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Abstract

In this thesis we study the special Euclidean group SE(3) from two points of
view, algebraic and geometric. From the algebraic point of view we introduce
a dualisation procedure for SO(3,R) invariants and obtain vector invariants
of the adjoint action of SF(3) acting on multiple screws. In the case of three
screws there are 14 basic vector invariants related by two basic syzygies.
Moreover, we prove that any invariant of the same group under the same
action can be expressed as a rational function evaluated on those 14 vector
invariants.

From the geometric point of view, we study the Denavit—Hartenberg pa-
rameters used in robotics, and calculate formulae for link lengths and offsets
in terms of vector invariants of the adjoint action of SE(3). Moreover, we
obtain a geometrical duality between the offsets and the link lengths, where

the geometrical dual of an offset is a link length and vice versa.
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Chapter 1

Introduction

1.1 The algebraic point of view

The aim of this thesis is to completely determine the vector invariant polyno-
mials of the adjoint action of the special Euclidean group SE(3), the isometry
group that preserves distance and orientation, by using a technique which
depends on dualising (a partial polarisation) vector invariants of the special
orthogonal group SO(3,R). There is a Lie algebra isomorphism between
SE(3) and the special orthogonal group with dual number entries SO(3,D),
and the real and dual parts of all vector invariant polynomials of SO(3,D)
will give vector invariant polynomials of SE(3). This approach is guided by
the principle of transference which says: any valid proposition about the Lie
group SO(3,R) and its Lie algebra becomes on dualisation a valid statement
about SO(3,D) and its Lie algebra and hence about SE(3) and its Lie al-
gebra. However, the principle of transference does not give a full guarantee
that these vector invariant polynomials, obtained through dualisation, give
all vector invariant polynomials of SE(3). Therefore we use the principle of

transference as a guidance but should still address a number of questions:

1



2 CHAPTER 1. INTRODUCTION

(a) If we dualise any SO(3,R) vector invariant, do we get an SO(3,D)

invariant? Are the real and dual parts SE(3) invariants?

(b) Do the real and dual parts of SO(3,D) vector invariants generate all
SE(3) vector invariants in the ring of polynomial invariants, or can we
at least express the vector invariants of the adjoint action of SFE(3)

as rational functions in terms of those vector invariants obtained by

dualising SO(3,R)?

(¢) Do the syzygies of vector invariants of SO(3,R) dualise to syzygies of
SO(3,D) and hence SE(3) vector invariants?

In this thesis we will address the previous questions and prove some the-
orems that would help to answer them. However, we need first some basic
definitions, theorems, and results found by other mathematicians, so we will
state some others’ results that might help us in our aim in this research.

In 1900, Hilbert proposed 23 problems that he hoped might be solved
during the coming century. Hilbert’s fourteenth problem asks whether the
algebra of all invariant polynomials under a certain representation is always
finitely generated. The ring of invariant polynomials for real reductive groups
is now known to be finitely generated [38]. On the other hand, for non-
reductive groups we do not have a theorem that the algebra of all invariant
polynomials is finitely generated. In fact, we have a counter-example to finite
generation. Nagata in 1958 exhibited an example of a non-reductive group for
which the ring of invariant polynomials is not finitely generated [36]. More
recently, Panyushev [39] gives a general theoretical treatment of Lie algebra
semi-direct products from an algebraic-geometric viewpoint. In particular,
for semi-direct products G x V with G reductive group acting on a vector

space V', the ring of polynomial invariants for the adjoint action is finitely
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generated. In the case V = g, Panyushev’s treatment remains valid up to
when syzygies start appearing.

Our key example is the Lie group SE(3) = SO(3,R) x R3, a semi-direct
product of rotations about the origin in R?® with translations, and elements
in the Lie algebra se(3) of SE(3) are called screws. The group SE(3) is a
non-reductive group, whereas SO(3,R) is a reductive group and Weyl [49]
describes the vector invariant theory for the special orthogonal groups in all
dimensions. By using Panyushev’s treatment mentioned above, the ring of
polynomial invariants for the adjoint action of SE(3) acting on single and
double screws is finitely generated. Donelan and Gibson [15] prove that every
polynomial invariant of the adjoint action of SE(3) belongs to Rjw - w, w - v],
see also Donelan and Selig [16]. Crook [12] states the vector invariants of
SE(3) acting on double screws and represents them using Pliicker coordi-
nates. Selig, in his book [47], Chapter 7 page 161, studies the invariant
functions of 3-tensors, or of three screws S,, S,, S, and represents those
invariant functions in terms of the invariant 6 x 6 symmetric matrices ()
and Qo. Moreover, the invariants of the adjoint action of SFE(3) in Selig’s
book agree with vector invariants obtained by dualisation in our Theorem

6.3.1] For instance, invariant functions of degree 3 in Selig’s book are

82 Qo0[Su, Sul, St Qo[ Sy, Su).

Straightforward calculation can verify that these invariants are equivalent to
our ;3 and Ijs3 in Theorem . In addition, Study [48 Pages 159 and
202] writes down the same invariants and syzygies that we derive using the

dualisation procedure in Theorem and Result [6.4.1]
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1.2 The geometric point of view

The Euclidean group SF(3) preserves the distance and orientation in R?, that
is, the distance between two points remains invariant and the orientation is
preserved, that means, right-handed system of coordinates remains right-
handed. As a consequence of the fact that SE(3) satisfy the two previous
properties, SFE(3) is used for the kinematics of a rigid body. In this thesis
we study Denavit—Hartenberg parameters [23] used to describe a serial robot
arm. In particular, our interest is in the Denavit-Hartenberg parameters,

link length and offset, and we address these questions:

(a) Can we express offset and link length formulae using Pliicker coordi-

nates?

(b) Are the offset and the link length parameters invariants of the adjoint
action of SE(3)?

(c) Can we express the offset and the link length formulae in terms of the

known vector invariants of the adjoint action of SE(3)?

In Chapters 8 and 9, we will answer the previous questions and show
that there is a new (dual) set of screws whose invariants are related to and
expressible in terms of vector invariants of the original set of screws. Now let
us review other mathematicians’ work in geometry, and in particular, screw
theory and its representation.

In a general rigid-body spatial displacement, Chasles 7] described ele-
ments of Fuclidean group and proved that such a displacement of any ele-
ment of SE(3) was equivalent to a combination of a rotation about and a
translation along some straight line, while Ball [2] was interested in the Lie

algebra of the Euclidean group se(3) and had shown that the most general
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velocity of a rigid-body is equivalent to rotation velocity, about a definite
axis, combined with a translation velocity along this axis, thus forming a
helical motion, which he referred to as a twist velocity about a screw. The
screw consists of a screw axis (the same line as the rotation axis) together
with a pitch (a linear magnitude) given by the ratio of the magnitude of the
translational velocity to the magnitude of the rotational velocity. The twist

velocity is hence a screw with an associated magnitude (angular speed).

There is a close connection here with Pliicker line coordinates in a 3-
dimensional projective space, consider a line containing distinct points x
and y with homogeneous coordinates (xg,x1,z2, x3) and (Yo, y1, Y2, y3), re-

spectively. Let M be the 4 x 2 matrix with these coordinates as columns.

To Yo
1 U

To Y2

T3 Ys

We define Pliicker coordinates p;; as the 2 x 2 sub-determinant of rows ¢ and

j of M,

Ti Yi
Dij = = TilY; — LjYi
L Yj
This implies p;; = 0 and p;; = —pj;, reducing the possiblities to only 6 = (g)
distinet quantities (po1, Poz2, Po3, P23, P31, P12)- A line in space can be repre-
sented by the six Pliicker coordinates which arise as the components of two

3-vectors w, v [42] as follows. Assuming the line is not at infinity, so that at

least one of g, yo # 0, the first vector, w, with three components, w; = po1,
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Wy = Po2, and w3 = po3, is non-zero and defines the direction of the given line.
In this case, the second vector, v, with components, v = po3, v9 = p31, and
v3 = P12, is the moment of the line about the origin. So, w X q = v, where q
is the position vector of any point on the line. From contemporary standard
vector algebra w - v = w - (w x q) = 0, and so the two vectors w and v are
always orthogonal. For finite lines, if we choose w to be a unit vector, then
six Pliicker coordinates satisfy the relations w - v = 0 and w - w = 1. There
are hence two conditions imposed on the six Pliicker coordinates and only
four independent coordinates remain. In general, the Pliicker coordinates
are homogeneous, that is, non-zero multiples of a given set of coordinates
represent the same line in space. the equation w - v = 0 defines a four-
dimensional quadric hypersurface in projective space PR®, called the Klein
quadric. However, points of PR not on the Klein quadric cannot represent

lines.

The six Pliicker coordinates of a line, define the position and orientation of
the line with respect to the origin point. To describe the relative orientation
of two skew straight lines in space a unique twist angle, @ and a unique

common perpendicular distance, d, are defined.

The symbol € in the dual number is originally introduced by Clifford
[10]. Study [48] showed how the twist angle, o and common perpendicular
distance, d, between two skew lines may be combined into a dual number of
the form « + ed (where €2 = (). In the modern version of Clifford’s operator
€, lines may be represented using dual vectors. A given line in space, which
does not pass through the origin, has three dual angles o, + ed,, oy, + €d,,
and o, + ed,, that it makes with the three coordinate axes. These three dual

angles may be related to the six Pliicker coordinates, Rooney [43] had shown
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that relationships are:

cos(ay, + €d,) = wy + €evy,
cos(ay + €dy) = wy + €vs,

cos(a, + €d,) = w3 + evs.

The three dual numbers w; + evq, wy + €vy, and ws + vy are referred to as
the dual direction cosines of the line and they may be considered to be the
three components of a unit dual vector. The dual vector describing any line

in space is written:

W+ €ev = (wh w?)w?)) + E(Uh V2, Ug)

= (wy + €vy, we + €vg, w3 + €v3).

In general, when w - v # 0 the dual vector w + ev represents a screw in space
with screw axis (w, v — hw) associated with pitch h = £2. Dual vectors are

another way of representing elements of the Lie algebra se(3) and the screw

mentioned in Ball [3].

Clifford [10] extended Hamilton’s notion of quaternions and introduced
the notion of a biquaternion, which is a combination of two quaternions
algebraically combined via a new symbol, €, defined to have the property
€2 = 0. The biquaternion has the form ¢ + er, where ¢ and r are both
quaternions in the usual Hamiltonian form. The dual quaternion is called a
motor, which is now known as a screw. Clifford’s motivation in creating his
biquaternion derives essentially from mechanics and the methods introduced
by Clifford are now valuable tools in study of robot manipulators, especially

parallel manipulators, see for example Husty [26].
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For sake of completeness we have to mention “the principle of transfer-
ence”, which was originally proven by Kotelnikov but the proof was lost dur-
ing the Russian revolution [8]. The principle of transference has piqued a lot
of mathematicians interest, for instance, Chevallier [§], Rico and Duffy [17],
and Study [48]. The principle of transference states that when dual numbers
replace real numbers, then all relations of vector algebra for intersecting lines
are also valid for skew lines. In practice, this means that all properties of
vector algebra for the kinematics of a rigid body with a fixed point (spherical
kinematics) also hold for the screw algebra of a free rigid body (spatial kine-
matics). Consequently, the motion of a general rigid body can be described

by only three dual equations rather than six real equations [6].

1.3 Review of contents

Now we discuss the structure of this thesis in more detail as follows:

Chapter 2 introduces some background material on the special Euclidean
group SF(3) and special orthogonal group SO(3,R), a definition and proper-
ties of the dual numbers D, dual matrices, some basic lemmas and theorems
that shall help us in proving theorems in the next chapters.

In Chapter 3, we start by defining Lie groups and Lie algebras and
describe the algebraic groups SO(3,R) and SE(3) as a Lie groups and their
corresponding Lie algebras s0(3, R) and se(3) respectively. Since the elements
of s0(3,R) and se(3) are matrices, the Lie bracket, which is the operation
between any two elements in the Lie algebra, is defined by the commutator.
We show that the Lie algebra of so(3,R) consists of 3 x 3 skew-symmetric
matrices. Any element of the Lie algebra of se(3) has been represented using

Pliicker coordinates (w,v), where there is an isomorphism between R? and
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50(3,R) given by the natural representation in Theorem Moreover,
any element of Lie algebra se(3) is called a screw, which is a projective twist.
The axis and the pitch of twist are also defined. For the sake of completeness
of the introductory material in this chapter, we define the exponential map
and how it gives a rise to the adjoint action of the group on its Lie algebra.

Chapter 4 includes the definition of the invariant polynomial that be-
longs to the ring of polynomials under a certain representation. The adjoint
action representation is faithful and hence we can define the vector invari-
ants of the adjoint action of SE(3) acting on screws. Moreover, this chapter
includes the first and the second fundamental theorem of invariant theory
of SO(3,R) acting on m-fold vector and the first fundamental theorem of
invariant theory of SE(3) acting on single and double screws.

From now on we start describing the main chapters of this thesis. The
remaining five chapters include new material as follows:

In Chapter 5, we prove the isomorphism between SF(3) and SO(3,D)
and define the dual map between the ring of real polynomial and the ring
of dual polynomial. That enables us to prove that dualising any invariant
polynomial of SO(3,R) gives a dual polynomial invariant of SO(3,D). More-
over, we prove that the real and dual part of a dual polynomial, obtained
by dualising a polynomial of SO(3,R), are invariant polynomials of SE(3).
This result also holds for sets of £k vectors.

In Chapter 6, we introduce the process of dualisation. We split the real
and the dual part of the dual vector invariants and we obtain the vector
invariants of the adjoint action of SFE(3) acting on single, double, and triple
screws. In the case of three screws, we obtain 14 basic vector invariants. We
prove that the first 12 vector invariants are algebraically independent, while

the last two, namely [193 and I 123, are not algebraically independent with the
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first 12 vector invariants. We find two basic syzygies of SE(3) by dualising
SO(3,R) syzygies.

In Chapter 7, we prove every odd and every even vector invariant of
the adjoint action of E(3) acting on k screws is a vector invariant of the
adjoint action of SE(3) acting on k screws. We show that every even vector
invariant of the adjoint action of F'(3) acting on triple screws can be expressed
rationally in terms of vector invariants I;;, fl-j and f1223, 1 =1,2,3, while we
prove that every odd vector invariants of the adjoint action of F/(3) acting on
triple screws can be expressed by a product [123 with even function. Hence
the vector invariants of the adjoint action of SE(3) acting on triple screws
can be expressed rationally in terms of vector invariants I;;, fz-j, I193 and I 2
1=1,2,3.

In Chapter 8, we introduce Denavit—Hartenberg parameters to define
serial robot arms consisting of serial joints. In particular, three serial joints
in a general position and ignoring special cases. We focus on two parameters:
link length and offset. Obtaining formulae of link lengths and offsets and
representing them by using Pliicker coordinates is the first step. However, to
express the link lengths and the offsets in terms of the vector invariants of
the adjoint action of SE(3) is one of the most important results and gives a
clearer picture for both the geometers and the algebraists.

Chapter 9 presents the physical interpretation of the Lie bracket of two
screws and the consequences of this for sets of three screws. The Lie bracket
between two screws gives us a screw whose axis is a common perpendic-
ular to both screws. The set of three screws S;,7 = 1,2,3 has three Lie
brackets which means three common perpendicular screws and hence we
have a new set of screws S;,7 = 1,2,3. They are related and form a “geo-

metrical duality”. We obtain the vector invariants of the adjoint action of
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SE(3) for Si,i = 1,2,3 and express them in terms of the vector invariants
of S;,i =1,2,3. Moreover, we discover the relation between S; and S}, that
is, the link length in S; becomes offset in S! and vice versa. We apply the
Lie bracket between any two screws S} and S} and we get the same original

screw S; but with different pitch h!.
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Chapter 2

Groups and Group Actions

2.1 The Euclidean group

The set of all n x n non-singular matrices with elements in a field k under
matrix multiplication forms a group called the general linear group over the
field k, denoted by GL(n,k). Unless n = 1, these groups are not abelian. In
this thesis we will only be interested in k = R.

The special linear group SL(n,R) of order n consists of all those real nxn
matrices A that have inverse and det A = 1 and it is a subgroup of GL(n, R).
The orthogonal group O(n,R) is also a subgroup of GL(n,R) and is defined
as the group of invertible linear transformations that preserve the standard

inner product on R™

(o y) =3 e (2.1)

That is, for all x,y € R"

(Ax, Ay) = (x,y). (2.2)

13
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The orthogonal group has the following well known property

O(n,R) ={A e GL(n,R): A'A=1,}. (2.3)

The matrices in the orthogonal group are called orthogonal matrices.

The group O(n,R) consists of two disjoint components—the proper and
improper rotations of R™ about the origin. In addition to preserving the
inner product (and hence length), proper rotations must also preserve orien-
tation. A non-singular matrix will preserve or reverse orientation according
to whether the determinant of the matrix is positive or negative. Explicitly,
for an orthogonal matrix A, note that det A* = det A implies (det A)? =1 so
that det A = 1. The subgroup of orthogonal matrices with determinant +1
that preserve orientation is called the special orthogonal group and is denoted

by SO(n,R). That is,

SO(n,R) = {A € GL(n,R) : A'A = I,det A = 1} (2.4)

Applications in physics and engineering frequently concern rigid bodies in

3-dimensions and so SO(3,R) is of particular importance.

Definition 2.1.1. A group G with identity e acts on a set X if there is a

function p: G x X — X (called an action of G) such that:

(a) ple,z) =x for all x € X;

(b) p(gh,x) = p(g, p(h,z)) for all g,h € G and z € X.

By saying that a group G of matrices is a collection of symmetries of a
set X C R"™ we mean that there is an action p of G on X defined via matrix-
vector multiplication. For instance, given A € SO(n,R) and x € R™, this

may define p(A,x) = Ax.
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The usual Euclidean metric for any x,y € R" is defined by

dx,y) =[xyl = V{x - y.x—y). (2.5)

The Fuclidean group (of order m) E(n) is the symmetry group of the n-
dimensional Euclidean space, that is, the set of isometries p of R™ with the

Euclidean metric

w:R" — R"

d(p(x), u(y)) = d(x,y). (2.6)

It is clear that any isometry is a bijection and that its inverse is also an
isometry. Moreover F(n) is closed under composition and so certainly is a

group. Such isometries are called Fuclidean motions.

Theorem 2.1.2. Fvery isometry p of R™ can be achieved by an orthogonal
transformation A € O(n,R) about the origin followed by a translation a €

R™.

Proof. See [7]. O

Hence, as a set, E(n) is in bijective correspondence with the Cartesian

product

O(n,R) x R™. (2.7)

However, as a group, the isomorphism is with the semi-direct product. The

composition of two isometries p; represented by (A;,a;) € O(n,R) x R™,
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where 1 = 1,2 is:

Mo O 1 (X) = AQ(A1X + al) + as (28)

= A2A1X + Agal + ao. (29)

Hence composition in O(n,R) x R™ is

(Ag,ag)(Al,al) = (AQAl, Agal + ag). (210)

The composition of any two elements in F(n) given in (2.10)) tells us the
structure of this group, since the first component is a direct product but
the second not. This means the structure of E(n) is a semidirect or twisted

product of rotation group O(n,R) with the translation group R™:

E(n) =2 O(n,R) x R™. (2.11)

Such structures arise when there is an action of a group G on a vector space

V' and we obtain G X V' as a group.

There is a subgroup SE(n) of the Euclidean group, special Euclidean
group of order n, consisting of the direct isometries, that is, isometries pre-
serving orientation, the orthogonal part has determinant equal one. By Theo-
rem that subgroup consists of rotation about the origin and translation,

that is,

SE(n) 2 SO(n,R) x R, (2.12)

A representation is a homomorphism from the group to general linear

group. Note that SE(n) is not defined as a matrix group. However, there
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is a (n + 1)-dimensional representation of SE(n), that is, an injective homo-
morphism SE(n) — GL(n + 1) given by
A a
(4,a) — . (2.13)
o 1
We have used a partitioned form for the matrix on the right and we will use

0 to mean 0! to make the notation simpler. This representation is a homo-

morphism, since multiplying these matrices exactly replicates the product of

the pairs in ([2.10))

AQ am Al ap A2A1 A2a1 + as
= . (2.14)
0 1 0 1 0 1
The inverse of such a matrix is conveniently given by
-1
A a At —Ala
= . (2.15)
0 1 0 1

Of interest in the special Euclidean group is when n = 3, that is SE(3).
This group has applications in physics and engineering. In this thesis we shall
study some applications of this group to robotics. For example, suppose we
want to study a moving rigid body, such as the end-effector of a robot arm.
We can specify two different coordinate frames: a home frame of reference
that is fixed in the ambient apace around the rigid body, and a coordinate
system embedded in the body itself. If a point has coordinates p = (z,y, 2)

in the reference frame, and coordinates p’ = (2/,y/, 2') in the body frame,
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then these are linked by

= : (2.16)

where (A, a) is the Euclidean motion with respect to choice of coordinates.
At the same time, assuming we want the coordinate system to coincide with
the home position of the end-effector, the end-effector coordinates are trans-
formed in exactly the same way. Now suppose, we choose different home

coordinates. they are related to the previous ones by

- . (2.17)

Then by using (2.16) and multiplying by the inverse of both sides in ([2.17)),

the motion in new coordinates is

q/ B b p/
1 1 1
—1
B b A a B b qa
_ . (2.18)
1 1 0 1

So the transformation in the new coordinates is given by the conjugate of the
original transformation. In fact, in any group G conjugation can be thought

of as an action p of G on itself

p(h,g) = hgh™. (2.19)
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2.2 Skew-symmetric matrices

A skew-symmetric (or antisymmetric) matrix is a square matrix 7" that
satisfies T = —T". If the entry in the i’ row and j" column is a;;, then
a;j = —aj;. In particular all the main diagonal entries of skew-symmetric
matrix must be zero, so the trace is zero. Sums and scalar multiples of
skew-symmetric matrices are again skew-symmetric. Hence, the n x n skew-

symmetric matrices form a vector space, whose dimension is n(n — 1)/2.

Lemma 2.2.1. IfT is an nxn skew-symmetric matrix, then for any x € R",

x'Tx = 0.
Proof. Any an nxn skew-symmetric matrix 7T satisfies T' = —T", that implies
to T+ T" = 0, therefore x*(T + T%)x = 0 and hence x"T'x = 0. O

2.3 Dual numbers

Dual numbers, D, are a 2-dimensional commutative algebra over reals a,
and b and have the form d = a + eb, where € is called the dual unit and has

properties

€#£0, 0e=e0=0, le=el=¢ € =0. (2.20)

Dual numbers were first proposed by Clifford [9] and developed by the
German geometer E. Study (1862-1930) [48]. Study used dual numbers to
represent the relative position of two skew lines in space. This is a dual angle
which is defined as:

& =a+ed, (2.21)

where d is the length of the common perpendicular to the two lines in three
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dimensional space and « is the projective angle between the two lines.

The dual numbers form a commutative ring isomorphic to the quotient

of the polynomial ring R[z] by the ideal generated by the polynomial z?
R[z]/(z?). (2.22)

The image of x in the quotient corresponds to the dual unit e, the dual
numbers form a commutative ring with characteristic 0. While the inherited
multiplication gives the dual numbers the structure of a commutative and
associative algebra of dimension two over the reals, they do not form a field

since there is no multiplicative inverse.

The operations of addition and multiplication are defined for any two

dual numbers czl = ay + eby and JQ = ag + €by:
(CLl + Ebl) + (ag + Ebg) = (a1 + CLQ) + E(bl + bQ) (2.23)

D becomes an associative algebra with multiplication defined by setting €2 =

0, thus
(a1 + Ebl)(ag + Ebg) = 1049 + é(albg + agbl), (224)

provided that as # 0, the quotient % is also defined for all ch and cZ2 as

follows:

= 2.25
dy az+eby ay ( )

i_a1+€b1_ﬂ+6(b1 a1b2).
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The conjugate of a dual number d is defined by:

d=a— eb. (2.26)
The product of a dual number d and its conjugate d satisfies:
dd = a®. (2.27)
The modulus of a dual number is simply the real part

| = a. (2.28)

The modulus can be negative since a is real number.

If f: R — Ris a polynomial function or given by a power series, then

we can define f : D — D by replacing the real variable by a dual quantity

~

d = a + eb, that is,

~h»

—~
S5

~—
I

fla+eb). (2.29)
Let f(x) = 23 so
f(a +¢eb) = (a+ 6b)3 = a® + 3ea®D.

Now consider f as a power series in € so

A A

f(d) = f(a)+ ebf'(a), since €2 = 0.

This property is useful in the expansion of polynomials and power series. For
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example,

sin & = sin(a + ed) = sina + ed cos a,
cos & = cos(a + ed) = cosa — edsin a,

TP = (1 + €b).

2.4 Dual matrices

Any (n x m) matrix, whose entries belong to the reals, can be written as
A = (a;;) where a;; € R but if we replace the entries by dual numbers

(a;;) € D then the last is called a dual matrix.

Lemma 2.4.1. If A is a (n x m) matriz with dual number entries, then we
can write A as A = Ag + €Ay where Ay, Ay are (n x m) matrices belonging

to Mg(m,n).

Proof. Assume A is a (n x m) matrix with dual numbers entries (d,;) € D,

hence a;; = a;; + eb;; where (aj;), (bi;) € R

aix a2 Q1n

" a1 Qo2 Qo

A=
Am1 Am2 *°° Amn
ajy +ebyy  app+ebp o0 am, +eby,
apy +€bay  agy +e€byy - ag, + €by,
am1 + Gbml Am2 + 6me 0 Qmp + Ebmn




2.4. DUAL MATRICES 23

11 Q12 - Qin bii bz - by
Q21 Q22 -+ A2y bar  bay -+ by
= + €
_aml Amo  * amn_ _bml bm2 e bmn_
= A() + €A1.
Thus, any dual matrix can be written using this form A = A + €A;. O

Lemma 2.4.2. If A is a (m x n) dual matriz, then the transpose of A is the

(n x m) dual matriz, and can be written as At = (Ay + eAy) = Al + Al

Proof. From linear algebra, the transpose of summation of any two matrices
is the sum of the transpose of each one, that is (A + B)! = A" + B', and the
transpose of scalar multiple matrix is the scalar times matrix transpose, that
is (AB)! = AB", when the two previous properties on the transpose of dual

matrix are applied the result is A* = (Ag + €A;)" = AL + €Al O

Definition 2.4.3. (McCarthy [34]). If Ais a (nxn) matrix with dual number
entries, A = Ay+eA,, where Ay, A; € M (n,R) then the dual orthogonal group
18

SO(n,D)={Ae M(nD) | A'A=1I, detA=1}.

Theorem 2.4.4. Any element belonging to SO(n,D) can be written as A=

Ag+€eAy if and only if Ag € SO(n,R) and (AL A1) is skew-symmetric matriz.

Proof. Let A be a matrix belonging to SO(n, D), which must satisfy SO(n, D)
properties in Definition . A can be written as A = A + €A1, then

APA = (AL + €A (Ag+ €Ay) = AL Ay + e(AL A, + ALAy) =T
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This implies A{Ay = I, which means Ay is an orthogonal matrix. Moreover,
AgAl + AﬁAo - Oan - AéAl - —AliAo - ABAl - —<A6A1)t,
which means A} A; is skew-symmetric matrix. We have

det(A"A) = det(AfAg + € (AHA; + AT Ay))

OTLXTL

= det(Ang) = det(A0)2 = (det A0)2 = 1,

~

The fact that det(A) = 1 implies to det(Ag) = 1, and hence Ay € SO(n,R).

The reverse follows by reversing this argument. O



Chapter 3

Lie Group and Lie Algebra of
SO(3,R) and SFE(3)

3.1 Preliminaries

A real Lie group is a group that is also a smooth real finite-dimensional
manifold, so that the multiplication function G x G — G : (a,b) — ab

I are smooth maps. GL(n,R),

and the inverse function G — G : a — a~
SO(n,R), and SE(n) are examples of real Lie groups.

To identify an element of the tangent space of a Lie group, consider a
smooth path through the identity in a group G, that is p : R — G such
that p(0) = I, then %£[p(t)]i—o € T;G . If the first derivative of paths at 0
are the same, then those paths are considered equivalent . A tangent vector
is an equivalence class for this relation. The space of equivalence classes can
be shown to be a vector space.

The product between two paths in the group is defined as p(t)q(s) € G.

However, to understand the influence of the product on the group in the

tangent space of the same group, we should consider these two paths p,q :

25
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R — @ and find the first derivative and assume that:

%W’f”t—o —v, L)l = X

We should differentiate the product with respect to time ¢, and then with
respect to time s in order to obtain a tangent vector at the identity I we
have to apply the conjugation trick, that is, ¢(s)p(t)q(s)™!, and remember
that ¢(0) = p(0) = I, then

d. d _ d -1
Z [ la(s)p(®)a(s) ™ Ji=ols=o = —la(s)Ya(s) " Js=o,
d d
—_ Y -1 Y — -1
L) oY a0 + a(0)Y la() oo
If we differentiate q(s)q(s)™' = I with respect to time s and evaluate at
s =0, then we get 2[q(s) s = —£[g(s)]s=0 = —X, and hence
=XY -YX.

This is the commutator of X and Y for the tangent space of a Lie Group
is called the Lie bracket, where XY denotes the standard matrix product.
It is a binary operator [, -] assigning an element of the tangent space 717G to

any pair of elements. The Lie bracket satisfies the following properties:

(a) bilinear: [AX; + X, Y] = A[X1,Y] + B[Xs, Y] and similarly for the

second argument.
(b) anti-symmetric: for all XY : [X|Y] = —[Y, X]

(c) Jacobi identity: for all XY, Z

[X> [Ya Z]] + [Y> [Z7XH + [27 [X7 Y“ = 0.
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A Lie algebra is a vector space g over a field k equipped with a skew-
symmetric k-bilinear form [-,-] : g X g — g, which satisfies the Jacobi

identity:.

3.2 Lie algebra of SO(n,R) and SE(n)

To find Lie algebra for orthogonal groups, consider the tangent space to the
identity in O(n,R) and SO(n,R). The orthogonal group O(n,R) consists
of two disconnected components, the one that contains the identity, is just
SO(n,R). So O(n,R) and SO(n,R) have the same tangent space at the iden-
tity and hence the same Lie algebra. In a matrix representation of SO(n,R) a

path through the identity is given by a matrix-valued function, v(t) = M (),

where M (0) = I, and by
M@)M(t) = 1I,. (3.1)
Differentiating the last relation with respect to ¢, gives
(iM(t)t) M(t) + M(t)" (iM(t)> = 0. (3.2)
dt dt
Putting ¢t = 0 we get
M(0)t + M(0) = 0. (3.3)

The last equation tells us that X = M(0) is a skew-symmetric matrix (i.e.

X' = —X). Hence, the tangent space to the identity I,, € SO(n,R) consists
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of skew-symmetric matrices. Thus

so(n,R)={X | X+X'=0_,7}. (3.4)

As a special case, when n = 3, the Lie algebra of the special orthogonal group

denoted by s0(3,R) and consists of 3 x 3 skew-symmetric matrices as follows:

0 —t3 to
= t3 0 —1 | ti1,t0,t3 € R 3. (35)
—ty 1 0

To find the tangent space to the identity in SF(n), consider this path

vt Alf) - alt) : (3.6)
0 1

This is a curve in the group SFE(n), parametrised by time ¢. The derivative

at the identity element will thus be of the form

: (3.7)

where B is a n X n skew-symmetric matrix and b a n-component vector.

Hence

se(n,R) = {(B,b) | Be€so(nR),beR"}. (3.8)

Tangent spaces give us a simple way to find the dimension of the group,
since the dimension of the manifold is the same as the dimension of its tan-

gent space. The dimension of the groups O(n,R) and SO(n,R) is thus the
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dimension of the vector space of n x n skew-symmetric matrices, which is
sn(n — 1). However, the dimension of SE(n) is n(n + 1)/2, where n can
be attributed to the dimension of R”, and the remaining n(n — 1)/2 is the

dimension of SO(n,R).

3.3 The exponential mapping

Another way of looking at Lie algebra elements is as left-invariant vector
fields on the group. Given a tangent vector at the identity, we can produce a
left-invariant vector field. All we do is to left translate the original vector to
every point on the group. If X is a matrix representing a tangent vector at
the identity, then the tangent vector at the point g of the group will be given
by gX. Hence, there is a one-to-one correspondence between tangent vectors
at the identity and left-invariant vector fields. Integral curves of a vector
field are smooth curves on manifold whose tangent vector at each point is in
a vector field at each of its points, such a curve would satisfy the differential
equation

dy _

— X, 3.9
= =7 (3.9)

This equation has an analytic solution that passes through the identity

y(t) = e

In the case that G is a matrix group, the exponential of matrix X can be
expanded into a power series:

2 X"

X
X— — ... — ...
X=Xt (3.10)
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The exponential function gives a mapping from the Lie algebra to the group.
In general this mapping is neither one-to-one nor onto. However, the follow-
ing theorem gives locally one-to one and onto. Moreover, there is a neighbour-
hood of 0 in Lie algebra that maps homeomorphically to the neighbourhood

of the identity in the group.

Theorem 3.3.1. (Hall [22]). Let G be a matriz Lie group with Lie algebra
g. Then there exists a neighbourhood U of zero in g and a neighbourhood U’
of the identity in G such that the exponential mapping takes U homeomor-

phically onto U’.

Proof. See chapter three in [22]. O

As a special case the Lie algebra so(3,R) has three elements that are

defined as
00 0 0 0 1 0 —1 0
J.=10 0 -1/, J,=10 0 o], J.=11 0 of. (311)
01 0 100 0 0 0

In fact the Lie bracket cyclically permutes the basis elements

o)) = o [Jy ) = Joy [ oy do] = J, (3.12)

We can also explicitly describe the corresponding subgroups in SO(3,R) as

1 0 0 cost 0 sint cost —sint 0
exp(tJe) = |0 cost —sint|, exp(ty) = 0 1 0 |, exp(tJ:) = |sint cost Of-
0 sint cost —sint 0 cost 0 0 1
(3.13)

The matrix exp(t.J,) is a rotation around the z-axis by angle ¢. Similarly

J, and J, generate rotations around the y and z axes respectively. In fact
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since SO(3,R) is compact the three elements generate a neighbourhood of

identity in SO(3,R), and hence they generate the whole group SO(3,R).

3.4 Adjoint representation

There is a natural representation of the group on its Lie algebra called the
adjoint representation of the group. Consider a Lie group G and the
conjugation by an element g € G. This gives a smooth mapping from the
manifold of G back to itself. A simple path in the group is given in a matrix

representation by
vt T+tX +12Q(1), (3.14)

where X is the Lie algebra element and Q(t) the remainder that ensures
that the image of the path stays in the group. If we conjugate by g, then
differentiate and set ¢t = 0, we get ¢X ¢~ '. So the action for all g € G is given
by

Ad(g)X = gXgt. (3.15)

This action is called the adjoint action and it is linear since for any two

scalars a and 3, we have

Ad(g)(aX1 + BXs) = glaXi + BX2)g™ " = agXig™" + BgXag™!

= aAd(g) X, + BAd(g)Xs. (3.16)
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To find the adjoint action of s0(3), we must calculate the product

Q' = ROR'. (3.17)

where R € SO(3,R) and Q is 3 x 3 skew-symmetric matrix. To facilitate
the computation, we will write the rotation matrix as partitioned into three

vectors:

(3.18)

Because of RR' = I3, the vectors must be mutually orthogonal unit vectors
r;r; =1if i =j, and r;r; = 0 if i # j. Moreover, det(R) = 1 means that the

triple product

ry-(rg xr3) =1. (3.19)

If we multiply both sides of Equation by ry, and permute (3.19)) cyclically
to have ry- (r3 X r;) = 1 and multiply both sides by ry, and similarly permute
again the same equation to get r3 - (r; X ry) = 1 and multiply again by rj,

then we get these three equations

s Xr3=ryq, rs Xr; =ry, ry XTIy =1r3. (320)

The 3 x 3 skew-symmetric matrix {2 can be written as Qv = w x v for any

vector v € R? and w € R3, thus

ROR' = R(w X ri|w X ra|w x r3);
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0 r; - (wxry) rp-(wxry)
= | re (wxry) 0 ry- (wxry) |- (3.21)

r3- (wxry) ry-(wxry) 0

Using ([3.20) after rearranging cyclically, gives us

ROR' = | ry-w 0 rew |- (3.22)

Ty W I]rWw 0

The last matrix is skew-symmetric which can be written in terms of the vec-
tor w as Rw and that is the adjoint representation of SO(3,R) on its Lie
algebra. The adjoint representation of SO(3,R) is the same as its defin-
ing representation on R3 so the standard representation coincides with the
adjoint representation. This is an accidental property of three dimensions

which does not generalise [47].

Theorem 3.4.1. (Kraft [31)]) Adjoint representation of SO(3,R) on so(3,R)
is isomorphic to the natural representation of the same group on R3 where

the isomorphism ¢ : s50(3,R) — R3 given by

131
o(X)=|1t, | € R’ where X € s0(3,R). (3.23)
t3
With an easy calculation you can note that trX? = —2|p(X)* and

X3 = —|p(X)[2X. Moreover, p(X)'X = 0.
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The adjoint action of SE(3) on its Lie algebra is now simple to compute.

For a typical Lie algebra element in 4 x 4 matrix form, we have

Q o R t O v R! —R't
0 O 0 1 0 0 0 1

ROQR' Rv — ROR't
= . (3.24)

0 0

RQR! is the adjoint action of SO(3,R) and equal to Rw. However,

—ROR't = —(Rw) x t =t x (Rw),

and this can be written as T Rw. In six-component vector form of the Lie
algebra, the representation has the form
w’ R 0 w
= . (3.25)
v’ TR R v
Summary, a rotation by R € SO(3,R) followed by a translation t € R? is

represented by the 6 x 6 matrix as follows:

R 0
(3.26)

TR R

Definition 3.4.2. Adjoint action of the special Euclidean group is repre-

sented as

as : SE(3) x se(3) — se(3)
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R 0 w
a2<<Rat)7(waU>> = ;
TR R v
Rw
- , (3.27)
TRw + Rv

where R € SO(3,R), t € R? and T € s0(3,R).

3.5 Twists and Plucker coordinates

As a special case when n = 3, the Lie algebra se(3) elements are called Ball’s

screws or twists and hence

s¢(3,R) ={(B,b) | B¢€so(3,R),bcR*. (3.28)

A 3 x 3 skew-symmetric matrix B has only three independent elements.
Those elements can be assembled into the vector w. The action of the skew
symmetric matrix B on an arbitrary vector y is equivalent to the cross prod-
uct by w, that is By = w xy. Hence, we can write any element in se(3, R),
using the six-dimensional vector (wy, ws, w3, v1,v9, v3) = (w,v) the Pliicker
coordinates of the twist where v = b [35,/47].

We should write (w?, v")" but where there is no likehood of confusion we
simply write (w,wv) for the Pliicker coordinates of a twist. The term screw
is frequently used in place of twist but properly a screw is a projective twist
(i.e. only defined up to non-zero multiple).

Twist and screws are fundamental concepts in Kinematics, and the gen-
eral theory is developed comprehensively in Ball [2], and Hunt [25].

Ball defined a twist as follows: A body is said to receive a twist about
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a screw when it is rotated uniformly about the screw, while it is translated
uniformly parallel to screw through a distance equal to the product of the
pitch and the circular measure of the angle of rotation. A screw is a straight
line with which a definite linear magnitude termed in the pitch, is associated.
The pitch is the rectilinear distance through which the body is translated
parallel to the axis of the screw, while the body is rotated through the an-
gular unit of circular measure and it is equal the ratio of the translational

displacement and the rotational displacement of the body given as:

h=——". (3.29)

The vector v of the screw (w, v) can be decomposed into components parallel
to and perpendicular to w, see Figure . The parallel component is the
velocity along the axis v = hw where h is the pitch of the screw and given
in . The perpendicular component is the moment of the axis about the
origin v; = v — hw, so we can determine a vector q such that this vector

satisfies the equation

qXw=v—hw. (3.30)

The solution of this equation is obtained by computing the cross product of

both sides with w, in which case we obtain

(3.31)

If the screw takes the form (w,hw) with its linear and angular velocity

vectors aligned in the direction vector w, then in this case we can see explicitly
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Figure 3.1: A screw line in three dimensional space, where v has been de-
composed into parallel and perpendicular to w, and h is its pitch.
that the body moves in screw motion. The points in a body undergoing a
constant screw motion trace helices in the fixed frame. If v = 0, implies
to screw motion has zero pitch, then the trajectories of points are circles,
and the movement is a pure rotation. If w = 0 implies to screw motion has
infinite pitch, then the trajectories are all straight lines in the same direction.
The Lie bracket of two screws given by Pliicker coordinates S; = (w1, v1)

and Sy = (wq, V) i8

[Sl, SQ] = (w1 X Wa, w1 X Vg + V1 X wg). (332)

In Chapter |8 we shall talk more about screws and their application in
Denavit-Hartenberg parameters of robot arms. However, in Chapter [9] we
shall introduce the physical meaning of the Lie bracket of two screws with

more details in geometrical duality of robot arms.



38

CHAPTER 3. LIE GROUP AND ALGEBRAS



Chapter 4

Invariant Theory of SO(3, R)
and SFE(3)

4.1 Polynomial rings and rings of invariants

Definition 4.1.1. ( Kraft [31], Neusel [37]). Let p : G — GL(n,k) be a

group representation, and k[V] = k[zy, -+ ,x,] where V = k™ be the ring
of polynomials in n indeterminates x,--- ,x, with coefficients from a
field k, then a polynomial f € k[zy,- - ,x,] is invariant under the group

action of G if

f(x) = f(Ax), where x = (z1,- -+, x,), (4.1)

for all A € G. The subset of all invariant polynomials is denoted

k[xy, -, 2,)C.

In Definition for a non matrix group we denote Ax = p(A)x since
not all groups are matrix groups. Moreover, note that this is a somewhat

sloppy notation since the f’s are invariant under representation p(G). Since

39
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the same group can have various representations we should write k[V]7(¢),

Proposition 4.1.2. The set k[V]¢ C k[V] of invariant polynomials forms

an k-subalgebra.

Proof. See [37] page 55. O

k[V]% is a commutative integral domain, because it is the subring of the
commutative integral domain k[V]. Furthermore, the ring of polynomial
invariants inherits the grading from k[V], because the group action respects

homogeneity.

Example 4.1.3. Let G = SO(3,R) acting on R? by f(x) = x3+x3+73 = x°x

f is invariant under G since

f(Ax) = Ax - Ax = x-x = f(x),

for all A € SO(3,R).

Example 4.1.4. The Klein form w - v and Killing form w - w are real in-
variants of the adjoint action of the special Euclidean group where (v, w) are
Pliicker coordinates for se(3) [47]. They can be expressed as a polynomial

where

flw,v) =w w=wi +wj +wj,

g(w,v) =w v =wv + Wwavs + W3vs3.

Let (R,t) be an element in SE(3), and p((R,t)) = A be the representa-
tion of the adjoint action of SF(3) defined in Theorem We can show
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f and g are invariant under the adjoint action of SE(3). Firstly,

R 0 w
f(Alw,v)) =
TR R v

= f(Rw,TRw + Rv) = Rw - Rw

=w-w= f(w,v).

Secondly,

9(A(w,v)) = g(Rw, TRw + Rv) = (Rw) - (TRw + Rv).

Since T' is skew-symmetric matrix then TRw =t X Rw, thus

= (Rw) - (t x Rw)+ Rw - Rv =t - (Rw X Rw) +w - v
—_——

zZero

=w- v =g(w,v).

4.2 Vector invariants

Lemma 4.2.1. (Neusel [37]). The representation p : G — GL(n,k) is

faithful if and only if the induced group action of G on kK™ s faithful.

Proof. See Lemma 3.7 in [37]. O

Definition 4.2.2. (Neusel [37]). Let p: G — GL(n,k) be a faithful group

representation. Set p; = p and define a new representation

p2 1 G — GL(2n,k), (4.2)
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afforded by the block matrices

Iteratively we define
pr : G — GL(kn,k), g diagonal(pi(g),---,p1(g)).

We say that py is the k-fold vector representation of p. The group G acts
via pr by acting on the k vectors simultaneously. The corresponding ring of

invariants is called the ring of vector invariants [37].

4.3 The first fundamental theorem of invari-

ant theory for SO(3,R)

The first fundamental theorem for the special orthogonal group SO(3,R)
was proved by Weyl [49] and he stated the vector invariants of the orthogonal
group acting on a standard action on R"™. For three dimensions, the standard
action of the orthogonal group is isomorphic to the adjoint action of the same
group. Weyl divided the vector invariants of the orthogonal group into odd
and even invariants. Moreover, the fundamental theorem of invariant theory

of SO(3,R) consists of all those odd and even vector invariants.
Theorem 4.3.1. For the m-fold vector representation of SO(3,R)

(a) Every even invariant can be written as a polynomial in the scalar prod-
ucts

wi-wj
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for1 <i¢<j<m, where w; w;¢€ R3.

(b) Every odd invariant is a sum of terms of the form

(wi w; wi]f (Wi, wm),

for 1 <i < j <k <m, where w;,wj,w, € R?, and f* is an even

invariant. Square bracket means the determinant of those three vectors.

Proof. See Theorem 2.9.A in [49]. O

Corollary 4.3.2. The m-fold vector invariants of SO(3,R) are generated by

(a) form=1:
Wi Wiq.
(b) form=2:
Wi - Wi, Wi - Wa, W - Wa.
(c) form =3:
Wi Wi, Wi - Wa, Wi - Ws, W - Wa, W2 - W3, W3 - W3,

[wl (5] UJ3] = \wl Wo W3| = W1 - (w2 X wg).

Proof. This follows directly from Theorem [4.3.1]. m
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4.4 The second fundamental theorem of in-

variant theory for SO(3,R)

The second fundamental theorem of invariants is about the algebraic relations
among these invariants which are also called syzygies. In Weyl [49], the
syzygies of SO(n,R) were fully described. We are interested in algebraic
relations of SO(3,R) acting on vectors. However, there are no relations
when there are at most two vectors, the syzygies start when there are at

least three vectors and hence the syzygies of m-fold vector representation of

SO(3,R):
(a) acting on three vectors wy,ws, w3 € R? is

W1 W W) Wy Wip-Wws
[w1 Wo LU3]2 —|wo W Wy Wy Wo w3l = 0. (43)

W3 W W3- Wy W3- W3

(b) acting on four vectors wy,ws, w3, w, € R3 are the first type syzygy in

(4.3) and this type

Z tw wy wil(wy w) =0, (4.4)

w1wye

for any w € R3.

(c) acting on n-fold vectors in R? are the first type syzygy (4.3)) and this

type
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for any w; and 1 <4 < -0 <y <--- <y <

4.5 The first fundamental theorem of invari-

ant theory for SE(3)

Theorem 4.5.1. (Donelan et al (16]). Every polynomial invariant of the

adjoint action of SE(3) belongs to Rjw - w,w - v].
Proof. See Theorem 3.1 in [16]. O

Theorem 4.5.2. The invariant ring of SE(3) acting on two screws is gen-

erated by w; - wj, w; - U;,wq - Va + U1 - wa for 1 <i<j <2).

Proof. See Theorem 7.4.1 in [14}|39). O
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Chapter 5

Algebraic Mappings Among
SO(3,R), SO(3,D) and SE(3)

5.1 Preliminaries

Lemma 5.1.1. If f be any SO(3,R) invariant polynomial , then given w €

R? there is a scalar X such that V f(w) = Aw'.

Proof. Suppose f is SO(3,R) invariant polynomial defined as f : R® — R.
Choose A € SO(3,R), then for any w € R3 we have f(Aw) = f(w) since f
is SO(3,R) invariant. In addition ||Aw|| = ||w]|| so they are contained in the
same sphere. This means that the level sets of f are unions of spheres (except
for the origin 0). From vector calculus V f is orthogonal to the level surface
of f. Moreover V[ is parallel to w' since the last one is also orthogonal to

the sphere, therefore there is a scalar A such that

Vf(w) ="

47
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Theorem 5.1.2. There is a Lie group isomorphism between the dual special

orthogonal group and the special Fuclidean group given by :

¢ : SO(3,D) —s SE(3)
Ay 0

P(Ag+€Ay) = (5.1)
A Ay

6x6

Proof. We show that ¢ is a homomorphism, bijective. To prove ¢ is a homo-

morphism, let A, B € SO(3,D), then

~

$(AB) = ¢((Ag + €A1)(Bo + €By))
= ¢(AoBo + €(Ag By + A1 By))

AoBy 0
AoBi + A1By AoBy

To show ¢ is injective, assume ¢(Ag+€A;) = ¢(By+€B1), then ¢ map above

obtains this equality:

Ay 0 By 0
- . (5.2)
A1 AO Bl BO

This implies to Ay = By, A1 = B, therefore

AO + EAI = BO + EBl. (53)
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To show that ¢ is onto. It is clear that for all z € SE(3) there exists

y € SO(3,D) such that ¢(y) = x. ]

The inverse for the map ¢ exists and defined by:

v:SE(3) — SO(3,D) (5.4)
Ay 0

(2 = AO —f- 6141. (55)
A1 AO

This map is well-defined. It is enough to prove ¢ is bijective, and the

proof is similar to ¢.

Proposition 5.1.3. In Theorem we used 6 X 6-matriz representation
Ay 0

to represent the adjoint action of SE(3), and in Theorem |3.4.2
A A

R 0

we used different 6 x 6-matriz representation to represent the

TR R

same group under the same action. However, both representations are the

same, where Ag = R and T = A A},.

Lemma 5.1.4. There is a Lie group isomorphism between the dual special
orthogonal group acting on dual vector and the special Fuclidean group acting

on single screw given by

¢1: SO(3,D) x D* — SE(3) x s¢(3)

where A = Ay + €Ay € SO(3,D) and & = w + ev € D3

Definition 5.1.5. There is Lie algebra isomorphism between the 3-

dimensional dual Lie algebra and special Fuclidean Lie algebra represented
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by using Pliicker coordinates :

b D s se(3)
w
Y(w+ev) =
v

Definition 5.1.6. Adjoint action of the dual special orthogonal group is

represented as

a; : SO(3,D) x ®* — D?

~

a1 (A, 0) = A,

where A € SO(3,D) and 1 € D3,

Theorem 5.1.7. This diagram is commutative

SO(3,D) x D —s SE(3) x se¢(3)

all laz

@3 T> 52(3)

Proof. We must show that ¥ o a; = as 0 ¢;. Assume A € SO(3,D), so we
can write A = Ay + €A;. Suppose 1 € D3, then we can write 1 = w + ev

where w,v € R®. Firstly, by using Definition [5.1.6]

al(A7 ﬁ)

An
Aow “+€ (Alw + A()’U) (- DS
~ Y——

R3 R3

(1) 0 o) (A) = p(ay (A)) = P(Agw + e(Ajw + Agv))
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A(](.d
= . (5.6)
Alw + Ao’U
Secondly, by using Definition [3.4.2]
¢1(A7 ﬁ) = ((AOa AlAal)’ <w7 U))
Q9 O ¢1 = Oég((ﬁ(Aﬁ) = 042((140, A1A61>, (w, 'U))
AO 0 w
AlAalAO AO v
Aow
= (5.7)
Ajw + Agv
Since (5.6) and (5.7) are equal, the diagram commutes. O

This tells us that the adjoint action of dual orthogonal group is essentially

the same as (isomorphic to) that for the Euclidean group.

5.2 The algebraic structures on the dual

mapping

This part introduces the algebraic structures on which the dual mapping
operates. Duffy and Rico [17] studied the commutative algebra over the
real field, consisting of real differentiable functions defined on the ring of
polynomials R[x], similarly consider the commutative algebra over the real
field of continuous functions defined over suitable x x y C R" x R" with

coefficients over the dual numbers denoted D[x X y].
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Definition 5.2.1. (Duffy and Rico [17]). The dual mapping d : R[x] —

D[x x y] is defined as:

6[f($1,.1'2,"' 7$n>] :f(xbx%“' y Tny Y1,Y2, - 7yn)
:f($1,$2,"' 7xn)+€;yra_xr(x)

= f(x) +eVf(x)y, where e =0.

Theorem 5.2.2. (Duffy and Rico [17]). The dual mapping é : R[x] —

D(x x y) is an algebra homomorphism.
Proof. We must show that :

(a) Olg+h]=dlg]+d[h].

(b) &[gh] = &1g] 6 [h].

(c) 6[N\g] =Ndg], where A € R.

Let g(xl7 Loy ax’/L)’ h(‘rl) Loy 7mn) S R[X]’ prOVing (a‘) and (C> are
straightforward. We show (b):
(b) o [g(X)h‘(X)] =0 [g(x17$27 e 7$n)h‘($17 Ly 7xn)]

"L O(gh
:9(551,5527"' 7xn)h(xl7$27”' axn>+ezyr <g )

r=1
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5.3 Dual invariants and the special orthogo-
nal group

Lemma 5.3.1. Let f € Rjw]5°GR)  then fe Rlw,v] is a dual vector in-

variant of SO(3,D) i.e f € Rlw,v]50GD),

Proof. We must show that f(Aa) = f(@) for all A € SO(3,D), and 1 € D3,
Let A € SO(3,D) be defined as in Definition [2.4.3) and let t = w +ev where

w,v € R? In addition At = (Ay + €A;)(w + ev) = Agw + e(Ayw + Agv).

f(flﬁ) = f(AOw; Ajw + Agv), by Definition we get
=f

(AO(.U) + er(Aow)(Alw + Ao’U).

Since f is an SO(3,R) invariant then f(Apw) = f(w). Moreover, using
Lemma we get,

~

F(AR) = f(w) + €V fw) A (Arw + Agv),
= f(w) + eV f(w)AgAiw + eV f(w) AgAgv,

= f(w) + edw'(AjA))w + eV f(w)v.

From Theorem AL Ay is skew symmetric matrix and from Lemma
w'(AjA;)w = 0, and hence

Therefore, f is an invariant for SO(3, D). O
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Theorem 5.3.2. Let f € Rlwy, ws, -+, wi]5°C®) then f is dual k vector

invariants of SO(3,D).

Proof. We must show that f(Aty,---,Aty) = f(fy,---,0;) where A €
SO(3,D), and u; € D3 foralli = 1,2,--- k. Let A be defined as in Defintion
2.4.3. Suppose 0; = w; + ev; for all i = 1,2,--- , k, where w;,v; € R3. In

addition A, = Agw; + e(Ajwi + Agvy) and Aty, = Agwy + e(Ajwy + Agvy)
f (Aﬁl’ e 7Aﬁk‘> = f(Apwr, -, Agwy; Aywr + Agvs, - - -, Aywy + Agog)

by using the dual mapping in Definition we get

A1w1 + A0v1
= f(Apw, -+, Aowi) + eV f(Apwr, - -, Aowy)

Aywy, + Aguy,

3kx1

f(Aowy, -, Aowy) = fwy, - ,wy), since f is an SO(3,R) invariant. Us-

ing the chain rule V f(Aqwy, - - , Agwy) = Vf(wy, - ,wy)diag (AL, -+, Ab),
k—ti
therefore
Ao’Ul A1w1
:f(wlv"'7wk’)+6vf(w1a"'7wk)diag<A6""7A6) +
k—ti
—times onk Alwk
(O] AéAlwl
:f(CUh"',wk>+€Vf<w1,"'7wk> + )
(% AéAlwk

3kx1 3kx1
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from Theorem remember that AfA; is skew symmetric, and from

Lemma Vf(w) = Aw', while Lemma gives us w'(AjA;)w = 0.
Thus Vf(wi, - ,wi)(AfA 1wy, -+, AbAjwg)! = 0, and hence

:f(wla"' ,wk)+EVf(UJ1,"',wk)<’l)1,"',’Uk)t
:f(wla"'awk;vlf"vvk)

= ]E(ﬁla 7ﬁk)

Therefore, f is dual k vector invariants of S 0(3,D). ]

Theorem 5.3.3. If f is k vector invariants of SO(3,R), then real and dual

parts of 8(f) = f are (real) SE(3) k vector invariants.

Proof. First, let us prove this theorem for one dual vector. Assume the real
part of §(f) is g(w,v) = f(w), and the dual part of d(f) is h(w,v) =

Vf(w)v, where g,h : R® — R are functions of Pliicker coordinates acted

Ay 0
on by SE(3). Suppose A € SE(3), then A = ’
Al A
Ao 0 w
9(A(w,v)) =g
Al AO v

= g(AOw, Alw -+ Ao’U)

= f(Aw).

Since g(w, v) is an invariant of SO(3,R) then f(Ayw) = f(w), and we get

9(A(w,v)) = g(w,v).
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Hence, g(w,v) is an invariant of SE(3,R).

AO 0 w
h(A(w,v)) =h
Al AO v

=h (Aow, Alw + Ao’U)

From Lemma [5.3.1] the last formula will be

Then h(w,v) is an invariant of SE(3).
Now assume we have k-dual vectors invariants of SO(3,D), then g, h :
R® — R are functions of Pliicker coordinates acted on by SE(3) are defined

as follows

g(wl""Uk) = f(wl’... ,wk>

h(wy o) = Vf(wr, - wi) (v, ,Uk)t-
We can generalise the argument above SO(3, D) invariants of one dual vector
as in the proof of Theorem [5.3.2, to prove that g and h are vector invariants of
SE(3). Hence the real and dual parts obtained from k-dual vector invariants

of SO(3,D) are vector invariants of the adjoint action of SE(3). O



Chapter 6

Dualising SO(3,R) Vector

Invariants and Syzygies

All vector invariants of SO(3,R) are studied and stated by Weyl [49] for
multi copies of vectors. That gives us a base to study and find the vector
invariants of a certain representation of other groups acting either on single
or multi copies of their Lie algebra, for instance finding the vector invariants
of the adjoint action of SFE(3) acting on multi copies of its Lie algebra, called

multiscrews.

If we dualise a vector invariant of the adjoint action of SO(3,R), then we
get a dual vector invariant which is, by Theorem [5.3.2] a vector invariant of
SO(3,D). Moreover, if we split the real and dual parts of SO(3,D) vector
invariant then we get real vector invariants of the adjoint action of SE(3)
and Theorem [5.3.3] assures that. The technique of dualisation for invariants
first appears in Selig [47]. The following sections give more mathematical

detalils.

57
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6.1 Dualising the vector invariant of SO(3,R)
acting on a single vector

According to Theorem the vector invariant of the adjoint action of
SO(3,R) acting on single vector is w - w. We will relabel w - w by u-u where

u € R3. If we replace the real vector u by the dual vector 1 = w + ev then,

u-u=(w+ev): (w+ev)

=w- w+ 2w - v. (6.1)

From Lemma the dual number is a vector invariant of SO(3,D).
Moreover, if we split the real and dual parts, then we get the real vector
invariants w - w and w - v. According to Theorem those two vector
invariants generate all vector invariants of the adjoint action of SE(3) acting
on a single screw, and hence every invariant of the adjoint action of SE(3)
acting on a single screw arising from dualising the vector invariant of the

adjoint action of SO(3,R) acting on single vector belongs to Rjw - w, w - v].

6.2 Dualising the vector invariants of SO(3,R)
acting on two vectors

Corollary says the vector invariants of the adjoint action of SO(3,R)
acting on two vectors u;, uy € R? are: u;-uy, us-uy, and u; -usy. If we repeat
the same argument in Section [6.1] by replacing the real vectors u;, and uy by

the dual vectors w; + evy, and wy 4 €v4 respectively, then we get

ﬁl-ﬁlzwl-w1+26w1-v1.
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ﬁg‘ﬂgIWQ'WQ+2€LU2'U2.

ﬁ1~f12:wl-wg—i—e(wl-vg—i—vl-wQ). (62)

From Lemma the dual numbers ([6.2)) are vector invariants of SO(3,D).
Moreover, if we split the real and dual parts, then we get the real vector

invariants of SE(3) as we see in the following theorem.

Theorem 6.2.1. Every invariant of the adjoint action of SE(3) acting on
double screws arising from dualising the vector invariants of the adjoint ac-

tion of SO(3,R) acting on two vectors belongs to

I = wp - w; I =w; v
Iy = wy - wy Iy = wy - vy
Iy = wy - wy Ly = wy vy + v - wy

Proof. Just split the real and dual parts of [6.2, and hence w; - w1, wsy - wa,
Wi - Wa, Wi -V, Wa - Uy and wq - Uy + V1 - Wy are the vector invariants of the
adjoint action of SE(3) . According to Theorem those vector invariants
generate all invariants of the adjoint action of SFE(3) acting on double screws.
Theorem [£.3.3] ensures that those 6 vector invariants obtained from dualisa-
tion are vector invariants of the adjoint action of SFE(3). However, beside
Theorem let us prove those vector invariants using the basic definition
of invariant given in Definition

Those vector invariants that look like w; - w; and w; - v; where 1 = 1,2
can be proved to be vector invariants of the adjoint action of SE(3) acting
on double screws using the same argument as in Example 4.1.4] For the rest

which is w; - V9 + v - Wy here is the proof. Suppose

fwi,v1,wa, V) = wy - Vg + V1 - Wo.
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Let (R,t) be an element of SE(3), and p(R,t) = A be the adjoint action
of SE(3) acting on double screws, and since A is a faithful representation,
then by Definition we can define A acting on a double screw as vector

invariants such that:

R 0 0 0 w1 Rw,

TR R 0 0 v TRwi + Rv,
0 0 R O wo - Rwy
0 0 TR R Uy TRwy + Rvgy

To prove f is invariant. we must apply Definition [4.1.1] then we get:

f(AX) = f(Rwl, TRw1 + R'Ul, R(.dg, TR(.UQ + R'Ug)
= Rw1 . (TRUJQ + R’Ug) + (TRw1 + R’Ul) . R(.UQ

= Rw1 . TRUJQ + Rw1 . R’Ug + TRw1 . ng + R'Ul . R(.«JQ.

Since Rw; - TRwy + T Rw; - Rwy = 0, and Rw; - Rv; = w; - v;, then we get:

Hence, at the top of the previous vector invariants, wi - vy + V1 - wq is a

vector invariant of SE(3) acting on double screws. O

Dualising vector invariants of the adjoint action of SO(3,R) acting on
single or double vectors preserves the homomorphic properties like finiteness
set of invariant generators. The set of invariant generators of SO(3,R) acting

on k-vectors is finite [49] and dualising it is still trivially finite. The vector
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invariants obtained by dualisation generate all invariants of the adjoint action
of SE(3) acting on either single or double screws. However, we do not have a
proved theorem to assure that the vector invariants obtained by dualisation
generate all invariants of the adjoint action of SFE(3) when acting on k-screws

where k£ > 3.

6.3 Dualising the vector invariants of SO(3,R)
acting on three vectors

The vector invariants of the adjoint action of SO(3,R) acting on three vectors
are seven vector invariants. If we repeat the same argument Section by
replacing the real vectors uy, us, and uz by the dual vectors w;+€vy, wo+cvs,

and ws + €v3 respectively, then we get

up-u; = wi-wp + 26&)1”01
Uy Uy = Wy Wy + 26(.02' (5D
us- ﬁg = W3- w3 + 26(.03' U3
U U = Wi -wso + e(wl- Vo + vU1- U.)g)
Ui -uUs = Wi W3 + e(wl- U3 + (S QJ3)
Uy U3 = wa w3 + €(wq- U3 + Vo w3)

~

\ul flg ﬁg‘ = ]wl + evq Wo + €Vo w3 + E’Ug’. (63)
By expanding the determinant, and by bearing in mind that €2 = 0, we get

= ]wl (5] wg‘ + |€’U1 [30)) w;g’ + ]wl €EV9 w;),‘ + \wl [30))

=|w; wy wi|te(lvy wy wil+|wr vy wi|+|w wo

E’Ug’

vs3))
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=lwi wr wy[+e) |von) wo) wo)l (6.4)
o€A3

From Lemma the vectors in (6.3)) are vector invariants of SO(3,D). By

applying Theorem [5.3.3| we have the following theorem:

Theorem 6.3.1. The vector invariants of the adjoint action of SE(3) acting
on triple screws obtained by dualising the vector invariants of the adjoint

action of SO(3,R) acting on three vectors are:

I = wi-wy —fn:wr’Ul

Iy = wy-wy f22 = W2 V2

I33 = w3 w3 f33 = W3 U3

Ly = wi-wy f12:w1~v2+vl~w2

Iz = wi-ws f13:w1~1)3—|—v1-w3

Iz = wyr w3 Iz = wy-v3 + Vo w3

Ip3 = |w1 w2 w3] f123 = Z |’Ua(1) Wo(2) wa(3)|

occ€As

Proof. Besides Theorem let us prove directly those vector invariants

using the basic definition of invariant given in Definition [4.1.1}

Most vector invariants have been proven in Theorem and Example

except these two vector invariants I;93 and j123. Assume

f(wl,Ul,wz,’UQ,w:s,’Ug) = |w1 Wo w3| = Wi (w2 X wg)

g(w1,v1,w2,vz,w3,vg)=§ Vo) Wo2) Wo3)
o€As

:’Ul'(CUQXW3)+U2'(L&J3XL¢21)+U3'<W1XQJQ)

Let (R,t) be an element of SE(3), and p(R,t) = A is the adjoint action
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of SE(3) acting on triple screws, and since A is a faithful representation,
then by Definition we can define A acting on a triple screws as vector

invariants such that:

R 0 0O 0 0 0 Wi Rw,
TR R 0 0 0 O v TRw; + Rv,
O 0 R O 0 O Wy Rw,
0 0 TR R 0 O (2 - TRws + Rvy
0 0 0 R 0 w3 Rws
0 0 0 O TR R U3 TRws + Rus

To prove f is vector invariant, let us apply Definition 4.1.1] we get:

f(AX) = f(Rwl, TRw1 + R’Ul, R(.UQ, TRUJQ + R’Ug, RLUg, TRUJg + R’Ug)
= Rw1 . (R(-UQ X RLUg)
= W7 (L«JQ X (.U3)

= f(®).

To prove ¢ is invariant under the adjoint action of SE(3). By using Definition

@.1.T] we get:

9(Ax) = g(Rw1, T Rwy + Rvy, Rws, T Rwy + Rvy, Rws, TRws + Rus)
= (TRwy + Rvy) - (Rwy X Rws) + (T'Rws + Rvy) - (Rws X Rw)
+ (TRw; + Rvs) - (Rw; X Rwy)
= TRw; - (Rwy X Rws) + Rv; - (Rwy X Rws) + TRws - (Rws X Rwy)

+ R’Ug . (RLOg X R(—Ul) -+ TRLOg . (Rw1 X R(.dg) —+ R'Ug . (Rw1 X RL«JQ)
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Dot and cross product are preserved under R, and Tw; = t x w; for t € R3.
By applying this formula (a x b) - (c xd) = (a-c)(b-d)— (a-d)(b-c), we

get

TRw; - (Rws X Rw3) + TRws - (Rws X Rwy) + TRws - (Rw; X Rwsy) =0,

and Rv; - (Rw; x Rwy) = v; - (w; X wy). Hence

g(Ax) = vy - (we X w3) + Uy - (W3 X w1) + V3 - (W1 X way) = g(X).

[]

Theorem 6.3.2. (The Jacobian Criterion for algebraic indepen-
dence)[Humphreys [24)],Kayal [28]]. Let fi,---, fr € klx1, -+, x,] be a set
of k polynomials in n variables over the field k. Then these polynomials are

algebraically independent if and only if the Jacobian matrix has rank k.

Proof. See [24,28]. O

A

Theorem 6.3.3. The first 12 vector invariants I;;, I;;,1,5 = 1,2,3 of the

K

adjoint action of SE(3) acting on triple screws are algebraically independent.

Proof. First, let us write the vectors wy, - - - , v3 in coordinates form as follows
w1 Wa1 W31
w1 = | wig | W2 = | wyy | w3 = | wso | >
W13 W23 W33
V11 V21 V31
V1= | vo | > V2 = | v99 | » U3 = | v39

V13 V23 U33
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Second, let us calculate all the partial derivatives for all 12 vector invari-

ants Iyq,--- ,f23 with respect to all 18 variables wyq,--- ,v33 and write the

Jacobian matrix J. That is

211)11 0 0
2U}12 0 0
211)13 0 0

e}

0 2”LU21

e}

2wao
2wes 0
0 2ws;
2ws3y
2ws3
0
0

o o o o o o o o o o o o o o

o o o o o o o o o o o
)

By using the Maple software see Section we calculated the rank of

o O

o o o o O

e}

W32

W33

W11

W12

W13

o O o o o o o o o

w3y

W32

W33

W21

Wa2

Wa3

V11

V12

V13

W12

w13

V21

V22

V23

o o o o o O

Wa1

W22

Wa3
0
0
0

o o o o o O

V31

V32

V33

o o o o o O

W31

W32

W33

V21
V22
V23
V11
V12

V13

W21
Wa2

Wa3

W12
W13
0
0
0

V31
V32

V33

V11
V12
V13
W31
W32
W33
0
0
0
w11
w12

w13

V31
V32
V33
V21
V22
V23
0
0
0
W31
W32
W33
W21
W22

W23

the Jacobian matrix J. The rank was 12 which is equal to the number of

the vector invariants, and hence by Theorem the first 12 vector invari-

ants of the adjoint action of SE(3) acting on triple screws are algebraically

independent.

]
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6.4 Dualising SO(3,R) syzygy

The vector invariants of the adjoint action of SO(3,R) acting on k vectors

start having syzygies when k > 3. When k£ = 3 they have only one syzygy,

see (4.3). In this section we dualise the relation to obtain syzygies for the

adjoint action of SE(3) acting on triple screws. Thus

(w1 + ev1 wo+ vy w3+ evy|)

wi-wi + 26(4)1' U1

2_

w1 ws + €(wq- V2 + V- W) Wo Wa + 2ews- Vg Wy w3 + €(wq- U3 + V- w3)

w1 w3 + €(wy- V3 + V- w3) wa w3 + €(wyr U3 + Vo w3) W3- w3 + 2ews- U3

Expanding the left-hand side gives:

= (Jw1 w2
= (Jw1 w2
= (Jw1 w2
= (Jw1 w2

ws| +evy wr wsl +lwi vy wsl 4w wy  ewvs|)?
ws| +e(|vr wy ws|+|wi vy ws|+|wr wy ws])’
LU3|)2 + 26|(.d1(.d2(.d3’ (|’U1(.d2¢03| + |CIJ1’U2(.4J3’ + |W1(.¢)2’U3|>

w3|)2+2€|w1 w2 w3|2|wa(1) Wo(2) Vo(3)]
oc€As

=1+ 2€l1931125.

while the right-hand side gives:

Ly + 2ely,

= 112 + €f12

I3 +€f13

Lo + Ej12 I + E[A13

]22 + 2€j22 123 + Efgg

Iz + €j23 I3 + 2€f33

w1 wy + €(wy- Vg + V- wa) wirws + €(wr- v + U1 ws)
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Iy Lo 113 2€j11 Ly ]13 I €j12 ]13 Iy 1o €f13
= L2 Iy I3 + 61212 Iy I3 + Lo 26?22 I3 + Ly Iy €f23

Lis Inz Is3 €j13 Iys I3 I3 €f23 Is3 Lz Iy 2€f33

Iy Ty I oIy Iy Ls| |In Lo Ls| |In Iy I
=\ly Iy Lg|te||lLo In Ls|+|Ly 2Ly Is|+|hy Iy I

Lis I Is3 f13 Iyz I3 I3 f23 Is3 Lz I 2f33
= (11192133 — ]11]223 - 1122[33 + 2010113153 — ]123122) + 2€(f11]22]33 - f11]223
— f221123 + f22[11]33 + f33]11[22 — f331122 - f12]12[33 + f12113f23 - f13[13]22

+ j13112f23 + f23]12—713 — f23]11f23).

Equating the left-hand side with the right-hand side then we get the following:

Result 6.4.1. The vector invariants 193 and f123, of the adjoint action of
SE(3) acting on triple screws obtained by dualising the vector invariants of
the adjoint action of SO(3,R) acting on three vectors, are not algebraically

A

independent of I;;, I;; where 1,j = 1,2,3. Specifically:

(a) The first basic syzygy of SE(3) comes from the real part of du-
alising SO(3,R) syzygy, and hence can be expressed in terms of alge-
braically independent vector invariants of the adjoint action of SE(3)

acting on triple screws as follows

|W1W2W3|2 = 11223 = I11192133 — —711]223 - ]122]33 + 269113003 — ]123]22'

(6.5)

(b) The second basic syzygy of SE(3) comes from the dual part of
dualising SO(3,R) syzygy, and hence can be expressed in terms of al-

gebraically independent vector invariants of the adjoint action of SE(3)
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acting on triple screws as follows

1123f123 = f11]22]33 — f111223 - —f221123 + f22]11]33
+ f33]11—722 — f33]122 — f12112]33 + —f12]13—723

- —f13]13—722 + —f13]12]23 + j23112[13 — f23—711]23- (6.6)



Chapter 7

Rationally Invariant Functions
of the Adjoint Action of SF(3)

Acting on Triple Screws

7.1 Introduction

In this chapter we are interested in proving that the vector invariants of the
adjoint action of SE(3) acting on triple screws can be expressed as rational
functions of the 14 vector invariants obtained by dualising SO(3,R) vector
invariants acting on triple vectors and mentioned in Theorem [6.3.1 We fol-
low Weyl’s method of proving that functions of two arbitrary vectors x and
y, which are invariant under all (proper and improper) orthogonal transfor-
mations, can be expressed as polynomials of the three scalar products x - x,
y -y and x - y. For more details, see chapter two in Weyl’s book [49).

To achieve our purpose, we modify Weyl’s argument to fit our group
which is a semi-direct product of the orthogonal group SO(3,R) with the

real vector space R?® (see (2.12)). In particular, we use the fact that every

69
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even invariant and every odd invariant of the adjoint action of E(3) is an
absolute invariant of the adjoint action of SE(3), as we prove in the next

section.

7.2 0Odd and even vector invariants

Definition 7.2.1. We define even and odd k-vector invariants of the adjoint

action of F(3) for all R € O(3,R) and T € o(3,R) = R?, as follows:
(a) fis an even k-vector invariant polynomial in k screws iff:
f(Rwy,TRwy + Rvy, -, Rwy, TRwy, + Ruy) = f(wi, U1, , Wk, Uk).
(b) fis an odd k-vector invariant polynomial in k screws iff:

f(Rwy, TRwi+Ruvy, -+, Rwy, T Rwi+Rvy) = det(R) f(wy, vy, -+, Wy, V).

Definition 7.2.2. We define the following:

(a) A;f) is the set of all even k-vector invariants of the adjoint action of

E(3).

(b) A(;) is the set of all odd k-vector invariants of the adjoint action of

E(3).

(c) B"™ is the set of all absolute k vector invariants of the adjoint action

of SE(3).
Theorem 7.2.3. For all k, A;k) + A(Ok) = B".

Proof. Let us fix k and write A(;) =A,, A(Ok) = A,, and B" = B. We
must prove A, + A, C Band B C A, + A,. For the first inclusion, since

SO(3,R) is a subgroup of O(3,R), then A,, A, C B. Moreover, Proposition
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4.1.2| implies that B is a k-subalgebra so it is closed under addition, and

therefore A, + A, C B.

To prove the reverse inclusion, let us assume f € B, so f is absolute

vector invariant of the adjoint action of SE(3). Define
f(/R,T)(w17U1) = f(Rwl,TRwl +R’U1), (71)

where R € O (3,R), and T'" € 0(3,R). This element is a unique in the
set of vector invariant. In order to prove that f’ is the unique element, let

Ry, Ry € O (3,R) we must show that:

f(/Rl,Tl) = f(/RQ,TQ)

f(/Rl,Tl) = f(Riw1, T1 Riwq + Rivy),

= f(RlRQ(Rz_lwl), TlRle(Rz_lwl) + R]_RQ(R;lvl)).

As a result of Ry,Ry € O (3,R) we have R1Ry € SO(3,R), and therefore
(R1Ry,Ty) € SE(3). Remember that f € B is SE(3) invariant. Thus

f(/Rl,Tl) = f(R2_1w17 R2_1'U1)
= f(R3(Ry'w1), ToR3(Ry'wy) + R3(Ry'vy))
= f(Rowy, ThRow; + Rov)

- f(/szTz)'
So for each f € B, we define f’ to be the unique element of the set

{f(/R,T)|R € 07 (3aR)>T € 0(37R>}'
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Let us write

g =5+ 1), and go=(f— ) (7.2

Clearly f =g, + g,. To finish the proof we need to show that g, € A, and
9o € Ao

Part one: Show g, € A, (i.e. show g, is an even invariant of the
adjoint action of F(3)). Let R € O(3,R) and T € 0(3,R), then we have two
different cases that should be discussed separately. When R € SO(3,R) and
Re O (3,R).

Case one: Let R € SO(3,R). By using and then using , we

get

1

gE(Rwl,TRwl + R’Ul) = 5
1

= —[f(wl,’l)1> + f(R*(Rwl),T*R*(Rwl) + R*(TRw1 + R’Ul))],

2

[f(Rw1, TRw; + Rvy) + f'(Rwy, TRwy + Ruvy))

for any R* € O (3,R) and T* € 0(3,R). Now let R* = —I3 and T* = 0,_,.
Since R € SO(3,R) then —R € O (3,R). Thus, the above expression

[f(wi,v1) + f(—Rwy, T(=R)w: + (—R)vy)]

[f(wi,v1) + f(wi,v1)]

N — N~

= gE(w17vl>~

Case two: Let R € O (3,R). By using (7.2) and then using (7.2)), we

get

1
g, (Rwy, TRwy + Rv;) = §[f(Rw1, TRw; + Rvy) + f'(Rwi, TRwy + Ruvy))
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_ %[ Flwy,v1) + F(R (Rwy), T*R*(Rwn ) + R*(TRw, + Roy))l,

for any R* € O (3,R) and T* € 0(3,R). Now let R* = —I3 and T* = 0,__,,.
Since R € O (3,R) then —R € SO(3,R). Thus

_ %[f’(wl, v1) + f(—Rw1, T(~R)w; + (—R)v,)]
= %[f/(wl, v1) + f(w1,v1)]

- gE<w17U1)'

Therefore g, (Rwy, TRw, + Rvy) = g, (w1, v1) for all R € O(3,R) and T €

0(3,R), and hence g, is an even invariant of the adjoint action of E(3).

Part two: Show g, € A, (i.e. show g, is an odd invariant of the
adjoint action of F(3)). Let R € O(3,R) and T" € 0(3,R), then we have two
different cases that should be discussed separately. When R € SO(3,R) and

Re O (3,R).

Case one: Let R € SO(3,R). By using (7.2) and then using (7.2), we

get

1
9o (Rwl,TRwl + R’U1) = §[f<RUJ1,TRUJ1 + R’Ul) — f’(Rwl, TRw1 + R’Ul)]
1
= 5[f(wl, v1) — f(R*"(Rw1),T*"R*(Rw;) + R*(T Rw; + Rvy))],

for any R* € O (3,R) and T* € 0(3,R). Now let R* = —I3 and T* = 0,_,.
Since R € SO(3,R) then —R € O (3,R). Thus

_ %[f(wl,vl) — f(=Rwy, T(—~R)w; + (—R)v,)]

1 ’
— §[f(w1,’v1) — f (W1,U1)]
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= go (wla vl)'

Case two: Let R € O (3,R). By using ([7.2) and then using ([7.2)), we

get

1
9o (Rwy, TRwy + Rvy) = §[f(Rw1, TRw; + Rvy) — f'(Rwy, TRw; + Rvy)]

= 1@, v) + F(R(Ren), T B () + R*(T Ry + By,

for any R* € O (3,R) and T* € 0(3,R). Now let R* = —I3 and T* =0, _,.
Since R € O (3,R) then —R € SO(3,R). Thus

_ %[f’(wl,vl) — f(=Rwy, T(~R)w + (—R)vy)]
— %[f’(wl,vl) — f(wi,v1)]

= _go (wla Ul)-

Therefore g, (Rwy,TRwy + Rv,) = det(R)g, (wy,vy) for all R € O(3,R)
and 7" € o(3,R), and hence g, is an odd invariant of the adjoint action of
E(3). Since g, € A, and g, € A, then f =g, +9g, € A, + A,, and hence
B C A, + A,. The proof of the theorem is finished. m

7.3 Choice of a canonical base

In order to express the vector invariant of the adjoint action of SE(3) acting
on three screws as either polynomial invariant or rationally invariant function

we need to change the basis of screws S; = (w;,v;) by S; = (Wi, v}) using
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these transformations for all i = 1,2, 3

We try to write the new basis with respect to the choices of R, and T'. Assume
Rw lies in the direction of x-axis, and Rws lies in xy-plane, then Rws will

be any arbitrary vector in the space such that:

(63} (0%)) Qg
Rw1 = o1, ng = |lag| s ng = |las| (74)
0 0 (673
where «; are scalars for all i = 1,--- 6. Regarding the way we have chosen

Rw;, we can now determine the other transformations for v;’s. We want to
choose the coordinates of this vector TRw; + Rv; in the way that making

y, z coordinates in T'Rw; are equal y, z coordinates in Rv;, such that
(TRw,), = (Rvy),, and (TRw;), = (Rvy).. (7.5)
Let T be defined as in Lemma and Rw; as in then
TRw; = (0, tza;, —toy)' = (vz,vy,vz)t = Rv;. (7.6)

Then ¢, = —2 and t3 = ;* where a; # 0. From (7.6) the first coordinate
of this vector T'Rw; + Rwv; could be any arbitrary, and let us assume it ;.
However, the only way to make ([7.5)) be satisfied is to make the second and the

third coordinates T'Rw; + Rv; be zero. Hence TRw,+ Rv; = (1, 0, 0)L
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For the vector T'Rws + Rvy we have

TRwy = (—tsaz, tzag, tias—taan)' = (vh,v),v))" = Ru,. (7.7)

T Yl vz

Then t; = ”/ZJ;%, where ag # 0. The first and second coordinates of T'Rws+
Rwv, could be any arbitrary and the third coordinate must be zero and hence
TRwy + Rvy = (B2, (3, 0)'. Vector TRws + Rvs can be any arbitrary

vector such as TRws + Rvs = (B4, 5, [e)'.

Hence the new basis, S! = (w}, v}) for all i = 1,2,3, are :

aq (6] g
0 Qs Qs
0 0 (673
S1 = : Sy = : Sy = : (7.8)
B o Ba
0 Bs Bs
0 0 Be
where «; and (; are scalars for all e = 1,2,--- | 6.

7.4 Even invariants of E(3)

Theorem 7.4.1. The even vector invariants of the adjoint action of E(3)
acting on triple screws can be expressed as rational functions of these vector

invariants I;;, 1;; and I3y, where i,j = 1,2, 3.

Proof. Suppose that S; = (w;, v;) for i = 1,2, 3 are three screws represented

using Pliicker coordinates, and S, = (w}, v}) for i = 1,2, 3 are the three new
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screws obtained by changing basis as in ([7.8]). By changing basis we have

f(Sh 52753) = f( 17 év Sé) (79)

Using s¢(3) = s0(3,D) and duals of six SO(3,R) vector invariants, then we

get

Sl : Sl = Si : Si — Wi Wi + 2wy v = Oé% + 260&151

Sy - Sy = Sb S = wor wy + 26wy vy = (a5 + a3) + 2¢e(aafy + azfBs)

Sz - S3 =S4 - S = w3 w3 + 2ews vz = (] + ai + af)

+ 2€(afy + o505 + a6fs)

51 . SQ = Si . Sé — Wi wy + 6((.01' Vo + Ut wg) = Q9 + 6(0[1&2 -+ ﬁﬂ)&g)

S1-S3=25]5; = wi-ws + (w3 + V1-w3) = gy + (o By + Pfroy)

Sy - S5 =55 - S5 = wa w3 + €(wa V3 + Vo w3) = (anay + azas)

+ e(azfs + azfs + aufz + as5s) (7.10)

The real part equations are:

2 2 2 2 2 2
a] = Wi Wy, a5 + a3 = wa- wa, oy + oy + ag = w3 w3,

a1 = W1 W3, a1ty = Wy W3, Qo0ry + 35 = Wo W3.

The dual part equations are:

04151 = W1 Uy,
s + a5 f5 + apfs = ws- U3,

a1y + Proy = wy- U3 + Uy- wa,

a2y + azfs = wa- Uy
a1 8y + Brog = wi- Uy + Uy wo

a2y + azfs + cufa + a5 B3 = wa U3 + Vo w3,
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By using improper rotations, that is, leave an even invariant fixed, we

can additionally make any of these three transformations:

1) g —> — O and 66 — _56
2) az,a5 — —ag,—as and P35, 35 — —f3, =[5

3) oq,a0,04 — —ay,—ag,—ay  and Sy, Be, By —> =1, —P2, —

(7.11)

The polynomial f is a linear combination of monomials

__ a1 ,082 a3 . a4, a5  as Qb1 oba bz nbs nbs nbs
M = af*ay*as’ agtas®ag® By By B5° By B5° B’ (7'12)

because of the invariance just mentioned, from first change the two exponents
ag and bg are of equal parity, that is, either both even, or both odd. According

to this change M can be written in terms of a2, 32, and agf3s.

In the second change, the sum of the exponents as, as, b3, and b5 must be

even and hence M can be expressed in terms of o2, o, azas, 33, 52, B35s,

O(5657 a3ﬁ37 a365a and 05553-

In the third change, the sum of the exponents ay, as, a4, b1, by, and by
b d h M i ial of o2, a2, o2, B2, B2, 32
must be even and hence is a monomial of a7, a3, af, 57, B3, Bi, ciae,

g, o, 1 B2, BiBa, Bofa, arBi, a1 fa, arBa, cofi, aafBa, cofs, auBi, cufs,

and ayf4.

Hence, M can be written in terms of all the above mentioned monomials.
All those quadratics can be expressed rationally in terms of invariants Iy,
g, Is3, Lo, L, Tos, T, Ing, Iss, Dhg, Dis, Ipg, and I3y, Tt is complicated
to write them down but Maple Appendix gives explicit formulas. The

solution of the system of real and dual equations in terms of vector invariants
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in Theorem [[.4.1] is

I? Ii1159 — I?
0‘% = I, Oé = I_i’ O‘% o 2]211 12;
04421 _ ]_123, ag _ (I1113 — [12113)2’
I (11122 —[122)[11

2 _ 2]12]13]23 - 111]223 + 111122]33 - ]122]33 - 1221123

o
0 Iyl — I3,
I 2 (jmfn — j11]12)
5% = 7 52 = ;
I I}
82 = (j11[122 — 112f12[11 + f221121)2
’ (I1loe — Ify) I} ’
82 = (Ii3I11 — I11113)?
4 — )

I},
B3 = (hnha(2hnIoslys — Iy lis — Dol Iog) + Do 17 (1o Los — Thislao)
+-f22—7121(]12]13 — I1os) + (-f23—7121 - j13]12]11)(111]22 - —7122))2
Iy (Il — If)? ’
<[123j123<[11[22 - 1122) - [1223([11[A22 + IZlel - 112f12))2
(Ii1lz2 — 1) 155

B =

= (I Its (I Loy — I1)? — 21355 1123 (111 I

——7122)([11f22 + ]22j11 — 112f12) + ]f23(111f22 + 122f11 - —712f12)2)
(I1l2g — IT5)3 I3y

= (I%)3(IIny — I2)? — 295 1193( 111 Iy

—1122)([11j22 + ]22j11 — 112f12) + 11223(]11f22 + 122f11 — —712—f12)2)
(Inly — I17)? .

(7.13)

Note that 52 has a special form requiring I2,. O

7.5 Odd invariants of E/(3)

In the previous section we had twelve equations with twelve unknowns «;,

B; where i = 1,--- /6. As in ([7.13]) each one of these twelve unknowns can
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be expressed as a function of the vector invariants I11, Iss, I33, I12, 13, Io3,

f11, f22, f33, f12, flg, f23, and f1223 that involves square roots. The following

additional equations allow us to choose the correct sign for square roots. The

first equation is

Lo = |w1 W2 w3| = |Rw1

a7

The second equation is

j123:|U1 Wo UJ3|+|UJ1 (3] UJ3|+’U)1 Wo ’U3’

= ]TRwl + R’Ul ng ngl + \Rwl

+|Rw; Rws; TRws;+ Rus]

51 Qg Oy (@51 52 Oy

=10 a3 as|tT|[0 B as|t+

0 0 oas 0 0 o

= Brasag + oy Baas + arosBe.

R(—Uz Rw3|
Qg Oy
a3 Q5| — 0 0306.

a1 Qg ﬁ4
0 as Bs
0 0 S

TRws 4+ Rv,

(7.14)

ng\

(7.15)

The right-hand side of Equation [7.15] can be expressed as a rational function

7 7 7 7 7 7 72
of I, Isa, I3z, Iia, I3, I3, I11, Ia2, I33, 112, I13, Io3, 1123; and [y53 as follows.

If the three terms of the right-hand side of (|7.15)) have been multiplied and

divided by o?, o2, and o2 respectively, we obtain
y @, Q3 6 r'esp Yy

04%51043046 agalﬂa% 04204104356
af a3 ag
_ () (aazas) | (asfs)(aasas) | (a6fs)(aazae)
N a? a? a?
1 3 6



7.5. ODD INVARIANTS OF E(3) 81

_ (a1ﬁ1 + sl + a6§6) (araz00)

o o3 ad

= F(I11, s, I3, L2, I13, Ios, @11, Iy, Is3, I1a, I13, o3, —f1223)1123' (7.16)

That means the second additional equation is not needed since it can be
expressed as a product of I153 with an even rational function as in Equation
(.10l

In Theorem [7.4.1] we showed that the product of two unknowns coming

from the same set H; (i = 1,2,3) where

Hl = {a67ﬁ6}7
H2 == {a37a5763755}7
Hz = {ay, a2, au, B1, Ba, Bu}, (7.17)

can be expressed as a rational function of the first twelve algebraically inde-
pendent vector invariants and f1223. To prove a similar result for odd invari-
ants of the adjoint action of E(3), we need to prove that any product of the
form hihohs, where h; € H; for i = 1,2,3, can be expressed as a rational
function of Iy, Iso, I3, 112, 113, Io3, j11, f22, f33, flg, flg, fgg, flz23, and I93.

There are 2 x 4 x 6 = 48 such expressions as follows:

oo
agozon = li23, agazay = (2192) o7 )12
1oy a1f1
Qpa30y = (a72)]123a agazf = (aiz)fu?,
1 1
a1 2 a1
agasfy = 2122 o? M T123, agasfy = 2151 o2 ! T123
asas asas)(azan
Qg5 = (;72)-7123, Qpas0 = %1123
3 13
_ (asas)(aaag _ (asaz)(a1p1
apazay = (2598)(Gaen) a2)1(12 ! 1123, agasfy = (@) oﬂ)gﬂ )12
1=3 13
a3 ,32(11 503 54(11
agasfy = LLo0s)Bean) g, agasfy = Leos)Baca) f

o103 ajos
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agBsay = 552 3)1'123,
agflzay = %h%

B3y = La0s)Bran) o

ajo}
agfson = (%1733)11237
B0y = M; 193,

2.2
ajag

g Bs By = Bs0a)Bzan) 1

ajag
oz = m27/56)[123,
Pocsc = %h%,
Beas By = %Img,
Beasa = %I .
Beasay = @ebellasas)(aaan) p o

2,.2,2
ajaz0g

Beas B = (a6 fBs)(asas)(Baar) Iy

2 2 9
a3y

BeBaay = laefe)Bsas) o

063066

BeBaouy = (046,36)(/83043)(044041)1 123,

a3y

Be 32 = (%56)0(4?332)6(52&1)]1237

BeBsar = %hz&

Q3

BeBsas = (a6ﬁ6)(55a3)(a4011)1 193,

3 3 3
Q13

(a6 f6) (,35a3)(52a1)l -

2 2 2
arazag

BeB582 =

RATIONALLY INVARIANT FUNCTION

_ (Bsas)(azcu)
g3z = " Lo
(Bzaz)(a1B1)
asfsfL = " rz T123
a6 Bs381 = %ﬁ:al)jm
_ (Bsaz)(azaa)
agPsan = T adar
O‘6B5Bl = Wllgg
1-°3
ap 584 = %Im&
173

Beazan = %&?O@I 123

BeazB1 = thz&

Bea3fs = %1123
Beasaz = (aﬁﬁfs)c(!o%ézgz)g(azm)h%

Beas B = (06656)(&5043)(&151)1 193

2,.2,2
Qa3

660[554 = (aB6)(asaz)(Bacr) I

2,2,2
Qjaz0g

(a6ﬁ6)(ﬂ3a3)(a2a1)1

2,.2,2
Q30

Bef3az =

(046,36)0([5;&2)(041,31)]1 03
1-3%6

BeB361 =
B384 = (af6)(Bzas)(Bacn)

2
aja3z0g

I193

5655012 = (QGﬂG)(ﬁ5a3)(O&2a1)I

2 2
« a3a6

BeBs B = aﬁﬁe)(ﬁsas)(alﬁl)I 123

7 3 3
Q13

(a686)(Bsa3)(Baca) T3

2 2 2
ajazag

BeBsBa = (7.18)

Theorem 7.5.1. The odd vector invariants of the adjoint action of E(3)

acting on triple screws can be expressed as rational functions of these vector

I;

wnvariants: I;j,

ii» Tiaz and I35 where i,j =

1,2,3.

Proof. We know from the even case that for an invariant polynomial
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f(S1,Ss,53) can be expressed as F(aq, -+, ). We must find all possible

linear combinations of monomials M mentioned in ([7.12)) that satisfy

(ah : 7B6> (al7 e :ﬁé)a (719)

where o, --, s are the result of applying any of the transformations in
(7.11)). Let us reorder the monomial M by combining unknowns «; and §; of

the same group of H; together, that is

_ be asz as bz gbs a1, _as
M = og° B o o5” B B5° oy o a4 4B : (7.20)
S——N ~~
H1 H2 H3

For the unknowns in H; to satisfy (7.19)), the sum of their exponents ag

and bg must be odd and thus we have two possibilities, either a2 32™ or

a2n 8™, However, those two combinations can be written as follows

QB HGE = (aB)" (B2)"
03" GR™H = (o) (6R)" B, (7.21)

For the unknowns in H, to satisfy (7.19)), the sum of their exponents must

be odd and thus we have eight possibilities as follows
(a3)™(a3)"(53)"(53)" as, (a3)™ (a3)"(B3)"(83)" s
(@3)™ (a2)"(83)" (82)" Bs, (a3)™ (a2)"(83)"(53)" Bs
(a3)™(a2)"(B3)"(B2)" (asBs)as,  (a3)™(a3)"(B5)"(83)" (azas) s
(a3)™(a2)" (83)"(B2) (asBs)Bs,  (a3)™(a2)"(B5)"(B2)" (BsBs)as.  (7.22)

Note that each possibility in ([7.22]) contains even combinations discussed in
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case two of Theorem[7.4.1]times an extra unknown, that could be any element
in H,.

For the unknowns in H3 to satisfy , the sum of their exponents must
be odd and thus we have 32 possibilities, where each possibility contains even
combinations as in case three of Theorem [.4.1] times an extra unknown in
Hs.

Combining these three cases gives us all possibilities of monomials of
the relative invariant function F'. Each monomial consists of any of the even
combinations from Theorem[7.4.1]together with three extra unknowns hqhahs
where h; € H;. Recall from that any such combination hihohs can be
expressed as a product of [123 by an even rational invariant in terms of I;;,

A

72 ; ; 72
I7y5. Hence f can be rationally expressed in terms of [;;, I;;, I{,s and

A

iJ9
1123. ]

Theorem 7.5.2. Every vector invariant of the adjoint action of SE(3) acting

on triple screws can be expressed rationally in terms of

I = w;- wy, Iy = w;- v, 1=1,2,3

Iij:wi~wj, Iij:wl-~vj—|—vl-~wj, 1§’L<]§3

I93 = |wiwaws], f1223 = (|lviwows| + |w1vaws| + |wiwavs|)?

Proof. From Theorem [7.2.3] every even invariant and every odd invariant of
the adjoint action of F(3) acting on triple screws is an absolute invariant
of the adjoint action of SFE(3) acting on triple screws. Hence every vector
invariant of the adjoint action of SF(3) acting on triple screws can be ex-
pressed rationally in terms of Ii1, Ios, Iss, I12, L, Ins, I11, Ioo, Is3, T1a, Lis,

T 72
123, [123, and 1123. D



Chapter 8

Application to Robotics

8.1 Introduction

A typical robot arm is a mechanical manipulator which can be modeled as
an open articulated chain with several rigid bodies (links) connected in series
by one degree of freedom joints driven by actuators. In general, there are
six different possible lower-pair joints: revolute (rotary), prismatic (sliding),
cylindrical, spherical, screw, and planar, mainly revolute and prismatic joints
are common in manipulators.

Robot arm kinematics deals with the analytical study of the geometry of
its motion with respect to a fixed reference coordinate system as a function
of time without regard to forces/moments that cause the motion. Thus, it
deals with the analytical description of the spatial displacement of the robot
as a function of time, in particular the relations between the joint-variable
space and the position and the orientation of the end-effector of a robot arm.
For more details see [20].

In this chapter we are interested in finding the link lengths and offsets of

a robot arm called Denavit—Hartenberg parameters and writing them by both

85
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Pliicker coordinates and in terms of vector invariants of the adjoint action
of SE(3) acting on triple screws. The aims of expressing the parameters
in terms of vector invariants are; firstly it gives a simpler expression (for
instance, when the offset formula is expanded in terms of Pliicker coordinates
it contains around 500 terms); secondly it gives us a clearer picture about
what is going on and hence the algebraical significance of the parameters.
Finally, we will leave the door open for more benefits that may be found by

either engineers or geometers in the future.

8.2 Denavit—Hartenberg parameters

Axis i Axis i + 1

Figure 8.1: Denavit-Hartenberg frame assignment for serial robot arms [19]

The Denavit-Hartenberg (DH) parameters denoted a;, d;, a;, and 6; are
the four parameters associated with a particular convention for attaching ref-

erence frames to the links of a spatial kinematic chain, or robot manipulator.



8.3. LINK LENGTH 87

The parameters describe how a link () is related to link (i — 1), and (i 4 1).
Jacques Denavit and Richard Hartenberg introduced this convention in 1955
in order to standardize the coordinate frames for spatial linkages [23].

Richard Paul [40] demonstrated its value for the kinematic analysis of
robotic systems in 1981. While many conventions for attaching references
frames have been developed, the Denavit—Hartenberg convention remains
the standard approach.

To understand the relation between twists and joints, relative to coordi-
nate frames in adjacent links ¢ — 1, ¢ that coincide in the home configuration,
the motion admitted by the one degree of freedom joint is given by the ex-

ponential map:

0; — exp(6;X;) € SE(3). (8.1)

For given coordinates, the defining twist X; of the joint is defined only up to
a non-zero constant. In other words, any joint corresponds to an element of

the projective Lie algebra, termed a screw.

8.3 Link length

The link length is the length of the common perpendicular between the axis-
lines of two screws. Let us assume they have finite pitch and the axes of
screws are non-parallel and neither joint is prismatic. In Figure the link
length between screw ¢ — 1 and screw ¢ is denoted by a;_; while the link
length between screw ¢ and screw ¢ + 1 is denoted by a;.

To simplify exposition, we relabel screws ¢ — 1, 7 and ¢ + 1 by 1, 2 and 3
and we denote those screws by Sy, Sy and S3 respectively. To calculate link
length a; between screws S; and Sy in terms of Pliicker coordinates (w;, v;)

where ¢ = 1,2, assume the axis-line of 5] is contained in the plane m; with
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direction vector w; and the axis-line of S5 is contained in the plane w5 with
direction vector wsy. The plane 7 is the plane that contains the axis for
S1 and is normal to the common perpendicular and similarly for 7y with
respect to Sy. Therefore m; and 7y are parallel and hence they have the same
normal w; X ws. Assuming that the normal vector of both planes meets the
first plane at point x; and the second one at point x;. We can find these
points using vector algebra that the equations of the two planes 7w and m

can respectively be written in the form

a-X| = ]{?1, (82)

a-Xo = k’g. (83)

Here a is the normal vector between the two planes and is given by w; X ws,

while k1 and k5 are two scalars. The distance between the two planes is given
(8.4)

Figure [8.2] gives a clear picture of the link length between two screws.

Uy

FF
/

0

Figure 8.2: The link length between the axis-lines of two screws
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As stated before, x; and x5 are two vectors from the origin ending at
the planes 71 and 7o respectively (and those planes are perpendicular to the

vectors a and x, — x; and contain screws S; and Sy respectively). By using

(3.31)), we obtain

V1 X W

xy = LXC e, (8.5)
Wi - Wy
Vo X Wa

X9 = ——— + CoWwo. (86)
Wo - Wy

Substituting (8.5 and - ) into and using the equality a = w; X wo,

we get D

X X
(o) ke 67)
lwr x wsl

Remember for any scalars ¢, ¢o we have cja - w; = csa - ws = 0. Expanding

the numerator of by using the identity of Lagrange [32]
(axb)-(ecxd)=(a-c)(b-d)—(a-d)(b-c), (8.8)
we get

4y = (w1 ws)(v1 - w1) = (W1 - wi) (V1 - wy))|wslf? (8.9)
— (w2 wy) (Vg - w1) — (w1 - wa) (V2 - wy))[|w]?
[Jwr[[lws[?[lws x wsll
W wo Vi rwp | UprWwy) U Wyt U3 Wy
- lwr X ws] ( Jwill* [lwalf? ) [lwi X ws
. wrrwe Vi W1 Uy Wy ) W1tV + U1 wo
|lwr x ws| (wl'wl w2~w2> lwi X wall

(8.10)

From (3.29) the ratios 2221 = hy and 222 = hy represent the pitches of

"'We omit the modulus sign to simplify notation. However, link length is always positive.
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screws S7 and Sy respectively. Hence

W1 Uy + V1-Wo

(8.11)

w1 x wsl

We observe from that if either wq, wq, or wy X wsy is equal to zero, then
the link length will be undefined. Using Maple we can verify that link lengths
are invariants under the adjoint action of SE(3), and hence link length a;
can be expressed in terms of vector invariants of the adjoint action of SE(3)

acting on pairs of screws stated in Theorem as below:

o 112 jll j22 j12
a; = T I_ + [— B
_ 1 fll-[12-[22 + 111112j22 - ]11j12122 (8 12)
VIiIn — 13, L1 ' '

8.4 Offset

The offset is the distance between the feet of successive common perpendicu-
lars, and it is only defined when there are three consecutive screws. In Figure
offset has been denoted by d;. We calculate offset dy which lies along the
axis of screw S;. Let us assume that the three screws all have finite pitch and

the axis of the middle screw should not be parallel to either of the others.

In Figure offset dy precisely speaking is the distance between x5 and

x4, which is as follows:

/
dy = |lx2 — x5|
Vo X Wo Vo X Wo ’
= ||———— t lawy — ———— + tHwo
Wa - W2 Wy - Wa

= [[taws — thws||
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= [ta = B f|w2]. (8.13)

Figure 8.3: Offset between the feet of successive common perpendiculars link
lengths.

We must determine to, ;. Assume 7, and 7 are two planes containing
common perpendiculars a;, and as respectively. Parametric equations of the

axes Si, Sy given Pliicker coordinates (w1, v1) and (wq, vy) respectively are:

U1 X W1

x; = L2 o (8.14)
Wi Wy
Vo X W
Xy = ———2 4 tyws, (8.15)
Wo - Wy
, Vo X Wo ,
Xy = — + thwa. 8.16
= B2, (5.16)

The fact that x5 — x; is perpendicular to axes of screws S; and S, gives us

these two equations:

Vo X W V1 X W
(u + tg(.«.)g — ; — tlwl) W = 07 (817)
W - Wy Wy - wq
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Vo X W V] X w
<u + tg&)g St At tlwl) Wy = 0. (818)
Wy - W Wi - W

By distributing the dot product over both equations and noting that v x w;

and w; are orthogonal, similarly, v, X wy and ws, then :

Vo X Wo) * W V1 X W) - 0
(( 2 2) 1>+t2(w2-w1)—(()i)/ur)/ — ti(ws - wi) =0,
Wo - W2 Wi - W

(8.19)
((v}xwg/-ufjo ty(ws - w) — ((vl X W) -wz)  y(wy - w) = 0.
Wo W Wiy W1
(8.20)
Eliminating ¢;, then ¢, can be obtained as follows:
ta ((wl cwy)(wy - wa) — (wy 'wz)Q)

W - W2
Using (8.8) and making t5 subject of the rule, then we get:

B (Vg X wa) - w1) (w1 - ws) + (V] X w1) - wa) (W - wWa)
- ezl x walP - B

In order to find t, we can repeat the previous argument between the second
screw and third screw instead of first and second screws. However, we can
more simply find t, from ¢, by replacing index 1 by index 3 and hence obtain

t, as below:

;o (V2 X wy) - w3) (w3 - wa) + (V3 X W3) - wy) (w2 - wa)
L JeoalP s x wall - B

Substituting (8.22) and (8.23) in (8.13), and remembering that
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((v2 X wy) - w3) is a determinant, so we can write it as |[Vowaows|, gives:

| [vawawi (w1 - wa) + [viwiws|[|wa|]? [vawsws|(ws - wa) + [vawsws|[|wol?

dy = .
: fwalPllwr x wal? walEllws x wsl2 o2l
(8.24)
By making a common denominator we get: H
dy = (!U2w2w1\(w1 ‘W) + ’U1w1w2|”w2’|2)HW3 X w2H2
— (Jvawsws|(ws - wy) + [vswsws|[|ws ) lwr X wyll?
[wal[[|ws X wal[?[|wr X wal?
(8.25)

Note that under our assumption above, this quantity is well-defined. Simi-
larly, provided the axes of screws 1 and 3 are also non-parallel, offsets 1 and

3 can be written as:

dy = (|U1w1w3|(w3 Cwi) + ’U3w3w1|||w1||2)||w2 X w1||2

— (Jviwiws| (w2 - w1) + [vawsws |[|w: [*)[|ws x wi”

|wil[ws x w1 ]?]|ws x w[? ’

(8.26)

dg = (]vgw3w2|(w2 . wg) + ]vgw2w3|||w3||2)||w1 X w3H2

— (|vswsw (w1 - ws) + |U1w1w3|||w3||2)||w2 X w3||2

lwsl[ller x wsl|?[lws x w3

(8.27)

The numerator €2, of the offset dy can be written as a determinant of

2We omit the modulus sign to simplify notation. However, offset is positive.
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4 x 4-matrix as following

|’Ulw1w2|

\’Uszwl’

Qo

|’02w2w3|

"Ug(—dg&)g’

CHAPTER 8. APPLICATION TO ROBOTICS

—(w1 - wy)
(w2 - ws)
—(w2 - wy)

((.4)2 . (.03)

(w1 - w2)
—(ws2 - wy)
—(wq - wo)

(UJQ . QJ3)

(w1 - w1)
—(w1 - wy)
—(wq - w3)

(w3 - w3)

(8.28)

Similar expression can be obtained for the numerator of offsets d; and dj:

|vswsw |
[v1wiws
|lv1wiws
[vawowi |
[vawows|
[CABETAR

|'03w3w1|

\’U1w1w3’

— (w1 - w3)
(w1 - w)
— (w1 - w1)
(w1 - wo)
— (w2 - w3)
(ws - ws)
—(ws - ws)

((.4)1 . (.03)

(w1 - ws)
— (w1 - w1)
— (w1 - w1)

(w1 - wo)

(ws - w3)
— (w3 - w3)
—(ws - ws)

(w1 . QJ3)

(w3 - w3)
— (w1 - ws)
— (w1 - w2)

(w2 - wo)

(w2 - wo)
—(w2 - w3)
— (w1 - ws)

(w1 - w1)

(8.29)

(8.30)

The offsets are invariant under the adjoint action of SE(3) acting on

triple screws, we can verify that by Maple. It is clear that the denominator of

any one of them can be written in terms of the invariants of adjoint action of

SE(3) acting on triple screws. However, it is not clear that the numerator can

be written in terms of those vector invariants, since we have determinants, for

instance |vgwows |, |[vwiws| and |vswswi|, which are not among the fourteen

vector invariants of SE(3) acting on triple screws. In fact the indices of the

vectors in any of those determinants do not belong to the even permutation

of three vectors. While those determinants are linear in the v’s there is no

clear evidence that they can be written in terms of the invariants in Theorem

0.5, 11
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Lemma 8.4.1. The product of the invariant €2y and I123 can be expressed as

a polynomial in terms of vector invariants of the adjoint action of SE(3).

Proof.

Qolh93 = \U2w2w1”w1w2w3\(¢01 '(.02)”&)3 X w2H2
+ [viwiws|lwiwsws|[|lwal*lws X wsl®
— ‘UQLUQQ)gle(.de?)l(UJg . QJQ>||(.01 X (.UQH2

— ‘U3W3W2|’W1(—d2(.«)3|HU.?2||2||L|J1 X w2||2. (831)

We note that each term has a product of two determinants so we have to

expand those determinants as follows:

(’02 : wl) (U2 : w2) (Uz : w3)

U2w2w1|’w1w’2w3’ = (w2 . wl) (w2 . wg) (LUQ . (AJ3) (832)

(Wi wi) (wr-ws2) (w1-ws)

We can express this in terms of known vector invariants of the adjoint action

of SE(3) in Theorem in order to make the calculation easier.

(v2-w1) f22 (U2'w3)

= Lo I I3

I 1o I3
= (’Uz : wl)[22[13 - (Uz . wl)[23112 - 112f22[13

+ [12[12(’02 . w:),) + [11f22[23 — 111[22(’02 . (.U3). (833)
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Similarly,
|’01w1w2||w1w2w3| = f11]12]23 - f11]13—722 - ]11]23(1)1 'w2)

+ L1 (vy - w3) + Liol13(vy - we) — -7122(’01 -ws). (8.34)

U2w2w3”w1w2w3\ = (’Uz : w1)122[33 - (U2 : wl)[223 - [12f22[33

+ Liolos(vg - w3) + [13f22f23 — Ligly(vs - w3).  (8.35)

V3wsws||wiwows| = (V3 - wi) I3 — (V3 - wi) I3l — L13153(V3 - W)

+ Iyl lss + Io133(vs - wo) — Lo Dy5 153, (8.36)

By substituting the product of two determinants of each term in [8.31

by (8.33)),(8.34)),(8.35)and (8.36]) respectively, and write ||w; X wsl/?, and

|wa X w3|? in terms of known vector invariants as 11l — I3, and IogI33— 12
respectively, and sorting the indices of invariants in ascending order and

treating brackets as coefficients. Then we get:

Qo193 = (V2 'w1)112]13]222]33 — (vg - w1)1f2122—723]33 - ]122]13]22f22f33
+ (vy - w3)1132]22133 + 111]12]22j22123133 — (vg - w3)111]12]222_733
— (vy - w1) halig I3y + (Vg - w1) [y I3y + Iy L1310 I3
— (v ws)lfgfgg - ]11]12j22[§’3 + (v2 - w3)111]12]221223
+ f11]12[222[23[33 - f11[13[§2[33 — (v -w2)111[222123]33
+ (v1 - wy) 1115 ]33 + (V1 - wa) 1211315, Is3 — (V1 - w3) I3, 15, I35
- f11[12[22[§’3 + f11[131222[223 + (01 - wo) 1115213

— (v1 - ws) 115,155 — (V1 - wo) 12 L1310 I35 + (V1 - w3) I3, Ina I3
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- (’02 : w1)111[222f23133 + (’U2 : w1)111[22]§3 + ]11112122j22123f33
- (Uz : w3)111]121221223 - ]11]13]22f22]223 + (U2 : w3)111]13]222]23
+ (vs - w1)1122]22]23f33 — (vs - wl)lfglg’g - —732]23]}2]33
+ (Ug - wy) T2 + T Lilan Iy — (Vg - wi) [ 131010
— (vs - w1)111]222[223 + (vs - w1)f11]§2—733 + (vs - w2)111]13]23]222
- 111]13]232f33 — (v3 - w2)111]12]222]33 + 111112]222]23—f33
+ (U3 - wi) [ Toa Iy — (V3 - wi) sl Is3 — (V3 - wo) 15 T1310 I3

+ 1122]13]222f33 + (’Ug : WQ)Ii))Q[zQ[gg — ]?2]22123]},3. (837)
By combining the terms together we get

Qolios = (V1 ws + Vg - wi) 11 IoaLog + (Vo w1 + V1= w2) 1211315, I3
— (Vg - w1 + V1 wo) 12113100 I35 — (V1 Wy + Vo w1) 1115, 153133
+ (Vg wy + V3 wo ) [y 52133 + (Vo w3 + Vg wa) [11 11315, 15
— (V3w + vy w3)1122[13[22[23 — (v w3 + V3 w2)111[12[222]33
+ (V- w3 + vy w1 ) 1115, I35 — (V1 w3 + V3 w1 ) [ 15I33
— (V- w3 + V3w ) 11 5y s + (V1 w3 + V3 w1 ) 1510015,
+ InhaliInglss — hnhisliIsy — I Ll loo Iy + I s ool
— Iulolonlyy — Iylnloslss — Lulialo Iy + T lislgy I3
+ InhalolooIoslss — Tindisloo LoD + Iy Lialaa I3y — Iy Lo Do I
- ]11113I§2j33 + ]11—712—7222]23j33 + ]1221131222j33 + InTiolenlonIns I3
+ (aw Ty — (VawaTh s, + (va-wodhdnlnl,
~ (rwaprdln Ly — (Lrw T + (Lawnth Ty
— (Ve wsTnln T + (Ve wFstnln . (8.38)
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Remember v+ wy 4+ vy w1, V1 - w3 + v3- Wy and v3- Wy + Vo w3 are equal to

invariants [o, [13 and I3 respectively. Hence

Qolios = Inliolon I3y + Lo Lo L3I Iy — LiolioTis I I3y — Iy T1a 13 Ios I
+ Iy Ioa Loy I + T LIy I Doy — I3 T13 I Iog Iog — Iy T2y I I3y
+ [11f13[§’21_33 — 1122f13[222[33 - 111j13[222[223 + 11221:13[221223
+ Dol nlss — LilisTayIss — I 1 Too Lo Iss + 2155 113100 I,
— InLolenlyy — Iy Innloslss — i TinIoo Iy + 111 1315, 15,
+ 201 Naloa Lo Tog Iss — IiiTisIoo Lo T3y — Ity IngIooIss — Iy i3T5 I3

+ L1 oI5 oglss + 12, 11312, I35 (8.39)

]

Theorem 8.4.2. The numerator s of dy can be expressed as a polynomial
in terms of vector invariants of the adjoint action of SE(3) acting on triple

SCrews.

Proof. Lemma tells us there is an invariant expression for the product
of the offset numerator {25 and vector invariant I193, while Result also tells
us that there is an expression for the product vector invariants I193 and I 123.
Hence we can write {2y as a combination of these syzygies with the other
algebraically independent vector invariants of the adjoint action of SE(3)
acting on triple screws.

If we add 1221123f123(113]22 — I12153) to both sides of Equation M, then

we get

QoT193 + InoT1aslios(Ihslay — T1olas) = Iiy 1o IooIngIoslss + 217 I3 15y I2,

— Iy Dyolon I3y — I3 Ing g Iss + I1oT%I50 00 Ing + I11 1312, oI55 — Iy L1310y Inn I2
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— I, L1300y D5y I35 + 20151 % Ino Ing s — I3,12, 10y + I11I1s T3y 153 — I 1 212,
— I, 11312, Is3 + 211511511312, o — 1201315, — Iyy 11912, I3 lss + Ty 1o lp0 12 1o
+ I}y Ipo IygIss — 212, T13 000 ogIos 4 T19T% 12, Ins — I11 11912 Ins Iss

+ -711-f12]22133 + If2f12]22—723—733 - 2]12f12]13]22]223 + f121123]222—723' (8.40)
The terms on the right hand side can be collected as follows:

= DalooIog (T Ioa s + 212 Tigas — Il — Iiylas + 1)

+ DLiloglog (111 Iog 33 — Ty 125 — I Iss + 2119 13003 — [5159)

+ f131222(111122[33 — Iy — Iy I33 + 2L Li31os — I3 129)

— Lol Dog (I IoaIss — I I35 — Iy Iss + 2110 L3 1os — I35150)

— Lol Iog (I IoaIss — 11 I35 — Iy Iss + 2110 L3 1os — I35 1)

= (Lialoolos + izl lon + I1313, — LiaIoo oy — TiaIonTos) (111 Ioa I3

— 1113 — I Iss + 2110113005 — I73100). (8.41)
From (6.5)) we can replace the second factor by %, so that:

Q2]'123 + 122[123f123<[13122 - [12[23) = (Il2f22[23

+ 113[22f22 + f13[222 — [12]22j23 — f12[22[23)[1223- (8.42)

Vector invariant [153 is a common factor so by making 25 subject it can be
written in terms of vector invariants of the adjoint action of SFE(3) acting on

triple screws. Hence

QQ = j123]22<]12123 - 113122) + 1123<]12f22123 + ]13122j22

+ 313, — oo Liolog — InIoslo). (8.43)
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Similar expression can be found for the offset numerators €2y, Q3. n

Corollary 8.4.3. The offsets di, ds, and d3 can be expressed as vector in-

variants of the adjoint action SE(3) acting on triple screws as follows:

dl = j123111(]12113 - ]11]23)

+1123 <f11(112[13 + I 1o3) + 111(111j23 — f12[13 — ]12f13))

1 (8.44)
I (I Iss — 135) (T Iy — Iy)
dy = f123122(112[23 — I1315)
+1123 (f22(112[23 + I1319) + 122(f13[22 — Il2f23 - f12123)>
T . (8.45)
135 (I Ioy — 17) (Toa 133 — I35)
dy = Lo Iss(Iia 1o — Liolsy)
+1193 <f33(113—723 + L1o133) + 133(f12]33 — f13]23 - —f23]13)> ( )
. (8.46

I35(Iso 153 — I33)(I11 153 — 1)

For the sake of completeness we give the formulae for a general n- joint
robot arm. Analogous to (8.10) we can write the link length a; between joints

1 and j =1+ 1 is as follows:

wiw; VW VW Wi Vj + ;W

a; = (8.47)
lwi X Wi wiwi - wjw; [lws < wjli
In the terms of vector invariants of the adjoint action of SFE(3)
I L. I.. I
= ——=2 (24 ) - (8.48)
Ll — I (Ii' Ij') Lilj — I

For the three successive joints i, 7 = ¢ + 1, and k£ = ¢ + 2 analogously to

(8.25)) the general formula of offset d; can be written as

dj = (Jvjwjwl(wi- w;) + [viwiw;]||lw;|?) wr x w;]?
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— (Jvjw;wi|(Wi w;) + [vrwrw;] llw;]]?) [lw; x w;]|?

8.49
T [Mlon x oyl x a1 (8.49)

We can write the numerator of offset {}; by using determinant of 4 x 4-

matrix as
vwiw;| —(wirw;)  (wirw;)  (wirwi)
Qj:_§ vjwiwi|  (wj w;) (wj wj) —( i) ‘ (8.50)
vjwiwr| —(wjw;) —(wjw;) —(wjwp)
vpwrw;|  (wjrwi) (Wi wr)  (Wewi)

The offset d; can be written in terms of vector invariants of the adjoint

action of SE(3) acting of n > 3 as follows:

dj = fijkljj<1ijljk - Ilk[]])

A

+1ijk (fjj(fz‘jfjk + Lidjg) + Ly (Ll — Ty — fz‘ﬂjk))

T (8.51)
(Ll — I3) (Ll — T3,)

Hence link lengths and offsets can be expressed in terms of vector in-
variants of the adjoint action of SE(3) acting on n screws using Pliicker
coordinates (w;, v;). Moreover, they are examples of rational algebraic vec-

tor invariants for the same group under the same action.
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Chapter 9

Geometric Duality for the Set

of Three Screws

In this chapter we are going to study the geometric interpretation of the Lie
bracket of two screws and the consequences of this for sets of three screws.
That interpretation will give us a clear picture of the relation between offsets

and link lengths in the Denavit—Hartenberg parameters of the robot arms.

9.1 The geometric interpretation of the Lie

bracket of two screws

The Lie bracket between two screws Si, So has the following form:
[S1, 9] = (w1 X wa,wy X Uy + V1 X W), (9.1)

where S; = (w;, v;) in Pliicker coordinates. Samuel et al [45] give the physical
meaning of the Lie bracket as a twist that acts on a screw whose axis is the

common perpendicular to the axes of both screws. That screw has a pitch
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and we shall label it by A5 which is equal
h/3 = h12 = (hl + hg) + acot 9, (92)

where h; is the pitch of the screw S;, the angle 6 lies between the axes of
S1 and S5, and a is the distance between the axes of S; and Sy, which in
this thesis is called the link length. The amplitude of a screw S = (w,v)

is defined to be ||w]|. Then the amplitude of [S}, S is

lwr X wo| =[|lw|[[|ws] sin 6.

9.2 Axis of the common perpendicular

Suppose we have a robot arm whose links are connected by three screws
namely S;, Sg, and S3 with Pliicker coordinates (w;,v;) and i = 1,2,3 re-
spectively, and they are arbitrary in se(3). The Lie bracket between the
screws S7 and Sy gives us a screw whose axis is the common perpendicular
to 51 and S, as above, and for convenience we label it by S} with Pliicker

coordinates

Sy = (ws, vy) = [S1, 5]

= (w1 X Wa, w1 X Uy + vV X wg). (93)

Similarly, the Lie bracket between the screws S3 and S; gives us a screw
whose axis is the common perpendicular to S3 and S, and we label it by S}

with Pliicker coordinates

Sé = (w127'U/2) = [53, Sl]
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= (w3 X wy, w3 X V] + V3 X W), (9.4)

and Lie bracket between the screws Sy and S5 gives us a screw whose axis is

the common perpendicular screw S| with Pliicker coordinates

S:/l = (w/bvll) = [52753]

= ((.UQ X W3, wWa X V3 + U2 X w;g). (95)

As a result of the way we labeled S; and the Lie bracket of any two
of S; where i = 1,2,3, we get these three equations which have a cyclic

permutation of indices

Sy = [S2, 93], (9.6)
Sé = [53751]7 (97)
Sy = [S1, S (9.8)

Definition 9.2.1. Given a set of three screws S;, S, and S5, their geomet-

ric dual is the set S7, S5, and S%.

The set 57, S5, and S§ creates a new set of screws related to the old one.
Moreover, those two sets of screws enable us to find the relation between
offsets and link lengths in Denavit—Hartenberg parameters of the robot as

we shall see in the next sections.

9.3 Invariants of geometric duals

According to the relation between the new set of screws and the old one, the

vector invariants of the adjoint action of SFE(3) acting on screws S7, S5, and



106 CHAPTER 9. GEOMETRIC DUALITY

S5 are also related to the vector invariants of the adjoint action of SE(3)

acting on screws S7, Ss, and Sz stated in Theorem [6.3.1

The vector invariants of the adjoint action of SFE(3) applied to the new
screw triple S7, S5, and S% are denoted by a “ dash”, for instance [, for
I1(S], 5%, S5), when written in terms of Pliicker coordinates of (Si, Sa, S3)
must still be invariant. This is because the adjoint action of Lie group is a
Lie algebra automorphism, that is, if ¢ € SE(3) and for any S, Sy € se(3),
then

[951,952] = 9[51, 52]-

To calculate the vector invariants of the new set of screws and express
them in terms of vector invariants of the old set of screws, we have to replace
every Pliicker coordinates of each old screw by the corresponding Pliicker
coordinates of the new screws, more precisely replacing w; with w’, and v;
with v} for ¢« = 1,2,3 in the vector invariants of the old set of screws and
hence we get the vector invariants of the adjoint action of SFE(3) acting on

the new screws.

For vector invariant ;7 = w;-wi, we have to replace w; by w} = wy X ws,

and then using identity of Lagrange [8.8| as follows:

I = w] - w] = (wy X w3) - (wy X w3)
= (wz : wz)(w3 : ws) - (wz : w3)2

= Ipols3 — I3, (9.9)

Analogously, replacing w), by w3 X wq, and wj by w; X ws we get

Iy = why - wh = I3 153 — 1123- (9.10)
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Iy = Wy wy = Dilos — I, (9.11)

For vector invariant [19 = w; - wo, we have to replace w; by W' = wy X w
) 1 3

and wy by w), = w3 X w; as follows:

I, = w) - wh = (w2 X w3) - (w3 X wy)

= (ws : wl)(wz : ws) - (wz : wl)(wz : ws)

= Liglos — Lialss. (9.12)

Similarly, we get
I3 = Ingliy — Tzl (9.13)
Iz = haliz — Insli1. (9.14)

For vector invariant ;7 = w; - v, we have to replace w; by w| = wy X wj

and v; by v] = wy X v3 + vy X w3 as follows:

[y = w) - v} = (w2 X ws) - (W X v+ w2 X wy),
= (w2 X w3) - (W2 X V3) + (W2 X w3) - (Vg X Ws),
= (w2 - wa)(ws - v3) — (W - v3) (w2 - w3)
+ (w2 - va)(ws - w3) — (W5 - V3) (W2 - wy),
= (w2 - wa)(ws - v3) + (Ws - V) (w3 - w3)
— (w2 - ws)(ws - v + w3 - v3),

= Ipolsg + Ipplss — Ip3lys. (9.15)
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Similarly, we get

Iy = Isshy + Iss Iy — Tishs. (9.16)
Ihy = Iy Iy + Ty Loy — Tiolys. (9.17)
Iy = $hslys + Ioglys — Lolsy — 2I33115. (9.18)
Iy = Lialos + s Ty — Lis oy — 2Ino 115, (9.19)
Iy = LisLis + Lishha — Ing Iy — 2001 s (9.20)

For I{,3 we substitute w| = ws X w3, w) = w3 X wi, and wh = wi X ws
in W) - (w) x wj), and by using the vector triple product a x (b x ¢) =

b(a-c) —c(a-b) [32], then we get

I53 = (wa X w3) - (w3 X wy) X (W1 X wa)),
= (wy X w3) + (w3 + (W1 X wy)wy),
= (w1 - (w2 X wg))?,

=17, (9.21)
The same argument applies for 123 and hence

I1ys = 21153115 (9.22)

9.4 Geometrical duality of offset and link

length

The physical interpretation of the Lie bracket of two screws in Section

tells us the position of the new set of screws relative to the old one and the
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relation between them. In particular, link lengths in the old set of screws
become offsets in the new set set of screws, and offsets in the old set of screws
become link lengths in the new one. That means there is a geometric duality
between two sets of screws, for instance, link length a; after replacing w; and
v; by w} and v} becomes a} and equal the offset ds. Similarly as becomes
ay = dy, and as becomes a4 = dy. The converse is also true, for instance,
offset d; after replacing w; and v; by w} and v} becomes d} and equal to link

length as, and so on for the others.

Theorem 9.4.1. Given a set of three screws, the Denavit-Hartenberg pa-

rameters of its geometric dual are as follows

U !/ /

!/ / /

Proof. 1f we replace every w; and wv; of offset d; in the original set of screws
by w! and v} then it becomes d, which is equal to the link length in the
associated set of screws. To avoid long tedious calculations we have done the

calculations by using the Maple program, see Section O]

9.5 Geometrically dual set of screws

In this section we justify the term geometric duality by the corresponding
Lie brackets of the screws S, S, and S5. Bear in mind that the Lie brackets
physically give us the screw whose axis is the common perpendicular to the

axes of the original screws and we denote them as

S1 = [55, 93] (9.23)
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Sy = 55, 91l (9.24)
S5 = [51, 95 (9.25)

In order to know the relation between S; and S; we have to expand these

Lie brackets. Its enough to calculate one of them and get a generalisation.

51 =[5}, 5
= [(w3 X wi,w3 X U] + V3 X w1), (W] X wa, w1 X Vg + U] X wy)]
= (w3 X w1 X w1 X Wy, (w3 X wi) X (w1 X Uy + vV X wa)
+ (w3 X V] + V3 X wi) X (W] X ws))
= (w1((wz X w1) - wsy),wi (V] + (We X w3) + Vs - (W3 X wy) +v3 - (W1 X wy))

+ v (w3 X wy) - wy)).

Note that the coefficients are in fact invariants hence

= (f123w1, To3w1 + [193v1)
= (Li23 + ef123)(w1 + ev)

= ([123 + €f123)51-

Given that I3 represents the volume of a parallelepiped spanned by wq, wa,

and ws. We can think of this scaling factor as a dual volume.

Observe that Sy, S5,55 are the same as Sy, 53,55 except for the factor

(Il23 —+ 6]123)7 and hence

(Sy, Sy, 54) = (L2 + eli23) (S, S2, S3). (9.26)
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Geometrically, the screws S/ and S; have the same axes but their pitches
differ as a result of that factor. We denote the pitch of S; by h; as we
mentioned before whereas we will denote the pitch of S}’ by h. Then for

1=1,2,3:

Losw; - (T193w; + [123v;)
Losw; - [123w;

"o
B! =

_ Tioglipsw; - wi + Ifysw; - v,

2
Loz w;-v;

L2 W; - W;

e g (9.27)
I3



112 CHAPTER 9. GEOMETRIC DUALITY



Appendix A

Maple Output

A.1 Rank of algebraically independent vec-
tor invariants

Maple helps us to find the rank of any n x m matrix. Jacobian matrix J
consists of 18 rows and 12 columns, where rows represent the partial deriva-
tives with respect to 18 variables wyy, - - - ,v33 and columns represent the first
12 vector invariants of the adjoint action of SFE(3) acting on triple screws
stated in Theorem [6.3.1] According to Theorem [6.3.2] if the rank of J equal

12, then those 12 vector invariants are algebraically independent.
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with(LinearAlgebra) : interface(rtablesize =20);
12 Y
d = Matrix( [ [2 Wi 0,0, Wy, Wiy, 0,1, 0,0,v,,, vy, 0], [2 Wiss 0,0, Wyy, Was, 0,5, 0,0, v,,, vy,
O], [2 W35 0,0, Wys, Was, 0,15, 0,0, v,5, vas, O], [O, 2w, 0, Wy, 0, Wy, 0,v,,0,v,, 0, v31], [O,
2Ws5, 0, W5, 0, w35, 0, v,5, 0, v,, 0, v32], [0, 2Ws3, 0, w5, 0, Wi, 0, V55, 0,v5, 0, v33], [0, 0,
2wy, 0, Wy, Wy, 0,0, v5,, 0, v, vy, ], [0, 0,2 w35, 0, w5, W)y, 0,0, v35, 0, v, sz]a [0, 0, 2 wss,
0, w3, Wy, 0,0, v55, 0, v, v23], [0, 0,0,0,0,0,w,;,,0,0,w,,, wy, 0], [0, 0,0,0,0,0,w,,0,0,
Woss Wio, 0], [0, 0,0,0,0,0,w,,0,0, w,,, wis, 0], [0, 0,0,0,0,0,0,w,,,0,w,,0, wy, ], [0, 0,0,
0,0,0,0,w,,,0,w,,0, w32], [0, 0,0,0,0,0,0,w,y;,0,w,5,0, w33], [0, 0,0,0,0,0,0,0,w,,,0,
Wi Wy ], [0, 0,0,0,0,0,0,0,ws,, 0,w,, sz]n [0, 0,0,0,0,0,0,0, wss, 0, w,, w23]]);

(2w, 0 0wy wy, O v, 0 0 vy vy O
2w, 0 0 wyy wy, 0 v, 0 0 vy, v, O
2w;; 0 0 wy; w33 0 vy 0 0 vy vy 0

0 2w,y 0 wy; 0 wyy 0 vy 0 v 0 vy
0 2wy 0 wy 0 wy 0 vy 0 v, 0 vy,
0 2wyy 0 w3 0 wyy 0 vy 0 vy 0 vy
0 0 2wy 0wy wyy 0 0 vy 0 vy vy
0 0 2wy 0wy wy, 0 0 vy 0 v, vy
0 0 2wy 0wz wyy 0 0 vy 0 vy vy,
0 0 0 0 0 0 w; 0 0 wy wy O @
0 0 0 0 0 0 wy, 0 0 wy wy O
0 0 0 0 0 0 wy 0 0 wy wyy 0
0 0 0 0 0 0 0 wyy 0 w,; 0 wy
0 0 0 0 0 0 0 wy, 0 w, 0 wy
0 0 0 0 0 0 0 wy 0 wy 0 wsy
0 0 0 0 0 0 0 0 wy 0 wy wy
0 0 0 0 0 0 0 0 wy 0 wy wy
0 0 0 0 0 0 0 0 wy 0 wysy wy

Rank(d);
12 €)
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A.2 Geometric duality between link lengths
and offsets

Recall that we denote the vector invariants of the adjoint action of SE(3)
acting on triple screws Sy, Ss, and S3 by [;; for those vector invariants that
have w; - w; where 7,57 = 1,2,3, and for those vector invariants that have
v’s we denote them by IAW However, for this program we can not write fij
in Maple, so we will denote fij by H,;. Furthermore, in the new system of
screws S7, Sy, and S3, we denote [;; by pij, for instance, p12 correspond to
I{5, and pijh correspond to f{] Moreover, p123 represents I3, and p123h
represents 21 1231193. The first syzygy I#y; is denoted by a where as the second
syzygy is denoted by j.

We denote the numerator and dominator of offset d; by €2; and doml.
We denote the other offsets similarly. We still denote link length number one
by a;.

In this program, we have only done the geometric duality from offsets to

link length. However, the converse can also be shown to be true by tedious

straight forward calculations.



pll=1hy Ly — b,

Ly ks — 133 (1)
p22 =1 L3~k
Iy ks — 1%3 (2)
p33 =1 bk,
I by — I%z (3)
P12 =bhylj3-1; bk
byli; =Lk 4
pl3=1ly by — by
Iphs —hyl3 (5)
p23 =131y = I by
Iph3 =Ly by (6)
plIh = by Hyy + Hyy Ly — Hyy by
Ly Hyy + Hyy iy — Hy3 by (7)
p22h:=lyHyy + Hyo 1y — Hyy ls
Ly Hyy + Hyy Ly — Hz s )
p33h =1y Hyy +Hy by — Hyylpy
Iy Hyy + Hyy by —Hp Iy (9)
pI2h ==2 Hyy lyy + Hy3 by — Hyy by + Hys ly3
“2Hy3 1y + Hy3 by — Hyp by + Hys 13 (10)
pI3h:==2Hyyh3 — Hyy-by + Hyy by + Hysljy
“2Hy Ly = Hyz by + Hyp by + Hy 1y (11)
p23h=-2-Hy by — Hyy Iy + Hyy hy3 + Hyz0hpy
“2H by —Hysyy +Hyp L3 +Hy3 ), (12)
p123 =1 by Ly, '63 - 1%2'133 + 2'112'113'123_1%3'122
1 by by =1y 1%3 - 1%2 Ly + 215 353 — 1%3 L, (13)
PI23h:= 2153 H 3
21155 Hyps (14)

a=1I by Ly~ '1%3 _1%2'133 + 2'[12'113'123_1%3'122
by ks =1y 133 - 1%2 Ly + 215 I35 — 1%3 b, (15)
Ji=Hyy by bk _H11'é3 _sz'[% by by + iy by ‘H33'1%2 —Hypdypy By T Hyy hyy by — Hyzhiy by + Hyzodjyhs + Hyy
Ty li3 = Hyslyy by
Hyy by by — Hyy 1%3 —Hy 1%3 Ty Iy by + Hyy Iy by — Hyy 1%2 —Hplphy + Hyylizhy = Hyliz by + Hizlp by (16)
Tyl Iy = Hyy Iy b
e ——
Q = simplify(2.j-pl1-(p13-pI2 —p23-pll) + pl23-(pllh-(pi3-pI2 +pll-p23) +p23h~p112 —pl2h-pll-pl3 —pl3h-pll-pl2))
4. Hy T %3 L) 1%3 3 +4.Hy3 Ly, £ Ly I%a iyl =4 Hy3 L5 13 £ %3 Iy by T4 Hy T 3 by ks Iy 133 —2.Hy 1%3 £, (17)
I§3 Iy by +2.Hy 1%3 Ly L3y 153 —2.Hy 1 1%3 I%z L, 1%3 —2.Hyly I§3 Ly bs I%z — 4 Hy Ly 133 I 13 = 2. Hy3 1y, I%z
I%s bs I, - 2. Hy3 1y, B, L 1%3 Ly =4 Hy3 1y by 133 Il + 2. Hy3 1y by 133 1 Ly —4.Hy; B by L, 1%3 Ij3 + 2. Hyy L7
By Ly iy by — 4. Hyy By By by Ly By + 4. Hoyy By L3 by By by + 4. M3 1, B3 By Ly by — 2.Hyy 1y By by By 1, — 4.4,
1%3 Ly L3 153 Iy +2.Hy 1%3 b, l§3 Ls 1%2 +2.1, ]%2 1§3 Hys 1%3 +2.1 I%z 133 Hys 1%2 —4 1%2 I§3 Hyy Iy I%s -2 1%2 l§3 Hy; 1%3 l%z
—4.1 1%3 1%3 I%z Hyy + 2. Hyy 1%1 153 I%z I%s — 1. Hyy, 1%1 133 Ly Ly + Hyy 1?3 I%z Ly Ly +4.Hy) 1%3 1%3 1%2 Ly + 1y, 1%1 133 I%z bs
—2.Hy, By By by By + 2. Hy Ly By By By + Hyy By By By by — 2. M55 1y By Ly By + 2. Hyy 1y By By By + Hyg By by By Ly
+4.Hyy By By by By + Moy By Ly By + Hyy By Ly By + 3 B,y Mgy by — LIS By Hyy by — 11 By By Moy + 1, By My Ly
- 1~1‘1‘2 133 Hyy by



doml = pl1-simplify((p22-pl1 — p122)-(p33-pll — pl13?))
2
(122 I33 - 1%3) I33 (Ill I22 I33 - I11 1%3 - 1%2 I33 +2 I12 I13 I23 - 1%3 I22) I22 (18)

. . Ql
a, = simplify Toml

_ L (hy Hyy i3 — 1. by Hy3 by — 1.Hyy by L3) (19)
by ks (122 L — 1-1%3)

g
Q, = simplifi((2.j-p22- (p12-p23 — p13-p22) + p123-(p22h-(pI12-p23 + pl3-p22) + pl3h-p222 — p23h-p22-p12 — p12h-p22-p23))
4.Hyy by I%z' Iy b 1%3 Iy +4.Hyy 1%1 by k3 ls 1%3 Iy +4.H; 1?3 Lyl hybsly —4. M50, by 1%1 l%3 by I3 +2. 1%1 Ly 133 His I%z (20)
+2. 1?1 b, l%s Hys 153 —4 1%1 1%3 Hy3 1y 1%3 - 2‘1%1 ]%3 Hys 1%2 l%3 —4 1%2 l%s Hyy by 1%3 +Hyy 133 1%1 Lyl + 4.4, 1%3 1?3
1%2 Ly + Hy; 1%1 1%2 I%z lj3 = 2. Hys 1%1 I%z L, 1%3 +2.Hy, 1%1 Ly 1%3 I%s + Hy3 I?z Iy I§3 Ij3 + 4. Hss 1%2 1%3 1%3 Iy +2.Hy; 1%3 I%z
I%l I§3 —1L.Hy rfs 1%2 Iy by +Hyy I%z I§3 1%1 Ijy —2.Hy, 1%2 I§3 I 1%3 +2.Hy b I§3 1%3 1%2 — 2.1y I%l by L3 I%z lj3 = 2. Hy;
1%1 Ly %3 1%2 ljy =4 Hy3 1, by ]T3 Lyl +2.H33 1 by 1?3 1%2 Ly — 4. Hy; 1%2 ITRCELS 1%3 + 2. Hyy 1%2 I%l L; 1%3 lj3 —2.Hy;
1%3 b, |, L, 153 —2.H;3 1%3 Ly Iy I§3 - 4.Hys 1 1%3 I ks 1%3 T4 Hi3l, 133 I Lylj3 +4.Hy 1 by Iy 133 I3
—2.Hy b 153 I%l %3 li; —2.Hy by I§3 ¥ I%z li; —4.Hy by L 1?3 Lylp +2.Hyy by g 1?3 1%3 Iy, —4.Hy, 133 I s 1%3 I
+2.Hy, 1%3 Iy I%s L) I3 — LK B, 123 Hy; + B I33[7’33 I3 — LT 133 Hiz ks + i 123 Hyljz — L1, 123 Hyz Ly +Hy
1%2 Ly By + My 1y, I%z B

dom2 = p22-simplify((p22-p33 — p232) - (p22-pl1 — p12%))
2
(111 I33 - 1%3) I (Ill L, I33 -1 I%3 - I%z 133 +2 I I13 I23 - 1%3 I22) I33 (21)

dom?2

ay :=simpliﬁ/( % J
1.(LHx Ly — 1L, Hyn Ly —1.H 15 L
B (11 13 33 111133 131 . 1113 33) (22)
133111(111133_ ~113)

T
Q, = simplifi(2.j-p33-(p13-p23 — p12-p33) + p123-(p33h-(p13-p23 + p12-p33) + pl12h-p33* — pI3h-p33-p23 — p23h-p33-pl3))
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