The Application of Ecological Resilience to Urban Landscapes

By

Emilio Jose Garcia

A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Architecture

Victoria University of Wellington 2013

Abstract

The understanding of resilience is a key concept for improving the adaptive capacity of cities to deal with and take benefits from unpredictable changes while keeping on evolving. However, in urbanism and architecture, a theoretical framework to use resilience in urban, landscape and architectural design is still needed. This thesis proposes an instrumental theory that can work as a link between the ecological theory of resilience and its utilisation in urban and architectural design. Through the implementation of this new knowledge, it should be possible to provide insight into the structures, dynamics and self-organizing processes that sustain the resilience capacity of cities. The research has developed a methodology for analysing the ecological resilience of urban landscapes using an urban morphological approach. The method has been tested on case studies in Auckland, New Zealand, and Tokyo, Japan, showing it is possible to observe changes in the resilience of the urban fabric.

Table of Contents

The Application of Ecological Resilience to Urban Lan	dscapes1
Abstract	3
Table of Contents	5
Table of figures	
List of tables	
1. Introduction	
1.1 Context	
1.2 Ecological resilience	
1.3 General and specific resilience	
1.4 Ecological resilience and socio-ecological systems	
1.5 From socio-ecological systems to socio-ecological	landscapes 16
1.6 The resilience of urban landscapes	
1.7 Research question and hypothesis	
1.8 Purpose and general objectives of the research	
1.9 Methodological approach	
1.10 Case studies	
1.11 Structure of the thesis	
1.12 Data collection methods	
2. Ontology: Ecological resilience, philosophy and un	rban morphology 33
2.1. Introduction	
2.2. Ecological background	
2.2.1 The behaviour of complex adaptive systems	
2.2.2 Stability states, multiplicities	
2.2.3 Adaptive cycle	
2.2.4 Panarchy: change within and across scales	
2.2.5 The Textural-Discontinuity Hypothesis in ecol	ogical resilience 40
2.3. Philosophical approach	
2.3.1 A complex approach to the identity of an urban	n landscape:
assemblages and multiplicities	
2.3.2 Multiple stability states and identities	

2.3.3	Multiples identities assembled in a Panarchy	51
2.4. An	urban morphological approach	52
2.4.1	Adaptive cycles in urban landscapes: the burgage cycle	53
2.4.2	Textural-Discontinuity Hypothesis in urban landscapes	55
2.4.3	Aggregations and discontinuities in urban landscapes	58
2.5. Dis	scontinuity and heterogeneity	60
2.5.1	Discontinuities and public-private interfaces	61
2.5.2	Discontinuities and green spaces	61
2.5.3	Spaces for resilience	62
2.6. Co	nclusion	63
3. Criter	ia for assessing the ecological resilience of urban landscapes	67
3.1 Inti	roduction	67
	essing the dynamics of change in analysing the ecological resilience ndscapes	
3.2.1	Limiting and bounding a system	68
3.2.2	What are the main issues affecting the system?	69
3.2.3	The resilience of what to what	70
3.2.4	Scales	71
3.2.5 and pł	Timeline: assessing change in urban landscapes by identifying cycle	
3.2.6	Constructing and evaluating an urban Panarchy	
3.3 Ass	essing resilience through the analysis of discontinuities: the urban	
Panarch	у	83
3.4 The	e use of Panarchy and discontinuities in urban studies	84
3.5 Fin	ding aggregations and discontinuities in urban landscapes	86
	e use of aggregations and discontinuities to assess resilience in urba	
	sing resilience and the dynamics of change in the urban	
_	of the Auckland CBD	
	roduction	
	out the case study	
4.3. Qu	alitative analysis using timelines	
4.3.1	Timeline at the scale of New Zealand	
4.3.2	Timeline at the scale of Auckland	97

	3 Synthesis of timelines: morphological changes in the urban landscape he Auckland CBD
4.3.	4 Observations about the qualitative approach to timelines103
4.4.	Quantitative analysis using timelines103
4.4.	1 General Observations about change in BF, PL, BL and ST
4.4. ST	2 Quantity of change in space: percentage of change of BF, PL, BL, and 107
4.4. ST	3 Quantity of change in time: average rate of change of BF, PL, BL and 110
4.4.	4 Synthesis of the quantity and speed of change113
4.5.	Conclusion
5. Res	ilient assemblages: identity and resilience119
5.1 I	ntroduction
5.2 9	Structure of the chapter120
5.3	Theoretical framework: resilient assemblages
5.4 ľ	Nezu and its identity122
	Study 1: the role of the structure of urban landscapes in the resilience ity of Nezu
	1 Method for measuring morphological change in the urban landscape lezu
	2 Results from the analysis of morphological changes in sizes of blocks, eets and plots
	3 Results from the analysis of morphological transformations related h degree of change
	Study 2: the role of interfaces in the resilience capacity of the built onment of Nezu
	1 Method to finding discontinuities and aggregations through cluster lysis
5.7 (Conclusions141
6. Ass	essing and measuring resilience145
6.1 I	ntroduction145
6.2	Theoretical framework: Panarchy and the TDH146
6.3 (Case studies147
6.4 I	Methods
6.5 (Qualitative analysis150

6.6 Quantitative analysis	157
6.6.1 Analysis of heterogeneity within scale	158
6.6.2 Analysis of heterogeneity across scales	
5.6.2 Evolution of the heterogeneity of Nezu and Auckland GS ar	nd BE 161
6.6.3 Difference in change in the heterogeneity of Nezu and Auch and without Green Space	
6.6.4 Rate of change in the heterogeneity of Nezu and Auckland without Green Spaces	
6.6.5 Synthesis of the evolution of the heterogeneity of the urba	
landscapes of Nezu and Auckland	
6.7 Results	
6.8 Conclusion	
7. Conclusions	171
7.1 Introduction	171
7.2 Answering the research question	
7.3 Theoretical evidence: thinking about how to apply ecological r the analysis of urban landscapes	
7.4 Practical evidence: ways of applying ecological resilience to th of urban landscapes	
7.4.1 Ecological resilience can be applied to the analysis of urban landscapes by assessing the dynamics of change in key elements of environment	of the built
7.4.2 Ecological resilience can be applied to the analysis of urban landscapes by comparing changes in key elements of the built env against persistence or shifts in the identity of place	vironment
7.4.3 Ecological resilience can be applied to the analysis of urban landscapes by measuring changes in the heterogeneity of the buil environment of urban landscapes	t
7.5 Weaknesses	
7.6 Discussion and opportunities for further research	
8. Bibliography	
9. Appendices	
Appendix 1: Timeline for Auckland (chapter 4)	
Appendix 2: Maps of blocks in the urban landscape of Auckland CBI	
Appendix 3: Maps of plots in the urban landscape of Auckland CBD.	199

Appendix 5: Maps of building footprints in Auckland CBD (chapter 4)......201 Appendix 6: areas and number of features per BF, PL, BL, ST (chapter 4)......202 Appendix 7: Key map with name of elements of the built environment (chapter 1. 2. 4. Appendix 11: Areas and clusters in Nezu 1888 (chapter 5 and 6)......207 5. Appendix 12: Areas and clusters in Nezu 1919 (chapter 5 and 6)......208 6. Appendix 13: Areas and clusters in Nezu 1932 (chapter 5 and 6)......209 7. Appendix 14: Areas and clusters in Nezu 1956 (chapter 5 and 6)......210 Appendix 15: BF Areas and clusters in Nezu 2003 (chapter 5 and 6)...... 211 8. 10. Appendix 17: Areas and clusters in Auckland 1882 (chapter 6)......213 11. Appendix 18: Areas and clusters in Auckland 1908 (chapter 6)......214 12. Appendix 19: Areas and clusters in Auckland 1931 (chapter 6)......215 13. Appendix 20: Areas and clusters in Auckland 1966 (chapter 6)......216 14. Appendix 21: Areas and clusters in Auckland 2008 (chapter 6)......217

Table of figures

Figure 1-1 Socio-ecological systems as socio-ecological landscapes	17
Figure 1-2. A complex approach to the research	.26
Figure 1-3. Structure of the thesis	31
Figure 2-1. The multiple stability states of a landscape based on (Folke et	t al.,
2004)	36
Figure 2-2. Multiple stability states and cross scales dynamics based on (Folk	æ et
al., 2004)	37
Figure 2-3. The adaptive cycle based on (L. H. Gunderson & Holling, 2002)	38
Figure 2-4. A Panarchy based on (L. H. Gunderson & Holling, 2002)	40
Figure 2-5. The Textural-Discontinuity Hypothesis in ecosystems	42
Figure 2-6. Dimensions implied in the proposal for an assembled identity	44
Figure 2-7. Becoming an assembled identity	46
Figure 2-8. Multiplicities and identity	48
Figure 2-9. Multiplicities and multiple identities across scales	49
Figure 2-10. Multiples identities assembled in a Panarchy	51
Figure 2-11. Applying the adaptive cycle to the burgage cycle	54
Figure 2-12. Adaptive cycle in the identity of place	55
Figure 2-13. TDH in urban landscapes	57
Figure 2-14. Aggregations and discontinuities in urban landscapes	59
Figure 3-1. Scale dimensions based on (Gibson et al., 2000; Wu & Li, 2006)	72
Figure 3-2. Diagram of the cost-benefits of complexity (Tainter, 2000). B1, B2,	, C1,
C2, C3 are only references to imply different amounts of complexity	and
benefits of that complexity	78
Figure 4-1. Multiple historical phases at different scales	101
Figure 4-2. Timeline	102
Figure 4-3. Evolution of total areas (sum) of BF, PL, BL	106
Figure 4-4. Evolution of number of features per BF, PL, BL, ST	106
Figure 4-5. Percentage of change in the sum of BF, PL, BL, ST	108
Figure 4-6. Percentage of change in the number of BF, PL, BL, ST	108
Figure 4-7. Percentage of change in the mean of BF, PL, BL, ST	109

Figure 4-8. Sum average rate of change110
Figure 4-9. Number of features average rate of change
Figure 4-10. Mean average rate of change111
Figure 5-1. Map of Tokyo and Nezu (Muminovic et al., 2012a)123
Figure 5-2. Major earthquakes and fires in Tokyo from Edo to Showa periods
(1600 to 1945) (Muminovic et al., 2012a)124
Figure 5-3. Map of burned areas in 1923 (left) and 1945 (right) (Anonymous,
1988; map, 1990)
Figure 5-4. Size classes of blocks, streets and plots (top-bottom)
Figure 5-5. Diversity of blocks and streets through time131
Figure 5-6. Average degree of change in blocks, streets and plots
Figure 5-7. Intensity of change through time134
Figure 5-8. Aggregations and discontinuities in the structure of ST, BL and BF138
Figure 5-9. Clusters of public private interfaces at BF, BL and ST levels
Figure 5-10. Clusters of public-private interfaces within and across BF, BL and
ST levels
Figure 6-1. The evolution of heterogeneity in the urban landscape of Auckland
Figure 6-2. Structures of aggregations and discontinuities in GS, ST, BL, PL in
Auckland152
Figure 6-3. The evolution of heterogeneity in the urban landscape of Nezu153
Figure 6-4. Structures of aggregations and discontinuities in GS, ST, BL, PL in
Nezu154
Figure 6-5.Comparison between the structure of aggregations and
discontinuities in the GS and BE (ST, BL, PL) of Auckland and Nezu156

List of tables

Table 2-1. Toward a resilience assemblage approach: comparative view of urban	
landscapes from assemblage and resilience	
Table 4-3. Quantity and speed of change in BF, PL, BL, ST	
Table 4-4. Diagnosis of quantity and speed of change114	
Table 6-2. Similarities and differences in the behaviour of GS and BE in Auckland	
and Nezu157	
Table 6-3. Analysis of the evolution of richness, evenness and diversity in	
Auckland158	
Table 6-4. Analysis of the evolution of richness, evenness and diversity in Nezu.159	
Table 6-5. Average performance in heterogeneity in GS, ST, PL, BL of Auckland	
and Nezu159	
Table 6-6. Heterogeneity of Nezu and Auckland BE and GS	
Table 6-7. Heterogeneity of Nezu BE and Auckland BE	
Table 6-8. Heterogeneity of Nezu GS and Auckland GS	
Table 6-9. Change difference in Nezu and Auckland BE and GS 162	
Table 6-10. Change difference in Nezu and Auckland BE	
Table 6-11. Change difference in Nezu and Auckland GS	
Table 6-12. Rate of change in Nezu and Auckland BE and GS164	
Table 6-13. Rate of change in Nezu and Auckland BE	
Table 6-14. Rate of change in Nezu and Auckland GS	
Table 6-15. Comparison of heterogeneity, rate of change and change difference	
between Nezu and Auckland165	

1. Introduction

1.1 Context

In the last decades humanity has realized that the way in which the resources of the environment are treated is putting at risk the future of the present and next generations (Millennium Ecosystem, 2005; Tainter, 1995). One of the challenges that cities have to face is dealing with unpredictable changes and hazards. Some of the reasons for thinking about and designing more adaptable cities are the non-linear behaviour of an altered natural environment, an unstable cultural environment, and the challenges presented by the rapid land use change of the last few decades (C. Allen & Holling, 2010).

Resilience studies were born in ecology as a response to a worldwide concern about how to manage resources in systems of people and nature, and especially how to deal with the unpredictable behaviour of complex adaptive systems (B. Walker & Salt, 2006). Cities, as the built environment of socioecological systems, are also complex adaptive systems (Alberti & Marzluff, 2004; Garmestani, C. Allen, & Bessey, 2005; Gunderson & Holling, 2002) that need to deal with socio-ecological threats. These crises can affect the built environment of urban landscapes producing transformations that may push the urban system to generate more or less unpredictable outcomes that increase the difficulty of managing urban environments. The understanding of resilience hence becomes a key concept for improving the adaptive capacity of the built environment of cities. However, the understanding and assessment of how the dynamics of change in the built environment of cities enhance or decrease the resilience capacity of urban landscapes, at the face of disturbances, is a subject not commonly explored in urban studies.

1.2 Ecological resilience

Etymologically, resilience comes from the Latin resilio, and means to jump back (Klein, Nicholls, & Thomalla, 2003). In ecology, resilience is understood from two viewpoints, ecological and engineering resilience (Gunderson, 2000). Engineering resilience is related with the recovery time that a system takes before coming back to its stability state (Gunderson, 2000). This position implies that systems work around a single equilibrium state that they lose or recover in more or less time. The faster a system recovers the more resilient it is (Pimm, 1984). However, scholars in ecological resilience (Gunderson, 2000; Holling, 1973; Holling, 1987; Peterson, C. Allen, & Holling, 1998) have criticized the idea of a system working around a single equilibrium state. The proposal is that as complex adaptive systems change their equilibrium points also change (Folke et al., 2004). Therefore a resilience response to a disturbance is the capacity of the system to maintain interrelationships while absorbing change happening at different scales. Precisely, it is *"the persistence of* relationships within a system and is a measure of the ability of these systems to absorb changes of state variables, driving variables, and parameters, and still *persist"* (Holling, 1973, p. 19). From an ecological point of view, complex systems have the capability to work in multiple stability states and to absorb changes before crossing to a different regime (B. Walker & Meyers, 2004).

Ecological resilience is based upon an evolutionary view that acknowledges that nature is evolving and adapting continuously (Gunderson & Holling, 2002). A complex system is never in its equilibrium point, but moving in between a set of variables (Genkai-Kato, 2007). Accordingly, with a perspective of evolving nature, resilience can be comprehended as a mechanism of adaptation that complex systems have in order to take part in evolutionary processes (Kauffman, 1993; Levin, 2005). Therefore, a resilience approach is not about defining the right size, final state or best performance of a system but is about finding a way to keep the system evolving while maintaining the social and ecological systems alive. Resilience is not a state to be reached but a sense of emergence that a complex adaptive system relies on when facing a more or less demanding need for transformation. The development of a better understanding of resilience in urban landscapes could help to improve the management and assessment of resilience in order to generate criteria related to whether to reduce or increase the resilience capacity of a system.

1.3 General and specific resilience

In resilience theory, two scales of analysis have been defined: general and specific resilience (B. Walker, 2007). General resilience gives attention to the resilience of the whole system. It is focused on long terms results, and could easily be weakened if all the attention is given to responding to the resilience of small and short-term issues. Specific resilience is related to targeted alterations at precise scales. It is focused on the relationship between the state of a system and a specific disturbance, in other words the resilience of what to what (Carpenter, Walker, Anderies, & Abel, 2001). An example would be the resilience of socio-ecological landscapes to the increasing complexity produced by an unsustainable development of socio-ecological systems.

The important point about general and specific resilience is to realize that a system can be resilient at larger scales while not being resilient at smaller scales or vice versa. In consequence the resilience of a system can be something desirable or not. For example, the eradication of violence in neighbourhoods with high rates of crime is highly resilient to strategies that try to fight against these conducts. These maladaptive processes (Gunderson & Holling, 2002; Rappaport, 1977) show that the resilience of complex adaptive systems needs to be treated as an attribute of the system and not as a category to be reached.

1.4 Ecological resilience and socio-ecological systems

Ecological resilience theorists have developed a theoretical framework with which to comprehend and produce knowledge through the assessment of global changes occurring in socio-ecological systems (Gunderson, Garmestani, & C. Allen, 2009). The integration of social and ecological systems into one dimension permits a broader approach in order to produce a better understanding of the dynamics of change happening globally (Gallopín, 2006; Holling, 2004; Redman & Kinzig, 2003). Urban landscapes, understood as a subsystem of the man-made physical environment of a socio-ecological system, can benefit from this integrative approach because investigation into their dynamics of change will be linked with the state of the whole socio-ecological system.

The analysis of the resilience capacity of a socio-ecological system could produce a better understanding of the unpredictable responses that a complex adaptive system exhibits in its behaviour (Redman & Kinzig, 2003). This is particularly important when analysing the situation and performance of a system in relationship with the plans and strategies applied for its management (Holling & Goldberg, 1971). The ecological resilience approach can be important for learning about the long-term dynamics that can delineate the future of a system and using this knowledge for the planning and management of natural and social resources (Grimm, Pickett, & Redman, 2000). For all these reasons, the resilience understanding of urban landscapes could be essential for providing managers and designers with information about the adaptive capacity of a socioecological system before it faces new, unpredictable changes.

1.5 From socio-ecological systems to socio-ecological landscapes

In order to make societies more aware of their habitats and how these are potentially adaptable to both natural and man-made hazards, a broader understanding of socio-ecological systems (Gallopín, 2006) as socio-ecological landscapes (SELs) is necessary. A SEL is the landscape produced by a socioecological system (SES) (B. Walker & Salt, 2006). Viewing urban systems in this way is a first step in designing them to be more adaptable in the face of external and internal hazards.

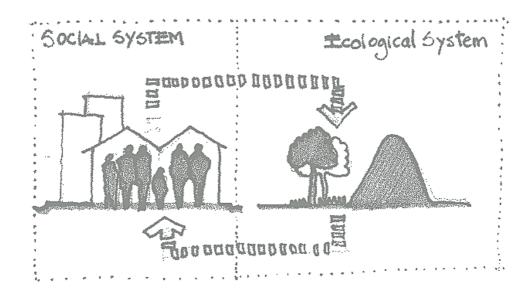


Figure 1-1 Socio-ecological systems as socio-ecological landscapes

The understanding of urban landscapes as a subsystem of a socioecological landscape implies acknowledgement of the importance of land as an ultimate resource that is impacted by the evolutionary process of transformations occurring in the built environment of urban landscapes. The importance of the use and occupation of the territory becomes a key issue for the performance, present and future, of a socio-ecological system. Urban land and space are not often understood and analysed as natural resources that deserve to be managed in a way that is similar to how water or air are treated.

The organization and occupation of land by different urban morphological patterns can imply the presence of discrete intensities that impact on the occupation and exploitation of the territory. One important non-market asset of urban space that is linked with land resources is the capacity that urban systems have to produce spaces to buffer unpredictable changes. Built form patterns when combined with different rates of change, at discrete scales, determine a level of consumption of the land that may impact on the resilience capacity of the urban landscape to deal with unpredictability. The intensity of land exploitation in the built environment of urban landscapes will, in turn, increase or lessen the resilience capacity of a city through the generation of the necessary diversity of land-related opportunities. Understanding the relationship between land occupation and the resilience capacity of urban landscapes may be essential for the future of cities in the face of more people and fewer resources.

1.6 The resilience of urban landscapes

The importance of ecological resilience as an emergent and growing field of research can also be perceived in urban studies. However the analysis of the resilience capacity of a socio-ecological landscape using the built environment of an urban landscape as the subject of analysis is not very common.

The purpose of this thesis is not to claim that the comparison between urban landscapes and ecosystems is original. The idea of comparing urban systems, cities, and particularly urban landscapes with ecological systems has been consolidated through debate about cities in landscape design, architecture and urbanism. It can be argued that at least since the Renaissance urban environments have been compared to ecosystems. From Francesco Milizia (1785) to Patrick Geddes (1915) and Lewis Mumford (Luccarelli, 1995), cities have been assumed to be natural elements and in several instances nature has been taken as inspiration for solving design issues. In this thesis, the link between urban landscapes and ecosystems is approached from a different perspective. Leaving apart dealing with the organic (nature) in a metaphorical way, this thesis sets out to link natural and social systems since both of them can be analysed as complex adaptive systems.

Despite the fact that designers in urbanism, architecture and landscape architecture work and deal everyday with the built environment, the scientific and methodological knowledge about the dynamics of change in the evolution of cities and urban landscapes remains a largely unexplored field with many opportunities for improving knowledge in this area (Batty, 2010; Wegener, Gnad, & Vannahme, 1986). Even though important advances have been made in the application of ecological studies to urban systems (Alberti, 2009; Alberti & Marzluff, 2004; Alberti et al., 2003; Holling & Goldberg, 1971; Pickett et al., 1997; Pickett et al., 2008) the foundations for performing a resilience analysis in the built environment of urban landscapes are still less developed than the foundations and advances achieved in ecology (Gunderson, C. Allen, & Holling, 2009).

Research in ecological resilience has been focused on the impacts of social systems over natural systems, particularly the way in which social systems manage and exploit natural resources (Elmqvist et al., 2004; Folke et al., 2004). In urban studies, most of the resilience literature discusses the impact of natural hazards in urban areas and describes the engineering responses to those situations, targeting a particular aspect of a hazard and its effects, while the study of the dynamics and attributes of the affected system (human habitat) before and after the event, are easily forgotten or not taken into account (Adger, Hughes, Folke, Carpenter, & Rockstrom, 2005; Evan & Warren, 2004; Fleischhauer, 2008; Klein et al., 2003; McGlade, McIntosh, & Jeffrey, 2008). A growing number of publications related with the resilience of the built environment is emerging, but most are basically focused on the responses to disaster situations (Birch & Wachter, 2006; Chang, Wilkinson, Potangaroa, & Seville, 2010, 2011; Haigh & Amaratunga, 2010; L. Vale & Campanella, 2005). This literature is more focused on the hazards that threaten a system than the resilience state of the urban system itself. In urbanism, there is a lack of development of a knowledge base that would permit the understanding and assessment of the resilience of urban landscapes in a systemic and methodical way. Moreover the gap becomes bigger when trying to find theoretical tools to assist urban, architectural and landscape architecture design processes to involve resilience methodologies. On one hand, engineering investigations can be very precise and specific in their tasks but they have a tendency to forget the context of the system analysed, a factor that is extremely important in a resilience analysis. On the other hand, the use of resilience in just a metaphorical way could be a stimulating starting point for a design process but its results could carry a quantity of mismatches that are difficult to avoid. For example, projects and approaches whose aim is basically to show what resilience looks like could tend to forget how resilience works, transforming good intentions into highly incomplete proposals (ARUP, 2012).

Holling proposed that analogies imply risk when transferring knowledge between fields of study, in this case from ecology to urbanism, and that they should only be made when the structure and behaviour of both systems are similar. Particularly, four similarities between urban and ecological systems are emphasized: non-linearity, systemic interactions, historical sequence and spatial relationships (Holling & Goldberg, 1971, p. 226). Consequently the implementation of ecological resilience to urban landscapes should first investigate and show that the built environment of urban landscapes, in theory and in practice, exhibits most of these characteristics and then try to observe if these four similarities behave in the same way in urban landscapes as they do in ecosystems. Only then can a methodical contribution to the application of ecological resilience to urban landscapes emerge or be logically dismissed.

Generating methodical knowledge that could be both an instrument of design and research could soften mismatches in the translation of ecological knowledge to urban, architectural and landscape design investigations and practices. Therefore, the aim of this thesis is to produce a first set of instrumental knowledge that can work as a link between ecological resilience and its utilisation in urban design. Through the implementation of this new knowledge, it should be possible to provide insight into the structures, dynamics and processes that sustain the resilience capacity of the built environment of urban landscapes. Moreover, the same knowledge could be a tool for further research and for assisting the process of design with applications in urbanism, landscape and architecture. However, before achieving these aims it is necessary to start by following the advice of Holling (1971) and first try to see if the translation and implementation of an ecological resilience analysis to urban landscapes is feasible or not.

1.7 Research question and hypothesis

The main research question is:

How is it possible to apply the ecological resilience theoretical framework to the analysis of urban landscapes?

The hypothesis is that if the theoretical framework of ecological resilience can be applied to the analysis of the resilience of urban landscapes it can be tested and observed by assessing the dynamics of change in the morphology of built environments. Particularly, the issue is how the dynamics of change occur in the structure of a complex adaptive system and how that structure and changes within it are manifested in a landscape and linked with the resilience capacity of the system. Consequently the hypothesis addresses two points.

The first point is that transformations in the morphology of the urban landscape at one scale might or might not produce structural changes at larger scales. In the face of disturbances happening in the built environment, the resilience capacity of the urban landscape will try to maintain the identity of the system by keeping its structure fairly stable at larger scales while allowing variability and change at smaller scales (Holling, 1987). Chapters 4 and 5 deal with these dynamics of change.

The second point is that the heterogeneity of the landscape of a system, its diversity and its resilience capacity are linked. More diverse systems will tend to be more heterogeneous and to show more resilience capacity than less diverse and less heterogeneous systems. Therefore more heterogeneous urban landscapes should tend to experience fewer structural changes due to their higher resilience capacity. Chapter 6 specifically deals with the relationship between heterogeneity and resilience in urban landscapes.

The hypothesis is based on three concepts that structure the theoretical framework of ecological resilience. First, the adaptive dynamics of change within and across scales generate a dynamic hierarchy or Panarchy that can be observed in the way that elements of a landscape are structured, interact and change. Second, the stability state of system can be linked with the persistence or change of its identity. In this case identity means a particular set of relationships and feedbacks between the system analysed and its context. When events occur, the resilience capacity of the system will try to buffer changes until its threshold is surpassed. The shift to a new stability state will imply a new set of relationships and a new identity. Therefore the persistence of the identity of a system would be link with its resilience capacity to absorb changes. Third, the relationship between the heterogeneity of the urban landscape and its resilience capacity can be assessed by using the Textural-Discontinuity Hypothesis (TDH) (Holling, 1992).

1.8 Purpose and general objectives of the research

The main purpose of this thesis is to investigate how it might be possible to apply key concepts from ecological resilience to the analysis of urban landscapes. Methods and results generated by this thesis can contribute to thinking and researching about the resilience capacity of urban landscapes in a comprehensive way. The expectation is that the analysis and diagnosis of the resilience state of the built environment of an urban landscape will contribute to the definition of its resilience capacity and will allow to having an insight into the resilience of a socio-ecological landscape.

The first general objective of this thesis is to investigate whether it is possible or not to find theoretical evidence in other fields of research that sustain the ideas contained in the theoretical framework of ecological resilience and, therefore, validate its application to the analysis of the resilience of urban landscapes. The expected outcome is to find correlations between the key assumptions made in ecological resilience about the way in which ecosystems are structured, change, and work and assumptions made in philosophy, history, economy, urban studies and urban morphology about the way urban landscapes are structured, change and work.

The second general objective of this thesis is to use the knowledge acquired in the theoretical construct in order to implement the criteria for assessment, through discrete methods, in the measurement of the resilience capacity of the built environment of concrete case studies. In order to accomplish this objective three stages are proposed. The first stage in assessing the resilience of urban landscapes is to investigate how elements of urban landscapes are organized and change. The second stage consists of analysing the relationship between identity, persistence and change in relationship with the resilience capacity of urban landscapes. The third stage is to test the spatial implications of the Textural-Discontinuity Hypothesis (Holling, 1992, p. 449) (see section 2.4) through the use of discontinuities in the analysis of the relative resilience of the built environment of urban landscapes.

The third general objective of this research is to add to the understanding of the mechanism that maintains, enhances or lessens the resilience of urban landscapes, particularly by investigating the complex dynamics of change through observations and analysis of transformations in the urban form. In this research it is desired to present a possible interpretation of ecological resilience and a path to its application in the reality of urban landscapes. The hope is the theoretical framework presented here will be a reference that can be used or further developed by managers, urban planners, landscape and architectural designers into a methodology or theoretical design tool, or a new field of research.

All of these objectives represent contributions to filling the gap in knowledge created by suggesting that resilience theory can be applied to socioeconomic landscapes. The additional hope is that the knowledge created can become useful for the practice of architecture, urbanism and landscape design.

1.9 Methodological approach

The interdisciplinary nature of this research links different fields of study in order to extrapolate concepts from ecology to urban studies. Therefore, the first challenge was to design a methodology with which to extrapolate concepts from one discipline to another. This methodology is necessary to make possible a comparison between the two systems and also to abstract and isolate the resilience dynamics of change. The foundation for extrapolating concepts from one field to another by using different fields of study is based on the theory of incompleteness as posited by Gödel (Chen, 2004). This philosopher argued that there is no single system of logic that is able to prove its own consistency (Catedra Manteola, 2006) therefore every translation will always be incomplete. A possible way of reducing the margin of incompleteness could be through increasing complexity and redundancy by having multiple viewpoints. Consequently, in order to transfer information from one discipline to another, it is necessary to have a complex approach in which a second body of knowledge acts as an interface, in this case an interface between ecology and urbanism. The challenge is to find the course in this approach that will minimize mismatches.

As Edgar Morin (2001) has proposed, in order to tackle complexity, in this case by reducing the margin of incompleteness in the extrapolation of concepts from ecology to urban studies, the design of a complex approach is needed. The complex approach proposed here is a way of assessing the complexity of

complex adaptive systems in a non-linear way. Complexity here means understanding the simple and the complex, qualitative and quantitative, linear and non-linear, big steps and small steps, all at the same time.

The complexity of the methodology must be suitable so as to avoid simplifications that will reduce the richness and potential of the resilience thinking. For this reason, instead of making the analysis of only one case study with one method, using a single specific variable, in this thesis resilience thinking was used to inspire the design of a methodology that could tackle the complexity and adaptability of the systems analysed. The complexity of the methodology can be observed in the consideration of multiple disciplines, case studies and methods. A complex methodology is based on the interrelationship between multiple theories assembled in a single theoretical core that is tested in discrete case studies, using different methods based on alternative assumptions that are linked with the concepts and hypothesis stated. This approach can generate diverse results with the potential to enrich the theory at different levels and from more than one viewpoint. A complex methodology implies conceiving of the design process of the methodology of the thesis as a research project. From this point of view, the design of a methodological approach could be understood as an anticipatory design (Healey, 2007). This epistemological knowledge could then become the foundation for producing a theoretical framework for analysing and diagnosing the resilience of SELs in design.

The methodology is based on a set of theoretical cores (cores 1, 2 and 3 in fig. 1-2) that are linked to the main theoretical background of the thesis (context, ontology and philosophical approach in fig. 1-2). The theoretical background provides the foundation and criteria for assessment that will be used throughout the thesis to tackle different subjects concerning the application of ecological resilience in the analysis of the resilience capacity of urban landscapes. It is the conceptualization of a context in which the study of the resilience capacity of urban landscapes is the main subject. At the same time it is the bridge that links concepts with their application in a context. The theoretical background uses contributions from economics, ecology, philosophy, history, urbanism, architecture and landscape design studies in order to validate and support the application of ecological resilience to urban landscapes. The theoretical background is constituted by the context, ontology and philosophical approach of the thesis. It is a production of knowledge that implies a way of seeing the world, an understanding of reality (Sarquis, 2003a) and a philosophical approach that becomes an interface, and an instrumental theory (Sarquis, 2003b). The pursuit of the theoretical background is made in order to produce a way of thinking about resilience in urban landscapes and also about the criteria for assessment.

In order to test the interpretation of the key points of the theoretical framework of ecological resilience, and the internal validity of the hypothesis, two case studies are used (section 1.10). The aim is to test and to develop different methods in order to find evidence in support of the assumption it is possible to assess the resilience capacity of urban landscapes. For this reason, methods and results are produced in order to analyse a particular subject (related with a specific set of concepts derived from the theoretical background of the thesis) in each case study (cores 1, 2, 3 in fig. 1-2). These, in turn, become evidence to support and exemplify how to apply the ecological theory in urban landscapes.

The complex approach designed emphasizes the generation of multiple methods, and multiple theoretical cores that are created in order to research each subject within its case study. Each theoretical core deals with one key aspect of the resilience theory, an urban landscape, a method conceived to analyse a selected set of concepts, and a group of results obtained from the analysis. Therefore, each case study interacts with the theoretical background of the thesis by providing feedback through the methods, and results produced in each research sub-study. The set of feedbacks provided in the conclusion of each case study will contribute to enhancing the theory and practice of the resilience capacity of urban landscapes by feeding back into the theoretical background of the thesis. Consequently, every analysis, and particularly the methods and results obtained, become evidence of the feasibility, limitations and potential of the ideas and criteria for assessment proposed.

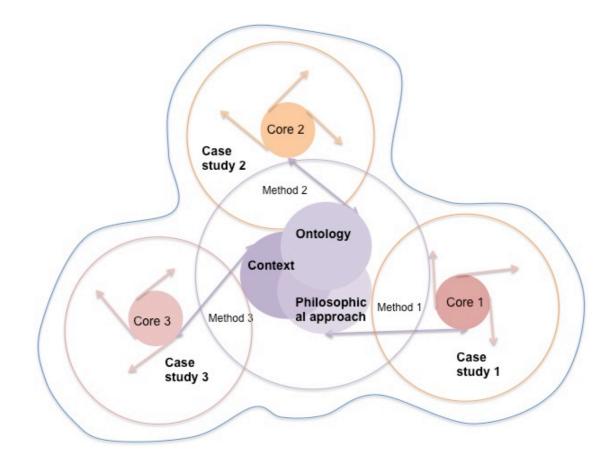


Figure 1-2. A complex approach to the research

1.10 Case studies

In the context of the complex and non-linear methodological approach implemented, case studies are used as the means to create the encounter between the theoretical background of the thesis and its possible implementation in concrete scenarios. The objective is to use case studies as part of an iterative process where key parts of the theoretical background are explored, thereby producing different methods and results in each case. As a result of this iterative process, every case study helps to explore the research question through different points of view.

If the proposed way of thinking about urban resilience is to be applied in case studies, it should be tested and compared in different cities, with discrete histories and cultural backgrounds. Thus, two case studies were selected: the east side of Auckland CBD in New Zealand and the neighbourhood of Nezu in Tokyo, Japan. It is important for the theoretical background to analyse, characterize, and compare the dynamics of change, and identity of a young city like Auckland with another urban landscapes that has passed through a longer process of development, such as Nezu in Tokyo.

The first area of study, the urban landscape of the east side of Auckland CBD, was chosen as a case study because Auckland is the biggest and most populated city in New Zealand and therefore it is an urban referent for the country. At the same time there is sufficient accessibility to archives and information. The methods used in the analysis of the morphology of Auckland demand much documentation, particularly maps with building footprints, plots, and streets in different periods. Due to its importance, the history of the urban landscape of Auckland is better documented than other cities in New Zealand, such as Wellington. Another reason for choosing Auckland as a case study is the fact that it is not an old city. This characteristic makes its urban landscape a good sample of a contemporary built environment in which the transformative process has taken effect in a shorter period of time in comparison with other European, Latin American or Asian cities.

The east side of the CBD of Auckland was selected as an area of study because its urban landscape is linked with the origin of the city, consequently it can be followed and assessed at different periods. Moreover, the east side of the CBD contains in a small area a good and diverse sample of spaces that reflect different periods of the history of the city.

The second area of study, the urban landscape of Nezu, a neighbourhood of Tokyo in Japan, was chosen in order to contrast directly with the characteristics of the east part of the CBD of Auckland. While the urban landscape of Auckland is young, modern and linked with an Anglo-Saxon culture, the urban landscape of Nezu is old with a strong identity that forms the focus of attraction of the place. The possibility of access to maps and information about the evolution of the urban landscape of Nezu created a perfect opportunity for analysing a case study that is the opposite to the area selected in Auckland. At the same time the urban landscape of Nezu is an appropriate sample for analysing resilience capacity in terms of the identity of a place. Nezu has suffered many fires and times of destruction in its built environment but stills holds its shitamachi identity. Therefore its urban landscape seems to show a high resilience capacity to buffer change and still persist. Another interesting characteristic of the urban landscape of Nezu is that it does not contain public open green spaces or sidewalks, both of which occupy a significant area in the urban landscape of Auckland.

The contrasting reality and characteristics of the urban landscape of the east side of Auckland CBD and Nezu offer a good opportunity to observe different points of the theoretical background of the thesis and also to make a comparative analysis of the resilience capacity of both urban landscapes.

1.11 Structure of the thesis

The content of thesis is divided into three parts and seven chapters that correspond to the three general objectives of the thesis, assessing the theory, practice and contributing to the understanding of the resilience of urban landscapes (Fig 1-3).

The first part of thesis is its theoretical background that is discussed through chapters one, two and three. The three chapters set the baseline and try to expose the foundation of how to think about the assessment of the ecological resilience of urban landscapes. The theoretical background of the thesis looks for evidence in other fields of study, apart from ecological resilience and urbanism, to validate the idea of extending the theoretical framework of ecological resilience to urban studies. The aim of the three chapters is the generation of the criteria for assessment that will be used to assess the application of ecological resilience to urban landscapes. The final aim is to show that, in theory, the hypothesis is valid and achievable. This theoretical core has three main components: the context and purpose of the thesis (chapter 1), the ontology (chapter 2) and the philosophical approach of the research (chapter 3).

Chapter one sets the context, importance and scope of the study. It describes the development of the argument and description of the manner and progress of the thesis. The aim of chapter one is the produce the research question and hypothesis that will guide the research.

Chapter two deals with the fundamental theory that tries to build the ontology of the thesis. It establishes a set a common ground between different subjects of study and disciplines. The ontology of the thesis was produced by assembling subjects of study related to evolutionary processes in social and natural systems that have spatial implications in cities, urban landscapes and particularly the built environment. Using this approach, a strong intersection was established between ecological resilience, assemblage theory (De Landa, 2006) and morphogenetics (Whitehand, 1981).

Chapter three describes the philosophical approach of the thesis. It connects a set of concepts, derived from the subjects of study assembled in the ontology, and the way in which they can be linked to analyse the resilience of the built environment of urban landscapes. The aim of the chapter is to link key concepts that set a common ground between ecological resilience, assemblage theory and morphogenetics, in order to define the criteria for assessment.

The second part of the thesis, chapters four, five and six, corresponds to the practical dimensions of the application of ecological resilience to the analysis of urban landscapes. This second part describes, through the development of different methods and case studies, how the ontology and philosophical approach of the thesis can be applied to urban landscapes. Therefore the aim of this part is to show evidence of how to apply key concepts of the ecological resilience theoretical framework to the study of urban landscapes. Each chapter (chapters 4, 5, and 6) investigates and discusses the assessment of ecological resilience in urban landscapes in accordance with different key topics discussed in the ontology and using the set of criteria developed in the philosophical approach.

In chapter four, the subject is the understanding of the resilience capacity of urban landscapes by assessing the dynamics of change in key elements of the built environment. The method used is based on the production of timelines. The aim is to illustrate the heterogeneity of the built environment, its multiplicity; and the different dynamics of change happening at different scales. This set of topics is related with the understanding of Panarchy in urban landscapes. The case study used is the east part of the urban landscape of Auckland CBD.

In chapter five, the subject is the relationship between the resilience of the built environment and the identity of the place. The concept of identity is used as a metaphor to characterize the ecological concept of a stability state in the built environment of an urban landscape. The aim of the chapter is to find evidence that the resilience capacity of an urban landscape can be observed and assessed by measuring changes in particular elements of the built environment (building footprint BF, plot PL, and block BL) against changes in the whole structure of the system (shifts in the stability state/identity of an urban landscape). The method developed is a comparative analysis using percentage of change difference before and after events. The case study analysed is Nezu, a neighbourhood in Tokyo, Japan. This part of the study was done in collaboration with Milica Muminovic from Keio University of Tokyo, Japan.

In chapter six, the subject of study is the relationship between the heterogeneity of the urban landscape and its resilience capacity. The topic is related with the observation and assessment of the Textural Discontinuities Hypothesis, a key point in the theoretical background of the thesis. The aim is to measure the relative resilience by quantifying and comparing changes in the structure and heterogeneity of two built environments. The method produced is based on the use of discontinuities to assess relative resilience. The chapter compares the dynamics of change in one sector of Nezu (Japan) with another sector in the east side of Auckland CBD. The chapter synthesizes in one method a way to measure and to compare resilience dynamics.

Finally, chapter seven reflects and discusses findings and conclusions from each part of the thesis. The aim of this chapter is to collect and to summarize the results produced by discrete methods in different subjects and to interpret them using the theoretical background of the thesis. At the same time it describes the advances produced in the theory and practice of the analysis of the resilience capacity of urban landscapes. The chapter ends with descriptions of the weaknesses inherent in the methods implemented and highlights the potential of the research to be developed in future projects.

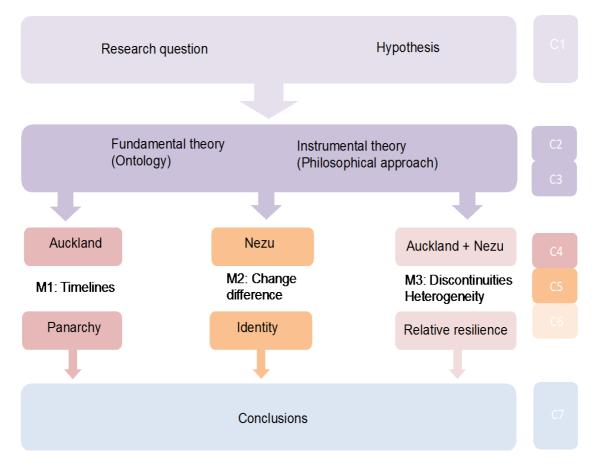


Figure 1-3. Structure of the thesis

1.12 Data collection methods

The methods used in this thesis were based on the analysis of the morphogenesis of urban landscapes. The necessary information to perform these morphological observations is linked with the data collected from historical maps of the urban landscape that are then analyzed. The first step is linked with the research, identification and selection of the appropriate maps. The criterion for selection is to look for historical maps that contain the following categories of information: streets, plots, blocks and building footprints (in the same map). When a map lacks one category of information (usually building footprints) it was considered as a reference but not all such maps are used in the analysis. Aerial pictures were not collected due to the lack of precision they offer when redrawing them as maps in two dimensions. All the maps have been previously scanned in colour and with high resolution (300 dpi). Only digitized copies were used in the data collection.

The second step in the data collection consists on redrawing the maps. Maps were redrawn, using software packages focused on the management of geographic information, especially QGIS (in the case study of Auckland) and ARCGIS (in the case study of Nezu). Firstly scanned maps were geo-referenced to the contemporary map of each area. In the case study of Nezu, data from the Center for Spatial Information Science (The University of Tokyo) was used. Secondly, maps were redrawn using vectorization tools contained in QGIS and ARCGIS. Buildings footprints, plots, blocks and streets were polygonized in different layers. Each layer has an attribute table that provides information about the number, name and area (m²) of each feature (i.e. every block, plot, block or street). Snapping options were used to give more accuracy to the drawing of polygons when they were close to each other. Buildings footprints were draw one by one trying to be as accurate as possible. Blocks were drawn including sidewalks, where they exist. Streets were also redrawn as lines taking the centre of the road as a reference. Thirdly, all the information was exported to Microsoft Excel or to Weka software (in the case of cluster analysis) to make the necessary calculations. Every layer (plots, blocks, buildings footprints and streets) was exported one by one and year per year to the software used for making the relevant calculations. When it was necessary, the importation that was processed in other software was imported to QGIS and ARCGIS in order to be joined as a new column in the attribute table of each layer. In this way final maps were produced depending on the method, aim and analysis performed.

2. Ontology: Ecological resilience, philosophy and urban morphology

2.1. Introduction

This chapter aims to be an active integration of concepts from different fields instead of a literature review of ecological resilience. Connections in this way will produce new opportunities for analysis in further research. The epistemological approach proposed in this ontology maps the overlaps between assemblage theory, complex adaptive systems, morphology and other urban studies using as a framework the set of key concepts derived from ecological resilience studies. The result is an episteme that reveals a set of connections and bridges between theory of place, assemblage, urban morphology and resilience. It finds evidence that resilience thinking can be used to observe the evolution of the built environment in order to measure the dynamics of change in an urban landscape. At the same time, it opens new areas of research that result from the intersection of the assembled fields.

The holistic direction taken here explains key concepts of ecological resilience with parallel concepts in other fields. The key concepts from the ecological resilience theoretical framework discussed in this chapter explain how complex adaptive systems change and organize themselves in a Panarchy. This chapter proposes an epistemological approach that shows that the concepts and hypothesis generated in ecological resilience around the dynamics of change of complex adaptive systems could be suitable for use in the analysis of urban landscapes because both systems are complex and exhibit adaptive behaviour in the face of change (see section 2.2.1).

2.2. Ecological background

Resilience is a recognised property of eco-systems (Folke et al., 2004; Gunderson, 2000) and it has been proposed, but not yet fully proven, that human urban systems behave in a similar way (Alberti, 2009; Garmestani, C. Allen, & Gallagher, 2008). Here, resilience is defined as the capacity of a system to absorb disturbance and reorganize while undergoing change, so as to retain essentially the same function, structure, identity, and feedbacks (B. Walker & Meyers, 2004). This way of thinking about ecological systems (B. Walker & Salt, 2006) can make a solid contribution to the analysis and understanding of how cities can be prepared for and mitigate unpredictable changes while continuing to evolve in such a way that their development does not compromise their resilience.

The objects of study of ecological resilience are socio-ecological systems (SES), which are systems that are constituted by the interaction of human beings and nature (B. Walker & Salt, 2006), like ecosystems and cities. Resilience is trying to understand changes in socio-ecological systems from the perspective of a nature evolving (Gunderson & Holling, 2002). Moreover it can be said that ecological resilience is trying to generate a hypothesis about the way in which ecosystems are structured and how they work.

The theoretical framework of ecological resilience explains change and structures in ecosystems through a set of key concepts: multiple equilibrium states, adaptive and cyclical change (adaptive cycle), nested set of adaptive cycles (Panarchy) and the production of a complex landscape when heterogeneity is exposed in the discontinuous texture of the landscape. These concepts will be developed in section 2.2 and then compared with similar concepts in philosophy (see section 2.3) and urban morphology (see section 2.4).The behaviour of complex adaptive systems

2.2.1 The behaviour of complex adaptive systems

In order to investigate the possibility for using the assumptions and discoveries made in ecology and other fields of study about the resilience of the built environment of urban landscapes, it is necessary to observe first if the behaviour of the built environment of urban landscapes is similar to a complex adaptive system (CAS) (A. Holland, 1980; J. Holland, 1992).

The study of CAS in ecology and urban landscapes is relevant to understanding how structures work, particularly structures that have emerged from the interaction of patterns. Levin (1998) and Holling (1971) highlighted some of the characteristics of a CAS in ecology. These are aggregation, or how elements are grouped into bigger structures (individuals into a population), nonlinearity (rules of interaction change as the system evolves producing unexpected results), diversity (more diverse systems are more robust and better prepared to buffer disturbances) and flow (interchanges between elements in a system). All these characteristics of a CAS are implicit in the processes of change described by the theoretical framework of ecological resilience.

This understanding is essential when making measurement of the dynamics of change of urban landscapes because it permits having criteria to define whether a system is behaving in a complex adaptive way or not. If these complex adaptive behaviours are found in the processes of change related with the built environment of urban landscapes it could be evidence for applying the theoretical framework of ecological resilience to urban landscapes.

2.2.2 Stability states, multiplicities

Holling defined the behaviour of ecosystems as the result of two properties: resilience and stability.

"Resilience determines the persistence of relationships within a system and is a measure of the ability of these systems to absorb changes of state variables, driving variables, and parameters, and still persist. (...) Stability, on the other hand, is the ability of a system to return to an equilibrium state after a temporary disturbance. The more rapidly it returns, and with the least fluctuation, the more stable it is." (Holling, 1973, p. 19)

The implications of this definition are related with the idea that ecosystems can work in more than one stability state (Gunderson, C. Allen, & Holling, 2009; Holling, 1973). The persistence in time and space of a set of relationships between a system and its environment defines a type of equilibrium state. The equilibrium point of a system can be illustrated as the result of a continuous resolution between internal and external opposite forces that define a shifting balance (Folke et al., 2004).

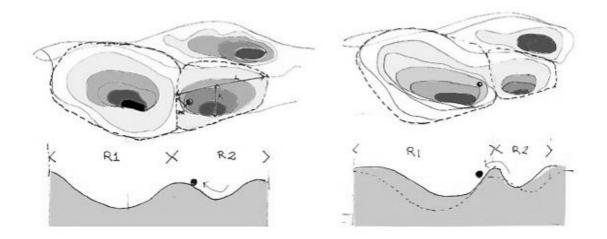


Figure 2-1. The multiple stability states of a landscape based on (Folke et al., 2004)

According to ecological resilience, every system is working in an environment around an equilibrium point situation that is defined as a domain of attraction. In the context of the system there exist multiple equilibrium points, each one with its own domain of attraction (Fig. 2-1) (Peterson, C. Allen, & Holling, 1998). A system can be working within a familiar environment and suddenly shift to a different one if its resilience capacity is exceeded. Therefore, the resilience capacity is what keeps a system within the thresholds of an equilibrium point when disturbances try to make it shift. A shift to a new stability state can be something desirable or not (B. Walker & Meyers, 2004).

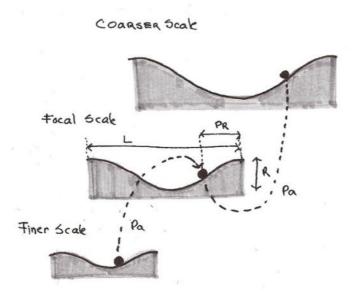


Figure 2-2. Multiple stability states and cross scales dynamics based on (Folke et al., 2004)

Resilience and stability are opposite and complementary properties that characterize the adaptation process of complex systems (Gunderson, 2000). While stability is trying to fix and control the feedbacks of a system, it is also making their links more rigid and by the same reason less resilient to unpredictable changes (B. Walker & Salt, 2006). A complex system is hardly in a single equilibrium point for long. So if the stability is interrupted two things could happen. First, the resilience of the system allows it to keep on working in the same stability state by making some adjustments in its performance; second, the resilience of the system is exceeded and the system shifts to a different stability state (Gunderson & Holling, 2002). This is termed a regime shift (Folke et al., 2004) (Fig. 2-2). In this situation, the predictability is very low, the opportunities unknown and as a result, the system becomes unstable. The resilience attributes of a system have to be evaluated in a wider perspective, always considering the importance of the internal dynamics of a system in relationship to external influences from the environment of the system (Resilience Alliance, 2007b).

2.2.3 Adaptive cycle

Ecological resilience explains that change in ecosystems happens in cycles that are linked with non-linear processes of development and decay (Gunderson & Holling, 2002). The metaphor of the adaptive cycle is used by the resilience theoretical framework to illustrate in four phases the implications of change at discrete spatio-temporal scales (Holling, 1992). In the adaptive cycle (Fig. 2-3) the first phase (exploitation) is a period of rapid development of accumulated resources. A system is not very stable but highly resilient. The second phase (conservation) is characterized by an accumulation of potential and complexity that a system gains due to its progressive connectivity and functional specialization. Consequently the system acquires more stability but also more rigidity; this is a situation that lowers its resilience capacity to the point that small surprising events can cause huge problems. As a result, the system becomes fragile and any unpredictable change can make it collapse. The third phase (release) is characterized by an important loss of connectivity and potential in a short period of time. After the system collapses it could either restart a new cycle through a reorganization process (reorganization) or shift to a different stability state (Gunderson & Holling, 2002, pp. 40-47).

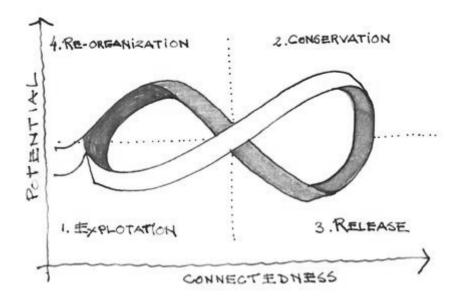


Figure 2-3. The adaptive cycle based on (L. H. Gunderson & Holling, 2002)

The adaptive cycle can be synthesized into two trends: the "*front loop and back loop*" (Gunderson & Holling, 2002, p. 47). The front loop, (white band in Fig. 2-3), consists of the phases from exploitation to conservation, and could be exemplified by the accumulation of capital, slow incremental growth,

predictability and stability needed for the identity of a place to be consolidated. The back loop, (dark grey band in Fig. 2-3), consists of the phases from release to reorganization (Gunderson & Holling, 2002), and is the dynamic that produces opportunities from a crisis (Schumpeter, 1994). In urban landscapes it can be related with what enables the identity of place to evolve. In the same way as for the processes of territorialization and deterritorialization in assemblage (see section 2.3.1), in the adaptive cycle, both loops cannot be maximized at the same time, they occur in sequence. While complexity and stability increases, the same processes make its identity more rigid, unstable and unpredictable, reducing its resilience capacity (Holling, Walker, Carpenter, & Kinzig, 2004). This is the resilience problematic, which lies between the front and back loops, between persistence and renewal.

2.2.4 Panarchy: change within and across scales

In ecological resilience every adaptive cycle is aligned to one spatiotemporal scale. In ecology, the concept of scale is different from that of geography or architecture because it describes "the spatial extent of a structure or process of interest and its temporal frequency" (C. Allen & Holling, 2010, p. 1), implying that a scale defines not only the extent of an entity in space but also the frequency of processes related with that entity. For example, a leaf occupies a small space, has a short life cycle but appears frequently in a landscape; however storms happen less frequently but affect more space. Complex systems are constituted by more than one scale, each one belonging to a distinct adaptive cycle. A nested set of adaptive cycles constitutes a Panarchy (Gunderson, Garmestani, & C. Allen, 2009, p. 1). In ecological resilience, Panarchy helps to conceptualize the structure of ecosystems as a dynamic hierarchy where adaptation occurs not only within one scale of an adaptive cycle but also across scales (Fig 2-4). At large scales, changes are slow and not so frequent because their processes are mainly managed by slow variables; while at small scales, changes occur more often and they happen faster due to the predominance of fast variables (Gunderson & Holling, 2002, pp. 69-72).

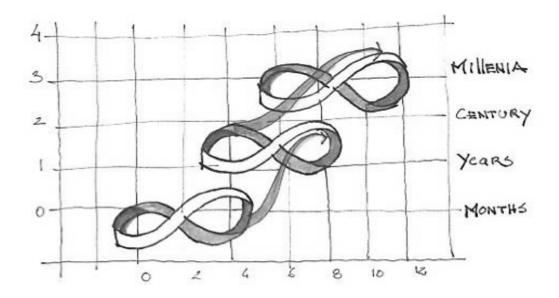


Figure 2-4. A Panarchy based on (L. H. Gunderson & Holling, 2002)

All these interactions produce emergent changes, which help the system to self-organize and to learn. In a Panarchy changes across scales happen due to two processes known as *"revolve"* and *"remember"* (Gunderson & Holling, 2002, pp. 75-76). Revolve is a bottom-up process that starts at lower scales in the Panarchy with the possibility of cascading up and having an impact at bigger scales, a situation that does not occur frequently. In contrast, remember is the opposite force, a top-down process that tries to keep the system stable and is driven by slow variables. Systems that do not allow revolves can stagnate and become rigid because of a progressive loss of resilience. Systems where revolves are frequent are not stable enough to sustain a development. Consequently, a Panarchy demands a broad understanding of the dynamics of change within and across scales, which means that the general resilience of a system is as important as the comprehension of the specific resilience of the system at focal scales (Gunderson & Holling, 2002).

2.2.5 The Textural-Discontinuity Hypothesis in ecological resilience

The evolutionary processes in a socio-ecological system are adaptive, thus implying that they are not linear and continuous but that they are non-linear and discontinuous in time and space; consequently they produce a multi scale dynamic hierarchy that is named a Panarchy (Levin, 2005). The theoretical

similarities found between dynamics of change in ecosystems and urban systems permits the inference that all discontinuous processes generated by adaptive cycles and cross-scale interactions in a Panarchy will not only reflect the discontinuous processes and structure of a socio-ecological system (Gunderson & Holling, 2002) but will also produce a discontinuous socio-ecological landscape. All assumptions made about the possibility of having multiple stability states in a system, adaptive cycles, and the production of a dynamic hierarchy like Panarchy, need to be proved and justified in order to constitute a theory.

In ecology attempts to prove the existence of SESs organized by a Panarchy are being made through the "Textural-Discontinuity Hypothesis" (TDH) (Holling, 1992, p. 1). This hypothesis states that discontinuities in the size of animals should reflect the discontinuous processes that structure the landscape. If a landscape and the organisms living in that landscape are organized at different scales and they have interactions between scales, the result of all these processes will be a "lumpy landscape" (Holling, 1992, p. 78; Krugman, 1996, pp. 44-45). In this way a relationship between the heterogeneity of a landscape and the processes that produce that heterogeneity are established (Gunderson & Holling, 2002). The ecological resilience approach states that the heterogeneity of a landscape is not a casual event, it is the product of multiple and heterogeneous processes that occur as described in the adaptive cycle and Panarchy. Moreover, scientists in this field (Gunderson & Holling, 2002; Krugman, 1996; Levin, 2005) propose that textures produced in a heterogeneous landscape reflect internal processes, and for this reason they reveal information about the performance, organization and structure of the system. It is thus possible to infer that the analysis of the heterogeneity of a socio-ecological landscape should give information about the state of the socio-ecological system.

According to the TDH, animal body sizes are related to behavioural choices and availability of landscape resources at specific search scales. Species of similar sizes might exploit resources at similar scales in a landscape. If landscapes are heterogeneous or lumpy, their discontinuous resource distribution will tend to cluster animals of similar sizes in lumps, at different scales of space and time. Bigger organisms will tend to occupy bigger spaces but will also be less numerous than smaller organisms that will forage in smaller spaces but to be more numerous in the landscape. At the same time processes of change in elements of the landscape at small scales tend to occur faster than processes of change transforming bigger elements at bigger scales of the landscape (Fig. 2-5). The heterogeneity of the landscape will, in this case, be a cause for clustering more organisms in richer zones, where the stability is high and resources abundant, than in transition areas where resources are scarce and variability high. The product of that uneven occupancy and exploitation of resources in a landscape will make the heterogeneity of the landscape even more discontinuous. The TDH proposes that there should be a geometrical correlation between sizes of the organism that exploit one parcel of a landscape and the texture of that landscape (Holling, 1992).

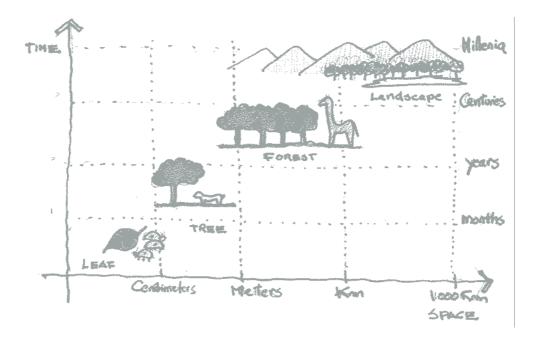


Figure 2-5. The Textural-Discontinuity Hypothesis in ecosystems

As a result of these processes of entrainment (Fig. 2-5), animals tend to be organized in aggregations of species with a similar body-mass that forage at the same scale (Holling, 1992). When anthropogenic perturbations, for example, affect key processes they could have an impact on the Panarchy and consequently on the distribution of resources in the landscape (C. Allen, Forys, & Holling, 1999). Changes in the availability of resources will produce changes in the composition of the clusters. For this reason, the stability of a landscape should affect the morphology and functional diversity of its constituent elements. The pattern of aggregations in the landscape should change affecting the size of the animals that inhabit the landscape. Therefore by measuring transformations in the body-mass size and distribution of animal communities it should be possible to track structural changes that are related with the present and future resilience of the system (Holling, 1992). The analysis of size changes and functional diversity, at each scale of the landscape, should reflect the dynamics of adaptation of the communities that inhabit a landscape. An understanding of how a lumpy landscape behaves at different scales of space and time, allows these to become key variables to test the resilience capacity of a landscape in the presence of unpredictable changes (P. Allen, 1997). In this way, the TDH could help in improving the urban understanding of how the variability of resources in a landscape produces similar discontinuities in the morphology and richness of its elements.

2.3. Philosophical approach

This approach aims to find analogies between assemblage theory and the resilience of complex adaptive systems through analysing the evolution of the built environment (Fig. 2-6). Assemblage theory and the concept of ecological resilience are merged together creating common ground in order to enhance the discourse on identity in the stability of urban landscapes. The objective is to find parallels between socio-ecological systems and assemblages in socio-ecological landscapes in order to describe the built environment of urban landscapes as a complex adaptive system with a resilience capacity.

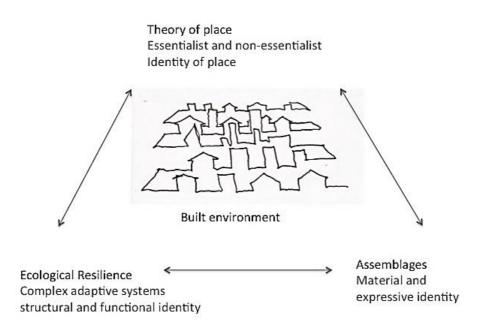


Figure 2-6. Dimensions implied in the proposal for an assembled identity

In urban and architectural studies, particularly in place theory, the idea of the persistence of an essence has traditionally been one principle used to define identity. It has partially succeeded in explaining the role of change in the maintenance of the identity of an urban landscape, a point that is essential in ecological resilience dynamics. However the introduction of the concept of assemblage theory (De Landa, 2006) into place theory leads to consideration of the dichotomy between persistence and change and describes transformations in a way that makes possible a parallelism with the processes of change in an ecological resilience theoretical framework. In an assemblage all entities represent assemblages of smaller elements, "whose properties emerge from the interaction between parts" (De Landa, 2006, p. 5). Societies are assemblages of people and neighbourhoods are assemblages of certain groups of people, houses, streets and so forth. In ecological resilience socio-ecological systems are also considered assemblages of social structures and natural systems, and therefore they can be considered as dynamic, rhyzomatic structures of people and environment, in which place is both material and experiential (De Landa, 2006).

The theory of assemblage indicates possible viewpoints of the identity of place that can be used in the analysis of the identity of urban landscapes, and particularly in the analysis of the resilience of their built environment. However, the processes that depict multiplicities, interactions of elements of assemblage, and the way the identity of an urban landscape operates in relation to change in its built environments are not explicitly defined in assemblage theory. The ways in which the built environment absorbs change and the ways in which this influences its identity and stability are still to be described. For this reason the use of ecological resilience in the analysis of dynamics of change in urban landscapes can give the opportunity to merge the philosophical concepts with ecological methodologies. This will permit an assessment and understanding of how to make the use of ecological resilience in the analysis of change in the built environment of urban landscapes effective. Finally, a philosophical approach can give more internal validation to the research, to prove that concepts in ecological resilience can be shared with other disciplines.

2.3.1 A complex approach to the identity of an urban landscape: assemblages and multiplicities

In the definition of ecological resilience, the concept of identity is an important attribute (see 2.21). The persistence of an identity is a condition that a system has to exhibit in order to prove that its resilience capacity was effective in absorbing changes (Holling, 1973). In the same way that identity is an important concept in ecological resilience, it is important in the definition of place given in assemblage theory. In this definition of identity, assemblage theory works as a link between philosophy and urban landscapes through the concept of place. Many of the concepts used by De Landa are based on previous works done by Deleuze and Guattari (1987). However only De Landa is directly cited in this chapter because this thesis uses his assemblage theory in order to define identity instead of using the entire theoretical construct of Deleuze and Guattari. Nonetheless, a philosophical analysis of Deleuze and Guattari might provide new contributions that can be exploited in a further research.

In assemblage theory the identity of a system is defined within the morphogenetic processes that structured the system (De Landa, 2002). Identity

does not rely on one essential element but on the multiple relationships and elements of a system. The identity of a system emerges from changes happening through time and it is defined progressively. The concept of multiplicities offers a dynamic definition of identity that permits understanding of the change to elements and the persistence of an identity at the same time (Fig. 2-8).

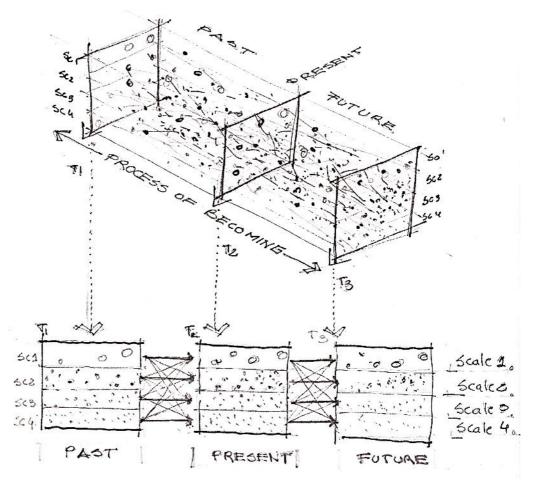
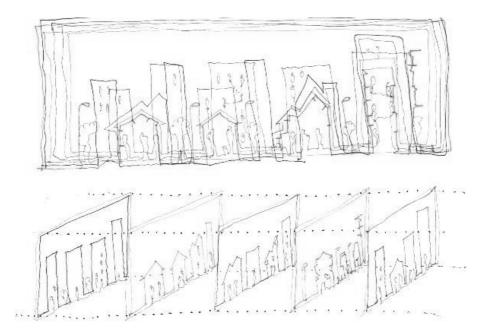


Figure 2-7. Becoming an assembled identity

Identity is an integral element of place, and as such, it is always in the process of becoming rather than a definite product (Dovey, 2010). De Landa (2006) emphasizes that identity is based upon multiplicity: "*a nested set of vector fields related to each other by symmetry-breaking bifurcations, together with the distributions of attractors which define each of its embedded levels*" (De Landa, 2006, p. 32). The potential of multiplicity lies in the idea that place can change and its identity can still persist. This is achieved by defining the place as assemblage; its identity is then emerging in interrelations of its parts, and appears only when the assemblage is observed as a whole. The appearance of


identity is defined in two dimensions, material (the physical characteristics) and expressive (the qualitative characteristics and meanings), and two processes, territorialization and deterritorialization. All assemblages are a mixture of different levels of material and expressive roles. The processes of territorialization are linked with stability and homogenization. On the other side, the processes of deterritorialization imply instability and heterogenization (De Landa, 2006). Consequently, while some processes try to stabilize an identity at one level, parallel processes work in the opposite way, creating a precarious stability that comes about from the interplay of both processes (De Landa, 2006). From this point of view, the stability of an identity is related to the level of homogeneity or uniformity. In conclusion, identity always emerges from a mixture of paradoxical processes changing within and across levels (Fig. 2-8).

The concept of identity could permit characterization of a set of feedbacks among different functions and structures in urban landscapes. It can represent a way to describe how elements and structures interact in a complex system and at the same time it can be used to define how transformations affect the persistence of some elements and structures and the change of others at different levels (Garcia, Muminovic, Vale, & Radovic, 2012).

2.3.2 Multiple stability states and identities

In order to explain how assemblage theory can be helpful for understanding the similarities between the dynamics of change of social systems and the complex adaptive behaviour of ecosystems (Levin, 1998) the concept of multiple stability states is explained in relationship with the concept of identity as understood in assemblage theory. This represents an approach to translating the concept of stability and multiple equilibrium points from an ecological realm to the concept of identity in a philosophical realm. The idea is to link the resilience capacity inherent in the complexity of the built environment with the dynamic of persistence and change of identity of urban landscapes, because identity represents a key point in the definition of resilience (see 2.2.1).

Change in the stability of the identity of urban landscapes and the possibility for an urban landscape to work in more than one stability state can be linked with the concept of multiplicities, as developed in assemblage, where this represents a number of possibilities. The concept of multiplicity is defined in assemblage theory as a number of points of attractions (De Landa, 2006) that can be directly related to the multiple stability states of complex adaptive systems (CAS). In the same way that the concept of multiplicities in assemblage theory implies different levels, in resilience thinking the identity of an urban landscape, also implies different levels of identities (Garcia et al., 2012). For example, at one particular scale, a set of relationships among structural elements defines one identity (Fig. 2-9), while at a different scale (Fig 2-10), different elements and interrelationships between them can generate a different identity (Muminovic, Garcia, Vale, & Radovic, 2012). Even though the idea of understanding the identity of place as composite was also treated by Michel de Certeau (1984), the idea of linking the identity of place with multiple scales in space and time was not as prominent in the work of Certeau as it is in assemblage theory. In this way, identity, as shown in assemblage theory, can be understood as multiple, interacting and changing phenomena that also occur at different scales.

Figure 2-8. Multiplicities and identity

In the case of SES, multiplicities are related with the multiple stability states that a system can acquire at different scales (Garcia et al., 2012;

Muminovic et al., 2012). A multiple stability state point of view implies that the set of relationships that sustain an identity are dynamic, moving and changing at different scales. This idea can be applied to the analysis of transformations in the built environment. The identity of one street, for example, could be the result of the interrelationship between buildings patterns, plot patterns, and street patterns as well as the functions and forms of these elements: *"the connections between them that makes it an assemblage or a place"* (Dovey, 2010, p. 16).

Figure 2-9. Multiplicities and multiple identities across scales

The elements can change or disappear but if the patterns that connect the elements of an urban landscape are fairly stable it will be possible to identify the street in a similar way. The identity will depend more on the evolution of the interrelationships among elements and structures in a system than transformations in particular elements by themselves (Fig. 2-10). Moreover, the persistence of an identity should imply a historical development that is not necessarily stable but is dynamic, and rarely static.

By understanding changes as symptoms of the performance and stability of an urban landscape, the analysis of morphological changes becomes important for urban design. The idea of multiple stability states challenges paradigms and notions of conservative approaches to the preservation of the identity of certain places. Urban development oriented to protecting the identity of particular urban landscapes can be reconsidered if they are analysed as resilient assemblages with the capacity to adapt within the inevitable forces of evolution. If it is assumed that identity is like an instant picture that describes the interplay of forces between elements and structures of the built environment of urban landscapes, within and across scales, at one moment (Fig 2-9, Fig. 2-10), the analysis of the dynamics of change becomes crucial for understanding the state of an urban system through making a diagnosis of its identity. In this manner, the understanding of the role of change in resilient assemblages, what is changing, and how it is changing, is key to enhancing or lessening the resilience capacity of built environments and to evolving the identity of an urban landscape (Table 2-1).

Table 2-1. Toward a resilience assemblage approach: comparative view of urbanlandscapes from assemblage and resilience

	Urban landscapes as assemblage	Urban landscapes as SEL	
Organization	Relations between sub-elements.	Dynamic hierarchy. Nested set of adaptive	
	Rhizomatic and tree-like systems	cycles.	
Scale	Operate at different scales	Operate at different scales	
Causality	Non-linear	Complex and non-linear.	
Connections	Exterior and interior	Subsystems and larger systems	
Emergence	Becoming	Resilience	
Multiplicity	Set of vectors and attractions	Stability states (attractor and thresholds)	
Change	Irreversible evolutionary process	Non-linear and cyclical	

The analysis of change, persistence, stability and resilience reveals part of the complexity involved in the investigation of urban landscapes (Garcia et al., 2012). As Morin (2001) proposed, complexity presents the challenge of thinking in a complex way in order to embrace concurrently a multidimensional understanding of the phenomena of complex and simple, and singular and general. A complex viewpoint of the identity of a built environment proposes that "*its unity is not uniformity but is coherence and diversity admixed in collision*" (Frazer, 1995, p. 7). The study of the complexity of urban landscapes is a requirement for research and design strategies intended to cope with the complexity that they impose.

2.3.3 Multiples identities assembled in a Panarchy

Panarchy is a metaphor that synthesizes the concept of multiplicities, adaptive cycles and transformations within and across scales in such a way that is possible to understand how an identity, and therefore the equilibrium of a socio-ecological landscape, is generated in the built environment of an urban landscape in a non-linear way (Fig. 2-11). Socio-ecological systems like cities have processes happening at different scales in the landscape, affecting different quantities of space and linking with discrete temporal frequencies of change. From the system of decision in the cell of a family that is located in the building footprint of a plot and happens every day, to the groups of beliefs and traditions that were accumulated for centuries in order to consolidate the culture of a country, each sub-system has its own rate of change that affects the equilibrium and resilience capacity of the built environment at all levels. Change at the large scale is thus very slow. At the small scale of the block, as observed in the burgage cycle (see section 2.4.1), change happens much more rapidly in response to things like social forces (population increase) or socio-economic forces (increase in price of land).

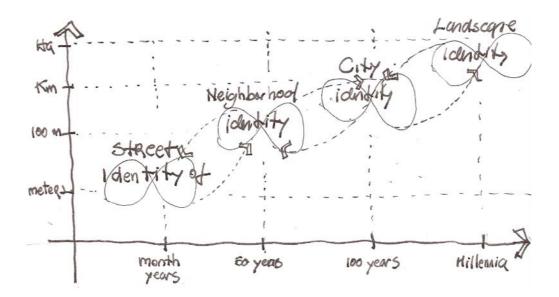


Figure 2-10. Multiples identities assembled in a Panarchy

If every scale of an urban landscape has built its own identity and this represents the equilibrium of the system, change in the identity at every scale of a system can, therefore, be linked with the loss of resilience capacities at a focal scale or at the level of the whole system. A resilient assemblage viewpoint using the dynamic hierarchy implied in a Panarchy can enrich the understanding of how urban landscapes change and persist by operating at different scales. Moreover, Panarchy introduces the importance of adaptive change in order to evolve and can help to explain how a system can change without losing its identity, therefore bringing essential information to the analysis of resilience dynamics. For example, the identity of a built environment that does not allow revolve can stagnate and become rigid because of a progressive loss of resilience. Systems where revolves are frequent are not stable enough to sustain an identity and therefore their equilibrium becomes more difficult to manage.

2.4. An urban morphological approach

If ecosystems and urban landscapes are complex systems and their adaptive processes share similar attributes, such as having a resilience capacity, both complex adaptive systems can be conceptualized and analysed using a similar theoretical approach. The theoretical framework of ecological resilience provides a methodology for analysing the evolution and the present state of an urban system while assemblage permits an understanding of similar behaviour in social systems (De Landa, 2006).

Nonetheless, the object of study is still the built environment, which means the application of ecological resilience and assemblage to urban landscapes needs a supplementary theoretical tool with which to measure change in their built environments. Because urban morphology is linked with the study of the form and shape of urban settlement (Moudon, 1997), and it is the field specialized in the understanding of changes in the urban landscape (Larkham & Slater, 1995; Whitehand, 1981; Whitehand, 1977), it is the appropriate bridge between ecological and urban studies. In the same way that ecological resilience is trying to generate a hypothesis about the way in which ecosystems are structured and how they work, morphogenetics aims to comprehend how the urban landscape of cities originated and has evolved using town plan analysis (Whitehand, 1981). The approach is also related with the identification of key elements that structure the urban form and the contextual processes that shape urban landscapes in time and space (Whitehand, 2007).

Because human urban systems are a complex mix of many sub-systems (Bessey, 2002), here it is argued that by looking for changes in one subsystem, the built environment, information can be revealed about the socio-ecological landscape that contains the urban landscape being analysed and in this way it can be possible to have a panorama that concerns the whole socio-ecological system.

One of the most significant works within the morphogenetic tradition was developed by the German geographer M.R.G. Conzen (1960). Conzen's philosophical approach is based in the ideal of urban landscapes co-evolving with societies and for this reason they express the development of their culture in the urban fabric (Kropf, 1993). Consequently, the analysis of the built environment allows an understanding of the uncovered processes that have shaped the urban landscape, and for this reason it is a tool for landscape management (Conzen, 1962). The underlying idea of this approach is that by mapping changes in an urban area against its ability to exhibit resilience, in other words cope with pressure without changing state, it will be possible to identify the spaces in the urban fabric that make this possible. With this knowledge and an understanding of each urban system, it should be possible to enhance or decrease the resilience capacity of socio-ecological systems to deal with unpredictable changes.

2.4.1 Adaptive cycles in urban landscapes: the burgage cycle

In the burgage cycle (Conzen, 1962; Whitehand, 2007), Conzen proposed a method for understanding and quantifying the evolution of urban landscapes. In the burgage cycle, the process of building in-filling in the backyards of a medieval burgage was measured at different morphological periods. Conzen found that the gradual filling up of the burgage was cyclical and that it followed different phases in relationship with discrete responses to socio-economic forces. The burgage cycle proves that the urban landscape behaves as a complex adaptive system as it follows the phases of the adaptive cycle, described above, of exploitation, conservation, release (the fallow period) and reorganisation (Conzen, 1962, p. 105). Like an ecosystem, it is also composed of discrete layers these being the sub-systems of plots, streets, and buildings. From an ecological resilience perspective it is proposed here that these sub-systems, as key elements of the landscape, are carrying self-organization processes in order to adapt to external demands, and therefore they behave like a complex adaptive system. The fallow periods that are produced as a result of a process of exploitation of land availability, as illustrated in the burgage cycle, could imply, from a resilience perspective, that the built environment's capacity for absorbing transformations has reached its maximum, leading to a change in state. Instead of staying in a steady saturated state, the built environment on its own and in an autonomous way is producing new spaces. It is precisely these fallow periods where the opportunities for future interventions and the possibility for further developments lie. The contention is that urban, landscape and architectural designers oriented to the prevention and mitigation of natural as well as cultural hazards have to acknowledge the assessment of these potential spaces as real opportunities to buffer massive and critical disturbances. Figure 2-12 sets out a diagrammatic representation of the burgage cycle (at the scale of the plot). It shows the need to think about urban design not as a static goal but as part of the natural evolution of urban systems. Each city is a constant series of changes happening at different scales, leading to the discussion of scales below.

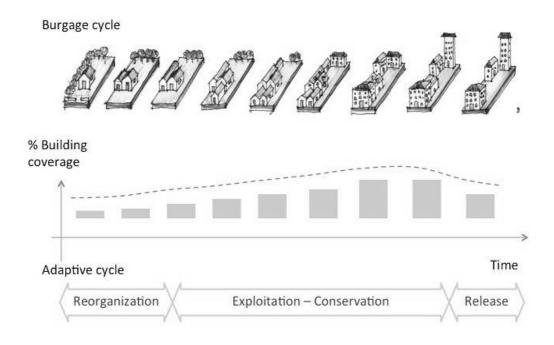


Figure 2-11. Applying the adaptive cycle to the burgage cycle

However, there are still differences between the perspective of Conzen and a resilient assemblage approach. The Conzenian analysis implies that the urban landscape after surpassing different phases of an adaptive cycle restarts a new cycle. In the work of Conzen there is no direct consideration of the equilibrium conditions of the urban landscape as it is analysed in ecological resilience. Urban landscapes seem to work only in one possible stability state, a position that can be linked with traditional viewpoints about identity that are challenged in this research with the resilient assemblage approach (see sections 5.2 and 5.3).

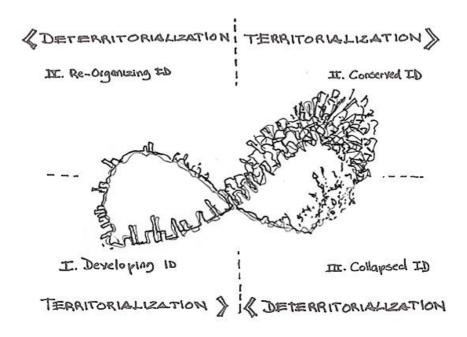


Figure 2-12. Adaptive cycle in the identity of place

Transformations in adaptive cycles could reinforce the idea that the identity of the built environment of urban landscapes is a resilient assemblage that is produced by the enduring layers of evolutionary processes that are neither linear nor totally chaotic. The identity of a complex system is pushed to adapt continuously, until the point of release of some of its elements in order to persist (Fig. 2-13).

2.4.2 Textural-Discontinuity Hypothesis in urban landscapes

In urbanism it is possible to reformulate this hypothesis by stating that discontinuous distribution and attributes of the elements of a built environment

should demonstrate the existence of a hierarchical structure, which produces a discontinuous texture in the urban landscape (Holling, 1992). Discontinuities in the urban morphological and functional dimension of a landscape should produce a discontinuous SEL. If this hypothesis can be proved it would imply that complex adaptive systems, like cities, are organized in a dynamic hierarchy that can be assessed with the concepts and ideas describe in Panarchy.

The infrastructure and spaces produced at every scale of the resilient assemblage of an urban landscape should prove that elements of a socioecological landscape are not uniformly distributed but scale dependent (Bessey, 2002). Following the resilience approach, discontinuities and aggregations in the elements of an urban landscape will show the complexity of the built environment while giving the possibility of studying its adaptive qualities (see section 5.1). By analysing these discontinuities and aggregations it should be possible to show that urban landscapes are complex adaptive systems and that they are organized in a dynamic hierarchy that can be understood as a resilient assemblage. In consequence, if the TDH can be proved and consequently all the resilience dynamics of change, its use in the analysis of urban landscapes would form a first step toward the proposition of a theory of the evolution of urban form.

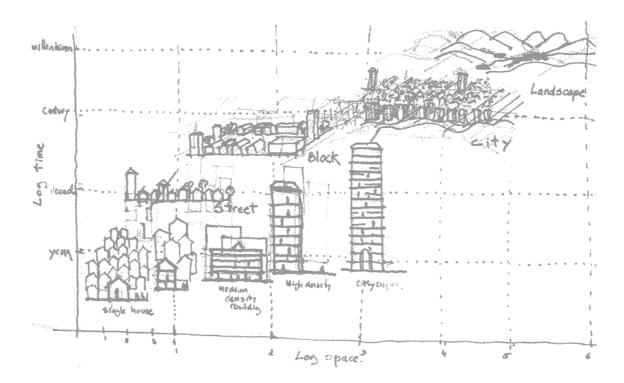
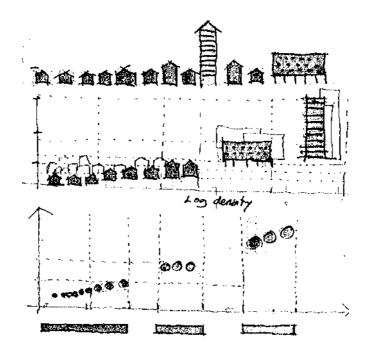


Figure 2-13. TDH in urban landscapes


SELs are landscapes hierarchically organized and discontinuous like the Panarchy described in resilience. Every structuring process of a SES (family, community, institutions, culture) produces a structuring process in a SEL (buildings, blocks, city, landscape) at different scales. The scales are defined in log time and log number of people. These habitats belong to different scales of time and space. Communities are going to produce structures at a different scale from those of families. The structures produced by communities can entrain processes from streets, neighbourhoods and cities, to regions and countries. Institutions have an impact over a wide range of scales, from the normalizations of the density and land use in one street to worldwide impact (Fig. 2-14).

The importance of the TDH for urban morphological studies lies in its potential for predicting transformations in urban landscapes by analysing changes in the geometry of the elements of the built landscape. Using morphogenetics it should be possible to aggregate mathematically key elements of the urban landscape (for example, plots, streets, buildings plans) in order to discriminate different types. For example, by grouping similar sizes of plots and buildings plans, aggregations can be produced. The result of this process will be a conceptualization of the structure of the urban landscape in terms of patterns of aggregations and discontinuities. These patterns will reflect the processes that originated the structure of the landscape and for this reason they can be used to compare different stability states of the system before and after a shock.

2.4.3 Aggregations and discontinuities in urban landscapes

Discontinuities in a database can be understood as breaks in the continuity of a sequence of variables, like missing positions in a ranking. A simple arithmetical demonstration is shown in the following example: 1,2,3,4,...,7,8,9,10. There is a gap between the numbers 4 and 7 that discontinues the series. It is possible to aggregate a group of numbers by its similarity or its distance to a variable. In the example, the group of numbers are aggregations and the gap is a discontinuity. Aggregations are found by clustering geometric properties of different elements of an urban landscape. In urban studies the concept of aggregations has already been used in morphological analysis but only to denominate a series of building (Caniggia, 2001).

A set of aggregations and discontinuities defines a structural pattern (group of grey bars and blank spaces in Fig. 2-15). The resilience theoretical framework interprets these patterns as scales or levels of a Panarchy, where every scale is a domain of attraction within an adaptive cycle that contains information about the stability and resilience of the landscape.

Figure 2-14. Aggregations and discontinuities in urban landscapes

Figure 2-15 illustrates the process of identification of discontinuities and aggregations using a morphological analysis. In this example, elements of the built environment of a SEL are grouped into typologies and densities. As a result it is possible to obtain different aggregations separated by discontinuities between scales. The final result is a pattern of three aggregations (grey bars) and two discontinuities (blank space between grey bars). In urban studies the idea of discontinuities can be used in many different ways because it can be linked with the lack of continuity, the non-linearity and the intervals contained in every single social or natural process in a city.

Discontinuities can be linked with interruptions in the continuity of a variable, these being, for example, the absence of elements in landscape. For example, blocks are not normally the size of a house (building footprint). The absence of blocks of house size causes a discontinuity between the group of elements that are the size of a house, and that conform to an aggregation of house sizes, and the ones with the size of blocks, that generate an aggregation of elements of the size of a block. In this case a discontinuity implies a change of scale between the aggregation of building footprints (the size of a house) and the aggregation of the areas of blocks.

Discontinuities can be related in a metaphorical way with other concepts like "*terrain vagues*", "*loose spaces*" or "*interstitial spaces*" (Lévesque, 2009; Solà-Morales i Rubió, 1995). The definition of terrain vague given by Sola-Morales (1995) alludes to an empty and abandoned space. The architect declares that these spaces are a sort of negative space. They are elements that generate the systems of folded and interstitial spaces creating the "*residual city*" (Solà-Morales i Rubió, 1995, pp. 120-121). Levesque (2009) analyses the concept of terrain vague as an interstitial space that represents the contradictions between modern society and its environment. From this point of view, the terrain vague becomes a material with which to build an open city, characterized by the amalgam of heterogeneous components. The approach of looking at the terrain vague as interstitial spaces or fragments that result from the clash between the developments of social systems within a natural system is an idea that can be directly linked with the dynamics of interaction in socio-ecological landscapes as described in the theoretical framework of ecological resilience. The implication of the thoughts of Levesque is that the analysis of the origin of interstitial spaces is connected with the comprehension of societies and the environment as a single system.

The difference between the concept of discontinuities in ecological resilience (C. Allen & Holling, 2008) and these in-between spaces is that discontinuities in a resilience approach are not necessarily associated with a kind of space but with the lack of intensity in a particular morphological process. Discontinuities in the built environment of a SEL can also be understood as the result of the complexity and heterogeneity of a resilient assemblage. Discontinuities are the product of the process of transformations generated by the evolution of the morphology of a built environment.

2.5. Discontinuity and heterogeneity

In ecological resilience a Panarchy produces dynamic and hierarchical landscapes that are self-organized by clustering resources discontinuously (C. Allen & Holling, 2008; Holling, 1992). As a result a lumpy landscape is formed by aggregations and discontinuities. In urban landscapes it could be possible to think about the heterogeneity of a built environment as a variable that can be explained in relationship with the complex dynamics of change happening in a Panarchy. If urban landscapes are organized as a Panarchy, as proposed in the hypothesis, then it could be possible to think that the heterogeneity of an urban landscape is linked with the complexity, diversity and resilience capacity of the system.

In order to analyse the heterogeneity and discontinuity of urban landscapes it is necessary to consider not only elements that are built, but also those that are not built. The reason for considering un-built spaces as important elements in the analysis of the resilience of urban landscapes is that they constitute physical discontinuities in the built environment per se. They can be understood as a reserve of available space and therefore a resource for the future of urban landscapes. From this point of view, un-built spaces could be playing an important role in the control and self-organization process of urban landscapes. Moreover, a network of un-built spaces may be related with the buffering processes of change happening at interfaces in the built landscape.

2.5.1 Discontinuities and public-private interfaces.

The analysis of interfaces in urban landscapes is important for the recognition of identity and complexity. Interfaces are areas for encounters between systems, where the major quantity of information and interchanges take place (Pesci, 2007). In ecology and ecological resilience, interfaces can be considered as areas of transition that contribute to the diversity, adaptability, and evolution of complex systems (C. Allen & Holling, 2010; Lewin, 1999; Turner, Davidson-Hunt, & O'Flaherty, 2003). Interfaces in complex adaptive landscapes are areas at the edge between order and chaos (Kauffman, 1993) where resources are volatile and species have to develop the adaptive capacity to cope with unpredictable changes and scarcity of resources (C. Allen et al., 1999). Therefore, interfaces become excellent places to test the resilience of a system because they are linked with discontinuities in the urban landscape and, perhaps, therefore form a path to explore the idea of spaces for resilience. In this thesis interfaces were linked with two kinds of spaces: private-public interfaces and green spaces.

Public private interfaces were chosen as a subject of study with the possibility of linking these with interfaces, loose spaces and spaces for resilience due to their importance as transitions in the urban landscape. Public-private interfaces represent intersections between the public and the private realm in an urban landscape. Sidewalks or streets can be understood as zones that represent discontinuities in the built environment. In consequence their analysis is linked with the diversity and complexity that together may enhance the resilience of urban landscapes.

2.5.2 Discontinuities and green spaces.

The importance of and necessity for green spaces in cities is a fact that has been extensively researched in urban sustainability, landscape ecology and architecture (Higueras, 2006; Leal del Castillo, 2004; Moisset & Paris, 2005; Tzoulas et al., 2007). Most literature about green spaces in urban landscapes is mainly focused on the impact that urbanization has had in the fragmentation and depletion of green spaces (L. Walker, 1999). Although investigations have been conducted to analyse the importance of the general role of green spaces in providing opportunities and adaptability in urban landscapes (Colding, 2007; Elmqvist et al., 2004) and landscape architecture (Allan & Bryant, 2011), analysis and measurement of the role of green spaces in the resilience of the built environment of urban landscapes has not been fully developed.

It is possible to think that green spaces are not just the reverse of the built environment but that they have their own structures and produce their own adaptive capacities. In this way they should provide diversity for the whole structure of an urban landscape while exhibiting a resilience capacity to changes in its built environment. It is believed that green spaces contribute to the diversity and discontinuity of urban landscapes because they physically represent interfaces between layers (scales) within the built environment. In this way, green spaces can be understood as the zone of encounters between natural and social systems in a city. Even though green spaces in a city are under the dominion and control of the social part of a system, they still represent the natural system and a reserve of land resources that can be used in the case of an emergency. Hence, the history of green spaces could have the potential to describe the quantity of interactions between elements of the assemblage in an urban landscape. If it is possible to understand green spaces as part of a network of inter-spaces that are associated with discontinuities, they should be related with the production of diversity within and across scales in a system. The analysis of the role of green space in the dynamics of change of the built environment can, therefore, produce important information about the way built environments change, adapt and use their resilience capacities to keep on evolving while maintaining their structures in a fairly stable condition.

2.5.3 Spaces for resilience

The dynamics of change and adaptation processes between built and nonbuilt spaces presented in interfaces is an excellent opportunity for the development of a research path towards the discovery and definition of a present and future network of spaces for resilience in urban landscapes. Spaces for resilience are opportunities created within the evolution of urban landscapes. They are the system of spaces that emerges from the interaction of all the past and present interventions in the urban landscape within and across different scales in the urban system. Basically what are being identified are spaces of opportunity, these being a potential of the urban landscape that needs to be considered in the present to make development in the future possible. Such spaces are not only the interstitial group of spaces suggested by Sola-Morales (1995) or Gilles Clement (2007), but also the opportunities these spaces generate when they interact with the pre-existing landscape.

Rather than seeing spaces for resilience as a theoretical construct, this thesis argues that they emerge naturally as the non-linear response of the urban system, but that their form is dependent on the structure of the particular urban system. In this manner they become an essential element of the urban landscape that can be better observed in the evolution of the particular landscape. This leaves the question as to whether it is possible, through identification of spaces for resilience, to be able to design for them as part of increasing the resilience of the socio-ecological system and its urban landscape. For this reason it is important to investigate this set of emergent spaces as well as their interaction with the entire socio-ecological system using resilience thinking (Garcia & Vale, 2012). The importance of this issue for a city and particularly for architects, landscape architects and urban designers, is that the existence and emergence of a set of autonomous spaces in the built environment can be associated with the appearance of opportunities to receive new uses and to provide alternative solutions in the face of present and future threats.

2.6. Conclusion

Ecological Resilience can offer a comprehensive approach for investigating changes in urban landscapes in order to understand their capacity to adapt and to deal with unexpected disturbances.

The evolutionary process presented in the behaviour of ecosystems can be compared with the dynamics of change presented in urban landscapes because both are complex adaptive systems. As was shown in this chapter, the theoretical framework of ecological resilience can be a suitable way to analyse and to rethink cities in order to produce a better understanding of the resilience and stability of urban landscapes. This knowledge can generate an alternative way to analyse and comprehend the design of urban landscapes. The benefits that can be obtained from a resilience approach can be synthesized in the following points:

1) Stability and resilience are attributes of complex systems, like ecosystems and cities, which define their capacity to adapt and to evolve.

2) The understanding of the reality and quality of urban landscapes can be achieved in relationship with an understanding of equilibrium in which multiple stability states are possible.

3) The resilience of an urban landscape depends on general and specific processes and responses that occur in the system, within and across scales.

The present epistemological approach produces an interface of knowledge that makes every key concept more accessible for its application in urban studies.

The morphogenetics of Conzen provides the syntaxes of the urban landscape. Some of the findings in this chapter are related with the common fields and possible future contributions between ecological resilience and urban morphology as well as with the possibility of assessing the resilience of urban landscapes using morphogenetics. As was shown in the burgage cycle, the built environment of a SEL is not just a consumer of socio-ecological services but also a generator of spaces that can serve for buffering change. For this reason the built environment becomes an essential element in analysing the resilience of cities.

Ecological resilience explains that social and ecological systems are in constant interchange. In an evolutionary approach, change is neither good nor bad *per se*. Change has to be evaluated in a wider perspective, considering the specific and general performance of a system within and across scales, before and after shocks.

Ecological resilience and morphogenetics are concerned with the evolution of socio-ecological systems and landscapes. The understanding of cyclical change as a pattern of evolutionary processes is another common subject. However, in ecological resilience processes are non-linear and the cycles can be affected by shifts. Shifts introduce an alternative understanding of urban landscapes in terms of different levels of stability co-existing and interacting.

Resilience and an assemblage viewpoint highlight the importance of analysing the situation of an urban landscape not only in terms of aesthetic attributes, historical heritage or social interaction, but also in terms of the probabilities of its adapting to new challenges while continuously evolving. Resilience introduces the importance of designing urban strategies with an emphasis on producing the necessary adjustments that an urban landscape needs in order to survive and persist.

Ecological resilience offers a theoretical framework which can be used to assess change as a way of understanding how a system adapts in order to evolve. Through the analysis and comprehension of change it is possible to assess the adaptive capacity of a system. The analysis of the quality and quantity of these changes is linked with the stability and resilience of a system to face disturbances. From this point of view, a retrospective analysis of the evolution of transformations in a built environment can be utilized to infer the present adaptive capacity of an urban landscape, and it can also be used to create alternative scenarios for the landscape in order for it to confront future hazards.

The analysis of change, persistence, stability and resilience reveals part of the complexity involved in the investigation of urban landscapes (Garcia et al., 2012). As Morin (2001) proposed, complexity presents the challenge of thinking in a complex way in order to embrace concurrently a multidimensional understanding of the phenomena of complex and simple, and singular and general. A complex viewpoint of the identity of a built environment proposes that "*its unity is not uniformity but is coherence and diversity admixed in collision*" (Frazer, 1995, p. 7). The study of the complexity of urban landscapes is a requirement for research and design strategies intended to cope with the complexity that they impose.

The structural and functional diversity of an urban landscape could help to produce and maintain discontinuities that represent opportunities when the system has to face unpredictable disturbances.

3. Criteria for assessing the ecological resilience of urban landscapes

3.1 Introduction

The aim of this chapter is to describe the most important references that inspire and make possible the translation and application of concepts from ecology to the morphology of urban landscapes. The chapter has three elements: methodologies, applications in urban studies, and the generation of an episteme that permits the methodology to be applicable to urban landscapes. The content is arranged in two groups. The first group deals with principles and criteria with which to assess the dynamics of change in urban landscapes. The second group is focused on explaining how to use discontinuities and aggregations to assess resilience in urban landscapes.

According to the theoretical framework of ecological resilience the adaptive capacity of an ecological landscape can be assessed by analysing the geometric (Holling, 1992) and functional (Peterson et al., 1998) characteristics of elements present in the texture of that landscape (see section 2.4). If similar criteria are applied to urban landscapes, it should be possible to quantify changes in the morphology of the built environment as a way of assessing its resilience and stability (Garcia, Vale, & Allan, 2011). The assumption made is that the form, rate and speed of changes in the built environment produce urban landscapes that exhibit a particular structure and stability. The stability state and performance of the urban landscape are linked with the resilience of the system (E. Garcia et al., 2012). Therefore alterations in the stability of an urban landscape can be used to measure resilience in urban landscapes.

The Resilience Alliance (2007a) has developed an integrative methodology with which to assess the resilience of socio-ecological systems. The specific aim of this methodology is the recognition of thresholds and the measuring of changes in relationship with those thresholds. In this chapter the methodology of the Resilience Alliance is supplemented with the analysis and measurement of the relative resilience of systems by using the assessment of discontinuities in order to measure the functional richness, heterogeneity and diversity of a system (C. Allen, Gunderson, & Johnson, 2005). This analysis is important because "distribution of functional diversity within and across scales enables regeneration and renewal to occur following ecological disruption over a wide range of scales" (Peterson et al., 1998, p. 1). What is at stake in the analysis of socio-ecological landscapes is the capacity that urban landscapes, and especially their built environments, have to produce more or fewer opportunities for present and future developments in the same urban landscape.

3.2 Assessing the dynamics of change in analysing the ecological resilience of urban landscapes

3.2.1 Limiting and bounding a system

In order to analyse the evolution of urban landscapes, the Resilience Alliance in their methodology suggest first defining the system that will be analysed and also its context. A system in this case could be the urban landscape of a city, a neighbourhood, or just one block, and the relationship of each one with the whole system. Considering that in resilience thinking (Walker & Salt, 2006) it is essential to be aware of the multiple equilibrium behaviour of a system, the boundaries of the system to be analysed along with its context need to be studied as moving variables in a process of change, or as variables in a process of becoming (Garcia et al., 2012). In the theoretical framework of ecological resilience (Resilience Alliance, 2007a) the limits of a system are defined in relationship to scales of time and space, along with the domains of each subsystem involved in the process of change being analysed (Holling, 1992). The boundary of a system is therefore related with the scale of the issue affecting the system.

In urban landscapes, issues are multiples and they are all linked with multiple scales, a factor that increases the complexity of defining the scale of the issue affecting particular urban processes of change. The boundary of a contextual issue in the built environment of an urban landscape can be approached by analysing the history of its economic, cultural or environmental development, but this will not provide the same quantity and quality of information that can be found in ecological studies, where a system can be bounded and analysed by considering fewer subsystems. It is in this step of trying to bound a system where the important concept of identity and the observation of changes in the identity of an urban landscape can be used to describe the situation of a system. The concept of identity when it is linked with the stability state of an urban landscape can be a parameter for inferring that a system is still keeping the same set of relationship with its context (see section 2.3.2). Therefore the absence of changes in the identity of an urban landscape can be related with the persistence of the same boundary and the relevance of the same issues.

3.2.2 What are the main issues affecting the system?

The resilience theoretical framework suggests analysing the key components of the context of a system, such as the economic, institutional, ecological and social domains (Resilience Alliance, 2007a). The reasons for choosing and creating only these subsystems are not specifically sustained in the methodology of the Resilience Alliance and there has been criticism of this (Hornborg, 2009; Jerneck & Olsson, 2008). However, if the analysis of urban landscapes were done considering the variables proposed in table 3-1, it would still be a very challenging task. The amount of data achieved will be very complex to manage and sometimes it will be hard to find the amount and diversity of information required for different scales and different periods. However, despite these criticisms, the framework provided by the Resilience Alliance is still a good starting point that can be supplemented or changed, depending on the type of analysis to be performed.

	Institutional	Social	Ecological	Economic
The natural resources	Institutions in charge of the preservation or conservation uses of the natural resource analysed.	The 'state' of people (community/society). Community viability is a variable of concern in such an SES, influenced by what is happening in the biophysical part of the system.	Non-marketed ecosystem goods and services. For example, clean water and soil fertility maintenance.	Ecosystem goods and services that are directly used. Economic (commercial crops, timber, tourism, etc.), subsistence recreational, aesthetic, cultural (tradition, ritual), conservation.

 Table 3-1. Possible domains of analysis in ecological resilience (Resiliance Alliance, 2007)

The people	Individuals and organizations that manage and use resources.	Conflicts between and points of agreement between groups.	Values to manage natural resources. Learning and innovation.	Economic status of people. Wealthy/poor. Limitations for lack of financial resources.
Governance	Key policies laws and regulations.	Local norms and taboos.	Organizations that control the resources.	Property rights. Public land, private land, common land or other form of property.

The economic, institutional, social, philosophical, cultural or political components of the context of systems not only produce the situation and boundaries of a system but they are also changing and this affects their rules, demands, viewpoints, and management. The present research assumes that socio-ecological landscapes are created by the interaction of all social and ecological systems. Urban landscapes are one subsystem contained in a socio-ecological landscape. Consequently, it will be possible to state that the main issues affecting the dynamics of change of urban landscapes are all subsystems of a socio-ecological system.

3.2.3 The resilience of what to what

In order to define which subsystem of an urban landscape and which dimension of its context are to be analysed it is important to define "*the resilience of what to what*" (Carpenter et al., 2001) is being analysed; in other words, what variables are going to be compared? This comparison could be made in order to understand the resilience of a system before and after a disturbance or in order to analyse its overall adaptability through a period of time. An example of bounding a system using this approach could be the resilience of the density of a neighbourhood to changes in its land prices.

The idea behind the logic of the resilience of what to what is being analysed is that the adaptive capacity of a system is linked with being adaptable to something else. For this reason the assessment of the resilience of a system has to be carefully attended by limiting its scope in order to clarify the resilience of what to what is being analysed. A resilience analysis will always imply a comparison between a system that is analysed and its context. In urban studies, the analysis of the resilience of what to what can be very broad and susceptible to different interpretations, depending on the focus of analysis chosen by the scholar. For example, what is at stake in the description of the work of Conzen (see section 2.3.5) can be formulated as the resilience capacity of the built environment of urban landscapes to fluctuations of cultural context, in space and time, and more specifically the resilience of the town plan elements of building footprints, plots, and streets to fluctuations in socio-economic factors.

3.2.4 Scales

In ecological resilience, the concept of scale is a central topic that is linked with the way of bounding a system and defining which domains and issues should be considered at which level of resolution (Resiliance Alliance, 2007a). "*A domain of scale is the spatial extent of a structure or process of interest and its temporal frequency*" (C. Allen & Holling, 2010, p. 1). By framing key processes from a group of previously selected domains (such as ecology, social, institutional) and questioning the resilience of what to what is being analysed, it is possible to narrow down the research regarding urban processes of interest and urban structures using a resilience approach. However one challenge that the ecological concept of scale presents when trying to apply it in the study of urban landscapes is the understanding of the frequency of change of each urban process or structure. This knowledge involves research into a deeper understanding of scale and an investigation about the rate of change in time and space of every urban process or structure and its extent and resolution in terms of space.

The concept of scale has a different meaning and implications depending on the field of research that uses it. Scales are essential in urban investigations that aim to analyse the relationship between patterns, like urban types, tissues or frames, and processes, for example processes of change in the built environment. Scale is defined in this thesis as an analytical dimension (spatial, temporal) that is required to assess or to investigate a phenomenon. It is possible to distinguish three primary dimensions of scale: space, time, and organizational level. The extent, size of the dimension analysed and its grain, the unity of the measurement, are important concepts that can be used as tools to circumscribe and define the scale of an urban phenomenon. Finally, it is possible to conceive that different extents in space and time are linked at different levels, forming different types of hierarchies (Gibson, Ostrom, & Ahn, 2000; Wu & Li, 2006). All these concepts can help the analysis to be more accurate when scale framing, and using concepts from morphogentics (see section 2.2.3) in the analysis of the resilience of urban landscapes.

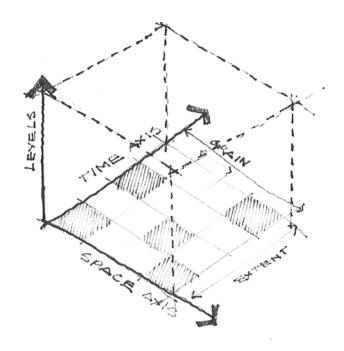


Figure 3-1. Scale dimensions based on (Gibson et al., 2000; Wu & Li, 2006)

3.2.4.1 Scale mismatches and scale framing

The concept of scale in urban systems presents a challenge due to its complexity. From a resilience viewpoint, socio-ecological landscapes are the assemblage of multiple processes in social and ecological dimensions. Socioecological systems have different frequencies of change, at different scales, and dynamics that produce different boundaries in relationship with the discrete scales in the system. The overlap between different processes and boundaries at discrete scales produces mismatches that complicate the definition of the boundaries of each subsystem (Gibson et al., 2000). For example, the definition of the geo-political boundaries for a territory may not match the conservation area set up to protect certain ecological processes. In order to try to transcend these mismatches in the analysis of socio-ecological landscapes, the concept of scale framing can be used. Scale framing is a theoretical approach that highlights one aspect of a reality in order to circumscribe a problematic that needs to be analyzed (van Lieshout M., Dewulf, & Aarts, 2011). The concept of scale becomes broader allowing linkage between different processes and subsystems, like identity frames or power frames. Hence, scales prove to be a theoretical tool for analysing complex systems and increasing the understanding of how they work and are organized. In the study of the resilience of urban landscapes, all concepts related with scales and scale framing have to be developed at a different level in order to assemble interdisciplinary fields, at different levels, while establishing connections with the processes of change in the built environment occurring at discrete extents and grains in the urban landscape. But, which criteria can be used to frame the scale of processes occurring in urban landscapes?

3.2.4.2 Multiple scales

The work of Braudel (1969, 1977, 1980) is important in finding a set of principles to frame events and processes at different scales. The ideas proposed by the French historian (Braudel, 1980, p. 4) will be used as a reference to define temporal frequencies in urban landscapes. Particularly, this will help in defining the scales of analysis suitable for analysing social and ecological systems; what should be the content and extent of every scale and what events and processes have to be placed at which scales in socio-ecological systems?

The global understanding of history developed by the French scholar produced a collision between social sciences and history, generating a social history of nature, or a history of the appropriation of nature by different societies. This work was a significant contribution to the theoretical foundations of environmental history (Padua, 2010). Braudel argues in favour of recognizing and understanding the evolution of social systems in relationship with ecological systems (Hexter, 1979). The resilience concept of socio-ecological systems is based on a similar principle which links socio and ecological systems (see section 1.4).

The methodology that Braudel used to construct a global vision of history relies on a multi-scale analysis of the history of a territory. The milestone of his work is the emphasis on the history of a problem as the unit of analysis instead of a region. The application of the theoretical framework of ecological resilience to the analysis of urban landscapes also deals with the issue of linking problems and regions coherently. This approach can be linked with the idea of scale framing already mentioned.

Braudel proposed three scales based on the duration of historical processes: the longue (long), moyenne (intermediate), and court (short) duree. These speeds are related with three conceptions of time: a "geographical time, a social time, and an individual time" (Braudel, 1980, p. 4). The geographical time tells the history of man and the relationships with his environment. It is a history of slow changes that take place in cycles, where structures are produced as well as trends that exceed the control of human beings, for example, long-term variants in climate. In urban studies this scale could be linked with slow processes of big transformations at the level of landscapes and regions. Its measurement could be expressed in thousands of years and thousands of kilometres. The social time is the history of *social realities*, which is constituted by "all major forms of collective life" (Braudel, 1980, p. 11) like economies, societies, and demographic changes that follow cycles of ten, twenty-five, or at the limit fifty years. This scale can be approached in urban studies by measuring its processes in decades or hundreds of years (Wegener et al., 1986). Finally, the history of events is the history of individuals. This history is characterized by fast and powerful changes, and is a micro-history. This history could be measured in days, weeks, or years (Wegener et al., 1986).

Braudel defines three scales of time that represent three histories that are independent but interconnected at the same time, as in the concept of Panarchy in ecological resilience or in the concept of constitutive hierarchy. By using the concept of duree he additionally sketches boundaries for problems based on the frequency of change of those processes. The next challenge is to link these discontinuities and multiplicities in time with correlative processes in space, and particularly in the built environment of urban landscapes, as proposed in Panarchy.

3.2.5 Timeline: assessing change in urban landscapes by identifying cycles and phases

A plausible step in assessing the complexity of city systems and urban systems is found in the analysis of their evolutionary processes. Analysis of the evolution of urban systems permits the mapping of the history of their adaptations. The potential contribution of this approach is an increased chance their management will be more successful leading to the improvement of cities.

A timeline should provide information about events and critical breakpoints that have shocked a system as well as information about the possible reasons that triggered the change. Radical changes, collapses, and crises, can be symptoms of a break in the capacity of a system to withstand internal or external pressures. A timeline will help in describing the performance and evolution of a system and in defining parameters for setting the thresholds of systems, which means stating how much is too much for that system. Therefore the resilience analysis of the evolution of urban landscapes through timelines can reveal how social priorities and ecological systems vary through time. This method allows the discovery of which processes and elements were driving and defining the character of a system through time.

3.2.5.1 Method for producing timelines

In order to generate a timeline for understanding resilience dynamics it is first important to identify the scale of analysis and domains, as explained previously. The theoretical framework of ecological resilience suggests analysing key variables at 3 to 5 different scales of time and space (Resilience Alliance, 2007a; Holling, 1992). The first step to producing a timeline consists of creating parallel lines, where each one is documenting the evolution of discrete domains (economic, ecological) at different scales. The second step consists of placing along each timeline major events that have perturbed the system. It is recommended the temptation of trying to fill in all the boxes is avoided (Resilience Alliance, 2007a). The idea is just to outline the break points and try to make connections between domains and scales. The third step consists of characterizing periods before and after a disturbance, for example by conceptualizing every era with different names. The investigation requires listing possible causes that have made a system vulnerable to a triggering event. The last step consists of looking for possible patterns of change, like the frequency of disturbances, scales and domain in which they have happened with more intensity, and diffusion of their impacts, which means identifying the direction of the responses, for example bottom up or top down. The output of this examination should be the definition of the critical domains of the system and its patterns within and across scales.

3.2.5.2 Understanding disturbance and collapse in cyclical change

In ecological resilience the different phases of an adaptive cycle (see section 2.3.4) are described in relationship to fluctuations observed in the capital and connectivity of a system. Variations in capital and connectivity are related with the stability and resilience of the system. The breaking point of the metaphor is the release phase, which represents the collapse of the variables analysed and the starting point of a new loop in the system. Therefore the definition of shocks, crises, collapse or releases becomes important for situating a system in its cycle of adaptations and also to understanding either alterations or shifts to a different stability state. In the methodology of the Resilience Alliance (2007a), a disturbance is defined as any alteration to a system. Natural disasters, economic crises, and revolutions are all examples of disturbances. However the concept of collapse is not clearly defined.

In order to assess cycles of change in urban processes one challenge is to define and differentiate when a system is experiencing a disturbance and when it has collapsed. For these purposes the work of Tainter (1988) will be used. Also a historian, Tainter developed a general explanation of collapse based on his analysis of the downfall of complex societies. He defines the collapse of a society as a socio-political matter with an impact on multiple subsystems. A collapse is *"a rapid, significant loss of an established level of sociopolitical complexity"* (Tainter, 1988, p. 4). In this definition complexity implies not only the quantity of variables, function and interactions observed in a system but also their interrelationships with two qualities: inequality and heterogeneity. Inequality is associated with the difference in levels of a social structure where the lowest levels have less access to resources. Heterogeneity is linked with the variety and

diversity in a society. Tainter describes the level of complexity of a society using as an indicator the level of complexity that the political state of a society has achieved. Even though it would be interesting to investigate if complex states produce more complex urban landscapes this is not the goal of this research. However it could be possible to use the concept of changes in the complexity of a system, for example change in the complexity of the built environment of urban landscapes, to discover thresholds and to measure the resilience of a system in relationship to those limits. Making a parallel with the definition of Tainter, a socio-ecological system might absorb as many unpredictable changes as its socio-political structure might tolerate.

Tainter, by using the concept of heterogeneity and inequity, explains that a society evolves from being less complex to being more complex when its growth produces a differentiation and specialization of its parts while multiplying its levels of control, with the consequence of providing less equal access to resources. The hypothesis of Tainter is that societies in order to keep on growing become very efficient in the development of problem solving systems that can absorb the deficit that they produce in their processes of growth. A collapse emerges when the difference between the cost of becoming more complex and the cost of maintaining the complexity already acquired arrives at a breaking point where negative marginal returns cannot be handled (Fig. 3-2). The result is the loss of complexity of the system. This impacts through the atomization of the structure, provoking less centralized control, diminishing specialization, less density, and fragmentation.

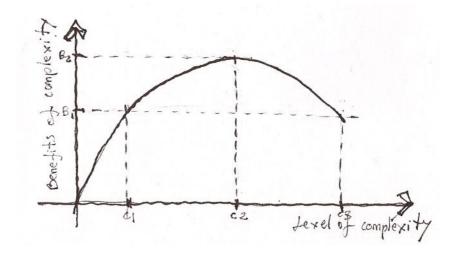


Figure 3-2. Diagram of the cost-benefits of complexity (Tainter, 2000). B1, B2, C1, C2, C3 are only references to imply different amounts of complexity and benefits of that complexity.

It is possible to link the definition of collapse from Tainter with the processes of change in the resilience theory. The dynamics of change proposed in the metaphor of the adaptive cycle states that the pass from an exploitation phase to a conservation phase, where a system becomes more complex before it collapses, is characterized by specialization, more control of resource consumption and the distribution of capital between fewer groups. This reflects the way that complex societies, or ecosystems after the release phase or collapse, reduce complexity leading to the capital being redistributed more evenly.

In the analysis of socio-ecological systems it would be possible to say that Tainter's analysis could be useful for identifying when a system has collapsed and differentiating this point from a disturbance. The challenge then is to find a way to describe and quantify the degrees of complexity in a system, particularly in the built environment of urban landscapes, the object of study of this thesis. Another important criterion to be developed is the assessment of how fast a change means a rapid loss, and how much is a significant diminishment in any level of complexity. Measuring fluctuations of capital can assess disturbances and collapses. In any case, the dynamics of change of elements of an urban system in space and time will be linked with the capacity of a complex system to selforganize in such a way that the levels of complexity achieved do not change dramatically after disturbances, particularly within its diversity and heterogeneity.

3.2.6 Constructing and evaluating an urban Panarchy

Urban designers, managers and researchers deal with great level of complexity when trying to assess the dynamics of change in urban landscapes due to the multiple scales involved in all urban processes (Gibson et al., 2000). The way in which every scale of the system works and how larger scales affect smaller scales and vice versa, becomes a compulsory step in the analysis of the built environment of urban landscapes. In ecosystems, larger processes are slow and smaller ones are fast. However in an urban system this rationality is challenged. Small elements of an urban system, like houses, that affect small quantities of territory can change less frequently than governments or other forms of management, that affect larger extents at different scales through their top down decisions.

The construction of a hypothetical urban Panarchy is carried out by applying the analysis and diagnosis described in the methodology. The benefit of building a Panarchy is the understanding of the overall performance of a system. This performance can be assessed by comparing change in the structure and function of an urban landscape at different scales in space and time. The evaluation of the behaviour of the Panarchy of an urban landscape can basically produce two scenarios. In the first, due to its resilience capacity, the system is adapting by buffering changes within and across scales; in the second, the resilience capacity of the system to buffer disturbances within and across scales has been exceeded, therefore the system has collapsed and it is starting a new phase in a different stability state (B. Walker & Meyers, 2004). The diagram presented in Fig. 3-3 is a synthesis of these concepts.



Figure 3-3. A hypothetical urban Panarchy

3.2.6.1 From urban morphology to an urban Panarchy

Cities are very conservative structures that do not change much at the large scale but that do exhibit a diversity of speed of change at smaller scales. The resilience approach to these results is that the dynamism of a multi-scale structure along with the difference in speed of change is precisely what gives resilience and stability to the urban landscape at bigger scales (Bessey, 2002; Garmestani et al., 2005). One important difference between urban models that are more or less dynamic (Wegener et al., 1986) and the knowledge developed in this research is that in a resilience approach, processes, people, physical structure, and nature are linked and assembled in one socio-ecological landscape and are part of one urban Panarchy (see section 2.3.6). In this way, a Braudelian approach seems to be important because it links societies and nature in one analysis. The construction of an urban Panarchy can contribute to the production of a theoretical framework to be used or developed in future urban models.

In urban morphology the complexity of the morphology of the built environment is crucial and helpful for designers, however the concept of scale is still fuzzy. The morphogenetics of Conzen (see section 2.2.3) in contradiction with the work of Braudel, used geographical units that arose from the town plan as different levels of resolution and grain and that helped in analysing change in urban landscapes. The concept of scale, not generally discussed by Conzen, could be linked with the level of resolution at which change in space and time of elements is presented in the urban landscape. However, it can also be understood as the extent of the structures created by these elements when they are grouped at different levels. In one way or another, the result is that the urban landscape is a whole constituted by an arrangement of parts (Kropf, 1993) with three dimensions, namely town plan, land utilization and building fabric. Conzen's focus is on the analysis of town plans, where he identified three key elements: street, plots and block plan. Each element when clustered produces a subsystem called a complex, namely street systems, plot patterns, and building patterns. Combinations of these complexes of elements produce plan-units, aggregations of plan units, and generate plan-divisions. The assembled town plan, land utilization, and building fabric patterns generate a morphogenetic region. The cross scale relationships between all units of the urban landscape, at each historical socio-economic stage of development, produce morphological periods (Kropf, 1993).

A reasonable criticism of Conzen from a resilience approach could be that these morphological periods are linked with traditional essentialist viewpoints of identity, linear ways of understanding change, and the prominence of socioeconomic factors as drivers of change but without considering the noncoherences, produced by bottom-up forces and self-organization processes. These also produce changes not necessarily aligned with historical periods and are therefore difficult to put boundaries around. From a resilient assemblage approach, and using the elements defined by Conzen, it is possible to propose that the social and ecological processes happening in streets, blocks, and buildings create links within and across scales in time and space that establish more or less temporary structures. The difference between both philosophical lines is the way of understanding and characterizing urban landscapes. In morphogenetics, urban landscapes are a collection of final forms, for example morphological periods are final forms resulting from a particular historical period. In a resilient assemblage strategic view urban landscapes are complex systems, an assemblage of micro and macro structures where connections and elements are still in constant evolution. A Conzenian vision characterizes final forms in urban landscapes while a resilient assemblage approach temporarily assesses structures of the urban landscape as diagrams.

A resilience approach to the analysis of urban landscapes should consider an intersection between Braudel and Conzen in order to rethink scales in a sufficiently complex way to allow the integration of the social and ecological realms, towards an understanding of urban landscapes as socio-ecological landscapes. Conzen proposed that town plan, buildings, and land use have different resistances to change; for example, land use and building fabric are more susceptible to change than town plans, and street systems are more resistant to change than plots and building plans. These sets of relationships between form and time permit the inference of rates of change that are very important when proposing complexes of elements as spatio-temporal scales of the landscape. By scale framing social and ecological processes within the extent of the plots, streets, and building footprint patterns it will be possible to associate socio-ecological processes with different spatio-temporal scales, simplifying the process of choosing the right scale or morphological period for analysis. This idea was not explicit in the work of Conzen; however, it could be a very useful complement to his work by introducing the scale factor independently of the extent and dominion of morphological regions.

In an urban Panarchy, this hierarchy of discrete resistances to change can be related with different spatio-temporal scales in relationship to slow and fast variables. In this case, streets are slow variables that contribute to the stability of the landscape while land use is a fast variable that leaves room for the introduction of opportunities.

3.3 Assessing resilience through the analysis of discontinuities: the urban Panarchy

The identification and characterization of phases, disturbances and collapse are essentials steps in assessing adaptive cycles and therefore in having a better understanding of the dynamics of change of the system. The next step is to analyse what is changing or has changed in the structure of a system, at precise scales, before and after a disturbance. This kind of analysis will give more information about the relative resilience of the urban system. In order to do this it is useful to describe the stability of the system before and after a shock.

Assuming that ecosystems are structured in a Panarchy, driven by a few sets of processes working at different scales and producing discontinuities in structures and landscapes, the persistence or change of these discontinuities will reveal changes in the structure of the system. In this case discontinuities are expressed in scale breaks that constitute the different levels of the Panarchy and also in the internal constitution of every scale. If the structure of an urban landscape is characterized by different levels, namely, building footprints, blocks, plots and streets and after a disturbance streets disappear, the structure of the system will experience a loss of one level in the structure of its urban Panarchy, lessening its complexity and changing its organization. In the example the loss of one discontinuity in the scale organization implies that the system could not buffer the loss of streets, therefore, it is possible to infer that the resilience capacity of the built environment was surpassed, due to the lack of selforganization or richness, ending in a shift in the identity of the urban landscape. Consequently, the generation and persistence of discontinuities and aggregations determine the way in which a system is self-organized (C. Allen et al., 2005). The self-organizing dynamics of complex systems will try to support the location of discontinuities even though some elements of the subsystems disappear. The Panarchy will always try to maintain the system in a fairly stable situation unless the resilience of the system is exceeded. For all these reasons, the persistence of discontinuities might be a characteristic of the resilience of complex systems. A resilient system would be the one that can maintain a pattern of functions even though some elements of the systems change or get lost (C. Allen et al., 2005). Ecological studies confirm the importance of functional richness within and across scales for the resilience of a system. These studies show that resilience was higher in ecosystems that maintain redundancy of function within and across scales (Peterson et al., 1998). Even though the observations were made in ecosystems, the conclusions that they obtained should be applicable to the structures of all complex adaptive systems, like cities (P. Allen, 1997).

According to all these facts, the conclusion is that measurement of resilience can be assessed by analysing change in the organization of discontinuities and aggregations. Changes in patterns of aggregations and discontinuities, within and across scales, can be used to quantify the resilience of complex adaptive systems (C. Allen et al., 2005), like the built environment of urban landscapes.

3.4 The use of Panarchy and discontinuities in urban studies

An interesting example of the importance of using discontinuities for measuring functional richness in order to understand resilience was performed in economics. The research makes a parallel between the functional richness of species in ecosystems with the necessity for achieving functional richness across firms in urban systems. The research observed how employment volatility in industries varies in relationship to their functional richness. Results found that measurements of the volatility of employment in firms can be used to assess the resilience capacity of an economic system. Industries with a diverse functional richness across and within scales experience lower rates of turnover and more resilience than industries with less functional richness (Garmestani, C. Allen, Mittelstaedt, Stow, & Ward, 2006).

Bessey (2002) proposes that there are similarities between landscapes produced by ecosystems and those produced by urban systems. Ecological and urban landscapes show spatial patterns hierarchically structured and scale dependent. He suggests that these patterns reveal structural resilience because they can keep their structure and function after disturbances, due to buffering dynamics across scales (Bessey, 2002). Bessey affirms that urban systems present temporal and spatial discontinuities in their configurations, for example, in discrete city growth rates and clustering in city size distribution. The analysis of regional urban systems in the USA shows that the frequency of growth rates at a city scale does not define the path of growth at a national or regional level. At big scales, regional urban systems tend to concentrate population in larger cities. Meanwhile, at smaller scales the evolution of cities happens in intervals of stability and instability which are entrained by regional and national processes (Bessey, 2002). This is basically the same dynamic of change already explained in the adaptive cycles and Panarchy. The whole urban system has the capacity to absorb some degree of disturbances originating at lower scales, while remaining fairly stable at overall scales (Bessey, 2002).

The hypothesis and results obtained by Bessey were used in other investigations related to the use of discontinuities and time series analysis in order to determine city size distributions (Garmestani et al., 2005; Garmestani et al., 2008). These studies were also based on the idea that urban systems are discontinuous and hierarchically structured as explained in the proposal of an urban Panarchy. The result is that the production of discontinuities between city size classes is a demonstration of the existence of discrete scales. The structuring processes at each scale entrain city size classes with similar characteristics into groups or aggregations. These city size classes produce different scales in the systems, an observation which proves that the urban system can hold multiple stability states (Garmestani et al., 2008). The results suggest that cities operate like complex adaptive systems and that resilience theory might be a useful tool in the study of urban systems. All these studies were done analysing urban systems at city scales but there is still a gap in the translation of ecological resilience to its application in the scale where changes in the built environment matter. For architects, urban and landscape designers the information is useful but is still far from the scale of analysis related with everyday life and the scale where transformations in the built environment are critical.

Considering the previous research discussed here it should be possible to propose that the stability state of an urban landscape can be assessed by observing changes in its structure and functional diversity using discontinuities and aggregations as objects of analysis. From this point of view, the structure of an urban landscape can be abstracted into a set of aggregations and discontinuities.

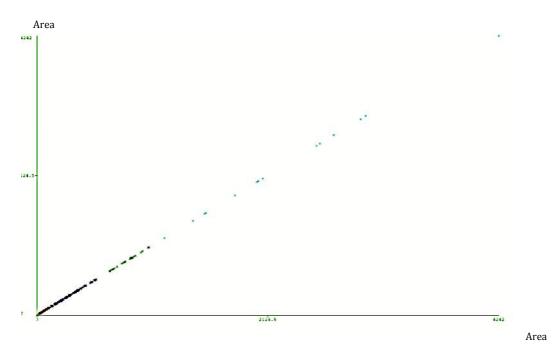
3.5 Finding aggregations and discontinuities in urban landscapes

In an urban morphological approach, aggregations can be found in the different levels that the morphology of the built environment contains, for example the different scales constituted by buildings plans, plots, and streets. The objective of aggregating values is to find the quantity of groups of information with similar sizes existing in a database. The idea is to simplify the management of large databases by reducing the whole information into a few groups, for example groups of big, medium and small elements. Detailed mathematical explanations are not the purpose of this thesis considering that there is a variety of applications that deal with calculations to perform multivariate analysis, cluster analysis, and data mining processes, like Weka (Hall et al., 2009; Witten, Frank, & Hall, 2011), Orange (Curk et al., 2005), or R (Hornik, 2012). However a description of the criteria chosen to make the cluster analysis in this thesis is described below.

Cluster analyses in this thesis were performed in chapters 5 and 6 using Weka (Waikato Environment for Knowledge Analysis) version 3.7.7. Calculations were done using the "explorer" interface because it was the more appropriate for non-experts. The data introduced was imported from corresponding excel tables. The data was collected from digitisations of buildings footprints, plots, blocks and streets done in QGIS and ArcGIS, as explained in the data collection section (see section 1.12). The data introduced were areas (m²) of building footprints, plots and blocks. The data was imported to Weka from the excel tables using a csv format (comma separated values). Each table or data set contains all features corresponding to building footprints, plots or blocks areas in a certain year. Then the data is processed by using a selected clusterer method. Clusterer options were tested until results satisfactory for the purpose of the research were achieved.

Number of clusters selected by cross validation: 4

Attribute	Cluster 0 (0.55)	1 (0.24)	2 (0.13)	3 (0.09)
areabf2008				
mean	281.8094	76.4951	814.0806	2091.7394
std. dev.	119.1868	36.6088	125.9943	875.0422


Time taken to build model (full training data) : 0.62 seconds === Model and evaluation on training set === Clustered Instances 0 99 (53%)

1	49	(26%)
2	24	(13%)
3	15	(8%)

Log likelihood: -7.01913

Figure 3-4. Typical cluster analysis report

In figure 3-4 the cluster analysis was done using the data of all the building footprints areas from 2008 in the east side of Auckland CBD. Calculations were done using the training set option in Weka with the simple EM (expected maximization) class EM -I 100 -N -1 -M 1.0E-6 -S 100, where maximum alterations equal 100, min. standard deviation equals 1.0E-6, the number of cluster equals -1, and the seed equals 100. Then clusterer outputs were collected and visualized. In figure 3-5 the visualization of the example in figure 3-4 is presented. Every cluster found has a different colour that identifies the elements belonging to its cluster class.

Figure 3-5. Visualization of cluster analysis

The processed data can be exported from Weka to excel. The final output is a table with the data originally introduced but categorized and divided into clusters. Every area analyzed has one identity and belongs to one cluster (cluster 1, 2, 3, etc.). This means that the area of every feature (BL, PL, BF) is linked to the cluster number to which it belongs (cluster 1, 2, 3, etc.). Examples of the final results after cluster analysis has been performed can be seen in appendices 11 to 21

3.6 The use of aggregations and discontinuities to assess resilience in urban landscapes

In Fig. 3-6 two systems are analysed in terms of the organization of the structure of each. If the same example is used in the analysis of the built environment it will possible to imagine that the constitution of building footprints, for example, is being analysed. A group of buildings from two different places was studied. Results show different structural patterns. The y-axis represents rank size and the x-axis size of element. In the left chart in Fig. 3-4 the system shows only four aggregations (groups of dots) while in the right chart the system shows six aggregations. The comparison denotes that the structure of the second system is more complex and therefore it has a higher resilience capacity than the first system (C. Allen et al., 2005).

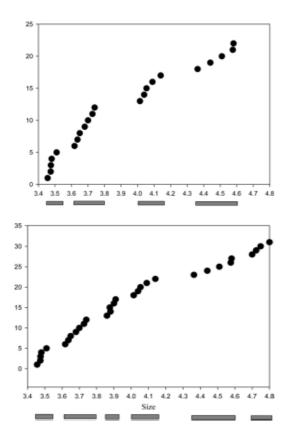


Figure 3-6. Distributions of aggregations and discontinuities in two hypothetical systems

Continuing with the example, the structure of a plot, block, or street at a precise time and scale will be linked with the number of aggregations found at each level. The number of aggregations found in the structure of an urban landscape will be connected with its richness. Diversity and heterogeneity can be calculated by using different indices for their analysis. According to ecological resilience richer systems tend to be more complex and therefore they have more chances to deal with unpredictable change while remaining stable. The final purpose is to characterize the richness, diversity and heterogeneity of a system by analysing the distribution of its information within and across scales.

The analysis of the discontinuities and aggregations in the internal structure of a system can be supplemented with the analysis of the function that elements play within each aggregation and across levels. Functional richness can be measured within and across scales (C. Allen et al., 2005). Within scales, it is possible to evaluate the richness (quantity of functional groups), evenness and

diversity of each aggregation. The results can be averaged to compare the dynamics between aggregations. Across scales, the functional redundancy defines a parameter for comparing dynamics between scales (C. Allen et al., 2005). Using this framework it might be possible to analyse changes in the resilience of complex systems over a period of time, or between two different systems. For example one that has collapsed can be compared with another system that has overcome similar disturbances. In the built environment this analysis can be very useful, however it demands having information on the function of every element analysed as well as a record of changes in the evolution of those functions.

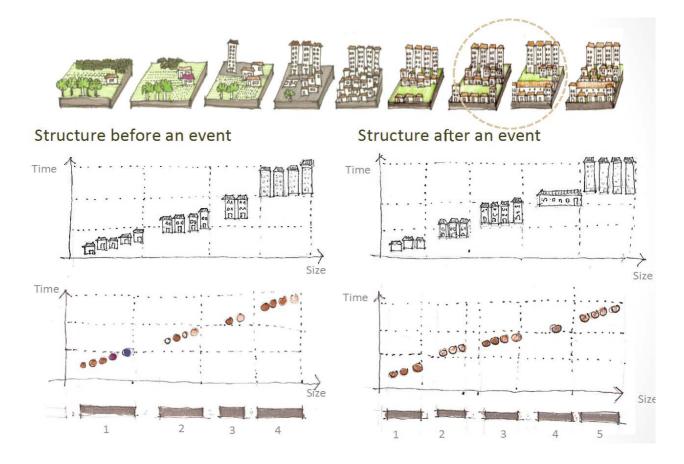


Figure 3-7. Example of the use of discontinuities to assess resilience

A hypothetical example is illustrated (Fig. 3-7) in order to explain the ideas around the use of discontinuities and the measurement of functional richness, diversity, evenness and heterogeneity in the built environment of an urban landscape. In the example, the scale of analysis can be framed at a block

level. The timeline represents the evolution of one block. The analysis aims to understand the resilience capacity of the urban landscape (block level of resolution) to changes in the density of the built environment. The relative resilience is measured at one particular point, before and after a disturbance, for example the disappearance of houses due to a fire. Charts in the middle of the picture represent the clustering process where buildings are grouped considering how type and density have influenced change in time and rank size. Before the event the urban landscape had four aggregations of building types. After the disturbance, the urban landscape has five groups of building type aggregations. The two charts at the bottom of Fig. 3-5, with coloured spheres show the instance before and after a crisis and exhibit how the distribution of the functional richness has changed between periods. In the stage before the disturbance the structure of the system had four different functions, represented as beige, orange, red, and blue, changing to only two after the event. These results show that the disturbance generated opportunities for new types to be introduced in the urban landscape; therefore it encouraged opportunities for novelties to appear and make the system more complex. However, the functional richness and diversity within and across aggregations has diminished after the fire, implying that the functional heterogeneity of the systems was critically reduced. In conclusion it is possible to infer from the analysis that the urban landscape will show a higher resilience capacity to buffer changes in its density than changes in its functional configuration.

The following three chapters draw together these theoretical discussions by applying the various approaches to selected case study urban areas.

4. Assessing resilience and the dynamics of change in the urban landscape of the Auckland CBD

4.1. Introduction

In order to have an overview of the evolutionary changes produced in the built environment of an urban landscape, the development of a timeline is a critical step for characterizing the behaviour of a system at different scales of space and time (see section 3.2.5). This chapter is particularly focused on testing the implementation of a method in which timelines are merged with town-plan analysis, and the observation of the dynamics of change of urban landscapes. Observations will contribute to finding evidence of how to apply the theoretical background of ecological resilience to the analysis of urban landscapes.

The aim of the chapter is to observe if the elements of the urban landscape tend to create a dynamic structure as described in Panarchy. If an urban landscape can be understood as a Panarchy, its elements should be organized in a structure that shows scale breaks in relationship with the different rates of change and size of its elements. Every scale of the Panarchy should exhibit adaptive cycles that can be related with other scales but that are not necessarily dependent on these. In the structure, smaller elements should tend to be grouped at smaller scales and they should tend to change more and faster than bigger elements that should be grouped at bigger scales. If the behaviour described is observed, it can contribute to sustaining the hypothesis that the resilience of urban landscapes can be observed through the analysis of the morphology of the built environment and also that the method proposed indicates a way of applying the ecological resilience theoretical framework to the analysis of the resilience of urban landscapes.

The study can provide important information about the understanding of the historical sequence in complex adaptive systems like socio-ecological landscapes (see section 2.2.1). Furthermore, at the same time the aim to see if it is possible to highlight events and disturbances in order to investigate patterns of changes, discriminate periods, and classify internal crisis and events. The first part of the chapter is a qualitative analysis that uses timelines as a method. The timeline is a reference for comparing the evolution of the built environment with external disturbances that have been originated in the context. The second part of the chapter is a quantitative assessment of the timelines that describes phases in the evolution of the built environment by quantifying change at different periods. The outcome is to try to observe if the built environment of the urban landscape can be analysed as an urban Panarchy in space and time. The final aim of the study is to find more information about the dynamics of change of urban landscapes and to test the potential of the resilience theory to be applicable to the analysis of urban landscapes.

4.2. About the case study

With the aim of making a bridge between the morphological and ecological viewpoints the present study developed a methodology and methods for making a historical qualitative and quantitative analysis of the urban landscape of the east side of Auckland CBD. In this chapter the case study is used only to test the theoretical background developed. The subject of analysis can be any city in the world, and without it exhibiting any particularity. The fact that Auckland was used as a case study represents an excuse to create open debate in New Zealand about urban resilience. The east section of Auckland is analysed because the place contains a palimpsest of different historical periods (from the origins of the city until today), is still part of the CBD of the city, contains a variety of elements of the urban landscape, and the scale and amount of information presented in the urban landscape of the sector is manageable for analysis using the approach developed.

4.3. Qualitative analysis using timelines

The theoretical foundations for making a timeline (see section 3.2.5) are based in studies done in morphology (Slater, 1990; Whitehand, 2007), in ecological resilience (Resilience Alliance, 2007a), and that are also sustained in a philosophical approach (De Landa, 2006). The methodology mixes a multiple scale approach (see section 3.2.6) and the analysis of cyclical change derived from ecological resilience with the measurement of transformations in built environments from morphogenetics. The method consists of overlapping general historical periods from the available sources and inferred breakpoints or shifts of state.

In morphogenetics, the investigations have shown that the morphogenesis of the city is strongly linked with economic and social forces that become drivers of the urban landscape, and that these define phases of change. In this approach phases are inferred from the external and contextual forces that transform the urban landscape (Conzen, 1969; Slater, 1990). The first section of the qualitative analysis was done following similar criteria. Nevertheless, in ecological resilience phases in the process of adaption of a system are defined by analysing disturbances and shifts of state at different scales (Folke et al., 2004) and domains in time and space (Resilience Alliance, 2007a; Redman & Kinzig, 2003). The history of a system is told as an analysis of the performance and behaviour of particular issues in the face of change. In consequence, phases of change in the situation of a system are deduced as a synthesis of the interplay between internal and external forces. The definition of domains, drivers of change, and scales becomes key information because the analysis of their behaviours is linked with future changes in the system (see section 3.2.1). The second part of the qualitative observations is focused on this approach having the urban landscape of Auckland as the focal system and different domains as its context.

The method consists of collecting and grouping different historical narratives from discrete viewpoints. The idea is to describe "grosso modo" the most relevant event and processes that occurred in the context of the urban system and also in the morphology of the urban landscape. In the timeline, events are highlights in a timeline that by themselves establish breaking points (black dots in fig 4-2). Processes are a set of actions and tendencies that develop over longer periods of time. Following the ecological resilience theoretical framework, the main periods in economics, society and politics are included as a reference. Events and processes were included considering the possible importance of each for the general history of the system or for its impact on the transformation of the urban landscape at different scales. The last condition is very subjective because some processes and events are easier to track and to

relate than others. The intention was not to link all events and processes but to build a 'cloud' with them, where new connections can be discovered.

The aim is to produce a panorama of the different phases in the evolution of the identity of urban landscapes as resilient assemblages constituted by multiple scales of space and time (see section 2.3) that work in a complex and non-linear way. This analysis can provide evidence that the built environment of urban landscapes produces patterns and interrelationship that are non-linear.

4.3.1 Timeline at the scale of New Zealand

It is difficult to find consensus in ways of dividing the history of New Zealand because every author implements a particular approach and criteria with which to characterize historical periods, and sometime these are not very well defined. However, it is possible to find similarities in the quantity and number of periods found, and consequently these have formed the criteria used in this section. The literature reviewed (Hodgson, 1990; King, 2003; McLauchlan, 2005; Oliver, 1981) that deals with the history of New Zealand tends to settle, generally, on between four and six named periods.

The first period, before European arrival (until 1840), is usually dedicated to analysis of the Polynesian culture and the first settlement of New Zealand before the European arrival (McLauchlan, 2005). The second period (1841-1900) deals with land wars and the beginning of a colonial economy (McLauchlan, 2005). The birth of a colonial economy (Hodgson, 1990) characterizes the end of this period of growth and violence (Oliver, 1981). The third period (1901-1952) usually deals with the "transition" (Oliver, 1981) from the colonial to the modern New Zealand. It includes the world wars, depressions, and political changes until the end of the Second World War. The third period (1953-2011) is focused on the development and globalization of New Zealand from the Second World War up to the present (Oliver, 1981). This period can be subdivided in two phases: before and after the 1970s. Before the 1970s, the country was described as experiencing a period of consolidation and also prosperity (McLauchlan, 2005) after the difficult times of the wars and depression. After the 1970s, the country is dealing with its insertion into a globalized world.

4.3.2 Timeline at the scale of Auckland

The bibliography that deals with the history of Auckland is neither diverse nor extensive. Bush (Bush & Council., 1971; McLauchlan, 2008) divides the history of Auckland into five periods:

1) The government of Auckland before 1871,

2) Establishment of the pattern of council activity (1871-1918).

3) The modernizing city (1919-1945).

4) Polis into metropolis (1945-1971).

5) The first century surveyed (1971).

In 1998, Bush in a condensed summary included two new periods:

6) Progressing towards abolition (1971-1989).

7) Write large: the 'new' City Council from (1990-1998).

However the criteria that define each period are not clearly stated.

Nonetheless, the socio-economic definition of historical phases can differ from the characterization of the different stages in the evolution of Auckland from an urban approach. As explained in section 2.3, another possible way of defining the phases of evolution in an urban landscape system could be achieved by defining changes in the identity of a place. From this point of view, the definition of the identity of an urban landscape can be used as a metaphor through which to comprehend critical changes and to delimitate phases in the adaptive cycle of a socio-ecological system. The following characterization was done based in a report (Section, 1969) and adapted using the viewpoints discussed in chapters 2 and 3. Periods were renamed in terms of adaptive cycle phases.

Exploitation (1840-1850)

The first settlement of Auckland was shaped by social and ecological factors as well as top-down and bottom-up decisional systems that created a hybrid image of the city. The general character of Auckland in this first period was "*scruffy*" (Section, 1969, p. 15). Its inhabitants were focused on surviving and subsisting. Consequently, the buildings were precarious, being made of timber and surrounded by ferns. Both the economy and survival depended on the food that the Maori supplied by canoe. Shortland Crescent was the most important

street. It linked the port with Britomart Point, the hill where the few government and institutional buildings were settled (now Emily Place). Here there was the main church, St Pauls, which was the most emblematic building of the landscape and also Fort Britomart, Government House and the Albert Barracks. Princes Street was the place where all the elite were housed. Official Bay received its name because it was the place where the elite of the officers lived, an area well known by its exclusivity. Mechanics Bay and Freemans Bay were the places where the working class lived. The infrastructure of the settlement was insignificant. The movements in the settlement were done by walking and by water transport.

Conservation (1850-1870)

The population, urban and agricultural land expansions that started around 1850 helped to consolidate the city. The character of Auckland was a mix between a "garrison town" (McLauchlan, 2008, p. 31) and a "watering place" (Section, 1969, p. 23), where soldiers could rest after a military campaign against the Maori. The permanent community remained compact around Queen Street valley. The identity of the urban form of Auckland resided in the interrelationship between the harbour, and the land and city form. The extension of Commercial Bay and the prolongation of Queen Street out into the sea generated a commercial pier that was a key social and commercial point, the icon of the city. Buildings were positioned in ridge locations around the Queen Street valley, highlighting the shape of the landscape. In this period Queen Street became the most important street establishing a change of direction in the growth of the urban landscape. Fires in Shortland Crescent and available land in Queen Street made the shift possible. In this case, fires represent socio-ecological threats that combined and exposed the cultural and ecological weakness of the system.

When the capital of New Zealand was moved to Wellington, the economy of Auckland that was based on tertiary services faced big challenges. One of these challenges for Auckland was the development of its agricultural activities in order to encourage the necessary diversity to overcome the disturbance caused by the breaking of the dependence on the government and military institutions.

Collapse (1870-1915)

The depression of Auckland was faced by developing economic activities through the exploitation of farm, forest, coalmines, goldfields and gum fields along with the consolidation of population growth and the intense trade between Sydney, Auckland and San Francisco.

Innovations in the transportation system produced a rapid extension of the urban areas incorporating new neighbourhoods in the urban fringe. This factor strengthened the centrality and importance of the Queen Street valley, with it becoming the node of transportation, commercial and industrial activities. The demolition of Britomart Point (early 1880s) and the Albert Barracks were breaking points in the urban landscape form. The development of the industrial belt along with the railway infrastructure cut the link between city and sea that characterized the settlement in the past. At the street scale these changes produced the opportunity to develop Custom Street East, which created a new façade for the city, leaving Shortland Street (formerly Shortland Crescent) as a second façade. In an adaptive cycle it could be possible to say that this period is the transition from the collapse of a conservation period to the reorganization of a new cycle.

Reorganization (1915-1969)

This is a period of a rapid peripheral growth. Industrial settlements and suburban developments impact with the loss of a traditional centrality in the developing of a metropolitan Auckland. Highways catalysed the utilization of motor transport, increasing the flow of goods that were carried for storage and processing around the harbour. By expanding wharves, harbour reclamation reached 400 ha in 1966. The industrial development produced a population growth. Suburban areas absorbed this population growth while the urban centre experienced an inverse trend. The land use in the central area exhibited some changes, for example in the occupation of old industrial places by warehousing activities behind Queen Street, mainly in 1930. The impact of the motorcar in the urban landscape can be observed in the proliferation of car servicing shops, garages (Albert Street, Shortland Street, Chancery Street and the Market Square), and also in the quality of the streets. The emergence of the High Street-Lorne

Street system illustrates a tendency for having smaller pedestrian streets that appeared after World War II. The other important impact in the urban landscape was the extension of the university in Princes Street.

Conservation (1970-2012)

Broad economic deregulation, intense change, the processes of entering into a global economy, population growth and pressures on transport, housing and infrastructure are characteristics that have had an impact on the urban form of Auckland in the last 40 years.

4.3.3 Synthesis of timelines: morphological changes in the urban landscape of the Auckland CBD

This historical approach is aiming to be a first step in trying to build a timeline of the key events and processes that have characterized the evolution of the context of Auckland. The analysis is based on the April 2010 report prepared by a team for the Auckland Regional Council (Council & team, 2010). The report describes the evolution of the urban form of the metropolis from colonial times up to the present day. The review is chronological and makes a parallel between the key drivers of the context and their influence on the configuration of the urban form of the region (see Appendix 1).

In ecological resilience the dynamics of change in ecosystems are controlled and driven by a few sets of key structuring processes and variables that attract and define the path for all the rest. In this framework, structuring processes are defined that generate and are impacted by the structures they produced (Holling, 1992). This timeline (Fig. 4-2) was constructed for Auckland following the same criteria. Structuring processes are the drivers of change for each period, and structuring variables are concrete outputs generated by structuring processes that will have an impact on the morphology of the urban landscape.

The objective of this timeline is to map the group of processes and events of the entire socio-ecological system that contains the urban landscape of Auckland, at discrete scales (New Zealand, Auckland and Auckland CBD scale) and through different domains, (economic, politic, social, technological) in order to try to establish connections between these events and processes and their impacts on the morphology of the urban landscape. Processes are represented by horizontal lines that cover the time they were around and are based in the structuring processes. Events are dots placed at the moment when they emerged and are based on the structuring variables.

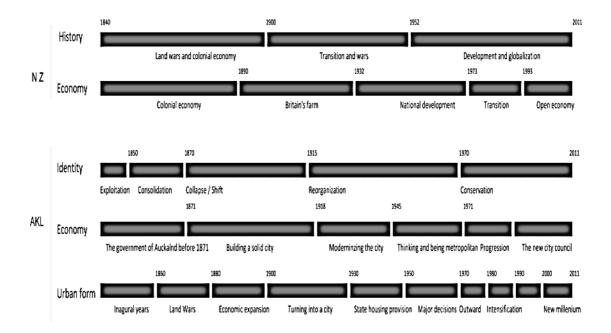
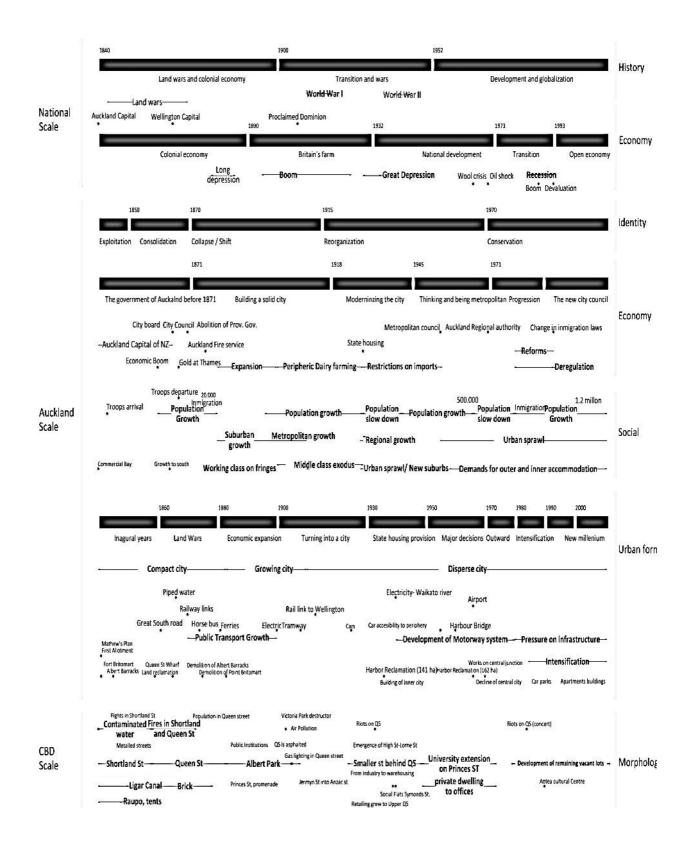



Figure 4-1. Multiple historical phases at different scales

Figure 4-2. Timeline

4.3.4 Observations about the qualitative approach to timelines

The timeline gives the possibility of linking processes and events across scales, producing the emergence of structures and paths that were not clear before. Historical periods at bigger scales tend to be longer and fewer than periods at smaller scales that are more numerous and therefore more frequent. Historical periods that synthesize more than one domain are broader but help to group and frame others that are more specific and related with one particular domain. Periods tend to be shorter at all scales from the 1950s, probably as a symptom of the frequent crises that have characterized the unstable identity of the contemporary urban landscape of Auckland (Fig. 4-1, Fig. 4-2).

The time line reveals that the sequence of events and processes at bigger scales does not always produce an impact at lower scales. Therefore, not all the transformations at CBD scale are produced by top down decisions neither can they be totally explained as a linear consequence of processes and events that occurred at bigger scales. The possibility of inferring connections between events and processes across scales does not represent a linear cause and effect chain of event and processes, but reveals the conformation of structures that show that the clustering of events and processes is more intense in some parts of the timeline than others. This fact can be evidence for the aggregations of patterns that occur in complex adaptive systems, and that emerge when processes are linked within and across scales (Fig. 4-2).

4.4. Quantitative analysis using timelines

The present study is focused on the quantity of change that the built environment of the urban landscape of the east side of Auckland CBD has produced, by analysing its main structural elements. The present analysis could help to support or contest the assumption that the observation of the dynamics of change within and across scales in the elements of an urban landscape can be compared with the dynamics of change described in Panarchy. The presence of such a Panarchy would contribute to providing information about the resilience attributes of an urban system. Basically the urban Panarchy will expose two points: that urban systems are complex and that this complexity can be shown in their organization and dynamics. In turn, this can help to illustrate how adaptive processes actually work in space and time.

The quantitative analysis measures the rhythm of change in key elements of the built environment of the east side of Auckland CBD, these being building footprints (BF), plots (PL), blocks (BL) and streets (ST). The variables analysed were considered, theoretically, as key elements (species) and drivers of the structure of urban landscapes (see section 2.5.2).

A complex approach to measuring the evolution of the urban landscape in question relies on measuring the evolution of the system in space and time (computed areas for nine periods), at four different levels (BF, PL, BL, ST), using three variables (sum, number, mean) for each level of the urban landscape. By using this approach it is possible to tackle one phenomenon from multiple dimensions.

The investigation was approached in three stages. First was making a general assessment of the overall evolution of the urban landscape in order to have an overview of the performance of the system. The second stage was to analyse in depth the evolution of each variable and the relationships of the variables within and across scales. The analysis was done by assessing change in the variables BF, PL, BL and ST in terms of their quantities and rate of change. The third part of the study was the diagnosis of both quantities and rates of change. The objective was to synthesize the magnitudes analysed in order to define possible phases in the evolution of the built environment.

The analysis of the evolution of the urban landscape of the east part of the Auckland CBD was carried out using historical maps that contain at least plots, blocks and streets and by redrawing the maps in QGIS (see section 1.12).

The quantity of change in space was assessed by measuring the difference in change as a percentage of change. By using the percentage of change it was possible to measure and compare the quantity of change in simple terms, such as whether change is big or small. The percentage of change represents the difference between the value of a variable in one period and the new value of that variable in the next period, multiplied by 100. In order to measure the percentage of change the absolute difference, that is always positive, was used. The database was built by taken the area (m²) of BF, PL and BL, for the historical periods previously chosen. In the case of ST, the length in linear m was used as a reference. Three variables were implemented in the measurement of BF, BL, PL, ST: the sum, the number of features, and the mean value. The sum was relevant to understanding the total amount of change in space, the number of features was more relevant for variables that do not change in their areas but that do in their composition, and finally the mean was implemented because it represents the relationship between the sum and the number of features, thus giving information about the proportion of the growth in a space. Consequently, the amount of change was measured by assessing the sum, number and mean difference for BF, PL, BL and ST between the chosen start and end dates.

The quantity of change in time was measured by using the average rate of change of the sum, number and mean values of BF, PL, BL and ST for the selected periods. The average rate of change was calculated by using the percentage of change of the sums, number and mean values at each level divided by the number of years in each period (see appendix 4).

4.4.1 General Observations about change in BF, PL, BL and ST

When observing the evolution of the elements of the urban landscape (Fig. 4-3) there are two clear observations: firstly, every element has its own domain and range in the chart; secondly none of the elements has evolved in the same way. They are neither equal to one another nor linear in their developments. There is no intersection between the ranges that every element holds; therefore, it is possible to affirm that every element has its own domain. This clear distinction of ranges, where blocks represent the biggest quantities, plots the second largest and building footprints the smallest, emphasizes the fact that each one of them works at a different level in the same urban landscape. This is clear evidence for the complexity of urban landscapes and also exposes part of the challenge of analysing them.

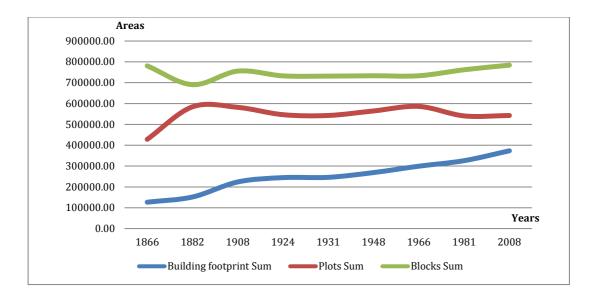


Figure 4-3. Evolution of total areas (sum) of BF, PL, BL

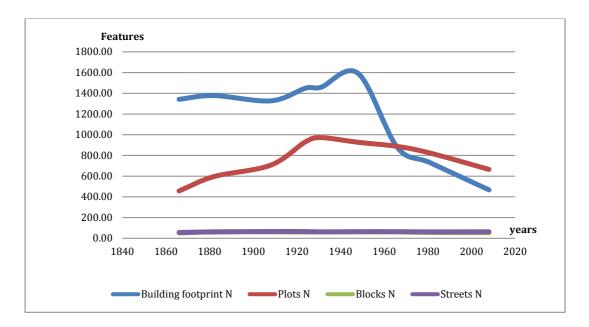


Figure 4-4. Evolution of number of features per BF, PL, BL, ST

Through the observation of the evolution of the sum areas, it is possible to recognize that building footprint is the only variable to exhibit a constant increment in its sum and it is also the most changeable variable. One reason for this is that the growth of plots and blocks outside the boundaries of the case study are not considered. The only exception in the evolution of the total areas in the rest of the levels can be observed in plots during the first interval 1866-1882. The cause of this alteration was probably the demolition of the Albert Barracks. Because green open public areas are not considered as plots in this research,

changes from private to public areas are susceptible to changing the plots sum value. Streets were not considered in the first chart (Fig. 4.4) because they are quantified in linear metres not by area.

When looking at the evolution through the quantification of the number of elements at each level, BF and PL exhibit an evolution with different phases while BL and ST seem to be very constant. BF has a peak in the 1940s, which divides the curve into two parts, one of incremental change (1860-1940) and the other one of decline (1940-2008). At the same time, the incremental part could be divided in two phases: small change from 1866 to 1908 and increasing change from 1908 to 1948. The second phase has an important decrease until 1966 and a less critical one until 2008. Plots show a less pronounced curve with a higher point in the 1930s. BF and PL curves intersect in 1966. From that moment they follow similar slopes until 2008. Fig.4-4 shows the number of small elements, like BF and PL, changes by bigger amounts and more frequently than the number of bigger elements, like ST and BL. The measurement of all these variables in their absolute quantities helps to show what their changes mean to the whole system; however it does not clearly expose how much they are changing within their own scales, especially in the case of BL and ST. For this reason the assessment of the quantity of change was performed by analyzing the percentage of change between start and end dates.

4.4.2 Quantity of change in space: percentage of change of BF, PL, BL, and ST

It can be observed that there are two meaningful points where all variables intersect, these being 1931 and 1981 (Fig. 4-6). Taking these points as references, they define three moments, however if taking into account the rhythm of change of each variable it is possible to synthetize the whole chart into two parts, before and after 1924. The first phase from 1866 to 1924 is characterized by big changes in BF, PL, ST and a small change in blocks. BF is the variable that changed the most, followed by PL. In this phase it is possible to observe the difference in the frequency of change between variables. While ST and BL have only one decreasing phase, BF and PL have two phases, with increasing and decreasing values. In the second phase PL, BL, ST are changing in

a range of around 10% while BF is a little above them. A pattern is recognized after 1981, where all variables with the exception of BF follow similar trends.

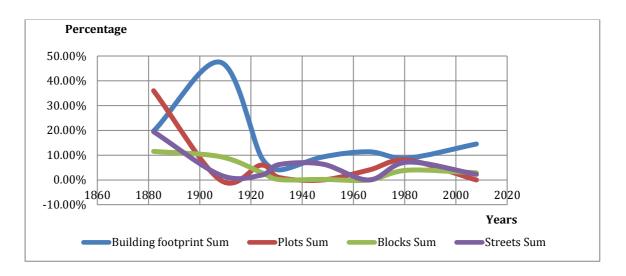


Figure 4-5. Percentage of change in the sum of BF, PL, BL, ST

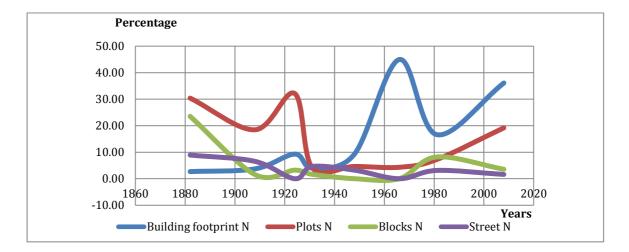


Figure 4-6. Percentage of change in the number of BF, PL, BL, ST

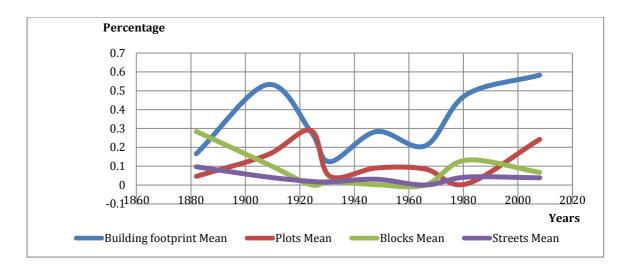


Figure 4-7. Percentage of change in the mean of BF, PL, BL, ST

Categorization of the quantity of change in space

In order to try to define discrete phases in the evolution of the urban landscape, the results obtained in the measurement of each period were averaged within and across levels, i.e. in each category (BF, PL, BL and ST) and per period across categories. This average becomes a self-reference to define the magnitude of the change at every period. Following the criteria discussed in chapter 3 with which to approach history, breakpoints were examined. Values across categories that are above the average enter in the category of big change while values under the average join the category of small change. The grey boxes in table 4-1 highlight times with values above average. Because absolute values were used only positive numbers are obtained, so this can represent both increasing and decreasing amounts of change. By using this method it is possible to picture how much change is too much or too little.

		1860- 1882	1882- 1908	1908- 1924	1924- 1931	1931- 1948	1948- 1966	1966- 1981	1981- 2008	Average
	Mean	16.59	53.20	28.32	12.39	28.32	20.79	47.85	58.33	33.22
BL	Sum	19.71	47.53	9.28	4.06	9.28	11.38	8.85	14.52	15.58
DL	N	2.68	3.70	9.28	4.06	9.28	44.98	16.65	36.11	15.84
	Average	12.99	34.81	15.63	6.84	15.63	25.72	24.45	36.32	21.55
	Mean	4.61	15.95	28.90	4.67	9.04	8.51	0.58	24.23	12.06
PL	Sum	36.00	0.00	6.00	1.00	0.00	4.00	8.00	0.00	6.88
	Ν	30.42	18.46	32.15	4.18	4.63	4.31	7.22	19.20	15.07

Table 4-1. Average rate of change in BF, PL, BL, ST (space)

	Average	23.68	11.47	22.35	3.28	4.56	5.61	5.26	14.47	11.34
	Mean	28.39	11.18	0.20	1.80	0.24	0.00	13.21	6.71	7.72
BL	Sum	11.54	9.42	3.03	0.16	0.24	0.00	3.93	2.90	3.90
DL	Ν	23.53	1.59	3.23	1.67	0.00	0.00	8.20	3.57	5.22
	Average	21.15	7.40	2.15	1.21	0.16	0.00	8.44	4.39	5.61
	Mean	9.67	4.27	1.94	1.68	3.07	0.00	4.20	3.83	3.58
ST	Sum	19.47	2.01	1.94	6.22	6.39	0.00	7.19	2.28	5.69
51	Ν	8.93	6.56	0.00	4.62	3.23	0.00	3.13	1.61	3.51
	Average	12.69	4.28	1.30	4.17	4.23	0.00	4.84	2.57	4.26

Results show that BF is the variable with the highest average value, almost double that of PL, which is also twice as big as the results exhibited by BL and ST. These averages prove that BF is experiencing the biggest amount of change, followed by PL, BL and ST respectively. Consequently, BF and PL show more peaks (grey boxes in table 4-1) than BL and ST that both tend to change by smaller quantities and less frequently.

4.4.3 Quantity of change in time: average rate of change of BF, PL, BL and ST

The objective of measuring the average rate of change in the elements of the urban landscape is to characterize discrete phases of spatial change.

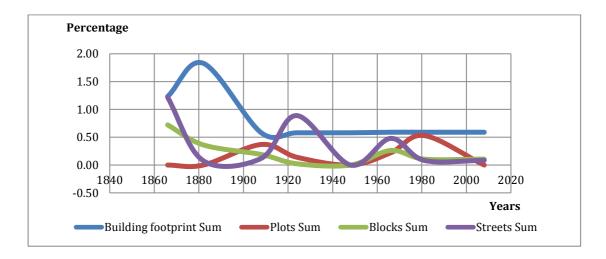


Figure 4-8. Sum average rate of change

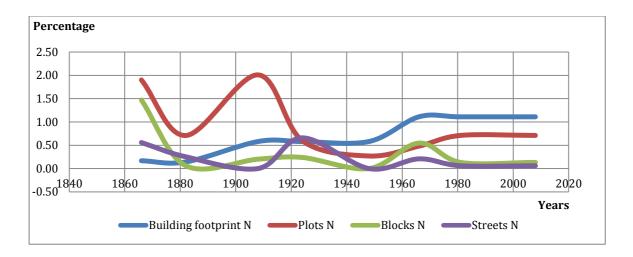
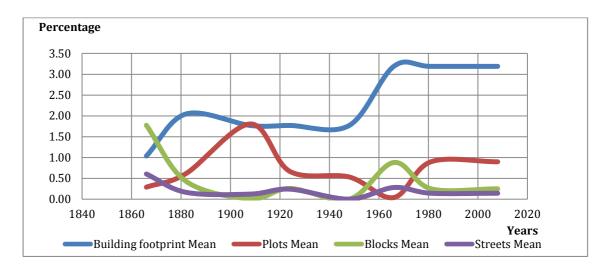



Figure 4-9. Number of features average rate of change

Figure 4-10. Mean average rate of change

Categorization of the quantity of change in time

Measurement of the different phases that characterize the speed of growth in the evolution of the urban landscape of Auckland CBD were established by defining the points where the average values within and across levels surpass the total average. The averages obtained in each period are based on the calculation of the average rate of change between periods. The rate of change shown is the average value of the period (Table 4-2).

		1860- 1882	1882- 1908	1908- 1924	1924- 1931	1931- 1948	1948- 1966	1966- 1981	1981- 2008	Subt
	Mean	1.04	2.05	1.77	1.77	1.77	3.19	3.19	3.19	2.25
BF	Sum	1.23	1.83	0.58	0.58	0.58	0.59	0.59	0.59	0.82
ЫГ	N	0.17	0.14	0.58	0.58	0.58	1.11	1.11	1.11	0.67
	Aver	0.81	1.34	0.98	0.98	0.98	1.63	1.63	1.63	1.25
	Mean	0.29	0.61	1.81	0.67	0.53	0.04	0.90	0.90	0.72
PL	N	1.90	0.71	2.01	0.60	0.27	0.48	0.71	0.71	0.92
ГL	Sum	0.00	0.00	0.37	0.14	0.00	0.22	0.53	0.00	0.16
	Aver	0.73	0.44	1.40	0.47	0.27	0.25	0.71	0.54	0.60
	Mean	1.77	0.43	0.01	0.26	0.00	0.88	0.25	0.25	0.48
BL	Sum	0.72	0.36	0.19	0.02	0.00	0.26	0.11	0.11	0.22
DL	Ν	1.47	0.06	0.20	0.24	0.00	0.55	0.13	0.13	0.35
	Aver	1.32	0.28	0.13	0.17	0.00	0.56	0.16	0.16	0.35
	Mean	0.60	0.16	0.12	0.24	0.00	0.28	0.14	0.14	0.21
ST	Sum	1.22	0.08	0.12	0.89	0.00	0.48	0.08	0.08	0.37
51	Ν	0.56	0.25	0.00	0.66	0.00	0.21	0.06	0.06	0.22
	Aver	0.79	0.16	0.08	0.60	0.00	0.32	0.10	0.10	0.27

Table 4-2. Average rate of change in BF, PL, BL, ST (Time)

Every level changes at its own rate and has its own higher and lower points that emerge at different moments in the evolution, with neither coincident periods nor constant or regular values across scales. Looking at the dynamics across scales, the values in the period from 1931 to 1948 do not show any value that surpasses the average for any level or variable, meanwhile the periods from 1860 to1882 and from 1948 to 1966 are both periods with a greater number of higher speeds of change at different levels. The remaining periods contain only one peak across levels. For the dynamics within scales, in relationship to the frequency of higher speeds of change, BF shows a major number of periods with values above average (3), implying that the frequency of change is faster at this level. This fact can be corroborated in the total average of the level. The results demonstrate that PL change faster than BL and ST (Table 4-2). At the same time BL change faster than ST, however they experience a lesser quantity of fast periods but more intense change, especially in the period from 1860 to 1882. Basically, BL and ST performed in a similar way, with an initial period of fast change followed by a second period of constant speed (Table 4-2). This behaviour can be linked with changes in the structure of the landscape when Auckland passed from being a walkable city to a motorized city (see Appendix 1).

4.4.4 Synthesis of the quantity and speed of change

In order to make a diagnosis of the quantity of change in the evolution of BF, BL, PL and ST, the information obtained in the analysis of the quantity of change in space and time was joined together in one table. The objective was to test if it is possible to merge change in time and space in a coherent phase. The goal was achieved by superimposing parallel timelines with the global averages of each dimension and by grouping and discriminating phases with big and small values. A pertinent observation is that BF has more coincident phases because some of the periods were averaged due to the lack of information in the available maps.

1924

1931

1948

1966 1981

2008

	P1 big change			P2 smal	P3 big	P3 big change			
		12.99	34.81	15.63	6.84	15.63	25.7 2	24.45	36.32
	P1 fac	t change	51.01		change		change		30.32
BF	11103	0.81	1.34	0.98	0.98	0.98	1.63	1.63	1.63
DF	D1 b.:		1.54	0.90			1.05		
		g change		22.3	P2 small	change		P3 big o	change
		23.68	11.47	5	3.28	4.56	5.61	5.26	14.47
	P1 fast change			P2 slow change		P3 fast change		P4 slow change	
PL	1 1 103	0.73	0.44	1.40	0.47	0.27	0.25	0.71	0.54
гц		0.73	0.44	1.40	0.47	0.27	P3	big	0.34
	P1 big	g change		P2 sm	all change		change		P4 small change
		21.15	7.40	2.15	1.21	0.16	0.00	8.44	4.39
						P3 fast			
	P1 fas	t change	P2 slow char	nge	r	change		P4 slow	v change
BL		1.32	0.28	0.13	0.17	0.00	0.56	0.16	0.16
	P1 big change						P3	big	
			I	P2 sm	all change	9	change		P4 small change
		12.69	4.28	1.30	4.17	4.23	0.00	4.84	2.57
			P2 slow change P3 fast		st change		P4 slow		v change
ST	1 1 100	0.79	0.16	0.08	0.60	0.00	0.32	0.10	0.10

Table 4-3.	Quantity	and speed	of change	in	BF,	PL,	BL,	ST
	C				,	,	,	

1882 1908

1866

A pattern that can be inferred from the table is that the parallel between changes in time and space tends to be less coherent at levels where both changes in time and space are less intense. In consequence the characterization of phases in BF is more consistent than the description of phases in BL and ST.

Table 4-4. Diagnosis of quantity and speed of change

	1866	1908			1948	1981	2008
BF	P1 big/fast change		P2 small/slo	w change	P3 big/fast cha	inge	
PL	P1 big/fast change			P2 small / s	low-fast change	P3 big/	fast-slow change
BL	P1 big/ fast-slow cha	ange	P2 small/slo	w change	P3 big / fas	t-slow change	P4 small/slow change
ST	P1 big/ fast-slow cha	ange	P2 small/fas	t change	P3 big / fas	t-slow change	P4 small/slow change

4.5. Conclusion

Every element of the urban landscape evolves in a discrete way, an affirmation that can be checked by looking at the amount of change that every element has exhibited in time and space. Therefore, the analysis of only one element of the structure of the urban landscape does not describe the dynamics of change of the whole system, proving that urban landscapes are complex entities.

The evolution of BF, BL, PL and ST is characterized by discrete rates of change in quantity and speed that are linked with their sizes. Small elements tend to change more and faster than big elements that change less and slowly. BF and PL tend to experience bigger and faster change than BL and ST. This relationship can be checked through the average change in sum and number and also in the average rate of change, where BF always has the biggest values and PL the second largest, followed by BL and ST. As a corollary, the number of features in each element is reversibly proportional to its size (Fig. 4-2). For this reason, the quantity of big elements. This relationship between size and number of BF, PL, BL and ST within the texture of the built environment reveals the presence of a hierarchy of elements in the urban landscape that can be compared with the Panarchy (see section 2.3.6) and understood as an evidence for the existence of an urban Panarchy (see section 3.3).

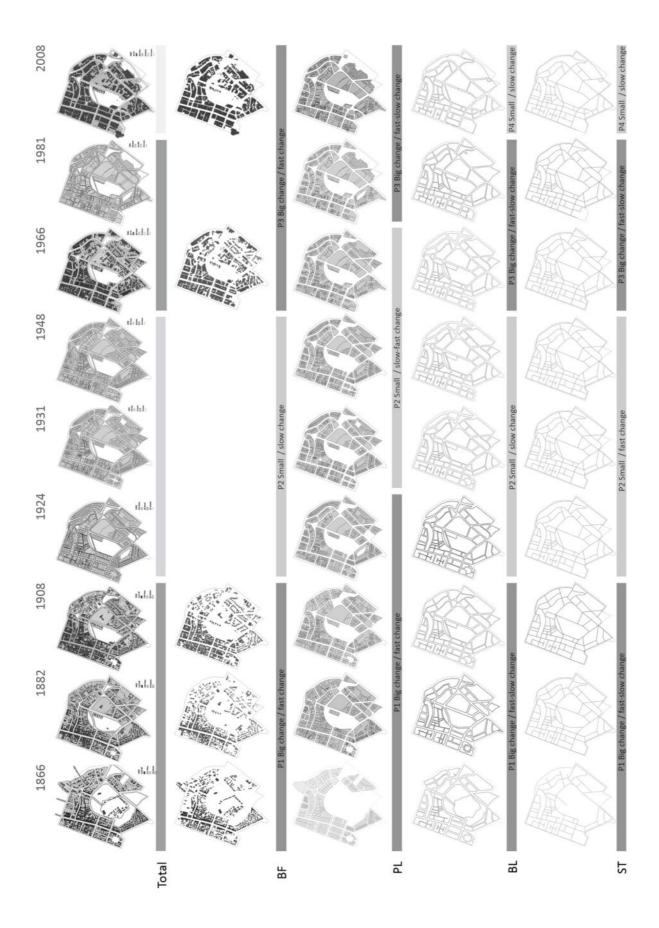


Figure 4-11. Phases in the adaptive cycle of BF, PL, BL, ST in the urban landscape of Auckland CBD

The importance of developing a quantitative historical analysis of an urban landscape is that it permits the building of a framework and provides a reference for the future management of the system by evaluating the same system. The idea of understanding the structure of urban landscapes as a Panarchy is useful for measuring the evolution of urban landscapes and for making analyses at different scales.

Phases obtained in the analysis reveal an alternative history of the urban landscape, one that is told from the internal evolution of its structural elements. The kind of history that a Panarchy reveals is multiple and complex because it involves different scales or levels, discrete variables, and alternative domains of space and time.

This history of the urban landscape of the east side of Auckland CBD, when it is analysed as a Panarchy, shows that events and processes tend to affect the elements of the urban landscape in discrete ways. Consequently, a non-linear performance at every level of the structure (BF, PL, BL, ST) arises. The non-linear performance can be corroborated by observing the cyclical behaviour that every level shows through different phases.

By assessing evolutionary dynamics in an urban landscape it is possible to understand the rhythm and cycles of change in a built environment, a factor that is essential in the theoretical framework of ecological resilience when trying to frame the analysis of change through the adaptive cycle metaphor.

The method of analysing the evolution of an urban landscape by measuring change in its townscape through historical maps is time consuming work. This factor needs to be taken into account before starting any urban morphological analysis. From the research of historical maps to the digitalization process of the information and its later development, the analysis should be by a group of people instead of only one researcher.

The accuracy of the information can be improved by finding more maps at different periods so the breaks in information can be overcome. Another way of improving the precision is investing more time and resources in the drawing process. The quality of the maps also plays an important factor but even in these conditions, the act of bounding and defining the perimeter of BF and PL limits in each period is hard without having the certainty contained in original documents of each property. Finally, the analysis is only focussed on the two-dimensional properties of urban landscapes, ignoring townscape, and therefore it does not represent the whole three-dimensional urban landscape.

The definition of the scales was theoretically framed in relationship with the resistance to change that every element of the urban landscape exhibits but the level of resolution of the analysis remains constant. However it could be possible to use the same method of analysis by defining discrete geographical scales within the boundaries of a case study, for example, measuring the dynamics of change in one street, then in a neighbourhood, and at the end in the whole or part of the city. Another possibility is to apply a Conzenian approach to defining different levels of complexities in one case study by analyzing morphological units, plan units and regions.

One thing that was not observed in the present analysis is the theoretical assumption taken in ecological resilience where slow variables entrain fast variables in a slaving process, implying that small change in slow variables will provoke big change in fast variables. It could be interesting to investigate if the relationship between size, speed and quantity of change can be also observed within the scale of every element of the urban landscape.

Another important research investigation could be conducted by analyzing if changes in slow variables like ST or BL, entrain fast variables like BF and PL.

5. Resilient assemblages: identity and resilience

5.1 Introduction

This thesis uses the concept of ecological resilience as the capacity of complex adaptive systems, like ecosystems or cities, to adapt to unpredictable change without losing their identity (Alberti & Marzluff, 2004). Identity in this context refers to a threshold in the equilibrium state of a system. The persistence of the identity of a system implies that its structure (Panarchy) has buffered changes in order to stay in the same equilibrium state. If the theoretical framework of ecological resilience can be applicable to the analysis of urban landscapes, the identity of a place should behave in a similar way when changes affect the stability of the elements of its built environment.

The research investigates the resilience capacity of Nezu to two major fires and an earthquake in Tokyo: the Great Kanto earthquake and subsequent conflagrations (1923) and the World War II fire bombings (1945). The methodology uses the theoretical framework of ecological resilience and morphogenetics to measure change in the built environment of the chosen precincts before and after a crisis. The purpose is to analyze transformations in the built environment and their impact on the change or persistence of the identity of shitamachi areas.

The intention of this chapter is to test whether the concept of identity can be used in the analysis of the built environment as a reference to measure change in the stability of urban landscapes. In order to accomplish this goal it is proposed to measure the relationship between the persistence of an identity in a specific built environment, in this case the shitamachi 'description', and change in the elements of the urban landscape of Nezu.

If the identity of place can be used in urban landscapes to analyze the stability states of a system, it follows that changes in the elements of the built environment of Nezu (BF, BL, PL, ST) may not necessarily produce the same changes in the structure of its urban landscape. This means that the elements of the built environment of Nezu (BF, BL, PL, ST) can change through time, before

and after crises (fires in the case of Nezu), but a robust resilience capacity will tend to keep the identity of the place fairly stable.

Results of the analysis will contribute to confirming or questioning the hypothesis about the dynamics of change of urban landscapes as set out in chapter 1 (see section 1.7), particularly the proposal that at the face of disturbances happening in the built environment, the resilience capacity of the urban landscape will try to maintain the identity of the system by keeping its structure fairly stable at larger scales while allowing variability and change at smaller scales (Holling, 1987). By doing this, the chapter tries to show evidence of how to apply ecological resilience to the analysis of urban landscapes.

5.2 Structure of the chapter

The chapter is divided into two studies linking changes in the built environment with persistence of identity.

The first study compares persistence in the identity of a built environment (Nezu) against change in the elements of the urban landscape. The objective is to show what the role of the urban landscape in the persistence of the identity of Nezu is, and particularly how the complexity of the urban landscape, through its multiple scales, is linked with its resilience capacity. The analysis is carried out by measuring morphological changes in sizes of blocks, streets and plots.

The second study observes changes in a characteristic system of spaces in the urban landscape of Nezu, the public-private interfaces, against change in the structure of its urban landscape. The objective is to show that the complexity of the urban landscape builds a quality that enhances the resilience of the built environment to changes in its urban landscape. According to the theoretical frameworks of assemblage and ecological resilience, the complexity, multiplicity and non-linearity of the system processes and dynamics should be reflected in the heterogeneity and complexity of the landscape. Therefore, public-private interfaces should be discontinuous, multiple and diverse to add complexity and resilience to the built environment of Nezu.

In both cases the objective is to describe changes in the stability state of urban landscapes. The use of identity as an instrument to observe and to measure the resilience of an urban landscape to changes in the equilibrium state of its built environment is tested. The two studies used in this chapter could help to find evidence that urban landscapes produce patterns of aggregations and discontinuities that are related with the structure described in the urban Panarchy (see chapter 4). Moreover, it is argued that these patterns are linked with qualities of the built environment that can be observed in changes or persistence in the identity of the place.

5.3 Theoretical framework: resilient assemblages

The complex dynamics of change in a built environment have an impact on the persistence of identity of place. Traditional philosophical approaches to identity of place focus only on elements of the urban landscape that linger, neglecting the processes of change that facilitate the persistence of some elements and the extinction of others. From this point of view every time that major changes affects the persistence of particular elements in built environment, this will be reflected in a change in the identity of the place. However, the same dynamics of change can be questioned if assemblage and resilience theory are acknowledged.

A complex approach to urban landscapes is developed by analysing the identity of place as a resilient assemblage. The methodology uses the philosophical approach of assemblage to link theoretical backgrounds from philosophy, ecology and urban studies (see section 2.2.2). By using this approach places are analysed as complex adaptive systems (Levin, 1998). Identity is based upon multiplicity and is always present in a process of becoming (Dovey, 2010). In a similar manner to stability states implying a relationship between a system and its context, the concept of identity of place links individual elements of built environments and the development of the totality of an urban landscape. Identity is described in this research as a relational phenomenon that implies relationships between dynamics of change in individual objects and the whole system at the same time. The difference with traditional philosophical approaches is that changes in individual elements of a built environment will not necessarily produce the same quantity of changes in the identity of the place.

Ecological resilience offers a theoretical framework for investigating the dynamics of change in systems and persistence at different scales and across scales (Gunderson & Holling, 2002). The idea is that a complex system has the capacity to adapt to hazards because it operates by changing and adapting within and across scales. Therefore by reproducing the dynamics of change in the urban landscape of Nezu, within and across scales, it is possible to describe the influence of change in the persistence of the shitamachi identity (see section 5.3).

5.4 Nezu and its identity

Nezu is located in Bunkyo ward, one of the 23 central wards of Tokyo (Fig. 5-1). Nezu is dominantly a low rise, high-density residential area with ubiquitous greenery, and small local shops and galleries. It is located in a valley and is characterized as *shitamachi* (Low City). From its founding Edo has been divided in two regions: *yamanote*, the high city, and *shitamachi*, the low city. The shitamachi was characterized through the "mood of the Low City" (Seidensticker, 1983, p. 86) with its rows of wooden buildings and sense of neighbourhood community. The low city's grid was rigid, right angled, and small, tight, and cozy (Seidensticker, 1983). The intriguing fact about the evolution of the built environment of Nezu is that few buildings are preserved from the Edo period but its shitamachi character persists. One possible explanation is that the identity of the built environment of Nezu, based upon its shitamachi character, might be linked with the structure of the elements of the urban landscape and not only with its buildings (Muminovic et al., 2012a).

Figure 5-1. Map of Tokyo and Nezu (Muminovic et al., 2012a)

Nezu in Tokyo offers an opportunity to analyse the relationship between change and persistence in a built environment that has been evolving through time by changing and adapting its physical characteristics while conserving its identity. The fires are chosen because of their precise time and high degree of destruction as well as the possibilities they create for change in the physical setting of the place. One of the key characteristics of Tokyo lies in the numerous fires that have destroyed the city from the Edo period to modern Tokyo period (Seidensticker, 1983). Demonstrating the resilience capacity of the built environment to fires is an important factor in the persistence of the identity of place in Tokyo. The aim here is to analyse and develop an alternative understanding of the relationship between persistence of identity and change in the physical setting of a place by using a resilience and assemblage approach. Contrary to the timelines in chapter 4 that tend to map the general resilience of the system, here the timeline was used to map changes in relationship with only one threat, fires. In this way the study is narrowed to the analysis of the specific resilience of the system (B. Walker, 2007).

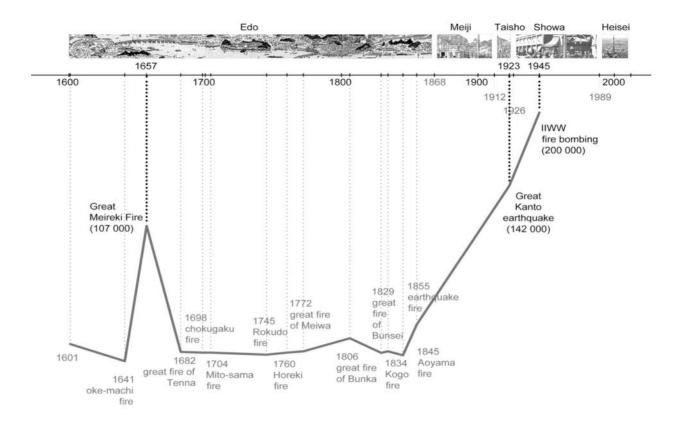


Figure 5-2. Major earthquakes and fires in Tokyo from Edo to Showa periods (1600 to 1945) (Muminovic et al., 2012a)

The timeline shows that earthquakes and fires are recurrent hazards in the system (Fig. 5-2). The Great Kanto earthquake in 1923 and the fire-bombing in 1945 are the most dramatic events with respective losses of 142,000 and up to 200,000 lives (Sorensen, 2002). The timeline highlights (continuous lines represents the quantity of lives lost in each fire) that fires were more common during the Edo period but less intense: on average there were major conflagrations every six years (McClain, Merriman, & Ugawa, 1994). The end of the long Edo period almost matches the change in the frequency and intensity of fires. After Edo, hazards became less frequent but more intense and destructive. One interesting aspect of fires is that they are excellent examples of socioecological hazards, because they mix natural and social components in one event.

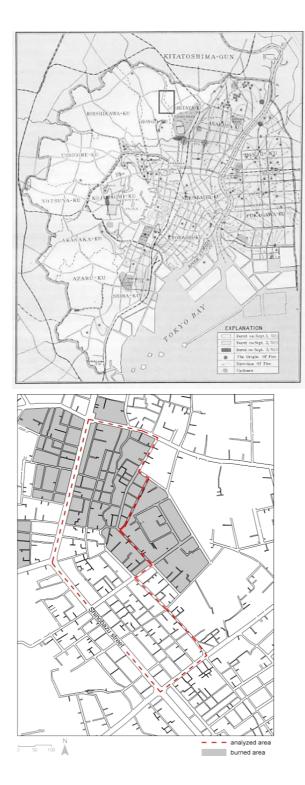


Figure 5-3. Map of burned areas in 1923 (left) and 1945 (right) (Anonymous, 1988; map, 1990)

The study area was chosen because its identity lingers from the past. It was not very affected by the conflagrations after the Great Kanto earthquake (1923) (in the map on the left in Fig. 5-3, Nezu is a rectangle that is outside the affected area) but was partly burned during the fire bombings of 1945 (Fig.5-3

map on the left, burnt areas are in grey). For this analysis the chosen area has two discrete zones (Fig.5-3, red dotted lines). The northern part was burnt and highly impacted as a result (Area II) while the southern zone was not affected (Area I) (Fig. 5-3). Even though both zones have been impacted at different levels they maintain and share the same identity.

5.5 Study 1: the role of the structure of urban landscapes in the resilience capacity of Nezu

The initial assumption was that the persistence of the identity of the built environment of Nezu was enhanced by the resilience capacity of the structuring elements of its urban landscape, particularly the capability of the street system, block system and plot system to work at multiple equilibrium states, within and across scales, in order to buffer critical changes. In this research the interpretation of working in multiple stability states probably means that pressures and situations in the context of an urban landscape can change. As part of this some PL, BL, ST can be transformed or disappear, producing a disturbance in the equilibrium of the built environment, but the whole system will be able to absorb these changes by keeping the identity of the relationships between elements of the urban landscape more or less stable. Therefore the first step was directed to finding a way to characterize the interrelationships between BL, PL, ST, such that observations can be made by comparing alterations in structures and elements at the same time.

5.5.1 Method for measuring morphological change in the urban landscape of Nezu

For the purpose of this analysis the gathered data were old historical maps of this area from four different periods, giving information before and after the observed hazards. These maps belong to the period from 1888 until 1956. The maps are dated in four periods: 1888, 1919, 1923, and 1956. The maps used were at 1: 5000 scale. Maps are deriving from: cadastral maps (Uchiyama, 2011) maps of Edo to Tokyo periods (Takahashi, 1988) as well as Edit Committee documentation compilation maps. Collected maps (1888-1956) were scanned and redrawn as vector data using Auto Cad 2010 software. Moreover, in order to achieve a higher level of precision all maps were geo-referenced to the

contemporary map of the same area using the ArcGIS 10 program and the data from Center for Spatial Information Science, The University of Tokyo. The following steps were then undertaken.

Morphological changes in blocks, streets and plots were quantified based on the size of each element of the built environment and calculated for each year and each group of elements (ST, BL, PL, BF) separately. Each element was named (see appendix 7) and quantified in terms of its respective size (area for BL, PL and BF and length for ST). Furthermore, standard deviation was calculated for each group of the elements and for each year separately in order to generate size classes. The calculation was conducted using Arc GIS 10 software and the number depends on the variability of the sizes of ST, BL, PL, and BF. The standard deviation was used as a parameter because it allows recognition of how far different groups of elements are from the average size of a variable (mean PL, BL, and ST). The predefined number of size classes was established as four because this was the minimum value always found in each BL, PL, and ST after different trials with alternative numbers of predefined outputs.

The degree of change was measured as the difference of size of each individual element of the built environment between two successive periods. These morphological changes were quantified as the percentage of the difference of the same element in two successive periods. The analysis showed that different complexities of data require different approaches in calculations of change.

The level of change for the blocks was based on the ratio of the area of one block to the whole area. The percentage of change was based on the ratio that one block has to the whole area of the same period (see appendix 8). In the case of subdivision of a block, the percentage of change was calculated for each subdivided block based on the whole size of the previous period. In the case of merging blocks the level of change was measured based on the ratio between the block with more similar characteristics of size to the new block. In the cases of similar sizes the block located at the centre of a new-formed block was chosen as the reference for change.

The degree of change of the streets was calculated based on their length. The degree of change of length is calculated based on the mid line of the streets. Streets were named and traced in all maps (see appendix 10). The change to the street is calculated based on the longer length without distinction of the nature of change, and whether the street is growing or shrinking. In the case of the appearance of a new street, the change was calculated as 100%. In the case of the disappearance of a street, the street change is also calculated as 100% and shown on the map with a dashed line.

The calculation of level of change of the plots demanded a different approach. Due to the number and fact that plots are changing at a higher rate than blocks and streets the plots did not follow the same method of calculation of change of the area. Thus the degree of change was not calculated separately for each plot (see appendix 9). The first two periods were analyzed based on the data of the plots and the second two periods based on the analysis of building footprint. The first two periods define the change of the plots based on the size of all preserved plots in one block, represented at the level of block. Degree of change is defined as the relationship between sums of area of plots preserved in the block and the whole area of that block and is shown as a percentage. Blocks that are differently divided into plots are considered to have a degree of change of 100%. In the third period (1932-1956) the degree of change was calculated based on the building footprint due to the lack of information about the plots. Degree of change was calculated using the existing information about the plots (map from 1932) and building footprint (map from 1956). In order to the define degree of change of each plot these two maps were overlapped and building footprint in 1956 was used to identify the plots that had not changed from 1932 The degree of change was calculated as the relationship between the sum of area of preserved plots within one block and the area of block. Degree of change was calculated as a percentage. Standard deviation is used in all periods in order to define the groups of different degree and diversity of change.

5.5.2 Results from the analysis of morphological changes in sizes of blocks, streets and plots

The first approach was characterized by mapping change in the size of BL, PL, and ST in order to observe relationships between bigger and smaller elements in each period and how they characterized different areas. The number of size-classes of BL was continuously increasing from 1888 to 1956. Areas I and II show a parallel phenomenon of intense subdivision of land from 1888 to 1919 along with a clustering in two areas. A re-organization in 1932 shows BL sizes more averaged and homogeneous. In 1956 the BL structure restarted a process of intense subdivision. Area II evolves from an organic distribution of BL to a more regular distribution pattern with a higher number of small size BL than Area I, which evolved by consolidating an orthogonal grid (Fig. 5-4).

The length of the ST from 1888 to 1956 shows a similar process of dispersion. The diversity of the street system increased from 1888 to 1919 and was characterized by the appearance of a network of medium and large size ST. The diversity achieved by the urban landscape is conserved until 1932. From 1932 to 1956 the size classes diminished and the street network became more homogeneous around medium and small sizes. The evolution of the street system in Area II experienced a change from a disconnected distribution in 1888 to a dense and clustered network in 1919. The network exhibits an agglomeration in its east side around 1956. In Area I the evolution took two paths: from 1888 to 1919 it developed in a north-south direction; from 1932 to 1956 new small ST increased the connectivity between west and east sides. The novelty is small dead end streets that appear in both areas (Fig. 5-4).

The plot evolution reveals a continuous process of subdivision of bigger PL into smaller ones in two phases: the first from 1888 to 1919, and the second from 1932 to 1956. Classes of size of PL are in all periods homogeneously dispersed in both Areas I and II. The map from 1956 shows higher diversity of classes of size at the level of BL, and less at the level of ST and PL. The maps from 1956 do not show the higher disturbance in the size classes of BL, ST and PL (Fig. 5-4).

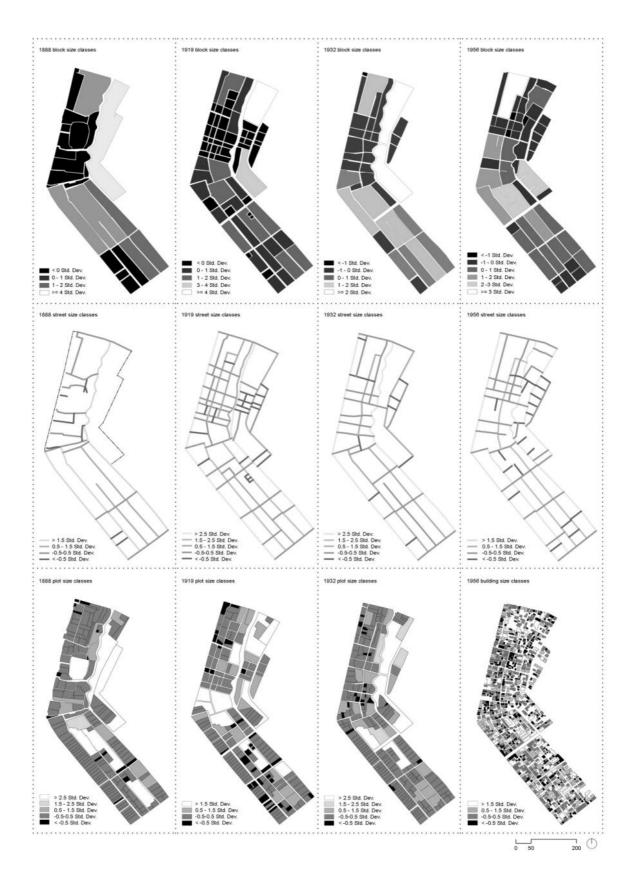


Figure 5-4. Size classes of blocks, streets and plots (top-bottom)

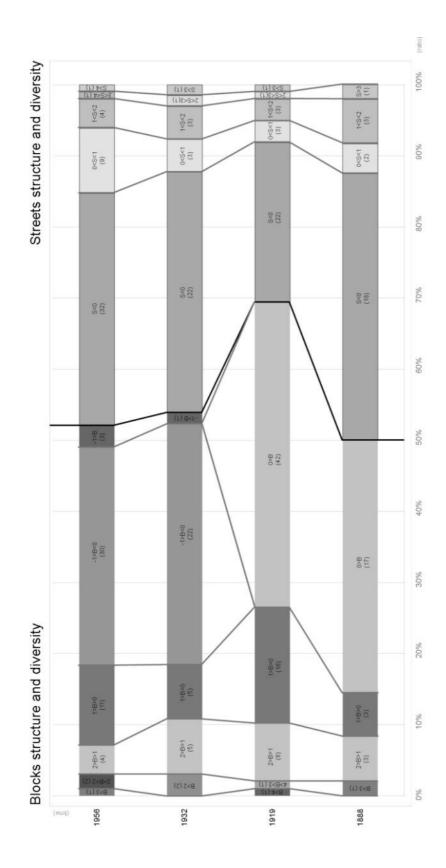


Figure 5-5. Diversity of blocks and streets through time

The diagram of the evolution of different size-classes in BL and ST (Fig. 5-5) presents four horizontal bars corresponding to each period of the analysis. Each bar contains two elements, namely BL and ST that occupy one half of the diagram each and that are subdivided into a series of segments that represent size-classes in each category. In every segment the size range and the numbers of elements contained are described. The magnitude of every segment is in relationship to the percentage of elements confined for each size-class. In this way it is possible to have a panorama of the evolution of BL and ST and also observe how groups of similar BL and ST sizes were changing between periods, while inferring possible relationships between them.

During all periods the number of smaller elements in the size-classes of blocks and streets is high (Fig. 5-5). The diagram shows that the dynamic of change of BL and ST depends on the behaviour of every size class and the interaction between them. Change is produced in an independent way not only in the quantity of size classes in BL and ST but also in the percentage of elements contained in each size class. These dynamics expose non-linear behaviour and systemic interrelationships, both characteristics of complex systems (see section 2.2.1). The shifting diversity of size classes and elements in different periods could be evidence of adaptive processes.

5.5.3 Results from the analysis of morphological transformations related with degree of change

Area I shows a constant decrease in degree of change at the level of BL (from 60% in 1919 to 34% in 1956) (Fig.5-6). Area II demonstrates discontinuity in degree of change at the level of blocks (79% in first period, 36% in second period and 53% in third period). The degree of change of blocks shows constant decrease through time (Fig. 5-6).

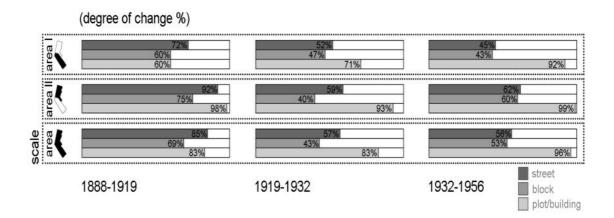


Figure 5-6. Average degree of change in blocks, streets and plots

Streets in Area I and the whole area show a decrease in the degree of change through time. The difference is high for the first two periods and low for the second showing the system is stabilizing (Fig 5-6). High intensity of change at the level of BL shows a tendency for clustering in Area II in the first period (1888-1919). In the same period Area I shows a more homogenized distribution of different intensities of change. Over time high intensity of change is changing its position and tends to be less clustered in both areas.

The degree of change in plots (Fig. 5-7) increases in areas where the subdivision of blocks and the appearance of new streets are also intense. The evolution of the intensity of change in PL shows a progressive expansion from the west to the east side in Area II, and a process of homogenization affecting all of Area II. The smaller BL, ST and PL are more numerous and frequent than their bigger counterparts. Based on this it is observed that ST and PL show a higher intensity of change than BL. The intensity of change of PL increases through time at all scales. The major intensity of change is linked with the areas where smaller sizes of BL cluster, while less intensity of change is linked with areas where the biggest sizes of BL are clustered (Fig. 5-7).

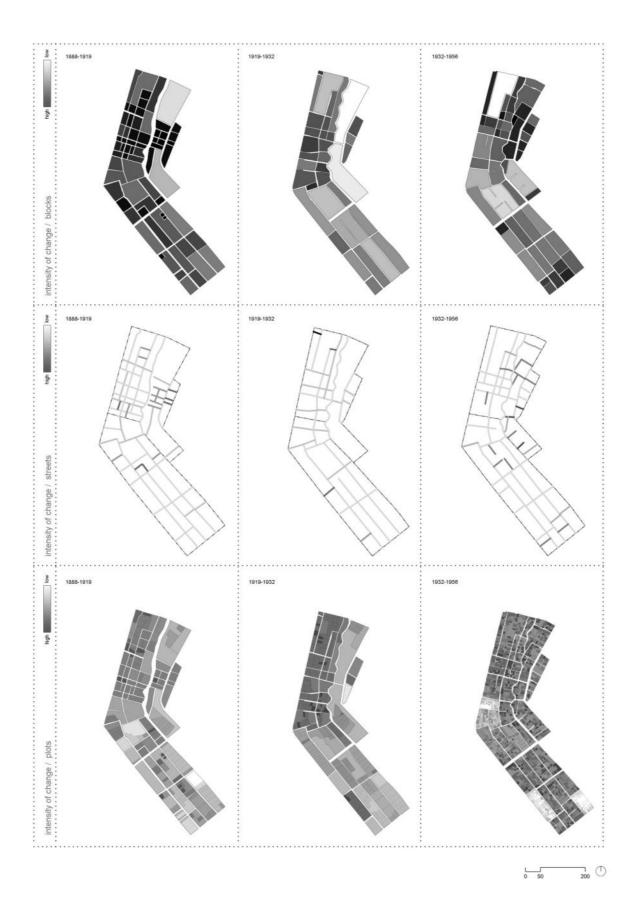


Figure 5-7. Intensity of change through time

Results confirmed that Nezu showed resilience to the destruction caused by fire bombings after WWII. The persistence of the identity of shitamachi in Nezu is linked with the resilience of its physical setting, particularly the resilience of the structure of the urban landscape. The lingering of the character of the physical setting of Nezu was not provided by the permanence of particular buildings instead it was supported by the adaptive capacity of the inner structure of the urban landscape. The resilience capacity provided by the system of plots, blocks and streets demonstrates the potential of the urban landscape to be a complex adaptive system that behaves and responds at discrete rates of change within and across scales.

The adaptive capacity of the urban landscape is built upon the complexity of the place understood as an assemblage. This assemblage produces a discontinuous landscape. Discontinuities can be observed in the size and intensity of change of the main components (BL, PL, and ST) of the urban landscape of Nezu. The discontinuities in its landscape contribute to its resilience capacity. The results support the importance of relationships between elements of assemblage. The change in one group of elements is buffered within scales and different elements supporting the overall equilibrium of the urban landscape. The persistence of the identity of the urban landscape depends on a continuous process of change in order to adapt to external and internal demands on the systems.

5.6 Study 2: the role of interfaces in the resilience capacity of the built environment of Nezu

The second analysis explores the resilience of the identity of the urban landscape of Nezu to changes in its built environment and it was based on the idea that public-private interfaces can be key elements of the resilience of urban landscapes (see section 2.6).

Public-private interfaces in Japanese urban landscapes have been defined as *soft boundaries* that have contributed to the consolidation of the identity of old towns (Nakagawa, 2005). Shelton (1999) explains that the size and structure of the spaces between the private realm of the house and public realm of the street in shitamachi creates soft boundaries that are vibrant spaces. At the same time, the dynamic between public-private interfaces across scales defines new characteristics at each scale. One street can be considered as a public space at a small scale but as private at a larger scale (Shelton, 1999; Sorensen, 2002). This fluidity of public-private interfaces continues at the scale of the house (Daniels, 2010; Nakajima, 1996) and their connections and structures have been highlighted as characteristics that contribute to the creation of the identity of Tokyo (Kitayama, Tsukamoto, & Nishizawa, 2010). Furthermore, Jinnai (1995) highlights the importance of the structure and size of public-private interfaces for the preservation of the character of some neighbourhoods in Tokyo. Another set of characteristics that contribute to the identity (Seidensticker, 1983). That smallness is widely stressed as a distinct character of precincts in contemporary Tokyo, having an important role in the creation of their identities (Radovic, 2008).

For all these reasons it is proposed that the analysis of public-private interfaces as discontinuities in the built environment of Nezu will provide important information about the complexity and resilience of its identity. This becomes the question of how the relationships between public-private interfaces within and across scales contribute to the complexity of the built environment of Nezu and at the same time to the resilience of its shitamachi identity.

5.6.1 Method to finding discontinuities and aggregations through cluster analysis

Following a morphogenetic approach, the elements of the urban landscape chosen for analysis are building footprints, blocks and streets (Conzen, 1960). By scale framing these elements (van Lieshout et al., 2011) into different units of analysis, three levels of spatio-temporal resolution were created (Cash et al., 2006; Wu & Li, 2006): street (ST), block (BL) and building footprint (BF). Consequently, public-private interfaces are measured and grouped following these three scales.

Boundaries of public-private interfaces were defined using different criteria at each level. The building level uses the area between the street facade

of the building and the street margin. These areas encompass space from the single step between the front door of a house and its street to larger transitions between buildings and streets. Even though these areas seem to be insignificant at city level, they are essentials at building level, becoming particularly important when considering that Nezu does not have sidewalks in its urban landscape. The block level uses the area that comprises all public-private interfaces of buildings within a block and its internal streets. At this level the universe of all small transitions builds a whole system that includes a set of internal streets whose level of privacy varies, and that characterize the urban landscape of Nezu. Finally, at the street level, public-private interfaces are defined by the area of each street along with the public-private interfaces of buildings within the street.

In order to investigate the presence of discontinuities in the urban landscape cluster analysis was conducted (Garmestani et al., 2005) using a Weka software data mining process (Witten et al., 2011). The data analysed are the area of buildings footprints, blocks, streets and their respective public-private interfaces (ppi) measured in m². The cluster analysis was done using a training set option with the simple EM (expected maximization) class EM -I 100 -N -1 -M 1.0E-6 -S 100, where max. alterations equal to 100, min. standard deviation equals to 1.0E-6, the number of cluster equals to -1, and the seed equals to 100.

For the purpose of illustrating the interfaces between public and private within and across block, buildings and street levels, only the extreme values (minimum and maximum areas) for each cluster of each element were analysed. With the aim of showing interactions across levels, clusters were re-layered to identify spatial aggregations between them.

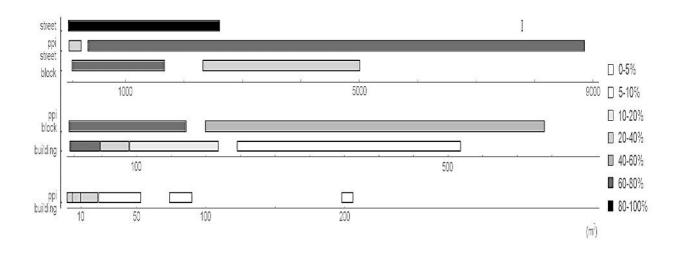


Figure 5-8. Aggregations and discontinuities in the structure of ST, BL and BF

The characteristics of two variables, public-private interface (ppi) and elements of the built environment (B, PL, and ST) show the existence of different levels and clusters within and across levels. The analysis of sizes of elements and public-private interfaces shows different numbers of clusters (bars in discrete percentage of dark in Fig. 5-8). Public-private interfaces show six clusters at the building level. Each level of block and street has two clusters. Elements of the built environment also show different numbers of clusters at different levels. The level of building has four clusters and each level of blocks and streets has two clusters. The clusters of smallest elements at each level show the higher numbers of elements. The numbers of clusters show that the smallest elements of both public-private interface and buildings have the largest impact on discontinuities and therefore on diversity of the built environment in Nezu. However, the results also show that sizes of discontinuities (gaps between grey bars in Fig. 5-8) are larger for bigger elements at each level and at higher levels (levels of blocks and streets). Larger discontinuities have significant influence on the diversity and complexity of a built environment. In these discontinuities, juxtaposed with the smallest elements, Deleuzian difference (Deleuze, 1994) becomes more palpable and therefore plays an important role in the complex identity of Nezu.

The aggregations of sizes of buildings and their public-private interfaces show a tendency to create clusters in the built landscape (Fig 5-9). The clusters in space become territorialized, having clear boundaries, when observed through relationships between building size and public-private interface. Namely, the clusters of sizes at the building level of both variables do not show any significant aggregation in space. However, overlapping of extreme values of public-private interface and size of elements of the built environment shows the creation of clusters in space (Fig. 5-9). These clusters have larger intensities of smallness and bigness and create discontinuities in the built environment of Nezu.

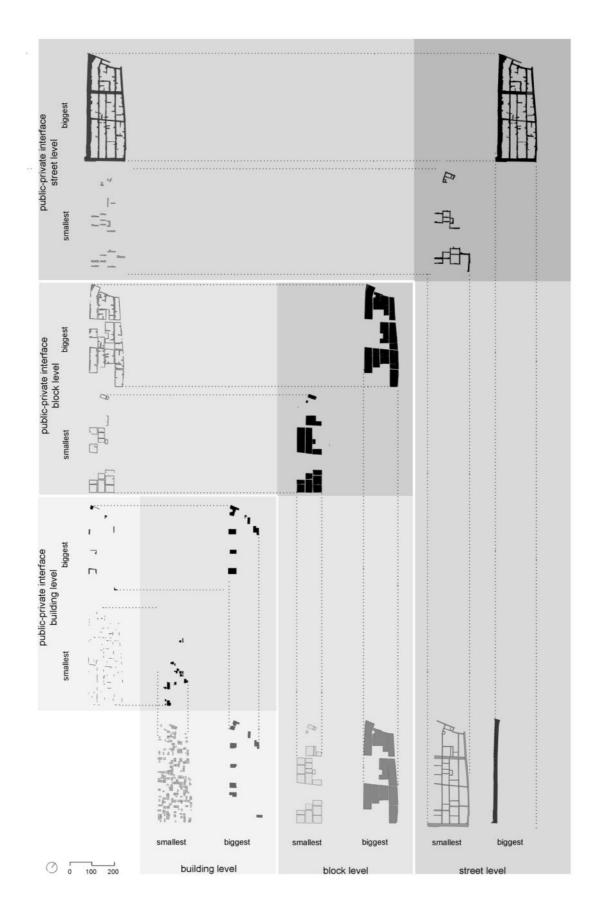


Figure 5-9. Clusters of public private interfaces at BF, BL and ST levels

Aggregations and discontinuities of similar sizes of elements at different levels in the urban landscape create different qualities in the built environment landscape at each level, but a third kind of space also emerges when small clusters of elements are entrained by bigger clusters at a different level (Fig. 5-10). This characteristic, the diversity produced within each level and across levels contributes to the complexity of the built environment in Nezu.

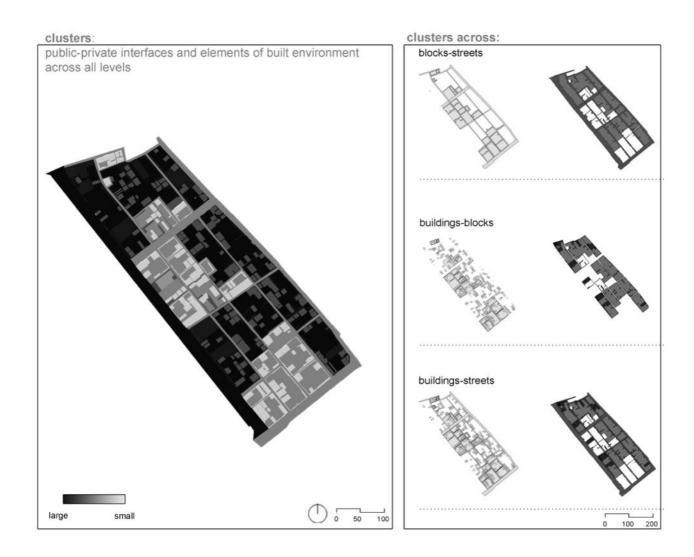


Figure 5-10. Clusters of public-private interfaces within and across BF, BL and ST levels

5.7 Conclusions

The analysis of the resilience of the identity of Nezu shows how the theoretical framework of ecological resilience can be applied to an analysis of the evolution of the built environment, in this case through the analysis of the stability state of the identity of a place. The analysis of the identity of Nezu using a resilient assemblage approach demonstrates that the use of the methodology and method proposed generate quantitative and qualitative information with which to understand the resilience of the built environment of urban landscapes in relationship to their complexity and adaptability.

The study shows that the persistence of the identity of a place can be linked with the resilience capacity of the structure of its urban landscape. Results have shown how different degrees of change have impact on the different elements of the urban landscape. However these changes did not produce critical changes in the identity of the place.

The example of Nezu shows that identity does not appear only as a product of otherness or difference defined as an external category. It is also produced through complex relationships within the built environment of place, in its discontinuity, diversity, multiplicity, or in other words, its complexity and adaptability.

The results show that complexity of the built environment in Nezu occurs at the smallest levels and in its smallest elements (Fig. 5-9). When connections between elements with the same characteristics happen within and across levels in Nezu, they produce a heterogeneous landscape (Fig. 5-10). The heterogeneity of the built environment of Nezu is supported by the presence of discontinuities that can be recognized in the appearance of levels and aggregations within each level (Fig. 5-8, Fig. 5-9). These discontinuities in the system and in the landscape have produced smallness at different levels (Fig. 5-9). This heterogeneity is expressed through zones of different intensities of smallness (Fig. 5-10). Since, the smallness is directly linked with the identity of Nezu, the results prove that complexity is an important state of its resilience. Furthermore, the analysis shows that relationships between elements of the built environment and publicprivate interfaces contribute to territorialisation of clusters and to intensification of the characteristics of smallness and bigness, creating the diverse urban landscape of Nezu. In addition, the results show that the presence of large elements represents an important part of complexity (Fig. 5-9).

The resilience theory can be used to observe the evolution of the built environment in order to measure the performance of societies in an ecosystem. At the same time it provides a theoretical framework to illustrate the potential of assembling the equilibrium situation of a landscape with change and persistence in the identity of a place.

The analysis of Nezu was based on the fact that the place has managed to preserve its identity by changes in its built environment. Consequently, it can be inferred the place has held a certain resilience capacity. In order to have a comprehensive understanding of how certain characteristics of the built environment can contribute to the resilience capacity of the urban landscape it would be necessary to examine a place that has lost its identity in further research.

The challenge that resilience poses to understanding the identity of a place is the necessity to include the concept of reorganization as a dynamic of change in maintaining an identity by making it more adaptive. The analysis of the resilience of the identity of a built environment will open up new opportunities for comprehending how urban landscapes change in order to adapt and evolve.

Future studies with a resilient assemblage approach can be utilized to confirm whether the persistence of the identity of a built environment is linked with its high resilience capacity, or with its resistance to change. Another potential of the resilient assemblage approach for urban designers is the possibility of assessing the resilience of urban landscapes by observing changes in the identity of a place. The identity of a place can be used as a reference in order to analyse the stability and resilience of a built environment; therefore, identity should be rethought as an important concept for having insight into the evolutionary dynamics of urban landscapes.

6. Assessing and measuring resilience

6.1 Introduction

The purpose of this chapter is to measure the relative resilience of two urban landscapes through the analysis of change in the heterogeneity of their built environments. This is felt to be useful not only for assessing the resilience capacity of two urban landscapes but also to try to see if certain kind of spaces, like green spaces, can be linked with these resilience dynamics of change. The analysis of interrelationships between the evolution of built environments and green spaces can produce knowledge about the resilience dynamics that make cities more adaptable to unpredictable change.

According to the hypothesis of this thesis, if the resilience theory can be applied to the study of urban landscapes, more heterogeneous built environments should have more resilience capacity to adapt to change, therefore they will change less over time. Following the initial hypothesis changes in the structure and diversity of the most heterogeneous urban landscape should not produce critical transformations in the structure of its green or built environment until its resilience capacity is surpassed. More heterogeneous urban landscapes should contains more heterogeneous built environments that at the same time should exhibit a higher resilience capacity, showing less quantity of change through time. Results from this chapter will contribute to finding more evidence about the resilience dynamics of change of urban landscapes and to showing a possible way of applying the resilience theoretical framework to the analysis of urban landscapes.

The chapter presents a comparative study of the resilience of the urban landscapes of the Auckland CBD in New Zealand and Nezu in Tokyo. The contrast between different evolutionary processes in each case study gives the possibility of testing the methodology and method applied in order to achieve its further external validation. The method integrates theoretical concepts from ecological resilience, assemblage and urban morphology (see section 2.2), and particularly a Conzenian approach (Whitehand, 2007). The method proposed assesses the persistence and change of aggregations and discontinuities in the structure of an urban landscape through time. Results should provide clues about the stability of the built environment and its resilience capacity.

The final aim of this chapter is to find evidence for applying the ecological resilience theoretical framework to the measurement of the resilience capacity of urban landscapes. This aligns with the goal of this research to propose a methodology and a method to assess the resilience of the built environment of urban landscapes while offering a theoretical framework for making a comparative analysis.

6.2 Theoretical framework: Panarchy and the TDH

The theoretical framework of ecological resilience proposed that complex adaptive systems, like ecosystems or urban landscapes, are driven by a small set of processes happening within and across scales in time and space (Gunderson & Holling, 2002). Processes happening at the same scale of space and time tend to be clustered within the same scale and entrained by other processes at bigger scales. As a result, complex systems are organized in a dynamic hierarchy. When a system is at the face of unpredictable changes, the resilience of the hierarchy will tend to maintain patterns of distribution and organization of its elements, despite the loss of some of them (Gunderson & Holling, 2002). If urban landscapes, as complex adaptive systems, are organized in the same way, elements of the built environment of Auckland and Nezu should be aggregated discontinuously in a dynamic hierarchy, generating different levels and processes within and across scales that will provide resilience to the system.

The theoretical framework of ecological resilience suggests that discontinuities in the hierarchy and dynamics of a complex system should generate a heterogeneous landscape (Holling, 1992). The heterogeneity in question is manifested through the existence of discontinuities produced in the texture of the landscape. In this research the heterogeneity of a built environment will be tested as the interrelationship between richness, diversity and evenness.

The resilience theory, through the TDH, explains that discontinuities in the landscape occur because elements of similar sizes tend to be aggregated so as to use resources at a similar scale of time and space. The quantity of land that is used for blocks differs from the quantity of land that a house uses. At the same time blocks and building footprints also change at different rates in time (see chapter 4). There is a relationship between the scale of aggregations and sizes of elements (see chapter 5). Self-organization dynamics produce clustering processes of elements of discrete sizes that result in the generation of aggregations and discontinuities (Gunderson et al., 2009).

Aggregations can be found quantitatively by clustering data, like similar areas of blocks or plots that can constitute a group of similar sizes. For example, it is possible to find aggregations of big, medium and small blocks. In this case the structure has three aggregations (big, medium and small blocks) and two discontinuities, one between big and medium sizes and the other one between medium and small blocks sizes. The structure of aggregations and discontinuities, a gaps assemblage, describes the composition of the texture of a landscape that can be understood as the structure of its morphology. Discontinuities in the structure of an urban landscape define the level of difference between clusters. Difference represents an important characteristic that enables diversity. More diverse systems should be linked with more heterogeneous landscapes. A large number and size of discontinuities within an assemblage would imply a richer and more diverse organization that should be reflected in a higher resilience capacity for the system (C. Allen et al., 2005). An urban landscape with high resilience capacity is the product of the richness and diversity of its urban Panarchy. This structure will try to maintain its heterogeneity in a fairly stable way in the face of unpredictable change through time. Accordingly, with this assumption urban landscapes that are more heterogeneous will change less in their structures than urban landscapes with a lesser heterogeneity. Moreover, this would imply that the complexity, heterogeneity and diversity presented in the built environment of an urban landscape are produced from the adaptability provided by its resilience capacity and linked with its discontinuity.

6.3 Case studies

The analysis compares changes in the diversity of the structure of two urban landscapes: the neighbourhood of Nezu in Tokyo, Japan and one area of the city business district of Auckland, New Zealand. The boundaries of the area of study of the east side of Auckland CBD, used in chapter 4, were adjusted in order to create an area similar to that of Nezu. Both areas represent a mixture between residential and commercial uses, and both were developing through time and showing resilience to the different historical events that could provoke change. However, historical events and processes were shaping these areas in a different manner. Furthermore, the case study area in Auckland has an important public green space and the area in Tokyo has only private green spaces. Both differences and similarities between these two case studies are considered important for comparison. The motive for comparing the dynamics of change in two urban landscapes is to try to find similarities in their behaviours while acknowledging their differences, in other words to find some external validation for the research.

For the purpose of this analysis five historical periods were chosen for both case studies. These periods follow the main historical phases in the evolution of Auckland and Tokyo. The chosen periods for Tokyo are: 1888 to 1919, 1919 to 1932, 1932 to 1956 and 1956 to 2003. Periods in Auckland are: 1882 to 1908, 1908 to 1931, 1931 to 1966 and 1966 to 2006.

6.4 Methods

The overall method is based on use of discontinuities to determine the relative resilience of ecosystems (C. Allen et al., 2005). The analysis was carried out in two urban landscapes, these being Nezu and the traditional centre of the Auckland CBD. The elements of their built environments were mapped and quantified through all periods. The analysis was conducted by measuring two group of variables: elements of the built environment (BF, PL, BL and ST) and green spaces (GS). A resilient assemblage approach (Garcia et al., 2012; Muminovic et al., 2012a) understands green spaces assembled within the built environment. In order to observe the interactions between green spaces and the built environment, green spaces were isolated and compared in order to see how they are tied to resilience dynamics (see section 2.7).

The elements of the built environment were analysed based on their areas measured in m². Green spaces comprise both public and private areas and

were measured at the level of blocks, meaning that they were defined as the area of the block minus building footprint areas. Private areas correspond with domestic green spaces (Gaston, Warren, Thompson, & Smith, 2005). Public green spaces were only found in Auckland and are represented by parks. In accordance with the theoretical assumptions of this research, green public spaces were counted as extensions of every plot, consequently the total area of parks was divided proportionally.

The method has two phases: a qualitative and a quantitative analysis. The objective of the qualitative analysis is the definition of the structure of the urban landscape. and mapping how these aggregations are clustered in space. The objective is to discover and define the number of aggregations (groups of more characteristic sizes) and discontinuities (the distance between aggregations that separate groups from each other) that is present in each variable of the built environment, describing in this way their structures. Change in the size of each variable was measured for the periods set out above. The objective was to measure the quantity of change (change difference) and the speed of change (rate of change) of PL, BL, ST in order to have two dimensions assessed—change in time and change in space. Alteration in the size of PL, BL, ST and green spaces (BF were not considered because the information was incomplete in Nezu) between periods was defined as change. Change was measured as change difference and as rate of change. The latter is the area difference between two successive periods divided by number of years between periods.

The quantitative analysis, focuses on the measurement of change in the different structures that emerged from the first analysis. The aim is to define how heterogeneous each structure is and also in which way it is changing in order to test the resilience capacity of Nezu and Auckland through changes in the heterogeneity of their built environments. Heterogeneity in this research is defined as an average between the values of richness, evenness and diversity related with the set of aggregations and discontinuities discovered in the structure of PL, BL, ST and GS per year. The analysis of discontinuities and aggregations used as a reference the method described by Allen in the assessment of specific resilience in ecosystems but adapted to the measurement of urban landscapes (C. Allen et al., 2005).

6.5 Qualitative analysis

The structure of each element of the urban landscape (BF, PL, BL, ST) was defined as the order of aggregations and discontinuities based on the size of elements. In order to investigate the presence of discontinuities in the urban landscape a cluster analysis was conducted (Garmestani et al., 2005) using Weka software that characterizes and defines groups of variables that cluster around a few points in the database (Witten et al., 2011). The cluster analysis was done using EM (expected maximization) -I 100 -N -1 -M 1.0E-6 -S 100, where max. alterations equal to 100, min. standard deviation equals to 1.0E-6, the number of cluster equals to -1, and the seed equals to 100 (see section 3.5). The discontinuities and aggregations obtained were readjusted in relation to their sizes to the maximum size of the cluster at each level. Using this method only significantly large discontinuities and clusters were considered for further analysis. Aggregations and discontinuities in PL, BL, ST and GS obtained from the cluster analysis of the urban landscape of Nezu and Auckland in each year were illustrated chronologically using bars and gaps.

Graphics were organized as an assemblage of horizontal bars (aggregations) and gaps between bars (discontinuities). The size of each bar is the range between the smallest and the biggest element contained in that aggregation. Gaps are distances between the biggest element of an aggregation and the smallest element of the next aggregation. The degree of grey inside bars characterizes the quantity of elements (BL, PL or ST) included in each aggregation. The information obtained in Weka was exported to excel tables and then these were joined to the database contained in the maps drawn in QGIS (see appendices 11 to 21). A first set of observations was carried out by contrasting results about alterations in the constitution of the structure of green spaces and built environments in Nezu and Auckland. Alterations in the structure of each case study were graphically observed through a set of criteria: number of clusters (richness), the size of each aggregation (range), the number of entities in each cluster (distribution), and the size of gaps between aggregations (difference).

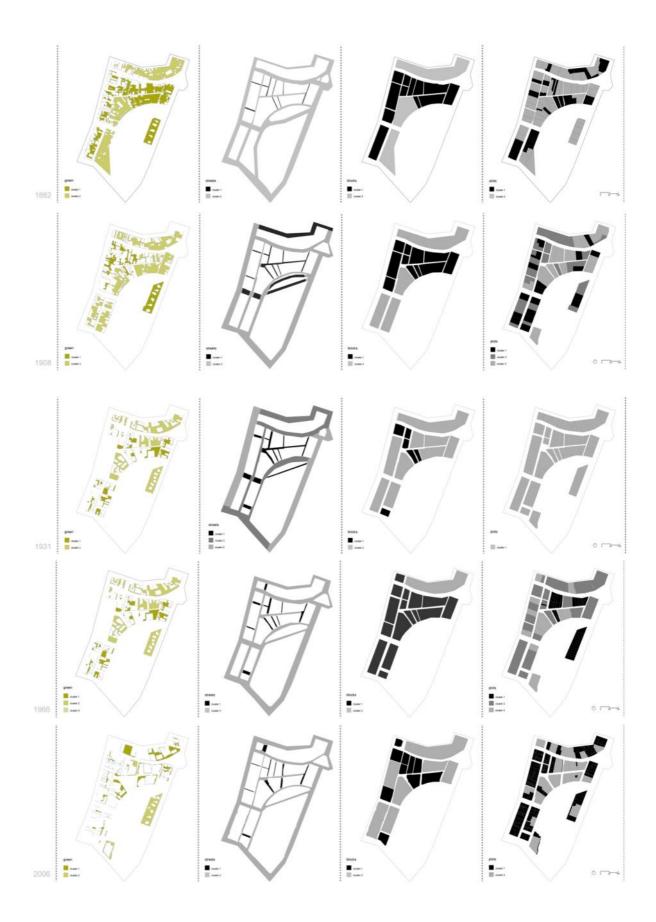


Figure 6-1. The evolution of heterogeneity in the urban landscape of Auckland

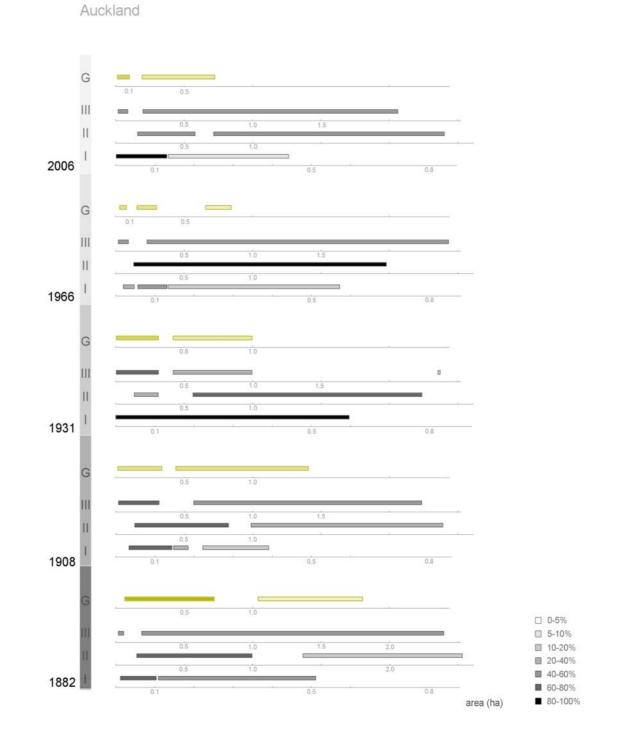


Figure 6-2. Structures of aggregations and discontinuities in GS, ST, BL, PL in Auckland

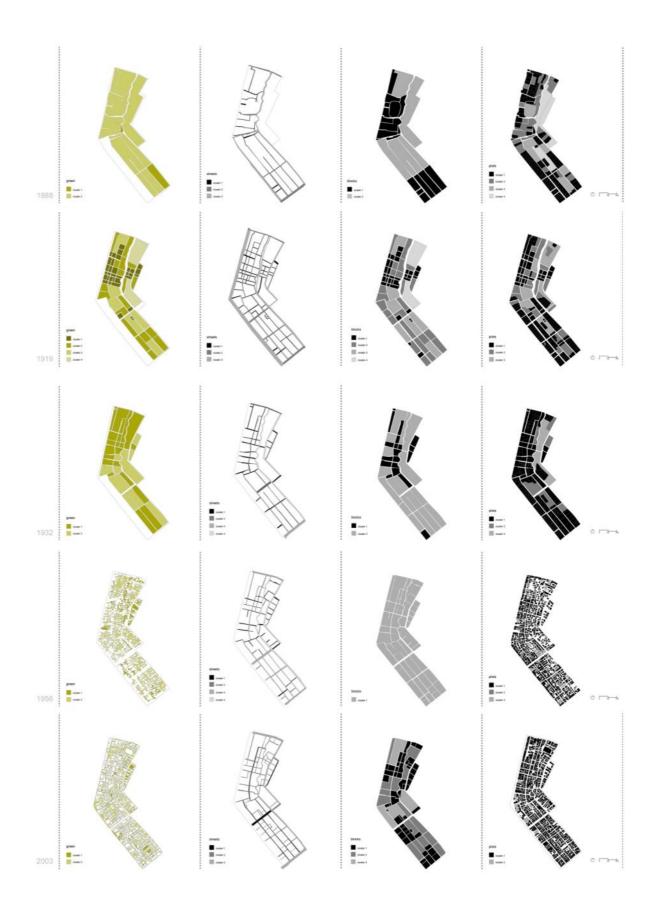
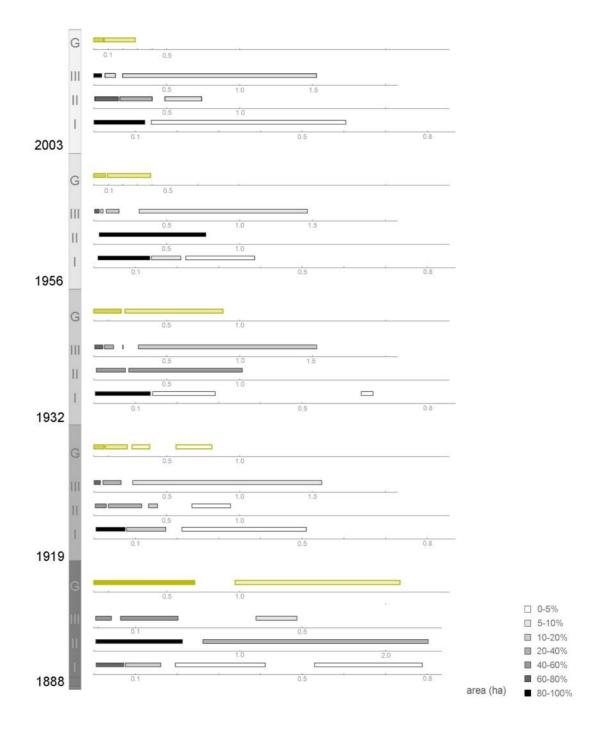


Figure 6-3. The evolution of heterogeneity in the urban landscape of Nezu

Nezu



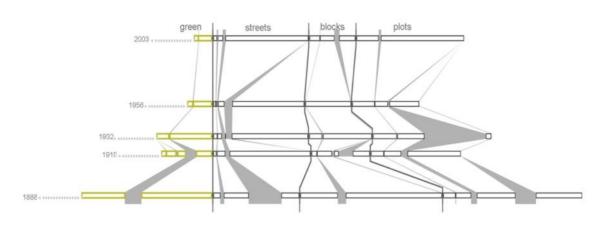
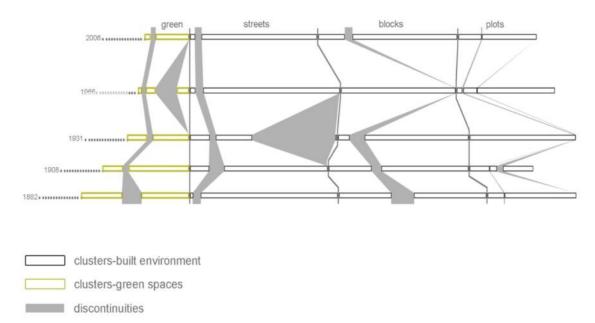

Figure 6-4. Structures of aggregations and discontinuities in GS, ST, BL, PL in Nezu

Table 6-1. Comparison between diversity and rate of change in GS and BE of Auckland and Nezu


Nezu	Space (diversity)	Time (rate of change)
Green Spaces (GS)	 Space (uversity) Sizes of green spaces are decreasing from 1888 to 2003. The largest number of elements is always clustered in the aggregations of smallest size elements. In 1919 the structure has the biggest number of clusters and average range of them is smaller than 1888. The relationship between the range and the distribution of aggregations maintains the same proportions from 1932 to 2003. 	 Three phases. From 1888 to 1932, slow change; from 1932 to 1956 fast change; from 1956 to 2003 slow change. The rate of change in the richness of aggregations also has two phases: from 1888 to 1932 fast change and from 1932 to 2003 slow change.
Built environment (BE)	 The structure of the streets remain fairly stable across the years The structure was getting less rich from 1919 to 2003. Changes in plots and blocks caused the major disturbances in the structure of the BE. From 1888 to 1956 the diversity in the range of aggregations in blocks is clustering around one size. The distance between aggregations is decreasing. Plots exhibit changes in their distance and richness from 1888 to 2003. 	-All the levels of the structure followed the same trend with a breaking point in 1932. -There are two phases at all levels: a phase of fast change from 1888 to 1932 and a long phase of slow change till 2003.
GS+BE	Diversity of GS and BE experience similar changes from 1888 to 1956. However from 1956 to 2003 GS are clearly constant while the structure of BE experienced changes in its richness and range without changing its diversity.	Their rates of change show one cycle in the case of BE and more than one in GS. Phases in GS and BE have different qualities. GS show less amplitude of change than BE.
Auckland Green Spaces (GS)	 GS maintain their richness with the exception of 1966. The range of aggregations is decreasing from 1882 to 2006. Distribution within aggregations is concentrated in small elements in 1882, 1932 and 2006. In 1908 and 1966 the distribution is more even. In 1966 the pattern of one small aggregation and one bigger aggregation is disrupted into three small aggregations. In 1966 the structure shows the biggest gap in its evolution. 	There are three phases. The first one shows a constancy in its rate of change, from 1882 to 1931; the second phase from 1931 to 1966 shows slow change and the third phase, from 1966 to 2003, exhibits fast change.
Built environment (BE)	 The range of aggregations does not generally experience big change with the exception of 1908 when the structure is richer. Blocks showed a decrease in richness in 1966 and plots in 1931 	Blocks, plots and streets show different phases. Streets have one constant phase, blocks two phases, slow change from 1882 to 1931 and fast change

	- From 1882 to 1931 the structure of BE experienced change in the distance between aggregations.	until 2006. Plots show three phases.
	The position of the gaps is moving across the structure.	
GS+BE	- When green spaces are changing BE is not changing in the same way. From 1882 to 1931 GS keep the distribution and position of gaps while the same variables behave in the opposite way in BE. From 1931 to 2006 relationships are reversed, while GS is changing BE is not.	While GS show slow change the BE exhibits fast change in blocks and plots. When fast change occurs in GS blocks and plots are slowing down.

Nezu

Auckland

Figure 6-5.Comparison between the structure of aggregations and discontinuities in the GS and BE (ST, BL, PL) of Auckland and Nezu

Table 6-2. Similarities and differences in the behaviour of GS and BE in Auckland and Nezu

	Similarities	Differences
Nezu and	- GS contribute to diversity of Nezu and	- Rate of change in GS in Nezu is
Auckland	Auckland.	smooth while in Auckland it is
	- Periods with one aggregation are not	not.
	repeated.	- In Nezu change in GS mirrored
	- GS always exhibit two clusters.	change in BE. In Auckland change
	-Range of GS in their first periods is evenly	in GS behaves in the opposite way
	distributed and the biggest.	to BE.
	-An increase on the richness of GS only	-Number of discontinuities in
	happened once in each structure.	Nezu is bigger that in Auckland.
	- Structural changes at any level are neither	-ST, BL, PL in Auckland are less
	linear nor continuous.	rich than in Nezu.
	- Structural changes are more frequent within	-The range of aggregations in
	levels than in the whole structure. The rate of	Nezu is getting smaller while in
	change in GS does not follow the rate of	Auckland it remains constant.
	change of BE	

6.6 Quantitative analysis

The qualitative analysis illustrated in figures 6-4 and 6-5 provides information about the way in which the structure of the urban landscape of Nezu and Auckland has been changing. It gives information visually but does not provide the numbers for a comparative analysis.

BL, PL, ST, GS were considered as different levels in the urban landscapes. Instead of making an analysis of the number of functional groups within each level (PL, BL, ST, GS) the richness of the systems was defined in relationship with the number of aggregations per level. For example, in figure 6-5 it is possible to observed that streets in 2003 in Nezu have three bars while Auckland in 2008 has two bars. These bars correspond with the quantity of groups of similar sizes in each data base. In this research richness was linked with the number of groups of similar sizes (aggregations) within a variable (PL, ST, BL, BF). A major quantity of aggregations in the same level implies more groups of different sizes, therefore a more diverse structure. Consequently in the comparison of the structure of streets between Nezu and Auckland, streets in Nezu are richer in the quantity of aggregations than in Auckland. The full list with the assessment of richness in elements of the urban landscape, at all periods, for Auckland and Nezu, is analysed and presented in tables 6-3 and 6-4.

Diversity was calculated using the Shannon-Wiener diversity index $H' = -\sum pi \ln pi$ where pi = 1/log S (S= total number of elements). Evenness was

calculated using the formula suggested by Pielou $J = H'/H' \max = H'/\log S$ where H' is the Shannon-Wiener diversity. In order to be able to compare the performance of Auckland and Nezu period by period, values of richness, evenness and diversity in plots, blocks, streets and green spaces were averaged. The average performance is presented in table 6-5.

In order to make observations of the evolution of the heterogeneity in Nezu and Auckland a similar approach to the qualitative analysis was followed: assessment of change in quantity (space) and speed (time). Change in the quantity of heterogeneity was analysed as change difference between consecutive periods. Change in the speed of change was implemented by using rate of change in the heterogeneity between periods analysed.

6.6.1 Analysis of heterogeneity within scale

The qualitative analysis permits having a quick graphic panorama that illustrates the state of the system, however quantitative appreciations done with this method demand an important investment of time without the certainty of arriving at precise conclusions. These considerations are not related with the quantity of GS but with their evenness, diversity and richness.

years	Auckland BE	A1	A2	A3	Elements	Richness	Evenness	Diversity
2006	Plots	179	20		199	2	0.4706	0.3262
2006	Blocks	7	10		17	2	0.9774	0.6775
2006	Streets	9	10		19	2	0.9980	0.6918
2006	Green Spaces	15	4		19	2	0.7425	0.5147
1966	Plots	37	64	10	111	3	0.8197	0.9005
1966	Blocks	17			17	1	0.0000	0.0000
1966	Streets	10	10		20	2	1.0000	0.6931
1966	Green Spaces	8	8	2	18	3	0.8783	0.9650
1931	Plots	119			119	1	0.0000	0.0000
1931	Blocks	6	9		15	2	0.9710	0.6730
1931	Streets	11	5		16	2	0.8960	0.6211
1931	Green Spaces	12	4		16	2	0.8113	0.5623
1908	Plots	50	18	15	83	3	0.8611	0.9460
1908	Blocks	11	4		15	2	0.8366	0.5799
1908	Streets	12	7		19	2	0.9495	0.6581
1908	Green Spaces	9	7		16	2	0.9887	0.6853

Table 6-3. Analysis of the evolution of richness, evenness and diversity in Auckland

1882	Plots	64	43	107	2	0.9720	0.6738
1882	Blocks	12	3	15	2	0.7219	0.5004
1882	Streets	8	10	18	2	0.9911	0.6870
1882	Green Spaces	13	3	16	2	0.6962	0.4826

Table 6-4. Analysis of the evolution of richness, evenness and diversity in Nezu

Years	Nezu BE	A1	A2	A3	A4	Elements	Richness	Evenness	Diversity
2003	Plots	1165	15			1180	2	0.0983	0.0681
2003	Blocks	51	14	5		70	3	0.6746	0.7411
2003	Streets	53	6	6		65	3	0.5519	0.6063
2003	Green Spaces	55	16			71	2	0.7698	0.5336
1956	Plots	880	52	14		946	3	0.2631	0.2891
1956	Blocks	51				51	1	0.0000	0.0000
1956	Streets	31	4	8	3	46	4	0.6929	0.9606
1956	Green Spaces	59	17			76	2	0.7668	0.5315
1932	Plots	217	7			224	2	0.2006	0.1391
1932	Blocks	18	17			35	2	0.9994	0.6927
1932	Streets	18	6	2	3	29	4	0.7510	1.0411
1932	Green Spaces	24	11			35	2	0.8981	0.6225
1919	Plots	163	25	7		195	3	0.4848	0.5326
1919	Blocks	35	24	7	2	68	4	0.7554	1.0472
1919	Streets	36	10	4		50	3	0.6922	0.7605
1919	Green Spaces	42	18	6	2	68	4	0.6978	0.9674
1888	Plots	138	27	6	3	174	4	0.4754	0.6591
1888	Blocks	19	9			28	2	0.9059	0.6279
1888	Streets	13	8	2		23	3	0.8212	0.9022
1888	Green Spaces	21	3			24	2	0.5436	0.3768

Table 6-5. Average performance in heterogeneity in GS, ST, PL, BL of Auckland and Nezu

	Auckland			Nezu	Nezu				
	Richness	Evenness	Diversity	Mean		Richness	Evenness	Diversity	Mean
GS	2.200	0.823	0.642	1.222	GS	3.400	0.702	0.854	1.652
ST	2.000	0.967	0.670	1.212	ST	2.400	0.735	0.606	1.247
PL	2.200	0.625	0.569	1.131	PL	2.400	0.667	0.622	1.230
BL	1.800	0.701	0.486	0.996	BL	2.800	0.304	0.338	1.147

Nezu has a more heterogeneous built environment (BE) than Auckland. PL, BL, ST and GS in Nezu are richer and more diverse than the same elements in Auckland. Heterogeneity is represented in this case as the mean values that resulted from averaging calculations of richness, diversity and evenness in ST, GS, BL and PL at different periods.

The number of aggregations is linked with the number of different groups of sizes in a category or level. For this reason the quantity of aggregations in one structure can be related with its richness. Richer structures are more diverse than even structures; therefore, richness represents a key variable for determining the heterogeneity of the landscape.

In Auckland, GS is the most heterogeneous element of the BE and ST is the most diverse. PL has an equally important richness but its values change critically between periods. In Nezu, ST is the most heterogeneous and richest element of the BE followed by GS. In both cases ST and GS play an important role in the heterogeneity of the BE. One common denominator between ST and GS is that neither of these are elements of the urban landscape that contain areas with building footprints. ST and GS represent non-built spaces. The major diversity and richness of GS and ST observed in Nezu and Auckland highlights the importance of intervals in between built spaces as producers of heterogeneity in the structure of the BE. In this way GS and ST add to the complexity and resilience of the system.

6.6.2 Analysis of heterogeneity across scales

The purpose of this part of the analysis is to test how the heterogeneity of the BE and GS are related. Particular attention is paid to the analysis of change in the heterogeneity of BE and GS. The urban Panarchy of Nezu and Auckland should tend to keep both structures stable across time even though some of their elements are lost or changed. Following the theory developed in ecological resilience, more heterogeneous structures should exhibit a higher resilience capacity. Therefore, the urban landscape of Nezu should have a higher resilience capacity and should change less in its structure than the structure of the urban landscape of Auckland.

The analysis uses variables of richness, evenness, diversity and their average in order to characterize the heterogeneity of the elements of the urban landscape of Nezu and Auckland across the scales of BE and GS and also through different periods of time. The structures of the urban landscapes of Auckland and Nezu are compared by contrasting changes in the heterogeneity of their built environments with and without green spaces. As a result three parallel analyses are conducted in order to observe the performances of Nezu and Auckland.

Nezu B	Nezu Built environment +Green Spaces					Auckland Built environment +Green Spaces				
	Richness	Evenness	Diversity	Mean		Richness	Evenness	Diversity	Mean	
2003	2.5000	0.5236	0.4873	1.1703	2006	2.0000	0.7971	0.5525	1.1165	
1956	2.5000	0.4307	0.4453	1.1253	1966	2.2500	0.6745	0.6397	1.1881	
1932	2.5000	0.7123	0.6238	1.2787	1931	1.7500	0.6696	0.4641	0.9612	
1919	3.5000	0.6576	0.8269	1.6615	1908	2.2500	0.9090	0.7173	1.2921	
1888	2.7500	0.6865	0.6415	1.3593	1882	2.0000	0.8453	0.5859	1.1437	
Mean	2.7500	0.6021	0.6050	1.3190	Mean	2.0500	0.7791	0.5919	1.1403	
stdev	0.4330	0.1203	0.1502	0.2122	stdev	0.2092	0.1055	0.0948	0.1204	
var	0.1875	0.0145	0.0226	0.0450	var	0.0438	0.0111	0.0090	0.0145	

5.6.2 Evolution of the heterogeneity of Nezu and Auckland GS and BE Table 6-6. Heterogeneity of Nezu and Auckland BE and GS

Nezu B	Nezu Built environment					Auckland Built environment				
	Richness	Evenness	Diversity	Mean		Richness	Evenness	Diversity	Mean	
2003	2.6667	0.4416	0.4718	1.1934	2006	2.0000	0.8153	0.5651	1.1268	
1956	2.6667	0.3187	0.4166	1.1340	1966	2.0000	0.6066	0.5312	1.0459	
1932	2.6667	0.6503	0.6243	1.3138	1931	1.6667	0.6223	0.4314	0.9068	
1919	3.3333	0.6441	0.7801	1.5859	1908	2.3333	0.8824	0.7280	1.3146	
1888	3.0000	0.7342	0.7297	1.4880	1882	2.0000	0.8950	0.6204	1.1718	
Mean	2.8667	0.5578	0.6045	1.3430	Mean	2.0000	0.7643	0.5752	1.1132	
stdev	0.2981	0.1716	0.1580	0.1917	stdev	0.2357	0.1402	0.1097	0.1511	
var	0.0889	0.0295	0.0250	0.0367	var	0.0556	0.0197	0.0120	0.0228	

Nezu G	reen Spaces	5	-	-	Auckland Green Spaces				
	Richness	Evenness	Diversity	Mean		Richness	Evenness	Diversity	Mean
2003	2.0000	0.7698	0.5336	1.1011	2006	2.0000	0.7425	0.5147	1.0857
1956	2.0000	0.7668	0.5315	1.0995	1966	3.0000	0.8783	0.9650	1.6144
1932	2.0000	0.8981	0.6225	1.1735	1931	2.0000	0.8113	0.5623	1.1245
1919	4.0000	0.6978	0.9674	1.8884	1908	2.0000	0.9887	0.6853	1.2247
1888	2.0000	0.5436	0.3768	0.9734	1882	2.0000	0.6962	0.4826	1.0596
Mean	2.4000	0.7352	0.6064	1.2472	Mean	2.2000	0.8234	0.6420	1.2218
stdev	0.8944	0.1293	0.2203	0.3656	stdev	0.4472	0.1153	0.1963	0.2283
var	0.8000	0.0167	0.0485	0.1337	var	0.2000	0.0133	0.0385	0.0521

The comparative analysis shows that the BE of Nezu is more heterogeneous than the BE of Auckland with and without GS. In GS in both Auckland and Nezu, heterogeneity is quite similar with the difference that richness in Nezu is higher. However the contribution of Auckland GS to the heterogeneity of its urban landscape is more important than in the case of Nezu GS. This situation can be explained because Auckland GS richness and diversity is bigger than the heterogeneity of its BE, therefore it can lift its value.

In Nezu and Auckland, GS contribute to the complexity and heterogeneity of the BE but the level of importance of the contribution is related with the diversity and richness of their BE. In consequence the heterogeneity of a BE will define the level of effectiveness of the contribution GSs can make in an urban landscape. A BE that has a structure of PL, ST and BL that is not rich and diverse enough would need a highly heterogeneous system of GS to become a richer urban landscape.

6.6.3 Difference in change in the heterogeneity of Nezu and Auckland with and without Green Space

Nezu Cha	ange Differe	ence BE+GS			Auckland Change Difference BE+GS					
Period	Richness	Evenness	Diversity	Mean	Periods	Richness	Evenness	Diversity	Mean	
1956-					1996-					
2003	0.0000	0.1774	0.0861	0.0879	2006	0.1111	0.1538	0.1362	0.1337	
1932-					1931-					
1956	0.0000	0.3953	0.2862	0.2272	2006	0.2222	0.0073	0.2744	0.1680	
1919-					1908-					
1932	0.2857	0.0768	0.2456	0.2027	1931	0.2222	0.2634	0.3530	0.2795	
1888-					1882-					
1919	0.2143	0.0422	0.2242	0.1602	1908	0.1111	0.0700	0.1832	0.1214	
Mean	0.1250	0.1729	0.2105	0.1695	Mean	0.1667	0.1236	0.2367	0.1757	
stdev	0.1473	0.1589	0.0868	0.0610	stdev	0.0642	0.1108	0.0965	0.0905	
var	0.0217	0.0253	0.0075	0.0037	var	0.0041	0.0123	0.0093	0.0052	

Table 6-9. Change difference in Nezu and Auckland BE and GS

Table 6-10. Change difference in Nezu and Auckland BE

Nezu Cha	Nezu Change Difference BE					Auckland Change Difference BE					
Period	Richness	Evenness	Diversity	Mean	Periods	Richness	Evenness	Diversity	Mean		
1956-					1996-						
2003	0.0000	0.2783	0.1172	0.1318	2006	0.0000	0.2561	0.0600	0.1054		
1932-	0.0000	0.5100	0.3328	0.2809	1931-	0.1667	0.0253	0.1880	0.1267		

1956					2006				
1919-					1908-				
1932	0.2000	0.0096	0.1997	0.1364	1931	0.2857	0.2947	0.4075	0.3293
1888-					1882-				
1919	0.1000	0.1227	0.0645	0.0957	1908	0.1429	0.0141	0.1478	0.1016
Mean	0.0750	0.2301	0.1785	0.1612	Mean	0.1488	0.1476	0.2008	0.1657
stdev	0.0957	0.2167	0.1169	0.0818	stdev	0.1172	0.1485	0.1478	0.1378
var	0.0092	0.0469	0.0137	0.0067	var	0.0137	0.0221	0.0218	0.0120

Table 6-11. Change difference in Nezu and Auckland GS

Nezu Ch	ange Differe	nce GS			Auckland Change Difference GS					
Period	Richness	Evenness	Diversity	Mean	Period	Richness	Evenness	Diversity	Mean	
1956-					1996-					
2003	0.0000	0.0039	0.0039	0.0026	2006	0.3333	0.1547	0.4667	0.3182	
1932-					1931-					
1956	0.0000	0.1461	0.1461	0.0974	2006	0.3333	0.0764	0.4172	0.2756	
1919-					1908-					
1932	0.5000	0.2230	0.3565	0.3598	1931	0.0000	0.1794	0.1794	0.1196	
1888-					1882-					
1919	0.5000	0.2210	0.6105	0.4439	1908	0.0000	0.2958	0.2958	0.1972	
Mean	0.2500	0.1485	0.2793	0.2259	Mean	0.1667	0.1766	0.3398	0.2277	
stdev	0.2887	0.1028	0.2641	0.2096	stdev	0.1925	0.0908	0.1288	0.1373	
var	0.0833	0.0106	0.0698	0.0439	var	0.0370	0.0083	0.0166	0.0077	

Tables 6.9-6.11 show that the average change difference in richness, evenness and diversity in the structure of the BE and GS of Auckland is bigger than the change difference exhibited by the richness, evenness and diversity in the structure of Nezu (Table 6-6). The structure of the BE of Auckland has changed more than the BE of Nezu (Table 6-7).

It is important to note that the analysis of variations and standard deviations together add information about the quality of change. Variations and standard deviations in the BE+GS (Table 6-6) and also in the BE of Auckland (Table 6-7) are higher than in the BE+GS (Table 6-6) and BE (Table 6-7) of Nezu. However variations and standard deviations of Nezu for GS are bigger than those of Auckland. This situation is linked with change in the richness of each structure. Less variation in the richness of a system can be linked with its more robust urban Panarchy that exhibits more resilience to change by maintaining its stability state. Variations are higher in Auckland when its structure is less heterogeneous than Nezu. BE and BE+GS of Auckland are less diverse than Nezu and perhaps for this reason they vary more than Nezu. Even though the quantity of change of GS in Auckland is bigger than in Nezu, it has changed less in

richness, therefore it has varied less. This result could reinforce the hypothesis that more heterogeneous structures are more resilient and therefore their adaptation processes to change are softer than those found in less heterogeneous landscapes.

6.6.4 Rate of change in the heterogeneity of Nezu and Auckland with and without Green Spaces

Nezu Ra	te of change	BE+GS		Auckland Rate of change BE+GS					
	Richness	Evenness	Diversity	Mean		Richness	Evenness	Diversity	Mean
1956-			_		1966-				
2003	0.0000	0.0020	0.0009	0.0010	2006	0.0063	0.0031	0.0022	0.0038
1932-					1931-				
1956	0.0000	0.0117	0.0074	0.0064	1966	0.0143	0.0001	0.0050	0.0065
1919-					1908-				
1932	0.0769	0.0042	0.0156	0.0323	1931	0.0238	0.0114	0.0121	0.0158
1888-					1882-				
1919	0.0259	0.0010	0.0064	0.0111	1908	0.0096	0.0024	0.0051	0.0057
Mean	0.0257	0.0047	0.0076	0.0127	Mean	0.0135	0.0043	0.0061	0.0079
stdev	0.0363	0.0049	0.0061	0.0137	stdev	0.0076	0.0049	0.0042	0.0056
var	0.0013	0.0000	0.0000	0.0002	var	0.0001	0.0000	0.0000	0.0000

Table 6-12. Rate of change in Nezu and Auckland BE and GS

Table 6-13. Rate of change in Nezu and Auckland BE

Nezu Rat	Nezu Rate of change BE					Auckland Rate of change BE					
	Richness	Evenness	Diversity	mean		Richness	Evenness	Diversity	Mean		
1956-					1966-						
2003	0.0000	0.0026	0.0012	0.0013	2006	0.0000	0.0052	0.0008	0.0020		
1932-					1931-						
1956	0.0000	0.0138	0.0087	0.0075	1966	0.0095	0.0005	0.0029	0.0043		
1919-					1908-						
1932	0.0513	0.0005	0.0120	0.0212	1931	0.0317	0.0124	0.0141	0.0194		
1888-					1882-						
1919	0.0115	0.0031	0.0017	0.0054	1908	0.0128	0.0005	0.0041	0.0058		
Mean	0.0157	0.0050	0.0059	0.0089	Mean	0.0135	0.0046	0.0055	0.0079		
stdev	0.0243	0.0060	0.0053	0.0087	stdev	0.0133	0.0056	0.0059	0.0083		
var	0.0006	0.0000	0.0000	0.0001	var	0.0002	0.0000	0.0000	0.0001		

Table 6-14. Rate of change in Nezu and Auckland GS

Nezu Ra	Nezu Rate of change GS					Auckland Rate of change GS					
	Richness	Evenness	Diversity	Mean		Richness	Evenness	Diversity	Mean		
1956-					1966-						
2003	0.0000	0.0001	0.0000	0.0000	2006	0.0250	0.0034	0.0113	0.0132		
1932-					1931-						
1956	0.0000	0.0055	0.0038	0.0031	1966	0.0286	0.0019	0.0115	0.0140		
1919-					1908-						
1932	0.1538	0.0154	0.0265	0.0653	1931	0.0000	0.0084	0.0059	0.0048		

1888-					1882-				
1919	0.0690	0.0053	0.0204	0.0315	1908	0.0000	0.0112	0.0078	0.0063
Mean	0.0557	0.0066	0.0127	0.0250	Mean	0.0134	0.0063	0.0091	0.0096
stdev	0.0731	0.0064	0.0128	0.0304	stdev	0.0155	0.0043	0.0027	0.0075
var	0.0053	0.0000	0.0002	0.0009	var	0.0002	0.0000	0.0000	0.0000

Tables 6-12, 6-13, and 6-14 show that the average rate of change in richness, evenness and diversity in the structure of the BE and GS of Nezu is bigger than the rate of change exhibited by the richness, evenness and diversity in the structure of Auckland. The structure of Nezu has changed faster than the structure of Auckland. Even though from 1956 to 2003 the urban landscape of Nezu has remained quite stable with a lower rate of change than Auckland, the rate of change of Nezu GS impacts on the whole system raising its rate of change.

Auckland GS and Nezu GS change faster than their respective BE. In the case of Nezu that has a lesser quantity of GS, changes in the GS are driven by changes in the BE. In the case of Auckland, a bigger rate of change in GS matches with a lower rate of change in BE and vice versa.

6.6.5 Synthesis of the evolution of the heterogeneity of the urban landscapes of Nezu and Auckland

Table 6-15. Comparison of heterogeneity, rate of change and change difference
between Nezu and Auckland

	Heterogeneity			Rate of c	hange		Change Difference		
	BE+GS	BE	GS	BE+GS	BE	GS	BE+GS	BE	GS
Nezu	1.3190	1.3430	1.2472	0.0127	0.0089	0.0250	0.1695	0.1612	0.2259
Auckland	1.1403	1.1132	1.2218	0.0079	0.0079	0.0096	0.1757	0.1657	0.2277

The structure of the built environment of the urban landscape of Nezu is more heterogeneous and has been changing less but faster than Auckland. The comparative analysis between Nezu and Auckland shows that more heterogeneous urban landscapes tend to experience less structural change in their richness and diversity than less heterogeneous urban landscapes. From an ecological resilience viewpoint, these results support the assumption that more diverse systems have a higher resilience capacity than less diverse systems and for this reason they will tend to buffer change more effectively, within and across scales, experiencing less change in their structure and heterogeneity.

The heterogeneity of Nezu is based in the quality of its BE, particularly in the diversity and richness of its ST system, while the heterogeneity of Auckland relies on the diversity and richness of its GS that is bigger than the average heterogeneity of its BE. GS in Auckland and Nezu have changed more in quantity and faster than their respective BEs, and for this reason the heterogeneity of the urban landscape of Auckland has been more affected in terms of change difference. The relationship between the rate of change and the change difference in Nezu exposes its tendency to change quickly without causing major modifications in its own structure due to the complexity and heterogeneity of its BE that can be more resilient to changes in GS.

6.7 Results

Results sustain the hypothesis that more heterogeneous landscapes are more diverse and their structures should tend to change less. These facts prove that assumptions stated in the TDH can be considered to apply when analyzing the resilience of urban landscapes.

The analysis of Nezu and Auckland using a resilient assemblage approach proves that the use of the methodology and method proposed generate quantitative and qualitative information for understanding the resilience of the built environment of urban landscapes in relationship with their complexity and adaptability.

The quantification of discontinuities in the structure of an urban landscape permits an insight into the resilience of an urban landscape. The observation of change in the diversity and richness of two systems is an important step towards the measurement of general and specific resilience in urban landscapes.

A cluster analysis permits the bounding of information in large data bases, a factor that make data management a lot easier and that also allows a different view of a system based on a few key variables. Statistical variables like rate of change, growth, change difference, standard deviation and variance produce key information in the measurement of morphological change. At the same time calculations of ecological indices like diversity, evenness, and richness contribute to the quantitative assessment of urban landscapes and to the challenge of measuring the heterogeneity of a landscape in time and space. The method applied in this research is highly focused on creating a parameter to analyse the rhythm of change of evolutionary forces in urban landscapes, their self-organization processes, and interrelationships between elements that structure the urban landscape.

By using the proposed methodology it is possible to realize which group of sizes and specifically what ranges are more persistent and which ones tend to change more frequently. This type of information gives important clues about the morphology of key elements that structure the identity of the built environment and characterize the stability state of the urban landscape. The awareness of what PL, BL, ST sizes are more resistant and resilient to change is useful data that could be incorporated in the design process of new developments and projects.

Green spaces contribute to the complexity and diversity of the urban landscape. The results show that in the case of both Auckland and Tokyo GS behave in an independent way from the levels of the built environment. Namely, changes in diversity of GS do not necessarily follow the same developments in the built environment. The heterogeneity of Auckland GS and Nezu GS changed faster and more in quantity than their respective BE. It can be inferred that they represent another level in the urban landscape. Quantities of GS were shrinking through time but the diversity exhibited by GS was changing in an alternative manner. The contribution of green spaces to overall diversity of the assemblage was linked with the richness of their structures and not necessarily with their quantities. In this manner they contribute to the complexity of the system and to its diversity by adding aggregation and discontinuities to the whole structure.

The richness and diversity of domestic GS is restrained by the heterogeneity of the BE. The diversity produced by domestic GS, at small scales, depends on the diversity of building footprints, plots, and block sizes at the same scale. Parks and other bigger green areas contribute to the total amount of GS but not necessarily to its diversity. Auckland contains more and bigger green public and private spaces than Nezu, but the BE of Auckland is less rich and diverse than Nezu, therefore its GS are also less heterogeneous. The insertion of green public spaces in BEs that are more diverse, like Nezu, would be a more effective way to enhance heterogeneity. This result should be a consideration for designers and planners that are interested in the resilience of urban landscapes. Policies and designs that acknowledge the relationship between building footprints, plots size and green spaces is necessary in order to enhance the heterogeneity of GS at small scales.

The heterogeneity of the BE can be enhanced or lessened by the heterogeneity of GS. Auckland GS are more heterogeneous than its BE, therefore GS helps to enhance its richness and diversity. Nezu GS are more heterogeneous than Auckland GS but less rich and diverse than its own BE, and for this reason they lessen the heterogeneity of the entire system. According to the performance of the urban landscapes of Nezu and Auckland, when the GS is less rich and diverse than its correspondent BE, changes in the heterogeneity of the BE should impact on its GS; however, changes in a BE that is less rich than its own GS, will not necessarily impact on the structure of GS. Urban landscapes with important heterogeneity in BE and GS would hold rich and diverse structures that are fairly stable in the face of unpredictable disturbances.

GS contributes to the resilience capacity of the urban landscape for buffering change in its built environment. The analysis of the evolution of Nezu and Auckland shows that alterations in the composition of their GS affected the structure, composition and stability of both built environments. The observations sustain the hypothesis that green spaces have the role of buffering spaces that tend to stabilize the non-linear dynamics of transformations happening in the built environment of urban landscapes. Based on results obtained, it is fair to consider GS as a resilience capital of the built environment. If GS and other un-built (in-between) spaces are part of a resilience capital they are also linked with the production of opportunities for the urban landscape. In this case opportunities mean the necessary space to make the BE and GS more or less heterogeneous and consequently to increase or decrease its resilience capacity. In any case, the structure of the urban landscape, the quantity and quality of its elements and its evolutionary dynamics of change, are all associated with the production of opportunities. The assessment of the evolution of the structure of green spaces can provide important information about the stability of an urban landscape and allow some insight into the resilience behaviour of a built environment. The potential of these findings are linked with the possibility of quantifying the resilience capacity of a socio-ecological landscape by analyzing changes in its built environment and also of using a resilience approach to designing architectural and urban interventions in urban landscapes.

6.8 Conclusion

This analysis only shows one aspect of the stability state of the urban landscapes of Auckland and Nezu related with the evolution of their respective town plans, particularly with the dynamics of change of the built environment and its resilience to internal and external disturbances, which it is hoped contribute to assessing the resilience capacity of socio-ecological landscapes. For these reasons the target of the research was not focused on the discovery of morphological patterns or types. However, if this method were to be related with timelines and the identification of events and processes that have an impact on the urban landscape a typo-morphological research could be established.

The analysis of data using more developed statistical and mathematical tools along with a deeper understanding of ecological concepts could also bring a new insight into quantitative and qualitative urban analysis related with resilience.

Resilience thinking becomes useful for dealing with the unpredictable nature of socio-ecological change, through identification of spaces for resilience within urban areas. The understanding of space as a capital asset within cities is a key contribution of this research to the future analysis of the resilience of urban landscapes. Particularly significant is the fact that opportunities in urban landscapes are not only created by new architectural and urban interventions but are also contained in the structure of resilient spaces and in the future evolution produced by the interaction of elements of the same urban landscape. These systems of spaces in a process of becoming are the arena of opportunities and risks, and for this reason they are spaces for resilience. Spaces for resilience are natural resources that can be understood as a socio-ecological service produced and consumed by socio-ecological landscapes. The results of this research confirm the idea that the built environment is not just a consumer of socio-ecological services but is also a generator of spaces for resilience. For these reason the built environment becomes an essential element in analysing the resilience of cities (Garcia & Vale, 2012).

The production of spaces for resilience is linked with the way in which the discrete evolution of a particular built environment occurs. Resilience is an attribute that allows complex systems to be changed in order to be adaptive. For this reason the transformations of the built environment of a socio-ecological landscape are susceptible to being analyzed through the theory of ecological resilience. The increased urbanization of the global population, resource shortages and the idea of one planet living suggest a need to understand how cities truly behave and evolve. The ability of a complex system to adapt to change that comes from internal and external pressures is the essence of creating a system than can sustain itself in the long term.

Discovering different levels of heterogeneity can be useful for defining how much diversity and richness is needed in order to consider an urban landscape heterogeneous enough. At the same time the development of other comparative analysis between different urban landscapes could produce more information about the resilience dynamics of change.

7. Conclusions

7.1 Introduction

This chapter highlights contributions made by the thesis research to the analysis of urban landscapes. The first group of results is related to the theoretical evidence achieved by creating a philosophical approach to translating topics from ecology to the analysis of urban landscapes. The criteria for assessment developed from the interdisciplinary set of concepts assembled in the first three chapters showed evidence that the ecological resilience theoretical background could be translated and applied in urban studies. The second group of results is related with the possibilities of applying the ecological resilience methodology to the measurement of change in the built environment of urban landscapes. Due to the complexity of and information needed for the calculations, the methodology was tested in different steps. The possibilities exploited in this research are not the only way of assessing resilience but they represent a set of criteria that prove that is possible to measure resilience in urban landscapes. Each step emphasizes and evaluates different aspects of the methodology in order to analyse the potential and implications of the instrumental theory when it is applied to concrete case studies.

7.2 Answering the research question

The main research question was: how is it possible to apply the ecological resilience theoretical framework to the analysis of urban landscapes?

The hypothesis was based on the assumption that the application of ecological resilience to the analysis of urban landscapes could be approached through assessing the dynamics of change in the morphology of built environments.

Through the assessment of the dynamics of change in the morphology of the built environment performed in chapters 4, 5 and 6, in accordance with the theoretical background developed in chapter 2 and 3, theoretical and practical evidence of how to apply the ecological resilience theoretical framework to the analysis of urban landscapes was found. The sets of results, grouped as theoretical and practical evidence, contribute to answering the research question and to validating the hypothesis as stated.

The theoretical evidence can be grouped around the idea that the application of ecological resilience to the analysis of urban landscapes is possible by implementing a complex methodological approach that merges ecology, morphogenetics and assemblage theory.

The practical evidence found can be grouped around the idea that the measurement of certain dynamics of change (in the evolution of urban landscapes, in the identity of place, and in the heterogeneity of the built environment) gives information about possible ways of applying the ecological resilience theoretical framework to the assessment of the resilience capacity of urban landscapes. In this way, theoretical and practical conclusions give evidence of how to apply the resilience theoretical framework to urban landscapes.

7.3 Theoretical evidence: thinking about how to apply ecological resilience to the analysis of urban landscapes

The development of the ontology and philosophical approach, carried out in the first three chapters, sustains the idea that the translation of key concepts from ecology to urbanism is possible and that this is supported in literature and research done in alternative fields of study. Therefore the criterion for assessment derived from the complex methodological approach of the thesis is a theoretical construct that establishes the starting point for thinking about how to apply ecological resilience to urban landscapes.

A morphogentic understanding clarifies the elements of the built environment that have to be analysed in order to understand the structure and evolution of urban landscapes. The theoretical background of morphogenetics (Whitehand, 1981) and the theoretical framework of ecological resilience and its methodology (Resilience Alliance, 2007a) when merged and implemented together become useful tools with which to analyse the dynamics of change in the built environment. These findings demonstrate that the complex methodological approach creates a territory of intersection between morphogenetics and ecological resilience that can increase the understanding of the dynamics of change in urban landscapes.

The implementation of the complex methodological approach to the assessment of change in two built environments using original methods can be used to give evidence of how to apply ecological resilience to the analysis of urban landscapes. Therefore the methods are also part of the results of this thesis.

The application of ecological resilience to urban landscapes does not demonstrate that ecosystems are equal to urban landscapes but only that the complexity of ecosystems and their dynamics of change related to adaptation and resilience can be compared with the complexity and dynamics of change observed in urban landscapes. From this systemic viewpoint, the comparison between the dynamics of change of ecosystems and urban landscapes is founded in the fact that both systems can be analysed as complex adaptive systems. The analysis in chapters 4, 5 and 6 provide evidence that the dynamics of change of urban landscapes show properties like non-linearity, systemic interactions, historical sequence and spatial relationships (Holling & Goldberg, 1971, p. 226) that are characteristics of complex adaptive systems. Therefore, methodologies created to analyse the resilience dynamics of change in ecosystems should be valid to be applied to the study of urban landscapes.

The groups of concepts used in the construction of the theoretical background of the thesis and the methods proposed could be used as a foundation for the development of an instrumental theory to explain and assess change in the built environment of urban landscapes. Moreover the way of thinking about the resilience of urban landscapes proposed in this thesis can be used, through the implementation of the methodology and methods proposed, to conduct comparative analysis in urban morphology and ecology.

- 7.4 Practical evidence: ways of applying ecological resilience to the analysis of urban landscapes
- 7.4.1 Ecological resilience can be applied to the analysis of urban landscapes by assessing the dynamics of change in key elements of the built environment

The analysis of the case study of the east side of Auckland CBD in chapter 4 supports the assumption that adaptive dynamics of change in urban landscapes generate a dynamic hierarchy (Panarchy). Through the quantitative assessment of timelines, a Panarchy can be observed in the way that key elements of the built environment of urban landscapes (blocks, plots, streets and building footprints) are structured, interacts and change. The analysis of the dynamics of change in the morphology of the built environment of Auckland shows that the structure of its urban landscape can be understood and related to spatio-temporal processes of change that are also found in Panarchy. Therefore the study supports the hypothesis that the resilience capacity of urban landscapes can be assessed by analysing changes in the morphology of the built environment. By testing the hypothesis, results exhibit evidence of one possible way of applying the ecological resilience theoretical framework to the analysis of urban landscapes.

The case study in chapter 4 shows that elements of the urban landscape change at different rates and occupy different levels in the hierarchy of which they are a part. The urban system holds discrete scales each one having its own equilibrium point that may differ from other scales. In this way the urban system is shown to have multiple equilibrium points in its structure across scales. At the same time each element of the built environment is changing and altering at its own dynamic of change. This fact demonstrates that within scales, every level has its own equilibrium point that is not fixed but moving in time, pushing each element to work in more than one stability state. The complex structure of the built environment, exposed in the hierarchy of multiple scales and levels that it contains, along with its multiple equilibrium points, manifests the possibility that changes at one scale may or may not affect the stability at larger scales. This fact can be used to support assumptions about how adaptability occurs in resilience dynamics. Particularly the point of the hypothesis in which it is stated that transformations in the morphology of the urban landscape at one scale might or might not produce structural changes at larger scales.

Results of the timeline analysis in Auckland also reveal that the built environment of urban landscapes is complex and adaptive. Results also show that the assemblage of methods from ecological resilience and urban morphology can produce important information about the dynamics of change of the urban landscape.

The different rates of change of the complexes of elements analysed in the evolution of the urban landscape of Auckland show no evidence of responding to a single controlling event that affects all scales and processes at the same time and scale. Building footprints, plots, blocks, streets show different responses and are affected, as explained in the previous paragraph, by different contextual events and processes. The stability of a built environment is therefore the product of non-linear responses and the interplay between different processes of change that produce responses that are adaptations at different rates, through multiple scales. Consequently, it is possible to state that the capacity of the built environment for being adaptive to change at broader scales depends on its capacity to buffer change within and across smaller scales. The case study analysed demonstrates that the heterogeneity of the structure of an urban landscape is an essential attribute in assessing its resilience capacity. Considering all these results, it is possible to affirm that the implementation of resilience thinking into the analysis of urban landscapes is possible and can be done by analysing the morphology of the built environment.

The proposal that an urban landscape, and particularly its built environment, is structured like an urban Panarchy implies that its management and interventions have to contemplate the understanding, analysis and evaluation of more than one scale, element and process of the system at the same time, and as part of the same phenomenon, even if the processes studied are contradictory. At the same time, this situation presents a challenge to its government because the urban Panarchy structure shows that the built environment demands a complex understanding of the history and evolution of each system analysed. But most importantly, the complexity and self-organizing capacity of the system demonstrates that policies, laws, urban designs, and other formal institutional responses to governing and to controlling the shape of the built environment will always have to deal with a margin of unpredictability, anarchy, and chaos that together and separately play an important role in the resilience and evolution of the urban form of cities.

7.4.2 Ecological resilience can be applied to the analysis of urban landscapes by comparing changes in key elements of the built environment against persistence or shifts in the identity of place.

The analysis of Nezu shows that the urban landscape produces patterns of aggregations and discontinuities that can be observed as clusters of Blocks, Plots, and Building Footprint size classes. These findings consolidate the proposal that urban landscapes are complex adaptive systems organized in an urban Panarchy, which is responsible for the production of a heterogeneous landscape.

The presence and emergence of clusters of size classes in the built environment permits abstraction of the urban landscape in order to understand its structure. Observations about changes in that structure give information about the general performance of the system, which allows structural behaviours to be compared against particular processes occurring at focal scales. These comparisons are significant for understanding the complexity of complex adaptive systems like the built environment of Nezu. Moreover it gives the possibility of quantifying change at different scales, a basic necessity for assessing the resilience dynamics of the urban landscape.

The results explicitly show that in order to analyse the complexity of urban landscapes, the dynamics of change in elements of a built environment should be attended to in parallel with the dynamics of change of the structure that contains these elements. The demonstration of this statement can be found in the analysis of Nezu where the rate of change in elements at different scales differs from change in the structure and responses in the urban landscape. These cross scale dynamics can be observed in the urban landscape of Nezu. For example, change in the built environment of Nezu caused by fires or other socioecological threats did not produce critical change in the identity of the place. Different scales in the urban Panarchy of Nezu buffer change that could happen at a particular scale, for example, at the scale of plots where the loss of building footprints might be important.

The theoretical framework of ecological resilience can be applied to an analysis of the evolution of the built environment, in this case through the analysis of the stability state of the identity of a place. This way of thinking avoids traditionalist approaches to the built environment but concentrates on its structure and how the physical environment of a society, through interrelationships within and across scales, contributes to its identity. From a resilient assemblage approach, the identity of the physical structure of an urban landscape, like the built environment, is a property that results from the complexity and adaptability of urban landscapes. This identity becomes not only the zone of discussion about the development of the character of a system, and opportunities to maintain or to change that character, but also the parameter with which to analyse the way in which a society occupies, uses and exploits a territory.

Investigations about identity of a place can produce information about the state of the socio-ecological landscape that contains it. The assessment of the built environment of an urban landscape also provides information about its non-built environment. However, although this was not formally analysed in this research, it can be theoretically inferred, particularly in the analysis of green spaces in Nezu and Auckland as described in chapter 6. The persistence of the identity of a place demonstrates that certain dynamics of change taking place at different scales in the built environment can contribute to sustaining the stability of the entire system instead of making it collapse. The persistence of the identity of a characteristic urban landscape, like Nezu, proves that the resilience capacity of the structure of a built environment to absorbing change at smaller scales while keeping its bigger scales stable is linked with the persistence of the identity of that urban landscape.

The unity found in the identity of an urban landscape is not related with a uniformity or homogeneity of elements. Contrary to this idea, the persistence of an identity is connected with change, heterogeneity and diversity of elements that enhance resilience and give robustness to the structure of the urban landscape. Identity not only depends on the characteristics of the built environment of the place itself, but at a different scale will depend upon the characteristics and interrelationships with the built environment of other places. Identity of the place has its own complexity that is based on relationships between a society, land and its built environment. That is why it is a suitable parameter for expressing the quality of the place as a whole and can be applied to produce a panorama of the resilience capacity of a built environment. Identity of the place also provides information about the socio-ecological system, which is culturally specific. Since identity is traditionally indigenous, it also allows the method to be applied to different places.

The idea of linking the analysis of the identity of place with the stability state of the built environment of urban landscapes in order to assess the resilience of a socio-ecological landscape can form a concrete way of relating the dynamics of a system with a quality of the built environment. The importance of this interdisciplinary collaboration is that the analysis of identity is the way to define a place as possessing different levels of resilience capacity. Since urban and ecological systems have a difference based upon the importance of their elements, identity proves to be a main parameter in its resilience capacity. Within this viewpoint, quantitative measurements are related to the characteristics of a built environment and qualitative attributes are introduced through the study of identity.

7.4.3 Ecological resilience can be applied to the analysis of urban landscapes by measuring changes in the heterogeneity of the built environment of urban landscapes

The assessment of relative resilience in urban landscapes by quantifying the heterogeneity, diversity and evenness of the structure of the built and nonbuilt environment, represented as an assemblage of aggregations and discontinuities, produces concrete results and information about the resilience of the socio-ecological system. These results permit assessment of the adaptive capacity of an urban landscape by establishing a comparison of the structure of an urban landscape before and after critical events.

The method facilitates the evaluation of different evolutionary processes in discrete urban landscapes, a fact that can benefit the development of comparative studies and form an advance in resilience knowledge in urban landscapes. Finally the methodology shows that the measurement of resilience is not an obscure science, moreover it is possible to obtain precise information.

Results from the comparison between Nezu and Auckland show quantities of elements in a built environment are important, but quality, diversity and organization of these elements are also essential for the resilience capacity of the structure of an urban landscape.

The perception of an urban landscape, which is the base for the creation of various metaphors, analogies and urban discourses, is different from its structure; therefore this perception gives partial and sometimes superficial information about the state of an urban landscape. The fact that in one place it is possible to perceive many green spaces does not imply that the structure of these green spaces can provide diversity while enhancing the heterogeneity and resilience of the system.

These quantitative facts are linked with the identity of a built environment and even more with the perception of heterogeneity in an urban landscape. A negatively perceived chaotic, dispersed and extremely diverse built environment, like a gas station, a hut, and a high-rise building next to a highway, perhaps has a rich and diverse structure that can hold an important resilience capacity to absorb change. From a resilient assemblage approach, this landscape has an identity, a stability state and a resilience capacity that can be enhanced or decreased in relationship with specific or general goals in a development. From a traditional urban design viewpoint it is a mess.

The interpretation of quantitative results about the resilience capacity of a system has to be put in context in order to mean something, otherwise its implications for designers and managers will be minimal. Resilience is an attribute that has to be used and aligned to a broader picture. The theoretical background and results obtained question the possibility of achieving resilient cities as a whole and final state of a system because the resilience of something will always be linked with something else that cannot include the totality of the system. Another factor that sustains the impossibility of making a whole city resilient to everything is the fact that necessities change in time and space. An evolutionary approach to resilience is perhaps the most difficult task in understanding the importance of resilience.

The aim of this thesis was not to exploit design possibilities or to suggest policies, mainly because these will depend on emergent necessities and people creating complex questions that deserve this kind of complex analysis. In a metaphorical way it is reasonable to say that the object of this thesis was to show how to build a hammer and the fact that such a hammer is worth something. Users coming after will improve its design and discover new applications for it, accepting that the same hammer can be used to build beautiful houses and to kill people. Such further uses are beyond the scope of this thesis.

7.5 Weaknesses

The challenge in the application of ecological resilience to urban landscapes is that the theoretical framework is not a theory, while its methodology is neither too scientific nor too heuristic. Due to these weaknesses the application of ecological resilience in fields other than ecosystems becomes complicated because the lack of a theory makes the implementation of its methodology not rigorous enough for scientists and very complex for general designers and practitioners. These gaps were tackled in this research by developing an epistemological approach where the diversity of consolidated knowledge from different fields can give a support to each hypothesis and at the same time provide clues to and justification for its application to the analysis of urban landscapes.

Even though vulnerabilities in the application of the methodology and in the method used to make measurements were detailed in chapters 5 and 6, they do not relate to the overview of the problematic but rather to specific issues. Because the practice of the methodology proposed a challenge to the linear way of making observations, there is a problem in analysing parallel and, sometimes, contradictory results as a part of the same research. At the same time the quantity of data is large and calculations have more than one step, increasing the risk of making mistakes. Results need to be assessed by using different criteria coming from discrete fields, hence increasing the possibility for misunderstandings. Therefore, results are difficult to read objectively. The design of processes or a protocol to make research in this field will decrease the margin of error and also contribute to identifying where the major problems of the methodology and method are to be found.

Perhaps the biggest weakness and major task for future research in this field is to convince managers, designers, and institutions that it is important to understand how a system works before trying to intervene in it or to predict specific outputs. Therefore one challenge is to link studies in the resilience of urban landscapes with the cost of not being adaptable while keeping away from engineering approaches that try to find silver bullets to very specific issues, such as solving the problems of a whole city. Moreover, it might be interesting to use resilience approaches to increase curiosity about the necessity of knowing more about the way in which urban landscapes and systems work, instead of assuming that they just change.

7.6 Discussion and opportunities for further research

Resilience thinking becomes useful for dealing with the unpredictable nature of socio-ecological change, through identification of spaces for resilience within urban areas. The understanding of space as a capital asset within cities is a key contribution of this research to the future analysis of the resilience of urban landscapes. Particularly significant is the fact that opportunities in urban landscapes are not only created by new architectural and urban interventions but are also contained in the structure of resilient spaces and in the future evolution produced by the interaction of elements of the same urban landscape. These systems of spaces are the arena of opportunities and risks, and for this reason they are spaces for resilience. Spaces for resilience are natural resources that can be understood as a socio-ecological service produced and consumed by socio-ecological landscapes. The results of this research confirm the idea that the built environment is not just a consumer of socio-ecological services but is also a generator of spaces for resilience. For these reason the built environment becomes an essential element in analysing the resilience of cities (Garcia & Vale, 2012).

The production of spaces for resilience is linked with the way in which the discrete evolution of a particular built environment occurs. Resilience is an attribute that allows complex systems to be changed in order to be adaptive. For this reason the transformations of the built environment of a socio-ecological landscape are susceptible to being analysed through the theory of ecological resilience. The increased urbanization of the global population and resource shortages, and the idea of one planet living suggest a need to understand how cities really behave and evolve. The ability of a complex system to adapt to change that comes from internal and external pressures is the essence of creating a system than can sustain itself in the long term (B. Walker & Salt, 2006).

A first suggested research project using the idea of spaces for resilience could be oriented to producing a model that allows the understanding, definition and implications of the resilience of urban landscapes. Therefore the aim of this kind of research would be the production of knowledge about the emergence of alternative systems of spaces which result from change but which give an opportunity for the system to reorganise and to self-organize. The proposition is that the presence in a city of spaces for resilience will enhance the resilience capacity of the whole system. This research could discover what these spaces are and the potential for application of the approach to all urban areas.

The hypothesis is that there is a relationship between the patterns and diversity in the way buildings occupy the urban landscape and the adaptive capacity of the latter to face natural and cultural hazards. Moreover, quantification of the resilience capacity of cities can be approached by applying a resilient assemblage approach to the analysis of urban landscapes, and also by measuring with mathematical models, morphological and functional transformations in the built environment. Only by using this as a base can a predictive model of how an urban landscape might change when affected by a natural or cultural hazard then be constructed. This predictive model could the final goal of this further research. Such a model is about strengthening the urban landscape as a whole and its ability to withstand and respond positively to traumatic events, such as earthquakes. What the model could do is to show how likely a city or town could function normally following a hazardous event. A quicker recovery is likely to be a lower cost recovery, both in monetary terms as the local economy can get back to normal quickly, but also in personal, social and health sector terms by reducing the stresses that long term uncertainty about when things will get back to normal impose on the people involved in a hazard event.

A second group of potential investigations comes from merging the resilient assemblage approach and ecological footprint analysis. The subject would be the role that urban redevelopment plays in the resilience of cities. This is because redevelopments can be turning points in urban evolution, either exploiting opportunities that have emerged in the evolution of a city or creating scenarios with lowered resilience. This proposal would look at a critical point in the evolution of an urban landscape, which is its recovery after a collapse. The aim is to see whether urban landscapes that are rebuilt as close to the original as possible, are equally, more or less stable than cities where underlying patterns of elements of the urban landscape have been fundamentally changed in the rebuilding.

The morphogenetic technique could be used to look at socio-cultural impact on the urban fabric through measurement of identity. Material and energy flows can be measured using an ecological footprint approach. The research would first need to establish a pre-event pattern of evolution and then go on to examine the evolution post re-building to look for changes in the urban morphology. The aim would be to compare the responses of different urban configurations to specific crises and to analyse the performances and evolution of these transformed urban landscapes. This research would again facilitate the evaluation of the resilience capacity of built environments to cope with unpredictable change and contribute to the prediction of which kind of urban structures, and physical interventions in these structures, would be more successful in adapting to future unpredictable changes. Building on findings done in this thesis along with research done in ecological footprints (R. Vale & Vale, 2009), such a project would for the first time simultaneously track the impact on

natural systems through measurement of the land and material resources that have gone into the rebuilding and subsequent evolution of the case study area. The aim would be to understand more about the resilience capacity of an urban system and what happens when human 'development' interacts with the process of urban evolution. This merging of the disciplines could lead to a greater understanding of how urban redevelopment affects the resilience of the urban environment.

8. Bibliography

- Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R., & Rockstrom, J. (2005). Social-Ecological Resilience to Coastal Disasters. *Science*, *309*(5737), 1036-1039.
- Alberti, M. (2009). *Advances in urban ecology: integrating humans and ecological processes in urban ecosystems* (1st pbk. ed.). New York: Springer.
- Alberti, M., & Marzluff, J. M. (2004). Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. *Urban Ecosystems*, 7(3), 241-265.
- Alberti, M., Marzluff, J. M., Shulenberger, E., Bradley, G., Ryan, C., & Zumbrunnen, C. (2003). Integrating humans into ecology: opportunities and challenges for studying urban ecosystems. *BioScience*, *53*(12), 1169-1179.
- Allan, P., & Bryant, M. (2011). Resilience as a framework for urbanism and recovery. *Journal of Landscape Architecture*, 6(2), 34-45.
- Allen, C. R., Gunderson, L., & Johnson, A. (2005). The Use of Discontinuities and Functional Groups to Assess Relative Resilience in Complex Systems. *Ecosystems*, *8*(8), 958-966.
- Allen, C. R., Forys, E. A., & Holling, C. S. (1999). Body Mass Patterns Predict Invasions and Extinctions in Transforming Landscapes. *Ecosystems*, *2*(2), 114-121.
- Allen, C. R., & Holling, C. S. (2010). Novelty, adaptive capacity, and resilience. *Ecology and Society* 15(3), 15. Retrieved from http://www.ecologyandsociety.org/vol15/iss3/art24/
- Allen, C. R., & Holling, C. S. (2008). *Discontinuities in ecosystems and other complex systems*. New York: Columbia University Press.
- Allen, P. (1997). *Cities and regions as self-organizing systems: models of complexity*. Australia: Gordon and Breach Science Publishers.
- Anonymous (Cartographer). (1988). Kantōdaishinsai-shi: Shashin to chizu to kiroku de miru, 1987 1988-nen [Great Kanto Earthquake: View of photos and maps and records,1987 -1988].
- ARUP (2012). Visions of a resilient city. Retrieved from http://www.arup.com/Home/Publications/Visions_of_a_Resilient_City.aspx.
- Batty, M. (2010). Towards a new science of cities. *Building Research & Information*, *38*(1), 12
- Bessey, K. M. (2002). Structure and dynamics in an urban landscape: toward a multiscale View. *Ecosystems*, *5*(4), 360-375.
- Birch, E., & Wachter, S. (2006). Rebuilding urban places after disaster: lessons from Hurricane Katrina *The city in the twenty-first century* (pp. xii, 375). Philadelphia: University of Pennsylvania Press.

Braudel, F. (1969). Écrits sur l'histoire. Paris: Flammarion.

- Braudel, F. (1977). La Méditerranée : l'espace et l'histoire. Paris: Arts et métiers graphiques.
- Braudel, F. (1980). On history Chicago: University of Chicago Press.
- Bush, G., & Council., A. C. (1971). *Decently and in order; the government of the City of Auckland 1840-1971: the centennial history of the Auckland City Council.* Auckland: Collins for the Auckland City Council.
- Caniggia, G. (2001). *Architectural composition and building typology: interpreting basic building*. Firenze: Alinea.
- Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From Metaphor to Measurement: Resilience of What to What? *Ecosystems*, *4*(8), 765-781.
- Cash, D. W., Adger, W., Berkes, F., Garden, P., Lebel, L., Olsson, P., . . . Young, O. (2006). Scale and cross-scale dynamics: governance and information in a multilevel world. *Ecology and Society*, *11*(2), 12. Retrieved from http://www.ecologyandsociety.org/vol11/iss2/art8/
- Catedra Manteola, S., Turrillo (Ed.). (2006). Contexto. Buenos Aires: nobuko.
- Certeau, M. d. (1984). *The practice of everyday life*. Berkeley: University of California Press.
- Chang, Y., Wilkinson, S., Potangaroa, R., & Seville, E. (2010). Resourcing challenges for post-disaster housing reconstruction: a comparative analysis. *Building Research & Information*, *38*(3), 247-264.
- Chang, Y., Wilkinson, S., Potangaroa, R., & Seville, E. (2011). Donor-driven resource procurement for post-disaster reconstruction: Constraints and actions. *Habitat International*, *35*(2), 199-205.
- Chen, Y.-Z. (2004). Edgar Morin's paradigm of complexity and Godel's incompleteness theorem. *World Futures: Journal of General Evolution*, *60*(5), 421 431.
- Clement, G. (2007). *Manifiesto del tercer paisaje* (M. Pla, Trans. gustavo Gilli ed.). Barcelona: Editorial Gustavo Gilli.
- Colding, J. (2007). 'Ecological land-use complementation' for building resilience in urban ecosystems. *Landscape and Urban Planning*, *81*(1–2), 46-55.
- Conzen, M. R. G. (1960). Alnwick, Northumberland: A Study in Town-Plan Analysis. *Transactions and Papers (Institute of British Geographers)*(27), iii-122.
- Conzen, M. R. G. (1981). The morphology of towns in Britain during the industrial era (N. K. Conzen & M. P. Conzen, Trans.). In W. J. W. R. (Ed.), *The Urban landscape: historical development and management. Papers by M.R.G. Conzen* (pp. vii, 166). London: New York: Academic Press.
- Council, A. R. C., & team, S. a. E. R. a. M. (2010). A brief history of Acukland's urban form (Vol. 1, pp. 27). Auckland: Auckland Regional City Council.

- Curk, T., Demšar, T., Xu, Q., Leban, G., Petrovič, U., Bratko, I., . . . Zupan, B. (2005). Microarray data mining with visual programming. *Bioinformatics*, *21*(3), 396-398.
- Daniels, I. (2010). *The Japanese house : material culture in the modern home*. Oxford: Berg.
- De Landa, M. (2006). *A new philosophy of society : assemblage theory and social complexity*. London; New York: Continuum.
- Deleuze, G., & Guattari, F. (1987). *A thousand plateaus: capitalism and schizophrenia*. Minneapolis: University of Minnesota Press.
- Deleuze, G. (1994). *Difference and repetition*. New York: Columbia University Press.
- Dovey, K. (2010). *Becoming places: urbanism/architecture/identity/power*. London; New York: Routledge.
- Elmqvist, T., Colding, J., Barthel, S., BorgstrÖM, S., Duit, A., Lundberg, J., . . . Bengtsson, J. (2004). The Dynamics of Social-Ecological Systems in Urban Landscapes: Stockholm and the National Urban Park, Sweden. *Annals of the New York Academy of Sciences*, *1023*(1), 308-322.
- Evan, D. G. F., & Warren, M. (2004). Identifying the secure city: research to establish a preliminary framework *Canadian Journal of Urban Research*, *13*(1), 89-99.
- Fleischhauer, M. (2008). The Role of Spatial Planning in Strengthening Urban Resilience. In H. Passman & I. Kirillov (Eds.), *Resilience of Cities to Terrorist and other Threats: learning from 9/11 and further research issues* (pp. 273-298): Springler.
- Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & Holling, C.
 S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. [Review]. Annual Review of Ecology Evolution and Systematics, 35, 557-581.
- Frazer, J. (1995). An evolutionary architecture. London: Architectural Association.
- Gallopín, G. C. (2006). Linkages between vulnerability, resilience, and adaptive capacity. *Global Environmental Change*, *16*(3), 293-303.
- Garcia, E., Muminovic, M., Vale, B., & Radovic, D. (2012). *The resilience of an assembled identity*. Paper presented at the Place making and identity: rethinking urban approaches to built environement, Jakaarta.
- Garcia, E., & Vale, B. (2012). *Spaces for urban resilience.* Paper presented at the 1st International Conference on Urban Sustainability and Resilience, London.
- Garcia, E., Vale, B., & Allan, P. (2011). *Before multi-hazards: a methodology to analyze the resilience of urban landscapes.* Paper presented at the 7th APRU Research Symposium on Multi-hazards around the Pacific Rim. Physical and human dimensions of natural hazards: from research to practice, Auckland.
- Garmestani, A. S., Allen, C. R., Mittelstaedt, J., Stow, C., & Ward, W. (2006). Firm size diversity, functional richness, and resilience. *Environment and Development Economics*, 11(04), 533-551.

- Garmestani, A. S., Allen, C. R., & Bessey, K. M. (2005). Time-series analysis of clusters in city size distributions. *Urban Studies*, *42*(9), 1507-1515.
- Garmestani, A. S., Allen, C. R., & Gallagher, C. M. (2008). Power laws, discontinuities and regional city size distributions. *Journal of Economic Behavior & Organization*, 68(1), 209-216.
- Gaston, K., Warren, P., Thompson, K., & Smith, R. (2005). Urban Domestic Gardens (IV): The Extent of the Resource and its Associated Features. *Biodiversity & Conservation*, 14(14), 3327-3349.
- Geddes, P. (1915). *Cities in evolution; an introduction to the town planning movement and to the study of civic.* London: Williams & Norgate.
- Genkai-Kato, M. (2007). Regime shifts: catastrophic responses of ecosystems to human impacts. *Ecological Research*, *22*(2), 214-219.
- Gibson, C., Ostrom, E., & Ahn, T. (2000). The concept of scale and the human dimensions of global change: a survey. *Ecological Economics*, *32*(2), 217-239.
- Grimm, N., G., M., Pickett, S. T. A., & Redman, C. (2000). Integrated approaches to long-term studies of urban ecological systems. *Bioscience*, *50*(7), 571-584.
- Gunderson, L. H., Garmestani, A. S., & Allen, C. R. (2009). Panarchy: Discontinuities Reveal Similarities in the Dynamic System Structure of Ecological and Social Systems. *Ecology and Society*, 14(1), 12. Retrieved from http://www.ecologyandsociety.org/vol14/iss1/art15/
- Gunderson, L., H. (2000). Ecological resilience in theory and application. *Annual Review* of Ecology and Systematics, 31, 425-439.
- Gunderson, L. H., Allen, C. R., & Holling, C. S. (Eds.). (2009). *Foundations of ecological resilience*. Washington: Island Press.
- Gunderson, L. H., & Holling, C. S. (2002). *Panarchy: understanding transformations in human and natural systems*. Washington, DC: Island Press.
- Haigh, R., & Amaratunga, D. (2010). An integrative review of the built environment discipline's role in the development of society's resilience to disasters. *International journal of disaster resilience in the built environment*, 1(1), 11-24
- Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The Weka data mining software: an update. *SIGKDD Explorations*, *11*(1) 10-18.
- Healey, P. (2007). *Urban complexity and spatial strategies: towards a relational planning for our times*. London: Routledge.
- Hexter, J. H. (1979). *On historians: reappraisals of some of the makers of modern history*. Cambridge, Mass.: Harvard University Press.

Higueras, E. (2006). Urbanismo bioclimatico (Vol. 1). Barcelona: Gustavo Gili.

- Hodgson, T. E. R. (1990). *Colonial capital: Wellington, 1865 -1910* Auckland, N.Z.: Random Century.
- Holland, A. S. B. (1980). Complex function theory. New York: Elsevier North Holland.
- Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (1st MIT Press ed.). Cambridge, Mass.: MIT Press.
- Holling, C. S. (1973). Resilience and Stability of Ecological Systems. *Annual Review of Ecology and Systematics*, 4(1), 1-23.
- Holling, C. S. (1987). Simplifying the complex: The paradigms of ecological function and structure. *European Journal of Operational Research*, *30*(2), 139-146.
- Holling, C. S. (1992). Cross-Scale Morphology, Geometry, and Dynamics of Ecosystems. *Ecological Monographs*, 62(4), 447-502.
- Holling, C. S. (2004). From complex regions to complex worlds. *Ecology and Society*, 9(1), 10. Retrieved from http://www.ecologyandsociety.org/vol9/iss1/art11/
- Holling, C. S., & Goldberg, M. A. (1971). Ecology and Planning. *Journal of the American Institute of Planners, 37*(4), 221-230.
- Holling, C. S., Walker, B., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social-ecological systems. *Ecology and Society*, *9*(2), 10. Retrieved from http://www.ecologyandsociety.org/vol9/iss2/art5/
- Hornborg, A. (2009). Zero-Sum World: Challenges in Conceptualizing Environmental Load Displacement and Ecologically Unequal Exchange in the World-System. *International Journal of Comparative Sociology*, *50*(3-4), 237-262.
- Hornik, K. (2012). The R FAQ, from http://CRAN.R-project.org/doc/FAQ/R-FAQ.html
- Jerneck, A., & Olsson, L. (2008). Adaptation and the poor: development, resilience and transition. *Climate Policy*, *8*(2), 170-182.
- Jinnai, H. (1995). Tokyo, a spatial anthropology. Berkeley: University of California Press.
- Kauffman, S. (1993). *The origins of order: self-organization and selection in evolution*. New York: Oxford University Press.
- King, M. (2003). The Penguin history of New Zealand. Auckland, N.Z.: Penguin Books.
- Kitayama, K., Tsukamoto, Y., & Nishizawa, R. (2010). *Tokyo metabolizing [Tokyo metaboraijingu]*. Tokyo, Japan: TOTO Pub.
- Klein, R. J. T., Nicholls, R. J., & Thomalla, F. (2003). Resilience to natural hazards: How useful is this concept? *Global Environmental Change Part B: Environmental Hazards*, 5(1-2), 35-45.
- Kropf, K. (1993). *The definiton of built form in urban morphology.* Doctor of Philosophy, University of Birmingham, Birmingham.

- Krugman, P. (1996). *The self-organizing economy*. Cambridge, Mass., USA: Blackwell Publishers.
- Larkham, P. J., & Slater, T. R. (1995). After Alnwick: Studying Urban Form in the 1990s. *Area*, *27*(2), 185-186.
- Leal del Castillo, G. (2004). Introduccion al ecourbanismo. Bogota: Ecoe ediciones.
- Lévesque, L. (2009). Towards an interstitial approach to urban landscape. *Territorio* (48), 77-82.
- Levin, S. A. (1998). Ecosystems and the Biosphere as Complex Adaptive Systems. *Ecosystems*, 1(5), 431-436.
- Levin, S. A. (2005). Self-organization and the emergence of complexity in ecological systems. *BioScience*, *55*(12), 1075-1079.
- Lewin, R. (1999). *Complexity: life at the edge of chaos* (2nd ed.). Chicago, Ill: University of Chicago Press.
- Luccarelli, M. (1995). Lewis Mumford and the ecological region: the politics of planning. New York: Guilford Press.
- map, E. C. d. c. (Cartographer). (1990). Edo- Tokyo shigai chizu shuusei 1887 nen -1959 nen [Historical maps of Edo to Tokyo from 1887-1959].
- McClain, J. L., Merriman, J. M., & Ugawa, K. (1994). *Edo and Paris: urban life and the state in the early modern era*. Ithaca: Cornell University Press.
- McGlade, J., McIntosh, B. S., & Jeffrey, P. (2008). Landscape Sensitivity, Resilience and Sustainable Watershed Management. In P. Koundouri (Ed.), *Coping with Water Deficiency* (pp. 113-134): Springer.
- McLauchlan, G. (2005). A short short history of New Zealand. Auckland, N.Z.: Penguin.
- McLauchlan, G. (2008). *The life and times of Auckland: the colourful story of a city*. Rosedale, N.Z.: Penguin Books.
- Milizia, F., & Cipriani, G. (1785). *Principi di architettura civile*. Bassano: A spese Remondini di Venezia.
- Millennium Ecosystem, A. (2005). *Ecosystems and human well-being*. Washington, D.C: Island Press.
- Moisset, I., & Paris, O. (Eds.). (2005). *Hipotesis de paisaje* (I+P editorial ed. Vol. 3-4). Cordoba: I+P editorial.
- Morin, E. (2001). Seven complex lessons in education for the future. Paris: UNESCO.
- Moudon, A. V. (1997). Urban morphology as an emerging interdisciplinary field. *Urban morphology*, *1*(1), 3-10.

- Muminovic, M., Garcia, E., Vale, B., & Radovic, D. (2012a). *The resilience of the identity of shitamachi in Tokyo*. Paper presented at the Place making and identity: rethinking urban approahces to built environment, Jakaarta.
- Muminovic, M., Garcia, E., Vale, B., & Radovic, D. (2012b). *Resilient assemblages: the complex identity of Nezu in Tokyo*. Paper presented at the New Urban Configurations, Delft University of Technology.
- Nakagawa, T. (2005). *The Japanese house: in space, memory and language* (1st English ed.). Tokyo: International House of Japan.
- Nakajima, K. (1996). Uneasy rooms, The concept of Space in Modern Japan. *World Policy Journal*, *13*(4), 67-72.
- Oliver, W. H. W., B.R. (Ed.). (1981). *The Oxford history of New Zealand*. Oxford: Wellington; New York: Clarendon Press; Oxford University Press.
- Padua, A. (2010). As bases teoricas da historia ambiental. Estudos Avancados, 24(68), 20.
- Pesci, R. (2007). *Ambitectura. Hacia un tratado de arquitectura ciudad y ambiente* (Vol. 1). La Plata, Argentina: Ediciones al margen.
- Peterson, G., Allen, C. R., & Holling, C. S. (1998). Ecological Resilience, Biodiversity, and Scale. *Ecosystems*, 1(1), 6-18.
- Pickett, S. T. A., Burch, W. R., Dalton, S. E., Foresman, T. W., Grove, J. M., & Rowntree, R. (1997). A conceptual framework for the study of human ecosystems in urban areas. *Urban Ecosystems*, 1(4), 185-199.
- Pickett, S. T. A., Cadenasso, M. L., Grove, J., Nilon, C., Pouyat, R., Zipperer, W., & Costanza, R. (2001). Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. *Annual Review of Ecology and Systematics*, 32, 127-157.
- Pimm, S. L. (1984). The complexity and stability of ecosystems. *Nature*, *307*(5949), 321-326.
- Radovic, D. (2008). Another Tokyo. Tokyo: University of Tokyo cSUR and ichii Shobou.
- Rappaport, R. (1977). Maladaptation in social systems. In J. Friedman & J. Rowlands (Eds.), *The evolution of social systems: proceedings of a meeting of the Research Seminar in Archaeology and Related Subjects held at the Institute of Archaeology, London University* (pp. 49-71). Chicago: Duckworth.
- Redman, C., & Kinzig, A. P. (2003). Resilience of past landscapes: resilience theory, society, and the longue durée. *Conservation ecology*, 7(1), 14.
- Resiliance Alliance (2007a). Assessing and managing resilience in social-ecological systems: A practitioners workbook. Volume 1, version 1.0. Retrieved from http://www.resalliance.org/3871.php
- Resiliance Alliance (2007b). Assessing and managing resilience in social-ecological systems: A practitioners workbook. Supplementary notes to the practitioners

workbook, Volume 2, version 1. Retrieved from http://www.resalliance.org/3871.php

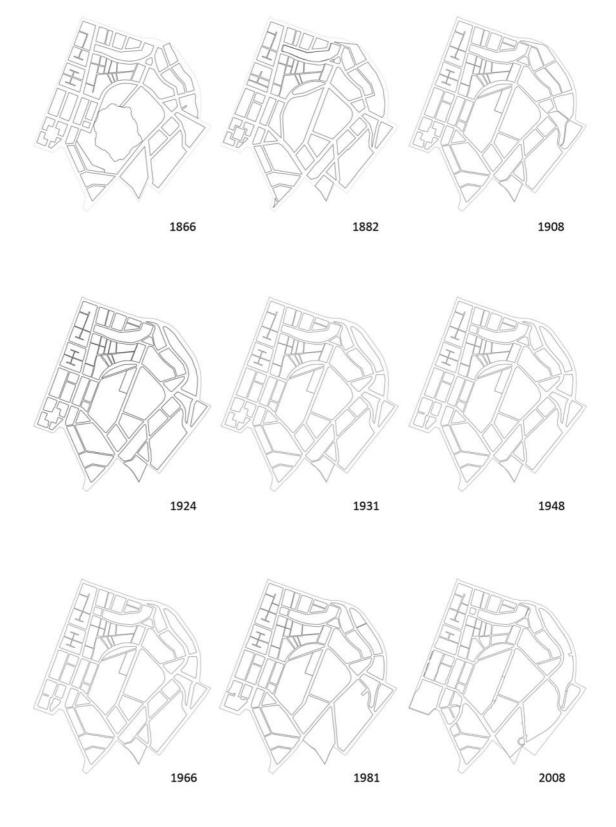
- Sarquis, J. (2003a). *Itinerarios del proyecto: Ficcion de lo real* (Vol. 2). Buenos Aires: Nobuko.
- Sarquis, J. (2003b). *Itinerarios del proyecto: Ficcion epistemologica* (Vol. 1). Buenos Aires: Nobuko.

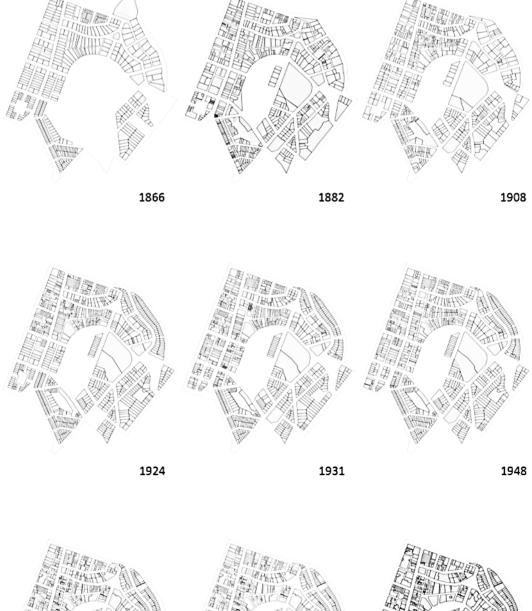
Schumpeter, J. A. (1994). Capitalism, Socialism and Democracy. London: Taylor & Francis.

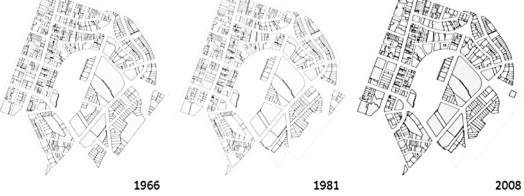
- Section, A. C. D. (1969). *Auckland's historical background: its relation to central city planning*. Auckland: Auckland City Council, Dept. of Works and Services.
- Seidensticker, E. (1983). *Low city, high city: Tokyo from Edo to the earthquake* (1st ed.). New York: Knopf.
- Shelton, B. (1999). *Learning from the Japanese city: West meets East in urban design*. London; New York: E & FN Spon.
- Slater, T. R. (Ed.). (1990). *The Built form of western cities: essays for M.R.G. Conzen on the occasion of his 80th birthday* Leicester. New York: Leicester University Press.
- Solà-Morales i Rubió, M. (1995). Terrain vagues. In C. Davidson (Ed.), *Anyplace* (Vol. 1, pp. 271). New York: London: MIT Press.
- Sorensen, A. (2002). *The making of urban Japan: cities and planning from Edo to the twenty-first century*. London; New York: Routledge.
- Tainter, J. A. (1988). *The collapse of complex societies*. Cambridge, Cambridgeshire; New York: Cambridge University Press.
- Tainter, J. A. (1995). Sustainability of complex societies. *Futures*, 27(4), 397-407.
- Tainter, J. A. (2000). Problem Solving: Complexity, History, Sustainability. *Population & Environment*, 22(1), 3-41.
- Turner, N., Davidson-Hunt, I., & O'Flaherty, M. (2003). Living on the Edge: Ecological and Cultural Edges as Sources of Diversity for Social-Ecological Resilience. *Human Ecology*, 31(3), 439-461.
- Tzoulas, K., Korpela, K., Venn, S., Yli-Pelkonen, V., Kaźmierczak, A., Niemela, J., & James, P. (2007). Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. *Landscape and Urban Planning*, *81*(3), 167-178.
- Vale, L., & Campanella, T. (2005). *The resilient city: how modern cities recover from disaster*. New York: Oxford University Press.
- Vale, R., & Vale, B. (2009). *Time to eat the dog: the real guide to sustainable living*. London: Thames & Hudson.
- van Lieshout M., Dewulf, N., & Aarts, A. (2011). Do scale frames matter? Scale frame mismatches in the decision making process about a "mega farm" in a small Dutch

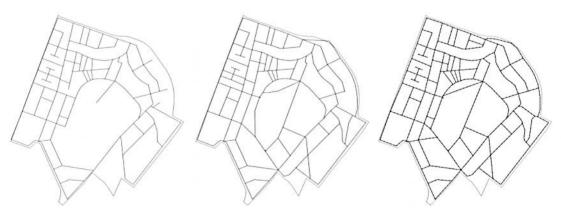
village. Ecology and Society, 16(1), 28. Retrieved from http://www.ecologyandsociety.org/vol16/iss1/art38/

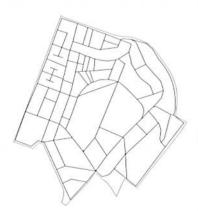
- Walker, B. (2007). Module: (1.5) Specified and General Resilience (Document). Retrieved from http://wiki.resalliance.org/index.php/1.5_Specified_and_General_Resilience
- Walker, B., & Meyers, J. A. (2004). Thresholds in ecological and social-ecological systems: a developing database. *Ecology and Society*, 9(2) 16. Retrieved from http://www.ecologyandsociety.org/vol9/iss2/art3
- Walker, B., & Salt, D. (2006). *Resilience thinking:sustaining ecosystems and people in a changing world*. Washington, DC: Island Press.
- Walker, L. R. (1999). *Ecosystems of disturbed ground* (1st ed.). Amsterdam; New York: Elsevier.
- Wegener, M., Gnad, F., & Vannahme, M. (1986). The time scale of urban change. In B. Hutchinson & M. Batty (Eds.), *Advances in Urban System Modelling* (pp. 175-197). Amsterdam: North Holland.
- Whitehand, J. W. R. (2007). Conzenian urban morphology and urban landscapes. *Paper* presented at the Proceedings, 6th International Space Syntax Symposium, Istanbul.
- Whitehand, J. W. R. (1967). Fringe Belts: A Neglected Aspect of Urban Geography. *Transactions of the Institute of British Geographers*(41), 223-233.
- Whitehand, J. W. R. (1977). The Basis for an Historico-Geographical Theory of Urban Form. *Transactions of the Institute of British Geographers*, *2*(3), 400-416.
- Whitehand, J. W. R. (1981). Background to the urban morphogenetic tradition. In W. J.
 W. R. (Ed.), *The Urban landscape: historical development and management. Papers by M.R.G. Conzen* (Vol. 13, pp. vii, 166). London: New York: Academic Press.
- Witten, I. H., Frank, E., & Hall, M. A. (2011). *Data mining: practical machine learning tools and techniques* (3rd ed.). Burlington, MA: Morgan Kaufmann.
- Wu, J., & Li, H. (2006). Concepts of scale and scaling. In J. Wu, K. B. Jones, H. Li & O. L. Loucks (Eds.), Scaling and uncertainty analysis in ecology: methods and applications. (pp. 13). Dordrecht: Springer.

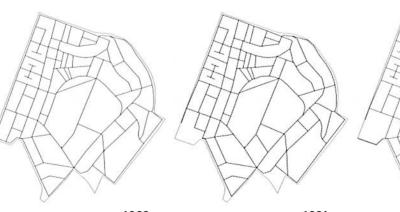

9. Appendices


Appendix 1: Timeline for Auckland (chapter 4)


Period	Structuring Processes	Structuring variables	Morphological Change
1840-1859: Inaugural years Population	1840.Founded as New Zealand's capital.	1841. Mathew's Original plan	Grid Pattern. 1841. British fort on Point Britomart.
2,895 Built area	Township around Commercial Bay	Settlers around Commercial Bay	Queen Street and Shortland Street.
33.2 ha	Freemans Bay and Mechanics Bay		1859. Land reclamation. From Shortland Street to Franklin Road.
1860-1879: Land wars and development of rail	1860. Waikato Land wars	Enlargement of city's garrison	Construction of Great South Road and a chain of military redoubts
lines. Population 12,423 (1864)	1864.Development of the southern region after war.	Electric telegraph, regular horse bus	Satellite townships. Settlement continued south towards Mt Eden, Otahuhu and Panmure.
Built area 565 ha (1871)	1865. Loss of capital status. Economic crisis.	A cottage and an acre of land per soldier.	
	1870. Discovery of gold at Thames.	1869. Piped water to town. 1870. Railway links	
1880-1899: Economic expansion Population 57,616 (1896)	Growth in commercial services. Large manufacturing. Development of	Working class settlements on the town fringes around industries and railway Rail links	Residential growth in Birkenhead and New Lynn. Workshops in New Market. Settlements beside the line at
57,010 (10,0)	public transport.	Kan miks	Henderson, New Lynn and Glen Eden.
		1881. Ferries	Suburban growth in Devonport, Takapuna, Northcote and Birkenhead.
1900-1929: Turning into a city	Dairy farming	Dairying expanded throughout the periphery.	Urban form change dramatically.
Population 133,712 (1916) Built area 5039 ha	Middle-class families left inner city	Electric tramway, motorcars and buses started to emerge.	Growth of Epsom, Remuera and the North Shore. Middle class went to Mount Albert.
1930-1949: Emergence of State housing provision Population 251,667 (1945) Built area 13,642 ha (1945)	Depression of 1930s slowed down population growth and reduced privates initiatives	State intervention in the provisioning of housing. Car ownership made accessibility easier to go in and out of Auckland. Completion of Tamaki Drive	Single units suburban homes for families. Building of inner-city apartment blocks in the 1940s. Flats on Symonds Street and Greys Avenue.
	Renewal and growth. Restrictions on imports.	Local manufacturing Development. Hydroelectric stations along Waikato river.	Industrial area around Penrose, Otahuhu and Mt Wellington.
1950-1969 Major decisions Population	Regional planning. Development of motorway system.	The 'Master Transportation Plan' for Metropolitan Auckland (1955)	Disperse city. Significant suburban development Detached houses on large lots. Decline of central city.
535,167 (1966) Built area 26,793 ha		Harbour Bridge in 1959.	New suburbs emerged on the North Shore

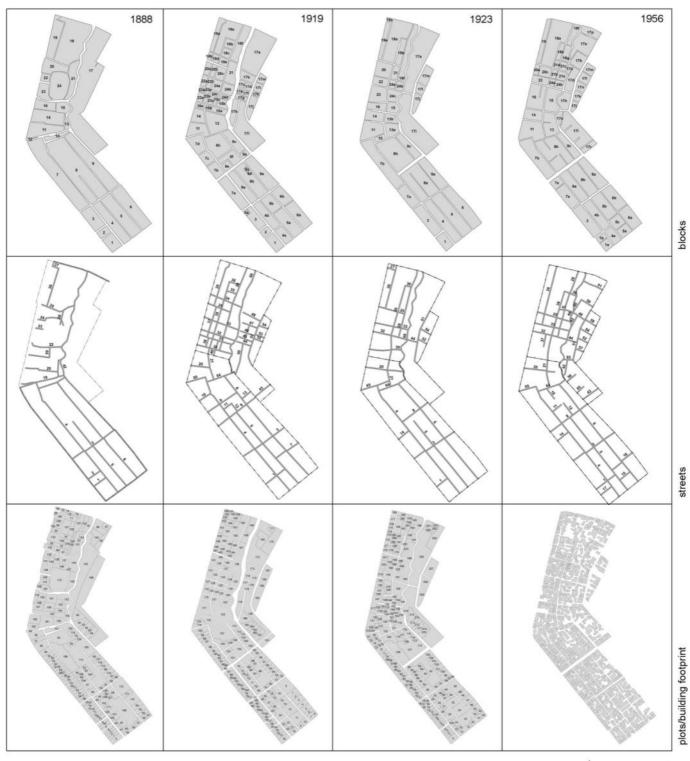

(1964)	Plans to consolidate urban growth.	1961. Regional Development Plan 1967. Regional Master Plan	
1970-1979: Continued outward growth	Further development of Motorway system.	Work on Central Junction. State housing	New housing developments in East Tamaki, also experienced considerable growth
Population 707,607 (1976) Built area 37,000 ha (1975)	Growing awareness about urban sprawl.	1974. Regional Planning Scheme for Auckland. 1975. Alternatives for Future Regional Growth.	
1980-1989: Intensification through infill housing. Population 754,845 (1986) Built area 40,022 ha	Broad economic deregulation, changes to the welfare system, local government reform, recession due to market crash of 1987, and population growth.	Growth in housing emerged from infill as well as the development of available land.	Dominance of flats in Remuera, Kohimarama, Mission Bay and St Heliers High growth also in the Wiri area.
(1987)	Growth for industries located in the CBD, like insurance and finance. Changing lifestyle patterns and household composition	Demand for inner city apartments	Many converted their office blocks into apartments, and empty lots where office buildings were planned became open-air car parks
1990-1999: Strategies for growth Population 997,940 (1996) Built area ?	Change in national immigration policy that allowed new migrants to enter New Zealand	While the outer suburbs absorbed a large proportion of growth in the 1990s, the inner areas and the CBD also accommodated a growing number of new residential developments.	Continuation of expansion around urban edge particularly in south east at Dannemora, Botany Downs and East Tamaki Revitalization of the Central Business District
	Pressures intensified on transport, housing and infrastructure	Regional Growth Forum created, development of the Regional Growth Strategy and delineation of Metropolitan Urban Limit.	Compact urban form with growth within existing metropolitan area. Varieties of housing and mixed use activities. Limited expansion on green areas. Protection of the coast.
2000-present	1.2 million people with a 90% living in urban areas.	Significant investment in public transport infrastructure.	Intensification through infill and redevelopment
		Inner city resident population growth 500%.	Apartment building development in the CBD. Low-density development at the periphery. New suburbs.


Appendix 2: Maps of blocks in the urban landscape of Auckland CBD



 \sim

Appendix 5: Maps of building footprints in Auckland CBD (chapter 4)



Appendix 6: areas and number of features per BF, PL, BL, ST (chapter 4	Appendix 6: areas and number o	f features per BF	, PL, BL, ST	(chapter 4)
--	--------------------------------	-------------------	--------------	-------------

		1866	1882	1908	1924	1931	1948	1966	1981	2008
Building	Mean	94.45	110.12	168.71	216.49	220.32	282.71	341.50	504.91	799.42
footprint	StdDev	100.97	126.68	169.71	212.34	215.67	269.85	324.55	634.16	1191.07
	Sum	126757.49	151746.00	223875.00	244650.60	246069.57	268904.83	299495.00	326000.31	373328.76
	N	1342.00	1378.00	1327.00	1450.00	1458.00	1593.00	877.00	730.00	467.00
Plots	Mean	937.15	980.39	824.00	585.85	558.50	609.01	660.84	657.02	816.19
AT SHE FREE FREE	StdDev	1172.35	2211.57	2033.49	1299.76	1291.34	1318.39	1570.18	1512.01	1727.04
	Sum	428279.0	584311.0	581745.0	546598.0	542866.0	564554.0	586161.9	540729.0	542764.0
	N	457.00	596.00	706.00	933.00	972.00	927.00	887.00	823.00	665.00
Blocks	Mean	15309.92	10963.67	12189.68	12213.77	11994.03	12022.36	12022.36	13610.30	14523.50
Blocks	StdDev	31945.23	12325.95	12762.77	13195.31	12873.30	12825.75	12825.75	15703.50	17414.22
	Sum	780806.00	690711.00	755760.00	732826.00	731636.00	733364.00	733364.00	762176.83	784268.84
	N	51.00	63.00	62.00	60.00	61.00	61.00	61.00	56.00	54.00
Streets	Mean	254.66	279.30	267.37	272.57	267.98	276.20	276.20	264.61	254.48
	StdDev	206.19	215.37	212.98	212.39	217.03	223.98	223.98	220.31	245.63
	Sum	14261.00	17037.00	17379.00	17717.00	16615.00	17677.00	17677.00	16406.00	16032.00
	N	56.00	61.00	65.00	65.00	62.00	64.00	64.00	62.00	63.00

Appendix 7: Key map with name of elements of the built environment (chapter 5)

1. Appendix 8: Degree of change in blocks in Nezu (chapter 5)

2. Appendix 9: Degree of change in plots in Nezu (chapter 5)

I

3. Appendix 10: Degree of change in streets in Nezu (chapter5)

4. Appendix 11: Areas and clusters in Nezu 1888 (chapter 5 and 6)

	1555 (9					1555 Dk	×ks			1888 streets	ç.			1888 Green Sapces
Clusters	kl	Area	Christers	ki	٨	uresa .	Clusters	kl	1	Area C	listers	Id	An	ca Chesters
chester3	114	594.28	chracer3		1	2061.50	c hester0		à	3593 cl	uster2	- 1		O chesterio
cluster4	115	466.11	cluster4	2	2	912.67	c luster0	1	L	165 c)	uster1	2		0 cluster0
chester4	116	575.76	cluster3	3	3	3003.90	chester 0	2	2	213 c)	unier1	3		0 charates 0
clustered	117	319.53	clusters		4	44 70.84	c hester0	3	3	715 ci	UNIT: NO	7		O Christerio
cluster4	115	295.17	cluster4	5	5	5983.93	c luster0	4		1885 C	unter0	5		13751.07481 cluster1
cluster0	119	501.36	cluster4		6	60 76.19	c luster0	5	ŝ.	914 c)	unter0	9		6919.720384 cluster0
clusteret	120	399.27	clusters	7	2	11195.15	chister 1	6	5	1464 ci	urst en O	4		3787 874009 c luster0
chestert	121	850.85	chrster2	,		15510.40	chester 1	7	7	400 cl	uster1	10		850.853868 cluster0
cluster4	122	1100.70	cluster2	5	9	7483.17	chester 1	8	5	157 0	uri es0	13		433.830533 cluster0
chesterii	123	649.48	chrater3	10	D	880.85	c hester0	9	5	121 (1	uster1	18		9689 520948 cluster1
clustered	124	393.60	chraces	11	1	3522.06	c hesteri0	10	2	2024 cl	OT T T	20		2665 22451 cluster0
cluster	125	422.72	cluster/	12	2	145.11	c laster 0	11	1	1878 ()	unien2	21		2582.031718 cluster0
cluster4	126	603.10	cluster3	13	3	133.83	c luester O	12	2	1054 c)	uniter0	14		4135.53826 cluster0
s cluster4	127	1142.14	cluster2	14	4	4135.54	c luster0	13	3	399 c)	uster1	6		5477_24087 cluster0
chester4	128	421.47	cluster/	15	5	1443.85	c hester 0	14	1	125 c)	unter1	5		5555.75636 cheter0
chester0	129	476.43	cluster4	16	5	1868.14	c hester 0	15	5	113 c)	unter1	12		152.333233 c kester 0
cluster	130	455.64	ckster4	17	,	22932.78	cluster1	16	5	244 c)	uster1	11		3822.060325 cluster0
cluster4	131	1607.31	cluster2	12		11262.75	cluster1	17	,	173 0	uster1	16		1565.137066 cluster0
cluster4	132	518.54	cluster3	19	9	3911.82	c luester 0	15	5	644 c)	unies0	23		1819.776107 c kester 0
i cluster4	133	22167	cluster2	20	D	2668.22	c luster0	19	۰.	210 cl	uster1	22		695.289363 cluster0
cluster	134	210.96	cluster0	21	1	2582.03	c luster0	20		265 c)	uster1	19		3576.166766 cluster0
chestered.	135	184.30	chester 0	22	,	698.29	c hester 0	21	1	46 ci	teter1	15		1443.863307 cluster0
cluster	136	700.50	cluster3	23	3	1819.78	c hester0	22	2	99 ci	uster1	24		4851.799364 cluster0
cluster	137	651.73	cluster3	24	4	4851.80	c laster0					17		20999.90617 cluster1
charlend.		48.3.36	· hallowed											

			1555 (4	
kl		Area Clust 694.35 clust	ers kl	Area
	01	367.99 clust		594 466
	2 3	333.00 clust 325.15 clust	e4 116 e4 117	575 319
		341.01 clust	ort 115	295
	456	203.64 clust 333.28 clust	er0 119 er4 120	501 399
	7	167.84 ckrst	m0 121	
	6 7 8 9	330.20 clust 201.97 clust	e4 122 e0 123	1100 64 9 39 3
	10	359.74 ciust	m4 124	393
	11 12	418.44 clust 322.49 clust	a-1 125 a-1 126	
	13	322.49 clusto 307.78 clusto 373.57 clusto	64 127	603 1142
	14 15	373.57 clust 221.77 clust	e-1 128 e-0 129	421
	16			421 476 455 1607 548 921
	17 18	30520 chisto 34257 chisto 37661 chisto 3765 chisto 39265 chisto 39272 chisto 34484 chisto 39569 chisto 47559 chisto	64 131 64 132	1607
	19	392.65 clust	64 133 64 134	921 210
	20 21	392.72 clust	e4 135	184
	22 23	344.84 clush 495.69 clush	e4 136 e4 137	700
	24	425.94 clust 333.47 clust 373.13 clust 352.79 clust	e4 133	483
	Ж 76	333.47 clust 373.13 clust	net 139 net 140	45.8
	27	352.79 clust	54 140 54 141	467 1156 7392 1520
	28 29	253.94 clusto 379.33 clusto 372.35 clusto	64 142 64 143	1156
	30 31	372.35 clust	- 144	1520
	32	305.64 clust 395.61 clust 434.07 clust	64 145 64 146	1061 661 58
	33 34	434.07 clust 347.52 clust	64 147 64 148	58 769
	35	552.86 clust	an 148 an 149	349
	36 37	767.35 clust 606.00 clust	a2 150 a3 151	691 870
	30	347.52 clust 552.86 clust 767.35 clust 606.00 clust 1066.07 clust 287.65 clust 286.90 clust 286.90 clust	e2 152	1007
	39 40	287.65 clust 286.90 clust	64 153 64 154 64 154	501 412
	40 41	258.39 clust	ee4 155	1336
	42 43	513,83 clust 254,70 clust	a3 156 a4 157	976 689 255
	44 15	236.64 clust	158	255 433
	15 16 47	617.51 clust	eri 159 eri 160	133 721 1486
	47 48	258.39 ckes 613.83 ckes 254.70 ckes 334.43 ckes 617.51 ckes 882.98 ckes 296.14 ckes 480.12 ckes	er2 161 er4 162	
	49	480.12 chest	e-1 163	62.2
	50 51	159.86 clust 154.41 clust	er0 164 er0 165	622 573 1960
	52	296.14 clusts 480.12 clusts 189.86 clusts 164.41 clusts 153.01 clusts 201.44 clusts 26.7.80 clusts 2624.80 clusts	n0 166	3303 664 7883 170
	53 54	211.44 clush 267.80 clush	er0 167	7553
	55	2624.80 chest	5 169	170
	56 57 58	203.34 clust 404.15 clust 542.43 clust	er0 170 er4 171	405
	58 59			614 4113
	60	340.23 clush 271.11 clush 456.35 clush	et 173	411.5
	60 61 62 63 63 65	271.11 clust 456.35 clust	671 194	
	63	637.69 clush 632.11 clush 176.41 clush	5 3	
	5	532.11 clust 176.41 clust	m3 m0	
	66 67	171.61 clusto 551.10 clusto 553.19 clusto 592.14 clusto	0m	
	68	553.19 clust	e3	
	68 69 70	592.14 clust	er3	
	71	376.15 clust 604.94 clust 324.28 clust	=3	
	12	324.28 clust 89.74 clust	64 60	
	73 74 75	89.74 ckest 180.51 ckest 321.37 ckest	-0	
	rs ru	321.37 clusts 799.59 clusts 64.02 clusts	82	
	77	64.02 clust	er0	
	70 77 75 79	498.75 clust 327.43 clust	6P4	
	80 81	315.48 clust 461.50 clust 351.09 clust	694 694	
	81 82 83	351.09 clust	ce4	
	83 84	398.97 clust 498.70 clust 71.73 clust		
	85	71.73 clust	er0	
	54 55 56 57	1241.36 clust 440.16 clust	m 1	
	85 89	152.33 clust 1050.35 clust	m 0	
	90	714_14 clust	m 3	
	91 92	375.60 clust 760.76 clust	84 82	
	93	287.72 cluste	er4	
	94 95	717.30 clush 1193.19 clush	a 2	
	96 97	347.83 clust 375.75 clust	cae4	
	98	375.75 clush 122.23 clush 934.85 clush	a 10	
	99 00	934.85 clust 191.92 clust	en 2 Em 0	
1)	01	712.27 clusto 299.51 clusto	-J	
	02 03	662.49 clust	m 3	
D.	04	278.50 ckest	er4	
1	06	176.15 clust 3895.32 clust	e0 e5	
Ð	07	191.38 clust	er0	
1	05	117.72 clust 199.85 clust	10	
	10 11	1372.59 clust 447.38 clust	a 2	
1	12	2021.03 clust	m 5	
1	13	5297.39 clust	81	

27

#3 93 clustes clustes clustes clustes 38 cluste

cluster4 cluster3 .91

kl

5. Appendix 12: Areas and clusters in Nezu 1919 (chapter 5 and 6)

id A	19: Area Clusters	19 BF idi	Area Clusters	ю	1919 blocks Area Clusters	id 4	1919 Streets Area Clusters	ki	1919 Green spaces Area Clusters
0	1731.78 duster2	114	528.58 duster3	1	1844.61 cluster3	0	2786.06 cluster0	1	0 duster3
1 2	563.09 cluster3 334.83 cluster1	115 116	306.06 cluster1 1548.10 cluster2	11 13	2384.60 cluster3 3744.87 cluster0	1 2	1178.42 duster2 1876.54 duster2	11 13	2132.5 cluster0 3367.8 cluster2
3	712.66 cluster3	117	1691.14 cluster2	14	1691.14 duster3	3	324.04 cluster3	14	1521.9 duster0
4	593.85 cluster3 649.20 cluster3	118 119	518.07 cluster3 551.01 cluster3	15a 15b	853.02 duster1 821.53 duster1	4	178.48 cluster3 209.71 cluster3	15a 15b	597.112221 duster3 575.068145 duster3
6	344.18 duster1	120	260.60 duster1	15c	256.98 duster1	6	821.17 duster2	150	179.883697 duster3
7	412.53 cluster3 232.31 cluster1	121 122	260.17 cluster1 850.36 cluster2	16a 16b	518.07 duster1 260.17 duster1	7	65.07 cluster3 117.48 cluster3	16a 16b	362.649827 cluster3 182.12229 cluster3
9	285.85 duster1	123	3742.27 cluster0	17a	9383.24 cluster2	9	28.99 duster3	17a	8098.4 duster1
10 11	404.98 cluster3 1306.25 cluster2	124 125	428.50 cluster3 256.98 cluster1	17b 17c	1212.82 cluster3 394.15 cluster1	10 11	1128.61 cluster2 203.63 cluster3	17b 17c	848.971081 cluster0 275.904659 cluster3
	1329.28 duster2	126	821.64 cluster2	17d	522.87 duster1	12	94.98 duster3	17d	366.006008 duster3
13 14	432.01 cluster3 459.49 cluster3	127 128	215.88 cluster1 204.73 cluster1	17e 17f	239.40 cluster1 386.96 cluster1	13 14	376.53 duster3 109.09 duster3	17e 17f	167.58335 cluster3 270.870659 cluster3
15 16	169.27 cluster1 150.38 cluster1	129 130	382.50 cluster3 383.49 cluster3	17g 17h	504.26 cluster1 1345.00 cluster3	15 16	224.58 cluster3 251.12 cluster3	17g 17h	352.983425 duster3
17	379.58 duster3	130	605.84 cluster3	171	6731.41 duster2	10	139.66 duster3	171	1210.5 cluster0 5640.3 cluster1
18 19	1019.15 cluster2 456.83 cluster3	132 133	507.89 cluster3 994.94 cluster2	17j 17k	1489.39 cluster3 274.34 cluster1	18 19	310.56 cluster3 329.66 cluster3	17j 17k	1336.5 cluster0 192.034765 cluster3
20	245.55 duster1	134	375.22 duster3	171	710.02 duster1	20	339.55 duster3	171	497.015559 duster3
21 22	235.26 cluster1 527.57 cluster3	135 136	895.27 cluster2 2117.16 cluster0	17m 18a	692.38 cluster1 4369.05 cluster0	21 22	401.98 cluster3 1222.44 cluster2	17m 18a	484.667318 duster3 3058.33637 duster2
23	189.24 duster1	137	443.19 duster3	18b	856.75 duster1	23	132.77 duster3	18b	599.721801 duster3
24 25	937.76 cluster2 325.53 cluster1	138 139	700.37 cluster3 482.68 cluster3	18c 18d	800.81 duster1 561.13 duster1	24 25	70.13 duster3 289.10 duster3	18c 18d	560.56716 duster3 392.78907 duster3
26	320.28 duster1	140	101.03 duster1	18e	698.31 duster1	26	329.73 cluster3	18e	488.815945 duster3
27 28	674.24 cluster3 230.10 cluster1	141 142	737.09 cluster3 301.94 cluster1	18f 19a	2972.53 duster3 1622.15 duster3	27	386.58 cluster3 266.88 cluster3	18f 19a	2080.77272 duster0 1135.50528 duster0
29	317.08 duster1	143	215.10 duster1	19b	294.51 duster1	29	388.99 duster3	19b	206.158228 duster3
30 31	603.49 duster3 367.26 duster3	144 145	181.27 cluster1 230.06 cluster1	2 20a	733.97 duster1 737.09 duster1	30 31	85.08 cluster3 893.50 cluster2	2 20a	0 duster3 515.961737 duster3
32	320.32 duster1	146	331.07 duster1	20b	583.71 duster1	32	4948.62 cluster0	206	408.598831 duster3
33 34	326.12 duster1 227.42 duster1	147 148	81.82 cluster1 212.69 cluster1	20c 21	1143.56 cluster3 2117.16 cluster3	33 34	1324.11 cluster2 194.26 cluster3	20c 21	800.494689 cluster0 1905.3 cluster0
35	161.07 duster1	149	147.67 cluster1	22a	605.84 duster1	35	148.95 duster3	22a	424.088754 cluster3
36 37	333.47 cluster1 239.43 cluster1	150 151	268.34 cluster1 479.00 cluster3	22b 23a	507.89 duster1 551.02 duster1	36 37	139.35 cluster3 108.64 cluster3	22b 23a	355.521981 duster3 385.714354 duster3
38	183.67 duster1	152	166.42 cluster1	23b	260.60 duster1	38	119.94 duster3	23b	182.423443 duster3
39 40	228.27 cluster1 201_31 cluster1	153 154	146.20 cluster1 219.65 cluster1	23c 23d	428.50 duster1 215.88 duster1	39 40	123.35 cluster3 451.71 cluster3	23c 23d	299.951609 duster3 151.117079 duster3
41	316.79 duster1	155	97.40 cluster1	23e	204.73 cluster1	41	68.62 cluster3	23e	143.311464 duster3
42	309.17 duster1 248.19 duster1	156 157	97.48 cluster1 65.76 cluster1	24a 24b	994.94 duster3 1270.49 duster3	42	67.52 cluster3 74.64 cluster3	24a 24b	696.457589 cluster3 889.344063 cluster0
44	293.05 duster1	158	175.49 duster1	240	382.50 duster1	44	2668.84 cluster0	24c	267.748102 cluster3
45 46	186.01 cluster1 98.12 cluster1	159 160	751.94 cluster3 481.32 cluster3	24d 3	383.49 duster1 2136.68 duster3	45	258.56 cluster3 628.63 cluster2	24d 3	268.444504 cluster3 0 cluster3
47	73.22 cluster1	161	475.29 cluster3	3a	216.55 duster1	47	1657.37 duster2	3a	0 duster3
48 49	51.24 duster1 71.80 duster1	162 163	1030.92 cluster2 715.64 cluster3	4a 4b	1654.45 cluster3 2804.99 cluster3	48 49	15636.84 cluster1 1218.17 cluster2	4a 4b	1158.11717 duster0 1963.49231 duster0
50	93.51 duster1	164	672.69 cluster3	5a	3758.38 duster0			5a	2630.86304 cluster2
51 52	183.80 duster1 174.71 duster1	165 166	380.06 cluster3 420.75 cluster3	5b 6a	2177.86 cluster3 3279.56 cluster3			5b 6a	1524.50023 duster0 2295.69116 duster0
53	577.48 cluster3	167	832.34 cluster2	6b	2294.88 cluster3			6b	1606.41264 cluster0
54 55	534.08 cluster3 533.27 cluster3	169	1148.74 cluster2 991.45 cluster2	7a 7b	3794.68 cluster0 1654.68 cluster3			7a 7b	0 cluster3 0 cluster3
56 57	459.38 cluster3 526.06 cluster3	170 171	2453.10 cluster0 404.73 cluster3	7c 7d	1387.63 cluster3 2426.67 cluster3			7c 7d	0 cluster3 0 cluster3
58	684.69 cluster3	172	5101.01 duster0	7u 8a	2939.99 duster3			7u 8a	1621.2 duster0
59 60	501.38 duster3 196.55 duster1	173 174	1213.11 duster2 394.15 duster3	8b 8c	4138.08 cluster0 122.58 cluster1			8b 8c	2896.65506 duster2 85.80943 duster3
ត	201.64 duster1	175	522.87 cluster3	ac 8d	93.76 duster1			or. 8d	65.630467 duster3
62 63	199.67 duster1 522.94 duster3	176 177	386.96 cluster3 239.40 cluster1	Se Sf	698.91 cluster1 1898.81 cluster3			Se Sf	489.240123 cluster3 1758.3 cluster0
64	143.65 duster1	178	504.26 cluster3	Sh Sh	4280.30 cluster0			Sh Sh	3837.2 duster2
65 66	175.40 duster1 2894.79 duster0	179 180	1345.00 cluster2 3093.12 cluster0	9a 9b	4373.34 duster0 515.98 duster1			9a 9b	3061.33581 duster2 361.185559 duster3
67	93.76 duster1	181	625.89 cluster3	9c	2098.38 cluster3			9c	1468.86403 cluster0
68 (7)	122.58 cluster1 594.12 cluster3	182 183	398.62 cluster3 554.24 cluster3						
70	174.98 duster1	184	395.34 duster3						
71 72	636.70 cluster3 237.72 cluster1	185 186	634.79 cluster3 1029.66 cluster2						
73	213.31 duster1	187	692.38 cluster3						
74	173.31 cluster1 417.36 cluster3	188 189	710.02 cluster3 274.34 cluster1						
76	492.59 duster3		1485.33 duster2						
77	311.81 cluster1 295.26 cluster1	191 192	1424.40 cluster2 856.75 cluster2						
79 80	299.08 cluster1 345.56 cluster3	193	265.56 cluster1						
81	309.37 duster1								
82 83	310.35 cluster1 375.14 cluster3								
84	285.03 duster1								
85 86	268.03 cluster1 321.03 cluster1								
87	408.41 duster3								
88 89	165.71 cluster1 266.63 cluster1								
90	292.55 duster1								
91 92	340.05 duster1 320.52 duster1								
93	269.23 duster1								
94 95	282.59 duster1 519.37 duster3								
96	585.66 duster3								
97 98	515.59 duster3 425.56 duster3								
99	572.81 duster3								
100 101	912.70 cluster2 698.91 cluster3								
102	1430.17 duster2								
103 104	468.64 cluster3 988.97 cluster2								
105	274.70 duster1								
106 107	212.48 cluster1 2803.82 cluster0								
108	515.98 duster3								
109 110	468.81 cluster3 262.40 cluster1								
111	231.12 duster1								
112 113	451.32 cluster3 684.73 cluster3								

6. Appendix 13: Areas and clusters in Nezu 1932 (chapter 5 and 6)

1932 Streets 51 Clusters 2017 82 cluster 2017 82 cluster 620.35 cluster 176.80 cluster 176.80 cluster 185.513 cluster 372.53 cluster 372.53 cluster 275.04 cluster 275.03 cluster 275.04 cluster 275.03 cluster 275.04 cluster 266.75 cluster 267.75 cluster

255.80 cluste 267.19 cluste 336.04 cluste 443.04 cluste 64.41 cluste 594.64 cluste 4709.90 cluste 399.90 cluste

309.90 ckster? 3065.15 ckster? 81.44 ckster? 123.84 ckster? 724.89 ckster? 1955.13 ckster? 1969.38 ckster? 15280.53 ckster3 1060.10 ckster4

		15	932 BF	
id	0	Area Clusters 635.01 cluster5	ы 114	Area Clusters 281.73 cluster0
	1	301.31 cluster0	115	459.18 cluster1
	2	265.16 cluster0	116	326.73 cluster1
	34	238.45 cluster0 249.08 cluster0	117 118	134.63 cluster4 1018.87 cluster5
	5	218.91 cluster0 270.05 cluster0	119 120	274.29 cluster0 143.88 cluster4
	7	290.28 ckester0 270.66 ckester0	121	91.73 cluster4 571.43 cluster1
	9 10	288.20 cluster0 179.14 cluster4	123	268.38 cluster0 88.03 cluster4
	11	270.47 ckrster0	125	75.50 cluster4
	12	336.30 ckrster1	126	411.05 cluster1
	13	290.96 cluster0	127	215.63 cluster0
	14	304.93 cluster0	128	868.25 cluster5
	15	77.37 cluster4	129	250.23 cluster0
	16	185.70 cluster4	130	110.37 cluster4
	17	64.79 cluster4	131	1143.35 cluster5
	18	150.32 cluster4	137	166.34 cluster4
	19	76.33 cluster4	133	217.66 cluster0
	20	277.72 cluster0	134	155.17 cluster4
	21	440.39 cluster1	135	157.02 cluster4
	72	239.60 cluster0	136	100.13 cluster4
	Z3 24	263.21 cluster0 502.66 cluster1	137	147.11 cheter4 122.07 cheter4
	75	932.78 cluster5	139	115.30 cluster4
	76	329.16 cluster1	140	224.68 cluster0
	27	314.04 cluster0	141	211.04 cluster0
	28	702.48 cluster5	142	35.75 cluster4
	29	294.01 cluster0	143	82.61 cluster4
	30	345.89 cluster1	144	106.39 cluster4
	31	283.79 cluster0 387.93 cluster1	145	73.14 cluster4 150.79 cluster4
	33 34	1179.32 cluster5 1356.27 cluster5	146	644.33 cluster5 419.81 cluster1
	35	1014.06 cketer5	149	307.29 cluster0
	36	615-58 cluster5	150	64.04 cluster4
	37	157.13 cluster4	151	132.62 cluster4
	38	176.27 cluster4	152	127.19 cluster4
	39	305.41 cluster0	153	460.93 cluster1
	40	497.04 cluster1	154	393.82 cluster1
	41	431.02 cluster1	155	270.09 cluster0
	42	258.17 cluster0	156	461.60 cluster1
	43	253.18 cluster0	157	646.80 cluster5
	44	243.36 cluster0	158	255.75 cluster0
	45	591.21 cluster1	159	833.65 cluster5
	46	641.42 cluster5	160	1290.62 cluster5
	47	787.24 cluster5	161	564.94 cluster1
	48	785.29 cluster5	162	631.04 cluster5
	49	189.82 cluster4	163	444.03 cluster1
	50	1412.14 cluster2	164	97.32 cluster4
	51	312.86 cluster0	165	36051 cluster1
	52	309.87 cluster0	166	519.86 cluster1
	53	366.48 cluster1	167	89.32 cluster4
	54	309.58 cluster0	168	154.71 cluster4
	56	308.65 cluster0	169	466.04 cluster1
	56	288.53 cluster0	170	175.07 cluster4
	57	142.11 cluster4	171	141.39 cluster4
	58	175.91 cluster4	172	382.24 cluster1
	59	319.89 cluster0	173	103.62 cluster4
	60 61	263.85 cluster0 312.13 cluster0	174	115.04 cluster4 255.82 cluster0
	62 63	353.21 cluster1 361.72 cluster1	176	87.95 cluster4 391.85 cluster1
	64	227.09 cluster0	178	412.72 cluster1
	65	287.90 cluster0	179	479.74 cluster1
	66	249.25 cluster0	180	306.98 cluster0
	67	297.95 cluster0	181	710.35 cluster5
	68	309.71 cluster0	182	121.37 cluster4
	69	267.20 cluster0	183	97.27 cluster4
	70	298.17 cluster0 404.90 cluster1	184	37.44 cluster4 446.30 cluster1
	72	627.60 cluster5 104.16 cluster4	186	1070.72 cluster5 605.49 cluster5
	74	105.46 cluster4 46.10 cluster4	188	393.81 cheter1 442.41 cheter1
	P0 70 77	394.60 cluster1 132.22 cluster4	190 191	170.15 cluster4 257.56 cluster0
	78	155.38 ckister4 205.85 ckister0	192 193	167.78 cluster4 293.85 cluster0
	80	370.94 cluster1	194	292.13 cluster0
	81	227.31 cluster0	195	501.30 cluster1
	82	768.10 cluster5	196	900.66 cluster5
	83	374.07 cluster1	197	423.12 cluster1
	84 85	471.41 chester1 293.02 chester0	198 199	1723.82 cluster2
	86 87	310.63 cluster0 160.08 cluster4	200	437.55 cluster1
	87 88 89	493.99 cluster1 228.42 cluster0	202	704.50 cluster5 136.98 cluster4 240.50 cluster0
	90 91	228.42 Cluster0 273.80 cluster0 262.31 cluster0	203	324.29 cluster1
	91 92 93	2914.01 cluster2 505.46 cluster1	205	6899.91 cluster3
	94	222.93 cluster0 240.76 cluster0	208	875.68 cluster5
	95 96 97	146.78 cluster4	209	870.04 cluster5
	97	100.82 cluster4	211	652.28 cluster5
	98	89_97 cluster4	212	436.52 cluster1
	99 00	616.21 cluster5 414.23 cluster1	213 214	71.30 cluster4
	01 07	513.46 cluster1 364.52 cluster1	215 216	6419.86 cluster3
	D3	491.27 cluster1 255.58 cluster0	217 218	
	05	534.65 ckister1	219	41111 ckester1
	06	2645.46 ckister2	220	554.83 ckester1
	07	2172.15 ckrster2	221	424.62 cketer1
	08	233.95 ckrster0	222	178.71 cketer4
	09 10	1038.64 cluster5 678.25 cluster5	223 224	271.62 cluster0
3	11	332.24 cluster1	225	880.55 cluster5
	12	898.79 cluster5	226	1032.61 cluster5
3	13	205.63 cluster0	227	99.39 cluster4

	1937 Blocks
id	Area Clusters
1	1689.01 duster 1
ŝ	3557.16 chester0
4	463, 8, custer0
	5977 81 cluster0
6	5593 94 cluster0
10	57143 cheter1
11	3430 78 chotca0
14	1827.05 chester 1
15	1178.59 chester 1
16	1371.43 cluster1
20	2401.19 cluster0
21	888.79 chester1
22	1244.76 cluster1
23	2697.30 duster0
13a	1663.81 duster1
13b	999.70 duster1
17a	10186.21 cluster0
171	9919_90 duster0
17)	1084.55 duster1
171	825.68 duster1
17m	1773.96 duster1
18a	6639.42 duster0
185	1440.43 chister1
181	3018.59 cluster0
19a	1647.99 cluster1
19c	170.15 duster1
24a	564.94 duster1
24b	631.04 duster1
24c	1290.62 cluster1
7a	2533.87 cluster0
76	6002_68 cluster0
8a	7517.31 custer0
8h	7100.69 cluster0
9.a	3566.89 cluster0 7172.07 cluster1
90	2172.07 clister 1

	1932 Gre	en spaces
id	Area	Clusters
1		0 cluster1
3		0 cluster1
4	3245.05	6906 cluster0
5	4180.90	6908 cluster0
6	3915.75	6944 cluster0
Za		0 cluster1
76		0 cluster1
8a	5	442_4 cluster0
ath	4970.41	63297 cluster0
90	1520.44	8182 cluster1
10	400.000	B404 cluster1
13-0		8392 cluster1
11	2401.54	18936 cluster0
14		1718 cluster1
136		1572 cluster1
16	959 995	1968 cluster1
15	825.012	8929 cluster1
23	1888.11	0258 cluster1
24c	903.434	6019 cluster1
22		2854 cluster1
24a	395.459	8116 cluster1
24b	441.731	4685 cluster1
20	1680.85	4614 cluster1
21	677 150	5969 cluster1
19a	1153.58	9912 cluster1
19c		3389 cluster1
18-a	4647.55	0885 cluster0
185		0242 cluster1
181	2134.01	2067 cluster0
17a	7	884_9 cluster0
17m	1241.77	4706 cluster1
171	577.976	8617 cluster1
17)	759 184	6703 cluster1
17i		8863 cluster0
9a	2496.87	2042 custr: 0

7. Appendix 14: Areas and clusters in Nezu 1956 (chapter 5 and 6)

	1956 BF ers Id Area Olusters Id Area Oluster			1956 Blocks 1956 Streets Area Clusters Id Area Clusters	
0 54.36 cluster2 114 90.18 clust 1 33.69 cluster2 115 63.66 clust	er3 229 123.33 cluster1 343 151.05 cluster4		570 44.75 cluster2 3 571 53_94 cluster2 11	3811.73 cluster0 0 1737.54 cluster5 4311.48 cluster0 1 1039.85 cluster5	1 138.448116 cluster0 2 159.392621 cluster0
2 55.01 cluster3 116 66.91 clust 3 53.88 cluster2 117 70.37 clust			572 27.88 cluster2 13 573 75.28 cluster3 14	3034.03 cluster0 2 1132.91 cluster5 1884.21 cluster0 3 57.79 cluster3	3 476.247476 cluster0 4 1083.97583 cluster1
4 63.96 cluster3 118 76.13 clust 5 185.40 cluster4 119 114.65 clust		460 53.64 cluster2	574 46.41 cluster2 15 575 63.27 cluster3 16	3068.04 duster0 4 305.64 duster0 4021.90 duster0 5 91.44 duster3	5 943.793873 cluster1 6 653.216573 cluster0
6 30.82 cluster2 120 116.24 clust	er1 234 139.74 cluster4 348 93.59 cluster1	462 193.05 cluster4	576 43_90 cluster2 19	2026.19 cluster0 6 103.82 cluster3	7 776.381785 cluster0
7 298.12 cluster0 121 191.53 clust 8 25.33 cluster2 122 46.33 clust	ar2 236 65.39 duster3 350 115.57 duster1	464 57_17 duster3	577 55.38 cluster3 22 578 66.07 cluster3 17a	1221.82 duster1 7 114.84 duster3 3862.58 duster0 8 851.01 duster5	8 376.707924 cluster0 9 505.479222 cluster0
9 52.39 cluster2 123 127.97 clust 10 94.41 cluster1 124 182.04 clust			579 33.56 cluster2 17b 580 30.04 cluster2 17c	1850.35 duster0 9 78.18 duster3 393.08 duster1 10 1528.68 duster5	10 1218.72423 cluster1 11 1504.56943 cluster1
11 61.81 cluster3 125 87.52 clust 12 55.89 cluster3 126 110.97 clust			581 62.46 cluster3 17d 582 33.09 cluster2 17h	1936.95 cluster0 11 101.88 cluster3 1922.25 cluster0 12 77.65 cluster3	12 1536.2884 cluster1 13 1400.51973 cluster1
13 47-92 cluster2 127 84-28 clust	er3 241 42.77 cluster2 355 55.27 cluster3	469 146.53 cluster4	583 30.42 cluster2 17i	5651.00 cluster0 13 124.65 cluster3	14 1476.24959 cluster1
14 58.11 cluster3 128 100.78 clust 15 65.02 cluster3 129 127.12 clust			584 67.24 cluster3 17j 585 54.75 cluster2 17k	519.99 duster1 14 264.43 duster0 696.62 duster1 15 113.49 duster3	15 179.297793 cluster0 16 1196.33448 cluster1
16 53.45 cluster2 130 123.15 clust 17 41.37 cluster2 131 57.06 clust			586 120.67 cluster1 171 587 298.34 cluster0 17m	1033.33 cluster1 16 294.59 cluster0 968.59 cluster1 17 349.46 cluster0	17 2547.52645 cluster2 18 517.493264 cluster0
18 49.48 cluster2 132 262.05 clust 19 28.56 cluster2 133 208.55 clust			588 124.28 cluster1 17n 589 107.33 cluster1 17o	794.78 duster1 18 1226.89 duster5 618.14 duster1 19 107.45 duster3	19 1564.53133 cluster1 20 1388.19955 cluster1
20 109.46 cluster1 134 68.89 clust	er3 248 72.50 duster3 362 70.90 duster3	476 42.40 cluster2	590 51.41 cluster2 17p	1537.19 cluster0 20 607.65 cluster1	21 808.953833 duster0
21 34.80 cluster2 135 156.67 clust 22 99.48 cluster1 136 80.81 clust			591 50.86 cluster2 17r 592 91.41 cluster3 18a	857.57 duster1 21 180.42 duster0 7688.46 duster0 22 367.62 duster0	22 1263.78615 cluster1 23 1378.01935 cluster1
23 167.96 cluster4 137 39.33 clust 24 92.53 cluster1 138 32.51 clust			593 245.29 cluster0 18h 594 75.91 cluster3 18f	790.08 cluster1 23 481.01 cluster1 1251.20 cluster1 24 637.36 cluster1	24 326.168693 cluster0 25 152.395895 cluster0
25 68_10 cluster3 139 83_94 clust 26 52_73 cluster2 140 83_83 clust	ar3 253 65.85 duster3 367 86.70 duster3	481 102.22 cluster1	595 42.45 cluster2 18g 596 73.49 cluster3 1a	1107.00 duster1 25 210.55 duster0 939.02 duster1 26 4933.14 duster4	26 321.028053 cluster0 27 50.443441 cluster0
27 70.93 cluster3 141 115.56 clust	er1 255 94.49 cluster1 369 34.31 cluster2	2 483 39.45 cluster2	597 46.52 cluster2 1h	594.95 cluster1 27 85.82 cluster3	28 335.411089 cluster0
28 73.74 cluster3 142 55.44 clust 29 80.21 cluster3 143 111.09 clust			598 80_50 cluster3 20a 599 67.60 cluster3 20c	478.61 cluster1 28 14651.00 cluster2 1190.85 cluster1 29 1245.87 cluster5	29 102.004855 cluster0 30 267.738415 cluster0
30 19.64 cluster2 144 61.87 clust 31 92.60 cluster1 145 81.12 clust			600 47_54 cluster2 21a 601 45_29 cluster2 21b	828.72 cluster1 30 1522.89 cluster5 458.44 cluster1 31 3113.23 cluster4	31 46.255509 cluster0 32 316.674087 cluster0
32 63.87 cluster3 146 150.25 clust	er4 260 121.79 cluster1 374 31.77 cluster2	488 120.87 cluster1	602 62.45 cluster3 21c 603 45.27 cluster2 21d	632.29 cluster1 32 215.29 cluster0	33 614.166805 duster0
33 74_10 cluster3 147 157.03 clust 34 71.24 cluster3 148 46.95 clust			604 58.82 cluster3 24a	406.23 cluster1 33 500.52 cluster1 374.12 cluster1 34 301.73 cluster0	34 528.810578 cluster0 35 1766.85356 cluster1
35 88.64 cluster3 149 48.13 clust 36 91.19 cluster3 150 47.05 clust			605 76.61 cluster3 24h 606 95.10 cluster1 4a	710.13 duster1 35 153.40 duster3 1518.69 duster1 36 108.81 duster3	36 1119-9678 duster1 37 188.769783 duster0
37 110.49 cluster1 151 39.64 clust 38 47.23 cluster2 152 53.69 clust		493 72.36 cluster3	607 87.67 cluster3 4b 608 84.34 cluster3 5a	2980.81 cluster0 37 101.67 cluster3 1264.94 cluster1 38 137.17 cluster3	38 692.429392 cluster0 39 484.71511 cluster0
39 43.54 cluster2 153 82.62 clust	er3 267 41.07 cluster2 381 74.32 cluster2	495 93.64 cluster1	609 58.73 cluster3 5h	3317.85 cluster0 39 59.59 cluster3	40 695.901153 cluster0
40 115.83 cluster1 154 32.11 clust 41 89.50 cluster3 155 130.90 clust			610 46.26 cluster2 5c 611 98.86 cluster1 6a	1454.45 duster1 40 108.70 duster3 2816.43 duster0 41 113.16 duster3	41 366.176223 duster0 42 399.481535 duster0
42 45.87 cluster2 156 106.00 clust 43 35.73 cluster2 157 74.95 clust			612 29.42 cluster2 6b 613 91.35 cluster3 7a	3166.97 cluster0 42 74.87 cluster3 2830.67 cluster0 43 69.54 cluster3	43 331.471858 cluster0 44 795.180869 cluster0
44 30_15 cluster2 158 37.87 clust	er2 272 98.41 cluster1 386 191.27 cluster4	500 104.98 cluster1	614 36.98 cluster 2 7h	5181.59 cluster0 44 230.25 cluster0	45 120.625355 cluster0
46 32.00 cluster2 160 36.12 clust	er2 274 49.77 cluster2 388 85.82 cluster3		615 120.43 cluster1 7e 616 62.58 cluster3 8a	1036.31 cluster1 45 204.99 cluster0 3323.80 cluster0	46 3193.27414 cluster2 47 162.476539 cluster0
47 69.41 cluster3 161 58.45 clust 48 60.41 cluster3 162 100.34 clust			617 79.58 cluster3 8h 618 61.56 cluster3 8h	4092.41 cluster0 7284.09 cluster0	48 505.836242 cluster0 49 3902.09142 cluster2
49 114.08 cluster1 163 80.26 clust 50 55.76 cluster3 164 232.99 clust			619 62.49 cluster3 9a 620 43.80 cluster2 9c	3621.51 cluster0 2091.73 cluster0	50 177.738812 cluster0 51 561.207543 cluster0
51 9.82 cluster2 165 91.88 clust	er1 279 26.71 duster2 393 25.84 duster2	2 507 98.84 cluster1	621 42.82 cluster2	2031.73 (4440)	52 0.004608 duster3
52 192.38 cluster4 166 96.33 clust 53 55.10 cluster3 167 114.20 clust			622 40.31 cluster2 623 31.19 cluster2		91 0.019905 cluster3 92 0.022703 cluster3
54 149.89 cluster4 168 101.08 clust 55 125.06 cluster1 169 66.21 clust			624 21.50 cluster2 625 73.09 cluster3		93 0.206416 cluster3 94 0.120967 cluster3
56 79.19 cluster3 170 65.20 clust	er 3 284 112.33 duster 1 398 150.65 duster	512 39.47 duster2	626 126.43 cluster1		95 0.019552 duster3
58 50.51 cluster2 172 132.44 clust	er1 286 51.15 duster2 400 43.57 duster2	2 514 76.05 duster3	627 48.73 cluster2 628 41.19 cluster2		97 3.797337 cluster3
59 62.18 cluster3 173 35.14 clust 60 55.92 cluster3 174 115.37 clust			629 33.27 cluster2 630 51.17 cluster2		98 13.774057 duster0 99 5.523921 duster3
61 34.69 cluster2 175 51.04 clust 62 79.85 cluster3 176 52.40 clust			631 77.46 cluster3 632 42.53 cluster2		100 3.229817 cluster3 101 2.418377 cluster3
63 48.63 cluster2 177 47.32 clust	ar2 291 51.71 duster2 405 68.40 duster3	519 85.00 cluster3	633 88.03 cluster3		102 2.180243 cluster3
64 61.57 cluster3 178 56.64 clust 65 62.30 cluster3 179 47.52 clust	ar2 293 58.54 duster3 407 41.58 duster2	2 521 147.50 cluster4	634 57.35 cluster3 635 87.32 cluster3		103 0.688561 cluster3 104 0.834294 cluster3
66 58.25 cluster3 180 34.71 clust 67 139.70 cluster4 181 34.56 clust			636 59.46 cluster3 637 67.97 cluster3		105 4.152751 cluster3 106 4.31328 cluster3
68 49_20 cluster2 182 33.05 clust 69 86_36 cluster3 183 38.64 clust			638 103.88 cluster1 639 191.67 cluster4		107 2.879675 cluster3 108 2.168287 cluster3
70 119.38 cluster1 184 44.05 clust	er2 298 58.36 diuster3 412 71.54 diuster3	526 32.38 duster2	640 85.02 cluster3		109 0.835881 cluster3
72 35.95 cluster2 186 28.29 clust			641 67.41 cluster3 642 84.48 cluster3		111 0.467029 cluster3
73 53.74 cluster2 187 38.11 clust 74 58.42 cluster3 188 153.01 clust			643 32.83 cluster2 644 47.40 cluster2		112 0.958224 duster3 113 0.589503 duster3
75 129.06 cluster1 189 27.10 clust 76 50.83 cluster2 190 68.33 clust		351 1556 66661	645 52.54 cluster2 646 54.28 cluster2		114 1.528383 cluster3
77 35.26 cluster2 191 39.64 clust	er2 305 27.22 duster2 419 60.07 duster3	533 94.87 cluster1	647 134.46 cluster1		
79 98.05 cluster1 193 55.08 clust	ar3 307 33.48 duster2 421 167.53 duster4	535 117.78 duster1	648 26.83 cluster2 649 29.95 cluster2		
80 96.84 cluster1 194 17.08 clust 81 90.93 cluster3 195 22.42 clust			650 65.21 cluster3 651 43.05 cluster2		
82 92.04 cluster1 196 92.23 clust 83 50.71 cluster2 197 36.89 clust	ar1 310 38.70 duster2 424 87.67 duster2	538 58.57 duster3	652 52.12 cluster2 653 59.94 cluster3		
84 54.57 cluster2 198 27.10 clust	er2 312 84.67 duster3 426 103.69 duster1	540 128.44 cluster1	654 52_36 cluster2		
85 35.44 cluster2 199 179.31 clust 86 129.46 cluster1 200 35.08 clust	ar2 314 46.79 duster2 428 71.38 duster3	542 40.34 cluster2	655 55.61 cluster3 656 54.97 cluster3		
87 72.66 cluster3 201 76.79 clust 88 46.98 cluster2 202 155.39 clust			657 58.15 cluster3 658 40.10 cluster2		
89 71.19 cluster3 203 93.19 clust 90 67.59 cluster3 204 168.67 clust			659 109.55 cluster1 660 157.73 cluster4		
91 81.12 cluster3 205 87.79 clust	ar3 319 40.90 cluster2 433 33.22 cluster2	2 547 41.67 duster2	661 46.51 cluster2		
92 44.84 cluster2 206 44.21 clust 93 58.93 cluster3 207 82.67 clust	er3 321 79.28 cluster3 435 42.88 cluster2	2 549 64.33 cluster3	662 42_17 cluster2 663 99.84 cluster1		
94 37.18 cluster2 208 138.60 clust 95 45.24 cluster2 209 45.23 clust			664 46.12 cluster2 665 110.44 cluster1		
96 48.62 cluster2 210 27.26 clust 97 131.53 cluster1 211 39.32 clust	er2 324 36.96 duster2 438 50.29 duster2	2 552 61.88 cluster3	666 65_10 cluster3 667 37_59 cluster2		
98 55.89 cluster3 212 52.16 clust	ar2 326 114.56 cluster1 440 157.40 cluster4	554 106.39 duster1	668 37.89 cluster2		
99 125.28 cluster1 213 107.72 clust 100 45.82 cluster2 214 97.16 clust	ar1 328 60.93 duster3 442 71.29 duster3	556 60.52 duster3	669 55.56 cluster3 670 63.68 cluster3		
101 43.99 cluster2 215 40.01 clust 102 115.39 cluster1 216 48.46 clust			671 86.35 cluster3 672 118.96 cluster1		
103 56.90 cluster3 217 51.25 clust 104 38.93 cluster2 218 33.46 clust	er2 331 63.56 cluster3 445 46.82 cluster2	2 559 39.41 duster2	673 104.05 cluster1 674 100.69 cluster1		
105 57.62 cluster3 219 148.77 clust	er4 333 48.81 cluster2 447 51.60 cluster2	2 561 11.22 duster2	675 98.74 cluster1		
106 63.83 cluster3 220 64.35 clust 107 108.53 cluster1 221 64.65 clust	ar3 335 63.05 duster3 449 113.33 duster1		676 84_95 cluster3 677 88_99 cluster3		
108 37.08 cluster2 222 62.84 clust 109 72.32 cluster3 223 175.40 clust			678 50.91 cluster2 679 54.33 cluster2		
110 37.09 cluster2 224 42.50 clust 111 47.52 cluster2 225 45.55 clust	er2 338 146.09 duster4 452 50.62 duster2	2 566 55.82 cluster3	680 20.00 cluster2 681 51.86 cluster2		
112 99.23 cluster1 226 129.62 clust	ar1 340 185.94 duster4 454 41.91 duster2	2 568 64.52 duster3	682 81.11 cluster3		
113 66.61 cluster3 227 125.82 clust	er1 341 80.19 duster3 455 35.49 duster2	2 569 35.23 cluster2	683 90_38 cluster3		

8. Appendix 15: BF Areas and clusters in Nezu 2003 (chapter 5 and 6)

Id	Area Clusters	ld .	Area Clusters	Id .	Area Clusters	Id	Area Clusters	ld A	Area Clusters												
0	56.68 cluster2	114	63.39 cluster2	228	75.66 cluster3	342	91.07 cluster3	456	28.20 cluster4	570	40.18 cluster1		13.64 cluster4	798	80.40 cluster3	912	58.11 cluster2	1026		1140	34.60 cluster4
1	54.70 cluster2	115	28.15 cluster4	229	175.17 cluster5	343	37.30 cluster1	457	4.32 cluster4	571	67.91 cluster2	685	40.50 cluster1	799	24.33 cluster4	913	49.24 cluster1	1027	12.62 cluster4	1141	84.94 cluster3
2	64.49 cluster2	116	42.51 cluster1	230	31.15 cluster4	344	67.79 cluster2	458	3.41 cluster4	572	50.37 cluster1	686	50.55 cluster1	800	39.73 cluster1	914	200.15 cluster5	1028	26.29 cluster4	1142	12.17 cluster4
3	110.97 cluster3	117	62.21 cluster2	231	35.70 cluster1	345	24.12 cluster4	459	9.73 cluster4	573	31.84 cluster4	687	22.30 cluster4	801	22.72 cluster4	915	31.93 cluster4	1029	101.12 cluster3	1143	32.24 cluster4
4	46.81 cluster1	118	55.43 cluster2	232	56.70 cluster2	346	87.28 cluster3	460	5.46 cluster4	574	23.25 cluster4	688	25.02 cluster4	802	31.33 cluster4	916	48.01 cluster1	1030	70.48 cluster2	1144	17.83 cluster4
5	40.98 cluster1	119	33.46 cluster4	233	50.48 cluster1	347	21.71 cluster4	461	83.20 cluster3	575	83.30 cluster3	689	24.37 cluster4	803	192.14 cluster5	917	53.38 cluster2	1031	62.22 cluster2	1145	25.85 cluster4
6	566.53 cluster0	120	31.11 cluster4	234	27.77 cluster4	348	38.86 cluster1	462	33.98 cluster4	576	69.53 cluster2	690	98.44 cluster3	804	17.12 cluster4	918	129.00 cluster5	1032	59.02 cluster2	1146	29.21 cluster4
7	356.44 cluster0	121	47.66 cluster1	235	20.45 cluster4	349	98.90 cluster3	463	63.32 cluster2	577	64.62 cluster2	691	40.88 cluster1	805	31.90 cluster4	919	43.91 cluster1	1033	59.21 cluster2	1147	16.73 cluster4
8	53.66 cluster2	122	36.57 cluster1	236	43.48 cluster1	350	19.14 cluster4	464	47.39 cluster1	578	10.19 cluster4	692	149.17 cluster5	806	60.83 cluster2	920	40.37 cluster1	1034	92.67 cluster3	1148	60.60 cluster2
9	61.83 cluster2	123	36.39 cluster1	237	43.22 cluster1	351	29.26 cluster4	465	22.90 cluster4	579	21.41 cluster4	693	54.37 cluster2	807	25.03 cluster4	921	60.16 cluster2	1035	79.29 cluster3	1149	22.67 cluster4
10	114.55 cluster3	124	78.32 cluster3	238	58.86 cluster2	352	16.56 cluster4	466	85.97 cluster3	580	72.14 cluster2	694	17.06 cluster4	808	31.09 cluster4	922	58.77 cluster2	1036	206.27 cluster5	1150	30.95 cluster4
11	184.25 cluster5	125	50.69 cluster1	239	18.41 cluster4	353	61.01 cluster2	467	40.49 cluster1	581	40.56 cluster1	695	21.98 cluster4	809	45.55 cluster1	923	52.72 cluster2	1037	87.40 cluster3	1151	89.39 cluster3
12	85.30 cluster3	126	65.64 cluster2	240	12.07 cluster4	354	39.42 cluster1	468	80.89 cluster3	582	44.64 cluster1	696	20.33 cluster4	810	107.57 cluster3	924	41.12 cluster1	1038	25.14 cluster4	1152	27.85 cluster4
13	109.43 cluster3	127	21.96 cluster4	241	42.25 cluster1	355	75.91 cluster3	469	48.62 cluster1	583	43.12 cluster1	697	42.77 cluster1	811	26.83 cluster4	925	27.00 cluster4	1039	38.46 cluster1	1153	38.25 cluster1
14	49.80 cluster1	128	31.91 cluster4	242	27.66 cluster4	356	20.62 cluster4	470	24.03 cluster4	584	59.54 cluster2		40.81 cluster1	812	23.62 cluster4	926	26.34 cluster4	1040	27.74 cluster4	1154	47.76 cluster1
15	30.53 cluster4	129	27.60 cluster4	243	34.00 cluster4	357	74.54 cluster3	471	31.06 cluster4	585	60.21 cluster2	699	20.24 cluster4	813	56.61 cluster2	927	28.44 cluster4	1041	44.51 cluster1	1155	31.94 cluster4
16	91.03 cluster3	130	48.15 cluster1	244	70.83 cluster2	358	103.31 cluster3	472	57.56 cluster2	586	34.91 cluster4	700	22.72 cluster4	814	45.34 cluster1	928	73.15 cluster2	1042	41.78 cluster1	1156	1210.26 cluster0
17	50.18 cluster1	131	24.42 cluster4	245	47.47 cluster1	359	29.99 cluster4	473	68.66 cluster2	587	33.09 cluster4	701	72.87 cluster2	815	19.60 cluster4	929	66.68 cluster2	1043	28.70 cluster4	1157	372.74 cluster0
18	47.59 cluster1	132	65.30 cluster2	246	28.97 cluster4	360	22.74 cluster4		162.74 cluster5	588	38.32 cluster1	702	18.22 cluster4	816	22.31 cluster4	930	24.76 cluster4	1044	30.10 cluster4	1158	14.76 cluster4
19	44.64 cluster1		177.00 cluster5	247	28.75 cluster4	361	49.56 cluster1	475	96.72 cluster3	589	42.45 cluster1	703	45.50 cluster1	817	8.70 cluster4	931	43.49 cluster1	1045	62.98 cluster2	1159	45.42 cluster1
20	26.14 cluster4	134	33.54 cluster4	248	44.15 cluster1	362	97.20 cluster3	476	61.20 cluster2	590	44.67 cluster1	704	43.24 cluster1	818	32.70 cluster4	932	67.08 cluster2	1046	84.64 cluster3	1160	153.99 cluster5
21	33.47 cluster4	135	89.43 cluster3	249	19.43 cluster4	363	45.00 cluster1	477	37.45 cluster1	591	31.86 cluster4	705	27.00 cluster4	819	38.79 cluster1	933	25.70 cluster4	1047	83.85 cluster3	1161	34.11 cluster4
22	44.31 cluster1	136	14.60 cluster4	250	37.27 cluster1	364	60.59 cluster2	478	50.10 cluster1	592	56.23 cluster2		14.93 cluster4	820	26.36 cluster4	934	51.39 cluster1	1048	38.67 cluster1	1162	27.76 cluster4
23	35.48 cluster1	137	63.15 cluster2	251	26.69 cluster4		171.49 cluster5	479	79.45 cluster3	593	478.66 cluster0		54.64 cluster2	821	34.16 cluster4	935	59.41 cluster2	1049	42.90 cluster1	1163	38.60 cluster1
24	24.91 cluster4	138	52.23 cluster1	252	21.84 cluster4	366	38.74 cluster1	480	50.42 cluster1	594	19.56 cluster4		47.72 cluster1	822	26.98 cluster4	936	29.51 cluster4	1050		1164	29.97 cluster4
25	36.71 cluster1		217.71 cluster5	253	12.09 cluster4	367	37.76 cluster1	481	44.10 cluster1	595	84.60 cluster3	709	31.76 cluster4	823	21.14 cluster4	937	39.56 cluster1	1051	108.59 cluster3	1165	36.42 cluster1
26	22.48 cluster4		139.46 cluster5	254	95.53 cluster3	368	70.91 cluster2	482	17.95 cluster4	596	34.68 cluster4	710	34.53 cluster4	824	30.75 cluster4	938	30.88 cluster4	1052	95.89 cluster3	1166	77.18 cluster3
27	34.56 cluster4		292.71 cluster0	255	60.85 cluster2	369	32.21 cluster4	483	35.07 cluster4	597	42.90 cluster1	711	22.25 cluster4	825	40.96 cluster1	939	25.54 cluster4	1053	88.12 cluster3	1167	93.10 cluster3
28	129.90 cluster5	142	188.40 cluster5	256	67.23 cluster2	370	21.56 cluster4	484	46.31 cluster1	598	37.85 cluster1	712	44.~								

211	
-----	--

9. Appendix 16: Areas and clusters in Nezu 2003 (chapter 5 and 6)

	2003 Blocks						es
Id	Area	Clusters	Id	Area	Clusters	Id	Area Clusters
1a	1204.29		0		cluster0	1	
1b 4a		cluster1 cluster1	1		cluster0 cluster0	2	
4a 5a		cluster1	3		cluster0	3	304.18755 cluster0
50 50		cluster1	4		cluster0	5	
4b/1	742.01	cluster1	5	56.17	cluster0	6	223.48 cluster0
4b/2	2349.81		6		cluster0	7	
3		cluster2	7		cluster0	8	
5b/1 5b/2		cluster1 cluster2	8		cluster0 cluster0	9 10	
6a		cluster2	10		cluster0	10	871.22 cluster1
6b	3076.07		11		cluster0	12	
9a	3753.87		12		cluster0	13	
8b/1		cluster1	13		cluster0	14	265.58 cluster0
8b/2 8b/3	3129.85	cluster2 cluster1	14		cluster0 cluster0	15	937.615 cluster1 54.305 cluster0
80/5 8a/1	1372.60		15		cluster0	18	349.95 cluster0
7a/1	1302.23		17		cluster0	18	314.265 cluster0
7a/2	1314.79	cluster1	18	116.38	cluster0	19	610.66 cluster0
7e	1028.06		19		cluster0	20	
8a/2		cluster1	20		cluster0	21	134.7 cluster0
8a/3 8a/4		cluster1 cluster1	21	24.96 1216.19	cluster0	22	
7b	5009.93		22	2611.60		23	
8h/1	1399.41		24		cluster0	25	
8h/2	334.23	cluster1	25	768.41	cluster3	26	85.17 cluster0
8h/3		cluster1	26	1495.86		27	85.405 cluster0
8h/4	4880.96		27 28	1400.39		28 29	
8h/5 11//1		cluster1 cluster1	28	2252.85	cluster2 cluster0	29	22.205 cluster0 118.87 cluster0
11//2		cluster1	30		cluster0	31	73.505 cluster0
9c	2326.34		31		cluster0	32	
13/1		cluster1	32		cluster0	33	
13/2		cluster1	33	1348.43		34	524.39518 cluster0
17o 11//3	3509.55	cluster1	34 35		cluster0 cluster0	35 36	183.3 cluster0 1474.895 cluster1
14		cluster2	36		cluster0	37	499.54 cluster0
16/1	2616.49	cluster2	37	432.08	cluster0	38	707.52 cluster1
16/2		cluster1	38		cluster0	39	234.39 cluster0
22 20a		cluster1	39 40		cluster0	40 41	393.295 cluster0
20a 20c	467.22 1092.75	cluster1	40		cluster0 cluster0	41	68.72 cluster0 290.18 cluster0
15		cluster2	42		cluster0	43	1072.045 cluster1
24a		cluster1	43		cluster0	44	118.395 cluster0
24b		cluster1	44		cluster0	45	288.295 cluster0
21b		cluster1	45		cluster0	46	49.655 cluster0
19 18a	2061.36 7410.02	cluster2	46 47		cluster0 cluster0	47 48	340.519955 cluster0 2842.45372 cluster1
21d		cluster0	47		cluster0	48	
21a	1235.36		49		cluster0	50	
18b		cluster1	50	187.36	cluster0	51	
18g		cluster1	51		cluster0	52	245.465555 cluster0
18f	1143.59	cluster1 cluster1	52 53		cluster0 cluster0	53 54	389.91 cluster0 178.46 cluster0
17p/1 17p/2		cluster1 cluster1	53		cluster0 cluster3	54	
17a	4012.07		55		cluster0	56	
17b/1	1099.13		56		cluster0	57	421.453485 cluster0
17b/2		cluster1	57		cluster0	58	142.879785 cluster0
17b/3		cluster1	58		cluster0	59	144.15 cluster0
17d/1 17d/2		cluster1 cluster2	59	2746.26 15275.48		60	125.49 cluster0 785.505 cluster1
17u/2 17h/1		cluster2	61		cluster0	62	399.07419 cluster0
17h/2		cluster1	62	1977.65		63	133.075 cluster0
17i	6151.91		63	4054.89		64	2720.38 cluster1
17r		cluster1	64	222.94	cluster0	65	405.42 cluster0
17j 17k		cluster1 cluster1				66 67	186.53 cluster0 247.475 cluster0
17k 17n		cluster1 cluster1				67	
171		cluster1				69	
17m		cluster1				70	558.69 cluster0
						71	0.002803 cluster0

10. Appendix 17: Areas and clusters in Auckland 1882 (chapter 6)

			19	552 BF			1552 Plots	1882 Blocks	1882 Streets	1552 Green spaces
id a 692	ea clusters io 13 cluster0	d are 1095			ea dustersi 985 duster0	di area clusters 701 257 cluster2	id area clusters 0 1099 cluster0	id area clusters 4 25328 cluster0	id area clusters 1 14438 cluster1	id area clusters 4 16006 cluster1
727	17 cluster0	756	62 cluster0	954	99 duster0	784 271 cluster2	1 1162 cluster0	25 6351 cluster1	2 12390 cluster1	25 5038 cluster0
1302 679	17 cluster0 19 cluster0	987 1019	62 cluster0 62 cluster0	1011 1059	100 duster0 100 duster0	1065 275 cluster2 797 277 cluster2	2 1769 cluster0 3 1778 cluster0	26 7525 cluster1 27 3952 cluster1	3 5075 cluster1 4 300 cluster0	26 4667 cluster0 27 2008 cluster0
750 728	19 cluster0 20 cluster0	1237 594	62 cluster0 63 cluster0	1094 673	100 duster0 101 duster0	674 252 cluster2 778 257 cluster2	4 1271 cluster0 364 481 cluster1	28 2725 cluster1 29 2496 cluster1	5 9679 cluster1 6 304 cluster0	28 1816 cluster0 29 477 cluster0
1014	22 cluster0	771	64 cluster0	762	101 duster0 101 duster0	1291 288 cluster2	385 845 cluster1	30 2098 cluster1	7 4631 cluster1	30 1017 cluster0
731 862	23 cluster0 23 cluster0	545 564	64 cluster0 64 cluster0	360 746	101 clusteru 102 cluster0	1288 292 cluster2 798 297 cluster2	366 439 cluster1 367 467 cluster1	31 3639 cluster1 32 8402 cluster1	8 1391 cluster1 9 158 cluster0	31 713 cluster0 32 2344 cluster0
1001 705	24 cluster0 25 cluster0	991 1057	64 cluster0 64 cluster0	1128 1040	102 duster0 103 duster0	781 299 cluster2 1419 309 cluster2	309 335 cluster1 370 262 cluster1	33 4227 cluster1 34 13062 cluster0	10 10037 cluster1 11 271 cluster0	33 1481 cluster0 34 9306 cluster1
1085 724	25 cluster0 27 cluster0	661 879	65 cluster0 65 cluster0	1417 772	103 duster0 104 duster0	596 315 cluster2 1101 329 cluster2	371 672 cluster1 372 219 cluster1	35 1530 cluster1 36 7415 cluster1	12 184 cluster0 13 960 cluster0	35 1156 cluster0 36 6591 cluster0
729	27 cluster0	743	65 cluster0	712	105 duster0	794 330 cluster2	373 153 cluster1	37 14151 cluster0	14 23974 cluster1	37 12698 cluster1
773	27 cluster0 25 cluster0	959 1039	65 cluster0 65 cluster0	1053 252	105 duster0 106 duster0	708 333 cluster2 1082 339 cluster2	374 177 cluster1 375 164 cluster1	38 9995 cluster1	15 9982 cluster1 16 473 cluster0	38 3786 cluster0 3 1955 cluster0
739 670	25 cluster0 29 cluster0	667 1105	67 cluster0 67 cluster0	867 1109	106 duster0 106 duster0	1022 348 cluster2 593 350 cluster2	376 3105 cluster0 377 630 cluster1		17 381 cluster0 18 2196 cluster1	
702	30 cluster0	956	68 cluster0	1125	106 duster0	594 350 cluster2	378 326 cluster1			
751 697	30 cluster0 31 cluster0	691 547	69 cluster0 69 cluster0	1127 718	107 duster0 108 duster0	1029 362 cluster2 664 370 cluster2	379 - 356 cluster1 3 30 - 539 cluster1			
1062 883	31 cluster0 32 cluster0	554 1044	69 cluster0 69 cluster0	205 055	109 duster0 111 duster0	1007 372 cluster2 1074 391 cluster2	351 750 cluster1 352 316 cluster1			
996 740	33 cluster0 34 cluster0	1076 1093	69 cluster0 69 cluster0	851 698	111 duster0 112 duster0	1067 397 cluster2 763 423 cluster2	383 859 cluster1 384 480 cluster1			
995	35 cluster0	\$49	70 cluster0	703	112 duster0	1259 423 cluster2	395 246 cluster1			
710 745	36 cluster0 36 cluster0	1081 592	70 cluster0 71 cluster0	755 1025	112 duster0 112 duster0	678 448 cluster2 801 459 cluster1	396 1366 cluster0 387 2507 cluster0			
880 10:30	36 cluster0 36 cluster0	782 866	72 cluster0 72 cluster0	1032 669	112 duster0 113 duster0	767 524 cluster3 766 578 cluster3	359 326 cluster1 390 487 cluster1			
1112 1113	36 cluster0 37 cluster0	1047 1096	72 cluster0 72 cluster0	1057 250	113 duster0 114 duster0	780 662 cluster3 799 748 cluster3	391 624 cluster1 392 695 cluster1			
693	38 cluster0	1126	72 cluster0	1099	115 duster0	690 840 cluster3	393 350 cluster1			
997 1046	38 cluster0 38 cluster0	1415 792	72 cluster0 73 cluster0	747 776	117 duster1 117 duster1	877 1049 cluster3	419 640 cluster1 420 430 cluster1			
1063 1069	35 cluster0 35 cluster0	8 56 955	73 cluster0 73 cluster0	717	118 duster1 118 duster1		421 465 cluster1 422 548 cluster1			
730 733	39 cluster0 39 cluster0	992 8 54	73 cluster0 74 cluster0	798 1004	119 duster1 119 duster1		423 749 cluster1 424 986 cluster1			
999	39 cluster0	706	74 cluster0	1005	119 duster1		425 2288 cluster0			
1021 1085	39 cluster0 39 cluster0	744 989	74 cluster0 74 cluster0	1119 269	120 duster1 123 duster1		426 766 cluster1 427 336 cluster1			
1030 1110	39 cluster0 39 cluster0	846 853	75 cluster0 75 cluster0	1026 799	124 duster1 125 duster1		428 682 cluster1 429 799 cluster1			
052	40 cluster0 40 cluster0	967	75 cluster0	1041	126 duster1		430 1495 cluster0			
998 1013	40 cluster0	1015 1027	75 cluster0 75 cluster0	1102 785	126 duster1 128 duster1		431 1815 cluster0 432 488 cluster1			
749 801	41 cluster0 41 cluster0	1043 1064	75 cluster0 75 cluster0	854 1033	129 duster1 131 duster1		433 225 cluster1 434 117 cluster1			
986 721	41 cluster0 42 cluster0	1072 860	75 cluster0 76 cluster0	1292 1103	131 duster1 133 duster1		435 296 cluster1 452 2423 cluster0			
741	42 cluster0 42 cluster0	845	75 cluster0	1066	134 duster1 134 duster1		463 1821 cluster0			
840 841	42 cluster0	666 735	77 cluster0 77 cluster0	1054 947	135 duster1		465 642 cluster1			
732 1111	43 cluster0 43 cluster0	365 1071	77 cluster0 77 cluster0	660 504	136 duster1 136 duster1		466 572 cluster1 467 568 cluster1			
661 1000	44 cluster0 44 cluster0	1414 704	77 cluster0 78 cluster0	872 1055	136 duster1 136 duster1		468 389 cluster1 469 475 cluster1			
662	45 cluster0	752	75 cluster0	1056	140 duster1		460 946 cluster1			
719 695	45 cluster0 47 cluster0	887 946	78 cluster0 78 cluster0	842 874	143 duster1 144 duster1		461 - 8 56 cluster1 462 - 793 cluster1			
875 993	47 cluster0 47 cluster0	722	79 cluster0 79 cluster0	576 1293	147 duster1 148 duster1		463 - 016 cluster1 464 - 1069 cluster0			
1124 671	47 cluster0 48 cluster0	1104 723	79 cluster0 80 cluster0	1058 1106	149 duster1 152 duster1		405 1602 cluster0 466 1930 cluster0			
1006 1049	48 cluster0 48 cluster0	761 945	80 cluster0 80 cluster0	1016 1121	153 duster1 154 duster1		467 2908 cluster0 468 1217 cluster0			
1050	48 cluster0	1012	50 cluster0	1002	155 duster1		469 1738 cluster0			
753 705	49 cluster0 49 cluster0	1123 1294	50 cluster0 50 cluster0	1079 1023	155 duster1 158 duster1		470 983 cluster1 471 1167 cluster0			
885 944	49 cluster0 49 cluster0	677 770	51 cluster0 51 cluster0	1051 952	158 duster1 160 duster1		472 1029 cluster1 482 1121 cluster0			
994 1003	50 cluster0 50 cluster0	571 1020	S1 cluster0 S1 cluster0	774 878	161 duster1 161 duster1		453 2848 cluster0 454 2119 cluster0			
1031	50 cluster0	1045	SI cluster0	855	161 duster1		495 1982 cluster0			
1046 263	50 cluster0 51 cluster0	779 844	53 cluster0 53 cluster0	1295 787	162 duster1 163 duster1		436 795 cluster1 487 282 cluster1			
881 590	51 cluster0 51 cluster0	\$70 1052	83 cluster0 83 cluster0	1100 665	167 duster1 168 duster1		455 1966 cluster0 459 1965 cluster0			
1054 1053	51 cluster0 52 cluster0	1116 796	83 cluster0 84 cluster0	855 958	169 duster1 170 duster1		490 2034 cluster0 513 644 cluster1			
1117	52 cluster0	1010	54 cluster0	1055	170 duster1		514 765 cluster1			
1303 1115	52 cluster0 53 cluster0	775 950	85 cluster0 85 cluster0	990 786	171 duster1 172 duster1		516 2515 cluster0			
1301 686	53 cluster0 54 cluster0	1298 597	85 cluster0 85 cluster0	707 715	174 duster1 175 duster1		517 1021 cluster1 518 1216 cluster0			
694 742	54 cluster0 54 cluster0	745 800	55 cluster0 55 cluster0	80 2 777	175 duster1 176 duster1		519 1643 cluster0 520 525 cluster1			
700	54 cluster0 54 cluster0	591 663	35 cluster0 87 cluster0	889 1017	150 duster1 150 duster1		521 1004 cluster1 522 2018 cluster0			
669	55 cluster0	737	39 cluster0	709	182 duster1		529 1720 cluster0			
675 696	55 cluster0 55 cluster0	1024 1078	59 cluster0 59 cluster0	1114 757	183 duster1 184 duster1		530 5112 cluster0 532 1005 cluster1			
754 789	55 cluster0 55 cluster0	1108 764	59 cluster0 90 cluster0	709 859	186 duster1 187 duster1		533 1720 cluster0 534 2803 cluster0			
1059 1056	55 cluster0 55 cluster0	857 1018	90 cluster0 90 cluster0	1035 793	187 duster1 188 duster1		535 1035 cluster1 536 2485 cluster0			
790	56 cluster0	1097	90 cluster0	1299	189 duster1		537 5 99 cluster1			
226 1416	56 cluster0 56 cluster0	503 1070	91 cluster0 91 cluster0	858 087	195 duster1 197 duster1		538 873 cluster1 539 2278 cluster0			
714 736	57 cluster0 57 cluster0	659 734	92 cluster0 92 cluster0	953 595	197 duster1 198 duster1		540 1867 cluster0 541 2504 cluster0			
543 663	57 cluster0 58 cluster0	565 1009	92 cluster0 92 cluster0	716 1075	199 duster1 203 duster1		542 1722 cluster0 543 2869 cluster0			
005	58 cluster0	10225	92 cluster0	1092	203 duster1		544 1373 cluster0			
676 791	58 cluster0 58 cluster0	085 943	93 cluster0 93 cluster0	948 725	204 duster1 206 duster1		545 882 cluster1 580 170 cluster1			
1038 1042	58 cluster0 58 cluster0	949 672	94 cluster0 95 cluster0	1300 1296	212 duster1 214 duster1					
206 202	59 cluster0 59 cluster0	720	95 cluster0 95 cluster0	1091 295	215 duster1 219 duster1					
951	59 cluster0	1090	95 cluster0	591	221 duster1					
1118 593	59 cluster0 60 cluster0	1122 711	95 cluster0 96 cluster0	992 1077	223 duster1 228 duster1					
726 735	61 cluster0 61 cluster0	713 1036	96 cluster0 96 cluster0	1037 795	231 duster1 233 duster2					
788	61 cluster0 61 cluster0	1413 700	96 cluster0 97 cluster0	783 705	245 duster2 252 duster2					
1056	61 cluster0	1107	97 cluster0	1290	256 duster2					
1060	61 cluster0	1061	95 cluster0	1418	259 duster2					

11. Appendix 18: Areas and clusters in Auckland 1908 (chapter 6)

			1908 BF								1000	10	····
	rea clusters		area clusters		area clusters	id i	908 Piots area clusters	id a	1908 Blocks rea clusters	10 s	1908 streets area clusters	id a	08 green spaces rea clusters
241 242	297 cluster2 236 cluster2	803 804	149 cluster0 136 cluster0	917 918	50 duster0 71 duster0	252 256	336 cluster1 396 cluster1	2 22	23905 cluster0 10046 cluster0	1 2	17186 cluster0 246 cluster1	2 22	12190 cluster1 3702 cluster1
243 244	329 cluster2 317 cluster2	805 806	109 cluster0 293 cluster2	919 920	56 cluster0 45 cluster0	274 254	416 cluster1 432 cluster1	23 25	9940 cluster0 4084 cluster1	3	22361 cluster0 13524 cluster0	23 25	4905 cluster1 416 cluster0
245	271 cluster2	807	111 duster0	921	87 duster0	264	439 cluster1	26	8235 cluster1	5	5693 cluster0	26	2699 cluster0
246 324	344 cluster2 109 cluster0	808 809	122 duster0 342 duster2	922 923	105 duster0 36 duster0	275 266	445 cluster1 512 cluster1	27 28	3445 cluster1 2007 cluster1	6 7	577 cluster1 269 cluster1	27 28	720 cluster0 747 cluster0
325 326	108 cluster0 59 cluster0	810 811	128 cluster0 100 cluster0	924 925	119 duster0 162 duster0	249 269	S22 cluster1 S71 cluster1	29 30	1819 cluster1 6134 cluster1	8	610 cluster1 9946 cluster0	29 30	353 cluster0 2524 cluster0
327	282 cluster2	812	194 duster2	926	137 duster0	268	573 cluster1	31	7000 cluster1	10	2793 cluster1	30	3835 cluster1
328 329	689 cluster1 76 cluster0	813 814	126 cluster0 79 cluster0	927 928	166 duster0 2 00 duster2	281 258	573 cluster1 595 cluster1	34 40	6327 cluster1 7569 cluster1	11 12	2224 cluster1 495 cluster1	34 40	4548 cluster1 6298 cluster1
330	206 cluster2	815	77 duster0	929	327 duster2	238	613 cluster1	41	1385 cluster1	13	367 cluster1	41	50 cluster0
331 551	251 cluster2 408 cluster2	816 817	77 duster0 77 duster0	930 931	237 duster2 219 duster2	251 234	674 cluster1 683 cluster1	42 43	2461 cluster1 9891 cluster0	14 15	201 cluster1 6928 cluster0	42 43	668 cluster0 5595 cluster1
552 553	265 cluster2 317 cluster2	818 819	75 cluster0 79 cluster0	932 933	334 duster2 374 duster2	267 270	689 cluster1 709 cluster1			16 17	3162 cluster1 419 cluster1	342	1452 cluster0
554	198 cluster2	820	142 duster0	934	178 duster0	265	746 cluster1			18	2359 cluster1		
555 556	85 cluster0 27 cluster0	821 822	267 cluster2 52 cluster0	935 936	88 cluster0 229 cluster2	259 243	749 cluster1 800 cluster1			19	9966 cluster1		
557 558	211 cluster2 185 cluster0	823 824	59 cluster0 48 cluster0	937 938	118 duster0 142 duster0	250 257	811 cluster1 829 cluster1						
559	211 cluster2	825	49 cluster0	939	147 duster0	293	868 cluster1						
560 561	203 cluster2 225 cluster2	826 827	46 cluster0 45 cluster0	940 941	123 duster0 241 duster2	262 260	872 cluster1 879 cluster1						
562 563	220 cluster2 160 cluster0	828 829	27 cluster0 46 cluster0	942 943	164 duster0 56 duster0	244 261	883 cluster1 896 cluster1						
564	199 cluster0	830	65 cluster0	944	98 duster0	278	896 cluster1						
565 566	172 cluster0 131 cluster0	831 832	106 duster0 67 duster0	945 946	371 duster2 252 duster2	273	897 cluster1 905 cluster1						
567	69 cluster0	833	58 cluster0	947	322 cluster2	236	906 cluster1						
568 569	70 cluster0 63 cluster0	834 835	68 cluster0 161 cluster0	948 949	571 duster1 291 duster2	295 299	920 cluster1 946 cluster1						
570 571	289 cluster2 360 cluster2	836 837	137 cluster0 228 cluster2	950 951	182 cluster0 236 cluster2	294 231	959 cluster1 1011 cluster1						
572	310 cluster2	838	64 duster0	952	335 duster2	226	1059 cluster1						
573 574	695 cluster1 252 cluster2	839 840	23 cluster0 117 cluster0	953 954	670 duster1 809 duster1	284 233	1066 cluster1 1068 cluster1						
575 576	107 cluster0 215 cluster2	841 842	78 cluster0 62 cluster0	955 956	316 duster2 37 duster0	237 339	1083 cluster1 1132 cluster1						
577	205 cluster2	843	242 cluster2	957	42 duster0	340	1142 cluster1						
578 579	281 cluster2 137 cluster0	844 845	327 cluster2 287 cluster2	958 959	193 duster2 141 duster0	255 338	1162 cluster1 1187 cluster1						
580 581	54 cluster0 44 cluster0	846 847	55 cluster0 43 cluster0	960 961	107 duster0 78 duster0	230 296	1204 cluster1						
582	167 cluster0	848	31 cluster0	962	73 duster0	282	1228 cluster1 1287 cluster1						
583 584	205 cluster2 32 cluster0	849 850	332 cluster2 146 cluster0	963 964	117 duster0 99 duster0	235 232	1342 cluster1 1379 cluster1						
585	263 cluster2	851	279 duster2	965	264 duster2	290	1385 cluster1						
586 587	209 cluster2 242 cluster2	852 853	152 duster0 651 duster1	966 967	247 duster2 124 duster0	343 240	1433 cluster1 1476 cluster2						
588 589	233 cluster2 199 cluster0	854 855	231 cluster2 435 cluster2	968 969	265 duster2 105 duster0	253 297	1515 cluster2 1535 cluster2						
590	169 cluster0	856	384 cluster2	970	137 duster0	283	1536 cluster2						
591 592	186 cluster2 46 cluster0	857 858	165 duster0 719 duster1	971 972	70 duster0 268 duster2	285 269	1564 cluster2 1641 cluster2						
593 594	144 cluster0 211 cluster2	859 860	282 cluster2 245 cluster2	973 974	55 cluster0 266 cluster2	245 263	1662 cluster2 1691 cluster2						
595	133 cluster0	861	217 duster2	975	55 duster0	227	1693 cluster2						
596 597	161 cluster0 131 cluster0	862 863	74 cluster0 245 cluster2	976 977	114 duster0 128 duster0		1712 cluster2 1723 cluster2						
598 599	293 cluster2	864 865	91 cluster0 302 cluster2	978 979	246 duster2 528 duster1	255 298	1757 cluster2						
599 6 00	74 cluster0 85 cluster0	865 866	121 duster0	979	526 dusteri 506 dusteri	256	1790 cluster2 1797 cluster2						
601 602	405 cluster2 503 cluster1	867 868	78 cluster0 168 cluster0	981 982	356 cluster2 273 cluster2	277 272	1801 cluster2 1813 cluster2						
603 604	300 cluster2 275 cluster2	869 870	176 duster0 225 duster2	983 984	450 duster2 60 duster0	279 276	1816 cluster2 1853 cluster2						
605	54 cluster0	871	63 cluster0	985	148 duster0	291	2227 cluster0						
606 607	71 cluster0 57 cluster0	872 873	261 duster2 110 duster0	986 987	722 duster1 105 duster0	271 228	2239 cluster0 2272 cluster0						
608	59 cluster0	874	287 cluster2 239 cluster2	988 989	121 duster0	261	2321 cluster0 2461 cluster0						
609 610	59 cluster0 59 cluster0	875 876	239 Custer2 141 cluster0	989	211 duster2 84 duster0	289 242	2461 Cluster0 2540 cluster0						
611 764	65 cluster0 398 cluster2	877 878	221 cluster2 73 cluster0	991 992	95 duster0 119 duster0	225 288	2612 cluster0 2657 cluster0						
765	313 cluster2	879	51 cluster0	993	89 duster0	248	2661 cluster0						
766 767	553 cluster1 349 cluster2	880 881	85 cluster0 69 cluster0	994 995	186 duster2 113 duster0	229 224	2908 cluster0 3154 cluster0						
768 769	352 cluster2 539 cluster1	882 883	97 cluster0 192 cluster2	996 997	64 cluster0 60 cluster0	247 169280	3473 cluster0 3644 cluster0						
770	447 cluster2	884	65 duster0	998	51 duster0	246	3653 cluster0						
771 772	82 cluster0	885 886	37 cluster0 76 cluster0	999 1000	56 duster0 61 duster0	<i>A</i> \$7	3912 cluster0						
773 774	103 cluster0 72 cluster0	887 888	53 cluster0 149 cluster0	1001 1002	463 duster2 36 duster0								
775	157 cluster0	889	101 duster0	1003	210 duster2								
776 777	271 cluster2 370 cluster2	890 891	292 cluster2 156 cluster0	1004 1005	339 duster2 261 duster2								
778 779	248 cluster2 151 cluster0	892 893	98 cluster0 252 cluster2	1006 1007	313 duster2 146 duster0								
780	126 cluster0	894	147 duster0	1008	84 duster0								
781 782	192 cluster2 165 cluster0	895 896	119 duster0 57 duster0	1009 1010	35 duster0 11 duster0								
783 784	317 cluster2 231 cluster2	897 898	50 cluster0 62 cluster0	1011 1012	22 duster0 187 duster2								
785	422 cluster2	899	203 duster2	1013	51 duster0								
786 787	109 cluster0 210 cluster2	900 901	229 cluster2 93 cluster0	1337 1338	1977 duster1 156 duster0								
788 789	345 cluster2 382 cluster2	902 903	63 duster0 137 duster0	1339	50 duster0								
790	238 cluster2	904	121 duster0										
791 792	76 cluster0 290 cluster2	905 906	122 cluster0 112 cluster0										
793 794	101 cluster0	907 908	111 duster0 41 duster0										
795	85 cluster0 96 cluster0	909	79 duster0										
796 797	62 cluster0 62 cluster0	910 911	75 duster0 106 duster0										
798	95 cluster0	912	172 duster0										
799 800	31 cluster0 33 cluster0	913 914	107 cluster0 166 cluster0										
801 802	149 cluster0 137 cluster0	915 916	191 duster2 219 duster2										

12. Appendix 19: Areas and clusters in Auckland 1931 (chapter 6)

					_							
id area clus	1931.BF tersidi a	area clusters	id		irea clusters	961plots id area clusters	id an	1981 blocks ea clusters	193 id ar	1 streets ea	19: idare:	31 green spaces a clusters
63 289 clus		333 cluster2		158	762 cluster0	803 1150 cluster 1	19	6019 cluster0	1	12695 cluster0	19	2886 cluster0
64 858 clust 65 597 clust		136 cluster4 237 cluster2		159 160	849 cluster0 777 cluster0	804 966 cluster0 805 495 cluster0	20 21	6810 cluster0 5637 cluster0	2	6321 cluster0 23110 cluster1	20 21	3875 cluster1 1209 cluster0
65 331 clus		316 cluster2		161	1207 cluster1	806 994 cluster0	21	1633 cluster1	4	23271 cluster1	21	74 cluster0
67 234 clus		245 cluster2		162	1662 cluster1	169280 3644 cluster1	23	1555 cluster1	5	10668 cluster0	23	561 cluster0
68 461 clus		365 cluster2		163	1709 cluster1		24	7386 cluster0	6	746 cluster2	24	2182 cluster0
69 410 clust 91 289 clust		81 cluster4 77 cluster4		164 165	1222 cluster1 1909 cluster1		25 26	1345 cluster1 2045 cluster1	7	275 cluster2 1960 cluster2	25 26	459 cluster0 38 cluster0
92 549 clus		121 cluster4		166	1438 cluster1		27	8896 cluster0	9	1313 cluster2	27	4286 cluster1
93 202 clus		492 cluster0		167	922 cluster0		28	7547 cluster0	10	394 cluster2	28	2276 cluster0
94 356 clus		534 cluster0		168	824 cluster0		29	1686 cluster1	11	235 cluster2	29	680 cluster0
95 1435 clust 1 355 clust		401 cluster2 188 cluster2		169 170	1483 cluster1 1238 cluster1		30 31	8982 cluster0 11547 cluster0	12 13	1527 cluster2 13223 cluster0	30 31	1028 cluster0 923.76 cluster0
2 459 clus		59 cluster4		171	1146 cluster 1		32	3100 cluster1	14	954 cluster2	32	297 cluster0
3 310 clus		436 cluster2		172	1897 cluster1		33	22372 cluster0	15	765 cluster2	33	9219 cluster1
4 340 clust 17 272 clust		225 cluster2 535 cluster0		173 174	799 cluster0 1265 cluster1				16 17	10116 cluster0 639 cluster2	644	4859 cluster1
18 152 clus		513 cluster0		175	1258 cluster1				18	2297 cluster2		
19 214 clus	er2 133	117 cluster4		366	576 cluster0							
20 526 clus		234 cluster2		367	492 cluster0							
21 88 clust 22 193 clust		144 cluster4 2320 cluster3		368 369	1131 cluster1 995 cluster0							
23 171 clus		1178 cluster3		370	435 cluster0							
24 281 clus		253 cluster2		371	266 cluster0							
25 374 clust 26 816 clust		353 cluster2 509 cluster0		372 373	476 cluster0 333 cluster0							
27 578 clus		237 cluster2		374	412 cluster0							
28 536 clus		62 cluster4		375	349 cluster0							
29 262 clust 39 124 clust		379 cluster2		376	335 cluster0							
30 124 clust 31 604 clust		427 cluster2 356 cluster2		377 378	558 cluster0 642 cluster0							
32 237 clus		479 cluster0		379	406 cluster0							
33 338 clust		370 cluster2		380	590 cluster0							
34 164 clust 35 199 clust		229 cluster2 473 cluster0		381 382	1397 cluster1 612 cluster0							
35 135 Clust 36 378 clust		198 cluster2		383	870 cluster0							
37 684 clus		2011 cluster3		384	1538 cluster1							
38 131 clust		1881 cluster3		385	774 cluster0							
39 207 clus 40 180 clus		1313 cluster3 130 cluster4		386 387	285 cluster0 205 cluster0							
41 166 clus		132 cluster4		388	209 cluster0							
42 220 clust		246 cluster2		389	1000 cluster0							
43 105 clus 44 402 clus		844 cluster1 355 cluster2		390 391	358 cluster0 201 cluster0							
45 390 clus		332 cluster2		392	196 cluster0							
46 41 clust		299 cluster2		393	721 cluster0							
47 408 clus		332 cluster2		394	912 cluster0							
48 559 clus 49 342 clus		123 cluster4 99 cluster4		395 396	1523 cluster1 1432 cluster1							
50 216 clus		87 cluster4		397	928 cluster0							
51 144 clus		180 cluster2		398	569 cluster0							
52 150 clust 53 449 clust		75 cluster4 181 cluster2		399 400	1567 cluster1 1380 cluster1							
54 576 clus		166 cluster2		401	2000 cluster1							
55 175 clus		173 cluster2		402	635 cluster0							
56 95 clus		113 cluster4		403	1283 cluster1							
57 184 clust 58 273 clust		150 cluster4 192 cluster2		404 405	1447 cluster1 645 cluster0							
59 132 clus		616 cluster0		406	697 cluster0							
60 413 clus		560 cluster0		407	688 cluster0							
61 280 clust 62 310 clust		194 cluster2 334 cluster2		408 409	479 cluster0 370 cluster0							
63 559 clus		496 cluster0		410	837 cluster0							
64 411 clus		985 cluster1		411	356 cluster0							
65 329 clus		457 cluster0		412	5966 cluster1							
66 256 clust 67 666 clust		309 cluster2 339 cluster2		413 414	1638 cluster1 314 cluster0							
68 463 clus		255 cluster2		415	288 cluster0							
69 483 clus	er0 183	384 cluster2		416	237 cluster0							
70 290 clust 71 452 clust		355 cluster2 262 cluster2		417 418	178 cluster0 277 cluster0							
71 452 Clus 72 345 clus		306 cluster2		419	550 cluster0							
73 388 clus		78 cluster4		420	1098 cluster1							
74 260 clus		82 cluster4		421	767 cluster0							
75 528 clust 76 304 clust		123 cluster4 994 cluster1		422 423	798 cluster0 841 cluster0							
77 230 clus		337 cluster2		424	784 cluster0							
78 95 clust	er4 192	306 cluster2		425	833 cluster0							
79 407 clust 80 273 clust		324 cluster2 248 cluster2		426 427	799 cluster0 818 cluster0							
81 709 clus	ler1 195	257 cluster2		428	799 cluster0							
82 667 clus		311 cluster2		429	893 cluster0							
83 302 clust 84 323 clust				430 431	985 cluster0 624 cluster0							
85 424 clus				432	203 cluster0							
86 519 clus	r O			433	931 cluster0							
87 200 clust 88 195 clust				434 435	921 cluster0 885 cluster0							
88 195 clus 89 208 clus				435 436	885 cluster0 1033 cluster0							
90 304 clust	er2			437	729 cluster0							
91 118 clust				438	1237 cluster1							
92 90 clus 93 409 clus				439 440	554 cluster0 1132 cluster1							
94 325 clust	er2			644	1114 cluster1							
95 277 clus				645	545 cluster0							
96 234 clust 97 320 clust				646 647	548 cluster0 572 cluster0							
97 320 clus 98 380 clus				647 648	572 cluster0 550 cluster0							
99 283 clus	er2			649	555 cluster0							
100 127 clust 101 132 clust				650 651	551 cluster0 542 cluster0							
101 132 clust 102 178 clust				651 652	542 cluster0 599 cluster0							
103 573 clus	er0			653	485 cluster0							
104 113 clust				654	532 cluster0							
105 798 clust 106 841 clust				655 656	547 cluster0 606 cluster0							
106 841 Clus 107 784 clus				795	1953 cluster1							
108 281 clust	er2			796	1018 cluster0							
109 302 clust				797	854 cluster0							
110 90 clust 111 266 clust				798 799	648 cluster0 1004 cluster0							
112 174 clus	er2			800	1105 cluster1							
113 256 clust				801	1015 cluster0							
114 262 clus	e12			802	1378 cluster1							

13. Appendix 20: Areas and clusters in Auckland 1966 (chapter 6)

I Description I Description I Description I Description Description <thdescription< th=""> <thdescription< th=""> <thdescrip< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thdescrip<></thdescription<></thdescription<>									
N N	id anna chistoria	1956 BF	ii areachsters ii			1966 Blocks			
90 2									
10 10 10 10 10 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
10 10									
10 10 100									
10 <									
10 <	act clothere		ooo noo chastan						
D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>									
19 10 10 10 10 </td <td></td> <td></td> <td>899 100 cluster1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			899 100 cluster1						
Display Display <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
11 10 <									
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
44 50 60						24 1576 Clusteru			
B B									
B C <thc< th=""> <thc< th=""> <thc< th=""> <thc< th=""></thc<></thc<></thc<></thc<>							20	2274 cluster1	
as b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.									
No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No. No.<									
100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
No No<									
50 60 (above) 60 60 (above) 60 60 (above) 60 60 (above) 60 60									
Here Here <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
30 60. Martial 30 100. Martial 30 40 60. Martial 30 20. Martial 30 40 80. Martial 30 20. Martial 30 41 80. Martial 30 20. Martial 30 41 80. Martial 30 30									
Hor Hor <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
40 60 20 20 20 20 40 60 20 20 20 20 20 40 20 20 20 20 20 20 40 20 20 20 20 20 20 40 20 20 20 20 20 20 40 20 20 20 20 20 20 40 20 20 20 20 20 20 40 20 20 20 20 20 20 40 20 20 20 20 20 20 41 20 20 20 20 20 20 41 20 20 20 20 20 20 41 20 20 20 20 20 20 41 20 20 20 20 20 20 41 20 20 20 20 20 20 41 20 20 20 20 20 20 41 20 20 20 20 20 20 41 <									
Here Here Here Here Here Here Here <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
et constant constant constant constant viel viel viel viel viel viel viel									
60 20 <	404 631 cluster0	566 227 cluster1		81	212 cluster2				
dist dist dist dist dist dist dist <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
and and bit bit bit and bit									
He K K K K K K He K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K H K K K K K K K K K K K K K K K K K K K K K<									
47 87 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 100 101 100 100 100 100 101 100 100 100									
41 50 100 100 100 100 11 100 100 100 100 11 100 100 100 100 11 100 100 100 100 11 100 100 100 100 12 100 100 100 100 12 100 100 100 100 12 100 100 100 100 13 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 14 100 100 100 100 15 100	411 694 cluster2	575 199 cluster1							
Hat Hat <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
4142100<									
df <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
4447 class14848 class148 class148 class14648 class148 class148 class148 class147 class148 class1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
GeVertical Vert	418 200 cluster1	582 236 cluster1		95	1372 cluster0				
G. 1 B) Chard B) Chard B) Chard G) 6 Chard B) Chard B) Chard B) Chard G) 6 Chard B) Chard B) Chard B) Chard G) 6 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B) Chard B) Chard B) Chard G) 7 Chard B									
69 64 100 120 100 68 100 140 120 120 68 100 120 120 120 68 100 120 120 120 68 100 120 120 120 68 120 120 120 120 68 120 120 120 120 68 120 120 120 120 68 120 120 120 120 68 120 120 120 120 68 120 120 120 120 69 120 120 120 120 60 120 120 120 120 60 120 120 120 120 60 120 120 120 120 60 120 120 120 120 60 120 120 120 120 60 120 120 120 120									
6480bit bit bit191910100 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
GenBes Cated.Bes Cated.Bes Cated.Bes Cated.GenSin Cated.Sin Section.Sin Cated.Sin Section.Sin Cated.GenSin Cated.Sin Section.Sin Cated.Sin Cated.Sin Cated.GenSin Cated.Sin Cated.Sin Cated.									
42 21 21 22<									
Gen Sol Caseo Sol Caseo Sol Caseo 46 26 Caseo 59 46 Caseo 59 46 Caseo 47 26 Caseo 59 46 Caseo 50 50 50 48 26 Caseo 59 46 Caseo 50 50 50 48 47 50 50 50 50 50 48 47 50 50 50 50 50 49 50 50 50 50 50 50 40 10 10 50 50 50 50 40 10 10 50 50 50 50 41 45 50 50 50 50 50 42 50 50 50 50 50 50 43 50 50 50 50 50 50 44 50 50 50 50 50 50									
40. 20. Class1 20. Class1 20. Class1 20. Class1 11. 20. Class1 20. Class2 18. 57. Class4 12. 20. Class1 20. Class2 18. 59. Class4 12. 20. Class2 19. 58. Class4 13. 10.0. Class2 20. 10.0. Class4 14. 100. Class2 20. 100. Class2 15. 19. Class1 00.0. 20. 100. Class2 100.0. 20. 15. 19. Class1 00.0. 20. 100. Class1 100.0. 20. 100.0. Class2 15. 19. Class1 00.0. 20. 100.0. Class1 100.0. 20. 100.0. Class2 15. 100.0. Class1 100.0. 20.0. Class1 100.0. Class2 100.0. Class2 15. 100.0. Class1 100.0. Class2 100.0. Class2 100.0. Class2 15. 100.0. Class2 100.0. Class2 100.0. Class2 100.0. Class2 15. 100.0. Class2 100.0. Class2 100.0. Class2 100.0. Class2 15. 100.0. Class2									
48 180 c kasa 96 196 c kasa 48 196 c kasa 98 196 c kasa 49 196 c kasa 98 196 c kasa 40 196 c kasa 198 196 c kasa 198 40 196 c kasa 198 196 c kasa 198 41 196 c kasa 198 196 c kasa 198 42 196 c kasa 198 196 c kasa 43 196 c kasa 198 198 c kasa 44 196 c kasa 198 198 c kasa 45 196 c kasa 198 198 c kasa 46 196 c kasa 198 198 c kasa 47 196 c kasa 198 198 c kasa 48 196 c kasa 198 198 c kasa 49 198 c kasa 198 198 c kasa									
40 100									
44 90 (base) 90 (base) 90 (base) 45 90 (base) 90 (base) 90 (base) 46 90 (base) 90 (base) 90 (base) 47 95 (base) 90 (base) 90 (base) 48 95 (base) 90 (base) 90 (base) 48 95 (base) 90 (base) 90 (base) 49 90 (base) 90 (base) 90 (base) 49 90 (base) 90 (base) 90 (base) 40 90 (base) 90 (base) 90 (base) 40 90 (base) 90 (base) 90 (base) 41 90 (base) 90 (base) 90 (base) 42 90 (base) 90 (base) 90 (base) 43 90 (base) 90 (base) 90 (base) 44 90 (base) 90 (base) 90 (base) 45 90 (base) 90 (base) 90 (base) 46 90 (base) 90 (base) 90 (base) 47 90 (base) 90 (base) 90 (base)									
40404040404040404040407836108101010100<									
47 80 ckste1 00 17 ckste1 90 ckste4 48 80 ckste1 00 12 ckste1 90 90 ckste4 49 80 ckste1 00 50 ckste1 90 80 ckste4 41 42 ckste1 00 50 ckste1 90 80 ckste4 42 20 ckste1 00 50 ckste1 90 50 ckste3 43 90 ckste1 00 115 ckste2 90 90 ckste4 43 90 ckste1 00 116 ckste2 90 90 ckste3 44 90 ckste1 00 116 ckste2 90 90 ckste4 44 90 ckste1 00 116 ckste2 90 90 ckste3 45 90 ckste1 00 116 ckste1 90 90 ckste3 46 91 ckste1 00 116 ckste1 90 116 ckste1 47 91 ckste1 00 120 ckste1 90 120 ckste1 48 91 ckste1 00 120 ckste1 90 <td< td=""><td>435 1009 cluster2</td><td>999 200 cluster1</td><td></td><td>90</td><td>290 cluster2</td><td></td><td></td><td></td><td></td></td<>	435 1009 cluster2	999 200 cluster1		90	290 cluster2				
48880 c ketr80 c ketr90 c ketr49018 c ketr006 c ketr90 c ketr41118 c ketr006 c ketr90 c ketr41212 c ketr002 c ketr90 c ketr41310 c ketr00 c ketr90 c ketr41412 c ketr0012 c ketr90 c ketr41510 c ketr00 c ketr10 c ketr10 c ketr41410 c ketr10 c ketr10 c ketr10 c ketr41510 c ketr10 c ketr10 c ketr10 c ketr41610 c ketr10 c ketr10 c ketr10 c ketr41710 c ketr10 c ketr10 c ketr10 c ketr41810 c ketr10 c ketr10 c ketr10 c ketr41910 c ketr10 c ketr10									
440450 kies450 kies450 kies44120 kies20 kies20 kies20 kies44220 kies20 kies20 kies20 kies44320 kies20 kies20 kies20 kies44420 kies20 kies20 kies20 kies44520 kies20 kies20 kies20 kies44620 kies20 kies20 kies20 kies44740 kies20 kies20 kies20 kies44840 kies20 kies20 kies20 kies44940 kies20 kies20 kies20 kies44940 kies20 kies20 kies20 kies44940 kies20 kies20 kies20 kies44940 kies20 kies20 kies20 kies45040 kies20 kies20 kies20 kies45140 kies20 kies20 kies20 kies45240 kies20 kies20 kies20 kies45340 kies20 kies20 kies20 kies45440 kies20 kies20 kies20 kies45540 kies20 kies20 kies20 kies45445 kies20 kies20 kies20 kies45445 kies20 kies20 kies20 kies45445 kies20 kies20 kies20 kies45445 kies20 kies20 kies20 kies45545 kies20 kies20 kies45420 kies									
441 472 482 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
443 400 cksin1 60 105 cksin2 50 105 cksin2 444 37 cksin2 54 37 cksin2 30 30 cksin2 446 37 cksin2 54 10 cksin1 50 23 cksin2 447 45 cksin1 60 23 cksin2 30 33 cksin2 447 45 cksin1 60 23 cksin1 50 23 cksin2 448 60 cksin1 60 25 cksin1 50 25 cksin1 450 80 cksin1 60 25 cksin1 50 25 cksin2 451 101 cksin1 50 25 cksin2 50 100 cksin1 50 452 101 cksin1 60 25 cksin2 60 100 cksin1 60 451 16 cksin1 60 100 cksin1 60 100 cksin1 60 100 cksin1 452 100 cksin1 60 100 cksin1 60 100 cksin1 60 100 cksin1 453 100 cksin1 100 100 cksin1 70 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
444 37 (kista) 68 38 (kista) 69 38 (kista) 468 20 (kista) 68 52 (kista) 94 33 (kista) 474 81 (kista) 68 22 (kista) 94 33 (kista) 474 81 (kista) 68 22 (kista) 94 33 (kista) 478 81 (kista) 68 22 (kista) 94 33 (kista) 478 81 (kista) 69 22 (kista) 94 42 (kista) 479 81 (kista) 69 22 (kista) 95 93 (kista) 470 81 (kista) 69 32 (kista) 94 93 (kista) 471 90 (kista) 79 70 (kista) 94 10 (kista) 472 80 (kista) 60 95 (kista) 77 (ff (kista) 77 (ff (kista) 472 80 (kista) 60 95 (kista) 77 (ff (kista) 77 (ff (kista) 473 80 (kista) 60 95 (kista) 77 (ff (kista) 77 (ff (kista) 474 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
446 20 destal 64 19 destal 19 37 destal 447 481 destal 60 23 destal 94 20 destal 447 481 destal 60 23 destal 94 20 destal 448 40 destal 60 25 destal 94 32 destal 449 85 destal 60 95 destal 94 43 destal 451 40 destal 60 95 destal 94 43 destal 451 40 destal 60 95 destal 90 65 destal 453 40 destal 60 95 destal 90 65 destal 453 80 destal 60 95 destal 90 65 destal 454 80 destal 60 190 destal 90 190 destal 454 80 destal 60 190 destal 90 190 destal 454 80 destal 60 190 destal 90 190 destal 454 80 destal 60 190 destal									
447 491 C Bardi 402 C Bardi 402 C Bardi 448 40 C Bardi 402 C Bardi 403 C Bardi 403 C Bardi 450 403 C Bardi 403 C Bardi 403 C Bardi 403 C Bardi 451 402 C Bardi 403 C Bardi 403 C Bardi 403 C Bardi 451 402 C Bardi 403 C Bardi 403 C Bardi 403 C Bardi 452 40 C Bardi 403 C Bardi 403 C Bardi 403 C Bardi 403 C Bardi 451 40 C Bardi 403 C Bardi 451 40 C Bardi 403 C Bardi <td>445 234 cluster1</td> <td>054 151 cluster1</td> <td></td> <td>94</td> <td>373 cluster2</td> <td></td> <td></td> <td></td> <td></td>	445 234 cluster1	054 151 cluster1		94	373 cluster2				
448 64 Cost of Cost 750 Cost of Cost 96 Cost of Cost 449 80 Cost of Cost 760 Cost of Cost 96 Cost of Cost 450 80 Cost of Cost 760 Cost of Cost 760 Cost of Cost 450 80 Cost of Cost 760 Cost of Cost 760 Cost of Cost 451 80 Cost of Cost 760 Cost of Cost 760 Cost of Cost 452 80 Cost of Cost 760 Cost of Cost 760 Cost 454 81 Cost of Cost 760 Cost of Cost 760 Cost of Cost 456 87 Cost of Cost 760 Cost of Cost 760 Cost of Cost 456 87 Cost of Cost 760 Cost of Cost 770 Cost of Cost 456 87 Cost of Cost 760 Cost of Cost 770 Cost of Cost 450 87 Cost of Cost 760 Cost of Cost 770 Cost cost of Cost 450 87 Cost of Cost 760 Cost of Cos									
460430 (kird)60122 (kird)50106 (kird)471480 (kird)50107 (kird)50102 (kird)47280 (kird)50100 (kird)50102 (kird)47380 (kird)100100 (kird)50104 (kird)47444 (kird)100100 (kird)50100 (kird)47687 (kird)100100 (kird)50100 (kird)47687 (kird)100100 (kird)50100 (kird)47687 (kird)100100 (kird)77 (kird)47057 (kird)100 (kird)50100 (kird)47157 (kird)100 (kird)50100 (kird)473170 (kird)100 (kird)50100 (kird)47457 (kird)100 (kird)50 (kird)475120 (kird)100 (kird)50 (kird)476120 (kird)100 (kird)50 (kird)477170 (kird)100 (kird)50 (kird)478120 (kird)100 (kird)100 (kird)479120 (kird)100 (kird)100 (kird)470170 (kird)100 (kird)100 (kird)471170 (kird)100 (kird)472120 (kird)100 (kird)473120 (kird)100 (kird)474120 (kird)100 (kird)475120 (kird)100 (kird)476120 (kird)100 (kird)476120 (kird)100 (kird)476120 (kird) </td <td>448 64 cluster1</td> <td>657 255 cluster1</td> <td></td> <td>94</td> <td>438 cluster2</td> <td></td> <td></td> <td></td> <td></td>	448 64 cluster1	657 255 cluster1		94	438 cluster2				
400 400 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
472 80 ckist1 60 52 ckist4 53 80 ckist1 60 90 ckist1 50 00 ckist1 50 50 ckist3 40 50 ckist1 50 50 ckist1 60 50 ckist3 60									
44 84 (kist1 60 14 (kist2) 63 20 (kist2) 65 37 (kist2) 64 95 (kist2) 60 32 (kist2) 66 20 (kist2) 60 92 (kist2) 67 19 (kist2) 66 20 (kist2) 60 92 (kist2) 67 19 (kist2) 67 19 (kist2) 77 (kist2) 77 (kist2) 78 18 (kist2) 67 10 (kist2) 68 10 (kist2) 68 10 (kist2) 68 27 (kist2) 69 87 (kist2) 68 10 (kist2) 61 17 (kist2) 69 87 (kist2) 68 10 (kist2) 62 27 (kist1) 69 87 (kist2) 68 (kist2) 10 (kist2) 64 87 (kist1) 79 10 (kist2) 10 (kist2) 10 (kist2) 65 10 (kist1) 10 (kist2) 10 (kist2) 10 (kist2) 10 (kist2) 66 12 (kist2) 10 (kist2) 10 (kist2) 10 (kist2) 10 (kist2) 70	452 - 86 cluster 1	661 367 cluster0		96	625 cluster4				
466 37 C kkst1 60 40 C kkst2 60 20 C kkst1 60 19 C kkst2 60 20 C kkst2 60 19 C kkst2 67 60 20 C kkst2 60 19 C kkst2 67 61 87 C kkst2 68 20 C kkst2 68 62 20 C kkst2 68 20 C kkst2 68 63 27 C kkst2 68 20 C kkst2 68 64 40 C kkst2 68 20 C kkst2 68 65 26 C kkst2 68 20 C kkst2 69 64 40 C kkst2 70 10 C kkst2 60 65 26 C kkst2 70 80 C kkst2 70 66 27 C kkst2 70 60 C kkst2 70 67 10 C kkst2 70 60 C kkst2 68 20 C kkst2 70 60 C kkst2 69 20 C kkst2 70 60 C kkst2 60 26 C kkst2 70 60 C kkst2									
490 20 ckist1 50 27 ckist1 57 19 ckist2 400 95 ckist1 70 50 ckist2 77 75 ckist2 411 57 ckist2 50 50 ckist1 77 75 ckist3 421 47 ckist2 50 50 ckist1 50 50 ckist1 50 421 47 ckist1 50 55 ckist1 50 56 ckist3 50 433 57 ckist1 50 56 ckist3 50 50 ckist3 50 445 57 ckist1 70 57 ckist3 70 57 ckist3 50 450 52 ckist3 57 57 ckist3 71 72 ckist3 70 451 52 ckist3 57 57 ckist3 71 72 ckist3 70 452 52 ckist3 57 52 ckist3 70 52 ckist3 70 451 52 ckist3 70 52 ckist3 70 52 ckist3 70 452 52 ckist3 70 52 ckist3 <	455 87 cluster1	064 456 cluster0		86	439 cluster2				
491 572 (kista) 681 100 (kista) 472 470 (kista) 681 100 (kista) 473 470 (kista) 681 670 (kista) 473 470 (kista) 671 670 (kista) 474 470 (kista) 101 470 (kista) 474 470 (kista) 101 470 (kista) 475 470 (kista) 171 170 (kista) 476 170 (kista) 172 170 (kista) 477 170 (kista) 172 170 (kista) 476 170 (kista) 172 170 (kista) 477 170 (kista) 170 100 (kista) 478 170 (kista) 170 100 (kista) 479 170 (kista) 170 100 (kista) 470 170 (kista) 170 100 (kista) 470 170 (kista) 170 100 (kista) 470 170 (kista) 170 100 (kista) 471 170 (kista) 170 170 (kista)									
402 402 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
494 495 495 100 110 100 200 100 495 200 100	482 470 cluster0	666 162 cluster1		55	891 cluster3				
465 20 ckist1 77 76 ckist4 47 77 ckist1 72 77 ckist4 47 77 ckist1 72 78 ckist4 47 77 ckist1 72 78 ckist4 47 78 ckist1 72 78 ckist4 47 78 ckist1 72 78 ckist4 48 77 ckist1 74 78 ckist4 49 77 ckist1 76 78 ckist4 49 72 ckist1 76 78 ckist4 49 72 ckist4 74 78 ckist4 49 72 ckist4 74 78 ckist4 41 78 ckist4 74 78 ckist4 42 72 ckist4 76 53 ckist4 43 74 ckist4 76 53 ckist4 44 74 ckist4 76 53 ckist4 45 73 ckist4 76 53 ckist4 46 74 ckist4 76 53 ckist4 47 73 ckist4 76 57 ckist4 <									
477 173 Chistani G7 153 Chistani G7 153 Chistani G7 153 Chistani G7 157 Chistani G7 158 Chistani G7 258 Chistani G7 158 Chistani G7 258 Chistani G7 25									
458 62 chistri 64 467 chistri 458 chistri 650 chistri									
499 122 (kkstr1 07 123 (kkstr2 106 027 (kkstr4 490 240 (kkstr1 07 326 (kkstr2 106 500 (kkstr4 491 350 (kkstr1 07 256 (kkstr1 106 500 (kkstr4 491 350 (kkstr1 07 256 (kkstr1 106 500 (kkstr4 492 420 (kkstr0 07 326 (kkstr0 106 530 (kkstr4 493 400 (kkstr0 06 500 (kkstr4 106 530 (kkstr4 493 400 (kkstr0 106 500 (kkstr4 106 530 (kkstr4 494 24 (kkstr1 106 530 (kkstr4 106 530 (kkstr4 495 130 (kkstr1 107 120 (kkstr1 106 537 (kkstr4 495 320 (kkstr1 107 (kkstr3 106 172 (kkstr3 496 327 (kkstr1 106 57 (kkstr3 497 320 (kkstr1 107 (kkstr3 105 47 (kkstr3 498 327 (kkstr1 106 57 (kktstr3 105 47 (kkstr3									
491 492 (kstef) 57 282 (kstef) 606 692 (kstef) 492 423 (kstef) 67 394 (kstef) 106 530 (kstef) 493 400 (kstef) 67 395 (kstef) 106 530 (kstef) 494 521 (kstef) 68 500 (kstef) 106 532 (kstef) 494 521 (kstef) 68 530 (kstef) 532 (kstef) 495 195 (kstef) 68 532 (kstef) 106 496 195 (kstef) 103 532 (kstef) 106 497 390 (kstef) 103 572 (kstef) 106 498 207 (kstef) 104 471 (kstef) 499 327 (kstef) 106 471 (kstef) 499 327 (kstef) 106 102 (kstef) 499 327 (kstef) 106 102 (kstef) 499 327 (kstef) 106 102 (kstef)	489 162 cluster1	675 424 cluster0		106	621 cluster4				
422 (distrib 057) 342 (distrib 1 433 402 (distrib 057) 350 (distrib 057) 444 521 (distrib 058) 550 (distrib 058) 445 402 (distrib 057) 550 (distrib 058) 445 521 (distrib 058) 550 (distrib 058) 445 523 (distrib 058) 550 (distrib 058) 445 523 (distrib 058) 530 (distrib 058) 446 530 (distrib 058) 530 (distrib 058) 447 390 (distrib 058) 541 (distrib 058) 447 390 (distrib 058) 541 (distrib 058) 448 347 (distrib 058) 541 (distrib 058) 449 347 (distrib 058) 544 (distrib 058) 449 347 (distrib 058) 544 (distrib 058) 449 347 (distrib 058) 542 (distrib 058) 449 347 (distrib 058) 547 (distrib 058)									
494 271 (bastr0 606 552 (bastr4 495 103 (bastr1 601 552 (bastr4 496 115 (bastr1 602 502 (bastr1 600 602 (bastr4 401 115 (bastr1 602 502 (bastr4 600 1122 (bastr3 401 115 (bastr1 602 112 (bastr4 600 1122 (bastr3 402 302 (bastr1 603 112 (bastr4 600 577 (bastr4 403 302 (bastr1 604 471 (bastr2 604 112 (bastr3 409 327 (bastr1 604 112 (bastr2 604 112 (bastr3 409 327 (bastr3 604 112 (bastr2 604 112 (bastr3 409 327 (bastr3 604 112 (bastr3 112 (bastr3 112 (bastr3 409 327 (bastr3 604 112 (bastr3 112 (bastr3 112 (bastr3 409 327 (bastr3 604 112 (bastr3 112 (bastr3 112 (bastr3 403 320 (bastr3 604 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
495 133 cluster1 681 233 cluster1 690 533 496 115 cluster1 68 533 cluster3 497 390 cluster1 690 572 cluster3 498 290 cluster1 691 572 cluster4 498 287 cluster1 691 471 cluster2 499 387 cluster1 691 471 cluster2 499 387 cluster1 691 472 cluster1 498 287 cluster1 1062 3044 cluster0									
490 115 cbstr1 020 200 cbstr1 100 112 cbstr3 497 390 cbstr1 023 17 cbstr3 100 570 cbstr3 498 290 cbstr1 034 144 cbstr3 100 570 cbstr3 499 307 cbstr3 036 122 cbstr3 100 172 cbstr3 499 307 cbstr3 036 122 cbstr3 102200 344 cbstr3 590 322 cbstr3 056 122 cbstr3 102200									
438 329 cluster 1 034 144 cluster 1 106 471 cluster 2 459 327 cluster 1 035 122 cluster 1 105230 3344 cluster 0 500 322 cluster 0 dis 322 cluster 1	496 115 cluster 1	862 309 cluster1		106	1122 cluster3				
469 287 cluster1 e86 122 cluster1 1692280 3044 cluster0 500 322 cluster0 886 202 cluster1									
507 KOT (KNR) V TO (KR)(7)									
	sun 464 ciustero	us/ 154 Cluster1							

14. Appendix 21: Areas and clusters in Auckland 2008 (chapter 6)

	200	8 BF			
เช 1	area clusters 2041 cluster3			dusters duster0	id : 163134
2	890 duster2	116	235	duster0	163211
3 4	1176 cluster3 4242 cluster3	117 118	Z25	duster0 duster0	163271 1632 5 8
5	394 cluster0 1033 cluster2	119 120		duster0 duster0	163291
7	857 duster2	121	411	duster0	163464
8 9	506 cluster0 54 cluster1	122 123		duster2 duster0	1635 19 163524
10 11	270 cluster0 41 cluster1	124 125		cluster0 cluster0	1635 8 4 1635 88
12	800 duster2	126	273	duster0	163604
13 14	384 cluster0 812 cluster2	127 128		duster1 duster1	163640 163666
15 16	297 cluster0 537 cluster0	129 130		duster1	163676 1636 5 9
17	382 duster0	131	1825	duster0 duster3	163693
15 19	538 cluster0 387 cluster0	132 133		duster2 duster2	163698 163707
20	306 clusterO	134	547	duster0	163715
21 22	215 cluster0 66 cluster1	135 136	79	duster0 duster1	163726 163735
23 24	700 cluster2 301 cluster0	137 138		duster1 duster0	163849 163872
25	42 cluster 1	139	304	duster0	163575
26 27	2078 cluster3 170 cluster0	140 141	144	cluster2 cluster0	163905 163917
25 29	2028 cluster3 1544 cluster3	142 143		duster1 duster0	163936 163979
30	2573 cluster3	144	210	duster0	163983
31 32	676 cluster2 142 cluster0	145 146		duster0 duster2	163997 164013
33 34	7 duster 1 29 duster 1	147 148		duster0 duster2	164033 164042
35	262 cluster0	0	279	duster0	164067
36 37	263 cluster0 284 cluster0	150 151		cluster0 cluster0	164096 164116
35	316 cluster0	152	106	duster1	164117
39 40	246 cluster0 77 cluster1	153 154	878	duster1 duster2	164171 1641 5 7
41 42	73 cluster1 105 cluster1	155 156		duster2 duster0	164222 164235
43	97 duster1	157	446	duster0	164246 164253
44 45	34 cluster1 61 cluster1	198 199		duster0 duster0	164253 164263
46 47	25 cluster1 45 cluster1	160 101		cluster2 cluster0	164269 164235
45	249 cluster0	162	186	duster0	164259
49 50	316 cluster0 347 cluster0	163 164		duster1 duster0	164340 164385
51 52	287 cluster0 148 cluster0	105 106		duster1 duster0	164376 164385
53	236 cluster0	167	434	duster0	164400
54 55	262 cluster0 140 cluster0	166 169	314	duster1 duster0	164402 164416
98 57	301 cluster0 104 cluster1	170 171		duster3 duster2	164432 164433
58	114 duster1	172	705	duster2	164452
59 60	674 cluster2 222 cluster0	173 174		duster0 duster0	164464 164476
61 62	37 cluster 1 61 cluster 1	175 176		cluster0 cluster0	164478 104482
63	340 cluster0	177	26	duster1	164486
64 65	277 cluster0 909 cluster2	178 179		duster0 duster0	164490 164516
66 67	64 cluster1 2602 cluster3			duster3 duster0	164538 164546
65	1557 duster3	242	236	duster0	164501
69 70	960 cluster2 2079 cluster3	243 244		duster0 duster0	164570 164576
71 72	94 cluster1 2975 cluster3	245 246		cluster0 cluster0	164586 164621
73	263 cluster0	187	151	duster0	164634
74 75	797 cluster2 329 cluster0	185	Z 25		164650 164652
76	3024 cluster3				164664
77 78	817 cluster2 231 cluster0				164671 164677
79 50	106 cluster1 179 cluster0				164683 164707
81	147 cluster0				164716
512 513	43 cluster1 110 cluster1				164748
84 85	106 cluster1 205 cluster0				164754 164778
86	206 clusterO				164783
87 88	46 cluster1 53 cluster1				1647 88 164822
89 90	308 cluster0 493 cluster0				164840 164858
91	506 cluster()				164864
922 933	68 cluster1 192 cluster0				164894 164904
94 95	136 cluster0 185 cluster0				164911 164915
96	111 duster1				164918
97 98	116 cluster1 115 cluster1				164920 164930
- 99	93 duster1				164998
100 101	116 duster1 127 duster1				165013 185024
102 104	421 cluster0 202 cluster0				105028
105	188 cluster0				105095
106 107	84 cluster1 64 cluster1				165065 1650 8 0
108	743 cluster2 381 cluster0				105102
108 109	448 duster0				105149 105157
110 111	375 cluster0 406 cluster0				165173 165183
112	37 cluster1				105199
113 114	38 cluster1 362 cluster0				165208 165214

				Plots	
1	163134		dusters duster1	id 165250	area clusters 503 cluster0
	163211 163271		duster0 duster0	105277 105287	194 cluster1 4421 cluster2
	163255	2060	duster2	165340	403 cluster1
	163291 163454	309	duster1 duster1	165409 165520	744 cluster() 148 cluster()
	163464 163519		duster0 duster2	105504 105605	146 cluster1 269 cluster1
	163524 1635 8 4	231	duster1 duster1	16563 8 1657 0 9	207 cluster1 104 cluster1
	163588	1715	duster2	165710	11 cluster 1
	1636 04 1636 40	1302	duster1 duster0	105720 105756	91 cluster1 53 cluster1
	163666 163676		duster0 duster1	165765 165774	12 cluster1 326 cluster1
	1636 5 9 163693	4244	duster2 duster1	165790 165792	142 cluster 1 1870 cluster 2
	163695	271	duster1	165882	789 cluster0
	163707 163715	763	duster1 duster0	166085 166101	3026 cluster2 425 cluster1
	163726 163735		duster0 duster0	166121 166176	225 cluster1 1209 cluster0
	163 84 9 163 87 2		duster1 duster1	1661 8 9 166196	21 cluster1 337 cluster1
	163878	306	duster1	166223	854 cluster0 702 cluster0
	163917	499	duster1 duster0	106315	740 cluster0
	163936 163979		duster2 duster0	166377 166012	1125 cluster0 1076 cluster0
	1639 8 3 163997		duster1 duster0	166839 166844	548 cluster0 300 cluster1
	164013	51	duster1	100939	1424 cluster2
	164033 164042	228	duster0 duster1	166973 167023	361 cluster1 92 cluster1
	164067 164096	537	duster1 duster0	167067 167120	94 cluster1 385 cluster1
	104110 104117	211	duster1 duster1	167132 167135	242 cluster1 93 cluster1
	164171	154	duster1	167207	305 cluster1
	1641 5 7 164222	71	duster0 duster1	167225 167232	26 cluster1 223 cluster1
	164235 164246		duster1 duster1	167247 167288	575 cluster0 176 cluster1
	164253 164263	117	duster1 duster2	167297 167305	1685 cluster2 456 cluster0
	164269	118	duster1 duster1	167405 167424	466 cluster0 143 cluster1
	164259	128	duster1	167475	210 cluster1
	164340 164365		duster1 duster1	167509 167554	711 cluster0 224 cluster1
	164376 1643 85		duster1 duster1	16756 8 167019	64 cluster1 228 cluster1
	164400 164402	107	duster1 duster2	167640 167679	s6s cluster0 169 cluster1
	164416	555	duster0	167723	1228 cluster0
	164432 164433	2145	duster1 duster2	167727 167742	766 cluster() 147 cluster()
	164452 164464		duster2 duster1	167 818 167844	1429 cluster2 304 cluster1
	164476 164478		duster1 duster1	167916 168132	883 cluster0 279 cluster1
	104482	43	duster1	108171	310 cluster1
	1644 8 6 164490	166	duster1 duster1	168247 168252	113 cluster1 14 cluster1
	164516 164538		duster1 duster1	168261 168285	370 cluster1 621 cluster0
	164546 164561		duster1 duster1	108339 168437	359 cluster1 105 cluster1
	164570 164576	743	duster0 duster1	168465 168469	344 cluster1 883 cluster0
	164586	249	duster1	168512	45 cluster1
	104021 164634		duster1 duster1	108538 168590	222 cluster1 48 cluster1
	164650 164652		duster1 duster1	168628 168639	46 cluster1 266 cluster1
	164664		duster1 duster1	168659 168656	472 cluster0 977 cluster0
	164677	281	duster1	168790	442 cluster1
	164683 164707	330	duster1 duster1	168902 168976	840 cluster() 533 cluster()
	1647 1 6 164744	106	duster1 duster1	169037 169058	339 cluster1 506 cluster0
	1647 48 164754	235	duster1 duster0	169109 169280	707 cluster0 3644 cluster2
	164778	101	duster1 duster0	169497	286 cluster1
	164788	253	duster1		
	164822 164840	40	duster1 duster1		
	164 858 164864		duster1 duster1		
	104894 104904	403	duster1 duster1		
	164911	25	duster1		
	164915 164918	676	duster1 duster0		
	104920 164930		duster1 duster1		
	16499 8 165013	46	duster1 duster1		
	185024	364	duster1		
	105028 105042	47	duster2 duster1		
	165 0 55 165 0 65		duster1 duster1		
	105050	348	duster1 duster2		
	105149	224	duster1		
	165157 165173	333	duster2 duster1		
	165183 165199	240	duster1 duster2		
	105208	165	duster1 duster1		
		194	Justi		

	2008 Ы	odis	2008 Streets					
id i	area	clusters	id	area	dusters			
131	1593	2 cluster 1	6	3424	duster1			
26	1229	3 cluster0	7	14779	duster1			
5	722	6 cluster0	8	167	duster0			
6	715	1 cluster0	9	9999	duster1			
1112	579	5 cluster1	10	747	duster0			
9110	457.	2 cluster1	11	7457	duster1			
51	477	5 cluster1	12	505	duster0			
9	1021	o cluster0	13	229	duster0			
2	232	s cluster1	14		duster0			
1	400	6 cluster1	15	\$63	duster0			
5	911	9 cluster0	16	20612	duster1			
7	2093	2 cluster 1	17	2322	duster1			
3	285	3 cluster1	15	5966	duster1			
4	332	o cluster 1	19	5487	duster1			
27	872	6 cluster0	20	465	duster0			
28	281	7 cluster1	1	2477	duster1			
13	2400	t cluster0	2	887	dister0			
			3		dister0			
			4		duster0			
			5		duster1			

2008	Green Spaces
id :	area clusters
1	70 duster1
2	5 duster1
3	6 duster1
4	3320 duster0
5	249 duster1
6	140 duster1
7	14 duster1
8	5 duster1
9	1450 duster0
13	9 cluster0
26	0 duster1
27	50 duster1
28	33 duster1
81	70 duster1
131	0 duster1
1112	294 duster1
9110	0 duster1
169280	914 duster1
166315	6706 duster0