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ABSTRACT 
Anthocyanin pigments are synthesised in the leaves of many plants, however the 

adaptive significance of these pigments is not entirely understood. It has been 

postulated that their red colours may function as visual signals through coevolution 

between herbivorous insects and their host tree species, though the hypothesis lacks 

solid empirical evidence. I investigated the leaf signalling hypothesis using 

Pseudowintera colorata, focusing on five areas:  

 

1) I exploited the natural polymorphism in leaf colour of P. colorata to test the 

predictions that (i) bright leaf colour is a reliable signal of a plant’s defensive 

commitment; (ii) insects in the field avoid trees that are brightly coloured; and (iii) the 

trees with the brightest leaves will have higher fitness. Relative to green leaves, 

redder foliage contained higher concentrations of polygodial, a sesquiterpene 

dialdehyde known to have strong antifeedant properties, and incurred less insect 

feeding damage. Redder trees hosted fewer Ctenopseustis spp. leafroller larvae than 

neighbouring matched green trees. Contrary to the predictions of the leaf signalling 

hypothesis, there was no difference in any of the measured fitness parameters between 

red and green trees, indicating that the leaf colour polymorphism in P. colorata is 

stable. 

 

2) Many insects are sensitive to volatile organic compounds (VOCs), however the 

role of VOCs in plant-herbivore signalling has not been investigated. I analysed 

VOCs released from undamaged, herbivore- and mechanically-damaged red and 

green leaves of P. colorata, and the olfactory preferences of brownheaded leafroller 

(C. obliquana) larvae. While the VOC profiles of browsed and unbrowsed leaves 

were statistically distinguishable, the VOC profiles released from intact, herbivore-, 

and mechanically-damaged P. colorata leaves did not reliably identify leaf colour 

Moreover, naïve and experienced C. obliquana larvae displayed no preference for the 

volatiles from mechanically damaged red or green leaves. Therefore, I concluded that 

VOC compounds are not likely to play a large role in mediating insect herbivore-plant 

interactions in P. colorata. 
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3) Studies of leaf signalling rarely consider the influence of the light-absorbing 

properties of non-green pigments upon photosynthesis. I compared the photosynthetic 

and photoinhibitory responses of red and green leaves from matched, neighbouring 

pairs of P. colorata of contrasting colour. Redder P. colorata leaves in the field had a 

lower maximum photosynthetic assimilation rate than matched green leaves from 

neighbouring trees. However, I was unable to detect any measurable advantage in 

terms of photoprotection in the red P. colorata leaves as indicated by chlorophyll 

fluorescence profiles. My results indicate that the presence of anthocyanin pigments 

within non-senescing leaves may impose a slight photosynthetic cost to the plant. 

 

4) I used literature searches, field surveys and laboratory bioassays to identify which 

invertebrate herbivores are most likely to participate in leaf-signalling interactions 

with P. colorata. Feeding preference bioassays showed that brownheaded leafrollers 

(C. obliquana and C. herana) and Auckland tree weta (Hemideina thoracica) 

preferentially consumed leaf material from green than red P. colorata leaves. Results 

from these bioassays, combined with my field surveys suggest that Ctenopseustis spp. 

leafroller larvae are the most likely coevolution partners for P. colorata.  

 

5) There is a well-established link between nitrogen deficiency and leaf reddening. 

Additionally, leaf nutrients can influence foraging behaviour and performance of 

insect herbivores. I measured N and C contents of leaves from neighbouring matched 

pairs of red and green P. colorata. There were no significant differences in the 

amounts of, or ratio between, N and C between matched red and green leaves. This 

result indicates that differences in colour and herbivory among P. colorata leaves are 

not attributable to differences in leaf nutrients. 

 

Taken together, my results suggest that foliar anthocyanins in P. colorata do function 

as visual signals, however their effect on herbivory is small. Additionally, inter-

individual variation in non-senescing leaf colour in P. colorata may be stable due to a 

trade off between signalling and photosynthesis. Discussions of leaf signalling need to 

follow the examples of other fields studying the interactions between plants and 

insects and move from overly simple models to those that incorporate more of the 

complexity that is observed in the natural world. 
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1 General Introduction  

1.1 Leaves are usually green to optimise photosynthesis 

Leaves are primarily photosynthetic organs. Their main function is to use light to 

make the sugars and energy required for plant growth and reproduction. To capture 

light, the photosynthetic machinery of land plants uses chlorophyll a and b pigments, 

which strongly absorb blue and red light (Nishio 2000, Lee 2007), while only weakly 

absorbing green light (Terashima et al. 2009). As a consequence, leaves typically 

appear green to our eyes. 

 

At first glance it may appear inefficient to not strongly absorb all available light for 

photosynthesis. Indeed, in addition to chlorophylls a and b, some species of green 

algae do use photosynthetic pigments that absorb green light, and therefore these 

organisms appear black (Terashima et al. 2009). However, for the leaves of land 

plants, it is thought that there is an adaptive benefit to being green (i.e. only weakly 

absorbing green light). Under non-saturating light, blue and red light, which is 

strongly absorbed by chlorophyll, is used for photosynthesis (Nishio 2000). Under 

saturating light, when the chloroplasts in the upper leaf cell layers may be operating at 

their maximum photosynthetic capacity, the absorption properties of chlorophyll 

pigments allows green light to penetrate deep into the mesophyll, where it drives 

photosynthesis (Sun et al. 1998, Terashima et al. 2009). Therefore, the leaves of land 

plants can achieve high photosynthetic efficiency under the highly variable light 

conditions typical of terrestrial environments (Nishio 2000, Terashima et al. 2009). 

However, despite the advantages to being green, much variation in leaf colour exists 

(Lee 2007).  

1.2 Variation in leaf colour 

1.2.1 Different mechanisms for non-green leaf colour 

Non-green leaf colouration arises through different mechanisms. Leaves of some 

tropical understory species appear iridescent blue, due to the interaction of light with 

specialised structures within the upper surface of leaf epidermal cells (Gould and Lee 

1996, Glover and Whitney 2010). White leaf colouration can be caused by a dense 

covering of trichomes (Lev-Yadun 2006b), or, in variegated leaves, by the absence of 
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chlorophyll pigments within cells from patches of leaf tissue (Lee 2007). Silver or 

grey patches of some variegated leaves can be caused by the reflection of light from 

air spaces beneath the adaxial epidermis (Hoch et al. 1980, Sheue et al. 2012). 

However, the majority of non-green leaf colouration is caused by light interacting 

with pigment molecules within leaf cells. 

 

Yellow and orange leaf colours typically indicate the presence of carotenoid 

pigments. Products of the isoprene pathway, carotenoid pigments are abundant in 

leaves, as they function as accessory pigments (assisting photosynthesis) and as part 

of the quenching mechanisms of photoprotection (Demmig-Adams and Adams III 

1996, Ougham et al. 2005a, Lee 2007). Their presence is usually masked by the 

higher concentrations of chlorophyll pigments in non-senescing leaves (Sanger 1971). 

Only during leaf senescence are their colours revealed. 

1.2.2 Red Pigments 

There is a diverse range of red pigments found in terrestrial plants. Two relatively rare 

classes of red compounds are the thiarubrines and quinone methides (Lee 2007). In 

certain families of one order of plants, the Caryophyllales, betalain pigments are 

responsible for red and yellow colouration. In almost every other order of plants, red 

leaf colouration is produced by anthocyanin pigments (Lee 2002, 2007). Brown leaf 

colour is the most commonly the result of the presence of both chlorophyll and low 

concentrations of anthocyanins (Lee 2007). Anthocyanins are the most well-studied, 

widespread and important class of red leaf pigments (Lee 2007). Even though they 

have been the subject of study for over 100 years, there is still heated scientific debate 

surrounding the function of anthocyanin pigments within leaves. 

1.3 Anthocyanin pigment description 

The chemistry, biosynthesis and molecular genetics of anthocyanin pigments are very 

well understood. Anthocyanins have received more scientific investigation than any 

other secondary metabolic compound (Mol et al. 1996, Winkel-Shirley 2001, Lee and 

Gould 2002a, Saito and Yamazaki 2002, Bueno et al. 2012). This is due to their 

significance for human health, as well as for commerce, in particular floriculture, 

agriculture and as food colourants (Andersen and Jordheim 2005). 
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Anthocyanin pigments are an end-product of the flavonoid biosynthetic pathway. An 

anthocyanin molecule consists of an anthocyanidin (based on the flavylium cation 

Fig.  1.1) bonded to one or more glycosides (Strack and Wray 1989). Modification of 

this basic structure through the substitution of hydroxyl groups, methylation, 

acylation, and glycosylation with different sugars at different positions results in a 

remarkable diversity of anthocyanins (Harborne 1967). Over 500 naturally occurring 

structures have been identified from plants to date (Andersen and Jordheim 2005).  

 

 

 

 

 

 

Fig.  1.1 Flavylium cation 

The light absorption properties, and subsequent colour, of anthocyanin molecules 

depends on the specific anthocyanidin, pH, the extent of acylation, co-pigmentation 

with other flavonoids, and/or chelation to metal ions (Neill 2002). These mechanisms 

give rise to the vibrant pinks, reds, blues and purples of many flowers and fruits. In 

aqueous solutions, the anthocyanidin component of anthocyanin molecules exists as a 

complex of several differently coloured structures. The equilibrium between these 

structures, and the resulting colour of the solution, changes according to pH. They 

appear red in strongly acid environments (pH < 3), colourless when slightly acidic 

(pH 4 – 5), blue at neutral to slightly basic conditions (pH 7 – 8), and yellow when 

strongly alkaline (pH > 8) (Andersen and Jordheim 2010, Bueno et al. 2012). 

 

Anthocyanins are synthesized in the cytoplasm as colourless forms and are quickly 

transported to the vacuole, although in rare occasions, anthocyanin pigments may 

bind to the cell wall (Neill 2002, Andersen and Jordheim 2005, Philpott et al. 2009). 

Vacuolar pH is maintained at around pH 5, however inside the vacuoles of vegetative 

tissue of plants anthocyanins are usually stabilised as red forms (Bueno et al. 2012). 

These pigments absorb green light (between 495 – 570 nm), thereby reducing the 

O
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amount of green light reflected from the leaf surface (Fig.  1.2). Therefore, to our 

eyes, anthocyanic leaves appear red. In leaves, the most common anthocyanin is 

cyanidin-3-glucoside (Harborne 1967). 

 

 

Fig.  1.2 Mean (± SE) reflectance spectra of red and green portions of the adaxial 

surface of Pseudowintera colorata leaves (n=27). 

1.4 Anthocyanic leaves are abundant  

Red anthocyanic leaves are taxonomically and geographically widespread. They are 

produced by species throughout almost all orders of the plant kingdom and can be 

found in all terrestrial biomes, as well as some aquatic habitats (Lee 2002, Novak and 

Short 2011).  

1.4.1 Temporal and spatial patterns of anthocyanin accumulation in leaves 

The phenology of anthocyanin expression within leaf tissues varies among species 

and individuals. Anthocyanin pigments can be maintained within leaves throughout 

their lifespan (Gould et al. 2000), be restricted to a particular phase of leaf 

development, as with the red flushes in young expanding leaves and red colours of 

senescing foliage of deciduous tree species (Coley and Aide 1989, Gould 2004, 

Ougham et al. 2005a, Archetti 2009c), or show seasonal patterns, as with the winter 

reddening of evergreens (Hughes 2011). 
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Additionally, the across-leaf spatial distribution of anthocyanin accumulation can 

vary among species and individuals. Anthocyanins may occur uniformly across the 

upper, lower or both leaf surfaces. Alternatively, red colouration can be localised to 

specific areas of leaves (stipule, petiole, veins, interveinal tissue, margins, or domatia) 

or patchily distributed in spots, patches or stripes over the upper, lower or both 

surfaces of the leaf lamina. (Wheldale 1916, Lee 2007, Wong and Srivastava 2011, 

Cooney et al. 2012). These patterns are achieved by the production of anthocyanin 

pigments in the vacuoles of different cell layers within leaves. Within the leaf lamina 

anthocyanins are commonly located in palisade mesophyll, but can also be produced 

by spongy mesophyll, and adaxial and abaxial epidermal cells (Wheldale 1916, Gould 

and Quinn 1999, Steyn et al. 2002, Hughes and Smith 2007b, Merzlyak et al. 2008). 

1.4.2 Interspecies variation in foliar anthocyanins 

There are differences in colouration among species. Many plant species do not 

produce anthocyanic leaves. Of these, many plants produce anthocyanins at other 

locations (e.g. hypocotyls, fruits) but not in leaves. The species that do produce foliar 

anthocyanins vary in their spatial patterns of anthocyanin accumulation (see section 

1.4.1). Interspecies variation in autumn senescing leaf colouration has drawn the 

attention of several researchers (Matile 2000, Hamilton and Brown 2001) 

 

There appears to be large-scale variation in the interspecies patterns of anthocyanic 

leaf colouration in autumn senescing leaves. From a description of autumn leaf 

colouration of 2368 tree species compiled by Archetti (2009c), Lev-Yadun and 

Holopainen (2009) compared autumn leaf colouration of tree species found in 

northern Europe, North America and East Asia. They found that anthocyanic 

senescing leaves are more common among species from North America and East 

Asia, than in northern Europe (where autumn senescing foliage is predominantly 

yellow). 

1.4.3 Intraspecies variation in foliar anthocyanins  

Patterns of anthocyanin accumulation also vary within species, even among 

neighbouring individuals. While it is hard to classify the colour of whole individual 

plants, individuals may differ in the mean intensity of red colouration, or in the degree 

of redness (proportion of leaves coloured red), or in the specific pattern of red 

colouration. Intraspecific heterogeneity in red pigmentation has been described 
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among individuals with: juvenile flushing leaves in tropical (Lee and Gould 2002b) 

and temperate deciduous species (Taulavuori et al. 2011); leaves that are red only in 

winter (Kytridis et al. 2008, Hughes 2011), leaves where red colouration is 

maintained year round (Gould et al. 2002a, Neill et al. 2002b, a, Wong and Srivastava 

2011), senescing leaves that are red in autumn (Hamilton and Brown 2001, Archetti 

and Leather 2005, Rolshausen and Schaefer 2007, Karageorgou et al. 2008) and 

among the leaves of seagrass individuals (Novak and Short 2010). 

1.5 Possible adaptive functions for foliar anthocyanin pigments 

Observations of the patterns of foliar anthocyanin accumulation in nature, combined 

with experimental manipulation, have revealed that anthocyanin biosynthesis is 

inducible. Anthocyanins biosynthesis in leaves can be induced by a range of abiotic 

and biotic stressors, including: cold, high light, UV radiation, heavy metal toxicity, 

mechanical stress, as well as fungal and herbivore damage (Chalker-Scott 1999, 

Gould et al. 2002a). The immense variability in the patterns of anthocyanin 

accumulation has lead to a diverse range of hypotheses being developed to explain the 

function of these pigments within leaves (Gould 2004, Archetti 2009a, Hughes 2011). 

These hypotheses can be classified into those proposing an abiotic or a biotic function 

for foliar anthocyanins. Below, I have briefly described each hypothesis. I have 

highlighted the best-substantiated hypothesis within each class, according to their 

relative theoretical and empirical support. 

1.5.1 Abiotic hypotheses for foliar anthocyanin pigments 

Many of the proposed functions for foliar anthocyanins pigments have not been 

supported by empirical and theoretical investigations.  

1.5.1.1 Leaf warming  

Pigments absorb light energy (Neill and Gould 1999). It has been hypothesised that 

the role of anthocyanin pigments in abaxial surfaces of leaves in the tropical 

understory is to absorb light energy and therefore increase leaf temperature, and aid 

transpiration in damp tropical understory environments (Wheldale 1916). The 

assumption of this hypothesis, regarding light absorption, is sound. Intraspecific 

comparisons of red and green leaves at similar developmental stages consistently 

show that red leaves do absorb up to 17% more light energy than similar green leaves. 

This is true for winter-reddening species (Hughes et al. 2005), year-round 
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polymorphic species (Neill and Gould 1999) and autumn senescing species (Merzlyak 

et al. 2008).  

 

Early measurements of leaf temperature supported this hypothesis (Smith 1909). 

However, subsequent measurements by Lee et al. (1979, 1987) with more sensitive 

equipment were not consistent with a warming function for anthocyanins. When 

comparing the temperatures of anthocyanic juvenile with green mature leaves of 6 

species from tropical understory habitats, the juvenile leaves of only one species 

showed a slight increase (0.5° C) in temperature and this difference disappeared on 

sunny days. When testing if this hypothesis applies to red autumn colouration, Lee et 

al. (2003) found no temperature difference between green and senescing red leaves of 

two species. Therefore, it seems that leaf warming, if it occurs at all, is not a universal 

explanation for the presence of foliar anthocyanins. 

1.5.1.2 Backscatter hypothesis  

Lee et al. (1979) hypothesised that the function of abaxial anthocyanin pigments is to 

internally reflect transmitted red light back to chloroplasts in the mesophyll, so that it 

may be used for photosynthesis. This was thought to provide an advantage in the low 

light conditions of tropical understory environments. However, Gould et al. (1995) 

found no differences in the abaxial reflectance between red and green leaves of two 

tropical species. Hughes et al. (2008) looked at light absorbance within abaxially 

red/green variegated leaves of Begonia heracleifolia. In contrast to the predictions of 

the backscatter hypothesis, abaxial green leaf surfaces were more reflective than those 

with anthocyanins, and under identical illumination there was no difference in 

chlorophyll fluorescence (a measure of photosynthesis) between green and red 

portions of the leaf.  

1.5.1.3 Osmotic adjustment  

Several strands of evidence point towards an osmotic function for foliar anthocyanins. 

The biosynthesis of anthocyanin pigments can be induced in cell cultures and whole 

plant systems under experimental and natural drought conditions. Species that 

produce anthocyanin pigments in their leaves are more common in environments with 

low soil moisture (Chalker-Scott 1999). Aside from drought, other environmental 

stressors such as ozone, heat and cold temperatures, wind, anoxia (caused by 

flooding), nutrient deficiency, metal toxicity, and salinity can directly or indirectly 

increase the osmotic potential between the cell and interstitial spaces, causing water 
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loss and plasmolysis. Additionally, anthocyanins are commonly produced at times 

when osmotic stress is more likely, e.g. in the damp tropical understory, the 

developing tissues of flushing leaves may face difficulty maintaining turgor pressure 

vital for leaf expansion. Similarly, in temperate climates, reddening of developing and 

senescing leaves coincides with the risk from late winter and early autumn frosts 

respectively (Chalker-Scott 2002). These observations led to the hypothesis that 

anthocyanin pigments function as solutes, decreasing leaf cell osmotic potential to 

help plants tolerate sub-optimal conditions (Chalker-Scott 2002). Manetas (2006) 

questioned the suitability of anthocyanins due to their low concentrations relative to 

other solutes in leaves. In a comparison of species to see if drought tolerance through 

osmotic adjustment explains the production of anthocyanins using winter red 

evergreens, Hughes et al. (2010a) found that winter reddening species were more 

likely to exhibit physiological features characteristic of drought tolerance and 

acclimation (i.e., a more negative midday osmotic potential, more negative osmotic 

potential at full turgor, and greater cell wall thickening) than green-leafed species 

during winter. However, variability in the data indicated that an osmoregulatory 

function for anthocyanins is not sufficient to explain winter colour change in 

angiosperm evergreens. Recent research has confirmed Manetas’s (2006) speculation; 

due to their relatively low concentrations in leaves, anthocyanin pigments represent a 

very small contribution to osmotic adjustment during drought acclimation of winter-

reddening evergreens (Hughes et al. 2012b). 

1.5.1.4 Ultraviolet (UV) radiation screen 

UV-B radiation can be damaging to DNA (Hoque and Remus 1999). It has been well 

documented that, in many plants, anthocyanin biosynthesis is induced by exposure to 

high UV (Chalker-Scott 1999, Gould 2004). Consequently anthocyanin pigments 

within leaves have been hypothesised to function as a UV-B screen (Lee and Lowry 

1980). In support of this, Stapleton and Walbot (1994) associated the presence of 

anthocyanins with reduced DNA damage in Zea mays plants under high UV-B 

treatments. However, there is now a widely held view that UV protection is not an 

important function of foliar anthocyanin pigments (Gould 2004). Most commonly 

found in mesophyll, the location of anthocyanins within leaves is suboptimal to act as 

a UV screen (Wheldale 1916, Gould and Quinn 1999, Hatier and Gould 2008a). Other 

colourless flavonoids (located in epidermis) more strongly absorb UV than the 

anthocyanins typically found in leaves (Woodall and Stewart 1998). Finally, in rice 
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(Oryza sativa), the mechanisms to repair UV-B-damaged DNA are triggered by a 

combination of blue and UV-A light. Under high UV conditions, purple anthocyanic 

varieties exhibited reduced growth, presumably due to absorption of blue light by 

anthocyanins, inhibiting DNA repair (Hada et al. 2003). 

1.5.2 Photoprotection hypothesis 

As the primary function of leaves is photosynthesis, the most widely accepted 

explanation for the presence of anthocyanins in leaves is protection of photosynthetic 

machinery. Many plants regularly experience an oversupply of light (Long et al. 1994, 

Alves et al. 2002, Wilhelm and Selmar 2010). Excess light energy can inhibit 

photosynthesis and cause damage to the thylakoid membranes in the chloroplast, and 

injure the surrounding cell and leaf tissues (Adir et al. 2003, Demmig-Adams and 

Adams III 2003, Adams III et al. 2006, Demmig-Adams and Adams III 2006). 

Several properties of foliar anthocyanins make them appropriate as photoprotectants.   

1.5.2.1 Light screen 

To reduce damage caused by light stress, anthocyanin pigments in leaves may 

function as a light screen, attenuating incident light energy. In acidic solutions, 

anthocyanin pigments have a high molar extinction coefficient, and very effectively 

absorb green light (500 - 600 nm) even when present at very low concentrations 

(Neill and Gould 2003). In leaves, anthocyanin pigments have been shown to absorb 

green light that otherwise might be used for photosynthesis of lower cell layers 

(Pietrini and Massacci 1998, Neill and Gould 1999, Nishio 2000, Feild et al. 2001, 

Gould et al. 2002b, Hughes et al. 2005, Karageorgou and Manetas 2006, Hughes and 

Smith 2007a), but see van den Berg (2009) who found different results for juvenile 

and senescing Acer saccharum leaves. As further evidence of light attenuation by 

anthocyanin pigments, red leaves from exposed locations frequently exhibit the 

morphological and physiological characteristics of shade-acclimated leaves 

(Boardman 1977, Givnish 1988, Gould et al. 2002b, Manetas et al. 2003, Hughes and 

Smith 2007b, Kyparissis et al. 2007, Zeliou et al. 2009, Nikiforou and Manetas 2010, 

Nielsen and Simonsen 2011, Nikiforou et al. 2011, Zhang et al. 2011).  

1.5.2.2 Antioxidant  

Many ‘normal’ cell processes, such as photosynthesis and respiration, cause the 

formation of low levels of harmful reactive oxygen intermediates (ROIs)(Mittler 

2002). In low quantities, ROIs are not thought to be deleterious, and in fact, may 
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serve important roles in cell signalling processes (Mittler 2002). However, stressors 

(such as excess light, cold temperatures, drought stress, salt stress, heavy metal 

toxicity, UV radiation, air pollution, mechanical stress, nutrient stress, pathogen 

attack and wounding) can result in the formation of much higher levels of ROI 

leading to oxidative damage of cell components and programmed cell death 

(Demmig-Adams and Adams III 1992, Mittler 2002, Demmig-Adams and Adams III 

2006). Because anthocyanin biosynthesis is often induced in response to these same 

stressors, it has been hypothesised that foliar anthocyanins function as antioxidants, 

scavenging excess ROI. This has lead to anthocyanin pigments being the subject of 

intense study with regards to human health (He and Giusti 2010).  

 

Certain anthocyanin pigments have been demonstrated to be powerful antioxidants in 

vitro, having antioxidant capacities up to four times greater than those of vitamin E 

and C analogues (Rice-Evans et al. 1997, Wang et al. 1997, Neill and Gould 2003, 

Gould 2004). Several studies indicate that the antioxidant property of anthocyanin is 

biologically important in leaves. For example, Neill et al. (2002a) demonstrated that 

anthocyanins were responsible for red leaves of Elatostema rugosum having a higher 

ROI-scavenging capacity relative to acyanic leaves. Gould et al. (2002a) showed that 

red areas of Pseudowintera colorata leaves more rapidly scavenged H2O2 produced 

by mechanical wounding, than green areas. In addition, the ROI scavenging potential 

of leaves of the Arabidopsis (tt3tt4) mutant, unable to synthesise anthocyanins, 

decreased during prolonged exposure to high light stress, while the antioxidant 

capacities of the wildtype were maintained (Zhang et al. 2012). However, 

anthocyanin pigments in red leaves do not always provide an antioxidant advantage 

relative to acyanic leaves (Neill et al. 2002b, van den Berg and Perkins 2007, Hughes 

et al. 2012a).  

 

The cellular and histological location of anthocyanin pigments relative to the source 

of free radicals is important. Within cells, free radicals are mostly produced by the 

cell walls and cytoplasmic organelles, therefore (with the possible exception of H2O2 

which rapidly diffuses through the tonoplast) vacuolar anthocyanins are not optimally 

located to intercept them. Stronger antioxidants than anthocyanins (such as 

superoxide dismutase, ascorbate peroxidase and catalase) do occur in the cytoplasm, 

chloroplasts and other organelles, closer to the sites of ROI production (Mittler 2002). 
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With regards to histology, leaves with anthocyanins in the mesophyll (where 

chloroplasts are predominantly located) show higher antioxidant capacity than leaves 

where anthocyanins are located in epidermal cells (further from the site of 

photoinhibition) (Neill and Gould 2003, Kytridis and Manetas 2006). Anthocyanins’ 

antioxidant properties are likely to be of functional significance. However, given the 

variability in the patterns of anthocyanin colouration of leaves (Lee and Collins 

2001), the relative importance of an antioxidant function for anthocyanins is likely to 

vary between- and within-species (Hatier and Gould 2008a). 

1.5.2.3 Modulation of cellular signalling cascades 

Increasingly ROI are recognised to play a signalling role within cells (Mittler 2002). 

ROI are actively produced at low levels by plant cells as part of normal healthy 

functioning, acting as signals that trigger changes in cell physiology, metabolism and 

gene expression (Foyer and Noctor 2005). Antioxidant enzymes maintain cellular 

ROI levels at the low levels needed for cellular signalling, however high levels of 

ROI can cause oxidative damage and lead to programmed cell death. Hatier and 

Gould (2008b, a) proposed that anthocyanin pigments may assist in regulating ROI 

and subsequent responses to stress through three mechanisms: a) reducing ROI 

production by attenuating light; b) directly scavenging ROI; and, c) directly 

participating in cellular signalling pathways. This hypothesis lacks direct empirical 

evidence. 

1.5.2.4 Evidence for a photoprotective function for foliar anthocyanins 

The most widely accepted physiological function for foliar anthocyanins in leaves is 

photoprotection by both absorbing ROI and attenuating high energy quanta surplus to 

the requirements for photosynthesis, as well as possibly through interactions with 

cellular signalling pathways (Hatier and Gould 2008a).  It is difficult to gauge the 

relative contribution of the light screening and antioxidant properties of anthocyanins 

in planta (Neill and Gould 2003). Nevertheless, there is strong empirical evidence 

that foliar anthocyanins protect from photooxidative stress (summarised in Table 4.4). 

Following exposure to saturating light flux, red leaves tend to be less photoinhibited 

and/or recover more quickly than comparable green leaves (Feild et al. 2001, Manetas 

et al. 2003, Neill and Gould 2003, Hughes et al. 2005, Gould et al. 2010, Nielsen and 

Simonsen 2011). Additionally, photoprotection by foliar anthocyanins in autumn-

senescing leaves has been shown to increase beneficial nutrient resorption before leaf 

fall (Hoch et al. 2001, Hoch et al. 2003). There is an impressive amount of evidence 
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in support of this hypothesis, however several studies have reported no 

photoprotective advantage for foliar anthocyanins, and there are some examples of 

red leaves being more susceptible to light stress than green. While, these 

discrepancies are not well understood, these results indicate that photoprotection is 

not the unifying function for anthocyanins in leaves. 

 

Among the diverse range of physiological hypotheses for foliar anthocyanins, 

photoprotection is the most compelling due to its applicability to a wide-range of 

colouration patterns. Photoprotection is a viable explanation for induced leaf redness 

caused by stressors that impair photosynthetic capacity, as well as potentially 

explaining the different phenologies of anthocyanin production: a) transient juvenile 

redness during leaf expansion, before the full complement of chlorophyll and 

maximum photosynthetic capacity has developed (Dodd et al. 1998, Manetas et al. 

2002, Choinski Jr et al. 2003, Hughes et al. 2007); b) autumn senescing leaves, when 

temperatures are cooler and photosynthetic machinery is being degraded (Hoch et al. 

2001, Holopainen and Peltonen 2002, Hoch et al. 2003, Lee et al. 2003, Ougham et al. 

2005a); and, c) winter reddening in certain evergreen species (Kytridis et al. 2008, 

Zeliou et al. 2009, Nikiforou et al. 2010, Nikiforou et al. 2011).  

1.5.3 Biotic hypotheses for foliar anthocyanins  

In addition to being induced by abiotic stressors (see section 1.5 above), biosynthesis 

of anthocyanins and subsequent leaf reddening is commonly induced by leaf damage 

caused by herbivory (Gould et al. 2002a). Together, plants and the insects that feed on 

them represent half of all the described species on Earth (Schoonhoven et al. 2005, 

Futuyma and Agrawal 2009). It has been claimed that most frequent and important 

interactions among species occur between plants and herbivorous insects (Schaefer 

and Rolshausen 2006, Hare 2012). Additionally, besides herbivores, anthocyanins in 

flowers and fruit play an important role in facilitating mutualistic interactions among 

plants and their pollinators and fruit dispersers (Schaefer and Ruxton 2011). 

Accordingly, a diverse range of hypotheses for a biotic function for foliar 

anthocyanins have been proposed. 

1.5.3.1 Fruit flag hypothesis  

In some species of deciduous trees with bird-dispersed fruits, fruit ripening coincides 

with leaf colour change, and this colour change occurs early, before other deciduous 
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species (Stiles 1982). Here foliar anthocyanin pigments are hypothesised to function 

as a ‘fruit flag’ to attract migrating birds to disperse fruits. The proposed mechanism 

has received experimental support. Burns and Dalen (2002) demonstrated that black 

fruits are slightly more apparent to birds (as estimated by removal rates of 

experimental fruits) against red/orange autumn foliage than against green background. 

Additionally, artificial red ‘flags’ increased fruit removal in Rhus glabra, a species 

with dark red fleshy fruits and red autumn-senescing foliage (Facelli 1993). However, 

a subsequent study concluded that asynchrony in the phenology of fruiting, leaf 

colour change, bird migration and fruit dispersal in R. glabra was not consistent with 

the fruit flag hypothesis. In particular, the persistence of the majority of R. glabra 

fruits beyond autumn indicated that early leaf colour change in this species is not 

related to peaks in fruit removal and bird abundance (Li et al. 1999). This hypothesis 

can only apply to tree species with bird dispersed fruits where fruit ripening is 

synchronised with early autumnal leaf colour change and bird migration, which 

represent a very small proportion of deciduous trees species with anthocyanic leaves 

(Willson and Hoppes 1986, Hoch et al. 2001). Therefore, the fruit flag hypothesis has 

a specific focus and can only explain a very limited range of the observed patterns of 

foliar anthocyanins. 

1.5.3.2 Direct defence  

It has been hypothesised that anthocyanin pigments may act as a direct defence to 

deter harmful organisms (Coley and Aide 1989). Anthocyanin pigments have been 

shown to reduce fungal growth in grapes and upon media containing biologically 

relevant concentrations of anthocyanin pigments (Schaefer et al. 2008). However, 

while floral anthocyanins slowed the development of two species of lepidopteran 

larvae (Johnson et al. 2008), the results of a large number of studies indicate that 

foliar anthocyanins are not toxic to insect herbivores (Close and Beadle 2003, 

Schaefer and Rolshausen 2006). Schaefer and Rolshausen (2006) argued that other 

compounds in the flavonoid biosynthetic pathway (e.g. tannins) are far more effective 

defences against insect herbivores than anthocyanins. 

1.5.3.3 Camouflage  

By absorbing visible light, anthocyanin pigments change the colour of leaves. Non-

green colouration has been proposed to function as a camouflage, making leaves less 

apparent to visually–oriented herbivores. First mentioned by Stone (1979) with 

reference to dull brown colouration of some understory ferns in the Malaysian 
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rainforest, a camouflage/crypsis function for foliar anthocyanins has been widely 

accepted and echoed (Juniper 1993, Dominy et al. 2002, Karageorgou and Manetas 

2006, Lev-Yadun 2006a, Karageorgou et al. 2008, Lev-Yadun and Gould 2009). The 

hypothesis has been extended to include mottled patterns of leaf colouration (Smith 

1986, Givnish 1990, Allen and Knill 1991) and the dense layer of trichomes sometime 

found on plants inhabiting sandy coastal or dune environments (Lev-Yadun 2006b). 

However, the core prediction of this hypothesis – that non-green leaf colour reduces 

visual apparency – has only very recently been tested experimentally. In three 

examples where plant foliage has been found to likely be almost undetectable to 

herbivores (Fadzly et al. 2009, Klooster et al. 2009, Fadzly and Burns 2010), the 

colours involved were dull browns and greys, mimicking dead foliage or leaf litter, 

rather than vivid red. There have been no specific tests of this hypothesis using red 

leaves. 

1.5.3.4 Anti-camouflage  

Lev-Yadun et al. (2004) noted that many insect herbivores are coloured green, 

presumably to make them cryptic against a leafy green background. The authors 

proposed that red and other non-green leaf colouration may allow a plant to reduce its 

herbivore load by subverting the camouflage of insect herbivores, making them more 

visually apparent to predators and parasitoids (Lev-Yadun et al. 2004). Contrary to 

this hypothesis, modelling by Schaefer and Rolshausen (2006) demonstrated that a 

more complex background may provide increased potential hiding places for a 

diversity of differently coloured herbivores. To my knowledge, there have been no 

empirical studies assessing predation rates of green herbivores on non-green leaves. 

1.5.4 Signalling hypothesis for autumn leaf colouration 

Inter-individual variability in leaf colouration (see section 1.4.3 above) is attributable 

to both environmental and genetic factors (Gould and Quinn 1999). This is most 

clearly demonstrated where neighbouring individuals express different patterns in leaf 

colouration while experiencing very similar environmental regimes. The maintenance 

of the genetic variability is not easily explained by the photoprotection function of 

anthocyanins (Sinkkonen et al. 2012), nor any of the other physiological or biotic 

hypotheses above. However, there is one hypothesis specifically developed to explain 

the maintenance of inter-individual variability in leaf colouration.  
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The signalling hypothesis for autumn leaf colouration states that variability in autumn 

colouration is the result of a process of coevolution between plants and herbivorous 

insects (Archetti 2000, Hamilton and Brown 2001). Autumn leaf colouration 

coincides with the timing of migratory flights of the winged female life stages of 

some aphid species. The aphids take flight to select new plant hosts upon which to lay 

their eggs. These eggs over-winter and the emerging aphids rapidly reproduce the 

following spring and summer. As trees vary in their suitability as hosts, presumably 

there is a strong selective pressure for winged aphid females to choose the most 

suitable tree to lay her eggs on. Similarly as the next season’s aphids would consume 

the tree’s resources (that could otherwise be put towards growth and reproduction) 

one would expect there to be a strong selective pressure for trees to successfully deter 

mobile female aphids from landing on them. In these circumstances the emergence of 

a trait that increases the ability of aphids to discern the suitability of trees as hosts, 

will be mutually advantageous to both the aphids that perceive and respond to the trait 

and the tree individuals bearing that trait.  

 

W. D. Hamilton (Archetti 2000, Hamilton and Brown 2001) proposed that bright non-

green leaf colouration is such a trait. The hypothesis states that autumn leaf 

colouration functions as a visual signal of plant defence - the earlier and more intense 

a tree’s autumn leaf display, relative to its neighbouring trees, would reliably indicate 

its defensive commitment against insect herbivores. The authors made simultaneous 

inter- and intra-specific predictions, saying that signalling to insect pests explains 

variation in autumn leaf colouration between species, as well as between 

neighbouring conspecifics (Hamilton and Brown 2001). However, almost all 

subsequent studies have focussed upon testing the intraspecific predictions of this 

hypothesis. The intraspecific component of this hypothesis is central to my thesis 

topic; therefore I will elaborate on it further below. 

1.5.4.1 Communication theory – signals vs. cues  

Communication occurs when a trait of one individual (the sender) is perceived by 

another individual (the receiver), prompting a change in the behaviour of the receiver 

(Schaefer and Ruxton 2011). In particular, signalling (a specific category of 

communication) occurs when the perception of the sender’s trait by the receiver, and 

the subsequent change in behaviour, results in a mutual fitness benefit for both sender 

and receiver (Maynard Smith and Harper 1995). In such a scenario, both the sender’s 
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trait and the receiver’s ability to perceive and respond to the trait are maintained 

through natural selection - driving reciprocal coevolutionary change in the sender and 

receiver species.  

 

To qualify as a ‘signal’, red leaf colour must be the result of mutually beneficial co-

evolution between a plant and herbivore. The perception of the red leaf signal must 

provide an advantage to both participating plant and herbivore individuals. The plant 

would benefit from a reduced herbivore load, and the insect pest would benefit from 

information allowing the selection of the least defended host trees (Maynard Smith 

and Harper 2003, Scott-Phillips 2008, Allison and Hare 2009). If the perception of 

leaf colour by the insect does not provide a fitness benefit to the plant, then it is said 

that the insect is responding to the colouration as a ‘cue’ (Otte 1974, Allison and Hare 

2009). If this is the case, the adaptive function of leaf colour is not signalling. 

1.6 Review of evidence in support of leaf signalling hypothesis 

Hamilton and Brown’s (2001) leaf signalling hypothesis states that bright leaf 

colouration is a visual signal of a tree’s defensive commitment, and functions to deter 

approaching insect herbivores. Despite many papers emphasising the importance of 

empirical tests for testing this hypothesis (Atkinson 2001, Wilkinson et al. 2002, 

Schaefer and Wilkinson 2004) – the majority of publications citing Hamilton and 

Brown’s (2001) paper consist of further hypothesising, theoretical studies and 

reviews. Below, I present the intraspecific predictions of the signalling hypothesis, 

and available evidence.  

 

Intraspecific leaf signalling hypothesis predictions:  

1. Early autumn leaf colour change and ‘bright’ non-green colouration is a signal of a 

tree’s high defensive commitment, relative to conspecifics. 

 

2. Upon perceiving the leaf colour signal, insect herbivores should alter their 

behaviour accordingly, selecting less well-defended host trees. 

 

3. Signalling increases the fitness of participating tree and herbivore individuals 

(Archetti et al. 2009). 
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This hypothesis has been highly controversial and has attracted heated scientific 

debate. To assess the appropriateness of the assumptions, as well as to understand 

some of the criticism of this leaf signalling hypothesis, I present available data from 

relevant studies below: 

1.6.1 Prediction 1.  

“Early autumn leaf colour change and ‘bright’ non-green colouration is a signal of a 

tree’s high defensive commitment, relative to conspecifics” 

The majority of studies testing this first prediction have relied upon indirect measures 

of defence. Rolshausen and Schaefer (2007) detected no relationship between leaf 

fluctuating asymmetry and the timing or extent of red autumn colouration in the 

leaves in mountain ash (Sorbus aucuparia). Several studies have found correlations 

between red colouration and the total phenolic content of leaves and interpreted these 

as evidence in support of leaf signalling (Karageorgou and Manetas 2006, 

Karageorgou et al. 2008, Hughes et al. 2010b). However, as only a small proportion 

of the total phenolic pool is known to be involved in defence (Lawler et al. 1998, 

Lawler et al. 1999), this measure is not a necessarily an accurate predictor of 

defensive commitment. Only one study to date has correlated non-green leaf colour 

with quantified levels of known strong insect defence compound. Cooney et al. 

(2012) found that leaves of Pseudowintera colorata with wider red margins contained 

higher levels of polygodial, a sesquiterpene dialdehyde with strong antifeedant 

properties. 

1.6.2 Prediction 2.  

“Upon perceiving the leaf colour signal, insect herbivores should alter their 

behaviour accordingly, selecting less well-defended host trees” 

A variety of field studies have found correlations between bright non-green leaf 

colour and reduced numbers of, and/or damage from, insect herbivores (Hagen et al. 

2003, Archetti and Leather 2005, Karageorgou and Manetas 2006, Rolshausen and 

Schaefer 2007, Ramirez et al. 2008, Wong and Srivastava 2011, Cooney et al. 2012, 

Markwick et al. 2012). In the majority of these studies, it was unknown if the 

herbivore was responding to the leaf colour signal or some other correlated trait, such 

as leaf volatile organic compounds (VOC) (Ougham et al. 2005a).  
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Schaefer and Rolshausen (2007a) studied the influence of leaf colour on aphid settling 

patterns in the field by manipulating leaf colour and applying glue to branches and 

whole individuals of mountain ash (Sorbus aucuparia) in a natural setting. Aphids 

colonised trees non-randomly, however there was no difference in the number of 

aphids caught on differently coloured branches and individuals. The authors 

concluded that, although leaf colour was not important, the aphids did use cues in pre-

contact host selection.  

 

Cooney et al. (2012) demonstrated that visual cues mediate feeding decisions in a 

non-deciduous plant-herbivore system. During feeding trials with larval Ctenopseustis 

obliquana (Lepidoptera: Tortricidae) under manipulated light conditions, the 

herbivores consumed greater leaf area from green- than red-margined leaves only 

when lighting conditions allowed discrimination of the leaf colour. Similar results 

were found by Markwick et al. (2012) when comparing feeding preferences of a 

related tortricid caterpillar under light and dark conditions. 

 

1.6.3 Prediction 3. 

“Signalling increases the fitness of participating tree and herbivore individuals” 

In order to distinguish whether a trait is indeed a signal, data about the fitness of both 

participants in the putative signalling system is required. In the only study to directly 

assess fitness consequences of signalling, Ramirez et al. (2008) measured aphid 

growth rates in spring upon trees that displayed different leaf colouration the previous 

autumn. No correlation was detected between host autumn leaf colour and aphid 

reproductive rate the following spring. Several studies have collected information 

about the flower and fruit production of trees, however these data were collected with 

the purpose of assessing how the reproductive investment of the tree affects either leaf 

colouration (Sinkkonen 2006b, Rolshausen and Schaefer 2007) or insect behaviour 

(Hagen et al. 2003, Schaefer and Rolshausen 2007a), rather than testing the above 

prediction regarding fitness consequences for trees. Signalling theory requires that, on 

average, both the sender and receiver individuals receive a mutual fitness benefit. No 

leaf signalling study has collected direct or indirect fitness data of both plants and 

insects from the same system.   
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1.7 Alternative hypotheses for autumn leaf colouration  

The publication of Hamilton and Brown’s (2001) leaf signalling hypothesis prompted 

a large number of subsequent publications presenting modifications and alternative 

hypothesis regarding autumn leaves. As explained below (see section 1.8), my own 

research will focus on non-senescing leaves, and therefore will not be directly 

addressing these autumn senescing leaf hypotheses. However, I have reviewed these 

hypotheses here, as they are instructive of both the diversity of theorising upon this 

subject and the wide range of connected components of plant-insect herbivore 

interactions. 

1.7.1.1 Reproductive insurance hypothesis 

In a study of autumn leaf colour change in mountain birch (Betula pubescens sp. 

czerepanovii), Sinkkonen (2006b) observed that trees bearing the greater number of 

female catkins displayed the earliest yellow leaf colouration. Subsequently, 

Sinkkonen (2006a) proposed the ‘reproductive insurance’ hypothesis, stating that the 

early yellow leaf colours of reproductively active trees may function as a coevolved 

signal, to communicate their reproductive commitment to migrating aphids. The 

hypothesis assumes that trees investing a large amount of resources to reproduction 

will be poor quality hosts for aphids. This hypothetical scenario benefits both aphids, 

who would be able to avoid trees that will subsequently become poor quality hosts, 

and signalling trees, who would experience fewer aphids feeding on nutrients that 

could otherwise be used for reproduction. However, contrary to the predictions of the 

reproductive insurance hypothesis, Hagen et al. (2003) found a positive correlation 

between number of catkins and leaf damage in mountain birch (Betula pubescens). 

Similarly, Schaefer and Rolshausen (2007a) found a strong positive correlation 

between fruit production and number of aphid numbers upon mountain ash (Sorbus 

aucuparia). 

1.7.1.2 Autumn leaf colour as a cue for nutrient retranslocation 

The supporting evidence presented in Hamilton and Brown’s (2001) article on leaf 

signalling was the observation that species of aphids which make host-selecting 

migratory flights in autumn are more commonly associated with tree species that 

display bright red or yellow autumn colouration than with tree species for which the 

leaves remain green. Holopainen and Peltonen (2002) expanded this data set, 

presenting data of aphid host association and tree colour consistent with Hamilton and 

Brown’s (2001) interspecific result, for aphid and tree species found within Finland. 
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However the authors postulated an alternative mechanism to explain the observed 

pattern: the ‘nutrient retranslocation’ hypothesis states that bright red and yellow leaf 

colours function for photoprotection during leaf senescence and resulting 

retranslocation of nutrients. Consequently red and yellow leaf colour is a reliable cue 

for the availability of mobile nutrients. The ability to perceive where nutrient 

retranslocation is occurring would provide a fitness benefit for female migrating 

aphids, as they would be able to select hosts according to the availability of high 

quality food and therefore have more resources for reproduction. Holopainen and 

Peltonen (2002) argued that the correlation between the bright senescing foliage and 

aphid species demonstrates that host-alternating aphids have adapted to life upon 

species where nutrient retranslocation is revealed by leaf colour.  

 

Game-theoretical modelling by Archetti (2007), demonstrated that the nutrient 

retranslocation hypothesis is an evolutionary possibility. However, studies into the 

role of colour in aphid host location reveal that, while yellow colours are more 

attractive than green to aphids, red colours are less attractive than green (Ramirez et 

al. 2008, Döring et al. 2009). Therefore, the nutrient retranslocation hypothesis is 

likely to apply to yellow leaf colouration only.  

1.7.1.3 Tritrophic signalling via volatile organic compounds 

The signalling hypothesis provides an adaptive explanation for non-green leaf 

colouration. In contrast, Holopainen (2008) proposed an hypothesis to explain why 

some deciduous trees maintain green colouration during autumn. Holopainen (2008) 

argued that it is expensive to remain green up to leaf abscission, as it precludes 

resorption of nutrients from those leaves. Therefore the adaptive reason for staying 

green would be to continue to be able to producing metabolically expensive VOC that 

attract predators and parasitoids of aphids. The cost of lost nutrients is balanced by 

reduced herbivory. To aphids, senescing leaves (unable to produce metabolically 

expensive VOC) would represent enemy-free space and high quality food due to 

mobilisation of nutrients. This hypothesis predicts a positive correlation between 

aphids and senescing red and yellow foliage. 

 

In an empirical test of this hypothesis, Holopainen et al. (2010) compared the volatiles 

released from green and yellow (not red anthocyanic) leaves of Betula pendula 

throughout senescence. Consistent with the hypothesis, costly photosynthesis related 
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VOC were released by green leaves but not yellow. This confirms the assumption that 

green foliage is more capable of facilitating induced indirect defense against 

herbivores than yellow.  I am aware of no studies investigating VOC released from 

either senescing or non-senescing anthocyanic leaves.  

1.7.1.4 Attractive signal to promote tritrophic interactions 

Yamazaki (2008a) noted three observations that the leaf signalling hypothesis for 

autumn leaf colour failed to address: a) healthy vigorous trees may allocate resources 

to growth rather than defence; b) aphids may vary in their reponses to leaf colour and 

defences; and, c) tritrophic interations are important forces structuring herbivore 

communities. He therefore proposed a modification to the leaf signalling hypothesis: 

Rather than being a warning signal of defence, bright autumn leaves are a coevolved 

attractive signal - revealing which tree individuals will allocate resources to spring 

growth. In response myremecophilous specialist aphids, coevolved to perceive and 

respond to this signal, preferentially colonise signalling trees. In turn high numbers of 

myremecophilous aphids on signalling trees attracts aphid-tending ant species 

(Yamazaki 2008a).  

 

In this hypothetical situation the trees would benefit, because aphid-tending ants 

would reduce the diversity and abundance of non-aphid insect herbivores and manage 

levels of myremecophilous aphid populations. Responding to the signal would benefit 

aphids two-fold: 1) they might colonise trees that allocate resources to growth in 

spring, ensuring a good food supply for aphid offspring; and 2) aphid-tending ants 

would reduce competition with other insect herbivores. Contrary to the leaf signalling 

hypothesis, this hypothesis predicts that aphids are attracted to bright leaf colouration 

(but doesn’t specify red or yellow). 

 

Myremecophilous aphids are a minority among aphids, however this hypothesis was 

later extended to include other hemipterans that produce honeydew (scale insects and 

leafhoppers) and therefore attract ants (Yamazaki 2008b). Due to the tri-trophic 

interactions, this hypothesis is inherently more complex than the leaf signalling 

hypothesis. There have been no empirical tests to date. 

1.7.1.5 Signalling to alert insects that leaves are about to be shed 

Lev-Yadun and Gould (2007) proposed another modification for the leaf signalling 

hypothesis: that autumn leaf colour may function as a signal to herbivores that leaves 
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are about to be shed, rather than signal of plant defensive commitment. 

Communicating that leaves are to be shed soon allows plants to reduce herbivore load 

(at a time when nutrient-rich sap is being remobilised from leaves) and allows 

herbivores to reduce mortality by selecting hosts where leaves will not soon abscise. 

The authors argued this coevolved signalling system might arise, due to the mutual 

benefits of such a scenario.  

1.8 Signalling in senescing autumn vs. non-senescing leaves 

The leaf signalling hypothesis was originally focussed upon autumn senescing leaves. 

More recently, this hypothesis has been considered as a possible explanation for 

variation in the colouration of newly flushing leaves (Karageorgou and Manetas 2006, 

Karageorgou et al. 2008) and leaves that maintain foliar anthocyanins throughout the 

majority of their life (Hughes et al. 2010b, Wong and Srivastava 2011, Cooney et al. 

2012). Studying non-senescing leaves allows for an assessment of leaf signalling 

without the concomitant complex changes in leaf biochemistry and function 

associated with leaf senescence (Keskitalo et al. 2005, Ougham et al. 2005a). The 

focus of this thesis will be upon non-senescing leaf systems. 

1.9 Review of criticisms of leaf signalling hypothesis  

Most papers published in support of leaf signalling have presented correlations 

consistent with either of the first two predictions of the leaf signalling hypothesis (see 

section 1.6 above). Subsequent reviews have reinforced the claim these findings are 

evidence in support of leaf signalling (Archetti 2009a, Archetti et al. 2009). However, 

these papers have received criticism for their lack of consideration of alternative 

mechanisms that may explain their findings (Wilkinson et al. 2002, Schaefer and 

Wilkinson 2004, Ougham et al. 2005a, Schaefer and Rolshausen 2006, Schaefer and 

Gould 2007, Holopainen 2008). Below, I review these alternative mechanisms. 

1.9.1 Prediction 1. Correlation between leaf colour and defensive chemistry 

There are other mechanisms by which leaf colour may correlate with leaf defensive 

chemistry, aside from leaf signalling:  

1.9.1.1 Defence indication hypothesis (Schaefer and Rolshausen 2006). 

The biosynthetic pathway that produces anthocyanin pigments also produces the 

many flavonoid compounds frequently used in plant defence against herbivores (e.g. 

tannins) (Schaefer and Rolshausen 2006). Additionally, floral anthocyanin 
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pigmentation has been demonstrated to be pleiotropically linked with leaf defence 

(Fineblum and Rausher 1997, Strauss et al. 2004). The ‘defence indication’ 

hypothesis posits that foliar anthocyanin pigments primarily function to reduce the 

impact of abiotic stressors, however biosynthetic and pleiotropic linkages lead to a 

correlation between anthocyanins and defensive compounds within leaves (Schaefer 

and Rolshausen 2006), similar to the first prediction of the signalling hypothesis.  

 

Such a correlation would exert selective pressure upon herbivorous insects to perceive 

and respond to anthocyanin pigments, as a cue of leaf defences. As a result, the 

defence indication hypothesis subsequently predicts a negative correlation between 

insects and anthocyanic leaves consistent with prediction 2 of the signalling hypotheis 

(see below). However, such a correlation would arise through a different proximate 

mechanism to leaf signalling. 

 

The strength of the pleiotropic linkage between anthocyanins and flavonoid defence 

may be weaker in plants that do not use flavonoids as their primary defence against 

herbivores (Fineblum and Rausher 1997). In order to distinguish between the leaf 

signalling and defence indication hypotheses, one must investigate the mechanism by 

which pigmentation and defences correlate. This requires the ability to directly 

quantify defence compounds, ideally in a plant species that does not primarily use 

flavonoids for plant defence. 

1.9.1.2 Protection of light sensitive defence compounds (Page and Towers 2002) 

The petioles of Ambrosia chamissonis (Asteraceae) leaves contain high levels of the 

toxic defence compound thiarubrine A. However, thiarubrine compounds are 

photolabile, and are degraded after exposure to visible and ultraviolet light. In above-

ground A. chamissonis tissues, thiarubrine-containing structures are shielded by cells 

containing anthocyanin pigments (Gould 2004). By comparing thiarubrine A 

degradation in roots and shoots exposed to light, anthocyanins were demonstrated to 

contribute to the protection of this plants defensive chemistry (Page and Towers 

2002). This study also predicts a positive correlation between leaf colour and defence, 

although in this case the function of anthocyanins is for light screening rather than for 

signalling. To exclude the protection of light sensitive defence compounds 

explanation, studies investigating leaf signalling should focus upon plant species 

where the primary defence compounds are not photolabile.  
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1.9.2 Prediction 2. Correlation between leaf colour and herbivore abundance 

and/or feeding damage 

A correlation between leaf colour and reduced insect herbivore abundance or smaller 

areas of leaf lamina eaten has frequently been interpreted as support for the signalling 

hypotheses (Hagen et al. 2003, Archetti and Leather 2005, Karageorgou and Manetas 

2006, Rolshausen and Schaefer 2007, Ramirez et al. 2008, Wong and Srivastava 

2011, Cooney et al. 2012). However, the signalling hypothesis requires that the 

insects are responding to the leaf colour as a signal. As illustrated above (see section 

1.9.1) there are alternative mechanisms by which leaf colour and defences may 

correlate. Similarly, there are many mechanisms (aside from signalling) by which a 

correlation between non-green leaf colour and reduced insect abundance or damage 

can occur; insects may be responding to other properties of anthocyanins, or else 

responding to other cues that happen to correlate with foliar anthocyanins (Ougham et 

al. 2005a, Rolshausen and Schaefer 2007, Schaefer and Gould 2007, Holopainen 

2008) 

1.9.2.1 Other properties of anthocyanins 

A correlation between foliar anthocyanins and reduced herbivore damage need not be 

related to leaf defences. For example, leaf cutter ant (Atta columbica) workers 

avoided anthocyanic leaf discs from tropical plants (Coley and Aide 1989) – which 

could be interpreted as support for a correlation between anthocyanins and leaf 

defences – however, in this system the leaf material is not directly consumed by 

leafcutter ants but rather is used to propagate fungi for food. The mechanism of 

deterrence is indirect; the ants avoid eating leaves with fungicidal properties (Coley 

and Aide 1989).  

1.9.2.2 Pre-contact correlated cues – VOC 

The leaf signalling hypothesis presumes that visual cues play a primary role in pre-

contact host selection. While it is likely to be an important cue, the role of colour in 

host selection is poorly studied relative to the role of olfactory cues (Reeves 2011). 

Plant tissues release volatile organic compounds (VOC), and the sensory appendages 

of many insects are highly sensitive to these VOC (Dudareva et al. 2006). There has 

been a vast amount of research into mechanisms by which VOC mediate plant-insect 

interactions (see section 3.2). 
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Colour-correlated VOC may explain patterns in insect damage/abundance through 

either direct deterrence of herbivores, or indirectly, through tritrophic interactions 

(Dudareva et al. 2006). VOC released after herbivory are used as cues by some 

predators and parasitoids of insect herbivores (Kessler and Baldwin 2001, Allmann 

and Baldwin 2010). It has been repeatedly proposed that leaf colour might correlate 

with leaf VOC emissions (Archetti and Brown 2004, Ougham et al. 2005b, 

Holopainen 2008, Döring et al. 2009, Lev-Yadun and Gould 2009). Holopainen et al. 

(2010) found that green non-senescing leaves emitted different VOC profiles than 

yellow senescing leaves, and concluded that the green leaves were potentially the 

better defended against insect herbivores. To my knowledge, no study has 

investigated the VOC profiles from anthocyanic non-senescing leaves.  

1.9.2.3 Post-contact correlated cues - Leaf nutrients 

To date, empirical studies of plant quality have focused on the role of plant defences 

in mediating plant-herbivore interactions and have not considered the influence of 

variation of host nutritional quality on foraging patterns.  There are strong links 

between leaf colour and nutrient content. In agriculture, anthocyanin accumulation is 

used as an indicator for certain macronutrient deficiencies, such as phosphorus and 

nitrogen (Close and Beadle 2003). The timing and intensity of red colouration in 

autumn senescing maple leaves were correlated with leaf nitrogen content (Schaberg 

et al. 2003). Therefore, inter-individual differences in leaf redness may be a result of 

differences in plant nutrition, not necessarily signalling. 

 

In order to grow and reproduce, herbivorous insects must acquire nutrients, and 

therefore make host selection decisions based upon the nutrient content of their food 

(Behmer 2009). A diet of poor quality food can lead to impaired development and 

survival of insect herbivores (Calvo and Molina 2010). Therefore, a correlation 

between reduced insect abundance, or reduced damage, with leaf colour may be the 

result of interactions between plant nutritional status and insect nutritional 

requirements.  

1.10 Gap in knowledge 

As evidenced by the amount of scientific interest it has received, leaf signalling is a 

compelling and attractive hypothesis. However, at present, we are unable to confirm 

or refute this hypothesis. This is due to three reasons:  
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1) The leaf signalling hypothesis incorporates diverse knowledge areas such as 

signalling theory, biochemistry, plant-insect interactions, plant and insect physiology, 

ecology, evolutionary biology (Schaefer and Wilkinson 2004, Archetti et al. 2009). 

All of these areas have highly developed research fields. The original leaf signalling 

hypothesis, as well as subsequent models and empirical studies, have not 

appropriately integrated the knowledge and potential alternate explanations provided 

by these diverse areas (Wilkinson et al. 2002, Schaefer and Wilkinson 2004, Archetti 

et al. 2009).  

 

2) Data are scarce and more empirical studies are needed (Archetti et al. 

2009). In particular, fitness data pertaining to the 3rd prediction are lacking. No one 

study has attempted to test all of the leaf signalling predictions in one biological 

system.  

 

3) The leaf signalling and photoprotective hypotheses for foliar anthocyanins 

function have been frequently classified as being mutually exclusive (Schaefer and 

Gould 2007, Archetti et al. 2009). As a result, there have been few attempts to 

consider the impacts of signalling upon photosynthesis. Only two empirical papers 

have collected data pertaining to both physiology and leaf signaling (Karageorgou and 

Manetas 2006, Rolshausen and Schaefer 2007). Due to the inherent light absorbing 

properties of anthocyanin pigments, these hypotheses are not mutually exclusive 

(Rolshausen and Schaefer 2007, Schaefer and Gould 2007). Therefore, experiments 

need to compare the relative influence of foliar anthocyanins on biotic (i.e. deterring 

herbivores via signaling) vs. abiotic factors.  

 

Given the diverse range of hypotheses for anthocyanin function, especially given the 

strong support for photoprotective function, and in consideration of the abundant 

alternative explanations, is it possible to find evidence in support of leaf signalling as 

an explanation for the maintenance for inter-individual variation in leaf colour? 

1.11 Pseudowintera colorata is an ideal species to study leaf signalling 

A major factor contributing to the imbalance between the numbers of empirical vs. 

theoretical leaf signalling papers, is the difficulty associated with collecting empirical 
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data. The New Zealand native small tree Pseudowintera colorata, possesses several 

properties which makes it a particularly well suited study system to test if red 

anthocyanin pigments within leaves function as a visual signal. This species is an 

ideal plant signaller model because: 

 

1) Its foliage is naturally extremely variable in colour. Its leaves vary from 

entirely green to entirely red, although most are an irregular mosaic of red and green 

patches (Fig.  2.1A). Also, in several populations there is marked interindividual 

variation in leaf colouration.  

 

2) In contrast to the leaf-signalling plant species investigated to date, this 

species rules out several alternative explanations by virtue of the facts that its primary 

defence compound (a sesquiterpene dialdehyde called polygodial; Fig.  2.1F) is 

directly quantifiable, has been repeatedly shown to possess potent antifeedant 

properties against a variety of phytophagous insects (Asakawa et al. 1988, Gerard et 

al. 1993, Powell et al. 1993, 1995), is not reported to be photolabile and is 

biochemically distant from anthocyanins; 

 

3) A large number of the insects associated with P. colorata have been 

documented (http://plant-synz.landcareresearch.co.nz/; accessed August 2010).  

Cooney et al. (2012) have shown that larvae of the brownheaded leafroller 

Ctenopseustis obliquana, an important herbivore of P. colorata, perceive and respond 

to red colouration at the leaf margins. Additionally, visual cues were important 

mediators of feeding decisions for larval Epiphyas postvittana (from the same family 

as C. obliquana) (Markwick et al. 2012). The larvae of many tortricid moths are 

important pests of apple and other crops in New Zealand, so research into leaf 

signalling using this system has the potential to be applied in horticultural/agricultural 

settings. 

1.12 Aims of the thesis  

The overall aim of this thesis was to carry out a comprehensive test of the hypothesis 

that foliar anthocyanins function as visual signals, informing insect herbivores of a 

plant’s defensive commitment. Using P. colorata, I tested the predictions of the leaf 

signalling hypothesis (see section 1.6) whilst investigating alternative explanations. 
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1.12.1 Specific Objectives: 

1.12.1.1 Test leaf signalling predictions using P. colorata in the field [Chapter 2] 

Using a matched pair design similar to Hagen et al. (2003), I exploited the natural 

polymorphism in leaf colour of P. colorata to test the hypothesis that (i) bright red 

leaf colour is a reliable signal of a plant’s defensive commitment; (ii) insects in the 

field avoid trees that are brightly coloured; and (iii) the trees with the brightest leaves 

will have higher fitness.  

1.12.1.2 Test for olfactory signalling via VOC [Chapter 3] 

Many insects are sensitive to volatile organic compounds (VOCs), however the role 

of VOCs in plant-herbivore signalling has not been investigated. P. colorata’s leaves 

contain many VOCs (Corbett and Grant 1958). I analysed VOCs released from 

undamaged, herbivore- and mechanically-damaged red and green leaves of P. 

colorata, and the olfactory preferences brownheaded leafroller (C. obliquana) larvae.  

I tested the hypotheses that (i) VOC profiles of P. colorata leaves are a reliable 

indicator of the defensive potential of the leaf, and correlate with anthocyanin content; 

(ii) leaves with greater red coloration emit a greater amount of sesquiterpenes in their 

VOC profiles; (iii) any insect deterrent compounds will be released in greater 

amounts by the red than the green leaves; and (iv) both naïve and experienced C. 

obliquana larvae will prefer the VOCs released from green P. colorata leaves. 

1.12.1.3 Test the influence of foliar anthocyanin pigments on photosynthesis of P. 

colorata [Chapter 4] 

Studies of leaf signalling rarely consider the influence of the light-absorbing 

properties of non-green pigments upon photosynthesis. I compared the photosynthetic 

and photoinhibitory responses of red and green leaves from matched, neighbouring 

pairs of P. colorata of contrasting colour. Due to shading caused by anthocyanin 

pigments, I hypothesised that redder leaves would have a lower maximum 

photosynthetic assimilation rate and, after stress with white light, show a smaller 

reduction in photosynthetic efficiency than matched green leaves. 

1.12.1.4 Test the preferences of insect herbivores in the lab [Chapter 5]  

I used field surveys and laboratory bioassays to identify which invertebrate herbivores 

are most likely to participate in coevolved leaf-signalling interactions with P. 

colorata. Testing the hypothesis that these herbivores prefer green than red P. 

colorata leaves, I carried out lab trials to assess whether the non-random patterns of 

feeding damage and larval abundance observed in the field in Chapter 2 resulted from 
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feeding and oviposition preferences of herbivores. Also, to test the hypothesis that 

selecting less-red hosts increases the fitness of participating herbivores, I attempted to 

quantify the fitness of C. obliquana larvae feeding upon red and green P. colorata 

leaves.  

1.12.1.5 Test for correlations between leaf colour and nutrient content [Chapter 6] 

Given that the nutrient status of plants may influence insect feeding preferences, plus 

the well-established links between leaf colour and plant nutrient status, I investigated 

the relative levels of leaf N and C of red and green P. colorata. I tested the hypothesis 

that red leaves contain lower leaf nitrogen levels. 
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2 Do foliar anthocyanins function as a visual signal in P. 

colorata? 
 

2.1 ABSTRACT 

Although anthocyanins are synthesised in the leaves of many plants, the adaptive 

significance of these pigments is not entirely understood. It has been postulated that 

their red colours may function as visual signals through coevolution between 

herbivorous insects and their host tree species, though the hypothesis lacks solid 

empirical evidence. I exploited the natural polymorphism in leaf colour of 

Pseudowintera colorata to test three predictions of the leaf signalling hypothesis that 

(i) bright leaf colour is a signal of a plant’s defensive commitment; (ii) insects 

perceive this signal and thus avoid trees that are brightly coloured; and (iii) the trees 

with the brightest leaves will have higher fitness. Relative to green leaves, redder 

foliage contained higher concentrations of polygodial, a sesquiterpene dialdehyde 

known to have strong antifeedant properties, and incurred less insect feeding damage. 

Redder trees hosted fewer lepidopteran leafroller larvae than neighbouring matched 

green trees. Contrary to the predictions of the leaf signalling hypothesis, there was no 

difference in any of the measured fitness parameters between red and green trees 

indicating that leaf colour polymorphism in P. colorata is stable. I identified and 

discussed four nonexclusive scenarios that may explain this polymorphism. 

 

2.2 INTRODUCTION 

Most leaves are green, but red colouration, predominantly caused by anthocyanin 

pigments within leaf cell vacuoles, is extremely widespread (Lee 2002). The possible 

functions of anthocyanin pigments in red leaves have attracted scientific debate over 

the last decade (Lev-Yadun et al. 2002, Gould 2004, Archetti 2009a, Hughes 2011). 

Foliar anthocyanins have been posited to mitigate the adverse effects of strong light 

and low temperatures, to protect against drought stress, and to modulate the redox 

balance in plants (Steyn et al. 2002, Close and Beadle 2003, Gould 2004, Hatier and 

Gould 2008b). However, variability in the degree of red leaf colouration within 

populations, and even between neighbouring individuals of the same species is 

common (Kytridis et al. 2008, Novak and Short 2010, Hughes 2011, Taulavuori et al. 



 32 

2011). Additionally, at a smaller spatial scale, red colouration is often localised to 

specific areas within leaves or patchily distributed over the leaf lamina (Lee 2007, 

Wong and Srivastava 2011). Overall, the physiological functions of foliar 

anthocyanin pigments do not satisfactorily explain the variability in patterns of leaf 

redness (Archetti and Brown 2004). 

 

As an alternative to the possible physiological functions, Archetti (2000) and 

Hamilton & Brown (2001) proposed a novel hypothesis that specifically addressed 

intra- and inter-species variation in reddening in senescing leaves of deciduous trees. 

Their hypothesis stated that bright colouration in autumn leaves is a visual signal that 

deters approaching aphids by honestly revealing a tree’s defensive commitment. 

Individual plants vary in their defensive commitment with the best-defended 

individuals producing the brightest leaf colouration. Through evolutionary time, 

herbivores are expected to associate bright red leaf colour with increased defence and 

evolve a preference for hosts with the greener, less well-defended leaves. Due to 

differences in host suitability, herbivores that perceive and respond to these cues and 

select greener plants are expected to display higher fitness than those that do not. 

Similarly, differences in herbivory between signalling and non-signalling individual 

trees are expected to result in differences in the fitness of those trees. The leaf 

signalling hypothesis made three testable predictions: (i) bright leaf colour is a signal 

of a plant’s defensive commitment; (ii) insects perceive this signal and thus avoid 

trees that are brightly coloured; and (iii) signalling increases the fitness of 

participating tree and herbivore individuals (Archetti 2000, Hamilton and Brown 

2001). Although communication between plants and animals is an active field of 

study, no paper published to date has examined all the predictions of the leaf 

signalling hypothesis. This is surprising because communication between plants and 

herbivores is likely to have far reaching consequences for the study of plant defences. 

 

To qualify as a ‘signal’ rather than as a ‘cue’, red leaf colour must be the result of 

mutually beneficial coevolution between a plant and herbivore. The perception of the 

red leaf signal must advantage both plant and herbivore. The plant would benefit from 

a reduced herbivore load, and its insect pests would benefit from information allowing 

the selection of the least defended host trees (Maynard Smith and Harper 2003, Scott-

Phillips 2008, Allison and Hare 2009). In contrast, if the perception of red leaf colour 
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results in benefits for the insect but not necessarily for the plant, then red leaf colour 

must be regarded as a cue rather than a signal. A variety of field studies have found 

correlations between bright non-green leaf colour and reduced numbers of, and/or 

damage from, insect herbivores (Hagen et al. 2003, Archetti and Leather 2005, 

Karageorgou and Manetas 2006, Wong and Srivastava 2011, Cooney et al. 2012). 

However, such correlations are not sufficient evidence to conclude that leaf colour 

functions as a signal rather than as a cue. To our knowledge, no study has presented 

fitness data to test this third prediction of the leaf signalling hypothesis. Without data 

on the relative fitness of differently coloured trees and the relative fitness of 

individual insect herbivores feeding upon red and green trees, we are unable to 

confirm leaf signalling. In particular, we are unable to conclude whether deterring 

herbivores is the adaptive function, rather than merely an effect, of red pigments in 

leaves (Otte 1974, Allison and Hare 2009).  

 

There are alternative mechanisms, other than signalling, that might explain a link 

between leaf colouration and reduced insect pressure, and these have rarely been ruled 

out in previous studies. For example Schaefer and Rolshausen (2006) showed that, in 

the absence of a known mechanism of insect deterrence, a correlation between red 

leaves and reduced insect pressure does not provide strong evidence for leaf 

signalling. Their ‘defence indication’ hypothesis proposed that red anthocyanin 

pigments primarily function to reduce the impact of abiotic stressors. However, 

because they are the end product of the flavonoid biosynthetic pathway that also 

produces biotic defence compounds (Simpson and Raubenheimer 2001), red pigments 

may still be a reliable cue of a plant’s defensive strength. Alternatively, pigments 

could be a reliable cue if they function to protect photolabile defence compounds 

(Page and Towers 2002). Other studies have found correlations between red 

colouration and the total phenolic content of leaves and interpreted these as evidence 

in support of the leaf signalling hypothesis (Karageorgou and Manetas 2006, 

Karageorgou et al. 2008, Hughes et al. 2010b). However, only a small fraction of the 

total phenolic pool is known to be involved in defence (Lawler et al. 1998, Lawler et 

al. 1999). It is thought that the primary function of the majority of phenolics is to 

protect leaves from photodamage (Close and McArthur 2002). With the exception of 

Cooney et al. (2012), who studied anthocyanin production in the leaf margins of P. 
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colorata, previous studies of leaf signalling did not identify specific defensive 

compounds and so were unable to rule out the defence indication hypothesis. 

 

Several reviews have highlighted that anthocyanin pigments are likely to serve 

multiple functions within leaves (Gould 2004, Lev-Yadun 2006a). Despite this, 

physiological and signalling hypotheses, although not mutually exclusive (Rolshausen 

and Schaefer 2007), have often been presented as competing viewpoints, and 

proponents of each view have criticised the alternative view (Schaefer and Wilkinson 

2004, Archetti and Brown 2006, Schaefer and Gould 2007, Schaefer and Rolshausen 

2007b, Archetti 2009a, Archetti et al. 2009). It has been repeatedly shown that abiotic 

stressors can influence anthocyanin pigment production within leaves (Gould et al. 

1995, Chalker-Scott 1999, Manetas 2006). With the exception of Rolshausen and 

Schaefer (2007) and Hagen et al. (2004) studies investigating leaf signalling have 

neglected to control for environmental effects on colouration.  

 

I used P. colorata, a small tree endemic to New Zealand, to test if red anthocyanin 

pigments within leaves function as a visual signal. This species is an ideal model 

because (i) the primary defence compound (a sesquiterpene dialdehyde called 

polygodial; Fig.  2.1F) has been repeatedly shown to possess potent antifeedant 

properties against a variety of phytophagous insects (Asakawa et al. 1988, Gerard et 

al. 1993, Powell et al. 1993, 1995), is not reported to be photolabile and is 

biochemically distant from anthocyanins; (ii) its foliage is naturally extremely 

variable in colour, leaves vary from entirely green to entirely red, although most are 

an irregular mosaic of red and green patches (Fig.  2.1A); and (iii) Cooney et al. 

(2012) have shown that larvae of the brownheaded leafroller Ctenopseustis obliquana, 

an important herbivore of P. colorata, perceive and respond to red colouration at the 

leaf margins.  

 

I analysed the relationships between leaf colour, anthocyanin and polygodial content 

and herbivory of leaves collected from two natural populations at distinct locations in 

New Zealand. Chemistry data and leaf images from the Otago population were 

collected by Luke Youard and appear in his thesis (Youard 2012). At the Wellington 

population, where inter-individual differences in leaf redness are particularly strong, I 

utilised a matched pair design similar to that of Hagen et al. (2004) to test the effect of 
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red leaf colouration on insect pressure and plant fitness whilst minimising the 

influence of environmental variables. I hypothesized that (i) the proportion of red 

colouration of P. colorata leaves is a reliable cue of chemical defences, (ii) redder 

leaves will suffer reduced insect feeding damage, (iii) red trees will experience less 

insect pressure than green trees, and (iv) red trees will have higher fitness than green 

trees. I present these investigations below. Elsewhere, in Appendix B, I document my 

attempts to quantify the fitness of C. obliquana larvae feeding upon red and green P. 

colorata leaves 

2.3 MATERIALS AND METHODS 

2.3.1 Plant material 

In 2007, 15 P. colorata plants were randomly selected from a natural population at 

Waipori Falls Scenic Reserve, Otago, New Zealand (45° 54' 13.8" S, 169° 59' 34.7" 

E). From each plant two stems were randomly selected, from which every leaf was 

removed (Youard 2012). In 2009, further plant material was collected from a natural 

population of P.colorata at Belmont Trig, Wellington, New Zealand (41°11!0.2"S, 

174° 52! 25.9"E). The two populations represent extremes in the range of typical P. 

colorata habitat. P. colorata at Waipori Falls are found in the shaded forest 

understory (Fig.  2.1C). At Belmont trig P. colorata forms a dense thicket on an 

exposed hilltop, which received direct sunlight throughout the day (Fig.  1.1D). Fifty 

plants were randomly selected, stratified over the population (ten plants from each of 

five 100m transects 20m apart). From each plant three branches were randomly 

selected, stratified to represent the lowest, intermediate and highest heights of 

insertion on the canopy. From each of these stems the oldest, an intermediate, and the 

youngest fully expanded leaves were collected. A subsample of leaves from each 

population was used for chemical analyses (Otago: 46 leaves from four randomly 

selected branches, each from a separate plant; Wellington: 90 leaves from 10 

randomly selected plants).  

 

2.3.2 Leaf colour and insect feeding damage  

Leaf colouration patterns and feeding damage from chewing insects were quantified 

from digital images of the harvested leaves. The adaxial surface of each was scanned 

at 300 dpi using a Cannon Canoscan 8400F flatbed scanner, and Adobe Photoshop 5.0 
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(San Jose, CA, USA) was used to convert the background of the images from white to 

black. The area of red lamina was automatically measured by an R-script which 

converted images from RGB to CIELab colour coordinates, classified and counted 

pixels according to their colour, and calculated the total leaf area and proportion of 

leaf area coloured red. This technique followed the method of Ramirez et al. (2008).  

Mechanical injury and herbivory can induce the biosynthesis of additional 

anthocyanin pigmentation in leaf tissue immediately adjacent to damage (Gould et al. 

2002a). To estimate the colour of the leaf prior to damage, I classified each leaf 

according to the proportion of red area that was induced redness (i.e. associated with 

damage). I used this classification to reduce the weighting of induced redness relative 

to natural leaf colour variation on my calculation of total red leaf area (see Appendix 

A). 

 

Insect feeding damage was calculated by comparing leaf surface area from each 

scanned image with an estimate of pre-herbivory leaf surface area created in Image J 

v1.41 (National Institute of Health, Bethesda, MD, USA). Pre-herbivory surface area 

was estimated by filling in areas lost to edge herbivory, as well as any holes in the 

leaf lamina. If leaves had incurred extensive herbivory, their pre-herbivory leaf shape 

was reconstructed by comparison with the shapes of adjacent leaves on the branch. 

Leaves that incurred no feeding damage were excluded from statistical analyses that 

involved leaf herbivory, as it was not known if their lack of damage could be 

attributed to successfully deterring herbivores or instead to not being encountered by 

an herbivore. 

 

2.3.3 Leaf chemistry 

Leaves from the Otago population were individually freeze-dried, weighed, and 

ground to a powder. Half of each sample was extracted in 3M HCL:H2O:MeOH 

(1:3:16, v/v/v), centrifuged, and absorbances at 522 nm (Amax) and 653 nm of the 

supernatant measured using a Pharmacia Biotech Ultraspec 2000 UV/Visible 

spectrophotometer (Pharmacia Biotech, Uppsala, Sweden). Anthocyanin 

concentrations were estimated as A522–0.24A653 per unit dry weight. The remaining 

half of each sample was used for polygodial quantification as described below 

(Youard 2012).  
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For leaves from the Wellington population both polygodial and anthocyanin 

concentrations were measured by HPLC using a procedure modified after Wayman et 

al. (2010). These analyses were carried out by John van Klink at Otago University.  

Leaf samples were freeze dried for 24h and ground to a powder. Subsamples (~10 

mg) were extracted with rectified spirits (1 ml) containing C10 anilide (200 #g) as an 

internal standard (Perry et al. 1996), briefly sonicated (~30 s), stirred overnight, and 

then filtered through a 0.45 #m PTFE filter. Analyses were performed on an Agilent 

1100 HPLC (Agilent Technologies, Santa Clara, CA) fitted with a diode array 

detector, using a Luna (II) 250 x 3 mm RP-18 (5 #m) column (Phenomenex, 

Torrance, CA) with a SecurityGuardTM 4 x 2 mm C18 guard column (Phenomenex, 

Torrance, CA) at 30 ºC. Peaks were monitored at 206, 230, 280, 330 and 530 nm. The 

mobile phase was MeCN in H2O, both containing formic acid (0.1%): 5% MeCN at 0 

min, 100% at 30 min, 5% at 35 min, 5% at 40 min. The flow rate was 0.5 ml/min with 

injection volumes of 5 #l. Quantification of an isolated reference sample of 

polygodial against the internal standard was performed at 230 nm. Quantification of 

anthocyanins was achieved by calibrating with a commercial source of cyanidin-3-O-

glucoside (Extrasynthese, Genay, France) at 530 nm versus the internal standard at 

206 nm. Total anthocyanins were reported as cyanidin-3-O-glucoside equivalents. 

Other compounds were identified by their eluting times, including another 

sesquiterpene dialdehyde, 9-deoxymuzigadial, and the polyphenol, chlorogenic acid 

(CGA). Levels of each compound identified were reported as mg (or #g for 

anthocyanins)/g dry weight of material extracted. 

 

2.3.4 Pair-wise comparison of herbivore pressure 

I selected 30 pairs of P. colorata trees at the Wellington site, following the methods 

of Hagen et al. (2004). This design allowed me to investigate the effect of leaf colour 

on herbivory whilst minimising the influence of abiotic factors. Each pair contained 

one tree whose leaves were predominantly green and one tree whose leaves were 

much redder (Fig.  2.1B). The individuals in each pair were located no more than 2m 

apart from one another, and closely matched in size, aspect, exposure to direct 

sunlight and prevailing winds. Canopy surface area of each plant was measured using 

a 0.0672 m2 quadrat. The quadrat was placed upon the canopy and rotated edge to 
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edge in parallel rows over the entire exterior surface of the plant. Subsequent 

measures of herbivory pressure and plant fitness are reported per m2 canopy surface 

area. Very large P. colorata trees (> ~6 m2) were excluded.  

 

Because a previous season’s herbivory might influence herbivory pressure and plant 

fitness (Marquis 1984), a survey of leaf herbivory was conducted at the beginning of 

this study. From each individual in the matched-pair experiment, 100 fully expanded 

leaves were haphazardly selected. Each leaf was scored as having incurred chewing 

insect feeding damage or not. The proportionate number of leaves that had incurred 

herbivory was recorded.  

 

New Zealand native leafroller caterpillars from the family Tortricidae were the most 

abundant of the known chewing insect herbivores of P. colorata at the Wellington 

field site (http://plant-synz.landcareresearch.co.nz/; accessed August 2010). From late 

Spring to early Summer (November to December) 2010, I counted the caterpillars 

visible on every leaf on all 60 trees, and recorded evidence of leafroller caterpillar 

presence (leaves rolled or stuck together with silk, Fig.  2.1E). Caterpillars were left 

undisturbed so that I could observe the impact of their feeding on plant fitness at the 

end of the season. 

 

2.3.5 Estimation of plant fitness 

Several features of plant reproduction make quantifying individual’s life-time fitness 

extremely difficult, especially in natural conditions (Primack and Kang 1989). In 

order to estimate fitness, researchers commonly measure components of fitness such 

as: leaf area, flower set, pollination success, fruit set, seed set, seed size, seed 

viability, seedling survival, seedling fecundity (Primack and Kang 1989, Herrera 

1991, Stowe et al. 2000). I collected data regarding components of the reproductive 

effort of matched pairs of P. colorata, with the assumption that individuals that 

produced the greater number or mass of seeds, would have the greater probability of 

leaving more offspring.  

 

From the same 30 pairs, during late summer to early autumn (February/March 2011, 

before the majority of fruits were fully ripened) each stem was inspected and the total 
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number of fruits counted. P. colorata produces small (3-5 mm in diameter) fruits that 

change colour from green to very dark red or black when ripe. Fruit numbers were 

divided by each tree’s canopy area to compensate for small differences in stature. 

Close to 30 000 fruits from 30 pairs were counted. For 26 pairs, 20 randomly selected 

fruits from each plant were dissected and their seeds counted. These seeds were then 

cleaned, dried, and their mean dry weights determined to test for differences in the 

number of seeds per fruit and seed weight. The number of seeds per m2 canopy area 

of each tree was estimated by multiplying mean numbers of seeds per fruit by total 

number of fruits per m2 canopy area. Seed mass per m2 canopy area of each tree was 

estimated by multiplying mean seed weight by estimated total number of seeds per m2 

canopy area. 

 

2.3.6 Statistical analyses 

The different ways leaves were sampled from the Otago and Wellington populations, 

combined with the fact that chemical analyses were carried out on a subsample of 

leaves, precluded a multivariate analysis to compare the relationships between leaf 

colour, chemistry and herbivory at the two populations. Instead, I described patterns 

of variation in leaf colour, chemistry and herbivory between and within P. colorata 

individuals from Wellington and Otago. I then used multiple linear mixed effect 

models to analyse the relationships between leaf colour, chemistry and herbivory 

within each population.  

2.3.6.1 Description of inter- and intra-individual patterns 

Individual means and coefficient of variation (CoV = (standard deviation/mean)*100) 

were plotted to describe the patterns of variability of leaf traits and herbivory between 

and within populations. CoV is useful for making comparisons of the within-plant 

variability of traits among individuals (Herrera 2009). In Wellington, leaf trait 

variation within-individuals was investigated along two axes: variation across three 

different heights within each tree (corresponding to exposure to environmental 

variables such as light, wind and cooler temperatures) and variation with leaf age 

along a stem at each height (corresponding to leaf ontogeny). Differences in traits 

between heights and between leaf ages at each height were analysed using a nested 

ANOVA design (leaf age nested within height) in PSAW/SPSS Version 18.0 

(Chicago, IL, USA). Equality of variance of each variable was assessed using 
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Levene’s test, natural log transformations were applied when necessary. Where there 

were differences within branches, separate ANOVA analyses with Tukey’s HSD 

(honestly significant difference) test were applied post-hoc. 

 

Because the P. colorata trees from Otago were beneath the forest canopy and were 

approximately equally shaded, branch height did not represent differences in exposure 

as in Wellington. Instead, to get a finer resolution of leaf trait variation with ontogeny, 

leaf age was recorded as node number along a stem (an ordinal variable) rather than 

classified categorically as in Wellington. Nodes were counted starting from the 

youngest fully expanded leaf. 

2.3.6.2 Relationships between colouration, chemistry and herbivory of P. colorata 

leaves from Wellington and Otago 

General linear mixed-models were used to assess the relationships between 

polygodial and leaf pigment, polygodial and leaf redness, and between the proportion 

of leaf area removed by chewing insects (herbivory) and leaf redness, using  the ‘lme’ 

command of the nlme package in R, with maximum likelihood estimation (R Core 

Team 2013). To test if anthocyanin had direct effects on palatability and, therefore, 

leaf damage, I carried out a further analysis including both anthocyanin and 

polygodial concentrations as main effects in a mixed-effects model predicting 

herbivory. Following a Shapiro-Wilk test, the response variables for each model were 

transformed to improve normality (polygodial: ln; herbivory: arcsine square root). 

The models included nested random factors (Wellington: individual nested within 

transect; Otago: branch nested within individual) to reflect the different sampling 

methodologies at the two sites and to account for the lack of independence of leaves 

collected from the same plant. The Fligner-Killen test in R was used to compare 

variability of herbivory for different amounts of leaf redness. 

2.3.6.3 Differences in herbivore pressure and reproductive effort within matched 

pairs of P. colorata at Wellington 

Differences in herbivore pressure and reproductive effort between pairs of trees were 

first examined for normality using a Shapiro-Wilk test, and then analysed using either 

a paired t-test or Wilcoxon signed ranks test in PSAW/SPSS Version 18.0 (Chicago, 

IL, USA).  
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2.4 RESULTS  

At both sites the proportion of red colouration varied considerably among leaves. Red 

leaf area ranged from a barely visible 0.03% to almost entirely red, with both 

populations having leaves with greater than 96% of the adaxial surface area coloured 

red. However for most leaves, red colouration was concentrated in leaf margins and 

small blotches over the lamina (red leaf area: Wellington median = 1.8%, Interquartile 

range [IQR = Q1 to Q3] = 0.6 – 4.8%; Otago median = 1.0%, IQR = 0.5 – 2.4%; Fig.  

2.1A).  
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Fig.  2.1 (A) Patterns of colouration of P. colorata leaves; (B) a matched pair of P. 

colorata trees contrasting in colour; photographs representative of (C) Otago and (D) 

Wellington sites; (E) Ctenopseustis sp. leafroller caterpillar within P. colorata leaves; 

and (F) transverse section through a P. colorata leaf showing idioblast, red 

anthocyanin pigments and structure of polygodial. 
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2.4.1 Comparison of leaf colour, chemistry and herbivory of P. colorata individuals 

from Wellington and Otago 

2.4.1.1 Colour 

Wellington and Otago populations of P. colorata did not differ in either average 

redness of individuals (Mann-Whitney U, P = 0.493) or variability in leaf redness 

within individuals (Mann-Whitney U, P = 0.069, Fig.  2.2A). Anthocyanin 

concentrations within the leaves of plants from Wellington and Otago were quantified 

by different methods and therefore are not easily comparable. However, the range of 

anthocyanin concentrations of leaves within individuals was significantly higher in 

Wellington than Otago (Mann-Whitney U, P = 0.007, Fig.  2.2B). 

 

2.4.1.2 Chemistry 

Consistent with Wayman et al. (2010), P. colorata leaves from the Wellington and 

Otago populations contained both polygodial and 9-deoxymuzigadial. Wellington P. 

colorata trees had 2.5 times higher average polygodial concentrations within their 

leaves (Mann-Whitney U, P = 0.011), but less within-tree variability in polygodial 

than those in Otago (Mann-Whitney U, P = 0.024, Fig.  2.3A). Similarly, 

concentrations of 9-deoxymuzigadial were almost 2.5 times higher in Wellington P. 

colorata trees than in those from Otago (Mann-Whitney U, P = 0.005), however there 

was no difference in within-individual variation between these populations (Mann-

Whitney U, P = 0.888, Fig.  2.3B). The range of within-individual variation in leaf 

chlorogenic acid concentration was similar to the range in variation in polygodial and 

9-deoxymuzigadial in Wellington (Fig.  2.3C). 

 

2.4.1.3 Herbivory  

Otago P. colorata trees sustained over four times higher average herbivory levels than 

those from Wellington (Mann-Whitney U, P < 0.001), but there was no difference in 

within-individual variation in herbivory between these populations (Mann-Whitney 

U, P = 0.071, Fig.  2.3C).  
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Fig.  2.2 Box-and-whisker plots of individuals’ mean (left) and coefficient of 

variation (right) for (A) leaf redness (nWellington = 50, nOtago = 15), (B) anthocyanin 

(nWellington = 10, nOtago = 4) and (C) chlorogenic acid (nWellington = 10) concentrations 

(DW) of P. colorata trees at Otago and Wellington. Asterisks indicate statistical 

significance (Mann-Whitney U; P < 0.05). 
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Figure 2. Box-and-whisker plots of individuals’ mean (left) and coefficient of variation (right) 

for (A) leaf redness (nWellington = 50, nOtago = 15), (B) anthocyanin (nWellington = 10, nOtago = 4) 

and (C) chlorogenic acid (nWellington = 10) concentrations (DW) of P. colorata trees at Otago 

and Wellington. Asterisks indicate statistical significance (Mann-Whitney U; P < 0.05).!

!"#$%
!"#$!

&
'#
()
#(
"*
%+
,#
(-
()
./
01
12

%&'(

%&'%

%&)(

%&)%

%&((

%&(%

%&*(

Page 1

!"##$%&'(%
!"##$%&'

)
"*
%+
*%
',
(-
.*
%$
%+
/0
&1
&+
23
.+
#"
*4
5

()*

(**

+*

,*

-*

)*

*

Page 1

!"#$%
!"#$!

&
'#
()
#(
"*
%+
,#
(-
()
./
01
12

%&'(

%&'%

%&)(

%&)%

%&((

%&(%

%&*(

Page 1

!"#$%
!"#$!

&
'#
()
#(
"*
%+
,#
(-
()
./
01
12

%&'(

%&'%

%&)(

%&)%

%&((

%&(%

%&*(

Page 1

!"#$%
!"#$!

&
'#()#("*%+,#(-()./

0112

%&'(

%&'%

%&)(

%&)%

%&((

%&(%

%&*(

Page 1

!"##$%&'(%
!"##$%&'

)
"*
%+
*%
',
(-
.*
%$
%+
/0
&1
&+
23
.+
#"
*4
5

()*

(**

+*

,*

-*

)*

*

Page 1

* 

!"#$%&'(")
!"##$%&'(')&(***

*
"+
,&
)'
-"
./
&)
()
,01

2

+,,

-.,

-,,

.,

,

Page 1

A 

B 

C 

* 



 46 

Fig.  2.3 Box-and-whisker plots of individuals’ mean (left) and coefficient of 

variation (right) for (A) polygodial and (B) 9-deoxymuzigadial concentrations (DW, 

nWellington = 10, nOtago = 4) and (C) herbivory levels (nWellington = 50, nOtago = 15) from 

P. colorata trees at Otago and Wellington. Asterisks indicate statistical significance 

(Mann-Whitney U; P < 0.05). 
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Figure 3. Box-and-whisker plots of individuals’ mean (left) and coefficient of variation (right) for 

(A) polygodial and (B) 9-deoxymuzigadial concentrations (DW, nWellington = 10, nOtago = 4) and 

(C) herbivory levels (nWellington = 50, nOtago = 15) from P. colorata trees at Otago and Wellington. 

Asterisks indicate statistical significance (Mann-Whitney U; P < 0.05).  
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2.4.2 Within-individual patterns in leaf colour, chemistry and herbivory of P. 

colorata trees from Wellington 

Leaves from branches from higher in the canopy tended to be redder (F2,440 = 129.0, P 

< 0.001, Fig.  2.4A) and contained higher dry weight concentrations of anthocyanin 

(F2,81 = 54.349, P < 0.001, Fig.  2.4B) and chlorogenic acid (F2,80 = 11.537, P < 0.001, 

Fig.  2.4C). 9-deoxymuzigadial concentrations showed the opposite trend and 

decreased with height (F2,81 = 3.336, P = 0.041, Fig.  2.5B). Concentrations of 

polygodial (F2,81 = 2.565, P = 0.083, Fig.  2.5A) and amounts of herbivory (F2,371 = 

0.607, P = 0.55, Fig.  2.5C) of leaves did not vary consistently among branches at 

different heights. 

 

For any one branch, younger leaves tended to be redder (F6,440 = 12.6, P < 0.001, Fig.  

2.4A) with higher concentrations of anthocyanin (F6,81 = 2.427, P = 0.033) and 

polygodial (F6,81 = 2.482, P = 0.024, Fig.  2.5A) than older leaves. There was no 

statistical difference in the concentrations of chlorogenic acid (F6,80 = 0.175, P = 

0.983, Fig.  2.4C), 9-deoxymuzigadial (F6,81 = 0.879, P = 0.514, Fig.  2.5B) or amount 

of herbivory (F6,371 = 0.901, P = 0.49, Fig.  2.5C) across leaves of different ages. 

 

2.4.3 Within-individual patterns in leaf colour, chemistry and herbivory of P. 

colorata trees from Otago  

In Otago, leaf redness (exponential regression, R2 = 0.0351, P < 0.001, n = 486, Fig.  

2.6A), anthocyanin (logarithmic regression, R2 = 0.242, P < 0.001, n = 46, Fig.  2.6B) 

and polygodial concentrations (logarithmic regression, R2 = 0.327, P < 0.001, n = 46, 

Fig.  2.7A) decreased with leaf age. 9-Deoxymuzigadial concentrations did not 

change with leaf age (logarithmic regression, R2 = 0.006, P = 0.618, n = 46, Fig.  

2.7B). No data was collected for chlorogenic acid. These results are consistent with 

those for Wellington populations, with the exception of herbivory, which showed a 

weak but significant increase with leaf age in Otago (exponential regression, R2 = 

0.052, P < 0.001, n = 408, Fig.  2.7C). 
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Fig.  2.4 Within-individual patterns in natural log transformed (A) leaf colour (n = 
449), and (B) anthocyanin and (C) chlorogenic acid concentrations (DW, n = 90) of 
young, intermediate and old fully expanded leaves from three branches at different 
heights of insertion of P. colorata trees from Wellington (Y-axis labels back-
transformed). Means ± SE. Different letters indicate statistical significance (nested 
ANOVA, P < 0.05). 
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Figure 4. Within-individual patterns in natural log transformed (A) leaf colour (n = 449), and 

(B) anthocyanin and (C) chlorogenic acid concentrations (DW, n = 90) of young, intermediate 

and old fully expanded leaves from three branches at different heights of insertion on P. 

colorata trees from Wellington (Y-axis labels back-transformed). Means ±SE. Different letters 

indicate statistical significance (nested ANOVA, P < 0.05 ) 
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Fig.  2.5 Within-individual patterns in natural log transformed (A) polygodial and (B) 
9-deoxymuzigadial concentrations (DW, n = 90) and (C) herbivory levels (n = 380) of 
young, intermediate and old fully expanded leaves from three branches at different 
heights on P. colorata trees from Wellington (Y-axis labels back-transformed). 
Means ± SE. Different letters indicate statistical differences (nested ANOVA, P < 
0.05). 
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Figure 5. Within-individual patterns in natural log transformed (A) polygodial and (B) 9-

deoxymuzigadial concentrations (DW, n = 90) and (C) herbivory levels (n = 380) of young, 

intermediate and old fully expanded leaves from three branches at different heights on P. colorata 

trees from Wellington (Y-axis labels back-transformed). Means ±SE . Different letters indicate 

statistical differences (nested ANOVA, P < 0.05).  
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Fig.  2.6 Within-individual patterns in (A) leaf colour (n = 486) and (B) anthocyanin 

concentration (n = 46) of fully expanded P. colorata leaves of different ages from 

Otago. 

Figure 6. Within-individual patterns in (A) leaf colour (n = 486) and (B) anthocyanin 

concentration (n = 46) of fully expanded leaves P. colorata of different ages from 

Otago.  
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Fig.  2.7 Within-individual patterns in (A) polygodial and (B) 9-deoxymuzigadial 

concentrations (n = 46) and (C) herbivory levels (n = 408) of fully expanded P. 

colorata leaves of different ages from Otago. 
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2.4.4 Relationships between leaf redness, chemistry and herbivory from P. colorata 

trees in Wellington and Otago 

2.4.4.1 Red colouration in P. colorata leaves is a reliable cue of chemical defences 

At both sites, leaves with the higher concentration of anthocyanin pigments generally 

held the higher levels of polygodial (Fig. 2.8 & Table 2.1). Differences in anthocyanin 

concentration between leaves corresponded to differences in the outward appearance 

of those leaves. Leaves with high anthocyanin concentrations had a higher proportion 

of leaf area coloured red (Fig. 2.8 & Table 2.1). After controlling for leaf redness that 

had resulted from an induced response to leaf damage, the proportion of red coloured 

leaf area reliably indicated polygodial concentrations of P. colorata leaves (Fig. 2.8 & 

Table 2.1).  
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Table 2.1 Results from general linear mixed-model analyses of the relationships 

between the leaf redness, chemistry and herbivory from P. colorata trees in 

Wellington and Otago. The response variables for each model were transformed to 

improve normality (polygodial: ln; herbivory: arcsine square root). Models included 

random factors (Wellington: individual nested within transect; Otago: branch nested 

within individual) but those effects are not presented below. Asterisk indicates 

statistical significance (P < 0.05). 

Model d.f.NUM d.f.DENOM F-value P 

(a) Polygodial ~ anthocyanin     

Wellington 1 79 17.9    0.0001* 

Otago 1 41 17.3    0.0002* 

     

(b) Polygodial ~ redness     

Wellington 1 79 14.0    0.0003* 

Otago 1 41 25.8 < 0.0001* 

     

(c) Herbivory ~ redness     

Wellington 1 329 5.5    0.0195* 

Otago 1 378 8.3    0.0042* 

     

(d) Herbivory ~ anthocyanin + polygodial + anthocyanin*polygodial 

Wellington Anthocyanin 1 65 0.004    0.9521 

 Polygodial 1 65 4.3    0.0400* 

 Anthocyanin:polygodial 1 65 0.3    0.5642 

Otago Anthocyanin 1 28 0.007    0.9350 

 Polygodial 1 28 0.03    0.8671 

 Anthocyanin:polygodial 1 28 3.0    0.0928 
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Fig.  2.8 Proportionate leaf redness and polygodial concentrations in leaves of P. 

colorata from (A) Wellington (n=90) and (B) Otago (n = 46). Untransformed data 

presented here, but analyses were conducted on ln-transformed polygodial data. 

 

 

2.4.4.2 Redder P. colorata leaves incur less insect feeding damage 

After controlling for the proportion of leaf redness that resulted from an induced 

response to leaf damage, the redder P. colorata leaves incurred less feeding damage 

from chewing insects than did green leaves at both locations (Fig. 2.9 & Table 2.1). 

Many leaves had no evidence of herbivory (Wellington, 116 of 748 leaves; Otago, 78 

of 486 leaves). Of the leaves with damage, the amount of leaf area consumed was 

much lower at the Wellington site (mean feeding damage = 3.4% + 0.25%, max = 

56.5%) than at the Otago site (19.6% + 1.12%, max = 90.4%).   

 

In addition to incurring lower amounts of feeding damage, redder leaves from both 

populations experienced much less variability in feeding damage. There was a critical 

proportionate red leaf area above which variance in leaf damage was dramatically 

reduced; this was 4.25% for leaves from Wellington (Fligner-Killeen, d.f. = 1, P < 

0.001) and 4% for those from Otago (d.f. = 1, P = 0.013). Furthermore, in both 

populations, no leaf with greater than 30% red area incurred more than 15% damage. 
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Fig.  2.9 Feeding damage and proportionate red leaf area in leaves of P. colorata from 

(A) Wellington (n = 551) and (B) Otago (n = 375). Untransformed data presented 

here, but analyses were conducted on arcsine square root-transformed feeding damage 

data. 

 

Of the leaves collected for chemical analyses from the Wellington site, polygodial 

concentration was a better predictor of herbivory than anthocyanin (Table 2.1) and 

there was no significant interaction between anthocyanin and polygodial. This 

indicates that anthocyanins are not likely to have direct effects on leaf palatability, 

and therefore leaf damage, in P. colorata. Of the leaves collected for chemical 

analyses from the Otago site, neither anthocyanin or polygodial were significant 

predictors of herbivory, and the interaction term was not significant. The Otago result 

is unsurprising perhaps, given the low sample size (n = 4 independent individuals) 

combined with high variability in herbivory.  

 

2.4.5 Red trees experience less insect pressure than neighbouring green trees 

When matched pairs of P. colorata trees with contrasting leaf colour were compared, 

the redder trees had significantly lower Ctenopseustis spp. leafroller caterpillar 

density (Wilcoxon signed ranks, n = 30, Z = -2.5, P = 0.013, Table 2.2) than did 

neighbouring green trees. Caterpillar densities upon P. colorata trees varied 
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differences in caterpillar densities across pairs, red trees had on average ~ 22% fewer 

caterpillars than green trees. While the redder trees hosted fewer caterpillars, no tree 

was free of leafroller caterpillars. At the beginning of the season, before the caterpillar 

census, there was no difference in the proportion of leaves showing signs of herbivory 

per tree within pairs (paired Student’s t-test, n = 30, t = -0.557, P = 0.582). 

 

2.4.6 Neighbouring red and green trees do not differ in fitness 

No differences in the total numbers of fruit per m2 canopy area were observed 

between matched red and green P. colorata trees (Wilcoxon signed ranks, n = 30, Z = 

-0.06, P = 0.951, Table 2.2). Similarly, there were no differences between matched 

red and green trees in mean numbers of seeds per fruit (paired Student’s t-test, n = 26, 

t = -1.3, P = 0.213, Table 2.2), mean seed weight (n = 26, t = -1.5, P = 0.136), 

estimated total number of seeds per m2 canopy area (n = 26, Z = - 0.24, P = 0.809), 

nor estimated total seed mass per m2 canopy area (n = 26, Z = - 0.47, P = 0.638, Table 

2.2). 

Table 2.2 Herbivore pressure and fitness parameters of matched pairs of red and green 

P. colorata trees. Red trees hosted fewer leafroller caterpillars than neighbouring 

green trees, but there were no statistical differences in the numbers of fruits or seeds, 

or seed mass per tree. Asterisk indicates statistical significance (Wilcoxon signed 

ranks [indicated by Z] or paired Student’s t-test, depending on the outcome of 

Shapiro-Wilk test for normality, P < 0.05). 

  Mean Median S.D. N Z or t P 

No. leafroller 

caterpillars per m2 

canopy area  

Red 20.3 11.2 27.1 

30 
-2.5 

Z 
  0.013* Green 26.0 16.1 25.5 

No. fruits per m2 

canopy area 

Red 271.8 131.3 316.4 
30 

-0.06 

Z 
0.951 

Green 236.7 167.1 291.0 

 No. seeds per fruit  
Red 4.2 4.1 0.8 

26 
-1.3 

t 
0.213 

Green 3.9 4.1 0.7 

Seed mass (mg) per 

m2 canopy area 

Red 2.4 1.6 2.4 
26 

-0.47  

Z 
 0.638 

Green 2.1 1.1 2.8 
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2.5 DISCUSSION 

Three of my results indicate that red P. colorata leaves signal to herbivores: (i) leaves 

with a higher proportion of red colouration contained greater levels of the antifeedant, 

polygodial (Fig.  2.8); (ii) there was a marked reduction in the mean amount and 

variability of herbivory incurred by leaves with greater amounts of red colouration 

(Fig 2.9); and (iii) red trees hosted fewer herbivorous insects than neighbouring green 

trees (Table 2.2). However, there was no evidence to suggest that leaf signalling 

influences the fitness of P. colorata. Consequently, we failed to support a central 

assumption of the leaf signalling hypothesis that signalling plant defences conveys an 

adaptive benefit.  

 

Equal fitness pay-offs in the face of differing herbivore pressure indicate that 

variation in leaf colour between P. colorata individuals may be a stable 

polymorphism. Indeed, the widespread occurrence and maintenance of variation in 

leaf colour among individuals suggests that colour variation represents a stable 

polymorphism. In light of the equal fitness results, it is not possible to determine if 

red leaf colour functions either as a cue or a signal in P. colorata. Potential fitness 

benefits of red pigmentation in relation to reduced herbivory may be offset by 

(unknown) disadvantages associated with red leaf production. There are several 

scenarios, that are not mutually exclusive, which could result in equal fitness and 

which are consistent with leaf signalling. These are: (1) there are costs associated with 

the production of red leaves that in some situations may limit the fitness of red trees; 

(2) signalling may be part of a compensatory strategy to allow nutrient deficient 

plants to achieve equal fitness with non-deficient conspecifics; (3) green trees may 

have evolved mechanisms to tolerate higher levels of herbivory damage or alternative 

mechanisms to defend from herbivory and (4) fitness impacts of red leaf colour may 

be obscured by multitrophic interactions. To assess the usefulness of the leaf 

signalling hypothesis we need to test the relative contribution of each scenario to plant 

fitness via experimental tests manipulating the presence of herbivores and levels of 

environmental stress. I outline the four scenarios below. 
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2.5.1 Signalling costs in the absence of herbivores 

Equal fitness in the presence of unequal herbivore damage is explicable if there are 

significant negative side effects associated with investing in a red leaf signal in the 

absence of strong herbivore pressure. The signalling hypothesis proposed that red 

colouration was expensive and thus a handicap (Hamilton and Brown 2001). The 

main assumption of handicap signalling is that the costs are more difficult to pay for 

lower quality individuals and therefore the reddest individuals get the highest pay 

offs. The apparent costs of signalling depend of the level of herbivore pressure. In the 

absence of herbivores, red leaf signalling trees still face investment costs, yet do not 

receive fitness pay-offs.  

 

We can expect there to be costs associated with producing the red leaf signal in P. 

colorata. The metabolic costs of manufacturing anthocyanins are small, requiring 

only a amount of carbon that can be assimilated over a few hours of photosynthesis 

(Foyer et al. 2007). There are additional (unknown) costs associated with the 

production of biosynthetic enzymes and with the transport of anthocyanins into the 

vacuole. Again, these are likely to be trivial, given that they are a one-time investment 

that lasts for the entire life of a leaf. However, effective deterrence also requires the 

manufacture, transport, storage and maintenance of higher levels of polygodial (on 

average, 59 mg g-1 DW for red leaves versus 34 mg g-1 for green leaves in 

Wellington; 31 mg g-1 DW versus 11 mg g-1 in Otago) in signalling leaves.  

 

Additionally, there may be indirect costs of signalling. Due to the light-screening 

effects of anthocyanins, considerably less green light strikes the chloroplasts of red 

than of green leaves (Gould et al. 1995, Neill and Gould 1999). Green light is 

important for photosynthesis, particularly in the lower spongy mesophyll layers of a 

leaf (Nishio 2000). As a consequence, quantum yields and maximum CO2 

assimilation rates can be lower in red than in green leaves (Gould et al. 2002b, 

Kyparissis et al. 2007, Lan et al. 2011, Nielsen and Simonsen 2011, Nikiforou et al. 

2011, Zhang et al. 2011). This may limit the resources available for allocation 

towards reproduction. Losses in photosynthetic achievement can ultimately result in 

impaired fitness (Ganeteg et al. 2004). If the levels of herbivore pressure are low then 

the direct and indirect costs of investing in a signal may result in equal fitness payoffs 
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for signalling and non-signalling plants. In the absence of herbivores altogether, one 

might expect signalling plants to be at a disadvantage.  

 

During this study I found an average difference of ~ 5 fewer caterpillars (~ 22% 

reduction) per m2 canopy area between my matched pairs of green- and red-leafed 

plants. Additionally, the correlation between herbivory and leaf colour (although 

statistically significant) was weak, with only 3.5% of variation in herbivory explained 

by leaf colour. Studies of autumn leaves have found that variability in non-green leaf 

colour explained more than 80% of the variability in the numbers of herbivores 

(Archetti and Leather 2005) and more than 25% of the variation in the amounts of 

insect damage (Hagen et al. 2003). Given that the fitness payoffs associated with 

signalling are likely to be dependent on the degree of herbivore pressure, the small 

difference in the number of herbivores between red and green trees in this study may 

explain why differences in fitness were not observed. There was stronger herbivory 

pressure at the Otago site, where leaves incurred greater amounts of feeding damage 

than at Wellington (Fig 2.9). Correspondingly, I also expect to find greater differences 

in fitness between red and green P. colorata at Otago. 

 

2.5.2 Signalling may be part of a compensatory strategy for nutrient deficient plants 

P. colorata leaves from both populations exhibited a very large range of leaf 

colouration, far beyond the amount needed to significantly reduce variation in 

herbivory (i.e., 4.25% leaf area coloured red for leaves from Wellington and 4% for 

those from Otago, Fig 2.9). Similarly, Cooney et al. (2012) found that only a thin 

band of red colouration around the leaf margin (1.75 – 2.25% of total leaf width) was 

needed to be an effective deterrent, yet much wider red margins were common. Such 

a large range of leaf colouration suggests that anthocyanin pigments may be carrying 

out other functions within P. colorata leaves. Redness above the threshold for 

reduced herbivory predominantly occurred in the uppermost, exposed leaves of the 

canopy. Another polyphenol, chlorogenic acid, known to be a powerful antioxidant 

(Grace et al. 1998, Close and McArthur 2002), was found with a similar distribution 

to anthocyanins within P. colorata leaves (Fig.  2.4C). The high level of antioxidant 

compounds in these upper leaves suggests that they are prone to photo-oxidative 

stress.  
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Recent research on transient winter-reddening in two Mediterranean species, Cristus 

creticus and Pistacia lentiscus, may provide insight into these results. During winter, 

some individuals of these species turn red while neighbouring conspecifics remain 

green. Researchers assessed photosynthetic and photoprotective parameters in red and 

green phenotypes of both species. They concluded that red phenotypes were 

characterised by lower photosynthetic efficiency, lower levels of xanthophyll cycle 

pigments and lower leaf nitrogen, and were more susceptible to photoinhibition than 

neighbouring green individuals (Kytridis et al. 2008, Zeliou et al. 2009, Nikiforou et 

al. 2010, Nikiforou et al. 2011). Similar results have been seen for winter-red 

phenotypes of Japanese Honeysuckle Lonicera japonica (N. Hughes pers. comm.) and 

in the red young leaves of Rosa sp. and Ricinus communis L. (Manetas et al. 2002). 

Anthocyanin pigments in red-leaf C. creticus were demonstrated to have a 

photoprotective role both by shading subjacent chloroplasts (Kytridis et al. 2008) and 

through antioxidant activity (Kytridis and Manetas 2006). Red phenotype Coleus spp. 

maintain similar photosynthetic light use as green phenotypes (B. A. Logan pers. 

comm.). In contrast, the physiological benefits of anthocyanin accumulation in the 

winter-reddening Cristus creticus were not sufficient to compensate for the higher 

vulnerability of red phenotype to photoinhibition (Kytridis et al. 2008, Zeliou et al. 

2009, Nikiforou et al. 2011). Despite this, Nikiforou et al. (2010) found no difference 

in relative fitness of red and green individuals of C. creticus, similar to my study. 

Perhaps nutrient-limited or genetically inferior P. colorata and C. creticus individuals 

accumulate anthocyanin pigments in their leaves for the combined benefits of both 

signalling and photoprotection. Anthocyanin pigments are predominatly located 

within the epidermal cells of P. colorata leaves (Fig.  2.1F). This is consistent with 

both light screen and signalling functions. The dual functions of anthocyanins in this 

scenario may allow weak individuals to maintain equal fitness to their neighbouring 

conspecifics.  

 

After herbivore damage anthocyanin pigments may also play other additional roles 

within leaves. Zangerl et al. (2002) and Nabity et al. (2009) found a significant 

reduction in the photosynthetic rate of intact tissue near the site of herbivore damage, 

which may lead to increased chances of photo-oxidative damage. Additionally, the 

release of autotoxic defence compounds into leaf lamina after herbivore damage has 
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been demonstrated to cause oxidative damage (Gog et al. 2005). The antioxidant 

function of anthocyanins around the site of damage has already been demonstrated for 

P. colorata (Gould et al. 2002a). Chapter 4 contains results of investigations into 

photosynthesis of red and green P. colorata. However the nutrient status and 

xanthophyll pools and of red and green P. colorata at Wellington have not been 

quantified. 

 

2.5.3 Tolerance vs. resistance to herbivores 

To date, discussions about the evolution of plant-animal signalling have focused on 

chemical defences that provide resistance to herbivores. However, in recent years 

there has been greater recognition of the role of plant tolerance to herbivory (Strauss 

and Agrawal 1999, Fornoni 2011). Diverse mechanisms of tolerance allow plants to 

mitigate the negative effects of herbivory on fitness, such as increased photosynthetic 

rate, increased shoot growth rate, and reallocation of carbon stores from roots to 

shoots after damage (Stowe et al. 2000). In some species, an individual may employ 

both resistance and tolerance mechanisms (Salgado-Luarte and Gianoli 2010) and 

there can be inter-individual differences in patterns of allocation to these two defence 

strategies (Leimu and Koricheva 2006, Núñez-Farfán et al. 2007). It is plausible that, 

once a signalling/chemical resistance system evolves, the increased herbivory 

experienced by non-signalling individuals may lead to increased selection for 

tolerance mechanisms.  

 

Leaf colouration may reveal an individual’s pattern of allocation to tolerance and 

resistance defence strategies. Redder individuals would invest more resources in 

resisting herbivores; these investments return benefits in terms of fewer caterpillars 

and smaller amounts of feeding damage, yet also incur indirect costs. In contrast, 

greener individuals would use a defence strategy biased towards tolerance, investing 

fewer resources to resisting herbivores. Instead, these resources would be used for 

increased and faster regrowth in green individuals. Equal fitness pay-offs suggest that 

the two strategies would be stable within populations, explaining the maintenance of 

leaf colour variation. I did not collect growth rate data for P. colorata; however, 

whilst not directly testing for tolerance mechanisms, Nikiforou et al. (2010) found 

higher numbers of leaves per unit shoot length in green as compared with red C. 
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cristus plants. However, in the same study, red plants showed higher stem elongation 

rate. While more data are needed, clearly experimental and theoretical studies of red 

leaf signalling need to include tolerance in their discussions of plant defence.  

 

2.5.4 Tritrophic and indirect interactions 

Since these plants and their herbivores are parts of an integrated ecosystem there may 

be wider ecological effects that influence plant fitness. Red pigments in the leaves of 

P. colorata may function for signalling, but the beneficial fitness effects of signalling 

may be obscured by tritrophic interactions. The negative effect of high numbers of 

caterpillars on green trees may be nullified if green trees have higher levels of 

predation and parasitism, and therefore reduced survival of insect herbivores. 

Predators and parasitoids of insect herbivores have been repeatedly shown to use 

volatile organic compounds (VOC) emitted from leaves after insect feeding damage 

as cues to locate their prey (Turlings et al. 1990, Kessler and Baldwin 2001, Allison 

and Hare 2009, Hare 2011). It has been demonstrated that yellow and green autumn 

leaves differ in their VOC profiles (Holopainen 2008, Holopainen et al. 2010). 

Therefore it may also be important to look at plant volatiles in the context of P. 

colorata’s red and green leaf polymorphism (see Chapter 3). 

 

Green P. colorata trees may experience higher predation rates upon their herbivores 

through another mechanism. Shelter-building species, such as leafroller caterpillars, 

are considered ecosystem engineers: after the caterpillars emerge as imagos, the 

rolled- or webbed-together leaves provide a habitat resource, which increases 

arthropod biodiversity (Martinsen et al. 2000). Manipulative experiments have 

repeatedly found that leaf shelters can increase the abundance of predatory ants, 

beetles and spiders (Martinsen et al. 2000, Fournier et al. 2003, Nakamura and 

Ohgushi 2003). The indirect effects of leaf shelters can affect the whole community 

of herbivores upon trees (Fukui 2001, Nakamura and Ohgushi 2003, Ohgushi 2005). 

It was beyond the scope of this study to survey predators and parasitoids, however I 

did note several occurrences of observing spiders in vacant P. colorata leaf shelters. 

 

2.5.5 Other considerations 

My conclusions regarding plant fitness are based upon estimates of fitness, derived 
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from inter-individual differences in fitness components. As such, these conclusions 

rely on the untested assumption that individual plants that produce the greater number 

of seeds, contribute a greater number of surviving offspring to the subsequent 

generations (Primack and Kang 1989, McGraw and Caswell 1996). Additionally, 

there may be interactions between fitness components that influence ultimate fitness 

(Strauss and Agrawal 1999, Stowe et al. 2000). Despite these critiques, the majority 

of studies of plant defences use seed production as a proxy for fitness (Strauss and 

Agrawal 1999). Given the time constraints of a PhD, my measures of reproductive 

effort were the most practical and best available. 

 

Patterns of leaf colouration, defence and herbivory were studied from two different 

populations of P. colorata. Even though the two populations are located in very 

different environments (forest sub-canopy vs. exposed hilltop canopy) the 

relationships between leaf colouration, defence and herbivory within each population 

were consistent. Redder leaves tended to contain higher concentrations of the defence 

compound polygodial, and experienced reduced amounts and variability of insect 

herbivory (Fig 2.8 & Fig 2.9). These results are in agreement with another study using 

red leaf margins in P. colorata (Cooney et al. 2012).  

 

The observed correlation between anthocyanins and polygodial is surprising given 

that the flavonoid and terpenoid biosynthetic pathways are distinct. Insertion of the 

Arabidopsis PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) transcription 

factor into Rosa hybrid caused, along with increased colour, an increase in the release 

of terpenoid volatile organic compounds, indicating the possibility of crosstalk 

between these two pathways (Ben Zvi et al. 2012). Additionally, anthocyanin 

pigments in petals have been demonstrated to correlate with induced levels of 

defensive glucosinolate compounds in leaves of Raphanis sativus (Strauss et al. 

2004). This was thought to result from either tight linkage of, or pleiotropic effects 

between, pigment and defence genes (Fineblum and Rausher 1997, Strauss et al. 

2004).  

 

Finally, a correlation between polygodial and anthocyanin levels within P. colorata 

leaves may partially be caused by an interaction between leaf ontogeny and exposure 

to environmental stressors. However, it is worth noting that while young P. colorata 
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leaves were redder and contained high levels of polygodial, there was no age-related 

pattern in the levels of the closely related dialdehyde, 9-deoxymuzigadial, in either 

population (Fig.  2.5B & Fig.  2.5B). 
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3 Volatile profiles of red and green P. colorata leaves 
 

3.1 ABSTRACT 

Foliar anthocyanins might be effective visual signals to deter herbivores. Given that 

many insects are sensitive to volatile organic compounds (VOCs), a plant might be 

expected to use both visual and olfactory cues. However the role of VOCs in plant-

herbivore visual signalling has not been investigated. I analysed VOCs released from 

undamaged, herbivore- and mechanically-damaged red and green leaves of 

Pseudowintera colorata, and the olfactory preferences of brownheaded leafroller 

(Ctenopseustis obliquana) larvae. I tested the hypotheses that (i) VOC profiles of P. 

colorata leaves are a reliable indicator of the defensive potential of the leaf, and 

correlate with anthocyanin content; (ii) leaves with greater red coloration emit a 

greater amount of sesquiterpenes in their VOC profiles; (iii) any insect deterrent 

compounds will be released in greater amounts by the red than the green leaves; and 

(iv) both naïve and experienced C. obliquana larvae will prefer the VOCs released 

from green P. colorata leaves. While the VOC profiles of browsed and unbrowsed 

leaves were statistically distinguishable, the VOC profiles released from intact, 

herbivore-, and mechanically-damaged P. colorata leaves did not reliably identify 

leaf colour. Mechanically damaged red P. colorata leaves did not release statistically 

significant higher levels of sesquiterpenes than damaged green leaves. I did not 

identify any compounds known to be strong deterrents, such as methyl salicylate or 

farnesene. Moreover, naïve and experienced C. obliquana larvae displayed no 

preference for the volatiles from mechanically damaged red or green leaves. 

Therefore, I conclude that VOC compounds are not likely to play a large role in 

mediating insect herbivore-plant interactions in P. colorata. 

 

3.2 INTRODUCTION 

Anthocyanin pigments and an assortment of volatile organic compounds (VOCs) have 

been postulated to protect plant vegetative tissues from biotic and abiotic stressors 

(Steyn et al. 2002, Close and Beadle 2003, Gould 2004, Dudareva et al. 2006, Vickers 

et al. 2009). However, research into the functional significance of these two types of 

plant metabolites has progressed largely independently of each other. It has been 
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hypothesised that anthocyanins may function as visual signals to deter approaching 

insect herbivores (Archetti 2000, Hamilton and Brown 2001). Several studies have 

found correlations between non-green leaf colour and reduced insect herbivore 

pressure in the field, and have interpreted these as support for pigment-mediated 

visual signalling (Hagen et al. 2003, Archetti and Leather 2005, Karageorgou and 

Manetas 2006, Wong and Srivastava 2011, Cooney et al. 2012). In those studies the 

possible effects of plant volatiles on insect deterrence were not considered, yet it has 

been repeatedly proposed that leaf colour may correlate with leaf VOC emissions 

(Archetti and Brown 2004, Ougham et al. 2005b, Holopainen 2008, Döring et al. 

2009, Lev-Yadun and Gould 2009). Indeed, only one study to date has investigated 

VOCs in differently coloured leaves; Holopainen et al. (2010) found that green non-

senescing leaves emitted different VOC profiles than yellow senescing leaves, and 

concluded that the green leaves were potentially the better defended against insect 

herbivores. However, non-green leaf colour is extremely widespread and is not 

restricted to senescing leaves (Lee 2002). To my knowledge, no study has 

investigated the VOC profiles from anthocyanic non-senescing leaves. 

 

Although anthocyanins might be effective visual signals (see Chapter 2), they are 

themselves not volatile compounds, and therefore would not be expected to deter 

herbivores that have only poor colour vision, or nocturnal herbivores. Because foliar 

anthocyanins are stored in cell vacuoles, the production of a red leaf signal, requiring 

a one-time investment that potentially lasts the entire life of a leaf, may not be very 

costly. In contrast, olfactory signalling via VOCs would be effective day and night, 

yet would require continuous production of metabolically expensive compounds 

which, once emitted, are irretrievably lost to the atmosphere (Vickers et al. 2009). To 

most efficiently maximise the chances of successful defence against herbivory, a plant 

might therefore be expected to use both visual and nocturnal olfactory cues.  

 

In comparison to the number of studies investigating the influence of VOCs on the 

behaviour of adult Lepidoptera, the olfactory preferences of lepidopteran larvae have 

been largely overlooked (Carroll et al. 2006). Some lepidopteran larvae are very 

mobile and can disperse through crawling onto nearby more-preferable hosts (Zaluki 

et al. 2002). Olfactory cues may be used in these larval voyages (Landolt et al. 2000, 

Carroll et al. 2006, Perkins et al. 2008). For example, the larvae of the European corn 
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borer display innate olfactory preferences towards higher quality host species (Piesik 

et al. 2009). Experience of plants can modify subsequent insect host preferences 

(Pszczolkowski and Brown 2005), which can be carried through metamorphosis into 

adults (Blackiston et al. 2008). Additionally lepidopteran larvae have been shown to 

learn to associate odours with specific tastes (Salloum et al. 2011). P. colorata trees 

with redder leaves hosted fewer leafroller caterpillars than their greener neighbouring 

trees (see Chapter 2). If red and green P. colorata do differ in their VOC profiles this 

recorded difference in nocturnal foraging leafroller larvae could be attributable to 

olfactory cues.  

 

Traditionally, studies on the role of VOCs in plant defence have focused on VOCs 

produced only after herbivore attacks, termed ‘herbivore-induced plant volatiles’ 

(HIPVs). Herbivore feeding, even by below-ground herbivores (Soler et al. 2007), 

causes the synthesis and release of specific mixes of VOCs from leaves (Turlings et 

al. 1998, Huber and Bohlmann 2004, Dudareva et al. 2006). These HIPVs function as 

direct defences and have been shown to deter a diverse range of herbivores including 

lepidopteran adults and larvae (De Moraes et al. 2001, Kessler and Baldwin 2001, 

Laothawornkitkul et al. 2008), thrips (Delphia et al. 2007) and aphids (Bernasconi et 

al. 1998, Vancanneyt et al. 2001, Aharoni et al. 2003). In addition, HIPVs are used by 

predators and parasitoids as cues to locate their herbivore prey (Dudareva et al. 2006, 

Mäntylä et al. 2008, Unsicker et al. 2009, Hare 2011). Variation in HIPVs has been 

documented between individual plants in the field (Gouinguene et al. 2001, Hare 

2007, Delphia et al. 2009, Schuman et al. 2009).  

  

A swifter method of defence might be achieved if the tissue damaged by insect 

feeding were to immediately release a potent burst of deterrent VOCs. Several species 

of plants store pools of volatile terpenoids in specialised structures in their vegetative 

tissues (Loughrin et al. 1994, Paré and Tumlinson 1997, Franceschi et al. 2005, 

Keeling and Bohlmann 2006). These stored terpenoids, after release by insect feeding, 

are effective at deterring herbivores (Keeling and Bohlmann 2006). P. colorata 

tissues are constitutively defended by sesquiterpene dialdehydes (Gerard et al. 1993) 

stored in idioblast cells (Youard 2012). P. colorata leaves with higher levels of 

anthocyanin pigments have been shown to contain higher levels of these chemical 

defences (see Chapter 2). Within leaves, anthocyanic regions have been shown to 
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contain higher levels of polygodial (Cooney et al. 2012). While the sesquiterpene 

dialdehydes are not especially volatile at room temperature (C. Sansom pers. comm.), 

other more-volatile sesquiterpenes may also occur within idioblasts. Thus, we might 

expect differences in the VOC profiles of damaged red and green leaves as a result of 

these differences in chemical defences.   

 

Damage to plant cells causes the release of a typical suite of fatty acid lipoxygenase 

products consisting of six-carbon aldehydes, alcohols and esters (Hatanaka 1993, 

Turlings et al. 1998, Holopainen 2004, D'Auria et al. 2007, Allmann and Baldwin 

2010). Because of their distinctive ‘freshly cut grass’ smell, these fatty acid 

derivatives are referred to green leaf volatiles (GLVs). GLVs are ubiquitous in the 

plant kingdom, and are detected by insect olfactory receptor neurons (ORNs) with 

extremely high levels of sensitivity (Bruce et al. 2005, Bruce and Pickett 2011). 

ORNs specifically for ubiquitous GLV compounds are found throughout herbivorous 

insects (Bruce et al. 2005, Bruce and Pickett 2011, Wei and Kang 2011), and have 

been recorded on the maxillary palps of lepidopteran larvae (Roessingh et al. 2007). 

Different studies report GLV compounds acting as repellents or attractants (Natale et 

al. 2003, Huang et al. 2009, Grant et al. 2010). GLVs are clearly key infochemicals, 

used by herbivorous insects in host-selection decisions. Moreover, GLVs have been 

shown to reduce fitness of herbivores such as aphids (Hildebrand et al. 1993, 

Vancanneyt et al. 2001) and spider mites (Dicke and Dijkman 2001).  

 

I analysed volatiles released from intact, herbivore damaged, and mechanically 

damaged red and green P. colorata leaves to test the following hypotheses: (i) the 

VOC profiles of P. colorata leaves are a reliable indicator of the defensive potential 

of the leaf, and correlate with anthocyanin content; (ii) leaves with greater red 

coloration emit a greater amount of sesquiterpenes in their VOC profiles; and (iii) any 

insect deterrent compounds will be released in greater amounts by the red than the 

green leaves.  Additionally, I tested if brownheaded leafroller (Ctenopseustis 

obliquana) larvae display preferences for VOCs emitted from damaged red and green 

P. colorata leaves using a Y-tube olfactometer. Naïve, lab-reared larvae were 

assayed, given experience of red and green P. colorata leaves and re-tested. I 

hypothesized that (iv) both naïve and experienced C. obliquana larvae will prefer the 

VOCs released from green P. colorata leaves. 
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3.3 MATERIALS AND METHODS 

3.3.1 Plant material 

VOC profiles were collected from a natural population of P. colorata located at 

Belmont trig, Wellington, New Zealand (41°11!0.2"S, 174° 52! 25.9"E). Leaves from 

this population were also used for mechanical damage and Y-tube experiments. At 

Belmont trig P. colorata forms a dense thicket on an exposed hilltop which received 

direct sunlight throughout the day. HIPV emissions were measured on leaves from 

potted nursery-grown P. colorata plants ecosourced from forests near Dunedin, 

Otago. 

 

3.3.2 Insects  

Brown-headed leafroller larvae, Ctenopseustis obliquana (Walker) (Lep. Tortricidae), 

were obtained from a lab colony at Plant & Food Research Limited in Auckland, NZ, 

and maintained at 20 °C, ~ 60 % relative humidity and 16:8 (light:dark) photoperiod. 

Larvae were reared individually in 5 mL test-tubes with cotton-wool caps, containing 

an artificial diet (Singh 1983). To ensure larvae were hungry, they were transferred to 

test-tubes lacking the artificial diet 6 h before bioassays. 

 

3.3.3 Plant volatile collection in the field 

Field VOCs were collected in December (late spring) 2012. I selected three pairs of P. 

colorata trees at the Wellington site following the methods of Hagen et al. (2004). 

Each pair contained one tree whose leaves were predominantly green and one tree 

whose leaves were much redder. The individuals in each pair were located no more 

than 2m apart from one another, and were closely matched in size, exposure to direct 

sunlight and prevailing winds. This design allowed me to investigate the effect of leaf 

colour on VOC emission whilst minimising differences in environmental conditions 

between red and green plants within a pair. One stem was selected from the periphery 

of the canopy of each individual in the three pairs. Within pairs, the stems were 

closely matched for azimuth, numbers of leaves, exposure to direct sunlight and 

prevailing winds. Stems with any evidence of caterpillars or flowers were excluded. A 

polyethylene terephthalate oven bag (Glad “extra large” 500 x 500mm, Clorox 



 70 

Australia Pty Limited, Australia) was placed over each selected stem and the opening 

carefully fastened to the stem with a twist-tie (after Holopainen et al.,(2010). One 

corner of the oven bag was cut to make a hole just large enough to insert a solid-phase 

microextraction (SPME) fibre-holder (Supelco, Shanghai, China). The oven bag was 

twist-tied securely to the holder and a pre-conditioned 65 µm 

polydimethylsiloxane/divinylbenzene SPME fibre (Supelco, Shanghai, China) was 

inserted in to the holder, but not exposed to the air inside the bag (Fig.  3.1). A second 

oven bag was placed over the entire SPME fibre and holder apparatus, and clamped in 

place.  

Fig.  3.1 Oven bags and SPME fibres and holders used to collect VOCs from P. 

colorata plants in the field.  

 

In the early evening, after each pair’s oven bag and holder setup was complete, the 

fibres were exposed (allowing VOC collection) simultaneously. Seven h later, when 

the wind became very strong, each apparatus were dismantled in the same sequence 

as they had been set up. 

  

SPME fibres had been conditioned at Plant & Food Research Ltd in Dunedin, sealed 

in a glass vial to avoid contamination with polystyrene or other volatile emitting 

plastics and couriered on ice to Wellington. Upon arrival in Wellington, the fibres 
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were kept in a -80° C freezer, then transported to the field site on ice. After VOC 

collection, the SPME fibres were put back into glass vials on ice, and couriered back 

to Dunedin the following day. To further avoid contamination I wore no suncream or 

other volatile-containing body products and took field notes with pencil only.  

 

3.3.4 Herbivore-induced volatile assay 

Five potted P. colorata seedlings were used. As there were not strong differences in 

colouration among individual seedlings, a pair of leaves was selected from each plant. 

Each pair consisted of a predominantly red and a predominantly green leaf matched 

for age (node number) and size. Leaves with signs of previous herbivory were 

excluded from analysis. Each leaf was placed in 20 mL glass vial containing a starved 

caterpillar. As a control, an additional vial contained a caterpillar but no leaf. The 

gaseous composition inside each vial was analysed using a gas chromatograph-mass 

spectrophotometer (GC-MS, Agilent Technologies, PA, USA). An SPME fibre was 

automatically inserted into the first vial and exposed for 60 min at room temperature 

then automatically injected into the GC-MS (Fig.  3.2A & B). The same procedure 

was used to collect VOCs from each vial sequentially. As a result of the sequential 

sampling constraint, the leaf in each vial had a slightly longer exposure to its 

caterpillar, and a longer duration for VOC release, than the previous leaf. Compounds 

that were strongly present in the caterpillar blank as well as the other vials were 

determined to be caterpillar related and not included in analyses. 

 

 

Fig.  3.2 (A) GC-MS autosampler; (B) Leaves and caterpillars in vials. 

!! "!
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3.3.5 Mechanical injury and plant volatile emissions 

Ten matched pairs of green and red P. colorata from Belmont trig were selected (a 

random subset of the pairs used in the insect bioassays described below). In March 

2012, a small sprig bearing 5 fully expanded leaves was excised from the top of the 

canopy of each plant. Each stem was re-cut under water and then placed in a 20 mL 

florist’s tube containing fresh water. In the laboratory, the cut stem was wrapped in 

moist paper towel and the entire sprig placed within a resealable plastic bag. These 

bags were couriered overnight to Dunedin on ice within an insulated polystyrene 

container. In Dunedin one leaf was selected from each sprig of each pair. Leaves were 

matched as closely as possible within pairs for leaf age (node number) and size. 

Leaves with extensive mechanical injury or herbivory were excluded. Each selected 

leaf was excised, swiftly torn into quarters, placed within a clean glass vial, sealed 

and placed in the autosampler tray.  The SPME fibre was immediately exposed to the 

sample at room temperature for 5 min, before being injected into the GC-MS for 

analysis. 

 

3.3.6 SPME  

Static headspace sampling via SPME is a rapid, cost effective and extremely sensitive 

technique for collecting VOCs (Koziel et al. 1999, Tholl et al. 2006). Plant material is 

sealed in a container and volatile compounds are collected upon an adsorbent coating 

of the surface of the SPME fibre exposed to the air within the container. However, 

different types of coatings or experimental conditions (particularly air temperature 

and the duration of exposure of fibre to headspace) can dramatically influence the 

yield of VOCs (Valero et al. 2000, Costa Freitas et al. 2001, IOFI Working Group on 

Methods of Analysis 2010). Additionally, a build up of humidity and heat within the 

container may affect plant physiology and VOC emissions (Tholl et al. 2006). I used a 

general purpose 65 µm polydimethylsiloxane/divinylbenzene SPME fibre, frequently 

used in headspace analysis of plant volatiles 

(http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/General_Information/1/t19

9925.Par.0001.File.tmp/t199925.pdf , accessed July 2012). Great care was taken to 

standardise fibre exposure times, and both insect herbivory and mechanical damage 

experiments were carried out at room temperature. To minimise illumination and 
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temperature fluctuations, field volatiles were collected from early evening, into the 

night. 

 

Each SPME fibre was conditioned at 250 °C in the GC injector port for 30 min before 

its first use and for 15 min at the start of each day of sampling.  

3.3.7 GC-MS procedure 

Analyses were performed with the assistance of Catherine Sansom at the University 

of Otago, using an Agilent 7890A gas chromatograph with a CTC Analytics PAL 

system autosampler and an Agilent 5975C inert XL MSD with triple axis detector 

(under the control of Enhanced ChemStation software). Detection was by mass 

spectrometry (MS). 

The three different experiments were analysed using three different GC-MS methods, 

detailed below. 

 

3.3.7.1 Field plant volatiles 

The injector (260 °C) flow was splitless with a purge flow of 50 mL/min after 1 min.  

Manual SPME desorption was for 1 min onto a 30 m Agilent HP-5ms column with a 

0.25 mm ID and 0.25 #m film, split 1:1 between FID and MS detection. The carrier 

gas was hydrogen with a flow of 1.7 mL/min. The oven was heated from 50 °C to 250 

°C at 5 °C/min. The MS transfer line was held at 300 °C, the MS source was held at 

230 °C and the MS quad held at 150 °C, m/z 35-300.   

 

3.3.7.2 Herbivore-induced volatiles 

The injector (300 °C) flow was splitless with a purge flow of 50 mL/min after 0.5 

min.  SPME desorption was for 1 min onto a 30 m Agilent HP-5ms column with a 

0.25 mm ID and 0.25 #m film, split 1:1 between FID and MS detection. The carrier 

gas was hydrogen with a flow of 1.5 mL/min. The oven was heated from 50 °C to 60 

°C at 1°C/min then to 300 °C at 30 °C/min. The MS transfer line was held at 200 °C, 

the MS source was held at 230 °C and the MS quad held at 150 °C, m/z 35-300. 

   

3.3.7.3 Mechanically damaged leaf volatiles 

The injector (260 °C) flow was splitless with a purge flow of 50 mL/min after 1 min.  

SPME desorption was for 1 min onto a 30 m Agilent HP-5ms column with a 0.25 mm 
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ID and 0.25 #m film, split 1:1 between FID and MS detection. The carrier gas was 

hydrogen with a flow of 1.5 mL/min. The oven was heated from 40 °C to 175 °C at 5 

°C/min. The MS transfer line was held at 260 °C, the MS source was held at 230 °C 

and the MS quad held at 150 °C, m/z 35-300. Peaks were identified by comparing 

their retention time and mass spectra with those of standards, or by comparing their 

retention index and mass spectra with those in the Adams, NIST or Plant & Food 

Research Ltd libraries. A blank and a series of alkanes were analysed with each batch 

of samples for calculation of retention indices. Peaks in different samples were 

aligned using the eluting times of identified known compounds. Compounds for 

which peaks were greater than 2.5 % of the total ion count were included in statistical 

analyses. To avoid incorrectly classifying unknown compounds, different 

nomenclature was used for unidentified peaks in the three different analyses. 

 

3.3.8 Y-tube olfactometers  

Y-tube olfactometers were constructed from 4 mm thick clear acrylic. The upper arms 

of the Y-tubes were 50 mm long and 120° apart. Air was filtered and humidified 

through distilled water and activated charcoal then pumped down each upper arm of 

the Y-tube at 0.2 L/min. Air passed through a baffle to distribute airflow evenly over 

leaf samples, down each arm and out through a hole at the bottom of the Y. Metal 

mesh prevented larvae from accessing the leaves or the exit hole. The top of each Y-

tube was removable for insertion of leaf samples and larvae (Fig.  3.3A & B).  
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Fig.  3.3 Y-tube olfactometer (A) side view and (B) view from above, both with C. 

obliquana larvae. Arrows indicate where leaf samples were positioned. 

 

3.3.9 Bioassay protocol  

During March 2012, 30 matched pairs of P. colorata from Belmont trig were selected. 

A small sprig of 5 leaves was excised from the top of the canopy of each plant. Each 

stem was re-cut under water and then placed in a 20 mL florist’s tube containing fresh 

water. Back at the lab, one undamaged leaf was selected from each sprig of each pair. 

Leaves were matched as closely as possible within pairs for leaf age (node number) 

and size.  

 

As C. obliquana larvae are nocturnal 

(http://www.hortnet.co.nz/publications/hortfacts/hf401027.htm, accessed May 2012), 

bioassays were conducted at night in a dimly lit lab. Starved 5th instar larvae were 

gently placed in the Y-tube and prevented from travelling up into the upper arms of 

Y-tube by a cotton wool ball. After around 30 s, matched red and green leaves were 

excised, swiftly torn into quarters and immediately placed in either arm of the Y-tube, 

between the baffle and the mesh barrier. Tubes were attached to allow airflow through 

the Y-tube, the cotton ball was removed and the lid was closed.  

 

C. obliquana larvae were recorded as having made a choice when they touched the 

distal end of one of the upper arms of a Y-tube. Larvae that remained motionless for 3 

A B 
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min were recorded as non-responsive. Following the methods of Natale et al. (2004), 

larvae that moved but did not approach the ends of the arms within 5 min were 

recorded as non-choosers. After each trial the Y-tube and was thoroughly cleaned and 

dried. The position of red and green leaves within the left and right arms of the Y-

tubes was alternated to control for directional biases. 

 

After the trials the larvae were placed in individual test tubes containing a matched 

pair of red and green P. colorata leaves for 48 h. These caterpillars were re-tested 

according to the same protocol above. Sample sizes of naïve and experienced trials 

were different due to two deaths and two larvae entering pupal stage. 

 

3.3.10 Statistics 

Leaves, especially damaged leaves, produce complex blends of odours. SPME 

combined with GC-MS allows qualitative and semi-quantitative analysis of many 

volatile compounds from each sample. For each chromatogram, I used the integrated 

area under each peak to calculate the relative contribution (% area) of that compound 

to the total volatile analyte. However, because some of the compounds share common 

precursors, it was not appropriate to treat each peak as statistically independent (Hare 

2011). Therefore, I subjected the area % values to principal components analysis 

(PCA) with varimax rotation. PCA is a widely used statistical tool for analysing VOC 

profiles (Pareja et al. 2009, Hare 2011). PCA takes a large number of possibly 

correlated variables and calculates a smaller number of independent and uncorrelated 

variables (principal components) that still retain the general patterns of variation of 

the original data. I used MANOVA upon the principal component scores to look for 

differences in VOC profiles between red or green matched pairs, using ‘Pair’ and 

‘Colour’ as fixed factors. For the herbivore-induced experiment I included another 

fixed factor (‘Eaten’) in the MANOVA model, to distinguish leaves that had incurred 

herbivory from those that hadn’t. For MANOVA analyses where a low sample size 

constrained the maximum number of explanatory variables, I reduced the number of 

principal components in the model, excluding those that explained the least variation 

first. After each MANOVA I used discriminant function (DF) analysis to find the 

linear combination of principal components that best separates the groups. The 

classification accuracy of the discriminant function was assessed using a cross-
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validation procedure, which removed each individual iteratively and attempted to 

predict its group identity. 

 

To test for differences in the levels of sesquiterpenes in the VOC profiles of red and 

green mechanically damaged leaves, I used paired t-tests (after a Shapiro-Wilk test for 

normality) with a Bonferroni correction. Olfactory preferences of ‘naïve’ and 

‘experienced’ C. obliquana larvae were analysed using a two-tailed exact binomial 

test. Larvae that did not make a choice were excluded from the analysis. PCA, 

discriminant function, binomial and t- analyses were carried out using PSAW/SPSS 

Version 18.0 (Chicago, IL, USA). MANOVA and Shapiro-Wilk tests were carried out 

using R version 3.0.1 (R Core Team 2013). 

 

3.4 RESULTS 

3.4.1 Passive night time VOC emissions  

There was considerable qualitative variability among the night time VOC emission 

profiles of red and green P. colorata trees (Fig.  3.4). Two of the trees, (one red and 

one green, from different pairs) emitted 54 % more compounds, detected at greater 

than 2.5 % of total ion count, than all the other trees. Twelve compounds were only 

detected in the profile of just one or the other of these two trees (indicated by a ++ 

symbol in Fig.  3.4). Only six compounds were present at detectable levels in all of 

the samples: unknown compound #11, para-cymene, limonene, #21, $-copaene and 

$-gurjunene.  There were no significant differences in the VOC profiles of 

neighbouring matched red and green P. colorata trees (MANOVA & DF, Table 3.1 & 

Table 3.2) 
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Fig.  3.4 Night time VOC emission profiles from leaves of red (shaded) and green 

(open) P. colorata trees in the field (Mean ± SE, n = 3 pairs). There were no statistical 

differences between red and green matched pairs of trees (MANOVA and DF of 

principal components). Compounds that were only detected from a single tree are 

indicated by ++. Numbers indicate unidentified compounds. 
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Table 3.1 Results from MANOVA analyses of the relationships between the colour 

and VOC emission profiles (after dimension reduction by PCA) of intact, herbivore-, 

and mechanically-damaged leaves from matched pairs of P. colorata. Models 

included principal components as explanatory variables, and fixed factors shown 

below. Asterisk indicates statistical significance (P < 0.05). 

Experiment, Model and Effects V d.f.NUM d.f.DENOM F-value P 

(a) Field leaves  

PC1 + PC2 (together explaining 63% of variance) ~ Colour + Pair 

Colour 0.62 2 1 0.82    0.62 

Pair 0.98 4 4 0.97    0.51 

      

(b) Herbivore-damaged leaves 

PC1 + PC2 + PC3 + PC4 (together explaining 88% of variance) ~ Eaten + Colour + Pair 

Eaten 1.00 4 1 3800    0.0121* 

Colour 0.65 4 1 0.64    0.79 

Pair 2.15 12 9 2.15    0.17 

      

(c) Mechanically-damaged leaves 

PC1 + PC2 + PC3 + PC4 + PC5 (together explaining 90% of variance) ~ Colour + Pair 

Colour 0.63 5 5 1.73    0.28 

Pair 2.65 45 45 1.12    0.35 
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Table 3.2 Results from Discriminant Function (DF) analyses of the relationships 

between the colour and VOC emission profiles (after dimension reduction by PCA) of 

intact, herbivore-, and mechanically-damaged leaves from matched pairs of P. 

colorata. Asterisk indicates statistical significance (P < 0.05). 

Effect % &2
 (d.f., n) P Squared canonical 

correlation    

(a) Field leaves 

Colour 0.63 1.39 (2, n = 6) 0.867  0.37 

     

(b) Herbivore damaged leaves 

Herbivory 0.07 15.83 (4, n = 10) 0.003* 0.93 

Colour 0.81 1.27 (4, n = 6) 0.867 0.19 

     

(c) Mechanically damaged leaves 

Colour 0.58 8.37 (5, n = 20) 0.137 0.42 

 

 

 

3.4.2 Herbivore-induced VOC emission  

Of the five pairs of excised leaves placed in vials with C. obliquana larvae, only two 

pairs of leaves incurred herbivory. VOC profiles emitted from P. colorata leaves that 

had been browsed differed both qualitatively and quantitatively to those that did not 

experience caterpillar herbivory. Three compounds were unique to either browsed or 

unbrowsed leaves: $-pinene was only present in the VOC profiles of unbrowsed 

leaves; and two compounds were only detected from browsed leaves ('-caryophyllene 

and 3-carene, indicated by a ++ symbol in Fig.  3.5). However, perhaps due to the low 

sample size, there was pronounced variability in VOCs between plants within 

treatments. '-Caryophyllene was only detected from leaves of one of the two plants 

that incurred herbivory. Similarly, $-pinene was detected from leaves of only two of 

the three plants in the unbrowsed group.  
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Fig.  3.5 VOC profiles of browsed (n = 2 pairs) and unbrowsed (n = 3 pairs) P. 

colorata leaves (Mean ± SE). The VOC profiles from browsed and unbrowsed leaves 

were statistically distinguishable (MANOVA and DF of principal components). The 

symbol “++” denotes compounds unique either to browsed or unbrowsed leaves. 

RI_xxx indicates unknown compounds. 
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MANOVA and DF analyses revealed that significant differences existed between the 

VOC profiles released from browsed and unbrowsed P. colorata leaves (Table 3.1 

and Table 3.2). A very large amount of the variance in the data was accounted for by 

the discriminant function (squared canonical correlation = 0.93, Table 3.2). The 

discriminant function correctly classified 100 % of the samples as either browsed or 

unbrowsed leaves, however this accuracy dropped to 80% after cross-validation. The 

two components that most loaded upon the function that distinguished between 

browsed and unbrowsed leaves were: PC2 and PC3 (Table 3.3). However, a biplot of 

the scores from these two components did not reveal a clear pattern of separation (Fig.  

3.6). MANOVA and DF analyses showed no consistent difference in volatiles profiles 

emitted between matched red and green leaves in either eaten or uneaten leaves 

(Table 3.1 and Table 3.2). 

 

 

Table 3.3 Discriminant function (DF) structure matrix displaying unstandardized DF 

coefficients for each principle component calculated from the VOC profiles of 

browsed and unbrowsed P. colorata leaves. 

Component DF coefficient 

PC1 -0.13 

PC4 -0.01 

PC2   0.19 

PC3   0.24 
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Fig.  3.6 Principal component biplot showing variation in VOC profiles for red ( ) 

and green (X) P. colorata leaves from potted plants exposed to herbivores. Lines join 

matched pairs of P. colorata leaves/trees. Dashed lines join matched pairs that did not 

experience herbivory. 

 

3.4.3 Mechanically damaged leaves 

Qualitatively, the VOC profiles of mechanically damaged leaves from P. colorata 

trees were less variable than those from the field and herbivore-induced VOC 

experiments (Fig. 3.7). Of the 20 samples studied, 14 emitted the same 25 compounds 

above detectable levels. Four of the six remaining samples were missing only one 

compound. The remaining two samples differed from the rest by emitting only 20 of 

25 compounds. Mechanically damaged leaves from red and green P. colorata trees 

displayed no quantitative differences in VOC emission profiles (Table 3.1 and Table 

3.2). I identified five different sesquiterpenes in the VOC profiles mechanically 

damaged leaves (cubebene, copaene, cadina-1,4-diene, calamanene and gurjenene), 

however paired t-tests revealed that red and green matched leaves did not differ in 

their levels of any of these five sesquiterpenes (five tests, all non-sig. even before 

Bonferroni correction, n = 10 pairs, d.f. = 9, t < 1.4, P > 0.2). 
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Fig.  3.7 VOC profiles from mechanically damaged leaves from red (shaded) and 

green (open) matched pairs of P. colorata trees (mean ± SE, n = 10 pairs). There were 

no statistical differences between red and green matched pairs of trees (MANOVA 

and DF of principal components). MWxxx indicates unknown compounds.  

 

3.4.4 Herbivore bioassays 

Lab-reared native C. obliquana caterpillars displayed no preference for VOCs 

released from mechanically damaged red or green P. colorata leaves (two-tailed exact 

binomial test, n = 23, P = 0.41; Fig 3.8). After 48 h experience eating red and green P. 

colorata leaves, larvae still displayed no preference (two-tailed exact binomial test, 

n= 19, P = 1.0; Fig. 3.8) 
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Fig.  3.8 Olfactory preferences of ‘naïve’ and ‘experienced’ 5th instar C. obliquana 

larvae for mechanically damaged red- and green-coloured P. colorata leaves. Error 

bars (95 % C.I. with correction for continuity) that cross the dotted line indicate no 

significant preference for red or green leaves (two-tailed exact binomial test). Larvae 

that did not make a choice were excluded from the analysis. 

 

3.5 DISCUSSION 

I investigated the volatile profiles of differently coloured P. colorata leaves in relation 

to the signalling hypothesis that states that foliar anthocyanins may function as visual 

signals to deter approaching insect herbivores. None of my results indicate that 

olfactory cues from P. colorata leaves coincide with visual cues to signal defensive 

commitment against herbivory attacks. While the VOC profiles of browsed and 

unbrowsed leaves were statistically distinguishable, the VOC profiles released from 

intact, herbivore-, and mechanically-damaged P. colorata leaves did not reliably 

identify leaf colour (Table 3.1 and Table 3.2). Mechanically damaged red P. colorata 

leaves did not release statistically significant higher levels of sesquiterpenes than 

damaged green leaves. I did not identify any compounds known to be strong 

deterrents, such as methyl salicylate or farnesene. Moreover, naïve and experienced 

C. obliquana larvae displayed no preference for the volatiles from mechanically 

damaged red or green leaves (Fig. 3.8). Therefore, I conclude that VOC compounds 

are not likely to play a large role in mediating insect herbivore-plant interactions in P. 

colorata. 
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It can be difficult to assess whether a non-significant result reflects reality or a Type II 

error. The statistical techniques I used were able to distinguish differences in VOC 

profiles. MANOVA and DF analyses statistically differentiated the VOC blends 

emitted from browsed and unbrowsed leaves (Table 3.1 and Table 3.2); This 

demonstrates that that my analyses had sufficient power to detect a difference even at 

a fairly low sample size (n = 10 for herbivore-induced volatiles). However, no 

difference was detected among the VOC profiles of mechanically damaged red and 

green matched pairs of P. colorata leaves (n = 20). A larger sample size gives greater 

statistical power to detect differences, therefore the variation in VOC profiles among 

mechanically damaged red and green P. colorata must be much smaller than the 

variation among VOC profiles of browsed and unbrowsed leaves. When considered 

along with the lack of olfactory preferences displayed by C. obliquana larvae, this 

strengthens my assumption that the lack of detectable difference in VOC profiles of 

red and green leaves is indeed a valid result rather than Type II error. Moreover, 

redder P. colorata leaves contained higher levels of a potent antifeedant called 

polygodial (Chapter 2), however there was no difference in the levels of volatile 

sesquiterpenes emitted from red and green mechanically damaged P. colorata leaves. 

Therefore, VOCs released from damaged P. colorata leaves are not a reliable cue of 

the defensive status of those leaves. These data do not support the hypothesis that leaf 

colour may correlate with leaf VOC emissions for olfactory signalling (Archetti and 

Brown 2004, Ougham et al. 2005b, Holopainen 2008, Döring et al. 2009, Lev-Yadun 

and Gould 2009). 

 

In the introduction of this chapter I hypothesised that a plant might be expected to 

utilise both visual- and olfactory-based signalling, restricting the release of VOCs to 

times when nocturnal herbivores are active. I did not detect any consistent differences 

between the nocturnal VOC profiles released from red and green P. colorata trees in 

the field (Table 3.1 and Table 3.2). The VOC profiles were predominantly made up of 

monoterpenes and some sesquiterpenes. The relatively low sample sizes preclude 

unequivocal conclusions as to whether or not VOC compounds released from P. 

colorata in the field function for pre-damage olfactory signalling. However, given the 

lack of statistically distinguishable differences in volatile profiles between damaged 

red and green P. colorata leaves, it seems like an improbable scenario. 
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My results differ from those of Holopainen et al. (2010) who did find differences in 

the VOC profiles of green and yellow Betula pendula leaves. However, yellow leaves 

of B. pendula are senescing and therefore there are many concomitant differences 

between green and yellow leaves, aside from colour. For example, in senescing leaves 

photosynthetic machinery is broken down and reabsorbed in preparation for leaf 

abscission (Holopainen et al. 2010). In contrast, differences in colouration of P. 

colorata leaves correspond to differences in the relative amounts of chemical 

defences and pigments, but not large changes in leaf function or physiology.  

 

Red  P. colorata leaves contained higher levels of polygodial (see Chapter 2). While 

polygodial is not known to be volatile, I hypothesised that other, more volatile, 

sesquiterpenes may be present in red leaves. Mechanical damage did not lead to the 

release of greater amounts of sesquiterpenes from red than green leaves (Fig. 3.7). 

However, epifluorescence microscopy indicates that the cell walls of idioblasts are 

highly lignified (K. S. Gould pers. comm.), and tearing the leaves, as was conducted 

in my experiment, might not necessarily have ruptured the idioblast cell walls (J. W. 

van Klink pers. comm.).  

 

I hypothesised that if there were differences in VOC profiles between mechanically 

damaged red or green leaves, then this would affect the behaviour of leafroller larvae, 

a highly abundant pest upon P. colorata. Lab reared C. obliquana did not display 

innate behavioural preference for the VOC profiles released from mechanically 

damaged red or green P. colorata leaves. After feeding upon red and green P. 

colorata leaves for 48 h they did not display any learned preference (Fig. 3.8). Larval 

Ctenopseustis spp. leafrollers do exhibit innate gustatory preference for green over 

red leaves (see Chapter 5). Visual cues are important in mediating larval C. obliquana 

feeding decisions (Cooney et al. 2012). My results indicate that olfactory cues from 

mechanically damaged leaves are not, in isolation from other cues, associated with 

leaf-colour specific behaviour in C. obliquana larvae. Therefore, differences in the 

numbers of leafroller caterpillars between differently coloured P. colorata trees in the 

field (see Chapter 2) are unlikely to be a result of larval olfactory preferences. 

 

One mechanism by which a leaf-colour dependant distribution of leafroller larvae in 

the field may occur (see Chapter 2) is if gravid female moths oviposit more frequently 
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on green than on red P. colorata trees. It is known that other tortricid moths have 

olfactory receptors that are sensitive to GLVs, mono- and sesquiterpenes (Suckling et 

al. 1996, Jordan et al. 2009) and that GLVs and terpenes from host plants stimulate 

oviposition (Grant et al. 2007). However, the specificity of oviposition preferences of 

gravid lepidopteran females ranges from completely random oviposition (Fred and 

Brommer 2010), to requiring specific co-occuring stimulant and deterrent VOC host 

cues (Honda 1995, Bruce et al. 2005). Therefore, it is difficult to predict a-priori the 

oviposition preferences of Ctenopseustis spp. leafroller moths for red vs. green P. 

colorata leaves. My attempts at assaying the oviposition preferences of C. obliquana 

moths were unsuccessful (see Chapter 5). However, the VOC profiles of intact, 

herbivore-, or mechanically-damaged red and green P. colorata leaves did not 

statistically differ. Therefore, evidence does not support the hypothesis that female C. 

obliquana moths use VOC cues to inform of the defensive status of their potential 

host plants.  

 

The VOC profiles emitted from browsed leaves could be statistically distinguished 

from those of un-browsed leaves (Table 3.1 and Table 3.2). In Chapter 2, I reported 

that herbivore damage correlated with leaf colour. Potentially, differences in VOC 

profiles, caused by colour-correlated differences in damage, may serve as a cue to 

inform gravid females of the relative herbivory levels of different P. colorata 

individuals. However, for this to explain the patterns of C. obliquana larvae 

distribution observed in Chapter 2 (i.e. more larvae upon green individuals), 

Ctenopseustis females would have to prefer to lay eggs upon previously damaged 

hosts. Usually, mated female Lepidoptera prefer to oviposit on undamaged plants 

(Carroll et al. 2006). Despite how speculative this mechanism is, as an alternative 

explanation for patterns consistent with a signalling function for leaf colour, it 

deserves further investigation. 

 

Differences in numbers of caterpillars between red and green trees may also be caused 

by increased predation or parasitism of caterpillars upon red trees. (Whitman and 

Eller 1992, Xu et al. 2006). VOCs are used as cues by insect predators and parasitoids 

of lepidopteran larvae (Kessler and Baldwin 2001), even by insectivorous birds 

(Mäntylä et al. 2008), to locate their prey. Holopainen et al. (2010) found that 

senescing yellow leaves emitted less GLV as compared to green leaves, and 
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concluded that senescing leaves were less able to defend themselves via these 

tritrophic interactions. However, I did not find significant differences in VOC profiles 

between red and green P. colorata. My results suggest that VOC-mediated tritrophic 

interactions are not a significant force structuring herbivore populations upon 

differently coloured P. colorata individuals. 

 

Leaf VOCs might be expected to co-vary with leaf colour for reasons other than plant 

defence. Production of anthocyanin pigments and volatile terpenoid compounds are 

both common abiotic stress responses (Gould 2004, Vickers et al. 2009). 

Independently, anthocyanins and certain VOCs have been shown to mitigate the 

effects of oxidative stress (Gould et al. 2002a, Gould 2004, Vickers et al. 2009). 

However, as far I am aware, no study has simultaneously investigated VOC emissions 

and leaf pigments in relation to oxidative stress. I did not detect any isoprene (the 

most well-studied volatile in terms of abiotic stress;(Vickers et al. 2009). I did detect 

monoterpenes and sesquiterpenes in the VOC profiles from P. colorata in the field; 

some monoterpenes and volatile sesquiterpenes are known to neutralise reactive 

oxygen species (Calogirou et al. 1999). These VOCs did not correlate with the leaf 

pigment differences between the red and green P. colorata trees. The field VOCs 

were collected when irradiance levels were extremely low, and perhaps the patterns of 

VOC release would differ between red and green when under more stressful 

conditions. However, Chapter 4 of this thesis details my investigations into the 

photosynthesis of red and green P. colorata trees, and I did not find colour-correlated 

differences in photoinhibition under high light conditions. 

 

There is increasing evidence that HIPVs, and particularly herbivore-induced GLVs, 

can cause undamaged leaves to up-regulate their defence pathways and increase VOC 

emission; this priming can even occur between neighbouring plants (Ruther and 

Kleier 2005, Dudareva et al. 2006, Himanen et al. 2010). While the role of VOCs in 

plant-plant interactions in P. colorata have not been studied, if this priming were to 

occur between trees of different colour it would add noise to a co-evolved visual 

and/or olfactory signalling relationship.  

 

Sample size was constrained by the large effort required to collect night time VOC 

profiles in the field and by the availability of SPME fibres and holders. I used two 
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approaches to try to analyse differences in the complete VOC profiles between red 

and green P. colorata leaves: PCA and MANOVA+Discriminant function analyses. 

For both techniques most authors recommend much larger sample sizes than I was 

able to collect (Meyers et al. 2006). While there was good concordance among the 

tests and the findings of other chapters in this study, future experiments should focus 

on maximising sample size.  

 

3.6 CONCLUSIONS 

Red and green P. colorata trees in the field emit mostly volatile monoterpenes and 

some sesquiterpenes at night time. However, after herbivore and mechanical damage, 

the VOC profiles released from P. colorata leaves contained many more compounds 

above detectable levels, including a suite of GLVs. While the VOC profiles of 

browsed and unbrowsed leaves were statistically distinguishable, the VOC profiles 

released from intact, herbivore-, and mechanically-damaged P. colorata leaves did 

not reliably identify leaf colour. Moreover, naïve and experienced C. obliquana larvae 

displayed no preference for the volatiles from mechanically damaged red or green 

leaves. These results strengthen the assumption of Chapter 2 that differences in the 

numbers of leafroller larvae between red and green matched P. colorata individuals is 

the result of visual signalling rather than alternative VOC-mediated mechanisms. 
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4 Photosynthesis of red and green P. colorata leaves  
 

4.1 ABSTRACT 

It has been hypothesised that foliar anthocyanin pigments function as visual signals to 

deter insect herbivores. However, studies of leaf signalling rarely consider the 

influence of these light-absorbing pigments upon photosynthesis. I compared the 

photosynthetic and photoinhibitory responses of red and green leaves from matched, 

neighbouring pairs of P. colorata of contrasting colour. Due to shading caused by 

anthocyanin pigments, I hypothesised that redder leaves would have a lower 

maximum photosynthetic assimilation rate and, after stress with white light, show a 

smaller reduction in photosynthetic efficiency than matched green leaves. Redder P. 

colorata leaves in the field had a lower Asat values than matched green leaves from 

neighbouring trees. However, I was unable to detect any measurable advantage in 

terms of photoprotection in the red P. colorata leaves as indicated by chlorophyll 

fluorescence profiles. My results indicate that the presence of anthocyanin pigments 

within mature, non-senescing leaves may impose a slight photosynthetic cost to the 

plant. 

 

4.2 INTRODUCTION 

Non-green leaf colouration is widespread, and, among other hypotheses, has been 

postulated to function for visual communication between plants and insect herbivores 

(Archetti 2000, Hamilton and Brown 2001, Cooney et al. 2012). The leaf signalling 

hypothesis was originally developed for autumn senescing leaves (Archetti 2000, 

Hamilton and Brown 2001) for which photosynthesis is no longer the chief role, and 

when the degradation of chlorophyll and the resorption of leaf nutrients are extremely 

important (Hoch et al. 2001, Holopainen and Peltonen 2002, Hoch et al. 2003, 

Ougham et al. 2005a). Signalling has also been hypothesised as an explanation of the 

widespread phenomenon of anthocyanin accumulation in young flushing leaves 

(Karageorgou and Manetas 2006); this colouration is usually transient, present only 

during leaf expansion, before the full complement of chlorophyll and maximum 

photosynthetic capacity has developed (Dodd et al. 1998, Manetas et al. 2002, 

Choinski Jr et al. 2003, Hughes et al. 2007). However, the possibility of visual 
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signalling may be less beneficial for mature, non-senescing leaves which function 

primarily as photosynthetic organs, providing the majority of the carbon and energy 

required for plant growth and reproduction. Modifying the colour of leaf tissues 

through the accumulation of red anthocyanin pigments can alter the photosynthetic 

performance of leaves (Steyn et al. 2002, Close and Beadle 2003, Gould 2004); the 

impact of this upon plants whose leaves contain pigments for the function of 

signalling is unknown.  

 

Signalling by maintaining anthocyanin pigments in mature non-senescing leaves may 

compromise the life-time photosynthetic contribution of a leaf. Anthocyanin pigments 

in red leaves absorb green light that otherwise might be used for photosynthesis of 

lower cell layers (Neill and Gould 1999, Nishio 2000, Feild et al. 2001, Gould et al. 

2002b, Hughes et al. 2005, Karageorgou and Manetas 2006, Hughes and Smith 

2007a), but see (van den Berg et al. 2009) who found different results for juvenile and 

senescing Acer saccharum leaves. As a consequence of light attenuation, red leaves 

from exposed locations frequently exhibit the characteristics of shade-acclimated 

leaves: smaller chlorophyll a:b ratio (i.e. biased towards maximising light capture 

rather than electron flow into photosystem II reaction centres) (Boardman 1977, 

Givnish 1988, Manetas et al. 2003, Hughes and Smith 2007b, Kyparissis et al. 2007, 

Zeliou et al. 2009, Nikiforou and Manetas 2010) and lower light-saturated 

photosynthetic rate, as measured by CO2 assimilation, than comparable green leaves 

of the same species (Gould et al. 2002b, Nielsen and Simonsen 2011, Nikiforou et al. 

2011, Zhang et al. 2011). Therefore when herbivory pressure is low (i.e. when 

signalling does not result in less predation) the production of foliar anthocyanins may 

present a physiological disadvantage. 

 

On the other hand, signalling via foliar anthocyanin pigments may augment the 

photosynthetic performance of a leaf by reducing the negative impacts photooxidative 

stress. Many plants regularly experience an oversupply of light (Long et al. 1994, 

Alves et al. 2002, Wilhelm and Selmar 2010). Additionally, cold temperatures can 

lead to a reduced ability to assimilate light energy (Hughes et al. 2005). Excess light 

and/or cold temperatures can result in the formation of supernumerary reactive 

oxygen intermediates and consequently, photo-oxidative damage (Demmig-Adams 

and Adams III 1992, Mittler 2002, Demmig-Adams and Adams III 2006). There is 
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strong empirical evidence that foliar anthocyanins protect from photooxidative stress, 

both by absorbing free radicals (Gould et al. 2002a, Neill et al. 2002b, a, Neill and 

Gould 2003, Kytridis and Manetas 2006, Zhang et al. 2012), and by attenuating high 

energy quanta surplus to the requirements for photosynthesis. Following exposures to 

saturating light flux, red leaves tend to be less photoinhibited and/or recover more 

quickly than comparable green leaves (Feild et al. 2001, Manetas et al. 2003, Neill 

and Gould 2003, Hughes et al. 2005, Gould et al. 2010, Nielsen and Simonsen 2011). 

Therefore, in times of cold and/or high light stress, foliar anthocyanin pigments may 

provide an additional benefit to signalling plants. 

 

Only one study to date has simultaneously considered the signalling, photosynthetic 

shading and photoprotection hypotheses for foliar anthocyanin pigments, though this 

used young, developing green and red leaves rather than mature leaves (Karageorgou 

and Manetas 2006). The authors found that red leaves of Quercus coccifera benefitted 

in terms of reduced herbivory, but that there was little difference in photosynthesis 

and photoprotection between red and green young leaves. However, for leaves that 

contain anthocyanins throughout their life, it is not known how these possible roles of 

signalling, photoabatement and photoprotection might interact. The impacts of such 

interactions on plant fitness, and the co-evolutionary dynamics of plant-insect 

signalling are as yet unstudied. 

 

Pseudowintera colorata is a small tree for which the leaves of some individuals 

contain anthocyanin pigments throughout the majority of their lifetime. Earlier in this 

thesis I showed that red and green matched pairs of P. colorata had different patterns 

of colouration, defence and insect pressure consistent with leaf signalling, with red 

bushes experiencing reduced rates of herbivory and hosting fewer herbivorous 

caterpillars (see Chapter 2). Here, I present the findings of my investigation into the 

consequences to photosynthesis of maintaining anthocyanin pigments within mature, 

non-senescing P. colorata leaves. Because of the inherent property of coloured 

anthocyanins in cell vacuoles to absorb visible light, I hypothesised that redder leaves 

would have a lower photosynthetic rate than matched green leaves from neighbouring 

individuals. In addition, as my field site is situated on an exposed ridge that frequently 

experiences bright sunlight, strong winds and low temperatures, I investigated if 

anthocyanin pigments exerted any measurable photoprotective role within P. colorata 
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leaves. I compared the photoinhibitory responses of red and green leaves to light 

stress from either red/blue or white light. As it is not absorbed by anthocyanin 

pigments (Karageorgou and Manetas 2006, Hughes and Smith 2007b), I predicted no 

difference in the photoinhibitory responses of red and green leaves to red/blue light. 

However after stress with white light, I hypothesised that red leaves would show a 

smaller reduction in photosynthetic efficiency than green leaves. 

 

4.3 MATERIALS AND METHODS 

4.3.1 Plant material 

All leaves used in this experiment were taken from a subsample of the matched pairs 

of P. colorata trees at the Wellington site established in Chapter 2 of this thesis 

following the methods of Hagen et al. (2004). Each pair contained one tree whose 

leaves were predominantly green and one tree whose leaves were much redder. The 

10 pairs that displayed the greatest within-pair contrast in colouration were 

preferentially selected. The individuals in each pair were located no more than 2 m 

apart from one another, and were closely matched in size, exposure to direct sunlight 

and prevailing winds. Within each tree, one stem was selected from the periphery of 

the north face of the canopy. Within pairs, the stems were closely matched for 

azimuth, exposure to direct sunlight and prevailing winds. Stems whose leaves 

showed signs of significant herbivore or mechanical damage were excluded. This 

design allowed me to investigate the effect of leaf colour on photosynthesis whilst 

minimising differences in environmental conditions.  

 

4.3.2 CO2 assimilation measurements 

With the assistance of Kaylyn Carpenter (High Point University, NC, USA), I 

collected photosynthesis data from matched pairs of P. colorata in the field. Sampling 

took place between 0930 and 1530, over three days during Autumn 2012. The mean 

daily temperature of these three days ranged from 13 to 17° C (Table 4.1; NIWA 

National Climate Database, Kelburn Weather Station, http://cliflo.niwa.co.nz; 

accessed 10 July 2012). The impact of variation in climate within and among 

sampling days upon photosynthesis was minimised, as both trees of each pair were 

measured consecutively on the same day.  
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Table 4.1 Median and interquartile range [IQR = Q1 to Q3] for air temperature (Tair), 

relative humidity (RH), and wind speed during sampling days. 

Climate data 25 April 2012 26 April 2012 4 May 2012 

Tair (° C) 17.1 (16.4 – 17.3) 15.3 (15.1 – 15.5) 12.9 (12 – 13.8) 

RH (%) 63 (59 – 66) 84 (82 – 89) 78 (75 – 83) 

Wind speed (m s-1) 5.0 (4.8 – 5.4) 3.9 (3.4 – 4.1) 3.1 (2.9 – 3.6) 

 

From each of the selected stems (still attached to the plant), one leaf was carefully 

chosen (from the third to fifth youngest fully expanded leaf). Leaves with significant 

herbivore or mechanical damage were excluded. Light response curves for CO2 

assimilation were done using a LI-6400 photosynthesis system with red and blue LED 

light sources (LI-COR Biosciences, Lincoln, NE, USA). CO2 concentration was 

maintained at 400 #mol CO2 mol-1 air. Flow rate of air through the leaf chamber was 

maintained at 500 #mol s-1. The light ramp began at 1500 #mol m-2 s-1 and decreased 

progressively until the irradiance was zero, with 1 min pauses between measurements. 

I used a 2 x 6 cm leaf chamber. As photosynthesis was recorded on a per-unit-leaf-

area basis, I corrected for the surface area of any leaves that were smaller than 6 cm2. 

P. colorata leaves are hypostomatic (Sampson 1980).  

 

At the end of each field day, each stem bearing a focal leaf was excised several cm 

below the focal leaf at a 45° angle. The cut stems were immediately recut under water 

and held in 5 mL florists’ tubes containing fresh water throughout the subsequent 

experiments.  

 

The leaves of one tree repeatedly detached from branches during several attempts at 

acquiring CO2 light curves. The CO2 assimilation data from this pair was not included 

in the analyses, however a similar stem from this plant was excised for chlorophyll 

fluorescence measurements and pigment analysis 

 

From the light response curves for CO2 assimilation, I calculated: dark respiration rate 

(respiration at zero irradiance), light compensation point (light intensity where the 

rates of photosynthesis and respiration are equal), apparent maximum quantum yield/ 

photosynthetic efficiency (initial slope of the light curve), light saturation point (light 
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intensity at which photosynthesis is saturated), and the saturated photosynthesis rate 

(light saturated CO2 assimilation rate, Asat). These points were calculated using MS 

Excel (Microsoft Corporation, Redmond, WA, USA).  

 

4.3.3 Chlorophyll fluorescence and photoinhibition 

At the end of each sampling day, the excised stems were returned to the lab, dark-

adapted for 4 h and then the maximum quantum yield, estimated by the ratio of 

variable to maximum fluorescence (Fv/Fm) was measured for the focal leaf from each 

stem using a PAM 2500 (Heinz Walz GmbH, Effeltrich, Germany) chlorophyll 

fluorometer. Following the Fv/Fm measurements, each focal leaf was individually 

subjected to a rapid light curve, from 1 µmol to 2000 µmol m-2 s-1 PAR (increasing in 

ten increments each lasting 25 s) provided by red LEDs, with a maximum emission at 

630 nm. Estimates of photochemical quantum yield ((PSII), photochemical quenching 

(qP) and non-photochemical quenching (NPQ) were recorded from the PAM 

software, following the formulae derived by Genty et al. (1989, 1990). Afterwards, 

these leaves were exposed to 0.5 h of 2000 µmol m-2 s-1 collimated white light from a 

Novaflex fibre optic illuminator (Fig.  4.1A). Light intensity was measured using LI-

250A light meter (Li-Cor Biosciences, Lincoln, NE, USA). Immediately after this 

photoinhibition treatment the effective quantum yield (Fv’/Fm’) of each leaf was 

measured with the PAM-2500.  

 

4.3.4 Digital image analysis 

After the CO2 assimilation and chlorophyll fluorescence measurements, the focal 

leaves were excised, scanned at 300 dpi using a CanoScan LiDE 20 desktop scanner 

(Canon, Tokyo, Japan) and sealed in plastic 20 mL vials in a -80° C freezer until 

pigment extraction. Leaf area was measured from the digital images using ImageJ 

v1.41 (National Institutes of Health, Bethesda, MD, USA) following the methods of 

Cooney et al. (2012). Unfortunately the leaves from three of the pairs were not 

scanned and frozen until 48 h after being excised. Noticeable drying of these leaves 

occurred as well as changes in their colour. The data from these three pairs of leaves 

were excluded from the pigment extraction analysis. 
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4.3.5 Pigment analysis 

Pigment analyses were carried out by Luke Cooney (VUW, NZ) and Kaylyn 

Carpenter (High Point University, NC, USA). After retrieval from the -80° C freezer, 

P. colorata leaves were thawed for 1 min so that they could be cut without shattering. 

A ~ 1 cm2 section of leaf lamina was excised from a point normal to the centre of the 

midrib (~ 0.02 g fresh weight). After weighing, leaf material was placed in precooled 

2.0 mL microcentrifuge tubes (Biotix, Inc., San Diego, CA, USA) containing 1.5 mL 

of 80 % (v/v) acetone and a 5 mm stainless steel ball bearing (Qiagen N.V., Venlo, 

Netherlands). The samples were agitated in a precooled bead mill (Tissuelyser LT, 

Qiagen N.V., Venlo, Netherlands) for 6 min at 50 oscillations s-1 and centrifuged at 

13 000 rpm for 5 min in a microcentrifuge (5415 D, Eppendorf AG, Hamburg, 

Germany). Absorbance of the supernatant was measured at 470, 647 and 663 nm 

using a UV-2550 UV-vis spectrophotometer (Shimadzu Corp. Kyoto, Japan) and the 

concentrations of chlorophyll and carotenoid pigments calculated following the 

methods of Lichtenthaler (1987). 

 

4.3.6 Photoinhibition with different illumination 

To assess whether red pigments played a role in shading subjacent chloroplasts in P. 

colorata leaves, a further photoinhibition experiment was carried out. A further 2 

stems, each bearing at least 5 fully expanded leaves were collected from each tree 

from the 10 matched pairs of P. colorata, using the selection and excision procedures 

as outlined above. A focal leaf was selected and marked as before. 

The stems were placed in florist tubes, brought back to the lab, and dark-adapted 

overnight.  

 

At beginning of following day, the Fv/Fm value of each focal leaf was measured using 

the PAM-2500. Then the two sets of red and green matched focal leaves from each 

pair were subjected to 0.5 h of either 2000 µmol m-2 s-1 of collimated white light 

delivered by a Novaflex fibre optic illuminator fitted with a 115v Halogen bulb (Fig.  

4.1A) or 2000 µmol m-2 s-1 red/blue led lights from the Li-Cor 6400-02B LED light 

source (Fig.  4.1B). Light intensity was measured using Li-Cor LI-250A. Immediately 

after the 0.5 h light treatment, I compared the Fv’/Fm’ of red and green leaves using 

the PAM-2500. Due to equipment constraints, each pair was sequentially exposed to 
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the photoinhibition and Fv’/Fm’ processes throughout the day. Prior to undergoing the 

photoinhibition treatments, stems were kept in a dark cupboard at room temperature.  

 

 

Fig.  4.1 Transmittance spectra from Novaflex fibre optic illuminator fitted with a 

115v Halogen bulb (A, from(Gould et al. 2010) and Li-Cor 6400-02B LED source (B, 

from figure 8-3 of Li-6400 Instruction Manual). B is deficient in green light. 

 

4.3.7 Statistical analyses 

The parameters of light response curves are frequently analysed using ANOVA, to 

test for differences among the group means of, say, photosynthesis of red and green 

trees at different light intensities, with the assumption that the data are independent. 

However, as trees in my study were not selected by random, my paired design 

violates this assumption of independence. Repeated measures ANOVA is classed as a 

‘within-subjects design’ as it is traditionally used to analyse data from longitudinal 

studies where control and treatment groups represent the pre- and post-treatment 

responses from the same subject. Here, I treated each pair of matched red and green 

P. colorata trees as a subject, and used repeated measures ANOVA to test if the mean 

response differed among the different levels of light intensity (PAR, a factor with 10 

or 15 levels depending on the light curve, see equation 1 below), and to assess 

whether the relationship between the response variable and light intensity differed 

within-subjects (i.e. within-pairs of neighbouring matched red and green P. colorata 

trees).  
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(1)  Response variable ~ PAR + LeafColour + PAR*LeafColour 

 

I carried out multiple tests; one for each of the various parameters of the CO2 

assimilation and chlorophyll fluorescence light response curves: A,(PSII, qP, and 

NPQ. Normality within different light levels and tree colours was assessed using 

Shapiro-Wilk tests. The amount of variance explained by each factor was manually 

calculated from the sum-of squares (SS) of each test using equation 2 below (Levine 

and Hullett 2002). 

 

(2)  )2 = SSbetween/SStotal 

 

Data from the photoinhibition experiments were also analysed using repeated 

measures ANOVA tests. Again, I treated pair as a subject, and tested for within-pair 

differences in the Fv/Fm of both dark-adapted (factor “PREPOST” level 0) and 

photoinhibited (factor “PREPOST” level 1) matched red and green P. colorata (factor 

“LeafColour” with two levels, equation 3 below). Additionally, I tested for within-

pair differences in Fv/Fm after photoinhibition using two different types of 

illumination (white vs. red/blue, factor “LightColour” with two levels, equation 4 

below). 

 

(3)   Fv/Fm ~ PREPOST + LeafColour + PREPOST*LeafColour 

 

(4)   Fv/Fm ~ PREPOST + LeafColour + LightColour + 

PREPOST*LeafColour + PREPOST*LightColour + LeafColour*LightColour + 

PREPOST*LeafColour*LightColour 

 

Differences in light curve parameters and pigment concentrations between red and 

green matched P. colorata leaves were assessed using either paired Student’s t- or 

Wilcoxon signed ranks test, depending on the outcome of a Shapiro-Wilk test. All 

statistical analyses were carried out using PSAW/SPSS Version 18.0 (Chicago, IL, 

USA). 
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4.4 RESULTS 

4.4.1 Light response curves for CO2 assimilation 

Photosynthesis increased significantly with increasing light intensity (F14,98 = 48, P < 

0.001, )2 = 0.75). There were no statistical differences between matched red and 

green P. colorata leaves in any of the parameters for the response curves for CO2 

assimilation (A) at low light intensities: the dark respiration rate, light compensation 

point, apparent maximum quantum yield/photosynthetic efficiency and light 

saturation point of matched red and green P. colorata leaves did not differ 

significantly (Table 4.2).  

 

Table 4.2 Parameters of the initial phase of CO2 assimilation light curves from 

matched green and red P. colorata leaves. Means of n = 9 ± SE. No statistical 

differences were found. 

Photosynthetic parameter Green Red 

Dark respiration rate (µmol CO2 m-2 s-1) -0.64±0.2 -0.58±0.3 

Light compensation point (µmol m-2 s-1) 15±3.0 18±5.0 

Apparent max. quantum yield ((a) 0.03±0.004 0.02±0.003 

Light saturation point (µmol m-2
 s-1) 622±70 456±60 

 

Overall, the relationship between photosynthesis and light intensity did differ 

significantly between differently coloured P. colorata trees (F1, 7 = 5.7, P = 0.049, )2 

= 0.0035). Green P. colorata leaves (from greener trees) had significantly higher CO2 

assimilation rates (A) than red P. colorata leaves (from matched redder trees) at 

irradiances above ~500 µmol m-2 s-1 red/blue light (Fig.  4.2). Leaves from green trees 

had 47 % higher light saturated CO2 assimilation rate (Asat) than their matched red 

trees (paired Student’s t-test, n = 9 pairs, t =2.755, P = 0.025, Fig.  4.3).  In 8 of the 9 

pairs, the redder leaves had the lower Asat (Fig.  4.3). Additionally there was a 

significant but extremely weak interaction between tree colour and light intensity 

(F14,98 = 2.4, P = 0.007, )2 = 0.0015). 
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Fig.  4.2 Light response curves for CO2 assimilation (A) of green (!) and red (!) P. 

colorata leaves in the field. Means ± SE, n = 9. Green P. colorata leaves (from 

greener trees) had significantly higher CO2 assimilation rates (A) than red P. colorata 

leaves (from matched redder trees, repeated measures ANOVA, F1, 7 = 5.7, P = 0.049, 

)2 = 0.0035).  
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Fig.  4.3 Light saturated rate of CO2 assimilation (Asat) for matched green and red P. 

colorata leaves. Dashed lines connect the Asat values of matched leaves. Bars indicate 

group means ± SE. Asterisk indicates statistical differences between matched leaves 

(paired Student’s t-test, n = 9 pairs, t =2.755, P = 0.025). 

 

4.4.2 Pigment analysis of red and green P. colorata leaves 

Several sequential natural log transformations were required for the chlorophyll a data 

to conform to normality assumptions. It has been shown that when data are 

profoundly non-normal, the Wilcoxon signed-rank test can be appreciably more 

powerful than the Student’s t test (Blair and Higgins 1985). When applying a non-

parametric Wilcoxon signed rank test, red P. colorata leaves contained significantly 

lower FW concentrations of chlorophyll a (n = 7 pairs, Z = -2.4, P = 0.018) than did 

the green. Within all of the 7 pairs, the green leaf held a greater concentration of 

chlorophyll a than the red individual though the magnitude of this difference varied 

considerably between 4 µg g-1 FW and 369 µg g-1 FW (Fig.  4.4). When the outlier 

pair was removed the difference in Chl a between green and red P. colorata leaves 
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still approached statistical significance (t = 2.4, P = 0.059, n = 6 pairs). Chlorophyll b 

FW concentrations also tended to be lower in red P. colorata leaves (Wilcoxon signed 

rank, n = 7 pairs, Z = -1.9, P = 0.063) however this difference was not statistically 

significant. As a result there was no statistical difference in the ratios of chlorophylls 

a to b (Chl a:b, n = 7 pairs, Z = -0.5, P = 0.61) between matched red and green P. 

colorata leaves. 

 

 

 

Fig.  4.4 Concentrations of chlorophyll (Chl) a pigments in matched red and green 

leaves of P. colorata (Means ± SE, n = 7 pairs). Dashed lines join concentrations of 

matched leaves. Asterisk indicates statistical differences within pairs (Wilcoxon 

signed rank, P < 0.05) 

 

Green leaves contained significantly higher FW concentrations of total chlorophylls 

(Chla+b) than did red (n = 7 pairs, Z = -2.0, P = 0.043). There were no statistical 

differences in FW concentrations of carotenoid pigments (Carx+c, n = 7 pairs, t = -0.6, 

P = 0.56), nor in the ratios of carotenoids to total chorophylls between matched red 

and green leaves (Car : Chla + b, n = 7 pairs, t = -1.1, P = 0.31, Table 4.3).  
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Table 4.3 Concentrations of chlorophylls (Chl) a and b and carotenoid (Carx+c) 

pigments in matched pairs of red and green leaves of P. colorata (Mean ± SE, n = 7 

pairs). Asterisk indicates statistical difference (Wilcoxon signed ranks test, P < 0.05) 

Pigment Green Red 

Chl a (µg g-1 FW) 190 ± 53 121 ± 15 * 

Chl b (µg g-1 FW) 203 ± 65 117 ± 18 

Chla+b (µg g-1 FW) 390 ± 120 240 ± 32 * 

Chl a:b 1.0 ± 0.08 1.1 ± 0.07 

Carx+c (µg g-1 FW) 10 ± 4.0 13 ± 2.4 

Carx+c : Chla + b 0.04 ± 0.02 0.06 ± 0.01 

 

4.4.3 Light response curves for chlorophyll fluorescence  

Quantum yield ((PSII) of both red and green P. colorata leaves decreased 

considerably with increasing irradiance (F9,81 = 730, P < 0.001, )2 = 0.97). While 

there was no statistically significant effect of tree colour on the overall relationship 

between (PSII and light intensity (F1,9 = 0.025, P = 0.88), there was an extremely 

weak but significant interaction between the effects of tree colour and light intensity 

on (PSII (F9,81 = 4.6, P < 0.001, )2 = 0.004); green leaves exhibited a reduced decline 

in (PSII at higher irradiances (Fig.  4.5A).  

 

The photochemical quenching coefficient (qP) of red and green leaves also declined 

significantly with increasing light intensity (F9,81 = 510, P < 0.001, )2 = 0.97). 

However, for green leaves, the magnitude of the decline in qP at higher irradiances 

was significantly less than for red leaves (F1,9 = 5.6, P = 0.042, )2 = 0.03). As both 

red and green qP curves have the same origin, there was an extremely weak but 

significant interaction between tree colour and light intensity (F9,81 = 5.8, P < 0.001, 

)2 = 0.002, Fig.  4.5B).  

 

Non-photochemical quenching (NPQ) in all leaves increased significantly as light 

intensity increased (F9,81 = 270, P < 0.001, )2 = 0.89).  Red P. colorata leaves had 

greater NPQ than green at almost all irradiances (F1,9 = 7.0, P = 0.026, )2 = 0.02). As 

this difference in NPQ between red and green leaves increased at higher irradiances, 
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there was a significant interaction between tree colour and light intensity (F9,81 = 3.7, 

P = 0.001, )2 = 0.008, Fig.  4.5C). 

 

 



 106 

 

Fig.  4.5 Light response curves for (A) photochemical quantum yield (!F/Fm’), (B) 

photochemical quenching (qP), and (C) non-photochemical quenching (NPQ) of 

photosystem II for matched red and green leaves of P. colorata. Means ± SE, n = 10 

pairs. 
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4.4.4 Photoinhibition of red and green P. colorata leaves 

The white saturating light treatment caused a highly significant reduction in the Fv/Fm 

of leaves (F1,9 = 560, P < 0.001, )2 = 0.96). There was no statistical difference in 

Fv/Fm between dark-adapted matched red and green P. colorata leaves, nor after the 

saturating light treatment (F1,9 = 0.16, P = 0.7, )2 = 0). There was an extremely weak 

but significant interaction, as dark-adapted red leaves appeared to have the marginally 

higher dark adapted Fv/Fm, yet experienced a slightly larger decline in Fv/Fm after 

photoinhibition (F1,9 = 5.3, P = 0.047 , )2 = 0.004, Fig.  4.6). 

 

 
Fig.  4.6 Fv/Fm of matched red and green P. colorata leaves before (dark-adapted for 

4 h) and after exposure to 2000 µmol m-2 s-1 of collimated white light for 0.5 h (means 

± SE, n = 10 pairs). Different letters indicate statistical significance (repeated 

measures ANOVA, P < 0.05). 

 

4.4.5 Photoinhibition of red and green P. colorata leaves under white and red/blue 

lights 

Regardless of lamp colour, the saturating light treatment caused a highly significant 

depression in the Fv/Fm of P. colorata leaves (F1,9 = 2000, P < 0.001, )2 = 0.93). 

However there was no statistical difference in the magnitude of the decline between 
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the different light colour treatments (F1,9 = 0.09, P = 0.77, )2 = 0), nor between 

different leaf colours within those treatments (F1,9 = 3, P = 0.101, )2 = 0). There were 

no significant interactions between leaf colour, light colour or saturating light 

treatments was significant (Fig.  4.7).  

 

 

Fig.  4.7 Fv/Fm of matched red and green P. colorata leaves before (dark-adapted for 

24 h) and after exposure to 2000 "mol m-2 s-1 of either white or red/blue light for 0.5 

h. Means ± SE, n = 10 pairs. Different letters indicate statistical significance (repeated 

measures ANOVA, P < 0.05). 

4.5 DISCUSSION  

Given that red pigments in P. colorata leaves may function for signalling (see 

Chapter 2), I investigated the consequences to photosynthesis of maintaining 

anthocyanin pigments within leaves. My results indicate that the presence of 

anthocyanin pigments within mature, non-senescing leaves may incur a 

photosynthetic cost. Redder P. colorata leaves in the field had over 30 % lower 

maximum assimilation rate than matched green leaves from neighbouring trees 
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(paired Student’s t-test, n = 9 pairs, t =2.755, P = 0.025, Fig.  4.3). There was no 

measurable advantage in terms of photoprotection in the red P. colorata leaves (Fig.  

4.6 & Fig.  4.7). 

 

The rates of CO2 assimilation found in this study were comparable with those 

reported for other New Zealand forest tree species (Gould et al. 2002b, Tissue et al. 

2005). Leaves from green P. colorata trees had a higher light saturated CO2 

assimilation rate (Asat) than their matched red trees (Fig.  4.2 & Fig.  4.3). This result 

is consistent with other studies using intraspecific comparisons of CO2 assimilation 

rates among mature, non-senescing, red and green leaves (Gould et al. 2002b, Nielsen 

and Simonsen 2011, Nikiforou et al. 2011, Zhang et al. 2011). While statistically 

significant, the differences in light saturated CO2 assimilation between red and green 

matched leaves found in this study were quantitatively small (n = 9 pairs, red = 3.2 ± 

0.45, green = 4.7 ± 0.67, Mean ± SE, µmolCO2 m-2
leaf area s-1, Fig.  4.3). Additionally, at 

subsaturating light fluxes, I found no differences between red and green leaves. The 

trees would not experience saturating light fluxes all day, so the actual difference in 

productivity would be less than that indicated by the differences in Asat. Regardless, if 

these small leaf level differences in photosynthesis scale up to whole-plant level 

differences, a reduction in photosynthesis could potentially lead to differences in 

relative growth and reproduction within matched pairs of red and green P. colorata 

trees. Losses in photosynthetic achievement have been shown to result in impaired 

plant fitness (Ganeteg et al. 2004). Therefore at low levels of herbivory, when the 

benefits of signalling are similar to the cost of photosynthesis, one would expect equal 

fitness payoffs for red and green P. colorata trees. This is consistent with the results 

seen in Chapter 2. 

 

The lower photosynthetic rate of red P. colorata leaves does not appear to be a result 

of attenuation of light by foliar anthocyanin pigments. Contrary to other published 

studies comparing red and green leaves (Manetas et al. 2003, Hughes and Smith 

2007b, Kyparissis et al. 2007, Zeliou et al. 2009, Nikiforou and Manetas 2010), the 

pigment profiles of red P. colorata leaves do not resemble those of shade-adapted 

green leaves. Although red P. colorata leaves contained significantly lower 

chlorophyll a, they also contained less chl b (although not statistically significant) 

than green leaves. As a result, there was no difference in the chlorophyll a:b ratio 
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between matched red and green P. colorata  leaves (Fig.  4.4 & Table 4.3). The 

reduced Asat of red leaves could be a result of photochemical constraints limiting the 

maximum rate of photosynthetic carbon metabolism relative to leaves from green 

plants (e.g. smaller light harvesting complexes, and lower levels of rubisco). 

Alternatively, as the red pigmentation in P. colorata leaves is often patchily 

distributed over the leaf lamina, perhaps the chl a:b ratios underneath red portions of 

P. colorata leaves are consistent with shading, yet vary at a smaller spatial scale than 

was detectable by my analyses. Another possible interpretation is that the higher light 

saturated CO



 111 

anthocyanin pigments either (Esteban et al. 2008, Liakopoulos and Spanorigas 2012). 

Given that anthocyanin pigments in leaves with irregular patches and variegation 

appear to not primarily function for photoprotection, non-green colouration in these 

leaves may be more likely to function for the purpose of changing leaf appearance 

(see ‘Biotic hypotheses for foliar anthocyanins’ section 1.5.3). The lack of support for 

the photoprotection hypothesis presented in this chapter lends indirect support for a 

signalling function for anthocyanins in P. colorata leaves. 
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Table 4.4 A list of studies classified as either in support of, equivocal, or against a photoprotective function for anthocyanin pigments. 

 

Photoprotection Study Species Comparison 

For Gould et al. (1995) Begonia pavonina & Triolena 

hirsute  

Green vs abaxially red leaves (intraspecies) 

 Mendez et al. (1999) Pinguicula vulgaris  Green vs UV-B induced red (carnivorous plant) 

 Manetas et al. (2002)  Rosa sp. & Ricinus communis Green mature vs red juvenile 

 Neill and Gould (2003) Lactuca sativa Green vs red portions of leaves 

 Manetas et al. (2003) Quercus coccifera Green vs red juvenile leaves 

 Liakopoulos et al. (2006) Vitis vinifera Green vs transiently red cultivars 

 Hughes and Smith (2007a) Galax urceolata Green vs winter-red leaves 

 Hughes et al. (2005) Galax urceolata Green vs winter-red leaves 

 Hughes (2012a) 10 broadleaf evergreen spp. Green vs winter-red (interspecies) 

 Hughes et al. (2007) Acer rubrum, Cercis 

canadensis & Liquidambar 

styraciflua 

Correlation between anthocyanin reassimilation and leaf 

photosynthetic development (intraspecies) 

 Li et al. (2008) Pyrus communis Green vs red fruit peel 
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Table 4.4 Continued 

Photoprotection Study Species Comparison 

For Steyn et al. (2009) Malus domestica & Pyrus 

communis 

Intraspecies correlation between photoprotection and redness 

(fruit peel) 

 Fondom et al. (2009) Agave striata  Young leaves from green and red morphs (CAM plant) 

 Novak and Short (2011) Thalassia testudinum  Green vs red leaves (seagrass) 

 Nielsen and Simonsen (2011)  Oxalis triangularis Green vs red varieties 

 Zhang et al. (2012) Arabidopsis Green anthocyanin-deficient mutant vs wild type 

 Pietrini and Massacci (1998) Zea mays L. Green vs cold-induced anthocyanic leaves 

 Pietrini et al. (2002) Zea mays L. Green vs red genotypes 

 Feild et al. (2001) Cornus stolonifera Yellow vs red senescing leaves 

 Gould et al. (2010) Cornus stolonifera + other 

species 

Green vs red stems + interspecies correlation between 

photoprotection and stem anthocyanin content 

 Krol et al. (1995) Pinus banksiana Lamb. Correlation between photoprotection and anthocyanin content 

 Smillie and Hetherington 

(1999) 

Bauhunua variegata Green vs red/purple pods 

 Hoch et al. (2003) Cornus sericea, Vaccinium 

elliottii, & Viburnum sargentii  

Anthocyanin-deficient mutant vs wild type (intraspecies) 
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Table 4.4 Continued 

Photoprotection Study Species Comparison 

No Difference Burger and Edwards (1996) Coleus Green vs. red varieties 

 Kytridis et al. (2008) Cistus creticus Green vs winter-red  

    

 Liakopoulos and Spanorigas 

(2012) 

Pelargonium ! hortorum Green vs red portions of variegated leaves 

 Lee et al. (2003) 18 deciduous tree spp. Yellow vs red senescing leaves (interspecies) 

 Karageorgou and Manetas 

(2006) 

Quercus coccifera Green vs red individuals 

Against Dodd et al. (1998) Syzygium spp. Green vs red juvenile leaves (interspecies) [although red 

leaves had lower photosynthetic capacity] 

 Kyparissis et al. (2007) Chimeric Prunus domestica L. 

+ P. cerasifera 

P. domestica L. (green leaves) vs P. cerasifera (red leaves) 

 Zeliou et al. (2009) Cistus creticus Green vs winter-red  

 Nikiforou and Manetas 

(2010) 

Pistacia lentiscus Green vs red  

 Esteban (2008) E. dens-canis Green vs red portions of variegated leaf 

 Lan (2011) Fagopyrum dibotrys Green vs red-mutant juvenile leaves 
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In this study, data from chlorophyll fluorescence light curves may preclude the 

conclusion that the observed lack of difference in !Fv/Fm between red and green 

leaves under white light rules out a photoprotective role for anthocyanin pigments in 

P. colorata (Fig.  4.6 & Fig.  4.7). To conclude that foliar anthocyanins serve as 

photoprotectants requires that my photoinhibitory treatments did indeed provide 

sufficient stress to exceed the capacity of P. colorata leaves to dissipate excess light 

energy. The plant material used in this experiment came from a very exposed ridge-

top field site that regularly experiences extreme wind speeds, low temperatures and 

bright sunlight. As a result, these trees are likely to have been well acclimated to such 

conditions. Rapid chlorophyll fluorescence light curves, carried out on leaves that had 

been dark-adapted for 4 h, showed that levels of NPQ for both red and green leaves 

did not saturate, even at irradiances exceeding 2000 µmol m-2 s-1 (Fig. 4.5B & C). 

Furthermore, the leaves used in the white vs. red/blue photoinhibition experiment 

were dark-adapted for 12 h, three times longer than the leaves for which NPQ was 

measured, which may have allowed for more restoration of slower reversible NPQ 

processes (Demmig-Adams and Adams III 1996, Maxwell and Johnson 2000, Hughes 

et al. 2012a). In support of this, P. colorata leaves that were dark-adapted for 12 h had 

a smaller decline in Fv/Fm after photoinhibition with white light, than those that were 

dark-adapted for 4 h (compare Fig.  4.6 & Fig.  4.7). To more comprehensively assess 

the photoprotective influence of foliar anthocyanin pigments, future experiments 

should combine cold and light stress (Henriques 2009, Gould et al. 2010), use a white 

light source that better approximates the solar spectrum for visible radiation, a longer 

duration photoinhibitory treatment, and possibly include the use of antioxidant assays 

(Neill et al. 2002a).  

 

Consistent with many other studies of anthocyanins, red P. colorata leaves had higher 

levels of NPQ than green (Kyparissis et al. 2007, Li et al. 2009, Gould et al. 2010, 

Lan et al. 2011, Zhang et al. 2011, Hughes et al. 2012a). NPQ is a measure of the 

efficiency with which a leaf is able to dissipate excess light energy as heat (Maxwell 

and Johnson 2000, Demmig-Adams and Adams III 2006). The major mechanism for 

the dissipation of excess energy occurs by the action of the carotenoid pigment 

xanthophyll cycle, a reversible process where excess light energy drives the build-up 

of a trans-thylakoid pH gradient that in turn drives the conversion of violaxanthin to 

zeaxanthin, via the intermediate antheraxanthin (Demmig-Adams and Adams III 
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1996). However, all the studies that have compared the xanthophyll cycle pool sizes 

of red and green leaves (both inter- and intraspecies comparisons) have found that red 

leaves have lower concentrations of violaxanthin + antheraxanthin + zeaxanthin per 

unit chlorophyll (VAZ/Chl) than green leaves (Pietrini et al. 2002, Liakopoulos et al. 

2006, Kytridis et al. 2008, Zeliou et al. 2009, Nikiforou et al. 2010, Nielsen and 

Simonsen 2011, Hughes et al. 2012a). I did not detect any difference in either the FW 

concentrations of total carotenoids, or the ratio of carotenoid to chlorophyll 

concentrations between red and green matched P. colorata leaves (Table 4.3). 

However, there are many different carotenoid pigments within leaves, and measuring 

the total concentration of carotenoids may be a poor estimation of xanthophyll 

pigment concentrations. To more thoroughly understand the photochemical efficiency 

and heat dissipation capacity of red and green P. colorata leaves, a detailed 

assessment of the diurnal changes in photochemistry, Fv/Fm, NPQ and the de-

epoxidation state of xanthophyll cycle pigments is needed (Maxwell and Johnson 

2000, Hughes et al. 2012a). 
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5 Feeding and oviposition preference of the insect 

herbivores of P. colorata  
 

5.1 ABSTRACT 

The leaf signalling hypothesis predicts that plants use non-green leaf colouration as a 

visual signal to communicate their defensive capacity to approaching herbivores, who 

consequently avoid those well-defended plants. To test whether the leaf signalling 

hypothesis explains leaf colour variation in different systems, a suitable herbivore 

must be identified. I used field surveys and laboratory bioassays to identify which 

invertebrate herbivores are most likely to participate in coevolved leaf signalling 

interactions with P. colorata. I then tested the hypothesis that herbivores prefer to eat 

green than red P. colorata leaves. Feeding preference bioassays showed that 

brownheaded leafrollers (C. obliquana and C. herana) and Auckland tree weta 

(Hemideina thoracica) preferentially consumed green rather than red P. colorata 

leaves. Gravid female C. obliquana moths did not exhibit any oviposition preference 

for leaves of either colour. Results from these bioassays, combined with my field 

surveys suggest that Ctenopseustis spp. leafroller larvae are a likely coevolution 

partner for P. colorata.  

 

5.2 INTRODUCTION 

The leaf signalling hypothesis predicts that trees use non-green leaf colouration as a 

visual signal to communicate their defensive capability to herbivores, which 

consequently avoid those well-defended plants (Archetti 2000, Hamilton and Brown 

2001, Archetti and Brown 2004). When developing this hypothesis, Hamilton and 

Brown (2001) proposed that the bright colouration of senescing leaves in autumn is a 

product of coevolution between deciduous trees and those aphid species whose host-

selecting flights coincide with the timing of leaf senescence. There is growing 

evidence from patterns of plant colouration and herbivory in the field, that this 

hypothesis may also explain red leaf colouration in some non-senescing leaves (Wong 

and Srivastava 2011, Cooney et al. 2012, Youard 2012). However the identities and 

characteristics of the putative herbivore coevolution partners of these non-senescing 

red-leafed plant species have not been thoroughly investigated. 



 119 

Hamilton and Brown (2001) discussed the ideal herbivore characteristics that would 

most likely result in a coevolved plant-herbivore signalling system. The herbivore 

should: a) have a long history of association with the host plant; b) be mobile enough 

to travel among host plant individuals at the time that the colouration is displayed; c) 

injure the host plant ! the more damaging the insect herbivore, the greater is the 

selective pressure driving the evolution of leaf signalling; d) be discriminating when 

presented with host individuals of different quality, preferring the less defended/more 

suitable host trees; and e) process visual stimuli to achieve this discrimination. For the 

proposed autumn-leaf/aphid signalling system, there is evidence that some species of 

aphids may fulfil these requirements (Archetti and Leather 2005, Ramirez et al. 2008, 

Archetti 2009b, Döring et al. 2009). To test whether the leaf signalling hypothesis 

explains leaf colour variation in non-senescing red-leafed plant species, a suitable 

herbivore that fulfils all of the above requirements must be identified. 

 

Hamilton and Brown (2001) focused on coevolution between a plant host species and 

its specialist herbivores, citing Coley and Barone (1996) who argued that specialist 

herbivores are more damaging. However, this does not necessarily preclude generalist 

herbivores provided they are sufficiently damaging, and regularly abundant. 

Examples of tight pairwise co-evolution between plants and insect herbivores are rare 

(Stamp 2003). Additionally, specialist herbivores can evolve mechanisms to 

circumvent the chemical defences of their hosts (Bowers and Puttick 1988, Dobler et 

al. 2011). This would reduce the selective pressure for herbivores to discern between 

differently defended host individuals. Searches for appropriate herbivores need not be 

restricted to specialist monophages. 

 

The non-senescing leaves of the New Zealand (NZ) endemic Pseudowintera colorata 

exhibit patterns in colour, chemistry and herbivory consistent with the plant 

component of the leaf signalling hypothesis: redder leaves are more well-defended 

and incur less chewing herbivory than equivalent greener leaves (Cooney et al. 2012, 

Youard 2012), but a thorough investigation into the characteristics of P. colorata’s 

herbivores has not been carried out in the context of leaf signalling. I used literature 

searches and surveys of field populations to assess which NZ endemic insect 

herbivore species have a long historical association with, and are abundant upon, P. 
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colorata. From these species, given that red P. colorata leaves are better defended 

against insects, I carried out feeding preference trials to assess whether they 

consumed P. colorata and, if they did, their ability to discriminate between green and 

predominantly red P. colorata leaves. For the species with flying adult life forms, I 

tested the ability of gravid females to discriminate between red and green leaves.  

 

5.3 MATERIALS AND METHODS 

5.3.1 Herbivore survey 

Potential candidate herbivores were selected using a list of known herbivores 

(http://plant-synz.landcareresearch.co.nz/; accessed August 2010), plus day and night 

time surveys of P. colorata in the field. Both visual surveys and branch-beating 

methods (Majer et al. 1996, Sutherland 2006) were used to census chewing herbivores 

on 20 P. colorata plants at each field site. The field sites, both located in the lower 

North Island of New Zealand, represented the range of typical habitats and growth 

forms of P. colorata (Norton 1980, Cooney et al. 2012); a stunted shrub-like 

population forming a consolidated canopy on an exposed ridgetop (Belmont trig, 

Belmont Regional Park, Wellington, 41°11’0.2’’S, 174° 52’25.9’’E) and a population 

of understory trees (< 3 m height) in high (800m) montane forest dominated by 

Nothofagus spp. (Otaki Forks, Tararua Forest Park, 40°54’27.8’’S, 175°15’21.1’’E). 

In addition to the surveys, I applied Tanglefoot™ (Contech Enterprises Inc., Victoria, 

BC, Canada) to 10 pairs of matched red and green P. colorata at Belmont trig, to trap 

any flying insects that landed upon leaves. Three stems were randomly selected from 

each plant and Tanglefoot was applied to the adaxial and abaxial surfaces of three 

fully expanded leaves near the apex of each stem. Leaves and captured insects were 

retrieved after one week.  

  

5.3.2 Insect material 

For the bioassays, three species of lepidopteran larvae were obtained from lab 

colonies maintained by The New Zealand Institute for Plant & Food Research, 

Auckland: two species of brownheaded leafroller caterpillars, Ctenopseustis 

obliquana (Lepidoptera: Tortricidae: Tortricinae) and C. herana, and the common 

forest looper Pseudocorremia suavis (Lepidoptera: Geometridae: Ennominae). All 
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had been raised in captivity on an artificial diet (Singh 1983). For fitness and 

oviposition trials, C. obliquana eggs and pupae were also provided by The New 

Zealand Institute for Plant & Food Research, Auckland. 

 

Two female adult Auckland tree weta, Hemideina thoracica (Orthoptera), were 

collected from a forest reserve near Levin at the southernmost limits of their 

distribution. G. W. Gibbs provided five Wellington tree weta, H. crassidens 

(Orthoptera) from weta hotels in his own garden. Two female stick insects, 

Acanthoxyla prasine speciosa (Phantasmodea), were collected from P. J. Lester’s 

garden in Wellington NZ.  

 

5.3.3 Plant material 

Leaf material for the oviposition and feeding preference bioassays was selected from 

nursery-grown potted P. colorata plants ecosourced from the central North Island of 

New Zealand. Leaves from P. colorata plants from this region have low levels of the 

sesquiterpene dialdehyde 9-deoxymuzigadial (Wayman et al. 2010), similar to plants 

from the Otaki Forks field site (Cooney et al. 2012). The potted plants were divided 

into two groups consisting of plants with either predominantly red or predominantly 

green leaves. 

 

Leaf material for the second oviposition bioassay and the insect fitness experiments 

was collected from P. colorata near Belmont trig. The Belmont population of P. 

colorata is typical of the ‘mixed chemotype’ described by Wayman et al. (2010), 

having similar levels of the two sesquiterpene dialdehydes 9-deoxymuzigadial and 

polygodial. 

 

5.3.4 Feeding preference bioassays 

With assistance of Loïc Cizabuiroz (visiting French student), I undertook bioassays to 

assess the ability of the candidate herbivores species to discriminate between red and 

green P. colorata leaves. I carried out feeding preference bioassays on all of the 

chewing herbivores observed during surveys of my field sites, with the addition of 

Auckland tree weta (Hemideina thoracica) as it is known to consume P. colorata 

(Barrett 1991). Trials were conducted in a glasshouse to provide natural illumination. 
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Caterpillar trials were conducted in clear plastic petri dishes (0.09 m diameter) (Fig.  

5.1A). For weta, trials were conducted in 2 L plastic containers with wire mesh insets 

in their lids (Fig.  5.1B). I experimented with several containers for stick insects, 

including 2 L containers and glass aquaria (Fig.  5.1C). Humidity within the 

experimental containers was maintained by a folded section of moist paper towel. In 

the wild, during daylight hours tree weta roost inside cavities in tree trunks (Trewick 

and Morgan-Richards 1995). To replicate this, weta were provided with wooden 

artificial roosts. Due to the low numbers of H. thoracica and Acanthoxyla sp., I 

carried out four replicate bioassays per individual insect.  

 

Pairs of fully expanded leaves, one green and one predominantly red, were selected 

from the potted P. colorata seedlings. Within pairs, leaves were matched as closely as 

possible for size, shape, and leaf age. Leaves with any evidence of mechanical 

damage or herbivory were rejected. Leaves were excised, imaged using a Canon 

CanoScan 8400F flatbed scanner (Tokyo, Japan), and placed in pairs within the 

containers. Leaf position was alternated to control for orientation biases. For 

caterpillar trials, one insect was placed in the middle of each petri dish, equidistant 

from both leaves (Fig.  5.1A). For weta trials, leaves were placed equidistant to the 

opening of their artificial logs (Fig.  5.1B). Trials were run for 72 h, after which the 

leaves were scanned once again. 

 

Several methods of leaf presentation were trialled for stick insects. Leaves were 

initially placed inside 2L plastic containers similar to the weta trials. Trials were 

repeated with leaves suspended from the lid of the containers. Finally, P. colorata 

leaves were attached with tape to otherwise leafless divaricating stems within two 

glass aquaria (Fig.  5.1C). It was thought that this, more tree-like method of leaf 

presentation, might promote herbivory. 
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Fig.  5.1 Photographs of feeding preference bioassays for caterpillars (A), weta (B), 

and stick insects (C). 

 

All insects were starved for 24 h before each trial. Leading up to, and after the 

bioassays, weta were provided with pieces of carrot (Barrett 1991), stick insects were 

given p"hutukawa (Metrosideros excelsa) leaves (Salmon 1991) and caterpillars were 

kept in 5 mL test tubes containing general purpose diet (Singh 1983).  

 

5.3.5 Leaf area analysis 

Scanned images were used to quantify the area of leaf tissue removed by herbivory. 

Initial leaf area and post-herbivory leaf area were measured using ImageJ v1.41 

(National Institutes of Health, Bethesda, MD, USA). To account for small differences 

in initial leaf area, the amount of feeding damage was calculated as the percentage of 

initial leaf area removed. 

 

5.3.6 Oviposition experiments 

I used two methods to assess the oviposition preferences of gravid female 

Lepidoptera. One, following the methods of Cooney et al. (2012), employed 59 pots 

(18 cm tall x 20 cm in diameter) with sandpaper-lined sides, nylon mesh covering and 

A 

B 

C 
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vermiculite covered base, each containing one red and one green excised P. colorata 

leaf. These pots were set up inside a rooftop glasshouse to receive natural 

illumination. The leaves were presented at a 45° angle from the ground with the 

petiole in a shallow dish of water. After they had emerged from pupae, I introduced 

one male and one female Ctenopseustis obliquana moth to each pot. After 72 h, each 

leaf was inspected under a dissecting microscope, and the presence or absence of egg 

masses was recorded. 

  

The second method used 20 plastic petri dishes (0.09 m diameter) with loose fitting 

lids. To prevent leaf desiccation, I placed the petiole of each leaf through a small hole 

in the lid of a water-filled 1.5 mL microcentrifuge tube, and sealed around the petiole 

with parafilm. One female and one male C. obliquana pupa, and 1.5 cm2 moistened 

paper towel, were placed into each petri dish. The petri dishes were placed within an 

incubator at 18:6 h (light:dark) photoperiod, ~ 60% relative humidity (RH), 20 °C 

(Lester and Barrington 1997), and regularly monitored for five days. Afterwards, each 

leaf was inspected under a dissecting microscope and the presence or absence of egg 

masses was recorded. 

 

5.3.7 Statistical analyses 

For the feeding preference trials, paired t-tests were used to compare the % leaf area 

removed from red and green leaves. After Shapiro-Wilk tests for normality, herbivory 

preference of each species of insect was analysed using a nonparametric Wilcoxon 

signed rank test. Oviposition preference (presence of eggs on red, green or both 

leaves) was analysed using a chi-squared test. All analyses were carried out in 

PSAW/SPSS Version 18.0 (Chicago, IL, USA). 

 

5.4 RESULTS 

5.4.1 Herbivore survey  

For the plants growing at the two field sites, 10 taxa of invertebrates were noted on 

their foliage (Table 5.1).  
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Table 5.1 List of species observed on P. colorata at two fieldsites in the lower North Island of New Zealand. 

Fieldsite Method Species No. observed Notes 

Otaki Forks Night Green leaf slug (Gastropoda: 

Athoracophoridae) 

8 Not folivorous, eat algae and fungi off leaves (G. W. Gibbs pers. comm.). 

  Weta nymphs  5 Weta nymphs difficult to identify in the field (G. W. Gibbs pers. comm.). 

  Tree weta (presumably H. crassidens) >1 Heard, not seen. 

 Day Aphid (Hemiptera) 1 Evaded capture. 

  Brownheaded leafroller larvae 

(Ctenopseustis spp.) 

25 Found within leaf shelters, with abundant signs of recent herbivory. 

Belmont trig Night Tree weta (presumably H. crassidens) 1 Heard, not seen. 

 Day Scale insect (Ctenochiton spp.) 5 Light green on abaxial leaf surface, causes raised leaf deformations. 

  Wellington tree weta (H. crassidens) ~ 10 Saw ~ 10 in three years of fieldwork 

  Stick insect (Phantasmodea) 16 First summer of fieldwork observed 8 pairs of mating stick insects walking on P. 

colorata, no subsequent sightings. 

  Brownheaded leafroller larvae 

(Ctenopseustis spp.) 

45 Observed within leaf shelters, and actively building leaf shelters. 

  Common forest looper larvae 

(Pseudocorremia spp.) 

1  

 Tanglefoot Flies (Diptera: Calliphoridae)  Not folivorous. 

  Crane flies (Diptera: Tipulidae)  Not folivorous. 

  Various spiders  Not folivorous. 
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5.4.2 Feeding preference bioassays 

Both species of brownheaded leafroller larvae discriminated between red and green P. 

colorata leaves, removing on average ~ 6 % more leaf area from green than red leaves 

(C. obliquana, Z = -2.2, P = 0.027; C. herana, Z = -2.7 P = 0.007, Fig.  5.2, Table 

5.2). The common forest looper Pseudocoremia suavis did not discriminate between 

red and green P. colorata leaves (Z = -0.676, P = 0.499, Fig.  5.2). In the two 

occasions that P. suavis larvae chewed both leaves, one ate more from the green leaf 

while the other ate more from the red leaf. 

 

Table 5.2 Frequency of herbivory by Ctenopseustis spp. leafrollers of both green and 

red, either green or red, or neither P. colorata leaf in feeding preference bioassays. 

 C. obliquana C. herana 

Consumed both leaves   

Preferred green 5 2 

Preferred red 2 1 

Consumed only one leaf   

Chose green 6 13 

Chose red 2 3 

Did not consume either leaf 2 11 

 

 

Of the large chewing herbivores, only H. thoracica browsed any P. colorata leaf 

material, consuming on average 25 % more leaf area from green than red leaves       

(Z = -2.1, P = 0.036). Neither H. crassidens nor A. prasina speciosa consumed any P. 

colorata during the trials (Fig.  5.2).  
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Fig.  5.2 Feeding preferences of a variety of endemic NZ chewing invertebrates for 

green and red coloured P. colorata leaves (Means ± SE). Bars to the right of the 

origin of the x-axis indicate that insects preferentially consumed green leaves. 

Asterisks indicate statistical significance (Wilcoxon signed ranks test, P < 0.05). 

 

5.4.3 Oviposition results 

C. obliquana females did not display an oviposition preference for either red or green 

P. colorata leaves (!2 = 4, 2 df, P = 0.13). However, most replicates did not show any 

evidence of eggs upon either red or green leaves (Table 5.3). In many cases either the 

male or female moths did not successfully emerge from the pupae or became stuck 

upon drops of condensation, which precluded mating and oviposition.  

 

Table 5.3 Frequency of oviposition by gravid C. obliquana females upon both green 

and red, either green or red, or neither P. colorata leaf in two types of bioassays (pots 

and petri). 

Method Green Red Both Neither 

Pots 8 2 2 47 

Petri - 1 - 19 
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5.5 DISCUSSION 

Through field surveys and bioassays, I have identified the most likely invertebrate 

herbivores to participate in coevolved leaf-signalling interactions with P. colorata. 

Feeding preference bioassays showed that brownheaded leafrollers (C. obliquana and 

C. herana) and Auckland tree weta (H. thoracica) discriminate between red and green 

P. colorata leaves. All three species preferentially consumed leaf material from green, 

rather than red leaves (Fig.  5.2). I was unable to detect any oviposition preference for 

green or red P. colorata leaves (Table 5.2) though the high mortality rates precluded 

definite conclusions. Results from these bioassays, combined with my field surveys 

suggest that Ctenopseustis spp. leafroller larvae are likely signalling partners for P. 

colorata. 

 

In multiple trials, H. crassidens and A. prasina speciosa did not consume any P. 

colorata leaf material (Fig.  5.2). After three days in a chamber with P. colorata 

leaves, I placed some p"hutukawa foliage in with the stick insects; they started to feed 

upon the p"hutukawa before I had let go of it! Polygodial has a strong antifeedant 

effect on some species of lepidopteran, coleopteran and hemipteran (aphids) 

herbivores (Asakawa et al. 1988, Gerard et al. 1993, Powell et al. 1993, 1995). My 

results suggest that, irrespective of leaf colour, P. colorata’s defences may effectively 

deter a broader taxonomic array of invertebrate herbivores.  

 

Psuedocoremia spp. larvae (Lepidoptera : Geometridae [loopers]) have been reported 

to be highly abundant upon P. colorata in the field (Norton 1980), though they were 

rare at my field sites (Table 5.1). In my feeding preference bioassays, P. suavis 

consumed P. colorata but did not discriminate between red and green leaves. A lack 

of discrimination between differently defended hosts may indicate the herbivore is a 

specialist and has adapted to the defence compounds of their host (Bowers and Puttick 

1988). However, P. suavis is well known to consume a wide range of NZ native and 

introduced plants (Berndt et al. 2004). Norton (1980) reported that a different species 

of Pseudocoremia, P. fasciculata, is a specialist herbivore, obligate upon P. colorata, 

although evidence to the contrary was presented by Stephens (2001). Regardless of 

the breadth of their diet, Psuedocoremia spp. larvae appear unaffected by P. 

colorata’s defences, and therefore are unlikely to exert selective pressure to reinforce 

coevolved leaf signalling. 
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Consistent with Barrett (1991), the NZ endemic Auckland tree weta, H. thoracica, did 

consume P. colorata. Moreover, H. thoracica discriminated between red and green 

leaves. However its distribution does not tightly match that of P. colorata. It is 

restricted to central and northern parts of the North Island with populations in 

fragmented pockets of bush as far south as Levin, and is absent from Wellington-

Wairarapa region (Trewick and Morgan-Richards 1995). The distribution of 

Wellington tree weta, H. crassidens, more closely matches that of P. colorata, being 

found throughout the central and lower North Island, as well as northern parts of the 

South Island (Trewick and Morgan-Richards 1995, Gibbs 2001). However H. 

crassidens did not consume P. colorata. Two species of South Island tree weta, H. 

ricta and H. femorata, have been found roosting in P. colorata trees (Townsend et al. 

1997) but there are no records of them consuming P. colorata leaf material. Fossil 

and pollen records of Pseudowintera spp. have been found in several locations across 

both the South and North Islands of New Zealand (McGlone and Topping 1977, Pole 

2007). However, the clear genetic separation between North Island and South Island 

Hemideina weta clades suggests H. crassidens dispersed to the South Island relatively 

recently, and that H. thoracica has long been confined to the North Island (Trewick 

and Morgan-Richards 1995, Morgan-Richards and Gibbs 2001). Therefore the 

historic distribution of H. thoracica argues against them being the primary selective 

force driving the coevolution of leaf colouration in P. colorata. 

 

In contrast to the weta, Ctenopseustis spp. leafrollers exhibited a significant 

preference for green over red leaves. Hamilton and Brown (2001) discussed the ideal 

herbivore characteristics that will most likely result in a coevolved plant-herbivore 

signalling system. Below I discuss each quality in turn, focusing upon Ctenopseustis 

spp. leafrollers.  

 

5.5.1 a) Long history of association  

Pseudowintera colorata and Ctenopseustis spp. leafrollers are both endemic to NZ, 

and both plant and herbivore are thought to be of Gondwanan origin (Feild et al. 

2002, Regier et al. 2012). Within NZ, both are distributed widely across both the 

North and South Islands (Allan 1961, Wearing 1999, Wayman et al. 2010) and co-

occur in the wild (Norton 1980, Cooney et al. 2012, Youard 2012). Unlike deciduous 
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tree species, the red colouration of P. colorata leaves is maintained year round. 

Similarly, larval and adult leafrollers can be found on host plants throughout the year, 

although there are peaks in population density in the late spring and autumn (Wearing 

1999).  

 

5.5.2 b) Mobility among host plant individuals  

The leaf signalling hypothesis requires that the herbivore has a life stage that is 

mobile enough to actively disperse among different host individuals of varying 

suitability. The minimum dispersal distance for different plant-herbivore associations 

varies, depending on the size and density of the host plants and the size and mobility 

of the insect. Similar to the winged aphids of the autumn leaf system, the most 

consistently abundant herbivore upon P. colorata has a flying life-stage. Adult moths 

of C. obliquana are able to fly at temperatures above ~ 7° C (Wearing 1999) and are 

mobile enough to disperse among P. colorata in the field. In addition, some 

lepidopteran larvae, including representatives from Tortricidae, are mobile and can 

disperse through crawling, or descending on a silk thread, onto nearby more-

preferable hosts (Norton 1980, Harris et al. 1995, Zaluki et al. 2002, Carroll et al. 

2006). The ability of C. obliquana and C. herana larvae to use these mechanisms to 

disperse from shelter species to crop plants has been noted (Wearing 1999). 

 

P. colorata hosted at least one species of scale insects at both Belmont and Otaki 

Forks. These organisms frequently settle within < 1 m from their mother (Magsig-

Castillo et al. 2012). Although travelling longer distances is possible through wind or 

phoretic dispersal via hitchhiking on other more mobile organisms (Magsig-Castillo 

et al. 2012), these processes are unlikely to provide scale insects with a means to 

actively select among host plants. 

 

5.5.3 c) Damaging to the host plant 

P. colorata leaves commonly exhibit signs of feeding damage. Norton (1980) noted 

that, ‘During my perusal of several hundred herbarium specimens of P. colorata, 

those with undamaged leaves were sufficiently rare for me to record the fact in my 

notebook’ (p. 31). As stick insects, weta and lepidopteran larvae all possess chewing 

mandibles, reliable identification of which species of insect is responsible for 
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herbivory is not easily possible, particularly for feeding around the margins of leaves. 

However, data from my field surveys and observations suggest that Ctenopseustis 

spp. leafrollers are likely to be responsible for the majority of leaf damage observed 

upon P. colorata at my field sites. Throughout three years of fieldwork, leafrollers 

were consistently highly abundant at my field sites. During my census of leafroller 

larvae at the Belmont trig site (see Chapter 2), each of the 60 plants I searched had 

leafroller larvae on them. The density of leafroller larvae upon one P. colorata plant 

was 130 m-2 canopy surface area (population median = 13 m-2, interquartile range 

[IQR = Q1 to Q3] = 5 to 30 m-2). 

 

By consuming photosynthetic tissue, Ctenopseustis spp. leafrollers may have a 

measurable direct negative effect upon P. colorata (but see ‘Tolerance vs. resistance 

to herbivores’ section 2.5.3). Leafrollers may also have indirect impacts on the 

photosynthetic potential of P. colorata through leaf deformation (caused by herbivory 

of young shoots), by webbing leaves together to form shelters (reducing the leaf area 

exposed to direct sunlight; see Fig.  2.1E) and suppression of photosynthesis of 

remaining leaf tissue (Zangerl et al. 2002, Nabity et al. 2009). Leafroller feeding is 

also thought to increase a plant’s susceptibility to virus and fungal infections 

(Wearing 1999). While I did not observe any inverse correlation between the number 

of leafrollers upon P. colorata and plant fitness (see Chapter 2) in the field, such a 

link may have been obscured by variation in photosynthetic performance among P. 

colorata individuals (see Chapter 4).  

 

5.5.4 d) Discriminating (preferring the less defended/more suitable host trees)  

Redder P. colorata leaves are poor quality food compared to green leaves, as they 

tend to contain higher levels of sesquiterpene dialdehyde compounds (Youard 2012, 

plus see Chapter 2), known to be potent antifeedants (Asakawa et al. 1988, Gerard et 

al. 1993, Powell et al. 1993, 1995). My attempts to assess the fitness impacts of the 

higher concentrations of sesquiterpene dialdehydes found in red leaves on the growth 

and fecundity of C. obliquana were unsuccessful (Appendix B). However, 

experimental and correlative evidence corroborate to show that Ctenopseustis spp. 

leafrollers (being the most abundant chewing herbivore species to consume P. 

colorata leaves at my field sites) do discriminate among P. colorata leaves and 
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individuals of varying suitability. Lab bioassays showed that Ctenopseustis spp. 

leafrollers do discriminate between leaves of differing quality, as they consumed on 

average 5 % greater leaf area from green than red leaves (Fig.  5.2). In the field, 

redder leaves incurred a similarly small but statistically significant benefit in term of 

herbivory (Cooney 2012 and Chapter 2). Herbivory of Columnea consanguinea, 

another plant with variation in non-senescing leaf colour, showed a similar pattern but 

with much greater magnitude: in the field, leaves with red spots experienced on 

average 70 % less area removed than leaves without red spots (Wong and Srivastava 

2011). In the same study, feeding preference trials showed that katydids preferentially 

consumed non-anthocyanic leaf discs. However, unlike P. colorata, variation in 

defence or quality among red and green leaves of C. consanguinea has not been 

studied, therefore the mechanism of the katydid discrimination is unknown. 

 

In the field, P. colorata trees with redder leaves hosted fewer Ctenopseustis spp. 

leafroller larvae than matched neighbouring green trees (Chapter 2). The non-random 

distribution of larvae in the field may be the result of larval preferences (dispersing to 

select more suitable host trees), oviposition preferences of gravid females (laying 

their eggs on most suitable host for the development of their young), or through other 

mechanisms independent of host preferences (i.e. increased larval mortality on red 

plants). While oviposition preferences of some Lepidoptera do match the intra-

specific variation in host suitability (Gripenberg et al. 2010), neither Cooney et al. 

(2012) nor I detected any significant oviposition preference for green over red P. 

colorata leaves by C. obliquana adult females. Therefore, differences in herbivore 

abundance between red and green P. colorata trees may indeed be a product of larval 

dispersal preferences.  

 

5.5.5 e) Visual stimuli used when discriminating among hosts 

For leaf colour to be a visual signal, the coevolved herbivore partner must use visual 

stimuli when selecting host plants. For the putative autumn leaf-aphid system this 

caused much contention, as aphid eyes lack a red receptor (Schaefer and Wilkinson 

2004, Chittka and Döring 2007, Döring and Chittka 2007). Regardless, Döring et al. 

(2009) demonstrated that aphids perceive and respond to green and red colours. These 

colours are distinguishable, based on the relative ratio of the photon catches of 
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aphids’ green and blue photoreceptors. The spectral sensitivities of the stemmata of 

Ctenopseustis spp. larvae are unknown. Lepidopteran larvae, including one species 

within Tortricidae, the family containing C. obliquana, do respond to colour cues 

when dispersing and are attracted to green stimuli when walking and descending via 

silk threads (Harris et al., 1995; Singh & Saxena, 2004). Cooney et al. (2012) assessed 

the role of vision in the leaf selection of C. obliquana larvae, by carrying out feeding 

preference trials under different coloured light conditions.  In that study, colour cues 

were found necessary for discrimination between red and green P. colorata leaf 

margins by C. obliquana larvae. 

 

5.5.6 Other considerations 

It is recognised that plant species can participate in coevolution with multiple 

herbivores (Thompson 2005). The genus Ctenopseustis contains several species that, 

aside from sex pheromone differences, are not easy to distinguish morphologically 

(Dugdale 1990, Carraher et al. 2012). Incomplete lineage sorting makes DNA 

barcoding unreliable (Langhoff et al. 2009). Thus, I was unable to identify 

Ctenopseustis leafrollers from the field to species level. However, feeding preference 

bioassays of two Ctenopseustis species sourced from lab populations indicated that 

discrimination between red and green P. colorata leaves may be a feature of the genus 

(unlike Hemideina spp.).  

 

Some plant defence traits may have arisen through coevolution with animals that are 

extinct or no longer interacting with the plant (Janzen 1980). There has been much 

speculation on the selective pressures that browsing by extinct ratites (called moa) 

may have exerted on New Zealand’s flora. Greenwood and Atkinson (1977) 

postulated that selection by moa might have driven evolution of chemical defences in 

P. colorata, and subsequent visual mimicry by Alseuosmia pusilla. However, to my 

knowledge, no Pseudowintera spp. leaf material or pollen have been identified in any 

moa coprolite records.  
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6 Nutrient status of red and green Pseudowintera colorata 

leaves 
 

6.1 ABSTRACT 

The leaf signalling hypothesis proposes that red leaf coloration functions as a visual 

signal that conveys information about the defensive status of plants. However, there is 

a well-established link between nitrogen deficiency and leaf reddening. Additionally, 

leaf nutrients can influence foraging behaviour and performance of insect herbivores. 

Studies of leaf signalling rarely measure leaf nutrients and may therefore overlook 

alternative explanations for their results. N and C contents were measured for leaves 

from neighbouring matched pairs of red and green P. colorata. There were no 

significant differences in the amounts of, or ratio between, N and C between matched 

red and green leaves. This result indicates that differences in colour and herbivory 

among P. colorata leaves are not attributable to differences in leaf nutrients. 

6.2 INTRODUCTION 

The leaf signalling hypothesis proposes that red leaf coloration is a product of 

coevolution between plant and insect herbivores, and functions as a visual signal that 

conveys information about the defensive status of plants (Archetti 2000, Hamilton 

and Brown 2001). Plants with the brightest red leaf colouration are expected to have 

high leaf defences and host fewer insect herbivores, as approaching herbivores 

perceive, and are deterred by, the red signal (Archetti and Brown 2004). Much of the 

evidence presented in support of the leaf signalling hypothesis has taken the form of 

correlations between non-green leaf colour and reduced numbers of, or reduced 

amount of damage from, insect herbivores (Hagen et al. 2003, Archetti and Leather 

2005, Karageorgou and Manetas 2006, Rolshausen and Schaefer 2007, Ramirez et al. 

2008, Wong and Srivastava 2011, Cooney et al. 2012, Markwick et al. 2012). 

However, there are alternative explanations for differences in red leaf colour and 

herbivore abundance (or feeding damage) between individual plants. In order to test 

the leaf signalling hypothesis we must investigate other potential proximate 

mechanisms that make similar predictions. 
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As a key building block for proteins, nucleic acids and photosynthetic pigments, 

nitrogen (N) is vital for plant growth. In senescing autumn leaves, anthocyanins have 

also been proposed to act as photoprotectants, allowing for increased nutrient 

resorption from senescing leaves (Hoch et al. 2001). Several studies have found links 

between foliar anthocyanins and higher levels of N resorption (Hoch et al. 2003). Red 

colouration is also associated with nutrient deficiency in both senescing and non-

senescing leaves. Within-plant and among-species correlations between the timing of 

red coloration of senescing leaves and the degree of N-limitation have been described 

(Schaberg et al. 2003, Sinkkonen 2008). However, for non-deciduous plants, this 

association has received much more study, due to the link between N and crop yields. 

Many plants experiencing N deficiency display up-regulated anthocyanin biosynthetic 

genes, and subsequently, reddening of their leaves (Chalker-Scott 1999, Close and 

Beadle 2003, Diaz et al. 2006, Peng et al. 2008). Previous studies of leaf signalling 

using non-autumn senescing species (Hughes et al. 2010b, Wong and Srivastava 

2011, Cooney et al. 2012) have not assessed the nutrient status of leaves. Therefore, 

the observed inter-individual differences in leaf redness may be a result of differences 

in nutrition, not necessarily signalling.  

 

The nutrient status of plants can also affect insect herbivore abundance and feeding 

damage. Nitrogen is vital for the growth of animals (Mattson 1980, Behmer 2009). 

Plant hosts with low levels of leaf N have been shown to incur reduced amounts of 

herbivory (Alonso and Herrera 2003) and lower numbers of herbivores due to the 

oviposition preferences of adults (Gripenberg et al. 2010) and through increased 

mortality/decreased performance of larvae developing upon N-poor diet (Zaluki et al. 

2002, Gripenberg et al. 2010). Therefore, for hosts with non-senescing leaves, 

patterns of insect abundance consistent with leaf signalling might equally be 

explained by variation leaf N. 

 

Consistent with the predictions of the leaf signalling hypothesis, I found differences in 

the number of larval C. obliquana between matched pairs of red and green P. colorata 

individuals (Table 2.2). Additionally, redder P. colorata leaves sustained smaller 

amounts of herbivory relative to greener leaves (Fig 2.9). If there are differences in 

leaf nutrient content among red and green P. colorata trees then this may explain the 

observed non-random patterns in herbivore abundance and feeding damage. Here, in 
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order to test the hypothesis that P. colorata red leaves are displaying nitrogen 

deficiency, I present data on the nitrogen and carbon content of leaves from 

neighbouring matched pairs of P. colorata plants of differing leaf colour.  

6.3 MATERIALS AND METHODS 

All leaves used in this experiment were taken from a subsample of the matched pairs 

of P. colorata trees at the Wellington site described in Chapter 2 of this thesis 

following the methods of Hagen et al. (2004). Each pair contained one tree whose 

leaves were predominantly green and one tree whose leaves were much redder. This 

design allowed me to assess the leaf nutrient variability between different coloured 

leaves whilst minimising differences in environmental conditions. I used the same 10 

matched pairs of leaves as were used for pigment quantification in Chapter 4.  

 

Leaf nutrient measurements were obtained with the help of Kaylyn Carpenter and Dr 

Niky Hughes (High Point University, North Carolina, U.S.) After excision of a  ~ 1 

cm2 section of leaf lamina from a point normal to the centre of the midrib, the 

remainder of the leaf was dried. Three pairs of leaves were dried at room temperature 

for 3 days before being ground in liquid N. The remaining 7 pairs were ground in 

liquid N2 while fresh. Ground leaf tissue was freeze-dried for 24 h, sealed in a 

microcentrifuge tube and mixed well by shaking. Ten mg dry-weight (DW) of each 

leaf was subjected to elemental analysis of % C and % N content by the 

Environmental & Agricultural Testing Service of the Department of Soil Science, 

North Carolina Sate University, USA. 

  

The data were assessed for normality and homoscedacity using Shapiro-Wilk and 

Levene’s tests. Following this, paired t-tests were used to look for differences in % N, 

% C, and the ratio of C:N between matched red and green P. colorata leaf tissue. All 

statistical analyses were carried out using PSAW/SPSS Version 18.0 (Chicago, IL, 

USA). 

 

 

 

6.4 RESULTS  
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Fig.  6.1 Leaf nutrient content of 10 pairs of fully expanded green and red P. colorata 

leaves. Mean (± SE) % DW content of (A) N; (B) C; and (C), ratio of C:N. 
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Leaf N content ranged from 1.3 to 2.2 % DW. Leaf C content ranged from 49.4 to 

52.3 % DW. No difference between red and green pairs in % N (t = 0.03, P = 0.9; Fig.  

6.1A), % C (t = 0.89, P = 0.40; Fig.  6.1B), or the ratio of C:N (t = 0.02, P = 0.98; 

Fig.  6.1C). There was no difference in the results when the three pairs of leaves that 

experienced a different drying regime (i.e. room dried, before being ground and freeze 

dried) were excluded.  

6.5 DISCUSSION 

In this study I found no evidence of a difference in the amounts of, or ratio between, 

N and C among red and green P. colorata leaves. This result indicates that the 

difference in leaf colour of P. colorata leaves is not due to difference in nutrient 

status. Additionally, although leaf nutrient data were not collected for the specific 

leaves for which feeding damage was recorded (in Chapters 2 & 5), this result 

suggests that differences in herbivory rates among differently coloured leaves (see Fig 

2.9 & Fig.  5.2) were not due to differences in the nutritional quality of those leaves. 

Rather, this result strengthens my assumption that differences in herbivory among red 

and green leaves reflects differences in chemical defences, specifically polygodial. 

 

These leaf nutrient findings have implications for plant fitness. Due to its role in many 

essential metabolic processes, plant N status can affect plant growth and, after 

herbivory, compensatory regrowth (i.e. tolerance) (Rosenthal and Kotanen 1994). 

Leaf N values for both red and green plants were low, though within the typical range 

of leaf N, indicating that these plants were not severely N deficient (Mattson 1980, 

White et al. 2000). As there were no statistical differences in leaf N between matched 

red and green plants, any inter-individual differences in leaf physiology or plant 

growth rates are not likely to be a result of leaf colour-specific nutrient differences. 

However, this study only included a narrow band of leaf age. It would be interesting 

to compare variability in leaf N among red and green leaves through out their 

ontogeny.  

 

For future research, there is another quantitative method that would reveal more 

information about P. colorata leaf nutrient status and how this may mediate plant-

caterpillar interactions. The Kjeldahl assay provides a measure of reduced nitrogen 

within leaf tissue i.e. amino acids and proteins (Ehleringer et al. 1986). Animals must 
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sequester amino acids and proteins from their diet in order to grow (Mattson 1980). 

Thus the Kjedahl assay may give more information on the relative “quality” of leaf N 

from the herbivores’ perspective.  

 

Patterns in foraging by specific insect herbivores are likely to be the reflect both plant 

defences and plant nutrition (Simpson and Raubenheimer 2001). The influence in 

variation in the nutritional and allelochemical content of plant tissue on insect 

behaviour and physiology can be complex. Simpson and Raubenheimer (2001) found 

that, when fed a diet containing an ideal ratio of protein to carbohydrate, variation in 

the levels of tannic acid within the diet did not affect the growth or mortality of 

locusts. However, at progressively more nutritionally imbalanced diets, the influence 

of the defence levels on herbivore consumption rate, growth and mortality became 

more significant. While we do not know the optimal nutritive requirements of C. 

obliquana, the fact that there was no significant difference in leaf N:C ratio (proxy for 

protein to carbohydrate ratio) between red and green leaves suggests that variation in 

defences and/or leaf colour (i.e. signalling) must explain differences in herbivore 

abundance and feeding damage.  

 

6.6 CONCLUSIONS 

I did not detect any difference in the amount of, and ratio between, N and C among 

samples of red and green leaf tissue from matched pairs of P. colorata. This result 

suggests that variation in leaf colour among P. colorata individuals is not due to 

differences in plant nutritive status. Furthermore, it is likely that non-random patterns 

of herbivory among differently coloured P. colorata leaves are not due to nutrient 

differences, but rather differences in leaf allelochemical defences.  
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7 General discussion 

7.1 INTRODUCTION 

Anthocyanins are synthesised in the leaves of many plants, however the adaptive 

significance of these pigments has been the subject of heated scientific debate for 

more than a century. It has been postulated that their red colours may function as 

visual signals through coevolution between herbivorous insects and their host tree 

species. However, the hypothesis lacks solid empirical evidence, as it has proved 

difficult to distinguish experimentally between leaf signalling and alternative, non-

exclusive hypotheses. I exploited the natural polymorphism in leaf colour of P. 

colorata to test the predictions of this leaf signalling hypothesis for foliar 

anthocyanins, while controlling for, and, where possible, collecting data to assess the 

relative influence of alternative hypotheses. 

 

The main results of the research contained in my thesis collectively support four 

important conclusions: 

7.2 There is strong empirical evidence in support of a leaf signalling function for 

foliar anthocyanins in Pseudowintera colorata. 

This thesis presents the strongest empirical evidence to date in support of leaf 

signalling. My data are consistent with the first and second predictions of the leaf 

signalling hypothesis, namely: 1) early autumn leaf colour change and ‘bright’ non-

green colouration is a signal of a tree’s high defensive commitment, relative to 

conspecifics; and that, 2) upon perceiving the leaf colour signal, insect herbivores 

should alter their behaviour accordingly, selecting less well-defended host trees (see 

Chapter 1.6). 

 

In two distinct populations of P. colorata, both leaf colour and foliar anthocyanin 

content correlated positively with the levels of the defence compound polygodial 

within leaves. Polygodial, a sesquiterpene dialdehyde, is the product of a distinct 

biochemical pathway to that of anthocyanin, and the mechanism by which levels of 

polygodial and anthocyanin co-depend is not clear. The Defence Indication 

hypothesis states that correlations between leaf colour and defence levels, and/or leaf 

colour and herbivory, can arise if the pigment and defence compounds are products of 



 141 

the same biochemical pathway (Schaefer and Rolshausen 2006). Pseudowintera 

colorata is the first plant species investigated thus far for which the Defence 

Indication hypothesis cannot be considered an alternative explanation for correlations 

between herbivory and leaf colour  

 

Consistent with the second prediction of the leaf signalling hypothesis, redder P. 

colorata leaves incurred less feeding damage (and less variability in feeding damage) 

than greener leaves at the two populations investigated. Additionally, for the 

Wellington population, counts of larvae between red and green matched neighbouring 

P. colorata revealed that red trees hosted fewer caterpillars. In lab choice trials, two 

species of leaf roller caterpillars (Ctenopseustis spp.) consumed a greater area from 

green leaves than red leaves, as did a weta species. Moreover, Cooney et al. (2012) 

demonstrated that C. obliquana, a primary herbivore of P. colorata, uses colour cues 

to mediate its feeding decisions. In behavioural assays to assess the role of volatile 

cues, VOC profiles of damaged red and green P. colorata leaves did not affect 

orientation behaviour of C. obliquana larvae. These labs trials support my assumption 

that the observed non-random patterns of feeding damage in the field are at least 

partially attributable to visual-based insect preferences.  

 

Most previous studies have investigated these two predictions in isolation, often using 

different study systems, their data unable to exclude the Defence Indication 

hypothesis. In contrast, all the data in this thesis were collected from the same study 

system, and some of it is replicated from two populations. My results, especially 

when considered in combination with those of Cooney et al. (2012), make a 

compelling case for a leaf signalling function for foliar anthocyanins in P. colorata. 

7.3 In terms of herbivory, the effect of leaf signalling in P. colorata is small. 

Although leaf signalling via foliar anthocyanins presented a statistically significant 

benefit to P. colorata in the season studied, the effect was small. At the Wellington 

population, using a matched pair design, redder P. colorata trees hosted on average 

five fewer leaf roller caterpillars than did neighbouring matched green trees (see 

Chapter 2); although this difference was statistically significant, caterpillars were still 

abundant upon both red and green trees.  
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The majority of studies on leaf signalling have not considered the magnitude of 

possible leaf signalling benefits, and have instead focused upon simply whether their 

data support or contradict leaf signalling predictions. However the two studies that 

did, found that variability in non-green autumn leaf colour explained more than 80% 

of the variability in the numbers of herbivores (Archetti and Leather 2005) and more 

than 25% of the variation in the amounts of insect damage (Hagen et al. 2003). 

Alternative explanations cannot be ruled out in these studies, and direct comparisons 

with my study are complicated by methodological dissimilarities, however the 

difference between these studies and mine suggests that the efficacy of signalling may 

be lower in non-senescing leaf systems. 

 

A small effect of signalling is, perhaps, not surprising given that many factors 

influence insect host selection and subsequent feeding behaviour (Schoonhoven et al. 

2005); indeed, many factors influence foliar anthocyanin levels (Chalker-Scott 1999), 

and anthocyanin pigments apparently have multiple functions within leaves (Gould 

2004). My results suggest that in non-senescing leaves, signalling is probably only a 

small component of a diverse suite of plant protection mechanisms. 

7.4 Alternative hypotheses cannot be ignored. 

It has been repeatedly pointed out in the leaf signalling literature, that there are other 

possible explanations for patterns of leaf chemistry, colour and herbivory which are 

consistent with the first and second predictions of the leaf signalling hypothesis 

(Wilkinson et al. 2002, Schaefer and Wilkinson 2004, Schaefer and Rolshausen 2006, 

Rolshausen and Schaefer 2007). However, few studies have directly investigated 

these alternative hypotheses. This is possibly due to the insistence by some authors 

that research should focus upon finding the adaptive reason for foliar anthocyanins, 

rather than consider multiple functions (Schaefer and Gould 2007, Archetti et al. 

2009). 

I was fortunate that my study species circumvented the Defence Indication hypothesis 

(see above). However, I also investigated other alternative hypotheses. In Chapter 2.5, 

I proposed that variation in leaf nutrient levels may be a proximate explanation for 

variation in leaf colour, and that this might also be expected to cause colour-
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correlated variation in herbivory levels. Leaf nutrient assays allowed me to rule out 

this explanation for leaf colour variation in P. colorata. 

It has been hypothesised the VOC profiles emitted by leaves vary with leaf colour, 

and that these volatile cues may influence host selection and tritrophic interactions 

(Holopainen 2008, Yamazaki 2008a, b, Holopainen et al. 2010). Such mechanisms 

may provide an alternative explanation for leaf colour correlated variation in 

herbivore abundance and/or feeding damage. For example, leaf-colour specific VOC 

differences may be used by adult herbivore life stages or predator/parasitoid species 

as a cue, which could result in differences in oviposition or predation/parasitism 

between different coloured P. colorata in the field (Turlings et al. 1990, Kessler and 

Baldwin 2001, Allison and Hare 2009, Hare 2011). I compared VOC from leaves 

from red and green matched pairs of P. colorata. The VOC profiles released from 

intact, herbivore-, and mechanically-damaged red and green P. colorata leaves did 

not reliably indicate leaf colour. In behavioural assays, the VOC profiles did not 

affect larval herbivore behaviour. I conclude that volatiles are not cues for leaf colour 

in P. colorata, and can therefore rule out this alternative explanation. 

 

Given the abundant evidence that anthocyanin pigments can play photoprotective 

roles in plant tissues (Table 4.4), Lev-Yadun and Gould (2007) hypothesized that 

anthocyanins in leaves may function for both photoprotection and signalling. Two 

other empirical studies have simultaneously investigated leaf signalling and 

physiology (Karageorgou and Manetas 2006, Rolshausen and Schaefer 2007), both of 

which found indirect evidence consistent with both leaf signalling and 

photoprotection. I investigated the influence of anthocyanins upon photosynthesis of 

P. colorata leaves, but did not find evidence that foliar anthocyanins provide a 

photoprotective advantage; rather, I found that redder leaves had the lower light 

saturated CO2 assimilation rate. Thus, the influence of anthocyanin pigments upon 

photosynthesis is not always predictable (Table 4.4), despite the fact that light 

absorption is an ‘immutable property of coloured anthocyanins’ (Hatier and Gould 

2008a), and it cannot, therefore, be disregarded in discussions of leaf signalling.  
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7.5 Inter-individual variation in non-senescing leaf colour may be stable due to a 

trade off between signalling and photosynthesis. 

I exploited the natural polymorphism in leaf colour in one population of P. colorata to 

investigate a third prediction of leaf signalling, that signalling is adaptive and 

therefore confers a fitness benefit. Contrary to this prediction, matched pairs of red 

and green P. colorata trees had similar mean fitness, as measured by reproductive 

effort. This result suggests that, in this population, for the season studied, the inter-

individual leaf colour variation may have been evolutionary stable. It is important to 

note, however, that the data presented in this thesis are not sufficient to detect natural 

selection, as is required to test evolutionary stability. In the discussion of Chapter 2 I 

proposed four explanations to explain why a balanced polymorphism in leaf colour 

may occur, by synthesising ideas from the anthocyanin and leaf signalling literature 

(reviewed in Chapter 1).  

 

One of my ideas was that signalling is likely to incur energetic costs for the 

production, transportation and maintenance of pigments and defence compounds, as 

well as impose costs to photosynthesis from the presence of light absorbing coloured 

pigments in non-senescing leaves. As herbivore levels vary throughout and among 

years then the fitness payoffs from plant defence are likely to vary too (Simms 1992, 

Hare and Elle 2004). If the levels of herbivore pressure are low then the costs of 

investing and maintaining a signal may result in equal fitness of signalling and non-

signalling plants. In the absence of herbivores altogether, one might expect signalling 

plants to be at a disadvantage. Therefore, in this scenario, interindividual variation in 

leaf colour would be maintained in the population by balancing selection (Levene 

1953, Kawagoe et al. 2011). 

 

My investigations into the photosynthesis of leaves from matched red and green 

individuals revealed that there is potentially a trade off involved in producing a visual 

signal via foliar anthocyanin pigments. Redder leaved P. colorata individuals hosted 

slightly fewer herbivorous lepidopteran larvae (Table 2.2), however leaves from these 

individuals displayed a lower light saturated CO2 assimilation rate than leaves from 

greener individuals (Fig.  4.3). My observed equal fitness result suggests that, for the 

season studied, the benefits of signalling did not exceed the photosynthetic cost of 

maintaining pigments within P. colorata leaves.  
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Most theories regarding the evolution of plant defences assume some trade off exists 

between growth and defence (Herms and Mattson 1992, Stamp 2003). As a 

consequence, the study of the costs of plant defence has attracted vast amount of 

study (Koricheva 2002, Strauss et al. 2002, Stowe and Marquis 2011). Leaf signalling 

is not a traditional resistance mechanism: it is not solely the presence of defensive 

compounds, but rather signalling (a coevolved interaction) that deters herbivores. 

Similarly, the potential costs to signalling hypothesised in this thesis are unusual. The 

cost from signalling is primarily to do with the effect of foliar anthocyanin pigments 

upon photosynthesis, rather than the metabolic costs of synthesising defence 

compounds, or subsequent indirect or ecological costs. Therefore, rather than a 

allocation cost, this could be considered an opportunity cost in terms of future 

potential resource acquisition (Strauss et al. 2002).  

 

Intrinsic to the concept of a trade-off is the assumption that the resource is limiting; if 

a resource is not limiting, then an increase in its availability would not be expected to 

influence an organism’s fitness (Mole 1994). I found differences in the light saturated 

CO2 assimilation rate of leaves from red and green plants. Referring to this difference 

as a ‘cost of defence’ assumes that carbon is limiting and, consequently, that the 

differences in assimilation do constrain plant fitness. Very little is known about the 

link between differences in carbon availability and plant growth and fitness (Smith 

and Stitt 2007). Further experimental work is needed to assess if differences in 

photosynthetic potential caused by foliar anthocyanins do indeed constrain fitness. If 

costs to signalling cannot be detected, then it is possible that the mechanism behind 

the maintenance of non-senescing leaf colour variation in P. colorata is not balancing 

selection through temporally variable fitness payoffs. 

 

Other mechanisms have been proposed to explain the maintenance of phenotypic and 

genotypic variation within populations. Balanced polymorphisms can result from 

frequency-dependant selection, heterozygote advantage or, if the trait is not subject to 

selection, be maintained within a population by neutral genetic drift (Guzmán et al. 

2011, Kawagoe et al. 2011). Alternatively, as discussed in Chapter 2, other processes 

may contribute to the equal fitness result between red and green trees: a leaf colour 

polymorphism may appear balanced if the fitness effects of signalling are obscured by 

selection acting upon other colour-correlated traits (e.g. VOC and tolerance). As 
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discussed above, I found no differences in the VOC profiles of leaves from red and 

green P. colorata individuals. Damaged red and green leaves are unlikely to be 

differentially attractive to parasitoids or predators and, therefore, VOC-mediated 

interindividual differences in a plant’s herbivore or pollinator community, and 

subsequent differences in plant fitness, are not likely to occur. Additionally, 

subsequent to the evolution of a signalling system, higher herbivory upon green trees 

may promote evolution of tolerance in green morphs (Strauss and Agrawal 1999, 

Fornoni 2011, Hakes and Cronin 2011). While I did not directly collect data regarding 

tolerance mechanisms, there may be some indirect evidence: in Chapter 4, data on the 

ratios of chlorophylls a and b within red and green leaves did not point towards leaf 

shading by foliar anthocyanins, instead perhaps the higher light saturated CO2 

assimilation rate of green leaves is an adaptation to increase tolerance to herbivores 

(Strauss and Agrawal 1999).  

 

I can rule out one of the potential explanations for the stability of leaf colour variation 

proposed in Chapter 2. I posited that foliar anthocyanins might help nutrient deficient 

plants through both signalling and photoprotection. However, I found no difference in 

the nutrient status of leaves from red and green individuals. Additionally, I found no 

difference in the sensitivity of red and green leaves to photoinhibition, and therefore 

no evidence for a photoprotective function for anthocyanin pigments within P. 

colorata leaves. While I was able to rule out this process for P. colorata, it is 

important to include leaf nutrient measurements in future studies of leaf signalling, 

due to the links between leaf nutrients with leaf colour, photosynthesis, growth and 

herbivory (Mattson 1980, Rosenthal and Kotanen 1994, Chalker-Scott 1999). 

 

Is a similar trade off likely to apply to other cases of interindividual leaf colour 

variation? Yes - certainly for non-senescing leaves. However, there may be no 

opportunity cost of signalling in autumn senescing leaves, as foliar pigments are not 

likely to impose a photosynthetic cost, but rather are expected to benefit energy 

balance of trees through nutrient resorption (Hoch et al. 2001, Hoch et al. 2003). For 

foliar anthocyanins in juvenile leaves, an a priori prediction of photosynthetic cost is 

difficult due to variation in leaf development strategies among species (Coley et al. 

2005). However, the influence of pigments upon photoprotection and light screening 

in young leaves is likely to depend on the pattern of pigmentation. Irregular patches of 
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anthocyanin pigments (as in this study) might be less likely to bestow a 

photoprotective advantage than pigments uniformly distributed over the leaf lamina.  

 

Additional to the natural variation in leaf colour, anthocyanin pigmentation can be 

induced in P. colorata. After mechanical damage (including herbivory), small red 

lesions appear around damaged leaf tissue (Gould et al. 2002a). The function of this 

induced redness is unknown, although it has been hypothesised to mitigate the effects 

of abiotic stressors, or to protect against subsequent attack from pathogens and/or 

herbivores (Gould et al. 2002a). I was unable to detect co-induced biosynthesis of 

polygodial (data not shown), however the experiment was plagued by methodological 

difficulties. If there were no co-induced increase in defences, then induced 

pigmentation would weaken the correlation between leaf colour and defence, which 

would be expected to reduce the likelihood of the coevolution of leaf signalling 

(Rolshausen and Schaefer 2007). Further investigations into induced redness in P. 

colorata were not possible within the time constraints of this thesis. Most importantly, 

induced redness was not responsible for the matched pair inter-individual leaf colour 

variation in P. colorata. 

 

Colour polymorphisms are ecologically relevant and of great interest for evolutionary 

biology (Forsman et al. 2008, McKinnon and Pierotti 2010, Wennersten and Forsman 

2012). To date, studies investigating the mechanisms and implications of colour 

polymorphisms in plants have solely focused upon reproductive organs (most 

frequently flowers) not vegetative organs as in this study. Leaf signalling, as an 

hypothesised explanation for variation in both leaf colour and defence, has the 

potential to add important contributions to plant defence theory and evolutionary 

biology.  

 

In light of my results, can the concepts from leaf signalling be applied to agriculture 

for crop protection? The answer depends what plant organ is harvested. If one is 

collecting reproductive tissues and the signalling mechanisms are similar to P. 

colorata (i.e. trade off between signalling and photosynthesis), then red and green 

morphs are likely to have no significant difference in yield. However, if one is 

collecting vegetative tissues (e.g. lettuce and cabbage), then reduced herbivory 

damage of red morphs would be desirable regardless of the fitness of individuals, 
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especially for annual plants. Some horticultural studies show that red varieties of 

lettuce and cabbage are less attractive to butterflies, aphids and thrips than green 

varieties (Müller 1964, Griffiths and Shelton 2004, Jankowska 2006). However, it is 

important to note that in my study, signalling had only a weak effect and no 

individuals escaped herbivory entirely. 

7.6 CONCLUSIONS 

Taken together, my results suggest that foliar anthocyanins in P. colorata do function 

as visual signals, however their effect on herbivory is small. Inter-individual variation 

in non-senescing leaf colour in P. colorata may be stable due to a trade off between 

signalling and photosynthesis. My findings imply that the adaptive function of leaf 

colouration is more complex than the decade old debate on this topic acknowledges. 

Traditionally, studies testing red leaf hypotheses have presented their results as 

supporting either signalling OR physiological hypotheses. My study shows that this 

approach is no longer applicable; without incorporating alternative hypotheses (in 

particular: the physiological consequences of non-green leaf pigments) it is not 

possible to reject leaf signalling. The potential for equal fitness pay offs has not 

previously received attention in leaf signalling literature. I identified and discussed 

four nonexclusive scenarios that highlight internal and external factors that may 

explain this polymorphism. Rather than hunting for evidence of leaf colour-correlated 

herbivory and chemistry patterns, the leaf signalling hypothesis will only be advanced 

by disentangling the various physiological and ecological differences between 

differently coloured individuals, and experimentally assessing the influence of these 

differences upon plant fitness. Discussions of leaf signalling need to follow the 

examples of other fields studying the interactions between plants and insects and 

move from overly simple models to those that incorporate more of the complexity that 

is observed in the natural world. 
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Appendicies 

A. Induced vs. natural leaf redness  

 

Leaf signalling predicts a correlation between leaf redness and feeding damage. P. 

colorata leaves are naturally variable in colouration, but mechanical injury and insect 

feeding can induce the biosynthesis of additional anthocyanin pigmentation in leaf 

tissue immediately adjacent to damage (Gould et al. 2002a). When assessing the 

patterns of colouration and herbivory of P. colorata leaves from the field (see Chapter 

2), some of the red area was natural redness (not obviously associated with any leaf 

damage) and some was induced redness after damage.  

 

I closely inspected the digital image of each leaf and noted all areas of damage 

(identified by missing leaf area, or necrotic leaf tissue). Next, I estimated the 

proportion of red leaf area that was associated with this damaged tissue (typically a 

red margin around missing leaf area). Subsequently, I assigned each leaf to a category 

(1 – 5) according to how much of the observed red area was associated with 

mechanical damage (Table A). I divided this category score by 5 to get a decimal, 

which I then multiplied by the red area measurement for that leaf. This adjusted the 

percent red leaf area measurement, reducing it according to how much of the red leaf 

area was induced. 

 

To illustrate: 

Low proportion of leaf redness associated with damage: score of 5 => 5/5 = 1  

Leaf area measurement will be unchanged  

 

High proportion of leaf redness associated with damage: score of 1 => 1/5 = 0.2  

Leaf red area measurement for that leaf will be much reduced after being adjusted. 
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Table A. Induced leaf redness classification categories 

Category % of redness associated 

with damage 

Redder example Greener Example 

1 80 – 100% 

  
2 60 – 80% 

  
3 40 – 60% 

  
4 20 – 40% 

  
5 0 – 20% 
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B. Insect fitness upon diet of red or green P. colorata leaves 

 

INTRODUCTION 

The third prediction of leaf signalling hypothesis states that, on average, signalling 

increases the fitness of participating plant and herbivore individuals. Only one study 

to date has attempted to assess fitness consequences of signalling for insect 

herbivores. Ramirez et al. (2008) used cage clips to measure aphid reproduction rates 

in spring upon trees that displayed different leaf colouration the previous autumn. No 

correlation was detected between host autumn leaf colour and aphid reproductive rate 

the following spring. 

 

I tried two methods to assess whether a restricted diet of either red or green P. 

colorata leaves causes differences in the growth, development and fecundity of the 

brownheaded leafroller C. obliquana. Following similar methods to Barrington et al. 

(1993), I reared larvae on a diet of exclusively red or green P. colorata leaves, and 

planned to measure time-to-pupation and pupal weight. I also planned to mate pairs 

from within treatments, to count the number of resulting eggs.  

 

MATERIALS AND METHODS 

The first method was carried out between September and October 2011. Sixty 3rd 

instar C. obliquana larvae were reared in 5 mL test tubes with either two red or two 

green P. colorata leaves and a cottonwool bung. The leaves were all collected from 

the one matched pair of P. colorata trees from Belmont trig. Care was taken to ensure 

the leaves were all of a similar size and age. Leaves bearing insects, or exhibiting 

signs of herbivory were rejected. Test tubes were kept in incubator at 20° C, ~ 60 % 

relative humidity and a 16:8 h (light:dark) photoperiod. To reduce leaf desiccation 

and maintain humidity within the tubes, a drop of distilled water was added twice a 

week. Fresh leaf material was collected weekly, and the old leaves were replaced. 

 

The second insect fitness experiment took place between March and May 2012. Due 

to the difficulties involved with maintaining individual larvae within test tubes, I used 

twenty 5 L transparent plastic containers, with nylon mesh inserts within their lids. 
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Ten matched pairs of P. colorata with the greatest contrast in leaf colour were 

selected. The terminal portion (~ 20 cm, bearing 20 to 30 leaves) of one stem from 

each tree was excised, recut under water and the base of the stem immersed in a 

florists tube. I thoroughly searched each stem and, after removing any insects, placed 

them in the containers. Using a paintbrush, I introduced seventeen one-day-old 

hatchling C. obliquana larvae on to leaves within each container. The containers were 

kept in a controlled temperature growth-room at 20° C. A fluorescent light bank and 

rotating fan were connected to an automatic timer to maintain a 16:8 h (light:dark) 

photoperiod and to regularly circulate the air. Every week, fresh stems were collected 

from the same pairs of P. colorata, and placed in the appropriate container. The 

previous stems were kept in the containers for one week to allow the larvae sufficient 

time to migrate to the fresh leaf material. I did a thorough search before removing any 

leaf material from the containers and any remaining larvae were manually transferred 

to the fresh leaves. To reduce the influence of any variation in lighting, heating and 

airflow, the containers were rotated within the growth room weekly. 

 

RESULTS 

My attempts to rear C. obliquana larvae on a diet of either red or green P. colorata 

leaves were unsuccessful. Of the 3rd instar larvae reared within 5 mL test tubes, a 

large proportion did not survive to pupation (presumably succumbing to fungal 

attack). The remaining larvae were so few and displayed such pronounced variation in 

size within treatments that I abandoned the experiment. The growth rates of larvae 

reared from eggs in 5 L chambers were extremely low. When I concluded the 

experiment, due to time constraints, the largest observable larvae were only 2-4 mm 

long, and as such were clearly very far from pupation.  

 

DISCUSSION 

I was unable to assess the insect fitness implications of eating differently coloured 

leaves. Both the 5 mL test tube and 5 L box methods were unsuccessful within 

available time. I had also planned to mate pairs from within treatments, to count the 

number of resulting eggs, however no larvae pupated during these experiments, 

therefore this was not possible. 
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Using fresh leaf material presented experimental difficulties. Moisture is vital to 

retain leaf tugur and freshness. However, too much humidity can promote fungal 

infection in captive insect larvae (G. W. Gibbs pers. comm.). The microclimate within 

the small containers, even though they were kept in a humidity-controlled incubator, 

must have been too damp. 

 

Given the extremely low growth rates, the frequent and exhausting trips to the field 

site to gather fresh leaf material, plus thesis and family constraints, I abandoned the 

large container experiment after nearly twice the usual duration for pupation had 

elapsed (Barrington et al. 1993). However, Barrington et al. (1993) reared insects 

upon artificial diet (Singh 1983) with dried, finely ground leaf material mixed in. I 

chose not to do this as I thought that the highly reactive defence compounds in P. 

colorata would either complex with the artificial diet or be oxidised. Regardless, the 

long development time indicates that P. colorata is a poor diet to grow on. I later 

heard that, while C. obliquana can complete 4 - 6 generations per year on exotic 

orchard crops (http://www.hortnet.co.nz/publications/hortfacts/hf401027.htm, 

accessed May 2012), leafroller life cycle can take up to 12 months upon 

Pseudowintera spp. in the wild (G. W. Gibbs pers. comm.).  

 

Future experiments testing the stability of polygodial and other P. colorata leaf 

extracts within an artificial diet matrix, and subsequent feeding trials, would be very 

informative. Experimental proof that variation in polygodial concentration (at a 

magnitude resembling that found between green and red P. colorata leaves) does 

cause fitness differences in C. obliquana would be strong evidence in support of a leaf 

signalling function for foliar anthocyanins in P. colorata.  
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