linux called Mono [3] however it is not as well supported
or developed. Basic support for multi-touch in C# is provided by the .NET
framework, with more complex support through the Microsoft Surface
SDK [55]. The majority of these features are only supported by the Mi-
crosoft Surface device.

Microsoft encourages that C# developers use their Visual Studio line
of development environments. Visual Studio supports all of the Microsoft
Visual languages, with the ability to support almost any language through
language services. Visual Studio also provides tools to aid developers,
such as debugging integration, word predictions and test support [56].
Visual Studio can be extended via the Visual Studio SDK. This could be

56 CHAPTER 3. DESIGN

used to add new windows, menu commands and other extensions. This
would have allowed Visual Studio to be used to as the interface for the
MTEA tool [54].

While C# and Visual Studio are both mature products that would have
been suitable for this project, their platform restrictions and price meant
they were not chosen. While Microsoft does offer Visual Studio licenses to
students through the Academic Alliance program, it could not be assumed
that a student would be familiar with these tools. It would also create
issues for professional user who don’t have a license, effectively barring
then from using the tool.

libTISCH w/ C++ C++ is a general purpose programming language built
on top of the C programming language. adding object orientated features
such as classes along with additional data types, templates, exceptions
and other features to the C programming language [41]. C++ can be com-
piled to run on all major platforms with a number of different compilers
available, such as the GNU Compiler Collection or Microsoft’s Visual C++
compiler.

While C++ can be made to accept multi-touch input directly, there are
few frameworks to help with handling and processing gestures. As the
intention of this project is to aid in the rapid development of prototypes,
it is not feasible for a user have to integrate touch input and gestures into
an applications themselves.

The most portable framework available was the Tangible Interactive
Surfaces for the Collaboration between Humans, or TISCH, framework.
While this framework is functional and could be used to build multi-touch
applications it is no longer maintained, with the last update in September
2010 [26]. For these reasons it was decided the framework would not be
suitable for new users to learn with the MTEE project.

3.4. ALTERNATIVE DESIGNS 57

3.4.2 Alternative Java Multi-Touch Frameworks

Once we decided to stay with the Java programming language we also
considered other multi-touch frameworks for Java aside from MT4J. While
MT4J has a slow release cycle, with the latest release on March, 31 2011, it
is still actively maintained. We investigated two other multi-touch frame-
works for Java, SparshUI and mu3. Unfortunately both of these projects
are no longer maintained, SparshUI was last updated in September 2010
and mu3 October 2009 [40] [74]. As with TISCH discussed above, it would
be inappropriate to teach a new user either of these frameworks if they are
no longer supported by the community or developers.

58 CHAPTER 3. DESIGN

3.5
D

esign
R

equirem
ents

A
nalysis

FR
1

FR
2

FR
3

FR
4

FR
5

FR
6

FR
7

N
FR

1
N

FR
2

N
FR

3
N

FR
4

N
FR

5
Java

Language
5

5
5

5
5

5
5

4
Q

Q
5

5

Eclipse
ID

E
4

Q
Q

Q
5

5
5

4
5

5
5

5

M
ulit-Touch

for
Java

Q
5

5
Q

Q
Q

5
Q

4
5

Q
Q

Im
portW

izard
4

4
4

5
5

5
5

Q
5

5
5

5

M
TE

Perspective
4

4
4

5
5

5
5

5
5

5
5

5

C
om

ponentV
iew

Q
Q

Q
4

4
5

4
5

5
Q

5
5

Perform
ance

V
iew

Q
Q

Q
Q

4
4

4
5

5
Q

5
5

C
om

ponentIsolation
5

5
5

4
5

5
5

5
Q

5
5

5

G
esture

R
ecording

5
5

5
5

4
Q

Q
5

5
5

Q
Q

Perform
ance

R
ecording

5
5

5
5

4
Q

Q
5

Q
5

Q
Q

Perform
ance

Playback
5

5
5

5
5

4
4

5
5

5
5

5

R
untim

e
A

rgum
ents

5
Q

5
5

5
5

5
5

5
5

5
4

X
M

L
w

/
Schem

a
5

5
5

5
5

Q
5

5
5

4
4

4

Figure
3.6:

T
his

table
indicates

if
each

design
decision

w
as

expected
to

m
eet

either
a

FunctionalR
equire-

m
ent

(FR
)

or
a

N
on-Functional

R
equirem

ent
(N

FR
).

A
4

indicates
this

requirem
ent

w
ill

be
m

et
by

the
design,a

Q
indicates

the
requirem

entw
illbe

partially
m

et,and
a

5
indicates

thatthis
design

decision
did

notcontribute
to

thatparticular
requirem

ent.

Chapter 4

Implementation

This chapter looks at how the designs from chapter 3 were implemented.
Section 4.1 involves critiquing the tools chosen for the design. The project
was split into two parts, the Eclipse plugin and MTEA tool, which are
discussed separately. The Eclipse plugin is discussed in section 4.2.1 and
the MTEA tool in section 4.2.2. Both of these sections discuss how the tools
were used to meet the design goals.

4.1 Language and Tools Critique

This section discusses: the chosen tools for this project, what was found
useful about them, and how they performed. The chosen tools were the
Java Programming Language, the Eclipse development environment and
the Multi-Touch 4 Java (MT4J) framework. These are discussed in sections
4.1.1, section 4.1.2 and 4.1.3 respectively.

4.1.1 Java Language

The features of the Java language helped to inform how some of the projects
designs were implemented. The Java ARchive (JAR) system for Java pro-
grams proved very useful for packaging snapshots of the application for

59

60 CHAPTER 4. IMPLEMENTATION

each recorded performance. The JAR format compresses the Java class
files, meta data and other resources into a single portable file. This can
then be run on the Java Virtual Machine (JVM). By creating a a JAR file for
each performance, the behaviour of the program at that point in time is
saved for later replay.

The ability to include both static and dynamic code helped to deal with
setting up the MTEA tool at run time. By passing arguments in at run time,
the could be assigned statically to the main MTEA tool class. This meant
when the class was eventually created by the JVM, it would already be set
to run in the correct mode or look for the correct performance data.

The Java programming language was used for all of the software de-
velopment in the project. The decision to build a plugin for Eclipse meant
that that portion of the project had to be developed in Java. To simplify the
development and capitalise on my experience, the MTEA tool was also de-
veloped in Java. As the Eclipse platform is written in Java itself, it allowed
me to better understand how the platform worked and made it easier to
observe how Eclipse handled some functions so they could be replicated
for the plugin. Other peoples plugins for Eclipse were also written in Java
and could be observed for similar reasons.

4.1.2 Eclipse Platform

Eclipse was used both as part of the project itself, and as a development
tool for the creation of the project. Eclipse provides a plugin development
mode for building Eclipse plugins. The plugins could then be run in a
separate instance of Eclipse so they could be used and tested.

The Eclipse Integrated Development Environment (IDE) is built on top
of the Eclipse Rich Client Platform (RCP), which is a minimalist set of plu-
gins which are needed for an application built on the RCP platform [28]
[61]. This means the Eclipse IDE is very modular, since all of the different
views and editors which can be interacted with are all plugins themselves.

4.1. LANGUAGE AND TOOLS CRITIQUE 61

Each plugin is made up of additions to the base plugins, called extensions,
as they extend or add another piece of functionality to an already existing
feature. The places where new extensions can be hooked on to existing
functions are called extensions points. An example is an extension point
for a menu, which could be used to add extra options to that menu.

A new plugin is defined by a manifest file. The manifest is an XML file
containing information about the plugin. This includes information such
as which extension points are being used and where the new extensions
are defined. A developer is also able to define their own extension points
so that other developers may be able to build on top of the first developers
plugin in the future. Eclipse reads this manifest file when it loads the
plugin, and uses the information to link the new functionality into the
correct locations in the Eclipse workspace [9] [10].

It was found that a frequent issue when developing a plugin for Eclipse
was the lack of documentation. While some documentation did exist, it
was usually out of date and no longer relevant to the current version of
Eclipse. This proved to be problematic for a large platform such as Eclipse,
as some features were purposefully experimental and were often removed
or changed in later versions. Some success was found by using internet
forums and other third party channels to gain helpful information. How-
ever this was time consuming and less than ideal, since the same out of
date information was often being promoted.

Another technique to gather knowledge was to examine the source
code for other open sourced Eclipse plugins. This showed how other de-
velopers implemented similar features; these solutions were then adapted
for this project. It was also possible to use a similar technique with the
Eclipse runtime, by using the debugger. The debugger was used to help
define what values and data types Eclipse was using in its extensions.

While a good effort was made to implement all the features as they
were designed, often it became unfeasible too spend much time trying a
particular solution. The result of this was to change how some features

62 CHAPTER 4. IMPLEMENTATION

were implemented. Of particular note was changing how the user’s pro-
gram was accessed by the MTEA tool. The original design was to access
the program before run time by adding a new Eclipse launch mode. This
was redesigned to what is seen in the project, where a separate launch file
is created directly in the user’s project. This removed the need to extend
Eclipse’s launch modes.

Overall, Eclipse was an extremely useful tool both as a development
environment for the project and as a platform for the user interface of the
project. While the plugin development could be confusing at times, the
platform was often consistent in how things were expected to work. This
allowed solutions to be applied to a number of different problems. In in-
stances where these solutions would not work, it was found best in the
interest of time and scope to abandon the manifest file and implement the
features directly in code. An example of this was with the implementa-
tion of the context menus for the MTE views. These menus were defined
in the manifest file with extension points so menu items could be added
to them. This attempt proved unsuccessful as the menu items would not
register with the context menu extension. Instead the menu items were
added directly to the context menu in the code. By using solutions such as
this, Eclipse proved to be a feasible tool for providing the project interface
and showed that it was a good choice to meet the user’s goals.

4.1.3 Multi-Touch 4 Java

MT4J was the most up-to-date and well maintained of the available multi-
touch frameworks for Java, which was discussed in section 3.4.2. That
section discussed the reasons from the user’s perspective about why MT4J
was the best choice, however it was also important that MT4J would be
accessible to allow the implementation of the desired features. This was
found to be true, as the framework provided the ability to traverse through
the components in a user’s program and attach both gesture and input lis-

4.2. IMPLEMENTATION OF DESIGN 63

teners. These listeners were registered to a scene or component and were
executed when the framework detected a gesture had been performed on
that component. From there the project was able to record the data about
the gesture. A similar technique could be used to feed faked input data
back into the same program, by instead registering a new input source de-
veloped to generate input data from a file. MT4J would then be able to
interpret this input data as if it was a real user interacting with the pro-
gram.

The way an MT4J project is structured and initialised provided a so-
lution for hooking the MTEA tool into an instance of the user’s program.
Every MT4J project required a start file which setup the program environ-
ment. The start file contained a static main method and a callback method
called startUp. The main method initialises the environment, returning
to the startUp method when complete. This method was then the start-
ing point for the user’s code. By creating a subclass to a project’s start file
which overrode this method, the MTEA tool was then able to be run on
top of the user’s MT4J application. As every MT4J project must use this
start file, it provided a common point of access to launch the MTEA tool.
By having the separation of the user’s start file and the project’s start file, it
was ensured that the user would always be able to run their project with-
out out the MTEA tool being active. This solution ensured that Functional
Requirement 4 could be met.

4.2 Implementation of Design

This section discusses how different parts of the project design has been
implemented, for both the MTEE Eclipse plugin and the MTEA tool.

64 CHAPTER 4. IMPLEMENTATION

4.2.1 Eclipse Plugin

As discussed in section 4.1.2, Eclipse uses extensions and extension points
to allow a user to hook their own functionality into existing Eclipse fea-
tures. The project made use of these to add some of the plugins function-
ality, but were also avoided in some instances.

MTE Perspective The MTE perspective defined the positioning and lay-
out for both the MTE views and the standard Java views that were used.
While the layout is defined directly in code, the manifest file is used to
hook the new perspective into Eclipse so that it can be activated by the
user. The manifest file, found in Appendix B, shows how the new per-
spective was linked into Eclipse on lines 4-12. Figure 4.1 shows the change
adding this extension caused in Eclipse. The manifest shows which exten-
sion point was specified, in this case org.eclipse.ui.perspective was used;
this is the standard point for adding a new perspective. The perspective
extension required a class name, where the layout of the workspace was
coded, and an ID name to identify the extension by. A name and icon were
provided which were used to display the perspective in the perspective
list, appearing once the plugin was installed.

Figure 4.1: This figure shows the output of adding the perspective exten-
sion in the Manifest file. The red border shows where the new perspective
has been added.

The class referenced in the manifest for perspective extension was re-
quired to implement the IPerspectiveFactory interface. This was provided
by the Eclipse Plugin library and allowed the class to be recognised as a

4.2. IMPLEMENTATION OF DESIGN 65

perspective. All classes which used this interface needed to implement the
createInitalLayout method. This method was called when the per-
spective was enabled and executed the code which setup the views and
workspace positions that were used for the perspective. The views which
were defined by the perspective were referenced by their ID name, this
included both the standard Eclipse views and the new MTE project views.

Component and Performance Views The new MTE views were hooked
into Eclipse using the org.eclipse.ui.views extension point. This was put
into the manifest file, much like the perspective above, but instead used
the view tag name instead of perspective. The new view also required a
class, an extension ID name, an icon and name like the perspective. The
new views were required to sub class the ViewPart, an Eclipse class which
provided the basic functions for a new view. The createPartControl
and setFocus methods were overridden, which allowed the contents
and actions associated with the view to be defined.

While the manifest extension and ViewPart class handled making the
view available to Eclipse, the actual content of the view needed to be coded
in. Eclipse provided a number of predefined ’viewers’. These made han-
dling of the input for the view much simpler. As the MTEE project saved
the component and performance data as XML files, it was decided the
TreeViewer was a natural choice to display the data. The TreeViewer pro-
vided a tree view of the content, allowing the branches of the tree to be
expanded or hidden as the user desired. This worked very well with the
XML format, as it stores data in a similar tree structure. The data then only
needed to be filtered to produce the proper names and information. Fig-
ure 4.2 highlights what effects the ViewPart and TreeViewer have in the
Eclipse workspace, with the ViewPart encompassing the TreeViewer.

To setup a TreeViewer two extra parts were required, a content provider
and a label provider. A sorter could have also been used to order the tree
nodes, however this was not used as it was preferred that the data remain

66 CHAPTER 4. IMPLEMENTATION

Figure 4.2: A picture of the MTE Component view. The ViewPart is high-
light in red and TreeViewer output is highlighted in yellow.

ordered the way it was in the data file.

The content provider loaded in the XML data from a file and turned
this into data objects for each element of the file. These data objects were
stored by the TreeViewer and were used to retrieve more data when a node
of the tree was expanded. The TreeViewer would query the data object and
determine if the node had any children, as defined in the content provider.
This information would then be displayed in the form of an arrow to the
left of the node label, which indicate the entry could be expanded.

The label provider is the other half of the TreeViewer. This would ex-
amine the data objects from the content provider and decide what text
should be displayed for that node in the tree view. A path to an icon was
also specified to help distinguish between different kinds of data objects
in the tree view.

4.2. IMPLEMENTATION OF DESIGN 67

Both the MTE Component view and MTE Performance view use the
same content and label providers as their data is compatible. This is made
possible by using a common XML schema file for both data files. This
schema can be found in Appendix A.

View Context Menus Both of the new views required context menus to
provide different actions for each view. While an attempt was made to
use the Eclipse plugin system to link the menu item actions to the context
menu, this was unsuccessful. It was found that while an extension point
could be added for a context menu, attempting to link a new action to that
menu proved fruitless with the menu item simply never appearing.

Instead these were defined directly in the code, by overriding the
createPartControlsmethod to achieve this. Implementing the menus
in this way proved to allow a finer grain of control over what information
the menu actions could receive and when the menu could be displayed.
Once the context menu has been created, items were added to it. These
items were required to be a sub class of the Eclipse Action class and over-
ride the run method. The method was then called when the item was
selected from the context menu.

Setup Wizard The setup wizard dealt with the importing of the MTEA
library and schema files; along with the generation of the MTEE project
start file for MT4J and the project build file. It was required that this file be
generated for each project as it needed to be adapted to properly import
the user MT4J start file which would not have a standard location. The
selection of the MT4J start file was handled by the user through the setup
wizard. This selection also served to indicate which project the user in-
tended to use with the MTEA tool, so that everything could be imported
into the correct place.

To launch the setup wizard the user was required to select the ’MTEE
Project’ from the new menu in the Package Explorer view in Eclipse. This

68 CHAPTER 4. IMPLEMENTATION

would display the setup wizard where the user would select their start
file and press the ’Finish’ button to initiate the import process. The actual
steps the wizard would perform are outlined here:

Step 1 Two new folders were created in the user’s project. One was a new
source folder to hold the new MTEE MT4J start file that will be
generated in a later step. The second was a folder to hold all the
MTEA data for the project, this was placed in the root of the users
project.

Step 2 The MTEA library and schema files were imported. These files
were pulled directly from the MTEE plugin bundle. A plugin bun-
dle in Eclipse is a collection of all the files and classes for any given
plugin, providing a link to any files that a developer has placed
in their plugin. This gave the correct path to the MTEA files and
would not matter where Eclipse was installed on the users sys-
tem. The MTEA library was then added onto the end of the user’s
project’s class path, where all the libraries and dependencies for
the user’s project are stored by Eclipse.

Step 3 The three new files required for the MTEA tool were created. First
the schema file that was imported in Step 2 was written into the
MTEA data folder. This is followed by the build script, which is
used to automate the exporting of the user’s project into a JAR file.
The final file was the new MT4J start file for the MTEA tool. This
file is generated from the project’s start file, but added extra func-
tionality such as command line arguments to control the MTEA
tool and hooking the tool into the user’s project, as was explained
in section 4.1.3.

Step 4 The build file was then run to generate a snapshot of the user’s
project at the current state. This was saved as ’latest.jar’ and stored
in the MTEA data folder.

4.2. IMPLEMENTATION OF DESIGN 69

Step 5 The MTEA start file was run to generate the scene tree data file
required for the MTE Component view. A special command line
argument was used so that the tool will quit as soon as the scene
tree was exported.

Project Launching The project required a number of different tools to
be launched from within Eclipse. This was done through modifying the
Eclipse launch manager. To set up the launch manager to execute a pro-
gram numerous information was required. The appropriate launch con-
figuration type needed to be used and decided what type of external or
internal program Eclipse would launch. An example of this is shown in
Figure 4.3, line 3-5, where the localJavaApplication type from the
jdt.launching package was used. This type specified that Eclipse is to
launch a local project, just like the user would through the Eclipse launch
menu.

Once the configuration type was set up, the correct attributes needed
to be given. The attributes were specified where the project and main class
file were located. When launching an external tool, such as the JAR builder
or external JAR file, the application location and work directory were re-
quired instead. This also had the option to specify any program arguments
that would have been required. It was here that the component ID or re-
play name were passed into the MTEA tool. The attributes can be seen in
Figure 4.3, lines 9-14.

4.2.2 Multi-Touch Explorer Analysis Tool

The Multi-Touch Explorer Analysis (MTEA) tool was designed to hook
into any existing MT4J project. This was done by hijacking the start file
used to launch an MT4J project and overriding the startUp callback method
used to create an instance of the MTEA tool. The tool was then able to
access all of the data in the MT4J application, including the scenes and
components. This allowed the tool to export the scene tree to XML and

70 CHAPTER 4. IMPLEMENTATION

1 ILaunchManager manager =

2 DebugPlugin.getDefault().getLaunchManager();

3 ILaunchConfigurationType lct =

4 manager.getLaunchConfigurationType(

5 "org.eclipse.jdt.launching.localJavaApplication");

6 ILaunchConfigurationWorkingCopy wc =

7 lct.newInstance(null, "PreviewConfig");

8

9 wc.setAttribute("org.eclipse.jdt.launching.PROJECT_ATTR",

10 project);

11 wc.setAttribute("org.eclipse.jdt.launching.MAIN_TYPE",

12 mainType);

13 wc.setAttribute("org.eclipse.jdt.launching.PROGRAM_ARGUMENTS",

14 programArguments);

15

16 wc.launch(ILaunchManager.RUN_MODE, null);

Figure 4.3: A code snippet of how launching a program from Eclipse can
be done. The example shows how a local project would be setup and
launched.

listen for input and gestures on each of the components. Figure 4.4 shows
the structure of the MTEA tool and where it sat in relation to the user’s
program.

The MTEA tool was split into 3 distinct parts; the Explorer part which
handled the users application and setup and tear down of changes made
to the display, the Processors which provided a means of to capture events
and inject new events into MT4J, and the XML part which handled the
importing and exporting of data.

Explorer Interface The explorer interface consisted of the AppExplorer
and the SceneExplorer. The AppExplorer handled the setup of all the re-
quired objects for a particular display mode, such as when replaying a per-
formance or isolating a component. The SceneExplorer class handled the

4.2. IMPLEMENTATION OF DESIGN 71

M
T

EA
To

ol
-S

ys
te

m
A

rc
hi

te
ct

ur
e

Fi
gu

re
4.

4:
Th

e
la

yo
ut

of
th

e
M

TE
A

to
ol

.
Th

e
U

se
r

A
pp

lic
at

io
n

is
pa

ss
ed

to
th

e
A

pp
Ex

pl
or

er
cl

as
s

at
ru

nt
im

e.
T

he
A

pp
Ex

pl
or

er
cl

as
s

ca
n

th
en

in
st

an
ti

at
e

a
nu

m
be

r
of

ex
tr

a
cl

as
se

s,
su

ch
as

th
e

Sc
en

eE
xp

lo
re

r
of

X
M

LB
ui

ld
er

,d
ep

en
di

ng
on

it
s

ne
ed

s
at

ru
nt

im
e.

72 CHAPTER 4. IMPLEMENTATION

set up of a scene and its components, so that gestures could be recorded
or different components could be highlighted.

The AppExplorer itself had three main functions; handling runtime ar-
guments, setting up the core MTEA tool components, and providing the
key bindings for the user. As the runtime arguments were passed in from
the main method in the MT4J start file, it was required that these used
static methods and variables. Java hands the program arguments to the
program as an array of strings. The MTEA tool would parse each of these
strings in order looking for recognised strings as detailed in Chapter 3,
section 3.2.4.

AppExplorer was managed by three setup methods,
setupSceneExplorer, setupPlayback, and setupRecording. As
indicated by their names, the playback and recording methods handled
the two main modes of the tool. The scene explorer method was used by
both modes, where the scene would be setup in different ways depending
on which mode was used. The AppExplorer handled the keyboard input,
which allowed the user to save and replay a performance. These were im-
plemented by registering the AppExplorer class with MT4J as a key event
listener.

The playback setup required creating a new FakeInputSource and reg-
istering it into the user’s program. The fake input was then built from data
read in through the PerformanceReaderXML. It tried to locate and load the
correct performance from the performances data file. This was based on
the performance name passed in via the command line. The SceneExplorer
was used to add the PaintProcessor to each component, which enabled the
cursor trail and highlighting of active components. Finally all components
in the scene had their alpha faded out, so that active components would
be more emphasised when they were used. The recording setup was sim-
ilar to the playback, but instead would create a new GestureProcessor and
InputProcessor. The GestureProcessor was registered to every component
in the scene by the SceneExplorer, while the InputProcessor was just reg-

4.2. IMPLEMENTATION OF DESIGN 73

istered to the scene itself. If a component has been selected for isolation,
then all but this component and its children were disabled and had their
alpha value faded by the SceneExplorer.

The SceneExplorer handled functions for modifying the user’s scene
and components, as well as traversing the components. These functions
revolved around the traverseComponent method, which would tra-
verse a scene canvas containing all the components in the scene. This
used a depth-first recursion method to find components based on the ID.
A number of flags were passed down with the recursion method to decide
what features should be enabled or disabled each component. The features
included fading the components alpha value, disabling input, adding a
gesture processor or highlighting the component.

The key bindings had two important purposes; starting the playback of
a performance and exporting a saved performance to disk. The playback
of a performance would call the FakeInputSource to begin the playback of
events, as described below. The exporting of a performance would save
the recorded performance and gesture data to the performances data file,
as well as making a copy of the snapshot JAR file that was generated when
the MTEA tool was imported. The time taken to create a copy of the JAR
is dependent on the size of project the JAR was created from. It was felt
that a copy of this would not constitute an unreasonable amount of disk
space as a large project would require a larger JAR file. For this reason it
is believed that non-functional requirement 4 has not been violated.

XML Handlers The MTEA tool used XML as its data format, with a
schema file to provide data validation, shown in Appendix A). This was an
ideal format to use as it could imitate the structure of the MT4J scene tree.
The MT4J scene tree used a composite design pattern to impose its scene
structure and nest components within themselves. The XML data itself
was handled by the Document Object Model (DOM) from the standard
Java library. This provided both the means for creating documents and

74 CHAPTER 4. IMPLEMENTATION

XML nodes, as well as checking for data validation against the schema.
This ensured that requirement 3 of the non-functional requirements could
be met, as the schema was checked against the data when it was exported
and when it was imported.

The XML handlers used a variation of the Builder design pattern to
help construct the complex XML structure of the scene tree. This allowed
both the explorer data file for the MTE Component view, and the per-
formances file for the MTE Performances view to be constructed from
the same collection of classes. The SceneBuilderXML uses depth first re-
cursion to build a model of the component structure, and the Gesture-
BuilderXML turns the different gesture events into a collation of any par-
ticular gesture. The BuilderXML deals with and links all of the different
scenes and gestures into the correct files, before verifying and saving them
to disk.

As the tool recorded data it would build the gestures into the scene
tree stored in the BuilderXML class. This data would be stored in memory
until the user executed the export function through the AppExplorer. If
the user did not save the performance, then the data would be lost when
the program was terminated. This was as intended, as the tool would only
write data to disk when the user wanted to. This reduced the overhead of
waiting on I/O for each gesture and helped to meet requirement 5 of the
non-functional requirements.

Event Processors The event processors included both recording and out-
putting data, and were used to glue different parts of the MTEA tool to-
gether. There were four processors, the GestureProcessor, the InputPro-
cessor, the PaintProcessor and the InputSourceProcessor. These proces-
sors follow the mediator design pattern, by using the existing Listeners
and Processor classes in MT4J as the basis for the mediators. The event
processors become the concrete mediators, facilitating the communication
between different parts of the MTEA tool.

4.2. IMPLEMENTATION OF DESIGN 75

The GestureProcessor would be registered to a component so that it
could receive all of the gestures that were performed on that component.
The GestureProcessor implemented the IGestureEventListener interface,
which required the processGestureEvent method. When a compo-
nent receives a gesture event, it was sent to this processor and the process-
GestureEvent method would be executed. The method would provide
the gesture event object which was then sent to the BuilderXML to be
recorded on a per component level. Any other processors listening on
that component would also receive the same gesture event. The InputPro-
cessor worked in a similar manner, however instead of being registered to
a particular component it is instead registered to the scene itself. This was
because all input data was passed into the scene before it was interpreted
and turned into a gesture event by the MT4J framework.

The PaintProcessor was a combination of the AbstractGlobalInputPro-
cesser and IGestureEventListener. This gave it the ability to detect when a
component was being used so that the SceneExplorer could highlight that
component. The PaintProcessor handled painting the cursor trail at ev-
ery touch point. The colour for the cursor was taken from the highlighted
component so that it was easy to match cursor action to a particular com-
ponent. The creation and deletion of the cursor trail objects were handled
by the SceneExplorer. To ensure that the cursor trail would not cause a
performance dip, in accordance with requirement 1 of the non-functional
requirements, each trail was limited to 150 points. When that limit was
reached the oldest point would be removed.

The FakeInputSource used the standard Java Timer class to queue and
execute input events. A Timer could queue objects that extended the Timer-
Task class. Each of these tasks could be queued with a time delay, so that
they would be executed at the correct moment. When the events are read
in with PerformanceReaderXML the delay time was calculated from the
time stamp recorded when the input first occurred. When the delay time
was up the run method of the TimerTask was executed. The tasks used

76 CHAPTER 4. IMPLEMENTATION

in the FakeInputSource used this method to push a new event on to the
MT4J event queue. By using the recorded data to mimic touch points be-
ing added and removed from the interface it was possible to play back an
exact replay of the input events as they were recorded.

By using existing tools, provided by the MT4J framework, for process-
ing and handling input it could be ensured that the best performance was
achieved for these each of these functions. This effort was to meet the non-
functional requirements of the project, particularly requirement 1 and 2.

4.2. IMPLEMENTATION OF DESIGN 77

4.
3

Im
pl

em
en

ta
ti

on
R

eq
ui

re
m

en
ts

A
na

ly
si

s

FR
1

FR
2

FR
3

FR
4

FR
5

FR
6

FR
7

N
FR

1
N

FR
2

N
FR

3
N

FR
4

N
FR

5
Ja

va
La

ng
ua

ge
Q

5
5

5
5

4
5

4
Q

Q
4

4

Ec
lip

se
ID

E
4

4
4

Q
Q

5
Q

5
5

5
Q

5

M
ul

it
-T

ou
ch

fo
r

Ja
va

Q
5

Q
Q

Q
4

5
5

5
5

5
5

M
TE

Pe
rs

pe
ct

iv
e

4
4

4
5

5
5

5
5

5
5

5
5

C
om

p.
an

d
Pe

rf
.V

ie
w

4
Q

Q
4

4
Q

4
5

Q
Q

5
Q

C
on

te
xt

M
en

us
4

Q
5

4
5

Q
5

5
5

5
5

5

Se
tu

p
W

iz
ar

d
4

4
Q

5
5

5
5

Q
5

5
5

5

Pr
oj

ec
tL

au
nc

he
rs

Q
Q

4
4

5
4

5
4

4
5

Q
4

Ex
pl

or
er

In
te

rf
ac

e
4

5
4

4
5

4
Q

5
4

5
5

5

X
m

lH
an

dl
er

s
5

5
5

5
4

4
5

5
5

5
4

4

Ev
en

tP
ro

ce
ss

or
s

5
5

5
Q

4
4

5
4

4
4

5
Q

Fi
gu

re
4.

5:
T

hi
s

ta
bl

e
in

di
ca

te
s

if
ea

ch
im

pl
em

en
te

d
fe

at
ur

e
m

et
ei

th
er

a
Fu

nc
ti

on
al

R
eq

ui
re

m
en

t(
FR

)o
r

a
N

on
-F

un
ct

io
na

lR
eq

ui
re

m
en

t
(N

FR
).

A
4

in
di

ca
te

s
th

is
re

qu
ir

em
en

t
w

as
im

pl
em

en
te

d,
a

Q
in

di
ca

te
s

th
e

re
qu

ir
em

en
t

w
as

pa
rt

ia
lly

im
pl

em
en

te
d,

an
d

a
5

in
di

ca
te

s
th

at
th

is
im

pl
em

en
ta

ti
on

di
d

no
t

co
nt

ri
bu

te
to

th
at

pa
rt

ic
ul

ar
re

qu
ir

em
en

t.

78 CHAPTER 4. IMPLEMENTATION

Chapter 5

Evaluation

In order to have properly validated the usefulness and feasibility of the
Multi-Touch Explorer Environment (MTEE) a full scale user-study would
have needed to be under taken. This study would have involved both se-
nior students and professionals from the software development industry,
as these groups would have properly represented both of the personas.
When coming to decide how to perform such a study, we were cautioned
by the work of Greenberg and Buxton, who put forward that [usability]
evaluation can be ineffective and even harmful if naively done ’by rule’
rather than ’by thought’ [37].

This caused us to rethink what kind of study would be appropriate
at this stage of development. It was felt that performing a full scale user
study would not have been, as the tool was still in the prototype devel-
opment stage. A longitudinal user study would require a more complex
analysis of what user had learned from using the tool, and need to be
performed across multiple sites to better justify the results. Such a study
would be restricted by the time available to the completion a Master’s
Thesis. We instead decided to focus on evaluation tools that were more
appropriate for the developmental stage. To evaluate this project two tests
where performed; a large scale performance metrics test and a Cognitive
Walkthrough [22].

79

80 CHAPTER 5. EVALUATION

The performance tests allow us to evaluate the project against the non-
functional requirements described in section 2.4.2. These performance
tests were developed to be an ongoing evaluation tool to continue the as-
sessment of the non-functional requirements against the project. The test
were created to be fully automated so that a large sample size could be
gathered with ease. The cognitive walkthrough used expert evaluators
from the field of user interface development to emulate user groups. This
allowed the assessment of a user’s ability to explore and operate the tool,
along with performing common tasks [72].

The performance metrics are discussed in section 5.1 and the cognitive
walkthrough in section 5.2 below.

5.1 Performance Metrics

To determine the impact that using the MTEE would have on the perfor-
mance of a users project we picked three programs as use cases. Each of
these programs was tested over thirty test runs, with each test consisting
of three phases. During the test the programs were constantly being mon-
itored by a set of tools to gather the performance metric data. These tools
were chosen to best measure the Non-Functional Requirements from sec-
tion 2.4.

5.1.1 Test Programs

Three programs were used to test the performance of the MTEA tool. The
programs were selected to represent different stages of development of a
program, and also the underlying complexity of the program. They were
selected in such a way so that Non-Functional Requirement 2 could be
tested.

5.1. PERFORMANCE METRICS 81

Figure 5.1: A picture showing the interface for the Slider Demo used in the
performance evaluation.

Slider Demo The most basic of the programs, it consisted of a slider bar
which the user can drag back and forth. The slider also had buttons at
each end so the user could move the slider by tapping on those. The demo
was designed to be as simple as possible with no complex behaviour. This
provides a clean basis for determining the performance of the MTEA tool
without any of the programs complexity contributing to the results. Figure
5.1 shows the interface for this program.

Multi-touch Demo The Multi-touch demo represents a simple user in-
terface a developer may have created. It had thirteen different compo-
nents on the screen which each had a different set of gestures. This was an
ideal program for seeing how a user could use the isolation feature of the
tool on different components and for performing a different user interac-
tions. This program was taken from the MT4J example set and was found
suitable for use in the performance tests. Figure 5.2 shows the interface for
this program.

3D Multi-touch Gesture Prototype The 3D Multi-touch Gesture Proto-
type was a much more complex application where actions on the interface
directly affect other objects in the scene. The program contained three dif-
ferent interfaces which were cycled through as the use completed naviga-
tion tasks. For the perform test the task order was modified to be constant
and the number of tasks were reduced to two per interface style. The in-
terfaces were a mix of control components and pure gestures, providing

82 CHAPTER 5. EVALUATION

the level of complexity required. Figure 5.3 shows the interface for this
program.

The program also contained its own logging functions which provided
a good means of testing that the MTEA tool did not interfere with other
programs output functions. The program was developed by myself for the
Honours project [23] completed prior to this Masters thesis. This allowed
the program to be modified to better suit the performance tests.

Figure 5.2: A picture showing the interface for the Multi-Touch Demo used
in the performance evaluation.

5.1. PERFORMANCE METRICS 83

Figure 5.3: A picture showing the interface for the 3D Multi-touch Gesture
Prototype used in the performance evaluation.

5.1.2 Test System

These tests were performed on a machine running an x86 64 version of
Linux. The hardware specifications of the machine are:

Kernel

Linux 3.7.9-1-ARCH #1 SMP PREEMPT Mon Feb 18 02:13:30

EET 2013 x86_64 GNU/Linux

84 CHAPTER 5. EVALUATION

System Info

CPU Model: AMD Athlon(tm) II X2 255 Processor

No. Cores: 2

CPU Cache Size: 1024 KB

Memory Total: 4052636 kB

Disk Buffered Read: 131.36 MB\/sec

Disk Random Access: 65 seeks\/s, 15.19 ms random

access time

5.1.3 Testing Method

These tests were run directly from a command line using pre-compiled
JAR files for each program. The JAR files were exported from Eclipse,
however Eclipse was otherwise not used during the testing. This was be-
cause only Multi-Touch Explorer Analysis (MTEA) tool were being tested,
not the Eclipse interface. The interface was instead evaluated by the Cog-
nitive Walkthrough in section 5.2. The JAR files and monitoring tools were
launched through a batch script. The tools logged their data to a RAM disk
to better prevent interfering with the hard disk I/O being monitored for
the test. The tests were fully automated by using a test automation tool,
Xnee. This allowed a large sample size to be taken without the tester need-
ing to manually perform each test.

Each test involved operating the programs for two minutes each. For
the Multi-Touch 3D Prototype this involved completing the series of ges-
ture tests, to better simulate how a user would interact with that pro-
gram. For both the Slider Demo and Multi-Touch Demo each of the com-
ponents were interacted with in turn, until the two minutes was com-
pleted. During the playback section of the test, the program was allowed
to run slightly over the two minutes to ensure that the playback was fully

5.1. PERFORMANCE METRICS 85

completed.

Each test consisted of three phases which each involved running the
tool in a different mode. Phase one was running the tool with no MTEA
enabled. Phase two was running the tool with MTEA recording all ges-
tures. Phases three was running the tool, only using the playback mode to
interact with the interface.

Each phase setup and executed from a single folder. To setup the folder
all of the required files were copied into it, then the program was run. This
folder was cleared between each phase.

Test Automation To automate the input and simulate a user performing
the tests a test automation tool called Xnee [32] [32] was used. Xnee was
able to automate input events for the X11 display environment in Linux.
This tool was used to first record input for each test phase and test pro-
gram, which could then be played back to emulate a user interacting with
the program. This allowed the tests to be fully automated. The command
cnee --record --time 3 --stop-key x --mouse --keyboard

-o <filename> was used to make a recording and cnee --replay

--stop-key x -f <filename> was used to play that recording back.
1

Disk I/O Impact Disk I/O impact was measured using a utility called
IOTop [21] [79]. This tool was able to display the disk read and write
information for each program. For each test run, IOTop was started us-
ing the batch command iotop -atbP. This command caused IOTop to
output the accumulated disk read and disk write amounts for all user pro-
grams. This is then filtered down to include only the java session being
used for the test, before being logged to file. This metric was chosen so
that Non-Functional Requirement 4 and 5 could be measured.

1The program name used in the commands is ’cnee’ as the command line interface for
Xnee was being used.

86 CHAPTER 5. EVALUATION

Disk Usage Impact This test used the Disk Usage (du) tool which was
part of the GNU coreutils package [33]. Both before and after a test phase
was completed the du tool was used to examine the overall increase in
both the test folder size and individual file size. The command du -ah was
used to list both the folder sizes and the file sizes of each file [34]. This met-
ric was chosen so that Non-Functional Requirement 4 could be directly
measured.

Processor and Memory Usage Impact The top tool, from the PROCPS
package [64], was used to measure CPU and RAM usage over time. Like
with the IOTop tool, top was used in batch mode with the command
top -d1 -bp$PID, where the $PID represented the process ID of the
running Java program. The -d flag was used to output a reading every one
second. The top tool provided CPU values in percentages which are com-
bined for both CPU cores. This meant a single value could reach as high
as %200 [75]. These two metrics were chosen to measure Non-Functional
Requirement 1 and 2.

Time Impact The time command [31] was used to give totals for the
elapsed time that the program has been running.This included both the
user time and the system time. The tool was used by executing it with the
program that was being timed. An example
time (java -jar test.jar). This would print information to the
console output when the Java program terminates. This metric was mea-
sured to help ensure the accuracy of performance tests, expecially when
operating between different programs.

5.1. PERFORMANCE METRICS 87

5.1.4 Limitations

These performance metrics had a number of limitations:

• The system the tests were running on was not a fully controlled envi-
ronment. As other programs were running in the background, they
could have interfered with the test. It was felt that this was accept-
able as it replicated the kind of system the user would be using the
tool with. This was minimised by automating the tool and manually
stopping as many active programs as possible. The large number of
test runs also helped to indicate outliers in the data.

• There was limited ability to ensure the same amount of input was
put into each program. The amount of activity a user would per-
form with an application could vary depend on the application. This
could affect the amount of processing a program would have to do
for input. To help minimise this all test runs were conducted for the
same length of time. All test runs of the same program also used the
same test automation file to ensure the input was the same.

• There was no way to determine the exact time when a performance
stopped and started. This information was only internal to the anal-
ysis tool. This was minimised by allowing phase 3 to run longer
than the previous phases, ensuring the performance had completed
before the program was terminated.

• The JVM itself causes some overhead and interference when mon-
itoring the Java application. While this should no be a big conse-
quence it could cause unexpected results from the test. By using a
large test size we can minimise these problems.

88 CHAPTER 5. EVALUATION

5.1.5 Results

After each of the tests were run thirty times, the results were aggregated
and averaged. The results of the graphed and tabulated, these have been
displayed here. All charts and tables are presented at the end of this sec-
tion.

Disk I/O Impact Figures 5.4a through 5.4c showed the amount of data
each test phase wrote to the hard disk on average. A log scale has been
used in the chart to more acurately show the difference in the amount
of data being written. Interesting features included the spike in the blue
line for each test. This was the recorded input data being exported by the
MTEA tool, as well as a copy of the JAR file being made to preserve a
snapshot for playback. Figure 5.4a, the Multi-Touch 3D gesture prototype,
showed a series of ’steps’ of data being written during all three phases.
This was where the program was writing its own logging data to disk
after each internal test.

Data for the amount of disk read was also collected, however they have
been determined to not be accurate. Despite repeated attempts the IOTop
tool used to measure the data would not report any amount of data read
from disk. A few outlying test runs recorded a large amount of data being
read, but the majority of the runs did not register any. It was hypothesised
that the files being read were being cached into memory by the operating
system, this meant they were not being read from disk each time. The large
outlying values were thought to be related to the Java VM performing an
unknown function, as there was no function in any of the programs that
would require that amount of data. It was expected to at least see the
performance file being read in at the beginning of phase three. Due to the
inaccuracy of the data, graphs were not created.

Disk Usage Impact The data recorded for disk usage was what was ex-
pected. The folder size only increased substantially during the recording

5.1. PERFORMANCE METRICS 89

phase, as the performance and snapshot file were written to disk. One in-
teresting point to note is the difference in the size of the performance.xml
file for each program. This file was written during the recording phase,
and was then read back in during the playback phase to provide the input
data. Therefore it can be theorised that when this file was larger it meant
that more input had been recorded. This provided a simple indicator of
how much interaction had occurred for that performance. The tables can
be seen in figures 5.5a, 5.5b and 5.5c.

Processor Usage Impact Processor usage was an important indicator to
see how the system was coping with the each programs workload and
how much more workload using the tool placed on the CPU. By looking at
the general trends of the charts shown in figures 5.6a, 5.6b and 5.6c, we can
see that both the normal and record mode tended to have the same amount
of CPU utilisation, while the playback mode placed a roughly 10% higher
load on the CPU. There were also spikes in the usage at the beginning
of the playback mode which were likely when the performance data was
first loaded and processed. It was expected that the record mode would
place more strain on the CPU, however this was proven wrong. It was
also expected that the playback mode would cause a slight increase, it was
not expect to be as high as the events are being feed directly into the MT4J
event system, skipping the processing of the raw input.

Memory Usage Impact Like with CPU usage the RAM usage was a good
indicator of the load a program was putting on the system. This can be
hard to gauge for a Java program, as the Java VM can cause a certain
amount of over head and accounts for some of the usage seen in the charts.
The charts are shown in figures 5.7a, 5.7b and 5.7c. We did observe a larger
amount of data being loaded into memory during the initial stage of the
playback mode. This was likely the performance data being read in and
processed into the Java scheduler as expected.

90 CHAPTER 5. EVALUATION

We can only speculate as to the slow increase of RAM usage over time.
One possibility is that it was the data from a large number of component
being created for the cursor trail. It was possible that the Java garbage col-
lector had not yet disposed of them properly. More tests would be need to
be performed to determine this as RAM usage during this mode is start-
ing to become excessive at over 10% of system memory. This may have
indicated the presence of a memory leak in the MTEA tool itself.

Time Impact The time data was was only very basic but provided in-
formation as to how the tests were performed. This is shown in tables
figures 5.8a, 5.8b and 5.8c. The playback mode is consistently longer than
the other two modes because there was a pause to load the program load
before the playback was started and then to ensure that the playback was
finished at the end. As a test automation tool was used to run every test
it was expected to see consistent times between the normal and record
mode, as well as between all of the playback modes. This was because the
same test automation file was used for each normal/record test pair, as
well a single file for each playback mode. By reusing the same input file
we aimed to reduce the anomalies that can be introduced if a user were to
perform the same tests.

5.1. PERFORMANCE METRICS 91

0 20 40 60 80 100 120

1
10

10
0

10
00

10
00

0

MT 3D Prototype Disk Write Comparison

Time (s)

D
is

k
W

rit
e

(K
b)

Normal Record Playback

(a) Multi-Touch 3D Prototype.

0 20 40 60 80 100 120

1
10

10
0

10
00

10
00

0

Multi−Touch Demo Disk Write Comparison

Time (s)

D
is

k
W

rit
e

(K
b)

Normal Record Playback

(b) Multi-Touch Demo

92 CHAPTER 5. EVALUATION

0 20 40 60 80 100 120

1
10

10
0

10
00

10
00

0
Slider Demo Disk Write Comparison

Time (s)

D
is

k
W

rit
e

(K
b)

Normal Record Playback

(c) Slider Demo

Figure 5.4: These charts display the accumulated amount of data written
to disk during each test phases. Note that a log scale has been used. The
large spike at the end of the record test indicates where the performance
snapshot was written to disk.

Multi-Touch 3D Prototype
Normal Record Playback

Before 20M 20M 21M
After 20M 30M 20M
mtexplorer.xml - 4.0K 4.0K
performances.xml - 608K 608K
timestamped.jar - 9.4M 9.4M

(a) Multi-Touch 3D Prototype.

Multi-Touch Demo
Normal Record Playback

Before 19M 19M 20M
After 19M 29M 20M
mtexplorer.xml - 4.0K 4.0K
performances.xml - 776K 776K
timestamped.jar - 9.4M 9.4M

(b) Multi-Touch Demo.

5.1. PERFORMANCE METRICS 93

Slider Demo
Normal Record Playback

Before 19M 19M 20M
After 19M 29M 20M
mtexplorer.xml - 4.0K 4.0K
performances.xml - 844K 844K
timestamped.jar - 9.4M 9.4M

(c) Slider Demo.

Figure 5.5: These tables show the average folder size before and after each
test run, along with sizes of some common file. We can see that all the
project increase by around 50% after a the recording test run. This is due
to the creation of a new snapshot file and the export of the input data.

94 CHAPTER 5. EVALUATION

0 20 40 60 80 100 120

60
70

80
90

10
0

11
0

12
0

Multi−Touch 3D Prototype CPU Comparison

Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

Normal Record Playback

(a) Multi-Touch 3D Prototype

0 20 40 60 80 100 120

60
70

80
90

10
0

11
0

12
0

Multi−Touch Demo CPU Comparison

Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

Normal Record Playback

(b) Multi-Touch Demo

5.1. PERFORMANCE METRICS 95

0 20 40 60 80 100 120

60
70

80
90

10
0

11
0

12
0

Slider Demo CPU Comparison

Time (s)

C
P

U
 U

til
iz

at
io

n
(%

)

Normal Record Playback

(c) Slider Demo.

Figure 5.6: These charts shows CPU usage for each of the three test phases.
While the information shown is volatile, we can see a clear trend of the
Normal and Recording mode having the same usage and the Performance
mode being on average 10% above these two.

0 20 40 60 80 100 120

0
2

4
6

8
10

12

MT 3D Prototype RAM Comparison

Time (s)

R
A

M
 U

til
iz

at
io

n
(%

)

Normal Record Playback

(a) Multi-Touch 3D Prototype.

96 CHAPTER 5. EVALUATION

0 20 40 60 80 100 120

0
2

4
6

8
10

12
Multi−Touch Demo RAM Comparison

Time (s)

R
A

M
 U

til
iz

at
io

n
(%

)

Normal Record Playback

(b) Multi-Touch Demo

0 20 40 60 80 100 120

0
2

4
6

8
10

12

Slider Demo RAM Comparison

Time (s)

R
A

M
 U

til
iz

at
io

n
(%

)

Normal Record Playback

(c) Slider Demo

Figure 5.7: These charts display the amount of RAM utilisation during
each of the test phases. The slow increase of usage over time could be a
potential problem for the MTEE tool.

5.1. PERFORMANCE METRICS 97

Multi-Touch 3D Prototype
Normal Record Playback

User 0m 30.667s 0m 30.253s 0m 39.710s
System 1m 16.333s 1m 15.917s 1m 24.130s
Total 1m 59.935 1m 59.822s 2m 19.246s

(a) Multi-Touch 3D Gesture prototype.

Multi-Touch Demo
Normal Record Playback

User 0m 53.460s 0m 53.840s 1m 34.877s
System 1m 5.177s 1m 6.117s 0m 42.230s
Total 2m 8.432s 2m 8.448s 2m 19.206s

(b) Multi-Touch Demo.

Slider Demo
Normal Record Playback

User 0m 23.253s 0m 24.471s 0m 50.387s
System 1m 25.913s 1m 26.753s 1m 18.290s
Total 2m 10.106s 2m 10.106s 2m 19.097s

(c) Slider Demo.

Figure 5.8: These tables show the average run time during each phase of
the performance test. The time indicate both the time the program spent
interacting wiht the user and interacting with the system.

5.1.6 Discussion

By returning to the non-functional requirements from section 2.4.2 we
could determine if the requirements could be met by the performance
data.

We could see from the CPU and RAM usage charts that system load
was not increased during the record mode, but did increase some what
during playback mode. This reasonably meets non-functional Require-

98 CHAPTER 5. EVALUATION

ment 1, as the user could use record mode with little impact on the pro-
gram to record their performance. During the playback of the performance
the system would handle all of the input so it would not matter as much
if the program was less responsive. We saw these same utilisation pat-
terns across all three test applications showing that the tool could scale
from small applications to at least medium sized ones, in the case of the
Multi-Touch 3D Gesture Prototype. This showed how the MTEE proto-
type meets Requirement 2.

Requirement 4 requires that an reasonable amount of disk space was
used by the tool. We could see from the disk usage tables that the JAR file
for each of the test phases, along with the total project sizes, are roughly
the same. This showed that tool had a small foot print relative to the
project size. The one area which could have been improved is with storing
a snapshot of the project as a JAR file. This increased most projects by 50%
of their disk usage and would only increase as more snapshots are created.
An alternative approach would be to look at packaging the users code via
a different method. This would remove the overhead present in every JAR
file and greatly reduced the size that needs to be stored. While we would
lose the portability of the JAR format it would not be an important factor
for the project, as it is unlikely the user will be moving the MTEE data and
snapshot JAR files around.

Requirement 5 could be gauged by looking at the CPU and RAM us-
age in the initial stages of the playback mode, along with the same data
at the end of the recording mode. These were the two positions where
the MTEA tool actually read or wrote data to disk. We could see from the
performance data that there were spikes in usage for both, but they were
short lived. The written data also showed that the tool was able to write all
the data for a performance and snapshot in a very short amount of time,
so would barely be noticeable to the user.

5.2. COGNITIVE WALKTHROUGH 99

5.2 Cognitive Walkthrough

A cognitive walkthrough is a type of formative evaluation [22], where in-
stead of having actual users test the system, the developers and designers
perform the tests themselves. The users are pulled from each persona and
their thought process represented by a number of questions, which are
used to evaluate each action that is performed. This allows each task to
be directly scrutinised so problems can be found with the interface and
how it works. A cognitive walkthrough is based on the assumption that a
user will explore the interface to learn how to use it. It is also intended for
first-time users of the system, which was ideal for evaluating this project.

Each task was completed by the evaluators as a series of actions they
performed in order. Each action did not represent a specific path, but
rather an end result or goal (e.g. Create a new file). This imitated the user
exploring the interface for the solution. The questions below were used
during each action to evaluate if the user was able to accurately complete
the goal for that action. The questions were designed to reflect the process
a user would follow when exploring the interface [66] [77].

Each action undertaken by the evaluators used these four questions:

• Will the user be trying to achieve the right effect?

• Will the user know the correct action is available?

• Will the user realise it is the correct action?

• If the correct action is taken, will the user understand the feedback
and recognise that progress is being made towards the goal?

The cognitive walkthrough provided a means for the evaluators to
imagine the behaviour of entire groups of users. This allowed many more
problems to be uncovered than if a single unique user had been used over
a single test session.

100 CHAPTER 5. EVALUATION

5.2.1 Task Analysis

In order to perform the cognitive walkthrough a series of task were chosen
for each user persona. The task needed to represent something the respec-
tive user would have performed, the idea being that the evaluators were
to take on the persona of that user and try to behave as that user would.
These task were designed based on the context scenarios designed for each
persona in chapter 2, section 2.3. 2

Each task provided an overall goal and the actions required for the user
to complete it. A list of optimal steps for each action were also supplied to
the evaluators. These steps represented the ideal path the user would dis-
cover when completing the goal. The evaluators should also know these
steps, as they were not judging their own ability to use the interface. The
primary interest was in finding what problems the user would encounter
and not how they would attempt to solve them [50].

Five evaluators were used to perform the coginitive walkthrough. All
five evaluators were members of a post-graduate Human Computer Inter-
action research group from Victoria University of Wellington.

Student Persona Task

In this task the user imported the MTEA tool into the mt4j-explorer sample
project and used it to create and examine the recorded gestures. This also
required activating the MTE perspective within Eclipse.

Action 1 Activate the MTEE perspective.

Step 1 Select the ’Open Perspective’ icon in the top right corner,
a menu will appear.

Step 2 Select ’Multi-Touch Explorer’ and press ’OK’.

2It should be noted the some of the tasks involved using the Eclipse interface. For
these sections only problems that were controllable by the MTEE project where

5.2. COGNITIVE WALKTHROUGH 101

Action 2 Import the MTEA tool into the Eclipse project.

Step 1 Right-click the project, a menu will appear.

Step 2 Enter the ’New’ option and select ’MTE Project’, the MTEE
Project Import Wizard window will appear.

Step 3 Select Browse, a file view of available projects will ap-
pear.

Step 4 Navigate the folder tree to find the correct projects start
file.

Step 5 Select the start file and select ’OK’.

Step 6 Select ’Finish’.

Action 3 Display the scene tree for the current project in the Component
View.

Step 1 Select the ’MTE Components’ tab on left-most panel.

Step 2 Expand the ’Multi-Touch Gesture Example Scene’ entry.

Action 4 Run a preview of component 120.

Step 1 Right-click the entry ’120: unnamed rectangle’, a menu
will appear.

Step 2 Select ’Preview’, the program will run.

Action 5 Interact with the program then save the recorded gesture infor-
mation.

Step 1 Drag, Rotate and Scale the highlighted component.

Step 2 Press the ’S’ keyboard key, a success message will appear
in the console output.

Step 3 Close the program by click the ’x’ icon in the top right
corner of the window.

102 CHAPTER 5. EVALUATION

Action 6 Examine the gesture data for the performance that was just recorded.

Step 1 Select the ’MTE Performances’ tab in the right-most pane.

Step 2 Select the ’Refresh’ option.

Step 3 Expand the most recent performance, then ’Multi-Touch
Gesture Example Scene’ entry, then ’120: unnamed rect-
angle’

Step 4 Expand the Drag, Scale or Rotate processors.

Professional Persona Task

As the student persona task above also covers scenario 1 to 3 of the profes-
sional persona these will be skipped. This then assumes the user has im-
port the MTEA tool, opened the MTE perspective and has both the Com-
ponents and Performances views ready to go. The goal for this task will
be for the user to make two different performances for their programs en-
tire scene, then play both of these performances back. It will also use the
mt4j-explorer project.

N.B. It is the intention that between the repetition of Action 1 and 2 that
the user would modify the behaviour of their code before creating another
performance. While the actual editing of the code falls out of the scope of
this cognitive walkthrough, this would still require that the user update
the data used for the MTE views.

Action 1 Launch a full preview of the project scene - update the project
data if necessary.

Step 1 If the program has been modified, launch the StartMT-
Explorer file through Eclipse.

Step 2 Looking at the Component View on the left-most panel.

Step 3 Right-click on the scene entry in the list, a menu will ap-
pear.

5.2. COGNITIVE WALKTHROUGH 103

Step 4 Select the ’Preview’ option, the program will launch.

Action 2 Save a gesture performance and then repeat from Action 1.

Step 1 Interact with a number of on screen components.

Step 2 Press the ’S’ keyboard key, a success message will appear
in the console.

Step 3 Close the program by click the ’x’ icon in the top right
corner of the window.

Step 4 Repeat from Action 1 Step 1 down to this point, then con-
tinue with Action 3.

Action 3 Examine the recorded performance in the Performances view.

Step 1 Select the ’MTE Performances’ tab in the right-most pane.

Step 2 Select the ’Refresh’ option.

Step 3 Expand each of the performances.

Action 4 Replay the earliest performance.

Step 1 Select the performance with the earliest time stamp.

Step 2 Right-click the performance, a menu will appear.

Step 3 Select the ’Replay’ option, the program will launch will
changes.

Step 4 Press the ’P’ keyboard key, the performance will begin
playback.

Step 5 When playback is finished, close the program by clicking
the ’x’ icon in the top right corner of the window.

Action 5 Replay the latest performance.

Step 1 Select the performance with the latest time stamp.

104 CHAPTER 5. EVALUATION

Step 2 Right-click the performance, a menu will appear.

Step 3 Select the ’Replay’ option, the program will launch will
changes.

Step 4 Press the ’P’ keyboard key, the performance will begin
playback.

Step 5 When playback is finished, close the program by clicking
the ’x’ icon in the top right corner of the window.

5.2.2 Walkthrough Results

When the cognitive walkthrough had been completed the problems were
collated and a severity level system was created to rank the problems that
were uncovered. Solutions to each problem were also proposed. The
severity of each problem was then used to determine which solutions
could take precedence should there be an overlap in functionality. This
create a number of goals for the development of the tool going forward
and are presented in the following chapter. The three severity levels have
been described here:

Severity 1 This level represented a major problem with how the project
was designed and could possibly halt the user’s progress. A
problem of this level could require a redesign to the way the
project functioned.

Severity 2 This level represented a less severe problem which would still
hinder a users progress. This type of problem would require a
small redesign to a particular function.

Severity 3 This level represented a minor problem which could briefly
confuse the user. This type of problem would either be left
or only require a minor change.

5.2. COGNITIVE WALKTHROUGH 105

Student Task Results

The problems presented here were uncovered during the evaluation of the
student persona’s tasks.

Action 1 Activate the MTEE perspective.

Problem 1 - Severity 3 Once the new perspective had been en-
abled the layout of the workspace changed. This indicated to
the user that they had performed the correct action, but they
were not presented with the new views immediately. Instead
a number of the standard Eclipse views were displayed by de-
fault. The new MTE views could then be accessed through tabs
in the workspace display.

This is only a severity 3, as the intended next step is that the
user would use the Eclipse Project Explorer view to import the
MTEA tool into their project. If the MTE Components view was
shown by default then this Project Explorer view would be hid-
den. Instead the MTE Performances view could be shown, as
this was laid out on a separate part of the workspace. Text could
be added to the blank performances view to prompt the user of
the next step.

Problem 2 - Severity 3 The icon used in the Eclipse perspective
list for the MTE perspective was not indicative of multi-touch.
A default icon was instead used. A newer icon which signified
multi-touch should instead be used. This would help the user
identify the correct perspective. This was ranked severity 3 as it
would be a minor cosmetic change.

Action 2 Import the MTEA tool into the Eclipse project.

106 CHAPTER 5. EVALUATION

Problem 1 - Severity 2 The task specifically said ’Import the
MTEA tool’ as this was closest to the technical action being per-
formed. This was not representative of how the user would view
the action. The user would would instead be looking to sim-
ply use the MTEA tool, and not import or create a new MTEE
project. In the evaluated version the correct action was located
under the ’New’ option in the menu. This menu was accessed by
right-clicking on an entry in the Project Explorer view. Neither
using the ’New’ option or the ’Import...’ option was intuitive
from a user’s point of view.

The best solution would to add a separate entry into the root of
the Project Explorer menu. The menu entry would be named
to best identify it with the MTEE project. This would provide a
obvious choice for the user, and a future extension point for any
other features that may be developed. As this change would
require a minor redesign of how the menu entry was structured
it was given severity of 2.

Problem 2 - Severity 3 As the Student user was very new to us-
ing MT4J they were not overly familiar with the MT4J start files.
These were require to start up an MT4J application and were re-
quired by the MTEA import wizard to generate the MTEE start
file. This meant the user had difficultly selecting the correct
file. This would cause the wizard to generate the file incorrectly,
achieving the wrong effect intended by the user.

More text should be added to the MTEE Import Wizard to indi-
cate what the start file should be. If the wrong file was used then
the generated files would fail to run, but not other harm was
done to the user’s project. The user was able to rerun the wizard
with the correct file to resolve the error. Due to these reasons
these problem is given a severity of 3.

5.2. COGNITIVE WALKTHROUGH 107

Problem 3 - Severity 3 After the user pressed ’Finish’ on the
MTEE Import Wizard a number of things happened in the back-
ground. The process was completed when the wizard dialog
window closed. A ’Build Successful’ message appeared in the
Eclipse console view. While the user realised that they had per-
formed the correct action by using the import wizard, there was
no other indication of what had been performed or what new
actions could be performed. The console output could easily be
obscured or hidden entirely if the user had changed the layout
of their workspace.

A message should be added after the wizard is finished to tell the
user that the process was successful. This message would also
prompt the user to explore the MTE Component view. As this is
only the addition of more information it has been given a sever-
ity of 3. While the import also made changes to the user’s project
by adding additional files, the user was not required to use these
files directly when operating the MTEA tool. This meant the so-
lution did not need to involve drawing the users attention to
these changes.

Action 3 Display the scene tree for the current project in the Component
View.

Problem 1 - Severity 2 When the user switched to the MTE
Component view the scene tree that was displayed was based
on which project they had selected in the Project Explorer view.
This was not obvious to the user and it made it easy for the user
to miss-click and select the wrong project. This would cause the
user to become confused when viewing the component tree.

Two possible solutions were developed. The more difficult so-
lution involved switching the project selection to use the cur-

108 CHAPTER 5. EVALUATION

rently active Java file in the editor view. This would make the be-
haviour consistent with how other views make their selections.
This would be sufficient for users that are familiar with Eclipse,
such as the target personas Tom and Harold.

A simpler solution would be to switch the position of the MTE
Component view and the MTE performance view. This would
allow the MTE Component view to be displayed as the user was
using the Project Explorer. This would allow the user to discover
how the view made its selection for themselves.

As the first solution would require a change to the way the MTE
Component view was programmed, this was given a severity of
2. Both solutions could be further appended by adding a label to
the MTE Component view which indicated the currently active
project.

Action 4 Run a preview of component 120.

Problem 1 - Severity 3 The user may not have known that the
correct action was available as it required that they right-click on
a specific component. If they were to select the wrong compo-
nent then they may perform the action incorrectly.

Using the right-click action to display a context menu was a stan-
dard operation amount user interfaces. It was felt that the user
would not have difficulty finding this option, however function-
ality could be improved by adding a default action via a double
click command. While the implementation of this feature would
be non-trivial, it was believed it would not hinder the operation
of the tool if it was not included. For that reason it was assigned
a severity of 3.

This change would benefit both of the MTE views. The MTE
Component default action would be to preview the selected com-

5.2. COGNITIVE WALKTHROUGH 109

ponent and the MTE Performances default action would be to
replay the selected performance.

Problem 2 - Severity 3 When a preview of a component was
run, that component would be highlighted in the program dis-
play. All of the other components were disabled and made trans-
parent. In the event that the colour used for highlighting was
similar to the colour of the background, or to the component it-
self, it would become difficult for the user to distinguish which
component was being previewed.

To help alleviate this the colour of the component would be in-
verted to better emphasis it. The background and disabled com-
ponent would be processed through an image filter to add such
effects as blurring or desaturation. This would help the user bet-
ter distinguish each component. As this problem only occurred
under specific circumstances it was given a severity of 3.

Action 5 Interact with the program then save the recorded gesture infor-
mation.

Problem 1 - Severity 2 When the program was running the
user did not know they had to press the ’S’ keyboard key to save
their performance as their was no indication of this. While the
use of the ’S’ key for saving is not uncommon, the user had no
way of discovering this short of trying every key.

This problem did not represent a problem with the function itself
as the key used was intuitive. This problem was instead caused
by lack of a user manual to explain how to use the project. While
the cognitive walkthrough emphasised the user exploring the
interface to find the solution, this problem presented the need
to also provide documentation. The solution then would be to

110 CHAPTER 5. EVALUATION

provide a smaller user manual to the user, explaining the various
functions of the tool. This would aid in reducing confusion for
any of the tasks. When a manual had been developed it would
be displayed in the editor view when the user first launches the
MTE perspective. As this problem uncovered a oversight in the
project it has been given a severity of 2.

A further suggestion was to change the key to a combination
such as ’Ctrl + S’. It was felt that this was a more standard com-
bination for the save command and would be less prone to acci-
dental execution.

Problem 2 - Severity 2 When the ’S’ key was used to save a
performance only a small amount of feedback was provided in
the Eclipse console view. This would easily be obscured or en-
tirely missed by the user. This would cause undesired results, as
the user would attempt to save the performance multiple times
or forgo creating a recording entirely.

To solve this a message box would appear when the performance
had been saved correctly. This would detail what had been saved
and provide the user with information on how to access the per-
formance. Due to the unintended side affects of these problem it
has been given a severity of 2.

Problem 3 - Severity 1 As the preview mode disabled all but
the selected component, it would end up disabling controls used
to close the program. If the user was running in a windowed
mode then they were able to close the program with the standard
window controls. However, if the user ran the project in full
screen mode, they would become locked into the program. This
would then require system intervention to stop the program.

5.2. COGNITIVE WALKTHROUGH 111

To solve this a dedicated quit command would be added to the
MTEA tool. This would use the ’Ctrl + Q’ key combination to
close the program. This problem represented a major oversight
into how the user’s programs were handled. While the solution
would not require a major redesign of the project, the ramifica-
tions of not including it give it a severity level of 1.

Action 6 Examine the gesture data for the performance that was just recorded.

Problem 1 - Severity 3 After the user had recorded a perfor-
mance and switched to the MTE Performances view they were
forced to click the refresh button. If the user did not then the
view was either be blank, or not up to date with the latest record-
ing. This was a problem as the user would assume that they had
failed to save their performance.

A solution to this problem would be to monitor the performance
data file for changes and update the view when they occurred.
This would require a major change to the functionality of the
view to add the file watching functionality. As this is a major
change that is not crucial to the operation of the tool, it was felt
that it would be unnecessary at this time. Instead it was assumed
that having the refresh option available indicated to the user that
this was the expected action. It was felt that the user would think
to perform this action before panicking. For these reasons this
problem was given a severity of 3.

Problem 2 - Severity 3 When the user expanded the data in the
performance view, they were required to expand down at least
four or five nodes to get to to get to where the data for a partic-
ular component was. While the path to locating this data was
intuitive, as they had an understanding of how the components

112 CHAPTER 5. EVALUATION

were structured, it was time consuming to access the data. This
made the data less enticing.

The best solution would be to have a separate tree for each per-
formance node, that only listed the components that actually
recorded data. This would not be nested, as they are in the scene
tree, but instead each component would be displayed at the top
level. This would only require the user expand the node of the
component they wanted to view. As this would only be a change
in the way the data was displayed it was assigned a severity of
3.

Professional Task Results

The problems presented here were uncovered during the evaluation of the
professional persona’s tasks.

Action 1 Launch a full preview of the project scene - after having made
changes to the scene.

Problem 1 - Severity 1 The data file used by the MTE Com-
ponent view is only updated every time the MTEA tool is run.
This meant that if a user was to make a change to their project it
would make that file obsolete. The user was required to run the
project directly from the MTEE start file to regenerate the data.
An error would occur when the user attempted to run a preview
on a component that no longer existed if they had not performed
this step.

This problem was given a severity of 1 as it represented a major
oversight to functionality of the MTE Component view. It was
never intended for the user to interact with the MTEE start file
at any time and this problem would stop the users ability to use
the MTE Component view altogether.

5.2. COGNITIVE WALKTHROUGH 113

To rectify this problem the refresh button on the MTE compo-
nent view would be changed to include the update functional-
ity. This would run the program to generate the new data file,
then refresh the information shown in the view. While this so-
lution would not stop the user from attempting to run their pro-
gram with an obsolete data file, it would provide them with a
reasonable means to update this data. To help remind the user
to update their data file, a time stamp of the last update would
be displayed. This would allow the user to assess when they
last made changes, if those changes would affect the component
structure and then update accordingly.

An alternative that was considered would be to monitor the en-
tire project for changes and update the component data file as
they occurred. This would be a cumbersome solution, as even a
simple change would force a refresh of the data. It was felt that
such a solution would reduce the performance of the tool and
frustrate the users, so instead the previous solution was deemed
best.

Action 4 Replay the earliest performance.

Problem 1 - Severity 2 After they user had launched their pro-
gram in replay mode the user was required to push the ’P’ key-
board key. There was no indication that this key would be re-
quired to begin the performance.

This problem fell in line with the problems found during the stu-
dent task. In particular the indication to use the ’S’ key to save a
performance. The same solution would be used with this prob-
lem, including the suggest to use a key modifier. This would
change the replay to require the ’Ctrl + P’ key combination. As
such it receives the same severity of 2.

114 CHAPTER 5. EVALUATION

Another solution would be to remove the requirement of press-
ing a key altogether. Instead the performance would be launched
as soon as the program was loaded. While this was a valid so-
lution, it was felt that this removed control from the user and
there were situations where the user may desire a delay before
playback. Such situations could include the playback to two per-
formances at the same time, side-by-side.

Problem 2 - Severity 3 When a playback was underway, there
was no timing indicator as to when the playback would be fin-
ished. As the playback happened in real time, any pauses in this
playback would cause the user to think it had finished and that
they should continue with their next action. This would cause
the user to miss some parts of the performance.

To solve this, a sound would be played to indicate the begin-
ning and end of the playback. While this would require a minor
change to the playback functionality, it has been given a severity
of 3 to indicate it’s mostly cosmetic nature.

Chapter 6

Summary

Once the evaluation was complete it was possible to assess if the design
and implementation of the project had meet the original goals and require-
ments from section 2.4. The performance metrics were used to determine
if the non-functional requirements had been meet, and the feasibility of
the whole project. The cognitive walkthrough helped to validate if the
persona scenarios were possible and if the designs had been met correctly
by the implementation.

6.1 Performance Metrics

By using the performance metric data it was possible to show that 4 of
the 5 non-functional requirements had been met by the project. While the
status of these requirements could change as the MTEA tool changes, it
was possible to evaluate there progress to better ensure they continue to
be met in the future. Requirement 3 was not discussed here, as this re-
quirement concerned data validation and could not be evaluated through
performance metrics but through implementation instead. Meeting this
requirement was discussed in Chapter 3, section 3.2.4.

115

116 CHAPTER 6. SUMMARY

Requirement 1 This requirement was best measured via the CPU and
RAM usage metrics. It was found that using the tool in recording mode
did not add any additional strain on either of these resources. This was
an improvement from the expectations, where it was assumed that the
recording would increase the CPU due to the tool processing every ges-
ture. The RAM usage was also expected to show a larger increase, due to
the gesture data being accumulated and stored in memory. Both of these
assumptions were proved false, with the CPU usage roughly the same and
only a slight increase in memory usage over time. It was believed that this
performance improvement related to the proper use of the MT4J listeners
and processor, so that the data could be gathered as efficiently as possible.

The playback mode was a different story; while it was also expect for
there to be a slight increase in CPU and RAM usage, they were not ex-
pected to be as large as shown. The CPU usage was at most 10% higher
than when running the program in normal or recording mode. The RAM
usage showed that the up to five times the amount of RAM was being
used in the playback mode. This was very unexpected and could indicate
a memory leak in the design of the playback mode. Possible culprits could
the creation of objects to represent the cursor trail or how objects are stored
and scheduled using the Java timer. More extensive testing would need to
be done to properly determine the cause of this problem and would be a
priority for the project going forward.

While it was found that the recording mode had meet the performance
requirements, the playback mode was also found to be perfectly respon-
sive from the user point of you. For these reasons it was believe that the re-
quirement had not been violated at that stage. A requirement such as that
could never be met entirely, instead the use of the repeated performance
evaluation would serve as a means to continually monitor and tweak this
during the future of the project.

6.1. PERFORMANCE METRICS 117

Requirement 2 This requirement required the evaluation of a number
of different applications that represented different complexity levels. To
evaluate this the three programs were chosen based on complexity. The
slider demo represented the most basic application, a single control built o
top of the MT4J framework. The multi-touch demo provided a multitude
of possible actions to demonstrate all of the actions, it was chosen to repre-
sent a more complex user interface built with MT4J. Finally, the 3D gesture
prototype was chosen as it was a real application which include a user in-
terface and the underlying functionality of a real application. By compar-
ing the metric results across these three program its possible to determine
that the MTEA tool did scale well across a range of programs. RAM usage
for each program was comparable, with normal and recording mode re-
quiring around 3% and he same memory increase during playback mode
seen in all programs. CPU usage was particularly interesting as the multi-
touch utilised the CPU more on average than the 3D gesture prototype.
The remaining metrics did not show a trend in usage that followed the
level of complexity in the program. For these reasons it was believed that
this requirement had been met.

Requirement 4 Evaluating this requirement relied solely on the disk us-
age metric as it compared the before and after file sizes. It was interesting
to see that the JAR files that was created after the recording mode run is
close to the same size for each program. This was because despite the dif-
ference in the code based size for each project, the standard libraries that
Java includes in all of the JAR files, plus the MT4J framework make up the
vast majority of the space. Files such as images and sounds files used by
a project had not been included. This meant that even a large project may
not see an increase in the size of a JAR.

To further improve on this a method of storing only the compiled class
files for a project would be investigated. As the snapshot JAR file are not
intended to be portable and distributed by the user it would not require

118 CHAPTER 6. SUMMARY

the internal version of the Java library, or the MT4J framework. These
would instead be linked at runtime from the main project itself. This
would drastically cut down the size of a snapshot and help to better meet
the requirement in the future.

Requirement 5 Requirement 5 was a multi part requirement that was
harder to evaluate. The first part involved evaluating that the program
was not waiting on disk I/O to import and export data. Due to a problem
in the way the data for disk reads was measured it could not be used to
evaluate how quickly the program would read in data. This was instead
approximated by looking at the file sizes of the data that was known to
be read in. In particular the performances data file would be read in as
a whole, by both the recording and performances mode. This file was an
average of 742 kilobytes across all programs for a single performance. This
would increase as more performances were recorded. We knew from the
system information that the hard drive can read data at a speed of 131.36
Megabytes a sec, which meant a performance file would need to become
substantially large before disk I/O became a problem. Any performances
issues are then more likely to occur when processing this data file as it
would need to be held in memory.

The correct data for disk writes was able to be measure and it shows
that there is no issue with recording a performance to disk and making a
copy of the snapshot JAR file. As was shown by the charts, the spike in
data written happens over a single data point and would not be noticeable
by the user.

6.2 Cognitive Walkthrough

The cognitive walkthrough used experts to evaluate both the user interface
for the MTEA tool, and also the functionality of the tool. The tasks used
were designed based on the scenarios developed for each persona. This

6.2. COGNITIVE WALKTHROUGH 119

provided a proxy method of evaluating how a group of users would per-
form using the tool. The results uncovered a number of severe problems
which needed to be addressed with urgency. While solutions were sug-
gested for each individual problem, making the most efficient improve-
ments required these solutions be collated into work plan. This work plan
is presented here:

6.2.1 Proposed Changes

Change 1 The functionality of the refresh button on the MTE Component
view would be changed to allow the user to properly update
the data shown in the view. The new function would rerun the
MTEE build file to create and up-to-date snapshot of the project.
It would also rerun the project with the ’-X’ command line flag
to run the MTEA tool, generate the updated component data
file, then close the application. This change would leave it up
to the user to update the data as needed. To help the user better
assess when an update would be required a label showing the
last update time will be added to the component view.

Change 2 The keyboard keys used to interface with the MTEA tool would
be standardised to use the ’Ctrl’ key modifier. This would make
the combinations more compatible with how other applications
handle them. Using a key modifier also helps to bring down the
occurrence of miss-pressed keys. This change would include
the addition of the ’Ctrl + Q’ combination to close the program
running the MTEA tool.

Change 3 The position of the menu entry for launching the MTEE import
wizard will be moved. A separate MTEE project sub-menu will
be added to the root Project Explorer menu. The entry to launch
the import wizard will be moved to this sub-menu. The name
of the entry will be changed to ’Initialise MTEA Tool’. This will

120 CHAPTER 6. SUMMARY

provide a clear path to the user and and extension point for
further functionality to the tool.

Change 4 The layout of the workspace would be changed to display more
information to the user and work more efficiently with the work
flow of the tool. First the position of the MTE views would be
switched to be position the MTE Component view on the right
of the workspace, with the MTE performances view on the left.
Then the MTE components view would be brought to the front
of its position instead of the Eclipse Outline view. Finally, la-
bels would be added to both the project and component view
indicating which project is current selected.

Change 5 When the MTE perspective is first activated a new view would
fill the editor position on the workspace. The basis for this view
would be to contain documentation for how to use the tool.
This documentation would cover how to import the tool into an
existing project, how to operate the tool the key combinations,
and how the data in the each of the views are displayed. Other
visual aides such as arrows would be used to indicate positions
of the new views which have been added to the workspace.
This change would solve a number of problems by helping the
user to identify the correct steps when using the tool, and also
provide feedback that the tool has been installed correctly.

To better imagine these changes figure 3.1 was modified to show the
new layout. This is shown in figure 6.1.

6.3 Future of the Project

Both the performance evaluation and cognitive walkthrough uncovered a
number of problems that will need to be solved to move the project for-
ward.

6.4. CONTRIBUTIONS 121

6.3.1 Improvements

While the proposed changes represented the immediate action that the
project needed to take, both the feature design and evaluation presented a
number of other issues which would eventually be addressed. These take
the form of both redesigns to the project as well as future functionality.

• A redesign of the icons and labels used in the project. This will help
the user better distinguish information in the MTE views and help
maintain consistency with the naming of views and the perspective.

• Further performance analysis to find the cause of the RAM usage in
playback mode and to determine its cause. If a memory leak is found
then it will be fixed, otherwise solutions for lowering the memory
will be explored.

• An alternate method of storing a project snapshot so that only the
class files are stored, not the libraries. This would either continue
using the JAR archive format or another option of storing and using
the snapshot will be explored.

• A method of measuring time when using the playback mode. This
will either involve an overlay on the users program or other types of
feedback such as sound.

• The ability to use a video with an overlay mode to create a static
replay of a performance. The idea would be to allow the user to
move backward and forward in time to better assess the behaviour
of their program.

6.4 Contributions

The completion of the Multi-Touch Explorer Environment (MTEE) resulted
in three contributions:

122 CHAPTER 6. SUMMARY

• The design of a tool to record and replay user interactions with a
multi-touch program. This included the analysis and development
of two primary personas related to the target users.

• A proof-of-concept prototype for the MTEE. The prototype integrates
the MTEE into the Eclipse IDE and focused on projects using the
Multi-Touch for Java framework. The MTEE prototype consists of
two parts, the plugin for the Eclispe IDE and the Multi-Touch Ex-
plorer Analysis (MTEA) tool.

• An evaluation of the Multi-Touch Explorer Environment. This in-
cluded a set of performance metrics and test suite to allow continual
testing of the non-function requirements. It also included a Cogni-
tive Walkthrough [22] using expert users, resulting in a list of changes
and improvements that can be made to the project going forward.

6.4. CONTRIBUTIONS 123

Fi
gu

re
6.

1:
Th

e
Ec

lip
se

w
or

ks
pa

ce
la

yo
ut

w
it

h
ch

an
ge

s.

124 CHAPTER 6. SUMMARY

Bibliography

[1] Computer language benchmarks game - which programs are
fastest. http://benchmarksgame.alioth.debian.org/u32q/
which-programs-are-fastest.php?gcc=on&gpp=on&java=

on&csharp=on&python3=on&jruby=on&php=on&perl=on.
[Online; accessed 30-March-2013].

[2] Kivy. http://kivy.org/#home. [Online; accessed 31-March-
2013].

[3] Mono - cross platform, open source ,net development framework.
http://www.mono-project.com/Main_Page. [Online; accessed
31-March-2013].

[4] Algorithmic performance comparison between c, c++, java and
c# programming languages. Tech. rep., Cherrystone Software
Labs, 2010. http://www.cherrystonesoftware.com/doc/

AlgorithmicPerformance.pdf.

[5] Pydev. http://pydev.org/, March 2012. [Online; accessed 30-
March-2013].

[6] A., G. J. . J. B. . S. G. . B. G. . B. The java language specifi-
cation. http://docs.oracle.com/javase/specs/jls/se7/

html/index.html, February 2013. [Online; accessed 30-March-
2013].

125

http://benchmarksgame.alioth.debian.org/u32q/which-programs-are-fastest.php?gcc=on&gpp=on&java=on&csharp=on&python3=on&jruby=on&php=on&perl=on
http://benchmarksgame.alioth.debian.org/u32q/which-programs-are-fastest.php?gcc=on&gpp=on&java=on&csharp=on&python3=on&jruby=on&php=on&perl=on
http://benchmarksgame.alioth.debian.org/u32q/which-programs-are-fastest.php?gcc=on&gpp=on&java=on&csharp=on&python3=on&jruby=on&php=on&perl=on
http://kivy.org/#home
http://www.mono-project.com/Main_Page
http://www.cherrystonesoftware.com/doc/AlgorithmicPerformance.pdf
http://www.cherrystonesoftware.com/doc/AlgorithmicPerformance.pdf
http://pydev.org/
http://docs.oracle.com/javase/specs/jls/se7/html/index.html
http://docs.oracle.com/javase/specs/jls/se7/html/index.html

126 BIBLIOGRAPHY

[7] ADOBE SYSTEMS INC. Adobe captivate 6. http://www.adobe.

com/nz/products/captivate.html. [Online; accessed 8-April-
2013].

[8] AMSDEN, J. Levels of integration - five ways you can inte-
grate with the eclipse platform. http://www.eclipse.

org/articles/Article-Levels-Of-Integration/

levels-of-integration.html, March 2001. [Online; accessed
8-April-2013].

[9] AMSDEN, J., AND IRVINE, A. Your first plug-in - develop-
ing the eclipse hello world plug-in. http://www.eclipse.

org/articles/Article-Your%20First%20Plug-in/

YourFirstPlugin.html, January 2003. [Online; accessed 1-
April-2013].

[10] ANISZCZYK, C. Plug-in development 101, part 1: The funda-
mentals. http://www.ibm.com/developerworks/library/

os-eclipse-plugindev1/, Febraury 2008. [Online; accessed 1-
April-2013].

[11] APACHE SOFTWARE FOUNDATION. Abache subversion. http://

subversion.apache.org/. [Online; accessed 8-April-2013].

[12] APPLE INC. Apple reinvents the phone with iphone.
http://www.apple.com/pr/library/2007/01/

09Apple-Reinvents-the-Phone-with-iPhone.html, Jan-
uary 2007. [Online; accessed 5-April-2013].

[13] APPLE INC. Apple announces iphone 2.0 software
beta. http://www.apple.com/pr/library/2008/03/

06Apple-Announces-iPhone-2-0-Software-Beta.html,
March 2008. [Online; accessed 30-March-2013].

http://www.adobe.com/nz/products/captivate.html
http://www.adobe.com/nz/products/captivate.html
http://www.eclipse.org/articles/Article-Levels-Of-Integration/levels-of-integration.html
http://www.eclipse.org/articles/Article-Levels-Of-Integration/levels-of-integration.html
http://www.eclipse.org/articles/Article-Levels-Of-Integration/levels-of-integration.html
http://www.eclipse.org/articles/Article-Your%20First%20Plug-in/YourFirstPlugin.html
http://www.eclipse.org/articles/Article-Your%20First%20Plug-in/YourFirstPlugin.html
http://www.eclipse.org/articles/Article-Your%20First%20Plug-in/YourFirstPlugin.html
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/
http://www.ibm.com/developerworks/library/os-eclipse-plugindev1/
http://subversion.apache.org/
http://subversion.apache.org/
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2008/03/06Apple-Announces-iPhone-2-0-Software-Beta.html
http://www.apple.com/pr/library/2008/03/06Apple-Announces-iPhone-2-0-Software-Beta.html

BIBLIOGRAPHY 127

[14] ARTHORNE, J., AND LAFFRA, C. Implementing support for your
own language. http://wiki.eclipse.org/The_Official_

Eclipse_FAQs#Implementing_Support_for_Your_Own_

Language. [Online; accessed 30-March-2013].

[15] BEEPA PTY LTD. Fraps - real-time video capture & benchmarking.
http://www.fraps.com/. [Online; accessed 8-April-2013].

[16] BEYER, D., AND HASSAN, A. Animated visualization of software his-
tory using evolution storyboards. In Reverse Engineering, 2006. WCRE
’06. 13th Working Conference on (2006), pp. 199–210.

[17] BOWEN, K., AND PISTILLI, M. D. Student prefences for mobile app
usage (research bulletin). http://www.educause.edu/ecar.

[18] BRAGDON, A., REISS, S. P., ZELEZNIK, R., KARUMURI, S., CHE-
UNG, W., KAPLAN, J., COLEMAN, C., ADEPUTRA, F., AND LAVI-
OLA, JR., J. J. Code bubbles: rethinking the user interface paradigm
of integrated development environments. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1
(New York, NY, USA, 2010), ICSE ’10, ACM, pp. 455–464.

[19] CAMPBELL, C. E., EISENBERG, A., AND MELTON, J. Xml schema.
SIGMOD Rec. 32, 2 (June 2003), 96–101.

[20] CAMSTUDIO.ORG. Camstudio - free streaming video software. http:
//camstudio.org/. [Online; accessed 8-April-2013].

[21] CHAZARAIN, G. Iotop. http://guichaz.free.fr/iotop/. [On-
line; accessed 28-March-2013].

[22] COOPER, A., REIMANN, R., AND CRONIN, D. About Face 3: The Es-
sentials of Interaction Design, 3rd ed. Wiley, May 2007.

[23] COPE, D. Navigating 3D Worlds via 2D Multi-Touch Interfaces. Tech.
rep., Victoria University of Wellington, 2011.

http://wiki.eclipse.org/The_Official_Eclipse_FAQs#Implementing_Support_for_Your_Own_Language
http://wiki.eclipse.org/The_Official_Eclipse_FAQs#Implementing_Support_for_Your_Own_Language
http://wiki.eclipse.org/The_Official_Eclipse_FAQs#Implementing_Support_for_Your_Own_Language
http://www.fraps.com/
http://www.educause.edu/ecar
http://camstudio.org/
http://camstudio.org/
http://guichaz.free.fr/iotop/

128 BIBLIOGRAPHY

[24] DAHLSTROM, E., DZIUBAN, AND WALKER, J. Ecar study of under-
graduate students and information technology. EDUCASE. http:

//www.educause.edu/ecar.

[25] DELINE, R., AND ROWAN, K. Code canvas: zooming towards bet-
ter development environments. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2 (New York,
NY, USA, 2010), ICSE ’10, ACM, pp. 207–210.

[26] ECHTLER, F. Tisch - tangible interactive surfaces for collabora-
tion between humans. http://tisch.sourceforge.net/#ack,
September 2010. [Online; accessed 31-March-2013].

[27] ECLIPSE FOUNDATION. About the eclipse foundation. http://www.
eclipse.org/org/#history. [Online; accessed 30-March-2013].

[28] ECLIPSE FOUNDATION. Rich client platform faq. http:

//wiki.eclipse.org/RCP_FAQ#What_is_the_Eclipse_

Rich_Client_Platform.3F. [Online; accessed 1-April-2013].

[29] ECLIPSE FOUNDATION. Eclipse downloads. , March 2012. [Online;
accessed 30-March-2013].

[30] ELBAUM, S., KARRE, S., AND ROTHERMEL, G. Improving web ap-
plication testing with user session data. In Proceedings of the 25th In-
ternational Conference on Software Engineering (Washington, DC, USA,
2003), ICSE ’03, IEEE Computer Society, pp. 49–59.

[31] FREE SOFTWARE FOUNDATION, I. Bash reference manual.
http://www.gnu.org/software/bash/manual/bashref.

html#index-time, 2008. [Online; accessed 28-March-2013].

[32] FREE SOFTWARE FOUNDATION, I. Gnu xnee. http://www.gnu.

org/software/xnee/, January 2010. [Online; accessed 28-March-
2013].

http://www.educause.edu/ecar
http://www.educause.edu/ecar
http://tisch.sourceforge.net/#ack
http://www.eclipse.org/org/#history
http://www.eclipse.org/org/#history
http://wiki.eclipse.org/RCP_FAQ#What_is_the_Eclipse_Rich_Client_Platform.3F
http://wiki.eclipse.org/RCP_FAQ#What_is_the_Eclipse_Rich_Client_Platform.3F
http://wiki.eclipse.org/RCP_FAQ#What_is_the_Eclipse_Rich_Client_Platform.3F
http://www.gnu.org/software/bash/manual/bashref.html#index-time
http://www.gnu.org/software/bash/manual/bashref.html#index-time
http://www.gnu.org/software/xnee/
http://www.gnu.org/software/xnee/

BIBLIOGRAPHY 129

[33] FREE SOFTWARE FOUNDATION, I. Coreutils - gnu core utilities.
http://www.gnu.org/software/coreutils, March 2013. [On-
line; accessed 28-March-2013].

[34] FREE SOFTWARE FOUNDATION, I. du: Estimate file space us-
age. http://www.gnu.org/software/coreutils/manual/

coreutils.html#du-invocation, 2013. [Online; accessed 28-
March-2013].

[35] GIT. git –distributed-even-if-your-workflow-isnt. http://

git-scm.com/. [Online; accessed 8-April-2013].

[36] GOOGLE INC. Get the android sdk. http://developer.

android.com/sdk/index.html. [Online; accessed 30-March-
2013].

[37] GREENBERG, S., AND BUXTON, B. Usability evaluation considered
harmful (some of the time). In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (New York, NY, USA, 2008), CHI
’08, ACM, pp. 111–120.

[38] HANSEN, T. E., HOURCADE, J. P., VIRBEL, M., PATALI, S., AND

SERRA, T. Pymt: a post-wimp multi-touch user interface toolkit. In
Proceedings of the ACM International Conference on Interactive Tabletops
and Surfaces (New York, NY, USA, 2009), ITS ’09, ACM, pp. 17–24.

[39] HEJLSBERG, A., TORGERSEN, M., WILTAMUTH, S., AND GOLDE,
P. C# Programming Language, 4th ed. Addison-Wesley Professional,
2010.

[40] IOWA STATE UNIVERSITY. Sparsh ui - the power of touch. . [Online;
accessed 31-March-2013].

[41] ISO. Information technology – programming languages – c++. ISO
14882-2011, International Organization for Standardization, Geneva,
Switzerland, 2011.

http://www.gnu.org/software/coreutils
http://www.gnu.org/software/coreutils/manual/coreutils.html#du-invocation
http://www.gnu.org/software/coreutils/manual/coreutils.html#du-invocation
http://git-scm.com/
http://git-scm.com/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

130 BIBLIOGRAPHY

[42] KUHLMAN, D. A python book: Beginning python, advanced python,
and python exercises. http://cutter.rexx.com/˜dkuhlman/

python_book_01.html#part-1-beginning-python, April
2002. [Online; accessed 31-March-2013].

[43] LA TROBE UNIVERSITY & UNIVERSITY OF KENT. Bluej - the interac-
tive java environment. http://www.bluej.org. [Online; accessed
30-March-2013].

[44] LANGPOP.COM. Langpop.com - programming language popularity.
langpop.com, April 2011. [Online; accessed 30-March-2013].

[45] LANZA, M. The evolution matrix: recovering software evolution us-
ing software visualization techniques. In Proceedings of the 4th Inter-
national Workshop on Principles of Software Evolution (New York, NY,
USA, 2001), IWPSE ’01, ACM, pp. 37–42.

[46] LANZA, M., AND DUCASSE, S. Understanding software evolution
using a combination of software visualization and software met-
rics. In In Proceedings of LMO 2002 (Langages et Modles Objets (2002),
Lavoisier, pp. 135–149.

[47] LAUFS, U., RUFF, C., AND ZIBUSCHKA, J. MT4j - A Cross-platform
Multi-touch Development Framework. ArXiv e-prints (Dec. 2010).

[48] LEE, Y., AND YANG, J. Visualization of software evolution. In Pro-
ceedings of the International Conference on Software Engineering Research
and Practice (SERP) (2008), pp. 343–348.

[49] LEUNG, C. Black-sun - eclipse plugins. http://black-sun.

sourceforge.net/, 2006. [Online; accessed 30-March-2013].

[50] LEWIS, C., RIEMAN, J., AND BLUSTEIN, A. J. Task-Centered User
Interface Design: A Practical Introduction, 1993.

http://cutter.rexx.com/~dkuhlman/python_book_01.html#part-1-beginning-python
http://cutter.rexx.com/~dkuhlman/python_book_01.html#part-1-beginning-python
http://www.bluej.org
langpop.com
http://black-sun.sourceforge.net/
http://black-sun.sourceforge.net/

BIBLIOGRAPHY 131

[51] LINTERN, R., MICHAUD, J., STOREY, M.-A., AND WU, X. Plugging-
in visualization: experiences integrating a visualization tool with
eclipse. In Proceedings of the 2003 ACM symposium on Software visu-
alization (New York, NY, USA, 2003), SoftVis ’03, ACM, pp. 47–ff.

[52] MALLET, C. Autohotkey - automation. hotkeys. scripting. http:

//www.autohotkey.com/. [Online; accessed 8-April-2013].

[53] MCCOWN, F., AND FOUST, G. Comp 475 - mobile com-
puting. https://www.harding.edu/fmccown/classes/

comp475-s10/, 2010. [Online; accessed 28-March-2013].

[54] MICROSOFT. Extend visual studio. http://msdn.microsoft.

com/en-US/vstudio/ff718165.aspx. [Online; accessed 31-
March-2013].

[55] MICROSOFT. Msdn - microsoft surface 2.0 sdk. http://msdn.

microsoft.com/en-us/library/ff727815.aspx. [Online; ac-
cessed 31-March-2013].

[56] MICROSOFT. Msdn - visual studio. http://msdn.microsoft.

com/en-us/library/52f3sw5c(v=vs.100).aspx. [Online; ac-
cessed 31-March-2013].

[57] MICROSOFT. Microsoft launches new product category: Surface
computing comes to life in restaurants, hotels, retail locations
and casino resorts. http://www.microsoft.com/en-us/news/
press/2007/may07/05-29mssurfacepr.aspx, May 2007. [On-
line; accessed 5-April-2013].

[58] NUI GROUP. Downloads - mt4j latest release. http://www.mt4j.
org/mediawiki/index.php/Downloads. [Online; accessed 30-
March-2013].

http://www.autohotkey.com/
http://www.autohotkey.com/
https://www.harding.edu/fmccown/classes/comp475-s10/
https://www.harding.edu/fmccown/classes/comp475-s10/
http://msdn.microsoft.com/en-US/vstudio/ff718165.aspx
http://msdn.microsoft.com/en-US/vstudio/ff718165.aspx
http://msdn.microsoft.com/en-us/library/ff727815.aspx
http://msdn.microsoft.com/en-us/library/ff727815.aspx
http://msdn.microsoft.com/en-us/library/52f3sw5c(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/52f3sw5c(v=vs.100).aspx
http://www.microsoft.com/en-us/news/press/2007/may07/05-29mssurfacepr.aspx
http://www.microsoft.com/en-us/news/press/2007/may07/05-29mssurfacepr.aspx
http://www.mt4j.org/mediawiki/index.php/Downloads
http://www.mt4j.org/mediawiki/index.php/Downloads

132 BIBLIOGRAPHY

[59] NUI GROUP. Installation - environment installation. http://www.
mt4j.org/mediawiki/index.php/Installation. [Online; ac-
cessed 30-March-2013].

[60] NUI GROUP. Mt4j - multitouch for java. http://www.mt4j.org/
mediawiki/index.php/Main_Page. [Online; accessed 30-March-
2013].

[61] OBJECT TECHNOLOGY INTERNATIONL, INC. Eclipse platform tech-
incal overview. Tech. rep., February 2003.

[62] ORACLE. Java se downloads. http://www.oracle.com/

technetwork/java/javase/downloads/index.html. [On-
line; accessed 30-March-2013].

[63] PARLANTE, N. Cs193a android programming. http://www.

stanford.edu/class/cs193a/, 2011. [Online; accessed 28-
March-2013].

[64] Procps - the /proc file system utilities. http://procps.

sourceforge.net/index.html, May 2009. [Online; accessed 28-
March-2013].

[65] PYTHON SOFTWARE FOUNDATION. Python - about python. http:
//www.python.org/about/. [Online; accessed 31-March-2013].

[66] RIEMAN, J., FRANZKE, M., AND REDMILES, D. Usability evaluation
with the cognitive walkthrough. In Conference Companion on Human
Factors in Computing Systems (New York, NY, USA, 1995), CHI ’95,
ACM, pp. 387–388.

[67] SANDKLEF, H. Testing applications with xnee. Linux J. 2004, 117 (Jan.
2004), 5–.

http://www.mt4j.org/mediawiki/index.php/Installation
http://www.mt4j.org/mediawiki/index.php/Installation
http://www.mt4j.org/mediawiki/index.php/Main_Page
http://www.mt4j.org/mediawiki/index.php/Main_Page
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.stanford.edu/class/cs193a/
http://www.stanford.edu/class/cs193a/
http://procps.sourceforge.net/index.html
http://procps.sourceforge.net/index.html
http://www.python.org/about/
http://www.python.org/about/

BIBLIOGRAPHY 133

[68] SEARS, A., PLAISANT, C., AND SHNEIDERMAN, B. Advances in
human-computer interaction (vol. 3). Ablex Publishing Corp., Nor-
wood, NJ, USA, 1992, ch. A new era for high precision touchscreens,
pp. 1–33.

[69] SESTOFT, P. Numeric performance in c, c# and java. http://

www.itu.dk/˜sestoft/papers/numericperformance.pdf,
February 2010.

[70] SHU, E. Android market: a user-driven content distribution system.
http://android-developers.blogspot.co.nz/2008/08/

android-market-user-driven-content.html, August 2008.
[Online; accessed 30-March-2013].

[71] SLACK, J. M. System testing on the cheap. In 2010 Information Systems
Educators Conference Proceedings (2010), ISECON 2010.

[72] SMITH-ATAKAN, S. Human-Computer Interaction. Thomson Learning,
April 2007.

[73] TIOBE SOFTWARE. Tiobe programming community index for
march 2013. http://www.tiobe.com/index.php/content/

paperinfo/tpci/index.html, March 2013. [Online; accessed 30-
March-2013].

[74] UNIVERSITY OF TWENTE. mu3 - java mulit-touch framework.
https://code.google.com/p/mu3/. [Online; accessed 31-
March-2013].

[75] WARNER, J. C. top(1) - linux man page. http://linux.die.net/
man/1/top. [Online; accessed 28-March-2013].

[76] WELCH, I. Nwen304 - advanced network applications. http://

ecs.victoria.ac.nz/Courses/NWEN304_2013T1/WebHome,
2013. [Online; accessed 28-March-2013].

http://www.itu.dk/~sestoft/papers/numericperformance.pdf
http://www.itu.dk/~sestoft/papers/numericperformance.pdf
http://android-developers.blogspot.co.nz/2008/08/android-market-user-driven-content.html
http://android-developers.blogspot.co.nz/2008/08/android-market-user-driven-content.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://code.google.com/p/mu3/
http://linux.die.net/man/1/top
http://linux.die.net/man/1/top
http://ecs.victoria.ac.nz/Courses/NWEN304_2013T1/WebHome
http://ecs.victoria.ac.nz/Courses/NWEN304_2013T1/WebHome

134 BIBLIOGRAPHY

[77] WHARTON, C., RIEMAN, J., LEWIS, C., AND POLSON, P. Usability
inspection methods. John Wiley & Sons, Inc., New York, NY, USA,
1994, ch. The cognitive walkthrough method: a practitioner’s guide,
pp. 105–140.

[78] WIGDOR, D., WILLIAMS, S., CRONIN, M., LEVY, R., WHITE, K.,
MAZEEV, M., AND BENKO, H. Ripples: utilizing per-contact visu-
alizations to improve user interaction with touch displays. In Pro-
ceedings of the 22nd annual ACM symposium on User interface software
and technology (New York, NY, USA, 2009), UIST ’09, ACM, pp. 3–12.

[79] WISE, P. iotop(1) - linux man page. http://linux.die.net/

man/1/iotop. [Online; accessed 28-March-2013].

http://linux.die.net/man/1/iotop
http://linux.die.net/man/1/iotop

Appendix A

XML Data Schema

1 <?xml version="1.0"?>

2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

3 elementFormDefault="qualified">

4

5 <!--A root element so xml likes me-->

6 <xs:element name="sceneroot">

7 <xs:complexType>

8 <xs:sequence>

9 <xs:element ref="scene"

10 minOccurs="0" maxOccurs="unbounded"/>

11 </xs:sequence>

12 </xs:complexType>

13 </xs:element>

14

15 <!--A root element so xml likes me-->

16 <xs:element name="performanceroot">

17 <xs:complexType>

18 <xs:sequence>

19 <xs:element ref="performance"

20 minOccurs="0" maxOccurs="unbounded"/>

21 </xs:sequence>

22 </xs:complexType>

23 </xs:element>

24

135

136 APPENDIX A. XML DATA SCHEMA

25 <!--A scene element for an MTApplication-->

26 <xs:element name="scene">

27 <xs:complexType>

28 <xs:sequence>

29 <xs:element name="component" type="mtcomponent"

30 minOccurs="0" maxOccurs="unbounded"/>

31 </xs:sequence>

32 <xs:attribute name="name" type="xs:string" use="required"/>

33 </xs:complexType>

34 </xs:element>

35

36 <!--A performance element for an MTE recording-->

37 <xs:element name="performance">

38 <xs:complexType>

39 <xs:sequence>

40 <xs:element name="record" type="mtrecord" maxOccurs="1"/>

41 <xs:element ref="scene" maxOccurs="1"/>

42 </xs:sequence>

43 <xs:attribute name="name" type="xs:string" use="required"/>

44 <xs:attribute name="timestamp" type="xs:dateTime" use="required"/>

45 <xs:attribute name="componentID" type="xs:string" use="optional"/>

46 </xs:complexType>

47 </xs:element>

48

49 <!--An individual component inside a scene-->

50 <xs:complexType name="mtcomponent">

51 <xs:sequence>

52 <xs:element name="inputprocessor" type="mtinputprocessor"

53 minOccurs="0" maxOccurs="unbounded"/>

54 <xs:element name="component" type="mtcomponent"

55 minOccurs="0" maxOccurs="unbounded"/>

56 </xs:sequence>

57 <xs:attribute name="name" type="xs:string" use="required"/>

58 <xs:attribute name="id" type="xs:string" use="required"/>

59 </xs:complexType>

60

61 <!--An input processor for a particular gesture type in a component-->

62 <xs:complexType name="mtinputprocessor">

137

63 <xs:sequence>

64 <xs:element name="gesture" type="mtgesture"

65 minOccurs="0" maxOccurs="unbounded"/>

66 </xs:sequence>

67 <xs:attribute name="class" type="xs:string" use="required"/>

68 <xs:attribute name="name" type="xs:string" use="required"/>

69 </xs:complexType>

70

71 <!--A gesture that was performed on a component-->

72 <xs:complexType name="mtgesture">

73 <xs:sequence>

74 <xs:element name="event" type="mtevent"

75 minOccurs="0" maxOccurs="unbounded"/>

76 </xs:sequence>

77 <xs:attribute name="name" type="xs:string" use="required"/>

78 </xs:complexType>

79

80 <!--A particular event inside a gesture-->

81 <xs:complexType name="mtevent">

82 <xs:attribute name="type" type="xs:int" use="required"/>

83 <xs:attribute name="time" type="xs:long" use="required"/>

84 </xs:complexType>

85

86 <!--A record of all the input for a performance-->

87 <xs:complexType name="mtrecord">

88 <xs:sequence>

89 <xs:element name="input" type="mtinput"

90 minOccurs="0" maxOccurs="unbounded"/>

91 </xs:sequence>

92 </xs:complexType>

93

94 <!--A particular event inside a gesture-->

95 <xs:complexType name="mtinput">

96 <xs:attribute name="source" type="xs:string" use="required"/>

97 <xs:attribute name="cursorid" type="xs:int" use="required"/>

98 <xs:attribute name="type" type="xs:int" use="required"/>

99 <xs:attribute name="positionx" type="xs:float" use="required"/>

100 <xs:attribute name="positiony" type="xs:float" use="required"/>

138 APPENDIX A. XML DATA SCHEMA

101 <xs:attribute name="timestamp" type="xs:long" use="required"/>

102 </xs:complexType>

103 </xs:schema>

Appendix B

MTEE Plugin Manifest

1 <?xml version="1.0" encoding="UTF-8"?>

2 <?eclipse version="3.4"?>

3 <plugin>

4 <extension

5 point="org.eclipse.ui.perspectives">

6 <perspective

7 class="mtexplorer.perspectives.MTEPerspective"

8 icon="icons/releng_gears.gif"

9 id="mtexplorer.perspectives.mtePerspective"

10 name="Multi-Touch Explorer Environment">

11 </perspective>

12 </extension>

13

14 <extension

15 point="org.eclipse.ui.views">

16 <category

17 id="mtexplorer.views"

18 name="MTExplorer">

19 </category>

20 <view

21 category="mtexplorer.views"

22 class="mtexplorer.views.MTEComponentsView"

23 icon="icons/sample.gif"

24 id="mtexplorer.view.mteComponentsView"

139

140 APPENDIX B. MTEE PLUGIN MANIFEST

25 name="MTE Components">

26 </view>

27 <view

28 category="mtexplorer.views"

29 class="mtexplorer.views.MTEPerformanceView"

30 icon="icons/sample.gif"

31 id="mtexplorer.view.mtePerformanceView"

32 name="MTE Performances">

33 </view>

34 </extension>

35

36

37 <extension point="org.eclipse.ui.newWizards">

38 <wizard

39 id="mtexplorer.wizards.explorerLauncher"

40 name="MTE Project"

41 class="mtexplorer.wizards.MTExplorerWizard"

42 icon="icons/sample.gif">

43 <description>Import the MTE tool into an existing project.</description>

44 <selection class="org.eclipse.core.resources.IFile" />

45 </wizard>

46 </extension>

47

48 <extension

49 point="org.eclipse.ui.navigator.navigatorContent">

50 <commonWizard

51 type="new"

52 wizardId="mtexplorer.wizards.explorerLauncher">

53 <enablement></enablement>

54 </commonWizard>

55 </extension>

56 </plugin>

	Introduction
	Contributions
	Motivation
	Thesis Structure

	Background & Requirements Analysis
	Related Works
	User Interaction Recording
	User Interface Visualisations
	Software Evolution
	Visualisations within a Development Environment

	Target Users Profiles
	Student Profile
	Professional Profile

	Target User Personas
	Primary Persona - Student
	Secondary Persona - Professional
	Negative Persona - Power User
	Negative Persona - Beginner Programmer

	Project Requirements
	Functional Requirements
	Non-functional Requirements

	Design
	Tools and Language Choice
	Java Language
	Tools

	Project Features
	Eclipse Plugin
	Multi-Touch Explorer Analysis Tool
	User Functionality
	System Functionality

	Design Trade-Offs
	Plugin Environment Setup
	MTEA Tool Interface
	Component Code View
	Component Information View
	Performance Overview

	Alternative Designs
	Alternative Tools and Languages
	Alternative Java Multi-Touch Frameworks

	Design Requirements Analysis

	Implementation
	Language and Tools Critique
	Java Language
	Eclipse Platform
	Multi-Touch 4 Java

	Implementation of Design
	Eclipse Plugin
	Multi-Touch Explorer Analysis Tool

	Implementation Requirements Analysis

	Evaluation
	Performance Metrics
	Test Programs
	Test System
	Testing Method
	Limitations
	Results
	Discussion

	Cognitive Walkthrough
	Task Analysis
	Walkthrough Results

	Summary
	Performance Metrics
	Cognitive Walkthrough
	Proposed Changes

	Future of the Project
	Improvements

	Contributions

	XML Data Schema
	MTEE Plugin Manifest

